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Preface

The finite element method is a widely accepted numerical procedure for solving
the differential equations of engineering and physics and is the computational
basis of many computer-aided design systems. The teaching of the fundamentals
of the finite element method is rapidly becoming a necessity in those curricula
which solve problems in the general areas of structural analysis, continuum
mechanics, heat transfer, and fluid flow.

This is an introductory textbook covering the basic concepts of the finite element
method and their application to the analysis of plane structures and two-
dimensional continuum problems in heat transfer, irrotational fluid flow, and
elasticity. The topics can be handled by advanced senior and beginning graduate
students and have been taught in a course at this level for 10 years. No prior
knowledge of structural analysis or the finite element method is assumed.

The major differences between this book and the first edition are the organiza-
tion, the inclusion of five new chapters that introduce the analysis of plane struc-
tures, an increase in the number of homework problems, and the use of Galerkin’s
method in conjunction with the solution of field problems.

The organization of the material is unique and makes the book more useful
as a teaching tool. The book consists of four parts: basic concepts, field problems,
structural and solid mechanics problems, and linear and quadratic elements. The
basic concepts cover six chapters and contain information needed to study field
problem and/or structural and solid mechanics applications. Once the basic
concepts have been completed, either Part Two, the field problems, or Part Three,
structural and solid mechanics, can be studied. These two sections of the book are
independent ; the students can study either part or chapters from both parts depend-
ing on their interests. Part Four, linear and quadratic elements, covers general
procedures for developing the element shape functions and numerically integrating
the element matrices. This part can be covered after some of the continuum applica-
tions have been completed.

The organization of the book offers the instructor at least three different teaching
options: (1) a general finite element course with topics selected from both field
and solid mechanics applications, (2) a course emphasizing the solution of field
problems, or (3) a course emphasizing the solution of solid mechanics problems.
The author teaches the first type of course and covers Chapters 1 through 11, 17,
18, 23, and 24 in approximately 40 lectures.



viii PREFACE

The chapters that introduce the analysis of plane structures are included for
agricultural and mechanical engineering students who need an introduction to
the matrix analysis of structures but who do not have time to take several civil
engineering courses to get the material. The displacement method of structural
analysis based on the principle of minimum potential energy is presented. This
formulation is consistent with the finite element analysis of elasticity problems.

Galerkin’s method has been used to solve the field problems because it is an
approach that is more readily accepted by seniors and beginning graduate students.
These students have not had any variational calculus; hence, the concept of a
functional is often quite mysterious to them. Galerkin’s method offers two primary
advantages. The inclusion of derivative boundary conditions is a straightforward
procedure, and the student will find that he or she has studied a method that can
be used to formulate differential equations with a first-derivative term. The dis-
advantage of Galerkin’s method is the surfacing of the interelement requirements,
which are never used and are somewhat difficult to explain away. It should be
noted, however, that the interelement requirements also occur in the variational
formulation when it is correctly applied. The variational method is not presented
correctly in most finite element books.

The number of homework problems has been increased to over 300 with most
chapters having at least 10 and many having 15 or more. The problems are a
mixture of numerical calculation, analytical derivations, or the evaluation of
important integrals and problems requiring a computer solution. A complete
solution manual is available from the publisher.

The finite element method must be implemented on a digital computer; there-
fore, four computer programs have been included. These programs are written
specifically for the beginning user and contain diagnostic checks to detect errors
made by first-time users. These checks are very efficient and eliminate most of the
student-instructor contact relative to finding data input errors.

I would like to thank the many students in MMMB809 who used the original
handwritten pages of this book as well as several typed versions. Their questions
and suggestions were an invaluable contribution and have influenced the complete
organization of the book as well as specific paragraphs within the text. 1 would

also like to thank my wife Donna for her patience during the writing of this manu-
script.

East Lansing, Michigan Larry J. Segerlind
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PART ONE
BASIC CONCEPTS

The first six chapters cover concepts basic to all applications of the
finite element method. These chapters should be covered before
going to the application chapters.




Chapter 1
INTRODUCTION

The finite element method is a numerical procedure for obtaining solutions to
many of the problems encountered in engineering analysis. It has two primary
subdivisions. The first utilizes discrete elements to obtain the joint displacements
and member forces of a structural framework. The second uses the continuum
elements to obtain approximate solutions to heat transfer, fluid mechanics, and
solid mechanics problems. The formulation using the discrete elements is referred
to as the “matrix analysis of structures” and yields results identical with the classical
analysis of structural frameworks. The second approach is the true finite element
method. It yields approximate values of the desired parameters at specific points
called nodes. A general finite element computer program, however, is capable of
solving both types of problems and the name “finite element method” is often used
to denote both the discrete element and the continuum element formulations.

The finite element method combines several mathematical concepts to produce a
system of linear or nonlinear equations. The number of equations is usually very
large, anywhere from 20 to 20,000 or more and requires the computational power
of the digital computer. The method has little practical value if a computer is not
available.

It is impossible to document the exact origin of the finite element method
because the basic concepts have evolved over a period of 150 or more years. The
method as we know it today is an outgrowth of several papers published in the
1950s that extended the matrix analysis of structures to continuum bodies. The
space exploration of the 1960s provided money for basic research, which placed the
method on a firm mathematical foundation and stimulated the development of
multiple-purpose computer programs that implemented the method. The design of
airplanes, missiles, space capsules, and the like, provided application areas.

Although the origin of the method is vague, its advantages are clear. The method
is easily applied to irregular-shaped objects composed of several different materials
and having mixed boundary conditions. It is applicable to steady-state and time-
dependent problems as well as problems involving nonlinear material properties.
General computer programs that are user-independent can be, and have been,
developed. User-assisting programs that generate a grid from a limited number of
shape-defining points are available as well as programs that analyze the results
and display them in graphic form for further study.

The finite element method is the computational basis of many computer-assisted
design programs. The increased use of computer-assisted design makes it impera-
tive that the practicing engineer have a knowledge of how the finite element
method works.
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1.1 SOLUTION OF BOUNDARY VALUE PROBLEMS

The best way to solve any physical problem governed by a differential equation
is to obtain the analytical solution. There are many situations, however, where the
analytical solution is difficult to obtain. The region under consideration may be so
irregular that it is mathematically impossible to describe the boundary. The
configuration may be composed of several different materials whose regions are
mathematically difficult to describe. Problems involving anisotropic materials are
usually difficult to solve analytically, as are equations having nonlinear terms.

A numerical method can be used to obtain an approximate solution when an
analytical solution cannot be developed. All numerical solutions produce values
at discrete points for one set of the independent parameters. The complete solution
procedure is repeated each time these parameters change. Numerical solutions,
however, are more desirable than no solution at all. The calculated values provide
important information about the physical process even though they are at discrete
points.

There are several procedures for obtaining a numerical solution to a differential
equation. The methods can be separated into three basic groupings: (1) the finite
difference method, (2) the variational method, and (3) the methods that weight a
residual. These methods are briefly discussed in the following paragraphs.

Finite Difference Method

The finite difference method approximates the derivatives in the governing dif-
ferential equation using difference equations. This method is useful for solving
heat transfer and fluid mechanics problems and works well for two-dimensional
regions with boundaries parallel to the coordinate axes. The method, however, is
rather cumbersome when regions have curved or irregular boundaries, and it is
difficult to write general computer programs for the method.

Variational Method

The variational approach involves the integral of a function that produces a
number. Each new function produces a new number. The function that produces
the lowest number has the additional property of satisfying a specific differential
equation. To help clarify this concept, consider the integral

_ H D dy 2
H—L [3(5) —Qy]dx (1.1)

The numerical value of TT can be calculated given a specific equation y= f(x).
The calculus of variations shows, however, that the particular equation y=g(x),
which yields the lowest numerical value for I1, is the solution to the differential
equation
d?y
D-Z4+0=
s +0=0 (1.2)

with the boundary conditions y(0)=y, and Y(H)=yy.
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The process can be reversed. Given a differential equation, an approximate
solution can be obtained by substituting different trial functions into the appropri-
ate functional. The trial function that gives the minimum value of I1 is the approxi-
mate solution.

The variational method is the basis for many finite element formulations, but
it has a major disadvantage: It is not applicable to any differential equation con-
taining a first derivative term.

Weighted Residual Methods

The weighted residual methods also involve an integral. In these methods, an
approximate solution is substituted into the differential equation. Since the
approximate solution does not satisfy the equation, a residual or error térm
results. Suppose that y =#k(x) is an approximate solution to (1.2). Substitution gives

d*h(x)

D
dx?

+0=R(x)#0 (1.3)

since y =h(x) does not satisfy the equation. The weighted residual methods require
that

JH Wi(x)R(x)dx=0 . (1.4)

0

The residual R(x) is multiplied by a weighting function W(x), and the integral of
the product is required to be zero. The number of weighting functions equals the
number of unknown coefficients in the approximate solution. There are several
choices for the weighting functions, and some of the more popular choices have
been assigned names.

Collocation Methed. Impulse functions W(x)=0d(x— X;) are selected as the
weighting functions. This selection is equivalent to requiring the residual to vanish
at specific points. The number of points selected equals the number of undeter-
mined coefficients in the approximate solution.

Subdomain Method. Each weighting function is selected as unity, W(x)=1, overa
specific region. This is equivalent to requiring the integral of the residual to vanish
over an interval of the region. The number of integration intervals equals the
number of undetermined coefficients in the approximate solution.

Galerkin’s Method. Galerkin’s method uses the same functions for Wj(x) that
were used in the approximating equation. This approach is the basis of the finite
element method for problems involving first-derivative terms. This method yields
the same result as the variational method when applied to differential equations
that are self-adjoint. Galerkin’s method is used to develop the finite element
equations for the field problems discussed in this book.
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Least Squares Method. The least squares method utilizes the residual as the
weighting function and obtains a new error term defined by

H
Er= .[ [R(x)]? dx (1.5)
0

This error is minimized with respect to the unknown coefficients in the approxi-
mate solution. The least squares method has been utilized to formulate finite
element solutions, but it is not as popular as Galerkin’s method and the variational
approach.

The variational method and the weighted residual methods each involve an
integral. These methods can be grouped under the heading of integral formula-
tions. A numerical solution based on an integral formulation is a new concept for
many people; therefore, some of the more common methods are illustrated by
solving a simple problem.

1.2 INTEGRAL FORMULATIONS FOR NUMERICAL
SOLUTIONS

The immediate objective is to illustrate how each of the integral methods discussed
in the previous section can be used to obtain an approximate solution to a physical
problem. The example is a simply supported beam subjected to concentrated
moments at each end. The beam and its bending moment diagram are shown in
Figure 1.1.

The governing differential equation is

2
El ‘L{ ~M(x)=0 (1.6)

dx

with the boundary conditions
y(0)=0 and y(H)=0 1.7)
MO | EI . }MO
( 77 7
[ H |
M(x) §
M(x)= M,
x

Figure 1.1. A simply supported beam with concentrated end moments.
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The coefficient EI represents the resistance of the beam to deflection and M(x) is
the bending moment equation. In this example, M (x) has the constant value M.

An approximate equation for the beam deflection is
X

H

where 4 is an undetermined coefficient. This solution is an acceptable candidate
because it satisfies the boundary conditions y(0)=y(H)=0 and has a shape similar
to the expected deflection curve. The exact solution of the differential equation is
M oX
2EI

p(x)=4 sin (1.8)

(x—H) 1.9)

yx)=

1.2.1 Variational Method
The integral for the differential equation (1.6) is

HIEI (dy\?

The value of 4 that makes (1.8) the best approximation to the deflection curve is
the value that makes IT a minimum. To evaluate 4, IT must be written as a function
of 4 and then minimized with respect to 4. Noting that

dy An cos X
dx H H

we find that IT becomes

HEI (An  =mx\? X
I'[=j0 L?(FCOSF) +MyA smﬁ]dx

or
EIn*\ , (2MoH
= — |4 1.11
3| ( 4H>A +( - ) (1.11)
Minimizing IT yields
onl . (EIn® 2MoH
—=2 A+ =0
0A <4H ) n
and
4MH?
-— — 1.12
A BEI (1.12)

The approximate solution is

4M,H?*  nx
y(x)= §in— 1.13
(x) n3EI sin H ( )
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1.2.2 Collocation Method

The collocation method requires that the residual equation for the approximate
solution be zero at as many points as there are undetermined coefficients. The
residual is obtained by substituting (1.8) into (1.6). The result is

2 X

y
R(x)=—E171nTsinﬁ ~ M, (1.14)

since
d*y An? sin ™
— = — ——= SIn —
dx? H? H

There is only one undetermined coefficient; therefore, R(x) is equated to zero at
one point between 0 and H. Selecting x = H/2 for convenience, we obtain

H An? @
R<—2‘)= "‘EITIT Slnz —'MO:O
and
MyH?
The approximate solution is
M()I'I2 nXx
=— in — 1
y(x) EIn2 sin i (1.16)

Had a point other than x=H/2 been selected, a different approximate solution
would have been obtained.

1.2.3 Subdomain Method

The subdomain method requires that § R(x) dx=0 over as many subintervals as
there are undetermined coefficients. The user can choose how long to make each
subinterval. In the present example there is only one unknown coefficient; thus
the interval must be [0, H]. The residual equation is (1.14); thus

H H An® @wx
R(x)dx= —FEI 2l sin =2 — —
L {x) dx L [ El g sin H Mo] dx=0

Integration yields

2EI=n

and

_ MH?
= SnEl (1.17)

INTRODUCTION

The approximate solution is
MoH? | nx (1.18)
Y=~ 5w " H

1.2.4 Galerkin’s Method

When using Galerkin’s method, § Wi(x)R(x) dx is evaluated using the same func-
tions for Wi(x) that were used in the approximate solution. In this example there
is only one weighting function, Wi(x)=sin nx/H. The residual equation is (1.14)
and the integral is
H  nx An?  mx
.[0 smF[—EIFsm—E —Mo]d.x=0

Integrating yields

EIn*A 2M H

=0
2H n
Solving gives
4M,H?
= — 1.19
n*El (L.19)
and the approximate solution is
AMoH?  7x
y(x)=-— “OF sin H (1.20)

This solution is identical to the solution obtained using the variational method.

1.2.5 Least Squares Method

A new error term, Er =§ [R(x)]? dx, is formed when using the least squares method.
Substitution of the residual equation gives

H["  EIn? nx 2
Er= J.o [— —-—Hz ASiI’lE—MO:l dx
Integration gives

Er= A+MEH

A*H (EIn*\* 4M,EIn
2 \ H? H
The error is minimized with respect to 4 producing

OE EIn*\} 4M,EIn
a_Ar=AH(H2> + =0 (1.21)

After solving for A4, the approximate solution is

4MoH?* nmx
yx)=-— 2EI sin " (1.22)
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Figure 1.2. Percentage error for the five approximate solutions for the simply
supported beam.

and is identical to the solutions obtained using the variational method and
Galerkin’s method, (1.13) and (1.20).

It is not possible to state which method is the most accurate. The error depends
on the approximating function and the equation being solved. Percentage error
curves for the different methods are given in Figure 1.2. It appears that equation
(1.22) is more accurate than either equation (1.16) or (1.18). However, it is possible
to find a collocation point which produces a maximum deflection that agrees with
the exact value (see Problem 1.16). The collocation points or subregions selected
affect the accuracy of the approximate solutions.

The important point to be gained from these examples is that the numerical
solution of a differential equation can be formulated in terms of an integral. The
integral formulation is a basic characteristic of the finite element method.

1.3 POTENTIAL ENERGY FORMULATIONS

The solution of solid mechanics problems, which includes the solution of two- and
three-dimensional elasticity problems as well as plate and shell structures, can be

INTRODUCTION 1

approached in several ways. The classical approach is to formulate the governing
differential equation and obtain the analytical solution. This does not work for
many problems because of difficulties in mathematically describing the structural
geometry and/or the boundary conditions. A popular alternative to the classical
approach is a numerical procedure based on a principle which states that the
displacements at the equilibrium position occur such that the potential energy of a
stable system is a minimum value.

A contributing term to the potential energy is the strain energy. This is the
energy stored during the deformation process. The strain energy is a volume
integral involving products of the stress and strain components. For example, the
strain energy in an axial force member is

A= I Tucbax 4y (1.23)
. 2

More will be said about the principle of minimum potential energy and strain
energy in later chapters. The important concept to realize now is that the dis-
placement analysis of structural and solid mechanics problems combines the
strain energy integral with a minimization process. Computationally, the analysis
of a truss or plate structure looks very similar to the variational and Galerkin
approaches of the previous section. The similarity should be apparent by the time
the reader has completed this book.

1.4 THE FINITE ELEMENT METHOD

The finite element method is a numerical procedure for solving physical problems
governed by a differential equation or an energy theorem. It has two characteristics
that distinguish it from other numerical procedures:

1. The method utilizes an integral formulation to generate a system of algebraic
equations.

2. The method uses continuous piecewise smooth functions for approximating
the unknown quantity or quantities.

The second characteristic distinguishes the finite element method from other
numerical procedures that utilize an integral formulation. Recall the approximate
solution used in the previous section, y =4 sin nx/H. This function is continuous
and has an infinite number of continuous derivatives. The finite element method
uses a continuous function but a function with only enough continuity in the
derivatives to allow the integrals to be evaluated. For an integral formulation such
as the variational method (1.10), no continuity is required in the first derivative.
The integral can be evaluated when the first derivative is piecewise continuous.
An equation composed of several linear segments can be used as the approximating
€quation.

A finite element model for the beam deflection problem considered in the
previous section might appear as shown in Figure 1.3. It could consist of several
linear segments defined in terms of the nodal values, as shown in Figure 1.3a.
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Discontinuous
slope

(b)

Figure 1.3. (a) A linear finite element model. (b) A quadratic finite element model.

The interval between each node would be considered an element, and the deflection
is approximated by straight-line segments. An alternate grid could consist of
three elements each defined by three node points as shown in F igure 1.3b. In this
case a quadratic equation is defined over each set of three points. In either case, the
equations y = f(x) or y =g(x) would not have a continuous first derivative between
any pair of adjacent elements.

