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Models are, for the most part, caricatures of reality,
but if they are good, like good caricatures,

they portray, though perhaps in a disturbed manner,
some features of the real world.

Marc Kač
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Preface

This is a text which presents the basics of stochastic calculus in an ele-
mentary fashion with plenty of practice. It is aimed at the typical student
who wants to learn quickly about the use of these tools in financial engi-
neering, particularly option valuation, and who in the first instance can
accept (and usually prefers) certain propositions without the full math-
ematical proofs and technical conditions. Elementary ordinary calculus
has been successfully taught along these lines for decades. Concurrent
numerical experimentation, using Excel/VBA and Mathematica, forms
an integral part of the learning. Useful side readings are given with each
topic. Annexes provide background and elaborate some more technical
aspects. The technical prerequisites are elementary probability theory
and basic ordinary calculus.

OUTLINE

The sequence of chapters in this text is best explained by working back-
wards from the ultimate use of Brownian motion calculus, namely the
valuation of an option. An option is a financial contract that produces a
random payoff, which is non-negative, at some contractually specified
date. Because of the absence of downside risk, options are widely used
for risk management and investment. The key task is to determine what
it should cost to buy an option prior to the payoff date. What makes
the payoff uncertain is the value of the so-called underlying asset of the
option on the date of payoff. In the standard case the underlying asset
is a share of stock. If T denotes the payoff date, and S(T ) the value of
the stock at T , then a standard European call option allows its holder
to acquire the stock, of value S(T ), for a fixed payment of K that is

xiii
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specified in the contract. The European call has payoff max[S(T ) −
K , 0] which is positive if S(T ) > K and zero otherwise. So the be-
haviour of the stock price needs to be modelled. In the standard case it
is assumed to be driven by a random process called Brownian motion,
denoted B. The basic model for the stock price is as follows. Over a
small time step dt there is a random increment dB(t) and this affects the
rate of return on the stock price by a scaling factor σ . In addition there
is a regular growth component μ dt . If at time t the stock has the known
value S(t), then the resulting change in stock price d S is specified by

d S(t)

S(t)
= μ dt + σ dB(t)

The change in stock price over a future period of length T , from its
initial price S(0), is then the sum (integral) of the changes over all time
steps dt∫ T

t=0

dS(t) = S(T ) − S(0) =
∫ T

t=0

μS(t) dt +
∫ T

t=0

σ S(t) dB(t)

This sets the agenda for what needs to be worked out mathematically.
First the Brownian motion process needs to be specified. This is the

subject of Chapter 1. Then an integral of the form
∫ T

t=0
σ S(t) d B(t)

needs to be defined; that requires a new concept of integration which is

introduced in Chapter 3; the other term,
∫ T

t=0
μS(t) dt , can be handled

by ordinary integration. Then the value of S(T ) needs to be obtained
from the above equation. That requires stochastic calculus rules which
are set out in Chapter 4, and methods for solving stochastic differential
equations which are described in Chapter 5. Once all that is in place, a
method for the valuation of an option needs to be devised. Two methods
are presented. One is based on the concept of a martingale which is
introduced in Chapter 2. Chapter 7 elaborates on the methodology for
the change of probability that is used in one of the option valuation
methods. The final chapter discusses how computations can be made
more convenient by the suitable choice of the so-called numeraire.

The focus of this text is on Brownian motion in one dimension, and
the time horizon is always taken as finite. Other underlying random
processes, such as jump processes and Lévy processes, are outside the
scope of this text.

The references have been selected with great care, to suit a variety of
backgrounds, desire and capacity for rigour, and interest in application.
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They should serve as a companion. After an initial acquaintance with the
material of this text, an excellent way to gain a further understanding is
to explore how specific topics are explained in the references. In view of
the perceived audience, several well-known texts that are mathematically
more demanding have not been included. In the interest of readability,
this text uses the Blackwood Bold font for probability operations; a
probability distribution function is denoted as P, an expectation as E, a
variance as Var, a standard deviation as Stdev, a covariance as Cov, and
a correlation as Corr.
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1

Brownian Motion

The exposition of Brownian motion is in two parts. Chapter 1 introduces
the properties of Brownian motion as a random process, that is, the true
technical features of Brownian motion which gave rise to the theory
of stochastic integration and stochastic calculus. Annex A presents a
number of useful computations with Brownian motion which require no
more than its probability distribution, and can be analysed by standard
elementary probability techniques.

1.1 ORIGINS

In the summer of 1827 Robert Brown, a Scottish medic turned botanist,
microscopically observed minute pollen of plants suspended in a fluid
and noticed increments1 that were highly irregular. It was found that
finer particles moved more rapidly, and that the motion is stimulated
by heat and by a decrease in the viscosity of the liquid. His investiga-
tions were published as A Brief Account of Microscopical Observations
Made in the Months of June, July and August 1827. Later that century
it was postulated that the irregular motion is caused by a very large
number of collisions between the pollen and the molecules of the liq-
uid (which are microscopically small relative to the pollen). The hits
are assumed to occur very frequently in any small interval of time, in-
dependently of each other; the effect of a particular hit is thought to
be small compared to the total effect. Around 1900 Louis Bachelier,
a doctoral student in mathematics at the Sorbonne, was studying the
behaviour of stock prices on the Bourse in Paris and observed highly
irregular increments. He developed the first mathematical specification
of the increment reported by Brown, and used it as a model for the in-
crement of stock prices. In the 1920s Norbert Wiener, a mathematical
physicist at MIT, developed the fully rigorous probabilistic framework
for this model. This kind of increment is now called a Brownian motion
or a Wiener process. The position of the process is commonly denoted

1 This is meant in the mathematical sense, in that it can be positive or negative.

1



JWBK142-01 JWBK142-Wiersema March 18, 2008 18:55 Char Count= 0

2 Brownian Motion Calculus

by B or W . Brownian motion is widely used to model randomness in
economics and in the physical sciences. It is central in modelling finan-
cial options.

1.2 BROWNIAN MOTION SPECIFICATION

The physical experiments suggested that:� the increment is continuous� the increments of a particle over disjoint time intervals are indepen-
dent of one another� each increment is assumed to be caused by independent bombard-
ments of a large number of molecules; by the Central Limit Theorem
of probability theory the sum of a large number of independent iden-
tically distributed random variables is approximately normal, so each
increment is assumed to have a normal probability distribution� the mean increment is zero as there is no preferred direction� as the position of a particle spreads out with time, it is assumed that
the variance of the increment is proportional to the length of time the
Brownian motion has been observed.

Mathematically, the random process called Brownian motion, and de-
noted here as B(t), is defined for times t ≥ 0 as follows. With time on
the horizontal axis, and B(t) on the vertical axis, at each time t , B(t) is
the position, in one dimension, of a physical particle. It is a random vari-
able. The collection of these random variables indexed by the continu-
ous time parameter t is a random process with the following properties:

(a) The increment is continuous; when recording starts, time and posi-
tion are set at zero, B(0) = 0

(b) Increments over non-overlapping time intervals are independent
random variables

(c) The increment over any time interval of length u, from any time t to
time (t + u), has a normal probability distribution with mean zero
and variance equal to the length of this time interval.

As the probability density of a normally distributed random variable
with mean μ and variance σ 2 is given by

1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]
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the probability density of the position of a Brownian motion at the end
of time period [0, t] is obtained by substituting μ = 0 and σ = √

t ,
giving

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

where x denotes the value of random variable B(t). The probability
distribution of the increment B(t + u) − B(t) is

P[B(t +u)−B(t) ≤ a] =
∫ a

x=−∞

1√
u
√

2π
exp

[
− 1

2

(
x√
u

)2
]

dx

Note that the starting time of the interval does not figure in the expres-
sion for the probability distribution of the increment. The probability
distribution depends only on the time spacing; it is the same for all time
intervals that have the same length. As the standard deviation at time t
is

√
t , the longer the process has been running, the more spread out is

the density, as illustrated in Figure 1.1.
As a reminder of the randomness, one could include the state of

nature, denoted ω, in the notation of Brownian motion, which would
then be B(t, ω), but this is not commonly done. For each fixed time t∗,
B(t∗, ω) is a function of ω, and thus a random variable. For a partic-
ular ω∗ over the time period [0, t], B(t, ω∗) is a function of t which is
known as a sample path or trajectory. In the technical literature this is
often denoted as t �−→ B(t). On the left is an element from the domain,
on the right the corresponding function value in the range. This is as
in ordinary calculus where an expression like f (x) = x2 is nowadays
often written as x �−→ x2.

As the probability distribution of B(t) is normal with standard devia-
tion

√
�t , it is the same as that of

√
�t Z , where Z is a standard normal

random variable. When evaluating the probability of an expression in-
volving B(t), it can be convenient to write B(t) as

√
�t Z .

The Brownian motion distribution is also written with the cumula-
tive standard normal notation N (mean, variance) as B(t + u) − B(t) ∼
N (0, u), or for any two times t2 > t1 as B(t2) − B(t1) ∼ N (0, t2 −
t1). As Var[B(t)] = E[B(t)2] − {E[B(t)]}2 = t , and E[B(t)] = 0, the
second moment of Brownian motion is E[B(t)2] = t . Over a time
step �t , where �B(t)

def= B(t + �t) − B(t), E{[�B(t)]2} = �t . A
normally distributed random variable is also known as a Gaussian ran-
dom variable, after the German mathematician Gauss.
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Figure 1.1 Brownian motion densities

1.3 USE OF BROWNIAN MOTION IN STOCK
PRICE DYNAMICS

Brownian motion arises in the modelling of the evolution of a stock
price (often called the stock price dynamics) in the following way. Let
�t be a time interval, S(t) and S(t + �t) the stock prices at current time
t and future time (t + �t), and �B(t) the Brownian motion increment
over �t . A widely adopted model for the stock price dynamics, in a
discrete time setting, is

S(t + �t) − S(t)

S(t)
= μ �t + σ �B(t)
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where μ and σ are constants. This is a stochastic difference equation
which says that the change in stock price, relative to its current value
at time t , [S(t + �t) − S(t)]/S(t), grows at a non-random rate of μ per
unit of time, and that there is also a random change which is propor-
tional to the increment of a Brownian motion over �t , with proportion-
ality parameter σ . It models the rate of return on the stock, and evolved
from the first model for stock price dynamics postulated by Bachelier
in 1900, which had the change in the stock price itself proportional to a
Brownian motion increment, as

�S(t) = σ �B(t)

As Brownian motion can assume negative values it implied that there is
a probability for the stock price to become negative. However, the lim-
ited liability of shareholders rules this out. When little time has elapsed,
the standard deviation of the probability density of Brownian motion,√

t , is small, and the probability of going negative is very small. But
as time progresses the standard deviation increases, the density spreads
out, and that probability is no longer negligible. Half a century later,
when research in stock price modelling began to take momentum, it
was judged that it is not the level of the stock price that matters to in-
vestors, but the rate of return on a given investment in stocks.

In a continuous time setting the above discrete time model becomes
the stochastic differential equation

d S(t)

S(t)
= μ dt + σ dB(t)

or equivalently d S(t) = μ S(t) dt + σ S(t) dB(t), which is discussed in
Chapter 5. It is shown there that the stock price process S(t) which
satisfies this stochastic differential equation is

S(t) = S(0) exp[(μ − 1
2
σ 2)t + σ B(t)]

which cannot become negative. Writing this as

S(t) = S(0) exp(μt) exp[σ B(t) − 1
2
σ 2t]

gives a decomposition into the non-random term S(0) exp(μt) and
the random term exp[σ B(t) − 1

2
σ 2t]. The term S(0) exp(μt) is S(0)

growing at the continuously compounded constant rate of μ per unit
of time, like a savings account. The random term has an expected value
of 1. Thus the expected value of the stock price at time t , given S(0),
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equals S(0) exp(μt). The random process exp[σ B(t) − 1
2
σ 2t] is an ex-

ample of a martingale, a concept which is the subject of Chapter 2.

1.4 CONSTRUCTION OF BROWNIAN MOTION FROM
A SYMMETRIC RANDOM WALK

Up to here the reader may feel comfortable with most of the mathemat-
ical specification of Brownian motion, but wonder why the variance is
proportional to time. That will now be clarified by constructing Brown-
ian motion as the so-called limit in distribution of a symmetric random
walk, illustrated by computer simulation. Take the time period [0, T ]

and partition it into n intervals of equal length �t
def= T/n. These inter-

vals have endpoints tk
def= k �t , k = 0, . . . , n. Now consider a particle

which moves along in time as follows. It starts at time 0 with value 0,
and moves up or down at each discrete time point with equal probabil-
ity. The magnitude of the increment is specified as

√
�t . The reason

for this choice will be made clear shortly. It is assumed that successive
increments are independent of one another. This process is known as a
symmetric (because of the equal probabilities) random walk. At time-
point 1 it is either at level

√
�t or at level −√

�t . If at time-point 1 it is
at

√
�t , then at time-point 2 it is either at level

√
�t + √

�t = 2
√

�t
or at level

√
�t − √

�t = 0. Similarly, if at time-point 1 it is at level
−√

�t , then at time-point 2 it is either at level 0 or at level −2
√

�t ,
and so on. Connecting these positions by straight lines gives a contin-
uous path. The position at any time between the discrete time points is
obtained by linear interpolation between the two adjacent discrete time
positions. The complete picture of all possible discrete time positions is
given by the nodes in a so-called binomial tree, illustrated in Figure 1.2
for n = 6. At time-point n, the node which is at the end of a path that
has j up-movements is labelled (n, j), which is very convenient for
doing tree arithmetic.

When there are n intervals, there are (n + 1) terminal nodes at time
T , labelled (n, 0) to (n, n), and a total of 2n different paths to these
terminal nodes. The number of paths ending at node (n, j) is given by a
Pascal triangle. This has the same shape as the binomial tree. The upper
and lower edge each have one path at each node. The number of paths
going to any intermediate node is the sum of the number of paths going
to the preceding nodes. This is shown in Figure 1.3. These numbers are
the binomial coefficients from elementary probability theory.
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node index

n = 6
Δt = 1/6

(6,6)

(6,5)

(6,4)
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(6,1)

time-points (6,0)

0 1 2 3 4 5 6

Figure 1.2 Symmetric binomial tree

Each path has a probability ( 1
2
)n of being realized. The total proba-

bility of terminating at a particular node equals the number of different
paths to that node, times ( 1

2
)n . For n = 6 these are shown on the Pascal

triangle in Figure 1.2. It is a classical result in probability theory that as
n goes to infinity, the terminal probability distribution of the symmetric
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Figure 1.3 Pascal triangle
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Figure 1.4 Terminal probabilities

random walk tends to that of a normal distribution. The picture of the
terminal probabilities for the case n = 6 is shown in Figure 1.4.

Let the increment of the position of the random walk from time-point
tk to tk+1 be denoted by discrete two-valued random variable Xk . This
has an expected value of

E[Xk] = 1
2

√
�t + 1

2
(−√

�t) = 0

and variance

Var[Xk] = E[X2
k ] − {E[Xk]}2

= E[X2
k ] = 1

2
(
√

�t)2 + 1
2
(−√

�t)2 = �t

The position of the particle at terminal time T is the sum of n inde-

pendent identically distributed random variables Xk , Sn
def= X1 + X2 +

· · · + Xn . The expected terminal position of the path is

E[Sn] = E[X1 + X2 + · · · + Xn]

= E[X1] + E[X2] + · · · + E[Xn] = n0 = 0

Its variance is

Var[Sn] = Var

[
n∑

k=1

Xk

]
As the Xk are independent this can be written as the sum of the vari-
ances

∑n
k=1 Var[Xk], and as the Xk are identically distributed they have
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the same variance �t , so

Var[Sn] = n�t = n(T/n) = T

For larger n, the random walk varies more frequently, but the magnitude
of the increment

√
�t = √

T/n gets smaller and smaller. The graph of
the probability distribution of

Zn
def= Sn − E[Sn]√

Var[Sn]
= Sn√

T

looks more and more like that of the standard normal probability distri-
bution.

Limiting Distribution The probability distribution of Sn is determined
uniquely by its moment generating function.2 This is E[exp(θ Sn)],
which is a function of θ , and will be denoted m(θ ).

m(θ )
def= E[exp(θ{X1 + · · · + Xk + · · · + Xn})]
= E[exp(θ X1) · · · exp(θ Xk) · · · exp(θ Xn)]

As the random variables X1, . . . , Xn are independent, the random vari-
ables exp(θ X1), . . . , exp(θ Xn) are also independent, so the expected
value of the product can be written as the product of the expected val-
ues of the individual terms

m(θ ) =
n∏

k=1

E[exp(θ Xk)]

As the Xk are identically distributed, all E[exp(θ Xk)] are the same, so

m(θ ) = {E[exp(θ Xk)]}n

As Xk is a discrete random variable which can take the values
√

�t
and −√

�t , each with probability 1
2
, it follows that E[exp(θ Xk)] =

1
2

exp(θ
√

�t) + 1
2

exp(−θ
√

�t). For small �t , using the power series
expansion of exp and neglecting terms of order higher than �t , this can
be approximated by

1
2
(1 + θ

√
�t + 1

2
θ2�t) + 1

2
(1 − θ

√
�t + 1

2
θ2�t) = 1 + 1

2
θ2�t

so

m(θ ) ≈ (1 + 1
2
θ2�t)n

2 See Annex A, Computations with Brownian motion.
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As n → ∞, the probability distribution of Sn converges to the one de-
termined by the limit of the moment generating function. To determine
the limit of m as n → ∞, it is convenient to change to ln.

ln[m(θ )] ≈ n ln(1 + 1
2
θ2�t)

Using the property, ln(1 + y) ≈ y for small y, gives

ln[m(θ )] ≈ n 1
2
θ2�t

and as �t = T/n

m(θ ) ≈ exp( 1
2
θ2T )

This is the moment generating function of a random variable, Z say,
which has a normal distribution with mean 0 and variance T , as can
be readily checked by using the well-known formula for E[exp(θ Z )].
Thus in the continuous-time limit of the discrete-time framework, the
probability density of the terminal position is

1√
T

√
2π

exp

[
−1

2

(
x√
T

)2
]

which is the same as that of a Brownian motion that has run an amount
of time T . The probability distribution of Sn = √

T Zn is then normal
with mean 0 and variance T .

The full proof of the convergence of the symmetric random walk to
Brownian motion requires more than what was shown. Donsker’s theo-
rem from advanced probability theory is required, but that is outside the
scope of this text; it is covered in Korn/Korn Excursion 7, and in Ca-
passo/Bakstein Appendix B. The construction of Brownian motion as
the limit of a symmetric random walk has the merit of being intuitive.
See also Kuo Section 1.2, and Shreve II Chapter 3. There are several
other constructions of Brownian motion in the literature, and they are
mathematically demanding; see, for example, Kuo Chapter 3. The most
accessible is Lėvy’s interpolation method, which is described in Kuo
Section 3.4.

Size of Increment Why the size of the random walk increment was
specified as

√
�t will now be explained. Let the increment over

time-step �t be denoted y. So Xk = y or −y, each with probability
1
2
, and

E[Xk] = 1
2

y + 1
2
(−y) = 0
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Var[Xk] = E[X2
k ] − {E[Xk]}2 = 1

2
y2 + 1

2
(−y)2 − 02 = y2

Then Var[Sn] = nVar[Xk] as the successive Xk are independent

Var[Sn] = ny2 = T

�t
y2 = T

y2

�t

Now let both �t → 0 and y → 0, in such a way that Var[Sn] stays

finite. This is achieved by choosing y2

�t = c, a positive constant, so
Var [Sn] = T c. As time units are arbitrary, there is no advantage in
using a c value other than 1.

So if one observes Brown’s experiment at equal time intervals, and
models this as a symmetric random walk with increment y, then the
continuous-time limit is what is called Brownian.

This motivates why Brownian motion has a variance equal to the
elapsed time. Many books introduce the variance property of Brownian
motion without any motivation.

Simulation of Symmetric Random Walk To simulate the symmetric
random walk, generate a succession of n random variables X with the
above specified two-point probabilities and multiply these by ±√

�t .
The initial position of the walk is set at zero. Three random walks over
the time period [0, 1] are shown in Figure 1.5.
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Figure 1.5 Simulated symmetric random walks
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Figure 1.6 Simulated versus exact

For a batch of 100 simulated symmetric walks of 512 steps, the cu-
mulative frequency of the terminal positions is shown in Figure 1.6,
together with the limiting standard normal probability distribution.

The larger the number of simulations, the closer the cumulative fre-
quency resembles the limiting distribution. For 10 000 simulated walks
the difference is not graphically distinguishable. The simulation statis-
tics for the position at time 1 are shown in Figure 1.7.

1.5 COVARIANCE OF BROWNIAN MOTION

A Gaussian process is a collection of normal random variables such
that any finite number of them have a multivariate normal distribution.
Thus Brownian motion increments are a Gaussian process. Consider the
covariance between Brownian motion positions at any times s and t ,
where s < t . This is the expected value of the product of the deviations

sample exact
mean 0.000495 0
variance 1.024860 1

Figure 1.7 Simulation statistics
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of these random variables from their respective means

Cov[B(s), B(t)] = E[{B(s) − E[B(s)]}{B(t) − E[B(t)]}]
As E[B(s)] and E[B(t)] are zero, Cov[B(s), B(t)] = E[B(s)B(t)].
Note that the corresponding time intervals [0, s] and [0, t] are overlap-
ping. Express B(t) as the sum of independent random variables B(s)
and the subsequent increment {B(t) − B(s)}, B(t) = B(s) + {B(t) −
B(s)}. Then

E[B(s)B(t)] = E[B(s)2 + B(s){B(t) − B(s)}]
= E[B(s)2] + E[B(s){B(t) − B(s)}]

Due to independence, the second term can be written as the product of
Es, and

E[B(s)B(t)] = E[B(s)2] + E[B(s)]E[B(t) − B(s)]

= s + 0 0 = s

If the time notation was t < s then E[B(s)B(t)] = t. Generally for any
times s and t

E[B(s)B(t)] = min(s, t)

For increments during any two non-overlapping time intervals [t1, t2]
and [t3, t4], �B(t1) is independent of �B(t3), so the expected value
of the product of the Brownian increments over these non-overlapping
time intervals (Figure 1.8) equals the product of the expected values

E[{B(t2) − B(t1)}{B(t4) − B(t3)}]
= E[B(t2) − B(t1)]E[B(t4) − B(t3)] = 0 0 = 0

whereas E[B(t1)B(t3)] = t1 �= E[B(t1)]E[B(t3)].

B(t)

B(s+Δs) ΔB(t)

ΔB(s) B(t+Δt)
 B(s)

time-----> 
s s+Δs t t+Δt

ΔtΔs

Figure 1.8 Non-overlapping time intervals
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1.6 CORRELATED BROWNIAN MOTIONS

Let B and B∗ be two independent Brownian motions. Let −1 ≤ ρ ≤ 1
be a given number. For 0 ≤ t ≤ T define a new process

Z (t)
def= ρB(t) +

√
1 − ρ2 B∗(t)

At each t , this is a linear combination of independent normals, so Z (t) is
normally distributed. It will first be shown that Z is a Brownian motion
by verifying its expected value and variance at time t , and the variance
over an arbitrary time interval. It will then be shown that Z and B are
correlated.

The expected value of Z (t) is

E[Z (t)] = E[ρB(t) +
√

1 − ρ2 B∗(t)]

= ρE[B(t)] +
√

1 − ρ2 E[B∗(t)]

= ρ0 +
√

1 − ρ2 0 = 0

The variance of Z (t) is

Var[Z (t)] = Var[ρB(t) +
√

1 − ρ2 B∗(t)]

= Var[ρB(t)] + Var[
√

1 − ρ2 B∗(t)]

as the random variables ρB(t) and
√

1 − ρ2 B∗(t) are independent. This
can be written as

ρ2Var[B(t)] +
(√

1 − ρ2
)2

Var[B∗(t)] = ρ2t + (
1 − ρ2

)
t = t

Now consider the increment

Z (t + u) − Z (t) = [ρB(t + u) +
√

1 − ρ2 B∗(t + u)]

− [ρB(t) +
√

1 − ρ2 B∗(t)]

= ρ[B(t + u) − B(t)]

+
√

1 − ρ2 [B∗(t + u) − B∗(t)]

B(t + u) − B(t) is the random increment of Brownian motion B over
time interval u and B∗(t + u) − B∗(t) is the random increment of
Brownian motion B∗ over time interval u. These two random quanti-
ties are independent, also if multiplied by constants, so the Var of the
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sum is the sum of Var

Var[Z (t + u) − Z (t)] = Var{ρ[B(t + u) − B(t)]

+
√

1 − ρ2 [B∗(t + u) − B∗(t)]}
= Var{ρ[B(t + u) − B(t)]}

+ Var{
√

1 − ρ2 [B∗(t + u) − B∗(t)]}
= ρ2u +

(√
1 − ρ2

)2

u = u

This variance does not depend on the starting time t of the interval u,
and equals the length of the interval. Hence Z has the properties of a
Brownian motion. Note that since B(t + u) and B(t) are not indepen-
dent

Var[B(t +u) − B(t)] �= Var[B(t + u)] + Var[B(t)]

= t +u + t = 2t + u

but

Var[B(t + u) − B(t)] = Var[B(t + u)] + Var[B(t)]

− 2Cov[B(t + u), B(t)]

= (t + u) + t − 2 min(t + u, t)

= (t + u) + t − 2t = u

Now analyze the correlation between the processes Z and B at time t .
This is defined as the covariance between Z (t) and B(t) scaled by the
product of the standard deviations of Z (t) and B(t):

Corr[Z (t), B(t)] = Cov[Z (t), B(t)]√
Var[Z (t)]

√
Var[B(t)]

The numerator evaluates to

Cov[Z (t), B(t)] = Cov[ρB(t) +
√

1 − ρ2 B∗(t), B(t)]

= Cov[ρB(t), B(t)] + Cov[
√

1−ρ2 B∗(t), B(t)]

due to independence

= ρCov[B(t), B(t)] +
√

1−ρ2 Cov[B∗(t), B(t)]

= ρVar[B(t), B(t)] +
√

1 − ρ2 0

= ρt
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Using the known standard deviations in the denominator gives

Corr[Z (t), B(t)] = ρt√
t
√

t
= ρ

Brownian motions B and Z have correlation ρ at all times t . Thus if two
correlated Brownian motions are needed, the first one can be B and the
second one Z , constructed as above. Brownian motion B∗ only serves
as an intermediary in this construction.

1.7 SUCCESSIVE BROWNIAN MOTION INCREMENTS

The increments over non-overlapping time intervals are independent
random variables. They all have a normal distribution, but because the
time intervals are not necessarily of equal lengths, their variances differ.
The joint probability distribution of the positions at times t1 and t2 is

P[B(t1) ≤ a1, B(t2) ≤ a2]

=
∫ a1

x1=−∞

∫ a2

x2=−∞

1√
t1

√
2π

exp

[
−1

2

(
x1 − 0√

t1

)2
]

× 1√
t2 − t1

√
2π

exp

[
−1

2

(
x2 − x1√

t2 − t1

)2
]

dx1 dx2

This expression is intuitive. The first increment is from position 0 to x1,

an increment of (x1 − 0) over time interval (t1 − 0). The second incre-
ment starts at x1 and ends at x2, an increment of (x2 − x1) over time
interval (t2 − t1). Because of independence, the integrand in the above
expression is the product of conditional probability densities. This gen-
eralizes to any number of intervals. Note the difference between the
increment of the motion and the position of the motion. The increment
over any time interval [tk−1, tk] has a normal distribution with mean
zero and variance equal to the interval length, (tk − tk−1). This distribu-
tion is not dependent on how the motion got to the starting position at
time tk−1. For a known position B(tk−1) = x , the position of the motion
at time tk , B(tk), has a normal density with mean x and variance as
above. While this distribution is not dependent on how the motion got
to the starting position, it is dependent on the position of the starting
point via its mean.
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1.7.1 Numerical Illustration

A further understanding of the theoretical expressions is obtained by
carrying out numerical computations. This was done in the mathemati-
cal software Mathematica. The probability density function of a incre-
ment was specified as

[f[u ,w ]: = (1/(Sqrt[u] * Sqrt[2 * Pi])) * Exp[−0.5 * (w/Sqrt[u]) ∧ 2]

A time interval of arbitrary length uNow = 2.3472 was specified. The
expectation of the increment over this time interval, starting at time 1,
was then specified as

NIntegrate[(x2−x1) * f[1, x1] * f[uNow, x2−x1],

{x1, −10, 10},{x2, −10, 10}]

Note that the joint density is multiplied by (x2−x1). The normal den-
sities were integrated from −10 to 10, as this contains nearly all the
probability mass under the two-dimensional density surface. The result
was 0, in accordance with the theory. The variance of the increment over
time interval uNow was computed as the expected value of the second
moment

NIntegrate[((x2−x1)∧ 2) * f[1, x1] * f[uNow, x2−x1],

{x1, −10, 10},{x2, −10, 10}]

Note that the joint density is multiplied by (x2−x1) ∧ 2. The result was
2.3472, exactly equal to the length of the time interval, in accordance
with the theory.

Example 1.7.1 This example (based on Klebaner example 3.1) gives
the computation of P[B(1) ≤ 0, B(2) ≤ 0]. It is the probability that
both the position at time 1 and the position at time 2 are not positive.
The position at all other times does not matter. This was specified in
Mathematica as

NIntegrate[f[1, x1] * f[1, x2−x1],{x1, −10, 0},{x2, −10, 0}]

To visualize the joint density of the increment (Figure 1.9), a plot was
specified as

Plot3D[f[1, x1] * f[1, x2−x1],{x1, −4, 4},{x2, −4, 4}]

The section of the probability density surface pertaining to this ex-
ample is plotted in Figure 1.10.
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The result of the numerical integration was 0.375, which agrees with
Klebaner’s answer derived analytically. It is the volume under the joint
density surface shown below, for x1 ≤ 0 and x2 ≤ 0. P[B(1) ≤ 0] = 0.5
and P[B(2) ≤ 0] = 0.5. Multiplying these probabilities gives 0.25, but
that is not the required probability because random variables B(1) and
B(2) are not independent.

1.8 FEATURES OF A BROWNIAN MOTION PATH

The properties shown thus far are simply manipulations of a normal
random variable, and anyone with a knowledge of elementary probabil-
ity should feel comfortable. But now a highly unusual property comes
on the scene. In what follows, the time interval is again 0 ≤ t ≤ T , par-
titioned as before.

1.8.1 Simulation of Brownian Motion Paths

The path of a Brownian motion can be simulated by generating at each
time-point in the partition a normally distributed random variable with
mean zero and standard deviation

√
�t . The time grid is discrete but the

values of the position of the Brownian motion are now on a continuous
scale. Sample paths are shown in Figure 1.11.
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Figure 1.11 Simulated Brownian motion paths
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sample exact
mean 0.037785 0
variance 1.023773 1

Figure 1.12 Brownian motion path simulation statistics

A batch of 1000 simulations of a standard Brownian motion over
time period [0, 1] gave the statistics shown in Figure 1.12 for the po-
sition at time 1. The cumulative frequency of the sample path position
at time 1 is very close to the exact probability distribution, as shown in
Figure 1.13. For visual convenience cume freq is plotted as continuous.

1.8.2 Slope of Path

For the symmetric random walk, the magnitude of the slope of the path
is

|Sk+1 − Sk |
�t

=
√

�t

�t
= 1√

�t

This becomes infinite as �t → 0. As the symmetric random walk con-
verges to Brownian motion, this puts in question the differentiability

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−4
.0

−3
.7

−3
.4

−3
.1

−2
.8

−2
.5

−2
.2

−1
.9

−1
.6

−1
.3

−1
.0

−0
.7

−0
.4

−0
.1 0.

2
0.

5
0.

8
1.

1
1.

4
1.

7
2.

0
2.

3
2.

6
2.

9
3.

2
3.

5
3.

8

terminal position

cu
m

e_
fr

eq
 &

 p
ro

b

cume_freq
std_norm_distr

1000 simulated standard Brownian motion paths

512 intervals on [0,1]

Figure 1.13 Simulated frequency versus exact Brownian motion distribution
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of a Brownian motion path. It has already been seen that a simulated
Brownian motion path fluctuates very wildly due to the independence
of the increments over successive small time intervals. This will now be
discussed further.

1.8.3 Non-Differentiability of Brownian Motion Path

First, non-differentiability is illustrated in the absence of randomness.
In ordinary calculus, consider a continuous function f and the expres-
sion [ f (x + h) − f (x)]/h. Let h approach 0 from above and take the
limit limh↓0{[ f (x + h) − f (x)]/h}. Similarly take the limit when h ap-
proaches 0 from below, limh↑0{[ f (x + h) − f (x)]/h}. If both limits ex-
ist, and if they are equal, then function f is said to be differentiable at
x . This limit is called the derivative (or slope) at x , denoted f ′(x).

Example 1.8.1

f (x)
def= x2

f (x + h) − f (x)

h
= (x + h)2 − x2

h
= x2 + 2xh + h2 − x2

h
= 2xh + h2

h

Numerator and denominator can be divided by h, since h is not equal
to zero but approaches zero, giving (2x + h), and

lim
h↓0

(2x + h) = 2x lim
h↑0

(2x + h) = 2x

Both limits exist and are equal. The function is differentiable for all x ,
f ′(x) = 2x .

Example 1.8.2 (see Figure 1.14)

f (x)
def= |x |

For x > 0, f (x) = x and if h is also > 0 then f (x + h) = x + h

lim
h↓0

f (x + h) − f (x)

h
= x + h − x

h
= 1

For x < 0, f (x) = −x , and if h is also < 0, then f (x + h) = −(x + h)

lim
h↑0

f (x + h) − f (x)

h
= −(x + h) − (−x)

h
= −1
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-2 -1 1 2

0.2

0.4

0.6

0.8

Figure 1.14 Function modulus x

Here both limits exist but they are not equal, so f ′(x) does not exist.
This function is not differentiable at x = 0. There is not one single slope
at x = 0.

Example 1.8.3 (see Figure 1.15)

f (x) = c1 | x − x1 | +c2 | x − x2 | +c3 | x − x3 |

This function is not differentiable at x1, x2, x3, a finite number of points.

-3 -2 -1 1 2 3

1.5

2

2.5

3

3.5

4

Figure 1.15 Linear combination of functions modulus x
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-1

-0.5

0.5
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Figure 1.16 Approximation of non-differentiable function

Example 1.8.4

f (x) =
∞∑

i=0

sin(3i x)

2i

It can be shown that this function is non-differentiable at any point x .
This, of course, cannot be shown for i = ∞, so the variability is illus-
trated for

∑10
i=0 in Figure 1.16.

Brownian Motion Now use the same framework for analyzing differ-
entiability of a Brownian motion path. Consider a time interval of length
�t = 1/n starting at t . The rate of change over time interval [t, t + �t]
is

Xn
def= B(t + �t) − B(t)

�t
= B(t + 1/n) − B(t)

1/n

which can be rewritten as Xn = n[B(t + 1/n) − B(t)]. So Xn is a nor-
mally distributed random variable with parameters

E[Xn] = n2

[
B

(
t + 1

n

)
− B(t)

]
= n0 = 0

Var[Xn] = n2Var

[
B

(
t + 1

n

)
− B(t)

]
= n2 1

n
= n

Stdev[Xn] = √
n
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Xn has the same probability distribution as
√

n Z , where Z is standard
normal. Differentiability is about what happens to Xn as �t → 0, that
is, as n → ∞. Take any positive number K and write Xn as

√
n Z . Then

P[|Xn| > K ] = P[|√nZ | > K ] = P[
√

n|Z | > K ] = P
[
|Z | > K√

n

]
As n → ∞, K/

√
n → 0 so

P[|Xn| > K ] = P
[
|Z | >

K√
n

]
→ P[|Z | > 0]

which equals 1. As K can be chosen arbitrarily large, the rate of change
at time t is not finite, and the Brownian motion path is not differentiable
at t . Since t is an arbitrary time, the Brownian motion path is nowhere
differentiable. It is impossible to say at any time t in which direction
the path is heading.

The above method is based on the expositions in Epps and Klebaner.
This is more intuitive than the ‘standard proof’ of which a version is
given in Capasso/Bakstein.

1.8.4 Measuring Variability

The variability of Brownian motion will now be quantified. From tk to
tk+1 the absolute Brownian motion increment is |B(tk+1) − B(tk)|. The
sum over the entire Brownian motion path is

∑n−1
k=0 |B(tk+1) − B(tk)|.

This is a random variable which is known as the first variation of
Brownian motion. It measures the length of the Brownian motion path,
and thus its variability. Another measure is the sum of the square
increments,

∑n−1
k=0[B(tk+1) − B(tk)]2. This random second-order quan-

tity is known as the quadratic variation (or second variation). Now con-
sider successive refinements of the partition. This keeps the original
time-points and creates additional ones. Since for each partition the
corresponding variation is a random variable, a sequence of random
variables is produced. The question is then whether this sequence con-
verges to a limit in some sense. There are several types of convergence
of sequences of random variables that can be considered.3 As the time
intervals in the composition of the variation get smaller and smaller,
one may be inclined to think that the variation will tend to zero. But it
turns out that regardless of the size of an interval, the increment over

3 See Annex E, Convergence Concepts.
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steps dt
2000 0.00050000 16.01369606 0.2016280759 0.0031830910
4000 0.00025000 19.39443203 0.1480559146 0.0014367543
8000 0.00012500 25.84539243 0.1298319380 0.0008117586

16000 0.00006250 32.61941799 0.1055395009 0.0004334750
32000 0.00003125 40.56883140 0.0795839944 0.0001946600
64000 0.00001563 43.36481866 0.0448674991 0.0000574874

128000 0.00000781 44.12445062 0.0231364852 0.0000149981
256000 0.00000391 44.31454677 0.0116583498 0.0000037899
512000 0.00000195 44.36273548 0.0058405102 0.0000009500

1024000 0.00000098 44.37481932 0.0029216742 0.0000002377

limit about 44.3 0 0

first_var quadr_var third_var

Figure 1.17 Variation of function which has a continuous derivative

that interval can still be infinite. It is shown in Annex C that as n tends
to infinity, the first variation is not finite, and the quadratic variation
is positive. This has fundamental consequences for the way in which a
stochastic integral may be constructed, as will be explained in Chap-
ter 3. In contrast to Brownian motion, a function in ordinary calculus
which has a derivative that is continuous, has positive first variation
and zero quadratic variation. This is shown in Shreve II. To support the
derivation in Annex C, variability can be verified numerically. This is
the object of Exercise [1.9.12] of which the results are shown in Figure
1.17 and 1.18.

Time period [0,1]

2000 0.00050000 36.33550078 1.0448863386 0.0388983241
4000 0.00025000 50.47005112 1.0002651290 0.0253513781
8000 0.00012500 71.85800329 1.0190467736 0.0184259646

16000 0.00006250 101.65329098 1.0155967391 0.0129358213
32000 0.00003125 142.19694118 0.9987482348 0.0089475369
64000 0.00001563 202.67088291 1.0085537303 0.0063915246

128000 0.00000781 285.91679729 1.0043769437 0.0045014163
256000 0.00000391 403.18920472 0.9969064552 0.0031386827
512000 0.00000195 571.17487195 1.0005573262 0.0022306000

1024000 0.00000098 807.41653827 1.0006685086 0.0015800861

limit not finite time period 0

steps dt first_var quadr_var third_var

Figure 1.18 Variation of Brownian motion
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1.9 EXERCISES

The numerical exercises can be carried out in Excel/VBA, Mathemat-
ica, MatLab, or any other mathematical software or programming lan-
guage.

[1.9.1] Scaled Brownian motion Consider the process X (t)
def=√

γ B(t/γ ) where B denotes standard Brownian motion, and
γ is an arbitrary positive constant. This process is known
as scaled Brownian motion. The time scale of the Brownian
motion is reduced by a factor γ , and the magnitude of the
Brownian motion is multiplied by a factor

√
γ . This can be

interpreted as taking snapshots of the position of a Brownian
motion with a shutter speed that is γ times as fast as that used
for recording a standard Brownian motion, and magnifying the
results by a factor

√
γ .

(a) Derive the expected value of X (t)
(b) Derive the variance of X (t)
(c) Derive the probability distribution of X (t)
(d) Derive the probability density of X (t)
(e) Derive Var[X (t + u) − X (t)], where u is an arbitrary pos-

itive constant
(f) Argue whether X (t) is a Brownian motion

Note: By employing the properties of the distribution of Brow-
nian motion this exercise can be done without elaborate inte-
grations.

[1.9.2] Seemingly Brownian motion Consider the process X (t)
def=√

t Z , where Z ∼ N (0, 1).

(a) Derive the expected value of X (t)
(b) Derive the variance of X (t)
(c) Derive the probability distribution of X (t)
(d) Derive the probability density of X (t)
(e) Derive Var[X (t + u) − X (t)] where u is an arbitrary posi-

tive constant
(f) Argue whether X (t) is a Brownian motion

[1.9.3] Combination of Brownian motions The random process Z (t)

is defined as Z (t)
def= αB(t) − √

β B∗(t), where B and B∗ are



JWBK142-01 JWBK142-Wiersema March 18, 2008 18:55 Char Count= 0

Brownian Motion 27

independent standard Brownian motions, and α and β are
arbitrary positive constants. Determine the relationship be-
tween α and β for which Z (t) is a Brownian motion.

[1.9.4] Correlation Derive the correlation coefficient between B(t)
and B(t + u).

[1.9.5] Successive Brownian motions Consider a standard Brownian
motion which runs from time t = 0 to time t = 4.

(a) Give the expression for the probability that its path posi-
tion is positive at time 4. Give the numerical value of this
probability

(b) For the Brownian motion described above, give the expres-
sion for the joint probability that its path position is posi-
tive at time 1 as well as positive at time 4. No numerical
answer is requested.

(c) Give the expression for the expected value at time 4 of the
position of the path described in (a). No numerical answer
is requested.

[1.9.6] Brownian motion through gates Consider a Brownian motion
path that passes through two gates situated at times t1 and t2.

(a) Derive the expected value of B(t1) of all paths that pass
through gate 1.

(b) Derive the expected value of B(t2) of all paths that pass
through gate 1 and gate 2.

(c) Derive an expression for the expected value of the incre-
ment over time interval [t1, t2] for paths that pass through
both gates.

(d) Design a simulation program for Brownian motion
through gates, and verify the answers to (a), (b), and (c)
by simulation.

[1.9.7] Simulation of symmetric random walk

(a) Construct the simulation of three symmetric random walks
for t ∈ [0, 1] on a spreadsheet.

(b) Design a program for simulating the terminal position of
thousands of symmetric random walks. Compare the mean
and the variance of this sample with the theoretical values.
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(c) Derive the probability distribution of the terminal posi-
tion. Construct a frequency distribution of the terminal
positions of the paths in (b) and compare this with the
probability distribution.

[1.9.8] Simulation of Brownian motion

(a) Construct the simulation of three Brownian motion paths
for t ∈ [0, 1] on a spreadsheet.

(b) Construct a simulation of two Brownian motion paths that
have a user specified correlation for t ∈ [0, 1] on a spread-
sheet, and display them in a chart.

[1.9.9] Brownian bridge Random process X is specified on t ∈ [0, 1]

as X (t)
def= B(t) − t B(1). This process is known as a Brownian

bridge.

(a) Verify that the terminal position of X equals the initial po-
sition.

(b) Derive the covariance between X (t) and X (t + u).
(c) Construct the simulation of two paths of X on a spread-

sheet.

[1.9.10] First passage of a barrier Annex A gives the expression for
the probability distribution and the probability density of the
time of first passage, TL . Design a simulation program for this,
and simulate E[TL ].

[1.9.11] Reflected Brownian motion Construct a simulation of a re-
flected Brownian motion on a spreadsheet, and show this in
a chart together with the path of the corresponding Brownian
motion.

[1.9.12] Brownian motion variation

(a) Design a program to compute the first variation, quadratic
variation, and third variation of the differentiable ordinary
function in Figure 1.16 over x ∈ [0, 1], initially partitioned
into n = 2000 steps, with successive doubling to 1024000
steps

(b) Copy the program of (a) and save it under another name.
Adapt it to simulate the first variation, quadratic variation,
and third variation of Brownian motion
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1.10 SUMMARY

Brownian motion is the most widely used process for modelling ran-
domness in the world of finance. This chapter gave the mathematical
specification, motivated by a symmetric random walk. While this looks
innocent enough as first sight, it turns out that Brownian motion has
highly unusual properties. The independence of subsequent increments
produces a path that does not have the smoothness of functions in or-
dinary calculus, and is not differentiable at any point. This feature is
difficult to comprehend coming from an ordinary calculus culture. It
leads to the definition of the stochastic integral in Chapter 3 and its
corresponding calculus in Chapter 4.

More on Robert Brown is in the Dictionary of Scientific Biography,
Vol. II, pp. 516–522. An overview of the life and work of Bachelier can
be found in the conference proceedings Mathematical Finance Bache-
lier Congress 2000, and on the Internet, for example in Wikipedia. Also
on the Internet is the original thesis of Bachelier, and a file named
Bachelier 100 Years.
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Martingales

The theory of financial options makes extensive use of expected values
of random processes which are computed in the knowledge of some
history. These are so-called conditional expectations. Martingale is the
name for a random process whose conditional expectation has a partic-
ularly useful property. The exposition here is mainly in discrete time.
Chapter 6 explains how martingales are used in the valuation of options.

2.1 SIMPLE EXAMPLE

To introduce the notion of a conditional expectation, consider a discrete
sequence of times at which a stock trades. Assume the simple model in
which at each trading time the stock price S can move as follows:

by factor probability
up u p
down d 1 − p

Let Sn be the stock price at the close of trading time n. At the close
of time (n + 1), the price will be uSn with probability p, or d Sn with
probability (1 − p), see Figure 2.1.

uSn

p

Sn

1−p

dSn

current next
trading date n trading date (n+1)

Figure 2.1 Stock price tree – one period

31
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The expected value of Sn+1, given that the price at time n was Sn ,
is p(uSn) + (1 − p)(d Sn). This expectation is taken at time n. It is a
conditional expectation, the condition being the known value of Sn , and
is written as E[Sn+1|Sn]. In this notation the condition is written be-
hind the vertical bar |. Generally, an expectation of a random process
in finance is taken as conditional upon the history of the process. This
history is formally called a filtration and is described further in the next
section.

To illustrate this numerically, suppose that u = 1.25, d = 0.8, and
p = 0.4444. If Sn was recorded as 100, then Sn+1 in the upstate equals
(1.25)(100) = 125 and in the down state (0.8)(100) = 80. So

E[Sn+1|Sn] = (0.4444)(125) + (1 − 0.4444)(80) = 100.

For these numbers the expected value equals the currently known
value, and the stock price process S is said to be a martingale. This
means that in expected terms there is no gain. But if p �= 0.4444
then S is no longer a martingale. To be a martingale, p must be
such that E[Sn+1|Sn] = Sn for given u and d, that is, p must satisfy
p(uSn) + (1 − p)(d Sn) = Sn . Dividing both sides by Sn and rearrang-
ing gives that p must equal p = (1 − d)/(u − d). Indeed in the numer-
ical example, p = (1 − 0.8)/(1.25 − 0.8) = 0.4444. If the magnitude
of the up-movement were larger, say u = 0.3, and d is unchanged at
0.8, then S is a martingale if p = (1 − 0.8)/(1.3 − 0.8) = 0.4. This is
lower than the previous 0.4444 because a larger up-movement has to
happen less often in order to give the average of 100.

2.2 FILTRATION

Let X1, X2, . . ., Xn, . . . be a sequence of random variables which mea-
sure a particular random phenomena at successive points in time. This
is a random process. The first value that becomes known is that of X1.
The information revealed by the realization of X1 is commonly denoted
with a script font as �1. Subsequently the value of X2 becomes known.
The information accumulated thus far by X1 and X2 is denoted �2.
And so on. It is assumed that all information is kept, so there is no
less information as time goes on. This is written as �1 ⊆ �2 ⊆· · ·⊆ �n

where the symbol is ⊆ used to compare two sets; �1 ⊆ �2 means
that all information in set �1 is contained in set �2; it looks like the
symbol ≤ used to compare two numbers. The increasing sequence of
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information revealed by this random process is commonly called a fil-
tration in the technical literature. Other names are: information set, in-
formation structure, history.

2.3 CONDITIONAL EXPECTATION

The concept of conditional expectation is discussed further using the
example of the stock price tree for two periods, shown in Figure 2.2.

At time 1, the history of the process at node (1, 1) is �(1, 1) = u, and
at node (1, 0) is �(1, 0) = d. The expected value of the stock price at
time 2, S2, taken at node (1, 1) in the knowledge of �(1, 1), is

E[S2|�(1, 1)] = p[u(uS)] + (1 − p)[d(uS)]

This is a conditional expectation, the condition being that the stock
price is at node (1, 1). Similarly, taken at node (1, 0),

E[S2|�(1, 0)] = p[u(d S)] + (1 − p)[d(d S)]

So the conditional expectation of S2, E[S2|history], has two pos-
sible values. As node (1, 1) is reached with probability p, and node
(1, 0) with probability (1 − p), the conditional expectation of S2 is
E[S2|�(1, 1)] with probability p and E[S2|�(1, 0)] with probability
(1 − p). Thus the probability distribution of E[S2|history] is fully

u(uS)
node (2,2)

node (1,1)
u.S

S d(uS) = u(dS)
node (2,1)node (0,0)

d.S
node (1,0)

d(dS)
node (2,0)

discrete time-points
0 1 2

Figure 2.2 Stock price tree – two periods
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specified by two values and their probabilities p and (1 − p). The con-
ditional expectation is a random variable, unlike an ordinary (uncon-
ditional) expectation which is a single number. The history up to the
point where the expectation is taken determines the possible future val-
ues to be incorporated in the conditional expectation, and this history
is random. Node (2, 2) corresponds to two up-movements. There is one
path to (2, 2) which is reached with probability p2. Node (2, 1) corre-
sponds to one up-movement and one down-movement. This has proba-
bility p(1 − p). There are two mutually exclusive paths to (2, 1), so the
probability of reaching (2, 1) is p(1 − p) + (1 − p)p. Node (2, 0) cor-
responds to two down-movements. There is one path to (2, 0) which is
reached with probability (1 − p)2. As a conditional expectation is a ran-
dom variable, its expectation can be taken. This requires knowledge of
the probabilities with which the conditions are realized. The probability
of an up-movement is p, that is the probability of getting �(1, 1). Sim-
ilarly, (1 − p) is the probability of getting �(1, 0). Taking the expected
value of the conditional expectations E[S2|�(1, 1)] and E[S2|�(1, 0)]
using these probabilities performs the unconditioning, and gives the or-
dinary (unconditional) expected value of S2 as

pE[S2|�(1, 1)] + (1 − p)E[S2|�(1, 0)]

= p{p[u(uS)] + (1 − p)[d(uS)]}
+ (1 − p){p[u(dS)] + (1 − p)[d(d S)]}

= p2u2S + p(1 − p)duS + (1 − p)pudS + (1 − p)d2S

= p2u2S + 2p(1 − p)duS + (1 − p)d2S

This can be readily verified by taking the (unconditional) ordinary ex-
pected value of S2. The possible values of S2 are d2S, udS = duS, u2S,
and the corresponding probabilities are p2, p(1 − p), (1 − p)2. Thus

E[S2] = p2(u2S) + 2p(1 − p)(ud S) + (1 − p)2(d2S)

as above.

2.3.1 General Properties

The unconditional expected value of random variable X exists if E[|X |]
is finite; then X is said to be integrable. The notation |X | stands for the
sum of the positive and the negative part of X ; both parts must have a
finite integral. Let Y denote the conditional expectation of an integrable
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random variable X , Y
def= E[X |�]. Then E[Y ] is a single number which

equals the unconditional expected value of X

E{E[X |�]} = E[X ]

So in reverse, E[X ] can be expressed as E{E[X |�]}; an ordinary uncon-
ditional expectation is converted into a conditional expectation. The lat-
ter is used when the expected value of the product of two random vari-
ables has to be determined, and where the value of one of the variables
is included in a history �. Then E[XY ] is written as E{E[XY |�]}, and
if Y is known given �, it can be taken outside E leaving E{Y E[X |�]}.
Typically E[X |�] is known and can be substituted. This is known as
computing an expectation by conditioning. It will be used in chapter 3.

Now consider the expected value of a random process X , conditioned
on the history up to time s, E[X (t)|�(s) s < t]. If this random variable
is conditioned on the history up to a time r earlier than time s, the result
is the same as conditioning on the earlier time r only.

E[E{X (t)|�(s)}|�(r )] = E[X (t)|�(r )] where r < s < t

This is known as the tower property. An equivalent way of writing
it is

E[E(X |�2)|�1] = E(X |�1)

where �1 and �2 are two information sets, and there is less information
in set �1 than in set �2; in technical notation �1 ⊆ �2.

A random variable X , whose value is known given history �, is said
to be measurable with respect to �. Then the expectation of X condi-
tional upon � equals the value of X , E[X |�] = X . In reverse, if in some
application it is known that E[X |�] = X , then it can be concluded that
X is independent of �. If Z is another random variable, then a mea-
surable X in the unconditional expectation E[Z X ] can be replaced by
E[X |�] so that E[Z X ] = E[ZE[X |�]]. In the literature, conditional ex-
pectation E[X (t)|�(s)] is also written in shorthand as Es[X (t)], but not
in this text.

A conditional expectation is linear. For any two random variables X
and Y and constants α and β

E[αX + βY |�] = αE[X |�] + βE[Y |�]

These properties hold in a discrete- and in a continuous-time frame-
work. Derivations can be found in the references.
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2.4 MARTINGALE DESCRIPTION

Consider the random process X in discrete-time or continuous-time.
Suppose the value of X (s) at time s has just become known. If the
conditional expectation E[X (t)|�(s) t > s] equals X (s) then random
process X is called a martingale. Writing X (s) = E[X (s)|�(s)] and
moving this term to the left-hand side, an alternative formulation is
E[X (t) − X (s)|�(s) t > s] = 0. For a martingale the expected value of
the increment over any future period is zero. If, on the other hand, X (s)
is greater than the expectation of the future, then the random process is
called a supermartingale. Then the present is a ‘super’ situation so to
speak relative to the future. A supermartingale ‘decreases on average’.
The reverse (<) is called a submartingale. A random process may be a
martingale under one probability distribution but not under another. To
verify whether a random process is a martingale, it must be established
that X (t) is integrable, and the filtration and the probability distribution
of X must be known.

2.4.1 Martingale Construction by Conditioning

A martingale can be constructed from a random variable by condition-
ing the random variable on a filtration. That turns the random variable
into a random process. Consider a discrete-time framework and a ran-
dom variable Z . Let the information available at time n be denoted �n .
Define a new random variable Xn as the conditional expectation of Z ,
given the information contained in �n

Xn
def= E[Z |�n] for n = 0, 1, 2, . . .

This is a collection of random variables indexed by a time point, and
is thus a random process. Fix two times, the present time n and the
future time n + 1, and consider at time n the conditional expectation of
X at future time n + 1, given the information up to the present time n,
E[Xn+1|�n]. The expression for Xn+1 is E[Z |�n+1]. Substituting this
gives

E[Xn+1|�n] = E[E[Z |�n+1]|�n].

Using �n ⊆ �n+1, and the tower rule for expectations, the above equals
E[Z |�n], which is Xn by definition. It has thus been shown that the
X process is a discrete-time martingale. This also holds in continuous
time.
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2.5 MARTINGALE ANALYSIS STEPS

Verifying whether a process is a martingale is best guided by the fol-
lowing. The first step is to translate what needs to be verified in mathe-
matical terms. It is useful to draw a simple diagram of the time notation,
showing the present time-point and the future time-point. In continuous
time the notation t1 and t2 is self-explanatory; the notations s and t are
also useful as they are alphabetical, but t and s are counter-intuitive,
although often seen. An expression which involves the future random
value B(t), given the history of the process up to the present time s,
should be decomposed into the known non-random quantity B(s) and
the random increment [B(t) − B(s)]. Once B(t) has been decomposed
as B(t) = B(s) + [B(t) − B(s)], the increment [B(t) − B(s)] must be
treated as a single random variable. When taking terms outside the ex-
pectation operator E, it should be justified why these terms can be taken

out. There is frequent use for the expression E[eZ ] = eE(Z )+ 1
2
Var(Z ) but

be aware that this only holds when Z has a normal distribution. So
when using this formula one needs to justify that random variable Z
is indeed normally distributed. Also recall that the expected value of
the product of two random variables X and Y can only be written as
the product of the respective expected values, if X and Y are known to
be independent, E[XY ] = E[X ]E[Y ]. In particular, E[B(s)B(t)] cannot
be written as E[B(s)]E[B(t)]. As the analysis progresses from line to
line, always repeat the condition, ‘|�(s)’ or similar, because without
that, an expectation is not a conditional expectation. Progress in sim-
ple steps. Do not jump to expressions that are not derived. If part of
the analysis entails rather long expressions, give them a name and an-
alyze them separately. Then put all the pieces together. That reduces
the chance of mistakes. Finally, write down a conclusion, in relation to
what was to be shown.

2.6 EXAMPLES OF MARTINGALE ANALYSIS

First some discrete time processes.

2.6.1 Sum of Independent Trials

Let X1, X2, . . ., Xn, . . . be a sequence of independent identically dis-
tributed random variables with mean zero. The random variable Xi

could be the numerical outcome of the i th step in a random walk where
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the movement is ±1 with equal probability. The position after n steps

is then Sn
def= X1 + X2 + · · · + Xn . The filtration which contains the re-

sults of the first n increments is denoted �n . To see whether this process
is a martingale, evaluate E[Sn+1|�n]. The key is to express Sn+1 as the
known position Sn after the first n steps, plus the unknown outcome
Xn+1 of the (n + 1)th step, Sn+1 = Sn + Xn+1. This gives

E[Sn+1|�n] = E[Sn + Xn+1|�n] = E[Sn|�n] + E[Xn+1|�n]

Since �n is given, Sn is known, so E[Sn|�n] = Sn . In the second term,
Xn+1 is independent of the outcomes that have been produced by the
first n trials, so E[Xn+1|�n] can be written as its unconditional expecta-
tion, E[Xn+1|�n] = E[Xn+1] = 0. Thus E[Sn+1|�n] = Sn and the pro-
cess S is a discrete martingale. It says that ‘on average’ there is neither
increase nor decrease.

2.6.2 Square of Sum of Independent Trials

Is S2
n a martingale? It has to be verified whether

E[S2
n+1|�n] = S2

n

Using the decomposition of Sn+1 = Sn + Xn+1, the left-hand side be-
comes

E[S2
n + 2Sn Xn+1 + X2

n+1|�n]

= E[S2
n |�n] + E[2Sn Xn+1|�n] + E[X2

n+1|�n]

As Sn is a known value when �n is given, this can be written as

S2
n + 2SnE[Xn+1|�n] + E[X2

n+1|�n]

Since Xn+1 is independent of the past, E[X2
n+1|�n] equals the un-

conditional expectation E[X2
n+1] which is 12 1

2
+ (−1)2 1

2
= 1. With

E[Xn+1|�n] = E[Xn+1] = 1( 1
2
) + (−1) 1

2
= 0 this gives E[S2

n+1|�n] =
S2

n + 1. So S2
n is not a martingale because of the presence of the term

+1. But subtracting n gives the discrete process S2
n − n, which is a mar-

tingale, as can be shown as follows.
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For Sn+1 there are two possible values, Sn + 1 with probability 1
2
, and

Sn − 1 with probability 1
2
. Thus

E[S2
n+1 − (n + 1)|�n]

= {(Sn + 1)2 − (n + 1)} 1
2

+ {(Sn − 1)2 − (n + 1)} 1
2

= {S2
n + 2Sn + 1 − n − 1} 1

2
+ {S2

n − 2Sn + 1 − n − 1} 1
2

= S2
n − n

2.6.3 Product of Independent Identical Trials

As above, let X1, X2, . . ., Xn, . . . be a sequence of independent identi-
cally distributed random variables but now with mean 1. Define the
product Mn

def= X1 X2. . .Xn . Evaluate E[Mn+1|�n]. Write Mn+1 =
Mn Xn+1, the by now familiar decomposition into known and unknown.
Then

E[Mn+1|�n] = E[Mn Xn+1|�n] = MnE[Xn+1|�n]

as Mn is known when �n is given. With E[Xn+1|�n] = E[Xn+1] = 1,
the final result is E[Mn+1|�n] = Mn so the process M is a discrete time
martingale.

