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Preface

With the avalanche of biological sequences generated in the postgenomic age, molecular
science is facing an unprecedented challenge, i.e., how to timely utilize the huge amount of
data to benefit human beings. Stimulated by such a challenge, a rapid development has taken
place in molecular science, particularly in the areas associated with drug development and
biomedicine, both experimental and theoretical. The current thematic book was launched with
the focus on the topic of “Molecular Science for Drug Development and Biomedicine”, in
hopes to further stimulate more useful techniques and findings from various approaches of
molecular science for drug development and biomedicine.

The papers collected in this monograph can be categorized into the following four topics:
1) Pseudo Amino Acid Composition/Pseudo Oligonucleotide Composition; 2) Structure-
Based Drug Design; 3) In Vitro/In Vivo Pharmacological Models; 4) Computational Model
for Drug Development

1. Pseudo Amino Acid Composition and Pseudo Oligonucleotide Composition

One of the most challenging problems in computational biology and biomedicine is how
to formulate a biological sequence with a discrete model or a vector, yet still keep
considerable sequence order information. To avoid completely losing the sequence-order
information for proteins, particularly for their long-range or global sequence-order effects, the
pseudo amino acid composition [1,2] or Chou’s PseAAC [3] was proposed. Ever since the
concept of PseAAC was proposed in 2001, it has rapidly penetrated into almost all the areas
of computational proteomics. Because it has been widely and increasingly used, in the paper
entitled “PseAAC-General: Fast Building Various Modes of General Form of Chou’s Pseudo-
Amino Acid Composition for Large-Scale Protein Datasets”, Professor Dr. Pufeng Du and his
coworkers proposed a powerful software called “PseAAC-General” that can be used for fast
building various modes of general form of Chou’s PseAAC for large-scale protein datasets,
including the GO (Gene Ontology) mode, FunD (Functional Domain) mode, PSSM (Position-
Specific Scoring Matrix) mode and many others as defined by the users according to their
own desires and needs.

SNO (S-nitrosylation) is one of the most important and universal PTMs (posttranslational
modifications) responsible for sensing and transducing signals to regulate various cellular
functions and signaling events. In the article entitled “PSNO: Predicting Cysteine S-
Nitrosylation Sites by Incorporating Various Sequence-Derived Features into the General
Form of Chou’s PseAAC”, Dr. Zhigiang Ma and coworkers developed a new bioinformatics
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tool to identify SNO sites in protein sequences by incorporating various sequence-derived
features into the general form of Chou’s PseAAC, and achieved very promising results.

Encouraged by the successes of using PseAAC to deal with protein/peptide sequences, a
question has naturally and logically occurred: how to use the similar approach to deal with
DNA/RNA sequences? To address this problem, recently the pseudo oligonucleotide
composition or PseKNC [4] and PseKNC-General [5] were developed. In the article with the
title of “iRSpot-TNCPseAAC: Identify Recombination Spots with Trinucleotide Composition
and Pseudo Amino Acid Components”, Dr. Wang-Ren Qiu and coauthors proposed a
different approach to deal with this problem. They first convert a DNA sequence into a
protein sequence by using the 3—1 rule from a 3-nucleotide codon to an amino acid,
followed by using the Chou’s PseAAC to predict the recombination spots of DNA.
Meanwhile, a publically accessible web-server for the prediction method has been established.
Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-
step guide is also given on how to use the web server to obtain the desired result.

2. Structure-Based Drug Design

The article entitled with “Structure of N-Terminal Sequence Asp-Ala-Glu-Phe-Arg-His-
Asp-Ser of AB-Peptide with Phospholipase A, from Venom of Andaman Cobra Sub-Species
Naja naja sagittifera at 2.0 A Resolution” authored by Professor Dr. Zeenat Mirza, and
coauthors reported the structure from Alzheimer's AB-peptide in complex with phospholipase
A;, which was determined by X-ray crystallography at 2.0 A resolution. Their findings
suggest the possibility of interactions between N-terminus residues (DAEFRHDS) and
phospholipase A,. Their study is a key step towards understanding the mechanism behind the
AP and PLA; interaction that may facilitate the development of novel therapeutic strategies
against the inflammatory responses to retard many diseases.

Mostafa M. Ghorab and colleagues, in the article “Synthesis, Characterization and Anti-
Breast Cancer Activity of New 4-Aminoantipyrine-Based Heterocycles”, reported that a new
series of heterocycles synthesized by incorporating antipyrine moiety. They observed that
these molecules have anticancer activity against human tumor breast cell line (MCF7). In
their study, the authors utilized 4-Aminoantipyrine as key intermediate for the synthesis of
pyrazolone derivatives bearing biologically active moieties. As claimed by the authors, these
findings might be of use for developing more potent and selective anti-breast cancer agents.

In their article “The Discovery of Potentially Selective Human Neuronal Nitric Oxide
Synthase (nNOS) Inhibitors: A Combination of Pharmacophore Modelling, CoMFA, Virtual
Screening and Molecular Docking Studies”, Dr. Guanhong Xu et al. presented a workflow for
the identification and prioritization of compounds as potentially selective human nNOS
inhibitors utilizing a three-dimensional pharmacophore model. They found that the identified
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hit compounds were structurally different from available inhibitors and may serve as potential
leads or starting points for structural optimization to identify novel nNOS inhibitors.

As described in the paper entitled “Synthesis, Preliminary Bioevaluation and
Computational Analysis of Caffeic Acid Analogues”, Dr. Weidong Zhang and coworkers
designed, synthesized and evaluated a series of caffeic acid amides for the anti-inflammatory
activity. They developed a 3D pharmacophore model on the basis of biological results for
further structural optimization and also performed the predication of the potential targets
using the PharmMapper server. Results from their study suggest that these amide analogues
represent a promising class of anti-inflammatory scaffold for further exploration and target
identification.

As reported in the article “Synthesis and Antioxidant Activity Evaluation of New
Compounds from Hydrazinecarbothioamide and 1,2,4-Triazole Class Containing
Diarylsulfone and 2,4-Difluorophenyl Moieties”, Dr. Stefania-Felicia Barbuceanu and
coauthors synthesized the new hydrazinecarbothioamides, 1,2,4-triazole-3-thiones and S-
alkylated 1,2,4-triazole derivatives, which were then characterized by IR, *H-NMR, *C-NMR
and mass spectral data. The results obtained by them with the preliminary screening of
antioxidant activity suggest that the molecules from hydrazinecarbothioamide class might
serve as interesting compounds for the development of new antioxidant agents by synthesis of
some new derivatives with this structure.

3. In Vitro/In Vivo Pharmacological Models

According to the report by Dr. Hong Jiang and coworkers in “Perineural
Dexmedetomidine Attenuates Inflammation in Rat Sciatic Nerve via the NF-xB Pathway”,
they have established a rat model that simulates a clinical surgical procedure to investigate the
anti-inflammatory effect of perineural administration of dexmedetomidine and the underlying
mechanism. Results from their studies suggest that dexmedetomidine inhibits the nuclear
translocation and binding activity of activated NF-«xB, thus reducing inflammatory cytokines.
It may hold high potential for applying the dexmedetomidine as an adjuvant in peripheral
nerve anesthesia.

Dr. Jin Yeul Ma and colleagues evaluated the inhibitory effects of Palmultang (PM) on the
production of inflammatory factors and on the activation of mechanisms in murine
macrophages. They found that PM suppressed the expression of nitric oxide, inflammatory
cytokines and inflammatory proteins by inhibiting nuclear factor (NF)-«xB and mitogen-
activated protein kinase (MAPK) signaling pathways and by inducing heme oxygenase (HO)-
1 expression. Their results as detailed in the research article “Inhibitory Effects of Palmultang
on Inflammatory Mediator Production Related to Suppression of NF-kB and MAPK
Pathways and Induction of HO-1 Expression in Macrophages” suggest that PM could be
developed as a new anti-inflammatory agent derived from natural products.
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In the review paper entitled “Colonization and Infection of the Skin by S. aureus: Immune
System Evasion and the Response to Cationic Antimicrobial Peptides”, Professor Dr.
Yoonkyung Park and coworkers discussed the peptides (defensins, cathelicidins, RNase7,
dermcidin) and other mediators (toll-like receptor, IL-1 and IL-17) that comprise the host
defense against S. aureus skin infection, as well as the various mechanisms by which S.
aureus evades host defenses. They anticipate that targeted drug development around highly
conserved bacterial resistance mechanisms against host cationic antimicrobial peptides will be
a promising pharmacologic approach in this era of highly virulent and drug-resistant strains of
S. aureus.

Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. The
anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated,
especially in vivo. In the research article entitled “DADS Suppresses Human Esophageal
Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways”
contributed by Dr. Hongbing Ma and his colleagues, the authors reported that the DADS
suppresses esophageal tumors without any apparent signs of toxicity, which is in agreement
with a strong increase of apoptosis both in vitro and in vivo. They claimed that DADS might
be a potentially effective and safe anti-cancer agent for esophageal carcinoma treatment.

In the article “4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via
Suppressing HIF-1a in Seawater Aspiration-Induced Lung Injury in Rats”, Drs. Xiaobo Wang
and Faguang Jin, and coworkers conducted an investigation in the effect of 4-
Hydroxyphenylacetic acid (4-HPA) on seawater aspiration-induced lung injury using a
seawater drowning rat model in vivo and the hypoxia-inducible factor-1a (HIF-1a) siRNA
and permeability assay in vitro. Their results indicated that 4-HPA attenuated inflammation
and edema through suppressing hypertonic and hypoxic induction of HIF-1a in seawater
aspiration-induced lung injury in rats, and hence may be considered as a potential agent in the
treatment of seawater aspiration-induced lung injury.

Wound healing plays an important role in protecting the human body from external
infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are
essential for proper wound healing. In the research article entitled “Effects of the Novel
Compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on
Migration and Proliferation of Human Keratinocytes and Primary Dermal Fibroblasts”, Dr.
Moonjae Cho and colleagues identified a novel compound DK223 ([1E,2E-1,2-bis(6-
methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human
keratinocyte migration and dermal fibroblast proliferation. They also found that DK223
simultaneously induced both keratinocyte migration via reactive oxygen species production
and fibroblast proliferation via TGF-B1 induction.
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4. Computational Model for Drug Development

With the huge amount uncharacterized proteins entering into the protein database, it is
time-consuming and expensive to identify the protein-protein interactions (PPIs) by
experiments alone. Therefore, it is highly demanding to develop computational methods for
predicting PPIs. In the research article entitled ‘“Prediction of Protein—Protein Interaction with
Pairwise Kernel Support Vector Machine”, Professor Dr. Shaowu Zhang and his colleagues
offered a novel method along with its web-server PPI-PKSVM developed by using the two
feature extraction approaches (DFPCA and AAID) to represent the protein sequence samples,
followed by using the pairwise kernel function support vector machine model. They conclude
that the predicted results are very encouraging and promising for predicting PPIs according to
the sequence information alone.

Nuclear receptors (NRs) are closely associated with various major diseases such as cancer,
diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent
target for drug development. During the process of developing drugs against these diseases by
targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we
identify whether they are really in interaction with each other in a cell? To address this
problem, in the article “iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors
in Cellular Networking”, Dr. Xuan Xiao et al. proposed a predictor called “iNR-Drug” in
which the drug compound concerned was formulated by a 256-D (dimensional) vector
derived from its molecular fingerprint, and the NR a 500-D vector formed by incorporating its
sequential evolution information and physicochemical features into the general form of
Chou’s PseAAC. Compared with the existing prediction methods in this regard, INR-Drug not
only can yield a higher success rate, but is also featured by a user-friendly web-server, which
is particularly useful for most experimental scientists to obtain their desired data in a timely
manner.

Inherently chiral calix[4]arenes can be theoretically regarded as a type of complex planar
chiral molecule when bridging carbons are treated as achiral and each phenyl ring and its six
substituents treated as coplanar. Based on one approximation and one hypothesis, Drs. Shao-
Yong Li, Wei Qiao and Jun-Min Liu, and their colleagues have derived a expression for
qualitatively analyzing the microhelical electronic energy, as elaborated in the article
“Qualitative Analysis of the Helical Electronic Energy of Inherently Chiral Calix[4]arenes:
An Approach to Effectively Assign Their Absolute Configuration”. According to their report,
the scientificity and effectiveness in absolute configuration assignments of inherently chiral
calix[4]arenes were almost entirely confirmed for all of the entities whose absolute
configurations and optical rotation signs have been ascertained.
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It is a great challenge to elucidate the polypharmacological mechanisms of polyphenols.
In the research article “Elucidating Polypharmacological Mechanisms of Polyphenols by
Gene Module Profile Analysis”, Dr. Hong-Yu Zhang and coworkers have developed a
method for identifying the multiple targets of chemical agents through analyzing the module
profiles of gene expression upon chemical treatments. By using this method, they have
identified 148 targets for 20 polyphenols derived from cMap. As claimed by these authors, a
large part of the targets were validated by experimental observations, implying that the
medicinal effects of polyphenols are far beyond their well-known antioxidant activities.

In the last decade or so, it has been observed that many molecular biosystems and
biomedical systems belong to the multi-label systems where each of their constituent
molecules may possess two or more attributes, functions or features, and hence need multiple-
label or multi-target method to analyze them [6]. In the paper entitled “Prediction of Multi-
Target Networks of Neuroprotective Compounds with Entropy Indices and Synthesis, Assay,
and Theoretical Study of New Asymmetric 1,2-Rasagiline Carbamates”, Professor Drs.
Humberto Gonzélez-Diaz and Xerardo Garcia-Mera and their colleagues used Shannon
entropy measures to develop predictive models for multi-target networks of
neuroprotective/neurotoxic compounds. Their method has been demonstrated to be a useful
complementary tool in the organic synthesis and evaluation of the multi-target biological
activity of new compounds with potential neuroprotective activity, as well as in the prediction
of complex networks of drug-target interactions.

As one can see from the aforementioned nineteen papers collected in this book they are all
featured by either developing powerful tools or reporting important findings, which will be
very useful for both the basic research in molecular sciences and drug design in
pharmaceutical industry.

It is our hope that publication of this thematic book can stimulate more powerful tools in
computational biomedicine as well as more profound findings in treating diseases so as to
benefit human beings.
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1. Pseudo Amino Acid Composition and
Pseudo Oligonucleotide Composition

PseAAC-General: Fast Building Various Modes of General
Form of Chou’s Pseudo-Amino Acid Composition for
Large-Scale Protein Datasets

Pufeng Du, Shuwang Gu and Yasen Jiao

Abstract: The general form pseudo-amino acid composition (PseAAC) has been widely used to
represent protein sequences in predicting protein structural and functional attributes. We developed
the program PseAAC-General to generate various different modes of Chou’s general PseAAC,
such as the gene ontology mode, the functional domain mode, and the sequential evolution mode.
This program allows the users to define their own desired modes. In every mode, 544
physicochemical properties of the amino acids are available for choosing. The computing
efficiency is at least 100 times that of existing programs, which makes it able to facilitate the
extensive studies on proteins and peptides. The PseAAC-General is freely available via SourceForge.
It runs on both Linux and Windows.

Reprinted from Int. J. Mol. Sci. Cite as: Du, P.; Gu, S.; Krail, K.; Jiao, Y. PseAAC-General: Fast
Building Various Modes of General Form of Chou’s Pseudo-Amino Acid Composition for
Large-Scale Protein Datasets. Int. J. Mol. Sci. 2014, 15, 3495-3506.

1. Introduction

Over the last few years, machine learning has been introduced to predict protein structures and
functions. In these studies, one of the keys is to formulate the protein sequences with a
mathematical form that can reflect the intrinsic correlation with their structures and functions. To
be more specific, this mathematical form should keep representing a protein sequence with a
discrete form yet without completely losing its sequence-order information. The pseudo-amino acid
compositions (PseAAC), which was originally introduced to predict protein attributes [1], is a
typical mathematical form in this regard.

Ever since its first appearance, the PseAAC formulation has been widely applied for studying
various problems in protein science, such as predicting eukaryotes and prokaryotes protein
subcellular locations [2—11], protein sub-subcellular locations [12—22], membrane protein subcellular
locations [23-26], viral protein subcellular locations [27,28], protein structural classes [29-35],
secondary structures [36], super-secondary structures [37], quaternary structural attributes [38,39],
GPCR classes [40—42], enzyme families [43,44], membrane protein types [45—47], metalloproteinase
families [48], risk types of human papillomavirus [49], cell-wall lytic enzymes [50], cyclic
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proteins [51], allergenic proteins [52], bioluminescent proteins [53], DNA-binding proteins [54],
GABA(A) receptor proteins [55], bacterial virulent proteins [56], essential proteins [57], anti-cancer
peptides [58], anti-bacterial peptides [59], protein-protein interactions [60], protein solubility [61],
drug-target network [62], and many more [63—76]. Recently, it was applied to represent DNA
sequences in identifying the recombination spot [77].

Many different types of information, such as gene ontology annotations, functional domain
compositions, and sequential evolution information, have been integrated skillfully with the
concept of PseAAC to represent protein samples in order to enhance the prediction quality of their
attributes. In essence, the protein sample thus formulated were actually various modes of Chou’s
general form PseAAC, as clearly indicated by Equations 9-14 in a comprehensive review [78]. On
the contrary, the Type I PseAAC [1] and Type II PseAAC [79] belong to Chou’s special form
PseAAC. The modes of Chou’s special form PseAAC can be calculated by several programs, such
as PseAAC server [80], PseAAC-Builder [81] and the propy package [82].

However, so far no publicly accessible program could calculate Chou’s general PseAAC.
The current PseAAC-General is a universal software platform for users to generate various modes
of general form PseAAC, including several widely used modes, such as the gene ontology mode [3],
functional domain mode [83], and sequential evolution mode [18]. It is anticipated that
PseAAC-General will become a very useful tool in bioinformatics, computational proteomics, and
system biology.

2. Results and Discussion

The current PseAAC-General can generate 13 different modes of general form PseAAC,
including conventional amino acid composition, di-peptide composition, tri-peptide composition,
Type 1 PseAAC, Type II PseAAC, the gene ontology mode, the functional domain mode, the
sequential evolution mode, the normalized Moreau-Broto autocorrelation coefficients, the Moran
autocorrelation coefficients, the Geary autocorrelation coefficients, the composition-transition-
distribution (CTD) descriptors and the quasi-sequence order descriptors. In every mode, 544 types
of physicochemical properties are available for choosing. Over 20,000 different descriptor values can
be calculated.

We list several commonly used modes of general form PseAAC as well as some program
features in PseAAC-General program in Table 1. Several modes are uniquely available in
PseAAC-General, which include the gene ontology mode, the functional domain mode and the
sequential evolution mode. These modes have been mentioned in existing programs [81,82].
However, no program implemented these modes.

PseAAC-General provided two methods for the users to create their own desired modes. The
first method is called the Binary Extension Module (BEM). The gene ontology mode and
functional domain mode were actually implemented by this method. A set of tools was provided
along with the PseAAC-General, so that the users can create their own BEM to represent all kinds
of descriptive information, which includes but not limited to the gene ontology annotations and the
functional domain compositions.

The other method is the Lua script module. Lua script language is a very simple programming
language that has been considered in analyzing sequence annotations [90]. We provided a
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programming interface that allows the user to use Lua script to access the internal data structures
and functions of Pse AAC-General. Furthermore, the algorithm modules of Pse AAC-General can be
replaced by the user-defined Lua script modules. This provides the maximal flexibility for the
user-defined mode. Actually, the sequential evolution mode was implemented in this way.

Because of these extension modules, the input to the PseAAC-General is not only the protein
sequences. These extension modules should also be loaded if they are needed. We illustrate the
data flow of PseAAC-General in Figure 1.

Table 1. Comparison of program features.

Program Functions * PseAAC-General PseAAC-Builder Propy PseAAC Server
Physicochemical Properties 544 544 8 6
Output Features
Type [ PseAAC [1] Y Y Y Y
Type Il PseAAC [79] Y Y Y Y
Amino acid composition Y Y Y Y
di-Peptide composition Y Y Y Y
tri-Peptide composition Y N Y N
Normalized Moreau—Broto v N v N
autocorrelation [84,85]
Moran autocorrelation [86] Y N Y N
Geary autocorrelation [87] Y N Y N
Composition-Transition-Distribution v N Y N
(CTD) [88]
Quasi-sequence order [89] Y N Y N
Gene ontology mode [83] Y N N N
Functional domain mode [83] Y N N N
Sequential evolution mode [18] Y N N N
Other functions
User defined Y N N N
Online updates Y N N N
Graphical User Interface (GUI) Y Y N Y
Execution efficiency ~17,000 seqs/s ~170 seqs/s N.A. ~15 seqs/s

* The program functions that were compared. There are three groups of functions, including the
physicochemical properties, the sequence features that can be generated and the other function properties
of the software. Y = YES; N = NO; ° the execution time for PseAAC-General and PseAAC-Builder was
tested on a dataset containing over 510,000 sequences by the wall-clock time. The execution time for
PseAAC-Server was tested on a dataset containing 500 sequences due to the limitation of the service and
the internet connection conditions. The execution time for Propy was not tested due the limitation of

testing environments. Seqs/s means sequences per second.

The usefulness of PseAAC-General is undisputed. In the early days of general form PseAAC,
every study had to implement the PseAAC independently. This may bring a number of problems,
including but not limited to inconsistent results, different computation efficiency and different basis
in comparing predictive performance. PseAAC-General can serve as a standard program that saves



4

time for all these studies. Furthermore, our program eliminates those unforeseen problems that
were brought by the different implementations of PseAAC.

PseAAC-General is much faster than existing programs. We tested PseAAC-General by using
it to calculate Type I PseAAC with default parameters. On the same machine that we tested
PseAAC-Builder [81], it can process about 17,000 sequences per second. This is about 100 times
faster than PseAAC-Builder. In other words, Pse AAC-General can convert the entire Swiss-Prot
database to Type I PseAAC within 30 s, while PseAAC-Builder needs about 40 min.

Figure 1. The data flow of pseudo-amino acid composition (PseAAC)-General. The
input data is FASTA format sequences. The output data is general form PseAAC. The
mode of the general form PseAAC is chosen by the users. For the modes, which are
implemented by Binary Extension Modules or Lua script modules, the corresponding
modules should be loaded as well.

FASTA
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Binary
Modules

General
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3. Implementations

PseAAC-General is released under GNU GPL (GNU General Public License). It can be
integrated with other programs in the source code level. We have ported PseAAC-General to both
Linux and Windows platforms. A GUI (Graphical User Interface) module was provided for both
platforms. The users, who do not familiar with the command line, can use PseAAC-General
through GUI. However, it should be noted that the most efficient way is the command line, which
was designed to follow the GNU command line standard.

PseAAC-General was designed to be a stand-alone program running on the local machine
without internet connection requirements. Therefore, we did not include the online sequence
retrieving function within the program. On the other hand, the propy package has perfectly
implemented the retrieving function. The best choice for the users is to let PseAAC-General work
side by side with the propy package. For example, the users can use Propy to retrieve protein
sequences and call PseAAC-General to calculate the PseAAC, as python environment has the built-in
ability to call external programs, like PseAAC-General. In future versions of PseAAC-General, a
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similar function will be implemented. PseAAC-General and all its extension modules can be
downloaded from its website [91]. To facilitate further studies, all source code of PseAAC-General,
including the main program, GUI module and all extension modules, can be freely downloaded
from the SourceForge website [92]. We also provided detailed documents within the software
package, so that the users can learn not only how to use the existing modes, but also how to create
their own modes by building their own extension modules. For the users’ convenience to test their
own modes, we provided four different testing dataset with different size. These testing datasets
can also be downloaded from the website. Along with the testing datasets, we provided simple
testing scripts to demonstrate the usage of PseAAC-General in a common case. The users can
simply try the testing scripts to learn how to use the program.

Because the gene ontology mode and the functional domain mode should be upgraded along
with the Swiss-Prot database, we deployed a cloud-computation based server in Amazon EC2
(Elastic Cloud 2, Amazon.com Inc., Seattle, WA, USA) to automatically upgrade the relevant
extension modules on monthly basis.

4. Conclusions

As PseAAC-General is a very powerful and very flexible computation tool, we believe that
PseAAC-General will facilitate all studies that apply the general form PseAAC, including those
existing modes and those modes in development.

However, as a final reminder, we would like to remind the users to read the manual of
PseAAC-General and those literatures describing the algorithm of general form PseAAC carefully
before using it. Because of the powerful function and the flexibility of PseAAC-General, using it in
your study without knowing the algorithms and technics behind the program and the source code
could be very risky.
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PSNO: Predicting Cysteine S-Nitrosylation Sites by
Incorporating Various Sequence-Derived Features
into the General Form of Chou’s PseAAC

Jian Zhang, Xiaowei Zhao, Pingping Sun and Zhiqiang Ma

Abstract: S-nitrosylation (SNO) is one of the most universal reversible post-translational
modifications involved in many biological processes. Malfunction or dysregulation of SNO leads
to a series of severe diseases, such as developmental abnormalities and various diseases. Therefore,
the identification of SNO sites (SNOs) provides insights into disease progression and drug
development. In this paper, a new bioinformatics tool, named PSNO, is proposed to identify SNOs
from protein sequences. Firstly, we explore various promising sequence-derived discriminative
features, including the evolutionary profile, the predicted secondary structure and the physicochemical
properties. Secondly, rather than simply combining the features, which may bring about information
redundancy and unwanted noise, we use the relative entropy selection and incremental feature
selection approach to select the optimal feature subsets. Thirdly, we train our model by the
technique of the k-nearest neighbor algorithm. Using both informative features and an elaborate
feature selection scheme, our method, PSNO, achieves good prediction performance with a mean
Mathews correlation coefficient (MCC) value of about 0.5119 on the training dataset using 10-fold
cross-validation. These results indicate that PSNO can be used as a competitive predictor among
the state-of-the-art SNOs prediction tools. A web-server, named PSNO, which implements the
proposed method, is freely available at http://59.73.198.144:8088/PSNO/.

Reprinted from Int. J. Mol. Sci. Cite as: Zhang, J.; Zhao, X.; Sun, P.; Ma, Z. PSNO: Predicting
Cysteine S-Nitrosylation Sites by Incorporating Various Sequence-Derived Features into the
General Form of Chou’s PseAAC. Int. J. Mol. Sci. 2014, 15, 11204-11219.

1. Introduction

S-nitrosylation (SNO) is one of the most ubiquitous post-translational modifications (PTMs)
involving the covalent interaction of nitric oxide with the thiol group of cysteine residues [1]. Many
lines of evidence have suggested that S-nitrosylation sites (SNOs) play key roles in providing
proteins with structural and functional diversity, as well as in regulating cellular plasticity and
dynamics. Malfunction or dysregulation of SNOs leads to a series of severe diseases [2], including
developmental abnormalities and various diseases, such as cancer [3], Parkinson’s [4],
Alzheimer’s [5] and amyotrophic lateral sclerosis [6]. Therefore, detecting possible SNO substrates
and their corresponding exact sites is crucial for understanding the mechanisms of the biological
processes of these diseases and promising great possibilities as effective therapeutic targets or
diagnostic markers.

Several biochemical methodologies, including absorbance detection [7], colorimetric assays [8]
and fluorescent assays [8,9], have been developed to identify SNOs. Compared with expensive and
time-consuming biochemical experiments, computational methods are attracting more and more
attention, due to their convenience and efficiency.
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In 2001, Jaffrey made the first attempt to develop a biotin-switch technique (BST) for the
large-scale detection of SNO substrates [10]. The BST includes three principal steps: (i) the
methylthiolation of free protein thiols; (ii) the reduction of SNO bonds on Cys residues with
ascorbate; and (ii1) the ligation of thiols using N-[6-(Biotinamido)hexyl]-3'-(2'-pyridyldithio)
propionamide (biotin-HPDP). Soon after that, Gross developed a predictor, named SNOSID [11].
This is a proteomic method, which identified endogenous and chemically-induced SNOs in proteins
from tissues or cells. In 2009, Forrester explored a protein microarray-based approach using resin-
assisted capture (RAC) to screen SNOs [12]. Compared with BST using a human embryonic
kidney cell dataset, SNO-RAC outperformed it with higher sensitivity for proteins larger than ~100
kDa. Although these methods did make contributions to the development of the prediction of SNOs
from different aspects, they were labor intensive and had a relatively low throughput.

Recent years have witnessed several computational methods that have been proposed in this
field. Xue adopted a group-based prediction system for the prediction of kinase-specific SNOs and
developed software named GPS-SNO (Group-based Prediction System) [13]. Li used a coupling
pattern-based encoding scheme (CPR) and built a web server named CPR-SNO [14]. Xu
introduced a position-specific amino acid propensity matrix to construct the predictor and built a
free website, iISNO-pseudo-amino acid composition (PseAAC) [15]. As the iISNO-PseAAC treated
all the proteins independently without taking into account any of their correlations, the following
1SNO-AAPair incorporated some sequence correlation effects into the feature vector [16].

Each of the aforementioned methods has its own merit and does facilitate the development of
this field. Although these computational models have been developed to predict SNOs, their
accuracy is unsatisfactory, and they lack a detailed analysis of the features. Therefore, it is
important to develop an efficient method for the site-specific detection of SNOs.

In this paper, we focus on the challenging problem of predicting SNOs based on primary
sequence information. A novel method, PSNO, is proposed for differentiating SNOs from non-
SNOs. Firstly, various informative sequence-derived features that effectively reflect the intrinsic
characters of a given peptide are combined to construct informative features; Secondly, relative
entropy selection and incremental feature selection are adopted to select the optimal feature
subsets; Thirdly, we use k-nearest neighbor to identify SNOs based on the selected optimal
feature subsets. In order to evaluate the proposed method with previous works fairly, 10-fold
cross-validation is implemented on the widely-used low-similarity training dataset. The experimental
results show that the proposed PSNO is a powerful computational tool for SNOs prediction. A
web-server, named PSNO, that implements the proposed method is freely available at
http://59.73.198.144:8088/PSNO/.

2. Results and Discussion
2.1. The Feature Selection Results

The output of the relative entropy selector was two lists: one was called the feature list, which
sorted the features according to their importance to the class of samples; the other was called the
coefficient list, which sorted the coefficient values in descending order (Table S1). In the
coefficient value list, a feature with a larger index implied that it tended to play a more important
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role in identifying SNOs. Such a list of ranked features would be used in the following IFS
procedure for searching the optimal feature subset.

Based on the results of the relative entropy selector, 458 individual classifiers were built by
adding features one by one from the top of the feature list to the bottom (Table S2). As shown
in Figure 1, the mean MCC values reached the maximum when 57 features were provided.

Figure 1. The IFS curve of 458 features for the training dataset. The x-axis and y-axis
indicates the mean Mathews correlation coefficient (MCC) and number of features,
respectively. When the number of selected features is 57, the mean MCC reaches the

maximum, 0.51194.
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In this paper, 10-fold cross-validation was performed on the training dataset (731 SNOs and
810 non-SNOs). We obtained a mean accuracy of 68.85% using all the features with a sensitivity
of 67.99%, a specificity of 69.63% and an MCC of 0.3759. Using 57 optimal features, our model
produced 75.67% accuracy with 74.15% sensitivity, 77.04% specificity and an MCC of 0.5119.
The results suggested that our feature selection approach successfully chose “good” features, as

well as eliminated “bad” features.
2.2. Analysis of the Optimal Feature Set

To discover the different contributions of various types of features, we further investigated the
distribution of each kind of feature in the final optimal feature subset. The results are shown in
Figure 2. Of the 57 optimal features, 48 belonged to the evolutionary conservation score, three to
the predicted secondary structure, six to the physicochemical properties, which indicated that all
three types of features contribute to the prediction of protein SNOs. The detailed descriptions of
the 57 optimal features are shown in the Table S3. In addition, evolutionary conservation scores

accounted for the biggest part in differentiating SNOs from non-SNOs.
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Figure 2. The distribution of each feature type in the final optimal feature subset. The
x-axis and y-axis indicate the feature type and the number of selected features,
respectively. Of the 57 optimal features, 48 belong to the evolutionary conservation
score, three to the predicted secondary structure and six to the physicochemical properties.
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As is well known, all biological species were developed starting from a very limited number
of ancestral species. Evolution was an eternal process that impenetrated the whole history of life.
The evolution of protein sequences involved the changes, insertions and deletions of single residues or
peptides along with the entire development of proteins [17]. Although some similarities may be
eliminated after a long time of evolution, the corresponding protein zones may still share some
common attributes, because the functional sites of a protein always locate in the conservation
zone [18]. This explains why evolutionary conservation scores occupy the biggest part of the
optimal subset. In addition, the features within the top 10 features in the final optimal feature
subsets contained seven evolutional profile features.

We also calculated different kinds of features accounting for the various proportions of the
optimal feature subset (Figure 3). The blue blocks represented the percentage of the selected
features accounting for the whole optimal feature subsets, and the red ones represented the percentage
of the selected features accounting for the corresponding feature type. Although, within the final
optimal feature subset, a few secondary structure features are selected, we cannot say that the
secondary structure features are not tightly related to SNOs. Among all nine secondary structure
features, three features were selected in the optimal feature subsets.
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Figure 3. The proportion of each type of feature in the optimal feature subset. The
x-axis and y-axis indicate the feature type and the proportion of the selected features,
respectively. The blue blocks represent the percentage of the selected features accounting
for the whole optimal feature subsets, and the red ones represent the percentage of the
selected features accounting for the corresponding feature type.
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2.3. Comparison of PSNO with Other Methods

In this section, we compare PSNO with GPS-SNO [13], iSNO-PseAAC [15] and
1SNO-AAPair [ 16], which were all sequence-based prediction methods. As the iISNO-AAPair was built
on a different dataset (1530 human and mouse proteins), we adopted the independent dataset to
compare our PSNO with iSNO-AAPair. In order to reach a consensus assessment with GPS-SNO
and 1ISNO-PseAAC, a 10-fold cross-validation was adopted here to examine the prediction quality.
Listed in Table 1 are the corresponding results obtained by the aforementioned two methods on the
same training dataset. As can be seen, the SN, ACC and MCC rates achieved by PSNO were
obviously higher than those by GPS-SNO with different thresholds and iSNO-PseAAC. Although
the GPS-SNO ' achieved the highest SP value, the SN and MCC value was relatively low. It may
be that when the threshold parameter was set at “high”, more non-SNOs tended to be correctly
classified, while some SNOs were mistakenly identified as non-SNOs.

Listed in the Table S4 are the predicted results by PSNO for Xue’s independent dataset. As we
can see from Table S4, of the 2302 SNOs, 2188 were successfully identified. The overall success
rate was about 95.05%.

In order to assess the ability of the proposed PSNO for practical applications, we adopted Xu’s
independent dataset containing 81 SNO and 100 non-SNO experimentally-verified peptides.
Among the existing models for the prediction of the SNOs, the web server for the model proposed
in [14] did not work, and the method in [19] had no web server at all. Therefore, the comparison
was made among the following four methods: GPS-SNO, iSNO-PseAAC, iSNO-AAPair and ours,
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PSNO. Table 2 summarizes the results of PSNO with the existing prediction methods for the four
different metrics. Using the optimal 57 features, the SN, SP, ACC and MCC values produced by PSNO
are 87.7%, 85.0%, 86.2% and 0.72, respectively, which are about 8.1%~43.2%, 0.9%~9.8%,
5.5%~24.6% and 0.09~0.44 higher than previous studies.

Table 1. The performance comparison of PSNO with other existing prediction methods
on the training dataset. GPS, group-based prediction system.

Predictor SN(%) SP(%) ACC (%) MCC

GPS-SNOt 18.88 89.63 56.07 0.1210
GPS-SNO 2 28.04 81.98 56.39 0.1193
GPS-SNO 3 45.01 73.33 59.90 0.1915
ISNO-PseAAC 67.01 68.15 67.62 0.3515
PSNO 74.15 77.04 75.67 0.5119

" The method proposed in [13] where the threshold parameter was set at “high”; * the method proposed
in [13] where the threshold parameter was set at “medium”; * the method proposed in [13] where the
threshold was set at “low”. SN, SP, ACC and MCC represented the sensitivity, specificity, accuracy and the

Mathews correlation coefficient, respectively.

Table 2. Comparison of PSNO with the existing prediction methods via Xu’s independent dataset.

Predictor SN(%) SP(%) ACC(%) MCC

GPS-SNO 1 44.5 81.0 64.7 0.28
ISNO-PseAAC 50.2 75.2 62.8 0.30
iISNO-AAPair 79.6 84.1 81.7 0.63

PSNO 87.7 85.0 86.2 0.72

' The method proposed in [13] where the threshold parameter was set at “medium”. SN, SP, ACC and
MCC represented the sensitivity, specificity, accuracy and the Mathews correlation coefficient,

respectively.

In practical applications, the input should be entire protein sequences. To test the state-of-the-art
web servers used for practical applications, our independent dataset (see Section 3.1) was used
here. The predicted results are shown in Table 3. Our PSNO produced an MCC of 0.4475, which
was about 14.22%~32.29% higher than previous studies.

Table 3. Comparison of PSNO with the existing prediction methods using our independent
dataset. PseAAC, pseudo-amino acid composition.

Predictor SN(%) SP(%) ACC (%) MCC
GPS-SNO 1 41.51 70.87 60.90 0.1244
iSNO-PseAAC 60.38 67.96 65.38 0.2722
iSNO-AAPair 66.04 66.02 66.03 0.3053
PSNO 79.25 67.96 71.79 0.4475

" The method proposed in [13] where the threshold parameter was set at “medium”. SN, SP, ACC and

MCC represented the sensitivity, specificity, accuracy and the Mathews correlation coefficient, respectively.
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2.4. Implementation of PSNO Server

For the convenience of biology scientists, PSNO has been implemented as a free web server
located at http://59.73.198.144:8088/PSNO/. Here, a step-by-step brief guide is given below to
describe how to use it.

Step 1. Access the web server, and the home page is the default interface displayed (Figure 4).
Click on the “Introduction” link to see a detailed description about the server, which includes the
User’s Guide, “Input”, “Output”, “Limitation” and “Requirement”.

Step 2. You can either type or paste the query sequence into the text box in Figure 4. The query
sequence should be in the FASTA format. The FASTA format sequence consists of a single initial
line beginning with a symbol (“>”), followed by lines of sequence data. You can click on the
“Example” link to see the example sequences. You are also required to provide a valid email
address in the text box.

Step 3. Click on the “Query” button to submit the computation request. PSNO begins processing
and the predicted probabilities of a site being an SNOs or non-SNOs will be sent to you through the
email provided.

Figure 4. The home page of the PSNO web server.

PSNO:Predict cysteine S-nitrosylation sites

USING SEQUENCE-BASED TECHNIQUE

P( i! i ',' ;g ' ‘n ‘i' !‘
Predict Fasta Files:
Example

Your email address

Quary
3. Materials and Methods
3.1. Benchmark Datasets

In order to reach a consensus assessment with previous studies [13,15,16], four datasets were
used in this paper. The training dataset used in this paper was derived from dbSNO
(http://dbsno.mbc.nctu.edu.tw), which integrated the experimentally verified cysteine SNOs from
different species [20]. The training dataset contained 731 experimentally-verified SNOs and 810
experimentally verified non-SNOs from 438 randomly selected proteins, none of which had more
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than 40% similarity to any other. The peptide segments for SNOs and non-SNOs could be
formulated by:

P=R

R

ey RORGCRGR R, (- )R

(g e (1)

where R and R: represented the &-th downstream and upstream residues from cysteine (C),
respectively. P represented the peptide being either an SNO peptide or a non-SNO peptide. To test
our method, as well as to reach a consensus assessment with previous investigators [13,15,16], &
was set as 10 to compile the training dataset. If the upstream or downstream for a cysteine was less
than 10, the lacking residues would be filled with dummy code X.

Xue’s independent dataset [13,15] consisted of 461 experimentally-verified nitrosylated proteins
from published literature or the UniProt database (http://www.uniprot.org/). All of these proteins
are clustered with a threshold of less than 40% identity by CD-HIT (Cluster Database at High
Identity with Tolerance) [21]. After using the same technique mentioned above, 2302 SNOs are
compiled from the 461 nitrosylated proteins. None of these 2302 SNOs occurred in the training
dataset. In [16], Xu developed a public independent dataset (81 SNOs and 100 non-SNOs). The
corresponding nitrosylated proteins and sequences were taken from dbSNO and UniProt, respectively.

In practical applications, the input should be entire protein sequences. To test the state-of-the-art
web servers used for practical applications, we collected a new independent dataset by extracting
the experimental-verified 20 nitrosylated proteins from dbSNO. None of them occurred in the
training dataset. After compiling based on the same technique, 53 SNOs and 103 non-SNOs are
obtained from the 20 nitrosylated proteins. The sequences of these 20 proteins, as well as SNOs
(red) and non-SNOs (blue) are freely available at our PSNO web server. Table 4 summarizes the
detailed compositions of above-mentioned four datasets.

Table 4. Detailed compositions of the four datasets.

Dataset Proteins Peptides SNOs Non-SNOs
Training dataset 438 1541 731 810
Xue's independent dataset 461 2302 2302 0
Xu’s independent dataset - 181 81 100
Our independent dataset 20 156 53 103

“-” The paper [16] makes no mention.
3.2. Sample Formulation and Feature Construction

In order to build a powerful protein system, the first thing was to represent the sequences with
proper and effective mathematical expressions, which can reflect the intrinsic correction with the
target to be predicted. In this study, we incorporated sequence-derived features into pseudo-amino
acid composition (PseAAC) to represent the sample of a target protein. The Pse AAC method had
been widely used in bioinformatics, such as identifying proteins attributes [22,23], predicting
protein structures [24,25] and predicting protein classes [26,27]. According to a recent review [28],
the general form of PseAAC for a protein could be formulated as:

P:[l//1 9‘//2'-~a‘//u"">l//Q]T (2)
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where 7 was a transpose operator and the wi, w, ... depended on how to extract the desired
information from the protein sequence of P. Here, several sequence-derived features were explored
to distinguish the SNOs and non-SNOs. These features included evolutionary conservation scores, the
predicted secondary structure and physicochemical properties.