Functions without continuous first-derivative terms can also be used with
Galerkin’s method. The second-derivative term, d2y/dx?, is modified using integra-
tion by parts.

The finite element method can be subdivided into five basic steps. These steps
are listed here and illustrated in the next two chapters.

1. Discretize the region. This includes locating and numbering the node points,
as well as specifying their coordinates values.

2. Specify the approximation equation. The order of the approximation, linear or
quadratic, must be specified and the equations must be written in terms of the
unknown nodal values. An equation is written for each element.

3. Develop the system of equations. When using Galerkin’s method, the weighting
function for each unknown nodal value is defined and the weighted residual
integral is evaluated. This generates one equation for each unknown nodal
value. In the potential energy formulation, the potential energy of the system
is written in terms of the nodal displacements and then is minimized. This
gives one equation for each of the unknown displacements. '

INTRODUCTION 13

4. Solve the system of equations.

5. Calculate quantities of interest. These quantities are usually related to the
derivative of the parameter and include the stress components, and heat flow
and fluid velocities.

1.5 OBJECTIVE AND ORGANIZATION

The objective of this book is to provide a basic introduction to the finite element
method as it is used to obtain solutions to heat transfer, irrotational flow and
elasticity problems, and the analysis of two-dimensional structural frameworks.
This book is not a comprehensive textbook on the finite element method. You
should, however, be able to read and understand more advanced books and the
technical literature once the material in this book has been completed.

This textbook contains many example problems and problem assignments.
The organization of the material has evolved over several years of teaching the
material to seniors and graduate students. The book is divided into four parts:
basic concepts, field problems, structural and solid mechanics problems, and
numerically integrated elements. Once the basic concepts have been covered, the
reader may turn to either the group of chapters covering the field problems or
those chapters discussing the structural and solid mechanics problems. These
two parts of the book are independent. The numerically integrated elements can
be covered after either the field problems or the mechanics problems have been
studied. Initial emphasis is placed on the linear elements because the matrices
for these elements can be evaluated using a hand calculator. The numerically
integrated elements should be covered only after the linear elements are thoroughly
understood.

A good knowledge of undergraduate mathematics, including some linear algebra,
is all that is necessary to handle the material in the first three parts. It is assumed
that the reader has a background knowledge in some of the application areas. A
limited knowledge of advanced calculus is needed to understand the numerically
integrated elements.

A comment on the matrix notation used in this book appears in Appendix I

PROBLEMS

1.1-1.5 Obtain an approximate displacement equation for the simply supported
beam of length H and section property EI shown in Figure P1.1. Assume
that the trial displacement equation is y(x)= 4 sin nx/H. Compare the deflec-
tion at the center with the theoretical value y = —5WH*/384EI. The govern-
ing differential equation is

2
Wx(H —
g4y _ WxlH—x)

dx? 2 0
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w . .
1.8 Evaluate A4 using the subdomain method.
* * + * * @ 0 * * *J 1.9 Evaluate 4 using Galerkin’s method.
%/, N E % 1.10-1.13 Obtain an approximate displacement equation for the simply sup-
be H | ported beam shown in Figure P1.10 using the trial solution y(x)= A4 sin nx/H.
WI(HTC)' Compare the deflection at the center with the theoretical value of y=
M(x) Mx=""7 PH?3/48EI. The governing differential equations are
d’y Px H
— - == <x<—
EI w2 0 O0<x 2
> X 2
Figure P1.1 d—y_f —x)=0 £< <H
Eldxz 2(H x) 7 SXS
1.1 Evaluate 4 by minimizing the integral
P
HI'EI (dy\* (Wx(H-x)
M= — = 7
LG5 e
y EI

1.2 Evaluate 4 by requiring that the residual vanish at (a) x=H 3, and —

(b) x=H/2. ) ! % 7
1.3 Evaluate 4 using the subdomain method. > x
1.4 Evaluate 4 using Galerkin’s method. <—H—J
1.5 Evaluate 4 using the least squares method. : :
1.6-1.9 Obtain an approximate displacement equation for the simply supported "

beam shown in Figure P1.6 using the trial solution y(x)=4 sin nx/H. _P
Compare the deflection at the center with the theoretical value y= M(x) M =2 M(x)=§<H_x)
—0.06415M,H?/EI. The governing differential equation is

@ Mox =0

dx* H ~ 0

Figure P1.10
. EI \l 4,
%/ %A 1.10 Evaluate 4 by minimizing the integrals
S

HEI(dy\? H12 Pxy P
In= L 7(5) dx+ L de-i— L/ZE(H—x)y dx
Evaluate A4 by requiring the residual to vanish at x=H/2.

1.12 Evaluate 4 using the subdomain method.

1.13 Determine the collocation point for which A4 is equal to the deflection at
. . the center of the beam, that is, 4 = — PH3/48E].

Figure P1.6 1.14 Obtain an approximate displacement equation for the simply supported
beam in Figure 1.1 using the equation

_M
Mx) M =72x L11

1.6  Evaluate 4 by minimizing the integral*

3nx
HTEI (dy\*  Mox (X)=A sin = + B sin 2>
= — = y(x)=4A sin sin
L|:2 Ix +H y]dx H H
1.7 Evaluate 4 by requiring the residual to vanish at (a) x=H/2, and (b) x= in conjunction with the variational method. Hint: Il must be minimized

with respect to both 4 and B.

0.577H.
1.15 Do Problem 1.14 by requiring that the residual vanish at x=H/4 and
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1.16

1.17

1.18

1.19
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x=H/2. Both points must be used because there are two unknown co-
efficients, 4 and B.

Determine the collocation points x/H for the beam in Figure 1.1 that yields
A=—M,H?/8EI (the correct value of the maximum deflection). Use
¥(x)=A sin nx/H as the approximate equation.

Evaluate 4 using y(x)=A(x?>—xH) for an approximate solution for the
beam shown in Figure 1.1. Use the variational method.

Evaluate 4 for the equation and beam in Problem 1.17 by applying the
collocation method at x=H/2.

Calculate the value of IT for the beam in Figure 1.1 using (1.10) and the
exact solution (1.9). Verify that the value for IT for the exact solution is less
than the value for the approximate solution (1.13). '

Chapter 2

ONE-DIMENSIONAL
LINEAR ELEMENT

Our immediate objective is to discuss the division of a one-dimensional region
into linear elements and to develop an element equation. The element equation is
then generalized so that a continuous piecewise smooth equation can be written
for the region. The linear element is used to obtain an approximate solution to
d*¢
dx?
in the next chapter. This element is also used to calculate the displacements in a
system of axial force members, Chapter 17.

D—+0Q=0 @.1)

21 DIVISION OF THE REGION INTO ELEMENTS

The one-dimensional region is a line segment and the division into subregions or
elements is quite straightforward. The line segment is divided into shorter segments
by using nodes (Figure 2.1). The nodes are usually numbered consecutively from
left to right as are the elements. The element numbers are enclosed in parentheses
to distinguish them from the node numbers.

There are some rules to guide the placement of the nodes when obtaining an
approximate solution to a differential equation.

Temperature

222

1) @ (3) 4

Figure 2.1 Division of a one-dimensional region into elements.
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1. Place the nodes closer together in the regions where the unknown parameter
changes rapidly and further apart where the unknown is relatively constant.

2. Place a node wherever there is a stepped change in the value of the coefficients
D and Q of (2.1).

3. Place a node wherever the numerical value of ¢ in (2.1) is needed.

The first rule requires that the user have some knowledge of how the unknown
parameter varies. This is where engineering experience enters the solution process.
The second rule is necessary because integrals that include the parameters D
and Q of (2.1) must be evaluated. The integrals are easier to -evaluate if the co-
efficients do not experience a stepped change within the interval of integration.

2.2 THE LINEAR ELEMENT

The one-dimensional linear element is a line segment with a length L and two

nodes, one at each end (Figure 2.2). The nodes are denoted by i and j and the nodal

values by ®; and ®;. The origin of the coordinate system is to the left of node i.
The parameter ¢* varies linearly between the nodes, and the equation for ¢ is

$=a;+ax (22)

The coefficients a; and a, can be determined by using the nodal conditions

¢=0, at x=X;

$=0; at x=X; (2.3)
¢
A

¢=al.+a>/'_'

I .

®;

| .

i| J
@X,' > L

X

Fugure 2.2 The one-dimensional linear element.

*The symbol ¢ is used throughout this text to denote a general scalar quantity. Uppercase symbols,
such as X, Y, ®, and U, denote nodal values.

ONE-DIMENSIONAL LINEAR ELEMENT 19

to develop the pair of equations

O, =a,+a,X;
<D,-=al+a2Xj (24)
which yield a; and a, as
(D,‘Xj—(Din
“h=ETY Y
J 13
®;— b,
= 2.5
=¥ X, 2:5)

Substitution of (2.5) into (2.2) and rearranging give

Xj——x X—X,'
¢=( 3 )(b,-+(——L )cb,. (2.6)

where X ;— X has been replaced by the element length L.

Equation (2.6) is in a standard finite element form. The nodal values are multi-
plied by linear functions of x, which are called shape functions or interpolation
functions. These functions are denoted by N with a subscript to indicate the node
with which a specific shape function is associated. The shape functions in (2.6)
are denoted by N; and N; with

— s
XJL" and N;=2"7 @7)

N,'=

Equation (2.6) can be rewritten as
¢=N,®;+N;0; (2.8)
and also as
¢=[N]{®} 2.9)

where [N]=[N; Nj;]is a row vector of shape functions and

-}
®;
is a column vector containing the element nodal values.

A few comments about the shape functions are in order. Each shape function
has a value of one at its own node and zero at the other node and the two shape
functions sum to one. A third characteristic is that the shape functions are always
polynomials of the same type as the original interpolation equation. Equation (2.2)
is a linear equation and the shape functions are linear equations. If the interpola-
tion equation had been a quadratic model defined by three nodes, the resulting
shape functions would have also been quadratic equations. Another characteristic
is that the derivatives of the shape functions with respect to x sum to zero. The
shape functions are shown in Figure 2.3.
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N, ,'(x)
A

Rl o
\
»

Nix)
A

—>X
X,‘ X]

Figure 2.3 The linear shape functions N, and N,

ILLUSTRATIVE EXAMPLE

A one-dimensional linear element has been used to a
<.11str1butlon in a fin. The solution indicates that the temperatures at nodes i and
Jj are 120 and 90°C, respectively. Determine the temperature at a point 4 cm from

the origin and the temperature gradient within the el i j
ement. Nodes i and
located at 1.5 and 6 cm from the origin in Figure 2.4. s

pproximate the temperature

o(x)
A ;= 120°C

®;=90°C

o 7 ~

6cm —>{
Figure 2.4. Nodal values for the example problem.

BASIC CONCEPTS

ONE-DIMENSIONAL LINEAR ELEMENT 21

The temperature, ¢, within the element is given by (2.6)
X;j—x x—X;
L Ror{e

X;=15cm X;=60cm
D, =120°C ®;=90°C
x=40cm L=45cm

6—4 4-15
¢=(4.5 )120+( 45 )90

The element data are

Substitution yields

¢ =103.3°C
The temperature gradient is the derivative of (2.6)
dp O;—;
oL (2.10)
Substituting the nodal values, we obtain
d¢ (90—120 .
d—x—( 15 )-—6.67 C/cm

2.3 A CONTINUOUS PIECEWISE SMOOTH EQUATION

A continuous piecewise smooth equation for a one-dimensional region can be
constructed by connecting several linear equations with the properties developed
in the previous section. Each of these equations can be written as

49— N, + N0, @11)
where
N(ie)= J and N(_e)=_—l (2.12)
X,— X, TTX X,

The superscript (¢) indicates an element quantity. All that is needed to complete
the process is to insert the correct values of i, j, and e for each element. The values
of i and j for a corresponding e are obtained from the grid. Node i is the left-hand
node of an element. The element information for the grid in Figure 2.1 is

e i J
1 1 2
2 2 3
3 3 4
4 4 5
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The equation for each element in Figure 2.1 is

PI=N{ID, + NP,
PO = NP, + NPD,
0= NP3+ NP,
¢ =NPb, + N

(2.13)

Note that N&) and N are different equations even though both involve node
two. The equations for these two quantities are
X— X1

X3—x
NP =—"_"_ and NP =3
XZ_XI X3_X2

Realize that each equation of (2.13) is for a single element and is not applicable
outside the element. The first equation should be written as

¢(l)=N(11)(D1+N(21)q)2 XI SXSXZ

but the range of x is deleted in most of the finite element literature and is deleted
in this book. Whenever an element equation is given, the implication is that it is
valid for only a single element.

24 A COMMENT ON NOTATION

The need to denote element quantities occurs on most of the pages of this book.
The following notation is used so that a superscript (e) does not have to be placed
on every coefficient.

1. When brackets or parentheses have a superscript (e), that is, (G¢ + Q) then
every term within the brackets or parentheses should be interpreted on an
element basis.

2. A quantity on the left-hand side of an equal sign with a superscript (e) implies
that the quantities on the right-hand side of the sign are for a particular element.
For example,

¢©=N,®;+ N;®;

implies that N; and N; are really N and N!{°, and that ®; and ®; are the
element nodal values.

PROBLEMS

2.1 The nodal coordinates X; and X; and the nodal values of ®; and ®; for
several linear elements are given below. Evaluate ¢ at the given value of x.
The x values are in centimeters, and ®; and ®; are in degrees Celsius.
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@ 0.8 0.0 L5 60 43

(b) 3.6 30 45 27 33
© 71 6.5 15 63 51
d) 1.8 0.5 30 0 —15
(e 22 1.0 30 60 67

2.2 (a-¢) Evaluate d¢/dx for the corresponding element in Problem 2.1.
2.3 The shape functions for the quadratic element shown in Figure P2.3 are

2
Ni=—2(x—Xj)(x—Xk)
L
4
Nj=— —E(X—Xi)(x_xk)

2
Nk=z2‘(x—Xi)(x_Xj)

(a) Show that these shape functions equal one at their own node and are
zero at the other two nodes. Also show that the shape functions sum to one.

(b) Show that the derivatives of N, N, and N, with respect (o x sum to zero.

&(x)
A
&,
j ®,
®;
J k

i
l<—X; ——)I(—-%—)(——
X;

J

Xk 1
Figure P2.3

2.4 The implementation of the finite element method requires the evaluation
of integrals that contain the shape functions or their derivatives. Evaluate
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X XjdN, dN, X;
@) J Nidx  (b) J’~4dx (c)J N? dx
X; X; dx dx X;

for the linear element. .

2.5 The coordinate s shown in Figure P2.5 has its origin at node i and a value
of L at node j. Develop the shape functions N;(s) and Nj(s) starting with
¢(s)=a, +a,s and solving for a; and a,.

o(s)
%

o(8)=a; +ays

Figure P2.5
2.6 The coordinate £ shown in Figure P2.6 is a natural coordinate whose origin
is at the center of the element. The value of £ at nodes i and jis | and —1,

respectively. Develop the shape functions Ny(¢) and N;(¢) starting with
&(&)=a, +a,¢ and solving for a; and a,.

()

(&)= ay +ay¢

®;
}——)f

.®

H
¢=-1 £
Figure P2.6

oo

2.7 The beam element shown in Figure P2.7 has two vertical displacements,
v; and vj, and two rotations, 0; and 0;, defined at the end points. The dis-

placement equation is

25
oNE-DlMENSlONAL LINEAR ELEMENT

v=a, +a,x+asxt +agx’
where
3 1 P
a,=v;, a3=i7(vj_vi)— Z(26i+ i)
2 1
(12=0i, a4=i—3(v,~—v,~)+fz—(9,-+0j)

Develop the shape function equations for the interpolation equation

vo(x)=N;v;+ N28;+ N3v;+ Nab;

u{x)
v; ij
r! Lo x
N <,
- .
Figure P2.7

2.8 The equation for ¢(x, y)ina two-dimensional rectangular element shown in

Figure P2.8 is
P(x, y)=Cy + Cas+ Cat+ Cast

< L

Figure P2.8



26

BASIC CONCEPTS

The coefficients are

1
C1 =(b1, C3=E((bm—d)i)

t
: (D—d;+0
L,L, i—®;+ k_q)m)

s

1
C; ~L (®;—D:), Cy=

wherg ®;, ®;, d,, and d,, are the nodal values of ¢. Develop the shape function
equations for the interpolation equation

d)(x, y):N,(bl+ de)j+Nk(bk+qu)m

Chapter 3

A FINITE ELEMENT
EXAMPLE

The shape function information developed in Chapter 2 is general information
that can be used in solving solid mechanics problems as well as differential equa-
tions. The objective in this chapter is to illustrate the finite element method by
developing an approximate solution for the one-dimensional differential equation
d*¢
Ddx2 +0=0 3.1

with the boundary conditions

d0)=0, and P(H)=dy (3.2)

Two physical problems are embedded within (3.1): the deflection of simply sup-
ported beams when the bending moment diagram is known and heat flow through
a composite wall when the surface temperatures are known.

The finite element equations are obtained using Galerkin’s formulation. Evalua-
tion of the residual integral yields a nodal equation that is applied in a recursive
manner to generate a system of linear equations. The nodal equation is used to
solve a beam deflection problem.

The reader whose immediate interest is the analysis of structural frameworks
may substitute Chapters 17 and 18 for Chapters 3 and 4. Chapters 3 and 4, how-
ever, should be read before beginning Part Two of the book.

3.1 WEIGHTING FUNCTIONS

A system of linear equations is generated by evaluating the weighted residual

integral* o ,
- J W(x) (DM+Q> dx=0 (3.3)

0 dxz

using a new weighting function for each node where ¢ is unknown. Galerkin’s
formulation of the weighted residual method requires that the weighting functions
be constructed using the shape functions N; and N;. The weighting functions in the
Galerkin finite element formulation are defined as follows: The weighting function
Jor the sth node, W,, consists of the shape functions associated with the sth node.