Now some continuous time processes.

2.6.4 Random Process B(t)

The expected value of a Brownian motion position at future time t ,
taken at present time s, given the entire history of the Brownian motion
process, is E[B(t)|�(s) s < t]. Decompose B(t) into the known value
B(s) and the random increment {B(t) − B(s)}. That gives

E[B(t)|�(s)] = E[B(s) + {B(t) − B(s)}|�(s)]

= E[B(s)|�(s)] + E[B(t) − B(s)|�(s)]

In the first term, the value of B(s), given the history to time s, is not a
random variable, but the known value B(s), so E[B(s)|�(s)] = B(s).
In the second term, the increment from s to t , B(t) − B(s), is in-
dependent of the value of the Brownian motion at time s or earlier,
because Brownian motion is by definition a process of independent
increments. Thus E[B(t) − B(s)|�(s)] is equal to its unconditional
expectation E[B(t) − B(s)] = 0. Hence E[B(t)|�(s)] = B(s), which
shows that Brownian motion is a martingale.
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2.6.5 Random Process exp[B(t) − 1
2
t]

To evaluate whether E[exp[B(t) − 1
2
t]|�(s) s < t] = exp[B(s) − 1

2
s]

substitute B(t) = B(s) + {B(t) − B(s)} and t = s + (t − s). This gives

E[exp[B(s) + {B(t) − B(s)} − 1
2
s − 1

2
(t − s)]|�(s)]

= exp[B(s) − 1
2
s]E[exp[B(t) − B(s) − 1

2
(t − s)]|�(s)]

The exponent [B(t) − B(s) − 1
2
(t − s)] is a normally distributed ran-

dom variable because Brownian motion is normally distributed, and a
normal random variable minus a constant is also normal. Write this ex-
ponent as Y (t)

def= B(t) − B(s) − 1
2
(t − s). Use the rule for the expected

values of an exponential with a normal as exponent

E{exp[Y (t)]} = exp{E[Y (t)] + 1
2
Var[Y (t)]}

E[Y (t)] = E[B(t) − B(s) − 1
2
(t − s)] = − 1

2
(t − s)

Var[Y (t)] = Var[B(t) − B(s) − 1
2
(t − s)]

= Var[B(t) − B(s)]

= (t − s)

So

E{exp[Y (t)]} = exp[− 1
2
(t − s) + 1

2
(t − s)] = exp(0) = 1

Thus

E{exp[B(t) − 1
2
t |�(s)]} = exp[B(s) − 1

2
s]1 = exp[B(s) − 1

2
s]

Hence exp[B(t) − 1
2
t] is a martingale.

2.6.6 Frequently Used Expressions

When tk is the present time and t the future time

E[B(t)|�(tk)] = B(tk)

because Brownian motion is a martingale.
A Brownian motion increment starting at tk is independent of the

history up to tk

E[B(tk+1) − B(tk)]|�(tk)] = E[B(tk+1) − B(tk)]

by the definition of Brownian motion.
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2.7 PROCESS OF INDEPENDENT INCREMENTS

It will now be shown that if a random process X has the property that
the increment over an arbitrary time interval [s, t], [X (t) − X (s)], is in-
dependent of the information up to time s, �(s), then the increments of
X over non-overlapping time intervals are independent. This property
is used in Section 4.5.

Consider the increments [X (t2) − X (t1)] and [X (t3) − X (t2)] over the
successive intervals [t1, t2] and [t2, t3]. These two random variables are
independent if their joint moment generating function (mgf) can be
written as the product of the individual mgfs. So it must be shown that

E[eθ1[X (t2)−X (t1)]+θ2[X (t3)−X (t2)]]

= E[eθ1[X (t2)−X (t1)]]E[eθ2[X (t3)−X (t2)]]

This can then be extended to any collection of successive increments.
Write the left-hand side as the expected value of a conditional expec-

tation, where the conditioning is on the information up to the one-but-
last time t2, �(t2).

E{E[eθ1[X (t2)−X (t1)]+θ2[X (t3)−X (t2)]|�(t2)]}
= E{E[eθ1[X (t2)−X (t1)]eθ2[X (t3)−X (t2)]|�(t2)]}

Given �(t2), eθ1[X (t2)−X (t1)] is known and can be taken outside the second
E, leaving

E{eθ1[X (t2)−X (t1)]E[eθ2[X (t3)−X (t2)]|�(t2)]} (*)

As [X (t3) − X (t2)] is assumed to be independent of �(t2), then so is the
function eθ2[X (t3)−X (t2)] of this random variable, and

E[eθ2[X (t3)−X (t2)]|�(t2)] = E[eθ2[X (t3)−X (t2)]]

Thus (*) becomes

E{eθ1[X (t2)−X (t1)]E[eθ2[X (t3)−X (t2)]]}
Inside {· · · }, the term E[eθ2[X (t3)−X (t2)]] is an unconditional expecta-

tion; it is a single number that can be taken outside, giving

E eθ1[X (t2)−X (t1)]]E eθ2[X (t3)−X (t2)]]

as was to be shown.
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2.8 EXERCISES

[2.8.1] Show that the symmetric random walk is a discrete martingale.

[2.8.2] S*
n

def= Sn/(pu + qd)n where Sn is the stock price process dis-
cussed in Section 2.1, and (1 − p) has been denoted q to sim-

plify the notation. S*
n is a process that is defined as the process

Sn divided by (pu + qd) to the power n. Verify whether it is a
martingale.

[2.8.3] Verify whether B(t) + 4t is a martingale.

[2.8.4] Verify whether B(t)2 is a martingale. Also derive its probability
density.

[2.8.5] Verify whether B(t)2 − t is a martingale. Also derive its proba-
bility density.

[2.8.6] Verify whether Z
def= exp[−ϕB(t) − 1

2
ϕ2t] is a martingale; ϕ is

a given constant. Also derive its probability density, its mean
and its variance. Construct a graph of its density for parameter
values t = 1.5, ϕ = 0.5.

[2.8.7] If M is a martingale, show that E{M(u) − M(s)}2|�(s)] =
E[M(u)2 − M(s)2|�(s)].

[2.8.8] Write a simulation program for Z
def= exp[−ϕB(t) − 1

2
ϕ2t] on

the time interval [0, 1] for a user specified constant ϕ. Show
three paths on a spreadsheet.

2.9 SUMMARY

This chapter gave a brief introduction to the very basics of martingales.
A conditional expectation is a random variable, not a fixed number. An
ordinary unconditional expectation can be expressed as an iterated con-
ditional expectation. The conditional expectation of a random process
which is a martingale equals any earlier known value of the process.
Thus if somehow the expectation is known, but the earlier value is not,
then that earlier value can be found if the process is a martingale. That
is how the martingale property will be used in reverse in the valuation
of options in Chapter 6. A random variable can be transformed into a
martingale by conditioning.
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Excellent elementary coverage of discrete probability, conditional
expectations, and discrete martingales, in the context of finance, is given
in Roman. For continuous time, a good start is Lin. Other sources are
Kuo, Shreve II, Mikosch, Brzeźniak/Zastawniak. The integrability con-
dition E[|X |] < ∞ is discussed in books on the foundations of the ex-
pected value concept. Particularly recommended are Shreve II Sections
1.3 and 1.5, and Epps, pp. 34–36 and 56–57. The concept of a condi-
tional expectation in its full generality is complicated, but the comfort-
ing news is that it can be used without knowing the intricacies of its
specification or the details on E[|X |].
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3

Itō Stochastic Integral

Chapters 3 to 5 present the concepts of stochastic calculus created by
the Japanese mathematician Kiyosi Itō1 in the 1940s and 1950s. It is
the mathematics that is used for modelling financial options, and has
wide application in other fields. This chapter sets out the concept of
the so-called stochastic integral in which the integrator is Brownian
motion and the integrand is a random process dependent on Brownian
motion; Chapter 4 introduces stochastic calculus rules for manipulating
and evaluating such integrals; and Chapter 5 introduces the dynamics of
random processes which are driven by Brownian motion. A tribute to
Kiyosi Itō is presented as Section 3.11.

3.1 HOW A STOCHASTIC INTEGRAL ARISES

Consider the time period [0, T ] partitioned into n intervals of equal

length �t
def= T/n with endpoints tk

def= k�t , k = 0, ..., n. These are the
times at which the market is open and trade in shares can take place.
An investor buys q(t0) shares at time 0 at a price of S(t0) each. At time
t1, market trading establishes a new share price S(t1). Once this price
has been revealed the investor can change the quantity of shares held,
from q(t0) to q(t1). The same at the subsequent times t2 through tn−1.
At time tn the entire portfolio is liquidated as soon as share price S(tn)
becomes known. A portfolio of q(tk) shares is held from just after the
share price S(tk) has been revealed, to when the share price S(tk+1) at
time tk+1 becomes known. This portfolio is worth q(tk)S(tk) at time
tk and q(tk)S(tk+1) at time tk+1. So from time tk to time tk+1, with the
change in share price S(tk+1) − S(tk) denoted by �Sk , the portfolio value
changes by q(tk) �Sk . The gain2 over all trades can then be expressed
as In

def= ∑n−1
k=0 q(tk) �Sk . This expression is an example of a so-called

discrete stochastic integral. At each trading time, the quantity of shares
to be held until the next trading opportunity arises, is decided by the

1 The standard Hepburn romanization (Itō) is used here. Alternatives are Itô and Ito, as explained in Wikipedia.
2 To be understood in the mathematical sense, in that it can be negative as well as positive.

45
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investor. Some investors will buy shares and others will sell as a trade
requires two parties. The factors which an investor takes into account
in determining the shareholdings are unknown, so q is a discrete-time
random process. Thus the stochastic integral is constructed from the two
random processes q and S. Note that in the expression for In , the upper
limit in the summation is k = n − 1, not k = n, as the share price at tn
is applicable to the shareholding set previously at tn−1. Using the stock
price dynamics of Section 1.3, �S(tk) = μS(tk) �t + σ S(tk) �Bk , gives
for a particular n,

In =
n−1∑
k=0

q(tk)[μS(tk) �t + σ S(tk) �B(tk)]

= μ

n−1∑
k=0

q(tk)S(tk) �t + σ

n−1∑
k=0

q(tk)S(tk) �B(tk)

Increasing n makes the time step �t smaller and discrete-time trading
approaches continuous-time trading. The question now is how the gain
of continuous trading can be expressed. In other words, does the corre-
sponding sequence of random variables In converge to a limit in some
sense.

The first term is a summation with respect to time step �t . For a
particular market realization ω∗, q(tk, ω∗)S(tk) is a known step function
(here ω is added to emphasize the random nature of q) which becomes
known progressively with �(tk). It looks like a Riemann sum, and indeed,
for each path ω∗, as �t → 0, the expression

∑n−1
k=0 q(tk, ω∗)S(tk) �t

converges to the ordinary integral
∫ T

t=0
q(t, ω∗)S(t) dt ; this is known as

pathwise integration.3

The second term is a summation with respect to Brownian mo-
tion increment [B(tk+1) − B(tk)]. A first thought is to restate it as a
Riemann sum by using the mean-value theorem from calculus: ex-
pressing [B(tk+1) − B(tk)] as the derivative of B at some point in
the time interval, times the length of the interval. But B is not
differentiable so this cannot be done. Another thought is to inter-
pret

∑n−1
k=0 q(tk)S(tk)[B(tk+1) − B(tk)] as a Riemann–Stieltjes sum4∑n−1

k=0 f (tk)[g(tk+1) − g(tk)], which converges as (tk+1 − tk) → 0. Us-
ing f at the left endpoint tk makes it match the expression for the discrete
stochastic integral. So in order to see if the Riemann–Stieltjes integral

3 See Annex B.2.2. Also Capasso/Bakstein Annex A.5.
4 The Riemann–Stieltjes integral is reviewed in Annex B, Ordinary Integration.
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can be used in this stochastic setting, it has to be checked whether B(t)
is of bounded variation on 0 ≤ t ≤ T . It is shown in Annex C that this
is not the case. Therefore the Riemann–Stieltjes integral cannot be used
for stochastic integration of a general random integrand with respect
to Brownian motion.5 There is a need for a new concept. It turns out
that as n → ∞, the sequence of stochastic integrals In has a limit in the

mean-square sense, and that limit is denoted
∫ T

t=0
q(t)S(t) dB(t).

This construction will now be developed for the integration with re-
spect to Brownian motion of a random integrand f which satisfies the
properties specified below. The discrete stochastic integral for this is
written as

In( f )
def=

n−1∑
k=0

f (tk, ω) �B(tk),

sometimes as In for greater readability.

3.2 STOCHASTIC INTEGRAL FOR NON-RANDOM
STEP-FUNCTIONS

In ordinary calculus, the construction of a Riemann integral starts from
a partition of the domain of the variable into intervals. That also applies
here. As before, the time period [0, T ] is partitioned into n intervals of

equal length �t = T/n, with endpoints tk
def= k�t , k = 0, . . ., n. The

simplest integrand f is a step-function whose values are non-random,
so the only random quantity is the Brownian motion integrator. This
will be considered first. In the next section the construction is repeated
for a step-function with a random level. Finally this is extended to an
integrand which is a general random process.

In the simplest case, suppose that at time 0, f is fixed for all intervals;
for tk ≤ t < tk+1 at level f (tk). As a financial model this is not realistic
because in the setting of Section 3.1 an investor would not need to fix
all shareholdings at time 0. But this first construction is merely meant
to set out the methodology.

Step-function f (Figure 3.1) can be written with indicator notation as

f = f (t0) 1[t0,t1) + · · · + f (tk) 1[tk ,tk+1) + · · · + f (tn−1) 1[tn−1,tn)

5 For non-random integrands f of bounded variation, use can be made of the Riemann–Stieltjes integral.
See Kuo section 2.3. Lesser known conditions for the existence of the Riemann–Stieltjes integal are discussed in
Mikosch section 2.1.2.
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f0

0=t0

f1

fk

fk+1

fn-1

t1 tk tk+1 tn+1 tn=T

Figure 3.1 Non-random step-function f

where 1[tk ,tk+1) denotes the indicator function which has value 1 on the
interval shown in the subscript, and 0 elsewhere. Define the discrete
stochastic integral In( f ) as

In( f )
def=

n−1∑
k=0

f (tk)[B(tk+1) − B(tk)]

The sum In( f ) is a random variable. Some of its properties are now
discussed.

(i) For any constants α and β, and functions f and g which are de-
fined on the same partition, In(α f + βg) = α In( f ) + β In(g). The
integral is a linear function. This can be readily seen from

In(α f + βg) =
n−1∑
k=0

[α f (tk) + βg(tk)][B(tk+1) − B(tk)]

= α

n−1∑
k=0

f (tk)[B(tk+1) − B(tk)]

+ β

n−1∑
k=0

g(tk)[B(tk+1) − B(tk)]

= α In( f ) + In(g)

If the partitions of f and g do not coincide, use the union of their
partitions.

(ii) In( f ) is a linear combination of independent normal random vari-
ables [B(tk+1) − B(tk)] with constant coefficients f (tk), and is thus
a normal random variable. Its mean equals the sum of the means of
the terms, which are all zero, therefore E[In( f )] = 0. Its variance
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is the sum of the variances of the terms, since the random terms are
independent, so

Var [In( f )] = E[In( f )2] =
n−1∑
k=0

f (tk)2 �t

(iii) In( f ) is a discrete-time martingale. This can be shown as follows.
If the value of the integral is known on [0, tn] then B(tn) is the last
known position. The history is �(tn), and

E

{
n−1∑
k=0

f (tk)[B(tk + 1) − B(tk)]|�(tn)

}
=

n−1∑
k=0

f (tk)[B(tk+1) − B(tk)]

Then, using only discrete time-points

E

{
n∑

k=0

f (tk)[B(tk+1) − B(tk)]|�(tn)

}

= E

{
n−1∑
k=0

f (tk)[B(tk+1) − B(tk)]|�(tn)

}
+ E{ f (tn)[B(tn+1) − B(tn)]|�(tn)}

In the second term, f (tn) is known when �(tn) is given, so this term
can be written as

f (tn)E{B(tn+1) − B(tn)|�(tn)} = f (tn)0 = 0

That leaves

E

{
n−1∑
k=0

f (tk)[B(tk+1) − B(tk)]|�(tn)

}
=

n−1∑
k=0

f (tk)[B(tk+1) − B(tk)],

which confirms that In( f ) is a martingale.

3.3 STOCHASTIC INTEGRAL FOR
NON-ANTICIPATING RANDOM STEP-FUNCTIONS

Now f will be at random level f (tk, ω) for tk ≤ t < tk+1 . This function
must have the following properties:� When the history of the Brownian motion process becomes known

progressively at each time tk , it must be possible to determine f (tk)
from this history alone. The current terminology is that f (tk) must be
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adapted to the filtration �(tk). The value of f at tk should not depend
on values of B beyond tk . That is, it must not be possible for f to
anticipate the future beyond tk . The original terminology, coined by
Itō, is that f must be a non-anticipating function with respect to the
Brownian motion process, and that terminology is used in this text.
Section 3.1 showed that this condition is typically satisfied in financial
modelling, because f (tk) is the position an investor takes in the market,
and �(tk) describes the flow of information available to an investor.� ∫ T

t=0
E[ f (t, ω)2] dt must be finite for finite T , the so-called square

integrability condition. The reason for this will become clear shortly.

Assume now that each f (tk, ω) is continuous, and non-anticipating, and
that E[ f (tk, ω)2] is finite. The discrete stochastic integral is

In( f )
def=

n−1∑
k=0

f (tk, ω)[B(tk+1) − B(tk)]

Its properties are as follows:

(i) Linearity, In(α f + βg) = α In( f ) + β In(g).
(ii) The distribution of In( f ) is now a random mix of Brownian mo-

tion distributions, thus not normal. As each term in the expression
for In( f ) is the product of two random quantities, the computa-
tion of E[In( f )] and Var [In( f )] is more involved and requires the
conditioning that was explained in Chapter 2.

E[In( f )] = E

{
n−1∑
k=0

f (tk, ω)[B(tk+1) − B(tk)]

}

=
n−1∑
k=0

E{ f (tk, ω)[B(tk+1) − B(tk)]}

Write E{ fk(ω)[B(tk+1) − B(tk)]} as E of the conditional expec-
tation E{ fk(ω)[B(tk+1) − B(tk)]|�(t k)}. The increment [B(tk+1) −
B(tk)] is independent of f (tk, ω). With �(tk) given, f (tk) is a known
number, not a random variable, so it can be taken outside E giving
f (tk)E[B(tk+1) − B(tk)|�(t k)] = f (tk)0 = 0. This holds progres-
sively for each term in the summation, so E[In( f )] = 0, the same
as in the integral of a non-random step-function.
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The expression for the variance then reduces to

E[In( f )2]

= E

{
n−1∑
k=0

f (tk, ω)[B(tk+1) − B(tk)]

×
n−1∑
m=0

f (tm, ω)[B(tm+1) − B(tm)]

}

=
n−1∑
k=0

E{ f (tk, ω)2[B(tk+1) − B(tk)]2}

+
n−1∑
k<m

E{ f (tk, ω) f (tm, ω)[B(tk+1) − B(tk)][B(tm+1) − B(tm)]}

+
n−1∑
m<k

E{ f (tm, ω) f (tk, ω)[B(tm+1) − B(tm)][B(tk+1) − B(tk)]}

In the summation for k < m, f (tk, ω) and f (tm, ω) and [B(tk+1) −
B(tk)] are independent of [B(tm+1) − B(tm)] which is gener-
ated later. Thus E{ f (tk, ω) f (tm, ω)[B(tk+1) − B(tk)][B(tm+1) −
B(tm)]} can be written as the product of expectations

E{ f (tk, ω) f (tm, ω)[B(tk+1) − B(tk)]}E[B(tm+1) − B(tm)]

As the last expectation is zero, the k < m summation is zero. Ex-
actly the same reasoning applies to the summation for m < k, and
for this reason the order of the terms has been written with m first.
To evaluate the terms in the first summation, conditioning is intro-
duced as in the evaluation of the mean, by writing it as E of the
conditional expectation, conditioned on �(tk).

E[E{ f (tk, ω)2[B(tk+1) − B(tk)]2|�(tk)}]
= E[ f (tk, ω)2E{[B(tk+1) − B(tk)]2|�(tk)}]
= E[ f (tk, ω)2] �t

So

Var[In( f )] = E[In( f )2] =
n−1∑
k=0

E[ f (tk, ω)2] �t
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This is the same type of expression as before, but as f is now
random its expected value is used.

By exactly the same method, the expectation of the product ex-
pression In( f )In(g) can be evaluated; just change the notation of
the second f to g. The result is

E[In( f )In(g)] =
n−1∑
k=0

E[ f (tk)g(tk)] �t

(iii) In( f ) is a discrete martingale. The derivation is similar to the case
of a non-random step-function.

3.4 EXTENSION TO NON-ANTICIPATING GENERAL
RANDOM INTEGRANDS

The Itō stochastic integral for a non-anticipating general random pro-
cess will now be constructed by approximation. A result from probability
theory says that a general random integrand f can be approximated on
domain [0, T ] with any desired degree of accuracy by a random step-
function on n intervals of length �t = T/n by taking n large enough.6

For a particular n, the discrete stochastic integral of the correspond-
ing random step-function is as shown above. Successive doubling of
the partition produces a sequence of random variables In, I2n, I4n, . . ..
The question is now whether this sequence converges to a limit in some
sense. Such a limit will generally be a random variable as the sequence
consists of random variables. There are several types of convergence of
sequences of random variables that can be considered. In the knowledge
that Brownian motion has a finite second moment, consider convergence
in mean-square.7 For this type of convergence, the difference between
the values of any In and I2n is considered. This difference is squared,
[In − I2n]2, and the expected value of this random variable is taken,
E{[In − I2n]2}. For increasing values of n, this gives a sequence of num-
bers E{[In − I2n]2}. If this sequence tends to zero as n → ∞, then the
sequence of random variables In has a limit, in the mean-square sense,
which is a random variable, and is here denoted as I . The Itō stochastic
integral is defined as the limit in mean-square of the sequence of dis-
crete stochastic integrals In of non-anticipating random step-functions
which approximate the non-anticipating general random integrand. This

6 See for example Klebaner p. 31.
7 See Annex E, Convergence Concepts.
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construction uses the concept of a norm as discussed in Annex D. Con-
sider the random step-function of Section 3.3:

f = f (t0, ω) 1[t0,t1) + · · · + f (tk, ω) 1[tk ,tk+1) + · · ·
+ f (tn−1, ω) 1[tn−1,tn)

The squared norm of a random process f (n) is∣∣∣∣ f (n)
∣∣∣∣2 =

∫ T

t=0

E[ f (n)2

] dt

where

f (n)2 = f (t0, ω)2 1[t0,t1) + · · · + f (tk, ω)2 1[tk ,tk+1) + · · ·
+ f (tn−1, ω)2 1[tn−1,tn)

is without cross products as they are on non-overlapping intervals. So

∣∣∣∣ f (n)
∣∣∣∣2 =

∫ T

t=0

E

[
n−1∑
k=0

f (tk, ω)2 1[tk ,tk+1)

]
dt =

n−1∑
k=0

E[ f (tk, ω)2] �t

The squared norm of the corresponding random variable In( f (n))
def=∑n−1

k=0 f (tk, ω) �B(tk) is∣∣∣∣I ( f (n))
∣∣∣∣2 = E[I ( f (n))2]

This was evaluated in Section 3.3 as
∑n−1

k=0 E[ f (tk, ω)2] �t . Thus in this
discrete setting∣∣∣∣I ( f (n))

∣∣∣∣ = ∣∣∣∣ f (n)
∣∣∣∣

The norm of the stochastic integral and the norm of the random inte-
grand f have equal value. Note that this equality stems from different
definitions. The squared norm of I is defined as its second moment. The
squared norm of f is defined as an average of the second moment of f .
The equality of norms is known technically as an isometry, where ‘iso’
comes from the Greek isos and means equal or identical, and ‘metric’
refers to distance. It is the mathematical name for any two quantities
whose norms are equal, not necessarily those in a probabilistic setting.
The isometry between f and In( f ) is the key to constructing the Itō
stochastic integral for a general random non-anticipating square inte-
grable integrand f . This goes as follows.
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Step 1 Approximate general random f by random step-function f (n)

f (n) is used to approximate a general integrand f arbitrarily close in
the norm of f, || f (n) − f || → 0 as n → ∞. It can be shown that this is
equivalent to || f (n) − f (2n)|| → 0 as n → ∞, where f (2n) is the random
step-function for the finer partition with 2n intervals.

Step 2 Write the norm for the difference of two integrals
The difference between the stochastic integrals of step-functions f (n)

and f (2n) as measured by the norm of I is ||I [ f (n)] − I [ f (2n)]||. The
difference of the stochastic integrals I [ f (n)] and I [ f (2n)] equals the
stochastic integral with respect to the difference of the integrands,
||I [ f (n)] − I [ f (2n)]|| = ||I [ f (n) − f (2n)]||.
Step 3 Apply the isometry
According to the isometry, ||I [ f (n) − f (2n)]|| equals || f (n) − f (2n)||.
Since || f (n) − f (2n)|| → 0 as n → ∞, it follows that ||I [ f (n) −
f (2n)]|| → 0 as n → ∞. Thus I [ f (n)] is a sequence of random vari-
ables that has a limit as n → ∞. This limit is called the Itō stochastic
integral and denoted I ( f ) = ∫ T

t=0
f (t, ω) dB(t).

The approximation of f and the corresponding discrete integral are now illustrated

for the time period [0, 4], first partitioned into n = 2 intervals, then refined to n = 4

intervals.

Norm of f The discrete approximations of f based on left endpoint values, denoted

f (2) and f (4), are specified below and sketched in Figures 3.2–3.4.

f (2) = f (0) 1[0,2) + f (2) 1[2,4)

f (4) = f (0) 1[0,1) + f (1) 1[1,2) + f (2) 1[2,3) + f (3) 1[3,4)

f (2) − f (4) = [ f (0) − f (1)] 1[1,2) + [ f (2) − f (3)] 1[3,4)

[ f (2) − f (4)]2 = [ f (0) − f (1)]2 1[1,2) + [ f (2) − f (3)]2 1[3,4)

n = 2  partition

level f (0)
level f (2)

f (t)

0 2 4
time points ----->

Figure 3.2 Approximation of f on two intervals
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n = 4  partition

level f(0)
level f(1)

level f (2)
f (t)

level f(3)

43210
time points ----->

Figure 3.3 Approximation of f on four intervals

as all cross products are zero since all pairs of intervals are non-overlapping

E{[ f (2) − f (4)]2} = E{[ f (0) − f (1)]2 1[1,2) + [ f (2) − f (3)]2 1[3,4)}
Then

|| f (2) − f (4)||2 =
∫ 4

t=0

[E{[ f (0) − f (1)]2 1[1,2)} + E{[ f (2) − f (3)]2 1[3,4)}] dt

=
∫ 2

t=1

E{[ f (0) − f (1)]2} dt +
∫ 4

t=3

E{[ f (2) − f (3)]2} dt

In the case where f is Brownian motion

|| f (2) − f (4)||2 =
∫ 2

t=1

E{[B(0) − B(1)]2} dt +
∫ 4

t=3

E{[B(2) − B(3)]2} dt

Substituting E{[B(0) − B(1)]2} = 1 and E{[B(2) − B(3)]2} = 1 gives

|| f (2) − f (4)||2 =
∫ 2

t=1

1 dt +
∫ 4

t=3

1 dt = 1(2 − 1) + 1(4 − 3) = 2

Using the norm of f , the difference between these two step-functions is

|| f (2) − f (4)|| =
√

2

Norm of I The corresponding stochastic integrals can be compared similarly. This is

illustrated for the case where f is Brownian motion. Figure 3.5 shows I [ f (2)] − I [ f (4)]

and Figure 3.6 shows I [ f (2) − f (4)].

Subinterval f (2) f (4) f (2) - f (4) [ f (4) - f (2)]2

[0, 1) f (0) f (0) f (0) - f (0) = 0 0 
[1, 2) f (0) f (1) f (0) - f (1) [f (0) - f (1)] 2

[2, 3) f (2) f (2) f (2) - f (2) = 0 0 
[3, 4) f (2) f (3) f (2) - f (3) [f (2) - f (3)]2

Figure 3.4 Difference between f approximations
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Subinterval I[ f (2)] I[ f (4)] I[ f (2)] - I[ f (4)] 

[0, 1) B(0).[B(1) - B(0)] B(0).[B(1) - B(0)] 0 
[1, 2) B(0).[B(2) - B(1)] B(1).[B(2) - B(1)] [B(0) - B(1)].[B(2) - B(1)] 
[2, 3) B(2).[B(3) - B(2)] B(2).[B(3) - B(2)] 0 
[3, 4) B(2).[B(4) - B(3)] B(3).[B(4) - B(3)] [B(2) - B(3)].[B(4) - B(3)] 

Figure 3.5 Difference between discrete integrals

The values in the right-hand columns of Figures 3.5 and 3.6 are the same, which

confirms that

I [ f (2)] − I [ f (4)] = I [ f (2) − f (4)]

I [ f (2) − f (4)] = [B(0) − B(1)][B(2) − B(1)] 1[1,2)

+ [B(2) − B(3)][B(4) − B(3)] 1[3,4)

I [ f (2) − f (4)]2 = [B(0) − B(1)]2[B(2) − B(1)]2 1[1,2)

+ [B(2) − B(3)]2[B(4) − B(3)]2 1[3,4)

Then

||I [ f (2) − f (4)]||2 = E[(I [ f (2) − f (4)])2]

= E{[B(0) − B(1)]2[B(2) − B(1)]2 1[1,2)}
+ E{[B(2) − B(3)]2[B(4) − B(3)]2 1[3,4)}

= E{[B(0) − B(1)]2}E{[B(2) − B(1)]2}
+ E{[B(2) − B(3)]2}E{[B(4) − B(3)]2}

= (1)(1) + (1)(1) = 2

||I [ f (2) − f (4)]|| =
√

2 = || f (2) − f (4)||
In summary, because the approximation of f by step-function f (n) is
arbitrarily close, as measured by the norm of f − f (n), the stochastic
integral of f can also be approximated arbitrarily close by the dis-
crete stochastic integral of f (n) as measured by the norm of the integral.

Clearly, for the norm of f to exist, f must be such that
∫ T

t=0
E[ f (t, ω)]2 dt

exists. The convergence in mean-square statement was based on
E{(I [ f (n)] − I [ f (2n)])2} → 0. This is the same as E{(I [ f (n) − f (2n)]2)}
→ 0 which is the same as the squared norm of I [ f (n) − f (2n)] → 0.
Stochastic integration is said to be a norm (or distance) preserving
operation.

Subinterval f (2) f (4) f (2) - f (4) I[ f (2) - f (4)] 

[0, 1) B(0) B(0) 0 0 
[1, 2) B(0) B(1) [B(0) - B(1)] [B(0) - B(1)].[B(2) - B(1)] 
[2, 3) B(2) B(2) 0 0 
[3, 4) B(2) B(3) [B(2) - B(3)] [B(2) - B(3)].[B(4) - B(3)] 

Figure 3.6 Discrete integral of difference between approximations
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Full mathematical details of the approximations and convergence in
this section can be found in Brzeźniak/Zastawniak Section 7.1, Kuo
Section 4.4, Capasso/Bakstein Section 3.1, and Korn/Korn.

3.5 PROPERTIES OF AN ITŌ
STOCHASTIC INTEGRAL

It can be shown that the properties of the discrete stochastic integral
for random step-functions carry over to the continuous time limit, the

stochastic integral I ( f ) = ∫ T
t=0

f (t, ω) dB(t).

(i) Linearity property∫ T

t=0

α f (t, ω) dB(t) +
∫ T

t=0

βg(t, ω) dB(t)

=
∫ T

t=0

[α f (t, ω) + βg(t, ω)] dB(t)

(ii) Distribution Properties The probability distribution of I ( f ) can-
not be identified in general. In the special case where f is non-
random the discrete integral property carries over so I ( f ) is then
normally distributed. This is also shown directly in Section 3.7. The
expected value of an Itō stochastic integral is zero.

E[I ( f )] = E
[ ∫ T

t=0

f (t, ω) dB(t)

]
= 0

The variance of an Itō stochastic integral is an ordinary integral

Var[I ( f )] = E[I ( f )2] = E

[{∫ T

t=0

f (t, ω) dB(t)

}2
]

=
∫ T

t=0

E[ f (t, ω)2] dt︸ ︷︷ ︸
Isometry

(iii) Martingale Property Random variable I (T ) is a function of upper
integration limit T . For different T it is a random process which is
a martingale

E
[∫ T

t=0

f (t, ω) dB(t)|�(S)

]
=

∫ S

t=0

f (t, ω) dB(t) for times T > S

Proofs of the martingale property can be found in Brzeźniak/
Zastawniak Section 7.3, Kuo Section 4.6, Capasso/Bakstein Section
3.2, and Klebaner p. 100.
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(iv) Product Property

E[I ( f )I (g)] =
∫ T

t=0

E[ f (t, ω)g(t, ω)] dt

This property can also be shown directly by making use of the
following. For any numbers a and b

(a + b)2 = a2 + 2ab + b2 so ab = 1
2
(a + b)2 − 1

2
a2 − 1

2
b2

Applying the latter to a = I ( f ) and b = I (g) gives

I ( f )I (g) = 1
2
{I ( f ) + I (g)}2 − 1

2
I ( f )2 − 1

2
I (g)2

Using the linearity property, I ( f ) + I (g) = ∫ T
t=0

{ f (t, ω) +
g(t, ω)} dB(t) gives

I ( f )I (g) = 1
2

{∫ T
t=0

{ f (t, ω) + g(t, ω)} dB(t)
}2

− 1
2

I ( f )2 − 1
2

I (g)2

Taken the expected value, and applying the isometry property to
each term, gives

E[I ( f )I (g)] = 1
2

∫ T
t=0

E[{ f (t, ω) + g(t, ω)}2] dt

− 1
2
E[I ( f )2] − 1

2
E[I (g)2]

= 1
2

∫ T
t=0

E[ f (t, ω)2] dt + 1
2

∫ T
t=0

E[g(t, ω)2] dt

+
∫ T

t=0

E[ f (t, ω)g(t, ω)] dt

− 1
2

∫ T
t=0

E[ f (t, ω)2] dt − 1
2

∫ T
t=0

E[g(t, ω)2] dt

=
∫ T

t=0

E[ f (t, ω)g(t, ω)] dt

The Itō integral viewed as a function of its upper integration limit is a
random process which has infinite first variation and non-zero quadratic
variation. Its paths are nowhere differentiable. This is discussed in
Klebaner pp. 101, 102.

Evaluating a stochastic integral by using its limit definition is cum-
bersome, as can be experienced by working exercise [3.9.5]. Instead, it
is normally done by a stochastic calculus rule known as Itō’s formula,
which is the subject of Chapter 4. The situation is the same as in ordinary
calculus where a Riemann integral is not evaluated by using its defini-
tion, but by using a set of ordinary calculus rules. Although conceptually
the Itō stochastic integral is a random variable, an explicit expression for
it can only be found in a few special cases. An often quoted example is∫ T

t=0
B(t) dB(t). This is first evaluated as the limit of a discrete integral in

exercise [3.9.5] and then by stochastic calculus in Section 4.4.4. When
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no closed form expression can be found, the probability distribution of
the integral can be approximated by simulation.

The integrand used in the discrete Itō stochastic integral is fixed at
the left endpoint of each time interval. Section 3.1 showed that this is
natural in a finance context as the composition of the portfolio has to be
fixed before the change in the values of the assets become known. This
makes the stochastic integral a martingale. What the situation would be
if a different endpoint were used is shown in the next section.

3.6 SIGNIFICANCE OF INTEGRAND POSITION

The significance of the position of the integrand f is now illustrated
for the case where f is a random step-function which approximates
Brownian motion. The expected value of a discrete stochastic integral
is computed using different endpoints for f . These integrals are under
different definitions.

Using the left endpoint tk , the discrete stochastic integral is Ln
def=∑n−1

k=0 B(tk) [B(tk+1) − B(tk)] where B(tk) and [B(tk+1) − B(tk)] are
independent. The value of B(tk) will be known before the value of
[B(tk+1) − B(tk)] is generated. The general term in the approxima-
tion is B(tk)[B(tk+1) − B(tk)]. Its expected value, taken at time tk , is
E{B(tk)[B(tk+1) − B(tk)]}. Conditioning on the history �k of the pro-
cess through time tk , this is written as the expected value of a con-
ditional expectation E{E(B(tk)[B(tk+1) − B(tk)]|�k)}. Position B(tk) is
independent of [B(tk+1) − B(tk)], and when �k is given, it is a known
number (a realization of a random variable). So the above becomes
E{B(tk)E[B(tk+1) − B(tk)|�k]}. With E[B(tk+1) − B(tk)|�k] = 0 the re-
sult is E{B(tk)0} = 0. Therefore using the left endpoint, the expected
value of the stochastic integral equals zero. (Using the result from Sec-
tion 3.3 with f = B would, of course, have given the same.)

Using the right endpoint tk , define a discrete stochastic integral as

Rn
def= ∑n−1

k=0 B(tk+1)[B(tk+1) − B(tk)]. The integrand B(tk+1) is now not
non-anticipating; it is not the Itō type integral and could not be used in
the setting of Section 3.1. Here B(tk+1) and integrator [B(tk+1) − B(tk)]
are no longer independent. The general term in the approximation is
now B(tk+1)[B(tk+1) − B(tk)]. To evaluate EB(tk+1)[B(tk+1) − B(tk)],
decompose B(tk+1) into the known value B(tk) and the random variable
B(tk+1 − B(tk), as in the analysis of martingales in Chapter 2. That gives

E{(B(tk) + [B(tk+1) − B(tk)])[B(tk+1) − B(tk)]}
= E{B(tk)[B(tk+1) − B(tk)]} + E{[B(tk+1) − B(tk)]2}
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Integral BdB - left vs right endpoints
sample paths of one simulation
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Figure 3.7 Simulated path of different integral definitions

The first term was shown above to equal zero. So the resulting expression
is E{[B(tk+1) − B(tk)]2} = �t . Summing over all n subintervals then
gives n�t = n(T/n) = T . Thus using the right endpoint, the expected
value of that stochastic integral equals T . Indeed, the difference Rn −
Ln = ∑n−1

k=0[B(tk+1) − B(tk)][B(tk+1) − B(tk)] is shown in Annex C to
converge in mean-square to T .

The difference is illustrated in Figure 3.7 by simulation over the time
period [0, 1] using 512 subintervals.

The terminal value at time 1 was recorded for 200 simulations. The
results are presented in Figure 3.8.

Kuo introduces the stochastic integral in Section 4.1 by asking: If one
wants the stochastic integral to be a martingale, should the integrand be
taken at the left endpoint or at the right endpoint? This is discussed for
the example

∫
B(t) dB(t).

integral_left integral_right
sample_mean -0.037770 0.964537

exact_mean 0 1
sample_variance 0.492436 0.498138

exact_variance 0.5 0.5

Figure 3.8 Simulation results left endpoint versus right endpoint



JWBK142-03 JWBK142-Wiersema March 25, 2008 7:21 Char Count= 0
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3.7 ITŌ INTEGRAL OF NON-RANDOM INTEGRAND

The special case where the integrand is a non-random function of time,
σ (t) say, arises frequently, for example in interest rate modelling. The
stochastic integral I (t) = ∫ t

s=0
σ (s) dB(s) has

E[I (t)] = 0 and Var[I (t)] = E[I (t)2] =
∫ t

s=0

E[σ (s)2] ds

=
∫ t

s=0

σ (s)2 ds

What is its probability distribution? The discrete stochastic integral of
which this I (t) is the limit, is a sum of many independent Brownian
motion increments each weighted by a coefficient which is a value of
the non-random function σ . This discrete stochastic integral is a linear
combination of independent normal random variables, and is thus nor-
mal. The intuition is therefore that I (t) is normally distributed. To verify
this, recall that the type of distribution of a random variable is uniquely
specified by its moment generating function (mgf). Thus the mgf of I (t)
needs to be derived. The mgf of a normally distributed random variable
Z which has mean zero and variance σ 2 is E[exp(θ Z )] = exp( 1

2
θ2σ 2)

where θ denotes the dummy parameter. The mgf of I (t) is defined as
E[exp{θ I (t)}]. If this equals exp{ 1

2
θ2Var[I (t)]}, then I (t) is normal with

mean 0 and variance Var[I (t)], and E[exp{θ I (t) − 1
2
θ2Var[I (t)]}] = 1.

So it needs to be verified whether this expression holds. For convenience
let the exponent be named X

X (t)
def= θ I (t) − 1

2
θ2Var[I (t)] X (0) = 0

X (t) = θ

∫ t

s=0

σ (s) dB(s) − 1

2
θ2

∫ t

s=0

σ (s)2 ds

Thus it needs to be verified whether E[exp{X (t)}] = 1 = exp{0} =
exp{X (0)}. If this holds then the random process exp(X ) is a martin-
gale. Introduce the notation Y (t)

def= exp{X (t)}. To verify whether Y is a
martingale, the method of Chapter 2 can be used. Alternatively, use is
made here of Chapter 4 and Section 5.1.1, and it is checked whether the
stochastic differential of Y is without drift.

dY = dY

dX
dX + 1

2

d2Y

dX2
(dX)2
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Using

dY

dX
= Y

d2Y

dX2
= Y

dX(t) = − 1
2
θ2σ (t)2 dt + θσ (t) dB(t) [dX(t)]2 = θ2σ (t)2 dt

gives

dY = Y
[− 1

2
θ2σ (t)2 dt + θσ (t) dB(t)

] + 1
2
Y θ2σ (t)2 dt

= Y θσ (t) dB(t)

This is indeed without drift, so Y is a martingale. It has thus been shown
that an Itō integral with a non-random integrand is a normally distributed
random variable with mean zero and variance given by an ordinary
integral.

3.8 AREA UNDER A BROWNIAN MOTION PATH

Integral
∫ T

t=0
B(t) dt often occurs in applications, for example in interest

rate modelling. The previous sections explained the construction of the
integral of a random process with respect to Brownian, the Itō stochastic
integral. The integral here is an integral of a specific Brownian motion
path with respect to time. This is not a stochastic integral. If a Brownian
motion path is generated from time 0 to time T then the above integral
is the area under that particular path. As the path is continuous, it is
Riemann integrable. As the path is random, so is the integral. For a
specific T the integral is a random variable. It turns out that this random
variable is normally distributed with mean 0 and variance 1

3
T 3. The

derivation is along the lines of the construction of the ordinary Riemann
integral. As usual, discretize the time period [0, T ] by partitioning into n

intervals of equal length �t
def= T /n with discrete time-points tk = k�t ,

k = 0 . . . n. For an interval from time-point tk−1 to tk , the area under
the Brownian motion path (Figure 3.9) is approximated by the rectangle
�t B(tk). So∫ T

t=0

B(t) dt = lim
n→∞

n∑
k=1

�t B(tk)
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B3

B2 B3 - B2

B2 - B1

B1

ΔT
3210

ΔT.B 1

ΔT.(B 2 - B1)

all have level B1
all but one have level B2
etc

Figure 3.9 Area under Brownian motion path

The rectangles are:

1st �t B(t1)
2nd �t B(t2) = �t B(t1) + �t[B(t2) − B(t1)]
...

...
nth �t B(tn) = �t B(t1) + · · · + �t[B(tk) − B(tk−1)] + · · ·

+ �t[B(tn) − B(tn−1)]

Position B(tk) is the sum of the increments during the preceding intervals.
The sum of the n rectangles, denoted Sn , equals

Sn
def= � t{nB(t1) + (n − 1)[B(t2) − B(t1)] + · · ·

+ k[B(tk) − B(tk−1)] + · · · + 1[B(tn) − B(tn−1)]

This is the sum of independent normally distributed random variables,
so Sn is normal with E[Sn] = 0 and variance

Var[Sn] = (�t)2{Var[nB(t1)] + · · · + Var[k[B(tk) − B(tk−1)]]

+ · · · + Var[1[B(tn) − B(tn−1)]]}
= (�t)2{n2�t + · · · + k2�t + · · · + 12�t}



JWBK142-03 JWBK142-Wiersema March 25, 2008 7:21 Char Count= 0

64 Brownian Motion Calculus

= (�t)3
n∑

k=1

k2

= (�t)3 1
6
n(n + 1)(2n + 1)

= T 3

n3
1
6
n(n + 1)(2n + 1)

= T 3 1
6

(
1 + 1

n

) (
2 + 1

n

)
Using

∫ T
t=0

B(t) dt = lim
n→∞ Sn

E
[ ∫ T

t=0

B(t) dt

]
= E[ lim

n→∞ Sn] = lim
n→∞ E[Sn] = 0

Var

[ ∫ T

t=0

B(t) dt

]
= Var[ lim

n→∞ Sn] = lim
n→∞ Var[Sn]

= lim
n→∞ T 3 1

6

(
1 + 1

n

) (
2 + 1

n

) = 1
3
T 3

Therefore∫ T

t=0

B(t) dt ∼ N
(
0, 1

3
T 3

)
As the standard deviation of the integral is

√
1
3
T 3, it has the same dis-

tribution as
√

1
3
T 3 Z , where Z ∼ N (0, 1) . Writing it as

∫ T
t=0

B(t) dt ∼√
1
3
T 3 Z can be convenient in any further analysis which uses this in-

tegral. This method is based on Epps and Klebaner. The integral is
rederived in Section 4.8 using stochastic calculus.

3.9 EXERCISES

The subject of Exercises [3.9.1], [3.9.2], and [3.9.10], is the discrete Itō
stochastic integral of a random step-function. As usual, the integral is
over the time period [0, T ] partitioned into n subintervals of equal length

T/n. The time-points in the partition are denoted tk
def= k(T/n), t0 = 0

and tn = T . The random step-function integrand corresponding to this
partition is denoted f (n) and has level B(tk) on the left-closed right-open
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subinterval [tk, tk+1).

f (n) = B(t0) 1[t0,t1) + B(t1) 1[t1,t2) + · · · + B(tk) 1[tk ,tk+1) + · · ·
+B(tn−1) 1[tn−1,tn)

=
n−1∑
k=0

B(tk) 1[tk ,tk+1)

[3.9.1] (a) Give the expression for the discrete Itō stochastic integral
of f (n), call it I (n), and show that it is a martingale.

(b) Compute the variance of I (n) (use the results derived earlier;
no need to rederive from scratch).

(c) As n tends to infinity, determine the limiting value of this
variance.

[3.9.2] Refine the partition by halving only the first subinterval [0, t1].

This adds just one time-point to the partition, t 1
2

def= 1
2
(T/n). The

refined partition has (n − 1) subintervals of length T/n, and two
subintervals of length 1

2
(T/n), in total (n + 1) subintervals.

(a) Write the expression for f (n+1), the random step-function
corresponding to the refined partition.

(b) Write the expression for the norm of the difference between
f (n+1) and f (n), that is || f (n+1) − f (n)||.

(c) As n tends to infinity, show that the expression in (b) tends
to zero.

(d) Write the expression for the discrete stochastic integral cor-
responding to f (n+1); call it I (n+1).

(e) Write the expression for the norm of the difference of the
two integrals I (n+1) and I (n), that is ||I (n+1) − I (n)||.

(f) As n tends to infinity, show that the expression in (e) tends
to zero.

(g) Having done all of the above, what has been demonstrated?

[3.9.3] Compute the expected value of the square of I (T )
def=∫ T

t=0
B(t) dB(t) in two ways

(a) Using the property of Itō stochastic integrals.

(b) Using the closed form expression
∫ T

t=0
B(t) dB(t) =

1
2

B(T )2 − 1
2
T .

(c) Compute the variance of I (T ).
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[3.9.4] Find a closed form expression for
∫ ti

s=ti−1
[
∫ s

y=ti−1
dB(y)] dB(s).

This expression is used in the Milstein simulation scheme for
stochastic differential equations.

[3.9.5] Specify the discrete stochastic integral which converges to∫ T
t=0

B(t) dB(t). Show that the sequence of these discrete

stochastic integrals converges in mean-square to 1
2

B(T )2 −
1
2
T . To rearrange the expressions, make use of the identity

ab = 1
2
[(a + b)2 − (a2 + b2)] which comes from rearranging

(a + b)2 = a2 + 2ab + b2.

[3.9.6] Derive the variance of TB(T ) − ∫ T
t=0

B(t) dt.

[3.9.7] Derive the variance of
∫ T

t=0

√|B(t)| dB(t).

[3.9.8] Derive the variance of
∫ T

t=0
[B(t) + t]2 dB(t).

[3.9.9] (a) Construct a simulation of a discrete stochastic integral for
non-random step-functions.

(b) Construct a simulation of a discrete stochastic integral for
random step-functions.

[3.9.10] Construct a simulation and analyse the convergence of I (n) as
defined in Exercise [3.9.2] for the time period [0, 1]. Initially
use the partition into n = 28 = 256 subintervals. Run at least
1000 simulations of the discrete stochastic integral for this n.
Show a chart of two typical sample paths. Show a histogram
of the terminal value of the integral, and compute the mean
and variance of the simulated values and compare these to the
theoretical values. Repeat the above by doubling n to 210 =
1024 then to 2048. Compare the results against the mean and
variance of

∫ 1

t=0

B(t) dB(t) = 1

2
B(1)2 − 1

2
.

[3.9.11] Construct a simulation for the area under the path of a Brownian
motion. Show a cumulative histogram of the results and com-
pare this with the probability distribution of the area. Compare
the sample mean and variance with the theoretical values.
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3.10 SUMMARY

This chapter defined the discrete stochastic integral of the non-
anticipating random process f with respect to Brownian motion as∑n−1

k=0 f (tk, ω)[B(tk+1) − B(tk)]. The key feature is that the value of f
is taken at tk before the Brownian motion increment [B(tk+1) − B(tk)]

over the subsequent time interval becomes known. If
∫ T

t=0
E[ f (t, ω)2] dt

exists, then any random process f (t, ω) can be approximated arbitrar-
ily closely by random step-functions, here denoted f (n), in the sense
that ∫ T

t=0

E
[

f (t, ω) − f (n)(t, ω)
]2

dt → 0 as n → ∞

The value of integral
∫ T

t=0
E[ f (t, ω) − f (n)(t, ω)]2 dt depends on n. Re-

peating this calculation for a larger value of n (a finer partition), gives
another value of the corresponding integral. Making n larger and larger
gives a sequence of values which converges to zero. This approxima-
tion can also be written in terms of the difference between two ran-
dom step-functions, one based on n intervals, the other based on 2n
intervals,∫ T

t=0

E
[

f (n)(t, ω) − f (2n)(t, ω)
]2

dt

The expected value of the square of the difference between the dis-
crete stochastic integrals corresponding to f (n) and f (2n) is E[{I [ f (n)] −
I [ f (2n)]}2], which equals

∫ T
t=0

E[ f (n)(t, ω) − f (2n)(t, ω)]2 dt. Since by

linearity I [ f (n)] − I [ f (2n)] = I [ f (n)] − f (2n)]. This goes to zero as
n → ∞. That means the sequence I ( f (n)) has a limit, and this limit
is called the Itō stochastic integral. The stochastic integration concept
is based on closeness of random quantities in the mean-square sense.

A numerical illustration is given in Figure 3.10 for
∫ 1

t=0
B(t) dB(t). The

simulation compares the values of the discrete stochastic integral for
doubled values of n, and also compares them to the simulated values of
the exact expression.

This text only covers Itō integrals with respect to Brownian motion
in one dimension, where the random integrand process f is such that∫ T

t=0
E[ f (t, ω)2] dt is finite. The martingale property of the stochastic in-

tegral stems from the use of integrands which have no knowledge of the
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simuls 1000 seed_now 6

n1 n2 n3 n4
n 512 1024 2048 4096

results

mean_square_diff_n_2n 0.000526 0.000232 0.000121 0.000061

% of previous 44% 52% 50%

mean_square_diff_exact_2n 0.000491 0.000246 0.000113 0.000062

% of previous 50% 46% 55%

Figure 3.10 Simulation of
∫ 1

t=0
B(t) dB(t)

future (non-anticipating); these arise naturally in a finance context. When
the integrand is non-random, the stochastic integral is a normally dis-
tributed random variable8; this has many applications. The area under the
path of a Brownian motion is not a stochastic integral. Extensions to inte-
grals based on weaker conditions for the integrand are discussed in Kuo.
That book also covers stochastic integrals with respect to a continuous
time martingale which can have jumps, and multi-dimensional Brown-
ian motion integrals. Klebaner’s book uses the concept of convergence
in probability and is mathematically more advanced; Capasso/Bakstein
first use convergence in mean square, thereafter convergence in proba-
bility.

3.11 A TRIBUTE TO KIYOSI ITŌ

More on Itō and his work can be found on the Internet in Wikipedia. The
mathematical aspects are summarized here by Protter as The Work of
Kiyosi Itô in NOTICES OF THE AMS JUNE/JULY 2007.

8 Kuo starts with the construction of these integrals, in Section 2.3, so-called Wiener integrals.
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The Work of Kiyosi Itô

Philip Protter

The Notices solicited the following article describing the work of
Kiyosi Itô, recipient of the 2006 Gauss Prize. The International
Mathematical Union also issued a news release, which appeared in
the November 2006 issue of the Notices.

On August 22, 2006, the In-
ternational Mathematical Union
awarded the Carl Friedrich Gauss
Prize at the opening ceremonies
of the International Congress of
Mathematicians in Madrid, Spain.
The prizewinner is Kiyosi Itô.
The Gauss prize was created to
honor mathematicians whose re-
search has had a profound impact
not just on mathematics itself but
also on other disciplines.

To understand the achievements
of Itô, it is helpful to understand
the context in which they were de-
veloped. Bachelier in 1900, and
Einstein in 1905, proposed math-
ematical models for the phe-
nomenon known as Brownian mo-
tion. These models represent the
random motion of a very small par-
ticle in a liquid suspension. Norbert
Wiener and collaborators showed
in the 1920s that Einstein’s model
exists as a stochastic process, us-
ing the then-new ideas of Lebesgue
measure theory. Many properties
of the process were established

in the 1930s, the most germane
for this article being that its sam-
ple paths are of infinite variation
on any compact time interval, no
matter how small. This made the
Riemann–Stieltjes integration the-
ory inapplicable. Wiener wanted
to use such integrals to study fil-
tering theory and signal detec-
tion, important during the second
world war. Despite these problems
he developed a theory of inte-
grals, known today as Wiener in-
tegrals, where the integrands are
non-random functions. This served
his purpose but was unsatisfying
because it ruled out the study of
stochastic differential equations,
among other things.

The problem in essence is the
following: how can one define
a stochastic integral of the form∫ t

0
HsdWs , where H has contin-

uous sample paths and W is a
Wiener process (another name for
Brownian motion), as the limit of
Riemann-style sums? That is, to
define an integral as the limit of

Philip Protter is professor of operations research at Cornell University. His email address is
pep4@cornell.edu.
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sums such as
∑

1≤i≤n Hξi (Wti+1
−

Wti ), with convergence for all such
H. Unfortunately as a consequence
of the Banach–Steinhaus theorem,
W must then have sample paths of
finite variation on compact time in-
tervals. What Itô saw, and Wiener
missed, was that if one restricts the
class of potential integrands H to
those that are adapted to the under-
lying filtration of sigma algebras
generated by the Wiener process,
and if one restricts the choice of
ξt ∈ [ti , ti+1) to ti , then one can use
the independence of the increments
of the Wiener process in a clever
way to obtain the convergence of
the sums to a limit. This became
the stochastic integral of Itô. One
should note that Itô did this in
the mathematical isolation of Japan
during the second world war and
was one of the pioneers (along with
G. Maruyama) of modern proba-
bility in Japan, which has since
spawned some of the world’s lead-
ing probabilists. Moreover since
Jean Ville had named martingales
as such only in 1939, and J.L.
Doob had started developing his
theory of martingales only in the
1940s, Itô was unaware of the spec-
tacular developments in this area
that were happening in the U.S.,
France, and the Soviet Union. Thus
modern tools such as Doob’s mar-
tingale inequalities were unavail-
able to Itô, and his creativity in
the proofs, looked at today, is

impressive. But the key result re-
lated to the stochastic integral was
Itô’s change of variables formula.

Indeed, one can argue that most
of applied mathematics tradition-
ally comes down to changes of
variable and Taylor-type expan-
sions. The classical Riemann–
Stieltjes change of variables, for
a stochastic process A with con-
tinuous paths of finite variation on
compacts, and f ∈ C1 is of course

f (At ) = f (A0) +
∫ t

0

f ′(As) dAs .

With the Itô integral it is different
and contains a “correction term”.
Indeed, for f ∈ C2 Itô proved

f (Wt ) = f (W0) +
∫ t

0

f ′(Ws) dWs

+ 1
2

∫ t

0

f ′′(Ws) ds.

This theorem has become ubiqui-
tous in modern probability theory
and is astonishingly useful. More-
over Itô used this formula to show
the existence and uniqueness of so-
lutions of stochastic ordinary dif-
ferential equations:

dXt = σ (Xt ) dWt + b(Xt ) dt;

X0 = x0,

when σ and b are Lipschitz con-
tinuous. This approach provided
methods with an alternative in-
tuition to the semigroup/partial
differential equations approaches
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of Kolmogorov and Feller, for
the study of continuous strong
Markov processes, known as dif-
fusions. These equations found
applications without much delay:
for example as approximations of
complicated Markov chains aris-
ing in population and ecology
models in biology (W. Feller), in
electrical engineering where dW
models white noise (N. Wiener,
I. Gelfand, T. Kailath), in chemi-
cal reactions (e.g., L. Arnold), in
quantum physics (P.A. Meyer, L.
Accardi, etc.), in differential ge-
ometry (K. Elworthy, M. Emery),
in mathematics (harmonic analy-
sis (Doob), potential theory (G.
Hunt, R. Getoor, P.A. Meyer),
PDEs, complex analysis, etc.), and,
more recently and famously, in
mathematical finance (P. Samuel-
son, F. Black, R. Merton, and M.
Scholes).

When Wiener was developing
his Wiener integral, his idea was to
study random noise, through sums
of iterated integrals, creating what
is now known as “Wiener chaos”.
However his papers on this were
a mess, and the true architect of
Wiener chaos was (of course) K.
Itô, who also gave it the name
“Wiener chaos”. This has led to
a key example of Fock spaces
in physics, as well as in filter-
ing theory, and more recently to a
fruitful interpretation of the Malli-
avin derivative and its adjoint, the
Skorohod integral.

Itô also turned his talents
to understanding what are now
known as Lévy processes, after
the renowned French probabilist
Paul Lévy. He was able to estab-
lish a decomposition of a Lévy
process into a drift, a Wiener pro-
cess, and an integral mixture of
compensated compound Poisson
processes, thus revealing the struc-
ture of such processes in a more
profound way than does the Lévy–
Khintchine formula.