3.2.1. Features of Evolutionary Conservation Scores

Evolutionary conservation scores had been widely used by the investigators to predict various
attributes of proteins, such as predicting the protein subcellular location [29], identifying the subnuclear
protein location [30] and identifying the protease family [31]. To incorporate evolutionary conservation
scores, PSSM (Position-specific Scoring Matrix) was generated by the program “blastpgp”
(PSIBLAST) [32], which was used to search the Swiss-Prot database (released on 15 May 2011;
http://www.ebi.ac.uk/swissprot/) through 3 iterations (—j 3) and an e-value threshold of 0.0001
(—h 0.0001) for multiple sequence alignment against the protein, P. According to [33], the sequence
evolution information of protein P with L amino acid residues could be expressed by a 20 % L
matrix, as given by:

E, E, .. E

1,20
E,, E E

2,2t 2,20

Prssu = : : : : €)
E, E, .. E

where E;; represented the score of the amino acid in the i-th position of the sequence that was being
changed to amino acid type j (j = 1, 2, ..., 20) during the evolutionary process.

PSSM scores were generally displayed as positive or negative integers. Positive scores
(ratio > 0) indicated that the given amino acid substitution exceeded the expected frequency,
suggesting that this substitution was surprisingly favored in the alignment than expected by chance,
while negative scores (ratio < 0) indicated the opposite; that the frequency occurred less than the
expected frequency, suggesting that the substitution was not favored.

The preference of evolutionary conservation in SNOs and non-SNOs were calculated and
displayed in a heat map (Figure 5). In this figure, amino acids were sorted in both the x-axis and
y-axis. The color palette from black to yellow indicated a growing preference for evolutionary
conservation in SNOs and non-SNOs. The yellow color indicated the higher probability of the
appearance of evolutionary conservation, while the black color meant less appearance. For
instance, the substitution of C/H (x-axis/y-axis) was black, while the H/C (x-axis/y-axis) was
yellow in SNOs, which suggested that the mean probabilities (or tendency) for His being
substituted by Cys was higher than that for Cys being substituted by His in the SNOs. In addition,
the H/C of non-SNOs was red. This determined the mean probabilities (or tendency) for His being
substituted by Cys in SNOs being higher than those in non-SNOs. Generally speaking, compared with
non-SNOs, evolutionary-conserved sets were preferred to aggregate in SNOs, which indicated critical
active sites or functional residues that may be required for other intermolecular interactions being
abundant in these peptides.
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Figure 5. The heat maps of the preference of evolutionary conservation in S-nitrosylation
sites (SNOs) and non-SNOs. The yellow color indicates the higher probability of
appearance of evolutionary conservation, while the black color indicates less appearance.

SNO sites non-SNO sites x 10

LLLLLLLLLLLLLLLLLLL

>RZIOOTAT ~C A mowm
BE N
|
>RZT00HOT ~RETvn—HE< <

,,,,,,,,,,,,,,,,,,,,, h..N ..N
ARNDCQEGHILKMFPSTWYV ARNDCQEGHILKMFPSTWYV

In order to make the descriptor uniformly cover the peptide, we used the elements in the above
equation for PSSM (Equation (3)) to define a new matrix, Mpssys, as formulated by:

ZEL] ZEZ,I ZEZO,I
ZEI,Z ZEz,z ZEzo,z

ZEI,ZO zEz,zo zEzo,zo

where the value of ZE ., €qualed the sum of amino acid type i being changed to amino acid type j

M

PSSM =

4

in above-mentioned matrix Ppss)s. In summary, 400 features were obtained to construct features of

evolutionary conservation scores.
3.2.2. Features of Predicted Secondary Structure

Consider the fact that proteins with low sequence similarity, but in the same structural class, are
likely to share high similarity in their corresponding secondary structural elements. Therefore, it
would be useful to encode the protein sequences by taking into account the secondary structure
information. In this study, several predicted secondary structure-based features were introduced to
further improve low-similarity protein prediction accuracy. In this work, PSIPRED [34] was
adopted to explore the secondary structure of a query protein sequence. The outputs of PSIPRED
were encoded in terms of “C” for coil, “H” for helix and “E” for strand. The total number, average
length and composition percent of C, H and E segments were calculated and constructed for the
predicted secondary structure features.
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These features were defined as follows:
Total _number, = Za (5)

a
Average _length, = Z—
z segment ,

ZH+§:OZT+ZC )

where o = {H.E,C}, Za is the sum of the secondary structure of type a in the peptide.

(6)

Composition _ percent,, =

Zsegmenta is the sum of segments of type a in the peptide. As a result, 3 + 3 + 3 =9 features were

obtained to construct the predicted secondary structure features.
3.2.3. Features of Physicochemical Properties

Forty nine selected physical chemical, energetic and conformational properties, which have
been observed to be widely used in pre-works [29,35,36], were used here. More detailed
descriptions can be found at http://www.cbrc.jp/~gromiha/fold_rate/property.html. For each sequence,
49 properties values were firstly calculated by taking the sum of each property value over the whole
residues and then divided by the length of the sequence. In this encoding scheme, a peptide was
encoded by a 49-dimensional vector.

3.3. The Relative Entropy Selection

Commonly, the combination of various features would bring more informative features
to the classifier. Nevertheless, some “bad” features were also added and became the unwanted
noise. This noise, which was redundant with other features, may deteriorate the performance of
learning algorithms and decrease the generalization power of the learned classifiers [37]. In order to get
rid of the related or noisy feature, the feature selection approach for the optimal subset of features from
a high-dimensional feature space was a critical job in machine learning. Relative entropy selection
(i.e., Kullback—Leibler divergence) [38] was proven to be a powerful method to identify those
features that were the most useful in describing the essential differences among the possible classes. In
this algorithm, relative entropy can be defined the as:

Dr(P||Q) + Dir(Q||P) ®)

where P and Q are the conditional probability density function of a feature under two different classes;
Dg(P||Q) is the K—L divergence of Q from P and Dg;(Q||P) was the K—L divergence of P from Q.
After the calculation, we got a feature list, L:

L="{fi, oo for .. band i = {1,2,3...N} 9)

In this feature list, L, the index, i, of each feature indicated the importance of f; to the class of
the sample.
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3.4. Incremental Feature Selection

Through the relative entropy selection, we obtained the ranked feature list. In order to determine
which features should be selected for the optimal feature set for our model, the incremental feature
selection (IFS) procedure [19] was adopted here to search for a good feature subset involving
finding those features that were highly correlated with the decision features, but that are
uncorrelated with each other.

During the IFS procedure, we added the feature in the ranked feature list one by one from
the top to the bottom. After a feature had been added, a new feature subset was composed. For
each new feature subset, a classifier was built based on the new feature subset using 10-fold
cross-validation on the training dataset. As a result, 458 individual classifiers were constructed for
the 458 feature subsets. By doing so, a table named IFS, with one column for the feature index and
the other column for the prediction performance of each individual classifier, was obtained. An IFS
curve was drawn to identify the best prediction performance, as well as the corresponding optimal
feature subsets.

3.5. K-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm (KNN) is quite popular in pattern recognition and machine
learning. According to the KNN algorithm [39], the query sample would be assigned to the subset
represented by its k-nearest neighbors. In this study, if the majority of the k-nearest neighbors of
the query sample is a positive sample, this means that it is an SNO site. Otherwise, the query sample is
regarded as a negative one. There are many different distances to measure the nearest neighbors for the
KNN algorithm, such as the Hamming distance [40], Euclidean distance [40] and the Mahalanobis
distance [41]. In order to build a KNN model, we tested different k-values from 3 to 19, as well
as various different definitions. The best performance was achieved with K = 9 using the
Euclidean distance.

3.6. Assessment of Prediction Accuracy

Four routinely used evaluation indexes were adopted in this paper, ie., sensitivity (SN),
specificity (SP), accuracy (ACC) and the Mathews correlation coefficient (MCC).

TP+TN

ACC =
TP+TN + FP+FN (10)
TP
N=—"—
TP+FN (1)
TN
SP=—"
TN + FP (12)
vee - TPxTN — FPx FN (13
J(TP+FN)(TP+ FP)TN + FP)(TN +FN) )

where TP, TN, FP and FN were the abbreviations of true positives, true negatives, false positives
and false negatives. In this paper, MCC was used as the major evaluation criteria to evaluate the
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performance of the proposed approach as the positive and negative samples in the training dataset

were imbalanced.
3.7. Cross-Validation Test

In statistical prediction, the independent dataset, sub-sampling (k-fold cross-validation) and jackknife
analysis (leave-one-out) are the three cross-validation methods that are often used to assess a
prediction tool for its effectiveness in practical application. In order to reach a consensus assessment
with previous studies [13,15,16], we used the same 10-fold cross-validation to examine the
prediction performance as done by many studies for SNOs prediction. Firstly, the dataset was
randomly divided into ten equal subsets; then, nine subsets were used for training and the
remaining one for testing. The procedure was repeated 10 times, and the final performance was
calculated by averaging over 10 testing sets. The system architecture of the proposed model is

illustrated in Figure 6.

Figure 6. The system architecture of the proposed model. Three different types of
sequence-derived features, i.e., evolutionary conservation, secondary structure and
physicochemical properties, are generated and constructed as the feature space. Relative
entropy selection and the incremental feature selection (IFS) procedure are adopted to
select the optimal feature subset. The final results are obtained by using 10-fold
cross-validation based on the k-nearest neighbor (KNN) and the selected optimal

feature subsets.
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4. Conclusions

In this paper, we present a novel method named PSNO based on sequence-derived features and
effective feature selection techniques to identify SNOs. The PSNO model achieves a promising
performance and outperforms many other prediction tools. We ascribe the excellent performance of
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our predictor PSNO to two aspects. The first aspect is the informativeness of the feature vector in
our model in representing proteins. The feature vector in this study includes an evolutionary
profile, a secondary structure and physicochemical properties. However, rich information also
brings the enlargement of the dimension and worsening of the predictor, which needs a proper
feature selection strategy. Therefore, the second aspect is the effectiveness of relative entropy
selection, followed by the IFS procedure. By means of powerful feature selection, an optimal set of
57 features, which contribute significantly to the prediction of SNOs, are selected. With the 57 optimal
features selected, our predictor achieves an overall accuracy of 75.67% and an MCC of 0.5119 on a
training dataset using 10-fold cross-validation. Theoretically, the protein structures can bring
rich information to construct powerful prediction models compared to simple sequences. However,
the sequence-based prediction is an alternative to the structure-based prediction in the absence
of structures. As a result of the completion of whole-genome sequencing projects, the
sequence-structure gap is rapidly increasing. Thus, it would be a powerful prediction tool to
identify SNOs for newfound proteins without structure information. For the convenience of biology
scientists, the proposed PSNO has been implemented as a web server and is freely available.
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iRSpot-TNCPseAAC: Identify Recombination Spots
with Trinucleotide Composition and Pseudo Amino
Acid Components

Wang-Ren Qiu, Xuan Xiao and Kuo-Chen Chou

Abstract: Meiosis and recombination are the two opposite aspects that coexist in a DNA system.
As a driving force for evolution by generating natural genetic variations, meiotic recombination
plays a very important role in the formation of eggs and sperm. Interestingly, the recombination
does not occur randomly across a genome, but with higher probability in some genomic regions
called “hotspots”, while with lower probability in so-called “coldspots”. With the ever-increasing
amount of genome sequence data in the postgenomic era, computational methods for effectively
identifying the hotspots and coldspots have become urgent as they can timely provide us with
useful insights into the mechanism of meiotic recombination and the process of genome evolution
as well. To meet the need, we developed a new predictor called “iRSpot-TNCPseAAC”, in which a
DNA sample was formulated by combining its trinucleotide composition (TNC) and the pseudo
amino acid components (PseAAC) of the protein translated from the DNA sample according to its
genetic codes. The former was used to incorporate its local or short-rage sequence order
information; while the latter, its global and long-range one. Compared with the best existing
predictor in this area, iRSpot-TNCPseAAC achieved higher rates in accuracy, Mathew’s
correlation coefficient, and sensitivity, indicating that the new predictor may become a useful tool
for identifying the recombination hotspots and coldspots, or, at least, become a complementary tool
to the existing methods. It has not escaped our notice that the aforementioned novel approach to
incorporate the DNA sequence order information into a discrete model may also be used for many
other genome analysis problems. The web-server for iRSpot-TNCPseAAC is available at
http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC. Furthermore, for the convenience of the vast majority
of experimental scientists, a step-by-step guide is provided on how to use the current web server to
obtain their desired result without the need to follow the complicated mathematical equations.

Reprinted from Int. J. Mol. Sci. Cite as: Qiu, W.-R.; Xiao, X.; Chou, K.-C. iRSpot-TNCPseAAC:
Identify Recombination Spots with Trinucleotide Composition and Pseudo Amino Acid Components.
Int. J. Mol. Sci. 2014, 15, 1746-1766.

1. Introduction

Meiosis and recombination are two indispensible aspects for cell reproduction and growth
(Figure 1). The former is a special type of cell division by which the genome is divided in half to
generate daughter cells for participating in sexual reproduction, while the latter is to produce
single-strand ends that can invade the homologous chromosome [1].
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Figure 1. An illustration to show the process of meiosis and recombination in a DNA
system. Adapted from [2].

Noncrossover

Crossover

Recombination is initiated by double-strand breaks (or broken DNA ends); defecting in meiosis
may lead to male infertility [3—5]. Meiotic recombination ensures accurate chromosome
segregation during the first meiotic division and provides a mechanism to increase genetic
heterogeneity among the meiotic products. Accordingly, identification of recombination spots may
provide very useful information for in-depth understanding the reproduction and growth of cells.

In the past decades, a lot of global mapping studies have been performed to map double-strand
break sites on chromosomes [6—13]. The following findings were observed through these studies
for the meiotic recombination events. (i) They generally concentrate in 1:2.5 kilobase regions; (ii)
They do not occur randomly across the entire genome but with a higher rate in some regions and
lower in others; the former is a so-called “hotspot” while the latter, “coldspot”; (iii) They do not
share a consensus sequence pattern.

With the rapid increasing number of genome sequences, it is important to address the following
problem. Given a genome sequence, how can we predict which part of it is the hotspot for
recombination, and which part is not?

Based on the nucleotide sequence contents, Liu et al. [14] proposed a computational method to
deal with this problem. However, in their method no sequence-order effect whatsoever was taken
into account, and, hence, its prediction power might be limited.

Actually, one of the most important, but also most difficult, problems in computational biology
is how to formulate a biological sequence with a discrete model or a vector, yet still keep considerable
sequence order information. This is as all the existing operation engines, such as covariance
discriminant (CD) [15-20], neural network [21-23], support vector machine (SVM) [24-26],
random forest [27,28], conditional random field [29], nearest neighbor (NN) [30,31], K-nearest
neighbor (KNN) [32-34], OET-KNN (optimized evidence-theoretic k-nearest neighbors) [35-38],
and Fuzzy K-nearest neighbor [39-43], can only handle vector, but not sequence,
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samples. However, a vector defined in a discrete model may completely lose all the
sequence-order information.

To avoid completely losing the sequence-order information for proteins, the pseudo amino acid
composition [44,45] or Chou’s pseudo amino acid components (PseAAC) [46] was proposed. Ever
since the concept of Pse AAC was proposed in 2001 [44], it has penetrated into almost all the areas
of computational proteomics, such as identifying cysteine S-nitrosylation sites in proteins [29],
predicting bacterial virulent proteins [47], predicting antibacterial peptides [48], identifying
bacterial secreted proteins [49], predicting supersecondary structure [50], predicting protein
subcellular location [51-59], predicting membrane protein types [60,61], discriminating outer
membrane proteins [62], identifying antibacterial peptides [48], identifying allergenic proteins [63],
predicting metalloproteinase family [64], predicting protein structural class [65], identifying GPCRs
(G protein-coupled receptors) and their types [66,67], identifying protein quaternary structural
attributes [68,69], predicting protein submitochondria locations [70-73], identifying risk type of
human papillomaviruses [74], identifying cyclin proteins [75], predicting GABA(A) receptor
proteins [76], classifying amino acids [77], predicting the cofactors of oxidoreductases [78],
predicting enzyme subfamily classes [79], detecting remote homologous proteins [80], analyzing
genetic sequences [81], predicting anticancer peptides [82], among many others (see a long list of
papers cited in the References section of [83]). Recently, the concept of PseAAC was further
extended to represent the feature vectors of nucleotides [15], as well as other biological
samples [84—86]. As it has been widely and increasingly used, recently two powerful soft-wares, called
“PseAAC-Builder” [87] and “propy” [88], were established for generating various special Chou’s
pseudo-amino acid compositions, in addition to the web-server “PseAAC” [89], built in 2008.

Encouraged by the success of introducing PseAAC for proteins, recently, Chen et al. [25]
proposed the pseudo dinucleotide composition or PseDNC to represent DNA sequences for
identifying the recombination spots by counting some sequence effects, remarkably improving the
prediction results in comparison with those by Liu er al. [14], without including any sequence
information. However, in PseDNC, only the correlations of dinucleotides along a DNA sequence
were considered, and, hence, some important sequence order effects might be missed.

The present study was initiated in an attempt to incorporate the long-range or global correlations
of trinucleotides along a DNA sequences in hope to further improve the prediction quality in
indentifying the recombination spots.

As demonstrated in a series of recent publications [24,42,90-92] and summarized in a
comprehensive review [83], to establish a really useful statistical predictor for a biological system,
one needs to consider the following procedures: (i) construct or select a valid benchmark dataset to
train and test the predictor; (ii) formulate the biological samples with an effective mathematical
expression that can truly reflect their intrinsic correlation with the target to be predicted;
(1i1) introduce or develop a powerful algorithm (or engine) to operate the prediction; (iv) properly
perform cross-validation tests to objectively evaluate the anticipated accuracy of the predictor; and
(v) establish a user-friendly web-server for the predictor that is accessible to the public. Below, let
us elaborate how to deal with these procedures one-by-one.
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2. Results and Discussion
2.1. Benchmark Dataset

The benchmark dataset S used in this study was taken from Liu ef al. [14], which contains 490
recombination hotspots and 591 recombination coldspots, as can be formulated by:

S=8"US" (D
where subset S” and S are respectively for the hot and cold spots, while | represents the symbol

for “union” in the set theory. For reader’s convenience, the 490 DNA sequences in S and 591
sequences in S are given in the Supplementary Information S1.

2.2. Formulate DNA Samples by Combining Trinucleotide Composition and Pseudo Amino
Acid Components

Suppose a DNA sequence D with L nucleotides; i.e.,
D = NN, NsN,NSNGN ==+ N (2)

where

N, €{A (adenine), C (cytosine) G (guanine) T (thymine)} 3)

denotes the i-th (i =1, 2, ..., L) nucleotide in the DNA sequence. If the feature vector of the DNA
sequence is formulated by its mononucleotide composition (MNC), we have:

D:[ f(A) f(O) f(G) f(T) ]T

:|: fl(l) fz(l) fs(l) f4(1) JT (4)

where " = f(A), fz(”: f(C), f3(1): f(G), and f4(1): f(T) are the normalized occurrence

1
frequencies of adenine (A), cytosine (C), guanine (G), and thymine (T), respectively, in the DNA
sequence; and the symbol T is the transpose operator. As we can see from Equation (4), all the
sequence order information is missed if using MNC to represent a DNA sequence. If using the
dinucleotide composition (DNC) to represent the DNA sequence, instead of the four components as
shown in Equation (4), the corresponding feature vector will contain 4 X 4 = 16 components, as
given below:

D=[ f(AA) f(AC) f(AG) f(AT) --- f(TT) ]T
T Q)
:[ O (0 g e fi(62):|

where fl(z) = f(AA) is the normalized occurrence frequency of AA in the DNA sequence;

fz(z) = f(AC), that of AC; f;z) = f(AG), that of AG; and so forth. If represented by the
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trinucleotide composition (TNC), the corresponding feature vector will contain 4x4x4 =4’ =64
components, as given below:

D:[ f(AAA) f(AAC) f(AAG) f(AAT) .-+ f(TTT) T

T (6)
:[ fl(3) f2(3) f3(3> f4(3) fé?}

where f1(3) = f(AAA) is the normalized occurrence frequency of AAA in the DNA sequence;

f2(3 = f (AAC), that of AAC; and so forth. Generally speaking, if a DNA sequence is represented
by the K-tuple nucleotide composition, the corresponding vector D for the DNA sequence will
contain 4% components; i.e.,

D=|: fl(K) fz(K) f3(K) f4(K) f(K) T (7)
4K

As we can see from Equations (5-7), with increasing the tuple number, although the base
sequence-order information within a local or very short range could be gradually included, none of
the global or long-range sequence-order information would be reflected by the formulation.

Actually, in computational proteomics, we have also faced exactly the same situation; i.e.,
although the dipeptide composition, tripeptide composition, and K-tuple peptide composition were
used by many investigators to represent protein sequences by incorporating their local sequence
order information [93-97], their global or long-range sequence order information still could not be
reflected. As mentioned above, to deal with this kind of problems in proteomics, the concept of
PseAAC [44,45] was introduced.

Stimulated by the PseAAC approach [44,45] in computational proteomics, below let us propose
a novel feature vector to represent the DNA sequence (cf. Equation (2)) by combining its TNC
(see Equation (2)) and the pseudo amino acid components of its translated protein chain.

As is well known, three nucleotides encode an amino acid (see Figure 2). Thus, according the
conversion table from DNA codons to amino acids (Table 1), the DNA sequence in Equation (2)
can be translated into a protein sequence expressed by:

P=AAA A. (8)
with
A €{20 native amino acids}

L*=Tnt{L/3} )

where the symbol “Int” is an integer truncation operator meaning to take the integer part for the
number in the brackets immediately after it.



Figure 2. A graph to show how a DNA codon of three nucleotides is converted to an
amino acid. The characters in the first three rings from the center represent four bases
in DNA, while those in the fourth ring represent the single-letter codes of the 20 native
amino acids in protein. The symbol * means the “Stop” sign.

Table 1. The conversion code of the 64 trinucleotides in DNA to the 20 amino acids in protein.

Trinucleotide Amino acid Trinucleotide Amino acid
AAA Lys (K) GAA Glu (E)
AAC Asn (N) GAC Asp (D)
AAG Lys (K) GAG Glu (E)
AAT Asn (N) GAT Asp(D)
ACA GCA
ACC Thr (T) aee Ala (A)
ACG GCG
ACT «Cctr )
AGA Arg (R) GGA
AGC Ser (S) GGC Gly (G)
AGG Arg (R) GGG
AGT Ser (S) GGT
ATA GTA
Ile (I)
ATC GTC Val (V)
ATG Met (M) GTG
ATT e | érr. )
CAA Gln (Q) TAA Stop!
CAC His (H) TAC Tyr (Y)
CAG Gln (Q) TAG Stop!
CAT His (H) CTAT Ty (Y)
CCA TCA
CCC TCC
cCG Pro (P) TCG Ser (S)
CCT TCT
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Table 1. Cont.

Trinucleotide Amino acid Trinucleotide Amino acid )
CGA TGA Stop!
CGC TGC Cys (C

Arg (R) ys (C)
CGG TGG Trp (W)
CGT TGT Cys (O)
CTA TTA Leu (L)
CTC TTC Phe (F

Leu (L) e (®)
CTG TTG Leu (L)
CTT TTT Phe (F)

Now, according to the formulation of Chou’s PseAAC approach [44,45], for the protein chain of
Equation (8), we have:

1 L * 1 Z ®( Ai+1)
L*¥=2

2 L*—Z Z G)( Ai+2)

3 L* -3 Z®( Ai+3)

(A< L*) (10)

]
0. = L*—1 <

Z ®(A1 > Az+/1)

where 6, (k=1,2,3,---,4) is called the k-th tier correlation factor that reflects the sequence order

correlation between all the k-th most contiguous residues along a protein chain. In this study, the
correlation function in Equation 10 is given by:

®(AZ,A)— [H (4)~H,(4)] (11)

where H,(A)) (n=1,2,:--,6) is the six physicochemical properties of amino acid A, ; they are,

respectively, hydrophobicity, hydrophilicity, side-chain mass, pK1 (a-COOH), pK2 (NH3), and PI.
Note that before substituting these physicochemical values into Equation (11), they were all
subjected to a standard conversion as described by the following equation:

HH(A,»): H;?(Ai)_<H;?>

SD(H) (12

where H (A) (n=1,2,---,6)is the n-thoriginal physicochemical property value for the amino acid
A as given in Table 2, the symbol < and > means taking the average of the quantity therein over
20 native amino acids, and SD means the corresponding standard deviation. Listed in Table 3 are
the converted values obtained by Equation (12) that will have a zero mean value over the 20 native
amino acids, and will remain unchanged if going through the same conversion procedure again.
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Table 2. List of the original values of the six physical-chemical properties for each of

the 20 native amino acids.

Amino Acid  Hydro-phobicity * Hydro-philicity b

Side-chain pKl1 ¢ H f

pK2¢ H p1' H}

Hl0 H;) Mass ¢ H;)
A 0.62 -0.5 15 2.35 9.87 6.11
C 0.29 —1.00 47 1.71 10.78 5.02
D -0.90 3.00 59 1.88 9.60 2.98
E -0.74 3.00 73 2.19 9.67 3.08
F 1.19 —2.50 91 2.58 9.24 5.91
G 0.48 0.00 1 2.34 9.60 6.06
H —0.40 —0.50 82 1.78 8.97 7.64
I 1.38 —1.80 57 2.32 9.76 6.04
K —1.50 3.00 73 2.20 8.90 9.47
L 1.06 —1.80 57 2.36 9.60 6.04
M 0.64 -1.30 75 2.28 9.21 5.74
N —0.78 0.20 58 2.18 9.09 10.76
P 0.12 0.00 42 1.99 10.60 6.30
Q —0.85 0.20 72 2.17 9.13 5.65
R —2.53 3.00 101 2.18 9.09 10.76
S —0.18 0.30 31 2.21 9.15 5.68
T —0.05 -0.40 45 2.15 9.12 5.60
\% 1.08 —1.50 43 2.29 9.74 6.02
W 0.81 -3.40 130 2.38 9.39 5.88
Y 0.26 —2.30 107 2.20 9.11 5.63

“ Taken from [98]; ® Taken from [99]; ¢ Taken from any biochemistry text book; 4 Taken from [100] for

C -COOH; € Taken from [100] for NHs; " Taken from [101].

By combining the A4 correlation factors with the 64 components in TNC (see Equation (6)), the

DNA sequence is formulated by:

D=[d, d, - d

where:
fu(3)

64 A
PINARESTINA

d — i=1 k=1

u
wo, g,

64 A
S w0,
i=1 k=1

3

>

d64+1 d64+l]

(1<u<64)

T

(64+1<u<64+ 1)

(13)

(14)

where w is the weight factor which is determined by optimizing the outcome as will be mentioned

later. The rationale of using Equation (13) to represent the DNA sequence is that the local or

short-range sequence order effect can be directly reflected via the occurrence frequencies of its

64 trinucleotides, while the global or long-range sequence order effect can be indirectly reflected
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via the 4 pseudo amino acid components of its translated protein chain. As three nucleotides
encode an amino acid, the above approach is both quite rational and natural.

Table 3. The corresponding values obtained by the standard conversion of Equation12
on the original values in Table 2.

Amino acid H1 H2 H3 H4 H5 H6
A 0.62 -0.15 -1.55 0.78 0.77 -0.10
C 0.29 -0.41 -0.52 -2.27 2.57 —0.64
D -0.90 1.67 -0.13 —1.46 0.24 —1.65
E -0.74 1.67 0.33 0.01 0.37 —1.61
F 1.19 -1.19 0.91 1.87 —0.48 -0.20
G 0.48 0.11 -2.00 0.73 0.24 -0.13
H —0.40 —0.15 0.62 -1.94 -1.01 0.65
I 1.38 -0.82 -0.19 0.63 0.55 -0.14
K -1.50 1.67 0.33 0.06 -1.15 1.56
L 1.06 -0.82 -0.19 0.82 0.24 -0.14
M 0.64 —0.56 0.39 0.44 —0.54 -0.29
N -0.78 0.22 -0.16 -0.03 -0.77 2.20
P 0.12 0.11 —0.68 -0.94 2.21 -0.01
Q —0.85 0.22 0.29 —0.08 -0.69 -0.33
R —2.53 1.67 1.23 —0.03 -0.77 2.20
S —0.18 0.27 -1.03 0.11 —0.65 -0.32
T -0.05 —-0.10 -0.58 -0.18 -0.71 -0.36
VvV 1.08 -0.67 —0.65 0.49 0.51 —0.15
W 0.81 -1.65 2.17 0.92 -0.18 -0.22
Y 0.26 —1.08 1.43 0.06 -0.73 —0.34

2.3. Use Support Vector Machine as an Operation Engine

Support vector machine (SVM) has been widely to make classification prediction (see,
e.g., [24,102—105]. The basic idea of SVM is to transform the input data into a high dimensional
feature space and then determine the optimal separating hyperplane. A brief introduction about the
formulation of SVM was given in [103,106]. Here, the DNA samples as formulated by Equation (13)
were used as inputs for the SVM. Its software was downloaded from the LIBSVM
package [107,108], which provided a simple interface. Due to this advantages, the users can easily
perform classification prediction by properly selecting the built-in parameters C and y . In order
to maximize the performance of the SVM algorithm, the two parameters in the RBF kernel
were preliminarily optimized through a grid search strategy in this study. To obtain the
optimized parameters, the search function “SVMcgForClass” was downloaded from
http://www.matlabsky.com.

The predictor obtained via the aforementioned procedures is called iRSpot-TNCPseAAC, where
“” means “identify”, “RSpot” means “Recombination Spots”, while TNCPseAAC means a
combination of “Tri-Nucleotide Composition” and “Pseudo Amino Acid Components.”
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To objectively evaluate the quality of a new predictor, one should use proper metrics [109] and
rigorous cross-validation [83] to test it. Below, let us address these problems.

2.4. Four Different Metrics for Measuring the Prediction Quality

In literature, the following metrics are often used for examining the performance quality of
a predictor:

TP
~ TP+FN

N

R TYR==

. TP+ TN (25)
TP+ TN+ FP+FN

MCC - (TPx TN)[I(FPx FN)

J(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

where TP represents the number of the true positive; 7N, the number of the true negative; FP,
the number of the false positive; FN, the number of the false negative; Sn, the sensitivity; Sp,
the specificity; Acc, the accuracy; MCC, the Mathew’s correlation coefficient. To most
biologists, however, the four metrics as formulated in Equation (15) are not quite intuitive and
easier-to-understand, particularly for the Mathew’s correlation coefficient. Here let us adopt the
formulation proposed recently [25,29] based on the Chou’s symbol and definition [110]; i.e.,

Sn=1-—
Sp=1-—=
N +N-_
Acc=1—— -
N*+N~ (16)
[ NI+N]
N*+N~
Mcc =
N.-N* N —-N-
1+— 1+ —
N* N

where N* is the total number of the hotspot samples investigated while N* the number of
the hotspot samples incorrectly predicted as coldspots; N~ the total number of the coldspot
samples investigated while N the number of the coldspot samples incorrectly predicted as the
hotspots [111].

Now, it can be clearly seen from Equation (16) that when N‘T = (0 meaning none of the hotspots
was incorrectly predicted to be a coldspot, we have the sensitivity 1=1. When N’ =N"

meaning that all the hotspots were incorrectly predicted to be the coldspots, we have the sensitivity
S =0. Likewise, when N, =0 meaning none of the coldspots was incorrectly predicted to be the

hotspot, we have the specificity Sp=1; whereas N, =N meaning all the coldspots were
incorrectly predicted as the hotspots, we have the specificity =0. When N = N_ =0 meaning

that none of hotspots in the positive dataset and none of the coldspots in the negative dataset was
incorrectly predicted, we have the overall accuracy Acc=1and MCC=1; when N’ =N"and
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N_ =N meaning that all the hotspots in the positive dataset and all the coldspots in the negative

dataset were incorrectly predicted, we have the overall accuracy Acc=0 and MCC =—1; whereas
when N"=N"/2 and N, =N /2 we have Acc=0.5 and MCC=0 meaning no better than

random guess. As we can see from the above discussion based on Equation (16), the meanings of
sensitivity, specificity, overall accuracy, and Mathew’s correlation coefficient have become much
more intuitive and easier-to-understand.

It should be pointed out that the metrics as given in Equation (15) and Equation (16) are valid
only for the single-label systems as in the current case. For the multi-label systems in which
emergence has become increasingly frequent in cell’s molecular systems [112—118] and biomedical
systems [43,119], a completely different set of metrics as defined in [109] is needed.

2.5. Evaluate the Anticipated Success Rates by Jackknife Tests

The following three cross-validation methods are often used in statistical prediction to
evaluate the anticipated accuracy of a predictor: independent dataset test, subsampling (K-fold
cross-validation) test, and jackknife test [120]. However, as elucidated by a review article [83],
among the three methods, the jackknife test is deemed the least arbitrary and most objective
as it can always yield a unique outcome for a given benchmark dataset, and hence has been
increasingly used and widely recognized by investigators to examine the accuracy of various
predictor [48,60,63,65,69,76,121,122]. Accordingly, in this study we also used the results obtained
by jackknife tests to optimizing the uncertain parameters and to compare with the other predictors
in this area.

3. Experimental Section

The results obtained with iRSpot-TNCPseAAC on the benchmark dataset S of Supplementary
Information S1 by the jackknife test are given in Table 4, where for facilitating comparison the
corresponding results by the iRSpot-PseDNC [25] on the same benchmark dataset are also given.

Table 4. A comparison of iRSpot-TNCPseAAC with the best existing method.

Predictor Test method Sn (%) Sp (%) Acc (%) MCC
iRSpot-PseDNC * Jackknife 73.06 89.49 82.04 0.638
iRSpot-KNCPseAAC ° Jackknife 87.14 79.59 83.72 0.671

* From [25]; ® This paper with A =5, w=1.1, C=32 and ¥ =0.5 for the LIBSVM operation engine [107,108].

As we can clearly see from the table, the iRSpot-TNCPseAAC predictor is superior to
iRSpot-PseDNC [25] in three of the four metrics as defined by Equation (16); i.e., it can yield
higher accuracy Acc, higher Mathew’s correlation coefficient MCC, and higher sensitivity Sn.
Therefore, it is anticipated that the new predictor will become a useful tool for identifying the
recombination spots in DNA, or at the very least become a complementary tool to iRSpot-PseDNC,
the best existing prediction method in this area.
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4. Conclusions

The above fact has also proved that it is indeed a feasible and promising approach to extend
the concept of pseudo amino acid composition [44,45,123] developed in computational proteomics
to the area of computational genomics. As shown by Equation (13) and the related equations
in defining its 64+ 4 components, each of the DNA samples investigated in this study was
formulated by a combination of its trinucleotide composition (TNC) with the pseudo amino
acid components (PseAAC) that were derived from the protein translated from the DNA
sample according to its genetic codes. The former can better incorporate its local or short-rage
sequence order information in comparison with the dinucleotide composition (DNC) used in
iRSpot-PseDNC [25]; while the latter can incorporate its global or long-range sequence order
effects in a more natural or logical manner. Accordingly, it is anticipated that the idea or approach
by extending the Chou’s pseudo amino acid composition [44,45,123] for protein sequences to the
pseudo oligonucleotide composition for DNA or RNA sequences may also be used to deal with
many other genome analysis problems.

5. Web Server and User Guide

To enhance the value of its practical applications, a web-server for the iRSpot-TNCPseAAC
predictor was established. Moreover, for the convenience of the vast majority of experimental
scientists, here a step-to-step guide is provided for how to use the web server to get the desired
results without the need to follow the mathematic equations that were presented just for the
integrity in developing the predictor.

Step 1. Open the web server at http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC and you will see

the top page of the predictor on your computer screen, as shown in Figure 3. Click on the Read Me
button to see a brief introduction about the iRSpot-TNCPseAAC predictor and the caveat when
using it.

Figure 3. A semi-screenshot for the top page of the web-server iRSpot-TNCPseAAC at
http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC.

iRSpot-TNCPseAAC: identify recombination spots with trinucleotide
composition and pseudo amino acid components
| Read Me | Supporting Information | Citation |

Enter the sequence of query DNA sequences in FASTA format (Example): the
number of DNA sequences is limited at 100 or less for each submission. It will
usually take about 10 seconds for each query DNA sequence.

{_Submit } {_Clear }

Or, enter your e-mail address and upload the batch input file (Batch-
example). The predicted results will be sent to you by e-mail once

completed.
Upload file:| | (Browser )
Your e-mail address::]
Batch-submit

.  J
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Step 2. Either type or copy/paste the query DNA sequences into the input box at the center of
Figure 3. The input sequence should be in the FASTA format. For the examples of sequences in
FASTA format, click the Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result. For example, if you use the three

query DNA sequences in the Example window as the input, after clicking the Submit button, you
will see the following message shown on the screen of your computer: the outcome for the 1st
query sample is “recombination hotspot”; the outcome for the 2nd query sample is “recombination
coldspot”. All these results are fully consistent with the experimental observations as
summarized in the Supplementary Information S1. However, no result was given for the 3rd
query sample as it contains some invalid characters as warned in the output screen. It takes
about a few seconds for the above computation before the predicted result appears on your
computer screen; the more number of query sequences and longer of each sequence, the more time
it is usually needed.

Step 4. As shown on the lower panel of Figure 3, you may also choose the batch prediction by
entering your e-mail address and your desired batch input file (in FASTA format) via the
“Browse’’ button. To see the sample of batch input file, click on the button Batch-example. After

clicking the button Batch-submit, you will see “Your batch job is under computation; once the
results are available, you will be notified by e-mail.”

Step 5. Click the Supporting Information button to download the benchmark dataset used to
train and test the iRSpot-TNCPseAAC predictor.

Step 6. Click the Citation button to find the relevant papers that document the detailed
development and algorithm of iRSpot-TNCPseAAC.
Supplementary Information

Supplementary Information S1. The benchmark dataset S consists of a positive dataset S
and a negative dataset S™. The positive dataset contains 490 recombination hot spots, while the
negative dataset contains 591 recombination cold spots.
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2. Structure-Based Drug Design

Structure of N-Terminal Sequence Asp-Ala-Glu-Phe-Arg-His-
Asp-Ser of AB-Peptide with Phospholipase A, from Venom of
Andaman Cobra Sub-Species Naja naja sagittifera at

2.0 A Resolution

Zeenat Mirza, Vikram Gopalakrishna Pillai and Wei-Zhu Zhong

Abstract: Alzheimer’s disease (AD) is one of the most significant social and health burdens of the
present century. Plaques formed by extracellular deposits of amyloid  (Ap) are the prime player of
AD’s neuropathology. Studies have implicated the varied role of phospholipase A, (PLA;) in brain
where it contributes to neuronal growth and inflammatory response. Overall contour and chemical
nature of the substrate-binding channel in the low molecular weight PLA;s are similar. This study
involves the reductionist fragment-based approach to understand the structure adopted by N-terminal
fragment of Alzheimer’s AP peptide in its complex with PLA,. In the current communication, we
report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-
Arg-His-Asp-Ser (DAEFRHDS) of AB-peptide with a Group I PLA; purified from venom of
Andaman Cobra sub-species Naja naja sagittifera at 2.0 A resolution (Protein Data Bank (PDB)
Code: 3JQS5). This is probably the first attempt to structurally establish interaction between
amyloid-P peptide fragment and hydrophobic substrate binding site of PLA, involving H bond and
van der Waals interactions. We speculate that higher affinity between AP and PLA, has the
therapeutic potential of decreasing the AP—AP interaction, thereby reducing the amyloid
aggregation and plaque formation in AD.

Reprinted from Int. J. Mol. Sci. Cite as: Mirza, Z.; Pillai, V.G.; Zhong, W.-Z. Structure of
N-Terminal Sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of AB-Peptide with Phospholipase A;
from Venom of Andaman Cobra Sub-Species Naja naja sagittifera at 2.0 A Resolution. Int. J.
Mol. Sci. 2014, 15, 4221-4236.

1. Introduction

An estimated 36 million people globally are suffering from Alzheimer’s disease (AD), which
causes irreversible neurodegeneration and usually strikes in the later years of life. According to the
World Health Organization, this figure is anticipated to rise to 65.7 million by 2030 and may
increase to 115.4 million by 2050 [1]. Dementia is the most frequent type of neurodegenerative
disease and it is rarely detected before symptoms develop; no drugs presently exist for its
therapy [2,3]. The characteristic disease landmarks include neurofibrillary tangles [4] and amyloid
plaques, surrounded by reactive astrocytes, activated microglial cells causing neuroinflammatory
responses and dystrophic neuritis. Although the neuroinflammation mechanism in AD brain is not
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apparent, there is ample data suggesting a role for specific forms of amyloid beta peptide (AB) in
inducing release of pro-inflammatory cytokines by microglia and astrocytes. Hence, identifying the
modulating mechanisms of neuroinflammatory responses and neuronal degeneration will unravel
vital aspects to develop new therapeutic strategies [5,6]. Developing chemical interventions for AD
is exigent and has proceeded in a virtual vacuum due to lack of tertiary structural information of
amyloid-P peptide [7], which is cleaved via the B/y-secretase pathway from the membrane-bound
amyloid precursor protein (APP) [8]. B-secretase generates the N-terminus of AP by cleaving [-
APP within the Glu-Val-Lys-Met-|-Asp-Ala sequence or by cleaving the Swedish mutant 3-APPgw
within the Glu-Val-Asn-Leu-|-Asp-Ala sequence. In addition, cleavage has been reported to occur
within the AP sequence Asp-Ser-Gly-Tyr'’-Glu''-Val, generating APi1_s042 [9]. Solubility may be
modulated in a pH-dependent manner by the charged N-terminal sequence [10].