*The integral has been multiplied by a negative one so that the results can be written in a more con-
venient form.
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2)

N X;<x<X, 3.4)
In general,
N@® X, <x<X
VVS — s rYYAXAg
(x) {N;e+ 1) X,<x<X, (3.5)

Figure 3.1. The weighting function for node three.
W(x)
1 Nl(l)
1
1 2
oz ]

(@)
W(x)

Ns(e) Née +1)
€ (e+1)

r s t
F‘-— L@—)—*(— L+ D —>’

ngp— 1)
(p—1)

-1 p

ad ACRRVE o

(©

Figure 3.2. The weighting functions for (a) the first node, (b) an interior node,

and (c) the last node.
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This function is occasionally called a hat function for reasons apparent in Figure
3.2b. The weighting functions for the first and last nodes are shown in Figure 3.2a4
and 3.2¢. The respective equations are

Wi(x)=N{V and W,(x)=N¥-D (3.6)

The weighting function for every node consists either of N;, N, or a combination
of the two.

3.2 THE WEIGHTED RESIDUAL INTEGRAL

After defining the weighting functions, the next step is to evaluate the residual
integral (3.3). Using the sequence of nodes r, s, and ¢ in Figure 3.2b, we find that

(3.3) becomes
Xs d 2¢ (e)
R=R{P+RE V=~ j [NS (D ] +Q)] dx

X 2 e+ 1
- J [Ns <D Qﬁu Q)]( 'dx=0 (3.7)
Xs dx

because W;=0 for x< X, and x> X,. The integral splits into two parts because
Wi(x) is defined by two separate equations within the interval X, <x<X, The
terms R(® and R*! represent the contributions of elements (¢) and (e+1) to
the residual equation for node s.

There is a problem associated with each integral in (3.7). The approximate
solution does not have continuity in the first derivative d¢/dx; therefore, the
integral of d?¢/dx? is not defined. This difficulty can be circumvented, however,
by changing d>¢/dx? into a new term. Consider the first integral in (3.7) and note
that

d d¢ d*¢ dN.d¢
d_x(Ns d‘x>— & ax ax G8)
Then
d*¢ d dp\ dN;d¢
sm*d—x(Ns a) dx dx (39)
Substituting into the integral gives
Xs d2¢ (e) ( do (@) | Xs
-J.X' (NSDW) dx=— DNSE X,
Xs ( dN,d¢\®
+ L, (D I E) dx (3.10)

A similar set of operations applied to the first term of the second integral in
(3.7) produces
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X

X, dzd) (e+1) dd’ (e+1)
- ND—— =— o—
L, ( dx2> dx (DN dx Xs

X, st d¢ (e+1)
D R
+ LS ( Ix dx dx (3.11)

The first terms in each of (3.10) and (3.11) simplify because the shape functions
are either zero or one at the respective nodes. The complete residual equation is

H dZd)
R=RO+RE == [ W (D] L +0)x
o dx

d¢ (e)
=—|D-L
( dx) x=Xs
Xs dN, d¢ (e)
+ .[X' (D d_x E —NSQ) d.x
(e+1)

+(p%)

dx x=Xs

X/ dN,d e+ D)
X dx dx

The pair of terms evaluated at x= X establishes an interelement requirement.

The residual cannot be zero until the difference between these two quantities
is zero.

3.3 EVALUATION OF THE INTEGRAL

Evaluation of the integrals in (3.12) yields the residual equation for an interior

node. The equations for the first and last nodes can be obtained from these opera-
tions and are left as exercises.

Starting with element (e)

¢(e) =N,P,+ N,

Xs— _Xr
¢‘”=<—L’—C)®,+<x 7 )(Ds (3.13)
Thus
o X—X, dN© 1
N§)=—L—, I (3.14)
and
d (e) 1
Z’x =Z(—<l>,+<l>s) (3.15)

3
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Substitution of the appropriate terms and evaluating the integrals gives

Xs dN,d¢ D (3.16)
CNsTY dx=—(—D,+dy)
Jer dx dx x L(
and
Xs oL
L QN dx==- (3.17)

Equations (3.16) and (3.17) are combined with the interelement contribution for
element (¢) to give

a9\ b oL 3.18
©@=—\D— +=(—D,+P)— 5 (3.18)
Rs <D dx) =X, L( 2
Proceeding with the second integral of (3.12)
¢(e+1)=Nsd)s+Nt(Dt
X,—x x—X,
AR - 1) (3.19)
pov=( o (e
Thus o 1
yern_Xeox AN T 2 (3.20)
s~ L’ dx L
and
‘—w(e+l)=l(—d>s+<b¢) (3.21)
dx L
Evaluation of the integrals yields
X dNgd¢ D 322)
S dx=—(0;— D) G.
L{s b dx dx x L( !
r' N, dx=2E (3.23)
X, 2
and
L
R“ﬂf”_—.DdJZ +2(<Ds—»<b,)— oL (3.24)
y dx x=Xs L 2

Combining (3.18) and (3.24) gives the residual equation for node s

d¢’ (e+1) _(Dd_(_é)(e)
R;=(Dd—x> =X, dx
D\© D\®@ D\etD —(I_))(e+1)
ey G
__(g&)ﬂ_(%)(r'. 1)=0 (325)
2 2

x=Xs
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The usual solution procedure is to generate the system of equations without the
interelement terms. Once the equations have been solved,

dd; (e+1) d¢ (e)
- — D‘
(D dX) x=X; dx

can be calculated. Theoretically, the value of (3.26) can be used to evaluate the
quality of the grid and to indicate where the grid should be refined. A practical
way to implement this idea, however, has not been developed.

Equation (3.26) does contain some important information. If D =D** ") then
the interelement requirement reduces to

d¢ (e+1) dd) (@)
<d-x) x=XS_(Zi;>

There must be continuity in the slopes before the residual is zero. This continuity
can never be attained with a linear element unless the solution is a straight line.
The value of (3.27) becomes smaller as the grid is refined, but it is never zero for
all of the nodes.

The interelement requirement (3.26) can be viewed as an error term similar to
the one associated with finite difference approximations. The error term is not
incorporated into the system of equations. It is, however, a constant reminder that
the solution is only approximate.

Deleting the interelement requirement from (3.25), assuming a sequential
numbering of the nodes and elements, and writing all quantities in terms of s
gives the nodal residual equation

D (s—1) D (s—1) D (s) D (s)
S R

oL (s—1) L\
_(T> ‘(QT) =0 (3.28)

3.4 ANALYSIS OF A SIMPLY SUPPORTED BEAM

The general residual equation, (3.28), obtained by evaluating the weighted residual
integral is now used to obtain approximate deflection values for a simply sup-
ported beam subjected to concentrated end moments.

The beam in Figure 3.3 has been reinforced over the center one-half of its span
through the use of steel plates that are welded to the basic section. The beam data,
its bending moment diagram, and the finite element model are given in the figure.

The governing differential equation for the deflection curve is

d2
El % —M(x)=0

(3.26)

x=Xg

(3.27)

x=Xg

(3.29)

where EI is a bending stiffness term composed of the elastic modulus of the material,
E, N/cm?, and the area moment of the cross section, I, cm*. The internal bending
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Yy

EI = 2.4(10Y%) N-cm? 10 N-cm
106 ( l: N )=

-

% N gr=4(101) N-;Z ﬁz
|<—2 m—>l<———4 m’>‘<—2 m——>{

M(x)
108 N-cm
0 [—‘
o @ 3) - @
1 2 3 4 5

Figure 3.3 A simply supported beam subjected to concentrated end moments.

moment, M(x), is in N-cm and y is the deflection, cm. The boundary conditions

are y(0)=y(800 cm)=0. . .
Comparing (3.29) with (3.1) yields the relationships D=EI and Q=—M(x)=
—10°. The element data for the beam are summarized as follows (the element

length must be in centimeters).

e D Q L

1 2.4(10)!° —-10° 200
2 40(10)° —10° 200
3 4,0(10)'° —10° 200
4 24(10)*° —10°8 200

Since Q and L have constant values, (3.28) simplifies to

— —D¢ VY, +(D(s_ 1 +D(S))Ys—D(s)Ys+1 _QL=0 (3.30)
o L
where Y has been used to denote the nodal deflection values. '
Writing the residual equation for nodes two, three, and four gives
R,=—12Y;+3.2Y,—20Y; 4+2=0
R3 = 20Y2 +4.0Y3 - 20Y4 +2=0
R4=—2.0Y3+3.2Y4—1.2Y5+2=0 (3.31)

after the 10® multiplier has been canceled. Incorporation of the boundary con-
ditions Y; = Y5 =0 produces

R,= 32Y,—-20Y; =-2
R3= _2.0Y2+4.0Y3—20Y4= —'2
Re= —20Y;+32Y,=-2 (3.32)
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which yields
Y,=-250cm, Y;=-30cm, and Y,=-250cm

when solved.

The solution of (3.32) for Y,, Y3, and Y, would appear to end the example. There
are many situations, however, where there is a need to calculate quantities per-
taining to a particular element once the nodal values are known. A couple of items
are calculated here to illustrate the procedures.

The first calculation involves determining the deflection at x=300 cm. This
point occurs in element two (see Figure 3.3); thus

YyP=NPY,+NPY,
X3—x x—X2
=2 | h+ =2 ) 7
(Xs—Xz) : (Xs—Xz> 3

Noting that X, =200 cm and X ;=400 cm, and using the calculated nodal values,

we find that
400— 300 300—200
¢ =<—400 = 200) (=230+ (—400—200) (=39

1

For the second calculation, the slope at node one is evaluated. This node is

located in element one; therefore, using (2.10), we obtain —

dy® 1 —250-0

& —p T h =0

The slope is constant within the element. The constant slope property is a major
isadvantage of the linear elements.

The beam deflection problem solved in this section was selected because of the
governing differential equation. The reader should not leave this chapter with the
idea that all beam deflection problems should be solved this way. There is a more
efficient method that involves a specific beam element. This element is covered
in the structural mechanics part of this book (Part Three).

= —0.0125 cm/cm

3.5 MATRIX NOTATION

Some comments relative to the system of equations (3.32) are in order. It is both
convenient and orderly to use matrix notation when working with a system of
equations. One way of writing (3.32) in matrix notation is

R 32 =2 0 7(n) [-2] (o
Ryp=|-2 4 =2 [{Y3p—1-2r=10 (3.33)
Rs o -2 320ln) -2} lo
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This set of equations is written symbolically as

{R}=[K]{Y}-{F}={0} (3.34)
where { R} is the vector of residual equations,
32 =2 0
[K]=]|—2 4 =2 ’ (3.35)
0o -2 32
is called the global stiffness matrix, and
-2
{F}=1-2 (3.36)
-2

is called the global force vector. The terms stiffness and force come from the
matrix analysis of structures. The stiffness matrix, [K], is symmetric when jthe
system of equations has a potential energy formulation or a Galerkin formulation

of a differential equation that is self-adjoint.

PROBLEMS

3.1 (a) Obtain the final system of finite element equations for the nodal deflec-
tions of the stepped beam shown in Figure P3.1.

(b) Solve the equations in (a) and calculate the deflection at x=3H/16.

y
Mo EI 2EI k\ MO
5[ %/
}—) x
H l. H

%1 ’ll’ 2 | q ""
B <) NN ¢ R ) BRI ) B
1 2 3 4 5

Figure P3.1

3.2 The differential equation D' d2¢/dx*=0 is applicable to each section of
the composite wall shown in Figure P3.2, where D@ is the thermal con-

ductivity. Calculate the nodal temperature values within the wall and(s)valuate
the heat flow through each material. The heat flow is given by g=—D"" d¢/dx.
A unit of surface area is assumed.
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Figure P3.2

3.3 Perform the calculations in Problem 3.2 for the configuration shown in

Figure P3.3.
=1 g 4
AN y
D=2 m\; /D=02 et
// 10°C

N\

DM

L

.
-+

@1 2 @
*0——o—»
12 3
Figure P3.3

| NANNNNNNNRN

E-

3.4 Start with (3.28) and develop and solve the system of finite element equations
for an approximate solution to the differential equation d’¢/dx*+(Q =0
using the value for Q and the boundary conditions given in the following
table. Divide the interval [0,2] into four elements, each with a length of
0.5 cm. The nodes and elements are numbered as shown in Figure P3.4.
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Q (0) ¢Q)
(a) 4 0 3.0
(b) 6 1 20
(©) -3 2 0.5
(d) 2 -1 1.5
) -5 3 -20
¢
3
(1) 2 3) )

5

2 3 4
<—05 o.s—»L——o.s—»L——o.s—»
2

Figure P3.4

® ° Py ° . x
.
1

3.5 Evaluate the residual equation for node one using the weightir.lg function
shown in Figure 3.2a. Note that the answer is the same as (3.24) with (e+ 1)=
(1), s=1,and t=2. .

3.6 Evaluate the residual equation for node p using the weighting function shown
in Figure 3.2¢. Note that the answer is the same as (3.18) with (¢)=(p—1),
r=p—1, and s=p.

3.7 Evaluate the contribution of

JHWde

0

to the Galerkin residual equation R; when Q varies linearly over an element

Qx)

1\

Qs
Q/

r

R () e+l

r s t

Figure P3.7
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3.8

3.9

BASIC CONCEPTS:

(Figure P3.7). The equation for Q(x) in each element is
Q(e)zN'{e)Qr+N§e)Qs
Q(e+1)=N§e+l)Qs+Nt(e+l)Qt

where Q,, Q,, and Q, are the nodal values of Q. Note that (X,— X;)}=
X2 -3X2X,+3X, X2 - X3.

The residual equation for a uniform grid and a linear variation of Q(x)

between nodes is given by
_D(S— I)YS_ + [D(s- l)+D(S)]YS_D(S)YS+ '
L

Qs—l+4Qs+Qs+1)=
6

Use this equation to obtain the nodal displacements for the beam shown in
Figure P3.8. The governing differential equation is

d*¢
dx?
and M(x) is given in the figure. Each element is 200cm long; EI=
2(10'°)N - cm?.

R,=

—L( 0

El —M(x)=0

-J000 N

¢y . (2)# ©)] ~ G} ~
1 2 3 4 5
M 4(10%) N-cm
> X
Figure P3.8

Use the residual equation in Problem 3.8 to obtain the nodal displacements

for the beam shown in Figure P3.9. The governing differential equation is
d’¢

and M(x) is given in the figure. Each element is 300cm long; EI=

2(10'%)N - cm?.

A FINITE ELEMENT EXAMPLE

12000 N

|

[ 1
&
‘(—3 m T< 9m ‘!
(1) 2) 3 4) _
1 2 3 4 5
M(x)

2.7(10%) N-cm

N

Figure P3.9
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Chapter 4

ELEMENT MATRICES:
GALERKIN FORMULATION

The computer implementation of the finite element method parallels the com-
puter solution of structural frameworks. The matrix analysis of structures places
the emphasis on the element. The system of equations is constructed by calculating
the element’s contribution and placing the values into their correct positions.
within the final system of equations. The final set of equations emerges after ali of
the elements have been considered.

The objective in this chapter is to determine the element contributions to the
final system of equations and show where these contributions are located. Matrix

notation is used, and an element stiffness matrix and an element force vector are.

defined for the differential equation analyzed in the previous chapter.

There are three points to keep in mind as the element matrices are developed.
First, the residual equations are always arranged in numerical sequence, that is,
Ri, Ry, ..., Rp—1, R, where there are p nodal values. Second, the nodal values
®,, ¥,,...,d, are arranged sequentially within an equation. Third, an equation
is developed for each node. The boundary conditions are incorporated after all of
the equations have been developed.
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The discussion starts by defining a column vector {R}. Each component of {R}
represents a residual equation. The vector is

Ry
R,
{R}=q: .1)
R,_
RP
where R; is the residual equation for node B. The residual equation is further
subdivided into element contributions. For example, R is the contribution of
element (¢) to the residual equation for node .
The weighting functions for a four-element grid are shown in Figure 4.1. Analyz-

ing these functions from an element point of view rather than an equation point
of view shows that element three contributes nonzero values to equations three and
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Wi(x)

1

N
1) 2) €)) ()]

3 C))
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Mm @ (©) 4) .
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Wi(x)
| M‘
4
ﬁ(l) . @ . e 4 .~ x
Ws(x)

1 Né‘”
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= & N - . 2
L g >

Figure 4.1 The weighting functions for a four-element grid.

four. Its contribution to equation three is

Xa d2¢
RY =— J N (D:i?-*- Q) dx 4.2)

X3

while its contribution to equation four is

Xaq d2
RY= - j Ng (D—2+ Q) dx @43)
X3 dx
Element three contributes nothing to the other equations because every weighting
function except W; and W, are zero in element three.

The results for element three can be generalized. Given an arbitrary element
with nodes i and j (Figure 4.2), we find that it contributes

R9=- JX] Ni(x) (D ° + Q) dx 4.4)

X, dx*



42 BASIC CONCEPTq

Wi(x)
1
-, N(e)
Vd i
R
_ (e)
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i J
Wi(x)
1
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Figure 4.2. The weighting functions for element (e).

to equation i and

o__ [ noond?
Rj =— J Nj(x) (D d—z-'—Q) dx (45)
X; X
to equation j.

The integrals in (4.4) and (4.5) were evaluated in Chapter 3. The first integral,
R, is equivalent to R€* Y, (3.24), with s=i and t = j whereas R is the same as
R, (3.18), with r=i and s=j. Using (3.18) and (3.24) gives

do D oL
R®=p=~ (. —d)— 2=
; Ddx x=X,-+L((DI ;) 3 (4.6)
do D oL
R¥=-p-* —(—P; i)— —— |
J x|y, LTS (“7)

Equations (4.6) and (4.7) can be written as
R (1™ D[ 1 —-1]{®;] oL (1
Wit e el e

(RO} ={1) + [k (0} — {19} 49)

where {R®)} is the contribution of element (e) to the final system of equations. |
This contribution consists of an element stiffness matrix [£'] and an element
force vector { f)}. The other vectors are

-l

which is the column vector of nodal values and

or
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d
© D_d)
(e) Ii dx x=X;
{19} = (= i 4.10)
I d¢
-D=L
dx x=Xj

which is the element contribution to the interelement requirement. Equation (4.10)
is deleted from the discussion except when derivative boundary conditions are
specified at node one or p for the reason given relative to (3.26) and (3.27).