In the late 1950s Itô collabo-
rated with Feller’s student H.P. Mc-
Kean Jr. Together Itô and McKean
published a complete description
of one-dimensional diffusion pro-
cesses in their classic tome, Dif-
fusion Processes and Their Sam-
ple Paths (Springer-Verlag, 1965).
This book was full of original re-
search and permanently changed
our understanding of Markov pro-
cesses. It developed in detail such
notions as local times and de-
scribed essentially all of the differ-
ent kinds of behavior the sample
paths of diffusions could mani-
fest. The importance of Markov
processes for applications, and es-
pecially that of continuous Markov
processes (diffusions), is hard
to overestimate. Indeed, if one
is studying random phenomena
evolving through time, relating it
to a Markov process is key to un-
derstanding it, proving properties
of it, and making predictions about
its future behavior.
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Later in life, when conventional
wisdom holds that mathemati-
cians are no longer so spectacular,
Itô embraced the semimartingale-
based theory of stochastic inte-
gration, developed by H. Kunita,
S. Watanabe, and principally P.A.
Meyer and his school in France.
This permitted him to integrate cer-
tain processes that were no longer
adapted to the underlying filtration.
Of course, this is a delicate busi-
ness, due to the sword of Damo-
cles Banach–Steinhaus theorem. In
doing this, Itô began the theory of
expansion of filtrations with a sem-
inal paper and then left it to the
work of Meyer’s French school of
the 1980s (Jeulin, Yor, etc.). The
area became known as grossisse-
ments de filtrations, or in English
as “the expansions of filtrations”.
This theory has recently undergone
a revival, due to applications in fi-
nance to insider trading models, for
example.

A much maligned version of the
Itô integral is due to Stratonovich.
While others were ridiculing this
integral, Itô saw its potential for ex-
plaining parallel transport and for
constructing Brownian motion on
a sphere (which he did with D.
Stroock), and his work helped to
inspire the successful use of the
integral in differential geometry,
where it behaves nicely when one
changes coordinate maps. These
ideas have also found their way
into other domains, for exam-
ple in physics, in the analysis
of diamagnetic inequalities in-
volving Schrödinger operators (D.
Hundertmark, B. Simon).

It is hard to imagine a mathe-
matician whose work has touched
so many different areas of appli-
cations, other than Isaac Newton
and Gottfried Leibniz. The legacy
of Kyosi Itô will live on a long, long
time.
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Thus far the discussion was about the dynamics of Brownian motion.
Usually the quantity of interest is not Brownian motion itself, but a ran-
dom process which depends on (‘is driven by’) Brownian motion. For
example, the value of an option depends on the value of the underlying
stock, which in turn is assumed to be driven by Brownian motion. To
determine how a change in the value of the stock price affects the value
of the option is a key question. Questions like these can be answered
with Itō’s formula which is the subject of this chapter. This formula is
also known as Itō’s lemma.

4.1 STOCHASTIC DIFFERENTIAL NOTATION

The analysis is normally done in terms of stochastic differentials, a no-
tion which will now be introduced. Consider the integral of an ordi-
nary function f of t , from t = 0 to x ,

∫ x
t=0

f (t) dt . The value of this
integral depends on the upper integration limit x , and this can be cap-

tured by writing it as G(x)
def= ∫ x

t=0
f (t) dt . According to the fundamen-

tal theorem of calculus,1 differentiating G(x) with respect to x gives
dG(x)/dx = f (x), the value of the function f (t) at the upper integra-
tion limit t = x .

Inspired by this2 it has become standard practice in stochastic

calculus to write the Itō stochastic integral I (T ) = ∫ T
t=0

f (t, ω) dB(t)
in the form d I (T ) = f (T, ω) dB(T ). It can be easily remembered by
formally performing the same differentiation operation on I (T ) as for
the ordinary integral: the integral sign is omitted and t is replaced by
the upper integration limit T – formally, because differentiation of a
stochastic integral is not an existing concept. The notation d I (T ) is
used as shorthand for I (T ) and it is not implied that some form of
differentiation took place. The stochastic differential notation makes
the rules of stochastic calculus easy to use. Similarly, a result stated in

1 Recapped in Annex B, Ordinary Integration.
2 See Annex B, Ordinary Integration, Section Differential.

73
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differential form d I (T ) can be written in equivalent integral form I (T )
by formally writing out an integration, and where possible perform the
integration. So

I (T ) =
∫ T

t=0

f (t, ω) dB(t) ⇔ d I (T ) = f (T, ω) dB(T )

4.2 TAYLOR EXPANSION IN ORDINARY CALCULUS

To set the stage, recall from ordinary calculus the concept of a Taylor
expansion. Consider a function f of a smooth3 ordinary non-random
variable4 x . Suppose that the value of the function at a particular point
x0 is the known value f (x0), and that the value of the function is to be
determined at a point x0 + h, a small distance h away from x0. This
value, f (x0 + h), can be approximated by using the steepness of the
function at the present location x0, as given by the slope d f (x)/dx at
x0, and the rate of change in the steepness, as given by d2f (x)/dx2 at
x0. For example, if f (x0) represents the position of a car at time x0,
then its position at time x0 + h depends on its present speed, d f (x)/dx
at x0, and its present acceleration, d2f (x)/dx2 at x0. It also depends
on the rate of change in the acceleration, d3f (x)/dx3 at x0, but that
is a refinement that will be neglected. If f is smooth, the change in
value f (x0 + h) − f (x0) can be approximated by the first two terms in
a Taylor expansion as

f (x0 + h) = f (x0) + h
d f (x0)

dx
+ 1

2
h2 d2f (x0)

dx2

Here d f (x0)/dx is shorthand for d f (x)/dx evaluated at x0, and simi-
larly for d2 f (x0)/dx2.

It is convenient to define � f (x0)
def= f (x0 + h) − f (x0) and rewrite the

above as

� f (x0) = h
d f (x0)

dx
+ 1

2
h2 d2f (x0)

dx2

3 Here this is shorthand for a function that is continuous in all variables, and has first and second derivatives
in each of the variables, which are continuous.

4 Also known as a deterministic variable.
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f (x0+h)

slope at x0

f (x0) h.slope

x0 x0+h

Figure 4.1 Taylor expansion in one variable

A similar approximation exists for a smooth function g of two variables
x and y. Let

�g(x0, y0)
def= g(x0 + h, y0 + k) − g(x0, y0),

then

�g(x0, y0) =
+ [∂g(x0, y0)/∂x]h

+ [∂g(x0, y0)/∂y]k

}
(first-order terms)

+ 1
2
[∂2g(x0, y0)/∂x2]h2

+ 1
2
[∂2g(x0, y0)/∂y2]k2

}
(second-order terms)

+ [∂2g(x0, y0)/∂x∂y]hk (mixed second-order terms)

The standard Taylor expansion holds when the variables x and y are
deterministic. There is a need for a Taylor type expansion that can also
handle random variables.

4.3 ITŌ’S FORMULA AS A SET OF RULES

Typically a random process f depends explicitly on time t and on some
random process X which is driven by Brownian motion, f [t, X ]. For
example f could be the value of an option which is written on stock
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price X . Henceforth assume that f is smooth. An expression for the
change in f over a discrete time step �t is then obtained by writing out
a formal Taylor expansion which includes all second-order terms

� f [t, X ] = ∂ f

∂t
�t + ∂ f

∂ X
�X + 1

2

∂2 f

∂t2
(�t)2

+ 1
2

∂2 f

∂ X2
(�X )2 + ∂2 f

∂t∂ X
�t �X

where ∂ f /∂ X is shorthand for the derivative of f with respect to its
second argument, evaluated at the point [t, X (t)], and similarly for the
other derivatives. Suppose X evolves according to

�X (t) = μ[t, X (t)] �t + σ [t, X (t)] �B(t) (*)

where μ and σ are given functions of t and X . � f has terms (�t)2,
�t�B(t), [�B(t)]2. Now take a closer look at their magnitude. For
very small �t , say 10−6, (�t)2 is much smaller than �t , and is there-
fore considered negligeable compared to �t . E[�t �B(t)] = 0 and
Var[�t �B(t)] = (�t)2, so for very small �t , �t �B(t) approaches
0. The variance of [�B(t)]2 is 2(�t)2, which is much smaller than its
expected value �t . As �t → 0, [�B(t)]2 approaches its non-random
expected value �t . In the continuous-time limit, (�t)2 is written as
(dt)2 = 0, �t �B(t) as dt dB(t) = 0, [�B(t)]2 as [dB(t)]2 = dt. That
leaves

d f [t, X ] =
{

∂ f

∂t
+ μ[t, X (t)]

∂ f

∂ X
+ 1

2
σ [t, X (t)]2

∂2 f

∂ X2

}
dt

+ σ [t, X (t)]
∂ f

∂ X
dB(t)

This is Itō’s formula. Note that in the equivalent integral form, the first
term is a time integral with a random integrand, as defined in Annex
B.2.2, and the second term is the Itō integral of Chapter 3. The easiest
way to use Itō’s formula is to write out a second-order Taylor expansion
for the function f that is being analyzed, and apply the multiplication
table given in Figure 4.2. This is also known as box calculus or box
algebra.

dt dB(t )
dt 0 0
dB(t ) 0 dt

Figure 4.2 Multiplication table
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Similarly, for a function of time and two processes X and Y of type
(*) driven by Brownian motions B1 and B2 which, in general, can be
correlated, Itō’s formula gives

d f = ∂ f

∂t
dt + ∂ f

∂ X
d X + ∂ f

∂Y
dY

+ 1
2

∂2 f

∂ X2
(d X )2 + 1

2

∂2 f

∂Y 2
(dY )2 + ∂2 f

∂ X∂Y
d X dY

Here the term 1
2
(∂2 f /∂t2)(dt)2 has already been omitted as (dt)2 =

0. Similarly (∂2 f /∂t∂ X ) dt d X and (∂2 f /∂t∂Y ) dt dY are not shown
because d X and dY each have a dt term and a dB term, so dt d X and
dt dY are zero.

If f does not depend on t explicitly there is no ∂ f /∂t term

d f = ∂ f

∂ X
d X + ∂ f

∂Y
dY + 1

2

∂2 f

∂ X2
(d X )2 + 1

2

∂2 f

∂Y 2
(dY )2 + ∂2 f

∂ X∂Y
d X dY

(**)
In the case of correlation, dB1(t) dB2(t) = ρ dt . This can be seen by
using Section 1.6 and another independent B3(t).

�B1(t) �B2(t) = �B1(t){ρ �B1(t) +
√

1 − ρ2 �B3(t)}
= ρ[�B1(t)]2 +

√
1 − ρ2 �B1(t) �B3(t)

Taking the expected value and using the independence of B1 and B3 and
gives

E[�B1(t) �B2(t)] = ρE{[�B1(t)]2} +
√

1 − ρ2E[�B1(t)]E[�B3(t)]

= ρ �t

Figure 4.3 shows the resulting table.
A justification of Itō’s formula is given in Section 4.9. As a full rig-

orous proof is rather elaborate, many books just give plausibility argu-
ments for the simple case f [B(t)], which is sufficient to appreciate the
basic idea. For a function of t and B, f [t, B(t)], recommended refer-
ences are Brzeźniak, Shreve II, Kuo. Technical references are Numer-
ical Solution of Stochastic Differential Equations by Kloeden/Platen

dt dB1(t) dB2(t )
dt 0 0 0
dB1(t) 0 dt

dB2(t) 0 ρ dt

ρ dt

dt

Figure 4.3 Multiplication table for correlated Brownian motions
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Chapter 3, and Korn/Korn Excursion 3. Stojanovic Section 2.3 has
Mathematica simulations of Itō’s formula. For integration with respect
to a general martingale, the corresponding Itō formula is discussed in
Kuo Chapter 7.

4.4 ILLUSTRATIONS OF ITŌ’S FORMULA

In what follows f is a smooth function. For greater readability t is
usually not shown in the derivation steps. The key to applying Itō’s
formula is to first identify the variables.

4.4.1 Frequent Expressions for Functions of Two Processes

Here equation (**) applies.

Sum Rule f
def= a X (t) + bY (t) a and b constants

The partial derivatives are

∂ f

∂ X
= a

∂2 f

∂ X2
= 0

∂ f

∂Y
= b

∂2 f

∂Y 2
= 0

∂2 f

∂ X∂Y
= ∂

∂ X

(
∂ f

∂Y

)
= ∂

∂ X
(b) = 0

∂2 f

∂Y ∂ X
= ∂

∂Y

(
∂ f

∂ X

)
= ∂

∂Y
(a) = 0 = ∂2 f

∂ X∂Y

Substituting these gives the sum rule

d[a X + b Y ] = a d X + b dY

Product Rule f
def= X (t) Y (t)

Substituting the partial derivatives

∂ f

∂ X
= Y

∂2 f

∂ X2
= 0

∂ f

∂Y
= X

∂2 f

∂Y 2
= 0

∂2 f

∂ X∂Y
= ∂

∂ X

(
∂ f

∂Y

)
= ∂

∂ X
(X ) = 1 = ∂2 f

∂Y ∂ X

gives the product rule

d[XY ] = Y d X + X dY + d X dY
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In integral form over [s ≤ t ≤ u]∫ u

t=s
d[X (t) Y (t)] =

∫ u

t=s
Y (t) d X (t) +

∫ u

t=s
X (t) dY (t)

+
∫ u

t=s
d X (t) dY (t)

X (u) Y (u) − X (s) Y (s) =
∫ u

t=s
Y (t) d X (t) +

∫ u

t=s
X (t) dY (t)

+
∫ u

t=s
d X (t) dY (t)∫ u

t=s
X (t) dY (t) = X (u) Y (u) − X (s) Y (s) −

∫ u

t=s
Y (t) d X (t)

−
∫ u

t=s
d X (t) dY (t)

This is known as the stochastic integration by parts formula. The first
three terms on the right are the same as in ordinary calculus. The fourth
term is unique to stochastic partial integration; when expressions for
d X and dY are substituted it becomes an ordinary integral. The product
rule can also be expressed in terms of the proportional changes in f ,
X , and Y .

d[XY ]

XY
= Y

XY
d X + X

XY
dY + 1

XY
d X dY

d[XY ]

XY
= d X

X
+ dY

Y
+ d X

X

dY

Y

Ratio f
def= X (t)/Y (t)

Substituting the partial derivatives

∂ f
∂ X = 1

Y
∂ f
∂Y = −X

Y 2

∂2 f
∂ X2 = 0 ∂2 f

∂Y 2 = 2X
Y 3

∂2 f
∂ X∂Y = −1

Y 2 = ∂2 Z
∂Y ∂ X

gives

dF = 1

Y
d X + −X

Y 2
dY + 1

2
0(d X )2 + 1

2

2X

Y 3
(dY )2 + −1

Y 2
dX dY

= X

Y

d X

X
− X

Y

dY

Y
+ X

Y

(
dY

Y

)2

− X

Y

d X

X

dY

Y

= f
d X

X
− f

dY

Y
+ f

(
dY

Y

)2

− f
d X

X

dY

Y
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The ratio rule is

d f = f

[
d X

X
− dY

Y
+

(
dY

Y

)2

− d X

X

dY

Y

]
This can also be expressed in terms of the proportional changes in f ,
X , and Y , as

d[X/Y ]
X/Y = d X

X − dY
Y + (

dY
Y

)2 − d X
X

dY
Y

4.4.2 Function of Brownian Motion f [B(t)]

This is a function f (x) of the single variable x where x = B(t).

Step 1 Apply the Taylor expansion to a function of one variable, treat-
ing the random variable as if it were a deterministic variable, neglecting
terms of order greater than 2.

d f = d f

dx
dB + 1

2

d2 f

dx2
(dB)2

Evaluate d f /dx and d2 f /dx2 at x = B(t). Figure 4.4 illustrates the
meaning of d f /dx evaluated at x = B(t). The position x where the
slope is computed is given by the value of random variable B(t).

Convenient shorthand for Itō’s formula applied to f [B(t)] is

d f = d f

dB
dB + 1

2

d2 f

dB2
(dB)2

f (x)

df/dx at x = B(t )

B(t )

Figure 4.4 Slope at B(t)
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Step 2 Apply the multiplication table
Substituting (dB)2 = dt gives

d f = 1
2

d2 f

dB2
dt + d f

dB
dB

Be aware that in this expression d2 f /dx2 and d f /dx are evaluated at
x = B(t). In the right-hand side, the dt term is always put first in this
text; some authors put the dB term first.

The simplest example is f [B(t)] = B(t). Then d f /dx = 1 and
d2 f /dx2 = 0, giving

d f = 1
2
0 dt + 1 dB(t) = dB(t)

as expected.
Another example is f [B(t)] = [B(t)]4. Here

d f

dB
= 4B3 d2 f

dB2
= 12B2 (dB)2 = dt

d f = 1
2
12B2 dt + 4B3 dB

Substituting f gives d[B]4 = 6B2 dt + 4B3 dB. The equivalent integral
form on [0, T ] is

[B(T )]4 − [B(0)]4 = 6

∫ T

t=0

B(t)2 dt + 4

∫ T

t=0

B(t)3 dB(t)

[B(T )]4 = 6

∫ T

t=0

B(t)2 dt + 4

∫ T

t=0

B(t)3 dB(t)

[B(T )]4 is a random variable whose expected value is

E{[B(T )]4} = 6E
{∫ T

t=0

B(t)2 dt

}
+ 4E

{∫ T

t=0

B(t)3 dB(t)

}
In the last term,

∫ T
t=0

B(t)3 dB(t) is an Itō stochastic integral if∫ T
t=0

E[B(t)6] dt is finite. As B has a mgf (derived in Annex A), all
its moments are finite. Here E[B(t)6] is a function of t which is in-
tegrated over [0, T ] and is thus finite. Being an Itō stochastic inte-
gral it has an expected value of zero. In the first term, the expectation
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operator can be taken inside the integral according Fubini’s theorem to

give 6
∫ T

t=0
E[B(t)2] dt . As E{B(t)2} = t this equals 6

∫ T
t=0

t dt = 6 1
2
T 2.

So E{B(T )4} = 3T 2, which confirms the result for the fourth moment
of Brownian motion derived in Annex A. It is known from probability
theory that the sixth moment of a normal random variable with variance
σ 2 equals 15(σ 2)3, so E[B(t)6] = 15t3, but this fact is not used above.

4.4.3 Function of Time and Brownian Motion f [t, B(t)]

This is a function of two variables t and x where x = B(t).

Step 1 Apply Taylor’s formula for a function of two variables, treating
the random variable as if it were a deterministic variable, neglecting
terms of order greater than 2.

d f = ∂ f

∂t
dt + 1

2

∂2 f

∂t2
(dt)2

+ ∂ f

∂ B
dB + 1

2

∂2 f

∂ B2
(dB)2

+ 1
2

∂2 f

∂t∂ B
dt dB + 1

2

∂2 f

∂ B∂t
dB dt

Recall from ordinary calculus that for a smooth function of two
variables, the mixed second order partial derivatives are equal,
∂2 f /(∂t ∂ B) = ∂2 f /(∂ B ∂t).

d f = ∂ f

∂t
dt + 1

2

∂2 f

∂t2
(dt)2 + ∂ f

∂ B
dB + 1

2

∂2 f

∂ B2
(dB)2 + ∂2 f

∂t∂ B
dt dB

Step 2 Apply the multiplication table
Substituting (dt)2 = 0, (dB)2 = dt , dt dB = 0, gives

d f = ∂ f

∂t
dt + ∂ f

∂ B
dB + 1

2

∂2 f

∂ B2
dt

=
(

∂ f

∂t
+ 1

2

∂2 f

∂ B2

)
dt + ∂ f

∂ B
dB

A much used expression is f [t, B(t)] = exp[μt + σ B(t)]. This f
is a function of two variables, t and x , f [t, x] = exp[μt + σ x],
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where x = B.

d f = ∂ f

∂t
dt + ∂ f

∂ B
dB + 1

2

∂2 f

∂t2
(dt)2 + ∂2 f

∂t∂ B
dt dB + 1

2

∂2 f

∂ B2
(dB)2

From the multiplication table, (dt)2 = 0, dt dB = 0, (dB)2 = dt .

∂ f

∂t
= μ exp[μt + σ B]

∂ f

∂ B
= σ exp[μt + σ B]

Note that ∂2 f /∂t2 is not needed since (dt)2 = 0, ∂2 f /(∂t∂ B) is not
needed since dt dB = 0, and ∂2 f /∂ B2 = σ 2 exp[μt + σ B]. Substitut-
ing these gives

d f = {μ exp[μt + σ B] + 1
2
σ 2 exp[μt + σ B]} dt + σ exp[μt + σ B] dB

= f {(μ + 1
2
σ 2) dt + σ dB}

Dividing by f �= 0 gives this in the rate of return form

d f

f
= (

μ + 1
2
σ 2

)
dt + σ dB

4.4.4 Finding an Expression for
∫ T

t=0
B(t) dB(t)

Consider the stochastic integral of the random integrand B(t) with

respect to Brownian motion over the time period [0, T ], I (T )
def=∫ T

t=0
B(t) dB(t). This is an Itō stochastic integral because the integrand

B(t) is non-anticipating and∫ T

t=0

E[B(t)2] dt =
∫ T

t=0

t dt = T 2

2

is finite. The aim is to find a closed form expression for I (T ). This
proceeds as follows. Knowing that the ordinary integral

∫
x dx equals

1
2
x2, suggests the use of Y (T )

def= 1
2

B(T )2 as a trial solution. As Y (T ) is
a function of the single variable

B(T ), dY = dY

dB
dB + 1

2

d2Y

dB2
(dB)2
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where dY/dB = B(T ) and d2Y/dB2 = 1. So dY = B dB + 1
2
1 dT . In

equivalent integral form,

∫ T

t=0

dY (t) =
∫ T

t=0

1
2

dt +
∫ T

t=0

B(t) dB(t)

The required integral has appeared as the second term on the right.
Rearranging gives

∫ T

t=0

B(t) dB(t) = Y (T ) − Y (0) − 1
2
T = Y (T ) − 1

2
T .

Substituting Y (T ) = 1
2

B(T )2 then gives the result

∫ T

t=0

B(t) dB(t) = 1
2

B(T )2 − 1
2
T

The choice of the trial solution was a lucky one because it produced∫ T
t=0

B(t) dB(t) when Itō’s formula was applied. There is another way to

find an expression for this integral. Suppose 1
2

B(T )2 is a trial solution. If∫ T
t=0

B(t) dB(t) was equal to 1
2

B(T )2 then their expected values should

also be equal. But E[
∫ T

t=0
B(t) dB(t)] = 0, whereas 1

2
E[B(T )2] = 1

2
T .

Thus this trial solution is not the solution. Its expected value is too high
by 1

2
T . Subtracting 1

2
T gives the new trial solution 1

2
B(T )2 − 1

2
T whose

expected value does equal zero, so 1
2

B(T )2 − 1
2
T is the solution.

4.4.5 Change of Numeraire

Consider d S(t)/S(t) = r dt + σ dB(t). Let S*(t)
def= S(t)/exp(r t). The

denominator exp(r t) is the value at time t of a unit savings account
compounded continuously at a constant rate r . S*(t) is the stock price
measured in units of this savings account. The savings account is the
new numeraire, and this transformation is known as a change of nu-
meraire. The dynamics of S*(t) is now derived from the dynamics of
S(t) by Itō’s formula. S* is a function of the two variables t and S. Itō’s
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formula gives

dS∗ = ∂S∗

∂t
dt + ∂S∗

∂S
d S + 1

2

∂2S∗

∂t2
(dt)2 + 1

2

∂2S∗

∂S2
(d S)2

+ ∂2S∗

∂t∂S
dt dS

∂S∗

∂t
= −r S exp(−r t)

∂S∗

∂S
= exp(−r t)

∂2S∗

∂S2
= 0 (dt)2 = 0, so

∂2S∗

∂t2
is not needed

dt d S = dt (r S dt + σ S dB) = r S(dt)2 + σ S dt dB = 0

Substituting the above, together with d S = r S dt + σ S dB, gives

d S∗ = −r S exp(−r t) dt + exp(−r t)[r S dt + σ S dB]

d S∗(t)

S∗(t)
= σ dB(t)

The drift term has dropped out as a result of the discounting. The drift
of S∗ is the growth relative to r . As S grows at rate r , S∗ grows at rate
zero. S∗ is a martingale, as can be seen by integrating and taking the
expected value∫ T

t=s
d S∗(t) =

∫ T

t=s
S∗(t)σ dB(t)

S∗(T ) = S∗(s) +
∫ T

t=s
S∗(t)σ dB(t)

E[S∗(T )|F(s)] = S∗(s)

as

E
[∫ T

t=s S∗(t)σ dB(t)|F(s)
]

= 0

4.4.6 Deriving an Expectation via an ODE

Let X (t)
def= exp[σ B(t)] so X (0) = exp[σ B(0)] = 1. Here E[X (t)] is

computed by solving an ordinary differential equation (ODE). The
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stochastic differential of X is

d X = d X

dB
dB + 1

2

d2 X

dB2
(dB)2

= σ X dB + 1
2
σ 2 X dt

In integral form over [0, t]

X (t) = X (0) +
∫ t

s=0

1
2
σ 2 X (s) ds +

∫ t

s=0

σ X (s) dB(s)

Taking the expected value cancels the Itō stochastic integral term and
leaves

E[X (t)] = X (0) + E
[∫ t

s=0

1
2
σ 2 X (s) ds

]
The last term is a double integral, and exchanging the order of integra-
tion is permitted (by Fubini). That moves E into the integrand, so

E[X (t)] = X (0) +
∫ t

s=0

1
2
σ 2E[X (s)] ds

For convenience introduce the notation m(t)
def= E[X (t)]. Then

m(t) = X (0) +
∫ t

s=0

1
2
σ 2m(s) ds

This is an integral equation for the unknown function m(t) which can be
transformed into an ODE by differentiating with respect to the upper in-
tegration limit t , giving dm(t)/dt = 1

2
σ 2m(t). This type of ODE is well

known and can be solved by writing dm(t)/m(t) = 1
2
σ 2 dt . Integration

gives ln[m(t)] = 1
2
σ 2t+ constant; t = 0 gives the constant as ln[m(0)]

which equals ln{E[X (0)]} = ln[X (0)] = ln[1] = 0 so ln[m(t)] = 1
2
σ 2t .

Thus

E[X (t)] = exp[ 1
2
σ 2t]

E{exp[σ B(t)]} = exp[ 1
2
σ 2t]

This agrees with applying the well-known formula for E[exp(Y )] where
Y is a normal random variable, E[exp(Y )] = exp{E[Y ] + 1

2
Var[Y ],

with E[Y ] = 0 and Var[Y ] = σ 2t .
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4.5 LÉVY CHARACTERIZATION
OF BROWNIAN MOTION

How can one verify whether a given random process is a Brownian mo-
tion? Some special cases were the subject of exercises [1.9.1] to [1.9.3].
What follows here is more general.

Recall that Brownian motion B has the following properties:

(i) the path of B is continuous and starts at 0
(ii) B is a martingale, and [dB(t)]2 = dt

(iii) the increment of B over time period [s, t] is normal, with mean 0
and variance (t − s)

(iv) the increments of B over non-overlapping time periods are
independent.

Now consider a given random process M that is known to have the same
first two properties as B:

(a) the path of M is continuous and starts at 0
(b) M is a martingale, and [d M(t)]2 = dt

Then it turns out that M is a Brownian motion. That means that M also
has the properties:

(c) the increment of M over time period [s, t] is normal, with mean 0
and variance (t − s)

(d) the increments of M over non-overlapping time periods are inde-
pendent.

Proof of Property (c) Normality with mean 0 and variance (t − s)
can be established by showing that the moment generating function of
M(t) − M(s) equals the mgf of B(t) − B(s). So it has to be shown that

E{eθ [M(t)−M(s)]} = e
1
2
θ2(t−s)

The proof uses f [t, M(t)]
def= eθ M(t)− 1

2
θ2t . The line of reasoning is that if

f is a martingale, then

E{eθ M(t)− 1
2
θ2t |�(s)} = eθ M(s)− 1

2
θ2s

Writing eθ M(s) as E{eθ M(s)|�(s)} and E{e− 1
2
θ2t |�(s)} as e− 1

2
θ2t , that

martingale property can be expressed as

E{eθ [M(t)−M(s)]|�(s)} = e
1
2
θ2(t−s) (4.1)
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Taking the expected value of this conditional expectation then gives the
unconditional expectation that is required.

E{eθ [M(t)−M(s)]} = E[E{eθ[M(t)−M(s)]|�(s)}] = e
1
2
θ2(t−s) (4.2)

Thus if f is a martingale then the increments of M have the required
normality property. Showing that f is a martingale means showing
that the change f [t, M(t)] − f [s, M(s)] has an expected value of zero,
given �(s). An expression for this change can be found by deriving
the stochastic differential of f and writing it in integral form. The Itō
formula for deriving a stochastic differential presented thus far was
only for a function of Brownian motion, whereas here f is not a func-
tion of B but of a general continuous path martingale. It turns out that
there is also an Itō type formula for deriving the stochastic differential
of f [t, M(t)].5 It is the Itō formula for B, together with its cross-
multiplication table, with B replaced by M . As f is a function of the
two variables t and M(t), that Itō formula gives

d f = ∂ f

∂t
dt + ∂ f

∂ M
d M + 1

2

∂2 f

∂ M2
(d M)2 + ∂2 f

∂t∂ M
dt d M

where

∂ f

∂t
= − 1

2
θ2 f

∂ f

∂ M
= θ f

∂2 f

∂ M2
= θ2 f

(d M)2 = dt is given dt d M = 0

Substituting these gives d f (u) = θ f (u) d M(u). In equivalent integral
form over [s, t]

f [t, M(t)] − f [s, M(s)] = θ

∫ t

u=s
f [t, M(u)] d M(u)

Taking the expected value, given �(s), gives

E{ f [t, M(t)|�(s)} = f [s, M(s)] + θE
{ ∫ t

u=s
f [t, M(u)] d M(u)|�(s)

}
It can be shown6 that the last term is zero, just like the expected value
of a stochastic integral with respect to Brownian motion, thus f is a
martingale.

5 This is discussed in Kuo Chapter 7.
6 See also exercise [4.10.11].



JWBK142-04 JWBK142-Wiersema March 25, 2008 7:27 Char Count= 0
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Proof of Property (d) To show the independence of the increments of
process M , use can be made of the property (shown in Section 2.7)
that if an increment M(t) − M(s) is independent of the information up
to s, �(s), then the increments of M over non-overlapping time inter-
vals are independent. The left-hand side of expression (1) is a condi-
tional expectation, thus a random variable, but the right-hand side is
non-random, so the left-hand side is not in fact random. So (1) and (2)
show that eθ [M(t)−M(s)] is independent of �(s). As eθ [M(t)−M(s)] is a func-
tion of M(t) − M(s) it follows that M(t) − M(s) is also independent
of �(s).

This characterization of when a process is a Brownian motion was
established by the French mathematician Paul Lévy who did much work
on the path properties of Brownian motion. In this text it is used for
simplifying combinations of Brownian motion in Section 4.6, and in
the proof of the Girsanov theorem in Section 7.4.

References are Kuo section 8.4, Capasso/Bakstein section 4.3, Lin
section 5.7. In the latter, the analysis is based directly on the exponential

martingale eθ M(t)− 1
2
θ2t .

4.6 COMBINATIONS OF BROWNIAN MOTIONS

This continues the discussion of linear combinations of Brownian mo-
tions. In Section 1.6 it was shown that the linear combination of two
independent standard Brownian motions, B1(t) and B2(t), with constant
|γ | ≤ 1,

B3(t)
def= γ B1(t) +

√
1 − γ 2 B2 (t)

is a Brownian motion. The proof used an elementary method. It will
now be shown again using Lévy’s characterization of a Brownian mo-
tion. This requires showing that

(a) B3(0) = 0
(b) B3 is continuous and is a martingale
(c) [dB3(t)]2 = dt

Condition (a) is clear. Regarding condition (b), as both B1 and B2 are
continuous, B3 is continuous. Using times s < t , E[B1(t)|�(s)] = B1(s)
and E[B2(t)|�(s)] = B1(s). The conditional expected value of the linear
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combination is

E[B3(t)|�(s)] = E[γ B1(t) +
√

1 − γ 2 B2(t)|�(s)]

= E[γ B1(t)|�(s)] + E[
√

1 − γ 2 B2(t)|�(s)]

= γ E[B1(t)|�(s)] +
√

1 − γ 2 E[B2(t)|�(s)]

= γ B1(s) +
√

1 − γ 2 B2(s)

= B3(s)

Thus (b) is satisfied. For condition (c) use dB3(t) = γ dB1(t) +√
1 − γ 2 dB2(t). Then

[dB3(t)]2 = γ 2[dB1(t)]2 + (
√

1 − γ 2)2[dB2(t)]2

+ 2γ
√

1 − γ 2 dB1(t) dB2(t)

The last term dB1(t) dB2(t) = 0 due to independence, and

[dB3(t)]2 = γ 2 dt + (1 − γ 2) dt = dt

Thus B3 is a Brownian motion.
The above case is special because the sum of the squares of the coef-

ficients of the respective Brownian motions add to 1, which generally is
not the case. Consider therefore an arbitrary linear combination, with
constants σ1and σ2, of two standard Brownian motions, B1(t) and B2(t),
which are again assumed to be independent. The aim is to replace this
by another independent Brownian motion that has a coefficient σ3:

σ3 B3(t)
def= σ1 B1(t) + σ2 B2(t)

Coefficients σ1 and σ2 are given, and σ3 has to be determined in such
a way that B3(t) is a Brownian motion. Thus B3(t) must satisfy Lévy’s
conditions. Conditions (a) and (b) are satisfied as above. Condition (c)
uses

σ3 dB3(t) = σ1 dB1(t) + σ2 dB2(t)

Then, as dB1(t) dB2(t) = 0,

[dB3(t)]2 =
(

σ1

σ3

)2

dt +
(

σ2

σ3

)2

dt

This equals dt if(
σ1

σ3

)2

+
(

σ2

σ3

)2

= 1
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So the condition that must hold is

σ 2
3 = σ 2

1 + σ 2
2

Then

B3(t) = σ1√
σ 2

1 +σ 2
2

B1(t) + σ2√
σ 2

1 +σ 2
2

B2(t)

The role of σ3 is now clear. It is the scaling factor that is needed to
ensure that the sum of the squares of the coefficients of the respective
Brownian motions add to 1, as in the first case. Linear combinations
of Brownian motions appear in the stochastic differential of a ratio of
random processes, as illustrated in Chapter 8. The replacement by a
single Brownian motion facilitates option valuation.

In the general case the component Brownian motions are not inde-
pendent. Consider the linear combination

σ4 B4(t)
def= σ1 B1(t) + σ2 B2(t)

where B1 and B2 have correlation coefficient ρ, σ1 and σ2 are constants,
and σ4 is to be determined. The first step is to transform this into a linear
combination of two independent Brownian motions. To this end write
B2 as a linear combination of B1 and another independent Brownian
motion B3, using ρ in the coefficient of B1,

B2(t)
def= ρB1(t) +

√
1 − ρ2 B3(t)

Using this expression for B2 it can be readily seen that B1 and B2 have
correlation ρ.

σ4 B4(t) = σ1 B1(t) + σ2[ρB1(t) +
√

1 − ρ2 B3(t)]

= (σ1 + σ2ρ)B1(t) + σ2

√
1 − ρ2 B3(t)

Now applying the result for the case of independent Brownian motions

σ 2
4 = (σ1 + σ2ρ)2 + (σ2

√
1 − ρ2)2

= σ 2
1 + 2ρσ1σ2 + σ 2

2

In the case of a difference of Brownian motions

σ5 B5(t)
def= σ1 B1(t) − σ2 B2(t)
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changing the sign of σ2 in B4(t) gives

σ 2
5 = σ 2

1 − 2ρσ1σ2 + σ 2
2

The above can also be applied when the Brownian motion coefficients
are time dependent but non-random. Consider the linear combination of
correlated Brownian motions B1 and B2

σ3(t) dB3(t)
def= σ1(t) dB1(t) ± σ2(t) dB2(t)

Then (without reworking to a linear combination of independent
Brownian motions)

[σ3(t) dB3(t)]2 = [σ1(t) dB1(t)]2 ± 2σ1(t)σ2(t) dB1(t) dB2(t)

+ [σ2(t) dB2(t)]2

= σ1(t)2dt ± 2σ1(t)σ2(t)ρdt + σ2(t)2dt

So B3 is a Brownian motion of σ3(t)2 = σ1(t)2 ± 2σ1(t)σ2(t)ρ + σ2(t)2.

4.7 MULTIPLE CORRELATED BROWNIAN MOTIONS

Stock prices are driven by Brownian motion. Creating correlated stock
prices requires correlated Brownian motions. The basic ingredients for
this are correlated normal random variables. The starting point is n
uncorrelated standard normal random variables Z1, · · · , Zi , · · · , Zn .
From these, normal random variables can be constructed which are
correlated with a pre-specified correlation coefficient by linear com-
binations of the Zi . If the weights are denoted by λi j , then

X1
def= λ11 Z1 + · · · + λ1 j Z j + · · · λ1n Zn

...

Xi
def= λi1 Z1 + · · · + λi j Z j + · · · λin Zn

...

Xn
def= λn1 Z1 + · · · + λnj Z j + · · · λnn Zn (∗)

This can be conveniently put into matrix form by letting matrix L be
the collection of weightings λi j , arranging the Zi into column vector Z ,
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and the Xi into column vector X .

Z
def=

⎡⎢⎢⎢⎢⎣
Z1

Zi

Zn

⎤⎥⎥⎥⎥⎦ X
def=

⎡⎢⎢⎢⎢⎣
X1

Xi

Xn

⎤⎥⎥⎥⎥⎦
Then X is the matrix product X = L ·Z , where the matrix product is
denoted by the big dot·. The correlation of random variables Xi and
X j must be ρi j . It is the expected value of the product of the value of
Xi and X j , E[Xi X j ] = ρi j . Collecting all these into a matrix gives the
correlation matrix R

E

⎡⎢⎢⎢⎢⎣
X1 X1 X1 X j X1 Xn

Xi X1 Xi X j Xi Xn

Xn X1 Xn X j Xn Xn

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
E[X1 X1] E[X1 X j ] E[X1 Xn]

E[Xi X1] E[Xi X j ] E[Xi Xn]

E[Xn X1] E[Xn X j ] E[Xn Xn]

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
1 ρ1 j ρ1n

ρi1 1 ρin

ρn1 ρnj 1

⎤⎥⎥⎥⎥⎦ which is denoted R.

The matrix⎡⎢⎣ X1 X1 X1 X j X1 Xn

Xi X1 Xi X j Xi Xn

Xn X1 Xn X j Xn Xn

⎤⎥⎦
can also be written as the matrix product of X and its transpose XT

X · XT = (L · Z ) · (L · Z )T = (L · Z ) · (ZT · LT) = L · (Z · ZT) · LT

X · XT is a collection of random variables in matrix form. Taking the
expected value

E[X · XT] = E[L · (Z · ZT) · LT] = L · E[Z · ZT] · LT
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E is taken inside as the elements of matrix L are non-random and E is a
linear operation. E[Z · ZT] is the correlation matrix of standard normal
variables Z , and, as these are uncorrelated, this equals the identity
matrix I , leaving

E[X · XT] = L · LT

Thus the matrix L of weightings must be such that

L · LT = R

Correlation matrix R is symmetric, ρi j = ρ j i , and positive definite. This
makes it possible to decompose R into the product of a lower-triangular
matrix L and its transpose LT. This is known as the Cholesky decom-
position.

R =

⎡⎢⎢⎢⎢⎣
1 ρ1 j ρ1n

ρi1 1 ρin

ρn1 ρnj 1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

λ21 λ22 0 0 0

λ31 λ32 λ33 0 0
...

λn1 λn2 λn3 λnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 λ21 λ31 λn1

0 λ22 λ32 λn2

0 0 λ33 λn3

...

0 0 0 λnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R = L · LT

Using the elements of L in (*) then gives the correlated normal random
variables Xi as

X1 = 1Z1 = Z1

X2 = λ21 Z1 + λ22 Z2

X3 = λ31 Z1 + λ32 Z2 + λ33 Z3

...

Xn = λn1 Z1 + · · · + λni Zi + · · · + λnn Zn
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There are efficient numerical algorithms for carrying out the Cholesky
decomposition. It can be done symbolically with Mathematica. By way
of example, for n = 2,

L =
[

1 0

ρ
√

1 − ρ2

]
, LT =

[
1 ρ

0
√

1 − ρ2

]
, L · LT =

[
1 ρ

ρ 1

]
,

λ21 = ρ, λ22 =
√

1 − ρ2, X1 = Z1, X2 = ρZ1 +
√

1 − ρ2 Z2,

which is the construction used in Section 1.6.
Having thus computed the lambdas from the given correlation ma-

trix R, and constructed the correlated normal random variables Xi , the
correlated Brownian motions for a time step �t are obtained by mul-
tiplying each Xi by

√
�t . The dynamics of the correlated stock prices

for option valuation are then given by the SDEs

d S1

S1

= (r − 1
2
σ 2

1 ) dt + σ1 X1

√
�t

d S2

S2

= (r − 1
2
σ 2

2 ) dt + σ2 X2

√
�t

...

d Sn

Sn
= (r − 1

2
σ 2

n ) dt + σn Xn

√
�t

4.8 AREA UNDER A BROWNIAN MOTION
PATH – REVISITED

Section 3.6 introduced the random variable I (T )
def= ∫ T

t=0
B(t) dt and de-

rived its distribution. Here I (T ) is analysed using the product rule. For
processes X and Y

d[X (t)Y (t)] = X (t) dY (t) + Y (t) d X (t) + d X (t) dY (t)

If X (t) = t and Y (t) = B(t), this becomes

d[t B(t)] = t dB(t) + B(t) dt + dt dB(t)︸ ︷︷ ︸
=0

= t dB(t) + B(t) dt
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In equivalent integral form∫ T

t=0

d[t B(t)] =
∫ T

t=0

t dB(t) +
∫ T

t=0

B(t) dt

T B(T ) − 0 B(0) =
∫ T

t=0

t dB(t) +
∫ T

t=0

B(t) dt

I (T ) =
∫ T

t=0

B(t) dt = T B(T ) −
∫ T

t=0

t dB(t)

= T
∫ T

t=0

dB(t) −
∫ T

t=0

t dB(t)

=
∫ T

t=0

(T − t) dB(t)

This is a stochastic integral with a non-random integrand, so random
variable I (T ) has a normal distribution (according to Section 3.7). Be-
ing normal, it is fully specified by its mean and its variance

E[I (T )] = 0

Var[I (T )] = E[I 2(T )] =
∫ T

t=0

E[(T − t)2] dt

=
∫ T

t=0

(T − t)2 dt = −
∫ T

t=0

(T − t)2 d(T − t) = 1
3
T 3

4.9 JUSTIFICATION OF ITŌ’S FORMULA7

The full proof of Itō’s formula, when f is a function of t , and of the
process X (t) with dynamics d X (t) = μ[t, X (t)] dt + σ [t, X (t)] dB(t),
is quite involved and outside the scope of this text. The coverage here is
confined to a sketch of the proof for the simpler case where f is a func-
tion of Brownian motion only, f [B(t)]. Ignoring time as an explicit
variable entails no loss of generality because the term that is special in
Itō’s formula comes from the Brownian motion dependence. The appli-
cation of Itō’s formula shown earlier gave the change in f as

d f [B(t)] = 1

2

d2f (x)

dx2

∣∣∣∣
x=B(t)

dt + d f (x)

dx

∣∣∣∣
x=B(t)

dB(t)

7 Can be skipped without loss of continuity.
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Use the familiar discrete-time framework where [0, T ] is partitioned
into n intervals of equal length �t = T/n and the time-points in the

partition are denoted tk
def= k �t . Write f [B(T )] − f [B(0)] as the sum

of the changes in f over all subintervals

f [B(T )] − f [B(0)] =
n−1∑
k=0

( f [B(tk+1)] − f [B(tk)])

Now write the term f [B(tk+1)] − f [B(tk)] as a Taylor expansion about
B[tk] where the derivatives are evaluated at x = B(tk)

f [B(tk+1)] − f [B(tk)] = [B(tk+1) − B(tk)]
d f (x)

dx

∣∣∣∣
x=B(tk )

+ 1
2
[B(tk+1) − B(tk)]2 d2f (x)

dx2

∣∣∣∣
x=B(tk )

+ remainder terms

Then

f [B(T )] − f [B(0)] =
n−1∑
k=0

df(x)

dx

∣∣∣∣
x=B(tk )

[B(tk+1) − B(tk)]

+
n−1∑
k=0

1
2

d2 f (x)

dx2

∣∣∣∣
x=B(tk )

[B(tk+1) − B(tk)]2

+
n−1∑
k=0

remainder terms

Now it has to be shown that as n → ∞ the following three properties
hold:

(a)
∫ T

t=0
d f (x)

dx

∣∣
x=B(t) dB(t) is the limit of

∑n−1
k=0

d f (x)
dx

∣∣
x=B(tk ) [B(tk+1) −

B(tk)] in the mean-square sense

(b)
∫ T

t=0
1
2

d2f (x)
dx2

∣∣
x=B(t) dt is the limit of

∑n−1
k=0

1
2

d2f (x)
dx2

∣∣
x=B(tk )

[B(tk+1) − B(tk)]2 in the mean-square sense
(c)

∑n−1
k=0 remainders → 0 in the mean-square. sense

Property (a) The limit as n → ∞ of
∑n−1

k=0[d f (x)/dx]
∣∣
x=B(tk )

[B(tk+1) − B(tk)], in the mean-square sense, is
∫ T

t=0
[d f (x)/

dx]
∣∣
x=B(t) dB(t), by the definition of the Itō stochastic integral.

The function being integrated is d f (x)/dx at x = B(t). This is being
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approximated in the discrete stochastic integral by the random step-
function d f (x)/dx at x = B(tk), over the time interval [tk, tk+1]. The

formal mean-square convergence formulation, with
∫ T

t=0
(df/dB) dB(t)

denoted by I , is

E

⎡⎣{
n−1∑
k=0

d f (x)

dx

∣∣∣∣
x=B(tk )

[B(tk+1)−B(tk)] − I

}2
⎤⎦ = 0 as n→∞, �t→0

Property (b) Expression

n−1∑
k=0

1
2

d2f (x)

dx2

∣∣∣∣
x=B(tk )

[B(tk+1) − B(tk)]2

looks like the quadratic variation expression
∑n−1

k=0[B(tk+1) − B(tk)]2

which is known to converge to T in mean-square (as shown in

Annex C). Converging to T is the same as converging to
∫ T

t=0
1 dt . This

suggests that

n−1∑
k=0

1
2

d2f (x)

dx2

∣∣
x=B(tk ) [B(tk+1) − B(tk)]2

may converge to 1
2
[d2f (x)/dx2]|x=B(t) dt . The integral

∫ T
t=0

1
2

[d2f (x)/dx2]|x=B(t) dt is an ordinary Riemann integral and is by

definition the limit, as n → ∞, of
∑n−1

k=0
1
2
[d2f (x)/dx2]|x=B(tk ) �t . So

to verify the anticipated result it has to be shown that

E

[{
n−1∑
k=0

1
2

d2f (x)

dx2

∣∣∣∣
x=B(tk )

[B(tk+1) − B(tk)]2

−
n−1∑
k=0

1
2

d2f (x)

dx2

∣∣∣∣
x=B(tk )

�t

}2
⎤⎦

converges to zero as n → ∞. Expanding {...}2 gives cross terms whose
expected values are zero. That leaves

E

⎡⎣ n−1∑
k=0

⎡⎣ 1
2

d2f (x)

dx2

∣∣∣∣
x=B(tk )

⎤⎦2

{[B(tk+1) − B(tk)]2 − �t}2

⎤⎦
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The Brownian increment after tk is independent of the value of
d2f (x)/dx2 at x = B(tk). Taking E inside the sum and using this
independence gives

n−1∑
k=0

E

[
1
2

d2f (x)

dx2

∣∣∣∣
x=B(tk )

]2

E[{[B(tk+1) − B(tk)]2 − �t}2]

The second part in the product term evaluates to

E{[B(tk+1) − B(tk)]4 − 2[B(tk+1) − B(tk)]2 �t + [�t]2}
= 3(�t)2 − 2 �t �t + (�t)2 = 2(�t)2

= 2

(
T

n

)2

As n → ∞, this → 0 , and the convergence has been shown.

Property (c) The third-order term in the Taylor expansion is

1
6

d3f (x)

dx3

∣∣∣∣
x=B(tk )

[B(tk+1) − B(tk)]3

Due to the independence of B(tk) and [B(tk+1) − B(tk)], its expected
value is the product

E

{
1
6

d3f (x)

dx3

∣∣∣∣
x=B(tk )

}
E{[B(tk+1) − B(tk)]3}

This equals zero as the third moment of Brownian motion is zero.
The fourth-order term in the Taylor expansion is

1
24

d4f (x)

dx4

∣∣∣∣
x=B(tk )

[B(tk+1) − B(tk)]4

Its expected value is the product

E

{
1
24

d4f (x)

dx4

∣∣∣∣
x=B(tk )

}
E{[B(tk+1) − B(tk)]4}

As the second expectation equals 3(�t)2, the expected value of this
fourth-order term tends to zero as n → ∞. This is the pattern. All
higher order terms either have expected value zero, or an expected value
that tends to zero, as all odd moments of Brownian motion are zero and
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all even moments are powers of �t , as can be seen in Annex A. There-
fore the remainder terms have no presence in the Itō formula.

4.10 EXERCISES

Derive the stochastic differential of the functions specified in [4.10.1]–
[4.10.7].

[4.10.1] 1
3

B(t)3

[4.10.2] B(t)2 − t

[4.10.3] exp[B(t)]

[4.10.4] exp[B(t) − 1
2
t]

[4.10.5] exp[(μ − 1
2
σ 2)t + σ B(t)] where μ and σ are constants

[4.10.6] ln[S(t)] where d S(t) = μS(t) dt + σ S(t) dB(t)

[4.10.7] 1/S(t) where S(t) = S(0) exp[(μ − 1
2
σ 2)t + σ B(t)]

[4.10.8] Exchange rate dynamics. Let Q(t) denote the exchange rate
at time t . It is the price in domestic currency of one unit of
foreign currency and converts foreign currency into domes-
tic currency. A model for the dynamics of the exchange rate
is d Q(t)/Q(t) = μQ dt + σQ dB(t). This has the same struc-
ture as the common model for the stock price. The reverse ex-
change rate, denoted R(t), is the price in foreign currency of
one unit of domestic currency R(t) = 1/Q(t). Derive dR(t).

[4.10.9] Bond price dynamics. Consider the value of a zero-coupon
bond that matures at time T . A class of models treats the
bond value as being fully determined by the spot interest
rate. The bond value at time t is then denoted by P(t, T ).
A general model for the dynamics of the spot rate is dr (t) =
μ(r, t) dt + σ (r, t) dB(t). Derive dP.

[4.10.10] For a martingale M , show that [d M(t)]2 = dt means the
same as M(t)2 − t being a martingale.

[4.10.11] Stochastic integral with respect to continuous martingale M.

Following Section 3.2, the discrete stochastic integral for ran-

dom step-functions f is defined as Jn
def= ∑n−1

k=0 fk[M(tk+1) −
M(tk)]. Show that Jn is a martingale. The continuous stochas-
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tic integral J = ∫ T
t=0

f (t, ω) d M(t) is then the limit in the
mean-square sense of the sequence of Jn , and inherits the
martingale property of Jn . Then informally, E[d M(t)] = 0
and dt d M(t) = 0.

4.11 SUMMARY

This chapter explained Itō’s formula for determining how quantities that
are Brownian motion dependent change over time. It was illustrated by
many examples. It can also be used to verify whether a given random
process is a Brownian motion, the so-called Lėvy characterization. This
in turn was used to combine correlated Brownian motions into a single
Brownian motion.
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5

Stochastic Differential Equations

5.1 STRUCTURE OF A STOCHASTIC
DIFFERENTIAL EQUATION

A stochastic differential equation (SDE) describes the increment of a
variable, say X , which is driven by one or several underlying random
processes. Here these sources of randomness are Brownian motion.
When there is one Brownian motion, the general specification is of the
form

dX (t) = μ[t, X (t)] dt + σ [t, X (t)] dB(t)

where μ and σ are known continuous functions of t and X . The ini-
tial time at which the value of the process is known is taken as t = 0,

so X (0) is known. The intuitive interpretation is that dX (t) is the
change in X over a ‘very short’ time interval dt, from t to t + dt, so
d X (t) = X (t + dt) − X (t). The SDE is the commonly used informal
shorthand notation for the integral expression over the clearly defined
period [0, T ]∫ T

t=0
dX (t) = X (T ) − X (0) =

∫ T

t=0
μ[t, X (t)] dt +

∫ T

t=0
σ [t, X (t)] dB(t)

X (T ) = X (0) +
∫ T

t=0
μ[t, X (t)] dt +

∫ T

t=0
σ [t, X (t)] dB(t)

It is this latter integral expression that is the exact specification of the
SDE. This is also known as a stochastic integral equation (SIE). In this
text the name SDE is used when the random process is to be determined
from the equation, while the name stochastic differential is used for the
expression that results from applying Itō’s formula to a given random
process (as in Chapter 4). The term μ[t, X (t)] dt is called the drift, and
σ [t, X (t)] dB(t) the diffusion. Coefficient σ [t, X (t)] serves as a scal-
ing of the randomness generated by the Brownian motion. The values
of X used in the coefficients may only depend on the history (non-
anticipating property). The integral

∫ T
t=0 μ[t, X (t)] dt is a pathwise

ordinary integral, and
∫ T

t=0 σ [t, X (t)] dB(t) is an Itō stochastic integral.

103
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A solution to a SDE is a random process that has a stochastic dif-
ferential which has the same form as the SDE when the Brownian mo-
tion process is given. In the technical literature this is called a strong
solution, to distinguish it from a so-called weak solution which is not
discussed here. The SDE for X is often called the dynamics of X. When
does a SDE have a solution, when is this solution unique, and how
can it be found? According to Chapter 3, the stochastic integral term∫ T

t=0 σ [t, X (t)] dB(t) exists if
∫ T

t=0 E{σ [t, X (t)]2} dt is finite. However,
as the process X is not known, this check cannot be carried out and
some other criteria are needed. If there was no random term, the SDE
would be an ordinary differential equation (ODE) for non-random func-
tion X , d X (t)/dt = μ[t, X (t)]. In the theory of ODEs the conditions
for existence and uniqueness of a solution have been obtained from
successive approximations to X. A similar approach has been devel-
oped for SDEs. A unique pathwise solution X to a SDE exists if there
are positive constants K and L such that the following two conditions
are satisfied at any 0 ≤ t ≤ T for arbitrary x .

Growth condition: μ(t, x)2 + σ (t, x)2 ≤ K (1 + x2)
Lipschitz condition: |μ(t, x1) − μ(t, x2)|

+|σ (t, x1) − σ (t, x2)| ≤ L|x1 − x2|
The proof that these conditions are sufficient is not covered here as
it would require an elaborate mathematical detour. A nicely motivated
exposition is given in Kuo Chapter 10.

Some stochastic differential equations which are widely used in fi-
nance are now presented, showing how the solutions are found. The
uniqueness of each solution is verified in exercise [5.12.10].

5.2 ARITHMETIC BROWNIAN MOTION SDE

Arithmetic Brownian motion (ABM) is the name for a random process,
say X , specified by the SDE

dX (t) = μ dt + σ dB(t) μ and σ known constants, and σ > 0

In this model, the drift coefficient μ[t, X (t)] = μ, and the diffusion co-
efficient σ [t, X (t)] = σ , are both constant. In equivalent integral form∫ T

t=0
dX (t) =

∫ T

t=0
μ dt +

∫ T

t=0
σ dB(t)
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which can be written as

X (T ) − X (0) = μ[T − 0] + σ [B(T ) − B(0)]

X (T ) = X (0) + μT + σ B(T )

As there is no unknown in the right hand side, this is the solution, as can
be readily verified by deriving dX . Solution X (T ) equals a non-random
term, X (0) + μT , plus a constant times the normally distributed ran-
dom variable B(T ), so it is normally distributed, and can take on nega-
tive values. The distribution parameters are

E[X (T )] = E[X (0) + μT + σ B(T )] = X (0) + μT + σE[B(T )]

= X (0) + μT

Var[X (T )] = Var[X (0) + μT + σ B(T )] = Var[σ B(T )] = σ 2T

The mean and the variance of the position at T increase linearly with T .
This model can be a suitable specification for an economic variable that
grows at a constant rate and is characterized by increasing uncertainty.
But as the process can take on negative values it is not suitable as a
model for stock prices, since limited liability prevents stock prices from
going negative.

5.3 GEOMETRIC BROWNIAN MOTION SDE

Geometric Brownian motion (GBM) is a model for the change in a
random process, dX (t), in relation to the current value, X (t). This pro-
portional change dX (t)/X (t), or rate of return, is modelled as an ABM.
The SDE is

dX (t)

X (t)
= μ dt + σ dB(t) μ and σ known constants, and σ > 0

Multiplying through by X (t) gives the SDE for the change in X itself
as

dX (t) = μX (t) dt + σ X (t) dB(t)

Drift coefficient μX (t) and diffusion coefficient σ X (t) are both propor-
tional to the latest known value X (t), and thus change continuously. The
higher the latest X , the greater the drift coefficient. The diffusion coef-
ficient is then also greater and the random term is thus generated by a
Brownian motion with greater variance, so a greater random increment
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μ.S(0).Δt S(2)

S(0) σ.S(0).ΔB1 σ.S(1).ΔB2

μ.S(1).Δt

S(1)

t =1 t =2
Δt

Figure 5.1 Structure of GBM

is more likely. This is the standard model for the stock price process;
that random process is often denoted S.

A schematic illustration of the dynamics is now given in a discretized
time setting. Starting at time 0 with the known value S(0), visualize
the increments as taking place in two steps, firstly the known growth,
secondly the random effect. S(0) moves up at a rate of μS(0) per unit
of time. Thereafter, the Brownian motion causes a random effect, with
scaling coefficient σ S(0), shown vertically in Figure 5.1. The resulting
net increment is shown as a solid line. At time 1 the drift coefficient is
somewhat smaller than previously because S(1) is less than S(0). The
diffusion term can be anything.

To find the solution to the GBM, a trial solution is postulated, and
Itō’s formula is applied to derive the corresponding stochastic differen-
tial. If that matches the GBM, then this trial solution is the definitive so-
lution. Notation S is now used. The intuition for the trial solution is that
if S were deterministic, d S(t)/S(t) would be the derivative of ln[S(t)]
with respect to S. This suggests to find an expression for the stochas-
tic differential of ln[S(t)], a function of the single random variable
S(t).

d ln[S] = d ln[S]

dS
dS + 1

2

d2 ln[S]

dS2
(dS)2

where

d ln[S]

d S
= 1

S

d2 ln[S]

dS2
= −1

S2
(dS)2 = σ 2S2 dt
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Substituting these, together with dS, gives

d ln[S] = 1

S
(μS dt + σ S dB) + 1

2

−1

S2
σ 2S2 dt

= μ dt + σ dB − 1
2σ

2 dt

= (μ − 1
2σ

2) dt + σ dB

In integral form∫ T

t=0
d ln[S(t)] =

∫ T

t=0

(
μ − 1

2σ
2
)

dt +
∫ T

t=0
σ dB(t)

ln [S(T )] − ln[S(0)] = (
μ − 1

2σ
2
)
T + σ B(T )

ln

[
S(T )

S(0)

]
= (

μ − 1
2σ

2
)
T + σ B(T )

Thus ln[S(T )/S(0)] has a normal distribution with parameters

E
{

ln

[
S(T )

S(0)

]}
= E[

(
μ − 1

2σ
2
)
T + σ B(T )] = (μ − 1

2σ
2)T

Var

{
ln

[
S(T )

S(0)

]}
= Var[

(
μ − 1

2σ
2
)
T + σB(T )] = σ 2T

It is the ln of the stock price that is modelled as a normal random vari-
able. Both mean and variance increase linearly with time. This is the
same as in the ABM but here for the ln. Taking exponentials gives the
final expression for S(T ):

S(T )

S(0)
= exp[

(
μ − 1

2σ
2
)
T + σB(T )]

S(T ) = S(0) exp[
(
μ − 1

2σ
2
)
T + σB(T )]

Being an exponential, S(T ) cannot become negative. At S(T ) = x , it
has the lognormal density

1

xv
√

2π
exp

{
− 1

2

[
ln(x) − m

v

]2
}

where m
def= E{ln[S(T )]} = ln[S(0)] + (μ − 1

2σ
2)T and v

def= Stdev
{ln[S(T )]} = σ

√
T . So when a process is modelled as a GBM it



JWBK142-05 JWBK142-Wiersema March 19, 2008 9:45 Char Count= 0

108 Brownian Motion Calculus

cannot become negative. It can be a suitable specification for an eco-
nomic variable which cannot assume negative values and whose vari-
ability depends linearly on the level of the variable.