The phospholipase A, (PLA;) is a lipolytic enzyme commonly expressed in several types of
mammalian cells [11]. Two most notable forms of PLA, are the secretory PLA, (sPLA;) and the
calcium-dependent cytosolic PLA, (cPLAj;). In healthy brain cells, equilibrium between
arachidonic acid conversion into proinflammatory mediators and arachidonic acid reincorporation
into the membrane is maintained by PLA, regulation. Unregulated PLA; activity causes production
of an inconsistent amount of proinflammatory mediators, leading to oxidative stress and
neuroinflammation as seen in neurological diseases such as AD, epilepsy, and multiple sclerosis.
The most common and extensively studied PLA;s belong to group I and II. sSPLA,-ITA mRNA is
up-regulated in AD brains as compared to non-demented elderly brains, and a higher percentage of
sPLA,-IIA-immunoreactive astrocytes associated with AP plaques have been reported in the AD
hippocampus and inferior temporal gyrus [12]. Increased sPLA, activity is observed in the
cerebrospinal fluid of humans with AD and multiple sclerosis, and can perhaps be a marker of
permeability increases of the blood—cerebrospinal fluid barrier [13]. Also, other types of sPLA,
bearing a similar structure—e.g., groups 1B, IIE, V and X-—are present in distinct brain
regions [14]. A feature identified for the design of tight PLA, inhibitors is the presence of the OH
group on the aromatic framework, which may be extended in the opposite direction with the
hydrophobic moiety [15].

A series of recent studies have indicated that much useful information for drug development can
be obtained in a timely manner by conducting various studies, either experimentally or theoretically.
However, different targets would need different approaches. For instance, to reveal the molecular
mechanism of Alzheimer’s disease [16—18] and find useful clues for developing drugs against
Alzheimer’s disease [19,20], the structural bioinformatics tools [21] were adopted. On the other
hand, as is well known, X-ray crystallography and high-resolusion NMR (see, e.g., [22-24]) are
two very powerful tools for structure-based drug design. Although it is time-consuming and
expensive to use these facilities, the results thus acquired are usually more reliable and dependable.
Our primary goal is to determine the possibility of a direct interaction between A peptide and
PLA; and the structure adopted by the peptide that may in the future pave the way for novel
approaches for better understanding AD and its therapeutics.
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2. Results
2.1. Quality of the Final Model

The final model consists of 909 protein atoms, 68 atoms of peptide molecule, one calcium ion
and 99 water molecules. The final |2F, — F¢| electron density map is continuous and well defined
for both the backbone and the side chains of the protein. The final model has a good overall
geometry with the r.m.s. deviations in bond lengths and angles are 0.009 A and 1.1°, respectively.
The Ramachandran plot calculated using PROCHECK [25], indicates that 89.1% of the residues
are present in the most favourable regions, 10.0% were observed in the additionally allowed
regions, while the remaining 0.9% residues were observed in the generously allowed regions of the
Ramachandran plot [26] (Figure 1). The results of data collection and processing are given in Table
1 and the refinement statistics are given in Table 2.

2.2. Overall Structure

The general structure of PLA, contains an N-terminal helix, H1 (residues: 2-12), a
calcium-binding loop (residues: 25-35), a second a-helix, H2 (residues: 40-55), a short
two-stranded antiparallel B-sheet (residues: 75—78 and 81-84), referred to as the B-wing and a third
a-helix, H3 (residues: 90—108). There are two helical short turns involving residues 19-22 (SH4)
and 113-115 (SHS5) (Figure 2). The two antiparallel helices H2 and H3 form the core of the protein
structure. The hydrophobic residues on the inner surface of the helix HI are highly conserved and
form one wall of the hydrophobic channel, which provides access to the catalytic site (Figure 3).
Additional contributions to the hydrophobic channel include amino acid 19, which is located in the
short turn following the helix HI, amino acid 30, 31 and 32 located within the calcium-binding
loop and amino acid 69 located before the first strand of the B-wing. The structure is in accordance
with previously reported structures [27].



Figure 1. A Ramachandran plot of the main chain torsion angles (¢,y) for the final
refined model. The plot was calculated with the program PROCHECK [25]; non-
glycine residues are identified by squares.
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Table 1. Data collection statistics.

Space Group P4,
System Tetragonal
Unit-cell parameters (A)
a=b 42.7
c 65.8
Vi (A2/Da) 2.3
Solvent Content (%) 46.7
Resolution range (A) 20.0-2.0
No. of observed reflections 33,510
No. of unique reflections 7735
Overall completeness (%) 98.7
Completeness in the highest shell (2.06-2.03 A) (%) 87.7
Overall Ry, (%) 7.0
Rgym in the highest shell (2.06-2.03 A) (%) 18.8
Overall I/o(I) 11.1
I/o(I) in the highest shell (2.06-2.03 A) 2.3

Table 2. Refinement statistics.

PDB code 3JQ5
Resolution range (A) 20.0-2.0
Number of reflections 7735
Reuyse (for all data) (%) 18.1

Reree (5% data) (%) 22.0
Number of protein atoms 909
Number of peptide atoms 68
Number of Water Molecules 99
Number of calcium atoms 1
R.m.s. deviations
Bond length (Az) 0.009
Bond angles (°) 1.1
Dihedral angles (°) 14.4
Overall G factor 0.05
Mean B factor (1&2)
Main chain atoms 22.0
Side chains and water molecules 27.3
Overall 24.8
Ramachandran plot statistics
Residues in the most allowed region (%) 89.1
Residues in the additionally allowed region (%) 10.0

Residues in the generously allowed region (%) 0.9
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Figure 2. A ribbon diagram showing the overall structure of PLA;: helical segment is
shown in red, B strands colored yellow and disulfide links shown in ball and stick,
colored green and yellow. The three main helices are indicated as H1, H2 and H3, while
two short helices are designated as SH4 and SHS.  wing, calcium-binding loop and
disulfide linkages are also indicated.

Figure 3. The |[F, — F.| electron density map contoured at 2.0 ¢ showing the electron
density for the peptide Asp-Ala-Glu-Phe-Arg-His-Asp-Ser.

DAEFRHDS

The overall folding of PLA, observed in the complex with peptide is essentially similar to that
of native PLA, (IMF4) with an r.m.s. shift of 0.2 A for the C* positions. One milli molar CaCl,
was added in the protein drops that were used for crystallization and the structure revealed the
presence of Ca®" ion in the so-called calcium-binding loop. The Ca®* ion is considered generally
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essential for catalytic activities of secretory PLAs [28,29]. In the present structure, the Ca®" ion
stabilizes the conformation of the calcium-binding loop (Figure 4).

Figure 4. Difference |F, — F.| electron density for the calcium ion drawn at 2c. Calcium
coordinated interactions are indicated by dotted lines. Ser8 of peptide is shown
in green.

2.3. Structure of Peptide

The structure of PLA; in the complex remains unchanged from its native structure. All the eight
residues of the peptide can be traced from their electron densities (Figure 3). The interaction of the
peptide with the protein is depicted in Figure 5. Half of the peptide residue’s torsional angles are in
the most favoured region of the Ramachandran plot, although none were observed in the
disallowed region. The structure of the peptide is given in Figure 6.

Figure 5. Interactions between PLA; and the peptide Asp-Ala-Glu-Phe-Arg-His-Asp-
Ser. The peptide residues are colored yellow. The critical interactions between peptide
and protein are shown by the dotted line.

Interaction of Peptide with PLA,
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Figure 6. The structure of peptide Asp-Ala-Glu-Phe-Arg-His-Asp-Ser in complex
with PLA,.

3. Discussion

We have attempted the fragment assembly approach to elucidate the structure of APB. The
fragment assembly and global optimization method has been established and extensively used in
computational biology [30,31]. This work may be the first design of experiments following this
approach. However, reductionist methods are common in protein crystallography. There are vast
numbers of entries in PDB that are exclusively the domains, or even a small fragment of proteins.
Most of the time, the intact protein is not amenable to crystallization, such as the beta-amyloid
precursor protein. The co-crystallization method is another useful method of crystallography.
Hundreds of Fab—Ag complexes are available to corroborate this fact. Co-crystallization of
complete AP with mitochondrial alcohol dehydrogenase has been attempted [32]. The presence of
AP in the crystal has been established by SDS-PAGE and N-terminal sequencing of the washed
crystal in this study. However, no electron density corresponding to AP could be observed in the
determined structure. This suggests the AP in this complex is flexible. The only instance where the
AP molecule is seen in the crystal is the structure of the complex between AP and insulin-
degrading enzyme (IDE). The AP is seen as a cleaved substrate. The complete molecule is not
observed—only residues 1-3 and 17-22 are same [33].

There are many NMR studies describing the structures of partial and complete abeta molecule
(3BAE, 1BA6, 1BA4, 2BEG). The results are generally combined with molecular modelling
calculations. From all these studies, the following structural properties for the aggregating abeta is
proposed—the central region Ais.; and C-terminal region Af334042) are in [-strand
conformation; Afjs 9 1S in loop conformation, and the rest of the molecule is in random
conformation. This is also corroborated by X-ray fiber—diffraction of the fibrils while the attempts
to crystallize or co-crystallize the AB;7-2; and APss_40/AP37-42 have been described and the peptides
are observed in B-conformation. Apparently, the nature of binding sites of the protein influences
the conformation of the AP peptide. The large space available in IDE accommodated the intact AP
molecule. In 20TK, [34], AB;7-36 1s seen in B-sheet conformation with residues 25-29 forming the
loop. In their studies, Lustbader ef al. could not view the AB molecule even though it was in the
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crystal. One conclusive aspect of crystal structures are that the peptides, ABi721, AP3s 42 and
AB1736 are in [ conformation. This is in contrast to the solution studies that report all
conformational possibilities. The same peptide has been observed in different conformations in
different studies. Most of the studies report helical or coil conformation [35-38]. These results may
be due to the variable solvent conditions used in these studies. Solvent conditions vary from
completely polar to non-polar. The conformation of A is highly dependent on the environmental
conditions. Solvent polarity, temperature, pH and additives influence the solubility and aggregation
behaviour of AB [39,40].

Figure 7. Surface diagram representation of the binding cavity and the hydrophobic
channel with the peptide DAEFRHDS going inside the pocket.

SURFACE VIEW

DAEFRHDS

An electron density was observed in the difference Fourier [F, — F.| map in the complex
structure (Figure 3), which allowed the interpretation of one molecule of the octa-peptide, as well
as the detailed description of its interactions with PLA,. The peptide was positioned well in the
hydrophobic channel (Figure 7) and was fitted well in the substrate binding site of enzyme. Peptide
interacts with active site residues through a series of hydrogen bonds and hydrophobic interactions.
The N-terminal part of the peptide lies towards the opening of the hydrophobic channel at the
protein surface. The C-terminal serine residue is involved in hydrogen bonding with the active site
residues. The rest of the peptide aligned in the hydrophobic channel makes a series of van der
Waals contacts with protein atoms. The oxygen atom Oy of Ser8 of peptide is hydrogen bonded
with active site residue Asp49 Od1 and also with backbone atoms of Gly30 of the calcium-binding
loop. The backbone oxygen atom of Ser8 is directly hydrogen bonded to His48 No&1. Thus the
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peptide interacts with the active site residues through direct hydrogen bonds (Table 3). The peptide
also interacts with important residues of the hydrophobic channel like Aspl residue of peptide
interacts with Lys6 and Trp19 residue of protein and His6 residue of peptide interacts with Gly30
and Tyr64. Additionally the peptide is involved in van der Waals interaction with most of the
residues lining the substrate-binding hydrophobic channel (Table 4).

Table 3. Hydrogen bonds between PLA, and peptide DAEFRHDS.

Atoms of peptide Protein atoms Distance (A)

Lys6 NC 3.35

Aspl 052
spl O3 Trpl9 Nel 2.64
. Gly30 O 3.43

His6 N&1
IS Tyr64 OH 2.78
Gly30 N 3.22

8

Ser Oy Gly30 O 2.62
Tyr28 O 3.35
Asp49 031 2.95
Ser8 O His48 N3 1 2.80

Table 4. Van der Waal interactions between PLA, and peptide DAEFRHDS.

Atoms of peptide Protein atoms Distance (A)
Aspl Cy Trpl9 Ce2 3.79
Trpl19 CQ2 3.48
Ala2 Cp Trp19 CH2 3.73
Trpl19 CQ2 3.97
Phe4 Co1 Ala23 CB 391
Arg5 CC Leu2 Cd2 3.53
His6 Ca Leu2 C52 3.69
His6 CB Gly30 Ca 3.63
Gly30 C 3.68
His6 Cel Tyr64 CC 3.75
Asp7 Ca Ala23 Ca 3.75
Asp7 CP I1e9 Co1 3.78
Phe5 Ce2 3.97
Asp7C Phe5 Ce2 3.92
Ser8 Cp Tyr28 C 3.90
Cys29 Ca 3.51
Cys29 C 3.64
Gly30 Ca 3.76
Ser§ C Phel01 CC 3.92
His48 Cy 3.98
Cys45 Cp 3.81

In our studies, the binding site of the peptides on the protein is very hydrophobic. The binding
cavity of PLA; is lined with residues such as tryptophan, histidine, aspartic acid, and glycine. The
non-polar surface extends from the molecule to the catalytic residues Aspartate and histidine at the
other end. We expect that the non-polar nature of the binding site could have influenced the folding
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of the AP peptide fragment. This is possible given the fact that the folding of the AP molecule is
mediated and stabilized by non-polar interactions. Moreover, the co-crystallization experiments
were carried at 35% ethanol concentrations. Organic solvents (mostly alcohols have been studied),
generally induce a random conformation in AP molecule as seen from the experiments. The peptide
in our co-crystallization experiment strongly interacted with the non-polar binding-cavity residues
of PLA,. The only interaction arginine displays in DAEFRHDS is non-polar (Table 3). Even
though this peptide is polar it has more non-polar interactions than polar interactions (Tables 3
and 4). The observed conformation of the peptide in our result must have been dictated by the
protein—ligand interactions. Though our aim of fragment assembly has not been achieved, the
observations made by us are nevertheless interesting in their own right, exemplifying the strength
of the interactions of the protein and ligand on one hand, and their effect on the conformation of the
ligand on the other.

4. Experimental Section
4.1. Purification of Monomeric PLA;

The lyophilized samples of crude cobra venom of Naja naja sagittifera were obtained from Irula
Snake Catchers Industrial Cooperative Society, Chennai, India. The crude venom was dissolved in
50 mM Tris-HCI, 100 mM NacCl, pH 7.0 at 100 mg/mL concentration and centrifuged at 12,000x g
for 10 min to remove insoluble material. The collected supernatant was size fractionated on
Sephadex G-100 column (100 x 2 cm) pre-equilibrated with 50 mM Tris-HCI, 100 mM NaCl, pH
7.0. The column was eluted with the same buffer at a flow rate of 6 mL/h. The peak corresponding
to molecular weight of 14 kDa on SDS-PAGE and showing PLA, activity was pooled for further
purification. The pooled fractions were desalted and dialysed against 50 mM Tris-HCI, pH 7.0 and
loaded on CM Sephadex C-50 column (Pharmacia, Uppsala, Sweden). The column was washed
with the above buffer. The unbound fractions were pooled and dialysed against ammonium acetate
buffer, pH 6.0. The diluted sample was loaded on a pre-equilibrated column with same buffer
containing Affi-gel Cibacron blue F3GA. The column was washed with 50 mM ammonium acetate
buffer pH 6.0 to remove unbound fractions. The column was eluted with 50 mM ammonium
bicarbonate buffer pH 8.0. These fractions showed PLA; activity and indicated a molecular weight
of 14 kDa on SDS-PAGE. The samples were pooled, desalted by ultrafiltration using a 3 kDa
cutoff membrane and lyophilized, and their purity was checked by matrix-assisted laser desorption-
ionization—time of flight (MALDI-TOF) (Kratos, Shimadzu, Kyoto, Japan) and by activity
measurements. On MALDI-TOF it showed a molecular weight of 13,401.99 Da. The protein
samples were blotted on a polyvinyl difluoride (PVDF) membrane (Sigma-Aldrich, St. Louis, MO,
USA) and were subjected to the N-terminal sequencing using an automated protein sequencer
PPSQ-21A (Shimadzu, Japan). The N-terminal sequence of the first 15 residues was determined. It
was found identical to the sequence of PLA, whose structure was reported earlier [41].



61

4.2. Enzymatic Assay and Inhibition Studies

The purified enzyme was used for kinetic studies done using a PLA, Assay Kit (Cayman
Chemical Company, Ann Arbor, MI, USA). The enzymatic chromogenic assay utilized the
conversion of arachidonoyl thio-phosphocholine into sulfahydryl molecule by PLA,. Arachidonoyl
thio-PC is a synthetic substrate used to detect phospholipase activity [42]. Hydrolysis of the
arachidonoyl thioester bound at the sn-2 position by PLA, releases free thiol, colorimetrically
detected by Ellman’s reagent [5,5' -dithiobis (2-nitrobenzoic acid) (DTNB)], which results in
yellow colour along with the released sulfahydryl product. Stock concentration at 1.5 mM of PC-
substrate and 0.1 mM of PLA, were used for the assay. Ten uL of colouring agent (DTNB) was
added in each assay reaction. Peptide inhibitors (GenScript Corporation, Piscataway, NJ, USA)
were dissolved in dimethyl sulfoxide and only 5 pL added to the assay. Peptide concentrations of
0.10, 0.20, 0.30 and 0.40 mM were taken for studying PLA, inhibition reactions. Bee venom PLA,
was taken as positive control. The assay included a 30 min pre-incubation of enzyme with peptide
and a further incubation of 60 min at room temperature after the addition of 200 pL substrate
solution. The absorbance was measured at 414 nm wavelength on a plate reader and measurements
were repeated thrice. Two wells were designated as non-enzyme controls and their absorbance was
subtracted from the absorbance measured in the sample wells. Significant decrease in enzyme
activity was seen in the presence of an inhibitor.

4.3. Crystallization

The purified samples of PLA, were dissolved in 10 mM sodium phosphate buffer pH 6.0
containing | mM CacCl, to a final concentration of 2.5 mg/mL. Peptide was dissolved in the above
buffer, containing 10% acetonitrile and added to the protein solution at 10-fold high molar
concentration. The solution was incubated for 3 h, mixed well, centrifuged and kept for
crystallization trials using hanging drop vapor diffusion method. The 10 pL drops of the above
mixture were equilibrated against the same buffer containing 30% ethanol in the reservoir. The
crystals grew to a size of 0.4 x 0.2 x 0.2 mm’ after two weeks.

4.4. Data Collection and Data Processing

The crystals of the complex formed between PLA; and the N-terminus fragment DAEFRHDS
were used for data collection at low temperature. A single crystal was mounted in a nylon loop and
flash-frozen in a stream of nitrogen gas at 100 K. The data were collected on a 345 mm diameter
MAR research scanner with 1.54 A radiation generated by a Rigaku RU-300 rotating anode X-ray
Generator filled with Osmic mirrors (Rigaku USA, Woodlands, TX, USA). The data were
processed with DENZO and SCALEPACK from HKL package [43]. The final data set was
complete to 87.7% up to 2.0 A resolution. The crystals belong to the tetragonal space group P4
with unit cell dimensions a=b =42.7 A, ¢ = 65.8 A. The presence of one molecule per asymmetric
unit gave a crystal volume per protein mass (V) of 2.3 A’Da' corresponding to a solvent content
of 46.7%. The final data show an overall completeness of 98.7% with a Ry of 7.0% to 2.0 A
resolution (Tables 1 and 2).
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4.5. Structure Determination and Refinement

The crystal structure was determined with molecular replacement method using auto-AMoRe [44]
from the CCP4 software suit (Collaborative Computational Project, Number 4, 1994). The
coordinates of a native PLA, structure (PDB code: 1MF4) were used as a search model. The
rotation and translation functions calculated with data in the resolution range, 12.0-3.5 A yielded a
unique solution with the first peak being very distinct. The stacking arrangement of the molecules
in the unit cell for this solution yielded no unfavourable intermolecular contacts in space group P4,
thus confirming it as the correct space group. The coordinates were transformed using AMoRe and
were then subjected to 20 cycles of rigid-body refinement with REFMACS [45]. This reduced the
Reryst and Ryee factors to 18.1% and 22.0%, respectively. Of the reflections, 2% were used for the
calculation of Rge., and were not included in the refinement. The manual model building of the
protein using Fourier |2F, — F.| and difference Fourier [F, — F.| maps was carried out with the
Graphics Program “O” [46] on a Silicon Graphics O, Workstation (Figure 2). A continuous non-
protein electron density at 2.0 ¢ cut off was observed in the proximity of the active site that
extended in a direction parallel to helix H,. The ligand was only included because it was well
defined by unbiased difference Fourier (i.e., before inclusion of any ligand) |[F, — F;| map. The
coordinates of the peptide structure were fitted into the characteristic electron density (Figure 3).
Water molecules were then added using ARP/WARP [45]. The presence of calcium ions was
detected from the difference Fourier |[F, — F| maps (Figure 4). Further refinement was carried out
after adding the coordinates of the peptide molecule, one calcium ion and 99 water molecules. The
final Reryst and Ry factors for the complete data in the resolution range of 20.0-2.03 A were 0.188
and 0.202, respectively (Table 2). A portion of the electron density indicating the quality of the
structure at 2.03 A resolution is shown in Figure 3. The atomic coordinates of this structure have
been deposited to protein data bank (PDB) with an accession code of 3JQS5.

5. Conclusions

This is likely the first attempt to structurally establish the interaction between the amyloid-f3
peptide fragment and PLA, peptide to the hydrophobic substrate binding site of PLA; involving at
least nine H bond and several van der Waals interactions. Higher affinity between AP and PLA,
decreases the AP—AP interaction probability, thereby reducing the aggregation and subsequent
plaque formation. In conclusion, this study is a step towards understanding the mechanism behind
the APB and PLA, interaction that may facilitate the development of novel therapeutic strategies to
inhibit inflammatory responses to retard many diseases.
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Synthesis, Characterization and Anti-Breast Cancer Activity
of New 4-Aminoantipyrine-Based Heterocycles

Mostafa M. Ghorab, Marwa G. El-Gazzar and Mansour S. Alsaid

Abstract: 4-Aminoantipyrine was utilized as key intermediate for the synthesis of pyrazolone
derivatives bearing biologically active moieties. The newly synthesized compounds were characterized
by IR, 'H- and >C-NMR spectral and microanalytical studies. The compounds were screened as
anticancer agents against a human tumor breast cancer cell line MCF7, and the results showed that
(£)-4-((3-amino-5-imino-1-phenyl-1H-pyrazol-4(5 H)-ylidene)methylamino)-1,5-dimethyl-2-
phenyl-1,2-dihydropyrazol-3-one 5, 3-(4-bromophenyl)-1-(1,5-dimethyl-3-oxo0-2-phenyl-2,3-
dihydro-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 13, 1-(1,5-
dimethyl-3-o0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3-(4-iodophenyl)-4-oxo0-2-thioxo-1,2,3,4-
tetrahydropyrimidine-5-carbonitrile 14, 3,3'-(4,4'-sulfonylbis(4,1-phenylene))bis(1-(1,5-dimethyl-
3-0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-oxo0-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-
carbonitrile) 16, (Z)-1-(1,5-dimethyl-3-0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-hydrazono-
4-ox0-3-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbonitrile ~ 17,  (£)-1-(1,5-dimethyl-3-0x0-2-
phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-oxo-3-phenyl-2-(2-phenylhydrazono)-1,2,3,4-
tetrahydropyrimidine-5-carbonitrile 18, and  (Z)-4-(3-amino-6-hydrazono-7-phenyl-6,7-
dihydropyrazolo[3,4-d|pyrimidin-5-yl)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 19 were the
most active compounds with ICsy values ranging from 30.68 to 60.72 uM compared with
Doxorubicin as positive control with the /Csy value 71.8 uM.

Reprinted from Int. J. Mol. Sci. Cite as: Ghorab, M.M.; El-Gazzar, M.G.; Alsaid, M.S. Synthesis,
Characterization and Anti-Breast Cancer Activity of New 4-Aminoantipyrine-Based Heterocycles.
Int. J. Mol. Sci. 2014, 15, 7539-7553.

1. Introduction

Pyrazolone derivatives such as antipyrine, aminopyrine, and dipyrone are well known
compounds used mainly as analgesic and antipyretic drugs and their pharmacological molecular
mechanism has been widely surveyed [1,2]. One of the best known antipyrine derivatives is
4-aminoantipyrine which is used for the protection against oxidative stress as well as prophylactic
of some diseases including cancer, and these are important directions in medical applications [3].
Several derivatives of antipyrine were also biologically evaluated, and analgesic [4],
anti-inflammatory [5], antimicrobial [6], and anticancer activity [7-9] have been reported.
Antipyrine derivatives are strong inhibitors of cycloxygenase isoenzymes, platelet tromboxane
synthesis, and prostanoids synthesis [10], which catalyze the rate-limiting step of prostaglandin
synthesis. Pyrazolones are also a well-known elicitor of hypersensitivity [11]. Recently,
Al-Haiza et al. [12] synthesized a new compound with pyrazolone moiety with antimicrobial and
antifungal activities. In the last decade, several pyrazole derivatives proved to have potent
anticancer action by the inhibition of the cyclindependent kinases (CDKs) which are members of
the large family of protein kinases and are responsible for the eukaryotic cell cycle regulation; they
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are intensively studied for their cancer implication [13]. Based on the above information and due to
our interest in pyrazole as a biologically active pharmacophore [14—18], we synthesized a new
series of heterocycles incorporating antipyrine moiety starting from 4-aminoantipyrine to be
evaluated for their anticancer activity against human tumor breast cell line (MCF7).

2. Results and Discussion
2.1. Chemistry

The starting key reagent 4-aminoantipyrine was purchased from Sigma-Aldrich chemical
company (St. Louis, MO, USA). In this work, the reactivity of 4-aminoantipyrine with active
methylene containing compounds (malononitrile, 2-(ethoxymethylene)malononitrile,
ethylcyanoacetate, (ethoxymethylene)ethylcyanoacetate and acetylacetone) was studied and the
reaction proceeded in the presence of triethylorthoformate in methanol containing catalytic
amounts of acetic acid following the reported reaction condition [19]. The obtained pyrazolone
derivatives 2—4, respectively, were identified by elemental and spectral data. Due to the biological
importance of pyrazole, pyrrole and pyrimidine rings as anticancer agents [20—22], the pyrazolone
derivative 2 was reacted with different nucleophiles in order to obtain biologically active pyrazole
5, pyrrole 6-8 and pyrimidine 9-16 derivatives bearing pyrazolone moieties. Thus, interaction of
compound 2 with phenyl hydrazine yielded the corresponding pyrazole derivative 5. On the other
hand, interaction of compound 2 with 2-chloroacetonitrile, ethylbromoacetate or 2-chloroacetamide
in dioxane containing a catalytic amount of triethylamine yielded the corresponding pyrrole
derivatives 6-8, respectively. Reaction of compound 2 with thiourea in refluxing ethanol
containing sodium ethoxide gave the corresponding pyrimidine derivative 9 (Scheme 1). The
reactivity of compound 2 towards different aryl isothiocyanates/NaOH was studied and the reaction
proceeded via an addition reaction onto the isothiocyanato group followed by intramolecular
cyclization to produce the pyrimidine ring as in compounds 10—15. Similarly, the bis-compound 16
was obtained expectedly via the reaction of one mole of 1-(4-isothiocyanatophenylsulfonyl)-4-
isothiocyanatobenzene with two moles of compound 2 in ethanol containing sodium ethoxide
(Scheme 2). The hydrazono pyrimidine derivatives 17, 18 were synthesized from compound 10
through reaction with either hydrazine hydrate or phenyl hydrazine, respectively, and the reaction
proceeded via elimination of H,S which was detected by a lead acetate paper. On the other hand,
double cyclization took place when one mole of compound 10 was reacted with two moles of
hydrazine hydrate to yield the corresponding pyrazolo[3,4-d]pyrimidine 19 (Scheme 3). Finally,
treatment of 4-aminoantipyrine 1 with either triethylorthoformate or acetate in acetic anhydride
resulted in the formation of compounds 20, 21, respectively (Scheme 4). The structures of
compounds were proved by microanalytical and spectral data and were consistent with the
proposed structures.
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Scheme 1. Synthetic pathways for compounds 2-9.
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Scheme 2. Synthetic pathways for compounds 10-16.
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Scheme 4. Synthetic pathways for compounds 20, 21.
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Doxorubicin, the positive control used in this study, is an anticancer drug used to treat several

2.2. In-Vitro Anticancer Screening

cancer diseases including breast cancer. The relationship between surviving fraction and drug
concentration was plotted; the response parameters calculated was /Csy value, which corresponds to
the compound concentration causing 50% mortality in net cells (Table 1). The present work
describes the synthesis of novel derivatives starting from 4-aminoantipyrine 1 by incorporating
biologically active moieties, pyrazole, pyrrole, pyrimidine and pyrazolopyrimidine. From Table 1,
we can observe that some of the tested compounds were found to be equipotent or even more
potent than Doxorubicin on MCF7 cell line with /Csy values ranging from 30.68 to 70.65 uM
compared to the reference drug (71.8 pM). The most potent compounds in this study were found to
be those belonging to the pyrimidine derivatives of antipyrine especially the halogenated ones,
where, the iodophenyl 14 (/Cso = 30.68 uM) and the bromophenyl 13 (ICso = 43.41 puM)
derivatives showed significant activities, also, the biscompound 16 (/Csp = 37.22 pM). In addition,
pyrazole S, pyrimidines 17, 18, pyrazolopyrimidine 19 with /Csy values 60.72, 54.23, 44.99, and
44.49 uM exhibited a higher activity when compared with the Doxorubicin as positive control. The
phenyl and 4-nitro phenyl derivatives 10 and 12 (/Cso = 72.04 and 70.65 uM) are nearly as active
as Doxorubicin. On the other hand, reaction of one mole of hydrazine hydrate or phenyl hydrazine
with compound 10 yielded the pyrimidine derivatives 17 and 18 with significant activities
(ICso = 54.23 and 44.99 uM), while, addition of two moles of hydrazine hydrate yielded the
pyrazolopyrimidine 19 (/Cso = 44.49 uM) which is nearly as potent as compounds 17 and 18.
Moreover, the reaction of phenylhydrazine with compound 2 was also successful as it yielded the
pyrazole derivative 5 which showed high activity (/Csp = 60.72 uM). All these compounds are
more active than the reference drug. Considering the pyrrole derivatives 6, 7 and 8, they were
found to exhibit lower activity compared to the reference drug (/Cso = 128.61, 104.11 and 85.12
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uM, respectively). Compounds 2—4, 9, 11, 15, 20 and 21 are the least potent in this study with /Csg
ranging from 109.58 to 173.83 uM.

Table 1. In-vitro anticancer screening of compounds 2-21 against human breast cell line (MCF7).

Compound No. I1Csy (ng/mL) 1Csy (uM)
2 48.2 173.83
3 38.0 116.56
4 349 111.50
5 23.5 60.72
6 40.9 128.61
7 38.0 104.11
8 28.6 85.12
9 38.9 109.58
10 29.9 72.04
11 NA NA
12 32.5 70.65
13 21.4 43.41
14 16.6 30.68
15 NA NA
16 33.2 37.22
17 22.4 54.23
18 22.0 44.99
19 19.0 44.49
20 35.8 138.22
21 NA NA

Doxorubicin 39.0 71.8

NA: Compound having /Cs, value > 100 pg/mL.

Generally, incorporation of pyrimidine ring yielded the most potent compounds and these results
point to the possible use of pyrimidine derivatives of antipyrine for treatment of breast tumors.

3. Experimental Section
3.1. General

Reagents were obtained from commercial suppliers and were used without purification. Melting
points were determined in open capillary tubes using Thermo system FP800 Mettler FP80 central
processor supplied with FP81 MBC cell apparatus (Stuart Scientific, Redhill, UK), and were
uncorrected. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 2400 Instrument
(Perkin-Elmer, Norwalk, CT, USA). All compounds were within £0.4% of the theoretical values.
Infrared (IR) spectra (KBr disc) were recorded on FT-IR spectrophotometer (Perkin Elmer,
Norwalk, CT, USA) at the Research Center, College of Pharmacy, King Saud University, Saudi
Arabia.'H and ">C NMR spectra were recorded on a Ultra Shield Plus 500 MHz (Bruker, Munich,
Germany) spectrometer operating at 500 MHz for proton and 125 MHz for carbon, respectively.
The chemical shift values are reported in & (ppm) relative to the residual solvent peak, the coupling
constants (J) are reported in Hertz (Hz).
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3.2. Chemistry

3.2.1. 2-((1,5-Dimethyl-3-oxo0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-ylamino)methylene)-

malononitrile 2

A mixture of 4-aminoantipyrine (0.01 mol), malononitrile (0.01 mol), triethylorthoformate
(0.01 mol), and acetic acid (1 mL) in methanol (30 mL) was refluxed for 5 h, the reaction mixture
was cooled, filtered, the filtered solid was crystallized from ethanol to give 2. Yield%: 90,
m.p. = 254.7 °C, IR, cm : 3210 (NH), 3055 (CH arom.), 2941, 2818 (CH aliph.), 2200 (CN),
1658 (C=N). 'H (DMSO-ds, ppm): 2.2 [s, 3H, CHs], 3.2 [s, 3H, N-CH3], 7.3-7.9 [m, 5H, Ar-H],
8.1 [s, 1H, CH], 10.5 [s, 1H, NH, D,0-exchangeable]. *C (DMSO-dj, ppm): 10.3 (CHs), 29.1 (N—
CHs), 50.3, 104.6, 114.1(2), 116.4(2), 117.2, 127.2(2), 129.1, 134.5, 160.1 (C=0), 165.5. Anal.
Calcd. for C;sH3NsO (279): C, 64.51; H, 4.69; N, 25.07. Found: C, 64.91; H, 4.80; N, 25.34.

3.2.2. (£)-Ethyl-2-cyano-3-(1,5-dimethyl-3-ox0-2-phenyl-2,3-dihydro-1 H-pyrazol-4-
ylamino)acrylate 3

A mixture of 4-aminoantipyrine (0.01 mol), ethylcyanoacetate (0.01 mol), triethylorthoformate
(0.01 mol), and acetic acid (1 mL) in methanol (30 mL) was refluxed for 5 h, the reaction mixture
was filtered, the filtered solid was crystallized from ethanol to give 3. Yield%: 83, m.p. = 154.8 °C,
IR, cm ': 3192 (NH), 3065 (CH arom.), 2965, 2841 (CH aliph.), 2214 (CN), 1710, 1658 (2C=0).
'H (DMSO-ds, ppm): 1.2 [t, 3H, CH3, J = 7.9 Hz], 2.3 [s, 3H, CHs], 3.2 [s, 3H, N-CH;], 4.2 [q,
2H, CH,, J = 8.1 Hz], 7.3-8.0 [m, SH, Ar—H], 8.2 [d, 1H, CH, J = 7.12 Hz], 10.0 [d, 1H, NH,
D,0-exchangeable, J = 7.3 Hz]. Bc (DMSO-dg, ppm): 10.3, 14.3, 39.0, 60.2, 72.6, 109.7, 115.7(2),
116.0, 118,1, 129.0(2), 129.1, 134.3, 156.8, 161.0, 166.3. Anal. Calcd. for C7H;sN4O3 (326):
C, 62.57; H, 5.56; N, 17.17. Found: C, 62.90; H, 5.89; N, 17.25.

3.2.3. 3-((1,5-Dimethyl-3-ox0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-ylamino)methylene)-pentane-
2,4-dione 4

A mixture of 4-aminoantipyrine (0.01 mol), acetylacetone (0.01 mol), triethylorthoformate
(0.01 mol), and acetic acid (1 mL) in methanol (30 mL) was refluxed for 5 h, the reaction mixture
was filtered, the filtered solid was crystallized from ethanol to give 4. Yield%: 90, m.p. =201.8 °C,
IR, cm : 3209 (NH), 3100 (CH arom.), 2971, 2848 (CH aliph.), 1716, 1692, 1661 (3C=0),
1612 (C=N). 'H (DMSO-ds, ppm): 1.9 [s, 3H, CHs], 2.1 [s, 6H, 2COCHj3], 3.0 [s, 3H, N-CHs],
7.3-7.5 [m, 6H, Ar—H + CH], 9.0 [s, 1H, NH, D,O-exchangeable]. *C (DMSO-ds, ppm): 11.1,
22.4(2), 39.1, 104.4, 107.8(2), 108.4, 121.8, 128.8(2), 129.0, 135.0, 151.0, 161.8, 195.1(2). Anal.
Calcd. for C17H9N303 (313): C, 65.16; H, 6.11; N, 13.41. Found: C, 65.87; H, 6.37; N, 13.21.

3.2.4. (£)-4-((3-Amino-5-imino-1-phenyl-1H-pyrazol-4(5 H)-ylidene)methylamino)-1,5-dimethyl-
2-phenyl-1,2-dihydropyrazol-3-one 5

Compound 2 (0.01 mol) was mixed with phenyl hydrazine (0.01 mol) in dioxane (20 mL) and
refluxed for 5 h, the reaction mixture was cooled, poured onto ice water. The precipitated solid
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products were filtered and crystallized from methanol to give compound 5. Yield%: 76,
m.p. = 172.7 °C, IR, cm': 3386, 3348, 3276 (NH, NH,), 3026 (CH arom.), 2981, 2872 (CH aliph.),
1660 (C=0), 1595 (C=N). 'H (DMSO-ds, ppm): 2.2 [s, 3H, CH;], 3.2 [s, 3H, N-CH3], 7.2-7.9 [m,
10H, Ar-H], 8.3 [s, 1H, CH], 8.7 [s, 1H, NH, D,0-exchangeable], 13.2 [s, 1H, NH-imino, D,0O-
exchangeable]. *C (DMSO-ds, ppm): 11.5, 39.5, 106.2, 108.0, 112.4(2), 116.1(2), 117.6, 124.1,
127.7(2), 128.9, 129.5(2), 137.9, 141.2, 148.4, 156.5, 163.1, 166.2. Anal. Calcd. for C,;H» N7
(387): C, 65.10; H, 5.46; N, 25.31. Found: C, 65.32; H, 5.09; N, 25.55.

3.2.5. 3-Amino-1-(1.5-dimethyl-3-0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-1 H-pyrrole-2,4-
dicarbonitrile 6

Compound 2 (0.01 mol) was mixed with 2-chloroacetonitrile (0.01 mol) in dioxane (20 mL)
containing 3 drops of triethylamine and refluxed for 5 h, the reaction mixture was cooled, poured
onto ice water. The precipitated solid products were filtered and crystallized from methanol to give
compound 6. Yield%: 70, m.p. > 350 °C, IR, cm ' 3344, 3291 (NH»), 3100 (CH arom.), 2966,
2881 (CH aliph.), 2200 (CN), 1699 (C=0). 'H (DMSO-ds, ppm): 1.6 [s, 3H, CHs], 2.4 [s, 3H,
N-CHj3], 6.5 [s, 2H, NH,, D,O-exchangeable], 7.0-8.0 [m, 6H, Ar-H + CH-pyrrole]. °C (DMSO-d,
ppm): 13.9, 39.1, 101.2(2), 107.4, 110.4, 113.9(2), 116.2, 117.6(2), 119.1, 129.3(2), 138.1, 139.4,
161.2. Anal. Calcd. for C;7H14N¢O (318): C, 64.14; H, 4.43; N, 25.40. Found: C, 64.32; H, 4.67;
N, 25.12.

3.2.6. Ethyl-3-amino-4-cyano-1-(1,5-dimethyl-3-ox0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-1 H-
pyrrole-2-carboxylate 7

Compound 2 (0.01 mol) was mixed with ethyl bromoacetate (0.01 mol) in dioxane (20 mL)
containing 3 drops of triethylamine and refluxed for 5 h, the reaction mixture was cooled, poured
onto ice water. The precipitated solid products were filtered and crystallized from methanol to give
compound 7. Yield%: 89, m.p. = 143.4 °C, IR, cm : 3411, 3396 (NH,), 3100 (CH arom.), 2976,
2882 (CH aliph.), 2186 (CN), 1718, 1696 (2C=0). 'H (DMSO-ds, ppm): 1.2 [t, 3H, CHs—ester],
2.0 [s, 3H, CH3], 2.4 [s, 3H, N-CHj3], 4.1 [q, 2H, CHy—ester], 7.3-8.0 [m, 7H, Ar-H + NH,], 8.7
[s, 1H, CH-pyrrole]. *C (DMSO-ds, ppm): 12.6, 13.4, 39.0, 59.8, 98.7, 112.0, 114.3(2), 115.6,
118.4, 122.7, 126.3, 129.1(2), 138.1, 139.6, 141.2, 160.0, 161.2. Anal. Calcd. for C;9H;9N505
(365): C, 62.46; H, 5.24; N, 19.17. Found: C, 62.79; H, 5.57; N, 19.34.

3.2.7. 3-Amino-4-cyano-1-(1,5-dimethyl-3-ox0-2-phenyl-2,3-dihydro-1 H-pyrazol-4-yl)-1 H-
pyrrole-2-carboxamide 8

Compound 2 (0.01 mol) was mixed with 2-chloroacetamide (0.01 mol) in dioxane (20 mL)
containing 3 drops of triethylamine and refluxed for 5 h, the reaction mixture was cooled, poured
onto ice water. The precipitated solid products were filtered and crystallized from methanol to give
compound 8. Yield%: 76, m.p. > 350 °C, IR, cm 3404, 3385, 3236 (NH,), 3066 (CH arom.),
2961, 2836 (CH aliph.), 2196 (CN), 1700, 1680 (2C=0). 'H (DMSO-ds, ppm): 1.6 [s, 3H, CHs],
2.3 [s, 3H, N-CH3], 7.2-8.0 [m, 9H, Ar-H + CONH, + NH;], 8.5 [s, 1H, CH-pyrrole].
BC (DMSO-ds, ppm): 11.9, 39.1,99.2, 111.8, 114.3(2), 115.6, 118.2, 124.4, 129.0(2), 131.8, 135.7,
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138.2, 153.2, 162.4, 166.0. Anal. Calcd. for C;7HsNgO; (336): C, 60.71; H, 4.79; N, 24.99. Found:
C, 60.99; H, 4.49; N, 24.70.