The element matrices are the important results and they are

o D[ 1 -1
[k )]zz[_l 1] @.11)

n QL1
(f@) _T{l} 4.12)

The element stiffness matrix is the matrix that multiplies the column vector of
nodal values, {®©}. Equations (4.11) and (4.12) are useful because they are easy to
program for computer evaluation; also, it can be quickly determined where each
coefficient is located in the final system of equations.

The vector { R} represents a system of equations that symbolically is

{Ry=[K}{®} —{F}={0} @

Equation (4.8) states that the coefficients in the first row of [k®] and { ¥} are
located in row i of [K] and {F} because row i is the row associated with R{®.
Similarly, the coefficients in the second row of [k‘“] and { ®'} are located in row j
of [K] and {F} because this row is associated with R. The coefficients of [k'?]
are located in columns i and j of [ K] because the coefficients in the first column
multiply ®; and those in the second column multiply ®;.

and

4.2 DIRECT STIFFNESS METHOD

The direct stiffness method is the name given to the procedure for incorporating
the element matrices into the final system of equations. The method is simple and
straightforward. The numerical values of i and j for a specific element are written
over the columns of [k’ and along the side of [k“] and { f}, that is,

i
@] k11 k”] i (en={f‘} i 4.14
U I VU (414

The direct stiffness procedure is illustrated by using the hypothetical set of

Matrices
w=ls S| =il
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for a linear element between nodes 2 and 3 (i=2, j=3). Using these values of 1

and j gives
2 3

et 3 mef)

and the location of the coefficients in [K] and {F} are

4 adds to K 3,
6 adds to K53
5 adds to K3,
7 adds to K33
8 adds to F,
9 adds to F;

The word add is emphasized because there could be contributions to K;,, K3,
K33, K33, F, and F; from other elements which have not been considered. J
The direct stiffness method is easily incorporated into a computer program.l

If we use the variable names 1
GSM for [K] !
ESM for [k©] ’
GF for {F}

EF for {£¢} :
and assume that the numerical values of i and j are contained in the array NS,
the computer implementation of the direct stiffness method is

DO10 | =1,2
It = NS(1)
GF(I1) = GF(11) + EF (i)
DO 10 J = 1,2
JJ = NS (J)
10 GSM(11,JJ) = GSM(11,JJ) + ESM(I,J)

It is assumed that NS has a dimension of at least two and that the element has
two nodes.

The direct stiffness procedure shows how to utilize the element matrices. The
method is fufther illustrated in the following section where the beam deflection
problem of Chapter 3 is reworked.

4.3 ANALYSIS OF A SIMPLY SUPPORTED BEAM

The direct stiffness method is now illustrated by reworking the beam deflection

problem considered in Chapter 3. The beam and the element model in Figure 3.3

are presented in Figure 4.3 for convenience.
The element stiffness matrix [k] is given by (4.11) and { f'©} is given by (4.12).
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y

1% /EI 2.4(10'% N-cm? \

%/ EI'=4(10'% N-cm?
|-<—2 m—>l<——4 m——>l<—2 m»'

M)A

(_. 106N -cm

105 N-cm

L@ e @,

1 2 3 4 5
Figure 4.3 A simply supported beam subjected to concentrated end moments.

The element data in tabular form are

. D oL
e b L 2
11 2 12010%  —108
2 2 3 20008  —108
303 4 2010%)  —10°
4 4 5 12108  —10°

The substitution of D/L into (4.11) and QL/2 into (4.12) gives the element matrices

1 2
1] 1
{f AN _ 8

12 -12]1
M7 -108 :
] =10 [—1.2 1.2] 2’
2 3
2 -2]2 n 2

2)7=108 N — _108
[k®]=10 [_2 2} y  UPi=-10 {1} 3

3 4
2 -213 113
3H7_108 (LGN — _ 108
PR I PV BT H
4 5

12 —12]4 1 4
497_108 4N _ _ 108
[k“]=10 L1.2 12] 5 M=-10 {1} 5

The global matrices [K ] and [F] are first initialized with zeros and then built
by adding the coefficients of the element matrices an element at a time. Adding
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the values of element one gives

[ 12 12 0 o o 1
12 12 0 0 0 1
[K]=108| © 0 0 0 o], {F=-10%0
0 0 0 0 o 0
| o 0 0 0 0] 0
Adding element two gives
[ 12 —12 0 0 0 1
-12 32 -2 0 o0 2
[K]=108]| © -2 2 0 o], {F=-108d1
0 0 0 0 0 0
o 0 0 0 o0 0
Adding element three gives
- -
12 —12 0 0 o 1
12 32 -2 0 0 2
[K]=10¢| o 2 4 -2 of, {(F=-10%]2
0 0 -2 2 0 1
| 0 0 o 0 0] 0

The addition of element four finishes the summation through the elements giving -

the system of equations

after 108 has been canceled.

The final result is a 5 x 5 stiffness matrix [K] and a 5x1 column vector {F}.
The size of the system of equations differs from the three equations in (3.32) because
the boundary conditions have not been incorporated.

To incorporate the boundary conditions, note that Y; and Ys are known quanti-
ties, Y¥; = Ys =0. Equations one and five in (4.15) are eliminated because equations
are not written for the nodes whose values are already known. Elimination of
these two equations produces three equations containing the five nodal values.

These equations are
Ry, =—-12Y,+32Y,-2Y; +2=0
Ry=-~2Y; +32Y,—12Ys+2=0

12 —12 0 0 o | (v (-1 (o
~1.2 32 -2 0 o ||nl [-2] lo
0 -2 4 -2 0 [{¥r—1-2r=10} @415)
0 0 -2 32 —12||nl |=-2| |o '
| 0 0 0 -12 1.2_| 5| (-1] lo
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The nodal values Y; and Ys can be eliminated from the equations in (4.16)
because they have known values; each is zero. The terms —1.2Y; and —1.2Y;
vanish. If either or both Y; and Y, were nonzero values, then —1.2Y; and —1.2Y;
are evaluated and added to the two coefficient in the respective row. Deleting the
terms involving Y; and Y;s yields the system of three equations

R2=3.2Y2 ‘—2Y3 +2=0
Ry=-2Y,+4Y;-2Y, +2=0
Ri= —2Y;432Y,+2=0 4.17)

These equations are identical to (3.32).

4.4 PROPERTIES OF THE GLOBAL STIFFNESS MATRIX

The stiffness matrix, [ K], is always symmetric and positive definite for structural
problems and for governing differential equations that are self adjoint. The diagonal
coefficients, K, are always positive and relatively large when compared to the
off-diagonal values in the same row.

Finite element equations are usually solved using Gaussian elimination or
efficient modifications of Gaussian elimination (Conte and deBoor, 1980) because
the system of equations is not always diagonally dominant; that is, K;; can be less
than the sum of the off-diagonal coefficients of row i. This occurs in some structural
problems. The relatively large diagonal coefficient allows Gaussian elimination
to be performed without interchanging rows (pivoting). This is an important fact
because only the nonzero coefficients need to be stored within the computer. The
symmetry property is also important because it eliminates the need to store the
cocfficients below the main diagonal.

The symmetry and positive definite properties are a result of the mathematical
formulation. Another important property possessed by [K] is related to the
element grid and the node numbers. The global matrix [ K ] is banded. A banded
matrix has the characteristic that all of the nonzero coefficients are located rela-
tively close to the main diagonal and all of the coefficients beyond the bandwidth
are zero. This is illustrated schematically in Figure 4.4 where the bandwidth is
shown by the dashed diagonal line. The C’s denote nonzero terms. It is permissible
to have zero coefficients within the bandwidth.

The bandwidth of [ K ] is related to the numbering of the nodes. The bandwidth
of a one-dimensional grid of the linear elements whose nodes are numbered in
succession from left to right is two. The matrix consists of the main diagonal and a
diagonal on each side of it. All of the other coefficients are zero. This fact can be
observed by looking at (4.15).

The reason for the banded property is obtained by studying a system of equa-
tions as it is constructed. Each individual equation is associated with a node;
that is, the third equation of a system is the residual equation for the third node.
The nonzero coefficients in the third equation occur in the columns corresponding
to the node numbers of the elements that touch node three. Consider the one-
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| ——Bandwidth——— |

C C C cC~0 0 0 0
Cc ¢C CcC Cc Cc C~0 0 o0
cC C C C o0 C C\\\Q 0
0 C C C C C € C0
c ¢ o CcC Cc Cc € o0 cC
0o~.C C€C C C Cc Cc cCc ¢
o 0>~.C C € C C C 0
0o 0 O0~C 0 C ¢ C C

lo0 o0 o O0~C C o0 C

~
Figure 4.4 A banded matrix.

dimensional grid in Figure 4.5a. Elements two and three touch node three so that
columns two, three, and four will contain nonzero coefficients. Columns one and
five contain zero values because elements one and four do not touch node three.
A more general situation occurs in two-dimensional grids. Consider the four
triangles touching node 12, Figure 4.5b. Nonzero coefficients occur in columns 6,
10, 12, 14, and 21.

The bandwidth is one plus the greatest distance between the diagonal coefficient
and the last nonzero coefficient in the row. All rows must be considered in this
calculation. The general equation for calculating the bandwidth of [K] for a
finite element grid is

NBW =max [BW]+1 4.18)
O D S %) .
1 2 3 4 5
(a)

(b)

Figure 4.5. Node numbering in (a) a one-dimensional region, (b) a segment of a
two-dimensional region.
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where NBW is the bandwidth, and BW® is the difference between the largest and

smallest node numbers for an element. The largest value of B

calculation.

The way to minimize the bandwidth is to number the nodes such that B

as small as possible in each element. This is done by keeping the node numbers of

each element as close as possible.

Input the number of nodes
and number of elements

Initialize [K] and
{F} with zero values

DO on the
number of elements

Gather element data:
node numbers, nodal
values of x and @,
element value for D

Calculate [£©1] and {£(©)}
using (4.11) and (4.12)

Add [£@] to [K] and {f©)}
to {F} using the direct stiffness
procedure of Section 4.2

End of luop

©

W is used in the

W is

Modify [K] and {F} to
incorporate known nodal values

Solve the system of equations
for the nodal values

DO on the number
of elements

I

Recall or input
element data

Retrieve &; and ®;
from the solution vector

Calculate gradient
value using (2.10)

Output gradient value

End of loop

Figure 4.6
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4.5 GENERAL FLOW OF THE COMPUTATIONS :

The general flow of the computations using the direct stiffness procedure is showr
in the flow diagram in Figure 4.6. The computations start with the informatior
that defines the problem. These data include the number of nodes, the number
elements, the nodal coordinates, and the element values of D and Q. The glob
matrices [K] and {F} are initialized with zero values before starting to assemble
the system of equations. :

The direct stiffness construction of the global matrices is done within a DQ
loop over the number of elements. The first step is to collect the element data,
which include the element node numbers and the values of D and Q. The length is
calculated from the nodal coordinates. Once the element data are available, the
element matrices [k®] and { f®} are calculated. This step is followed by the direci
stiffness procedure during which the coefficients of [k®] and { £} are added to
the correct locations of [K] and {F}.

The global matrices [ K] and {F}, which exist when the direct stiffness procedure
is completed, must be modified to include the known nodal conditions. This
modification produces a system of equations that is solved using a direct approach
such as Gaussian elimination. Completion of the latter step produces a set of nodal
values that is one of the desired results. In some situations, the nodal values are all
that is desired and the problem is finished. '

Whenever quantities related to the element gradient values are needed, another
DO loop on the elements is necessary. The first step of this loop is to recall the
element data from memory. Once the element data are available, the element nodal
values of ¢ are selected from the solution vector and the gradient value is calcu-
lated.

The flow chart in Figure 4.6 gives the general flow of the computations. It is
not, however, a flow diagram for an actual computer program. Good computer
programs incorporate techniques that minimize memory requirements and make
the program both computationally efficient and transferable.

PROBLEMS

4.1-4.4 Develop the system of equations for the following problems using the
element matrix and direct stiffness concepts discussed in this chapter. Modify
the system of equations to incorporate the boundary conditions and solve
for the unknown nodal values.

4.1 Problem 3.1.

4.2 Problem 3.2.

4.3 Problem 3.3.

4.4(a—e) Problem 3.4(a—e).

4.5 Solve the system of equations (4.15) when the left end of the beam has settled
1cm, thatis, ¥, =—1 and Y;=0.

Chapter 5

TWO-DIMENSIONAL
ELEMENTS

A primary advantage of the finite element method is the ease with which it can be
generalized to solve two-dimensional problems composed of several different
materials and having irregular boundaries. Many general-purpose finite element
programs are available for solving two-dimensional problems. All of these pro-
grams use triangular and rectangular elements or generalizations of these elements.
The discussion of two-dimensional problems begins by considering the linear
triangular and bilinear rectangular elements. The shape functions and pertinent
local coordinate systems are discussed in this chapter. Some convenient natural
coordinate systems are discussed in the next chapter. These elements are then
used to solve heat transfer, irrotational fluid flow, and solid mechanics problems.
Generalizations of these elements are considered in Part Four of this book.

‘51 TWO-DIMENSIONAL GRIDS

The linear triangular element (Figure 5.1a) has straight sides and a node at each
corner. The interpolation equation for a scalar quantity is

¢=a1+a2x+a3y (5.1)

which is a complete linear polynomial because it contains a constant term and
all of the possible linear terms, namely, x and y. As a result, the triangular element
can take on any orientation and satisfy the continuity requirements involving
adjacent elements.

The bilinear rectangular element (Figure 5.1b) has straight sides and a node at
each corner. The interpolation equation for a scalar quantity is

¢=C1 +C2x+C3y+C4xy (52)

This equation contains only one of the three possible second-order terms, xy.
The rectangle cannot be arbitrarily oriented because the x? and y? terms are not
present. The sides of the rectangle must remain parallel to the xy-coordinate
System.

A grid of rectangular elements is easy to construct. All of the elements in a row
parallel to the x-axis must be the same height. All of the elements in a column
parallel to the y-axis must be the same width. It should be clear that the rectangular
element is best suited for square or rectangular regions. Both triangular and
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@

(b)
Figure 5.1 The linear triangular element and the bilinear rectangular element.

rectangular elements should be used in irregular regions. The triangular elementsg
are used to model the irregular boundary.

The division of a region into triangular elements is most easily accompllshedz
by first dividing it into large quadrilateral and triangular subregions. Each of theseg
subregions is then divided into triangles. A triangular subregion is most easi]yj'
divided into elements by specifying the same number of nodes along each side and’
then connecting the appropriate nodes by straight lines and placing nodes at the
intersection points. The traingular region shown in Figure 5.2a has been divided
into nine elements after placing four nodes on a side. There is no reason why the:
nodes have to be equally spaced along a side. A variation in the spacing allows the!
size of the elements to be changed. There are (n—1)? triangular elements in 8,1
triangular region, where » is the number of nodes on a side,

When the triangular region has curved sides, the boundary elements model thel
curvature using straight-line segments. The division of a curved triangular regnon
into linear triangular elements is shown in Figure 5.2b. The dashed line is thég
original shape and the solid lines denote the elements. '
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(a)

(b)
Figure 5.2 Regions divided into triangular elements.

The quadrilateral subregion is easily divided into triangular elements by con-
necting the nodes on opposite sides using line segments (Figure 5.3a). The interior
nodes are located at the intersection points. The interior quadrilaterals are divided
into triangular elements by inserting the shortest diagonal (Figure 5.3b). Division
using the shortest diagonal is preferable because elements close to an equilateral
shape produce more accurate results than long narrow triangles.

The number of nodes along adjacent sides of a quadrilateral subregion do not
have to be the same, but the number of nodes on opposite sides should be equal
unless the grid is to be refined (or enlarged). The spacing between boundary nodes
can be varied to produce elements of difference sizes. There are 2(n—1)}m—1)
triangular elements in a quadrilateral, where n and m are the number of nodes
on a pair of adjacent sides.

The nodes on the boundary between subregions must be identical in number and
must have the same relative position. This property is necessary to insure the
continuity of ¢ across an element boundary.

The application of the concepts relative to the discretization of a region are
illustrated in Figure 5.4. The node spacing has been varied along the edges of the
Quadrilateral in order to have smaller elements in the vicinity of the curved bound-
ary.
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Figure 5.5 Using an expansion region to change the element size.

Desirable Undesirable BWD =13
/ . .
(b) 1 { 2 3 4 5
Figure 5.3 Division of a quadrilateral subregion into triangular elements 16)) 6
13 14 15 16
7
17
12 11 10 9 -8
(a)
M) =
1 J / BW 44 . 10‘ 013
W 14
Figure 5.4 Division of a region into subregions and then into triangular elements. 11
. 2 5 8
A regular mesh with all elements the same size and shape is not necessary becaus¢ 15
there usually are regions in which the nodal variable is relatively constant. Large1 16
elements can be used in these regions. The ability to vary the element size is an 7
important advantage of the triangular element. The easiest way to make a transi- 3 6 9 12 7
tion in element size is to employ a quadrilateral region that has an unequal numbet BW=5
of nodes on two opposite sides. A good combination is to place two nodes on on¢ (b)

side for every three nodes on the opposite side. Such a region is shown in Figure 5.5; Figure 5.6 Two sets of node numbers resulting in different band widths.
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Assigning the node numbers would be a trivial operation if the numbering did
not influence the bandwidth of the system of equations. The bandwidth, NBW,
as discussed in Chapter 4, is given by

NBW=max [BW®]+1 (5.3)

where BW' is the difference between the largest and smallest node numbers
in an element.