GBM is the traditional model for the stock price. It can be written as
S(t) = S(0)eX where X is normal with mean (μ − 1

2σ
2)t and variance

σ 2t . Analyses of actual stock prices have led to other models in which
X is not normal. A nice empirical example in given in Benth, Chapter 2;
other examples are in McLeish, Chapter 4; extensive coverage is in
Epps, Chapters 8 and 9.

5.4 ORNSTEIN–UHLENBECK SDE

Probably the earliest recorded SDE is

dX (t) = −λX (t) dt + σ dB(t)
λ and σ known constants, both positive

It was postulated by Ornstein–Uhlenbeck (OU) as a description of the
acceleration of a pollen particle in a liquid subject to bombardments by
molecules. X (t) represents the velocity of the particle in one dimension,
dX (t) is the change in velocity per unit of time, its acceleration. This
acceleration is modelled as being retarded by a frictional force propor-
tional to the velocity, −λX (t), plus a random perturbation B(t) with
intensity σ caused by the bombardments. Extensions of this SDE are
used in interest rate modelling.

The method of solution for this SDE uses a technique from ordi-
nary differential equations to eliminate the drift. It is the transformation

Y (t)
def= X (t) exp(λt). Applying Itō’s formula to Y , as a function of X

and t , gives the dynamics of Y as

dY = ∂Y

∂t
dt + ∂Y

∂ X
dX + 1

2

∂2Y

∂ X2
(d X )2 + ∂2Y

∂ X∂t
dt d X

where

∂Y

∂t
= X exp(λt)λ = Yλ

∂Y

∂ X
= exp(λt)

∂2Y

∂ X2
= 0 so (d X )2 is not needed

dt dX = dt (−λX dt + σ dB) = 0 so
∂2Y

∂ X ∂t
is not needed
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Substituting the above gives

dY = Yλ dt + exp(λt) dX

Substituting dX gives

dY = Yλ dt + exp(λt)(−λX dt + σ dB)

= Yλ dt − λY dt + σ exp(λt) dB

Term Yλ dt cancelled by design. The result is the driftless SDE

dY (t) = σ exp(λt) dB(t)

In integral form

Y (T ) = Y (0) + σ

∫ T

t=0
exp(λt) dB(t)

To express this in terms of X , use X (T ) = exp(−λT )Y (T )

X (T ) = exp(−λT )[X (0) + σ

∫ T

t=0
exp(λt) dB(t)]

= exp(−λT )X (0) + exp(−λT )σ
∫ T

t=0
exp(λt) dB(t)

The stochastic integral in the last term is normally distributed because
its integrand is non-random (according to Section 3.7). It has the same
distribution as

Stdev

[ ∫ T

t=0
exp(λt) dB(t)

]
Z

where Z is a standard normal random variable
As the first right-hand term is non-random, X (T ) has a normal dis-

tribution. Given X (0), its mean is

E[X (T )] = E[exp(−λT )X (0)] + E[exp(−λT )σ
∫ T

t=0
exp(λt) dB(t)]

As the Itō stochastic integral has mean zero

E[X (T )] = exp(−λT )X (0)

For large T the expected value E[X (T )] approaches zero. Its variance
is

Var[X (T )] = E{[X (T ) − mean]2}
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Using

X (T ) − mean = exp(−λT )σ
∫ T

t=0
exp(λt) dB(t)

gives

Var[X (T )] = E

{[
exp(−λT )σ

∫ T

t=0
exp(λt) dB(t)

]2
}

= [exp(−λT )σ ]2E
{∫ T

t=0
exp(λt) dB(t)]2

}
= [exp(−λT )σ ]2

∫ T

t=0
E[exp(λt)2] dt

and as exp (λt)2 is non-random

= exp(−2λT )σ 2
∫ T

t=0
exp(2λt) dt

= exp(−2λT )σ 2 1

2λ
exp(2λt)|T

t=0

= exp(−2λT )σ 2 1

2λ
[exp(2λT ) − 1]

= σ 2 1

2λ
[1 − exp(−2λT )]

For large T the variance approaches σ 2(1/2λ).

5.5 MEAN-REVERSION SDE

Mean-reversion (MR) is used for modelling random processes which
fluctuate about a mean level. The prime example is the (continuously
compounded) interest rate. Although random processes are often de-
noted by upper case letters, the lower case notation r is well established
and used here. Its SDE is

dr (t) = −λ[r (t) − r ] dt + σ dB(t)
λ, σ , and r known constants, all positive

The drift coefficient −λ[r (t) − r ] varies with the latest actual interest
rate r (t). If r (t)<r , the drift coefficient is positive, and there is an
upward drift; alternatively, if r (t)>r , the drift coefficient is negative
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and there is a downward drift. It is shown below that r is the long-term
mean, so r reverts to the mean, hence the name mean-reversion.
The parameter λ controls how fast the drift coefficient changes.
This SDE has the structure of the OU SDE. It can be turned into an
OU SDE by the transformation X (t)

def= r (t) − r , which is a function of
the single variable r . By Itō’s formula dX = dr = −λ[r − r ] dt +
σ dB. Substituting X gives dX = −λX dt + σ dB which has the
solution

X (T ) = exp(−λT )X (0) + exp(−λT )σ
∫ T

t=0
exp(λt) dB(t)

Using r (T ) = X (T ) + r and X (0) = r (0) − r gives

r (T ) = exp(−λT )[r (0) − r ] + exp(−λT )σ
∫ T

t=0
exp(λt) dB(t) + r

= r (0) exp(−λT ) + r [1 − exp(−λT )]

+ exp(−λT )σ
∫ T

t=0
exp(λt) dB(t)

The stochastic integral is normally distributed as its integrand is
non-random (according to Section 3.7). And as the other terms in the
r (T ) expression are non-random, r (T ) is normally distributed. The
expected value is

E[r (T )] = r (0) exp(−λT ) + r [1 − exp(−λT )]

For large T the long-run expected value approaches r . So r in the SDE
for r (t) is the long-run expected value to which r (t) is attracted.

The variance is

Var[r (T )] = Var[X (T ) + r ] = Var[X (T )] since r is constant

Copying the variance results from the OU SDE gives

Var[r (T )] = σ 2 1

2λ
[1 − exp(−2λT )]

For large T the variance approaches σ 2(1/2λ). Note that the interest
rate can become negative under this model.
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5.6 MEAN-REVERSION WITH SQUARE-ROOT
DIFFUSION SDE

To exclude the possibility of the interest rate ever becoming negative,
the diffusion coefficient in the previous mean-reversion model is modi-
fied to σ

√
r (t). The SDE is then

dr (t) = −λ[(r (t) − r ] dt + σ
√

r (t) dB(t)

Now both the drift coefficient and the diffusion coefficient change con-
tinuously. It is important to realize that because a Brownian motion
path is continuous, the interest rate path must be continuous. Jumps in
the value of r are thus not possible under this model. Therefore, if r
presently has a small positive value, then further negative Brownian
motion increments cannot make it negative because r has to decrease
in a continuous fashion to zero, and then the diffusion has become zero
so it cannot go any lower. The drift coefficient is then −λ[0 − r ] = λr
which is positive and gives an upward drift. There is no expression for
r (t) but its probability distribution can be derived; it is a non-central
chi-square distribution. That can then be used to value products which
are based on r , such as bonds and options on bonds.

It is noted that some expositions specify the drift coefficient in the
above mean-reversion SDEs in the form [b − ar (t)]. Taking −a outside
gives −a[r (t) − b/a] which is the earlier specification with a as λ and
b/a as r . Analysis of the square-root diffusion SDE is given in Cairns,
Epps, Lamberton/Lapeyre, and Shreve II. It is generally known as the
CIR model, after its authors: Cox, Ingersoll, Ross.

5.7 EXPECTED VALUE OF SQUARE-ROOT
DIFFUSION PROCESS

The square root process for X is

dX (t) = −λ[X (t) − X ] dt + σ
√

X (t) dB(t)

with X (0) known

It is possible to determine the expected value of X (t) without knowl-
edge of its distribution, as will now be shown. In integral form over the
time period 0 ≤ s ≤ t∫ t

s=0
dX (s) = −

∫ t

s=0
λ[X (s) − X ] ds +

∫ t

s=0
σ
√

X (s) dB(s)

X (t) = X (0) −
∫ t

s=0
λ[X (s) − X ] ds +

∫ t

s=0
σ
√

X (s) dB(s)
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Take the expected value conditional upon the known initial value X (0);
for greater readability this condition is not included in the notation

E[X (t)] = X (0)−E
{ ∫ t

s=0
λ[X (s) − X ] ds

}
+ E

[ ∫ t

s=0
σ
√

X (s) dB(s)

]
As the expected value of the Itō stochastic integral equals zero

E[X (t)] = X (0) − E
{ ∫ t

s=0
λ[X (s) − X ] ds

}
Applying E on the right-hand side is integrating, so that term is a double
integral. The order of integration can be reversed1 and moves E inside
the integral, giving

E[X (t)] = X (0) −
∫ t

s=0
λ{E[X (s)] − X} ds

This is an integral equation where the unknown function is the expected
value of X . Let this unknown function be denoted m(t). Then

m(t) = X (0) −
∫ t

s=0
λ[m(s) − X ] ds

To remove the integral, differentiate with respect to upper integration
limit t . This gives the ordinary differential equation

dm(t)

dt
= −λ[m(t) − X ] or

dm(t)

dt
+ λm(t) = λX

This is a well-known ODE. The first step in solving it is to multiply both
sides of the equation by exp(λt), a so-called integrating factor, giving

exp(λt)
dm(t)

dt
+ exp(λt)λm(t) = exp(λt)λX

Now the left-hand side can be written as the derivative with respect to
t of exp(λt)m(t)

d[exp(λt)m(t)]

dt
= exp(λt)λX

1 By Fubini’s theorem; see Epps Section 2.1, Klebaner p. 53.
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This can be integrated. Using s as integration variable∫ t

s=0
d[exp(λs)m(s)] =

∫ t

s=0
X exp(λs) d(λs)

exp(λt)m(t) − exp(λ0)m(0) = X [exp(λt) − exp(λ0)]

exp(λt)m(t) − m(0) = X [exp(λt) − 1]

m(t) = exp(−λt)m(0) + X [1 − exp(−λt)]

In terms of the original notation

E[X (t)] = exp(−λt)m(0) + X [1 − exp(−λt)]

As m(0) = E[X (0)] = X (0)

E[X (t)] = X (0) exp(−λt) + X [1 − exp(−λt)]

Note that no use has been made of the specific form of the integrand
of the stochastic integral. The result therefore applies not only to the
square-root diffusion interest rate model in Section 5.6 but also to the
model in Section 5.5.

5.8 COUPLED SDEs

The stock price model discussed earlier had a constant σ . There is em-
pirical evidence that this is a rather strong simplification of reality, and
that it would be more appropriate to model the volatility σ itself as a
random process, for example of the mean-reverting type. The full model
then comprises two coupled SDEs, driven by two Brownian motions
B1(t) and B2(t) which can be correlated. A well-known model of this
type is

dS(t)

S(t)
= μ(t) dt +

√
v(t) dB1(t)

dv(t) = −α[v(t) − v] dt + β
√

v(t) dB2(t)

where v is the long-run average of v(t). Numerous interest rate models
are coupled SDEs. There is usually no analytical pathwise solution for
S(t) but its distribution can be readily simulated. Recommended further
reading on this is Epps Chapter 8, and Martingale Methods in Financial
Modelling, 2nd edition by Musiela/Rutkowski Chapter 7.
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5.9 CHECKING THE SOLUTION OF A SDE

Having derived that dS(t) = μS(t) dt + σ S(t) dB(t) has the solution

S(t) = S(0) exp[(μ − 1
2σ

2)t + σ B(t)]

it is now verified whether this expression for S(t) indeed satisfies the
SDE. To this end, derive an expression for dS(t), treating S(t) as a func-
tion of the two variables t and B(t)

dS(t) = ∂S

∂t
dt + ∂S

∂ B
dB + 1

2

∂2S

∂ B2
(dB)2

The second-order term involving (dt)2 and the cross term involv-
ing dt dB have been omitted since these are negligible. The partial
derivatives are

∂S

∂t
= S(0) exp[(μ− 1

2σ
2)t + σ B(t)](μ− 1

2σ
2) = S(t)(μ − 1

2σ
2)

∂S

∂ B
= S(0) exp[(μ − 1

2σ
2)t + σ B(t)]σ = S(t)σ

∂2S

∂ B2
= ∂

∂ B

{
∂S

∂ B

}
= ∂

∂ B
{S(t)σ } = ∂S

∂ B
σ = S(t)σσ = S(t)σ 2

Substituting these derivatives, together with [dB(t)]2 = dt gives

dS(t) = S(t)(μ − 1
2σ

2) dt + S(t)σ dB + 1
2 S(t)σ 2 dt

Grouping dt terms then gives

dS(t) = μS(t) dt + σ S(t) dB(t)

It has been shown that S(t) solves the SDE. Checking the solution of a
mean-reversion SDE is requested in exercise [5.12.1].

5.10 GENERAL SOLUTION METHODS
FOR LINEAR SDEs

The SDE dS(t)/S(t) = μ dt + σ dB(t), where μ and σ are constants,
was solved by taking ln[S(t)] and deriving its stochastic differential
d ln[S(t)]. It turned out that this transformed the SDE in such a way
that the right-hand side contained only t and B(t), and the unknown
S(t) on the left-hand side could be written as an expression in t and
B(t). This was a lucky choice, which happened to work. Generally it is
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not easy to find a ‘trial solution’ that produces a right-hand side with
only t and B(t). If the unknown still appears in the right-hand side of
the stochastic differential of a trial solution, then the trial solution has
to be discarded. There is a need for a more general approach.

Consider a SDE which is linear in the unknown process X and of the
general form

dX (t) = [μ1X (t) + μ2X (t)X (t)] dt + [σ1X (t) + σ2X (t)X (t)] dB(t)

where X (0) is a known constant and μ1X (t), μ2X (t), σ1X (t), σ2X (t), are
known non-random functions of time. If μ1X (t) = 0 and σ1X (t) = 0,
then X is a geometric Brownian motion. On the other hand, if μ2X (t) =
0 and σ2X (t) = 0, then X is an arithmetic Brownian motion. This is
highlighted by writing the SDE as

dX (t) = [μ1X (t) dt + σ1X (t) dB(t)]︸ ︷︷ ︸
arithmetic

+ [μ2X (t)X (t) dt + σ2X (t)X (t) dB(t)]︸ ︷︷ ︸
geometric

This suggests expressing X as the product of two processes, geometric
Brownian motion Y and arithmetic Brownian motion Z . Process Y is
specified as

dY (t)

Y (t)
= μY (t) dt + σY (t) dB(t) Y (0) = 1

This SDE can be solved because its drift coefficient and diffusion co-
efficient are assumed to be known. It is done as shown previously by
deriving the stochastic differential of ln[Y (t)].

Y (t) = Y (0) exp

{∫ t

u=0
[μY (u) − 1

2σY (u)2] du +
∫ t

u=0
σY (u) dB(u)

}
Process Z is specified as

d Z = μZ (t) dt + σZ (t) dB(t) Z (0) = X (0) a known constant

where μZ (t) and σZ (t) can be random processes. In integral form

Z (t) = Z (0) +
∫ t

u=0
μZ (u) du +

∫ t

u=0
σZ (u) dB(u)

The drift and diffusion coefficient of Z have to be determined such
that X (t) = Y (t)Z (t). To this end write the stochastic differential of
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the process Y (t)Z (t), and equate the drift and diffusion to that of the
original X SDE:

dX (t) = Y (t) d Z (t) + Z (t) dY (t) + dY (t) d Z (t)

The last term is

dY (t) d Z (t) = [σY (t)Y (t) dB(t)][σZ (t) dB(t)] = σY (t)σZ (t)Y (t) dt

and

dX (t) = Y (t)[μZ (t) dt + σZ (t) dB(t)] +
+Z (t)[μY (t)Y (t) dt + σY (t)Y (t) dB(t)] + σY (t)σZ (t)Y (t) dt

= Y (t)[μZ (t) dt + σZ (t) dB(t)] +
+[μY (t)X (t) dt + σY (t)X (t) dB(t)] + σY (t)σZ (t)Y (t) dt

= [Y (t)μZ (t) + σY (t)σZ (t)Y (t)︸ ︷︷ ︸
μ1X (t)

+ μY (t)︸ ︷︷ ︸
μ2X (t)

X (t)] dt +

+[Y (t)σZ (t)︸ ︷︷ ︸
σ1X (t)

+ σY (t)︸ ︷︷ ︸
σ2X (t)

X (t)] dB(t)

Equating the drift coefficients gives

Y (t)μZ (t) + σY (t)σZ (t)Y (t) = μ1X (t) (5.1)

μY (t) = μ2X (t)

Equating the diffusion coefficients gives

Y (t)σZ (t) = σ1X (t) (5.2)

σY (t) = σ2X (t)

Substituting (5.2) into (5.1) gives

Y (t)μZ (t) + σY (t)σ1X (t) = μ1X (t)

so

μZ (t) = [μ1X (t) − σY (t)σ1X (t)]/Y (t)

Equation (5.2) gives

σZ (t) = σ1X (t)

Y (t)
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Coefficients μZ (t) and σZ (t) have now been expressed in terms of
known coefficients, μ1X (t), σ1X (t), σY (t), and solution Y (t).

Example 5.10.1: Ornstein–Uhlenbeck SDE

dX (t) = −λX (t) dt + σ dB(t) where X (0) is known

Here

μ1X (t) = 0 μ2X (t) = −λ σ1X (t) = σ σ2X (t) = 0

and

μZ (t) = 0 σZ (t) = σ/Y (t)

The equation for Y is then

dY (t) = −λY (t) dt where Y (0) = 1

or

dY (t)

Y (t)
= −λ dt Y (0) = 1

which is an ODE with solution Y (t) = exp(−λt). The expression for
Z (t) becomes

Z (t) = X (0) +
∫ t

u=0
σ exp(λu) dB(u)

The product of Y (t) and Z (t) is the solution

X (t) = exp(−λt)

[
X (0) +

∫ t

u=0
σ exp(λu) dB(u)

]
which is the same as in Section 5.4.

Example 5.10.2: Brownian bridge SDE

For t in the time interval [0, T ]

dX (t) = − 1

T − t
X (t) dt + dB(t) where X (0) = 0

Here

μ1X (t) = 0 μ2X (t) = −1/(T − t) σ1X (t) = 1 σ2X (t) = 0
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and

μZ (t) = 0 σZ (t) = [1/Y (t)]

The equation for Y is then

dY (t) = − 1

T − t
Y (t) dt

or

dY (t)

dt
= − 1

T − t
Y (t)

which is an ODE. The solution is found by separating Y and t , and
integrating∫

dY (t)

Y (t)
=

∫
− 1

T − t
dt =

∫
d(T − t)

T − t

ln[Y (t)] = ln(T − t) + c where c is a constant

To find c, use initial condition Y (0) = 1, giving

ln[Y (0)] = ln(1) = 0 = ln(T ) + c c = − ln(T )

ln[Y (t)] = ln(T − t) − ln(T )

Y (t) = (T − t)/T

The SDE for Z is

d Z (t) = 0 dt + 1

Y (t)
dB(t)

so

Z (t) = X (0) +
∫ t

u=0

T

T − u
dB(u)

The product of Y (t) and Z (t) is the solution for all t excluding T

X (t) = T − t

T

[
X (0) +

∫ t

u=0

T

T − u
dB(u)

]
= T − t

T
X (0) + (T − t)

∫ t

u=0

1

T − u
dB(u)
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As X is a stochastic integral and X (0) is constant

E[X (t)] = T − t

T
X (0)

Var[X (t)] = (T − t)2
∫ t

u=0

(
1

T − u

)2

du

The integral equals

−
∫ t

u=0

1

(T − u)2
d(T − u) = 1

T − u
between u = t and 0

= 1

T − t
− 1

T
= t(T − t)

T

Var[X (t)] = t

(
1 − t

T

)
which goes to zero as t goes to T . The terminal position is non-random,
X (T ) = 0.

5.11 MARTINGALE REPRESENTATION

Suppose a random process X follows the driftless SDE dX (t) =
ϕ(t, ω) dB(t), where X (0) is known, and ϕ(t, ω) is a random process
(highlighted by ω in the notation). The corresponding integral expres-
sion over time period s ≤ t ≤ u is∫ u

t=s
dX (t) =

∫ u

t=s
ϕ(t, ω) dB(t)

X (u) = X (s) +
∫ u

t=s
ϕ(t, ω) dB(t)

Taking the expected value conditional upon history �(s) gives

E[X (u)|�(s)] = X (s) + E
[∫ u

t=s
ϕ(t, ω) dB(t)|�(s)

]
= X (s)

as the Itō stochastic integral has expected value zero. Thus a driftless
SDE describes a martingale.

It turns out that there is also a reverse relationship. If Brownian mo-
tion is the only source of randomness, then a continuous martingale,
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say M, can be expressed as a driftless SDE driven by Brownian mo-
tion, d M(t) = h(t, ω) dB(t). Often M is written as a stochastic integral

M(t) = E[M(t)] +
∫ t

s=0
h(ω, s) dB(s)

which comes from∫ t

s=0
d M(s) =

∫ t

s=0
h(s, ω) dB(s)

M(t) = M(0) +
∫ t

s=0
h(s, ω) dB(s)

and using E[M(t)] = M(0). It is known as the martingale representa-
tion property. This only establishes the existence of the random process
h. Its proof is rather elaborate and will only be outlined later. First, some
examples.

Example 5.11.1 Earlier it was shown that the random pro-
cess M(t)

def= B(t)2 − t is a martingale. It was also shown that∫ t
s=0 B(s) dB(s) = 1

2 [B(t)2 − t] = 1
2 M(t). Thus M(t) can be repre-

sented in terms of an Itō stochastic integral as
∫ t

s=0 2B(s) dB(s), and
the random process h is 2B(t).

Example 5.11.2 For fixed T , the area under a Brownian motion path,
I (T ) = ∫ T

t=0 B(t) dt , is a random variable. For variable T it is a random
process which is a martingale (why?). Earlier it has been shown that
I (T ) = ∫ T

t=0(T − t) dB(t), so that is its martingale representation, and
h is the deterministic function (T − t).

Example 5.11.3 If the random process M is known to be a martingale
which is a function of t and random process X , whose SDE is of the
general form dX (t) = μ(t, X ) dt + σ (t, X ) dB(t), then an expression
for h can be derived as follows. Itō’s formula gives, in shorthand

d M = ∂ M

∂t
dt + ∂ M

∂ X
dX + 1

2

∂2 M

∂ X2
(dX )2 + ∂2 M

∂t∂ X
dt dX

=
[
∂ M

∂t
+ μ(t, X )

∂ M

∂ X
+ 1

2σ (t, X )2 ∂2 M

∂ X2

]
dt

+ σ (t, X )
∂ M

∂ X
dB(t)
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As M is known to be a martingale, the drift term in its SDE must be
zero, leaving

d M(t) = σ (t, X )
∂ M

∂ X
dB(t)

Thus

h(t, ω) = σ (t, X )
∂ M

∂ X

This has its application in the martingale method for option valuation,
where the existence of a process h implies the existence of a replicating
portfolio.

Idea of proof The full proof of the martingale representation property
is highly technical, and beyond the scope of this text. It is based on the
property that any random variable which depends only on Brownian
motion, say X , can be expressed in terms of linear combinations of
random variables of the form

Z (t) = exp

[
− 1

2

∫ t

s=0
φ(s, ω)2 ds +

∫ t

s=0
φ(s, ω) dB(s)

]
which are the solution to the SDE d Z (t) = φ(t, ω)Z (t) dB(t) with
Z (0) = 1. In integral form∫ t

s=0
d Z (s) =

∫ t

s=0
φ(s, ω)Z (s) dB(s)

Z (t) = Z (0) +
∫ t

s=0
φ(s, ω)Z (s) dB(s)

= 1 +
∫ t

s=0
φ(s, ω)Z (s) dB(s)

which is of martingale representation form, with h(t, ω) = φ(t, ω)Z (t).
Taking the conditional expectation of random variable X turns it into a
random process which is a martingale (as shown in Section 2.4).

Although the martingale representation seems intuitive, its proof re-
quires a major excursion into probability territory. Introductory refer-
ences are: Bass, Lin Section 5.8, Capasso/Bakstein Section 3.6, Björk
Section 11.1, the source of Example 5.11.3.
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5.12 EXERCISES

[5.12.1] Verifying the OU solution Show that

X (t) = exp(−λt)

[
X (0) + σ

∫ t

s=0
exp(λs) dB(s)

]
solves the SDE

dX (t) = −λX (t) dt + σ dB(t) where X (0) is known

Hint: Introduce Z (t)
def= ∫ t

s=0 exp(λs) dB(s). Then X is a function of the
variables . . .

[5.12.2] Deriving the Brownian bridge SDE

(a) Random process X is specified for 0 ≤ t<T (strictly) as

X (t)
def= (T − t)

∫ t

s=0

1

T − s
dB(s) so X (0) = 0

Derive the SDE for X .
(b) Random process Y is specified for 0 ≤ t<T (strictly) as

Y (t)
def= a

(
1 − t

T

)
+ b

t

T
+ (T − t)

∫ t

s=0

1

T − s
dB(s) so

Y (0) = a

Derive the SDE for Y.

[5.12.3] Solving the HW SDE. Hull and White developed a model
for the short-term interest rate r in which the long-run mean is specified
via the non-random time-dependent function b(t)

dr (t) = [b(t) − ar (t)] dt + σ dB(t) where r (0) is known.

Derive the solution by first simplifying the drift coefficient via the trans-

formation X (t)
def= exp(at)r (t).

[5.12.4] Transforming the CIR volatility. Consider a function g of
interest rate r specified by the CIR model.

(a) Derive dg
(b) Choose dg/dr so the diffusion coefficient of dg equals 1.
(c) Integrate dg/dr to get an expression for g in terms of r ; write r in

terms of g, and use this to write dg entirely in terms of g.
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[5.12.5] Solving the BDT SDE. Black, Derman, and Toy devel-
oped a discrete time model for the short-term interest rate r . Its equiva-
lent in continuous time is

d ln[r (t)] = θ (t) dt + σ dB(t)
Derive the SDE for r in terms of r .

[5.12.6] Solving and verifying the solution

dX (t) = X (t) dt + dB(t) X (0) known constant

[5.12.7] Solving and verifying the solution
dX (t) = −X (t) dt + exp(−t) dB(t) X (0) known constant

[5.12.8] Solving and verifying the solution
dX (t) = m dt + σ X (t) dB(t) X (0), m and σ known constants

[5.12.9] Finding the variance of a square-root process. Let X be
specified by the CIR SDE. Determine the variance of X by deriv-
ing the dynamics of X (t)2 and using the method and the results of
Section 5.7.

[5.12.10] Verify that the growth conditions hold for all the SDEs
discussed in this chapter, and that the Lipschitz condition holds for all
except the square-root diffusion SDE.

[5.12.11] Construct a simulation program for the mean-reversion
SDE of Section 5.5.

[5.12.12] Construct a simulation program for the square-root diffu-
sion SDE of Section 5.6.

[5.12.13] Let S(t) be the standard stock price expression S(0)
exp[(μ − 1

2σ
2)t + σ B(t)]. Verify that

∫ 1
t=0 σ S(t) dB(t) is an Itō

stochastic integral.

5.13 SUMMARY

This chapter introduced and solved the basic stochastic differential
equations used in finance. A general solution method was given
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for SDEs with linear coefficients. But there are few SDEs for
which a closed form solution exists. A comprehensive overview of
these is Numerical Solution of Stochastic Differential Equations by
Kloeden/Platen Chapter 3. The distribution of SDEs can be read-
ily analysed by simulation. A comprehensive reference for this is
Glasserman.
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6

Option Valuation

The purpose of this chapter is to illustrate how stochastic calculus is used
in the valuation of an option. The concept of an option contract was out-
lined in the Preface of this text, and further specification is given below.1

Firstly, the so-called partial differential equation method and, secondly,
the so-called martingale method (also known as the risk-neutral method)
are discussed. Thereafter the link between these two methods is ex-
plained: the so-called Feynman–Kač representation. The key concepts
used in option valuation are the self-financing replicating portfolio and
the martingale probability (also known as the risk-neutral probability).
The essence of the martingale method can be best understood in the
simplified discrete-time one-period binomial framework that was intro-
duced in Chapter 2. The exposition in a continuous-time framework is
a logical more technical continuation. Here the notation is

S(t) price of underlying stock at time t
K strike price at which underlying can be bought or sold
T maturity time of option contract
r risk-free interest rate
V (t) option value at time t
S∗(t) stock price discounted by savings account, exp(−r t)S(t)
P̂ probability distribution under which S∗(t) is a martingale

EP̂ expected value under P̂.

In a financial market, a so-called arbitrage opportunity is a situation
where an investor can make a guaranteed profit without incurring any
risk. Such situations arise regularly and there are people who specialize
in spotting them, using sophisticated communication technology. They
then immediately initiate a trade which changes the supply-demand
situation, and restores the market price to equilibrium. Arbitrage op-
portunities are therefore very short lived. The fundamental condition for
establishing the price of an option is that it should not permit an arbitrage

1 As this is not a book about options per se, it may be useful to consult an options book for further terminology,
such as the elementary introduction by Benth.

127
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opportunity. Absence of arbitrage is a highly realistic assumption, and
more tangible than the equilibrium assumptions in economics.

6.1 PARTIAL DIFFERENTIAL EQUATION METHOD

The value of an option on a stock is modelled as a function of two
variables – calender time t , and stock price S(t) – and is denoted V (t).
The stock price is assumed to evolve according to

dS(t)
S(t) = μ dt + σ dB(t) where μ and σ are constants

Itō’s formula gives the change in the option value resulting from the
change in time, dt , and the change in S over dt , as

dV = ∂V

∂t
dt + ∂V

∂S
dS + 1

2

∂2V

∂S2
(dS)2

Using dS = μS dt + σ S dB and dS2 = σ 2S2 dt gives

dV = ∂V

∂t
dt + ∂V

∂S
[μS dt + σ S dB] + 1

2

∂2V

∂S2
σ 2S2 dt

=
[
∂V

∂t
+ μS

∂V

∂S
+ 1

2
σ 2S2

∂2V

∂S2

]
dt + σ S

∂V

∂S
dB

The partial differential equation method of option valuation is based
on the insight that the option and the stock on which it is written have
the same source of randomness. Thus, by taking opposite positions in
the option and the stock, the randomness of the one asset can offset the
randomness of the other. It is therefore possible to form a portfolio of
stock and options in such proportion that the overall randomness of this
portfolio is zero. Moreover, if the proportion of stock and options in
this portfolio is changed as the value of the stock changes, this portfolio
can be maintained riskless at all times.

At time t , form a portfolio that is long λ shares and short 1 option.
The value P of this portfolio at time t is

P(t) = λS(t) − V (t)

The minus sign comes from the fact that the option is not owned but
owed. The value of this portfolio changes according to

dP = λ dS − dV

= λ[μS dt + σS dB]−
[
∂V

∂t
+ μS

∂V

∂S
+ 1

2
σ 2S2 ∂2V

∂S2

]
dt − σS

∂V

∂S
dB

=
[
λμS − ∂V

∂t
− μS

∂V

∂S
− 1

2
σ 2S2 ∂2V

∂S2

]
dt +

[
λσ S − σ S

∂V

∂S

]
dB
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The random term can be made to disappear by choosing λ in such a way
that the coefficient[

λσ S − σ S
∂V

∂S

]
= 0

λ = ∂V

∂S

That leaves

dP =
[
λμS − ∂V

∂t
− μS

∂V

∂S
− 1

2
σ 2S2 ∂2V

∂S2

]
dt

The portfolio is then riskless so its value must increase in accordance
with the risk-free interest rate, otherwise there would be an arbitrage
opportunity. The interest accrued on 1 unit of money over a time interval
of length dt is 1r dt . The value of the portfolio thus grows by Pr dt over
dt . Equating the two expressions for the change in the value of P gives[

λμS − ∂V

∂t
− μS

∂V

∂
S − 1

2
σ 2S2 ∂2V

∂S2

]
dt = Pr dt

λμS − ∂V

∂t
− μS

∂V

∂S
− 1

2
σ 2S2 ∂2V

∂S2
= Pr

Substituting P = λS − V and λ = ∂V /∂S gives

∂V

∂S
μS − ∂V

∂t
− μS

∂V

∂S
− 1

2
σ 2S2 ∂2V

∂S2
=

(
∂V

∂S
S − V

)
r

The term μS(∂V /∂S) cancels, leaving

−∂V

∂t
− 1

2
σ 2S2 ∂2V

∂S2
= r S

∂V

∂S
− r V

which rearranges to

1
2
σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
+ ∂V

∂t
= r V

This is a second-order partial differential equation (PDE) in the unknown
function V . The fact that this PDE does not contain the growth rate
μ of the stock price may be surprising at first sight. The PDE must
be accompanied by the specification of the option value at the time
of exercise, the so-called option payoff. For the actual PDE solution
method, the reader is referred to Wilmott and Jiang. The PDE method was
developed by Black and Scholes using key insights by Merton. Merton
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and Scholes were awarded the 1997 ‘Nobel prize’ in Economics for this
seminal work; Black had died in 1995.

The PDE derivation given here is attractive for its clarity. There are,
however, other derivations which are considered to be more satisfactory
in a technical mathematical sense.

6.2 MARTINGALE METHOD IN ONE-PERIOD
BINOMIAL FRAMEWORK

The approach is to form a so-called replicating portfolio which comprises
shares of the stock on which the option contract is based and an amount
of risk-free borrowing. If this portfolio can replicate the value of the
option at all times then the initial value of the portfolio must be the
value of the option. If that was not the case then there would be an
arbitrage opportunity in the market and the price would not be stable.
The value of the replicating portfolio is a random process whose value
is denoted V . The initial portfolio consists of α shares of initial price
S(0) = S and a loan of β, where α and β are to be determined.

V (0) = αS + β

During the period [0, T ], using discrete compounding at rate r for the
period, the amount β grows to β(1 + r ), and S becomes uS or dS. The
terminal value of the portfolio, V (T ), is then

in the up-state: αuS + (1 + r )β = V (T )up

in the down-state: αdS + (1 + r )β = V (T )down

As V (T ) must replicate the value of the option at time T , its values will
be known in terms of the values of the underlying stock. For example,
in the case of a standard European call option with strike price K

V (T )up = max[uS − K , 0]

V (T )down = max[dS − K , 0]

The two equations are linear in the unknowns α and β, and have the
unique solution

α = V (T )up − V (T )down

(u − d)S
β = V (T )downu − V (T )upd

(1 + r )(u − d)
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Substituting α and β gives initial portfolio value V (0), after regrouping
terms, as

V (0) = (1 + r ) − d

u − d

V (T )up

1 + r
+ u − (1 + r )

u − d

V (T )down

1 + r

Note that u−(1+r )
u−d can also be written as 1 − (1+r )−d

u−d . If d < 1 + r < u

then both (1+r )−d
u−d and 1 − (1+r )−d

u−d lie between 0 and 1. They can therefore
be interpreted as probabilities q and 1 − q

q
def= (1 + r ) − d

u − d
1 − q = u − (1 + r )

u − d

So V (0) can be expressed as the expected value of the terminal option
values discounted by the risk-free rate

V (0) = q
V (T )up

1 + r
+ (1 − q)

V (T )down

1 + r

Thus the discounted option value process is a discrete martingale when
probability q is used. For this reason q is also known as the martingale
probability. Probability q is an artificial probability and its sole use
is in the valuation of the option. It is not the real probability of an
up-movement of the stock price. Multiplying both sides of the expression
for q by S and rearranging gives (1 + r )S = q(uS) + (1 − q)(dS). The
left-hand side is the terminal value when an amount S is invested in
a risk-free savings account. The right-hand side is the expected value
of the stock price if the amount S is used to purchase a stock. The
equation says that the investor is, in expected value terms, indifferent
to whether the amount S is invested in a risk-free savings account or
whether it is invested in a stock. Because of this interpretation, q is also
called the risk-neutral probability. It is as if the investor is indifferent
to the risk of the stock price increment, when probability q is used
in the valuation of the option. That, of course, is not the true attitude
of an investor towards risk. The option value computation turns out
to be the correct one if the investor is treated as being risk-neutral,
hence the name risk-neutral probability. Probability q was determined
without using investors’ views on the probability of an up-movement.
If the expectation is taken under a value that is different from q then
the result is an option value that permits arbitrage. So the risk-neutral
probability is linked to the absence of arbitrage. It is now shown that the
aforementioned condition d < 1 + r < u follows from the absence of
arbitrage.
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No-Arbitrage Condition Assume, without loss of generality, that S =
1. If α and β can be chosen such that initial investment V (0) is zero, and
terminal values V (T )up and V (T )down are both non-negative, but either
V (T )up or V (T )down is strictly positive, then this is a scheme which
produces a non-negative return for certain without any down-side risk.
That is an arbitrage opportunity. Restated in terms of inequalities in the
(β, α) plane

V (0) = α + β = 0 α = −β

V (T )up = αu + β(1 + r ) >= 0 α ≥ − (1+r )
u β

V (T )down = αd + β(1 + r ) >= 0 α ≥ − (1+r )
d β

If (1 + r ) ≥ u then the slopes of the three lines relate as

− (1 + r )

d
≤ − (1 + r )

u
≤ −1,

as illustrated in Figure 6.1. The line α = −β lies on or above the other
lines, and strictly above one of them (the area where the inequality holds

α - axis numerical illustration

u 1.04 >1
d = 1/u 0.9615385 <1
1+r 1.05

β - axis d < u < 1+r

slope up-line –1.009615
= –1.05/1.04

slope down-line –1.092001
= –1.05/0.961538

α = – β
area where inequality holds

α = – [(1+r)/u]    up-lineβ

α = – [(1+r)/d]β  down-line

α values on line α = –β are above or on the other lines
negative α is short-selling

Figure 6.1 Arbitrage opportunity
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α - axis numerical illustration

u 1.25 >1
d = 1/u 0.8 <1
1+r 1.05

β - axis d < 1+r < u

slope up-line –0.840000
= –1.05/1.25

α = –[(1+r)/u]β up-line slope down-line –1.312500
= –1.05/0.8

α = –β

α = –[(1+r)/d]β  down-line

α values on line α = –β are between other lines

Figure 6.2 No-arbitrage

is indicated by an arrow). The no-arbitrage condition is that α = −β

must lie between the other two lines, as shown in Figure 6.2.
That is the convex cone spanned by the other two lines. The no-

arbitrage condition in terms of slopes is thus

− (1 + r )

d
≤ −1 ≤ − (1 + r )

u
or d <−− (1 + r ) <−− u

The last inequality says that (1 + r ) is then a convex combination of d
and u, which can be written uniquely with weightings 0 < q < 1 and
(1 − q) as 1 + r = qu + (1 − q)d. This gives the familiar expression
for the unique binomial martingale probability

q = (1 + r ) − d

u − d

So it has been shown that the no-arbitrage condition implies d < 1 + r <

u, which in turn implies the existence of q.
Knowing that the discounted value process is a martingale makes it

possible to determine the initial value of the option from the terminal
values of the option which are known. So the martingale concept is used
in reverse. That means that the valuation process can be carried out the
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other way around, namely by first finding a risk-neutral probability, and
then taking the expected value under that probability of the discounted
terminal option value. That is the way it is done in continuous time.
One other feature has to be mentioned: the replicating portfolio must
be self-financing, which means that the change in portfolio value over
time should only come from the change in the value of the stock and the
change in borrowing. No money is withdrawn or added freely.

The above showed that a martingale probability arises in a completely
natural way. It can also be derived from the condition that the discounted
stock price process must be a martingale under discrete probability q.
The expectation of the terminal discounted stock price under q is

q
uS

1 + r
+ (1 − q)

dS

1 + r

Equating this to S and solving for q gives

q = (1 + r ) − d

u − d

Using the notation Eq for an expectation using probability q, the
martingale expression is

Eq

[
S(T )

1 + r

∣∣∣∣S]
= S

The discounted value of the self-financing replicating portfolio is also a
martingale under q, as can be seen as follows. The discounted terminal
portfolio value is

in the up-state:
V (T )up

1 + r
= αu

S

1 + r
+ β

in the down-state:
V (T )down

1 + r
= αd

S

1 + r
+ β

The expectation, under probability q, of the discounted terminal port-
folio value is

Eq

[
V (T )

1 + r

]
= q

[
αuS

1 + r
+ β

]
+ (1 − q)

[
αdS

1 + r
+ β

]
= q

αuS

1 + r
+ (1 − q)

αdS

1 + r
+ β

= q

[
αuS

1 + r
− αdS

1 + r

]
+ αdS

1 + r
+ β

= qα
u − d

1 + r
S + α

d

1 + r
S + β
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Substituting q = [(1 + r ) − d]/(u − d) gives

Eq

[
V (T )

(1 + r )

]
= (1 + r ) − d

u − d
α

u − d

1 + r
S + α

d

1 + r
S + β

= α
(1 + r ) − d

1 + r
S + α

d

1 + r
S + β

= αS + β

= V (0)

Since the terminal option values V (T ) are known in every terminal state
of the market, the unknown initial value of the replicating portfolio,
V (0), and thus of the option, can be determined by turning the martingale
expression around

initial option value = Eq[terminal option value/(1 + r )]

In this simple binomial model there are two risky assets, the stock and
the option. The expected rate of return is defined as (expected terminal
value − initial value)/initial value. Under q both risky assets in the
model have an expected rate of return equal to the risk-free rate.

The binomial tree for option valuation is of such conceptual and com-
putational importance that entire books have been devoted to it: Roman
and Shreve I are particularly good introductions. The graphical expla-
nation of the relationship between the absence of arbitrage and the ex-
istence of a martingale probability is based on McLeish; an alternative
exposition is in Epps Chapter 5.

6.3 MARTINGALE METHOD IN
CONTINUOUS-TIME FRAMEWORK

In the continuous time setting, start from the standard SDE for the stock
price

dS(t)

S(t)
= μ dt + σ dB(t)

Introduce the discounted stock price

S∗(t)
def= S(t)

exp (r t)
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This expresses the stock price value in terms of the savings account as
the numeraire. Itō’s formula, for S∗ as a function of t and S, gives

dS∗(t)

S∗(t)
= (μ − r ) dt + σ dB(t)

The expected growth rate of S∗ is (μ − r ), which is r less than the
growth rate of S, because it is measured against the riskless growth rate
r of the savings account. As this SDE has a drift, the process S∗ is
not a martingale under the probability distribution of Brownian motion
B. In the replicating portfolio of the above discrete-time model, the
discounted stock price was a martingale. That led to the discounted
replicating portfolio also being a martingale. The same recipe will be
followed here. A probability distribution can be found under which S∗

is a martingale. This goes as follows. Rewrite the SDE as

dS∗(t)

S∗(t)
= σ

[
μ − r

σ
dt + dB(t)

]
= σ [ϕ dt + dB(t)]

where ϕ
def= (μ − r )/σ . The probability density of B(t) at B(t) = x is

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

This can be decomposed into the product of two terms

1√
t
√

2π
exp

[
−1

2

(
ϕt + x√

t

)2
]

exp
[

1
2
ϕ2t + ϕx

]
With y

def= ϕt + x the first term can be written as

1√
t
√

2π
exp

[
−1

2

(
y√
t

)2
]

which is the probability density of another Brownian motion, say B̂(t), at

B̂(t) = y. It defines B̂(t)
def= ϕt + B(t), so dB̂(t) = ϕ dt + dB(t). This

is further discussed in Chapter 7. Substituting the latter into the SDE for
S∗ gives

dS∗(t)

S∗(t)
= σ dB̂(t) and

dS(t)

S(t)
= r dt + σ dB̂(t)
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This says that under the probability distribution of Brownian motion B̂,
S∗ is a martingale. Let this probability be denoted P̂.

The value of the replicating portfolio at time t is denoted V (t). The
portfolio consists of a quantity α(t) of stock S(t) and an amount β(t)
of risk-free borrowing. The evolution of β(t) is specified by the or-
dinary differential equation dβ(t) = β(t)r dt ; in rate of return form,
dβ(t)/β(t) = r dt .

V (t) = α(t)S(t) + β(t) where β(t) = exp (r t) β(0) = 1

The replicating portfolio must be self -financing, so the change in the
value of the portfolio must only come from the change in the value of
the stock and the change in the value of the borrowing. This condition
is represented by

dV (t) = α(t) dS(t) + dβ(t)

The discounted value of the portfolio

V ∗(t)
def= V (t)

exp (r t)

is a function of t and V . Itō’s formula gives

dV ∗ = ∂V ∗

∂t
dt + ∂V ∗

∂V
dV + 1

2

∂2V ∗

∂V 2
(dV )2 + ∂2V ∗

∂t∂V
dt dV

Substituting

∂V ∗

∂t
= − r V ∗ ∂V ∗

∂V
= exp (−r t)

∂2V ∗

∂V 2
= 0 dt dV = 0

gives

dV ∗ = −r V ∗ dt + exp (−r t) dV

Substituting V ∗ and dV then gives

dV ∗ = −r [ exp (−r t)V ] dt + exp (−r t)[α dS + dβ]

Finally substituting the expression for V gives

dV ∗ = − r exp (−r t)[αS + β] dt + exp (−r t)[α dS + rβ dt]

= − r exp (−r t)αS dt − r exp (−r t)β dt + exp (−r t)α dS

+ r exp (−r t)β dt
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The term with β cancels, leaving

dV∗ = −r exp (−r t)αS dt + exp (−r t)α dS

= α[−r exp (−r t)S dt + exp (−r t) dS]

= α[−r exp (−r t)S dt + exp (−r t)r S dt + exp (−r t)σ S dB̂]

= α exp (−r t)σ S d B̂

So the final SDE is

dV ∗(t) = α(t) dS∗(t)

As there is no drift term, random process V ∗(t) is a martingale under
P̂. Thus its expected value at future time T equals its value at time 0,
EP̂[V ∗(T )|V ∗(0)] = V ∗(0) = V (0). Writing this the other way around,
the initial value of the option is determined from

V (0) = EP̂[V ∗(T )|S(0)] = EP̂

[
V (T )

exp (rT )
|S(0)

]
In Section 6.5 this is illustrated for the valuation of some European
options.

On 0 ≤ t ≤ T the SDE dS∗(t)/S∗(t) = σ d B̂(t) has the solution

S∗(T ) = S∗(0) exp
[− 1

2
σ 2T + σ B̂(T )

]
and using S(t) = exp (r t)S∗(t) gives

S(T ) = S(0) exp
[
(r − 1

2
σ 2)T + σ B̂(T )

]
The existence of a replicating portfolio is guaranteed by the martingale

representation (of Section 5.11), and is shown in Epps pp 265–266.
The actual expressions for α and β are derived in Lamberton/Lapeyre
Section 4.3.3.

6.4 OVERVIEW OF RISK-NEUTRAL METHOD

In both the discrete- and the continuous-time framework the discounted
stock price is forced to become a martingale. That produces a new
probability distribution, which is called the martingale probability or
risk-neutral probability. Using this new probability distribution, the ex-
pected value of the discounted stock price at some future time equals the
known discounted stock price at an earlier time. Then a self-financing
portfolio is formed which replicates the value of an option at all times
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in all possible states of the market. The discounted value of this self-
financing replicating portfolio is also found to be a martingale under
this new probability. Thus the expectation of the discounted value of the
replicating portfolio, at the time of exercise of the option, equals the
present value of the portfolio. As all possible values of the option at
the time of exercise are known, and the martingale probability is also
known, their expected value can be computed. At the present time, the
discounted value of the replicating portfolio equals the value of the op-
tion that is to be determined. Hence the fact that the discounted portfolio
value is a martingale makes it possible to compute this present value of
the option. The steps in the methodology are summarized below.

Table 6.1

Stock price Portfolio

Value at time t S(t) V (t) = α(t)S(t) + β(t)

Dynamics under B(t) dS(t)
S(t) = μ dt + σ dB(t)

self-financing
dV (t) = α(t) dS(t) + dβ(t)

Discounted value at time t S∗(t) = exp (−r t)S(t) V ∗(t) = exp (−r t)V (t)
Dynamics of discounted
value under B(t)

dS∗(t)
S∗(t) = (μ − r ) dt + σ dB(t) dV ∗(t) = α(t) dS∗(t)

Property S∗(t) not martingale V ∗(t) not martingale

Dynamics of discounted

value under B̂(t)
dS∗(t)
S∗(t) = σ d B̂(t)

dV ∗(t) = α(t) dS∗(t)
= α(t)σ S∗(t) d B̂(t)

Property
S∗(t) martingale
EP̂[S∗(T )|S(0)] = S(0)

V ∗(t) martingale
EP̂[V ∗(T )|V (0)] = V (0)

6.5 MARTINGALE METHOD VALUATION OF SOME
EUROPEAN OPTIONS

The illustration of the martingale method in continuous time starts with
two examples which only require simple integration.

6.5.1 Digital Call

The payoff of this option at exercise time T is a fixed amount (here set
at 1), or nothing,

c(T ) =
{

1 if S(T ) ≥ K
0 otherwise
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The discounted call value process c(t)/exp (r t) is a martingale under
probability P̂, so at time 0

c(0)

exp (0T )
= EP̂

[
c(T )

exp (rT )

]
= exp (−rT )EP̂[1{S(T )≥K }]

where 1{.} is the indicator function which has value 1 when the condition
in the curly brackets is satisfied, and 0 otherwise. As the expected value
is taken of a random process that is a martingale, the payoff condition
S(T ) ≥ K is now expressed in terms of that martingale S∗ as S∗(T ) ≥
exp (−rT )K , and

c(0) = exp (−rT )EP̂[1{S∗(T )≥ exp (−rT )K }]

= exp (−rT )̂P[S∗(T ) ≥ exp (−rT )K ]

as the expected value of an indicator function equals the probability of
the indicator event. Under P̂

S∗(T ) = S(0) exp
[− 1

2
σ 2T + σ B̂(T )

]
Now determine the values of B̂(T ) for which S∗(T ) ≥ exp (−rT )K , or
equivalently

ln [S∗(T )] ≥ −rT + ln[K ]

ln [S(0)] − 1
2
σ 2T + σ B̂(T ) ≥ −rT + ln[K ]

B̂(T ) ≥ −
{

ln

[
S(0)

K

]
+ (

r − 1
2
σ 2

)
T

} /
σ︸ ︷︷ ︸

a

B̂(T ) ≥ a

Then

P̂[S∗(T ) ≥ exp (−rT )K ] = P̂[B̂(T ) ≥ a]

=
∫ ∞

x=a

1√
T

√
2π

exp

[
−1

2

(
x√
T

)2
]

︸ ︷︷ ︸
density of B̂(T ) at x

dx

The integrand is now transformed to the standard normal density by the
change of variable y = x/

√
T , lower integration limit x = a becomes
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y = a/
√

T , dy = dx/
√

T , and

P̂[S∗(T ) ≥ exp (−rT )K ] =
∫ ∞

y=a/
√

T

1√
2π

exp [− 1
2

y2] dy

= 1 − N

(
a√
T

)
= N

(
− a√

T

)
where N (d) denotes the cumulative standard normal

∫ d
y=−∞

1√
2π

exp [− 1
2

y2] dy.

c(0) = exp (−rT )N

(
− a√

T

)
The expression

−a√
T

= ln
[ S(0)

K

] + (
r − 1

2
σ 2

)
T

σ
√

T

is usually denoted d2. The final result is

c(0) = exp (−rT )N (d2)

6.5.2 Asset-or-Nothing Call

This call has a payoff equal to the value of the underlying at maturity, if
that value is not below the strike price, and zero otherwise,

c(T ) = S(T ) 1{S(T )≥K }

As before

c(0) = exp (−rT ) EP̂ [c(T )]

= exp (−rT ) EP̂
[
S(T ) 1{S(T )≥K }

]
= EP̂

[
S∗(T ) 1{S∗(T )≥ exp (−rT )K }

]
This expected value can be computed by using the lognormal probability
density of random variable S∗(T ), but it is easier to view S∗(T ) as a
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function of random variable B̂(T ) and use its density.

c(0) = EP̂[S(0) exp [− 1
2
σ 2T + σ B̂(T )] 1{B̂(T )≥a}]

=
∫ ∞

x=a
S(0) exp [− 1

2
σ 2T + σ x]

1√
T

√
2π

exp

[
−1

2

(
x√
T

)2
]

︸ ︷︷ ︸
density of B̂(T ) at x

dx

Change of variable y
def= x/

√
T gives

c(0) =
∫ ∞

y=a/
√

T
S(0) exp

[ − 1
2
σ 2T + σ

√
T y

]
1√
2π

exp
[ − 1

2
y2

]
dy

The exponent of the integrand can be rearranged to − 1
2
(y − σ

√
T )2

c (0) = S(0)

∫ ∞

y=a/
√

T

1√
2π

exp
[ − 1

2
(y − σ

√
T )2

]
dy

This integrand is transformed to the standard normal density by z
def=

y − σ
√

T

c(0) = S(0)

∫ ∞

z=zlow

1√
2π

exp
[− 1

2
z2

]
dz

where zlow
def= a/

√
T − σ

√
T .

c(0) = S(0)[1 − N (zlow)]

= S(0)N (−zlow)

The expression for −zlow is commonly denoted

d1
def= ln[S(0)/K ] + (

r + 1
2
σ 2

)
T

σ
√

T

and

c(0) = S(0)N (d1)

6.5.3 Standard European Call

The derivation steps are the same as for the above calls. Only the inte-
gral for the expected value is somewhat more involved. As above, the
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derivation is done directly in terms of the martingale S∗. That makes
the methodology compatible with option valuation when a different nu-
meraire than the savings account is used, as discussed in Chapter 8. For
the standard European call

c(T ) = max[S(T ) − K , 0]

= exp(rT ) max[S∗(T ) − exp (−rT )K , 0]

and

c(0) = exp (−rT )EP̂[c(T )]

= EP̂{max[S∗(T ) − exp (−rT )K , 0]}
= EP̂{max[S∗(T ) − K ∗, 0]}

where K ∗ def= exp (−rT )K . The expression for c(0) is of the same form
as for the asset-or-nothing call, but now there is an additional term K ∗

in the integrand. The lower integration limit a for positive payoff is the
same as before.

c(0) =
∫ ∞

x=a

{
S(0) exp

[− 1
2
σ 2T + σ x

] − K ∗}
× 1√

T
√

2π
exp

[
− 1

2

(
x√
T

)2
]

︸ ︷︷ ︸
density of B̂(T ) at x

dx

It is convenient to write this as the difference of the two integrals

I1
def=

∫ ∞

x=a
S(0) exp

[− 1
2
σ 2T + σ x

] 1√
T

√
2π

exp

[
−1

2

(
x√
T

)2
]

dx

I2
def=

∫ ∞

x=a
K ∗ 1√

T
√

2π
exp

[
−1

2

(
x√
T

)2
]

dx
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Integral I1 has already been evaluated above as S(0)N (d1). Integral I2

transforms to

I2 = K ∗
∫ ∞

x=a/
√

T

1√
2π

exp
[ − 1

2
y2

]
dy

= K ∗
[

1 − N

(
a√
T

)]
= K ∗N

(
− a√

T

)
= exp(−rT )K N (d2)

The final result is

c(0) = S(0)N (d1) − exp(−rT )KN(d2)

This is the famous Black–Scholes pricing expression for a standard
European call.

Setting K = 0 recovers the pricing expression for the asset-or-nothing
call. Note that the second term in the Black–Scholes expression equals K
times the digital call price, and that the first term equals the all-or-nothing
call price. Thus a standard European call can be seen as a portfolio that
is long K European digital calls, and short one all-or-nothing call.

6.6 LINKS BETWEEN METHODS

6.6.1 Feynman-Kač Link between PDE Method
and Martingale Method

The Black–Scholes PDE is an example of a so-called parabolic PDE.
Such PDEs can be solved by a variety of classical analytical or nu-
merical methods, but there is also an altogether different method which
produces a solution in the form of an expected value. This is known as
the Feynman–Kač representation. It links the PDE method for option
valuation to the martingale method in continuous time.

Let S be the standard stock price process with SDE dS(t)/S(t) =
μ dt + σ dB(t). Let V be the value of an option on S which matures
at time T . It is a function of time t and S(t), but to keep the notation
simple, its value is denoted as V (t). As derived previously,

dV =
[
∂V

∂t
+ μS

∂V

∂S
+ 1

2
σ 2S2

∂2V

∂S2

]
dt + σ S

∂V

∂S
dB
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Consider the discounted value of V , Z (t)
def= V (t) exp(−r t). It is a

function of the two variables t and V , but to keep the notation simple,
its value is denoted as Z (t). By Itō’s formula

d Z = ∂ Z

∂t
dt + ∂ Z

∂V
dV + 1

2

∂2 Z

∂V 2
(dV )2 + ∂2 Z

∂t ∂V
dt dV

Substituting

∂ Z
∂t = V exp(−r t)(−r ) ∂ Z

∂V = exp(−r t) ∂2 Z
∂V 2 = 0 dt dV = 0

together with the expression for dV , gives

d Z = exp(−r t)(−r )V dt +
+ exp(−r t)

[
∂V

∂t
+ μS

∂V

∂S
+ 1

2
σ 2S2

∂2V

∂S2

]
dt

+ exp(−r t)σ S
∂V

∂S
dB

= exp(−r t)

[
−r V + ∂V

∂t
+ μS

∂V

∂S
+ 1

2
σ 2S2

∂2V

∂S2

]
dt +

+ exp(−r t)σ S
∂V

∂S
dB

If V is such that its drift coefficient equals zero,

−r V + ∂V

∂t
+ μS

∂V

∂S
+ 1

2
σ 2S2

∂2V

∂S2
= 0 (∗)

then d Z = exp(−r t)σ S
∂V

∂S
dB. In integral form over the time period

[0, T ]

Z (T ) = Z (0) +
∫ T

t=0

exp(−r t)σ S(t)
∂V

∂S
dB(t)

At time 0, Z (0) is a non-random value. Taking the expected value of
both sides of the equation, gives

E[Z (T )] = Z (0) + E
{∫ T

t=0

exp(−r t)σ S(t)
∂V

∂S
dB(t)

}
As E of the stochastic integral equals zero, Z (0) = E[Z (T )]. With
Z (0) = exp(−r0)V (0) = V (0) and Z (T ) = exp(−rT )V (T ), the result
is

V (0) = E[exp(−rT )V (T )]
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This says that the initial value of the option can be determined as the
expected value of the discounted random terminal value of the option.
It was shown that the value V of an option on stock price S satisfies the
Black–Scholes PDE

−rF + ∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ 2S2

∂2V

∂S2
= 0

This is of the form (*) with μ = r . Thus the S dynamics to be used in
the expected value expression has r as the drift coefficient instead of μ

dS(t)

S(t)
= r dt + σ dB(t)

This is the same SDE as used in the martingale method.
The Feynman–Kač link is that� the coefficient of the first-order partial derivative ∂V /∂S in the PDE
is the drift coefficient in the martingale dynamics dS(t) = r S(t) dt +
σ S(t) dB(t)� the coefficient of the second-order partial derivative ∂2V /∂S2 in the
PDE contains the square of the diffusion coefficient in the martingale
dynamics dS.