3.2.8. 4-((4,6-Diamino-2-thioxopyrimidin-5(2H)-ylidene)methylamino)-1,5-dimethyl-1,2-phenyl-
1,2-dihydropyrazol-3-one 9

A mixture of 2 (0.01 mol) and thiourea (0.01 mol) was refluxed for 5 h in ethanol containing
sodium ethoxide (0.01 mol). The reaction mixture was cooled, poured onto ice water, acidified
with dil. HCI, the precipitated solid product was filtered and crystallized from methanol to give 9.
Yield%: 90, m.p. = 219.6 °C, IR, cm ': 3410, 3362, 3350 (NH,), 3054 (CH arom.), 2922, 2860
(CH aliph.), 1675 (C=0), 1624 (C=N), 1317 (C=S). 'H (DMSO-ds, ppm): 2.2 [s, 3H, CHs],
3.1 [s, 3H, N-CH3], 7.3 [s, 4H, 2NH,, D,O-exchangeable], 7.5-7.9 [m, 5SH, Ar-H], 9.4 [s, 1H, CH],
13.0 [s, 1H, NH, D,0O-exchangeable]. Bc (DMSO-dg, ppm): 10.3, 39.3, 84.2, 109.1, 116.4(2),
124.2, 127.2(2), 129.1, 134.4(2), 160.2, 170.8(2), 211.3 (C=S). Anal. Calcd. for C;cH;7N;OS (355):
C, 54.07; H, 4.82; N, 27.59. Found: C, 54.34; H, 4.65; N, 27.25.

3.3. General Procedure for Preparation of Compounds 10—15

A mixture of 2 (0.01 mol) and the appropriate aryl isothiocyanate (0.01 mol) was refluxed for
10 h in ethanol containing sodium ethoxide (0.01 mol). The reaction mixture was cooled, poured
onto ice water, acidified with dil. HCI, the precipitated solid product was filtered and crystallized
from methanol to give 1015, respectively.

3.3.1. 1-(1,5-Dimethyl-3-0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-oxo-3-phenyl-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-carbonitrile 10

Yield%: 81, m.p. = 132.9 °C, IR, cm ' 3100 (CH arom.), 2966, 2871 (CH aliph.), 2201 (CN),
1672, 1659 (2C=0), 1292 (C=S). 'H (DMSO-d;, ppm): 2.2 [s, 3H, CH3], 3.2 [s, 3H, N-CHj3],
7.3 [s, 1H, CH—pyrimidine], 7.5-8.1 [m, 10H, Ar-H]. °C (DMSO-d,, ppm): 14.4, 39.1, 104.6,
109.3, 114.1(2), 116.5, 118.1, 122.0(2), 126.3, 128.6(2), 129.1(2), 129.3, 134.5, 137.8, 139.1,
159.9, 160.5, 187.2 (C=S). Anal. Calcd. for C,,H7N5O,S (415): C, 63.60; H, 4.12; N, 16.86.
Found: C, 63.34; H, 4.32; N, 16.60.

3.3.2. 1-(1,5-Dimethyl-3-0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3-(4-methoxyphenyl)-4-oxo-
2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 11

Yield%: 71, m.p. = 90.6 °C, IR, cm ;3046 (CH arom.), 2991, 2875 (CH aliph.), 2208 (CN),
1684, 1654 (2C=0), 1257 (C=S). 'H (DMSO-ds, ppm): 2.4 [s, 3H, CHs], 3.3 [s, 3H, N-CHj3],
3.7 [s, 3H, OCH3], 6.8-7.5 [m, 10H, Ar-H + CH—pyrimidine]. *C (DMSO-ds, ppm): 13.9, 39.1,
55.1,95.2, 107.5, 113.5(2), 113.8(3), 123.3, 124.2(2), 124.9, 129.1(2), 130.8, 131.4, 143.6, 156.2,
156.6, 164.7, 188.0. Anal. Calcd. for C,3H 9NsOsS (445): C, 62.01; H, 4.30; N, 15.72. Found: C,
62.34; H, 4.09; N, 15.51.
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3.3.3. 1-(1,5-Dimethyl-3-oxo0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-yl)-3-(4-nitrophenyl)-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 12

Yield%: 79, m.p. = 190.9 °C, IR, cm ': 3076 (CH arom.), 2991, 2908 (CH aliph.), 2188 (CN),
1700, 1689 (2C=0), 1597, 1380 (NO,), 1308 (C=S). 'H (DMSO-ds, ppm): 2.5 [s, 3H, CH:], 3.3 [s,
3H, N-CH;], 7.8-8.2 [m, 10H, Ar—H + CH—pyrimidine]. >C (DMSO-d,, ppm): 14.8, 39.3, 89.6,
108.2, 112.3(3), 117.5, 120.9, 124.5(2), 124.9(2), 126.3(2), 129.0, 137.4(2), 142.8, 144.0, 155.6,
162.4, 187.6 (C=S). Anal. Calcd. for C5,H ¢NsO4S (460): C, 57.38; H, 3.50; N, 18.25. Found: C,
57.69; H, 3.20; N, 18.56.

3.3.4. 3-(4-Bromophenyl)-1-(1,5-dimethyl-3-0x0-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 13

Yield%: 69, m.p. = 76.0 °C, IR, cm ' 3100 (CH arom.), 2986, 2861 (CH aliph.), 2218 (CN),
1684, 1653 (2C=0), 1216 (C=S). 'H (DMSO-d, ppm): 2.2 [s, 3H, CH3], 3.1 [s, 3H, N-CHj3],
7.0-7.6 [m, 10H, Ar—H + CH—pyrimidine]. BC (DMSO-d, ppm): 13.9, 39.5, 92.4, 104.6, 113.8(2),
114.1, 116.6, 119.9, 121.0(2), 127.2(2), 129.0, 132.6, 133.4(2), 137.7, 138.6, 159.9, 160.1, 186.6
(C=S). Anal. Calcd. for C5oH;sBrNsO,S (493): C, 53.45; H, 3.26; N, 14.17. Found: C, 53.70; H, 3.11;
N, 14.44.

3.3.5. 1-(1,5-Dimethyl-3-oxo0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-yl)-3-(4-iodophenyl)-4-oxo0-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 14

Yield%: 90, m.p. = 114.1 °C, IR, cm ": 3092 (CH arom.), 2980, 2861 (CH aliph.), 2187 (CN),
1684, 1654 (2C=0), 1276 (C=S). 'H (DMSO-ds, ppm): 2.5 [s, 3H, CHs], 3.1 [s, 3H, N-CHs],
7.6-7.9 [m, 10H, Ar-H + CH-pyrimidine]. *C (DMSO-ds, ppm): 13.9, 39.5, 88.8(2), 107.3,
114.6(2), 116.2, 120.2, 123.6(2), 129.0(3), 130.6, 137.2, 137.9(2), 139.1, 162.7, 166.1, 187.3. Anal.
Caled. for CoHigNsO,S (541): C, 48.81; H, 2.98; N, 12.94. Found: C, 48.69; H, 2.69; N, 12.72.

3.3.6. 4-(5-Cyano-3-(1,5-dimethyl-3-oxo0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-yl)-6-oxo-2-thioxo-
2,3-tetrahydropyrimidin-1(6H)-yl)benzensulfonamide 15

Yield%: 90, m.p. = 164.8 °C, IR, cm ': 3041 (CH arom.), 2934, 2881 (CH aliph.), 2217 (CN),
1714, 1662 (2C=0), 1296 (C=S). 'H (DMSO-dg, ppm): 2.2 [s, 3H, CHs], 3.0 [s, 3H, N-CHjs],
7.3-8.0 [m, 11H, Ar—H + SO,;NH>], 8.1 [s, 1H, CH—pyrimidine]. Bc (DMSO-ds, ppm): 13.9, 39.4,
96.2, 104.6, 114.2(2), 116.4, 117.2, 121.6(2), 125.1(2), 127.3(2), 129.1, 134.2, 134.5, 139.6, 140.9,
160.2, 160.5, 187.6 (C=S). Anal. Calcd. for CHsNsO4S, (494): C, 53.43; H, 3.67; N, 16.99.
Found: C, 53.69; H, 3.90; N, 16.34.

3.3.7. 3,3'-(4,4'-Sulfonylbis(4,1-phenylene))bis(1-(1,5-dimethyl-3-ox0-2-phenyl-2,3-dihydro- 1 H-
pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile) 16

A mixture of 2 (0.01 mol) and 1-(4-isothiocyanatophenylsulfonyl)-4-isothiocyanatobenzene
(0.02 mol) was refluxed for 10 h in ethanol containing sodium ethoxide (0.01 mol). The reaction
mixture was cooled, poured onto ice water, acidified with dil. HCI, the precipitated solid product
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was filtered and crystallized from methanol to give 16. Yield%: 81, m.p. = 140.6 °C, IR, cm
3076 (CH arom.), 2981, 2861 (CH aliph.), 2219 (CN), 1661, 1643 (4C=0), 1322 (2C=S). 'H
(DMSO-ds, ppm): 2.2 [s, 6H, 2CHj3], 3.1 [s, 6H, 2N-CH3], 7.3-8.0 [m, 18H, Ar—H], 8.6 [s, 2H,
2CH-—pyrimidine]. B (DMSO-ds, ppm): 13.8(2), 39.0(2), 92.6(2), 108.6(2), 113.5(4), 114.1(2),
118.4(2), 121.7(4), 127.0(4), 128.2(4), 129.1(2), 134.5(2), 136.2(2), 136.7(2), 142.4(2), 159.4(2),
160.2(2), 187.6(2). Anal. Calcd. for C44H3N1006S3 (892): C, 59.18; H, 3.61; N, 15.69. Found: C,
59.40; H, 3.80; N, 15.48.

3.4. General Procedure for Preparation of Compounds 17 and 18

Compound 10 (0.01 mol) was mixed with either hydrazine hydrate or phenyl hydrazine (0.01
mol) in dioxane (20 mL) and refluxed for 5 h, the reaction mixture was cooled, poured onto ice
water. The precipitated solid products were filtered and crystallized from methanol to give
compounds 17 and 18, respectively.

3.4.1. (£)-1-(1,5-Dimethyl-3-ox0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-yl)-2-hydrazono-4-oxo-3-
phenyl-1,2,3 4-tetrahydropyrimidine-5-carbonitrile 17

Yield%: 68, m.p. = 78.0 °C, IR, cm ': 3213, 3191 (NH»), 3047 (CH arom.), 2961, 2876 (CH
aliph.), 2191 (CN). 'H (DMSO-ds, ppm): 2.5 [s, 3H, CH3], 3.2 [s, 3H, N—CH3], 4.5 [s, 2H, NHa,
D,0-exchangeable], 7.1-7.5 [m, 11H, Ar—H + CH—pyrimidine]. Bc (DMSO-ds, ppm): 13.1, 39.0,
94.6,106.2, 114.5(2), 116.7, 118.2, 120.6(2), 122.1, 127.6(2), 128.4(2), 129.7, 134.2, 137.7, 138.5,
156.2, 162.8, 168.9. Anal. Calcd. for C,;H9yN;O, (413): C, 63.91; H, 4.63; N, 23.72. Found: C,
63.70; H, 4.91; N, 23.55.

3.4.2. (Z2)-1-(1,5-Dimethyl-3-ox0-2-phenyl-2,3-dihydro- 1 H-pyrazol-4-yl)-4-oxo-3-phenyl-2-(2-
phenylhydrazono)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 18

Yield%: 65, m.p. = 90.6 °C, IR, cm ': 3381 (NH), 3074 (CH arom.), 2966, 2836 (CH aliph.),
2220 (CN), 1700, 1653 (2C=0). 'H (DMSO-ds, ppm): 2.4 [s, 3H, CH;], 3.2 [s, 3H, N-CH;],
7.0-8.0 [m, 15H, Ar—H], 8.4 [s, 1H, CH—pyrimidine], 9.5 [s, 1H, NH, D,O-exchangeable].
BC (DMSO-ds, ppm): 14.1, 39.6, 95.3, 108.3, 113.8(2), 114.6, 115.8, 116.4(2), 118.9, 119.5(2),
122.2, 128.6(2), 129.0(2), 129.6, 129.8(2), 130.2, 139.2, 141.5, 144.6, 153.5, 155.7, 165.6. Anal.
Calcd. for Co3H23N70; (489): C, 68.70; H, 4.74; N, 20.03. Found: C, 68.92; H, 4.99; N, 20.33.

3.4.3. (£)-4-(3-Amino-6-hydrazono-7-phenyl-6,7-dihydropyrazolo[ 3,4-d|pyrimidin-5-yl)-1,5-
dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 19

Compound 10 (0.01 mol) was mixed with hydrazine hydrate (0.02 mol) in dioxane (20 mL) and
refluxed for 5 h, the reaction mixture was cooled, poured onto ice water. The precipitated solid
products were filtered and crystallized from methanol to give compounds 19. Yield%: 73,
m.p. = 222.6 °C, IR, cm ": 3420, 3362 (NH,), 3050 (CH arom.), 2971, 2861 (CH aliph.),
1654 (C=0), 1617 (C=N). 'H (DMSO-ds, ppm): 2.2 [s, 3H, CHs], 3.2 [s, 3H, N-CH;], 5.4 [s, 2H,
N-NH,, D,O-exchangeable], 6.5 [s, 2H, NH,, D,O-exchangeable], 7.0-8.1 [m, 11H, Ar-H + CH-
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pyrimidine]. *C (DMSO-ds, ppm): 11.4, 39.0, 97.6, 107.3, 112.6(2), 114.3(2), 116.7, 118.6, 123.7,
128.6(2), 129.1, 129.4(2), 134.1, 139.8, 155.7, 162.3, 166.0(2). Anal. Calcd. for CoHy NoO (427):
C, 61.81; H, 4.95; N, 29.49. Found: C, 62.03; H, 5.12; N, 29.67.

3.5. General Procedure for Preparation of Compounds 20 and 21

A solution of 4-aminoantipyrine 1 (0.001 mol) in either triethylorthoformate or
triethylorthoacetate (0.001 mol) containing three drops of acetic anhydride was refluxed for 8 h, the
reaction mixture was cooled and then poured onto cold water, the obtained solid was recrystallized
from methanol to give compounds 20 and 21, respectively.

3.5.1. (E)-Ethyl-N-1,5-dimethyl-3-0x0-2-phenyl-2,3-dihydro-1 H-pyrazol-4-yl-formimidate 20

Yield%: 90, m.p. = 196.9 °C, IR, cm ' 3078 (CH arom.), 2976, 2912 (CH aliph.), 1661 (C=0),
1612 (C=N). '"H (DMSO-ds, ppm): 1.0 [t, 3H, CHs], 2.3 [s, 3H, CHs], 3.1 [s, 3H, N-CHj],
3.5 [q, 2H, CH>], 7.2-7.5 [m, 5H, Ar-H], 8.1 [s, 1H, CH]. >C (DMSO-ds, ppm): 11.3, 18.5, 39.3,
56.0, 106.3, 107.0(2), 120.0, 129.0(2), 135.1, 151.6, 160.1, 164.7. Anal. Caled. for C14H;7N;0,
(259): C, 64.85; H, 6.61; N, 16.34. Found: C, 64.66; H, 6.34; N, 16.67.

3.5.2. (E)-Ethyl-N-1,5-dimethyl-3-0x0-2-phenyl-2,3-dihydro-1 H-pyrazol-4-yl-acetimidate 21

Yield%: 88, m.p. = 81.6 °C, IR, cm ': 3086 (CH arom.), 2936, 2817 (CH aliph.), 1658 (C=0),
1598 (C=N). 'H (DMSO-ds, ppm): 1.2 [t, 3H, CHs], 1.9 [s, 3H, N=C-CHj3], 2.1 [s, 3H, CHs],
33 [s, 3H, N-CHs], 4.1 [q, 2H, CH,], 7.2-7.5 [m, 5H, Ar-H]. C (DMSO-ds, ppm):
10.1 (CH3—pyrazole), 14.0 (CHs—ethyl), 17.4 (N=C—CH3), 39.1 (N-CHs), 61.0 (CHy—ethyl), 112.6,
118.7(2), 122.8, 128.9(2), 135.4, 146.1, 160.0, 164.0 (C=0O). Anal. Calcd. for C;sH,9N30, (273): C,
65.91; H, 7.01; N, 15.37. Found: C, 66.13; H, 7.34; N, 15.48.

3.6. In-Vitro Anticancer Screening

The human tumor cell line (MCF7) was available from the National Cancer Institute, Cairo,
Egypt. The antitumor activity of the newly synthesized compounds against the MCF7 cells was
measured using the Sulforhodamine B (SRB) assay by the method of Skehan ez al. (1990) [23,24].
The cell lines were grown in RPMI 1640 medium containing 10% fetal bovine serum and
2 mM L-glutamine. Cells were plated in 96-multi-well plates (10* cells/well) and were incubated at
37 °C, 5% CO; in a humidified atmosphere for 24 h to allow attachment prior to addition of
compounds. The test compounds 3—14 were dissolved in DMSO and diluted with saline to the
appropriate volume and maintained in RPMI 1640 medium. Different concentrations of the
compounds under test were made: 5, 12.5, 25, 30 and 50 uM and were added to the cells. Triplicate
wells were prepared for each individual dose. Cells were incubated with the compounds for 48 h at
37 °C, 5% CO,. After 48 h, cells were fixed in situ by the gentle addition of 50 uL of cold
30% (w/v) trichloroacetic acid (TCA) (final concentration, 10%) and incubated for 60 min at 4 °C.
The supernatant was discarded and the plates were washed five times with tap water and air dried.
Sulforhodamine B (SRB) solution (50 pL) at 0.4% (w/v) in 1% acetic acid was added to each well
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and plates were incubated for 20 min at room temperature. After staining, unbounded dye was
removed by four washes with 1% acetic acid, and attached stain was recovered with Tris-EDTA
buffer. Color intensity was measured at wave length 564 nm in an ELISA reader (Gmbh,
Viesbaden, Germany). The relation between surviving fraction and drug concentration was plotted
to get the survival curve from each compound after the specified time. The concentration required
for 50% inhibition of cell viability (/Csy) was calculated and compared with the reference drug

doxorubicin and the results are given in Table 1.
4. Conclusions

The objective of the present study was to synthesize and investigate the anticancer activity of
some novel pyrazole carrying a biologically active sulfonamide moieties. It was found that
compounds 5, 13, 14, and 16-19 showed promising anticancer activity, higher than that of
doxorubicin as reference drug against human breast cancer cell line (MCF7), while compounds 10,
12 are nearly as active as doxorubicin as positive control. Compound 8 exhibited a moderate
activity and compounds 24, 6, 7, 9, and 20 showed a weak activity, while compounds 11, 15 and 21
revealed no activity. Further investigations on different probable mechanisms of action and dose-
response studies should be helpful in identifying the specific site(s) of action and optimum doses of
the synthesized antipyrine derivatives. These investigations would be crucial in discovering more
potent and more selective anti-breast cancer agents.

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific
Research at King Saud University (Riyadh, Saudi Arabia) for its funding of this research through
the Research Group Project No. RGP-VPP-302.

Author Contributions

M.M.G. suggested the research idea, contributed in the experimental work and in writing the
paper. M.G.E.-G. contributed in experimental work and in writing the paper. M.S.A. contributed in
the experimental work, biological activity and in writing the paper.

Conflicts of Interest
The authors declare no conflict of interest.
References

1. Himly, M.; Jahn-Schmid, B.; Pittertschatscher, K.; Bohle, B.; Grubmayr, K.; Ferreira, F.;
Ebner, H.; Ebner, C. Ig E-mediated immediate-type hypersensitivity to the pyrazolone drug
propyphenazone. J. Allergy Clin. Immunol. 2003, 111, 882—888.

2. Giursoy, A.; Demirayak, S.; Capan, G.; Erol, K.; Vural, K. Synthesis and preliminary
evaluation of new 5-pyrazolinone derivatives as analgesic agents. Eur. J. Med. Chem. 2000,
35,359-364.



80

10.

11.

12.

13.

14.

15.

16.

17.

Teng, Y.; Liu, R.; Li, C.; Zhang, H. Effect of 4-aminoantipyrine on oxidative stress induced by
glutathione depletion in single human erythrocytes using a microfluidic device together with
fluorescence imaging. J. Hazard. Mater. 2011, 192, 1766—1771.

Turan-Zitouni, G.; Sivaci, M.; Kili¢, F.S.; Erol, K. Synthesis of some triazolyl-antipyrine
derivatives and investigation of analgesic activity. Eur. J. Med. Chem. 2001, 36, 685—689.
Lutsevich, A.N.; Bender, K.I.; Reshet’ko, O.V. The relationship between antipyrine kinetics,
the seromucoid content and the xanthine oxidase activity in the plasma of rats with acute and
chronic inflammation. Eksp Klin. Farmakol. 1995, 58, 51-55.

Bondock, S.; Rabie, R.; Etman, H.A.; Fadda, A.A. Synthesis and antimicrobial activity of
some new heterocycles incorporating antipyrine moiety. Eur. J. Med. Chem. 2008, 43,
2122-2129.

Metwally, M.A.; Gouda, M.A.; Harmal, A.N.; Khalil, A.M. Synthesis, antitumor, cytotoxic
and antioxidant evaluation of some new pyrazolotriazines attached to antipyrine moiety.
Eur. J. Med. Chem. 2012, 56, 254-262.

Kakiuchi, Y.; Sasaki, N.; Satoh-Masuoka, M.; Murofushi, H.; Murakami-Murofushi, K.
A novel pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent
catalytic inhibitor of human telomerase q. Biochem. Biophy. Res. Commun. 2004, 320,
1351-1358.

Sigroha, S.; Narasimhan, B.; Kumar, P.; Khatkar, A.; Ramasamy, K.; Mani, V.; Mishra, R.K.;
Abdul Majeed, A.B. Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies
of  4-(substituted  benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones.
Med. Chem. Res. 2012, 21, 3863-3875.

Chandrasekharan, N.V.; Dai, H.; Roos, K.L.T.; Evanson, N.K.; Tomsik, J.; Elton, T.S. COX-3, a
cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs:
Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 2002, 99, 13926—-13931.

Levy, M. Hypersensitivity to pyrazolones. Thorax 2000, 55, 72—74.

Al-Haiza, M.A.; El-Assiery, S.A.; Sayed, G.H. Synthesis and potential antimicrobial activity
of some new compounds containing the pyrazol-3-one moiety. Acta Pharm. 2001, 51,251-261.
Lin, R.; Chiu, G.; Yu, Y. Design, synthesis, and evaluation of 3,4-disubstituted pyrazole
analogues as anti-tumor CDK inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4557-4581.

Aly, H.M.; El-Gazzar, M.G. Novel pyrazole derivatives as anticancer and radiosensitizing
agents. Arzneimittelforschung 2012, 62, 105-112.

Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Hanan, A.Y.; El-Gazzar, M.G. Synthesis of
novel pyrazole and pyrimidine derivatives bearing sulfonamide moiety as antitumor and
radiosensitizing agents. Med. Chem. Res. 2012, 21, 1376—1383.

Ghorab, M.M.;Heiba, H.I.; Hassan, A.A.; Abd El-Aziz, A.B.; El-Gazzar, M.G. Antimicrobial
evaluation of novel pyrrole, pyrazole, pyrimidine and pyrrolo [2,3-d]-pyrimidine derivatives
brearing sulfonamide moiety. J. Am. Sci. 2011, 7, 1064—1073.

Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; Galal, M. Synthesis of some new
pyrazole and pyrimidine derivatives carrying a sulfonamide moiety of expected antitumor
activity and study of the synergistic effect of gamma-irradiation. Arzneimittelforschung 2010,
60, 48-55.



18.

19.

20.

21.

22.

23.

24.

81

Ghorab, M.M.; Alsaid, M.S.; Nissan, Y.M. Dapson in heterocyclic chemistry, part V:
Synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds
carrying biologically active dihydropyridine, dihydroisoquinoline, 1,3-dithiolan, 1,3-dithian,
acrylamide, pyrazole, pyrazolopyrimidine and benzochromenemoieties. Chem. Pharm. Bull.
(Tokyo) 2012, 60, 1019-1028.

Mohareb, R.M.; Sherif, S.M.; Zohdi, H.F. Heterocyclic synthesis with enamines:
Convenient synthesis of polyfunctionally substituted pyrazole, pyridine, pyrimidine and
pyrazolo[3,4-d|pyrimidine derivatives. J. Chin. Chem. Soc. 1993, 40, 181-187.

Mohamed, A.M.; El-Sayed, W.A.; Alsharari, M.A.; Al-Qalawi, H.R.; Germoush, M.O.
Anticancer activities of some newly synthesized pyrazole and pyrimidine derivatives.
Arch. Pharm. Res. 2013, 36, 1055-1065.

Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G. Synthesis of novel
pyrrole and pyrrolo[2,3-d]pyrimidine derivatives bearing sulfonamide moiety for evaluation as
anticancer and radiosensitizing agents. Bioorg. Med. Chem. Lett. 2010, 20, 6316-6320.
Al-Issa, S.A. Synthesis and anticancer activity of some fused pyrimidines and related
heterocycles. Saudi Pharm. J. 2013, 21, 305-316.

Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.;
Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug
screening. J. Natl. Cancer Inst. 1990, 82, 1107-1112.

Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.;
Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data
generated with a tetrazolium assay vs. a protein assay against a diverse panel of human tumor
cell lines. J. Natl. Cancer Inst. 1990, 82, 1113-1118.



82

The Discovery of Potentially Selective Human Neuronal Nitric
Oxide Synthase (nNOS) Inhibitors: A Combination of
Pharmacophore Modelling, CoOMFA, Virtual Screening and
Molecular Docking Studies

Guanhong Xu, Yue Chen, Kun Shen, Xiuzhen Wang, Fei Li and Yan He

Abstract: Neuronal nitric oxide synthase (nNOS) plays an important role in neurotransmission and
smooth muscle relaxation. Selective inhibition of nNOS over its other isozymes is highly desirable
for the treatment of neurodegenerative diseases to avoid undesirable effects. In this study, we
present a workflow for the identification and prioritization of compounds as potentially selective
human nNOS inhibitors. Three-dimensional pharmacophore models were constructed based on a
set of known nNOS inhibitors. The pharmacophore models were evaluated by Pareto surface and
CoMFA (Comparative Molecular Field Analysis) analyses. The best pharmacophore model, which
included 7 pharmacophore features, was used as a search query in the SPECS database (SPECS®,
Delft, The Netherlands). The hit compounds were further filtered by scoring and docking. Ten hits
were identified as potential selective nNOS inhibitors.

Reprinted from Int. J. Mol. Sci. Cite as: Xu, G.; Chen, Y.; Shen, K.; Wang, X.; Li, F.; He, Y. The
Discovery of Potentially Selective Human Neuronal Nitric Oxide Synthase (nNOS) Inhibitors: A
Combination of Pharmacophore Modelling, CoMFA, Virtual Screening and Molecular Docking
Studies. Int. J. Mol. Sci. 2014, 15, 8553-8569.

1. Introduction

Nitric oxide (NO) is one of the most studied biological signaling molecules and is produced by
catalysis from nitric oxide synthase (NOS), which converts L-arginine to L-citrulline, and produces
this tiny, short-lived molecule. To date, there are three distinct isoforms of NOS: neuronal NOS
(nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). nNOS and eNOS are constitutively
expressed and depend on increases in external calcium and binding of a calcium/calmodulin
complex for activation. nNOS and eNOS play an important role in neurotransmission and smooth
muscle relaxation, respectively, and iNOS is expressed during bacterial infection, tumor cell
cytolysis and inflammation [1-3].

As an inorganic reactive free radical gas, NO is believed to be involved in a number of
physiological processes such as inflammation, neurotransmission, blood pressure regulation,
platelet aggregation and pain [4-6]. However, overproduction of NO has been implicated in
numerous disease states [7]. In particular, excess NO in the central nervous system from nNOS
activity can lead to many neurological disease states including neurodegeneration during Alzheimer’s
and Parkinson’s diseases [8], altered spinal transmission of neuropathic pain [9,10], and progression
of migraine and chronic tension-type headaches [11]. Consequently, an inhibitor of nNOS has the
potential to be therapeutic in these diseases; however, the functions of eNOS in blood pressure
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regulation and iNOS in immune responses must be preserved, and the selective inhibition of nNOS
has been the challenge of many researchers in the past decade [12—15].

Recently, several categories of selective inhibitors of nNOS have been designed and developed
for the treatment of central nervous system (CNS) disorders [3,15-22]. Some showed significant
efficacy in the rat Chung model of neuropathic pain [22] and in a rodent model of dural
inflammation relevant to migraine pain [22]. X-ray structures of nNOS co-crystallized with various
ligands [23-25] provided insights into the essential structural elements and motifs central to its
catalytic mechanism and mode of binding. These findings provide useful information about the
interaction between the ligands and the residues near the binding site and can be utilized to design
even more selective and potent drug-like NOS inhibitors.

Virtual screening based on a pharmacophore model as a 3D search query has been successfully
employed as an efficient alternative to high throughput screening approaches for the development
of new compounds with the desired biological properties [26]. Pharmacophore modeling can be
used to analyze the common functional groups responsible for specific drug receptor interactions or as
a prelude to three dimensional quantitative structure activity relationship (3D-QSAR) analyses that
are aligned accordingly with a set of known active compounds in 3D space. 3D-QSAR has been
successfully applied in drug discovery and design. As a popular QSAR method, Comparative
Molecular Field Analysis (CoMFA) [27] studies incorporate 3D information of the ligands by
searching for the sites on molecules that are capable of being modified into more specific ligands.
As a useful methodology for studying interaction mechanisms, receptor based molecular docking
analysis can be used as a complementary tool to prioritize the hits from the pharmacophore-based
virtual screening [28].

In the present study, a 3D pharmacophore model for nNOS inhibitors was assembled and
the generated model was used as a search query in the SPECS database containing 197,000
compounds. The virtual screening approach, in combination with pharmacophore modeling and
molecular docking can be used to identify and design novel nNOS inhibitors with high selectivity.
These molecules may be potential lead compounds for future drug development.

2. Results and Discussion
2.1. Pharmacophore Results

Twenty pharmacophore models were generated using SYBYL X 1.3 (Tripos Associates Inc.,
St. Louis, MO, USA). Table 1 lists the parameters of each model. Specificity is a logarithmic
indicator of the expected discrimination for each query and is based on the number of features it
contains, their allotment across partial match constraints, and the degree to which the features are
separated in space. Strong models should have a high Specificity value. Generally, the Specificity
value should be at least 5 in a pharmacophore model used as the query for a UNITY flex search [29].
For this study, MODEL 012, MODEL 019, and MODEL 003 had the high Specificity values of
5.138, 5.128 and 4.8580, respectively. These models yielded reasonable pharmacophore models.
The N_HITS column shows the actual number of ligands hit by the model query, with the majority
of the models matching at least 5 ligands. The value in the FEATS column indicates the total
number of features possessed by each model. All of the models had six or more features except for
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MODEL 011. The retained models had a PARETO rank value of 0, indicating that a single model
is not superior to any other. The HBOND term is a measure of the overall pharmacophoric
similarity among the ligand conformers. The STERIC term is a measure of the overall steric
similarity among the ligand conformers; this term is basically the same as the HBOND term. The
ENERGY term indicates the total energy (using the Tripos force field) of all molecules in the

training set.

Table 1. Parameters of the pharmacophore model °.

No. SPECIFICITY N _HITS FEATS PARETO ENERGY STERICS HBOND
MOEDL 001 4.180 4 6 0 15.60 666.7 173.3
MOEDL 002 3.881 8 7 0 15.44 703.1 161.8
MOEDL 003 4.858 6 8 0 18.53 750.4 155.1
MOEDL 004 4.108 6 6 0 18.62 712.0 166.6
MOEDL 005 3.823 9 7 0 20.15 852.7 162.7
MOEDL 006 3.735 6 7 0 17.54 714.7 160.5
MOEDL 007 3.902 9 7 0 58.38 705.2 179.2
MOEDL 008 4.051 6 6 0 19.3 784.6 171.4
MOEDL 009 4.036 3 6 0 40.81 845.3 159.5
MOEDL 010 3.393 5 9 0 35.12 612.2 178.2
MOEDL 011 3.158 6 5 0 22.40 635.3 178.9
MOEDL 012° 5.138 5 7 0 41.13 870.1 166.1
MOEDL 013 4.048 6 6 0 17.75 732.8 157.0
MOEDL 014 4.124 6 6 0 19.25 861.2 160.2
MOEDL 015 3.867 8 7 0 19.99 567.7 175.3
MOEDL 016 4.050 5 6 0 23.76 834.0 165.7
MOEDL 017 4.053 5 6 0 14.97 658.9 150.8
MOEDL 018 4.058 5 6 0 55.07 859.6 162.8
MOEDL 019 5.128 4 7 0 23.06 654.1 168.0
MOEDL 020 4.050 5 6 0 16.91 748.1 158.3

* SPECIFICITY is a logarithmic indicator of the expected discrimination for each query; N_HITS is the
actual number of ligands hit by the model query; FEATS is the total number of features in the model
query; PARETO indicates the Pareto rank of the each model; ENERGY is the total energy of the model;
STERICS is the steric overlap for the model; HBOND is the pharmacophoric concordance; ° The
selected model (MODEL 012) is indicated in boldface.

The most significant pharmacophore hypothesis was characterized by the conflicting demands
of maximizing pharmacophore consensus, maximizing steric consensus, and minimizing conformer
potential energy [30]. We constructed a 3D plot to visualize the Pareto surface and select the best
pharmacophore model (Figure 1). Considering only the ENERGY and STERICS criteria, the best
model is shown in the upper left-hand corner of the graph in Figure 1b, where the ENERGY is low
and the STERICS score is high. In terms of ENERGY and HBOND criteria, the best model is
shown in the lower part of the graph in Figure 1c, where the ENERGY is low and the HBOND
score is high. Finally, in terms of ENERGY and HBOND, the best model is shown in the upper
part of the graph, where both scores are high (Figure 1d). Among the considered models,
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MODEL 012 (represented with a red cross in Figure 1) has the optimal position because it fulfills
the three criteria and it has the highest Specificity value [31].

The best GALAHAD MODEL 012 is displayed in Figure 2. All of the aligned conformers
represent low-energy conformations of the molecules, and the final alignment shows a satisfactory
superimposition of the pharmacophoric points. Cyan, magenta, green and red spheres indicate
hydrophobes, donor atoms, acceptor atoms and positive nitrogens, respectively. Model 012
includes 7 pharmacophore features: three hydrophobes (HY 1, HY 2 and HY 3), one donor atom
(DA_4), one acceptor atom (AA_5) and two positive nitrogens (NP_6 and NP 7). The magenta
sphere is covered by a green sphere because the donor atom and the acceptor atom are in the same
position in this molecule.

Figure 1. Plot of the STERICS, ENERGY and HBOND values for the models with the top
ten Specificity values. (a) 3D plot; (b) plot of STERICS vs. ENERGY; (¢) plot of
ENERGY vs. HBOND; (d) plot of STERICS vs. HBOND. The red cross represents
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Figure 2. Selected pharmacophore MODEL 012 and the molecular alignment of the

compounds used to elaborate the model.
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2.2. CoMFA (Comparative Molecular Field Analysis) Statistical Results

We used MODEL 012 as a template to align all molecules. The generated steric and electrostatic
fields were scaled by the CoMFA-Standard scaling method in SYBYL with the default energy
cutoff value. The CoMFA model yielded a good cross-validated correlation coefficient (¢°) of
0.513 with an optimized component value of 4, which suggests that the model should be a useful
tool for predicting the ICsy values. A high non-cross-validated correlation coefficient (rzncv) of
0.933 with a low standard error estimate (SEE) of 0.134 and an f value of 149.950 were obtained.
The steric and electrostatic contributions were 45.1% and 54.9%, respectively. The predicted
activities for the inhibitors are listed in Table 2 and the correlation between the predicted activities
and the experimental activities is depicted in Figure 3. The predictive correlation coefficient (rzpred)

was 0.742 for the test set. The statistical results indicate that the CoOMFA model is a reliable predictor.

Table 2. Structure and biological values (pICsp) of nNOS inhibitors.

No. Structure

Observed Predicted

° NH NP
< M

Y series 1 [22]

- X Y _ ]

1 H N(CH3), 6.237 6.089

2% H N(Et), 5.656 5.750

3 H 'O 6.108 5.922
N

4 H Q 6.796 6.650
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|
No. Structure PICs :
Observed Predicted
HaC._ H
5 H NKJ> 5.979 6.148
6 F N(CH;), 5.474 5.770
7 H CH,N(CH;), 5.943 5.971
H
8 H >-\N© 5.914 6.021
H
H
G\« N
S
NH '\\j
X R series 2 [15,22]
- X R - -
9 * H -CH,CH,CH,N(CHs), 6.569 6.588
10 H -CH,CH,NCH; 6.754 6.741
11 * H -CH,CH,N CH,CHj 6.857 6.694
12 H -CH,CH,NCH(CH,), 6.573 6.585
13 H -CH,CH,N(CHj3) (C,Hs) 7.013 6.987
14 * H -CH,CH,N(CHjs), 6.367 6.510
15 H -CH,CH,N(C,Hs), 6.585 6.642
16 F -CH,CH,N(C,Hs), 7.032 6.757
17 H -(CH,);NCHj 6.629 6.736
18 H -CH,CH,N(CH3) (CH,),OH 6.876 6.960
19 H -(CH,),NH(CH,),OH 6.939 6.964
20 H -(CH,);NH(CH,),OH 6.772 6.667
H /
21 H N 7.009 6.925
H
.
2 H YN 6.886 6.896
H
23%*  H \O 6.606 6.385
NH
24 H o~TN 7 7.066 7.118
25 H '%‘CN— 6.086 6.233
26 H '%CNH 6.268 6.430
N
27 * H . 6.444 6.550
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Table 2. Cont.

No. Structure PICs :
Observed Predicted
H
T
X
NH R series 3 [21]
- X R - -

N

28 S E _ 6.699 6.694
_ §</—_—/\ _

29 S N 6.097 6.225
30 S §C - 6.921 6.701
~N
31 S % / 5.824 5.830
N
32 S % 6.347 6.304

AWt \

X N,

NH R series 4 [17]
- X R - -

33 S N-(1-(3-(dimethylamino)propyl)- 6.328 6.419
34 * S N-(1-(3-(cyclopropylamino)propyl)- 6.585 6.366
35 S N-(1-(3-morpholinopropyl)- 6.181 6.120
36 S N-(1-(3-((1-ethylpyrrolidin-2-yl)methylamino)propyl)- 6.886 6.700
37 S N-(1-(3-adamantanaminopropyl)- 6.444 6.388
38 S N-(1-(2-(dimethylamino)ethyl)- 6.770 6.736
39 S N-(1-(2-(piperidin-1-yl)ethyl)- 6.770 6.930
40 S N-(1-(2-(1-methylpiperidin-2-yl)ethyl)- 7.046 7.131
41 S (S) N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- 7.700 7.564
42 o N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- 6.602 6.824
43 S N-(1-(1-methylazepan-4-yl)- 6.921 6.893
44 (0] N-(1-(1-methylazepan-4-yl)- 6.367 6.443
45 * S N-(1-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)- 6.120 6.168
46 S N-(1-(quinuclidin-3-yl)- 6.444 6.417
47 S N-(1-(1-methylpiperidin-4-yl)- 6.387 6.286

6 XS
| \ HN—(\/E )—NHR
IS 55N
NH

series 5 [16]




89
Table 2. Cont.

No. Structure PICs :
Observed Predicted
Substituted R

48 5 2-(Pyridin-2-yl)ethyl 5.959 6.025
49 5 2-Morpholinoethyl 5.886 5.976

50 * 5 1-Benzylpiperidin-4-yl 6.398 6.281
51 5 1-(4-Fluorobenzyl)piperidin-4-yl 6.097 5.986
52 5 (¥)-2-(1-Methylpyrrolidin-2-yl)ethyl 7.523 7.582
53 6 2-(Pyridin-2-yl)ethyl 5.886 5.83
54 6 2-Morpholinoethyl 5.699 5.676
55 6 1-Benzylpiperidin-4-yl 6.301 6.216
56 6 1-(4-Fluorobenzyl)piperidin-4-yl 6.699 5.779

57 * 6 2-(1H-Imidazol-5-yl)ethyl 6.523 6.789
58 6 4-Bromophenethyl 5.357 5.188
59 6 Tetrahydro-2H-pyran-4-yl 5.699 5.736

* Compounds taken for the test set.

Figure 3. Correlation between the experimental and CoMFA (Comparative Molecular
Field Analysis) predicted activities of compounds.
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The CoMFA steric and electrostatic contour maps are shown in Figure 4 using compound 41 as
a reference structure. In Figure 4a, the blue contour indicates regions in which an increase of
positive charge enhances the activity, and the red contour indicates regions in which more negative
charges are favorable for activity. The two large blue contours around the red sphere indicate that
the substituent in this region should be electron deficient for increased binding affinity with a
protein. Another small blue contour is found around the guanidine isosteric group indicating that a
negatively charged substituent in this area is unfavorable. The CoOMFA model showed the same
result as the pharmacophore hypothesis. In Figure 4b, the steric field is represented by green and
yellow contours, in which the green contours indicate regions where a bulky group is favorable and
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the yellow regions represent regions where a bulky group will decrease activity. In this case, the
green contours around the substituent R demonstrated that bulky groups enhance the binding
affinity of the nNOS. Most compounds with high activities in this dataset have the same such
properties. The CoOMFA contour maps and the predicted result further indicated that MODEL 012
can be used as a theoretical screening tool that is able to discriminate between active and inactive

molecules [31].

Figure 4. (a) CoOMFA steric contour maps and (b) CoMFA electrostatic contour maps.

2.3. Virtual Screening

The pharmacophore based virtual screening was conducted to find potential nNOS inhibitors.
A stepwise virtual screening procedure was applied, wherein the pharmacophore based virtual
screening was followed by drug-likeness evaluation, screening of the pharmacophore query, QFIT
(The QFIT score is a value between 0 and 100, where 100 is best and represents how close the
ligand atoms match the query target coordinates within the range of a spatial constraint tolerance)
scoring filtration, and a molecular docking study. The sequential virtual screening flowchart we
employed is depicted in Figure 5, in which the reduction in the number of hits for each screening
step is shown.