The minimization of NBW in simple regions can be accomplished by numbering
across the dimension of the body with the fewest nodes when assigning node
numbers.

Two different numbering schemes for a set of nodes are shown in Figure 5.6a
and b. The values of BW'") are 13 and 4, respectively. The largest values of BW®
are 13 and 5. The respective bandwidths are 14 and 6.

5.2 LINEAR TRIANGULAR ELEMENT

The linear triangular element shown in Figure 5.7 has straight sides and three
nodes, one at each corner. A consistent labeling of the nodes is a necessity and
the labeling in this book proceeds counterclockwise from node i, which is arbi-
trarily specified. The nodal values of ¢ are ®;, ®;, and ®, whereas the nodal co-
ordinates are (X, Y)), (X}, Y;), and (X}, Y).

The interpolation polynomial is

b=0+ox+asy (5.4)

(Xp Yp)

X ¥)

Figure 5.7 Parameters for the linear triangular element.
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with the nodal conditions

o=0; at x=X,y=Y
o=, at x=X;,y=Y;
¢=0, at x=X,y="

Substitution of these conditions into (5.4) produces the system of equations
(Di=a1 +a2X,'+a3Y,'
d)j:al +a2Xj+a3 Y:,
(Dk=a1+oz2Xk+oc3Y}( (55)
which yields
1

=57 [(Xij—Xij)(bi‘F(XkYi—XiYk)d’j“"(Xin‘XjYi)@a]

0‘2=%[(Yj— Y@+ (Y — Y@+ (Yi— Y4 ]

1
0‘3=ﬁ [(Xk'Xj)d)i+(Xi_Xk)®j+(Xj—Xi)(Dk]
where the determinant
1 X; Y;
1 X; Y;|=24 (5.6)
1 Xy Y

and A is the area of the triangle. .
Substituting for a4, «,, and a3 in (5.4) and rearranging produces an equation for
¢ in terms of three shape functions and ®@;, d;, and &, that is

d=N:®;+ N0+ NP, 5.7)
where
Ni=% [a.-+b,-x+ciy] (58)
1
Nj=ﬂ[aj+bjx+CjJ7] (59)
1
Nk=52[ak+bkx+cky] (510)
and
(1,'=Xij—'Xij, bi‘-:Yj—Y;(, and C[ZXk—Xj

b;=Y,—Y, and
bk=Yi'—Yj, and

chXi—Xk
Ck=Xj—Xi

ajszYi"XiY;u
ak=Xin—XjYi,
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The scalar quantity ¢ is related to the nodal values by a set of shape functions
that are linear in x and y. This means that the gradients d¢/0x and 0¢/dy are
constant within the element. For example,

0$ 0Ny (ON; o N

axax T M ™ (11)
but
0Ny by .
o o4 B=ij,k
Therefore,
G, 1 i
£=27[bi¢.-+b,~d>,+bk<bk] (5.12)

Since b;, b;, and b, are constants (they are fixed once the nodal coordinates are
specified) and ®;, ®;, and &, are independent of the space coordinates, the deriva-
tive has a constant value. A constant gradient within any element means that
many small elements have to be used to accurately approximate a rapid change

in ¢.

ILLUSTRATIVE EXAMPLE 4

Evaluate the element shape functions and calculate the value of the pressure at:
point 4 in Figure 5.8 if the nodal values are ®;=40 N/cm?, ®;=34 N/cm?, and
@, =46 N/cm?. Point 4 is located at (2, 1.5).

The pressure ¢ is given by (5.7), and the shape functions are defined by (5.8),

Figure 5.8 Parameters for the example problem.
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(5.9), and (5.10). The coefficients for the shape function equations are
ai=X,;%— X, Y;=4(5—-20.5)=19
a;= X, Y~ X, Y,=2(0)—0(5)=0
a=X;Y;— X,;Y;=0(0.5)—4(0)=0
bi=Y,—Y,=05-5=-45
bi=Y—-Y,=5-0=5
by=Y,—Y;=0-05=-05
ci=X—Xj=2-4=-2
¢i=Xi—X;=0-2=-2
a=X;—X;=4-0=4

whereas
1 X; Y; 1 0 0
24=[1 X, Yl=)1 4 05
1 X Y| |1 2 5
=20—-1=19
Substitution of the coefficients into the shape function equations gives
19—-45x—-2y
Ni=——g—
Sx—2
9
—0.5x+4y
Ne=""1g

Note that N;4+ N+ N, =1. The equation for the pressure is

19-4.5x -2y 5x—2y [ —05x+4y o
oo (Bt (o) (010

The value of ¢ at point 4, (2, 1.5), is

¢ = (15140 + (75)34 + (546
¢ =39.4 N/cm?

The shape functions defined for the triangular element satisfy the properties
discussed relative to the one-dimensional shape functions. Each shape function
has a value of one at its own node and is zero at the other two. The three functions
also sum to one. There are two other important properties whose proofs are left
as exercises. First, a shape function varies linearly along the sides between its
Node and the other two nodes, that is, N; varies linearly along sides ij and ik. A
shape function is zero along the side opposite its node; that is, N; is zero along
side jk.
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A result of the first property is that ¢ varies linearly along each of the three sides,
Another important characteristic of ¢ is that any line of constant ¢ is a straight
line intersecting two sides of the element (unless all nodes have the same value),
These two properties make it easy to locate contour lines as illustrated in the
following example.

ILLUSTRATIVE EXAMPLE

Determine the location of the 42 N/cm? contour line for the triangular element
used in the previous illustrative example.
The pressure contour for 42 N/cm? intersects sides ik and Jk. Simple ratios are

used to obtain the coordinate values because the pressure varies linearly along;

each side. For side jk

46—42_2—x 4_2—x
46-34 2-4 ' pT 3
x=2.67cm
and
46-42 5—y
46-3 5-05 O y=3Sem

Similar ratios for side ik yield
x=%cm and

The contour line is shown in Figure 5.9.

b, =46

|
|
]
|
i
I
|
i
|

|

[

|

!

I
|
k

y2 42 N/cm?, contour line

Figure 5.9 The 42 N/cm?2 contour line.
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5.3 BILINEAR RECTANGULAR ELEMENT

The bilinear rectangular element has a length 256 and a height 2a. The nodes are
labeled i, j, k, and m with node i always at the lower left-hand corner. The element

and the important coordinate systems are shown in Figure 5.10.
The interpolation equation (5.2) is written in terms of local coordinates s and t.
There are at least three choices with

¢=C1+C2S+C3[+C4S[ (513)

: 2
being the most useful. The other choices would replace the st term by either s2 or t2.
Equation (5.13) is used because ¢ is linear in s along any line of constant ¢ an.d
linear in ¢ along any line of constant s. Because of these properties, the element is

often said to be bilinear. o
Equation (5.13) is written relative to a local coordinate system, whose origin is

at node i because the shape functions are easier to evaluate in this reference frame.
Another popular coordinate system is gr, which has its origin located at the center
of the element (Figure 5.10).

The coefficients C;, C,, C3, and C4 in (5.13) are obtained by using the nodal
values of ¢ and the nodal coordinates (in the st system) to generate four equations.
These equations are

b,=C,

®;=C,;+(2b)C;

O, =C,+(2b)C;+(2a)C3+(4ab)C,
®,=C;+(2a)Ca

6=C,+ Cps + Ct + Cyst

Figure 5.10. Parameters for the bilinear rectangular element.
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Solving gives
Ci=0,;

1
Ca=gp (@= )

1 (5.15)
Ci=5-(®p— D)
2a
1
CAZE(d)i"q)j+q)k_®m)
Substitution of (5.15) into (5.13) and rearranging gives
¢:Ni¢i+Nj(Dj+Nk¢k+Nm(Dm (5.16)
where
Ky t
== 1~ =
L ()
s t
N st (5.17)
*“4ab

t Ky
MFZ@‘%)

The shape functions for the bilinear rectangular element have properties similar
to those possessed by the triangular element. Each shape function varies linearly
along the edges between its node and the two adjacent nodes. For example, N;
varies linearly along sides ij and im. Each shape function is also zero along the sides
its node does not touch, that is, N; is zero along sides jk and km. The linear varia-
tion of ¢ along an edge of the rectangular element and an edge of the triangular
element means that these two elements are compatible and can be used adjacent
to one another.

The transformation equations between the gr and st coordinate systems are

s=b+q and t=a+r (5.18)

Substitution of (5.18) into (5.17) gives the shape functions in terms of ¢ and r

1. g\, r

1 g\ r (5.19)
weg(e)1+%)

1 q r
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The shape functions defined by (5.19) are useful because they lead to a naturgl
coordinate system that allows the rectangle to be deformed into a general quadri-

jateral. . . .
A contour line in a rectangular element is generally curved. The intersection of

the contour line with the edges can be obtained using linear interpolation. The
casiest method for obtaining a third point is to set s or f to zero in the shape fgn?tlon
equations and solve (5.16) for the other coordinate value. This procedure is illus-

trated in the following example.

[LLUSTRATIVE EXAMPLE

Determine three points on the 50°C contour line for the rectangular Slement
shown in Figure 5.11. The nodal values are ®;=42°C, ®;=54°C, ®,=56°C, and

¢,= 46°C.
The lengths of the sides are

2%b=X;— X;=8-5=3
2a=Y,- Y;=5-3=2

Substituting these values into (5.17) gives the shape functions

SR

st t S
== =[1-2
Ne=g> N 2( 3>

Inspection reveals that the 50°C contour line intersects the sides ij and km; there-
fore, we need to assume values of t and calculate values of s. Along side ij, t =0 and

s s
={1-2)®;+- ;=50
o-(i-2)orte
Substituting for ®; and @; and solving gives s=20. Along side km, t=2a=2 and
s s
== 1—- > |®,=50
¢ 3 Oy +< 3>
Substituting for ®, and ®,, and solving gives s= 1.2.
}’ﬂ t

T

I,_,——h ’
5, S)W m 7 @&, 9)

A :

*— ]
5, 3) (8, 3)

—_— X

Figure 5.11. Nodal coordinates for the example problem.
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(1.2, 2)

(164, 1)

2,0
Figure 5.12. The 50° contour line.

To obtain the third point, assume that t=a=1; then
1

1 ) ) s s
= l1="10.+"P.+> ~[1-<2|®,=50
¢ 2(] 3><D,+6d),+6(bk+2( 3>

Substituting the nodal values gives
1
g(—42+54+56—46)+E (42 +46)=50
Solving yields s =1.64.

The st coordinates of the three points are (from top to bottom) (1.2, 2), (1.64, 1)
and (2, 0). The xy coordinates of these points are (6.2, 5), (6.64, 4) and (7, 3). A

straight line from (6.2, 5) to (7, 3) passes through the point (6.60, 4); therefore, the

contour line is not straight (Figure 5.12).

5.4 A CONTINUOUS PIECEWISE SMOOTH EQUATION

The element equation for ¢ defined by either (5.7) or (5.16) can be used for any
triangular or rectangular element by specifying the numerical values -of i, j, and
k or i, j, k, and m. Any node of a triangular element may be node i. An asterisk is
used to distinguish it from the other nodes. Node i of the rectangular element is
always at the origin of the st coordinate system.

The element nodal data for the four-element grid in Figure 5.13 is

e i j k m
1 1 4 5 2
2 2 5 6 3
3 3 6 7
4 8 3 7
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8
* 7
4
(3)
3 ¢£° 6
(3]
2 ¢ 5
1)
1 " 4

Figure 5.13. A four-element grid with node numbers.

The interpolation equation for element one is
D =NV, + N{Pd, + N{Vds+ NYVD, (5.20)

Note that the element node numbers are no longer consecutive. This is the usual
case with two-dimensional elements. The shape functions in (5.17) are a function
of the global coordinates only in the sense that

b=X;—X;=X,—X,
and
2a=Y,-Y,=Y,- 1
The interpolation equation for element four is
PP =N§Dg + N§O; + NP0, (5.21)

The shape functions in (5.21) are a function of the global coordinates and the
specification of i, j, and k immediately indicates which coordinates to use. Con-
sider, for example, N§*. Using (5.8) gives

1
N = 74 (@ + b x + c§y)

where

Since j=3 and k=7. The area, 4, is that of element four.
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PROBLEMS
5.1 Verify that N; for the triangular element is equal to one at node i and equal

5.2

53

54

55

5.6

to zero at nodes j and k.

Verify that N, for the triangular element in Figure 5.1a is zero everywhere
along side jk. Hint: Write an equation of the form y =d + mx for side jk and
substitute for y in (5.8).

Verify that the shape functions for the triangular element sum to one, that is,
N;+ N;+ N,=1. Comment on the behavior of the following summations:

(i) aitaj+a.

(ii) bi+b;+by.

(lll) C,'+Cj+C‘k.

Verify that the shape functions for the rectangular element given by (5.17)
sum to one. Also check those given by (5.19).

Determine the requirement that the shape functions must satisfy in order to
correctly model the condition that ¢ equals a constant within an element.

Verify that a line of constant ¢ in a rectangular element is in general not a
straight line. Under what conditions will it be a straight line?

5.7-5.11 The nodal values for five different triangular elements are summarized

below. Each column of values is associated with an element and a specific
problem.

(a) Calculate the value of ¢ at the coordinates of point 4.

(b) Determine the xy coordinates where the specified contour line intersects
the element boundaries.

(c) Evaluate d¢/0x and d¢/dy within the element.

Element Problem Number

Quantity 5.7 5.8 59 5.10 5.11

X; 0.13 0.31 0.13 0.13 0.44
Y, 0.01 0.06 0.13 0.00 0.25
X; 0.25 0.38 0.25 0.25 0.50
Y; 0.06 0.09 0.13 0.00 0.25
X 0.13 0.31 0.19 0.25 0.50
Y 0.13 0.13 0.19 0.07 0.38
P, 190 130 185 194 43
D; 160 94 151 160 60
(0N 185 125 160 158 52
Point 4
X 0.20 0.36 0.18 0.20 0.47
y 0.06 0.09 0.13 0.03 0.30
Contour

line 170 110 170 180 55
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5.12-5.16 The nodal values for five different rectangular elements are sum-

marized below. Each column of values is associated with an element and a
specific problem.

(a) Calculate the value of ¢ at the coordinates of point B.

(b) Determine three sets of xy coordinates for the specified contour line.

(c) Evaluate 6¢p/0x and 0¢/dy at point B.

Element Problem Number

Quantity 512 5.13 5.14 5.15 5.16

X; 0.31 0.25 0.25 0.31 0.40
Y; 0.18 0.18 0.06 0.13 0.00
X; 0.38 0.31 0.31 0.38 0.44
Y., 0.25 0.25 0.13 0.19 0.03
d; 115 140 158 125 76
D; 85 115 130 92 54
b, 76 104 125 86 60
D, 105 124 150 116 80
Point B
X 0.35 0.26 0.28 0.34 042
y 0.22 0.22 0.10 0.15 0.01
Contour

line 90 130 154 100 70




Chapter 6
COORDINATE SYSTEMS

All finite element solutions require the evaluation of integrals. ‘Some of these are
easily evaluated while others are very difficult. Many are impossible to evaluate
analytically so that numerical techniques are employed.

The difficulties associated with evaluating an integral can often be decreased by
changing the variables of integration. This involves writing the integral in a new
coordinate system. The objective of this chapter is to discuss several coordinate
systems that can be used to eliminate some of the difficulties associated with
finite element integrals.

Local and natural coordinate systems are discussed in this chapter. These
systems are discussed relative to the one-dimensional linear element, and then the
two-dimensional triangular and rectangular elements.

6.1 LOCAL COORDINATE SYSTEMS
The linear shape functions developed in Chapter 2,

X;— - X,
Ni(X)‘—‘J_x and Nj(x)—_:x I !

are for an element in which the origin of the coordinate system is to the left of nodei.
These are general equations valid for all linear elements regardless of their location.
The disadvantage of these shape functions shows up when evaluating integrals
involving products of the shape functions such as

6.1)

X; Xj
J Ni(x)Nj(x) dx or -[ N#(x)dx 6.2)
X; Xi
Integrals similar to these occur in the consideration of both field problems and
solid mechanics problems. The integrations in (6.2) are simplified by developing
new shape functions defined relative to a coordinate system whose origin is located
on the element. This type of system is called a local coordinate system.
The two most common local coordinate systems for the one-dimensional
element have the origin located at node i or at the center of the element (Figure 6.1).
The shape functions for a coordinate system located at node i are obtained from
{6.1) by replacing x by x= X;+s. This substitution produces
Xj—x Xj—(X,'+S) S

=1-7 (6.3)

Ni(s)= L I I

6
COORDINATE SYSTEMS 9

q

7 l—_)‘j
=

Figure 6.1 Local coordinate systems for the one-dimensional element.

and
x—X,-in+s—X,-_s (64)

NJ'(S): L iL ._L

Note that each shape function equals one at its own node and is zero at the other

node. The two sum to one as did the pair in (6.1).
The shape functions for a coordinate system located at the center of the element

are obtained from (6.1) by replacing x by x=X i+ (L/2)+g. The shape functions
relative to this origin are

1
M@=G-%> and M@=Q+9 ©3)

where the coordinate variable g ranges from —L/2 t.o.L/2. .
The shape functions, (6.3) and (6.4), as well as the pair in (6.5), are u'seful onlyifa
change in the integration variables is performed. The change of variable formula

from integral calculus (Olmstead, 1961) is

P2 d
rﬂﬂm=jfmmﬁ%?q@ 66)

a P1
where p is the new coordinate variable and g(p) is the equation relating x and p,
that iS, X::g(p) . .
Interpretation of (6.6) relative to the coordinate systems in Figure 6.1 goes as
follows. For the coordinate s, where x=X;+s
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x; 2d(Xi+s) [ '»
j f(x)dx= J s ds = L h(s)ds 6.7)

X; sy

where h(s) is f(x) written in terms of s. The limits of integration were obtained by
substituting X; and X; for x in x=X;+s and solving for s.
For the coordinate ¢, where x=X,;+ L/2+¢

qu d(X;+L/2+q) dq = J\L/z

r(q) r(g) dgq (6.8)

41 dq

where r(g) is f(x) written in terms of ¢.
The usefulness of (6.7) and (6.8) comes when integrals such as

Xj
J NZdx

Xi

E £ dx=

-Lj2

are evaluated. Using the coordinate variable s, we obtain

Xj L L
'[ Nf(x)dx:J. NiZ(s)ds=J (1"%>2ds=£

X; 0 0

Using the g coordinate, we obtain

X; L2 L2 1 q 2 L
2 = 2 = . =

X -L/2 -Lj2

The result, L/3, is obtained from
Xj
J NE(x)dx
Xi

only after a rather complicated expression is recognized as being L.