So when the martingale dynamics for the underlying asset of the option
are given, the corresponding PDE for the option value can be written
down without any further derivation.

6.6.2 Multi-Period Binomial Link to Continuous

By dividing the time to maturity T into n time-steps 	t = T/n, and
repeating the binomial stock price increment, a tree like that shown in
Figure 1.2 is produced with a stock price at each node; n + 1 stock
prices at maturity. As for the random walk, it is assumed that the stock
price increments over successive time-steps are independent. There are
several choices for the tree parameters u and d. The original, and most
widely known, is

u = exp(σ
√

	t) d = exp(−σ
√

	t)
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It can be shown that for n → ∞:� the binomial scheme converges to the Black–Scholes PDE� the terminal stock price converges to the standard continuous time
terminal stock price� the binomial value of an option converges to the Black–Scholes value.

The binomial option value is highly non-linear in n. The convergence
pattern depends greatly on the ratio K/S, and for the above choice of u
and d it is highly irregular when K �= S. This makes it difficult to fix a
suitable n. A better choice is

u = exp
[
σ
√

	t + 1
n ln

(
K
S

)]
d = exp

[
−σ

√
	t + 1

n ln
(

K
S

)]
Now the convergence pattern is gradual for all K/S. The convergence
from binomial to continuous is well described in Roman.

6.7 EXERCISE

[6.7.1] Futures option. The object of this exercise is to use the replicat-
ing portfolio method to determine the initial value of an option
on a futures contract.

A futures contract is an agreement between two parties in which
the holder of the contract agrees to trade a specified quantity of an
asset with the writer of the contract, at a delivery date and place
specified in the contract, for a delivery price that is set when the
contract is entered into. The contract holder has the obligation to
trade. Payment takes place at delivery. This delivery price is set
such that the value of the futures contract is zero to both parties
when the contract is initiated. If F(t) denotes the futures price
at time t of a futures contract on stock price S(t) for delivery at
T ∗, then F(t) = exp[r (T ∗ − t)]S(t), the compounded value of
S. There is no initial cost when buying a futures contract. The
predetermined delivery price is also known as the initial futures
price.Under this price there exists no arbitrage opportunity. A
futures contract is traded and administered on exchanges. The
trading produces futures price at all subsequent times. As time
progresses, the asset which the holder of the future has con-
tracted, changes in value over time due to market forces. The
price for which the same asset can be bought at the original
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delivery date thus changes. Hence the futures price changes, but
the delivery price stays as fixed originally. The exchange on
which the contract is traded keeps track of these changes. An
account is kept for the value of the contract. Initially the value
of the account is zero. When a new market price for the futures
contract becomes available on the exchange, the account value
is increased (decreased) by the increase (decrease) of the current
futures price from the previous futures price. It is essential to be
clear about the distinction between the initial futures price (at
which the asset will be delivered), the subsequent futures prices,
and the value of the account. An option on a futures contract
gives its holder the option to exercise the futures contract. It
removes the obligation at the cost of the option premium. The
underlying of this option is a futures contract of equal or later
maturity than the option. At option maturity date T the payoff
to the option holder is the excess of the futures price F(T ) over
the strike price K of the option, plus a long position in a newly
opened futures contract. As this new futures contract has zero
value, the option payoff can be specified as max[F(T ) − K , 0].

6.8 SUMMARY

This chapter described how stochastic calculus is used in option valu-
ation. Two methodologies were presented, and the link between them.
Fully worked out examples were given for the martingale approach. The
stage was set for the detailed exposition of the methodology for a change
in probability in Chapter 7. The connection between the absence of ar-
bitrage assumption and the existence of a martingale probability was
shown for the discrete-time model of Section 6.2. That model was for a
market where every terminal payoff can be replicated by a self-financing
portfolio. Such a market is said to be complete, and the martingale prob-
ability is unique. A similar connection exists in the continuous-time
framework but is much more technical and outside the scope of this text.
An introduction is given in Dana/Jeanblanc Section 3.2.

The reason for discounting the stock price in option valuation deserves
some further comment. In the option valuation set up there is a risk-free
savings account, a stock price, and a replicating portfolio. The savings
account has a rate of return equal to the risk-free rate r . If there is
to be no arbitrage opportunity, then the stock price process and the
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value of the replicating portfolio must also have the same rate of return.
That is, when the value of the stock price is discounted by the savings
account its rate of return must be zero, and is thus a martingale. The
same applies to the value of the replicating portfolio. This discounting
has the effect of creating an effective interest rate of zero. This is very
clear in the one-period binomial model for option valuation. The only
assumption that is being made there is the absence of arbitrage. The
discounting in that model is not something that is imposed externally, but
follows logically from solving the two linear equations. The calculations
produce completely naturally a probability, there named q, under which
the stock price when discounted is a martingale. When setting out the
methodology for option valuation in a continuous-time framework, the
basic idea of using a discounted stock price is borrowed from the one-
period binomial derivation. That is why that method in continuous-time
starts by discounting the stock price. But the steps can also be carried
out in a different way, as follows.

Start from dS(t)/S(t) = μ dt + σ dB(t) and decompose the drift
into its risk-free component r and the excess over the risk-free rate
(μ − r )

dS(t)

S(t)
= r dt + (μ − r ) dt + σ dB(t)︸ ︷︷ ︸

Girsanov

Now apply a Girsanov transformation (as described in full in Chapter 7)
to create a new probability distribution P̂:

σ B̂(t) = (μ − r )t + σ B(t)

d B̂(t) = μ − r

σ
dt + dB(t)

B̂ has picked up the excess return (μ − r ) per unit of risk σ . The result
is

dS(t)

S(t)
= r dt + σ d B̂(t)

This has a drift, so under P̂ the process S is not a martingale. But dis-

counting to S∗(t)
def= S(t)/ exp(r t) gives

d S∗(t)

S∗(t)
= σ d B̂(t)
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which is driftless, so the discounted stock price is a martingale under
P̂. That the drift coefficient of S for option valuation must be r can
also be seen from the Feynman–Kač representation. Discounting by the
savings account means using the savings account as the numeraire. One
can also choose another numeraire, for example the stock price. That is
not a logical choice but the methodology and the resulting option value
are the same. For each numeraire there is a corresponding probability
distribution under which all assets in the model are martingales when
expressed in terms of that numeraire. This is discussed with several
examples in Chapter 8.

Further information on the 1997 Nobel prize in Economics is given
on the Internet at Nobelprize.org. This includes the lectures given by
Merton and Scholes at the prize ceremony.
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Change of Probability

It was shown in Chapter 6 that if the discounted underlying asset of an
option is a martingale, then the value of the option can be computed
as the expected value of the discounted option payoff. The real world
randomness of the underlying asset is not a martingale, but it can be
transformed into a martingale by the change of probability technique
applied to the driving Brownian motion. The change of probability tech-
nique is ubiquitous in financial mathematics. In order to prepare for the
general exposition of the concept, the basic idea is first illustrated for a
discrete distribution. This is followed by a continuous distribution using
the normal distribution as an example.

7.1 CHANGE OF DISCRETE PROBABILITY MASS

Consider an experiment with outcomes recorded numerically by random
variable X . Let the possible values of X be x1 = 3, x2 = 7, x3 = 11, with
equal probability pi = 1

3
.

The mean of X is

E[X ] = 3 1
3

+ 7 1
3

+ 11 1
3

= 7

The variance of X is

Var[X ] = E[X2] − {E[X ]}2 = 32 1
3

+ 72 1
3

+ 112 1
3

− 72 = 10 2
3

Now change the mean, while keeping the variance the same, by changing
the discrete probabilities (p1, p2, p3) to (q1, q2, q3). The new probabil-
ities have to satisfy the following three equations:

(i) q1 + q2 + q3 = 1
(ii) E[X ] = 3q1 + 7q2 + 11q3 = μ (new mean)

(iii) Var[X ] = 32q1 + 72q2 + 112q3 − μ2 = 10 2
3

(original variance)

151
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In matrix notation⎡⎣1 1 1
3 7 11
9 49 121

⎤⎦ .

⎡⎣q1

q2

q3

⎤⎦ =
⎡⎣ 1

μ

μ2 + 10 2
3

⎤⎦
There are three linear equations in three unknowns, so there exists a
unique solution. But for the q’s to be probabilities they have to be no
less than 0 and no greater than 1. For μ = 9 the solution is⎡⎣q1

q2

q3

⎤⎦ =
⎡⎣0.2083

0.0833
0.7083

⎤⎦
The ratios of probabilities q to p are shown below and denoted zi .⎡⎣q1/p1

q2/p2

q3/p3

⎤⎦ =
⎡⎣0.2083/0.3333

0.0833/0.3333
0.7083/0.3333

⎤⎦ =
⎡⎣0.625

0.25
2.125

⎤⎦ =
⎡⎣ z1

z2

z3

⎤⎦
The first feature is that the values of zi are positive. This must be so
because they are ratios of probabilities and probabilities are positive.
The second feature is that if Z is a random variable which can take
the values z1, z2, z3, then the expected value of Z under the original
probabilities pi always equals 1.

Ep[Z ] = q1

p1

p1 + q2

p2

p2 + q3

p3

p3 = q1 + q2 + q3 = 1

For the above example

Ep[Z ] = z1 p1 + z2 p2 + z3 p3 = (0.625) 1
3
+ (0.25) 1

3
+ (2.125) 1

3
=1

The role of Z is to redistribute the original probability mass. For
example, the amount of probability originally concentrated at X = 3
was 0.3333 and has been changed to (0.3333)z1 = (0.3333)(0.625) =
0.2083. The values of X where the probability mass is located are not
changed by this change of probability. Whether there exists a solution
depends on the target mean μ that is chosen. For example μ = 10 gives⎡⎣q1

q2

q3

⎤⎦ =
⎡⎣ 0.2346

−0.2292
0.9896

⎤⎦
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but q2 is not a probability. The reason that there is no solution in this case
is that there is no q weighting of the values 3, 7, 11, that can produce
the value 10.

Now consider a function h of X . This is a random variable. To get from
an expected value of h under the original probability p, to an expected
value of h under the new probability q, multiply the original values by
zi = qi/pi and use the original probability. A subscript is now used to
refer to the probability under which the expectation is taken.

Eq[h(X )] = Ep[Z h(X )]

left-hand side: h(x1)q1 + h(x2)q2 + h(x3)q3

right-hand side: z1h(x1)p1 + z2h(x2)p2 + z3h(x3)p3

Substituting zi = qi/pi then shows the equality of the two expectations
Eq and Ep.

7.2 CHANGE OF NORMAL DENSITY

In the standard normal probability density, (1/
√

2π ) exp[− 1
2
x2], the

exponent − 1
2
x2 can be decomposed as − 1

2
(x − μ)2 − μx + 1

2
μ2. Thus

the standard normal density can be written as

1√
2π

exp
[− 1

2
(x − μ)2

]
exp

[−μx + 1
2
μ2

]
which is the product of a normal density with mean μ and standard devia-
tion 1, and the factor exp[−μx + 1

2
μ2]. This decomposition is the key to

a change of probability for normal distributions, and hence for Brownian
motions. Consider a function h of random variable X ∼ N (0, 1).

E[h(X )] =
∫ ∞

x=−∞
h(x)

1√
2π

exp
[− 1

2
x2

]
dx where x is a value of X

Using the above decomposition, this can also be written as∫ ∞

x=−∞
h(x)

1√
2π

exp
[− 1

2
(x − μ)2

]
exp

[−μx + 1
2
μ2

]
dx

or as ∫ ∞

x=−∞

{
h(x) exp[−μx + 1

2
μ2]

} 1√
2π

exp
[− 1

2
(x − μ)2

]
dx

Now view {...} as a new function g(y)
def= h(y) exp[−μy + 1

2
μ2]. Then
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the above can also be written as∫ ∞

y=−∞
g(y)

1√
2π

exp
[ − 1

2
(y − μ)2

]
dy

which is the expected value of the function g of Y where Y ∼ N (μ, 1).
The probability distribution N (0, 1) will be referred to as P, the prob-
ability distribution N (μ, 1) as P̂. So there are now two expressions for
the expected value, one based on P̂, the other based on P. To distinguish
them, the subscripts P and P̂ are used.

EP[h(X )] =
∫ ∞

x=−∞
h(x)

1√
2π

exp
[ − 1

2
x2

]
dx

EP̂[g(Y )] =
∫ ∞

y=−∞
g(y)

1√
2π

exp
[ − 1

2
(y − μ)2

]
dy

EP̂[g(Y )] = EP[h(X )]

The left uses the Y density

1√
2π

exp
[ − 1

2
(y − μ)2

]
at Y = y

and the integrand is

g(y) = h(y) exp
[ − μy + 1

2
μ2

]
It can also be written as EP̂{h(Y ) exp[−μY + 1

2
μ2]}. So an alternative

way to compute the expected value of h(X ) under P̂ is to multiply the
value of h(Y ) by exp[−μY + 1

2
μ2], then use Y ∼ N (μ, 1). Note that EP̂

is applied to the product of two functions of the same random variable
Y , so there is no need for a joint probability distribution. The right uses
the X density (1/

√
2π ) exp[− 1

2
x2] at X = x and the integrand is h(x).

Using P̂, the computations are based on a random variable, Y , that has
its mean shifted relative to X .

7.3 CHANGE OF BROWNIAN MOTION

The probability density of Brownian motion at B(t) = x is

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]
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Using the decomposition of the previous section and replacing x by
x/

√
t and μ by −ϕ

√
t , where ϕ is a constant, this can be written as

1√
t
√

2π
exp

[
− 1

2

(
x+ϕt√

t

)2
]

exp
[
ϕx + 1

2
ϕ2t

]
which is the product of a normal density and the factor exp[ϕx + 1

2
ϕ2t].

The ratio of the second density to the original density at x is

1√
t
√

2π
exp

[
− 1

2

(
x+ϕt√

t

)2
] /

1√
t
√

2π
exp

[
− 1

2

(
x√
t

)2
]

= exp[−ϕx − 1
2
ϕ2t]

For different values x of B(t) the right-hand side is a random variable,
say Z .

Z (t)
def= exp

[ − ϕB(t) − 1
2
ϕ2t

]
This ratio is called the Radon–Nikodym derivative with respect to B(t),
and is further explained in Section 7.10. Now introduce the new random

variable B̂(t)
def= B(t) + ϕt . Then a value B(t) = x corresponds to a

value x + ϕt of B̂(t). If values taken by B̂(t) are denoted y, then y =
x + ϕt . The expression

1√
t
√

2π
exp

[
− 1

2

(
x+ϕt√

t

)2
]

can then be written as

1√
t
√

2π
exp[− 1

2
( y√

t
)2]

which is the density of a Brownian motion. The random variable B̂(t) =
B(t) + ϕt has induced a new probability under which it is a Brownian
motion. Under the original probability, Eorig[B̂(t)] = ϕt and Varorig = t .
Under the new probability, Enew[B̂(t)] = 0 and Varnew = t . By the
change of probability, the expected value has changed but the variance
has not.

7.4 GIRSANOV TRANSFORMATION

Let ϕ be a constant, and define the random process

Z (t)
def= exp

[
−ϕB(t) − 1

2
ϕ2t

]
for 0 < t ≤ T .
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It starts at Z (0) = exp(0) = 1, and its values are non-negative. The ap-
plication of Itō’s formula readily gives d Z (t) = −ϕZ (t) d B(t), which
is driftless so the process Z is a martingale; values greater than 1, and
values between 0 and 1, average to Z (0) = 1. For any t , E[Z (t)] = 1.
The previous section showed that by using Z (t) a new probability P̂
could be created. Now define a new random process B̂ as a drift change
to Brownian motion B for all t , under probability P.

B̂(t)
def= B(t) + ϕt

It turns out that B̂(t) is a Brownian motion under the new probability
distribution P̂ which is created by Z from the original probability P. This
construction is known as the Girsanov transformation, after the Russian
mathematician.

The proof uses the Lévy characterization of Brownian motion. It must
thus be shown that:

(i) B̂(0) = 0 and B̂ has a continuous path
(ii) B̂(t) is a martingale under P̂

(iii) [d B̂(t)]2 = dt under P̂. This is equivalent to B̂(t)2 − t being a mar-
tingale under P̂, as shown below in the subsection “Equivalent Ex-
pression”.

Proof

(i) B̂(0) = B(0) + ϕ0 = 0, and the transformation from B to B̂ is con-
tinuous in t .

(ii) Use EP̂[B̂] = EP[Z B̂]. If it is shown that Z (t)B̂(t) is a martin-
gale under P, then B̂(t) is a martingale under P̂1. To verify the
former, use the stochastic differential of Z B̂ to derive an expres-
sion for the change in Z B̂ over an arbitrary time period, and
check if the expected value of this change is zero. For convenience

introduce the notation Y (t)
def= Z (t)B̂(t). The product rule gives

dY (t) = Z (t) d B̂(t) + B̂(t) d Z (t) + d Z (t) d B̂(t), under P. Substi-
tuting d Z (t) = −ϕZ (t) dB(t) and d B̂(t) = dB(t) + ϕ(t) dt gives

dY = Z [dB + ϕ dt] + B̂[−ϕZ dB] + [−ϕZ dB][dB + ϕ dt]

= Z [1 − B̂ϕ] dB

= Z [1 − {B + ϕt}ϕ] dB

1 This relationship is derived in Kuo p 142 and in Shreve II p 212.
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Introduce the simplified notation

f (t)
def= Z (t)[1 − {B(t) + ϕt}ϕ]

= exp
[−ϕB(t) − 1

2
ϕ2t

]
[1 − {B(t) + ϕt}ϕ]

This is non-anticipating as its value can be determined at any time t .
The corresponding integral expression over [t, t + u] is then

Y (t + u) − Y (t) =
∫ t+u

s=t
f (t)) dB(s)

It can be shown that
∫ t+u

s=t E[ f (t)2] dt is finite 2, so
∫

f dB is an Itō
stochastic integral. Thus EP[Y (t + u) − Y (t)|�(t)] = 0 and Y is a
martingale under P, as was to be shown.

(iii) Using the same approach as in (ii), introduce the notation X (t)
def=

B̂(t)2 − t , and verify whether X Z is a martingale under P. The
product rule gives d[X Z ] = X d Z + Z d X + d X d Z . By Itō’s for-
mula

d X = ∂ X

∂t
dt + ∂ X

∂ B̂
d B̂ + 1

2

∂2 X

∂ B̂2
(d B̂)2 + ∂2 X

∂t∂ B̂
dt d B̂

= −1 dt + 2B̂ d B̂ + 1
2
2(d B̂)2 + 0 dt d B̂

Under probability P, d B̂(t) = dB(t) + ϕ dt , so [d B̂(t)]2 =
[dB(t)]2 = dt . Beware that one cannot write [d B̂(t)]2 = dt without
going via B because this is under P. Similarly, dt d B̂ = dt (dB +
ϕ dt) = dt dB + ϕ dt dt = 0, although that term is not needed. That
gives d X = 2B̂ d B̂. Then

d[X Z ] = X (−ϕZ dB) + Z (2B̂ d B̂) + (2B̂ d B̂)(−ϕZ dB)

= X (−ϕZ dB) + Z2B̂(dB + ϕ dt) + (2B̂ d B̂)(−ϕZ dB)

Using the expressions for B̂, and d B̂ (under P) and rearranging
gives

d[X Z ] = Z [−ϕX + 2{B + ϕt}] dB

Then substituting the expressions for Z and X , and using the same
approach as in (ii) and in footnote 2, shows that XZ is a martingale
under P.

2 This can be done analytically, or numerically with Mathematica for arbitrary values of ϕ, t and u.
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This completes the proof of the Girsanov transformation for the case
when ϕ is a constant. It can also be shown to hold for the case when
ϕ is a non-random function of time, and when ϕ is a random process.

Then B̂(t)
def= B(t) + ∫ t

u=0
ϕ(u) du. In the random case there is an ad-

ditional condition to ensure that Z is a martingale. A sufficient condi-
tion proposed by Novikov is that EP

[
exp

(
1
2

∫ t
u=0

ϕ(u, ω)2 du
)]

must be
finite. Other conditions can be found in the technical literature. Their
discussion is beyond the scope of this text. Clearly when ϕ is non-
random this condition is satisfied. In the literature one also sees −ϕ

being used, then the B(t) term in the exponent of Z changes sign.
The Radon–Nikodym derivative used in the Girsanov transformation
B̂(t) = B(t) ± ∫ t

u=0
ϕ(u, ω) du can be easily ‘remembered’ as the solu-

tion to the SDE dZ(t)/Z (t) = ∓ϕ(t, ω) dB(t) with Z (0) = 1. When the
time term in the transformation has a positive coefficient, the right hand
side of the SDE has a negative coefficient. The Brownian paths that can
exist under P and P̂ are the same, the only difference is that they have
different probabilities of occurring. This is the same as in Section 7.1,
where the possible outcomes of the random variable are not changed.

Equivalent expression B(t)2−t being a martingale implies that [dB(t)]2= dt , and

vice versa. This can be summarized as B(t)2 − t ⇔ [dB(t)]2= dt . Which of these ex-

pressions is the most convenient depends on the context. The above proof of the Girsanov

transformation uses B̂(t)2−t . It is convenient to introduce the notation X (t)
def= B(t)2−t

which is a function of t and B(t). Itō’s formula gives

d X=∂ X

∂t
dt+∂ X

∂ B
dB+1

2

∂2 X

∂ B2
(dB)2=−dt + 2B dB + (dB)2

Proof of ⇒ If X is a martingale then the drift of dX must be zero, thus (dB)2 must equal

dt .
Proof of ⇐ If (dB)2 = dt then dX = 2B dB which is driftless so X is a martingale.

It is informative to get some practice in moving between Brownian mo-
tions B (under probability P) and B̂ (under probability P̂). The Radon–
Nikodym derivative is always the ratio of the new probability over the
original probability, expressed in terms of the random variable which is
under the original probability.

First revisit the basic case of going from B to B̂ via B̂(t) = B(t) + ϕt
with constant ϕ. New is B̂ under P̂. The probability density of B̂(t) at
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B̂(t) = y is

1√
t
√

2π
exp

[
−1

2

(
y√
t

)2
]

The original is B under P. The probability density of B(t) at B(t) = x
is

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

The ratio of densities is

dP̂
dP

= exp

[
−1

2

(
y√
t

)2
] /

exp

[
−1

2

(
x√
t

)2
]

This must be in terms of x . Substituting y = x + ϕt and rearrranging
gives

dP̂
dP

= exp
[−ϕx − 1

2
ϕ2t

]
at B(t) = x

So the Radon–Nikodym derivative is

dP̂
dP

= exp
[−ϕB(t) − 1

2
ϕ2t

]
Now the reverse, going from B̂ to B. New is B under P. Original is B̂
under P̂. The ratio of densities is

dP
dP̂

= exp

[
−1

2

(
x√
t

)2
] /

exp

[
−1

2

(
y√
t

)2
]

This must be in terms of y. Substituting x = y − ϕt and rearrranging
gives

dP
dP̂

= exp
[
ϕy − 1

2
ϕ2t

]
at B̂(t) = y

The Radon–Nikodym derivative is

dP
dP̂

= exp
[
ϕ B̂(t) − 1

2
ϕ2t

]
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Next analyse the relationship between dP̂
dP and dP

dP̂ . dP̂
dP is a function of

B(t). Substituting B(t) = B̂(t) − ϕt gives

dP̂
dP

= exp
[−ϕ{B̂(t) − ϕt} − 1

2
ϕ2t

] = exp
[−ϕ B̂(t) + 1

2
ϕ2t

]
Then 1/dP̂/dP = exp[ϕ B̂(t) − 1

2
ϕ2t]. So 1/(dP̂/dP) = dP/dP̂, and

note that this is expressed in terms of what is the original variable from
the perspective of using dP/dP̂, namely B̂(t). Now the reverse. dP/dP̂
is a function of B̂(t). Substituting B̂(t) = B(t) + ϕt gives

dP
dP̂

= exp
[
ϕ{B(t) + ϕt} − 1

2
ϕ2t

] = exp
[
ϕB(t) + 1

2
ϕ2t

]
So

1

/
dP
dP̂

= exp
[−ϕB(t) − 1

2
ϕ2t

] = dP̂
dP

This is expressed in terms of variable B(t), the original when dP̂/dP is
used.

The case B̂(t) = B(t) − ϕt follows by changing the sign of ϕ in the
expressions above.

The most general form of the Girsanov transformation is discussed in
Shreve II Theorem 5.2.3, pp. 212–213, for a one-dimensional Brownian
motion, and in Theorem 5.4.1 pp. 224–225 for the multi-dimensional
case. Other references are Kuo Section 8.9, Lin Section 6.3, Capasso/
Bakstein Section 4.3. An interesting heuristic derivation of the Girsanov
transformation is given in Bond Pricing and Portfolio Analysis by de la
Grandville Section 16.7.2.

7.5 USE IN STOCK PRICE DYNAMICS – REVISITED

Let S∗ denote the discounted stock price as used previously. Under the
original probability P

d S*(t)

S*(t)
= (μ − r ) dt + σ dB(t) = σ

[(
μ − r

σ

)
dt + dB(t)

]
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For option valuation S*(t) needs be a martingale. This is accomplished
by the Girsanov transformation

B̂(t)
def=

(
μ − r

σ

)
t + B(t)

so [(μ − r ) /σ ] dt + dB(t) is replaced by d B̂(t), and

d S*(t)

S*(t)
= σ d B̂(t) under P̂

The Radon–Nikodym derivative that creates P̂ is

Z (t)
def= exp

[
−

(
μ − r

σ

)
B(t) − 1

2

(
μ − r

σ

)2

t

]

This is now illustrated numerially. The parameter values are: growth
rate μ = 8%, interest rate r = 5%, volatility σ = 20%, t = 1, so ϕ =
0.15 and Z = exp[(−0.15)B(1) − 1

2
(0.15)21] is a decreasing function

of B(1). On the horizontal axis of the chart are the values of B(1).
Multiplying the density of B(1) by the decreasing Z has the effect of
pulling up the original density to the left of the origin and pulling it down
on the right. The original density pivots, as shown in Figure 7.1.

-3 -2 -1 1 2 3
Bt

0.25

0.5

0.75

1

1.25

1.5

new & old BM density

Figure 7.1 Pivoting of Brownian motion density
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7.6 GENERAL DRIFT CHANGE

Let random process X be originally specified by

d X (t) = μorig(.) dt + σorig(.) dBorig(t)

where Borig is a Brownian motion under the original probability distribu-
tion Porig, and (.) indicates possible dependence on t and X . Now derive
the dynamics under a new drift coefficient μnew(.). To this end, rewrite
the drift in terms of this new coefficient as

d X (t) = μnew(.) dt − μnew(.) dt + μorig(.) dt + σorig(.) dBorig(t)

= μnew(.) dt + [μorig(.) − μnew(.)] dt + σorig(.) dBorig(t)

= μnew(.) dt + σorig(.)

{
μorig(.) − μnew(.)

σorig(.)
dt + dBorig(t)

}
= μnew(.) dt + σorig(.)[ϕ(.) dt + dBorig(t)]

where

ϕ(.)
def= μorig(.) − μnew(.)

σorig(.)
.

Assuming that the Novikov condition is satisfied, apply the Girsanov
transformation

Bnew(t)
def=

∫ t

s=0

ϕ(.) ds + Borig(t)

or

dBnew(t) = ϕ(.) dt + dBorig(t)

Bnew is a Brownian motion under a new probability distribution Pnew

created from Porig by the Radon–Nikodym derivative

dPnew

dPorig

= exp

{
−1

2

∫ t

s=0

[
μorig(.) − μnew(.)

σorig(.)

]2

ds

−
∫ t

s=0

μorig(.) − μnew(.)

σ (.)
dBorig(s)

}
The new SDE for X is

d X (t) = μnew(.) dt + σorig(.) dBnew(t)
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7.7 USE IN IMPORTANCE SAMPLING

Importance sampling can be an efficient method for increasing the ac-
curacy of a simulation. It is based on a change of probability density.
The method is illustrated for an option valuation for which the exact
value is known, so as to have a benchmark for the impact of importance
sampling. Consider the valuation of a European put option under the
martingale method

p(0) = E{exp(−rT ) max[K − S(T ), 0]}
= exp(−rT )

∫ ∞

x=0

max[K − x, 0] f (x) dx

where f (x) denotes the lognormal probability density of S(T ) at S(T ) =
x . This integral can be approximated by simulating n values x1, . . . , xi ,
. . . xn of S(T ) according to density f (x), computing the corresponding
put payoffs max[K − xi , 0], and taking the average

1

n

n∑
i=1

max[K − xi , 0]

An alternative way to formulate the integral is by introducing another
probability density g and writing f as ( f/g)g. The integration variable
is now denoted y to emphasize the new formulation∫ ∞

y=0

max[K − y, 0]
f (y)

g(y)
g(y) dy

As g is a probability density, this integral is the expected value of the
random variable

max[K − S(T ), 0]
f [S(T )]

g[S(T )]

where density g is used in taking the expectation. This expectation
can be approximated by simulating n values y1, . . . yi , . . . , yn of
S(T ) according to density g(x), computing the corresponding quanti-
ties max[K − yi , 0][ f (yi )/g(yi )], and taking the average

1

n

n∑
i=1

max[K − yi , 0]
f (yi )

g(yi )

By choosing g to be the density of S(T ) with stock price growth rate m
lower than r , more of the simulated S(T ) values will be in the money
(<K ), so more positive put values are generated than when using r . The
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60 80 100 120 140 160
ST

0.01

0.02

0.03

0.04
lognormal densities

Figure 7.2 Shifted lognormal density

simulation now concentrates on the important values, and this method is
therefore known as importance sampling. Density g is changed back to
density f by multiplying it by the ratio f/g at yi , which is a realization of
the Radon–Nikodym derivative, the random variable f [S(T )]/g[S(T )].

By a clever choice of m, the average from sampling under g has a
much lower variance than ordinary sampling under f . In the martingale
method E[S(T )] = S(0)erT . Changing r to m, this becomes Em[S(T )] =
S(0)emT . A good choice of m is the one for which this expected value
equals K . That is m = ln[K/S(0)]/T . The shift in the density and the
numerical impact of importance sampling are shown in Figures 7.2
and 7.3 respectively.

Option parameter values put call
out of the money value value
S(0) 100 exact 0.027522 0.022780
K 80 put normal sampling 0.034216 0.027458

130 call importance sampling 0.027387 0.022571
T 0.25
σ 20.00% reduction factor
r 5.00% variance 183 264

st error 13 16

10000 simulation runs in Mathematica

Figure 7.3 Importance sampling impact
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A method for producing a family of probability distributions that
can be used for importance sampling will now be described. Consider
a continous random variable X with probability density f (x) at X =
x ; refer to this as the original probability P f . The moment generating
function of X , using parameter θ , is

m(θ )
def= E f [eθ X ] =

∫ ∞

x=−∞
eθx f (x) dx

assume that it is finite. Now create a new probability distribution,
here denoted Pg, from the original probability distribution P f , by the
Radon–Nikodym derivative

dPg

dP f

def= eθ X

m(θ )

The corresponding new density is g(x)
def= eθx

m(θ )
f (x).3 It is a density

because g(x) is non-negative and the area under g equals 1.∫ ∞

x=−∞
g(x) dx =

∫ ∞

x=−∞

eθx

m(θ )
f (x) dx

= 1

m(θ )

∫ ∞

x=−∞
eθx f (x) dx = 1

m(θ )
m(θ ) = 1

That is also the expected value of dPg/dP f using density f . This trans-
formation of probability is known as exponential tilting.

To illustrate, let X be standard normal. Then

m(θ ) = E f [eθ X ] = eE[X ]+ 1
2
Var[X ] = e

1
2
θ2

and

dPg

dP f
= eθ X− 1

2
θ2

The new density, at X = y, under Pg is

eθy− 1
2
θ2 1√

2π
e− 1

2
y2

3 An alternative formulation is as follows. Write m(θ ) = eln[m(θ )]. The ln of the mgf is known as the cumulant
generating function, denoted ψ(θ ) or κ(θ ). Then g(x) = eθx−ψ(θ ) f (x).
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The exponent rearranges to − 1
2
(y − θ )2. The transformation has in-

creased the mean from 0 to θ . Under Pg, X ∼ N (θ, 1). Similarly, if
X ∼ N (μ, σ 2), then

m(θ ) = eθμ+ 1
2
θ2σ 2

and
dPg

dP f
= eθ X−θμ− 1

2
θ2σ 2

The resulting new density is normal with mean μ + θσ 2, an increase of
θσ 2; the original variance σ 2 is unchanged.

Another example is for exponential random variable τ with density
λe−λt at τ = t . Here

m(θ ) =
∫ ∞

t=0

eθ tλe−λt dt = λ

λ − θ

provided θ < λ, and

dPg

dP f
= exp

(
θ t − ln

[
λ

λ − θ

])
= exp(θ t) exp

(
ln

[
λ − θ

λ

])
= exp(θ t)

λ − θ

λ

The new density at τ = t is

dPg

dP f
λe−λt = eθ t λ − θ

λ
λe−λt = (λ − θ )e−(λ−θ )t

which is again exponential with the parameter value reduced by θ .
Ordinary simulation computes an approximation of E f [X ]. Under

density g this becomes

Eg

[
X

dP f

dPg

]
where

dP f

dPg
= m(θ)

eθ X
.

Suggestions for suitable choices of the value of θ can be found in the
references. Thus far, g and f were densities of the same type. That need
not be the case. Density g can be a different one provided g and f assign
probability zero to the same events. Exponential tilting can be applied
to discrete distributions in the same way.

Applications include the simulation of expressions which depend on a
rare event in risk management, such as a credit default by a company, or
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an excessive loss. Such events have a very low probability and ordinary
simulation does not give enough accuracy.

A recommended first reference on importance sampling is McLeish
Chapter 5. Extensive coverage is given in Glasserman and Asmussen/
Glynn.

7.8 USE IN DERIVING CONDITIONAL
EXPECTATIONS

Conditional expectations of exponential expressions arise in options
valuation.

Example 7.8.1. The value of a standard European call is com-
puted as exp(−rT )EP̂[max[S(T ) − K , 0] where S(T ) = S(0) exp[(r −
1
2
σ 2)T + σ B̂(T )], B̂ is Brownian motion under probability P̂, and EP̂

is the corresponding expected value. This is now expressed using the
indicator function 1 as

exp(−rT )EP̂[S(T ) 1{S(T )>K }] − exp(−rT )KEP̂[1{S(T )>K }]

It is known from elementary probability theory that the expected value
of the indicator function of an event is the probability of that event. Thus
the second term equals exp(−rT )K P̂[S(T ) > K ], which can be readily
evaluated. The first term cannot be handled the same way as S(T ) is
a random variable and cannot be taken outside EP̂. But the change of
probability technique can help. The expected value of a random variable,
say X , under a new probability can be written as the expected value under
the original probability P̂ multiplied by the Radon–Nikodym derivative
that is used in creating the new probability,

EPnew
[X ] = EP̂

[
dPnew

dP̂
X

]
The idea now is to use the exponential expression in S(T ) to create a
Radon–Nikodym derivative. Then the expected value under the original
probability can be written as the expected value under a new probability,
and then as a probability under the new probability, which can be readily
evaluated. Rewrite S(T ) as S(0) exp(rT ) exp[− 1

2
σ 2T + σ B̂(T )]. The
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term exp[− 1
2
σ 2T + σ B̂(T )] is the Radon–Nikodym derivative dPnew

dP̂ for

the change of Brownian motion Bnew(T )
def= B̂(T ) − σ T . So

exp(−rT )EP̂[S(T ) 1{S(T )>K }]
= exp(−rT )S(0) exp(rT )EP̂

{
exp

[− 1
2
σ 2T + σ B̂(T )

]
1{S(T )>K }

}
= S(0)EP̂

[
dPnew

dP̂
1{S(T )>K }

]
= S(0)EPnew

[1{Snew(T )>K }]
= S(0)Pnew[Snew(T ) > K ]

Now Snew(T ) has to be expressed in terms of Bnew(T ) by substituting
B̂(T ) = Bnew(T ) + σ T , giving

Snew(T ) = S(0) exp(rT ) exp
[− 1

2
σ 2T + σ {Bnew(T ) + σ T }]

= S(0) exp(rT ) exp
[

1
2
σ 2T + σ Bnew(T )

]
The sign of 1

2
σ 2T has changed. It is now straightforward to evaluate the

first term as

S(0)Pnew

{
S(0) exp(rT ) exp

[
1
2
σ 2T + σ Bnew(T )

]
> K

}
Rearranging gives

S(0)Pnew

{
σ Bnew(T ) > ln

[
K

S(0)

]
− (r + 1

2
σ 2)T

}
As Bnew(T ) is normal with mean 0 and standard deviation

√
T , the

resulting probability equals N (d1) where

d1
def= ln[ S(0)

K ] + (r + 1
2
σ 2)T

σ
√

T

so the first term equals S(0)N (d1). The first term could have been eval-
uated by elementary ordinary probability methods, but the purpose here
was to illustrate a change of probability technique on a standard case
from option valuation theory. The technique is particularly useful in the
derivation of probability distributions which are used in the valuation of
barrier options.

Example 7.8.2. In the above example the Radon–Nikodym derivative
was found by a simple decomposition of the stock price expression.
Sometimes a bit more creativity is required, as when computing the
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expected value of exp[B(t)] for B(T ) > K where K is a constant. This
can be written as EPorig

[exp[B(t) 1{B(t)>K }]]. Here a Radon–Nikodym
derivative can be constructed by rearranging the exponent.

exp[B(t)] = exp
[

1
2
t − 1

2
t + B(t)

] = exp
[

1
2
t
]

exp
[− 1

2
t + B(t)

]
= exp

[
1
2
t
] dPnew

dPorig

The corresponding change of Brownian motion is Bnew(t)
def= B(t) − t

so B(t) = Bnew(t) + t . Thus

EPorig
[exp[B(t) 1{B(t)>K }]] = exp

[
1
2
t
]
EPorig

[
dPnew

dPorig

1{B(t)>K }

]
= exp

[
1
2
t
]
EPnew

[
1{Bnew(t)+t>K }

]
= exp

[
1
2
t
]
Pnew[Bnew(t) > K − t]

and

Pnew[Bnew(t) > K − t] = Pnew[
√

t Z > K − t]

= Pnew[
√

t Z < t − K ] = N

(
t − K√

t

)
The final result is exp[ 1

2
t]N [(t − K )/

√
t]. For K = −∞ this becomes

exp[ 1
2
t] which is the same as using the well-known formula for the

normal random variable B(t), exp{E[B(t)] + 1
2
Var[B(t)]}.

Example 7.8.3. Here the probability distribution is derived of the run-

ning maximum of W , where W (t)
def= B(t) + ϕt , and B is Brownian

motion under probability distribution P. Let

M(t)
def= max[W (t)] on [0, t]

denote the running maximum of W . The valuation of barrier options
makes use of the joint probability distribution of W and M in the form
P[W (t) ≤ x, M(t) ≥ y]. This will now be derived and entails two suc-
cessive Girsanov transformations. As W is not a Brownian motion under
probability P, the first step is to change to a probability P̂ under which W
is a Brownian motion. To this end, write the joint probability under P as
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the expected value of the indicator function as EP[1{W (t)≤x,M(t)≥y}]. For

the transformation W (t)
def= B(t) + ϕt the Radon–Nikodym derivative is

dP̂
dP

= exp
[− 1

2
ϕ2T − ϕB(T )

]
This produces a new probability P̂ under which W is a Brownian motion.
Converting from expectation under P̂ to expectation under P, requires
dP/dP̂ = 1/(dP̂/dP). This is exp[ 1

2
ϕ2T + ϕB(T )] in terms of B(T ),

but as it will be used under P̂, the random variable in dP/dP̂ must be
Brownian motion under P̂, which is W . Expressing B in terms of W ,
using B(T ) = W (T ) − ϕT gives

dP
dP̂

= exp
[

1
2
ϕ2T + ϕ{W (T ) − ϕT }] = exp

[− 1
2
ϕ2T + ϕW (T )

]

EP[1{W (t)≤x,M(t)≤y}] = EP̂

[
dP
dP̂

1{W (t) ≤ x, M(t) ≤ y}
]

= EP̂
[
exp

[− 1
2
ϕ2T + ϕW (T )

]
1{W (t)≤x,M(t)≤y}

]
Use will now be made of the so-called reflection principle for a Brownian
motion.4 This can be used here because W is a Brownian motion under
the prevailing probability P̂. Its application replaces W by its reflection
against y, 2y − W , giving

EP̂
[
exp

[− 1
2
ϕ2T + ϕ{2y − W (T )}] 1{2y−W (t)≤x,M(t)≤y}

]
Write the indicator function as 1{W (t)≥2y−x,M(t)≤y}. A further simplifi-
cation is obtained by noting that 2y − x ≥ y, and that W (t) ≥ 2y − x
implies M(t) ≥ y (because M is the max of W ). The indicator function
is then 1{W (t)≥2y−x}, leaving

exp(2ϕy)EP̂
[
exp

[− 1
2
ϕ2T − ϕW (T )}] 1{W (t)≥2y−x}

]
As the first term inside EP̂ is a Radon–Nikodym derivative, a further

transformation to probability ̂̂P can be made using

d̂̂P
dP̂

= exp
[− 1

2
ϕ2T − ϕW (T )

]
4 See Annex A, Computations with Brownian Motion.
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The corresponding Brownian motion transformation is ̂̂W (t)
de f= W (t) +

ϕt . This gives

exp (2ϕy)EP̂
[
exp

[− 1
2
ϕ2T − ϕW (T )}] 1{W (t)≥2y−x}

]
= exp(2ϕy)EP̂

[
d̂̂P
dP̂

1{W (t)≥2y−x}

]
= exp(2ϕy)Ê̂P [

1{W (t)≥2y−x}
]

= exp(2ϕy )̂̂P[W (t) ≥ 2y − x]

To get this in terms of ̂̂W , add ϕt , giving

exp(2ϕy )̂̂P[W (t) + ϕt ≥ 2y − x + ϕt]

= exp(2ϕy )̂̂P[ ̂̂W (t) ≥ 2y − x + ϕt]

As ̂̂W is a Brownian motion under ̂̂P, this probability can be readily

verified. Writing ̂̂W (t) as Z
√

t , Z standard normal, gives

̂̂P[Z ≥ (2y − x + ϕt)/
√

t] = ̂̂P [
Z ≤ −(2y − x + ϕt)√

t

]
= N

[
(−2y + x − ϕt)√

t

]
The final result is

P[W (t) ≤ x, M(t) ≥ y] = exp(2ϕy)N

[
(−2y + x − ϕt)√

t

]
The joint probability distribution in the standard form, P[W (t) ≤
x, M(t) ≤ y], can be derived from the above by noting that

P[W (t) ≤ x, M(t) ≥ y] + P[W (t) ≤ x, M(t) ≤ y] = P[W (t) ≤ x]

as it removes the conditioning on M . Then

P[W (t) ≤ x] = P[B(t) + ϕt ≤ x]

= P[B(t) ≤ x − ϕt]

= P
[

Z ≤ (x − ϕt)√
t

]
= N

[
x − ϕt√

t

]
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gives

P[W (t) ≤ x, M(t) ≤ y] = N

[
x − ϕt√

t

]
− exp(2ϕy)N

[−2y + x − ϕt√
t

]
The use of the change of probability in obtaining probability distributions
for barrier options is given in Epps and Lin.

7.9 CONCEPT OF CHANGE OF PROBABILITY

The starting point is a random variable Z whose values are non-negative,
and which has expected value 1. This expected value can always be cre-
ated by scaling the values of an arbitrary non-negative random vari-
able by its mean. If f (z) denotes the density of Z at Z = z, then
E[Z ] = 1 = ∫ ∞

z=0
z f (z) dz. Consider interval A = [0, α]. Let 1A denote

the indicator variable on set A; it has value 1 on A and 0 elsewhere.
Then Z 1A is a random variable with values in the range [0, α]. Its ex-
pected value is E[Z 1A] = ∫ α

z=0
z f (z) dz which is a function of upper

integration limit α. Denote it by P̂(α). This function has the following
four properties:

(i) If α = ∞ then P̂(∞) =
∞∫

z=0

z f (z) dz = E[Z ] = 1

(ii) If α = 0 then P̂(0) =
0∫

z=0

z f (z) dz = 0

(iii) For any 0 < α < ∞ ,
α∫

z=0

z f (z) dz is positive because z in the inte-

grand is positive by the definition of Z as a strictly positive random
variable, and f (z) is positive because it is a probability density

(iv) Function P̂(α) increases monotonically with α.

Thus P̂ is a probability distribution function. The reason that E[Z ] had
to equal 1 is now clear. If E[Z ] 
= 1 then P̂(∞) would not equal 1 and P̂
would not be a probability distribution. The corresponding density, here
denoted g, is obtained by differentiating the distribution function with
respect to the upper integration limit α, g(α) = dP̂(α)/dα = α f (α).
So α = g(α)/ f (α) is the ratio of densities at Z = α. This can also be
written as g(α) dα = α[ f (α) dα] where g(α) dα is a small amount of
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probability located at α which is often denoted as dP̂(α), and simi-
larly f (α) dα is denoted dP(α). In this notation dP̂(α) = α dP(α), or
α = dP̂(α)/dP(α). As α is a value of random variable Z , this can be
written as Z = dP̂(α)/dP(α). It is the ratio of a small amount of new
probability, dP̂, to a small amount of original probability, dP. In the liter-
ature this ratio is named after the mathematicians Radon and Nikodym
who established a property in real analysis which was subsequently
employed in probability theory. There are several names in use. The
name Radon–Nikodym derivative comes from the appearance of the ra-
tio as a derivative, and is used in this text. The name Radon–Nikodym
density expresss how much probability mass there is in dP̂ in terms
of dP. It is also known as the likelihood ratio. But detached from this
mathematical origin, one might call it the redistributor of probability
mass.

Because the Radon–Nikodym derivative is a ratio of probability
masses, the probability of values that cannot occur must be the same
under probability distributions P̂ and P, otherwise there could be a situ-
ation where a positive dP is divided by a zero value of dP̂, or vice versa,
dP̂ is divided by a zero value of dP.

In advanced probability books this is described in the following terminology:

Absolutely Continuous Probability: If for any event A, for which P[A] = 0, it follows

that P̂[A] = 0, then probability P̂ is said to be absolutely continuous with respect

to probability P. This is written as P̂ << P (double inequality sign).

Equivalent Probabilities: If both P̂ << P and P << P̂, that is if P[A] = 0 implies

P̂[A] = 0, and P̂[A] = 0 implies P[A] = 0, then P and P̂ are said to be equivalent

probabilities. This is denoted as P ∼ P̂. The corresponding probability spaces are

(
, �, P) and (
, �, P̂).

Note that both probabilities are defined on the same σ -algebra of events �, that is, the

events on which the probabilities are defined are the same, but there are two probabilities

for each event. In more technical terminology: two probability measures P and P̂ defined

on the same event space �, are equivalent if they have the same null sets. From the work

of Radon and Nikodym in real analysis it can be derived that if P and P̂ are equivalent

probability measures on the space (
, �), then there exists a unique random variable Z
such that for all events A ∈ � it holds that

P̂[A] =
∫

A
Z dP = EP[Z 1A] and P[A] =

∫
A

1

Z
dP̂ = EP̂

[
1

Z
1A

]
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7.9.1 Relationship between Expected Values under Equivalent
Probabilities

For a function h of random variable X , the expectation under P̂ can be
expressed in terms of the expectation under P as

EP̂[h(X )] =
∫

h(X ) dP̂ =
∫

h(X )
dP̂
dP

dP = EP

[
h(X )

dP̂
dP

]
= EP[h(X )Z (X )]

Note that dP̂/dP is a function of the single random variable X , so the
expression of which the expectation is taken involves only X . To get
the expectation of a function of a random variable under probability
P̂, multiply the function by random variable dP̂/dP, and take the ex-
pected value under probability P. A change of probability does not affect
the value of an expectation because the random variable of which the
expectation is taken is adjusted.

In the Girsanov transformation the Radon–Nikodym derivative is an
exponential expression because it is the ratio of Brownian motion den-
sities which are exponential. If the densities in the ratio are other than
normal, then the Radon–Nikodym derivative is not necessarily exponen-
tial, as illustrated in exercises [7.10.1] and [7.10.7].

In the literature the original probability is usually labelled P. It is the
P in the familiar expression for the probability that a random variable X
takes values in a specified interval, P[a ≤ X ≤ b]. The new probability
is often labelled Q in the literature and the new probability of this event
is then written as Q[a ≤ X ≤ b]. But in order to maintain the familiarity
with the well-established P notation, notation such as P*, P̃, P̂, is also
widely used.

7.10 EXERCISES

[7.10.1] (from Epps) Random variable X has the exponential distri-
bution with density exp(−x). Random variable Y has density
x exp(−x). Determine the Radon–Nikodym derivative, and plot
its graph.

[7.10.2] Random variable X is N (0, 1) under probability P. Let Y
def=

X + μ. Under probability P̂, Y is N (0, 1). Determine the
Radon–Nikodym derivative.
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[7.10.3] Random variable Y is N (0, 1) under probability P̂. Let X
def=

Y − μ. Under probability P, X is N (0, 1). Determine the
Radon–Nikodym derivative.

[7.10.4] Over the time period [0, T ] the random terminal stock price
S(T ) is related to the given initial stock price S(0) = 1 by
S(T ) = exp[(μ − 1

2
σ 2)T ] + σ BP(T )] under the original prob-

ability P; μ is the true growth rate of the stock price. Under
the risk-neutral probability P̂ it is S(T ) = exp[(r − 1

2
σ 2)T +

σ BP̂(T )] where r is the risk-free interest rate.
(a) Derive the expected value of S(T ) under P.
(b) Derive the Radon–Nikodym derivative dP̂/dP by which

the density of B(t) can be transformed to the density of
BP̂(T ).

(c) Give the expected value of S(T ) under P̂, and then transform
this to the expected value of S(T ) under P.

[7.10.5] Let random variable W be defined as W (t)
def= B(t) + ϕt where

B is Brownian motion. Specify the Radon–Nikodym derivative
Z that creates a new probability distribution P̂ under which W
is a Brownian motion. Then use Z to compute Ê[W (t)] from
E[W (t)Z (t)].

[7.10.6] Revisit Chapter 6 and show the following:
(a) EP [Z (T )S*(T )] = S(0)
(b) EP [Z (T )V *(T )] = V (0)
(c) EP [Z (T )V *(T )] = EP̂ [V *(T )]

[7.10.7] Redistribution of Poisson probability mass Let random variable
X have a Poisson distribution with parameter λ,

P[X = k] = λk

k!
e−λ for k = 0, 1, 2, . . .

Derive the Radon–Nikodym derivative for a change of probabil-
ity from parameter λ1 to λ2. Construct a graph of the probability
masses and the Radon–Nikodym derivative.

[7.10.8] First passage of a barrier Annex A, Section A.4, derives the
probability density of the random time of first passage of a hori-
zontal barrier. The object of this exercise is to derive the density
when the barrier is straight with upwards slope μ, starting at
level L . This can be done with a Girsanov transformation.
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[7.10.9] Bachelier type stock price dynamics Let the SDE for stock
price S be given by d S(t) = μ dt + σ dB(t), where μ and σ are
constant. Derive the SDE for S under the money market account
as the numeraire. Then turn this into a martingale by a suitable
Girsanov transformation, and specify the expression for the
Radon–Nikodym derivative. Thereafter derive the SDE for the
undiscounted stock price and solve that SDE. Finally, using
this latest stock price, derive the expected value of max[S(T ) −
K , 0] where K is a constant.

7.11 SUMMARY

What is generally called a change of probability measure in the liter-
ature, is a redistribution of probability mass. The best introduction to
how this works is for a discrete probability distribution, because that
has a distinct probability mass associated with each possible value of
the discrete random variable. Section 7.1 explains in a simple example
how the original probability masses p1, p2, p3, are redistributed to new
probability masses q1, q2, q3. It then shows how an expected value of
a function of the discrete random variable can be computed under the
new probabilities q. The numerical expected value is the same because
of the adjustment by the Radon–Nikodym derivative. If probabilities q
and p are both known for all possible values of the discrete random vari-
able, then the ratio qi/pi for each i is the factor by which the original
probability mass pi is changed; it is the value of the probability redis-
tributor at i . Alternatively, if the values of the ratio are given, then the
new probability distribution can be readily computed from the original
one. This same recipe can be applied to continuous probability distribu-
tions. Let X be the random variable, f the original probability density at
X = x , and g the new probability density. The probability that X takes
a value in the interval x + �x is f (x) �x or g(x) �x . The ratio of the
new probability mass to the original is g(x) �x

f (x) �x , which is the ratio of the
densities at X = x,

g(x)
f (x)

. Thus to use g instead of f , the density has to
be multiplied by g(x)/ f (x). The redistribution method can be applied
to any probability distribution, provided the range of outcomes is not
modified. A redistribution of probability does not necessarily keep the
type of density. However for some distributions it is possible to keep the
type of distribution. This is shown in Section 7.2 for a normal distribu-
tion. Because the new density and the original are both of an exponential
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form, the ratio can only be of exponential form. Section 7.3 applies this
to another normally distributed random variable, namely Brownian mo-
tion. The new random variable is connected to the original one via the
constant ϕ. Section 7.4 extends this to where ϕ is a random process;
that is the so-called Girsanov transformation. The Radon–Nikodym is
a random process. Its values are positive, because otherwise it would
create a new probability density that was negative.

Further information on the Radon–Nikodym derivative can be found
on the Internet in Wikipedia.
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8

Numeraire

In Chapter 6 the savings account was used as the numeraire in option
valuation. In some applications it is advantageous to use a different
numeraire. How this works is described here.

8.1 CHANGE OF NUMERAIRE

8.1.1 In Discrete Time

The method of option valuation on a one-period binomial tree, as de-
scribed in Section 6.2, used the savings account as the numeraire. This
produced a probability under which the price processes of all assets in
the model were martingales when their values were expressed in terms
of this numeraire. This so-called martingale probability appeared as a
natural byproduct in the derivation. It turns out that there is a direct
link between the numeraire and the martingale probability. If a different
numeraire is chosen, then a different martingale probability results. To
illustrate this, consider again the one-period binomial model, but now
use the stock price as the numeraire. This is not a natural choice, but is
used here to illustrate the change of numeraire concept. The values of
the savings account at times 0 and T are now expressed in terms of the
corresponding values of the stock price, as shown in Figure 8.1.

The martingale probability is determined from the condition that the
savings account value process, measured in terms of the stock price
as the numeraire, must be a martingale. The equation for finding this
probability p is

p

(
1 + r

uS

)
+ (1 − p)

(
1 + r

d S

)
= 1

S

The unique solution is

p = u(1 + r ) − ud

(u − d)(1 + r )
1 − p = ud − d(1 + r )

(u − d)(1 + r )

179
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(1+r )/uS

1/S

(1+r )/dS

Figure 8.1 Savings account values under stock price numeraire

It is now shown that if the replicating portfolio value is expressed
in terms of the stock price as the numeraire, then that process is also a
martingale under probability p. That is the equivalent of what is shown
in Section 6.2, but using the stock price as the numeraire instead of
the savings account. At the beginning of the period, form a replicating
portfolio of α shares of unit price S, and β amount of savings account.
This initial replicating portfolio has the value V (0) = αS + β. At the
end of the period, this portfolio has the value V (T ). In the up-state, the
stock price is uS and the savings account value has grown to β(1 + r )
so V (T )up = αuS + β(1 + r ). In the down-state, the stock price is d S
and the savings account value has grown to β(1 + r ) so V (T )down =
αd S + β(1 + r ). Now express the values of the replicating portfolio in
terms of the numeraire.

initially V (0)/S = [αS + β]/S = α + β[1/S]

in up-state V (T )up/uS = [αuS + β(1 + r )]/(uS)
= α + β[(1 + r )/(uS)]

in down-state V (T )down/d S = [αd S+β(1 + r )]/(d S)
= α + β[(1 + r )/(d S)]

Note that in the above expressions the last [· · · ] are the discounted values
of the savings account. The dynamics are shown in Figure 8.2.

V(T )up/uS

V(0)/S

V(T )down/dS

Figure 8.2 Replicating portfolio values under stock price numeraire
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The expected terminal value of the discounted portfolio, using prob-
ability p, is

p

[
α + β

(
1 + r

uS

)]
+ (1 − p)

[
α + β

(
1 + r

d S

)]
= α + β

[
p

(
1 + r

uS

)
+ (1 − p)

(
1 + r

d S

)]
= α + β

(
1

S

)
= V (0)

S

The last line follows from the expression for p above, as the term in
[ · · · ] equals 1/S. Thus under probability p, the replicating portfolio
value process under the stock price as numeraire is a martingale, just as
it was a martingale under probability q when the savings account was
used as the numeraire. Hence the option pricing expression under the
stock price numeraire is

V (0)

S
= p

[
V (T )up

uS

]
+ (1 − p)

[
V (T )down

d S

]
The stock price process itself, expressed in terms of the stock price as
numeraire, has the constant value 1, as its initial value is S/S, its up-
value uS/(uS), its down-value d S/(d S), so it is also a martingale. All
assets in this model are martingales under p, as soon as one of them is a
martingale. That was also the case under q. The ratio of the probability
masses is

for the up-movement
p

q
= u(1 + r ) − ud

(u − d)(1 + r )

/ (1 + r ) − d

(u − d)
= u

1 + r

for the down-movement
1 − p

1 − q
= ud − d(1 + r )

(u − d)(1 + r )

/u − (1 + r )

(u − d)
= d

1 + r

Each equals the ratio of the numeraire, scaled by its initial value, that is,
uS/S divided by (1 + r )/1 and dS/S divided by (1 + r )/1. The Radon–
Nikodym derivative for expressing an expected under p as an expected
value under q is a discrete random variable, say Z , with values

Zup = p

q
= u

1 + r
Zdown = 1 − p

1 − q
= d

1 + r
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If X is a discrete random variable with values Xup and Xdown, then

Ep[X ] = Eq[X Z ] = Xup Zupq + Xdown Zdown(1 − q)

= Xup

p

q
q + Xdown

1 − p

1 − q
(1 − q)

= Xup p + Xdown(1 − p)

8.1.2 In Continuous Time

Section 6.3 described the valuation of a European option by the martin-
gale method. In that exposition the interest rate was treated as constant.
Now consider the same valuation under a random interest rate. The initial
value of the option is

V (0) = EP̂

[
exp

(
−

∫ T

u=0

r (u) du

)
V (T )

]
The expected value EP̂ is under martingale probability P̂, which is the
probability distribution under which asset prices are martingales when
discounted by the savings account as numeraire. Generally the expres-
sion for the payoff at maturity also contains r , so when r is random the
expression in [· · ·] is the product of two random variables, the discount

factor exp(− ∫ T
u=0

r (u) du) and the terminal payoff V (T ), which are not
independent. Computing this expected value requires their joint proba-
bility distribution and is complicated. The valuation can be simplified by
using another numeraire than the savings account. If the numeraire was
the time-t value of a non-defaultable zero-coupon bond which matures
at the same time T as the option, denoted P(t, T ), then there would be a
corresponding probability distribution, known as the T -forward proba-
bility measure, here denoted PT, under which V (t)/P(t, T ) is a martin-
gale, so V (0)/P(0, T ) = EPT [V (T )/P(T, T )] where EPT denotes the
expected value under PT, and P(0, T ) is the time-0 price of the bond
which is observable. But as P(T, T ) = 1, the valuation expression sim-
plifies to V (0) = P(0, T )EPT [V (T )]. This simplification happened by
design, namely by using a bond with maturity equal to the option ma-
turity. V (0) has the same form as the martingale expression using the
savings account, but the expectation EPT uses the different probabil-
ity distribution PT. It remains to determine this martingale probability.
There is no joint probability distribution required.
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Another example is a so-called exchange option in the standard Black–
Scholes framework. This is based on two stock prices, S1 and S2, which
are driven by correlated Brownian motions. In the case of a European
call, if S1(T ) > S2(T ), the call holder can buy S1(T ) by paying S2(T ).
Thus at maturity there is the option to exchange stocks. The dynamics
of stock prices Si (t) under P̂ are

d Si (t)

Si (t)
= r dt + σi d B̂i (t)

where r and σi are constants, and d B̂1(t) d B̂2(t) = ρ dt . The exchange
option payoff is c(T )

def= max[S1(T ) − S2(T ), 0]. Computing initial
option value c(0) = exp−rT EP̂[c(T )] requires the joint probability
distribution of S1 and S2 which is bi-variate lognormal. But the
formulation can be simplified by factoring out S2(T ). That makes
S2 the numeraire and c(T )/S2(T ) = max{[S1(T )/S2(T )] − 1, 0}.
Introducing random process F as the ratio of random processes S1 and
S2, F(t)

def= [S1(t)/S2(t)], formulates the option valuation with F as the
underlying asset, as c(T )/S2(T ) = max[F(T ) − 1, 0]. For numeraire
S2 there is a unique probability distribution, say P̃, under which F is a
martingale, and also the replicating portfolio value and hence the call
value. When P̃ has been found, the initial value of the option, in terms
of numeraire S2, can be computed as

c(0)

S2(0)
= EP̃{max[F(T ) − 1, 0]}

where EP̃ is under P̃. To find the dynamics of F under P̃, apply Itō’s
formula to the ratio of the random processes S1(t) and S2(t), giving

d F(t)

F(t)
= [

σ 2
2 − ρσ1σ2

]
dt + σ1 d B̂1(t) − σ2 d B̂2(t)

Using Section 4.6, the Brownian motion terms can be combined into
a single new independent Brownian motion B̂3(t), under the same
probability P̂ hence thênotation, and

d F(t)

F(t)
= [

σ 2
2 − ρσ1σ2

]
dt + σF d B̂3(t)

where σ 2
F

def= σ 2
1 − 2ρσ1σ2 + σ 2

2 . In order for F to be a martingale,
its SDE has to be made driftless. This is achieved by the Girsanov
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transformation to a new Brownian motion B̃ under probability P̃.