2.3.1. Database Searching

Flexible 3D screening was performed using the UNITY tool to screen the SPECS database [32],
which contains approximately 197,000 compounds. The database query was generated based on the
pharmacophore MODEL 012. The database was restricted with Lipinski's rule. In general, this rule
describes molecules that have drug-like properties. Drug-likeness is a property that is most often
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used to characterize compound libraries such as combinatorial or screening libraries that are
screened to find novel lead chemical compounds [33]. According to this rule, we used simple
molecular descriptors, such as molecular weight (<500), hydrophobicity (MLogP < 4.15) and the
number of H-bond donor (<5) and acceptor atoms (<10), as the first filter to select the molecules
with good absorption or permeation [34]. The remaining 223 compounds were further screened on
the basis of QFIT to reduce the dataset, where QFIT is the pharmacophore match between the
query and hit [35].

Figure S. Virtual screening flowchart.

2.3.2. Molecular Docking

To predict the appropriate binding conformation for nNOS inhibitors and the reported hit
compounds from virtual screening, Surflex Docking (Tripos Associates Inc., St. Louis, MO, USA)
was used to generate an ensemble of docking conformations. The top 62 hit compounds with the
highest QFIT score from screening after UNITY filtering were further screened using molecular
docking into the binding site of nNOS to select the compounds with the ability to form favorable
interactions with the active site. The docked compounds were filtered based on scoring function
and interaction with the crucial residues [24] in the binding site. Finally, ten compounds were
selected on the basis of the dock score and favorable interactions with the key residues. The results
of the hit compounds with their dock score and QFIT values are shown in Table 3. Among the
active compounds reported [24], AG_205/36953325 has a similar linker length and two aromatic
ring centers on both ends. There is also a hydrogen bond donor in the aromatic ring center and at
least one hydrogen bond donor on the linker. The phenolic hydroxyl makes a hydrogen bond with
the NOS active site GLU592, which is conserved in all mammalian NOS isoforms [24], and the
hydrophobic phenyl ring n-stacks with the heme (HEM801) next to the GLU. The long, flexible
linker extending from the phenyl ring allows the 2-phenyl-2,3-dihydro-1H-pyrazole to reach and to
n-stack with TYR706 (Figure 6). The binding mode of this hit compound is similar to that of the
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reported co-crystallized compound [24] and indicates that the identified hit compounds may have
the same mechanism of action as known nNOS inhibitors.

Table 3. Chemical structures of the hit compounds and their dock scores and QFIT values.

SPECS ID Structure Dock Scores QFIT
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AG 205/36953325 N N ~ 8.29 65.74
o O
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Table 3. Cont.

SPECS ID Structure Dock Scores QFIT
OH O N\>_ NO
™ S S\_<O 2
AG 205/36265063 O NO 6.51 65.82
/
Br

o

S\)\\NH

S
AG_205/36940042 O . /@:\E 6.22 65.81
g
OH

Figure 6. (a) Mapping of the hit molecule (AG_205/36953325) by MODEL 012 from
SPECS databases; (b) The orientation of AG_205/36953325 in the active site of nNOS;
(¢) The secondary structure of the active site and AG 205/36953325; and (d) The
MOLCAD (a software package of SYBYL) cavity depth potential surfaces structure of
the binding site within AG 205/36953325. The cavity depth color ramp ranges from
blue (outside of the pocket) to light red (cavities deep inside the pocket).

et 3 F

(d)

3. Experimental Section
3.1. Compounds and Biological Data

Fifty-nine novel nNOS inhibitors were taken from the literature [15—17,21,22] with their biological
activities in terms of ICsy values; 49 compounds were used as a training set and the remaining
10 compounds were used as a test set, based on random selection. The compounds in the test set
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have a range of biological activity values similar to that of the training set. The ICs, values of the
inhibitors were converted into plCsy (log (1/ICsp)) and used as dependent variables in the
Pharmacophore generation and CoMFA calculations. The structures of the compounds and
their pICsy values are given in Table 2. All molecular modeling calculations were conducted
using SYBYL X 1.3 (Tripos Associates Inc.). Molecular building was performed with a molecule
sketch program in the same software. The molecular geometry of each compound was first
minimized using the standard Tripos molecular mechanics force field with 0.01 kcal/(mol A)
energy gradient convergence criterion. Partial atomic charges were calculated by the
Gasteiger-Hiickel method and energy minimizations were performed using the Conjugate Gradient
method with 1000 iterations [36,37].

3.2. Pharmacophore Generation

Pharmacophore models were generated and analyzed using the GALAHAD module. In this
study, ten compounds (13, 16, 19, 21, 24, 30, 40, 41, 43, and 52) were selected to carry out the
pharmacophore hypothesis, and the genetic algorithm was used to create conformers for all
molecules. The compounds that were selected to generate the pharmacophore hypothesis are highly
active. All of the ligands were aligned with a population size value of 60, a maximum generation
value of 60 and a value of molecular required hitting of 5. Twenty models were generated with
default parameters.

3.3. CoMFA Field Calculation Partial Least Square Analysis

The standard CoMFA procedure as implemented by SYBYL X 1.3 (Tripos Associates Inc.) was
performed. Each set of aligned molecules was positioned inside a 3D cubic lattice with a grid
spacing of 2.0 A (default distance) in all Cartesian directions and was generated to enclose the
molecule aggregate. The fields generated were automatically scaled by the CoMFA standard in
SYBYL. The partial least squares (PLS) methodology was used to derive a linear relationship for
the CoMFA, and cross-validation was performed using the leave-one-out (LOO) method to choose
the optimum number of components (ONC) and assess the statistical significance of each model. In
PLS, the independent variables were the COMFA descriptors, and the pICsy values were used as
dependent variables. The ONC was the number of components that led to the highest cross-
validated correlated correlation coefficient q2 (or rzcv). Non-cross-validation was performed to
calculate conventional 7, using the same number of components [38—40].

3.4. Virtual Screening

The selected pharmacophore model was validated and converted into a UNITY query for
pharmacophore guided virtual screening studies. The query was screened against the SPECS
database. The flex search option was implemented to perform virtual screening. Primary filters
such as Lipinski’s rule of five were applied to reduce the dataset. Further screening of the hits was
carried out using the Surflex Dock in SYBYL.

The docking study was performed to validate the hits obtained from the virtual screening. The
crystal structure of nNOS was retrieved from the RCSB Protein Data Bank (PDB code: 4EUX) [24].
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The nNOS structure was utilized in subsequent docking experiments without energy minimization.
Protein structures were prepared using the biopolymer module of SYBYL. Hydrogen atoms were
added to the structure, atom types and charges were assigned using AMBER7 FF99 force field, and
side chain amides were modified. The ligand method was used as the mode of construction for the
protomol, threshold and bloat using default values to determine the extent of the protomol.

4. Conclusions

nNOS is a therapeutic target for central nervous system diseases that has attracted interest from
pharmaceutical companies and researchers. Selective inhibition of nNOS activity represents an
exciting drug approach for the development of new therapeutic agents to treat neurodegenerative
diseases. In this study, we described a rational strategy for identifying novel nNOS inhibitors using
a pharmacophore-based virtual screening protocol. The best pharmacophore model (MODEL 012)
was established and showed good statistical parameters in the validation process. MODEL 012 was
further employed as a 3D search query to screen the SPECS compound database. Molecular docking
studies were also performed to improve the reliability and accuracy of the virtual screening. Ten hit
compounds were identified as potential selective nNOS inhibitors and exhibited good search
scoring, high docking scores, similar binding mode to experimentally proven compounds and
favorable drug-like properties. The pharmacophore models developed in this work, and the
information gained about the interactions between nNOS and the potential selective inhibitors,
indicated that the combination of pharmacophore, molecular docking, and virtual screening efforts is
a successful approach for identifying effective inhibitory compounds that may have an impact on
future experimental studies in selective nNOS inhibition. The identified hit compounds were
structurally different from available inhibitors and may serve as potential leads or starting points
for structural optimization to identify novel nNOS inhibitors.
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Synthesis, Preliminary Bioevaluation and Computational
Analysis of Caffeic Acid Analogues
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Abstract: A series of caffeic acid amides were designed, synthesized and evaluated for
anti-inflammatory activity. Most of them exhibited promising anti-inflammatory activity against
nitric oxide (NO) generation in murine macrophage RAW264.7 cells. A 3D pharmacophore model
was created based on the biological results for further structural optimization. Moreover,
predication of the potential targets was also carried out by the PharmMapper server. These amide
analogues represent a promising class of anti-inflammatory scaffold for further exploration and
target identification.
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Preliminary Bioevaluation and Computational Analysis of Caffeic Acid Analogues. Int. J. Mol. Sci.
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1. Introduction

Inflammation is a hallmark of many diseases, which may lead to various diseases including
sepsis, arthritis, atherosclerosis, diabetes and even cancer [1,2]. Nowadays, several steroidal
anti-inflammatory drugs (SAID) and nonsteroidal anti-inflammatory drugs (NSAID) have been
developed. However, they still have some unexpected side effects and the inflammation
mechanism is not exactly clear. Currently, the most important targets are attracting a great deal of
interest in contemporary anti-inflammatory drug design and discovery, including signal transducers
and activators of transcription (STAT) [3], interleukin (IL) [4], stem cell factor (SCF) [5],
macrophage migration inhibitory factor (MIF) [6], Annexin-1 [7], CC chemokine receptor
(CCR) [8], Adenosine A2A receptor (A2A-R) [9], melanocortin receptor (MC-R) [10] and NF-xB
signaling [11]. Very recently, our group has identified that 5-lipoxygenase was a potential target of
(+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate [12].

Caffeic acid, a common natural product from Eucalyptus globulus [13], Salvinia molesta [14],
Phellinus linteus [15] and coffee, was reported to possess promising in vitro and in vivo
anti-inflammatory properties [16]. The caffeic acid is usually found as various simple derivatives
including amides, esters, sugar esters and glycosides [17]. Yuu Osanai’s group showed that caffeic
acids with the ester functional group had good anti-inflammatory activity but with high
cyctoxicity [18] (Figure 1). These findings prompted us to look for new caffeic acid amides with
different substituent against inflammation while reducing cyctoxicity. In this report, 20 caffeic acid
aimdes were rationally designed, synthesized and evaluated the inhibition of no production in
murine macrophage RAW 264.7 cells. Based on the biological result, a 3D pharmacophore model
was generated by using the seven active compounds with HipHop approach, which has been
recognized as a time-saving and cost-effective technique for discovering new active
compounds [19,20]. Furthermore, potential drug target predication was then carried out using
pharmacophore-mapping approach [21]. The biological validation is ongoing now.
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Figure 1. Structure of (A) ester; (B) amide; and (C) ketone derivatives of caffeic acid.
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2. Results and Discussion

2.1. Biological Studies

A series of caffeic acid amides was synthesized according to general procedure [22] (Scheme 1).
Firstly, R; and R, were first replaced with different alkyl groups (Compounds 3a-3f).
Unfortunately, only the n-Butyl derivative showed moderate nitric oxide (NO) inhibition with an
ICsyp value of 6.1 uM. The other alkyl derivatives with cyclic or di-substituted groups were
completely inactive in the in vitro inhibition assay at 10 pM, probably due to the limited binding
space (Table 1). Then, aromatic groups (Compounds 3g—3r) were introduced and four compounds
demonstrated good inhibitory activity. Structure—activity relationship (SAR) analysis identified
that the type and position of the substituents were important for the inhibitory activity. Substituents
on the 3 (Compound 3i, ICsp = 7.9 uM) and 4 (Compound 3j, ICsp = 5.2 uM and Compound 3Kk,
ICso = 3.7 uM) positions of the benzene ring were favorable for the inhibition of NO production but
not suitable for 3-chloro (Compound 3n) and bromo (Compound 30) derivatives. Similarly, the
derivatives with 2-substituents (Compounds 31, 3m and 3q) were absolutely inactive. Interestingly,
the compounds with 3,5-difluorophenylo group (Compound 3h, ICso = 4.1 uM) and the 3,5-
bis(trifluoromethyl)phenyl group (Compound 3g, ICsy > 10 uM) were totally different. Encouraged
by the above results, privileged bioactive structures with aromatic ring, such as indol (Compound
3s) and piperonyl (Compound 3t), were then synthesized. Both of them showed promising
inhibitory activity with the ICsy of 6.7 and 5.0 uM, respectively, which can be taken as lead
structures for further exploration. To our delight, the amides were much better than the original
caffeic acid, which only had an ICs, value of 165 pM.

Scheme 1. Synthetic route of the caffic acid amides.

HOD/\)J\OH . R1\N’R2 DCC,THF,refluxed HOD/\)J\N,R1
H
HO HO R
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Table 1. Synthesis of caffeic acid amide (3a—3t) and inhibitory effect of caffeic acid
amides on Lipopolysaccharide (LPS) induced nitrite production.

Compounds R, R, Nitric Oxide Inhibition/ICs, (nM)
f n-butyl H 6.1
3b cyclopropylmethanyl H >10
3c —CH,)s— —(CHy)s— >10
3d —(CHa)s— —(CHa)s— >10
e —(CHy)»— —(CHy)»— >10
3f n-butyl n-butyl >10
3g 3,5-bis(trifluoromethyl)phenyl H >10
3h 3,5-difluorophenyl H 4.1
3i 3-(trifluoromethyl)phenyl H 7.9
3j 4-methoxyphenyl H 5.2
3k 4-fluorophenyl H 3.7
31 2-(hydroxymethyl)phenyl H >10
3m 2-acetylphenyl H >10
3n 3-chlorophenyl H >10
3o 3-bromophenyl H >10
3p 4-methanylphenyl H >10
3q 2-methanylphenyl H >10
3r phenylmethanyl H >10
3s 2-(1H-indol-3-yl)ethyl H 6.7
3t 2-(benzo[d][1,3]dioxol-5-yl)ethyl H 5.0
caffeic acid - - 165°

* data from the reference [2].
2.2. Pharmacophore Model

A set of the seven most potent Compounds 3a, 3h-3k, 3s and 3t was selected as a training set to
generate the 3D pharmacophore model. The common feature pharmacophore generation run resulted
in 10 pharmacophore models. All the 10 models were generated with three pharmacophoric features,
along with good ranking scores ranging from 117.3 to 119.49. As all pharmacophore models didn’t
have much difference in their 3D distance constraints, the best model was chosen based on the
ranking score of a pharmacophore model and the fit values of the training set compounds. As a
result, “Hypo 1~ was selected with best ranking score of 119.49 and good fit values from the
mapping of the training set compounds upon the chemical features. The pharmacophore model
“Hypo 1” containing three hydrophobic (HY), two hydrogen bond acceptor (HBA) and two
hydrogen bond donor (HBD) features are shown in Figure 2. The best pharmacophore model,
Hypol, was predicted using seven active compounds. It can map all seven active compounds
(Figures S1-S7). The above results mimicked the 3D model of the newly synthesized active small
molecules and guided further design strategy of structural optimization.
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Figure 2. Pharmacophore model of seven active compounds. Three-dimensional spatial
arrangement of the best pharmacophore hypothesis “Hypo 1”. Green color represents
hydrogen bond acceptor (HBA), magenta represents hydrogen bond donor (HDB) and
cyan represents hydrophobic (HY) features.

2.3. Target Predication and Molecular Docking

Despite our synthesized compounds showed promising inhibition of NO production, the exact
molecular mechanism by which exerts their effects is not yet clearly understood. Potential drug
target predication was then carried out using pharmacophore-mapping approach [21]. Binding
properties for Compounds 3a, 3g, 3h—3k, 3s and 3t on potential targets were estimated by a reverse
pharmacophore mapping server [23]. These compounds were divided into three categories:
aliphatic group (Compound 3a), aromatic group (Compounds 3h-3k) and heterocyclic group
(Compounds 3s and 3t). All the predicted targets of these three groups were ranked by the fit score.
Among the top 0.3% of the predicted target candidates, there were three common targets (GTPase
HRas, Chorismate synthase and Orotidine 5-phosphate decarboxylase), indicating that above
compounds may target different proteins comparing with the published caffeic acid ester. Further
molecular docking revealed a good interaction between the ligands and the protein active site.
Compound 3k has formed hydrogen interactions with Serl17 and Thr35 (Figure 3). In the second
potential protein, it has participated in hydrogen bonds interaction with the amino acids Alal33,
Asn251, Asp399 and Thr315 (Figure 4). The active site of 5-phosphate decarboxylase surrounds
and binds 3k with hydrogen bonds at Vall182 and Aspl1020 (Figure 5). These three docking
models supported the significance of the hydroxyl group of 3k.



103

Figure 3. The proposed binding mode of Compound 3k within the active site of
GTPase HRas (PDB code: 5P21).
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Figure 4. The proposed binding mode of Compound 3k within the active site of
Chorismate synthase (PDB code: 1Q0X).
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Figure 5. The proposed binding mode of Compound 3k within the active site of
Orotidine 5-phosphate decarboxylase (PDB code: 1LOS) and the proposed binding
mode of compound 3k within the active site of Orotidine 5-phosphate decarboxylase (PDB

code: 1LOS).
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3. Experimental Section
3.1. Chemistry

All other commercial reagents and solvents were used as received without further purification.
Anhydrous solvent and reagents were analytical pure and dried through routine protocols. The
reactions were monitored using analytical thin layer chromatography (TLC) with Merck silica gel
60, F-254 precoated plates (0.25 mm thickness). And the TLC plates were detected under UV light.
Flash column chromatography was performed with Merck silica gel 60 (Merck KGaA, Darmstadt,
Germany) (200400 mesh) or the crude product was purified by precipitation from dichloromethane
with diethyl ether. '"H NMR and °C NMR spectra were recorded on Bruker DRX 400 (Bruker Co.,
Bruker, Germany) at 400, 500 and 100 MHz, using TMS as an internal standard and DMSO-dj
(Sigma-Aldrich Co., St. Louis, MO, USA) as solvents. Chemical shifts (6 values) and coupling
constants (J values) are given in ppm and Hz, respectively. ESI-MS (Agilent Technologies, Palo
Alto, CA, USA) was recorded on a Waters ZQ 4000 LC-MS (Waters, Milford, MA, USA)
spectrometer. The purity of the final compounds was determined using CH3;CN/H,O (85:15) with
0.1% triethylamine as the mobile phase with a flow rate of 1.0 mL/min on a C;g column.

3.1.1. General Procedure for the Preparation of Amine (3a—3t)

A solution of the caffeic acid (180 mg, 1 mmol), the dicyclohexyl carbodiimide (DCC, 206 mg,
1 mmol) and amide (1 mmol) was refluxed in THF and the progress of the reaction was monitored
by TLC. The solvent was removed under vacuum. The residue was purified by flash
chromatography using dichloromethane with diethyl ether (2:1-1:1) as the eluent [18].
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(E)-N-Butyl-3-(3,4-dihydroxyphenyl)acrylamide (3a). Yield: 65%; 'H NMR (DMSO-ds, 500 MHz)
8:9.30 (s, 1H), 9.07 (s, 1H), 7.90 (t, J= 5.6 Hz, 1H), 7.19 (d, J=15.7 Hz, 1H), 6.91 (d, /= 2.0 Hz,
1H), 6.80 (dd, J=8.1, 1.9 Hz, 1H), 6.71 (d, /= 8.1 Hz, 1H), 6.29 (d, J = 15.7 Hz, 1H), 3.30 (s, 2H),
3.12 (dd, J=12.8, 6.8 Hz, 2H), 1.97 (s, 2H), 1.48-1.36 (m, 2H), 1.36-1.16 (m, 2H), 0.90-0.81 (m, 3H).
BC NMR (126 MHz, DMSO) 8: 165.6, 139.2, 126.8, 120.6, 119.0, 116.14, 114.18, 38.66, 31.75,
20.04, 14.09. ESI-MS (m/z): 236.12 [M + 1]. High performace liquid chromatograph (HPLC) purity:
97%. Anal. calcd for C3H7NOs: C 66.36, H 7.28, N 5.95, O 20.40, found: C 66.27, H 7.18, N 5.90.

(E)-N-(Cyclopropylmethyl)-3-(3,4-dihydroxyphenyl)acrylamide ~(3b). Yield: 55%; 'H NMR
(DMSO-dg, 400 MHz) &: 9.36 (s, 1H), 9.13 (s, 1H), 8.05-8.08 (m, 1H), 7.22 (d, /=16 Hz, 1H), 6.94
(s, 1H), 6.83 (d, /= 8.0 Hz, 1H), 6.74 (d, /= 8.4 Hz, 1H), 6.35 (d, J=16.0 Hz, 1H), 3.04 (t, /= 6.0 Hz,
2H), 0.40-0.44 (m, 2H), 0.16-0.19 (m, 2H). ESI-MS (m/z): 234.11 [M + 1]. HPLC purity: 96.5%.

(E)-3-(3,4-Dihydroxyphenyl)-1-(piperidin-1-yl)prop-2-en-1-one  (3¢). Yield: 35%; 'H NMR
(DMSO-dg, 400 MHz) 6: 9.42 (s, 1H), 8.97 (s, 1H), 7.3 (d, J = 15.2 Hz, 1H), 7.08 (s, 1H), 6.89—
6.98 (m, 2H), 6.73 (d, J = 15.2 Hz, 1H), 3.51-3.59 (m, br, 4H), 1.48-1.60 (m, 6H). ESI-MS (m/z):
248.02 [M + 1]. HPLC purity: 98%.

(E)-3-(3,4-Dihydroxyphenyl)-1-(pyrrolidin-1-yl)prop-2-en-1-one  (3d). Yield: 45%; 'H NMR
(DMSO-ds, 400 MHz) o: 9.47 (s, 1H), 9.10 (s, 1H), 7.29 (d, J = 15.2 Hz, 1H), 7.05 (s, 1H), 6.96
(d, J=8.0 Hz, 1H), 6.74 (d, J= 7.6 Hz, 1H), 6.64 (d, J = 15.2 Hz, 1H), 3.59 (t, J = 6.0 Hz, 2H), 3.67
(t, J=6.0 Hz, 2H), 1.90 (m, 2H), 1.79 (m, 2H). ESI-MS (m/z): 234.1 [M + 1]. HPLC purity: 97%.

(E)-1-(Aziridin-1-yl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one (3e). Yield: 69%; 'H NMR (DMSO-d,
400 MHz) ¢: 9.37 (s, 1H), 9.14 (s, 1H), 7.22 (d, J= 15.6 Hz, 1H), 6.92 (s, 1H), 6.82 (d, J = 8.0 Hz,
1H), 6.73 (d, J = 8.0 Hz, 1H), 6.23 (d, J = 15.6 Hz, 1H), 0.64-0.67 (m, 2H), 0.42-0.43 (m, 2H).
ESI-MS (m/z): 206.07 [M + 1]. HPLC purity: 97.2%.

(E)-N,N-Dibutyl-3-(3,4-dihydroxyphenyl)acrylamide (3f). Yield: 57%; "H NMR (DMSO-ds, 400 MHz)
0: 9.41 (s, 1H), 9.04 (s, 1H), 7.30 (d, J = 15.2 Hz, 1H), 7.04 (s, 1H), 6.94 (d, J = 8.0 Hz, 1H),
6.73-6.77 (m, 2H), 3.41 (t, J = 7.2 Hz, 2H), 3.30(t, J = 7.2 Hz, 2H), 1.0-1.5 (m, 8H),
0.87-0.94 (m, 6H). ESI-MS (m/z): 292.02 [M + 1]. HPLC purity: 98%.

(E)-N-(3,5-Bis(trifluoromethyl)phenyl)-3-(3,4-dihydroxyphenyl)acrylamide ~ (3g). Yield: 90%;
IH NMR (DMSO-ds, 400 MHz) &: 10.46 (s, 1H), 9.50 (s, 1H), 9.24 (s, 1H), 7.39-7.48 (m, 3H),
7.02 (s, 1H), 6.88-6.94 (m, 2H), 6.78 (d, /= 8.0 Hz, 1H), 6.47 (d, J = 15.2 Hz, 1H). ESI-MS (m/z):
392.06 [M + 1]. HPLC purity: 96%.

(E)-N-(3,5-Difluorophenyl)-3-(3,4-dihydroxyphenyl)acrylamide ~(3h). Yield: 71%; 'H NMR
(DMSO-ds, 500 MHz) &: 7.46-7.22 (m, 3H), 7.00 (d, J = 1.7 Hz, 1H), 6.95-6.80 (m, 2H), 6.76 (d,
J = 8.1 Hz, 1H), 6.45 (d, J = 15.6 Hz, 1H). °C NMR (126 MHz, DMSO) &: 164.9, 163.7, 161.9,
148.5, 146.0, 142.4, 126.2, 121.5, 116.2, 114.4, 102.2. ESI-MS (m/z): 292.07 [M + 1]. HPLC purity:
97.2%. Anal. calced for CsH;1F,NO;: C 61.86, H 3.81, F 13.05, N 4.81, O 16.48, found: C 61.76, H
3.80, F 13.00, N 4.69, O 16.27.
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(E)-3-(3,4-Dihydroxyphenyl)-N-(3-(trifluoromethyl)phenyl)acrylamide (3i). Yield: 59%; '"H NMR
(DMSO-dg, 500 MHz) 6: 8.18 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.53 (dd, J = 14.6, 6.6 Hz, 1H),
7.43 (d, J=15.6 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.00 (d, J = 1.9 Hz, 1H), 6.91 (d, J = 8.2, 2.0
Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.50 (d, J = 15.6 Hz, 1H). °C NMR (126 MHz, DMSO) &:
164.91, 148.38, 146.06, 142.00, 140.66, 130.40, 126.38, 122.99, 121.45, 119.73, 118.14-117.25,
116.24, 115.50, 114.43. ESI-MS (m/z): 324.08 [M + 1]. HPLC purity: 98%. Anal. calcd
for CiH2F3NOs:C 59.45, H 3.74, F 17.63, N 4.33, O 14.85, found: C59.35, H 3.50, F 17.53,
N4.31, O 14.65.

(E)-3-(3,4-Dihydroxyphenyl)-N-(4-methoxyphenyl)acrylamide (3j). Yield: 78%; 'H NMR (DMSO-d,
500 MHz) &: 9.90 (s, 1H), 7.58 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 15.6 Hz, 1H), 6.98 (d, J= 1.8 Hz,
1H), 6.90-6.82 (m, 3H), 6.75 (d, J= 8.1 Hz, 1H), 6.49 (d, J= 15.6 Hz, 1H), 3.71 (s, 3H). °C NMR
(DMSO-dg, 126 MHz,) 3: 163.9, 155.5, 147.9, 146.0, 140.6, 133.1, 126.7, 121.0, 118.99 (s, 3H),
116.2, 114.3, 55.5. ESI-MS (m/z): 286.1 [M + 1]. HPLC purity: 96.6%. Anal. calcd for C;sH;sNOy:
C 67.36,H 5.34,N 4.91, 0 22.43, found: C 67.20, H 5.22, N 4.90. O 22.25.

(E)-3-(3,4-Dihydroxyphenyl)-N-(4-fluorophenyl)acrylamide (3K). Yield: 61%; "H NMR (DMSO-d,
500 MHz) &: 10.09 (s, 1H), 9.33 (br, 2H), 7.68 (d, J = 14.1 Hz, 2H), 7.38 (d, J = 15.6 Hz, 1H),
7.13 (d, J = 15.6 Hz, 2H), 6.98 (s, 1H), 6.88 (dt, J = 15.2, 7.6 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H),
6.48 (d, J = 6.0 Hz, 1H). >C NMR (DMSO-ds, 126 MHz) &: 164.3, 159.2, 157.3, 146.0, 141.2,
121.2, 118.6, 116.2, 115.83, 115.7, 114.3. ESI-MS (m/z): 274.08 [M + 1]. HPLC purity: 97.4%.
Anal. calcd for CsH,FNO3:C 65.93, H 4.43, F 6.95, N 5.13, O 17.57, found: C 65.65, H 4.35,
F 6.72,N 5.05,0 17.37.

(E)-3-(3,4-Dihydroxyphenyl)-N-(2-(hydroxymethyl)phenyl)acrylamide (31). Yield: 63%; '"H NMR
(DMSO-ds, 400 MHz) &: 9.48 (s, 1H), 9.46 (s, 1H), 9.17 (s, 1H), 7.76 (d, J = 4.0 Hz, 1H),
7.36-7.43 (m, 2H), 7.25 (t, J= 8.0 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 7.03 (s, 1H), 6.92 (d, /= 8.8 Hz,
1H), 6.77 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 15.2 Hz, 1H), 4.53 (s, 2H). ESI-MS (m/z): 286.1 [M + 1].
HPLC purity: 97.6%.

(E)-N-(2-Acetylphenyl)-3-(3,4-dihydroxyphenyl)acrylamide (3m). Yield: 53%; 'H NMR (DMSO-d,
400 MHz) 6: 11.39 (s, 1H), 9.55 (s, 1H), 9.16 (s, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.0 Hz,
1H), 7.62 (t, J="7.6 Hz, 2H), 7.44 (d, J = 15.2 Hz, 1H), 7.22 (t, J= 7.6 Hz, 1H), 7.09 (s, 1H), 7.01 (d,
J=28.0 Hz, 1H), 6.78 (d, 2H, J = 8.0 Hz), 6.53 (d, J = 15.2 Hz, 1H), 2.64 (s, 3H). ESI-MS (m/z):
298.1 [M + 1]. HPLC purity: 97.8%.

(E)-N-(3-Chlorophenyl)-3-(3,4-dihydroxyphenyl)acrylamide (3n). Yield: 72%; '"H NMR (DMSO-d,
400 MHz) &: 10.27 (s, 1H), 9.51 (s, 1H), 9.23 (s, 1H), 7.93 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.42
(d, J=15.2 Hz, 1H), 7.36 (t, /= 8.0 Hz, 1H), 7.10 (d, /= 8.0 Hz, 1H), 7.01 (s, 1H), 6.92 (d, /= 8.0 Hz,
1H), 6.78 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 15.2 Hz, 1H). ESI-MS (m/z): 290.02 [M + 1]. HPLC
purity: 97.9%.

(E)-N-(3-Bromophenyl)-3-(3,4-dihydroxyphenyl)acrylamide (30). Yield: 67%; 'H NMR (DMSO-d,
400 MHz) 6: 10.24 (s, 1H), 9.51 (s, 1H), 9.22 (s, 1H), 8.06 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H),
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7.42 (d,J=15.2 Hz, 1H), 7.22-7.30 (m, 2H), 7.01 (s, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.77 (d, J= 8.0
Hz, 1H), 6.50 (d, J = 15.2 Hz, 1H). ESI-MS (m/z): 334.16 [M + 1]. HPLC purity: 97.6%.

(E)-3-(3,4-Dihydroxyphenyl)-N-p-tolylacrylamide (3p). Yield: 76%; '"H NMR (DMSO-ds, 400 MHz)
8: 9.98 (s, 1H), 9.44 (s, 1H), 9.20 (s, 1H), 7.57 (d, J = 6.8 Hz, 2H), 7.38 (d, J = 15.2 Hz, 1H),
7.20 (d, J = 6.8 Hz, 2H), 7.00 (s, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H),
6.52 (d, J=15.2 Hz, 1H), 2.26 (s, 3H). ESI-MS (m/z): 270.11 [M + 1]. HPLC purity: 97.3%.

(E)-3-(3,4-Dihydroxyphenyl)-N-o-tolylacrylamide (3q). Yield: 68%; "H NMR (DMSO-ds, 400 MHz)
0: 9.45 (s, 1H), 9.32 (s, 1H), 9.17 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 15.2 Hz, 1H),
7.16-7.23 (m, 2H), 7.01-7.08 (m, 2H), 6.91 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H),
6.68 (d, J=15.2 Hz, 1H), 2.24 (s, 3H). ESI-MS (m/z): 270.1 [M + 1]. HPLC purity: 96%.

(E)-N-Benzyl-3-(3,4-dihydroxyphenyl)-N-methylacrylamide (3r). Yield: 64%; "H NMR (DMSO-d,
400 MHz) 3: 9.41 (s, 1H), 9.00 (s, 1H), 7.21-7.40 (m, 6H), 6.89—7.01 (m, 3H), 6.71-6.76 (m, 1H),
4.69 (s, 2H), 2.98 (s, 3H). ESI-MS (m/z): 284.12 [M + 1]. HPLC purity: 97%.

(E)-N-(2-(1H-Indol-3-yl)ethyl)-3-(3,4-dihydroxyphenyl)acrylamide (3s). Yield: 91%; 'H NMR
(DMSO-ds, 500 MHz) 6: 10.78 (s, 1H), 9.20 (d, J = 101.6 Hz, 2H), 8.07 (t, J = 5.7 Hz, 1H),
7.54 (d, J=17.9 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 15.6 Hz, 1H), 7.14 (s, 1H), 7.04 (dd,
J=11.1, 4.0 Hz, 1H), 7.00-6.88 (m, 2H), 6.81 (dd, J=8.2, 1.9 Hz, 1H), 6.73 (d, J= 8.1 Hz, 1H), 6.32
(d, J=15.7 Hz, 1H), 3.44 (d, J = 13.4, 7.1 Hz, 2H), 2.86 (t, J = 7.4 Hz, 2H). *C NMR (DMSO-dj,
126 MHz) 8: 165.7, 147.6, 145.9, 139.3, 136.6, 127.6, 126.8, 123.0, 121.3, 120.7, 119.1, 118.6,
116.1, 114.2, 112.2, 111.7, 31.0, 25.7. ESI-MS (m/z): 323.13 [M + 1]. HPLC purity: 98%. Anal.
calced for Co0HaoN,03: C 71.41, H 5.99, N 8.33, O 14.24, found: C 71.26, H 5.55, N 8.12, O 14.17.

(E)-N-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)-3-(3,4-dihydroxyphenyl)acrylamide (3t). Yield: 52%; 'H
NMR (DMSO-ds, 500 MHz) 6: 9.37 (s, 1H), 9.14 (s, 1H), 8.03 (t, J= 5.5 Hz, 1H), 7.22 (d, J = 15.7
Hz, 1H), 6.93 (s, 1H), 6.82 (d, /= 7.9 Hz, 3H), 6.73 (d, J = 8.1 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H),
6.31 (d, J = 15.7 Hz, 1H), 5.96 (s, 2H), 3.37-3.29 (m, 4H), 2.69 (dd, J = 18.5, 11.2 Hz, 2H)."*C
NMR (DMSO-ds, 126 MHz) &: 165.7, 161.3, 147.5, 145.9, 139.3, 133.5, 126.8, 121.9, 120.7,
118.9, 116.1, 114.2, 109.4, 108.5, 101.0, 35.2, 35.0. ESI-MS (m/z): 228.3 [M + 1]. HPLC purity:
97.7%. Anal. caled for CigH{7NOs: C 66.05, H 5.23, N 4.28, O 24.44, found: C 65.95, H 5.13,
N 4.15, O 24.26.

3.2. Biology

3.2.1. Cell Culture

RAW 264.7 murine macrophages were obtained from the Shanghai Institute of Cell Biology,
Chinese Academy of Sciences (Shanghai, China) and maintained in DMEM recommended by the
suppliers, supplemented with 10% fetal bovine serum (Gibco, Paisley, UK), penicillin (100 U/mL)
and streptomycin (100 mg/mL) in a humidified 5% CO; atmosphere at 37 °C.
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3.2.2. Measurement of Nitric Oxide

The amount of NO was assessed by determining the nitrite concentration with Griess reagent.
Briefly, in the experiment to assess NO in culture supernatants, RAW 264.7 macrophages were
seeded into 48-well plates (2 x 10° cells per mL) for 18 h. Then, the cells were pretreated each
sample, aminoguanidine or vehicle solution for 20 min, then stimulated with LPS (1 pg/mL) for 18
h. Samples of supernatants (100 mL) were incubated with 50 mL 1% sulfanilamide, then 50 mL of
0.1% naphthylethylenediamine in 2.5% phosphoric acid solution. The absorbance at 570 nm was
read and referred to a standard curve of sodium nitrite solution to determine the nitrite
concentration. In the other experiment to determine the NO concentration of exudates from rat air
pouches, the exudates (50 mL) were incubated with nitrate reductase solution (200 mL; Jiancheng
Bioengineering Institute, Nanjing, China) at 37 °C for 1 h. Nitrate was converted into nitrite. After
centrifugation, the nitrite concentration in the cell-free supernatants was assessed with Griess
reagent as described above [24].

3.3. Computational Protocols
3.3.1. Pharmacophore Generation

All the studies were carried out using Discovery Studio (DS) 2.5 unless it is mentioned. Seven
most active compounds as shown in Figure 2 were selected as a training set to generate qualitative
pharmacophore models to be used in future database screening to identify new scaffolds for drug
discovery. The 2D chemical structures of the training set compounds were built using ChemSketch
program version 12, and subsequently converted into 3D structures using DS. All compounds in
the training set were given a Principal value of 2 and a Maximum Omitted Feature value of 0 to
make sure that all the features of these compounds are considered during pharmacophore
generation. Diverse conformational models for every training set compound were generated to
cover the flexibility of their chemical nature using polling algorithm. All the compounds were
energetically minimized using CHARMM force field implemented in DS. Diverse Conformation
Generation protocol with BEST flexible search option implemented in DS was employed with the
default value of generating maximum of 250 conformers within the energy range of 20 kcal/mol,
with respect to the global minimum. Feature mapping protocol was employed prior to the original
pharmacophore generation calculation to identify the chemical features present in the training set
compounds. The chemical features such as hydrogen bond acceptor (HBA), hydrogen bond donor
(HBD) and hydrophobic (HY) features were used during pharmacophore generation. These
chemical features were selected based on the feature mapping results and the possible interaction
points. All the other parameters were maintained at their default settings. The seven compounds in
the training set along with the generated conformational models were used in pharmacophore model
generation. Common feature pharmacophore models, generally, are developed by comparing a set
of conformational models and a number of 3D configurations of chemical features shared among
the training set compounds. Common Feature Pharmacophore Model Generation protocol
implemented in DS was used to generate pharmacophore models. Minimum interfeature distance
was 0.5. The other parameters were default.
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3.3.2. Molecular Docking Study

All the molecular docking studies were performed by GOLD 5.1 program with ChemPLP
function score (Cambridge Crystallographic Data Center, London, UK). X-ray crystal structures
(PDB ID: 1LOS, PDB ID: 1QXO, PDB ID: 5P21) were used to define the binding site for
molecular docking studies. The radius of 12 A around the active compound was defined to form the
active site of the protein.

4. Conclusions

In summary, we rationally designed a series of caffeic acid amide analogues. The preliminary
biological evaluations revealed that this class of compounds possessed moderate to good
anti-inflammatory activity. A 3D pharmacophore model was then generated based on the biological
activity and the better understanding of this feature could provide meaningful insights for further
optimization. Potential targets were also predicted by the PharmMapper server. A further study of
the structural modification and biological target validation are in process in our laboratory and will
be reported elsewhere.
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Synthesis and Antioxidant Activity Evaluation of
New Compounds from Hydrazinecarbothioamide and
1,2,4-Triazole Class Containing Diarylsulfone and
2,4-Difluorophenyl Moieties

Stefania-Felicia Barbuceanu, Diana Carolina Ilies, Gabriel Saramet,
Valentina Uivarosi, Constantin Draghici and Valeria Radulescu

Abstract: In the present investigation, new hydrazinecarbothioamides 4-6 were synthesized by
reaction of 4-(4-X-phenylsulfonyl)benzoic acids hydrazides (X= H, Cl, Br) 1-3 with
2,4-difluorophenyl isothiocyanate and further these were treated with sodium hydroxide to obtain
1,2,4-triazole-3-thione derivatives 7-9. The reaction of 7-9 with a-halogenated ketones, in basic media,
afforded new S-alkylated derivatives 10—15. The structures of the synthesized compounds have been
established on the basis of lH—NMR, 13C—NMR, IR, mass spectral studies and elemental analysis.
The antioxidant activity of all compounds has been screened. Hydrazinecarbothioamides 4—6
showed excellent antioxidant activity and 1,2,4-triazole-3-thiones 7-9 showed good antioxidant
activity using the DPPH method.

Reprinted from Int. J. Mol. Sci. Cite as: Barbuceanu, S.-F.; Ilies, D.C.; Saramet, G.; Uivarosi, V.;
Draghici, C.; Radulescu, V. Synthesis and Antioxidant Activity Evaluation of New Compounds
from Hydrazinecarbothioamide and 1,2,4-Triazole Class Containing Diarylsulfone and
2,4-Difluorophenyl Moieties. Int. J. Mol. Sci. 2014, 15, 10908-10925.

1. Introduction

Oxidation processes are intrinsic to the energy management of all living organisms and are
therefore kept under strict control by several cellular mechanisms [1].

Free radicals are molecules, ions or atoms with unpaired electrons in their outermost shell of
electrons [2]. These species, which are constantly formed in human body, can become toxic when
generated in excess or in the presence of a deficiency in the naturally occurring antioxidant
defenses. High levels of free radicals can cause damage to biomolecules such as lipids, proteins,
enzymes and DNA in cells and tissues. This may result in many diseases such as: cancer, diabetes,
cardiovascular and autoimmune diseases, and neurodegenerative disorders, aging, and other diseases
through the violent reactivity of the free radicals [3—5].

Antioxidants are important compounds that reduce or neutralize the free radicals, thus protecting
the cells from oxidative injury [6]. Therefore, considerable research has been directed towards the
identification of new antioxidants to prevent radical-induced damage.

Over the years triazoles have become an important class of heterocyclic compounds in organic
synthesis due to their various biological properties. It is well known that 1,2,4-triazole derivatives
have therapeutic applications. Thus, there are various drugs incorporating in their structure the
1,2,4-triazole ring used as antifungal [7-9], antiviral [10] agents, aromatase inhibitors [11], etzc.
Among the 1,2,4-triazole derivatives, the mercapto- and the thione-substituted 1,2,4-triazole ring
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systems have been studied and so far a variety of biological properties have been reported for a
large number of these compounds including antioxidant [12—14], antibacterial, antifungal [12,15-18],
anticancer [17,19], hypolipidemic [20], anti-inflammatory [21] activity. Moreover, various S-alkylated
1,2,4-triazole-3-thiones showed antibacterial [22], antifungal [18,22], anti-inflammatory [23], and
hypolipidemic [20] activities.