6.2 NATURAL COORDINATE SYSTEMS

The local coordinate systems s and ¢ can be converted to natural coordinate
systems. A natural coordinate system is a local system that permits the specification
of a point within the element by a dimensionless number whose absolute magnitude
never exceeds unity.

Start with the g coordinate in Figure 6.1 and form the ratio g/(L/2)=2g/L=¢.
The coordinate £ varies from — 1 to + 1 (Figure 6.2a). The shape functions in (6.5)
can be written in terms of & by replacing ¢ by ¢=¢L/2. The new shape functions are

Ni©)=3(1-¢ and  N)=31+¢) 6.9
The change of variables in the integration yields
Lz & L2 L(!
|| rode=[" w0 e =3[ qerac (6.10)
-L/2 & dé 2 1
where g(&) is r(g) written in terms of ¢.

COORDINATE SYSTEMS n

!
|

(a)

£ ~—

(b)

Figure 6.2 Natural coordinate systems for the one-dimensional element.

The advantage of the coordinate variable £ is the — 1 to + I limits of integration.
Most computer programs use numerical integration techniques to evaluate the
element matrices. A numerical integration scheme used in finite element programs
is the Gauss—Legendre method (Conte and deBoor, 1980), which has the sampling
points and weighting coefficients defined on a—1, +1 interval.

Another interesting natural coordinate system consists of a pair of length ratios,
Figure 6.2b. If s is the distance from node i, then ¢, and ¢, are defined as the ratios

L—s s
€1 :T and fzzz (6]1)
This pair of coordinates is not independent because
€, +0,=1 6.12)

The most important characteristic of (6.11) and (6.12) is that ¢, and ¢, are
identical to the shape functions defined by (6.3) and (6.4). The usefulness of these
coordinates is associated with the evaluation of integrals of the type

r N{(s)N(s) ds (6.13)
0

which involve the product of shape functions. The length ratio coordinates result
in a simple formula for evaluating an integral similar to (6.13).

The change of variable rule and the relationships N i(s)="C€, Ni(s)=C€,, s=L¢{,,
and ds/d¢, =L give

L 1
J N{(s)N¥s) ds=j ¢iesL de, (6.14)
0 0
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The integral on the right-hand side of (6.14) can be changed to
1
L J (1—€,)¢5 d¢t,
(4]

using (6.12). The integral in (6.15) is of the same form as

! I(z)I'(w)
R V) il =

Jy et ras 2
where ['(n+1)=n! (Abramowitz and Stegun, 1964). Thus
! I'a+ DI +1)
L | ¢i5dt,=L "~
L T Ta+b+1+41)

alb!
“Ta+b+1)

!
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(6.15).

(6.16),

|

(6.17);

Equation (6.17) is useful because it states that a rather complicated integral can
be evaluated using an equation which involves only the length of the element andi
]

the powers involved in the product.

Evaluation of a pair of integrals illustrates the usefulness of (6.17). Starting with ?

J Y NHx)dx = r N{(s)ds

Xi 0

(6.12) gives

o o 2+0+1)!

‘ ‘ 20! L
J Niz(s)dS=LJ €%€8d€2=L‘:§

Table 6.1 Coordinate Systems and Limits of Integration for the
One-Dimensional Element
Type of Coordinate Limits of
System Variable Shape Functions Integration
X i—X X— Xi
Global X N;= JL 5 Nj: I X,, Xj
Local s Ni=1-2 N=2 0, L
i— L ’ J —L >
1 ¢ 1 q L L
Local =[=-2 P R 4 _= =
oca 9 N; (2 L)’ N <2+L> 20 3
1 1
Natural 4 Nizi(l—é), Nj=§(1+é) -1, 1
Natural gz Ni:(l’ lefz O, 1
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Another example is

L 3 5 L 1(3[2‘1( _L 312! _L
L Ni(S)Nj(S)dS= L itz2dt= m—60

The coordinate systems, shape functions, and limits of integration for the one-
dimensional linear element are summarized in Table 6.1.

6.3 RECTANGULAR ELEMENT

Natural coordinate systems can be defined for two-dimensional elements; they
have the same advantage as observed for the one-dimensional formulation. They
are more convenient for both analytical and numerical integration.

The natural coordinate system for the rectangular element is shown in Figure 6.3.
It is located at the center of the element and the coordinates are the length ratios

(=7 and = (6.18)

’
b a
where g and r are the local coordinates. The shape functions in (5.19) are easily
converted to the natural coordinate system. The results are

Ni=3(1=¢)1—-n),  Nj=31+1—n)
Ni=%(1+&EX1 +n), Nnp=1(1-&1+n)

It should be clear that ¢ and 7 range between plus and minus one, that is,

(6.19)

-1<éx1 and —1<n<l1

n=-1

Figure 6.3. A natural coordinate system for the rectangular element.

6.4 TRIANGULAR ELEMENT: AREA COORDINATES

A natural coordinate system for the triangular element is obtained by defining
the three length ratios L,, L,, and L, shown in Figure 6.4a. Each coordinate is
the ratio of a perpendicular distance from one side, s, to the altitude, 4, of that
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@

(b)

L=

3
4

©
Figure 6.4. The three area coordinates for a triangular element.

same side. This is illustrated in Figure 6.4b. Each coordinate is a length ratio that
varies between zero and one. The lines of constant L, are shown in Figure 6.4c.
Each of these lines is parallel to the side from which L, is measured.

The coordinates L,, L,, and L5 are called area coordinates because their values
give the ratio of the area of a subtriangular region to the area of the complete
triangle. Consider point B as shown in Figure 6.5. The area of the complete triangle
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y

X

Figure 6.5. A triangle divided into the areas corresponding to the area coordinates.

is A and is given by

P
T2
whereas the area of the shaded triangle (B, j, k) is
4, = (6.20)
2
Forming the ratio A4;/4 yields
A_S_p, 6.21)
A h

The area coordinate L, is the ratio of the shaded area in Figure 6.5 to the total
area. Similar equations can be written for L, and L; giving

A A
LZ:_AE and L3=-Ai (6.22)
Since 4, + A, +A3=4,
Li+L;+Lz=1 (6.23)

An equation relating the three coordinates was expected because the coordinates
are not independent. The location of a point can be specified using two of the
coordinates.

Equation (6.21) can be reworked into another form. Multiplying the top and
bottom by two gives

24,

bi=24

(6.24)
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Using the determinant expansion for 24, produces

1 X y
24,=1  X; Y
1 X %
or
241 =(X; Ye X Y)+ (Y= Yx + (X,— Xy (625)

where x and y are the coordinates of B in Figure 6.5. Substituting (6.25) into
(6.24) yields

1
L1=ﬂ[(Xj}’,(—Xk1G)+(1’j—Yk)X+(Xk—Xj)y] (6.26)
Equation (6.26) is identical to (5.8); thus
Li=N; 6.27)
A similar analysis for L, and L5 shows that
L,=N; and Ly=N, (6.28)

The area coordinates for the linear triangular element are identical to the shape
functions, and the two sets of quantities can be interchanged.

The advantage of using the area coordinate system is the existence of an integra-
tion equation that simplifies the evaluation of area integrals (Eisenberg and
Malvern, 1973). This integral equation is related to (6.17) and is

alb!c!

Le ch A= """
L L A S

(6.29)
The use of (6.29) can be illustrated by evaluating the shape function product
L Ni(x, y)Nj(x, y)dA (6.30)
over the area of a triangle. The area integral is
L NiN;dA = L LILALS dA

110! 24 4
TAH+14042) 7T T4 T 12

The area coordinates L; and L, can be substituted for N; and N;, respectively.
Since N, was not in the product, L; is included to the zero power. Zero factorial
is defined as one.

The incorporation of derivative boundary conditions or surface loads into a
finite element analysis requires the evaluation of an integral along the edge of an
element. These integrals are easy to evaluate once it is known how the area co-
ordinates behave on an edge. Consider point B on the side ij (Figure 6.6). The
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h

== X

Figure 6.6. The area coordinates for a point on the edge of a triangle.

coordinate L, is zero and L, is the ratio of the shaded area to the total area.
Define the coordinate variable s, which is parallel to side ij and measured from
node i. If the coordinate of point B is s, and the length of the side is b, then

2h(b—3s)

24, 2 b—s s
== = "_1-= 6.31)
L= = 20n b b
2
The area coordinate L, is
L= (6.32)

b

The area coordinates L, and L, reduce to the one-dimensional shape functions
Ni(s) and Nj(s) defined by (6.3) and (6.4). Using the one-dimensional natural
coordinates, ¢, and ¢, defined by (6.11), the area coordinates become

L,=¢, and L,=¢, side i—j (6.33)
The relationships for the other two sides are
side j—k (6.34)
L, :€1 and L, '——(2 sidek—i (635)

The importance of the relationships in (6.33), (6.34), and (6.35) is that any iptegrgl
over the edge of a triangular element can be replaced by a line integral written in

L,=¢, and Ly=¢,
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terms of s or €5, that is,

L 1

g(s)ds=L J. h(€,)dt, (6.36)

0

Jr f(Ly, Ly, L3)dl'= J_

0

and evaluated using the factorial formula (6.17). The boundary of a twos
dimensional element is denoted by I'.

ILLUSTRATIVE EXAMPLE

Evaluate [ [N]"dT over side ik of a linear triangular element.
The integral is

1 N; 1 L,
J. [N]TdFIL[kj‘ NJ ng:LikJ‘ Lz d{z
' ° N ° L, ,
|
since the linear triangular shape functions and the area coordinates are equivalent,
Along side ik, Ly =¢,, L, =0, and L;=¢,; thus

i

€ |
J[N]Hil‘:Likj 0 d€2=7"‘ 0
r ° ¢, 1

using (6.35) and then (6.17).

6.5 CONTINUITY

The function for approximating ¢(x, y) consists of a set of continuous piecewise
smooth equations, each defined over a single element. The need to integrate this
piecewise smooth function places a requirement on the order of continuity between
elements.

The integral

r o

0 dx"

is defined only if ¢ has continuity of order (n—1) (Olmstead, 1961). This ensures
that only finite jump discontinuities exist in the nth derivative. This requirement
means that the first derivative of the approximating function must be continuous
between elements if the integral contains second-derivative terms, n=2. All of the
integrals in this book, except the beam element, contain first-derivative terms.
Therefore, ¢ must be continuous between elements, but its derivatives do not have
to be continuous. Continuity in the derivative is required for the beam element.

Continuity of ¢ in the one-dimensional element is assured, since two adjacent
elements have a common node. Continuity in ¢ along a common boundary
between two rectangular elements is relatively easy to prove and is left as an
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®;

Figure 6.7. A two-element grid.

exercise. Continuity of ¢ along a common boundary of two arbitrarily oriented
triangular elements is more complicated and is considered here.

Consider two adjacent elements (Figure 6.7) with the coordinate system originat-
ing at node one. The nodal values are ®;, ®,, @3, and ®,. The equations for ¢ are

¢V =N{"®, + N{'®; + NLD,
PP =NP®, + NP, + NPb, (6.37)

The properties of the shape functions indicate that N¥'=N{’=0 along the
common boundary. Recalling the equality between the shape functions and the
area coordinates, (6.27) and (6.28), allows (6.37) to be written as

¢V =L"D + LY
P =LP0, + LY, (6.38)

Remember that the subscripts on the area coordinates are not related to the node
numbers.
Since LY =L =0, (6.38) can be reworked into

PV =LV0, +(1— L),
¢ =LP®; +(1 - LP)ds (6.33)
using (6.23). The proof is completed when it is shown that L{" =L\

A point on the common boundary is shown in Figure 6.8 with the areas associ-
ated with L{» and L'{® shaded. Defining the distance from point B to node three as ¢
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h(l)

Figure 6.8. The area coordinates L!{" and L{?’ along a common boundary.

and the length of side 1-3 as b,

2ch'V
5 240 T2 ¢
24D T 2pp M p
2
and
2ch®
249 2 ¢
== 2 ==L
2

The proof is complete.

PROBLEMS

6.1  The shape functions for the three node one-dimensional quadratic elemenf
(Figure P6.1) relative to the local coordinate s follow. Write these shape

functions in terms of the local coordinate .

v o) wei(3)

Pl
‘
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Figure P6.1

6.2 Do Problem 6.1 for the natural coordinate (Figure P6.2).

-

&

-~

ot~

J
g
L

— e

Figure P6.2

6.3 Do Problem 6.1 for the natural coordinates ¢, and ¢, (Figure P6.3).

N~
Loy

Figure P6.3

6.4 A local coordinate-system r has its origin at the one-third point of a linear
element (Figure P6.4). Develop the shape functions in terms of r:

ISa

Figure P6.4
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6.5

6.6

6.7
6.8

6.9

6.10

BASIC CONCEPY

(a) Starting with the x-coordinate system.

(b) Starting with the s-coordinate system.

(c) Starting with the g-coordinate system.

The integration of d¢/dx occurs in many finite element applications. Whe,
N; and Nj; are written in terms of a new coordinate variable, d¢/dx mug
be evaluated using the chain rule, that is, for the local coordinate s,

dp do 1

dx ds dx/ds

Show that the following relationships hold for the one-dimensional ceo
ordinate systems studied in this chapter. ‘

do_d¢  d¢_dp 4 49_Ldo
ds dx’  dg dx dé 2 dx
The quadratic shape functions given in Problem 6.1 are
N;=€,-2¢,¢,, Nj=4€1(2 Ny=265—¢,

when written in terms of the natural coordinates ¢, and ¢,. Using thes
equations for the shape functions and (6.17), evaluate

L

(a) r NiN;ds (b) -[

L
NijdS (C) J N;%ds
0 0 0

Verify that L, = N for the linear triangular element.

Verify that any line of constant ¢ in a triangular element is a straight line
Hint: Investigate the value of ¢ along the side of a triangle when two node:
have the same value.

Evaluate the following integrals using (6.29).

(a) J N}N,d4d  (b) I N;N;N,dA
A A

() L(N,-2+N,-)dA (d) L(N,?N,‘+N,-)dA

Verify that ¢V =¢» along the common boundary between the two rec
tangular elements shown in Figure P6.10.

2 4 6

ey (2)

Figure P6.10
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6.11 Verify that ¢V =¢'® along the common boundary between the triangular
" and rectangular elements in Figure P6.11. Hint: Use the st-coordinate
system for the rectangular element.

4 5

1 17

. 2
.

Figure P6.11

6.12 Show that the shape functions for the rectangular element, (6.19), reduce
to the linear shape functions, (6.9), along side ij.

6.13 The three shape functions along one edge of a quadratic triangular element
are given in Figure P6.13. Show that these equations reduce to the? shape
functions for the one-dimensional quadratic element that are given In
Problem 6.6.

Ny=L, L, —1)
N;=4LL,
Nk = L2 (2L2 - 1)

Figure P6.13



PART TWO
FIELD PROBLEMS

Chapters 7 through 16 cover the finite element solution of steady
state and time-dependent field problems. Specific application areas
include heat transfer, irrotational flow, and acoustical vibrations.
The reader whose interest is in structural applications can go directly
to Part Three, which covers structural and solid mechanics applica-

tions.



Chapter 7

TWO-DIMENSIONAL
FIELD EQUATION

The implementation of the finite element method can be subdivided into three
broad steps: (1) establishing the element interpolation properties, (2) evaluating the
element matrices, and (3) solving an actual problem. We have discussed the proper-
ties of a pair of two-dimensional elements in Chapters 5 and 6. Specific application
areas are considered in the next several chapters. Our immediate objective is
centered on the discussion of the element matrices associated with the two-
dimensional field equation:
2 2
0,28, p, 00
Ox oy
We start by briefly discussing the governing differential equations for several
physical problems embedded within (7.1). The emphasis in the remainder of the
chapter is on the derivation of the integral equations for the element matrices and
the evaluation of these equations for the linear triangular and bilinear rectangular
elements.

—-Gop+0=0 (7.1)

71 GOVERNING DIFFERENTIAL EQUATIONS

The general field equation, (7.1), has many important applications in the physical
sciences. A few of these applications are discussed in this section. Since our objec-
tive is to establish the usefulness of (7.1), a discussion of the boundary conditions
is deferred to the application chapters that follow.
The first application area is the torsion of noncircular sections. The governing
differential equation is
1 62d)+1 0

gox® gaoy?
Where g is the shear modulus of the material and 6 is the angle of twist. Equation
(7.2) is obtained from (7.1) by noting that D,=D,=1/g, G=0 and Q=20. The
Variable ¢ is a stress function, and the shear stresses within the shaft are related the
derivatives of ¢ with respect to x and y.
Several fluid mechanics problems are embedded within (7.1). The streamline
and potential formulations for an ideal irrotational fluid are governed by

*¢ 0
£+a§.—_0 (7.3)

+20=0 (7.2)
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and

Xy MY ‘
axt oy =" &

respectively. The streamlines, i, are perpendicular to the constant potential ling
¢, and the velocity components are related to the derivatives of either ¢ or Y wi
respect to x and y. Each of (7.3) and (7.4) are obtained from (7.1) using D, =D, '
and G=0Q=0. ‘

The flow of water within the earth is governed by equations that are embeddef
within (7.1). The seepage of water under a dam or retaining wall and within
confined aquifer is governed by

3 0%
s g5z PPy =0 (4

where D, and D, are the permeabilities of the earth material and ¢ represents ti§

piezometric head. The water level around a well during the pumping process
governed by "

D

0% 0% j
DXW+D,,+W+Q=O (74

where Q is a point sink term. The other coefficients are the same as defined fof
(7.5), and the aquifer is assumed to be confined. -4

There are two heat transfer equations embedded within (7.1). The heat transfe]
from a two-dimensional fin to the surrounding fluid by convection is governed j

orT O*T 2k 2hT;, A
o T m T = a4
The coefficients D, and D, represent the thermal conductivities in the x and
directions, respectively; 4 is the convection coefficient; ¢ is the thickness of the
fin; T; is the ambient temperature of the surrounding fluid; and T is the temperaturé
of the fin. Relating (7.7) to (7.1), we find that G =2h/t and Q =2hT;/t.