σF d B̃(t)
def= [

σ 2
2 − ρσ1σ2

]
dt + σF d B̂3(t)

Then d F(t)/F(t) = σF d B̃(t) under probability P̃.

8.2 FORWARD PRICE DYNAMICS

Again let P(t, T ) denote the price, at time t , of a non-defaultable zero-
coupon bond maturing at T . The price of a traded asset, X (t), expressed
in terms of this bond price as numeraire is known as a forward price,
denoted

F(t)
def= X (t)

P(t, T )
for 0 ≤ t ≤ T

The corresponding probability measure under which F is a martingale
is now derived for two cases.

8.2.1 Dynamics of Forward Price of a Bond

The price of a bond maturing at T2, expressed in terms of the price of a
bond maturing at the earlier time T1, is the ratio P(t, T2)/P(t, T1). As
the T1-bond serves as the numeraire, it is the forward price for time T1

of the T2-bond. This ratio is here denoted with running clock time t as
F(t), where for greater readability references to the fixed maturity dates
have been omitted. For further convenience P(t, Ti ) is abbreviated as
Pi , so

F(t)
def= P(t, T2)

P(t, T1)
= P2

P1

The bond dynamics under P̂ are given as d Pi/Pi = r (t) dt +
σi (t) d B̂P (t), so Pi is a martingale when discounted by the savings ac-
count. Note that the bond prices are driven by the same B̂P (t), only
their time dependent non-random volatilities σi (t) are different. By Itō’s
formula

d F

F
= −d P1

P1

+ d P2

P2

+
(

d P1

P1

)2

− d P1

P1

d P2

P2
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Using the bond dynamics d Pi/Pi then gives

d F

F
= −[r (t) dt + σ1(t) d B̂P ] + [r (t) dt + σ2(t) d B̂P ] + σ1(t)2 dt

− σ1(t)σ2(t) dt

= [σ1(t)2 − σ1(t)σ2(t)] dt + [σ2(t) − σ1(t)] d B̂P

= [σ2(t) − σ1(t)][−σ1(t) dt + d B̂P ]

Applying the Girsanov transformation dB
def= −σ1(t) dt + d B̂P gives

d F

F
= [σ2(t) − σ1(t)] dB

With the notation σF (t)
def= σ2(t) − σ1(t),

d F(t)

F(t)
= σF (t) dB(t)

This is driftless, so F is a martingale under the probability distribution
of Brownian motion B. The SDE is the familiar geometric Brownian
motion, now with a volatility that is time dependent, and solution

F(t) = F(0) exp

[
− 1

2

∫ t

s=0

σF (s)2 ds +
∫ t

s=0

σF (s) dB(s)

]

8.2.2 Dynamics of Forward Price of any Traded Asset

Let the dynamics of traded asset X under P̂ be specified as

d X (t)

X (t)
= r (t) dt + σX (t) d B̂X (t)

and the bond price process as

d P(t, T )

P(t, T )
= r (t) dt + σP (t) d B̂P(t)

Both processes have a time-dependent non-random volatility. When dis-
counted by the savings account, exp [

∫ t
s=0

r (s) ds], both have a drift-
less SDE. This drift specification entails no loss of generality as risk-
neutrality can always be achieved by a Girsanov transformation. In
general, the above Brownian motions B̂X and B̂P can be correlated
with coefficient ρ, so d B̂X (t) d B̂P(t) = ρ dt . As the forward price
F = X (t)/P(t, T ) is a function of the two variables X and P , Itō’s
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formula gives

d F

F
= d X

X
− d P

P
+

(
d P

P

)2

− d X

X

d P

P

Substituting the dynamics of X and P gives

d F

F
= [r (t) dt + σX (t) d B̂X ] − [r (t) dt + σP (t) d B̂P ] +

+ σP (t)2 dt − ρσX (t)σP (t) dt
d F(t)

F(t)
= [σP (t)2 − ρσX (t)σP (t)] dt + σX (t) d B̂X (t)

− σP (t) d B̂P (t) (*)

The two correlated Brownian motion terms will be first combined into
σ (t) dB1(t) where

σ (t)2 def= σX (t)2 − 2ρσX (t)σP (t) + σP (t)2, according to Section 4.6.
Then

d F(t)

F(t)
= [σP (t)2 − ρσX (t)σP (t)] dt + σ (t) dB1(t)

The Girsanov transformation σ (t) dB2(t)
def= [σP (t)2−ρσX (t)σP (t)]dt+

σ (t) dB1(t) now gives the driftless SDE

d F(t)

F(t)
= σ (t) dB2(t)

So F is a martingale under the probability distribution of B2.
Alternatively, in expression (*) the drift term can be removed by a

Girsanov transformation which uses either B̂P or B̂X . Taking B̂P , a new
independent Brownian motion B3 is defined by

−σP (t) dB3(t)
def= [σP (t)2 − ρσX (t)σP (t)] dt − σP (t) d̂BP (t)

giving the driftless SDE

dF(t)

F(t)
= σX (t) d̂BX (t) − σP (t) dB3(t)

This is a geometric SDE with two driving Brownian motions which
can be solved by using ln[F] as the trial solution. Itō’s formula gives
d{ln[F]} = dF

F − 1
2
( dF

F )2. As B̂X and B3 are independent(
d F

F

)2

= σX (t)2 dt + σP (t)2dt
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and

d{ln[F]} = −1

2
[σX (t)2 + σP (t)2] dt + σX (t) d̂BX (t) − σP (t) dB3 (t)

For option valuation it is convenient to have a single driving Brownian
motion. This can be obtained by combining σX (t) d̂BX (t) − σP (t) dB3(t)

into σ (t) dB4(t) where σ (t)2 def= σX (t)2 − 2ρσX (t) σP (t) + σP (t)2. Thus
F can be written as d F(t)

F(t) = σ (t) dB4(t).
This may seem a bit long, but it is intended as practice in creating

martingale dynamics for use in option valuation.

8.3 OPTION VALUATION UNDER MOST
SUITABLE NUMERAIRE

In Section 6.5 it was shown that if, under a probability P̂, a random
process S∗ is a martingale with SDE dS∗(t)/S∗(t) = σd B̂(t), then for a
standard European call

EP̂{max[S∗(T ) − K ∗, 0]} = S∗(0)N (d1) − K ∗N (d2)

where

d1
def= ln[S∗(0)/K ∗] + 1

2
σ 2T

σ
√

T
d2

def= d1 − σ
√

T

This will now be used to write down the value of various options based
on a martingale F with SDE of the form d F/F = σF (t) dB(t), without
the need for rederivation from basics.

8.3.1 Exchange Option

c(0)

S2(0)
= EP̂ {max[F(T ) − 1, 0]}

Here S∗(T ) becomes F(T ) = S1(T )/S2(T ), K ∗ becomes 1, σ 2T be-
comes σ 2

F T where σ 2
F = σ 2

1 + σ 2
2 − 2σ1σ2ρ. The expected value ex-

pression becomes

S1(0)

S2(0)
N

(
d̃1

) − N
(
d̃2

)
where d̃1

def=
ln

[ S1(0)
S2(0)

] + 1
2
σ 2

F T

σF

√
T
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and

d̃2
def= d̃1 − σF

√
T

Thus

c(0) = S2(0)

{
S1(0)

S2(0)
N (d̃1) − N (d̃2)

}
= S1(0)N (d̃1) − S2(0)N (d̃2)

Both stock prices grow at the same rate r , thus their ratio has no growth,
and the option price is independent of r .

8.3.2 Option on Bond

c(0)

P(0, T1)
= EP̂{max[F(T ) − K , 0]}

Here S*(T ) becomes F(T1) = P(T1, T2)/P(T1, T1), K * becomes K ,

σ 2T becomes �2 = ∫ T
t=0

σF (t)2 dt where σF (t)
def= σ2(t) − σ1(t). The ex-

pected value expression becomes

P(0, T2)

P(0, T1)
N

(
d̃1

) − N
(
d̃2

)
where d̃1

def= ln
[

P(0,T2)

P(0,T1)K

]
+ 1

2
�2

�
and d̃2

def= d̃1 − �.
Thus

c(0) = P(0, T1)

{
P(0, T2)

P(0, T1)
N

(
d̃1

) − K N
(
d̃2

)}
= P(0, T2)N

(
d̃1

) − P(0, T1)K N
(
d̃2

)
Compared to the pricing expression of a standard European call on S,
the equivalent of S(0) is P(0, T2), the initial value of the underlying
bond price. The discount factor on K is P(0, T1), the random version of
exp(−rT1).

8.3.3 European Call under Stochastic Interest Rate

The SDE for stock price S(t) under P̂ is

d S(t)

S(t)
= r (t) dt + σS d B̂S(t)
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The analysis will use P(t, T ) as numeraire, where

d P(t, T )

P(t, T )
= r (t) dt + σP (t) d B̂P (t)

Assume that the driving Brownian motions are independent, d B̂S(t)

d B̂P (t) = 0. The forward price of S for delivery at T is F(t)
def=

S(t)/P(t, T ). As pointed out earlier, the bond used in the forward price
must mature at the same time as the option. The SDE for F follows from
the routine application of Itō’s formula to the ratio of random processes
S and P , as

d F

F
= σp(t)2 dt + σS d B̂S − σp(t) d B̂P

= σp(t)[σp(t) dt − d B̂P ] + σS d B̂S

Applying the Girsanov transformation −dB(t)
def= σp(t) dt − d B̂P (t)

produces the driftless SDE

d F

F
= −σp(t) dB + σS d B̂S

The linear combination of the two independent Brownian motions can
be replaced by a single Brownian motion W with volatility σF (t), where

σF (t)2 def= σp(t)2 + σ 2
S , giving

d F(t)

F(t)
= σF (t) dW (t)

Use as numeraire the bond that matures at the call maturity date, P(t, T ).
Then c(t)/P(t, T ) is a martingale and

c(0)

P(0, T )
= EPT

{
max[S(T ) − K , 0]

P(T, T )

}
= EPT

{
max

[
S(T )

P(T, T )
− K , 0

]}
= EPT {max[F(T ) − K , 0]}

Here S*(t) becomes F(t) = S(t)/P(t, T ), K * becomes K , σ 2T be-
comes∑2 def=

∫ T

t=0

σF (t)2 dt =
∫ T

t=0

[σp(t)2 + σ 2
S ] dt =

∫ T

t=0

σp(t)2 dt + σ 2
S T
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The expected value expression becomes

S(0)

P(0, T )
N

(
d̃1

) − N
(
d̃2

)
where d̃1

def=
ln

[
S(0)

P(0,T )K

]
+ 1

2
�2

�

and d̃2
def= d̃1 − σF

√
T .

Thus

c(0) = P(0, T )

{
S(0)

P(0, T )
N

(
d̃1

) − K N
(
d̃2

)}
= S(0)N

(
d̃1

) − P(0, T )K N
(
d̃2

)
To go any further, the expression for the bond price volatility σp(t) must
be known, and this depends on the underlying interest rate model that
is used. By way of check, if the interest rate is constant, σp(t) = 0,
σF (t) = σS , �2 = σ 2

S T , P(0, T ) = exp(−rT ), and the standard Black–
Scholes pricing expression is recovered.

8.4 RELATING CHANGE OF NUMERAIRE
TO CHANGE OF PROBABILITY

In the first part of Section 8.1 it was shown in the binomial framework that
each choice of numeraire induces its own unique probability distribution.
The expectations under these probability distributions are connected via
the Radon–Nikodym derivative, as discussed in Chapter 7. This Radon–
Nikodym derivative can be expressed as a ratio of the numeraires, as
will now be shown.

Let N (t) denote the value of a numeraire at time t . The value
of the terminal option payoff V (T ) expressed in units of this numeraire
is V (T )/N (T ). For this numeraire there is a probability distribution
under which the discounted V (T ) is a martingale. Now consider two
numeraires, Norig and Nnew, with respective martingale probabilities Porig

and Pnew. For greater readability the conditioning is suppressed in what
follows.

Eorig

[
V (T )

Norig(T )

]
= V (0)

Norig(0)
or V (0) = Norig(0)Eorig

[
V (T )

Norig(T )

]

Enew

[
V (T )

Nnew(T )

]
= V (0)

Nnew(0)
or V (0) = Nnew(0)Enew

[
V (T )

Nnew(T )

]
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where Eorig and Enew denote expectations under the respective probabil-
ities. Equating the expressions for V (0) gives

Nnew(0)Enew

[
V (T )

Nnew(T )

]
= Norig(0)Eorig

[
V (T )

Norig(T )

]

Enew

[
V (T )

Nnew(T )

]
= Norig(0)

Nnew(0)
Eorig

[
V (T )

Norig(T )

]
Writing V (T )

Norig(T )
as V (T )

Nnew(T )
Nnew(T )
Norig(T )

Enew

[
V (T )

Nnew(T )

]
= Eorig

[
V (T )

Nnew(T )

Nnew(T )/Nnew(0)

Norig(T )/Norig(0)

]
The left is the expected value of V (T ) based on the new numeraire Nnew,
computed under the new probability Pnew. The right is the expected value
of the same random variable V (T )/Nnew(T ) multiplied by the random
variable Nnew(T )/Nnew(0)

Norig(T )/Norig(0)
, computed under the original probability Porig.

This random variable is the Radon–Nikodym derivative, say Z (T ), and
gives the relationship between expectations under different numeraires
as

Enew

[
V (T )

Nnew(T )

]
= Eorig

[
V (T )

Nnew(T )
Z (T )

]
∫

V (T )

Nnew(T )
dPnew =

∫
V (T )

Nnew(T )

dPnew

dPorig

dPorig

Equating this to∫
V (T )

Nnew(T )

Nnew(T )/Nnew(0)

Norig(T )/Norig(0)
dPorig

gives

dPnew

dPorig

= Nnew(T )/Nnew(0)

Norig(T )/Norig(0)

for going from Porig to Pnew. The numeraire values at time T are scaled
by their initial values. A discrete example was shown in the first part of
Section 8.1.

Example 8.4.1 Let X be the price of an asset under the money market
account M as numeraire; recall that d M(t)/M(t) = r (t) dt , M(0) = 1.



JWBK142-08 JWBK142-Wiersema March 25, 2008 7:52 Char Count= 0

192 Brownian Motion Calculus

As before, let P(t, T ) denote the time-t price of a non-defaultable zero
coupon bond maturing at T , which evolves according to

d P(t, T )

P(t, T )
= r (t) dt + σp(t) d B̂(t)

where Brownian motion B̂(t) is under probability P̂, the probability
under which the bond price expressed in terms of M as numeraire is a
martingale. The probability which corresponds to the use of the T -bond
as numeraire is called the T -forward probability measure, and is denoted
PT.

dPT

dP̂
= P(t, T )/P(0, T )

M(t)/M(0)
= P(t, T )/P(0, T )

M(t)

The expressions for P(t, T ) and M(t) are

P(t, T ) = P(0, T ) exp

{∫ t

s=0

[
r (s) − 1

2
σp(s)2

]
ds +

∫ t

s=0

σp(s) d B̂(s)

}
M(t) = exp

[∫ t

s=0

r (s) ds

]
So

dPT

dP̂
= exp

{
− 1

2

∫ t

s=0

σp(s)2 ds +
∫ t

s=0

σp(s) d B̂(s)

}

8.5 CHANGE OF NUMERAIRE FOR GEOMETRIC
BROWNIAN MOTION

Let N1 and N2 be numeraires specified by

d N1(t)

N1(t)
= μ1 dt + σ1 dB

1
(t) N1(0) known

d N2(t)

N2(t)
= μ2 dt + σ2 dB2(t) N2(0) known

where B1 and B2 have correlation coefficient ρ, so dB1 dB2(t) = ρ dt ,
and μ1, σ1, μ2, σ2, are constants. Numeraires have to be strictly positive,
and here they are as the SDEs are geometric Brownian motion. The
corresponding probabilities under which asset prices based on these
numeraires are martingales, are denoted P1 and P2. The Radon–Nikodym

derivative for constructing P2 from P1 is denoted Z (t)
def= dP2(t)/dP1(t).
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It is the solution to the driftless SDE for Z , d Z (t)/Z (t) = −ϕ dB(t);
Z (t) = exp[− 1

2
ϕ2t − ϕB(t). It is also the ratio of the numeraires scaled

by their initial values, Z (t) = N2(t)/N2(0)
N1(t)/N1(0)

. Thus Z can be found by

(i) deriving a driftless SDE for Z of the form d Z (t)/Z (t) = −ϕ dB(t)
(ii) using the expressions for N1 and N2 and taking their ratio.

The derivations are as follows.

Method (i) SDE for Z Itō’s formula applied to Z as the ratio of N2

and N1 gives

d Z

Z
= −d N1

N1

+ d N2

N2

+
(

d N1

N1

)2

− d N1

N1

d N2

N2

Substituting the SDEs for N gives

d Z

Z
= −[μ1 dt + σ1 dB

1
(t)] + [μ2 dt + σ2 dB2(t)] +

+ σ1
2 dt − ρσ1σ2 dt

= [−μ1 + μ2 + σ 2
1 − ρσ1σ2] dt − σ1 dB

1
(t) + σ2 dB2(t)

= m dt − σ1 dB
1
(t) + σ2 dB2(t)

where m is shorthand for the drift coefficient. To deal with the cor-
relation, write B2(t)

def= ρB1(t) +
√

1 − ρ2 B3(t), where B3 is another
independent Brownian motion. Then the random terms become

−σ1 dB
1
(t) + σ2[ρ dB1(t) +

√
1 − ρ2 dB3(t)]

= [ρσ2 − σ1] dB
1
(t) + σ2

√
1 − ρ2 dB3(t)

This is a linear combination of two independent Brownian motions which
can be replaced by σ B4(t) where

σ 2 def= [ρσ2 − σ1]2 + [σ2

√
1 − ρ2]2 = σ 2

1 − 2ρσ1σ2 + σ 2
2

so

d Z

Z
= m dt + σ dB4(t) = σ

[m

σ
dt + dB4(t)

]
The Girsanov transformation dB5(t)

def= (m/σ ) dt + dB4(t) turns this
into the driftless SDE d Z (t)/Z (t) = σ dB5(t). Thus ϕ = −σ .
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Method (ii) Ratio Solving the SDEs gives

N1(t)

N1(0)
= e(μ1− 1

2
σ 2

1 ) t+σ1 B
1
(t)

N2(t)

N2(0)
= e(μ2− 1

2
σ 2

2 ) t+σ2 B
2
(t)

so

Z = e(μ2− 1
2
σ 2

2 )t+σ2 B
2
(t)

e(μ1− 1
2
σ 2

1 )t+σ1 B
1
(t)

= e[(μ2−μ1)− 1
2

(σ 2
2 −σ 2

1 )]t+σ2 B2(t)−σ1 B1(t)

In the exponent, replace σ2 B2(t) − σ1 B1(t) by σ B3(t), as in Method (i),
giving

e[(μ2−μ1)− 1
2

(σ 2
2 −σ 2

1 )]t+σ B3(t)

But this is not yet is the standard form dP2(t)/dP1(t). The first term in
the exponent needs to be changed to − 1

2
σ 2t . This can be done by the

Girsanov transformation

− 1
2
σ 2t + σ B

4
(t)

def= [
(μ2 − μ1) − 1

2

(
σ 2

2 − σ 2
1

)]
t + σ B

3
(t)

or

B
4
(t) =

[
(μ2 − μ1) − 1

2

(
σ 2

2 − σ 2
1

) + 1
2
ϕ2t

σ

]
t + σ B

3
(t)

Then dP2(t)/dP1(t) = exp [− 1
2
σ 2t + σ B4(t)] as before.

8.6 CHANGE OF NUMERAIRE IN LIBOR
MARKET MODEL

This section illustrates the use of the ratio property of the Radon–
Nikodym derivative in the interest rate model known as the LIBOR
market model. LIBOR is a forward interest rate quoted at present time
t for the future period [Ti , Ti + δ], and is denoted here as L(t, Ti ). It
is defined from the prices of non-defaultable zero-coupon bonds as
P(t, Ti )/P(t, Ti+1) = 1 + δL(t, Ti ) where P(t, Ti ) denotes the time-t
price of a bond which matures at Ti . In this model there are pairs of
driftless SDEs by which the LIBORs for successive periods are re-
lated. For the purpose of this discussion these are given, and there is
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no need to know how they were derived. The dynamics for the L that is
in effect in the period [TN , TN+1] is d L(t, TN )/L(t, TN ) = λN dWN+1

where W denotes Brownian motion. The L for the preceding pe-
riod [TN−1, TN ] is specified under a different Brownian motion by
d L(t, TN−1)/L(t, TN−1) = λN−1 dWN . Each L is a martingale under its
own probability distribution. Each W is indexed by the end date of the
period during which it is in force. The aim is to express the SDE for
the earlier L in terms of the WN+1 of the later L (the N index is used
backwards). The link is the Girsanov transformation

dWN (t)
def= dWN+1(t) − ϕ(t) dt

The corresponding Radon–Nikodym derivative is thus

Z (t) = exp

[∫ t

s=0

ϕ(s) dWN+1(s) − 1
2

∫ t

s=0

ϕ(s)2 ds

]
where random process ϕ has to be determined. This can be done by
equating two expressions for Z . One expression is the SDE

d Z (t)

Z (t)
= ϕ(t) dWN+1(t)

The other expression follows from Z being the ratio of numeraires

Z (t) = P(t, TN )/P(0, TN )

P(t, TN+1)/P(0, TN+1)
= P(0, TN+1)

P(0, TN )

P(t, TN )

P(t, TN+1)

Expressing P(t, TN )/P(t, TN+1) in terms of L via its definition
L(t, TN ) = 1

δ
[P(t, TN )/P(t, TN+1) − 1] gives

P(t, TN )

P(t, TN+1)
= 1 + δL(t, TN )

Then

Z (t) = P(0, TN+1)

P(0, TN )
[1 + δL(t, TN )]

where P(0, TN+1)/P(0, TN ) is an observable constant. So

d Z (t) = P(0, TN+1)

P(0, TN )
δ d L(t, TN )
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To express this in the form d Z/Z , P(0, TN+1)/P(0, TN ) is expressed in
terms of Z

P(0, TN+1)

P(0, TN )
= Z (t)

1 + δL(t, TN )

Substituting this, and using the SDE for L(t, TN ) gives

d Z (t) = Z (t)

1 + δL(t, TN )
δλN L(t, TN ) dWN+1(t)

d Z (t)

Z (t)
= δL(t, TN )

1 + δL(t, TN )
λN dWN+1(t)

Equating the two expressions for d Z (t)/Z (t) then gives

ϕ(t) = δL(t, TN )

1 + δL(t, TN )
λN

which is a random process. In Björk, Chapter 25, it is argued that this
satisfies the Novikov condition that was mentioned in Section 7.4. So

dWN (t) = dWN+1(t) − δL(t, TN )

1 + δL(t, TN )
λN dt

Similarly, by changing N to N − 1

dWN−1(t) = dWN (t) − δL(t, TN−1)

1 + δL(t, TN−1)
λN−1 dt

The following sequence of transformations then results in the dynamics
of all LIBORs being expressed in terms of one driving Brownian motion,
namely the terminal WN+1.

Start with

d L(t, TN )

L(t, TN )
= λN dWN+1

Expressing

d L(t, TN−1)

L(t, TN−1)
= λN−1 dWN

in terms of dWN+1 by substituting

dWN = dWN+1 − δL(t, TN )

1 + δL(t, TN )
λN dt
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gives

d L(t, TN−1)

L(t, TN−1)
= λN−1

[
dWN+1 − δL(t, TN )

1 + δL(t, TN )
λN dt

]
= − δL(t, TN )

1 + δL(t, TN )
λNλN−1 dt + λN−1 dWN+1

Now expressing the preceding

d L(t, TN−2)

L(t, TN−2)
= λN−2 dWN−1

in terms of dWN+1 by substituting

dWN−1 = dWN − δL(t, TN−1)

1 + δL(t, TN−1)
λN−1 dt

and

dWN = dWN+1 − δL(t, TN )

1 + δL(t, TN )
λN dt

gives

dWN−1 = dWN+1 − δL(t, TN )

1 + δL(t, TN )
λN dt − δL(t, TN−1)

1 + δL(t, TN−1)
λN−1 dt

d L(t, TN−2)

L(t, TN−2)
= λN−2

[
dWN+1 − δL(t, TN )

1 + δL(t, TN )
λN dt

− δL(t, TN−1)

1 + δL(t, TN−1)
λN−1 dt

]
= λN−2

[
− δL(t, TN−1)

1 + δL(t, TN−1)
λN−1

− δL(t, TN )

1 + δL(t, TN )
λN

]
dt + λN−2 dWN+1

= −
N∑

i=N−1

δL(t, Ti )

1 + δL(t, Ti )
λiλN−2 dt + λN−2 dWN+1

The general expression is the system of coupled SDEs

d L(t, Tj )

L(t, Tj )
= −λ j

N∑
i= j+1

δL(t, Ti )

1 + δL(t, Ti )
λi dt + λ j dWN+1
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It is not possible to find an analytical expression for L . Their values
can only be obtained by simulation. Key references for this are Efficient
Methods for Valuing Interest Rate Derivatives by Pelsser Chapter 8, and
Glasserman.

8.7 APPLICATION IN CREDIT RISK MODELLING

In credit risk modelling, λ is the rate with which defaults on payment
obligations occur. Empirical evidence suggests that λ and interest rate r
are not independent. Deriving various characterizations of the default sit-
uation then requires a change to the forward probability. Let the interest
rate process r and the default intensity process λ be specified as

dr (t) = kr [r − r (t)] dt + σr dWr (t)

dλ(t) = kλ[λ − λ(t)] dt + σλ dWλ(t)

where kr , r , σr , kλ, λ, σλ, are given constants. The driving Brownian
motions Wr (t) and Wλ(t) have correlation coefficient ρ, and are
under a probability measure P̂ that corresponds to using the money
market account M as numeraire. The dynamics of M are given by
d M(t) = r (t)M(t) dt , M(0) = 1, M(t) = exp [

∫ t
s=0

r (s) ds]. Now take
the bond price P(t, T ) as the numeraire. As specified earlier, the
bond price dynamics under M as numeraire has drift term r (t) dt ,
and its driving Brownian motion is the same as the one for r , so it is
under the same P̂. Corresponding to numeraire P(t, T ) is a probability
measure, known as the T -forward probability measure, here denoted
PT. What will now be derived is

(i) the expression for the Radon–Nikodym that is needed to create PT

(ii) the SDE for r and for λ under PT.

(i) The Radon–Nikodym derivative, here denoted Z , is the ratio of the
numeraires scaled by their respective initial values,

Z (t) = P(t, T )/P(0, T )

M(t)/M(0)

Using

P(t, T )

P(0, T )
= exp

{∫ t

s=0

[r (s) − 1
2
σp(s)2] ds +

∫ t

s=0

σp(s) dWr (t)

}
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and

M(t)

M(0)
= exp

[∫ t

s=0

r (s) ds

]
gives

Z (t) = exp

[
− 1

2

∫ t

s=0

σp(s)2 ds +
∫ t

s=0

σp(s) dWr (t)

]
This is the Radon–Nikodym derivative for the Girsanov trans-

formation dW T (t)
def= dWr (t) − σp(s) dt where W T (t) denotes a

Brownian motion under PT .
An alternative way to find this is to derive a driftless SDE for Z .

Write

Z = P(t, T )

M(t)

1

P(0, T )

where the last term is observable in the market at time 0, hence

constant, say c. Letting F(t)
def= P(t, T )/M(t), and applying Itō’s

formula gives, after simplification,

d F

F
= d P

P
− d M

M
= r (t) dt + σp(t) dWr (t) − r (t) dt

= σp(t) dWr (t)

and

d Z

Z
= d(Fc)

Fc
= d(F)c

Fc
= d F

F
= σp(t) dWr (t)

For dW T (t)
def= dWr (t) + ϕ dt , the corresponding d Z/Z is

−ϕ dWr (t), thus here ϕ = −σp(t).

(ii) To get the SDE of r under PT , substitute dWr (t) = dW T (t) +
σp(t) dt , giving

dr (t) = kr [r − r (t)] dt + σr [dW T (t) + σp(t) dt]

= {kr [r − r (t)] + σrσp(t)} dt + σr dW T (t)

The drift coefficient has increased by σrσp(t).

For the SDE of λ, first deal with the correlation by writing

Wλ(t)
def= ρWr (t) +

√
1 − ρ2 W (t)
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where W is a new independent Brownian motion under P̂. Substituting
this gives the dynamics under P̂ as

dλ(t) = kλ[λ − λ(t)] dt + σλ[ρ dWr (t) +
√

1 − ρ2 dW (t)]

= kλ[λ − λ(t)] dt + σλρ dWr (t) + σλ

√
1 − ρ2 dW (t)

Now substitute dWr (t)
def= dW T (t) + σp(t) dt , giving

dλ(t) = kλ[λ − λ(t)] dt + σλρ[dW T (t) + σp(t) dt] +
+ σλ

√
1 − ρ2 dW (t)

= {kλ[λ − λ(t)] + ρσλσp(t)} dt + σλρ dW T (t) +
+ σλ

√
1 − ρ2 dW (t)

The two Brownian motions W T and W are independent and can be

combined into a new independent Brownian motion W * by σ dW *(t)
def=

σλρ dW T (t) + σλ

√
1 − ρ2 dW (t) where

σ 2 = (σλρ)2 + (σλ

√
1 − ρ2)2

= σ 2
λ ρ2 + σ 2

λ (1 − ρ2)

= σ 2
λ

so

dλ(t) = {kλ[λ − λ(t)] + ρσλσp(t)} dt + σλ dW *(t)

As W *(t) has the same probability density as W T (t), both new SDEs
can be written under the new Brownian motion W T as

dr (t) = {kr [r − r (t)] + σrσp(s)} dt + σr dW T (t)

dλ(t) = {kλ[λ − λ(t)] + ρσλσp(t)} dt + σλ dW T (t)

8.8 EXERCISES

[8.8.1] For the exchange option in Section 8.3, verify c(0) by evaluating
Ẽ as in Section 6.5.

[8.8.2] For the option on a bond in Section 8.3, verify c(0) by evaluating
Ẽ as in Section 6.5.

[8.8.3] For the European call under a stochastic interest rate in Section
8.3, verify c(0) by evaluating Ẽ as in Section 6.5.
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8.9 SUMMARY

This chapter showed how options can be valued by the use of a con-
venient numeraire that is different from the traditional money market
account. Each numeraire induces a corresponding probability distribu-
tion, under which asset values are martingales. It was shown that the
Radon–Nikodym derivative for changing from one probability distribu-
tion to another can be expressed as the ratio of the respective numeraires.
Option values V can generally be expressed under numeraire N in the
form

V (t)

N (t)
= EPN

[
V (T )

N (T )

]
where EPN denotes expectation under the probability distribution under
which the process V (t)/N (t) is a martingale. Evaluation of this expec-
tation can be readily done by analogy to the standard Black–Scholes
formula. Further examples of the use of a change of numeraire are given
in the following journal articles:� Sundaram: ‘Equivalent Martingale Measures and Risk-Neutral Pric-

ing: An Expository Note’, The Journal of Derivatives 1997, Fall,
pp. 85–98.� Benninga/Björk/Wiener: ‘On the Use of Numeraires in Option Pric-
ing’, The Journal of Derivatives 2002, Winter, pp. 85–98.
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Annex A
Computations with

Brownian Motion

A.1 MOMENT GENERATING FUNCTION AND
MOMENTS OF BROWNIAN MOTION

The moment generating function (mgf) of a random variable X is de-
fined as the expected value of an exponential function of X , E[exp (θ X )],
where θ (or any other letter) is a dummy parameter. This expectation is a
function of θ which transforms the probability distribution of the random
variable into a function of θ . It can be used to find the moments of the
random variable, E[Xk], for k = 1, 2, . . . as will be shown below. But
what makes it really useful is the property that the mgf of a random vari-
able is unique. So if in an analysis one has a particular random variable
for which the probability distribution is not known, then that distribution
can be sometimes determined by deriving its mgf and comparing it to
the mgf of known distributions. This is used in Chapters 2 and 4. That
property is also the key in showing the convergence in distribution of a
sequence of independent identically distributed random variables.

The moment property is obtained by using the power series ex-
pansion

exp(y) = 1 + y + 1

2!
y2 + · · · + 1

k!
yk + · · ·

giving

E[exp (θ X )] = E
[

1 + θ X + 1

2!
(θ X )2 + · · · + 1

k!
(θ X )k + · · ·

]
= 1 + θE[X ] + 1

2!
θ2E[X2] + · · · + 1

k!
θ kE[Xk] + · · ·

The terms have the moments of random variable X . The kth moment
can be singled out by differentiating k times with respect to θ , and
interchanging the differentiation and E (which is an integration)

dk

dθ k

{
1

k!
θ kE[Xk]

}
= 1

k!
θ k dk

dθ k
E[Xk]

205
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That reduces the first k terms to 0, and leaves a power series starting
with

1

k!
k(k − 1)(k − 2) · · · (2)1E[Xk] = 1

k!
k!E[Xk] = E[Xk]

All higher terms have coefficients which are powers of θ . By setting
θ = 0, these all disappear, and the result is that the kth moment of X is
the kth derivative of the mgf of X , at θ = 0

E[Xk] = dk mgf of X

dθ k
|θ=0

For a vector of random variables X = (X1, . . . , Xn) there is the multi-
variate mgf which uses the vector θ = (θ1, . . . , θn)

E[exp (θ1 X1 + · · · + θn Xn)]

Mgf of Brownian motion

The mgf of the Brownian motion position at time t is

E[exp(θ B(t))] = ∫ ∞
x=−∞ exp (θx) 1√

t
√

2π
exp

[
− 1

2

(
x√
t

)2

dx

]
where x is a value of B(t)

Change of variable z
def= x/

√
t gives

E[exp(θB(t))] =
∫ ∞

z=−∞
exp(θ

√
t z)

1√
2π

exp
(− 1

2
z2

)
dz

Rearranging exponent θ
√

t z − 1
2
z2 to − 1

2
(z − θ

√
t)2 + 1

2
θ2t gives

exp
(

1
2
θ2t

) ∫ ∞
z=−∞

1√
2π

exp (− 1
2
(z − θ

√
t)2) dz

where
∫ = area under a normal density = 1

Thus the mgf of B(t) is

E[exp(θ B(t))] = exp
1

2
θ2t

Moments of Brownian Motion

The first moment of Brownian motion is

E[B(t)] = d

dθ
exp

(
1
2
θ2t

) = exp
(

1
2
θ2t

)
θ t at θ = 0,
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which is 0, as already known. The second moment of Brownian motion
is

E[B(t)2] = d

dθ
(first moment) at θ = 0

d

dθ
(first moment) = exp

(
1

2
θ2t

)
t + exp

(
1

2
θ2t

)
θ tθ t

= exp

(
1

2
θ2t

)
[t + (θ t)2]

Substituting θ = 0 gives E[B(t)2] = t , as already known. The third mo-
ment of Brownian motion is

E[B(t)3] = d

dθ
(second moment) at θ = 0

d

dθ
(second moment) = exp

(
1

2
θ2t

)
θ t[t + (θ t)2] + exp

(
1

2
θ2t

)
2θ t2

= exp

(
1

2
θ2t

)
[3θ t2 + (θ t)2]

Substituting θ = 0 gives E[B(t)3] = 0. The fourth moment of Brownian
motion is

E[B(t)4] = 3t2 = d

dθ
(third moment) at θ = 0.

d

dθ
(third moment) = exp

(
1

2
θ2t

)
θ t

[
3θ t2 + (θ t)2

]
+ exp

(
1

2
θ2t

) [
3t2 + 2θ t2

]
Substituting θ = 0 gives E[B(t)4] = 3t2.

The kth moment of B(t) is

E[B(t)k] =
∞∫

x=−∞
xk 1√

t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx

For odd k this is zero, as positive values xk are cancelled against the
corresponding negative values xk in the summation. Moments for even
k can be expressed in terms of second moments. Consequently the mean
and variance completely characterize the probability distribution of a
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Brownian motion (as was already known since this is the case for any
normal distribution).

A.2 PROBABILITY OF BROWNIAN MOTION
POSITION

The position of a Brownian motion at time t is described in probabilistic
terms by

P[B(t) ≤ a] =
∫ a

x=−∞

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx

There exists no closed form expression for this integral but manual com-
putations can be readily carried out by transforming to the probability
distribution of a standard normal, for which numerical tables are included
in elementary books on probability. This is achieved by the change of
variable z

def=x/
√

t so dz = dx/
√

t . Lower integration limit x = −∞ be-
comes z = −∞, upper integration limit x = a becomes z = a/

√
t , and

P[B(t) ≤ a] =
∫ a/

√
t

x=−∞

1√
2π

exp[− 1
2
z2] dz

As an example compute the probability that at time t = 0.81 the posi-
tion of the Brownian motion is no greater than 0.25. It is not relevant
whether the motion has been above this level at a prior time. Upper
integration limit a/

√
t = 0.25/

√
0.81 ∼= 0.28. Looking up tables gives

P[B(t) ≤ 0.25] ∼= 0.6103. To get greater precision requires interpola-
tion on the table. There is an easier way. Spreadsheets have a built-in
normal probability distribution for which the mean and the standard
deviation can be specified. The answer is 0.609408. Computations of
this kind only require elementary probability theory. There exists fast
numerical algorithms for approximating the normal probability distri-
bution which can be used when the normal distribution is needed in a
computer program.

A.3 BROWNIAN MOTION REFLECTED AT THE
ORIGIN

This random process is the absolute value of a standard Brownian mo-

tion, Z (t)
def= |B(t)|. Whenever the Brownian motion position is negative,

Z (t) has a positive value of the same magnitude. The value of Z (t) is
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Z(t) = B(t)
Z(t) = B(t)

Z(t)

time axis

B(t)

Figure A.1 Reflected Brownian motion

the reflection of B(t) about the time axis whenever B(t) is negative, (see
Figure A.1).

For a new random process one usually wants to determine its probabil-
ity distribution, its probability density, the value its takes on average, and
the degree of variability about this average. To analyse a newly defined
process, give it a name, say Z (t), so here Z (t)

def=|B(t)|. Then determine
what values the new process can take. Here B(t) can take any positive or
negative values, but Z can only take non-negative values. To determine
the probability distribution of Z (t) at time t , the expression P[Z (t) ≤ z]
has to be evaluated. The first step is to substitute the expression for the
new process, P[Z (t) ≤ z] = P[|B(t)| ≤ z]. As the probability distribu-
tion of B(t) is known, the next step is to rearrange the above expression
in terms of this known underlying probability distribution. Once the
probability distribution of Z (t) is known, the corresponding probability
density follows by differentiation.

Probability Distribution

The event |B(t)| ≤ z means that the values of B(t) lie in the interval
from −z to z. This is the same as the event of lying to the left of z, and
the event of not lying to the left of −z, as illustrated in Figure A.2.

Thus P[|B(t)| ≤ z] = P[B(t) ≤ z] − P[B(t) ≤ −z]. As the density
of B(t) is symmetric about 0, P[B(t) ≤ −z] = P[B(t) ≥ z], which
equals 1 − P[B(t) ≤ z]. So

P[|B(t)| ≤ z] = P[B(t) ≤ z] − {1 − P[B(t) ≤ z]} = 2P[B(t) ≤ z] − 1

-z 0 z

Figure A.2 Event diagram
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Reflected Brownian motion: prob distribution at t=1 & t=2
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Figure A.3 Probability distribution of reflected Brownian motion

The end result (see Figure A.3) is

P[Z (t) ≤ z] = P[|B(t)| ≤ z] = 2

∫ z

x=−∞

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx−1

Probability Density

To derive the probability density of Z (t), differentiate its probability
distribution with respect to z. This gives the density of |B(t)| as

2
1√

t
√

2π
exp

[
−1

2

(
z√
t

)2
]

which is double the density of B(t) (see Figure A.4).

Expected Value

E[|B(t)|] =
∫ ∞

z=0

z2
1√

t
√

2π
exp

[
−1

2

(
z√
t

)2
]

dz
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Reflected Brownian motion: prob density at t=1 & t=2
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Figure A.4 Probability density of reflected Brownian motion

Note that the lower integration limit is 0 since |B(t)| is non-negative.
Change to the new variable y

def=z/
√

t . Then z = √
t y and dz = √

t dy.
The corresponding integration limits are: z = 0 gives y = 0 and z = ∞
gives y = ∞. Thus

E[|B(t)|] =
∫ ∞

y=0

√
t y2

1√
2π

exp
[− 1

2
y2

]
dy

= 2
√

t
∫ ∞

y=0

y
1√
2π

exp
[− 1

2
y2

]
dy

Knowing that
∫

exp(w) dw = exp(w), use the y in the integrand to create
an integrator which is the same as the exponent, namely − 1

2
y2. That gives

−2
√

t
∫ ∞

y=0

1√
2π

exp

[
−1

2
y2

]
d

(
−1

2
y2

)
which can be integrated, giving

−2
√

t
1√
2π

exp

[
−1

2
y2

] ∣∣∣∣∞
y=0

= −2
√

t
1√
2π

(0 − 1).

Thus,

E[|B(t)|] =
√

2t

π
≈ 0.8

√
t
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compared to E[B(t)] = 0. Symbolic integration in Mathematica con-
firms this result.

Variance

Var [Z (t)] = E[Z (t)2] − {E[Z (t)]}2

= E[Z (t)2] − 2t

π

The first term

E[Z (t)2] =
∫ ∞

z=0

z22
1√

t
√

2π
exp

[
−1

2

(
z√
t

)2
]

dz.

Change of variable y = z/
√

t , z = √
t y, z2 = t y2, dz = √

t dy, gives

E[Z (t)2] =
∫ ∞

y=0

t y22
1√
2π

exp
[− 1

2
y2

]
dy

= 2t
∫ ∞

y=0

y2 1√
2π

exp
[− 1

2
y2

]
dy

= −2t
∫ ∞

y=0

y
1√
2π

d
(
exp

[− 1
2

y2
])

This integral is of the form
∫ ∞

y=0
g(y) d f (y), where g(y) = 1/

√
2π and

f (y) = exp[− 1
2

y2]. Partial integration1 gives∫ ∞

y=0

g(y) d f (y) = g(y) f (y)|∞y=0 −
∫ ∞

y=0

f (y) dg(y)

with

dg(y) = d

(
y

1√
2π

)
= 1√

2π
dy

Substituting f (y), g(y) and dg(y) then gives

E[Z (t)2] = −2t y
1√
2π

exp[− 1
2

y2]|∞y=0 + 2t
∫ ∞

y=0
1√
2π

exp[− 1
2

y2] dy

1 See Annex B, Ordinary Integration.
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The integral has value 0.5 since it covers half the area under the standard
normal density. So

E[Z (t)2] = 0 + 2t(0.5) = t

The final result is

Var [|B(t)|] = E[Z (t)2] − 2t

π
= t − 2t

π
= t(1 − 2

π
) ≈ 0.36t

compared to Var [B(t)] = t . Symbolic integration in Mathematica con-
firms this. Note that the second moment of the reflected Brownian mo-
tion, E[Z (t)2], is the same as that of a standard Brownian motion, because
Z (t)2 is the same as B(t)2. But the mean increases non-linearly with t .
This results in the variance of the reflected Brownian motion only being
just over one-third of the variance of a standard Brownian motion.

Simulation of Reflected Brownian Motion

A sample path is shown in Figure A.5.
A batch of 1000 simulations of a reflected Brownian motion over the

time period [0, 1] gave the statistics shown in Figure A.6 for the position
at time 1.
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Figure A.5 Simulated path of Reflected Brownian motion
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sample exact
mean 0.827050 0.7978846

variance 0.340505 0.363380

reflected Brownian motion 1000 runs

Figure A.6 Simulation statistics

A.4 FIRST PASSAGE OF A BARRIER

Suppose there is a barrier situated at a positive level L . The time at which
a Brownian motion first reaches this barrier is a random variable, which
will be denoted TL . This time is called the first passage time or hitting
time. The event TL ≤ t says that the barrier (Figure A.7) was reached
by no later than time t . Its probability distribution P[TL ≤ t] will now
be derived.

In order to make use of the known probability distribution of B(t), the
probability distribution of TL is computed by considering the probability
distribution of B(t) ≥ L , which is the event that the position of the
Brownian motion at time t is above L , and conditioning on whether or
not TL ≤ t . The events TL ≤ t and TL>t are mutually exclusive, and
there is no other possibility, so P[B(t) ≥ L] can be written as

P[B(t) ≥ L] = P[B(t)≥ L|TL ≤ t]P[TL ≤ t]+P[B(t)

≥ L|TL>t]P[TL>t]

barrier level L

Brownian motion path

0 TL time

Figure A.7 Barrier diagram



JWBK142-ANX-A JWBK142-Wiersema February 25, 2008 19:42 Char Count= 0

Annex A: Computations with Brownian Motion 215

where the condition is specified behind the vertical divider. But the event
B(t) ≥ L that at time t the motion is above the barrier can only have
happened if TL ≤ t . Thus the second term is zero. So P[B(t) ≥ L] =
P[B(t) ≥ L|TL ≤ t]P[TL ≤ t]. If the Brownian motion has reached the
barrier at some time prior to t , then where is it at time t? It can be either
above the barrier, which is the event B(t) ≥ L , or below the barrier,
which is the event B(t)<L . The key observation now is that both events
are equally likely. This symmetry gives P[B(t) ≥ L|TL ≤ t] = 1

2
. Thus

P[B(t) ≥ L] = 1
2
P[TL ≤ t] and the probability of interest, P[TL ≤ t],

equals 2P[B(t) ≥ L]. As B(t) is normally distributed, the probability
on the right can be readily written down as

P[B(t) ≥ L] =
∫ ∞

x=L

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx

There exists no closed form expression for this integral. Write it in
terms of the standard normal density by the transformation z = x/

√
t .

This gives∫ ∞

z=L/
√

t

1√
2π

exp[−1

2
z2] dz

The end result is

P[TL ≤ t] = 2P[B(t) ≥ L] = 2

∫ ∞

z=L/
√

t

1√
2π

exp[− 1
2
z2] dz

= 2

[
1 − N

(
L√

t

)]
The value for given t and L can be readily found on a spreadsheet.

To get the probability density of random variable TL , differentiate
the above distribution function with respect to t, giving

−2
1√
2π

exp

[
− 1

2

(
L√

t

)2
]

d

dt

(
L√

t

)
= L√

2π
√

t3
exp

[
−1

2

(
L√

t

)2
]

Simulation of First Passage of a Barrier

With a barrier situated at L = 0.4, the probability of a first hit by no
later than time 1 is

P[TL ≤ 1] = 2

[
1 − N

(
0.4√

1

)]
= 2[1 − 0.6554] = 0.6892
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From a batch of 500 simulations of a standard Brownian motion, run
over the time period [0, 1], 348 hit the barrier by time 1. That is a sample
proportion of 0.6960 compared to the exact probability of 0.6892. The
average time of first hit in the batch was 0.278163 compared to the exact
expected time of first hit of 0.267502.

A.5 ALTERNATIVE BROWNIAN MOTION
SPECIFICATION

In some expositions, Brownian motion is introduced by the joint prob-
ability distribution that is shown in the beginning of Section 1.7. What
follows here is an explanation of how that links to the original specifi-
cation of the Brownian motion density. Consider the path of a Brownian
motion which is at level x at time t , and at level y at time (t + u), see
Figure A.8.

The increment over this time interval has the probability distribution

P[B(t + u) − B(t) ≤ a]
def=

∫ a

w=−∞

1√
u
√

2π
exp

[
−1

2

(
w√

u

)2
]

dw

(1)
Convenient notation for the above density is

f (u, w)
def= 1√

u
√

2π
exp

[
−1

2

(
w√

u

)2
]

where u denotes the time interval and w the corresponding increment.
Applying expression (1) to time period [0, t], and using B(0) = 0 gives

P[B(t) − B(0) ≤ a] =
∫ a

x=−∞

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx (2)

x - y

BM path x
y

0 t t + u time axis

Figure A.8 Successive Brownian motion movements
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pdf at t
x axis vertical

vertical interval length dx at x

t0 t + u time axis

Figure A.9 Probability density function

Similarly for the time period [0, t + u]

P[B(t + u) − B(0) ≤ a] =
∫ a

y=−∞

1√
t + u

√
2π

exp

[
−1

2

(
y√

t + u

)2
]

dy

(3)

Note that (2) and (3) are expressions for the position of the motion at
different times, whereas (1) is an expression for the increment between
these times. Looking at these expressions it is not immediately obvious
how (2) and (3) relate to (1). This will now be shown. The expression
for the probability density (Figure A.9) is

f (t, x) = pdf of (position x at time t | if starting position 0 at time 0)

= 1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

The expression for the probability of being in a specified interval is

P[position in interval [x, x + dx] at time t | if starting position 0
at time 0]

= f (t, x)dx = 1√
t
√

2π
exp

[
− 1

2

(
x√
t

)2
]

dx

f (u, y − x) = pdf of (position is y at time (t + u) | if starting

position x at time t)

= 1√
u
√

2π
exp

[
−1

2

(
y − x√

u

)2
]
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as the increment is (y − x) over time interval of length u.

P[position in interval [y, y + dy] at time (t + u) | if starting
position x at time t]

= f (u, y − x)dy = 1√
u
√

2π
exp[− 1

2

(
y−x√

u

)2

] dy

As event B(t + u) − B(t) ≤ a is determined by the two random vari-
ables B(t + u) and B(t), computing P[B(t + u) − B(t) ≤ a] requires
the joint pdf of these two random variables. Note that the random vari-
ables B(t + u) and B(t), which each give the position of the motion,
are not independent. But the random variables which represent the in-
crements, [B(t) − B(0)] and [B(t + u) − B(t)] are independent. Recall
that for any two random variables X and Y , f (y | x) = f (x, y)/ fX (x)
where

f (y | x) is the conditional pdf given random variable X has
occurred

f (x, y) is the joint pdf of X and Y
fX (x) is the pdf of X (subscripted); this is a marginal density

The joint pdf can thus be expressed as f (x, y) = f (y | x) fX (x). If X
and Y were independent then f (y | x) would be the same as the pdf of
Y , fY (y), and the joint density f (x, y) would be the product of the two
densities, fY (y) fX (x). That, however is not the case here. B(t) plays the
role of X , B(t + u) the role of Y , and B(t + u) − B(t) ≤ a corresponds
to y − x ≤ a so

P[B(t + u) − B(t) ≤ a] =
∫ ∞

x=−∞

∫ a

y−x=−∞
f (t, x) f (u,y−x) dx dy

=
∫ ∞

x=−∞

∫ a

y−x=−∞

{
1√

t
√

2π
exp

[
−1

2

(
x√
t

)2
]}

×
{

1√
u
√

2π
exp

[
−1

2

(
y − x√

u

)2
]}

dx dy

The two terms in the integrand both involve x . At first sight this looks like
a complicated double integral, but it turns out that it can be simplified
as follows. The integration region for y is found with the help of Figure
A.10.
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Figure A.10 Integration region

The double integral can then be rewritten as∫ ∞

x=−∞

∫ x+a

y=−∞

{
1√

t
√

2π
exp

[
−1

2

(
x√
t

)2
]}

×
{

1√
u
√

2π
exp

[
−1

2

(
y − x√

u

)2
]}

dx dy

The exponent in the second term is simplified by changing to variable

w
def= y − x . Integration limit y = x + a becomes w = a, and y = −∞

becomes w = −∞, dw = dy, giving∫ ∞

x=−∞

∫ a

w=−∞

1√
t
√

2π
exp

[
−1

2

(
x/

√
t
)2

]
× 1√

u
√

2π
exp

[
−1

2

(
w/

√
u
)2

]
dx dw

The w integral does not involve x and can thus be treated as a constant
in the x integral, and taken outside that integral, giving{∫ ∞

x=−∞

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx

}

×
{∫ a

w=−∞

1√
u
√

2π
exp

[
−1

2

(
w√

u

)2
]

dw

}
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The x integral is the area under a normal density, so equals 1,
giving

P[B(t + u) − B(t) ≤ a] =
∫ a

w=−∞

1√
u
√

2π
exp

[
−1

2

(
w√

u

)2
]

dw

as was to be shown.
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Ordinary Integration

B.1 RIEMANN INTEGRAL

The ordinary integral from calculus is known as a Riemann integral
(after the German mathematician Riemann, middle of 19th century). It
is the area (Figure B.1) under a function f (x).

There are two approaches to constructing this integral. They both start
from a discretization of the x-axis and approximate the area under the
function using step-functions. The simplest setting is where the function
is bounded and smooth. These methods will now be reviewed on the
example of the area under the function f (x) = x .

Consider, without loss of generality, the interval [0, 1] on the x-axis.
Divide this into n subintervals of equal length �x = 1/n. Equal length is
convenient but not essential for the arguments that follow. The endpoints
of the subintervals are multiples of 1

n :

0, . . . , k
1

n
, (k + 1)

1

n
, . . . , 1.

This collection of endpoints is called a partition. The word partition is
often used loosely to refer to either the set of endpoints or the collection
of subintervals.

B.1.1 Darboux Construction

The method devised by the French mathematician Darboux proceeds as
follows. Consider the area under f in the subinterval [k/n, (k + 1)/n] –
see Figure B.2. Approximate this area in the following manner. Find the
maximum value of the function f (x). In the example this is at the right
endpoint of this subinterval, x = (k + 1)/n, and equals f [(k + 1)/n] =
(k + 1)/n. Form a rectangle with the maximum value of the function as
the height, and the length of the subinterval, 1/n, as the base. The area
of this rectangle equals [(k + 1)/n]/n and is greater than the actual area
under f . It is an upper bound for the actual area (Figure B.3).

Similarly find the minimum value of f on this subinterval. In the
example this is at the left endpoint of the subinterval and equals k/n.

221
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f (x)

0 ---> x 1 Figure B.1 Area

Form a rectangle with this minimum value. The area of this rectangle
equals (k/n)/n and is less than the actual area under f . It is a lower
bound for the actual area (Figure B.4).

On this subinterval the difference between the upper rectangle and the
lower rectangle equals 1/n2. Now sum over all subintervals. That gives a
so-called upper Darboux sum, denoted U (n), and a lower Darboux sum,
denoted L(n), where n is a reminder that they are based on n subintervals.
In the example

U(n)
def=

n−1∑
k=0

k + 1

n

1

n
= 1

n2

n−1∑
k=0

(k + 1) = 1

2

(
1 + 1

n

)

L(n)
def=

n−1∑
k=0

k

n

1

n
= 1

n2

n−1∑
k=0

k = 1

2

(
1 − 1

n

)
(both sums were computed in Mathematica). Summed over all subin-
tervals the difference between the upper sum and the lower sum is
U(n) − L(n) = 1/n. It is the shaded area shown in Figure B.5.

Now the partition is refined. This is done by splitting subintervals,
for example by halving all the existing subintervals. It creates additional

f (x) = x
actual area
under f

10

left endpoint k/n
right endpoint (k+1)/n

subinterval [k/n, (k+1)/n]

Figure B.2 Subinterval
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f(x) = x
max value

10

Figure B.3 Upper approximation

f(x) = x
min value

10

Figure B.4 Lower approximation

endpoints and keeps the existing partition points (see Figure B.6). Re-
fining the partition makes the upper sum decrease, and the lower sum
increase, both get closer to the actual area under f . This can be seen
directly from the example by substituting 2n for n in the expressions for
U(n) and L(n), as well as from the following close up of the subinterval
[k/n, (k + 1)/n].

Repeated refinement of the partition keeps decreasing the value of
U(n) and increasing the value of L(n). The minimum value of U(n) over
all possible partitions is called the upper Darboux integral, and is denoted
U( f ). Similarly the maximum value of L(n) over all possible partitions
is called the lower Darboux integral, denoted L( f ). A lower sum is never

f (x) = x

10

Figure B.5 Upper and lower approximation
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upper rectangles lower rectangles difference

original refined original refined original refined

Figure B.6 Refinements

greater than an upper sum, U( f ) ≥ L( f ). (To be mathematically correct,
the word ‘minimum’ should be replaced by ‘greatest lower bound’ and
‘maximum’ by ‘least upper bound’1). If U( f ) = L( f ) then that value is
defined as the value of the integral. In the example, U( f ) and L( f ) can
be readily found as the limit for n → ∞ of U(n) and L(n).

U(n) = 1
2
(1 + 1/n) tends to the value 1

2
but ‘never gets quite that low’.

Similarly

L(n) = 1
2
(1 − 1/n) tends to the value 1

2
but ‘never gets quite that high’.

With U( f ) = L( f ) = 1
2

the value of the integral is 1
2
. How both U(n)

and L(n) tend to the value 1
2

is illustrated in Figure B.7.
Thus it has been shown, by using the Darboux construction of the in-

tegral, that
∫ x

y=0
x dx = 1

2
. This is correct as the area is half of a rectangle

with sides of length 1. The maxima of f on the respective subintervals
form a step function which approximates the function f from above, the
minima form a step-function which approximates the function f from
below.