It has been reported that structural properties of triazoles, like moderate dipole character,
hydrogen bonding capability, rigidity and stability under in vivo conditions are the main reasons for
their superior pharmacological activities [24].

Many synthetic procedures exist for the synthesis of substituted 1,2,4-triazole-3-thiones.
However, the development of simple, facile and efficient methodologies to get five-membered
heterocycles is one of the major aspects in organic synthesis. Hydrazinecarbothioamides are
valuable intermediates in a variety of synthetic transformations and useful as building blocks in
the synthesis of biologically active heterocycles including synthesis of 1,2,4-triazole-thiones.
In addition, hydrazinecarbothioamides derivatives exhibit various biological properties such as
antioxidant [13,14,25,26], antibacterial [27], and antimycobacterial [28].

Moreover, sulfone derivatives provide examples of an important class of bioactive compounds
with biological activities including antibacterial, and anti-HIV-1 [29,30].

On the other hand, incorporation of one or several fluorine atoms into an organic molecule
can enhance their biological potency, bioavailability, metabolic stability and lipophilicity.
Enhanced lipophilicity may lead to easier absorption and transportation of molecules within
biological systems [31].

Considering these published data and as a sequel to our research on the design and synthesis of
biologically active new heterocycles from the triazole class [32—-35], it was thought worthwhile to
synthesize the novel title compounds and to evaluate them for their antioxidant activity.

In this study, we present the design, synthesis, characterization and evaluation of the antioxidant
activity of the new hydrazinecarbothioamides, 1,2,4-triazole-3-thiones and some S-alkylated 1,2,4-
triazole derivatives incorporating in their molecule diarylsulfone and 2,4-difluorophenyl moieties.

2. Results and Discussion
2.1. Chemistry

The reaction sequences employed for synthesis of title compounds are showed in Scheme 1. In
the present work, 2-(4-(4-X-phenylsulfonyl)benzoyl)-N-(2,4-difluorophenyl) hydrazinecarbo-thioamides
4-6 were synthesized by reaction of 4-(4-X-phenylsulfonyl)benzoic acid hydrazides 1-3 (X = H, Cl,
Br) with 24-difluorophenyl isothiocyanate, in absolute ethanol, at reflux. The 4-(4-X-
phenylsulfonyl)benzoic acid hydrazides precursors 1-3 were prepared starting from Friedel-Crafts
reaction of benzene or halobenzene with p-tosyl chloride, according to a previously reported
method [36,37]. The hydrazinecarbothioamides 4—6 were refluxed in 8% sodium hydroxide
solution to obtain 5-(4-(4-X-phenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-2H-1,2,4-triazole-
3(4H)-thiones 7-9 in equilibrium with thiole tautomer. The treatment of 1,2,4-triazoles 7-9 with a-
halogenated ketones (2-bromoacetophenone or 2-bromo-4'-fluoroacetophenone), in basic media,
produced the new S-alkylated 1,2,4-triazoles namely (2-(5-(4-(4-X-phenylsulfonyl)phenyl)-4-(2,4-
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difluorophenyl)-4H-1,2,4-triazol-3-ylthio)- - (phenyl/4-fluorophenyl)ethanones  10-15 and not
N-alkylated derivatives.

Scheme 1. Synthetic route of the title compounds.
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D e 22 I LY T
CH,Co0H \
OH
F

2 H——NH
XOSOZO—C\ N2H4 H0 + S=C=N F
0—C,H; <:> <:> \\

C,Hs;OH reflux

HN\NH N-N
/ _— !
o e O O OO,
\ // reflux N~ SH
4-6 0

The structures of all synthesized compounds 4-15 were proven by 'H-NMR, “C-NMR, MS
spectra and elemental analysis.

The IR spectra of hydrazinecarbothioamide derivatives 4—6 exhibit a new absorption band at
1243-1258 cm ' corresponding to C=S stretching vibration which confirms the nucleophilic
addition reaction of 4-(4-X-phenylsulfonyl)benzoic acid hydrazides 1-3 to 2,4-difluorophenyl
isothiocyanate. Also, in the IR spectra of these compounds 4-6 was presented as a strong
characteristic absorption band for carbonyl group at 1663-1682 cm '. The stretching bands

. In the IR spectra of

corresponding to NH groups were observed in range 3150-3319 cm
compounds 7-9 no absorption band was detected about 1663—1682 cm ' indicating the absence of
C=0 group of hydrazinecarbothioamides 4-6 which is evidence for the conversion of these compounds
to 1,2,4-triazoles. Compounds 7-9 can exist in two tautomeric forms, 5-(4-(4-X-phenylsulfonyl)phenyl)-
4-(2,4-difluorophenyl)-4H-1,2,4-triazole-3-thioles  and  5-(4-(4-X-phenylsulfonyl)phenyl)-4-(2,4-
difluorophenyl)-2H-1,2,4-triazole-3(4H)-thiones 7-9. The spectral analysis (IR, 'H-NMR, "“C-
NMR) shows that these compounds exist in the latter tautomeric form. Thus, in the IR spectra, the
vS-H vibration band (~2500-2600 cm ') was absent and the vC=S vibration band was observed in

region 1247-1255 cm™ . Also, the presence of the vNH absorption band in 3278-3414 cm ' region is
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an additional proof for the thione tautomeric form [13,38,39]. The structure of compounds 10-12 and
13-15 obtained by alkylation of triazoles 7-9 with a-halogenated ketones was confirmed by the
presence in their IR spectra of a new strong stretching band in a 1678-1703 cm ' region characteristic
to C=0 group. Also, new bands appeared in 2920-2965 cm ' region due to the presence of
methylene group (vCH;). The disappearance of C=S stretching band in IR spectra supported the S-
alkylation leading to the formation of compounds 10-1S5.

Reaction of hydrazides 1-3 with 2,4-difluorophenyl isothiocyanate has been proven in 'H-NMR
spectra of compounds 4—6 by the presence of three singlet signals at ~9.62, ~10.04 and ~10.90 ppm
assigned to protons from three NH groups. Intramolecular cyclization of hydrazinecarbothioamides
was confirmed in 'H-NMR spectra of compounds 7-9 by presence of a unique singlet at 14.42—14.48
ppm which can be attributed of NH proton from 1,2,4-triazol-3-thione nucleus [38]. The '"H-NMR
spectra of all alkylated triazoles 10—15 displayed a singlet signal at & = 4.99 (for 13—15) and 5.02 ppm
(10-12) assignable to S-CH, protons. The absence of the signal due to NH in 'H-NMR spectra of
compounds 10-15 and the presence of a new singlet for S-CH, confirmed that 1,2,4-triazole-3-thiones
7-9 were converted into alkylated derivatives (10—15) in the reaction with a-halogenated ketones.

The C-NMR spectra of hydrazinecarbothioamides 4-6 showed two important signals characteristic
of carbon atoms from C=0 and C=S groups at & 164.71-164.75 and 182.47 ppm, respectively [40]. In
BC-NMR of compounds 7-9 the C-3 and C-5 heterocyclic carbon from triazole nucleus resonated
at 169.52-169.54 and 149.01-149.03 ppm, respectively. The signal of the C-3 quaternary carbon
atom at ~169 ppm is characteristic of C=S group [12,13,41-43] which indicates the presence of the
thione tautomeric form in solution. The most significant proof of the alkylation of triazoles 7-9 with
2-bromoacetophenone or 2-bromo-4'-fluoroacetophenone was the presence in C-NMR spectra of
compounds 10-12 and 13-15 of two new signals at 191.42-192.73 and 40.33-40.46 ppm
corresponding to C=0 and S-CH, carbon atoms from a phenacyl/4-fluorophenacyl group. In
addition, the formation of S-alkylated and not of N-alkylated products was confirmed by the
absence of a C=S characteristic peak at ~169 ppm in >*C-NMR spectra of 10-15. The C-3 and C-5
heterocyclic carbons from these alkylated compounds resonate at 153.09-153.16 ppm (more
shielded than the C-3 heterocyclic carbon from 1,2,4-triazoles 7-9) and 153.01-153.09 ppm,
respectively [12,43,44].

Moreover, the signals present in the NMR spectra corresponding to aromatic protons and
carbons from 2,4-difluorophenyl-, 4-fluorophenyl- and 5-(4-(4-X-phenylsulfonyl)phenyl)-fragments
prove the structure of the synthesized compounds. Further confirmations of the structure of the
compounds were carried out by mass spectrometry and microanalysis (see experimental part).

2.2. Antioxidant Activity

The free radical scavenging activity of all compounds 4-15 was carried out in the presence of
the stable free radical (1,1-diphenyl-2-picrylhydrazyl) DPPH using ascorbic acid (AA), fert-butyl-
4-hydroxyanisole (BHA) and 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) antioxidant agents
as positive control.

Although a number of methods are available for determination of the antioxidant activity, the
DPPH method is very common, rapid and has been shown to be one of the most appropriate
methods [12,45].
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The DPPH solution has a deep purple color, with a strong absoption at 517 nm, and turns to
yellow in the presence of antioxidants, which neutralizes the free radicals by pairing the DPPH odd
electron with a hydrogen atom or by electron donation. Reduction of DPPH absorption at 517 nm
represents the capacity of antioxidants to scavenge free radical [46].

The inhibitory effects of different concentrations of synthesized compounds on DPPH radical
are presented in Tables 1 and 2. The antioxidant activity is expressed in terms of % inhibition and
ICs (effective concentration for scavenging 50% of the initial DPPH) value (uM).

Based on the experimental results, among all the compounds synthesized, hydrazinecarbothioamides
4-6 showed higher scavenging activity towards DPPH. These compounds have shown a strong
inhibitory effect on DPPH radical at 250 uM concentration and inhibition rates were: 97.18% + 1.42%
(for 4), 96.90% = 1.39% (for 5), 97.11% =+ 1.12% (for 6) better than the positive control AA
(91.26% + 0.49%) and BHA (89.30% =+ 1.37%) and much stronger than BHT (23.05% + 1.32%)).
These compounds 4-6 inhibited the DPPH activity with an ICso = 39.39 uM (4), 39.79 uM (5)
and 42.32 uM (6) which is better than the specific inhibitor BHA (ICsp = 51.62 uM) and AA

(ICso=107.67 uM) and much stronger than BHT (423.37 uM).

The 1,2,4-triazole-3-thiones 7-9 obtained by cyclization of hydrazinecarbothioamides
showed (at the same concentration, 250 pM) a good antioxidant activity (7: 67.70% + 1.68%,
8: 72.45% + 1.42%, 9: 58.52% =+ 1.55%) but lower than AA (91.26% =+ 0.49%) and BHA
(89.30% + 1.37%). However, triazoles had higher antioxidant activity than BHT. As deduced from the
ICsy data, the triazole with the lowest anti-radical capacity were found to be derivative 9 (with 182.60
uM) followed by 7 (147.79 uM) and 8 was found to be slightly more active (133.80 uM) than its
counterparts 7 and 9 (Table 1).

The S-alkylated 1,2,4-triazoles 10—15 showed weak inhibitory effect at 250 uM concentration,
in the range of 7.73%—15.04% (Table 2). However, the presence of the third fluorine atom on
phenyl radical linked to ketone groups determines a slight increase of antioxidant activity of
compounds 13—15 compared with 10—12. Because these compounds presented a weaker action even
than BHT, ICsy was not calculated.

Table 1. Antioxidant activity of compounds 4-9 by DPPH method.

Compd. Scavenging Effect (%) 1Ca
(nM)
- 25 uM 50 pM 75 pM 100 pM 125 pM 250 pM

4 3054+ 132 6437+135 7486140 8539+1.45 9599+1.50 97.18+1.42 39.39

5 3039+ 1.18  63.58+1.62 74.12+1.34 84.69+1.83 9536+1.87 96.90+1.39 39.79

6 20.14+1.53 59.28+1.23 7123+132 8323+142 9535+1.18 97.11+1.12 42.32
7 1588 +1.03 24.74+1.32 3330+1.67 37.93+149 46.14+1.45 67.70+1.68 147.79
8 15.56£0.95 2436+1.19 32.18+1.48 40.58+1.41 48384154 72.45+142 133.80
9 1396097 2299+1.05 31.74+1.56 38.63+1.59 43.03+1.63 5852+1.55 182.60
AA 0.70 = 1.00 1.08+0.84 17.48+1.03 3491+0.69 84.12+048 91.26+0.49 107.67
BHA  2327+1.39 4899+142 64.77+132 73.89+1.59 81.74+1.45 89.30+1.37 51.62
BHT - - 23.05+1.32 423.37
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Table 2. Antioxidant activity of compounds 10—15 by DPPH method.

Compd. Concentration (WM)  Scavenging Effect (%)

10 250 12.67 +0.82
11 250 8.24+1.20
12 250 7.73 £0.96
13 250 13.23+0.48
14 250 15.04+0.43
15 250 12.73 £ 0.50
AA 250 91.26 + 0.49
BHA 250 89.30 + 1.37
BHT 250 23.05+1.32

The higher antioxidant activity of hydrazinecarbothioamides 4-6 can be explained by the
existence of the thiourea fragment [13] that determines stabilization of free radicals of nitrogen
atoms (occurring due to the elimination of hydrogen atoms linked to these) by double conjugation,
mainly with the thione group. The conjugation between free radicals of the nitrogen atom and =«
electrons of the aromatic ring represents an additional factor for increasing the stability of the
radical structure. The probable mechanism for the reaction of compounds 4—6 with DPPH radical is
presented in Scheme 2.

Scheme 2. The probable mechanism for the reaction of compounds 4-6 with
DPPH radical

46

HN =N - F HN~NH F, HN~NH K
: /o /
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Heterocyclization to 1,2,4-triazole-3-thiones creates only the possibility to conjugate free
radicals on the nitrogen atom N-2 with the thione group, which would explain the lower stability of
this radical, probably responsible for a weaker antioxidant activity (Scheme 3).

S-alkylation decreases almost entirely the possibilities of conjugation with thione group,
causing the least stable radical structure and the weakest antioxidant activity, according to
this interpretation.

The compounds tested displayed a considerable lipophilic character, with estimated mean logP
values of 4.65 £ 0.71 (ADMET Predictor, Simulation Plus Inc., Lancaster, CA, USA). Based on the
preliminary evaluation of biorelevant molecular descriptors and physico-chemical properties, it
appears that the evaluated compounds are typical, low solubility—high permeability entities.
Therefore, their bioavailability will dependent on the nature of the administration pathways. For
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oral route, the solubility in the hydrophilic gastro-intestinal fluids is probably the limiting step for
absorption. The in-vivo distribution process may include binding and accumulation phenomenon in
various organs, likely to be of interest for the antioxidant activity. Moreover, the high lipophilicity
can limit the distribution to deeper skin layers or the systemic exposure, which is a considerable
advantage for the safety profile. None of the compounds seems to present a high risk of low

bioavailability, based on current mnemotic rules [47].

Scheme 3. The probable mechanism for the reaction of compounds 7-9 with DPPH radical.
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The lipophilicity, as estimate by logP values, was not directly correlated with the antioxidant
activity (Supplementary data). Nevertheless, a rank order relationship seems apparent. The
compounds showing higher scavenging activity towards DPPH (4—6) presented the lowest
lipophilicity  (except for triazole 7 which has lower antioxidant activity than
hydrazinecarbothioamides 5 and 6 although it has lower lipophilicity than these derivatives).

3. Experimental
3.1. Chemistry

All reactants and solvents were obtained commercially with the highest purity and were used
without further purification. Melting points were determined on a Boetius apparatus and are
uncorrected. The IR spectra were recorded in KBr using a Vertex 70 Bruker spectrometer.
Elemental analyses were performed on a ECS-40-10-Costeh micro-dosimeter (and are within
+0.4% of the theoretical values). The NMR spectra were recorded on a Varian Gemini 300 BB
instrument operating at 300 MHz for a 'H and 75 MHz for ">C. Chemical shifts (5, ppm) were
assigned according to the internal standard signal of tetramethylsilane in DMSO-d; (6 = 0 ppm).
Coupling constants, .J, are expressed in hertz (Hz). Mass spectra were recorded on 1200 L/MS/MS
triple quadrupole (Varian, Palo Alto, CA, USA) spectrometer. In case of compounds 4-9, solutions
of 2 pg/mL in methanol/ammonia (1/1, v/v) were directly injected into the electrospray interface
(ESD), after a tenth dilution with methanol, at a flow rate of 20 pL/min. The instrument was
operated in positive and negative ions mode. In case of compounds 10-15, methanolic solutions of
0.1 pg/mL (with 0.1% ammonia) were directly infused into APCI (Atmospheric Pressure Chemical
Ionization) source with a Prostar 240 SDM Pump (Varian). Parameters for APCI operation were set
up as follows: air drying gas at 300 °C and 20 psi, nitrogen as nebulising gas at 40 psi, air as
auxiliary gas at 20 psi, APCI torch at 300 °C, and corona discharge needle current at 10 uA. APCI
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generated only positive ions. Protonated molecular ions were fragmented by collision with argon
at 1.5 mTorr.

3.1.1. General Procedure for the Preparation of 2-(4-(4-X-Phenylsulfonyl)benzoyl)-N-(2,4-
difluorophenyl)hydrazinecarbothioamides 4-6

Appropriate acid hydrazide 1-3 (5 mmol) in absolute ethanol (25 mL) and 2,4-difluorophenyl
isothiocyanate (5 mmol) was heated under reflux for 10 h. The precipitate formed was cooled,
filtered, washed with cold ethanol, dried and recrystallized from ethanol.

N-(2,4-Difluorophenyl)-2-(4-(phenylsulfonyl)benzoyl)hydrazinecarbothioamide =~ 4.  Yield:
92.0%; m.p. 176-178 °C; IR (KBr, v, cmfl): 3267, 3169, 3150 (NH), 3067, 3001 (aromatic C-H),
1663 (C=0), 1539, 1510, 1483 (C=C), 1320, 1309, 1155 (SO,), 1258 (C=S), 1144 (C-F); '"H-NMR
(DMSO-dg, 6 ppm). 10.89 (s, 1H; NH); 10.03 (s, 1H, NH); 9.61 (s, 1H, NH); 8.13 (d, 2H, J = 8.8
Hz, aromatic protons); 8.09 (d, 2H, J = 8.8 Hz; aromatic protons); 7.99 (dd, 2H, J = 7.4, 1.4 Hz,
aromatic protons); 7.70 (tt, 1H, J = 7.4, 1.4 Hz, aromatic proton); 7.63 (t, 2H, J = 7.4 Hz, aromatic
protons); 7.29 (m, 2H, aromatic protons); 7.07 (wt, 1H, J = 8.4 Hz, aromatic proton); "C-NMR
(DMSO-dg, & ppm): 182.47 (C=S), 164.75 (C=0), 160.57 (dd, Jcr = 245.1; 11.2 Hz), 158.55 (dd,
Jor = 248.5; 13.7 Hz), 143.84, 140.64, 137.01, 134.12, 131.87 (d, Jc.r = 9.5 Hz), 129.95, 129.40,
127.57, 127.40, 123.81 (d, Jcr = 12.9 Hz), 111.07 (d, Jcr = 22.6 Hz), 104.28 (t, Jcr = 25.5 Hz);
(ESI-MS) m/z: 448 [M + H]", 319 (38) [Ce¢Hs5SO,CsH,CONHNHCS]", 277 (100, BP)
[C¢H5SO,CH4CONHNH, + H]", 245 (19) [CsHsSO,C¢H4CO]™; (ESI-MS) m/z: 446 [M — H], 426
(2) [M — H-HF] , 412 (11) [M — H-H,S] , 275 (100, BP) [C¢H5SO,C¢H4CONHNH] ; Anal. caled
for CyoH;sFoN3;05S, (447.48 g/mol): C, 53.68; H, 3.38; N, 9.39. Found: C, 53.61; H, 3.30;
N, 9.28%.

2-(4-(4-Chlorophenylsulfonyl)benzoyl)-N-(2,4-difluorophenyl)hydrazinecarbothioamide 5. Yield:
90%; m.p. 170-172 °C; IR (KBr, v, cm '): 3290, 3160 (NH), 3090, 3010 (aromatic C-H),
1680 (C=0), 1531, 1478 (C=C), 1319, 1294, 1156 (S0O,), 1243 (C=S), 1145 (C-F), 761 (C-Cl);
'H-NMR (DMSO-ds, & ppm): 10.90 (s, 1H, NH); 10.03 (s, IH, NH); 9.61 (s, 1H, NH); 8.12 (d, 2H,
J = 8.9 Hz, aromatic protons); 8.09 (d, 2H, J = 8.9 Hz, aromatic protons); 8.01 (d, 2H, J = 8.5 Hz,
aromatic protons); 7.71 (d, 2H, J = 8.5 Hz, aromatic protons); 7.07 (wt, 1H, J = 8.4 Hz, aromatic
protons); 7.29 (m, 2H, aromatic protons); C-NMR (DMSO-ds, & ppm): 182.47 (C=S),
164.71 (C=0), 160.65 (dd, Jcr = 246.0; 11.3 Hz), 157.80 (dd, Jcr = 245.0; 13.7 Hz), 143.36,
139.45, 13898, 137.20, 131.82 (d, Jcr = 9.7 Hz), 130.11, 129.58, 129.47, 127.54,
123.72 (d, Jcr = 19.9 Hz), 111.08 (d, Jc.r = 21.8 Hz), 104.28 (t, Jcr = 25.5 Hz); (ESI-MS) m/z:
482 [M + HJ', 484 [M + HJ", 353 (31) [PCIC¢H4SO,C¢H,CONHNHCS]", 355 (58)
[*’C1CsH4S0,C¢H,CONHNHCS], 311 (100, BP) [*>CIC¢H4SO,CsH4CONHNH, + HJ", 313 (100,
BP) [CIC¢H4SO,CaH,CONHNH, + HI', 279 (5) [PCIC¢H4SO.CeH4COT", 281 (24)
[*"CICeH4SO,CeH4CO]™; (ESI-MS) m/z: 480 [M — H]', 482 [M — HJ, 446 (9) [*>CIM-H-H,S],
448 (9) ['CIM-H-H,S]", 309 (100, BP) [*CICsH4SO,CsH,CONHNH], 311 (100, BP)
[37C1C6H4SOQC6H4CONHNH]_; Anal. calcd for CyoH;4CIF,N305S; (481.92 g/mol): C, 49.84; H,
2.93; N, 8.72. Found: C, 49.75; H, 2.87; N, 8.60%.

2-(4-(4-Bromophenylsulfonyl)benzoyl)-N-(2,4-difluorophenyl)hydrazinecarbothioamide 6. Yield:
88%; m.p. 175-177 °C; IR (KBr, v, cmfl): 3319, 3280 (NH), 3088, 3044, 3010 (aromatic C-H),
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1682 (C=0), 1573, 1536, 1481 (C=C), 1321, 1293, 1157 (SO,), 1245 (C=S), 1144 (C-F), 576 (C-Br);
'H-NMR (DMSO-ds, & ppm): 10.90 (s, 1H, NH); 10.04 (s, 1H, NH); 9.62 (s, IH, NH); 8.11 (d, 2H,
J = 8.5 Hz, aromatic protons); 8.10 (d, 2H, J = 8.5 Hz, aromatic protons); 7.92 (d, 2H, J = 8.7 Hz;
aromatic protons); 7.85 (d, 2H, J = 8.7 Hz, aromatic protons); 7.29 (m, 2H, aromatic protons);
7.07 (wt, 1H, J = 8.8 Hz, aromatic proton); “C-NMR (DMSO-ds, & ppm): 182.47 (C=S),
164.71 (C=0), 160.65 (dd, Jer = 243.0; 11.2 Hz), 157.40 (dd, Je.r = 243.0; 13.2 Hz), 143.33, 139.86,
137.20, 133.05, 13193 (d, Jer = 9.6 Hz), 129.60, 129.46, 12846, 127.54, 123.70,
111.08 (d, Jer = 20.9 Hz), 104.28 (t, Jor = 25.2 Hz); (ESI-MS) m/z: 526 [M + H]', 528 [M + H]", 397
(40) [""BrCsH4S0,CsH,CONHNHCS]', 399 (33) [*'BrCsH4SO,CsH,CONHNHCS]', 355 (100, BP)
[BrC¢H4S0,CsHsCONHNH, + HJ", 357 (100, BP) [*'BrC¢H4SO,C¢H,CONHNH, + H]", 323 (1)
[BrC¢HsS0,CsH4COT, 325 (32) [*'BrCsH4S0,CH4COT", 172 (5) [2,4-diFCsH;NHCS], 130 (6)
[2,4-diFC(H;NH, + HJ; (ESI-MS) m/z: 524 [M — HJ, 526 [M — HJ, 504 (3) [M — H-HFT,
506 (4) [M — H-HF], 490 (7) [M — H-HSJ, 492 (11) [M — H-HSJ, 353 (100, BP)
[®BrCsHsSO,CaH,CONHNH], 355 (100, BP) [*'BrCeHsSO,C¢H;CONHNH]; Anal. caled for
CaoH14BrFN3038; (526.37 g/mol): C, 45.64; H, 2.68; N, 7.98. Found: C, 45.58; H, 2.60; N, 7.88%.

3.1.2. General Procedure for the Preparation of 5-(4-(4-X-Phenylsulfonyl)phenyl)-4-(2,4-
difluorophenyl)-2H-1,2 4-triazole-3(4H)-thiones 7-9

The corresponding hydrazinecarbothioamide 4-6 (3 mmol) was refluxed in aqueous sodium
hydroxide solution (8%, 45 mL) for 5 h. The filtrate obtained by filtration of reaction mixture was
cooled and acidified to pH~5 with hydrochloric acid (1%). The precipitated obtained was filtered,
washed with water, dried and recristallized from CHCls/petroleum ether (1:2, v/v).

4-(2,4-Difluorophenyl)-5-(4-(phenylsulfonyl)phenyl)-2H-1,2 4-triazole-3(4H)-thione 7 Yield:
71%; m.p. 256-258 °C; IR (KBr, v, cm '): 3414 (NH), 3065, 3015 (aromatic C-H), 1614, 1580,
1518, 1474 (C=N + C=C), 1338, 1290, 1160 (SO,), 1247 (C=S), 1143 (C-F); 'H-NMR (DMSO-ds,
0 ppm): 14.48 (s, 1H, NH); 8.00 (d, 2H, J = 8.6 Hz, aromatic protons); 7.95 (dd, 2H, J= 7.7, 1.5
Hz, aromatic protons); 7.73 (td, 1H, J = 8.7, 6.1 Hz, aromatic proton); 7.70 (t, I1H, J=7.7, 1.5 Hz,
aromatic proton); 7.61 (t, 2H, J = 7.7 Hz, aromatic protons); 7.58 (d, 2H, J = 8.6 Hz, aromatic
protons); 7.54 (ddd, 1H, J=10.2, 8.9, 2.7 Hz, aromatic protons); 7.31 (dddd, 1H, J=9.8, 6.1, 2.7, 1.5
Hz, aromatic proton); “C-NMR (DMSO-ds, & ppm): 169.52 (C3-triazolic ring),
162.96 (dd, Jc.r = 251.4; 11.4 Hz), 157.72 (dd, Jcr = 252.8; 13.5 Hz), 149.03 (C5-triazolic ring),
142.85, 140.24, 134.17, 132.75 (d, Jcr = 10.6, Hz), 129.93, 129.86, 128.80, 128.03, 127.62,
118.39 (d, Jcr = 12.7 Hz), 112.99 (d, Jc.r = 22.9 Hz), 105.68 (t, Jcr = 23.8 Hz); (ESI-MS) m/z:
430 [M + HJ'; 356 (8) [M + H-SCNNH,]"; 289 (100, BP) [M + H-CsHsSO,]"; 172 (10.9)
[FaCeH3NCS + H]™; 153 (62) [FCsH4NCS]"; (ESI-MS) m/z: 428 [M — H]; 408 (15.4) [M — H-
HF] ; 388 (15.4) [M — H-2HF] ; 267 (7,3) [M — H-HF-C¢HsSO,] ; 141 (100, BP) [CcHs5SO;] ;
Anal. caled for Cy0H3F2N30,S; (429.46 g/mol): C, 55.93; H, 3.05; N, 9.78. Found: C, 55.83; H,
2.98; N, 9.65%.

5-(4-(4-Chlorophenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-2H-1,2,4-triazole-3(4H)-thione 8
Yield: 73%; m.p. 245-247 °C; IR (KBr, v, cm_l): 3278 (NH), 3091, 3053 (aromatic C-H), 1614,
1580, 1518, 1468 (C=N + C=C), 1338, 1276, 1159 (SO,), 1248 (C=S), 1144 (C-F), 768 (C-Cl);
'H-NMR (DMSO-ds, & ppm): 14.42 (s, 1H, NH); 8.01 (d, 2H, J = 8.5 Hz, aromatic protons); 7.96
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(d, 2H, J = 8.8 Hz, aromatic proton); 7.73 (td, 1H, J = 8.8, 6.0 Hz, aromatic proton); 7.68 (d, 2H,
J = 8.8 Hz, aromatic protons); 7.59 (d, 2H, J = 8.5 Hz, aromatic protons); 7.53 (ddd, 1H, J = 10.2,
9.1, 2.7 Hz, aromatic protons); 7.31 (dddd, 1H, J = 9.8, 6.4, 2.7, 1.5 Hz, aromatic proton);
BC-NMR (DMSO-ds, & ppm): 169.54 (C3-triazolic ring), 162.98 (dd, J = 250.8; 11.7 Hz),
149.01 (C5-triazolic ring), 157.27 (dd, Jer = 253.1, 13.1 Hz), 142.39, 139.36, 139.04,
132.77 (d, Jer = 10.5 Hz), 130.78, 130.11, 129.63, 128.86, 128.13, 118.40 (d, Jor = 12.6 Hz),
113.01 (d, Jep = 22.6 Hz), 105.70 (t, Jo.p = 23.5 Hz); (ESI-MS) m/z: 464 [M + H]"; m/z: 466 [M + H];
289 (100, BP) [M + H-CIC¢H4SO-]"; (ESI-MS) m/z: 462 [M — H] ; m/z: 464 [M — H] ; Anal. calcd
for CyoH2CIF,N30,S; (463.91 g/mol): C, 51.78; H, 2.61; N, 9.06. Found: C, 51.89; H, 2.47;
N, 8.96%.

5-(4-(4-Bromophenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-2H-1,2,4-triazole-3(4H)-thione 9
Yield: 81%; m.p. 264-266 °C; IR (KBr, v, cm_l): 3414 (NH), 3095, 3073, 3028 (aromatic C-H),
1614, 1572, 1516, 1471 (C=N + C=C), 1330, 1272, 1169 (SO,), 1255 (C=S), 1145 (C-F),
578 (C-Br); '"H-NMR (DMSO-ds, 6 ppm): 14.43 (s, 1H, NH); 8.00 (d, 2H, J = 8.5 Hz, aromatic
protons); 7.88 (d, 2H, J = 8.8 Hz, aromatic protons); 7.83 (d, 2H, J = 8.8 Hz, aromatic protons);
7.73 (td, 1H, J = 8.8, 6.1 Hz, aromatic protons); 7.59 (d, 2H, J = 8.5 Hz, aromatic protons);
7.54 (ddd, 1H, J = 10.2, 9.0, 2.9 Hz, aromatic proton); 7.31 (dddd, 1H, J = 9.7, 6.5, 2.9, 1.4 Hz,
aromatic proton); *C-NMR (DMSO-ds, & ppm): 169.54 (C3-triazolic ring), 162.98 (dd, Je.r = 251.0,
11.5 Hz), 149.01 (C5-triazolic ring), 157.50 (dd, Jcr = 254.0; 13.4 Hz), 142.35, 139.49, 133.06,
132.78 (d, Jer = 10.6, Hz), 130.08, 129.66, 128.88, 128.51, 128.14, 118.48 (d, Jc.r = 12.6 Hz),
113.03 (d, Jer = 22.9 Hz), 105.66 (t, Jor = 23.5 Hz); (ESI-MS) m/z: 508 [M + H]"; m/z:
510 [M + HJ]"; 289 (100, BP) [M + H-BrCqHsSO,]"; 155 (24.8) [“BrCe¢Hs]™; 157 (25.6)
[*'BrCsHa]"; 129 (63.2) [F2C¢HsNH,]"; Anal. caled for CaoH2BrFaN305S; (508.36 g/mol): C,
47.25; H,2.38; N, 8.27. Found: C, 47.13; H, 2.30; N, 8.13%.

3.1.3. General Procedure for the Preparation of 2-(5-(4-(4-X-Phenylsulfonyl)phenyl)-4-(2,4-
difluorophenyl)-4H-1,2,4-triazol-3-ylthio)-1-(phenyl/4-fluorophenyl)ethanones 10-15

To a solution of sodium ethoxide (23 mg of sodium in 10 mL of absolute ethanol) was added the
corresponding triazole 7-9 (1 mmol). The reaction mixture was stirred at room temperature until a
solution was obtained. To this solution was added the corresponding o-halogenated ketone
(1 mmol) and stirring was continuated for 10 h. The reaction mixture was poured into ice water and
the precipitate was filtered off, washed with water and recristallized from ethanol.

2-(4-(2,4-Difluorophenyl)-5-(4-(phenylsulfonyl)phenyl)-4H-1,2,4-triazol-3-ylthio)-1-
phenylethanone 10 Yield: 70%; m.p. 176-178 °C; IR (KBr, v, cm '): 3070, 3038 (aromatic C-H),
2965, 2922 (CH,), 1685 (C=0), 1614, 1598, 1515 (C=N + C=C), 1312, 1291, 1161 (SO,), 1146
(C-F); '"H-NMR (DMSO-ds, & ppm): 8.03 (dd, 2H, J = 7.7, 1.3 Hz, aromatic protons); 8.00 (d, 2H,
J = 8.6 Hz, aromatic protons); 7.97 (dd, 2H, J = 7.7, 1.4 Hz, aromatic proton); 7.87 (dt, 1H, J = 8.8,
5.8 Hz, aromatic proton); 7.71 (m, 1H, aromatic proton); 7.65 (t, 2H, J = 7.7 Hz, aromatic proton);
7.62 (d, 2H, J = 8.6 Hz, aromatic protons); 7.60 (m, 2H, aromatic protons); 7.56 (t, 2H, J = 7.7 Hz,
aromatic protons); 7.40 (m, 1H, aromatic proton); 5.02 (s, 2H, S-CH;-); BC-NMR (DMSO-ds,
O ppm): 192.73 (C=0), 163.34 (dd, Jc.r = 251.9; 11.7 Hz), 156.66 (dd, Jcr = 253.4; 13.8 Hz),
153.11 (C3-triazolic ring), 153.05 (C5-triazolic ring), 142.27, 140.36, 135.14, 134.07, 133.82,
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131.59 (d, Jecr = 10.9 Hz), 130.66, 129.87, 128.83, 128.41, 128.30, 128.04, 127.54,
117.50 (d, Jcr = 12.0 Hz), 113.56 (d, Jc.r = 25.2 Hz), 106.84 (t, Jo.r = 23.2 Hz), 40.46 (S-CH;-);
(APCI-MS) m/z: 548 [M + H]"; 514 (5.6) [M + H-H,S]"; 430 (15.3) [M + H-C¢HsCOCH]"; 398
(98.8) [M + H-CsHsCOCHS]"; 105 (88.8) [CsHsCO]™; 91 (100, BP) [tropylium]”; Anal. calcd for
CasH9FaN303S; (547.60 g/mol): C, 61.41; H, 3.50; N, 7.67. Found: C, 61.23; H, 3.29; N, 7.48%.

2-(5-(4-(4-Chlorophenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-4H-1,2,4-triazol-3-ylthio)-
1-phenylethanone 11 Yield: 84%; m.p. 191-193 °C; IR (KBr, v, cm '): 3084, 3040 (aromatic
C-H), 2959, 2921 (CH,), 1678 (C=0), 1612, 1598, 1580, 1516 (C=N) + C=C), 1328, 1283, 1161
(SO,), 1146 (C-F), 767 (C-Cl); "H-NMR (DMSO-ds, & ppm): 8.03 (dd, 2H, J= 7.7, 1.4 Hz, aromatic
protons); 8.00 (d, 2H, J = 8.8 Hz, aromatic protons); 7.96 (d, 2H, J = 8.8 Hz, aromatic protons);
7.70 (d, 2H, J = 8.8 Hz, aromatic proton); 7.65 (m, 1H, aromatic proton); 7.63 (d, 2H, J = 8.8 Hz,
aromatic protons); 7.61 (dt, 1H, J = 8.8, 6.0 Hz, aromatic proton); 7.56 (t, 2H, J = 7.7 Hz, aromatic
protons); 7.40 (ddd, 1H, J = 10.2, 9.1, 2.8 Hz, aromatic proton); 7.24 (m, 1H, aromatic proton);
5.02 (s, 2H, S-CH,-); “C-NMR (DMSO-dj, & ppm): 192.72 (C=0), 163.35 (dd, Je.r = 251.9, 11.7 Hz),
156.57 (dd, Jer = 253.4, 13.5 Hz), 153.09 (C3-triazolic ring), 153.06 (C5-triazolic ring), 141.80,
139.22, 139.16, 135.14, 133.82, 131.59 (d, Jc.r = 10.6 Hz), 130.86, 130.03, 129.55, 128.83, 128.41,
128.34, 128.13, 117.55 (d, Jcr = 9.2 Hz), 113.57 (d, Jcr = 20.4 Hz), 106.84 (t, Jc.r = 23.5 Hz),
40.35 (S-CH,-); (APCI-MS) m/z: 582 [M + H]"; m/z: 584 [M + H]"; 476 (67.2) [M + H-
C¢HsCHO]"; 478 (82.3) [M + H-CsHsCHO]'; 464 (28.5) [M + H-CsHsCOCH]'; 466 (30.2) [M + H-
C¢HsCOCH]'; 444 (40.1) [M + H-C¢HsCOCH-HF]'; 446 (41.2) [M + H-C¢HsCOCH-HF]'; 432 (28.4)
[M + H-C¢HsCOCHS]"; 434 (84.1) [M + H-C¢HsCOCHS]"; 305 (5.7) [M + H-CsHsCOCHS-
F,CeHsNH,]"; 307 (7.2) [M + H-C¢HsCOCHS-F,C¢H;NH,]"; 159 (23.4) [P°CIC¢H4SO]™; 161
(10.3) [T’CIC¢H4SOT; 105 (100, BP) [C¢HsCOT™; 91 (95.2) [tropylium]”; Anal. caled for
CysHsCIF,N303S, (582.04 g/mol): C, 57.78; H, 3.12; N, 7.22. Found: C, 57.67; H, 3.04;
N, 7.07%.

2-(5-(4-(4-Bromophenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-4H-1,2,4-triazol-3-ylthio)-
1-phenylethanone 12 Yield: 82%; m.p. 213-215 °C; IR (KBr, v, cm_l): 3083, 3050 (aromatic
C-H), 2960, 2922 (CH;), 1703 (C=0), 1615, 1598, 1572, 1517 (C=N + C=C), 1321, 1282, 1160
(SO»), 1142 (C-F), 580 (C-Br); '"H-NMR (DMSO-ds, & ppm): 8.03 (dd, 2H, J = 7.7, 1.4 Hz,
aromatic protons); 8.00 (d, 2H, J = 8.8 Hz, aromatic protons); 7.89 (d, 2H, J = 8.8 Hz, aromatic
protons); 7.87 (dt, 1H, J = 8.8, 5.8 Hz, aromatic proton); 7.83 (d, 2H, J = 8.8 Hz, aromatic protons);
7.69 (tt, 1H, J= 7.7, 1.4 Hz, aromatic proton); 7.65 (m, 1H, aromatic proton); 7.63 (d, 2H, J= 8.8 Hz,
aromatic protons); 7.56 (t, 2H, J = 7.7 Hz, aromatic protons); 7.39 (m, 1H, aromatic proton); 5.02 (s,
2H, S-CH,-); >C-NMR (DMSO-ds, & ppm): 192.71 (C=0), 163.26 (dd, Je.r = 251.7, 11.7 Hz), 156.65
(dd, Jer = 253.4, 13.5 Hz), 153.11 (C3-triazolic ring), 153.06 (C5-triazolic ring), 141.75, 139.57,
135.13, 133.80, 132.98, 131.59 (d, Jcr = 10.6 Hz), 130.86, 129.56, 129.30, 128.83, 128.41, 128.35,
128.13, 117.51 (d, Jcr = 129 Hz), 113.59 (d, Jcr = 22.3 Hz), 106.85 (t, Jcr = 23.5 Hz),
40.46 (S-CH,-); (APCI-MS) m/z: 626 [M + H]'; m/z: 628 [M + H]; 476 (31.9) [M + H-
C¢HsCOCHS]"; 478 (26.3) [M + H-C¢HsCOCHS]"; 434 (12.7) [M + H-C¢HsCOCH,SNCNH]";
436 (33.2) [M + H-C¢HsCOCH,SNCNH]"; 159 (23.4) ["BrCeH4SO]"; 161 (10.3) [*'BrC¢H4SO]";
105(100, BP) [CsHsCO]"; 91 (95.2) [tropylium]"; Anal. caled for CosH sBrFaN303S; (626.49 g/mol):
C, 53.68; H,2.90; N, 6.71. Found: C, 53.54; H, 2.79; N, 6.62%.
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2-(4-(2,4-Difluorophenyl)-5-(4-(phenylsulfonyl)phenyl)-4H-1,2,4-triazol-3-ylthio)-1-(4-
fluorophe-nyl)ethanone 13 Yield: 72%; m.p. 152-154 °C; IR (KBr, v, cm '): 3071, 3035 (aromatic
C-H), 2960, 2922 (CH,), 1682 (C=0), 1614, 1598, 1515 (C=N + C=C), 1313, 1281, 1161 (SO,),
1145 (C-F); '"H-NMR (DMSO-ds, & ppm): 8.11 (dd, 2H, J = 8.8, 5.5 Hz, aromatic protons), 7.99 (d,
2H, J = 8.5 Hz, aromatic protons); 7.95 (dd, 2H, J = 7.4, 1.5 Hz, aromatic protons); 7.86 (dt, 1H,
J = 8.8, 5.8 Hz, aromatic proton); 7.71 (tt, 1H, J = 7.4, 1.5 Hz, aromatic protons); 7.65 (m, 1H
aromatic proton); 7.63 (d, 2H, J = 8.5 Hz, aromatic protons); 7.62 (t, 2H, J = 7.4 Hz, aromatic
protons); 7.39 (t, 2H, J = 8.8 Hz, aromatic protons); 7.30 (m, 1H, aromatic proton); 4.99 (s, 2H,
S-CH,-); C-NMR (DMSO-ds, & ppm): 191.45 (C=0), 165.36 (d, Jor = 252.8 Hz), 163.04 (dd,
Jor = 250.5; 11.7 Hz), 156.76 (dd, Jcr = 250.9; 13.2 Hz), 153.16 (C3-triazolic ring), 153.01
(C5-triazolic ring), 142.32, 140.38, 134.10, 131.95 (d, Jcr = 2.7 Hz), 131.60 (d, Jor = 9.6 Hz),
131.55 (d, Jcr = 9.4 Hz), 130.67, 129.90, 128.34, 128.07, 127.57, 117.48 (d, Jcr = 9.8 Hz), 115.92
(d, Jer = 21.9 Hz), 113.60 (d, Jor = 22.7 Hz), 106.16 (dd, Jc.r = 235.0, 27.3 Hz), 40.34 (S-CH,-);
(APCI-MS) m/z: 566 [M + H]"; 428 (18.9) [M + H-FC¢H,COCH;]"; 398 (35.3) [M + H-
FC¢H4COCHS]"; 356 (16.8) [M + H-FCsH4COCH,SNCNH]"; 137 (26.5) [FCsH4,COCH,]"; 123
(82.2) [FCsH4CO]"; 109 (100, BP) [FCcH4N]"; Anal. calcd for Co5H gF3N303S; (565.59 g/mol): C,
59.46; H, 3.21; N, 7.43. Found: C, 59.23; H, 3.07; N, 7.26%.