D

The fin of (7.7) is assumed to be thin and the heat loss from the edges is neglectedﬁ
When the body is very long in the z-direction and the temperature is a function of

only the x- and y-coordinate directions, the heat transfer is governed by
o’T o*T

Dot Dy, =0 (7.8#
where D,, D,, and T represent the same variables as given for (7.7). Heat transfer;
by convection is related to (7.8) through the boundary conditions. :

When G in (7.1) is a negative coefficient and Q equals zero, the differential
equation is called the Helmholtz equation. A negative G leads to the solution of ani
eigenvalue problem. A couple of physical problems governed by the Helmholtz!
equation are the Seiche motion of water and acoustic vibrations. f

Seiche motion, which describes the standing waves on a bounded shallow body;

of water, is governed by
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?w 0w 4an? 19
Wt = (9)

here h is the water depth at the quiescent state, w 18 the wave height ab'ove.the
wuiescent level, g is the gravitational constant, and T is the period of oscillaticn
A fluid vibrating within closed volume is governed by
0P *P w?
=— — P=0 (7.10)
T Hr e
i i is the wave frequency,
here P is the pressure excess above ambient pressure, w is
:nc‘l3 ¢ is the wave velocity in the medium. The waves described by (7.10) would not
a function of the z-direction. ] .
beEquations (7.2) through (7.10) describe nine different physical problems that
are contained within the general differential equation (7.1). It should be clear that a
discussion of applying the finite element method to solve (7.1} is worthy of cur time.

7.2 INTEGRAL EQUATIONS FOR THE ELEMENT MATRICES

Our immediate objective is to derive the integral equations that define the e.lem.ent
matrices for the group of problems embedded in (7.1). The element contribution
to the system of equations is given by

Ry | [N]T(ng+Dy%—G¢+Q>dA (1)

where [N] is the row vector containing the element shape funf:tiops. Since the
interpolation function, ¢(x, y), does not have continuous derivatives between
the elements, the second-derivative terms in (7.11) must be replaced by first-
derivative terms.

The second-derivative terms in (7.11) can be replaced by applying the product
rule for differentiation. Consider the quantity

O (rn1ré 7.12
ox <[N] 0x> (112
Differentiation gives
d 3\ [ yqrd¢ OIN]" 09 713
Ox ([N]T 5){) =[N] ox? t ox Ox ( )

Rearranging and substituting for [N]70*¢/0x* in (7.11) produces

] o> [N]T oo
- '[ [N]TDx ——gl(f dA=— J. D, ox ([N]Tg) dA+ L Dy ox  Ox dA (7.14)
4 A

The first integral on the right-hand side of (7.14) can be replaced by an integral
around the boundary using Green’s theorem (Olmstead, 1961). Application of the
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theorem yields

0 0 0
JAB—);([N]T£>¢1A=L[N]T£0050dr (71

where 6 is the angle to the outward normal and T is the element boundary. Subs;
tuting (7.15) into (7.14) gives the final relationship for the second-derivative term

¢ o0 [NTT 06
_ T— —_ T " o
L D.INT T % 4 J;Dx (N2 cosﬂdF+LDx o aodd (11

A similar set of operations starting with

0 r 00
(v E)
produces

I 624) 0d ' a[N]T5¢
— T— _— — T- i —
Dy [N] 2 dA= J;_Dy [N] P sin 0 dT" + , Dy 5y (,’y dA (7.1

Substitution of (7.16) and (7.17) into (7.11) gives
r
{R®) = — <[N]T (Dx @ cos+D, 2—4) sin 9) dar
Jr 'y

Ox
o (Dxa[N]T%+ o[N]" 0¢

Ja 0x 0Ox Y dy 0y>d

+f G[N]beda—J Q[N]"dA (.18

Equation (7.18) is close to the desired form. It can be put in a final form by substi
tuting for ¢ using the relationship !

=[N0} (719
Substitution and rearranging gives

{R@} = — J; [N]T (Dx ¢ cos 0+D,% sin 9) dar

Ox
AN]TO[N] . J[NITO[N] .

+(L (Dx ax W-{-Dy ay W) dA {(D( )}

+< J GINT'IN] dA) {®@} - J O[N] d4 (7.20
A A
which has the general form

(RO} ={1% + [k@T{@@} — { f©} (7.21)
where :
{1®} = — J; [N]T<ng—ﬁcos 0+Dyg—fsin 0) dlr’ (7.22)

TWO-DIMENSIONAL FIELD EQUATION 9
T
o D AN IIN] +D, oLN] B[N]) dA + j G[N]'[N]d4 (7.23)
k9= " Tax ox ay oy .
and
(o= erny aa (1.24)
A
The variable ¢ in (7.22) was not replaccd because the quantity
D, % cos0+D, % sin 0 (7.25)
Ox Oy

occurs in the derivative boundary conditions and is considered in detail in Chapter

9, _
The first integral in (7.23) can be written more compactly by defining

Do 0 (7.26)
(2] ‘[ 0 Dy]
and the gradient vector

0¢ o[N]

0x 0x (g © (7.27)
{gv} = = O =[Bl{®
Ygry= 64’ a[N—I 1 S [ ]{ }

0y 0y

The firs: row of {gv} is the derivative of [ N] with respect to x; the second row is the
derivative of [ N] with respect to y. The transpose of [ B] contains two columns

and is given by
[B]T=[6[N]T o] T] (7.28)

Ox 0y
If we use (7.26), (7.27), and (7.28), it is easy to verify that

- O[N]" O[N] [N]JTI[N]
L [B]"[D][B] dd = L (D, [6x] oD )dA (7.29)

The stiffness matrix for field problems is usually written as

[k = j [B]"[D][B] dA+ J GINT'IN] dA (7.30)
A A
and the individual integrals are denoted in this book by [k5'] and [£§'], where
(k] =[k5"]+ [£&'] (1.31)

7.3 ELEMENT MATRICES: TRIANGULAR ELEMENTS

Our objective for the rest of this chapter is to evaluate the element matrices for
the two-dimensional elements discussed in Chapter 5.
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The scalar quantity ¢ is defined over a triangular region by
1
¢=[N: N; NJ{@9} (7.ﬂ

where

1
Nizﬂ(a,-+b,~x+c,-y)

1 ;
N,:E(aj+b,-x+cjy)

1 \'_'
Nk=2—2(ak+bkx+cky) ?

and the g, b, and ¢ coefficients were defined in Chapter S. The gradient vector fq
this element is ;

IN:  ON; &N,
ox  ox  ox :
- f h©)
"Zlon,  on,  an, 1O (7.3
d dy  dy

or

1[5,
{gv} =—[

bi b, e . |
24l ¢ c,J (@) =[B]{0} (.

The two matrices, [B], as given by (7.34) and [D], as given by (7.26), consis
entirely of constants, since bg, cs, B=i, j, k are constants and D, and D, are materi

coefficients. The first integral of (7.30), therefore, is easily evaluated. This inte
becomes

or

(k5] ~[BY"[D][B]4 (739

Expanding the matrix product yields

b; bib; biby c? cic; cic ‘

Dx ¢ ivj i i iCj iCk

(k5] =24| bb; b} biby +% cicj c; CiCk (7.3551
b,-bk bjbk bf !

CiCy CjCk cf

{
The second integral of (7.30) involves the shape functions. If we assume that G
is constant within the element, this integral becomes f“

TWO-DIMENSIONAL FIELD EQUATION

k)= [ GINTIN]d4=G )

[ N? NiN;

=GJ N;N; N}
“LN:Ne NN,

[ L2 L,L,

-G J LiL, L
ULy L,L,

N:| [N: N;

N;

N,

NN,
NN,
N2 ]
LiL,T
L,L;

L3 ]

dA

dA

N¢]

dA

93

(7.37)

since N;j=L{, Nj=L,, and Ny=L; for the linear triangle. Using the factorial
formula (6.29) to evaluate each integral yields

oA 2 1 1
[k&] =175 1 2 1 (7.38)
112

The element stiffness matrix for the triangular element is the sum of (7.36) and

(7.38) when G is nonzero. . .
The element force vector also involves the shape functions, and the evaluation of

(7.24) is quite similar to the evaluation of [k&’]. Substitution gives

jQ[N]TdA=QJ g, dA=Q.[ 2 dA (7.39)
4 2N, L,

assuming that Q is constant within the element. Using the integration equation
(6.29) produces '

1
—QA (7.40)
{ £ _ 1 ;
U 3 :

ILLUSTRATIVE EXAMPLE

Heat transfer from a two-dimensional fin is governed by (7.7). Calculate ’:IE:
element matrices for the element in Figure 5.8 when D,=D,=0.5 W/cm-C, h=
0.01 W/em?2-C, t=0.5 cm, and T,;=10C. . )

The {ﬂement stiffness matrix [k“] is given by (7.30), where‘ [£$'] and [Kk§'] are
defined by (7.36) and (7.38), respectively. The b and ¢ coefficients for (7.36) were
calculated in the example associated with Figure 5.8. These values are

i=—4.5, bj=5, bk—_——OS
C[=_2, Cj=_2, Ck=4
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The area was also calculated and is 9.5 cm? The parameters multiplying the
matrices in (7.36) and (7.38) are
.D_" ﬂ& _ 0.5
447 44 409.5)
GA 2hA 2(0.01095
12712t 12(0.5)
Substitution of the b and ¢ coefficients and the calculated coefficients into (7.36)
and (7.38) gives [k'®] as

=0.0132

=0.0317

20.3 —225 2.25 4 4 -8
0.0132] —225 25 —2.50 ] +0.0132] 4 4 —8:|
2.25 —2.50 0.250 -8 -8 16
2 1 1
+0.0317l: 1 2 1
1 1 2
or
0.384 —0.213 —0.0442
[£“]=]-0.213 0.446 —0.107
—0.0442 —0.107 0.278

The element force vector { /] is given by (7.40). In this example, Q =2h¢ /t;
thus
Q4 2h$;4 2(0.01Y9.5(10)

= = =127
37 3 3(0.5)

and
1.27
{f9y=9127
1.27

7.4 ELEMENT MATRICES: RECTANGULAR ELEMENT

Evaluation of the element matrices for the rectangular element cannot be per-
formed as quickly as the integrations in the previous section. Each coefficient
involves integrating a polynomial over an area. The integrals can be evaluated
using the shape functions given by either of (5.17) or (5.19). We will use (5.17)
because of the similarity between the st- and xy-coordinate systems. '

The shape functions in (5.17) were developed relative to the st-coordinate
system; this presents a minor problem. All of the integrals are defined relative to
the xy system. In particular, the gradient matrix [B] has coefficients related to!
the derivative of the shape functions with respect to x or y. '

The change of variables equation for double integrals is discussed in detail in
Chapter 27 with regard to quadratic elements. The application of this equation’
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ngular element defined relative to an st-coordinate system can be sum-

a recta . |
o s follows. Since the st-coordinate system is parallel to the xy-coordinate

rized a .
Isr;ztem and a unit length in either s or t is the same as a unit length of x or y,
j flx,y)dx dy= J f(s, 1) ds dt (7.41)
A A
Equally important is the relationship between the derivatives. The chain rule gives
%:% and a_lvp.zaﬂ (7‘42)
ox Os oy 0Ot
The shape functions (5.17) are
s rost s st
=] = = — 4 Ni=— — —
Ni=l=op "2 4> 72 4ab
St _ t . i
“Taap “2a  4ab

The evaluation of [k©] and { '} is illustrated by considering a specific integral
. . ) . .
in each case. The easiest integrations are associated with {£9}, which is
N;

2b p2a X 744)
{f‘e’}=LQ[N]TdA=L [Ty a.
Nm

Considering the third coefficient gives

2b 2b b p20 id
= —dt
L jo Nidt ds jo L dab ’

2a 2b
:J‘”fﬁ ds='[ o 4= (7.45)
0 8ab 0 0 2b 4
The other three integrals yield the same result and
1
041 (7.46)
en =7
=501,
1
The integral associated with [k&'] is
[k‘é’]=j G[N]"[N]dA
A
N? N:N; NN«  NiNn
NN« NiNa | (7.47)

G N:N; N;
4 NiN NN, N} NiNm
NN, N;Nm NN. N2
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Selecting the N7 term, we have

2b p2a 2 2b 2a
st 212
J J (4‘b> dtds= -[ J‘ S\ZZd[ ds 2\4ab:é .
o Jo \4a o Jo 16a2b 9 9 (7.48

The complete set of coefficients is

4 2 1 2
GAl2 4 2 |
k(e) 7
kel=3ty 5 L, (749
2 1 2

The evaluation of [k%'] involves the derivatives i
of the sh
gradient matrix [ B] is " shape funcions. The
NN, oM N,
Ox O0x ox Ox
N, N, 0N N,
oy 3y 0y dy

[B]= (7.50)

U§ing th; relationships given in (7.42) allows [B] to be written in terms of s and .
Differentiation of the shape functions gives .

I [ =Qa—1t)  (Qa—1) ¢ -
B]l=—- !
LB] 4ab[—(2b—s) —s s (2b—s)] (7.51)

The coefficient in the first row and first col i '
coeffic i umn of [k§'] is available after the
multiplications [ B]"[D][B] have been performed. This coefficient is

D, D,
677 24~ gz Ch =9 752

and the associated integral is
2b

2 22 p 2 p
L L m@a—t)zdtdﬁ- L L Wzybz(%*s)zdfds (7.53)

which integrates to

Dxa+D"’b
3 3a (7.54)
The complete result for [k§'] is
2 -2 -1 1 2 1 -1 -2
[kg)]=l;xa -2 2 1 -1 +D‘yb 1 2 -2 -1
b | —1 1 2 -2 6a | —1 -2 2 1
1 -1 -2 2 -2 -1 1 2

(7.55)
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The element stiffness matrix [£‘] for the rectangular element is the sum of
(7.49) and (7.55). The element force vector is given by (7.46).

PROBLEMS

7.1 Evaluate one of the following integrals related to the force vector for the
rectangular element.

(a) L ON:dA  (b) L ON;d4 (o) L ON,. dA

7.2 Evaluate one of the following integrals related to [«§'] for the rectangular
element.
(a) L GN;N;dA (b) L GNN,, dA (c) L GNZdA

7.3 Evaluate the integrals for one of the following coefficients in [k5'] for the
rectangular element.
(a) Row 1, column 3.
(b) Row 2, column 4.
(c) Row 4, column 4.

74  Evaluate the coefficients in (7.24) when Q varies linearly over a triangular
element, that is, Q(x, y) is given by

O(x, y)=N:Qi+ N;Q;+ N, Qi

7.5  Evaluate the coefficients in (7.24) when Q varies linearly over a rectangular
element, that is, Q(s, t) is given by
Qls, )=NiQi+ N;Q;+ NiQi+ NuQnm
7.6 Write the transformation equations that apply between the xy- and st-
coordinate systems of the rectangular element. Use these equations and
the chain rule equations
6N,,__6N,;0x+8N,;6y
ds  Ox 0s Oy 0s
6N,;_(7N36x+5Nﬂay
ot O0x 0t dy at
to verify the relationships given in (7.42).
1.7 Write the transformation equations that apply between the xy- and gr-

coordinate systems. Use these equations and chain rule equations similar

to those in Problem 7.6 to show that
ONg _BN P

x " oq

oN,_on,
dy  or
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7.10

7.11

7.12
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Develop a relationship for [B] similar to (7.51) that applies in the qr-.
coordinate system.
Calculate [£'©] and { f©} for a linear triangular element when

|
(@) D,=D,=1, G=4, Q =5, and the coordinates are those given in Problem
5.7. .g
(b) D,=D,=0.25, G=6, =3, and the coordinates are those given mj
Problem 5 8.

(c) Dx=D,=2,G=6,Q =6, and the coordinates are those given in Problemi
5.9, ‘

Calculate [£®] and { f} for a bilinear rectangular element when

(@) Dx=D,=1,G=12,Q =S5, and the coordinates are those given in Problem
5.12.
(b) Dx=D,=0.5, G=10, Q =40, and the coordinates are those given m
Problem 5 13.
(c) D,=D,=2,G=2,Q =06, and the coordinates are those given in Problem
5.14,

Given the definitions ¢© =[N ]{®“} and
d¢(e)
dx

(RO} = - j [N]T(D R Q)
and obtain the general form
(R} =19} + (K10} = { 1)

V] ooy <m0

start with

where
d¢
1© dx x=X;
ey _J%
i=Giof=_ e
dx x=X;
X
[kw]:j D[B]"[B] dx
and

{f(E)} — ‘L'j Q[N]T dx

for the one-dimensional linear element.
The mixed-derivative term 0%¢/0xdy occurs in some two-dimensional %
differential equations. Show that
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L 7 oINT 39 a[N]T5¢)
j[N] oy i EL( o oyt oy ox)™

j [N]T (— cos 9+2¢ sin 0) ar

713 Evaluate

2 dx Oy dy Ox
given that ¢ =[N]{®*} and [N ] consists of the shape functions for the
linear triangular element.