B.1.2 Riemann Construction

The method originally devised by Riemann takes the value of the func-
tion at an arbitrary point ξk in the subinterval, k/n ≤ ξk ≤ (k + 1)/n
(note that the endpoints are included). In the above example this gives
f (ξk) �x = f (ξk)/n as the approximation of the area. Then, as before,
sum over all subintervals. That gives the so-called Riemann sum, de-
noted R(n). In the example, R(n)

def= ∑n−1
k=0 f (ξk)/n. Now successively

1 See below in section ”Sup and Max”.
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22 24 26 28 30
n

0.48

0.49

0.51

0.52

value of sum

Figure B.7 Convergence

refine the partition. If R(n) converges to a limit as n → ∞, then that

limit is defined as the value of the integral
∫ 1

x=0
f (x) dx. To illustrate on

the example, take ξk as the midpoint (see Figure B.8) of the subinterval
[k/n, (k + 1)/n] so

ξk = k/n + [(k + 1)/n]

2
with f (ξk) = ξk .

Then, according to Mathematica, the Riemann sum equals

n−1∑
k=0

ξk �x=
n−1∑
k=0

k/n + [(k + 1)/n]

2

1

n
= 1

2

f (x) = x
midpoint value

10
ξk

Figure B.8 Midpoint approximation
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In this special example the value of the Riemann sum does not depend
on n. The limit equals 1

2
, which is the value of the integral, as above.

As for any ξk the value of the function f (ξk) lies between the ‘max’ and
the ‘min’ of f , the value of a Riemann sum lies between those of the
upper and lower Darboux sums, so both methods give the same result.
The value of the integral does not depend on the position of ξk in the
subinterval.

B.2 RIEMANN–STIELTJES INTEGRAL

Integration in the familiar sense is computing an area under a curve.
In a wider sense it is an averaging process where values of a func-
tion f are weighted by the length of subintervals. More generally, the
weighting associated with each subinterval needs not be its length. The
‘importance’ of a subinterval can depend on where on the x-axis the
subinterval is located. In general the weighting can be given by another
function g(x). Here the integral can also be constructed by both the Dar-
boux method and the Riemann method. To illustrate how the integral
arises, consider a horizontal metal bar of unit length with a variable
cross-section. Its volume up to a cross-section at distance x from the
left is given by g(x), an increasing function of x . Suppose the (physical)
density of the metal is not constant but given by f (x) at position x . To
compute the total weight of this bar, conceptually create a partition of n
subintervals as described above. The volume of the metal bar over the
subinterval[

k

n
,

k + 1

n

]
is g

(
k + 1

n

)
− g

(
k

n

)
.

Following Darboux, the weight of this section of the bar lies between

max

[
f

(
k + 1

n

)] [
g

(
k + 1

n

)
− g

(
k

n

)]
.

and

min

[
f

(
k + 1

n

)] [
g

(
k + 1

n

)
− g

(
k

n

)]
.

As before, sum over all subintervals, and find the lowest and highest
value of these sums over all possible partitions. If these are equal then
that value is defined as the Riemann–Stieltjes integral, co-named af-

ter the Dutch mathematician Stieltjes, and is denoted
∫ 1

x=0
f (x) dg(x).
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Being constructed from the path x , this construction is known as path-
wise integration. The Riemann–Stieltjes integral is a generalization of
the Riemann–integral. In the case where g(x) = x it reduces to a Rie-
mann integral. To numerically illustrate the Riemann–Stieltjes integral,

consider
∫ 1

x=0
x d(x2). The integrator which provides the weighting is

the function g(x) = x2. Constructing the value of the integral from its
definition follows the same steps as for the Riemann integral above. The
only difference is that the max and the min of the integrand f (x) = x
are now multiplied by the change in x2 over a subinterval instead of by
the change in x . Using the same notation as above

U(n)
def=

n−1∑
k=0

k + 1

n

[(
k + 1

n

)2

−
(

k

n

)2
]

= 2

3
− 1

6n2
+ 1

2n

L(n)
def=

n−1∑
k=0

k

n

[(
k + 1

n

)2

−
(

k

n

)2
]

= 2

3
− 1

6n2
− 1

2n

(both according to Mathematica). The difference between the upper
sum and the lower sum is U(n) − L(n) = 1/n. Again U( f ) and L( f )
can be found here by letting n → ∞, giving U( f ) = L( f ) = 2

3
,so this

is the value of the integral (Figure B.9). Thus it was shown by using

the definition of the Riemann–Stieltjes integral that
∫ 1

x=0
x d(x2) = 2

3
.

This example is illustrated in Figure B.10 for n = 50, designed in
Excel.

20

0.65

0.66

0.67

0.68

0.69

value of sum

22 24 26 3028
n

Figure B.9 Convergence
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g(
x)

 in
crU

L

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

Riemann-Stieltjes: Integrator g, Upper sum U, Lower sum L

x position

value of g, L, U

Figure B.10 Riemann–Stieltjes schematic

This example was convenient because it can also be written as a
Riemann integral since d(x2) = 2x dx and can thus serve as a check.∫ 1

x=0

x d(x2) =
∫ 1

x=0

x2x dx = 2

∫ 1

x=0

x2 dx = 2

3
.

For the Riemann–Stieltjes integral
∫ 1

x=0
f (x) dg(x) to exist, the integra-

tor g(x) must be of bounded variation on [0, 1]. This is discussed in the
next section.

B.2.1 Bounded Variation Condition

This section discusses why the integrator in a Riemann–Stieltjes integral
must be of bounded variation. Using a partition of 0 ≤ x ≤ 1 into n
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equal subintervals, and the formulation using the intermediate points
k/n ≤ ξk ≤ (k + 1)/n, the sum

S(n)
def=

n−1∑
k=0

f (ξk)

[
g

(
k + 1

n

)
− g

(
k

n

)]
is an approximation to the total weight of the bar in the above example.
Repeated refinement of the partition produces a sequence of such sums. If
that sequence converges to a limit, then the Riemann–Stieltjes integral

is defined as that limit, and is denoted
∫ 1

x=0
f (x) dg(x). For the limit

to exist, a condition on the variability of the function g(x) must be
satisfied, as will now be explained. Refine the n-partition by halving all
subintervals. This gives a partition with 2n subintervals. All points of
the original partition have been kept, and n additional endpoints have
been created. For convergence to hold it must be true that the absolute
difference of the sums corresponding to these partitions, |S(n) − S(2n)|,
can be made arbitrarily small for sufficiently large n. The sums S(n) and
S(2n) can both be expressed in terms of the refined partition,2 that is,
with k running from 0 to (2n − 1).

S(n) =
2n−1∑
k=0

f (ξk)

[
g

(
k + 1

2n
− g

k

2n

)]

S(2n) =
2n−1∑
k=0

f (ηk)

[
g

(
k + 1

2n
− g

k

2n

)]
where ηk is in a subinterval of the refined partition. The absolute differ-
ence is

|S(n) − S(2n)| =
∣∣∣∣ 2n−1∑

k=0

[
f (ξk) − f (ηk)

] [
g

(
k + 1

2n

)
− g

(
k

2n

)]
Using the well known inequality |a + b| ≤ |a| + |b| gives

|S(n) − S(2n)| ≤
2n−1∑
k=0

| f (ξk) − f (ηk)|
∣∣∣∣g(

k + 1

2n

)
−g

(
k

2n

)∣∣∣∣
2 This is a technical point that is explained in the Bartle reference mentioned at the end of this Annex.
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If f (x) is a continuous function, then | f (ξk) − f (ηk)| can be made ar-
bitrarily small (≤ ε) so

|S(n) − S(2n)| ≤ ε

2n−1∑
k=0

∣∣∣∣g(
k + 1

2n

)
− g

(
k

2n

)∣∣∣∣
Then |S(n) − S(2n)| can only be arbitrarily small if the sum∑2n−1

k=0 |g[(k + 1)/2n] − g(k/2n)| is a finite number, for any partition,
that is, the sum must be bounded. The largest of these sums over all
possible partitions is known as the variation of the function g(x); more
precisely, it is the least upper bound of these sums, that is defined as
the variation. Thus for this Riemann–Stieltjes integral to exist the inte-
grator g(x) must be of bounded variation on 0 ≤ x ≤ 1. In the case of
g(x) = x , the Riemann–Stieltjes integral becomes an ordinary Riemann
integral. The sum becomes

2n−1∑
k=0

∣∣∣∣k + 1

2n
− k

2n

∣∣∣∣ =
2n−1∑
k=0

1

2n
= 2n

1

2n
= 1.

So for an ordinary Riemann integral the condition is always satisfied.

B.2.2 Random integrand

The above is now used to define
∫ T

t=0
f (t, ω) dt where f (t, ω) is a random

process whose paths are continuous. For a fixed path ω, let

S(n)
def=

n−1∑
k=0

f (τk, ω)(tk+1 − tk)

where tk = k(T/n) and tk ≤ τk ≤ tk+1. Because the time interval [0, T ]
includes the end points, each path f (t, ω) is uniformly continuous. That

area G(x)
f

area f(x).dx

0 x x+dx ----> x

Figure B.11 Area increment
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means that for any small ε > 0 there exists a small δ(ε) which depends
only on ε, such that for |t2 − t1| ≤ δ(ε)

| f (t2, ω) − f (t1, ω)| ≤ ε

This δ(ε) is the same for all choices of t2 and t1. Then

|S(n) − S(2n)| ≤ εT

which can be made arbitrarily small by choice of ε. On any path ω, S(n)
is a Cauchy sequence and converges in probability, according to section

E.4. The limit is denoted
∫ T

t=0
f (t, ω) dt.

B.3 OTHER USEFUL PROPERTIES

B.3.1 Fundamental Theorem of Calculus

Consider the ordinary integral of a function f (t) from 0 to x ,
∫ x

t=0
f (t) dt .

The value of this integral depends on the upper integration limit x ,

and this can be captured by writing its value as G(x)
def= ∫ x

t=0
f (t) dt .

Differentiating G(x) with respect to x gives dG(x)/dx = f (x), the value
of the function f (t) at the upper integration limit t = x . The fact that
dG(x)/dx = f (x) comes about because f (x) is the rate at which this
area is increasing. This can be demonstrated as follows (Figure B.11).
Suppose for purpose of illustration that f is a positive function. G(x)
is the area under the curve from t = 0 to t = x . G(x + �x) is the area
under the curve from t = 0 to t = x + �x . Then G(x + �x) − G(x) =
f (x) �x . Dividing by �x and letting �x go to zero gives the definition
of dG(x)/dx on the left-hand side, and leaves f (x) on the right hand, so
dG(x)/dx = f (x).

B.3.2 Use in Deriving Probability Density Function from
Probability Distribution

For a continuous random variable, the probability density function (pdf),
here denoted f, is found by differentiating its probability distribution

F(x)
def= ∫ x

y=−∞ f (y) dy with respect to upper integration limit x , f (x) =
d F(x)/dx . This is because the pdf is defined as that function f which
makes it possible to express F(x) as the integral of f . That is, the
probability distribution F is the starting point. In more complicated
cases, the upper integration limit is not x itself, but a function of x , say
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a(x), so F(x)
def= ∫ a(x)

y=−∞ f (y) dy. To get the first derivative of F(x) with
respect to x , the chain rule of differentiation then has to be applied. First
differentiate with respect to upper limit a(x) treated as a variable, say
call it b = a(x). That gives d F(x)/db = f (b) = f [a(x)]; the variable
y of the integrand f (y) is replaced by upper integration limit a(x). This
is then multiplied by the derivative of a(x) with respect to x , provided
a(x) is an increasing function of x , as is often the case. The final result
is

dF(x)

dx
= f [a(x)]

da(x)

dx
.

In the case where a(x) is a decreasing function of x , use |da(x)/dx |.

B.3.3 Integration by Parts

Let h(x) be a function which has a continuous first derivative dh(x)/dx
on the interval a ≤ x ≤ b. Consider the integral with respect to x of

this first derivative,
∫ b

x=a[dh(x)/dx] dx . The Fundamental Theorem of
Calculus says that the value of this integral is

h(x)
∣∣x=b
x=a = h(b) − h(a).

Now let h(x) be the product of the functions f (x) and g(x) which have
continuous derivatives d f (x)/dx and dg(x)/dx . By the chain rule of
differentiation

dh(x)

dx
= df(x)

dx
g(x) + f (x)

dg(x)

dx
.

Then∫ b

x=a

dh(x)

dx
dx =

∫ b

x=a

[
d f (x)

dx
g(x) + f (x)

dg(x)

dx

]
dx = f (x)g(x)

∣∣x=b
x=a

Rearranging gives∫ b

x=a

d f (x)

dx
g(x) dx = f (x)g(x)

∣∣x=b
x=a −

∫ b

x=a
f (x)

dg(x)

dx
dx

Writing [d f (x)/dx] dx as d f (x) and [dg(x)/dx] dx as dg(x) gives∫ b

x=a
g(x) d f (x) = f (x)g(x)

∣∣x=b
x=a −

∫ b

x=a
f (x) dg(x).
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0 1/4 1/3 3/8 1/2

Figure B.12 Towards upper bound

Omitting the arguments, x gives a compact way of writing the expression
for integration by parts which can be easily remembered∫ b

x=a
g df = fg

∣∣x=b
x=a −

∫ b

x=a
f dg

B.3.4 Interchanging the Order of Integration (Fubini)

Let f be a continuous function of variables x ∈ [x1, x2] and y ∈ [y1, y2].
Consider the double integral

∫ y2

y=y1
[
∫ x2

x=x1
f (x, y) dx] dy. The first integra-

tion is the inner one with respect to x , and the result is a function of y.
This is then integrated with respect to y by the outer integral. A theorem
by Fubini says that the order of integration and the integration limits can
be interchanged to

∫ x2

x=x1
[
∫ y2

y=y1
f (x, y) dy] dx for smooth enough func-

tions that are typically encountered in applications. This property is used
in the main text when expected value operator E, which is an integration,
is moved inside an integral. One says that this is justified ‘by Fubini’.

B.3.5 Sup and Max

In the review of integration, the function L(n) = 1
2
(1 − 1

n ) appears,
where n is a positive integer. For n = 1, 2, 3, 4, . . . this has the val-
ues 0, 1

4
, 1/3, 3/8, . . . . (see Figure B.12). As n increases, the values of

L(n) get closer and closer to 1
2
. But however large n is, L(n) will never

be exactly equal to 1
2
.

What is the maximum value of L(n)? Suppose that it is x . As L(n)
never equals 1

2
, its maximum can only be strictly less than 1

2
. So it is

possible to find another integer value n* > n such that L(n*) = x*.
Thus x cannot be the maximum. This reasoning shows that the set of
values L(n) has no maximum. What it does have is upper bounds. All
numbers ≥ 1

2
are upper bounds. Since L(n) will never be greater than

1
2
, the upper bounds that are greater than 1

2
are of no interest. The only

useful upper bound is the smallest of all possible upper bounds. That is
called the least upper bound or supremum, abbreviated lub or sup.
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Similarly the function U(n) = 1
2
(1 + 1/n) does not have a minimum.

But it is bounded below by lots of numbers ≤ 1
2
, but the ones that are < 1

2
are are all too small. The only lower bound that is of interest is the one
that ‘just fits’. That is called the greatest lower bound or infimum, and
abbreviated glb or inf.

The least upper bound is less than every other possible upper bound.
The greatest lower bound is greater than every other possible lower
bound: sup ≥ inf. The greatest lower bound and the least upper bound
of a set always exist, whereas the minimum and the maximum may not
exist. That is why in Mathematics sup and inf are used in situations that
involve greatest and smallest. For everyday use one can think of sup as
a maximum and inf as a minimum.

B.3.6 Differential

The first derivative (slope) of a function f (x) is denoted as df(x)/dx, or
as f ′(x), or as dy/dx when the function value is denoted as y = f (x). It
is tempting to think of the latter as the ratio of two quantities dy and dx
which can be used separately; but that is not correct; dy/dx is simply
another notation for f ′. If �x denotes a change in x , then the differential
is defined as �y

def= f ′(x) �x . This is the change on the vertical axis when
moving along the slope f ′(x). It is not the change in the value of the
function f itself, unless f happens to be the 45◦ line, so f ′(x) = 1. The
use of the term differential in stochastic calculus is inspired by this, but
now the symbol d in the left-hand side of an equation denotes the change
in the value of a function resulting from changes in d in the right-hand
side.

B.4 REFERENCES

Riemann integration is explained in numerous books on calculus and
real analysis. The exposition in Brennan Chapter 7 is splendid. Also
recommended is Basic Elements of Real Analysis by Protter. The most
comprehensive coverage of the RS integral is given in the mathematical
classic The Elements of Real Analysis by Bartle, Chapter VI. A useful
discussion on the limitations of the RS integral is given in Kuo Chapter 1.
Klebaner Chapter 1 recaps various concepts from calculus which are of
direct relevance to stochastic calculus.
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Brownian Motion Variability

C.1 QUADRATIC VARIATION

Partition the time period [0, T ] into n intervals of equal length

�t = T/n. The time points in the partition are tk
def= k �t . The sum

of the squared Brownian motion increments over these intervals is∑n−1
k=0[B(tk+1) − B(tk)]2. This is a random variable. Over the inter-

val [tk, tk+1], E{[B(tk+1) − B(tk)]2} = �t which is the same for all
intervals. That suggests that the sum of [B(tk+1) − B(tk)]2 over all
intervals may converge to

∑n−1
k=0 �t in mean-square, that is, that∑n−1

k=0[B(tk+1) − B(tk)]2 → T as n → ∞, so �t → 0. This will now
be shown in two ways, first heuristically.

C.1.1 Heuristic Explanation

As the sum of the squared increments is a random variable, it is natural
to analyze its expected value and its variance.

E

{
n−1∑
k=0

[B(tk+1) − B(tk)]2

}
=

n−1∑
k=0

E
{
[B(tk+1) − B(tk)]2}

=
n−1∑
k=0

[tk+1 − tk] = T

Var{∑n−1
k=0[B(tk+1) − B(tk)]2} can be written as the sum of the variances

of the terms, as the Brownian motion increments over non-overlapping
time intervals are independent. Writing �B(tk) for B(tk+1) − B(tk), and
using the second and the fourth Brownian motion moment

Var{[�B(tk)]2} = E{[�B(tk)]4} − [E{[�B(tk)]2}]2

= 3(�t)2 − (�t)2 = 2(�t)2

n−1∑
k=0

Var{[B(tk+1) − B(tk)]2} =
n−1∑
k=0

2(�t)2 =
n−1∑
k=0

2n(�t)2 = 2T �t

235
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As �t → 0, Var
{∑n−1

k=0[B(tk+1) − B(tk)]2
}

→ 0 and
∑n−1

k=0[B(tk+1) −
B(tk)]2 homes in on the fixed value T .

C.1.2 Heuristic Explanation of [dB(t)]2 = dt

The quadratic variation property is also the explanation for the notation
[dB(t)]2 = dt which is used in the application of Itō’s formula. Consider
�B(tk) over the finite interval �t

E{[�B(tk)]2} = �t Var{[�B(tk)]2 = 2(�t)2

For very small �t , the order of magnitude of (�t)2 is negligible com-
pared to the order of magnitude of �t . Thus the variance of {�B(t)}2 is
much smaller than the expected value of [�B(t)]2. As the time interval
becomes infinitely small, [�B(t)]2 is written as [dB(t)]2 and �t as dt.
So the random quantity [dB(t)]2 approaches the non-random dt. This is
commonly written with an equality sign, but must be understood in the
mean-square sense.

C.1.3 Derivation of Quadratic Variation Property

The heuristic explanation above gives some feel for the quadratic vari-
ation property of Brownian motion. Now follows the complete deriva-
tion of the convergence in mean square of

∑n−1
k=0[B(tk+1) − B(tk)]2 to∑n−1

k=0 �t , that is, to T as n → ∞. To recap what this means, take the
difference between the left and the right,

∑n−1
k=0[B(tk+1) − B(tk)]2 − T .

Square this difference, to get [
∑n−1

k=0[B(tk+1) − B(tk)]2 − T ]2. Then take
the expected value of this expression

E

⎧⎨⎩
[

n−1∑
k=0

[B(tk+1) − B(tk)]2 − T

]2
⎫⎬⎭

If this → 0 as n → ∞, there is convergence in mean-square. This will
now be shown. The notation is somewhat cumbersome but the derivation
is not conceptually complicated.
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Step 1 Replace T by
∑n−1

k=0 �t . That brings all terms under the sum-
mation sign

∑n−1
k=0, and changes E{...} to

E

⎧⎨⎩
[

n−1∑
k=0

[B(tk+1) − B(tk)]2 − �t

]2
⎫⎬⎭

Carefully observe the expression of which the expected value is to be
taken. Inside [...] is a sum of n terms, and [...]2 is the square of this sum
of n terms.

Step 2 Expand the square and apply E. The resulting expression
consists of full square terms ([B(tk+1) − B(tk)]2 − �t)2 and cross
terms ([B(tk+1) − B(tk)]2 − �t)([B(tm+1) − B(tm)]2 − �t) where m �=
k. The two parts of a cross term are independent random variables, so
the expected value of a cross term can be written as the product of the
expected value of each of the parts. As these are each zero, what remains
is the expected value of the full square terms. So the expected value of
the square of this sum of n terms can be written as the expected value
of the sum of n squares:

E

⎧⎨⎩
[

n−1∑
k=0

([B(tk+1) − B(tk)]2 − �t)

]2
⎫⎬⎭

= E

{
n−1∑
k=0

([B(tk+1) − B(tk)]2 − �t)2

}

Taking E inside
∑n−1

k=0, the right-hand side is
∑n−1

k=0 E{([B(tk+1) −
B(tk)]2 − �t)2}.

Step 3 Expand the square in the expression on the right, and apply E.
Expanding the term in the sum gives

E{[B(tk+1) − B(tk)]4} − 2E{[B(tk+1) − B(tk)]2} �t + (�t)2

For the first term, use E[B(t)4] = 3t2 so E{[B(tk+1) − B(tk)]4} =
3(�t)2. In the second term, E{[B(tk+1) − B(tk)]2} = �t . Putting it
together gives 3(�t)2 − 2 �t �t + (�t)2 = 2(�t)2 = 2(T/n)2. Sum-
ming over all terms gives

∑n−1
k=0 2(T/n)2 = n2(T/n)2 = 2T 2/n which

tends to zero as n → ∞. So it has been shown that the sum of the squared
increments convergences in mean square to T .
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C.2 FIRST VARIATION

Another measure of the variability of a Brownian motion path is the sum
of the absolute values of the increments ,

∑n−1
k=0 |B(tk+1) − B(tk)|. It is the

length of a Brownian motion path. The analysis that follows is aimed
at finding a bound on this. The method of analysis is not particularly
intuitive. The first step is to analyse the quadratic variation, then use the
resulting property to analyse the total increments.

Step 1 Find a bound on the term |B(tk+1) − B(tk)|2 in the quadratic
variation. Find the largest of the absolute increments, denote it
b

def= max |B(tk+1 − B(tk)| where max is over all k. Then |B(tk+1) −
B(tk)|2 = |B(tk+1) − B(tk)||B(tk+1) − B(tk)| is no greater than
b|B(tk+1) − B(tk)|.

Step 2 Sum over all n terms.

n−1∑
k=0

|B(tk+1) − B(tk)|2 ≤ b
n−1∑
k=0

|B(tk+1) − B(tk)|

since b is not a function of k. The sum on the right is the first variation.
Rearrange in terms of this first variation

n−1∑
k=0

|B(tk+1) − B(tk)| ≥
n−1∑
k=0

|B(tk+1) − B(tk)|2/b

The right hand side is a lower bound for the first variation on the left.

Step 3 Analyse what happens to this lower bound as n → ∞. The
denominator b goes to zero because as Brownian motion is continu-
ous, B(tk+1) will be arbitrarily close to B(tk) for sufficiently large n.
The numerator

∑n−1
k=0 |B(tk+1) − B(tk)|2 is the quadratic variation of the

Brownian motion which tends to T . Therefore the right-hand side be-
comes unbounded and since this is a lower bound on the variation on
the left, it has been demonstrated that Brownian motion has unbounded
variation.
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Norms

The construction of the stochastic integral uses approximations of ran-
dom variables and random processes. This Annex explains how the
closeness of these approximations can be expressed. The notion of dis-
tance between objects is derived from the fundamental concept of a
norm which is the generalization of the concept of length, and expresses
a magnitude.

D.1 DISTANCE BETWEEN POINTS

D.1.1 One Dimension

Consider an arbitrary point x on the real line. The magnitude of x is
denoted |x |, and is called modulus x (Figure D.1). It is a function of x
defined as

|x | def=
{

x if x ≥ 0
−x otherwise

so |x | is always ≥ 0.

x0

|x|

Figure D.1 Modulus x

Given the notion of magnitude, the distance between two points x and
y, denoted d(x, y), is defined as

d(x, y)
def= |x − y|

It is a function of x and y. For example, d(3, −2) = |3 − (−2)| = |5| =
5, and d(−3, −7) = | − 3 − (−7)| = |4| = 4.

D.1.2 Two Dimensions

Consider the point x in two dimensional space (Figure D.2), with coor-
dinates x1 and x2, x = (x1, x2).

239
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x2 x

||x ||

0 x1

Figure D.2 Point in two dimensions

The straight line from the origin to point x is known as a vector.
For the triangle under the arrow, Pythagoras proved that the square of
the length of the vector equals the sum of the squares of the two sides
adjacent to the 90◦ angle. Based on this, the length of vector x is defined

as
√

x2
1 + x2

2 . This is a measure of the magnitude of the vector. Once

the length has been defined, the concept of distance follows. Let y be
another point whose coordinates are y1 and y2. The distance between
points x and y can then be defined as

d(x, y)
def=

√
(x1 − y1)2 + (x2 − y2)2

That is the distance light travels between x and y. For example, if x =
(1, 1) and y = (4, 3) then d(x, y)2 = (4 − 1)2 + (3 − 1)2 so d(x, y) =
3.6. There are several other ways in which length can be defined.

A second way to measure length is |x1| + |x2|. The distance between
x and y is then

d(x, y)
def= |x1 − y1| + |x2 − y2|

This is the distance a car travels from x to y in Manhattan. Now d(x, y) =
|4 − 1| + |3 − 1| = 5.

A third way to measure length is max(|x1|, |x2|). The distance between
x and y is then

d(x, y)
def= max{|x1 − y1|, |x2 − y2|}

Here d(x, y) = max{3, 2} = 3.

D.1.3 n Dimensions

The above can be extended to n-dimensional space where an object x
is called a point or vector, specified by its n coordinates x1, ..., xn . The
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length (magnitude) of this vector can be defined as a generalization of
Pythagoras, by the square root of the sum of the squares of the coordi-

nates of x ,
√∑n

i=1 x2
i . The distance between vector x and y can then be

measured by

d(x, y) =
√√√√ n∑

i=1

(xi − yi )2

Similarly the n-dimensional equivalents of the other distances can be
used. What is most suitable depends on the application at hand.

D.1.4 Properties

Although the distances corresponding to these different definitions are
different (3.6; 5; 3), it can be shown that they all have the following
properties:

(1) d(x, y) ≥ 0
(2) d(x, y) = 0 if and only if the coordinates of x equal those of y
(3) d(x, y) = d(y, x), the distance measured from a to b is the same as

measured from b to a
(4) d(z, y) ≤ d(z, x) + d(x, y), in the case of three vectors x , y, z;

this property is called the triangle inequality and can be seen in
Figure D.3.

The length as described above measures the magnitude of an object. In
general the term norm is used for this, and is denoted by ||.||. Once a norm
of an object has been defined, the distance between objects follows, so a
norm is the fundamental concept, and distance (or metric) is the derived

x

         y
z

Figure D.3 Distance triangle
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concept. The norm of object x is a function ||.|| which is defined by the
following properties:

(1) ||x || ≥ 0.
(2) ||x || = 0 if and only if all its coordinates are zero.
(3) For any number λ, λx is the object whose coordinates are a multiple

λ of the coordinates of x . Its norm is ||λx || and equals |λ| ||x ||, the
value of the norm of x multiplied by the absolute value of λ. Thus
||−x || = ||−1x || = |−1| ||x || = ||x ||.

(4) For two objects x and y, x + y is the object whose coordinates
are the respective sums of the coordinates of x and y. For this,
||x + y|| ≤ ||x || + ||y||

The properties of a norm induce the properties of a distance that is derived
from it. For the examples given earlier, the norms in n-dimensions are
labelled and defined as

||x ||2 =
√

x2
1 + · · · + x2

n

||x ||1 = |x1| + · · · + |xn|
||x ||∞ = max{|x1|, · · ·, |xn|}

D.2 NORM OF A FUNCTION

D.2.1 One Dimension

Consider a function f which is defined at discrete points xi , i = 1 . . . n.
A norm can be defined for f analogous to the length of vector x above,

as || f || def=
√∑n

i=1 f (xi )2. If f can take values for all x in an interval

[a, b] then the discrete sum is replaced by an integral, and that norm is

|| f || def=
√∫ b

x=a f (x)2 dx . The difference between functions f and g can

then be expressed by

|| f − g|| =
√∫ b

x=a
[ f (x) − g(x)]2 dx

This measures the average difference between the two functions. In this
definition, the value of the difference at any particular x is not the decisive
consideration. All positions are equally important.

There are other ways in which the norm of a function can be defined
(Figure D.4). For example, the maximum absolute value of f on [a, b]
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    f
||f ||

---> t0 T

Figure D.4 Max norm of function

can be viewed as a measure of the magnitude of this function. This

defines the norm as || f || def= maxa≤x≤b| f (x)|.
The difference between two functions f and g is then

|| f − g|| = maxa≤x≤b| f (x) − g(x)|

It is where they are farthest apart, regardless of which function is
the largest at the point x where this maximum difference occurs
(Figure D.5).

So just as in the case of points, once a norm has been defined, a
difference can be constructed.

D.2.2 Two Dimensions

Let f be a function of variables x1 and x2. It f can take values for
a ≤ x1 ≤ b and c ≤ x2 ≤ d, then a norm can be defined as

|| f || def=
√∫ d

x2=c

∫ b

x1=a
f (x1, x2)2 dx1 dx2

||f-g||
f

       g

0 ---> t T

Figure D.5 Max norm of difference of functions
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D.3 NORM OF A RANDOM VARIABLE

In probability theory, a random variable X is simply a different name for
a function that takes the outcome ω of an ‘experiment’ and assigns it a
numerical value X (ω). If X is a discrete random variable which can take
numerical values xi , with discrete probabilities pi , i = 1. . . . n, then its
norm is defined by using the above concept of the norm of a function, but
now with each possible value weighted by the likelihood that it occurs

||X || def=
√√√√ n∑

i=1

xi
2 pi =

√
E(X2)

It is a measure of the magnitude of the random variable. As E(X2)
captures the variability of X , the definition of the norm says that the
greater the variability of the random variable, the greater its magnitude.
If X is a continuous random variable then the summation sign is replaced
by an integral and the norm is

||X || def=
√∫ ∞

x=−∞
x2ϕ(x) dx

where x denotes a value of random variable X and ϕ denotes the proba-
bility density of X at X = x . With this definition, the difference between
two random variables X and Y , which is itself a random variable,
can then be expressed by ||X − Y || =

√
E[(X − Y )2]. Actually comput-

ing the value of ||X − Y || requires knowledge of the joint probability
distribution of X and Y . The concept of convergence in mean-square
of a sequence of random variables Xn to a limit random variable X ,
is defined as E[(Xn − X )2] → 0 as n → ∞. This can be equivalently
expressed in terms of norms as ||Xn − X || → 0 when n → ∞.

D.4 NORM OF A RANDOM PROCESS

A random process has two dimensions, time t and outcome ω. Its norm
is defined using the above concept of the norm of a function in two
dimensions, with each outcome weighted by its likelihood dP(ω) (as for
the norm of a random variable).

|| f || def=
√∫ T

t=0

∫
all ω

f (t, ω)2 dP(ω) dt
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The inner integral is the summation over all possible values a random
variable can take at time t , weighted by their probabilities; the second
integral is the summation over all times, that is over the entire collection
of random variables that make up the random process. As the inner
integral is an expected value, the norm is commonly written as

|| f || def=
√∫ T

t=0

E[ f (t, ω)2] dt or || f ||2 def=
∫ T

t=0

E[ f (t, ω)2] dt

It can be shown that this definition satisfies the specification of a norm
mentioned previously. For fixed t*, f (t*, ω) is a random variable with
squared norm E[ f (t*, ω)2]. The squared norm of random process f on
[0,T ] is the continuous sum (integral) of all these. Divided by T it is the
average of the squared norms of random variables f (t*, ω).

Example 1 In the discussion of stochastic integration it says that a gen-
eral random integrand f can be approximated with any desired degree
of accuracy by a random step-function f (n) on a partition of n intervals,
by taking n large enough. The closeness of the approximation f (n) to
the actual function f is measured by this norm. It is convenient to use
its square

∣∣∣∣∣∣ f (n) − f
∣∣∣∣∣∣2

=
∫ T

t=0

E
{[

( f (n)(t, ω) − f (t, ω)
]2

}
dt

For f (n) to approximate f with any desired degree of accuracy, the above
expression should go to zero as n becomes very large.

Example 2 For any fixed t , B(t) is a random variable with squared
norm ||B(t)||2 = E[B(t)2|| = t . Brownian motion as a random process
has squared norm

∫ T

t=0

E[B(t)]2 dt =
∫ T

t=0

t dt = 1
2
T 2

This is the average of the squared norm of random variables B(t). A
non-anticipating step-function approximation of the Brownian motion



JWBK142-ANX-D JWBK142-Wiersema March 25, 2008 8:11 Char Count= 0

246 Brownian Motion Calculus

B(t)

B(t)-B(tk)

level B(tk)

B(tk)

tk t tk+1

subinterval

Figure D.6 Approximation of Brownian motion path

path (Figure D.6) has squared norm∫ 1 �t

t=0

E[B(0 �t)]2 dt + · · · +
∫ (k+1) �t

t=k �t
E[B(k �t)]2 dt + · · ·

+
∫ n �t

t=(n−1) �t
E[B((n − 1) �t)]2 dt

Using∫ (k+1) �t

t=k �t
E[B(k �t)]2 dt =

∫ (k+1) �t

t=k �t
k �t dt = k(�t)2

gives

[0 + 1 + · · · + (n − 1)](�t)2 = 1
2
(n − 1)n

(
T
n

)2 = 1
2

(
1 − 1

n

)
T 2

As n → ∞, the squared norm of the approximation converges to the
squared norm of the process it approximates, 1

2
T 2.

D.5 REFERENCE

An excellent systematic compact exposition of norms with complete
proofs is given in Lectures on Real Analysis by Yeh Chapter 4: Section I
introduces the concept, Section II applies it to vectors in n-dimensions,
and Section III applies it to continuous functions. This is highly recom-
mended mathematical reading.
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Convergence Concepts

Consider an experiment which is repeated under identical conditions.
Let the numerical outcomes of these trials be recorded by the sequence
of random variables X1 · · · Xi · · · Xn · · · . These random variables
are independent and identically distributed. A key question is whether
there exists another random variable X which is the limit of this sequence
in some sense. Recall that a random variable is a function defined on
a sample space � of points ω. So Xn(ω) and X (ω) are the values of
random variables Xn and X when outcome ω occurs, that is, Xn(ω) and
X (ω) are the values of functions Xn and X when the function argument
is ω. This is the same as in ordinary calculus where a function f of
argument y produces the value f (y). Convergence is about comparing
Xn(ω) and X (ω) for various ω. This can be done in several ways.

E.1 CENTRAL LIMIT THEOREM

The Central Limit Theorem (CLT) is one of the most remarkable re-
sults in probability theory. It says that the sum of a large number of
independent identically distributed random variables has a probability
distribution that is approximately normal. The probability distribution of
these Xi need not not specified; only the mean E[Xi ] = μ, and the vari-
ance Var[Xi ] = σ 2 are needed. Let random variable Sn record the sum
of the first n outcomes, Sn

def=X1 + · · · + Xi + · · · + Xn. Then its mean
is E[Sn] = E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn] = nμ. Its vari-
ance is Var[Sn] = Var[X1+ · · · + Xn] which equals Var[X1] + · · · +
Var[Xn] because the random variables in the sum are independent. As
all Var[Xi ] = σ 2, Var[Sn] = nσ 2. The standard deviation of Sn is thus
σ
√

n. Note that if the number of terms n in the sum Sn is increased, both
the expected value and the variance of Sn increase linearly with n. That
suggests expressing Sn on a scale which corresponds to its rate of growth.
To this end, deduct from Sn its expected value, and divide that difference
by its standard deviation. That gives the so-called standardized random

247
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variable Z

Zn
def= Sn − E[Sn]√

Var[Sn]
= Sn − nμ

σ
√

n

It is called standardized because its expected value is 0 and its standard
deviation is 1, as can be seen as follows:

E[Zn] = E
[

Sn − nμ

σ
√

n

]
= 1

σ
√

n
{E[Sn] − nμ} = 0

Var[Zn] = Var

[
Sn − nμ

σ
√

n

]
=

(
1

σ
√

n

)2

Var[Sn] = 1

σ 2n
nσ 2 = 1

The expected value and variance of Z do not change as n changes.
Conducting an experiment n times generates a particular sample of

values for the random variables Xi , and a corresponding value of Zn . If
the experiment is conducted another n times, another sample of n values
is produced, and hence another value of Zn . Repeating this produces a
large number of sample values Zn which can be arranged into a cumu-
lative histogram. The Central Limit Theorem says that for a ‘large n’,
this histogram resembles the shape of the standard normal distribution
function. The probability distribution of Zn converges to the standard
normal distribution as n → ∞. This property comes as no surprise if the
individual Xi have a normal distribution, as the scaled sum then also has
a normal distribution. But even if the individual distributions do not re-
semble a normal distribution at all, the scaled sum is still approximately
normal. The CLT serves as a simple device for making probabilistic
calculations about sums without having to know much about the proba-
bilistic nature of the individual random variables. The CLT can also be
expressed in terms of the average X values, X̄n

Zn = Sn − nμ

σ
√

n
= Sn/n − μ

σ
√

n/n
= Sn/n − μ

σ/
√

n
= X̄n − μ

σ/
√

n

Described here is the standard CLT. Its proof is found in the probability
books given in the references. More technical versions of the CLT exist
for when the Xi are not identically distributed.

E.2 MEAN-SQUARE CONVERGENCE

Mean-square convergence refers to what happens to the expected value
of the squared difference between random variable Xn and random



JWBK142-ANX-E JWBK142-Wiersema March 19, 2008 12:59 Char Count= 0

Annex E: Convergence Concepts 249

variable X , as n → ∞. The difference between Xn(ω) and X (ω) can
very with ω. For some ω, Xn(ω) and X (ω) are ‘very close’, for other ω

they are ‘not so close’ . But all the squared differences together must
have an average that goes to zero as n → ∞. This can only be verified if
the limiting random variable X is known. That is usually not the case and
the equivalent condition is limn→∞ E[(Xn − Xn+1)2] = 0. Other names
are L2 convergence and convergence in quadratic mean (q.m.). Common

shorthand notation is Xn
msq−→ X , Xn

q.m.−→ X , Xn
L2−→ X . In Chapter 3 it

is used in the construction of the Itō stochastic integral.
Two other types of convergence are outlined below. These are used in

the technical literature.

E.3 ALMOST SURE CONVERGENCE

This is a concept from advanced probability theory that is used in some
expositions of stochastic calculus. The initial position of Brownian mo-
tion is then specified as P{ω; B(0, ω) = 0} = 1, or B(0) = 0 a.s., the
path continuity as P{ω; B(., ω) is continuous} = 1, and similar state-
ments for other properties. It can be introduced as follows.

In ordinary calculus, consider a sequence of ordinary functions fn

whose values fn(x) depend on index n. If the sequence fn(x) con-
verges to another function f (x) for all values of x , this is known as
pointwise convergence. For example, if fn(x) = 1 − xn/(1 − x) and
f (x) = 1/(1 − x) for − 1

2
≤ x ≤ 1

2
, then limn→∞ fn(x) = f (x) for all

x . If this same concept were applied to random variables, then Xn would
be converging to X for all ω. It turns out that this is not possible. There
are always some ω for which there cannot be convergence. But if the set
of these ω has probability zero then these ω ‘do not matter’. A sequence
of random variables X1 · · · Xn . . . converges almost surely to a random
variable X if for an arbitrarily small positive ε

P[ω : lim
n→∞ |Xn(ω) − X (ω)| < ε] = 1

This is about the set of all ω for which Xn(ω) → X (ω) as n → ∞.
Convergence need not take place on a set that has probability zero
of occurring, hence the qualification ‘almost sure’ rather than ‘sure’.
Almost sure convergence can be seen as the probabilistic version of
pointwise convergence. Xn(ω) need not be arbitrarily close to X (ω) for
all ω, as n → ∞ but the collection of ω for which there is no close-
ness must have probability 0. Alternative notation is to write the event
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limn→∞ |Xn(ω) − X (ω)| < ε as limn→∞ Xn(ω) = X (ω) and its proba-
bility as P[ω : limn→∞ Xn(ω) = X (ω)] = 1, or as Xn(ω) → X (ω) and
P[ω : Xn(ω) → X (ω) as n → ∞] = 1. This type of convergence is also
known as convergence almost everywhere. Common shorthand notation

is Xn
a.s.−→ X or limn−→∞ Xn = X a.s. (the reference to ω is often omit-

ted).
Almost sure convergence is a probability of a limit.

E.4 CONVERGENCE IN PROBABILITY

This is another advanced probability concept that is used in some
stochastic calculus books.

For an outcome ω for which Xn(ω) is not arbitrarily close to X (ω)
it holds that |Xn(ω) − X (ω)| ≥ ε. The set of all such outcomes ω is
{ω : |Xn(ω) − X (ω)| ≥ ε}. This set is also known as a tail event. The
probability of this tail event is P[{ω : |Xn(ω) − X (ω)| ≥ ε}] and de-
pends on n. What happens to this probability as n −→ ∞ is the limit
limn−→∞ P[{ω : |Xn(ω) − X (ω)| ≥ ε}]. The tail event is often written
without ω as |Xn − X | ≥ ε, and its probability as P[|Xn − X | ≥ ε]. A
sequence of random variables X1, X2 . . . ,Xn converges in probability
to a random variable X if for any ε > 0

lim
n−→∞ P[{ω : |Xn(ω) − X (ω)| ≥ ε}] = 0

which is equivalent to

lim
n−→∞ P[{ω : |Xn(ω) − X (ω)| < ε}] = 1

In other notation, it is the limit of the sequence of numbers pn where

pn
def= P[{ω : |Xn(ω) − X (ω)| ≥ ε}]

Common shorthand notation for this is Xn
P−→ X .

Convergence in probability is a limit of a sequence of probabilities.

E.5 SUMMARY� Almost sure convergence requires Xn(ω) − X (ω) to get small for al-
most all ω.� Convergence in probability requires the probability of this difference
to get small. Hence Convergence in probability is less demanding
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than Almost sure convergence. One says that Convergence in proba-
bility is the weaker of these two types of convergence. If Almost sure
convergence is true then Convergence in probability is also true.� Mean-square convergence implies Convergence in probability and
this in turn implies Convergence in distribution.
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Answers to Exercises

CHAPTER 1

Answer [1.9.1] Scaled Brownian Motion

Let X (t)
def= √

cB(t/c). As B(t/c) denotes the position of the Brownian
motion at time t/c, its variance equals t/c. Since X (t) is a positive
multiple

√
c of a Brownian motion, it can assume any values from −∞

to ∞. The expected value of X (t) and its variance can be computed
without first working out the probability density of X (t).

(a) The expected value of X (t) is E[X (t)] = E[
√

cB(t/c)] =√
c E[B(t/c)] = √

c 0 = 0.
(b) The variance of X (t) is Var[X (t)] = Var[

√
cB(t/c)] =

(
√

c)2Var[B(t/c)] = c(t/c) = t . So the scaled Brownian mo-
tion has the same mean and variance as Brownian motion.

(c) To derive P[X (t) ≤ x] first replace X (t) by its definition, P[X (t) ≤
x] = P[

√
cB(t/c)] ≤ x]. Next rearrange the inequality to get a ran-

dom variable on the left for which the distribution is known

P[
√

cB( t
c )] ≤ x] = P[B( t

c ) ≤ x√
c
]

P[X (t) ≤ x] =
∫ x/

√
c

y=−∞

1√
t/c

√
2π

exp

(
−1

2

[
y√
t/c

]2
)

dy

(d) To derive the probability density of X (t), differentiate the probabil-
ity distribution with respect to x . That gives the expression for the
integrand with y replaced by the upper integration limit x/

√
c, times

253
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this upper limit differentiated with respect to x . The density of X (t)
at X (t) = x is

1√
t/c

√
2π

exp

(
−1

2

[
x/

√
c√

t/c

]2
)

d(x/
√

c)

dx

= 1√
t
√

2π
exp

(
−1

2

[
x√
t

]2
)

which is the same as a Brownian motion density.
(e) Check if the variance over an arbitrary interval equals the length of

the interval and is independent of the location of the interval.

Var[X (t + u) − X (t)] = Var[
√

cB( t+u
c ) − √

cB( t
c )]

= cVar[B( t+u
c ) − B( t

c )]

As B((t + u)/c) − B(t/c) is the movement from time t/c to time
(t + u)/c, its variance equals the length of this interval,

Var[B( t+u
c ) − B( t

c )] = u
c

Thus

Var[X (t + u) − X (t)] = cu
c = u

(f) This variance is independent of t so X (t) is indeed a Brownian
motion. As the scaled process X has the same probability distribution
as Brownian motion, Brownian motion is said to be statistically self-
similar.

Answer [1.9.2] Seemingly Brownian Motion

Let X (t)
def= Z

√
t where Z ∼ N (0, 1).

(a) E[X (t)] = E[Z
√

t] = √
tE[Z ] = √

t0 = 0
(b) Var[X (t)] = Var[Z

√
t] = (

√
t)2Var[Z ] = t1 = t

Expected value and variance over time period [0, t] are the same as
for Brownian motion.

(c) Probability distribution of X (t)

P[X (t) ≤ x] = P[Z
√

t ≤ x] = P[Z ≤ x√
t
]

=
∫ x/

√
t

y=−∞

1√
2π

exp(− 1
2 y2) dy
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(d) Probability density of X (t) at X (t) = x

1√
2π

exp

(
−1

2

[
x√
t

]2
)

d(x/
√

t)

dx
= 1√

2π
exp

(
−1

2

[
x√
t

]2
)

(1/
√

t)

= 1√
t
√

2π
exp

(
−1

2

[
x√
t

]2
)

(e) For any two times t and t + u

Var[X (t + u) − X (t)] = Var[Z
√

t + u − Z
√

t]

= Var[Z (
√

t + u − √
t)]

= (
√

t + u − √
t)2Var[Z ]

= (
√

t + u − √
t)2

= t + u − 2
√

t + u
√

t + t

= 2t + u −
√

t2 + ut

(f) For a Brownian motion Var[B(t + u) − B(t)] = u. This is not the
case here, so the process X (t) is not a Brownian motion. It just
seemed that it might be.

Increments of X

The value of Z is the same for all t , so X (t) is a non-linear function of t .
For example, if Z = 0.2 then X (t) = 0.2

√
t . Consider the increments

of X over adjacent non-overlapping intervals [t1, t2] and [t2, t3]

X (t2) − X (t1) = Z (
√

t2 − √
t1) X (t3) − X (t2) = Z (

√
t3 − √

t2)

Their covariance is

Cov[Z (
√

t2 − √
t1), Z (

√
t3 − √

t2)]

= (
√

t2 − √
t1)(

√
t3 − √

t2)Cov[Z , Z ]

= (
√

t2 − √
t1)(

√
t3 − √

t2)1 �= 0

Brownian Motion Increments

Each increment is generated by its own Zi . These Zi are independent.

B(t2) − B(t1) = Z1
√

t2 − t1 B(t3) − B(t2) = Z2
√

t3 − t2
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Their covariance is

Cov[Z1
√

t2 − t1, Z2
√

t3 − t2] = √
t2 − t1

√
t3 − t2]Cov[Z1, Z2]

= √
t2 − t1

√
t3 − t2]0 = 0

as Cov[Z1, Z2] = 0 due to independence of Z1 and Z2.

Answer [1.9.3] Combination of Brownian Motions

E[Z (t)] = E
[
αB(t) − √

β B*(t)
]

= E[αB(t)] − E
[√

β B*(t)
]

= αE[B(t)] − √
βE[B*(t)]

= α0 − √
β0 = 0

Var[Z (t + u) − Z (t)] = Var[{αB(t + u) −
√

β B*(t + u)}
−{αB(t) −

√
β B*(t)}]

= Var[α{B(t + u) − B(t)}
−

√
β{B*(t + u) − B*(t)}]

= Var[α{B(t + u) − B(t)}]
+Var[

√
β{B*(t + u) − B*(t)}]

as B and B* are independent, so

Var[Z (t + u) − Z (t)] = α2u + βu = (α2 + β)u

This should equal u and not depend on t .

Var[Z (t + u) − Z (t)] = u if α2 + β = 1 or β = 1 − α2

Under that condition Z (t) is Brownian motion.

Answer [1.9.4] Correlation between Brownian Motions

Correlation coefficient ρ is by definition

Cov[B(t), B(t + u)]√
Var[B(t)]

√
Var[B(t + u)]

The numerator equals min(t, t + u) = t as derived in Chapter 1.

ρ = t√
t
√

t + u
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Answer [1.9.5] Successive Brownian Motions

(a) At time 4, the BM position is X . Density at X = x is

f (x) = 1√
4
√

2π
exp

[
−1

2

(
x√
4

)2
]

P[X ≥ 0] = ∫ ∞
x=0 f (x) dx = 0.5 due to symmetry of normal

density.
(b) Joint density at times t1 and t2 is

f (x1, x2)
def= 1√

t1 − 0
√

2π
exp

[
−1

2

(
x1 − 0√

t1 − 0

)2
]

× 1√
t2 − t1

√
2π

exp

[
−1

2

(
x2 − x1√

t2 − t1

)2
]

Gate specification:

gate 1 time t1 x1Low x1High

gate 2 time t2 x2Low x2High

Probability of BM paths passing through gate 1 and gate 2

p12
def=

∫ x2High

x2=x2Low

∫ x1High

x1=x1Low

f (x1, x2) dx1 dx2

Probability of both path positions being positive

p12 =
∫ ∞

x2=0

∫ ∞

x1=0
f (x1, x2) dx1 dx2

(c)
1

p12

∫ ∞

x2=0
x2 f (x2) dx2

The results can all be computed by numerical integration and verified
by simulation.

Answer [1.9.8] Brownian Bridge

(a) X (1) = B(1) − 1B(1) = 0; X (0) = B(0) − 0B(0) = 0; so
X (1) = X (0)
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(b) Cov[X (t), X (t + u)] = Cov[B(t) − t B(1), B(t + u)

−(t + u)B(1)]

= Cov[B(t), B(t + u)]

+ Cov[−t B(1), B(t + u)]

+ Cov[B(t), −(t + u)B(1)]

+ Cov[−t B(1), −(t + u)B(1)]

= min(t, t + u) − tCov[B(1), B(t + u)]

− (t + u)Cov[B(t), B(1)]

+ t(t + u)Cov[B(1), B(1)]

= min(t, t + u) − t min(1, t + u)

− (t + u) min(t, 1) + t(t + u)Var[B(1)]

The time interval is 0 ≤ t ≤ 1. For t<1 and t + u<1 the above
equals

t − t(t + u) − (t + u)t + t(t + u)1 = t − t(t + u)

Alternative Derivation

Use the definition of covariance

Cov[X (t), X (t + u)] = E[{X (t) − E[X (t)]}{X (t + u)

− E[X (t + u)]}]

Substituting E[X (t)] = 0 and E[X (t + u)] = 0 leaves

Cov[X (t), X (t + u)] = E[X (t)X (t + u)]

Substituting the expressions for X (t) and X (t + u) and multiplying terms
gives

E[B(t)B(t + u) − (t + u)B(t)B(1) − t B(1)B(t + u)

+ t(t + u)B(1)2] = E[B(t)B(t + u)] − (t + u)E[B(t)B(1)]

− tE[B(1)B(t + u)] + t(t + u)E[B(1)2]

The remainder is as above.



JWBK142-Ans JWBK142-Wiersema March 25, 2008 7:54 Char Count= 0

Answers to Exercises 259

Answer [1.9.9] Brownian Motion through Gates

Let the position of the Brownian motion path at time t be denoted x .
The density at time t1 is

f (x1) = 1√
t1

√
2π

exp

[
−1

2

(
x1 − 0√

t1 − 0

)2
]

The joint density at times t1 and t2 is

f (x1, x2)
def= 1√

t1
√

2π
exp

[
−1

2

(
x1 − 0√

t1 − 0

)2
]

× exp

[
−1

2

(
x2 − x1√

t2 − t1

)2
]

(a) p1
def= P[B(t1) ≥ 0] =

∫ ∞

x1=0
f (x1)dx1 = 0.5

p12
def= P[B(t1) ≥ 0 and B(t2) ≥ 0]

=
∫ ∞

x2=0

∫ ∞

x1=0
f (x1, x2) dx1 dx2

Then the ‘average’ position at time t1 of all paths that have a positive
position at time t1 is

E[B(t1) conditional upon B(t1) ≥ 0] = 1

p1

∫ ∞

x1=0
x1 f (x1) dx1

Note the scaling by p1

Specifying t1 permits numerical calculation. For example when
t1 = 1

f (x1) = 1√
2π

exp
[− 1

2 x2
1

]
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and

E[B(1) conditional upon B(1) ≥ 0]

= 1

0.5

∫ ∞

x1=0
x1

1√
2π

exp
[− 1

2 x2
1

]
dx1

= −2√
2π

∫ ∞

x1=0
exp

[− 1
2 x2

1

]
d

(− 1
2 x2

1

)
= −2√

2π
exp

[− 1
2 x2

1

]∣∣∣∣∞
x1=0

= −2√
2π

[0 − 1]

= 0.7979

(b) The average position at t2 of all paths that have a positive position
at time t1 and time t2 is

E[B(t2) conditional upon B(t1)

≥ 0 and B(t2) ≥ 0] = 1

p12

∫ ∞

x2=0

∫ ∞

x1=0
x2 f (x1, x2) dx1 dx2

Note the scaling by p12

(c) Expected value of increment over [t1, t2] of paths passing through
gate 1 and gate 2

1

p12

∫ x2High

x2=x2Low

∫ x1High

x1=x1Low

(x2 − x1) f (x1, x2) dx1 dx2

The results can all be computed by numerical integration and verified
by simulation.

CHAPTER 2

Answer [2.8.1]

This is the same as the process discussed in Section 2.6.1.

Answer [2.8.2]

For process S*
n

def= Sn/(pu + qd)n to be a martingale, it must hold that
E[S*

n+1|�n] = S*
n where S*

n+1 = Sn+1/(pu + qd)n+1. In the up-state,

Sn+1 = uSn so S*
n+1 = uSn/(pu + qd)n+1. Similarly in the down-state,
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S*
n+1 = d Sn/(pu + qd)n+1. Thus

E[S*
n+1|�n] = p

{
uSn

(pu+qd)n+1

}
+ q

{
d Sn

(pu+qd)n+1

}
= (pu + qd)Sn

(pu + qd)n+1

= Sn

(pu + qd)n

Thus E[S*
n+1|�n] = S*

n and S*
n is a martingale.

Answer [2.8.3]

Let s < t . Substituting B(t) = B(s) + {B(t) − B(s)} gives

E[B(t) + 4t |�(s)]

= E[B(s) + {B(t) − B(s)} + 4t |�(s)]

= E[B(s)|�(s)]+E[B(t)−B(s)|�(s)]+E[4t |�(s)]

= B(s) + 0 + 4t

So E[B(t) + 4t |�(s)] �= B(s) + 4s. Thus B(t) + 4t is not a martingale.
There was no need to decompose t .

Answer [2.8.4]

(a) This is the continuous counterpart of the discrete process S2
n dis-

cussed in the text. To evaluate E[B(t)2|�(s)], write B(t) = B(s) +
{B(t) − B(s)}. That gives

E[[B(s) + {B(t) − B(s)}]2|�(s)]

= E[B(s)2 + 2B(s){B(t) − B(s)} + {B(t) − B(s)}2|�(s)]

= E[B(s)2|�(s)] + E[2B(s){B(t) − B(s)}|�(s)]

+E[{B(t) − B(s)}2|�(s)]

In the first term, B(s) is known, so E[B(s)2|�(s)] = B(s)2. In the
second term, B(t) − B(s) is independent of B(s), so E[B(s){B(t) −
B(s)}|�(s)] can be written as the product E[B(s)|�(s)]E[B(t) −
B(s)|�(s)] = B(s)0 = 0. The third term, E[{B(t) − B(s)}2|�(s)] =
(t − s). Thus E[B(t)2|�(s)] = B(s)2 + (t − s) �= B(s)2 and the ran-
dom pocess B(t)2 is not a martingale. The difference is the variance
over the period s to t .
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(b) Let Z
def= B(t)2. To find the probability density of Z , first derive its

probability distribution, P[Z ≤ z], which is a function of z, denoted
F(z).

P[Z ≤ z] = P[B(t)2 ≤ z] = P[−√
z ≤ B(t) ≤ √

z]

= P[B(t) ≤ √
z] − P[B(t) ≤ −√

z]

The last term P[B(t) ≤ −√
z] = P[B(t) ≥ √

z] = 1 − P[B(t) ≤√
z] as the left tail equals the right tail since the probability den-

sity of B(t) is symmetric. So

P[Z ≤ z] = P[B(t) ≤ √
z] − (1 − P[B(t) ≤ √

z])

= 2P[B(t) ≤ √
z] − 1

F(z) = 2
∫ √

z

x=−∞

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx − 1

Probability density at Z = z is

d

dz
F(z) = 2

1√
t
√

2π
exp

[
−1

2

(√
z√
t

)2
]

d

dz
(
√

z)

where the last term d/dz(
√

z) = 1
2 1/(

√
z). The probability density,

for z>0, is

2
1√

t
√

2π
exp

[
−1

2

(√
z√
t

)2
]

1

2

1√
z

= 1√
z

1√
t
√

2π
exp

[
−1

2

z

t

]
For any t this has the shape of a negative exponential.

Answer [2.8.5]

(a) This is the continuous counterpart of the discrete process S2
n − n

discussed in the text. Decompose t into s + (t − s). Repeating the
steps above shows that B(t)2 − t is a martingale. The term that was
subtracted to transform B(t)2 into a martingale is known as a com-
pensator.

(b) Let Z
def= B(t)2 − t . To find the probability density of Z , first de-

rive its probability distribution, P[Z ≤ z], which is a function of z,
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denoted F(z).