2-(5-(4-(4-Chlorophenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-4H-1,2,4-triazol-3-ylthio)-1-
(4-fluorophenyl)ethanone 14 Yield: 85%; m.p. 226-228 °C; IR (KBr, v, cm ') 3068, 3030 (aromatic
C-H), 2965, 2920 (CH,), 1682 (C=0), 1615, 1599, 1514 (C=N + C=C), 1322, 1282, 1158 (SO,);
1145 (C-F), 768 (C-Cl); "H-NMR (DMSO-ds, & ppm): 8.11 (dd, 2H, J = 8.8, 5.5 Hz, aromatic
protons), 8.00 (d, 2H, J = 8.5 Hz, aromatic protons), 7.97 (d, 2H, J = 8.7 Hz, aromatic protons);
7.86 (dt, 1H, J = 8.8, 5.8 Hz, aromatic proton); 7.69 (d, 2H, J = 8.7 Hz, aromatic protons); 7.65 (m, 1H,
aromatic proton), 7.63 (d, 2H, J = 8.5 Hz, aromatic protons); 7.39 (t, 2H, J = 8.8 Hz, aromatic
protons); 7.38 (m, 1H, aromatic proton); 4.99 (s, 2H, S-CH,-); >C-NMR (DMSO-dj, 8 ppm): 191.42
(C=0), 165.34 (d, Jcr = 252.5 Hz), 163.18 (dd, Jcr = 250.4, 11.8 Hz), 156.72 (dd, Jcr = 250.8,
13.1 Hz), 153.09 (C3-triazolic ring), 153.04 (C5-triazolic ring), 141.81, 139.22, 139.16, 131.94 (d,
Jer=2.7Hz), 131.59 (d, Jcr =9.7 Hz), 131.52 (d, Jcr = 9.7 Hz), 130.85, 130.05, 128.55, 128.36,
128.14, 117.64 (d, Jcr = 9.8 Hz), 115.89 (d, Jcr = 21.9 Hz), 113.57 (d, Jcr = 19.6 Hz), 106.20 (dd,
Jor = 235.0, 27.3 Hz), 40.33 (S-CHy-); (APCI-MS) m/z: 600 [M + H]"; m/z: 602 [M + H]"; 123
(52.2) [FC¢H4CO]"; 123 (48.3) [FC¢H4CO]"; 109 (100, BP) [FC¢H4N]"; Anal. caled for
CysH17CIF3N303S, (600.03 g/mol): C, 56.05; H, 2.86; N, 7.00. Found: C, 55.97; H, 2.76; N, 6.87%.

2-(5-(4-(4-Bromophenylsulfonyl)phenyl)-4-(2,4-difluorophenyl)-4H-1,2,4-triazol-3-ylthio)-
1-(4-fluorophenyl)ethanone 15 Yield: 80%; m.p. 228-230 °C; IR (KBr, v, cm '): 3080, 3067
(aromatic C-H), 2963, 2920 (CH,), 1682 (C=0), 1612, 1598, 1574, 1515 (C=N + C=C), 1323,
1282, 1159 (SO,), 1144 (C-F), 578 (C-Br); '"H-NMR (DMSO-dg, 6 ppm): 8.11 (dd, 2H, J=8.9,5.4
Hz, aromatic protons), 8.00 (d, 2H, J = 8.5 Hz, aromatic protons), 7.89 (d, 2H, J = 8.8 Hz, aromatic
protons); 7.86 (dt, 1H, J = 8.8, 5.8 Hz, aromatic proton); 7.64 (d, 2H, J = 8.5 Hz, aromatic protons);
7.83 (d, 2H, J = 8.8 Hz, aromatic protons); 7.60 (m, 1H, aromatic proton); 7.38 (t, 2H, J = 8.9 Hz,
aromatic protons); 7.30 (m, 1H, aromatic proton); 4.99 (s, 2H, S-CH;-); BC-NMR (DMSO-dg, 0
ppm): 191.42 (C=0), 165.34 (d, Jc.r = 252.5 Hz), 163.36 (dd, Jc.r = 250.2, 11.8 Hz), 156.64 (dd,
Jor = 252.0, 13.4 Hz), 153.10 (C3-triazolic ring), 153.05 (C5-triazolic ring), 141.78, 139.58,
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132.99, 131.92 (d, Jer = 2.6 Hz), 131.59 (d, Jer = 9.6 Hz), 131.52 (d, Jor = 2.7 Hz), 130.86,
129.57, 129.15, 128.36, 128.13, 117.52 (d, Je.r = 9.4 Hz), 115.89 (d, Jer = 21.9 Hz), 113.57 (d,
Jer =20.0 Hz), 106.20 (dd, Jo.r = 235.0, 27.3 Hz), 40.33 (S-CH,-); (APCI-MS) m/z: 644 [M + H]';
m/z: 646 [M + H]"; 476 (31.9) [M + H-FCsH,COCHS]"; 478 (26.3) [M + H-FCsH4,COCHS]"; 137
(26.5) [FC¢H4COCH,]"; 137 (37.2) [FC¢H4COCH,]™; 123 (100, BP) [FCsH4CO]™; 109 (43.1)
[FC¢H4N]"; 109 (74.2) [FCsH4N]"; Anal. calcd for CogH 7BrF3;N3;0;S, (644.48 g/mol): C, 52.18; H,
2.66; N, 6.52. Found: C, 52.07; H, 2.57; N, 6.36%.

3.2. Antioxidant Activity

The antioxidant activity of all the synthesized compounds was evaluated by DPPH
method [14,38] with some modifications and compared with standards (AA, BHA and BHT).

The 400 uM solution of DPPH (2 mL) in ethanol was added to tested sample solutions (2 mL)
of different concentrations (50, 100, 125, 200, 250 and 500 uM) in acetone - ethanol 4:96 v/v. The
samples were kept in the dark at room temperature. After 30 min the absorbance values were
measured at 517 nm and were converted into the percentage antioxidant activity (%) using the
formula [48]:

% = {1 - [(Asample = Asampleblank) /Acontrol] x 100 3)

where Aconrol Was the absorbance of DPPH solution without sample, Agampie Was the absorbance
of sample solution with DPPH, Agmpieblank Was the absorbance of the sample solutions without
the DPPH.

All analyses were undertaken on three replicates and the results averaged. The ICs, values were
calculated by linear regression plots, where the abscissa represented the concentration of tested
compound solution (50, 100, 125, 200, 250 and 500 uM) and the ordinate represented the average
percent of antioxidant activity from three separate tests. The absorbance was measured on a
SPECORD 40 Analytik Jena spectrophotometer.

4. Conclusions

New hydrazinecarbothioamides, 1,2,4-triazole-3-thiones and S-alkylated 1,2,4-triazole
derivatives were synthesized and characterized by IR, 'H-NMR, *C-NMR and mass spectral data.
All the synthesized compounds 4-15 have been investigated for their antioxidant activity. Some
of these compounds were found to be significant scavengers of free radicals. The
hydrazinecarbothioamides 4-6 showed excellent antioxidant activity, more than the standards. 1,2,4-
Triazole-3-thiones showed good antioxidant activity, but lower than the key intermediates from
hydrazinecarbothioamide class, unlike S-alkylates derivatives that had very low action. These
results obtained by preliminary screening of antioxidant activity suggested that the molecules from
hydrazinecarbothioamide class might serve as interesting compounds for the development of new
antioxidant agents by synthesis of some new derivatives with this structure.
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3. InVitro/In Vivo Pharmacological Models

Perineural Dexmedetomidine Attenuates Inflammation in
Rat Sciatic Nerve via the NF-kB Pathway

Yan Huang, Yi Lu, Lei Zhang, Jia Yan, Jue Jiang and Hong Jiang

Abstract: Recent studies have shown that dexmedetomidine exerts an anti-inflammatory effect by
reducing serum levels of inflammatory factors, however, the up-stream mechanism is still
unknown. The transcription factor NF-kB enters the nucleus and promotes the transcription of its
target genes, including those encoding the pro-inflammatory cytokines IL-6 and TNF-a. In this
study, we established a rat model that simulates a clinical surgical procedure to investigate the anti-
inflammatory effect of perineural administration of dexmedetomidine and the underlying
mechanism. Dexmedetomidine reduced the sciatic nerve levels of IL-6 and TNF-a at both the
mRNA and protein level. Dexmedetomidine also inhibited the translocation of activated NF-kB to
the nucleus and the binding activity of NF-kB. The anti-inflammatory effect is confirmed to be
dose-dependent. Finally, pyrrolidine dithiocarbamate also reduced the levels of IL-6 and TNF-a
and the activation of NF-kB. In conclusion, dexmedetomidine inhibited the nuclear translocation
and binding activity of activated NF-«B, thus reducing inflammatory cytokines.

Reprinted from /nt. J. Mol. Sci. Cite as: Huang, Y.; Lu, Y.; Zhang, L.; Yan, J.; Jiang, J.; Jiang, H.
Perineural Dexmedetomidine Attenuates Inflammation in Rat Sciatic Nerve via the NF-«xB
Pathway. Int. J. Mol. Sci. 2014, 15, 4049-4059.

1. Introduction

Dexmedetomidine, a highly selective a2-adrenoceptor agonist, is widely used in clinical
anesthesia, intensive care unit (ICU) management and pain treatment as a sedative agent [1-3].
Recent studies found that dexmedetomidine has an anti-inflammatory effect through reducing the
serum levels of inflammatory factors, which may extend its application in the clinic [4—6].
However, the upstream mechanism by which dexmedetomidine reduces inflammatory factors
levels remains largely unknown.

The NF-kB family contains five members, RelA (also known as p65), RelB, c-Rel, p105/p50,
and p100/p52, which make homo- and heterodimers. NF-«B is a transcription factor that recognizes
a common consensus DNA sequence and regulates a large number of target genes, especially genes
involved in inflammation, injury and stress [7]. Interleukin (IL)-6 and tumor necrosis factor (TNF)-a
are cytokines that play essential roles in inflammation. Studies have shown that NF-kB exists as a
p65 and p50 heterodimer in the cytoplasm. Activated NF-kB enters the nucleus, where it can
promote the transcription of its target genes, including the pro-inflammatory cytokines IL-6 and
TNF-a. Pyrrolidine dithiocarbamate (PDTC), a selective NF-kB inhibitor and antioxidant, can
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inhibit the NF-kB pathway by blocking the entrance of activated NF-kB to the nucleus and the
binding of NF-kB to the promoter regions of IL-6 and TNF-a [8—10].

Peripheral nerve block is a common regional anesthetic technique performed everyday throughout
the world as an alternative to general anesthesia and is performed for postoperative analgesia [11-13].
Dexmedetomidine is usually injected in the peripheral nerve to prolong the duration of the peripheral
nerve block as an adjuvant for local anesthetics [14—17]. In this study, perineural administration of
dexmedetomidine not only blocked NF-«xB translocation to the nucleus and NF-xB binding activity
but also reduced IL-6 and TNF-a levels in rats. PDTC, an NF-kB inhibitor, can also reduce IL-6 and
TNF-a levels by inhibiting NF-xkB activity following perineural administration. In summary,
dexmedetomidine can inhibit inflammation through the NF-xB pathway.

2. Results

2.1. Perineural High Doses of Dexmedetomidine Reduced the IL-6 and TNF-o. Levels in the
Sciatic Nerve

Rats were anesthetized and injected perineurally with either a high dose of dexmedetomidine
(D, 20 pg/kg) or normal saline (C). Sciatic nerves were harvested 30, 60 and 90 min after
injection. Real-time PCR revealed that dexmedetomidine reduced the mRNA levels of both IL-6
and TNF-a at all of the examined time points (Figure 1A,B). The protein levels of both IL-6 and
TNF-o were significantly decreased after perineural injection of dexmedetomidine at all time
points, as shown by both ELISA (Figure 1C,D) and Western blotting (Figure 1E-G). These results
suggested that perineural injection of 20 ng/kg dexmedetomidine reduces the sciatic nerve levels of
IL-6 and TNF-a at the level of both mRNA and protein.

2.2. Perineural Dexmedetomidine Decreased NF-kB Translocation to the Nucleus and
Transcriptional Binding Activity

As previous studies have shown [16—-19], activated NF-kB should translocate to the nucleus and
bind to the promoter region of multiple genes, including cytokine genes, inducing the expression of
cytokine mRNA and protein. Thus, we assessed the effects of perineural administration of
dexmedetomidine on the nuclear levels of NF-kB in sciatic nerve tissue. The sciatic nerve tissues
were subjected to Western blot analysis for the total NF-kB protein level, and the nuclear extracts
were assessed for the nuclear NF-kB protein level. The Western blot of NF-«kB showed that
perineural administration of dexmedetomidine decreased the nuclear level of NF-kB compared
with the control group at 30, 60 and 90 min (Figure 2A,B), but no significant differences were
detected in the total level of NF-kB (Figure 2A,C). These findings indicate that perineural
administration of dexmedetomidine may prevent NF-xB translocation into the nucleus in the sciatic
nerve and thus may decrease the subsequent expression of inflammatory factors.

We then used EMSA to test the effect of dexmedetomidine on the transcriptional binding
activity of NF-kB in nuclear extracts prepared from sciatic nerve tissues [20]. In Figure 2D, lane 1
is a negative control (double-distilled water), lane 2 represents the control group with perineural
administration of normal saline, lane 3 represents the Dy group with perineural 20.0 pg/kg
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dexmedetomidine, and lane 6 shows the cold probe. We can clearly see that perineural
administration of 20.0 pg/kg dexmedetomidine reduced the transcriptional binding activity of
NF-kB compared with the control group.

Figure 1. Perineural high doses (20 pg/kg) of dexmedetomidine reduced IL-6 and
TNF-a levels in the sciatic nerve. (A,B) RT-PCR showed that high doses of
dexmedetomidine reduced the IL-6 and TNF-ao mRNA levels in the sciatic nerve; (C,D)
ELISA showed that high dose of dexmedetomidine reduced the IL-6 and TNF-a protein
levels in the sciatic nerve; (E—G) Western blotting showed that high dose of
dexmedetomidine reduced IL-6 and TNF-a protein levels in the sciatic nerve.
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Figure 2. Perineural administration of 20 pg/kg dexmedetomidine decreased the
translocation to the nucleus and transcriptional binding activity of NF-kB. (A) Western
blot showed that 20 ng/kg dexmedetomidine decreased NF-kB translocation into the
nucleus; (B) Dexmedetomidine (20 pg/kg) decreased the nuclear NF-kB protein level,
(C) Dexmedetomidine (20 pg/kg) did not alter the total NF-xB protein level; (D) EMSA
showed that 20 pg/kg dexmedetomidine decreased the transcriptional binding activity
of NF-xB (lane 3); PDTC also decreased NF-kB transcriptional binding activity
(lane 5). NF-«B, nuclear factor-kappa B; PDTC, pyrrolidine dithiocarbamate.
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2.3. Only High Dose Dexmedetomidine Attenuated the NF-kB Translocation to the Nucleus

Based on the above conclusions, we further tested whether different doses of dexmedetomidine
have the same effect on attenuating the translocation of NF-xkB. We further tested the Dy and D
groups, which received a middle dose and a low dose of dexmedetomidine (10.0 and 5 pg/kg,
respectively). Western blotting was used to analyze the total NF-kB protein level and the nuclear
NF-kB protein level. The results showed that only the high dose of dexmedetomidine (D)
attenuated NF-xB translocation to the nucleus, whereas the total and nuclear protein levels of
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NF-kB were unchanged in the Dy and Dy groups (Figure 3A—C). These results suggested that
perineurally administered dexmedetomidine attenuates the inflammatory response above a certain
threshold dose.

Figure 3. Only the high dose (20 pg/kg) of dexmedetomidine attenuated NF-xB
translocation to the nucleus. (A) Western blotting showed that only the high dose of
dexmedetomidine decreased NF-kB translocation to the nucleus; (B) The high dose of
dexmedetomidine decreased the nuclear NF-kB protein level, but the middle doses
(10 pg/kg) and low doses (5 pg/kg) did not have an effect; (C) Dexmedetomidine did
not alter the total NF-kB protein level in any of the groups. NF-kB, nuclear
factor-kappa B.
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2.4. The Inflammation of the Sciatic Nerve Could Be Attenuated by PDTC via the NF-kB Pathway

PDTC, a selective NF-kB inhibitor and antioxidant, inhibits the NF-«B pathway by blocking the
translocation of activated NF-kB to the nucleus [10]. Here, we assessed whether inflammation of
the sciatic nerve could be attenuated by PDTC via the NF-kB pathway in a manner similar to that
of dexmedetomidine. Western blot analysis confirmed that both the translocation of NF-xB to
nucleus and the downstream expression of IL-6 and TNF-a protein were down-regulated by
PDTC (Figure 4A—F). RT-PCR (Figure 4G,H) and ELISA (Figure 41,J) further confirmed the
down-regulation of the inflammatory factors IL-6 and TNF-a. EMSA showed that the
transcriptional binding activity of NF-kB was reduced by PDTC compared with the control group
(Figure 2D, lane 5). These changes were in accordance with our results with dexmedetomidine and
suggest that perineural administration of dexmedetomidine has a similar, or at least partly similar,
anti-inflammatory effect as PDTC, via the NF-kB signalling pathway.
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Figure 4. PDTC attenuated the inflammation of the sciatic nerve via the NF-xB
pathway. (A,C,D) Western blotting showed that PDTC decreased NF-kB translocation
into the nucleus; (B,E,F) Western blotting showed that PDTC reduced the IL-6 and
TNF-a protein levels in the sciatic nerve; (G,H) RT-PCR showed that PDTC reduced
the IL-6 and TNF-a mRNA levels in the sciatic nerve; (I,J) ELISA showed that PDTC

reduced the IL-6 and TNF-a protein level in the sciatic nerve.
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3. Discussion

Dexmedetomidine is widely used in clinical anesthesia as a most closely ideal sedative because
of its analgesia and sedation effects without respiratory depression [18-21]. Recent studies
found that dexmedetomidine has an anti-inflammatory effect by reducing the serum levels of
inflammatory cytokines, however, the upstream mechanism is still unknown [4—6]. In the present
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study, we used a surgical procedure and perineural injection to induce a background inflammatory
response (e.g., increasing IL-6 and TNF-a levels) in sciatic nerve tissue to investigate the
anti-inflammatory effect of perineural administration of dexmedetomidine and the underlying
mechanism. We found that, in the sciatic nerves of rats, perineural administration of 20 ng/kg
dexmedetomidine reduced the level of IL-6 and TNF-a, prevented NF-kB translocation to the
nucleus and decreased the transcriptional binding activity of NF-kB. These results, in accordance
with perineural administration of the NF-kB pathway inhibitor PDTC, suggested that dexmedetomidine
reduced inflammation by inhibiting the NF-«kB signaling pathway.

Dexmedetomidine is usually intravenously administered during clinical anesthesia as a sedative
agent. Currently, perineural administration of dexmedetomidine is widely used in peripheral nerve
anesthesia as an adjuvant for local anesthetics to prolong the duration of a peripheral nerve
block [3,17,22]. Here, we incised the skin and subcutaneous fat of rats to simulate the clinical
surgical procedure. We then exposed the sciatic nerve and injected dexmedetomidine to investigate
the inflammatory cytokine levels in the sciatic nerve tissue. As a result, we confirmed that
perineural administration of dexmedetomidine inhibited the translocation of activated NF-kB to the
nucleus and the binding activity of activated NF-kB, thus reducing the level of inflammatory
cytokines. The anti-inflammatory effect of perineural administration of dexmedetomidine may
extend its application in clinical anesthesia.

In a previous study [16], dexmedetomidine added to ropivacaine was shown to increase the
duration of the sensory block in a dose-dependent fashion, varying from 0.5 to 20 ug/kg, in rats.
Interestingly, in our study, NF-kB translocation to the nucleus was not inhibited in the Dy and Dy
groups (which received dexmedetomidine doses of 10.0 and 5 pg/kg, respectively), but the Dy
group (20 pg/kg) did show an effect. The results indicate that a dose threshold needs to be crossed
before an anti-inflammatory effect occurs. Furthermore, Brummett’s study confirmed that a high
dose of dexmedetomidine, up to 40 pg/kg, was considered safe for rats because the histopathological
evaluation showed that nerve axon and myelin were not altered by dexmedetomidine and there was
no neurotoxicity or side-effects for the rats [15]. Similarly, there was no neurotoxicity or
side-effect noted at 24 h or 14 days in our study. Based on these results, a high perineural dose of
dexmedetomidine may be recommended for routine use as an adjuvant for local anesthetics owing
to its anti-inflammatory and analgesia-prolonging effect.

4. Experimental Section

All of the investigators followed the Shanghai Ninth People’s Hospital Animal Study
Guidelines, and the study was approved by the Shanghai Ninth People’s Hospital Committee for
the Use and Care of Animals (Shanghai, China).

For blinding, all of the drug solutions were prepared in syringes without labels by an
investigator other than the one performing the perineural sciatic injection. The investigators who
harvested the tissue and performed the later Western blotting, real-time PCR, ELISA and EMSA
were also blinded to the study groups.
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4.1. Animals

Forty-eight Sprague-Dawley rats, weighing 180 to 220 g, were obtained from Shanghai Ninth
People’s Hospital SPF Animal Center (Shanghai, China). The rats were housed at 23 °C with a
light-dark cycle and allowed free access to food and water.

4.2. Study Groups

The Sprague-Dawley rats were divided into four groups for further intervention. Control group
rats received only normal saline. The Dy group received a high dose of dexmedetomidine
(20.0 pg/kg), whereas the Dy and Dp groups received a middle dose and a low dose of
dexmedetomidine (10.0 and 5 pg/kg, respectively).

4.3. Drug Preparation

An investigator who was not involved in either the perineural sciatic injection or the subsequent
analysis prepared the drugs. Dexmedetomidine and normal saline were used to make final drug
solutions. Each rat received a total volume of 0.2 mL for a perineural sciatic injection. The doses of
dexmedetomidine were based on the individual rats’ body weight for 20.0 pg/kg (Dy), 10.0 pg/kg
(Dwm), 5.0 ng/kg (D) respectively.

4.4. Animal Model and Perineural Injection

To investigate the anti-inflammatory effect of perineural administration of dexmedetomidine,
we established a rat model of surgical-induced inflammation. Rats were anesthetized and
maintained using 3.0% isoflurane. As previously described [15], an incision was made over the
thigh, and the muscle and fascia were dissected to expose the sciatic nerve directly below the clear
fascial covering. A total volume of 0.2 mL was injected into the perineural space below the clear
fascia covering the nerve using a 30-gauge needle and tuberculin syringe. After injection, the
muscle and skin of the thigh were sutured, and the isoflurane was discontinued. The animal model
of surgical-induced inflammation was confirmed by increasing the inflammatory factor, such as
IL-6 and TNF-a, after the surgical procedure.

4.5. Nuclear Extraction and Western Blotting

A nuclear extraction kit (Ab110168, Abcam, Cambridge, MA, USA) was used for the preparation
of nuclear extracts from sciatic nerve tissues. For Western blotting, frozen rat sciatic nerve tissues
were homogenized and the lysates were prepared in ice-cold lysis buffer. Nuclear extracts or total
protein were collected and normalized for equal amounts of total protein measured by the
bicinchoninic acid (BCA) method. Seventy micrograms of protein from each sample was separated
on a sodium dodecyl sulfate polyacrylamide gel and transferred to PVDF membranes. The
membranes were blocked with 5% nonfat milk and incubated overnight with primary anti-NF-xB
antibody (1:1000; sc-109, Santa Cruz, CA, USA), anti-IL-6 antibody (1:1000; ab6672, Abcam,
Cambridge, MA, USA), anti-TNF-a antibody (1:1000; AB1837P; Millipore, Billerica, MA, USA),
and anti-B-actin (1:5000, Sigma, St. Louis, MO, USA) at 4 °C, followed by incubation with the
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suitable HRP-conjugated secondary antibody for 4 h. B-actin protein was immunodetected as the
internal standard.

4.6. Real-Time PCR and ELISA

The levels of IL-6 and TNF-o mRNA were detected by real-time polymerase chain
reaction (RT-PCR) in the sciatic nerve tissues as described [11]. RNA was isolated following the
protocol of the RNeasy Mini Kit (Qiagen, Inc., Valencia, CA, USA), while concentration
determined using a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Wilmington,
DE, USA). Primers of Rat IL-6 is 5' -GACTGATGTTGTTGACAGCCACTGC-3' ; 5' -
TAGCCACTCCTTCTGTGACTCTAACT-3" , TNF-a 5' -TTC TGT CTA CTG AAC TTC GGG
GTG ATG GGT CC-3' ;5" -GTA TGA GAT AGC AAA TCG GCT GAC GGT GTG GG-3" and
Rat GAPDH 5' -CCT TCA TTG ACC TCA ACT AC-3' ;5' -GGA AGG CCA TGC CAG TGA
GC-3"' . RT-PCR was carried out using the QuantiTect SYBR Green RT-PCR Kit (Qiagen). The
quantity of the target mRNA was normalised against a house-keeping gene, GAPDH, which served
as an internal control.

The levels of IL-6 and TNF-a proteins in the sciatic nerve were measured using ELISA Kkits
according to the manufacturer’s instructions. ELISA kits for TNF-a and IL-6 were obtained from R
& D Systems (Minneapolis, MN, USA).

4.7. Electrophoretic-Mobility Shift Assay (EMSA)

An electrophoretic-mobility shift assay (EMSA) kit (GS-0030, Signosis, Santa Clara, CA, USA)
was used to assess the transcriptional binding activity of NF-kB as a previous study described [11].
The nuclear extract (5 mg) was incubated with 1 puL poly d(I-C), 2.0 uL 5% Binding Buffer and 1.0
pL of transcription factor (TF) probe in a 0.5 mL microcentrifuge tube at 2023 °C for 30 min in a
PCR machine. We added 1.0 pL of cold TF probe into this reaction for the cold probe control.
Samples were then loaded onto a 6.5% non-denaturing polyacrylamide gel and separated at 100 V,
and the proteins were transferred to a membrane at 60 V for 1 h at 4 °C. The membrane was
imaged using a chemiluminescence imaging system (Bio-Rad, Hercules, CA, USA).

4.8. Statistics

Data are shown as mean (SD). Student’s #-test, one-way and two-way analysis of variance
(ANOVA) were used to compare the differences among the experimental groups and the control
group. p < 0.05 (*) was considered statistically significant. The significance testing was two-tailed.
Normality tests showed that the data were normally distributed, and the GraphPad software Prism 5
(GraphPad Software Inc., San Diego, CA, USA) was used to analyze the data.

5. Conclusions

In conclusion, we have established a rat model that simulates a clinical surgical procedure to
investigate the anti-inflammatory effect of perineural administration of dexmedetomidine and the
underlying mechanism. Dexmedetomidine (20 pg/kg) inhibited the translocation of activated
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NF-kB to the nucleus and its binding activity, thus reducing inflammatory cytokine levels. These
results suggest a potential application for dexmedetomidine as an adjuvant in peripheral nerve
anesthesia. Future research should focus on finding clinical evidence to support the use of
dexmedetomidine as an anti-inflammatory adjuvant for perineural administration in humans.
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Inhibitory Effects of Palmultang on Inflammatory Mediator
Production Related to Suppression of NF-xkB and MAPK
Pathways and Induction of HO-1 Expression in Macrophages

You-Chang Oh, Yun Hee Jeong, Won-Kyung Cho, Min-Jung Gu and Jin Yeul Ma

Abstract: Palmultang (PM) is an herbal decoction that has been used to treat anorexia, anemia,
general prostration, and weakness due to chronic illness since medieval times in Korea, China, and
Japan. The present study focused on the inhibitory effects of PM on the production of
inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed
the expression of nitric oxide (NO), inflammatory cytokines and inflammatory proteins by
inhibiting nuclear factor (NF)-xB and mitogen-activated protein kinase (MAPK) signaling pathways
and by inducing heme oxygenase (HO)-1 expression. Collectively, our results explain the anti-
inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with
lipopolysaccharide (LPS).

Reprinted from Int. J. Mol. Sci. Cite as: Oh, Y.-C.; Jeong, Y.H.; Cho, W.-K.; Gu, M.-J.; Ma, J.Y.
Inhibitory Effects of Palmultang on Inflammatory Mediator Production Related to Suppression of
NF-kB and MAPK Pathways and Induction of HO-I Expression in Macrophages. Int. J. Mol. Sci.
2014, 15, 8443-8457.

1. Introduction

Palmultang (PM) is a traditional herbal medication that has been used since medieval times in
East Asia. Currently, PM is usually prescribed as an herbal medicine for the treatment of various
symptoms associated with body weakness. Previous studies demonstrated that PM was an effective
treatment for endometriosis [1]. In addition, a recent study revealed that PM has a beneficial effect
on reproductive function in female mice [2]. However, the effects of PM on inflammation and
inflammatory mechanisms still remain unknown.

Macrophages play a key role in the regulation of inflammatory and immune responses [3.,4].
Activation of macrophages is induced by LPS stimulation, and activated macrophages secrete
inflammatory factors, such as NO, prostaglandin (PG)E> and inflammatory cytokines [5,6]. NO and
PGE; are synthesized by inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2,
respectively, and the expression of iNOS is closely related to the induction of HO-1. HO-1 is a
stress-inducible protein that catalyzes the oxidative degradation of heme; two other heme
oxygenase isoforms, HO-2 and HO-3, have also been identified [7]. Enhancing the production of
HO-1 reduces the expression of iNOS and the level of free radicals [8].

NF-kB plays an important role in the expression of inflammatory genes. When unstimulated,
NF-xB is present in the cytoplasm attached to /kBa; NF-xB is released through degradation of /kBa
when induced by LPS [9]. Activated NF-xB can be transferred from the cytoplasm to the nucleus,
where it binds to promoters and induces the expression of various inflammatory genes [10,11].
MAPK signaling pathways play an important role in transmitting inflammatory signals [12] and
comprise extracellular signal-regulated kinase (ERK), p38, and c-Jun NH,-terminal kinase (JNK)
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pathways. MAPKs are activated by phosphorylation and induce activation of the NF-kB pathway
and expression of the iNOS gene.

In the present study, we evaluated the suppressive effect of PM on inflammation induced by
LPS in RAW 264.7 macrophages. Further, we researched whether the effects of PM on NF-«xB and
MAPK signaling pathways and on induction of HO-1 explain the anti-inflammatory mechanism
of PM.

2. Results and Discussion

2.1. PM Did not Show Cytotoxicity and Had Inhibitory Activity against NO and Inflammatory
Cytokine Production in Macrophages

In the present study, we demonstrated anti-inflammatory activity of PM in murine macrophages
stimulated with LPS. First, we investigated the cytotoxicity of PM in RAW 264.7 macrophages at
concentrations of 10-1000 pg/mL. As shown in Figure 1A, PM did not show cytotoxicity at
concentrations up to 1000 pg/mL, indicating that it is not toxic to macrophages. Based on this
result, we did experiments using up to 1000 ug/mL concentrations of PM.

The overproduction of NO is associated with various inflammatory diseases [13,14], so we
preferentially investigated the inhibitory effect of PM on the production of NO induced by
LPS stimulation. As shown in Figure 1B, the positive control, dexamethasone, which is known to
be an anti-inflammatory drug, exerted a strong inhibitory effect on NO production. In addition, we
discovered that PM dose-dependently repressed NO secretion to a statistically significant degree.
Notably, PM inhibited NO production by more than 70% at a concentration of 500 pg/mL.

Further, we examined the inhibitory effect of PM on the production of the pro-inflammatory
cytokines tumor necrosis factor (TNF)-a, interleukin (/L)-6 and IL-1f. Cytokine expression was
analyzed by ELISA and RT-PCR. PM did not inhibit 7NF-a secretion (Figure 1C) and did not
suppress the expression of TNF-oo mRNA (Figure 1F). By contrast, PM effectively inhibited both
IL-6 production and mRNA expression in a dose-dependent fashion (Figure 1D,F). Likewise, PM
strongly suppressed /L-1f cytokine and mRNA production at high concentrations (Figure 1E,F).

2.2. PM Strongly Suppresses Expression of iNOS but not COX-2 in LPS-Stimulated Macrophages
and Induces HO-1 Induction

Because COX-2 and iNOS are enzymes for PGE, and NO synthesis, respectively, we further
investigated the inhibitory effects of PM on COX-2 and iNOS expression using Western blots and
RT-PCR. As shown in Figure 2A, PM did not affect expression of COX-2 at the protein or mRNA
level. By contrast, PM showed a strong dose-dependent inhibitory effect on iNOS expression that
was statistically significant (Figure 2B). The inhibitory effect of PM on iNOS production was
believed to contribute to the suppression of NO secretion. These results indicate that PM has
inhibitory activity against the production of pro-inflammatory mediators.
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Figure 1. (A) The cytotoxicity of PM in RAW 264.7 cells. And the suppressive
effect of PM on (B) NO production and (C-F) TNF-a, IL-6 and IL-1f expression
induced by LPS stimulation in macrophages. RAW 264.7 cells were pretreated with
PM for 30 min before incubation with LPS for (A—E) 24 h or (F) 6 h. (A) Cytotoxicity
was determined using CCK; (B) The culture supernatant was analyzed for nitrite
production; (C—E) Production of cytokines was measured by ELISA and (F) mRNA
levels were analyzed by RT-PCR. RNA values were quantitated using the i-MAX™
Gel Image Analysis System (Core Bio, Seoul, Korea). As a control, cells were
incubated with vehicle alone. * p < 0.01 and ** p < 0.001 were calculated via
comparisons with the LPS-stimulation value.
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Increased HO-1 induction has a direct effect on iNOS expression [8]. Therefore, we investigated
whether the inhibitory effect of PM on iNOS expression was associated with increased HO-1

ILAP end
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production. We assessed HO-1 induction in PM-treated macrophages using Western blot and RT-
PCR analyses. First, we measured the induction of HO-1 at 3-24 h after treatment with 1000
pg/mL PM. Protein and mRNA levels of HO-1 were highest at 6 and 3 h, respectively (Figure 2C).
Based on the results in Figure 2C, we investigated HO-1 protein and mRNA expression at the
indicated time points. PM induced HO-1 expression at the protein and mRNA levels at concentrations
of 500 and 1000 pg/mL in a dose-dependent manner (Figure 2D). These results suggest that
pretreatment with PM inhibits NO and iNOS production by increasing HO-1 induction.
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Figure 2. Inhibitory effect of PM on expression of (A) COX-2 and (B) iNOS. And the
inductive effect of PM on (C,D) HO-1 in macrophages. Cells were treated with (A,B)
LPS alone or LPS plus PM for 24 h and (C,D) with PM alone for the indicated time
periods. Protein levels were determined by Western blot analysis, as described in the
Materials and Methods, and quantitated using the Davinch-chemi™ CAS-400SM
Chemiluminescence Imaging System (Core Bio, Seoul, Korea). Expression of mRNA
was analyzed by RT-PCR. * p < 0.01 and ** p <0.001 were calculated via comparisons
with the (A,B) LPS-stimulation value or (D) vehicle alone.
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2.3. PM Inhibited NF-kB Pathway Activation via Blockade of IkBa Degradation in Macrophages
upon LPS Stimulation

We demonstrated a repressive effect of PM on secretion of the inflammatory cytokine /L-6.
NF-kB is a key transcriptional factor associated with the cellular response to stimuli, such as
LPS [15-17] and with the production of NO, PGE,, inflammatory cytokines, and iNOS [18-20]. To
investigate whether the inhibitory effect of PM on the expression of inflammatory mediators is
associated with activity of the NF-«xB pathway, we measured the effect of PM on NF-xB activation
by analyzing translocation of p65 to the nucleus and the phosphorylation of /kBa. Western blot
analysis showed that PM significantly repressed translocation of p65 to the nucleus at a
concentration of 100 pg/mL or greater (Figure 3A). In addition, the phosphorylation level of /xBa
was depressed dose-dependently after PM treatment (Figure 3B). Thus, PM inhibited the nuclear
transcription of p65 by dose-dependently inhibiting /kBa degradation induced by LPS stimulation.
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These findings are consistent with previous studies showing that an NF-xB response drives the
expression of the iNOS and IL-6 genes [21-23].

Figure 3. Inhibitory effects of PM on (A) translocation of NF-kB to the nucleus and
(B) phosphorylation of /xBa. Cells were treated with LPS alone or with LPS and
PM for 30 min (/kBa) or 1 h (NF-kB). Proteins in the cytosol or nucleus were
analyzed by Western blotting. **p < 0.001 were calculated via comparisons with the
LPS-stimulation value.
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2.4. PM Suppressed LPS-Induced Phosphorylation of MAPKs in RAW 264.7 Cells

Because MAPKs activated by phosphorylation upon LPS stimulation are related to iNOS
expression and NF-xB pathway activation in macrophages [24], we examined the inhibitory effect
of PM on the phosphorylation of MAPKs. We assessed the phosphorylation levels of MAPKs,
including ERK 1/2, p38 and JNK. When RAW 264.7 cells were stimulated with LPS after
pretreatment with PM, the levels of phosphorylated ERK and JNK MAPK were significantly decreased
with no change in non-phosphorylated MAPK levels (Figure 4A,C). By contrast, PM showed only a
slight inhibitory effect on p38 phosphorylation (Figure 4B). These results indicate that the
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inhibitory effect of PM on the phosphorylation of MAPKs is directly related to inhibition of NF-«xB
activation and reduced production of inflammatory factors in RAW 264.7 cells.

Figure 4. Inhibitory effect of PM on the phosphorylation of (A) ERK; (B) p38 and
(C) JNK MAPK in macrophages. RAW 264.7 cells were treated with PM for 30 min
and then incubated with LPS for 30 min. Cell lysates were analyzed by Western
blotting using specific antibodies. ** p < 0.001 were calculated via comparisons with
the LPS-stimulation value.
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2.5. HPLC Analysis and Previous Reports on the Main Constituents of PM

HPLC-diode array detector (DAD) analysis conditions were successfully established for the
separation of peaks in PM extracts. The retention times of eight peaks were as follows:
5-hydroxymethylfurfural (5-HMF), 10.30 min; paeoniflorin, 27.22 min; albiflorin, 30.28 min; ferulic
acid, 35.20 min; nodakenin, 36.76 min; decursinol, 43.86 min; glycyrrhizin, 48.69 min; and
decursin, 60.93 min. Figure 5 shows chromatograms of the reference components and of a 60%
methanol extract of PM, with detection of eluents at 205 nm (for decursinol), 250 nm (for 5-HMF,
albiflorin, ferulic acid, nodakenin, glycyrrhizin, and decursin), 330 nm (for paeoniflorin), with
ultraviolet rays (UV) wavelengths selected according to the results of Figure 6. These compounds were
identified by comparing the retention time and DAD spectra with those of authentic standard

compounds. Peak purity checking and identification were conducted using a 190—400 nm UV scan
with a DAD.
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Figure 5. HPLC chromatograms of (A) a standard mixture and (B) PM at 250 nm.

1, 5-HMF, 10.30 min; 2, paeoniflorin, 27.22 min; 3, albiflorin, 30.28 min; 4, ferulic
acid, 35.20 min; 5, nodakenin, 36.76 min; 6, decursinol, 43.86 min; 7, glycyrrhizin,

48.69 min; and 8, decursin, 60.93 min.
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Figure 6. Chemical structures and HPLC DAD spectra of the main constituents of PM.
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Calibration curves were obtained using standard solutions containing 1.25-10,000 pg/mL for
5-HMF, ferulic acid, nodakenin, decursinol, glycyrrhizin, and decursin, 20-20,000 pg/mL for
peaoniflorin and albiflorin as marker components. Calibration curve showed good linearity
(#* > 0.9990). The limits of detection (LOD) and limits of quantification (LOQ) were 0.16-0.50 pg/mL
for 5-HMF, 0.22-0.68 pg/mL for ferulic acid, 0.13—0.40 pg/mL for nodakenin, 0.10-0.29 pg/mL
for decursinol, 0.63—0.19 pg/mL for glycyrrhizin and 0.45-0.12 pg/mL for decursin, 48.17-16.05
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png/mL for peaoniflorin, 3.30—10.00 pg/mL for albiflorin (Table 1). The amounts of compounds
1-8 (5-HMF, peaoniflorin, albiflorin, ferulic acid, nodakenin, decursinol, glycyrrhizin, and decursin,
respectively) were 11.09, 2.59, 2.30, 3.36, 8.23, 5.11, 0.36, and 1.17 mg/g, respectively. The
analytical results for each component identified are summarized in Table 2.