P[Z ≤ z] = P[B(t)2 − t ≤ z] = P[B(t)2 ≤ z + t]

= P[−√
z + t ≤ B(t) ≤ √

z + t]

Let z + t be denoted z*. Then the rest of the derivation is the same as
in [2.8.4(b)] with z replaced by z*. For z* > 0, that is, for z > − t

F(z) = P[Z ≤ z] = 2
∫ √

z+t

x=−∞

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

dx − 1

Probability density is

1√
z + t

1√
t
√

2π
exp

[
−1

2

z + t

t

]

Answer [2.8.6]

It is to be verified whether

E
[
exp

[−ϕB(t) − 1
2ϕ

2t
] |�(s)

] = exp
[−ϕB(s) − 1

2ϕ
2s

]
Write B(t) as the known value B(s) plus the random variable [B(t) −
B(s)], and t as {s + [t − s]}. The left-hand side is then

E[exp[−ϕ{B(s) + [B(t) − B(s)]} − 1
2ϕ

2{s + [t − s]}]|�(s)]

Collecting all values that are known at time s, and taking them outside
the E operator gives

exp
[−ϕB(s)− 1

2ϕ
2s

]
E

[
exp

{−ϕ[B(t)−B(s)]− 1
2ϕ

2[t−s]
} |�(s)

]
Consider the exponent of the second term and call it Y , so

Y
def= −ϕ[B(t) − B(s)] − 1

2ϕ
2[t − s]}

Then

E
{
exp

[−ϕ[B(t) − B(s)] − 1
2ϕ

2[t − s]
] |�(s)

}
= E{exp[Y ]} = exp

{
E[Y ] + 1

2Var[Y ]
}

As E[Y ] = − 1
2ϕ

2[t − s] and Var[Y ] = (−ϕ)2(t − s),

exp
{
E[Y ]+ 1

2Var[Y ]
}= exp

{− 1
2ϕ

2[t − s] + 1
2ϕ

2(t − s)
}

= exp{0} = 1
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Thus E
[
exp

[−ϕB(t) − 1
2ϕ

2t
] |�(s)

] = exp
[−ϕB(s) − 1

2ϕ
2s

]
, and the

martingale property has been shown. The origin of this question is in
verifying whether exp[−ϕB(t)] is a martingale, and, if not, whether it
can be modified to a martingale by a suitable choice of a term in the
exponent which compensates the movement of −ϕB(t) in expectation.

E[exp[−ϕB(t)]|�(s)] = E[exp[−ϕ{B(s) + [B(t) − B(s)]}|�(s)]]

= exp[−ϕB(s)]E{exp[−ϕ[B(t) − B(s)]|�(s)]}
The exponent of the second term, −ϕ[B(t) − B(s)], has mean 0 and
variance ϕ2(t − s), thus

E{exp[−ϕ[B(t) − B(s)]|�(s)]} = exp
[
0 + 1

2ϕ
2(t − s)

]
so the result is

E[exp[−ϕB(t)]|�(s)] = exp[−ϕB(s)] exp
[

1
2ϕ

2(t − s)
]

This does not equal exp[−ϕB(s)], so exp[−ϕB(t)] is not a martingale.
To transform it into a martingale, move exp

[
1
2ϕ

2t
]

to the left-hand. That
gives

E
[
exp

[−ϕB(t) − 1
2ϕ

2t
] |�(s)

] = exp
[−ϕB(s) − 1

2ϕ
2s

]
which is the expression for a martingale.

Introduce the notation Z
def= exp

[−ϕB(t) − 1
2ϕ

2t
]
. As ln[Z ] = −

ϕB(t) − 1
2ϕ

2t is a normal random variable, Z has a lognormal distri-
bution with parameters

m
def= E{ln[Z ]} = − 1

2ϕ
2t s

def= Stdev{ln[Z ]} = ϕ
√

t

The density of Z at Z = z is

1

zs
√

2π
exp

[
−1

2

(
ln(z) − m

s

)2
]

Answer [2.8.7]

E[{M(u) − M(s)}2|�(s)] = E[M(u)2|�(s)]

− 2E[M(u)M(s)|�(s)] + E[M(s)2|�(s)]
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When �(s)is given, M(s) is known, so

E[M(u)M(s)|�(s)] = M(s)E[M(u)|�(s)]

and

E[M(s)2|�(s)] = M(s)2

The martingale property of M implies that

E[M(u)|�(s)] = M(s)

Substituting these gives

E[M(u)2 − M(s)2|�(s)]

or

E[M(u)2|�(s)] − M(s)2

CHAPTER 3

Answer [3.9.1]

(a) In
def=

n−1∑
k=0

f (tk)[B(tk+1) − B(tk)]

Why could In be a martingale? The fact that [B(tk+1) − B(tk)] is
a martingale, and that In is just a combination of several of these,
with weightings f (tk) that are known before the movements are
generated. For this reason In is also called a martingale trans-
form (a transformation of martingales). It is to be verified whether
E[In+1|�n] = In . Since In = E[In|�n] this is the same as verifying
whether E[In+1 − In|�n] = 0.

In+1 =
n−1∑
k=0

f (tk)[B(tk+1) − B(tk)] + f (tn)[B(tn+1) − B(tn)]

In+1 − In = f (tn)[B(tn+1) − B(tn)]

E[In+1 − In|�n] = E[ f (tn)[B(tn+1) − B(tn)]|�n]

= f (tn)E[B(tn+1) − B(tn)|�n]
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since f (tn) is known when �n is given. As E[B(tn+1) − B(tn)|�n] =
0 the result is E[In+1 − In|�n] = 0. Thus In is a discrete-time
martingale.

If f is a Brownian motion then

I (n) =
n−1∑
k=0

B(tk)[B(tk+1) − B(tk)]

is a discrete-time martingale.
(b) Expression for variance derived in Section 3.3 is Var[I (n)] =∑n−1

k=0 E[ f 2
k ] �t where �t = T/n. Substituting fk = B(tk) gives

Var[I ] = ∑n−1
k=0 E[B(tk)2](T/n). Using E[B(tk)2] = tk = k(T/n)

gives

Var[I ] =
n−1∑
k=0

k
(

T
n

) (
T
n

) = (
T
n

)2
n−1∑
k=0

k

= (
T
n

)2 1
2 (n − 1)n = 1

2 T 2
(
1 − 1

n

)
(c) As n → ∞, Var[I ] = 1

2 T 2(1 − 1/n) → 1
2 T 2

Answer [3.9.2]

(a) f (n+1) = B(t 1
2
) 1[t1/2,t1) +

n−1∑
k=1

B(tk) 1[tk ,tk+1)

= B(t 1
2
) 1[t1/2,t1) + f (n)

(b) Integrands f (n+1) and f (n) differ by B(t 1
2
) 1[t1/2,t1). The magnitude of

that difference is measured by the norm of f . The squared norm is

‖ f (n)(t, ω)− f (n+1)(t, ω)‖2 =
∫ T

t=0
E[{ f (n)(t, ω)− f (n+1)(t, ω)}2] dt

As [ f (n)(t, ω) − f (n+1)(t, ω)]2 = [B(t 1
2
) 1[t1/2,t1)]2, the integrand is

zero outside [t 1
2
, t1) so the only remaining integral term is

∫ t1
t=t1/2

E
[

B(t 1
2
)
]

dt and∫ t1

t=t1/2

1
2 (T/n) dt = 1

2

(
T
n

) ∫ t1
t=t1/2

dt = 1
2

(
T
n

)
(t1 − t 1

2
)

= 1
2

(
T
n

)
1
2

(
T
n

)
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So the norm of the difference between successive approximations
f (n) and f (n+1) is ‖ f (n) − f (n+1)‖ = 1

2 (T/n).

(c) 1
2 (T/n) → 0 as n → ∞, so it has been shown that f (n) converges
to f in the norm of f .

(d) I (n) =
n−1∑
k=0

B(tk, ω)[B(tk+1) − B(tk)]

I (n+1) = B(t 1
2
)[B(t1) − B(t 1

2
)] + I (n)

(e) I (n+1) differs from I (n) by the term B(t 1
2
)[B(t1) − B(t 1

2
)]. So

[I (n) − I (n+1)]2 = B(t 1
2
)2[B(t1) − B(t 1

2
)]2

E[{B(t 1
2
)2[B(t1) − B(t 1

2
)}2] = E[E[B(t 1

2
)2[B(t1) − B(t 1

2
)]2|� 1

2
]]

E[{B(t 1
2
)2[E[{B(t1) − B(t 1

2
)}2]|� 1

2
] = E[B(t 1

2
)2 1

2

(
T
n

)
]

= 1
2

(
T
n

)
1
2 ( T

n )

So

‖I (n) − I (n+1)‖2 = 1
2

(
T
n

)
1
2

(
T
n

)
The norm is ‖I (n) − I (n+1)‖ = 1

2

(
T
n

)
.

(f) 1
2 (T/n) → 0 as n → ∞.

(g) It has been shown that the sequence of discrete stochastic Itō integrals
I (n) , which correspond to successively refined partitions, converges
in mean-square. The limit is called the stochastic integral. This only
proves existence, it does not result in an expression for the stochastic
integral. Note that the above confirms that the numerical values of
the norm of the integrand and norm of the integral are equal,

‖ f (n) − f (n+1)‖ = ‖I (n) − I (n+1)‖

Answer [3.9.3]

(a) E{∫ T
t=0 B(t) dB(t)}2 = ∫ T

t=0 E[B(t)2] dt is an ordinary Riemann in-
tegral. Substituting E[B(t)2] = t gives∫ T

t=0
t dt = 1

2 t2
∣∣T
t=0 = 1

2 T 2
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(b) Use the result
∫ T

t=0 B(t)dB(t) = 1
2 B(T )2 − 1

2 T . Then{∫ T

t=0
B(t) dB(t)

}2

= 1
4 [B(T )2 − T ]2

= 1
4 [B(T )4 − 2B(T )2T + T 2]

Taking the expectation of this expression gives

E
{∫ T

t=0
B(t) dB(t)

}2

= 1
4E{[B(T )4 − 2B(T )2T + T 2]}

= 1
4{E[B(T )4] − 2T E[B(T )2] + T 2}

= 1
4{3T 2 − 2T T + T 2} = 1

2 T 2

which agrees with the result of (a).
(c) Var[I (T )] = E[{I (T )}2] − {E[I (T )]}2

As I (T ) is an Itō stochastic integral, E[I (T )] = 0, the answer is (a).

Answer [3.9.4]

The inner integral
∫ s

y=ti−1
dB(y) can be written as B(s) − B(ti−1). Sub-

stituting this gives∫ ti

s=ti−1

[∫ s

y=ti−1

dB(y)

]
dB(s)

=
∫ ti

s=ti−1

[B(s) − B(ti−1)] dB(s)

=
∫ ti

s=ti−1

B(s) dB(s) −
∫ ti

s=ti−1

B(ti−1) dB(s)

The first integral is∫ ti

s=ti−1

B(s) dB(s) = 1
2{B(ti )2 − B(ti−1)2} − 1

2 (ti − ti−1)

and the second integral is∫ ti

s=ti−1

B(ti−1) dB(s) = B(ti−1)[B(ti ) − B(ti−1)]
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Substituting these gives

1
2 [B(ti )2 − B(ti−1)2] − 1

2 (ti − ti−1) − B(ti−1)[B(ti ) − B(ti−1)]

= 1
2 B(ti )2 − 1

2 B(ti−1)2 − B(ti )B(ti−1) + B(ti−1)2 − 1
2 (ti − ti−1)

= 1
2 B(ti )2 − B(ti )B(ti−1) + 1

2 B(ti−1)2 − 1
2 (ti − ti−1)

= 1
2 [B(ti ) − B(ti−1)]2 − 1

2 (ti − ti−1)

Answer [3.9.5]

The discrete stochastic integral which converges to
∫ T

t=0 B(t) dB(t) is

In
def=

n−1∑
k=0

B(tk)[B(tk+1) − B(tk)]

Use ab = 1
2 (a + b)2 − 1

2a2 − 1
2 b2 where a

def= B(tk) and b
def= B(tk+1) −

B(tk). Then a + b = B(tk+1) and

In = 1
2

n−1∑
k=0

B(tk+1)2 − 1
2

n−1∑
k=0

B(tk)2 − 1
2

n−1∑
k=0

[B(tk+1) − B(tk)]2

= 1
2

[
B(tn)2 − B(t0)2

] − 1
2

n−1∑
k=0

[B(tk+1) − B(tk)]2

where B(t0) = 0

= 1
2 B(T )2 − 1

2

n−1∑
k=0

[B(tk+1) − B(tk)]2

As n → ∞, the sum converges in mean square to T , as shown in
Annex C. Thus In converges in mean square to 1

2 B(T )2 − 1
2 T , so

∫ T

t=0
B(t) dB(t) = 1

2 B(T )2 − 1
2 T

If the time period is [T1, T2] instead of [0, T ], this becomes∫ T2

t=T1

B(t) dB(t) = 1
2 [B(T2)2 − B(T1)2] − 1

2 (T2 − T1)
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Answer [3.9.6]

The variance of T B(T ) − ∫ T
t=0 B(t) dt is derived in two ways. Introduce

the notation

I (T )
def=

∫ T

t=0
t dB(t)

J (T )
def= TB(T ) −

∫ T

t=0
B(t) dt

so
I (T ) = J (T )

Method 1

Var[I (T )] = E[I (T )2] = E

[{∫ T

t=0
t dB(t)

}2
]

as I is an Itō stochastic integral. Due to the Itō isometry, this can be
written as the ordinary integral

∫ T
t=0 E[t2] dt . As t2 is non-random, the

integral equals
∫ T

t=0 t2 dt = 1
3 T 3.

Method 2

The same variance is now derived using the expression J (T ) =
T B(T ) − ∫ T

t=0 B(t) dt

Var[J (T )] = E[J (T )2] − {E[J (T )]}2

In the last term

E[J (T )] = E[T B(T )] − E
[∫ T

t=0
B(t) dt

]
Using the fact that

∫ T
t=0 B(t) dt is normal with mean 0 (as derived in

Section 3.7)

E[J (T )]} = T E[B(T )] − 0 = 0

The first term in the variance can be written as

E[J (T )2] = E

[{
T B(T ) −

∫ T

t=0
B(t) dt

}2
]

= E

[
T 2 B(T )2 +

{∫ T

t=0
B(t) dt

}2

− 2T B(T )
∫ T

t=0
B(t) dt

]
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The first term of the latter expression can be directly evaluated as

E[T 2 B(T )2] = T 2E[B(T )2] = T 2T = T 3

In the second term,
∫ T

t=0 B(t) dt is a normally distributed random vari-
able, say X (T ), with mean 0 and variance 1

3 T 3, as shown in Section 3.7.
So

E

[{∫ T

t=0
B(t) dt

}2
]

= E[X (T )2] = Var[X (T )] = 1
3 T 3

The third term

E
[
−2T B(T )

{∫ T

t=0
B(t) dt}

}]
= −2T E[B(T )X (T )]

involves the product of two random variables, B(T ) and X (T ), which are
both dependent on T , and therefore have a covariance. By the definition
of covariance

Cov[B(T ), X (T )] = E[B(T )X (T )] − E[B(T )]E[X (T )]

as in the last term both expected values are 0

E[B(T )X (T )] = Cov[B(T ), X (T )]

The book by Epps derives on page 485 that Cov[B(T ), X (T )] = 1
2 T 2.

Substituting this gives the final result as T 3 + T 3/3 − 2T 1
2 T 2 = T 3/3,

the same as in the first method.

Answer [3.9.7]

I (T )
def=

∫ T

t=0

√
|B(t)| dB(t)

As I (T ) is a Itō stochastic integral and E[I (T )] = 0, Var[I (T )] =
E[I (T )2].

E[I (T )2] = E

[{∫ T

t=0

√
|B(t)| dB(t)

}2
]

=
∫ T

t=0
E

[(√
|B(t)|

)2
]

dt

=
∫ T

t=0
E[|B(t)|]dt
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The integrand, E[|B(t)|], is worked out in Annex A, as equal to
√

2/π
√

t .
Thus

Var[I (T )] =
∫ T

t=0

√
2
π

√
t dt =

√
2
π

2
3 T 3/2

Answer [3.9.8]

X
def=

∫ T

t=0
[B(t) + t]2 dB(t)

As X is an Itō stochastic integral, E[X ] = 0.

Var[X ] = E[X2]

= E

[{∫ T

t=0
[B(t) + t]2 dB(t)

}2
]

=
∫ T

t=0
E[{B(t) + t}4] dt

The integrand expands into

E[B(t)4 + 4B(t)3t + 6B(t)2t2 + 4B(t)t3 + t4]

= E[B(t)4] + 4tE[B(t)3] + 6t2E[B(t)2] + 4t3E[B(t)] + t4

= 3t2 + 4t0 + 6t2t + 4t30 + t4

= 3t2 + 6t3 + t4

Integrating this from t = 0 to t = T gives the answer

T 3 + 6

4
T 4 + 1

5
T 4

CHAPTER 4

For greater readability, subscript t is omitted in the derivation steps but
shown in the final answer.

Answer [4.10.1]

f
def= (1/3)B(t)3 is a function of single variable B(t) so the d notation

for ordinary derivatives can be used instead of the ∂ notation for partial
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derivatives.

df = d f

dB
dB + 1

2

d2 f

dB2 (dB)2

(dB)2 = dt d f
dB = B2 d2 f

dB2 = 2B

d F = B2 dB + 1
2 2B dt

d f (t) = B(t) dt + B(t)2 dB(t)

Answer [4.10.2]

f
def= B(t)2 − t is a function of two variables, t and B(t).

d f = ∂ f

∂t
dt + ∂ f

∂ B
dB + 1

2

∂2 f

∂t2
(dt)2 + 1

2

∂2 f

∂ B2
(dB)2

+ ∂2 f

∂t∂ B
dt dB

(dt)2 = 0 (dB)2 = dt dt dB = 0
∂ f

∂t
= −1

∂ f

∂ B
= 2B

∂2 f

∂ B2
= 2

Since (dt)2 = 0, ∂2 f /∂t2 is not needed. Since dt dB = 0, ∂2 f /∂t∂ B is
not needed.

d f = −1 dt + 2B dB + 1
2 2 dt

d f (t) = 2B(t) dB(t)

Answer [4.10.3]

f
def= exp[B(t)] is a function of single variable B.

d f = d f

dB
dB + 1

2

d2 f

dB2 (dB)2

(dB)2 = dt
d f

dB
= exp(B) = f

d2 f

dB2 = d f

dB
= f

d f = f dB + 1
2 F dt

d f (t) = 1
2 f (t) dt + f (t) dB(t) dynamics of f (t)

d f (t)

f (t)
= 1

2 dt + dB(t) dynamics of proportional change in f (t)
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Answer [4.10.4]

f
def= exp[B(t) − 1

2 t] is a function of two variables, t and B(t).

d f = ∂ f

∂t
dt + ∂ f

∂ B
dB + 1

2

∂2 f

∂t2
(dt)2 + 1

2

∂2 f

∂ B2
(dB)2

+ ∂2 f

∂t∂ B
dt dB

(dt)2 = 0 (dB)2 = dt dt dB = 0
∂ f

∂t
= exp

[
B − 1

2 t
]

(− 1
2 ) = − 1

2 f ∂2 f
∂t2

is not needed as (dt)2 = 0
∂ f

∂ B
= exp

[
B − 1

2 t
]

1 = f
∂2 f

∂ B2
= ∂ f

∂ B
= f

∂2 f

∂t∂ B
is not needed as dt dB = 0

d f = − 1
2 f dt + f dB + 1

2 Z dt

d f (t) = f (t) dB(t) dynamics of f (t)
d f (t)

f (t)
= dB(t) dynamics of proportional change in f (t)

Answer [4.10.5]

S
def= exp

[
(μ − 1

2σ
2)t + σ B(t)

]
is a function of two variables, t and

B(t).

d S = ∂S

∂t
dt + ∂S

∂ B
dB + 1

2

∂2S

∂t2
(dt)2

+1

2

∂2S

∂ B2
(dB)2 + ∂2S

∂t∂ B
dt dB

(dt)2 = 0 (dB)2 = dt dt dB = 0

∂S

∂t
= exp

[
(μ − 1

2σ
2)t + σ B(t)

] (
μ − 1

2σ
2
) = S

(
μ − 1

2σ
2
)

∂S

∂ B
= exp

[(
μ − 1

2σ
2
)

t + σ B(t)
]
σ = Sσ

∂2S

∂ B2
= σ

∂S

∂ B
= σ Sσ = Sσ 2
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Since (dt)2 = 0, ∂2 S
∂t2 is not needed. Since dt dB = 0, ∂2S/∂t∂ B is not

needed.

d S = S
(
μ − 1

2σ
2
)

dt + Sσ dB + 1
2 Sσ 2 dt

d S(t) = S(t)[μ dt + σ dB(t)]
d S(t)

S(t)
= μ dt + σdB(t)

Answer [4.10.6]

ln[S] is a function of single variable S(t).

d ln[S] = d ln[S]

d S
d S + 1

2

d2 ln[S]

d S2
(d S)2

d S = S[μ dt + σ dB]

(d S)2 = S2[μ dt + σ dB]2 = S2[μ dt + σ dB]2

= S2[μ2 (dt)2 + 2μσ dt dB + σ 2 (dB)2]

(dt)2 = 0 dt dB = 0 (dB)2 = dt

(d S)2 = S2[μ dt + σ dB]2 = S2[μ dt + σ dB]2

= S2[μ2 (dt)2 + 2μσ dt dB + σ 2 (dB)2]

= S2σ 2 dt
d ln[S]

d S
= 1

S

d2 ln[S]

d S2
= −1

S2

d ln[S] = 1

S
S[μ dt + σ dB] + 1

2

−1

S2
S2σ 2 dt

d ln[S(t)] = (
μ − 1

2σ
2
)

dt + σ dB(t)

The random term in the dynamics of ln[S(t)] is the same as in the dy-
namics of the proportional change d S(t)/S(t), but the dt term is smaller
by 1

2σ
2.

Answer [4.10.7]

f
def= 1/S(t) is a function of single variable S.

d f = d f

d S
d S + 1

2

d2 f

d S2
(d S)2

d S = μS dt + σ S dB
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(d S)2 = (μS dt + σ S dB)2

= μ2S2 (dt)2 + 2μSσ S dt dB + σ 2S2 (dB)2

(dt)2 = 0 dt dB = 0 (dB)2 = dt
∂ f

∂S
= −1

S2

∂2 f

∂S2
= 2

S3
(d S)2 = σ 2S2 dt

d f = −1

S2
[μS dt + σ S dB] + 1

2

2

S3
σ 2S2 dt

d f = 1

S
[(σ 2 − μ) dt − σ dB]

d f (t) = f (t)[(σ 2 − μ) dt − σ dB(t)]
d f (t)

f (t)
= (σ 2 − μ) dt − σ dB(t)

Answer [4.10.8]

R = 1/Q is a function of single variable Q.

dR = dR

dQ
dQ + 1

2

d2 R

dQ2 (dQ)2

Substituting

dQ = Q[μQ dt + σQ dB]

(dQ)2 = Q2σ 2
Q dt

dR

dQ
= −1

Q2

d2 R

dQ2 = 2

Q3

gives

dR = −1

Q2
Q[μQ dt + σQ dB] + 1

2

2

Q3
Q2σ 2

Q dt

= −1

Q
[μQ dt + σQ dB] + 1

Q
σ 2

Q dt

= −R[μQ dt + σQ dB] + Rσ 2
Q dt

= R(−μQ + σ 2
Q) dt − RσQ dB(t)

Dividing by R(t) �= 0 gives the dynamics of the relative change

dR(t)

R(t)
= (−μQ + σ 2

Q) dt − σQ dB(t)
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Answer [4.10.9]

P is a function of two variables, r and t

dP = ∂ P

∂t
dt + ∂ P

∂r
dr + 1

2

∂2 P

∂r2
(dr )2 + ∂2 P

∂t∂r
dt dr

Substituting

dr = μ dt + σ dB

(dr )2 = σ 2 dt

dt dr = dt (μ dt + σ dB) = μ (dt)2 + σ dt dB = 0

gives

dP = ∂ P

∂t
dt + ∂ P

∂r
(μ dt + σ dB) + 1

2

∂2 P

∂r2
σ 2 dt

=
[
∂ P

∂t
+ μ

∂ P

∂r
+ 1

2
σ 2 ∂2 P

∂r2

]
dt + σ

∂ P

∂r
dB(t)

Answer [4.10.10]

As X is a function of two variables, t and M(t)

d X = ∂ X

∂t
dt + ∂ X

∂ M
d M + 1

2

∂2 X

∂ M2
(d M)2

Substituting

∂ X

∂t
= −1

∂ X

∂ M
= 2M

∂2 X

∂ M2
= 2 (d M)2 = dt

gives

d X = −1 dt + 2M d M + 1
2 2 dt

= 2M(t) d M(t)

In integral form over [s ≤ t ≤ u]

X (u) − X (s) = 2
∫ u

t=s
M(t) d M(t)

E[X (u)|�(s)] = X (s) + 2E[
∫ u

t=s
M(t) d M(t)|�(s)]

X is a martingale if the rhs expectation equals zero. It is shown in Kuo
that this is indeed the case.
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Answer [4.10.11]

The discrete stochastic integral with respect to continuous martingale
M is

Jn
def=

n−1∑
k=0

f (tk)[M(tk+1) − M(tk)]

One would expect Jn to be a martingale because [M(tk+1) − M(tk)]
is a martingale, and Jn is just a combination of several of these, with
weightings f (tk) that are known before the movements of M are gen-

erated. The question is: E[Jn+1|�n]
?= Jn . Writing Jn as [Jn|�n], the

question is rephrased as: E[Jn+1 − Jn|�n]
?= 0.

Jn+1 =
n−1∑
k=0

f (tk)[M(tk+1) − M(tk)]

+ f (tn)[M(tn+1) − M(tn)]

Jn+1 − Jn = f (tn)[M(tn+1) − M(tn)]

E[Jn+1 − Jn|�n] = E[ f (tn)[M(tn+1) − M(tn)]|�n]

= f (tn)E[M(tn+1) − M(tn)|�n]

since f (tn) is known when �n is given. As M is a martinale, E[M(tn+1) −
M(tn)|�n] = 0, so E[Jn+1 − Jn|�n] = 0. Thus Jn is a discrete-time mar-
tingale.

CHAPTER 5

Answer [5.12.1]

X (t) = exp(−λt)

[
X (0) + σ

∫ t

s=0
exp(λs) dB(s)

]
Beware: Treating X (t) as a function of Brownian motion is conceptually
seriously wrong !!!

Introduce Z (t)
def= ∫ t

s=0 exp(λs) dB(s). Then X (t) = exp(−λt)[X (0)+
σ Z (t)] is a function of t and Z .

dX = ∂ X

∂t
dt + ∂ X

∂ Z
d Z + 1

2

∂2 X

∂t2
(dt)2

+1

2

∂2 X

∂ Z2
(d Z )2 + ∂2 X

∂t∂ Z
dt d Z
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The various terms on the right hand side are:� keeping Z constant, ∂ X
∂t = −λX (t)� keeping t constant, ∂ X

∂ Z = exp(−λt)σ� ∂2 X
∂ Z2 = ∂

∂ Z ( ∂ X
∂ Z ) = ∂

∂ Z σ exp(−λt) = 0� d Z = exp(λt) dB(t)� dtd Z = exp(λt) dt dB(t) = 0� (dt)2 = 0

Substituting these gives

d X = −λX (t) + σ exp(−λt) exp(λt) dB(t)

= −λX (t) dt + σ dB(t)

as was to be shown.

Alternative Method

X (t) is the product of a non-random term exp(−λt) and a random term
[...]. To determine d X (t), use the product rule

d[Y (t)Z (t)] = Y (t) d Z (t) + Z (t) dY (t) + dY (t) d Z (t)

Applying this to the product of exp(−λt) and [X (0) + σ
∫ t

s=0 exp(λs)
dB(s)] gives

d X (t) = [...] d[exp(−λt)] + exp(−λt) d[...] + d[exp(−λt)] d[...]

The expression for d[...] is σ exp(λt) dB(t). The expression for
d[exp(−λt)] is −λ exp(−λt) dt . Multiplying these expressions produces
the cross product dt dB(t) which is zero.

d X (t) = [...](−λ) exp(−λt) dt + exp(−λt)σ exp(λt) dB(t)

= −λ{exp(−λt)[X (0) + σ

∫ t

s=0
exp(λs) dB(s)]} + σ dB(t)

As the expression in {...} is X (t)

d X (t) = −λX (t) dt + σ dB(t)

as was to be shown.
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Answer [5.12.2]

The random process specified in these questions is known as a Brownian
bridge.

(a) Random process X is specified for 0 ≤ t<T (strictly) as

X (t)
def= (T − t)

∫ t

s=0

1

T − s
dB(s) X (0) = 0

Let the stochastic integral be denoted Z (t), Z (t)
def= ∫ t

s=0[1/

(T − s)] dB(s), which in shorthand is d Z (t) = [1/(T − t)] dB(t).

Then X (t)
def= (T − t)Z (t) is a function of t and Z (t). Itō’s formula

gives

d X (t) = −Z (t) dt + (T − t) d Z (t)

= −Z (t) dt + (T − t)
1

T − t
dB(t)

= −Z (t) dt + dB(t)

To get this in terms of X , substitute Z (t) = X (t)/(T − t), giving

d X (t) = − X (t)

T − t
dt + dB(t)

(b) Random process Y is specified for 0 ≤ t<T (strictly) as

Y (t)
def= a

(
1 − t

T

)
+ b

t

T
+ (T − t)

∫ t

s=0

1

T − s
dB(s) Y (0) = a

Let the stochastic integral be denoted Z (t), Z (t)
def= ∫ t

s=0 [1/(T − s)]
dB(s), which in shorthand is d Z (t) = [1/(T − t)dB(t). Then

Y (t)
def= a

(
1 − t

T

)
+ b

t

T
+ (T − t)Z (t)

is a function of t and Z (t). Itō’s formula gives

dY (t) =
[
−a

1

T
+ b

1

T
− Z (t)

]
dt + (T − t)

1

T − t
dB(t)

=
[
−a

1

T
+ b

1

T
− Z (t)

]
dt + dB(t)
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Write Z (t) in terms of Y (t). First rearrange Y (t) as

Y (t) = a
T − t

T
+ b

t

T
+ (T − t)Z (t)

So

Z (t) = Y (t)

T − t
− a

1

T
− b

t

T

1

T − t

Substituting gives

dY (t) =
[
−a

1

T
+ b

1

T
− Y (t)

T − t
+ a

1

T
+ b

t

T

1

T − t

]
dt + dB(t)

= b − Y (t)

T − t
dt + dB(t)

For a = 0 and b = 0, the case of question (a) is recovered.

Answer [5.12.3]

dr (t) = [b(t) − ar (t)] dt + σ dB(t)

Simplify the drift by introducing the new random process X (t)
def=

exp(at)r (t) which is a function of the two variables t and r . Itō’s formula
give its dynamics as

d X = ∂ X

∂t
dt + ∂ X

∂r
dr + ∂2 X

∂r2
(dr )2

∂ X

∂t
= aX

∂ X

∂r
= exp(at)

∂2 X

∂r2
= 0 (dr )2 = σ 2 dt

d X (t) = aX (t) dt + exp(at){[b(t) − ar (t)] dt + σ dB(t)}
= aX (t) dt+exp(at)b(t) dt−a exp(at)r (t) dt+σ exp(at) dB(t)

= aX (t) dt + exp(at)b(t) dt − a X (t) dt + σ exp(at) dB(t)

Term aX (t) dt cancels, leaving the simplified SDE

d X (t) = exp(at)b(t) dt + σ exp(at) dB(t)

Using s for running time

d X (s) = exp(as)b(s) ds + σ exp(as) dB(s)
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The corresponding integral expression is

X (t) = X (0) +
∫ t

s=0
exp(as)b(s) ds +

∫ t

s=0
σ exp(as) dB(s)

Converting back to r gives

exp(at)r (t) = exp(a0)r (0) +
∫ t

s=0
exp(as)b(s) ds

+
∫ t

s=0
σ exp(as) dB(s)

r (t)=exp(−at)

{
r (0)+

∫ t

s=0
exp(as)b(s) ds+σ

∫ t

s=0
exp(as) dB(s)

}
where r (0) is a known non-random value.

Answer [5.12.4]

As g is a function of the single variable r

dg = dg

dr
dr + 1

2

d2g

dr2
(dr )2

Substitute

dr = −λ[r − r ] dt + σ
√

r dB(t)

(dr )2 = σ 2r dt

Then

dg = dg

dr
{−λ[r − r ] dt + σ

√
r dB(t)} + 1

2
d2g
dr2 σ

2r dt

=
{
−λ[r − r ]

dg

dr
+ 1

2σ
2r

d2g

dr2

}
dt + σ

√
r

dg

dr
dB(t)

The diffusion coefficient is σ
√

r (dg/dr ). Setting this equal to 1 implies
that g must satisfy

dg

dr
= 1

σ
√

r

Ordinary integration of the function g of r , with respect to r , gives

g = 2
σ

√
r and r = 1

4σ
2g2
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In the drift coefficient

d2g

dr2
= d

dr

(
dg

dr

)
= −1

2σr
√

r

The SDE for g in terms of r is

dg =
{
−λ[r − r ]

1

σ
√

r
+ 1

2σ
2r

−1

2σr
√

r

}
dt + dB(t)

Expressing r in terms of g then gives the final expression for dg in terms
of g.

The diffusion coefficient (volatility) has become constant but the drift
coefficient {...} is now much more complicated.

Answer [5.12.5]

d ln[r (t)] = θ (t) dt + σ dB(t)

From geometric Brownian motion it is known that by going from dr/r
to d[ln r ] the drift of dr/r is reduced by 1

2 volatility2. Here it is the
other way around. Thus

dr (t)

r (t)
= [

θ (t) + 1
2σ

2
]

dt + σ dB(t)

This can also be seen as follows. Let X
def= ln(r ). Then r = exp(X ), which

is a function of single variable X .

dr = dr

d X
d X + 1

2

d2r

d X2
(d X )2 = r d X + 1

2r (d X )2

The stochastic differential of X is

d X = d ln r = θ (t) dt + σ dB(t)

and

(d X )2 = σ 2 dt

Substituting these gives

dr = r [θ (t) dt + σ dB(t)] + 1
2rσ 2 dt

and
dr (t)

r (t)
= [θ (t) + 1

2σ
2] dt + σ dB(t)
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Answer [5.12.6]

SDE

d X (t) = X (t) dt + dB(t) X (0) known

is of the general linear form with

μ1X = 0 μ2X = 1

σ1X = 1 σ2X = 0

SDE for Y
μY = μ2X = 1
σY = σ2X = 0
dY (t)/Y (t) = 1 dt + 0 dB(t) = dt
ln[Y (t)] = t + c
ln[Y (0)] = ln[1] = 0 = 0 + c
c = 0
Y (t) = exp(t)

SDE for Z

μZ = μ1X − σY σ1X

Y
= 0

σZ = σ1X

Y
= 1

Y
= e−t

d Z (t) = 0 dt + e−t dB(t) = e−t dB(t) Z (0) = X (0)

Z (t) = Z (0) +
∫ t

s=0
e−s dB(s) = X (0) +

∫ t

s=0
e−s dB(s)

Solution

X (t) = Y (t)Z (t)

= exp(t)[X (0) +
∫ t

s=0
exp(−s) dB(s)]

Verifying the Solution
Write the solution as X (t) = Y (t)Z (t) where Y (t) = et and Z (t) =
X (0) + ∫ t

s=0 e−s dB(s).

d X = Y d Z + Z dY + dY d Z
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Substituting dY = et dt and d Z (t) = e−t dB(t) gives

d X (t) = et e−t dB(t) +
[

X (0) +
∫ t

s=0
e−s dB(s)

]
et dt

+ et dt e−t dB(t)

The last term is 0, and the coefficient of dt is X (t), leaving the original
SDE

d X (t) = dB(t) + X (t) dt

Answer [5.12.7]

SDE

d X (t) = −X (t) dt + e−t dB(t) X (0) known

is of the general linear form with

μ1X = 0 μ2X = −1
σ1X = e−t σ2X = 0

SDE for Y

μY = μ2X = −1

σY = σ2X = 0

dY (t)/Y (t) = −1 dt + 0 dB(t) = −dt

ln[Y (t)] = −t + c

ln[Y (0)] = ln[1] = 0 = 0 + c

c = 0

Y (t) = e−t

SDE for Z

μZ = μ1X − σY σ1X

Y
= 0

σZ = σ1X

Y
= e−t

e−t
= 1

d Z (t) = 0 dt + dB(t) = dB(t) Z (0) = X (0)

Z (t) = Z (0) + B(t) = X (0) + B(t)
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Solution

X (t) = Y (t)Z (t)

= e−t [X (0) + B(t)]

Verifying the Solution
Write the solution as X (t) = Y (t)Z (t) where Y (t) = e−t and Z (t) =
[X (0) + B(t)].

d X = Y d Z + Z dY + dY d Z

Substituting dY = −e−t dt and d Z (t) = dB(t) gives

d X (t) = e−t dB(t) − [X (0) + B(t)]e−t dt − e−t dt dB(t)

The last term is 0, and the coefficient of dt is −X (t), leaving the original
SDE

d X (t) = e−t dB(t) − X (t) dt

Answer [5.12.8]

As SDE

d X (t) = m dt + σ X (t) dB(t) X (0) known

is linear in the unknown process X , use the general solution method for
linear SDEs. In general form

d X (t) = [μ1X (t) + μ2X (t)X (t)] dt + [σ1X (t) + σ2X (t)X (t)] dB(t)

Let X (t) = Y (t)Z (t) where

dY (t)

Y (t)
= μY (t) dt + σY (t) dB(t) with Y (0) = 1

d Z (t) = μZ (t) dt + σZ (t) dB(t) with Z (0) = X (0)

For the SDE of X

μ1X (t) = m μ2X (t) = 0
σ1X (t) = 0 σ2X (t) = σ
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Then for Y

μY (t) = μ2X (t) = 0

σY (t) = σ2X (t) = σ

dY (t)

Y (t)
= σ dB(t) with Y (0) = 1

The solution to the SDE for Y is

Y (t) = exp[− 1
2σ

2t + σ B(t)]

For Z

μZ (t) = μ1X (t) − σY (t)σ1X (t)

Y (t)
= m

Y (t)

= m exp[ 1
2σ

2t − σ B(t)]

σZ (t) = σ1X (t)

Y (t)
= 0

d Z (t) = m exp
[

1
2σ

2t − σ B(t)
]

dt with Z (0) = X (0) known

The solution to the SDE for Z is

Z (t) = Z (0) + m
∫ t

s=0
exp

[
1
2σ

2s − σ B(s)
]

ds

As Z (0) = X (0)

Z (t) = X (0) + m
∫ t

s=0
exp

[
1
2σ

2s − σ B(s)
]

ds

Multiplying Y (t) and Z (t) gives

X (t) = Y (t)Z (t) = exp
[− 1

2σ
2t + σ B(t)

]
×

{
X (0) + m

∫ t

s=0
exp

[
1
2σ

2s − σ B(s)
]

ds

}

Verifying the Solution
Write the solution as X (t) = Y (t)Z (t) where

Y (t) = exp[− 1
2σ

2t + σ B(t)]

Z (t) = m
∫ t

s=0
exp[ 1

2σ
2s − σ B(s)] dt + X (0)
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Then use d X = Y d Z + Z dY + dY d Z . Itō’s formula applied to Y
gives dY = σY dB(t). And the SDE notation for Z is

d Z (t) = m exp[ 1
2σ

2t − σ B(t)] dt

Substition gives

d X (t) = exp
[− 1

2σ
2t + σ B(t)

]
m exp

[
1
2σ

2t − σ B(t)
]

dt

+
{

X (0) + m
∫ t

s=0
exp

[
1
2σ

2s − σ B(s)
]

dt

}
× {

σ exp
[− 1

2σ
2t + σ B(t)

]
dB(t)

}
= m dt + σ X (t) dB(t)

as dY d Z = 0. The original SDE has been recovered.

CHAPTER 7

Answer [7.10.1]

x , a straight line

Answer [7.10.2]

Random variable X has probability distribution N (0, 1) under proba-
bility P. Its density under P is 1/

√
2π exp

[− 1
2 x2

]
at X = x . Random

variable Y is defined as Y
def= X + μ. Density of Y under P at X = x

is 1/
√

2π exp
[− 1

2 (x − μ)2
]
. Density of Y under P̂ at Y = y must be

1/
√

2π exp
[− 1

2 y2
]
.

(density of Y under P̂) =
dP̂
dP

× (density of X under P)

1√
2π

exp
[− 1

2 y2
] = dP̂

dP
1√
2π

exp
[− 1

2 x2
]

For a particular realization X = x and Y = y

dP̂
dP

= 1√
2π

exp
[− 1

2 y2
]
/

1√
2π

exp

[
−1

2
x2

]
= exp

[− 1
2{(x + μ)2 − x2}]

= exp
[− 1

2 (x2 + 2xμ + μ2 − x2)
]

= exp
[−μx − 1

2μ
2
]



JWBK142-Ans JWBK142-Wiersema March 25, 2008 7:54 Char Count= 0

Answers to Exercises 289

dP̂/dP is the positive random variable exp
[−μX − 1

2μ
2
]
, a function of

random variable X ; it is the Radon–Nikodym derivative with respect to
random variable X . Under P, random variable Y has mean μ, but under
P̂ it has mean 0. The mean has been changed by a change in probability.

Verification
It is useful to verify whether the expected value of Y under P̂ is indeed
0, when using the dP̂/dP that has just been derived.

EP̂[Y ] = EP

[
dP̂
dP

Y

]
= EP

[
dP̂
dP

(X + μ)

]
where the right-hand side uses X ∼ N (0, 1).

EP̂[Y ] = EP
{
exp

[−μX − 1
2μ

2
]

(X + μ)
}

=
∫ ∞

x=−∞
exp

[−μx − 1
2μ

2
]

(x + μ)
1√
2π

exp
[− 1

2 x2
]

dx

where lower case x is a value of X . The exponent is[−μx − 1
2μ

2 − 1
2 x2

] = − 1
2 [x2 + 2xμ + μ2] = − 1

2 (x + μ)2

so

EP̂[Y ] =
∫ ∞

x=−∞
(x + μ)

1√
2π

exp
[− 1

2 (x + μ)2
]

dx

Change variable to z
def= x + μ; this has the same integration limits as x

and dz = dx . Thus

EP̂[Y ] =
∫ ∞

x=−∞
z

1√
2π

exp
[− 1

2 z2
]

dz

which is the expected value of a standard normal and equals 0 as was to
be shown.

It is also useful to verify that the density of Y under P̂ is indeed
standard normal.

density of Y under P̂ equals ( dP̂
dP |X=x ) × (density of X under P)

= exp
[−μx − 1

2μ
2
] 1√

2π
exp

[− 1
2 x2

]
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The exponent is[−μx − 1
2μ

2 − 1
2 x2

] = − 1
2 [x2 + 2xμ + μ2]

= − 1
2 [x + μ]2 = − 1

2 y2

Density of Y under P̂ is (1/
√

2π ) exp[− 1
2 y2], as was to be shown.

Answer [7.10.3]

To go from P̂ to P requires

dP
dP̂

= (density of X under P)/(density of Y under P̂)

= 1√
2π

exp
[− 1

2 x2
]
/ 1√

2π
exp

[− 1
2 y2

]
If Y = y then x = y − μ. Substituting x gives

exp
[− 1

2 (y − μ)2
]
/ exp

[− 1
2 y2

]
and after rearranging, dP/dP̂ = exp

[
μy − 1

2μ
2
]

when Y = y. In gen-
eral,

dP
dP̂

= exp
[
μY − 1

2μ
2
]

a positive function of random variableY . dP/dP̂ is the Radon–Nikodym
derivative with respect to random variable Y .

Verification of Solution
Verify that EP[X ] = 0.

EP[X ] = EP̂

[
dP
dP̂

X

]
= EP̂

[
dP
dP̂

(Y − μ)

]
where

dP
dP̂

= exp
[
μY − 1

2μ
2
]

and Y ∼ N (0, 1) under P̂

=
∫ ∞

y=−∞
exp

[
μy − 1

2μ
2
]

(y − μ)
1√
2π

exp
[− 1

2 y2
]

dy

The exponent equals[
μy − 1

2μ
2 − 1

2 y2
] = − 1

2 [y2 − 2yμ + μ2] = − 1
2 (y − μ)2
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The integral equals
∫ ∞

y=−∞(y − μ) exp
[− 1

2 (y − μ)2
]

dy. Change to

variable w
def= y − μ. This has the same integration limits as y, and

dw = dy. The integral is then∫ ∞

w=−∞
w

1√
2π

exp
[− 1

2w
2
]

dw

which is the expected value of a standard normal and equals 0, so
EP[X ] = 0, as was to be shown. Verification that the density of X under
P is N (0, 1) is done in the same way as in Exercise [7.10.2].

Answer [7.10.4]

Over the time period [0, T ], the random terminal stock price S(T ) is
related to the given initial stock price S(0) = 1 by

S(T ) = exp
[(

μ − 1
2σ

2
)

T + σ B(T )
]

under original probability P, where μ is growth rate of stock price. Under
risk-neutral probability P̂ it is

Ŝ(T ) = exp
[(

r − 1
2σ

2
)

T + σ B̂(T )
]

where r is risk-free interest rate.

(a) Expected value of S(T ) under P. Under P, S(T ) = exp[(μ −
1
2σ

2)T + σ B(T )]. It is convenient to introduce separate notation
for the exponent

X (t)
def= (

μ − 1
2σ

2
)

T + σ B(T )

X (t) is normal because B(T ) is normal, and rescaling by σ and
adding constant

(
μ − 1

2σ
2
)

T maintains normality. Thus

E[S(t)] = E[exp[X (t)]] = exp
{
E[X (t)] + 1

2Var[X (t)]
}

where E[X (t)] = (
μ − 1

2σ
2
)

T and Var[X (t)] = σ 2T .

E[S(t)] = exp
[(

μ − 1
2σ

2
)

T + 1
2σ

2T
] = exp(μT )

(b) Radon–Nikodym derivative dP̂/dP transforms the density of B(t)
to the density of B̂(T ). First step is to derive dynamics of S under
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both probabilities. S(T ) is a function of T and B(T ). Using Itō’s
formula

d S(T )

S(T )
= m dT + σ dB(T )

where m = μ under P and m = r under P̂; details of derivation
omitted here. Write the drift of d S(T )/S(T ) under P as

[r + (μ − r )] dT = r dT + (μ − r ) dT

Apply the transformation σ B̂(T )
def= (μ − r ) T + σ B(T ), divide by

σ , let ϕ
def= (μ − r )/σ , then

B̂(T ) = ϕT + σ B(T ) d B̂(T ) = ϕ dT + σ dB(T )

According to Girsanov, B̂ is a standard Brownian motion under
probability P̂. Let x denote a value of random variable B(T ), then
x + ϕT is the corresponding value of B̂(T ). Under P, at B(T ) = x ,
dP̂/dP = (density of B̂)/(density of B)

1√
T

√
2π

exp

[
−1

2

(
x + ϕT√

T

)2
]/

1√
T

√
2π

exp

[
−1

2

(
x√
T

)2
]

= exp

[
−1

2

(
x + ϕT√

T

)2

+ 1

2

(
x√
T

)2
]

= exp
[−ϕx − 1

2ϕ
2T

]
dP̂/dP = exp

[−ϕB(T ) − 1
2ϕ

2T
]

in terms of B(T )
(c) From the expected value of Ŝ(T ) under P̂ to the expected value of

S(T ) under P:

Ê[̂S(T )] = exp(rT ) by the same method as used in (a).

Transformation from P̂ to P requires the Radon–Nikodym derivative
dP/dP̂.

dP
dP̂

= 1

/
dP̂
dP

= exp
[
ϕB(T ) + 1

2ϕ
2T

]
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in terms of B(T ). To use this under P̂, it has to be in terms B̂(T ), so
substitute B(T ) = B̂(T ) − ϕT , giving

dP
dP̂

= exp
[
ϕ{B̂(T ) − ϕT } + 1

2ϕ
2T

]
= exp

[
ϕ B̂(T ) − 1

2ϕ
2T

]
Note that the second term in the exponential has changed sign.
Ê[̂S(T ) dP

dP̂ ] produces E[S(T )].

Ŝ(T )
dP
dP̂

= exp
[(

r − 1
2σ

2
)

T + σ B̂(T )
]

exp
[
ϕ B̂(T ) − 1

2ϕ
2T

]
Let the exponent

Y (T )
def= (

r − 1
2σ

2
)

T + σ B̂(T ) + ϕ B̂(T ) − 1
2ϕ

2T

= rT + (σ + ϕ)B̂(T ) − 1
2 (σ 2 + ϕ2)T

Y (T ) is normal

Ê[Y (T )] = rT − 1
2 (σ 2 + ϕ2)T V̂ar[Y (T )] = (σ + ϕ)2T

Ê
[

Ŝ(T )
dP
dP̂

]
= Ê{exp[Y (T )]} = exp

{
Ê[Y (T )] + 1

2 V̂ar[Y (T )]
}

= exp
{
rT − 1

2 (σ 2 + ϕ2)T + 1
2 (σ + ϕ)2T

}
= exp(rT + σϕT )

Using ϕ
def= (μ − r )/σ gives

exp

(
rT + σ

μ − r

σ
T

)
= exp(rT + μT − rT ) = exp(μT )

E[S(T )] = Ê
[

Ŝ(T )
dP
dP̂

]
= exp(μT )

as was to be shown.

Answer [7.10.5]

The random process W defined by the Girsanov tranformation W (t)
def=

B(t) + ϕt is a Brownian motion under the new probability distribution
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P̂ that is created from the orginal probability distribution P of B(t) by
the Radon–Nikodym derivative

Z (t) = exp [−ϕB(t) − 1
2ϕ

2t] = dP̂
dP

with E[Z (t)] = 1. Itō’s formula applied to Z as a function of variables
t and B(t) readily gives the geometric Brownian motion expression

d Z (t)

Z (t)
= −ϕ dB(t)

As this SDE has no drift, Z is a martingale. As W (t) is a Brownian motion
under P̂, it should have Ê[W (t)] = 0. This is now verified via Ê[W (t)] =
E[W (t)Z (t)]. Note that W (t) and Z (t) are both functions of the same
random variable B(t) of which the probability density under P is known.
At B(t) = x , W (t)Z (t) has the value (x + ϕt) exp

[−ϕx − 1
2ϕ

2t
]

and the
probability density is

1√
t
√

2π
exp

[ − 1

2

(
x√
t

)2 ]
Thus

E[W (t)Z (t)] =
∫ ∞

x=−∞
(x + ϕt) exp

[−ϕx − 1
2ϕ

2t
]

× 1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

︸ ︷︷ ︸
density of B(t)

dx

Changing the density to standard normal by u = x/
√

t gives∫ ∞

x=−∞
(u

√
t + ϕt) exp

[
−ϕu

√
t − 1

2ϕ
2t

] 1√
2π

exp
[− 1

2 u2
]

du

The exponent can be combined to − 1
2 (u + ϕ

√
t)2 so the above can be

written as

= ∫ ∞
x=−∞(u

√
t + ϕt) 1√

2π
exp

[− 1
2 (u + ϕ

√
t)2

]
du

= √
t
∫ ∞

x=−∞ u 1√
2π

exp
[− 1

2 (u + ϕ
√

t)2
]

du

+ϕt
∫ ∞

x=−∞
1√
2π

exp
[− 1

2 (w + ϕ
√

t)2
]

dw
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As the first integral is the expected value of a normal random variable
with mean −ϕ

√
t , it equals −ϕ

√
t . As the second integral is the area

under the probability density of that random variable, it equals 1. Thus

Ê[W (t)] = √
t(−ϕ)

√
t + ϕt1 = 0

as was to be shown.

Answer [7.10.6]

(a) Under original probability P

S*(T ) = S(0) exp
[
(μ − r − 1

2σ
2)T + σ B(T )

]
= S(0) exp

[
(μ − r − 1

2σ
2)T

]
exp [σ B(T )]

and

Z (T ) = exp
[−ϕB(T ) − 1

2ϕ
2T

]
So

Z (T )S*(T ) = S(0)exp
[
(μ − r − 1

2σ
2 − 1

2ϕ
2)T

]
×exp [(σ − ϕ)B(T )]

Then

EP[Z (T )S*(T )]

= S(0) exp
[
(μ − r − 1

2σ
2 − 1

2ϕ
2)T

]
EP [exp [(σ − ϕ)B(T )]]

With E[exp[(σ − ϕ)B(T )]] = exp[ 1
2 (σ − ϕ)2T ] = exp[ 1

2σ
2T −

σϕT + 1
2ϕ

2T ]. As σϕ = σ
μ−r
σ

= μ − r , E[exp[(σ − ϕ)B(T )]] =
exp[ 1

2σ
2T − (μ − r )T + 1

2ϕ
2T ] and E[Z (T )S*(T )] = S(0), due

to cancellations in the exponents.
(b) Under original probability P

V *(T ) = exp(−rT )V (T )

= exp(−rT )
[
α(T )S(T ) + exp(−rT )

]
= α(T ) exp(−rT )S(T ) + 1

= α(T )S*(T ) + 1

So

Z (T )V *(T ) = [α(t)Z (T )S*(t) + Z (T )]
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and

E[Z (T )V *(T )] = E[α(t)Z (T )S*(t)] + E[Z (T )]

= α(t)E[Z (T )S*(t)] + 1

= α(t)S(0) + 1

= V (0)

(c) EP [Z (T )V *(T )] =
∫ ∞

x=−∞
V *(T )exp

[−ϕx − 1
2ϕ

2T
]

dP︸ ︷︷ ︸
dP̂

=
∫ ∞

x=−∞
V *(T )dP̂

= Ê[V *(T )]

since Z (T ) = dP̂(T )/dP(T ).

Answer [7.10.7]

Original probability mass

P[X = k] = λk
1

k!
exp (−λ1)

New probability mass

P̂[X = k] = λk
2

k!
exp (−λ2)

Radon–Nikodym derivative

dP̂
dP

= λk
2

k!
exp (−λ2)/

λk
1

k!
exp (−λ1) =

(
λ2

λ1

)k

exp [−(λ2 − λ1)]

Answer [7.10.8]

At time 0, the barrier starts at level L . At time t the vertical position
of the barrier is L + μt . The first passage time is the earliest time at
which B(t) = L + μt . Then B(t) − μt = L , which is the same as the
process B(t) − μt first hitting horizontal barrier L . Introduce the new

Brownian motion B̂(t)
def= B(t) − μt under the new probability P̂. Then

B̂(t) hitting the horizontal barrier is same as B(t) hitting the sloped
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barrier

B̂(t) = L ⇔ B(t) − μt = L

Let Thor denote the random time of first hitting a horizontal barrier at level
L . Its probability density at Thor = t is known, say f (t); the expression
is derived in Annex A, Section A.4, but is not needed to answer this
question. Note that B̂(t) is here the ‘original’ Brownian motion for which
the density of first passage of a horizontal barrier is known. So the
Girsanov transformation is from B̂(t) to B(t)

B(t) = B̂(t) + μt

As B̂(t) is under P̂, density f is under P̂. The Radon–Nikodym derivative
for going from B̂(t) to B(t) is

dP
dP̂

= exp
[− 1

2μ
2t − μB̂(t)

]
This is in terms of the ‘original’ Brownian motion, B̂(t), and both co-
efficients in the exponent have a minus sign because the term μt in the
Girsanov transformation has a plus sign. At the time of hit, B̂(t) = L ,
and the probability density is at that time, so dP/dP̂ at B̂(t) = L is
exp

(− 1
2μ

2t − μL
)
. The probability density of the time of first hit of the

sloping barrier is therefore

f (t) exp
(− 1

2μ
2t − μL

)
which can be verified by simulation.



JWBK142-Ans JWBK142-Wiersema March 25, 2008 7:54 Char Count= 0

298



JWBK142-ref JWBK142-Wiersema March 19, 2008 13:12 Char Count= 0

References

Probability Theory

(listing in this section in order of increasing technical level and scope)

Haigh, J. Probability Models. ISBN 1-85233-431-2. Springer ‘Undergraduate Mathe-
matics Series’ 2002. Elementary. Fully worked out solutions to exercises.

Ross, S. A First Course in Probability 7/ed. ISBN 0132018179. Prentice Hall 2005.
Elementary text on standard computational probability theory. Highly readable,
widely used.

Foata, D. and Fuchs, A. Calcul des probabilités 2e éd. ISBN 2-10-004104-5. Dunod
1998. Excellent French textbook on computational probability with accessible cover-
age of basic advanced probability. In France aimed at students in Écoles d’ingénieurs.
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definition 127–8
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Bakstein, D. 10, 24, 57, 68, 89, 122, 160
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76–8, 81–3

Brown, Robert 1, 29
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282–3
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change of probability 151–80
combinations 14–16, 89–95, 101, 114,
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104–8, 154–80, 187–204, 207–22

303



JWBK142-ind JWBK142-Wiersema March 25, 2008 11:58 Char Count= 0

304 Index

Brownian motion (Continued)
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credit risk modelling 201–4
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282–3
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first variation 24–6, 29, 240
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gates exercise/answers 27–8, 259,
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probability distributions 2–4, 154–62,

211–22
properties 19–26, 87–9, 215–18
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second variation 24–6, 29, 238–40
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specification 2–4
stock price dynamics 4–6, 92–5, 108,

114, 185–6
successive increments 16–19, 27,

218–22, 259
symmetric random walks 6–12
third moment 209–10
third variation 25–6, 29
unusual properties 19–26, 218–22

uses 2, 4–6, 73, 75–8
variability measurements 24–6, 29,

237–40
Brzeniak, Z. 43, 57, 77

Cairns, A.J.G. 112
calculus

concepts 226–36
fundamental theorem 232–6

calendar time, PDEs 128–30
call options 141–4, 191–3, 203

see also option valuations
asset-or-nothing calls 141–2
option valuations 141–4

Capasso, V. 10, 24, 57, 68, 89, 122, 160
Central Limit Theorem (CLT) 2, 249–50
change of Brownian motion, concepts

154–5
change of normal probability density,

concepts 153–62
change of numeraire

change of probability 193–5
concepts 84–5, 181–6, 193–204
continuous-time martingales 184–6
discrete-time one-period binomial

framework 181–4
GMB 195–7
Itô’s lemma (formula) 84–5
LIBOR market model 197–201

change of probability
see also Radon-Nikodym derivative;

redistribution of probability mass
change of numeraire 193–5
concepts 151–80
exercises/answers 178–9, 290–9

checking the solutions, SDEs 115
Cholesky decomposition, concepts 94–5
CIR model 123, 124, 284–5
CLT see Central Limit Theorem
combinations

see also correlation
Brownian motion 14–16, 89–95, 101,

114, 185–90
computations, Brownian motion 9,

207–22
computer simulations

see also simulations
limit in distribution of symmetric

random walks, concepts 6–12
computing an expectation by

conditioning, definition 35
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conditional expected values
see also expected values; martingales
concepts 31–43, 51–2, 84–9, 127–50,

170–5, 177, 212–14
definition 33–5
examples 31–2, 33–4
general properties 34–5
option values 127–50, 170–5
random variables 34–5
shorthand notation 35
unconditional expected values 34–5

continuous model, stock price dynamics
5–6

continuous-time framework, martingale
option valuations method
(risk-neutral method) 135–50, 184–6

continuous-time martingales 35, 36–7,
39–40, 68, 88–9, 101, 120–3,
135–50, 184–6, 263–7, 279–80

see also martingales
change in numeraire 184–6

continuously compounded interest rates
110–12

convergence concepts 2, 249–53
convex cones, concepts 133–5
correlation

see also combinations
Brownian motion 14–16, 27, 89–95,

185–90, 258
multiple correlated Brownian motions

92–5, 185–90
stock price dynamics 92–5, 185–6

coupled SDEs, concepts 114
covariance, Brownian motion 12–13, 15,

27–8
credit default 170, 201–4
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Lévy method 87–95, 101, 156–8
multiple correlated Brownian motions

92–5, 185–6
ODEs 85–6
option valuations 73, 128–30, 136–50,

156–8
product rule 78–9, 95–100
ratio rule 79–80
SDEs 103–12, 202–4
set of rules 75–8
sum rule 78
uses 73, 106–8

Jeanblanc, M. 148
Jiang, L. 129–30
joint probability distributions 16–19,

53–4, 153–4, 184–5
change of normal density 153–4
non-overlapping time intervals 16–19,

53–4, 237–40



JWBK142-ind JWBK142-Wiersema March 25, 2008 11:58 Char Count= 0

308 Index

jump processes 112
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