Table 1. Linearity, correlation coefficient, limits of detection (LOD), and limits of
quantification (LOQ) of the marker compound (n = 3).

Compound Linear Range Regression Equation * Correlation LOD" LOQ®
(ng/mL) Coefficient (/*) (ng/mL)  (ng/mL)

5-HMF 1.25-10,000 y=403917x — 87212 0.9993 0.16 0.50
Ferulic acid 1.25-10,000 y=273782x + 89791 0.9998 0.23 0.68
Nodakenin 1.25-10,000 y=239585x — 25958 1.0000 0.13 0.40
Decursinol 1.25-10,000 v =1598246x + 235041 0.9996 0.10 0.29
Glycyrrhizin 1.25-10,000 y=43887x + 38994 0.9991 0.63 0.19
Decursin 1.25-20,000 y=116410x + 1188529 1.0000 0.45 0.12
Peaoniflorin 20-20,000 y=1871.8x + 16715 0.9990 16.05 48.17
Albiflorin 20-20,000 y = 8026.8x + 6805.9 0.9993 3.33 10.00

* y = peak area (mAU) of the components, x = concentration (ug-mLfl) of the components;

® LOD = 3x signal-to-noise (S/S) ratio; © LOQ = 10x signal-to-noise (S/S) ratio.

Table 2. Content of the eight marker compounds of Palmultang (n = 3).

Content (mg/g)
Compound
Mean SD RSD (%)

5-HMF 11.09 0.35 3.11
Ferulic acid 2.59 0.00 0.15
Nodakenin 2.30 0.00 0.02
Decursinol 3.36 0.02 0.72
Glycyrrhizin 8.23 0.01 0.13
Decursin 5.11 0.00 0.01
Peaoniflorin 0.36 0.00 0.34
Albiflorin 1.17 0.03 2.41

A previous study reported that 5-HMF prevents TNF-o-induced monocytic cell adhesion to
human umbilical vein endothelial cells (HUVECs) by suppression of vascular cell adhesion molecule-1
expression, reactive oxygen species generation and NF-xB activation [25]. Additionally, it was
demonstrated that paeoniflorin suppresses TNF-a-induced chemokine production in human dermal
microvascular endothelial cells by blocking NF-xB and ERK pathways [26]. Another recent study
demonstrated that nodakenin exerts a suppressive effect on LPS-induced inflammatory responses in
macrophages by inhibiting TNF receptor-associated factor 6 and NF-xB pathways, and it protects
mice from lethal endotoxin shock [27]. A further recent study showed that glycyrrhizin inhibits NO
and PGE, production in a bimodal fashion [28]. Another study demonstrated that decursin inhibits
induction of inflammatory mediators by blocking NF-xB activation in macrophages [29]. These
facts suggest that the anti-inflammatory activity of PM might be related to active components of
PM, including 5-HMF, paeoniflorin, nodakenin, glycyrrhizin, and decursin.
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3. Experimental Section
3.1. Materials and Reagents

Products related to cell culture (RPMI 1640, fetal bovine serum (FBS) and antibiotics) were
purchased from Lonza (Basel, Switzerland). LPS and bovine serum albumin (BSA) were obtained
from Sigma (St. Louis, MO, USA). The Cell-Counting Kit (CCK) was obtained from Dojindo
Molecular Technologies, Inc. (Kumamoto, Japan). Various primary and secondary antibodies for
Western blot analysis were purchased from Cell Signaling Technology, Inc. (Boston, MA, USA).
Enzyme-linked immunosorbent assay (ELISA) antibody sets for cytokine detection were obtained
from eBioscience (San Diego, CA, USA). An RNA extraction kit was purchased from iNtRON
(Sungnam, Korea). DNA synthesizing kits and oligonucleotide primers were obtained from
Bioneer (Daejeon, Korea). 5-(Hydroxy-methyl)furfural (5-HMF) and ferulic acid were purchased
from Sigma (St. Louis, MO, USA). Paeoniflorin and glycyrrhizin were purchased from Tokyo
Chemical Industry Co., Ltd. (Tokyo, Japan). Decursinol was purchased from Elcom Science
(Seoul, Korea), nodakenin from Chem Faces (Wuhan, China), albiflorin from Wako (Osaka,
Japan), and decursin from the Ministry of Food and Drug Safety (Osong, Korea). The purity of all
representative standards was confirmed by high-performance liquid chromatography (HPLC) to be
higher than 97%. HPLC grade solutions, acetonitrile and trifluoroacetic acid were purchased from
J. T. Baker Inc. (Philipsburg, NJ, USA). Distilled water (DW) was filtered through a 0.45 pum
membrane filter from ADVANTEC (Tokyo, Japan) before analysis.

3.2. Preparation of PM Extract

PM is composed of eight medicinal herbs listed in Table 3. All herbs were purchased from
Yeongcheon Herbal Market (Yeongcheon, Korea). All voucher specimens were deposited in an
herbal tank, placed in 19,200 mL of DW and then extracted by heating for 3 h at 115 °C and under
high pressure (Gyeongseo Extractor Cosmos-600, Inchon, Korea). After extraction, the solution
was filtered using standard testing sieves (150 pum) (Retsch, Haan, Germany), freeze-dried and kept
in desiccators at 4 °C before use. The acquisition was 591 g and the yield was 30.8%. The freeze-
dried extract powder was then dissolved in DW, centrifuged at 14,000 rpm for 10 min and
supernatant was filtered (pore size, 0.2 um) and kept at 4 °C prior to use.

Table 3. Herbal components and amount of Palmultang (PM) decoction.

Herbs Amount of Herbs (g)
Ginseng Radix 240
Atractylodes Rhizome White 240
Poria 240
Glycyrrhizae Radix et Rhizoma 240
Angelica Gigas Root 240
Prepared Rehmannia Root 240
Peony Root 240
Cinidium Rhizome 240

Total weight 1920
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3.3. Cell Culture and Drug Treatment

RAW 264.7 cells were obtained from the Korea Cell Line Bank (Seoul, Korea) and grown in
complete RPMI 1640 medium. The cells were incubated in a humidified 5% CO, atmosphere at
37 °C. To stimulate the cells, the medium was replaced with fresh RPMI 1640 medium, and LPS
(200 ng/mL) was added in the presence or absence of various concentrations of PM (10, 100, 500,
and 1000 pg/mL) for the indicated time periods.

3.4. Cell Viability Assay

PM was added to the cells, which were incubated for 24 h at 37 °C in 5% CO,. CCK solutions
were added to each well, and the cells were incubated for an additional 1 h. The optical density was
then read at 450 nm using an ELISA reader (Infinite M200, Tecan, Mannedorf, Switzerland).

3.5. Determination of NO, TNF-a, IL-6 and IL-1p Cytokine Production

The cells were pretreated with PM and stimulated with LPS for 24 h. NO production was
analyzed by measuring nitrite using Griess reagent (1%  sulfanilamide, 0.1%
naphthylethylenediamine dihydrochloride, 2.5% phosphoric acid) according to a previous
study [30]. Secretion of the inflammatory cytokines 7NF-a, IL-6 and IL-1f was analyzed using a
mouse ELISA antibody set (eBioscience, San Diego, CA, USA). The inhibitory effects of PM were
determined at 570 and 450 nm for NO and cytokines, respectively, using an ELISA reader.

3.6. Preparation of Whole-Cell, Cytosolic and Nuclear Fractions and Western Blot Analysis

The expression of various proteins was analyzed by Western blot analysis according to standard
procedures. Cells were stimulated with LPS with or without PM for the indicated time periods at 37 °C.
After incubation, the cells were harvested and resuspended in radio immunoprecipitation assay
(RIPA) lysis buffer (Millipore, Bedford, MA, USA) containing protease and phosphatase inhibitor
cocktail (Roche, Basel, Switzerland) to obtain whole-cell lysates. Cytosolic and nuclear fractions
were isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific,
Rockford, IL, USA) according to the procedure described by the manufacturer. After cell debris
was removed by centrifugation, the concentration of protein was determined by Bradford’s method,
and equal amounts of protein were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). The proteins were transferred onto a nitrocellulose membrane
(Millipore, Bedford, MA, USA) and blocked with 3% BSA in Tris-buffered saline containing 0.1%
Tween 20 (TBS-T). The membrane was then incubated with each primary antibody at 4 °C
overnight, followed by incubation with HRP-conjugated secondary antibodies. The specific proteins
were detected using SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific,
Rockford, IL, USA).

3.7. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated using an easy-BLUE™ RNA extraction kit (iNtRON, Daejeon, Korea)
according to the procedure described by the manufacturer. ¢cDNA was synthesized using
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AccuPower” CycleScript RT PreMix (Bioneer, Daejeon, Korea). The sequences of specific primers
used for amplification by polymerase chain reaction are shown in Table 4. The following PCR
conditions were applied for TNF-a, IL-6, IL-15, COX-2, iNOS, HO-1, and B-actin: 35 cycles of
denaturation at 94 °C for 30 s, annealing at the temperature indicated in Table 4 for 30 s, and extension
at 72 °C for 30 s [30-34].

Table 4. Primer sequences and annealing temperatures used for RT-PCR analysis.

Target Gene Primer Sequence Annealing Temp

TNF. F: 5-AGCACAGAAAGCATGATCCG-3' 550
“ R: 5-GTTTGCTACGACGTGGGCTA-3'

1.6 F: 5-CATGTTCTCTGGGAAATCGTGG-3' 58 °C
R: 5'-AACGCACTAGGTTTGCCGAGTA-3'

IL-1p F: 5-TGCAGAGTTCCCCAACTGGTACATC-3' 64 °C
R: 5-GTGCTGCCTAATGTCCCCTTGAATC-3'

COX.2 F: 5'-CACTCAGTTTGTTGAGTCATTC-3' 45 °C
- R: 5'-GATTAGTACTGTAGGGTTAATG-3'

NOS F: 5'-"AGCCCAACAATACAAATGACCCTA-3' 56 °C
i
R: 5-TTCCTGTTGTTTCTATTTCCTTTGT-3'

HO-1 F: 5" TGAAGGAGGCCACCAAGGAGG-3' 6 °C
R: 5'-AGAGGTCACCCAGGTAGCGGG-3'

F: 5"-ATGAAGATCCTGACCGAGCGT-3'

[-actin 58 °C
R: 5-AACGCAGCTCAGTAACAGTCCG-3'

F, forward; R, reverse.

3.8. Preparation of Standard Solutions and Samples

An aqua 60% methanol standard stock solution containing compounds 5-HMF, ferulic acid,
nodakenin, glycyrrhizin, decursinol, peaoniflorin, albiflorin, and decursin (each 1 mg/mL) were
prepared and stored below —4 °C. Working standard solutions were prepared by serial dilution of
stock solution with aqua 60% methanol. All calibration curves were obtains from assessement of
peak areas of standards in the concentration ranges. A sample of 10 mg PM extract was prepared in
1 mL DW, extracted by ultra-sonication, and filtered through a 0.2 um syringe membrane filter
from Whatman Ltd. (Maidstone, UK) before injection into the HPLC system for analysis. Sample
solutions were stored at —4 °C in a refrigerator before analysis.

3.9. General Experimental Procedures

Analytical HPLC data were obtained using an L-2130 pump, L-2200 auto-sampler, L-2300
column oven and L-2455 UV/VIS DAD. The output signal of the detector was recorded using
EZChrom Elite software for the HPLC system (Hitachi, Tokyo, Japan). The OptimaPak Cig
analytical HPLC column (4.6 x 250 mm, 5 um; RS Tech Co., Daejeon, Korea) was used in
this study.
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3.10. Analytical Chromatographic Conditions
The mobile phase consisted of water containing (A) 0.1% trifluoroacetic acid and (B)
acetonitrile with gradient elution at a flow rate of 1.0 mL/min. The sample injection volume was

20 pL, and the flow rate of the mobile phase was 1.0 mL/min (Table 5). The column temperature
was maintained at 40 °C, and the wavelengths of the UV detector were set at 205, 250, and 330 nm.

Table 5. HPLC conditions used for the analysis of PM.

Item Condition
Time Water Acetonitrile
(min) (Containing 0.1% TFA)
0 5 95
. 5 5 95
Mobile phase 15 15 g5
25 15 85
50 65 35
60 65 35
Flow rate 1.0 mL/min
Inject volume 20 uL
Column OptimaPak Cg (4.6 x 250 mm, 5 um, RS tech Co., Daejeon, Korea)
Column temperature 40 °C
UV wavelength 205, 250 and 330 nm

3.11. Statistical Analysis

The results are expressed as mean + SE values. Statistical significance for each treated group
compared with the negative control was determined using the Student’s ¢ test. Each experiment
was repeated at least three times to yield comparable results. p values of <0.01 and <0.001 were
considered significant.

4. Conclusions

In conclusion, PM shows significant inhibitory effects on the secretion of NO and expression of
IL-6, IL-1p and iNOS in LPS-stimulated RAW 264.7 cells. These effects are due to inhibition of
NF-kB activation through suppression of /[kBa degradation and blockade of MAPK
phosphorylation. Furthermore, the induction of HO-I by PM inhibits inflammatory factor
production. These results show that PM could be developed as a new anti-inflammatory agent

derived from natural products.
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Colonization and Infection of the Skin by S. aureus:
Immune System Evasion and the Response to Cationic
Antimicrobial Peptides

Sunhyo Ryu, Peter 1. Song, Chang Ho Seo, Hyeonsook Cheong and Yoonkyung Park

Abstract: Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for
the great majority of bacterial skin infections in humans. The incidence of skin infections by S.
aureus reflects in part the competition between host cutaneous immune defenses and S. aureus
virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides
(CAMPs) such as the B-defensins and cathelicidin contribute to host cutaneous defense, which
prevents harmful microorganisms, like S. aureus, from crossing epithelial barriers. Conversely, S.
aureus utilizes evasive mechanisms against host defenses to promote its colonization and infection
of the skin. In this review, we focus on host-pathogen interactions during colonization and
infection of the skin by S. aureus and methicillin-resistant Staphylococcus aureus (MRSA). We
will discuss the peptides (defensins, cathelicidins, RNase7, dermcidin) and other mediators (toll-
like receptor, IL-1 and IL-17) that comprise the host defense against S. aureus skin infection, as
well as the various mechanisms by which S. aureus evades host defenses. It is anticipated that
greater understanding of these mechanisms will enable development of more sustainable
antimicrobial compounds and new therapeutic approaches to the treatment of S. aureus skin
infection and colonization.
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1. Introduction

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that can live as a commensal
organism on the skin and in the nose and throat. Approximately 30% of healthy people are
asymptomatically colonized by S. aureus, which permanently colonizes the anterior nares in 10%—-20%
of the population and intermittently colonizes 30%—50%; the rest of the population never becomes
colonized [1,2]. Importantly, this colonization is a known risk factor for infection [3-7], and
S. aureus causes a range of infections, from minor skin infections to abscesses, endocarditis and
sepsis. S. aureus is also a major cause of food poising induced by heat resistant enterotoxin A and
is a leading cause of nosocomial infections [2], as colonized healthcare workers can transmit the
pathogen to immunosuppressed patients. In addition, several cases of community-acquired
methicillin-resistant S. aureus (CA-MRSA) infections have been recently reported [8—10]. Notably,
these reports describe severe and even lethal infections by highly virulent strains of S. aureus in
immunocompetent individuals.

S. aureus is exposed to a large arsenal of highly efficient antimicrobial host factors during skin
colonization and infection. However, a growing number of dedicated resistance mechanisms
now contribute to the ability of S. aureus to evade host cutaneous defenses and survive during
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colonization [11,12]. Furthermore, Glaser et al. recently reported that S. aureus small colony
variants (SCVs) are less susceptible to the bactericidal activity of different human skin-derived
AMP, which are associated with a higher resistance to the killing activity of human stratum
corneum [13]. Both host cutaneous defense mechanisms and S. aureus virulence factors appear to
be the focus of actively ongoing co-evolution, leading to major variations between different host
species and bacterial strains, respectively [14,15]. Understanding how ones immune system
combats the evasion strategies of S. aureus could be useful for the development of novel and more
sustainable antimicrobial agents that are not subject to the evolution of microbial resistance.

While bacterial resistance to most available antibiotics is increasing and our knowledge about
the arsenal of host cutaneous defense strategies is growing, it is becoming increasingly attractive to
consider endogenous antimicrobial peptides (AMPs) as sources for more sustainable antimicrobial
agents. Of the variety of host defense molecules expressed by organisms, cationic AMPs (CAMPs)
have proven to be particularly promising for future development as new antimicrobials. This
review focuses on the role of host CAMPs in staphylococcal skin infections, and on the
mechanisms underlying S. aureus resistance to CAMPs.

2. Host-Pathogen Interactions during S. aureus Skin Colonization and Infection

The epidermis is composed of proliferating basal and differentiated suprabasal keratinocytes,
within which sweat glands, sebaceous glands and hair follicles are sparsely distributed. Langerhans
cells in the epidermis as well as dendritic cells, macrophages, mast cells, T and B cells, plasma
cells and natural killer cells in the dermis participate in immune responses within the skin. As
mentioned, approximately 30% of healthy individuals are colonized by S. aureus [16] through a
process that reflects the competition between host factors and commensal organisms that resist
colonization and S. aureus virulence factors that facilitate colonization and, possibly, subsequent
infection [17]. Among the constitutive properties of skin that help to prevent colonization and infection
by S. aureus are its low temperature and acidic pH [18,19]. For instance, an epidermal structural
component, filaggrin, is broken down during epidermal differentiation into urocanic acid and
pyrrolidone carboxylic acid [20]. These acidic breakdown products then not only contribute to the
low pH of the skin surface but also inhibit the growth of S. aureus and the expression of at least
two factors involved in S. aureus colonization, clumping factor B (CIfB) and fibronectin binding
protein A (FnbpA) [20]. In addition, commensal organisms such as S. epidermidis, P. acnes and the
Malassezia species are normally present on the skin surface occupying microbial niches and thus
preventing colonization and invasion by S. aureus and other pathogens [18,19]. Skin commensals
have also been shown to directly inhibit S. aureus colonization of skin and nasal mucosa. For
example, S. epidermidis secretes a serine protease, Esp, which inhibits S. aureus colonization by
destroying its biofilms [21]. S. epidermidis also produces phenol-soluble modulins (PSMy and PSM9),
which have direct antimicrobial activity against S. aureus [22] and activate toll-like receptor 2 (TLR2)
on keratinocytes, leading to production of CAMPs (e.g., human B-defensin 2 [hBD2], hBD3 and
RNase 7), which amplify the immune response and promote killing of S. aureus [23,24]. CAMPs
such as hBD2, hBD3, LL-37 (cathelicidin) and RNase 7, which are produced by keratinocytes in
the skin and corneal layer, have bacteriostatic or bactericidal activity against S. aureus [25-28], as
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evidenced by the observation that S. aureus colonization is increased in skin lesions caused by
atopic dermatitis due to reductions in the levels of B-defensins and cathelicidin [29].

To promote colonization of human nasal mucosa and skin, S. aureus expresses various factors
that facilitate skin surface binding and survival. To bind to host surface components such as
fibrinogen, fibronectin and cytokeratins, which are derived from epidermal keratinocytes or nasal
epithelium, S. aureus utilizes microbial surface components recognizing adhesive matrix
molecules (MSCRAMMSs), which include fibronectin-binding protein A (Fnbp A) and Fnbp B,
fibrinogen-binding proteins (CIfA and CIfB), iron-regulated surface determinant A (IsdA) and
wall teichoic acid [30-33]. S. aureus-mediated fibronectin and fibrinogen binding is also enhanced
by elevated levels of Th2 cytokines. For example, interleukin (IL)-4 is elevated in the skin lesions
of atopic dermatitis patients, which are highly susceptible to S. aureus colonization [31]. S. aureus
also produces superantigens such as staphylococcal enterotoxins A and B (SEA and SEB) and toxic
shock syndrome toxin-1 (TSST-1), which skew the cutaneous immune response towards the Th2
cytokines and thus contribute to the increased colonization of S. aureus in atopic dermatitis
patients [34]. In addition, S. aureus expresses factors that enable it to directly counter host CAMP
responses. For example, IsdA enhances bacterial cellular hydrophobicity, which renders S. aureus
resistant to bactericidal fatty acids in sebum and to -defensins and cathelicidin [35]. It also secretes a
protein, aureolysin, which is an extracellular metalloproteinase that inhibits cathelicidin antimicrobial
activity [36]. Virulence factors from S. aureus are also closely related with evasion from human
innate immune defenses [37]. In the following section, the mechanisms by which S. aureus inhibits
the activities of CAMPs will be described in detail.

3. Methicillin-Resistant S. aureus (MRSA) Infection

Antibiotic resistance is now recognized to be a serious hindrance to the management of
S. aureus. For instance, B-lactam antibiotics (e.g., methicillin) have proven unfavorable for the
management of toxic S. aureus infections, because even subinhibitory concentrations lead to
increased expression of a-toxin through a stimulatory effect on exoprotein synthesis [38—40].
Instead, protein-synthesis-suppressing antibiotics such as clindamycin and linezolid are
recommended for the treatment of S. aureus-induced toxicity syndromes, as concentrations below
the MIC impair expression of S. aureus virulence factors [41,42]. Clindamycin at a concentration
of 1/8 MIC inhibits the expression of a- and 6-haemolysin as well as coagulase [43]. In addition,
the expression of protein A is reduced when S. aureus is exposed to clindamycin at concentrations
below the MIC, leading to increased bacterial susceptibility to phagocytosis and suggesting
additional therapeutic efficacy [44]. However, clindamycin cannot be used to treat toxic MRSA
infections because MRSA is largely resistant to clindamycin.

MRSA infections are caused by strains of S. aureus that have become resistant to the antibiotics
commonly used to treat ordinary infections. Most MRSA infections occur in people who have been
in hospitals or other health care settings, such as nursing homes and dialysis centers. When it
occurs in these settings, it is known as health care-associated MRSA (HA-MRSA). HA-MRSA
infections are typically associated with invasive procedures or devices, such as surgeries,
intravenous tubing or artificial joints. However, another type of MRSA infection occurs in the
wider community, among otherwise healthy individuals. This form, community-associated MRSA
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(CA-MRSA) is spread by skin-to-skin contact. It often begins as a painful skin boil and generally
causes skin and soft tissue infections, but it is also capable of causing invasive disease such as
endocarditis, necrotizing pneumonia and sepsis [45-50]. HA-MRSA, by contrast, is considered a
nosocomial pathogen typically associated with invasive disease, such as bloodstream infections,
pneumonia, surgical site infections and urinary tract infections [45,51-53]. It is now recognized
that these two entities are genetically distinct. Isolates of HA-MRSA are likely to be resistant to
three or more antibiotic classes, whereas CA-MRSA is usually resistant only to B-lactams and
macrolides [47,51,53,54].

Resistance to methicillin is mediated in S. aureus by PBP2a, a penicillin-binding protein with a
low affinity for B-lactams. PBPs are membrane-bound enzymes that catalyze the transpeptidation
reaction, which is necessary for cross-linkage of peptidoglycan chains [55]. PBP2a substitutes for
the other PBPs and, because of its low affinity for all B-lactam antibiotics, enables staphylococci to
survive exposure to high concentrations of these agents. Thus, resistance to methicillin confers
resistance to all B-lactam agents, including cephalosporins. Expression of resistance in some
MRSA strains is regulated by homologues of the regulatory genes for blaZ. These genes, mecl and
mecR 1, regulate the mecA response to B-lactam antibiotics in a fashion similar to the regulation of
the blaZ response to penicillin by blaRl and blal. Katayama et al. demonstrated that mecA is
carried on a mobile genetic element and is part of a genomic island designated staphylococcal
cassette chromosome mec (SCCmec) [56]. To date, four different SCCmec elements varying in size
from 21 to 67 kb have been characterized [57]. Such islands may also contain additional genes for
antimicrobial resistance and insertion sequences, as well as genes whose function is uncertain.

As S. aureus isolates from intensive care units and blood cultures have become increasingly
resistant to greater numbers of antimicrobial agents [2,58], this has inevitably diminished the
number of effective bactericidal antibiotics available to treat these often life-threatening infections.
As rapidly as new antibiotics are introduced, staphylococci are developing efficient mechanisms to
neutralize them. Recent reports of S. aureus isolates with intermediate or complete resistance to
vancomycin portend a chemotherapeutic era in which effective bactericidal antibiotics against this
organism may no longer be readily available [59,60]. Consequently the need to identify new alternative
therapeutic targets and to develop novel drugs that can be used against these targets is increasing.

4. Human AMPs Effective against S. aureus

AMPs are a diverse group of polypeptides that are typically less than 50 amino acids in length
and exhibit bactericidal activity under physiologic conditions [61-63]. Most AMPs are cationic and
interact with the anionic microbial membrane leading to osmotic lysis [61-63]. Autolytic enzymes
induced by AMPs may also be associated with bacterial cell death [64]. Whereas some AMPs are
produced by keratinocytes and are normally present in the skin, others are induced during infection
and inflammation/wounding [65,66]. In this section, we will focus on the specific bacteriostatic or
bactericidal AMPs expressed by keratinocytes and by immune cells thought to contribute to host
defense against S. aureus (Table 1).
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Table 1. Cationic antimicrobial peptides (CAMPs) that contribute to human cutaneous
immune defenses against S. aureus.

Peptides Cellular source in the skin  Mechanism of S. aureus evasion References
Staphyloki MprF, ditABCD
a-Defensins Neutrophils aphyloxinase, ¥prts [67-73]
operon
Kerati t h
hBD2 eratmocytes, Macrophages, IsdA, ditABCD [26,29.35,74-76]
and dendritic cells
hBD3 Keratinocytes ditABCD operon [23,24,27,75-80]
hBD4 Keratinocytes Please check [81]
Kerati it 25,29,35,36,69,71—
LL-37 cratinocytes, macr.o PHAges, IsdA, Aureolysin, MprF, ditABCD [25,29,35,36,69,7
and neutrophils 73,75]
Extracellul t , ditABCD
Dermcidin Sweat glands xraceliuiat proteases [82—84]
operon
RNase 7 Keratinocytes ditABCD operon [24,28,61,76]

These include a-defensins (also called human neutrophil peptides [HNPs]), B-defensins
(hBD1-4) cathelicidin (LL-37), RNase7 and dermcidin [61-63]. These AMPs not only have
bactericidal activity against S. aureus, they also promote the recruitment of immune cells to sites of
infection. For example, HNPs promote recruitment of macrophages, T cells and mast cells through
a PKC-dependent mechanism [85], while hBD2 and hBD3 promote CCR6-mediated chemotaxis of
immature dendritic cells and memory CD4+ T cells and CCR2-mediated chemotaxis of
monocytes/macrophages [86,87]. In addition, LL-37 promotes chemotaxis of neutrophils,
monocytes and T cells by activating formyl peptide receptor-like 1 [88,89]. Through these various
mechanisms, AMPs enhance host defenses against S. aureus.

4.1. Defensins

Neutrophils express high levels of HNP1-3 and lower levels of HNP4, which together constitute
nearly 50% of the peptides within neutrophil granules [67]. HNP2 has the highest degree of
bactericidal activity against S. aureus, though HNP1, 3 and 4 also exhibit some activity against
S. aureus [68].

Most AMPs expressed in humans belong to the B-defensin family. These amphipathic peptides
have a B-sheet structure and are subcategorized according to the number and location of their
disulfide bridges [90]. Four well-characterized human p-defensins (hBD1-4) are expressed by
epithelial cells, including keratinocytes, as well as by activated monocytes/macrophages and
dendritic cells [62,63]. ABD1 is constitutively expressed, while #BD2 and hBD3 are inducible by
bacterial infection or cytokines [91]. hBD1 has no antimicrobial activity against S. aureus, while
hBD2 and hBD4 show weak bacteriostatic activity against S. aureus in vitro [26,81]. By contrast,
hBD3 exhibits strong bactericidal activity against S. aureus in vitro and in skin explants
ex vivo [27,77]. In keratinocytes, production of hBD2, hBD3 and LL-37 can be induced by live or
heat-killed S. aureus or by bacterial components such as lipopeptides and lipoteichoic
acid [74,75,78-80]. Activation of the epidermal growth factor receptor through wounding of
human skin also leads to increased hBD3 production, providing another mechanism for enhancing
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antimicrobial activity against S. aureus [66,92]. Finally, defensins induce production of cytokines,
including IL-8, and have chemotactic activity [93].

4.2. Cathelicidins

Cathelicidins are a family of AMPs whose named reflects their resemblance to the precursor
forms of the protein cathelin [94]. The N-terminal cathelin domain keeps the AMP precursor
inactive until proteolytic cleavage releases the active C-terminal peptide. Although they may vary
in structure, most mature cathelicidins are o-helical, amphipathic and cationic. Cathelicidin is
constitutively expressed in neutrophils and has potent bactericidal activity against S. aureus. It is
also called LL-37, referring its first two amino acids and total length of 37 amino acids [25,62,63].
Two other forms, RK-31 and KS-30, may be produced through alternative cleavage, especially on
the skin [95]. Both KS-30 and RK-31 show greater antimicrobial activity than LL-37 and also
differ from LL-37 in their ability to elicit cytokine release. Like defensins, LL-37 can induce both
chemotaxis and cytokine release [93].

Vitamin D may also play a role in host defense against S. aureus skin infections, since it induces
production of LL-37 in keratinocytes, neutrophils and monocytes/macrophages. However, the
link between vitamin D and host defense against S. aureus has yet to be demonstrated in the
skin [96-98].

4.3. RNase7

The cationic peptide RNase 7 is produced by many cell types, including keratinocytes, and has
bactericidal activity against a broad range of bacteria, including S. aureus [61,99]. The high levels
of RNase 7 present in the stratum corneum prevents S. aureus colonization of skin explants [28].

4.4. Dermcidin

Dermcidin is produced by human eccrine sweat glands and its processed forms have activity
against numerous bacteria, including S. aureus [82,83,100,101]. While the DCD-1L and DCD-1
processed forms of dermcidin are negatively charged [69], a further processed cationic form
(SSI-25) also shows antimicrobial activity, suggesting that charge is of no importance to the mode

of action of dermcidin-derived peptides [83].
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Figure 1. Toll-like receptor-mediated cutaneous immune response against S. aureus.
Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain containing
2 (NOD2), which are expressed by keratinocytes, respectively recognize S. aureus
lipopeptides/lipoteichoic acid and muramyl dipeptide. Both TLR2 and NOD?2 signaling
triggers the activation of nuclear factor-kB (NF-«kB), which leads to the production of
AMPs, cytokines, chemokines, adhesion molecules and granulopoesis factors, all of
which contribute to the cutaneous host defense against S. aureus.
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5. Cutaneous Host Defense Involving TLR-Mediated AMP Activity against S. aureus

Keratinocytes express pattern recognition receptors such as TLR2, which recognizes S. aureus
lipopeptides and lipoteichoic acid, and nucleotide-binding oligomerization domain containing 2
(NOD2), which recognizes the S. aureus peptidoglycan breakdown product muramyl dipeptide.
Both the TLR2 and NOD?2 signals lead to activation of nuclear factor-kB (NF-kB) and other
transcription factors that induce transcription of the proinflammatory mediators (cytokines,
chemokines, adhesion molecules and AMPs) involved in cutaneous host defense against S. aureus
(Figure 1) [102,103]. Upon cutaneous S. aureus infection, the epidermal barrier is breached and
keratinocytes and resident skin immune cells (e.g., Langerhans cells and yo T cells in the
epidermis, as well as dendritic cells, macrophages, fibroblasts, mast cells, B and T cells, plasma
cells and natural killer cells in the dermis) produce pro-inflammatory cytokines, chemokines and
adhesion molecules. These molecules promote the recruitment of neutrophils from the bloodstream,
which help to control the infection by forming an abscess. Neutrophilic abscess formation is a
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hallmark of S. aureus infections, which are typically pyogenic, and is required for bacterial
clearance. Pro-inflammatory cytokines also induce the production of AMPs (e.g., B-defensins and
cathelicidins) with bacteriostatic or bactericidal activity against S. aureus [104,105].

Figure 2. IL-1- and IL-17-mediated cutaneous immune response against S. aureus.
Infection of the skin by S. aureus leads to the production of IL-1a, IL-1p and IL-17,
which in turn triggers activation of nuclear factor-xB (NF-kB). These signaling
pathways lead to the production of AMPs, cytokines, chemokines, adhesion molecules
and granulopoesis factors, which recruit neutrophils from the circulation to the site of S.
aureus infection in the skin. The recruited neutrophils form an abscess that helps
control and limit the spread of the infection, and is ultimately required for bacterial
clearance. IL-1R1, interleukin-1 receptor 1; IL-17R, interleukin-17 receptor.
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6. Cutaneous Host Defense Involving IL-1- and IL-17-Mediated AMP Activity
against S. aureus

IL-1a, which is produced and released by keratinocytes, and IL-1p, which is produced by
resident and recruited immune cells (e.g., macrophages and dendritic cells), trigger activation of
NF-kB. These signaling pathways lead to the production of B-defensins 2 and 3, cathelicidins
and RNase 7. IL-1-mediated responses also result in the production of pro-inflammatory
cytokines, chemokines and adhesion molecules that promote the recruitment of neutrophils from
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the circulation to sites of S. aureus infection in the skin and abscess formation (Figure 2) [106]. In
addition to IL-1, recent studies have uncovered the critical role played by IL-17, which is
predominantly expressed by recruited T cell subsets (Th17 cells, NKT cells and yd T cells) and
natural killer cells in response to TLR2 activation. The IL-17 produced stimulates production of
B-defensins 2 and 3 and cathelicidins by keratinocytes and induces neutrophil recruitment via
induction of various chemokines (CXCL1, CXCL2 and IL-8) and granulopoesis factors (G-CSF
and GM-CSF) [107].

7. Mechanisms by Which S. aureus Evades Skin-Derived CAMPs

The importance of CAMPs in host cutaneous defense against S. aureus is evidenced by the
mechanisms that have evolved in S. aureus to resist and evade these peptides. As shown in
Figure 3, S. aureus counteracts CAMPs and antimicrobial fatty acids through at least four
mechanisms: (i) production of CAMP-binding molecules, like the fibrinolytic enzyme staphylokinase
(SAK), which binds to and inhibits a-defensins; (ii) proteolytic degradation of CAMPs by secreted
proteases such as aureolysin, which cleaves and inactivates LL-37; (iii) reduction of the bacterial
cell surface net negative charge by modification of teichoic acids using D-alanine or phospholipids
with L-lysine; and (iv) alteration of bacterial cell surface hydrophobicity [11,108]. In the following
sections, these mechanisms will be discussed in additional detail.

Figure 3. Strategies by which S. aureus evades CAMPs. S. aureus counteracts CAMPs
by secreting trapping molecules and proteases that inactivate CAMPs and by modifying
the cell membrane hydrophobicity or net charge [108].

7.1. Secretion of Extracellular CAMP-Binding Molecules

S. aureus resists a-defensins through the production of SAK, which binds human a-defensins
with high affinity, thereby mediating significant a-defensin resistance. In vitro, SAK levels
correlate inversely with the susceptibility of S. aureus isolates to a-defensins (Figure 3a) [70].

7.2. Proteolytic Degradation of CAMPs by Secreted Proteases

S. aureus and many other bacterial species produce peptidases and proteases capable of cleaving
CAMPs. In vitro, production of S. aureus protease correlates with staphylococcal resistance to
CAMPs [36]. For example, S. aureus produces a metalloproteinase, aureolysin, which cleaves and
inactivates LL-37 [36]. S. aureus also secretes extracellular proteases that degrade dermcidin,
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neutralizing its antimicrobial activity [84], and similar observations have been made with the
S. epidermidis protease SepA (Figure 3b) [84].

7.3. Resistance to CAMPs through Reduction of Bacterial Surface Net Negative Charges

CAMPs and most other antimicrobial molecules, including lysozyme, phospholipase A2 and
RNase5, have net positive charges. The surface of human cells is normally composed mainly of
uncharged or zwitterionic lipids, whereas bacterial surfaces are composed of various anionic
components, including as peptidoglycan, the phospholipids phosphatidylglycerol and cardiolipin,
lipid A, and teichoic acids, which give it an anionic net charge [109]. Presumably, antimicrobial
host factors have evolved to be cationic to achieve strong, selective affinity for the anionic
surfaces of bacteria. However, some bacterial species, like S. aureus, are able to reduce the
negative charge of their cell envelope, thereby becoming resistant to inactivation by many CAMPs
(Figure 3c) [69,71-73,110-112].

7.3.1. Modification of Phospholipids with L-lysine

To reduce anionic charge, S. aureus and other bacteria are able to modify most of their
phosphatidylglycerol with L-lysine [113]. The lysinylation of phosphatidylglycerol is mediated by a
membrane protein, multiple peptide resistance factor protein (MprF) [112,114], which neutralizes
the bacterial cell envelope and thus reduces susceptibility to many CAMPs, including o-defensins,
LL-37 and Group IIA-phospholipase A, [69,71,110,111].

7.3.2. Modification of Teichoic Acids with D-alanine

Products of the ditABCD operon attach positively charged D-alanine residues to negatively
charged phosphate groups in the backbone of teichoic acids, rendering bacteria less susceptible to
a-defensins and LL-37 [72,73]. Teichoic acids in S. aureus and other Gram-positive bacteria
consist of alternating glycerolphosphate or ribitolphosphate units, which are substituted with
N-acetyl-glucosamine or D-alanine [113]. These polymers are either anchored to the cytoplasmic
membrane (lipoteichoic acid) or to the peptidoglycan cell wall (wall teichoic acid) and are anionic
due to the presence of negatively charged phosphate groups. In a fashion similar to lysinylation of
phospholipids, modification of teichoic acids with D-alanine leads to a partial neutralization of the
polymer [73], which reduces the interaction of CAMPs with the bacterial surface, in turn reducing
the susceptibility to cationic host defense molecules, including a-defensins and LL-37 [73].
Consistent with this scenario, an S. aureus mutant lacking D-alanine in its teichoic acids (dltA
mutant) as well as clinical isolates expressing lower levels of d/tA showed greater susceptibility to
CAMPs, including dermcidin, RNase 7, hBD2 and hBD3 [76]. With dermcidin, cationic structures
in the N-terminal part of the peptide appear crucial for interaction with the negative bacterial cell
surface, which likely explains why D-alanylation influences its efficacy [83]. Also, several studies
in animal models have demonstrated that alanylated teichoic acids contribute to an increased
virulence of S. aureus [115-117].
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7.4. Resistance to CAMPs through Alteration of Bacterial Cell Surface Hydrophobicity

Human skin is rich in antimicrobial fatty acids produced by sebaceous glands. S. aureus
produces IsdA, which alters its surface hydrophobicity, thereby reducing the efficiency with which
fatty acids gain access to the cells [35]. Indeed, by decreasing cellular hydrophobicity, IsdA renders
S. aureus resistant to hBD2 and LL-37 on human skin (Figure 3d) [35].

8. Conclusions

S. aureus is a frequent component of human skin and nose microbiota. However, it can also
cause various skin diseases, sometimes leading to systemic infections. The ability of S. aureus to
colonize and infect the skin is apparently dependent on specific mechanisms that subvert host
cutaneous defenses. The existence of these multiple resistance mechanisms makes it clear that
CAMPs play a key role in the host cutaneous defense against S. aureus. Peschel et al. proposed the
coevolution of CAMP structures and bacterial resistance mechanisms, which has led to the
existence of the currently observed CAMPs [118]. One mechanism that renders CAMPs resistant to
degradation by proteases is stabilization through disulphide bridges [118]. Other modifications that
increase the efficacy of CAMPs include variation in the amino acid sequence, increases in the net
positive charge through incorporation of larger numbers of cationic amino acids, and combining
multiple antimicrobial mechanisms in a single molecule. These potential modifications of CAMPs
are reviewed in detail by Peschel and Sahl [118].

Ouhara et al. showed that several clinical isolates of MRSA strains exhibited reduced
susceptibility to the human LL-37 but not to the hBD3 [119]. The greater resistance to LL-37 is
based on the more positive net cell-surface charge in MRSA strains than methicillin-susceptible S.
aureus strains (MSSA). The fact that the efficacy of hBD3 appears unaffected may be due to its
more positive net charge, as compared to LL-37 (+11 vs. +6), which would favor stronger
interaction with the bacterial cell surface [119]. This suggests targeting highly conserved bacterial
CAMP resistance mechanisms such as lysinylation of phospholipids by MprF or the alanylation of
teichoic acids by dltABCD could be an effective treatment strategy. Moreover, in addition to its
essential role in mediating resistance to CAMPs [69,111], it appears MprF may dramatically reduce
the susceptibility of S. aureus to the novel lipopeptide antibiotic daptomycin [120,121]. Thus, new
therapeutics targeting CAMP resistance factors, like MprF, could not only render a pathogen
susceptible to host antimicrobial defense, but might also act synergistically to combat infections in
combination with currently available antibiotics. Although targeting resistance factors would not
directly inactivate S. aureus, it would render it more susceptible to CAMPs, thus assisting host
cutaneous defenses to successfully combat skin infections.

The increasing numbers of reports of virulent and drug-resistant strains of S. aureus prompt
further investigation into the mechanisms that enable this pathogen to cause infection and
overcome the broad spectrum of human cutaneous antimicrobial defenses. We anticipate that future
studies will provide further information about the host and bacterial determinants involved in skin
colonization and infection by S. aureus. Targeted drug development around highly conserved
bacterial resistance mechanisms against host CAMPs is a promising pharmacologic approach in
this era of highly virulent and drug-resistant strains of S. aureus.
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