1 j (8[N]T6q5 6[N]T6¢>



Chapter 8

TORSION OF
NONCIRCULAR SECTIONS

The element matrices for the linear triangular and bilinear rectangular elements;
were evaluated in the previous chapter. Application of this information to obtain &
numerical solution of a realistic problem is discussed in this chapter. We will
calculate the shear stresses in a square steel bar subjected to a twisting torque.
The torsion of noncircular sections has been selected as the initial application area;
because it has the simplest of the possible boundary conditions; ¢ is zero on the
boundary. :

8.1 GENERAL THEORY ?

There are two theories for calculating the shear stresses in a solid noncircularé
shaft subjected to torsion. St. Venant developed one theory, and Prandtl proposed!
the other. Both theories are discussed by Fung (1965). Prandtl’s theory is used m‘
this chapter. -

The shear stress components in a noncircular shaft subjected to a thstmg
moment T about the z axis (Figure 8.1a) can be calculated using i

i
i

o ) o0¢ !

zx =5 dnd szz - 5} (Slli

where ¢(x, y) is a stress function. The governing differential equation is i
152¢ 13% |

+20=0 2)

gox* gody P ® )

with
¢ =0 (8.3)

on the boundary. The physical parameters in (8.2) are the shear modulus, g,
(N/cm?), and the angle of twist per unit length, 0, (rad/cm).

Prandtl’s formulation does not have the applied torque, T, (N - cm) in the govern-
ing equation. Instead, T is calculated using

=2L¢dA 84)

once ¢(x, y) is known.
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(b)

Figure 8.1. (a) The shear stress components in a noncircular section subjected to a
torque loading. (b) The ¢ surface and related shear stress components.

The stress function represents a surface covering the cross section of the shaft
(Figure 8.1b). The torque is proportional to the volume under the surface while the
shear stresses are related to the surface gradients in the x and y coordinate direc-
tions.

Equation (8.2) is usually written as

‘*2
af+af+20 0 (8.5)

when the shaft is composed of a single material. This equation is obtained from

(7.1) by noting that D,=D,=1, G=0, and Q =246.

8.2 TWISTING OF A SQUARE BAR

The square shaft (Figure 8.2a) is used to illustrate the evaluation and the assemblage
of the element matrices into a set of linear equations. This shaft has four axes of
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The shaftis 1 cm square.

g = 8(10%) N/cm?
= 6= 0.01 degree/cm

= 0.0001745 rad/cm
(@
6
0.25¢cm
3)
4
5
2 0.25cm
/ 0y
1 2 3
!, 0.25 0.25

(b)

Figure 8.2 Element subdividion for the torsion of a square shaft.

symmetry; therefore, only one-eighth of the cross section needs to be analyzed.
This fractional portion is divided into three elements (Figure 8.2b). Three elements
are not sufficient to obtain an accurate answer, but they are enough to illustrate
the calculations. The calculations have three significant digits of accuracy.

The element node numbers are

e i j k m
1 1 2 4
2 2 3 5 4
3 4 5 6

Elements one and three have the same orientation and the same dimensions;
therefore, their matrices are identical.
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The matrices for the triangular element are given by (7.36) and (7.40) while
those for the rectangle are given by (7.46) and (7.55). The matrices become

| b} bib; bibx i CiCj CiCk 86)
2 . .
[k‘l?]:a bib; b} bibi |+ 75| c; c,ik
b,‘bk bjbk b;% CiCk CjCx Ck
and
2404 !
{f‘“’}=—g3 1 8.7)
1 -
Mrﬂwtnangﬂareknwntand
4 -1 -2 —1
11-1 4 -1 -2
@7 (8.8)
Lk ]—6 -2 -1 4 -1
-1 -2 -1 4
and
1
{ f<e>}=293A 1 8.9)
1

for the rectangular element. Equation (8.8) also incorporates the fact that element
two is square, 2a =2b. .

We shall now evaluate (8.6) for elements one and three. The element area is
4 and 44V =}. The b and ¢ coefficients are

C(11)=X4'—X2'—‘—‘0
=X, —Xy=-025
C&I)ZXZ—Xl =0.25

BV =Y, - Y,=—025,
b(zl)_.—_ Y4 - Y1 =025,
b&l)= Yl - Yz =0,

Substituting these values into (8.6) gives

g 1 -1 0 0 0 0
ny_" | = —10 1 —1 8.10)
[ ]_16 1 1 0 +16 (

0 0 0 0 —1 1

after noting that 1/44'V=8 and the bibj, cicitype products are either zero or
+ 7. Adding the two matrices yields
1 -1 0
[k“)]=1 -1 2 —1{=[£?] (8.11)
2 0 -1 1
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The element force vector, { 'V}, is readily obtained once the 2g0 parameter has
been evaluated. Substituting the values given in Figure 8.2 produces

n
296 =2(8)(109)(0.01) (1’%) =2790

Substitution of 2790 and 4’ =35 into (8.7) gives

{fNT=129.1 29.1 29.1]={yN" (8.12)
The stiffness matrix for element two is given by (8.8). The force vector, (8.9), is
{f P T=[43.6 43.6 43.6 43.6] (8.13)

since 4 =% and 240 is 2790. :
The element matrices are summarized below. The node numbers indicate the
rows and columns of [K ] and {F| to which the individual coefficients add.

1 2 4
- 0 29.1] 1
[k(l)]:§ —1 2 -1 , {f(l)}: 201v 2 (814)
L 0 -1 1 29.1] 4
2 3 5 4
4 - -2 1 143.6\[2
11 4 —-1 =2 43.6
2y~ {2 _
=2 sl VT e s GD)
-1 -2 —1 4 43.6
4 5 6
Jr - 0 29.1] 4
(2] =5] -1 2 1|, =S (8.16)
L 0 —1 1 29.1] 6

Adding the element contributions using the direct stiffness procedure and
multiplying through by six gives the system of equations

[ 3 3 0 0 0 o] (o, 175] (o0
-3 100 -1 -4 =2 olla,| [436] |o
0 -1 4 -2 -1 ol |os] ]262] |o
- - 8.17
0 -4 -2 10 -4 ol 1o, lett| "o (8.17)
0 -2 -1 —4 10 3o [436] |0
o 0 0 0 -3 3| leg) l175) Lo

The nodal values @3, @5, and @4 are on the external boundary and each is zero;
therefore, equations three, five, and six are eliminated. Columns three, five, and

six must be incorporated into {F}. Since ®; =®5 =®4 =0, they contribute nothing-

to {F} and the modified system of equations is
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b =217

=0
Figure 8.3. The ¢ surface for the torsion problem.

3 -3 0], 175 0
-3 10 —4 |q®,r — 436 =40
0 —4 101 1P, 611 0

Solution yields
®, =217, ®,=159, and Pd,=125

The ¢ surface for this set of nodal values is shown in Figure 8.3.

The determination of the nodal values is a major part of the solution, but there is
usually a set of element quantities that must be calculated once the nodal values
are known. The shear stress components and the twisting torque are of interest in
the present example. The evaluation of these quantities is discussed in the next
two sections.

8.3 SHEAR STRESS COMPONENTS

The gradients of the nodal parameter, ¢, are important because the shear stress
components are related to these gradients by

0
% and T,y=— % (8.18)

T

x ="

dy
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The gradient vector for the triangular element is given by (7.34) as

D, .
1|5 b; b ' '
X i J k .
tgvl =57 [ c,- ck] ®; (8.19§
®,
The gradient vector for the rectangular element is given by (7.51) as
@, ‘
1 | —Qa—1) (2a—1) t —t D;
tgv} —%[—(Zb—s) -5 s 2b—s) | | Dy (8'20F
o, ‘

The area as well as the b and ¢ coefficients are the same for both triangulaﬁ
elements and they were evaluated prior to (8.10). Using these values and the calcu-i
lated values for ®,, ®,, and ®, gives

217

16 1 0 —232
{gvV} ——|: :| 159 ={ }
- —1
o -1 1] 36 “
and i
t‘zi’z%: —136 N/cm?
dy
o¢

©) =~ =~ =232 N/em?

The stress components for element three are calculated in a similar manner giving
=0 and 743 =500 N/cm?

The gradient values are not constant within the rectangular element. Thus w
can calculate the shear stress components at node three, which is where the largest
value of 1., occurs. The local coordinates of node three are s=2b and t =0; also,
2a=2b=0.25. The gradient vector is

b,
(o 16[ =1 1 0o o]l|e,
4 0 -1 1 ol]os
D,
or
159
4 0 o0]|o0 636
(2)
{g”}[o 440]0{0}
125
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Positive shear stress components

Tay

Tax

500

<
H
[&,]

136 l 636

Figure 8.4 The shear stress values for the square shaft.

and
=0 and 742 =636 N/cm?

The shear stress values calculated above are shown in Figure 8.4 along with the
values of 7., and 7, at the center of the rectangular element. The shear stress values
calculated for each triangular element are constant within the element and are
usually assumed to be the values at the center of the element.

There are at least two ways to improve the stress values obtained for this ex-
ample. First, a larger number of elements can be used. As the element size decreases,
the existence of a constant value within the element becomes more realistic. An
alternative approach is to use elements with more nodes and a quadratic or cubic
interpolating polynomial. Differentiation will then yield gradients that are a
function of the location within the element.

84 EVALUATION OF THE TWISTING TORQUE

Another quantity of interest in the analysis of a torsion member is the twisting
torque T defined in (8.4). This integral is equivalent to

T= Z 2 J ¢ dA 8.21)

Ale)

The integral

[ 6 dA
Ale)
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A

J P dA="= (®;+D;+ D) (8.3

4(0) 3 A

for the triangular element and
A

J ¢© dA :Z(d),-+<b,~+(bk+d>,,.) (8.2§

Ate) 5

for the rectangular element
The torque, T, is the sum of the element contributions or

T=TV4+T?+T®
The element contributions are

T =2(5)G)P + P, + D)
=45(2174+ 159+ 125)=10.4
TP =2({s)@)®,+ 3+ ®s + D,)=8.88
TP =F5(®4 + D5 + D) =2.60
The torque is 1
T=104+8.88+260=219N"cm (8. 4

This torque acts on one-eighth of the cross section. Thus the torque acting on
square bar is 8(21.9)=175 N cm. :

It takes a torque of 175 N- cm to produce a twist of 1° in a 1-cm square steel

because of the coarseness of the grid. In fact, our answer is 11 percent below ¢
theoretical value* of 196 N - cm. ‘

value because we have guessed at the angle of twist, 6. The correct values of 7,,, ‘t,:‘
and 0 are obtained by scaling the calculated value by the ratio T,.ua1/ Toaicutated- FOR
example, suppose that the torque applied to the shaft in Figure 8.2 was 250 N -

The true angle of twist is

0 T;c! 0
true — assumed

T;:al
or -y
| >0 8.25)
Guuc = (%) (001 ) =0.0143 rad/Cm ( "

The shear stress values are scaled in the same way. The largest value of 1, for§

*The relationship between the applied torque and the angle of twist for a square of dimension 2a
given by T =0.1406g6(2a)* (Timoshenko and Goodier, 1970, equation 170, p. 313). For our examp!
2a=1and T=0.1406g0 =196 N - cm. §
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the actual applied torque is

Toc
‘L’zyz TI sz

= G%%) (636)=909 N/cm? (8.26)

8.6 COMPUTER SOLUTIONS FOR THE SQUARE BAR

The three-element grid discussed in the previous sections i§ the srflallest numbetr) of
elements that can be used to solve the torsion problem 1T1vo]vm.g a sq.gare' l.'ilr.
More accurate values for 6 and the shear stresses are ob.tamed_ using gn] $ vK]t a
Jarger number of linear elements or by using elements with a higher leye do‘ m:;::-
polation. Three computer solutions for the squgre ba}r are summgrlze in ;s
section. The first grid consists of 50 elements and is a mixture of the lmea.r tr1an8g6e
and the bilinear rectangular elements (Figure 8.5). The other two (Figure 3 )
are mixtures of the quadratic triangular and quadrilateral elements. One grid
lements, the other seven. _ '
ha’sl";\};rfsaexfmum shear stress and the maximum value of (l)- foF the various grids
are summarized in Table 8.1. The 50-element grid is a definite improvement over

N
TTmax =893 cm?

. = 208.6

max

49 nodes, 50 elements

Figure 8.5. A 50-element grid for the square shaft.
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S — 2062 Trma, =928 N/cm?

max

14 nodes, 3 elements

o =937 N/cm?
B, = 206.2 T’"‘a"

24 nodes, 7 elements

Figure 8.6. Two grids using quadratic elements to solve the square shaft
problem.

the 3-element grid of Figure 8.2b. The grids with the quadratic elements, howeve
give more accurate results than the grid with 50 linear elements.

Table 8.1 indicates why the higher-order elements are included in many com
mercial computer programs: Greater accuracy can be obtained with fewer €l
ements. Fewer elements means less work preparing the element data. A comparisol
of the .esults for the quadratic grids indicates that additional elements are nd
needed.

Table 8.1 also emphasizes a fact that should be kept in mind when constructin
the grids for a finite element problem. A rather coarse grid gives good results 1
we are only interested in the nodal values. Note that ¢, for the three-clemen

TORSION OF NONCIRCULAR SECTIONS 1

Table 8.1 Computer Solutions of a

Square Bar

Grid Torque Dpax Tiax
Figure 8.2 175 217 640
Figure 8.5 192 212 893
Figure 8.6a 196 206 928
Figure 8.6b 196 206 937
Theoretical 196 207 945

grid is within 6 percent of its theoretical value. If we are interested in derivative-
related quantities, then we need a fine grid of linear elements or several quadratic
elements. The maximum shear stress for the 50-element grid is 893 N/cm?, which
is 5.5 percent below the theoretical maximum. It took 50 elements to obtain the
same accuracy in a derivative quantity that three elements produced in the nodal
values. This ratio will not be the same for all problems, but it should be kept
in mind.

PROBLEMS

8.1 Solve the torsion problem for a square shaft using the four triangular elements
shown in Figure P8.1. Set up the equations, solve for the nodal values of ¢,
and calculate the maximum shear stress in element three. Use 2gf =2790.

n

0.25cm
a 4@
—#5
@ 0.25
. cm
(1) 3
1 * 3
2
|<o.25>}<o.25>
0.5cm

—

lcm ,!
Figure P8.1

8.2 Solve the torsion problem for a square shaft using the four rectangular
elements shown in Figure P8.2. Set up the equations, solve for the nodal
values of ¢, and calculate the maximum shear stress at node three. Use
2960 =2790.
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3) (4) 0.25¢cm

M @ 0.25cm
16t * 3—Y

2
l<0.255=0.25>

0.5cm

L——0-5—v>1<7—0.5—>l

Figure P8.2

8.3 Do Problem 8.2 using the four-element grid shown in Figure P8.3.

7 8 9

3) 4) 0.3cm

H (2 0.2
2]* 3

ol ]

0.5cm

1

T
Yy

lcm

Figure P8.3

8.4-8.8 Use the nodal coordinates and ¢ values for the triangular elemet
given in Problems 5.7-5.11 and calculate the values of 7., and 7, for t
element. Also calculate the element contribution to the twisting torque T

8.9-8.13 Use the nodal coordinates and ¢ values for the rectangular elemer
given in Problems 5.12 to 5.16 and calculate the values of 7., and 7, at t
center of the element. Also calculate the element contribution to the twisti
torque 7.

8.14-8.15 The twisting of the shapes shown in Figure P8.14 and P8.15 ha
analytical solutions. Obtain finite element solutions for these problems usi
the computer program TDFIELD (Chapter 16) and a reasonable numb
of elements (20 to 50). Compare the maximum values of ¢ and the she
stress for the finite element solution with the analytical values. Use 2¢6 =27
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~
(1]

~4.cm o GOa*h? (i:.z —1>
(@®+b*)\a® b*
2
2a T =42690b at =+b
=) y=+
P8.14

Cad

1 2
3_q..2y_ S 2
2a(x 3xy7) 27(1]

at the middle of each side
[ 2

Figure P8.15

8.16-8.19 Obtain finite element solutions to the torsion problem for the cross
sections shown in Figures P8.16 to P8.19 using the computer program
TDFIELD (Chapter 16). Use a minimum of 30 elements. Use 2¢0=2790.

~

4cm

i

L e —

Figure P8.16
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Figure P8.17

T

7cm

~6 cm

Figure P8.18

y

!

Figure P8.19

Chapter 9

DERIVATIVE BOUNDARY
CONDITIONS: POINT
SOURCES AND SINKS

The torsion of noncircular sections is a unique two-dimensional problem because
the value of @(x, y)is specified around the entire boundary. Most physical problems
have a mixture of boundary conditions. The values of ¢ are specified on part of
the boundary, and values related to the derivatives d¢/dx and d¢/dy are specified
on other parts of the boundary. This latter situation occurs in both fluid flow and
heat transfer problems. We cannot discuss either of these topics until we have
studied how to handle derivative boundary conditions.

Another phenomenon that occurs in fluid flow and heat transfer problems is
the point source or sink. In this situation, Q is concentrated at a point. Physical
examples of a sink and a source include the pumping of water from an aquifer and
heat generated by electrical lines embedded within a material.

The objective in this chapter is to discuss the concepts related to derivative
boundary conditions and sources and sinks before we begin the study of irrota-
tional flow and heat transfer.

9.1 DERIVATIVE BOUNDARY CONDITIONS

The two types of boundary conditions for two-dimensional field problems are
shown schematically in Figure 9.1. Over part of the boundary, call it Iy, ¢ is
specified. A boundary condition of the type

0 0
Dx—¢cos£9+Dy—¢sin0=—Md>,,+S 9.1)
Ox Oy
is specified on the rest of the boundary, I',. When D, =D,, (9.1) reduces to
0
2 wprs 02
On

where 0p/0n is the derivative normal to the boundary. In each case, ¢, represents
the value of ¢ on I';, and is unknown. Equations (9.1) and (9.2) simplify to

0 G
Dx—d)cos 9+Dyi’5 sinf=0 ©.3)
Ox dy
and
i
¢ _o 9.4)

i
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¢ is known on I'y

I')

1% 0
Dx—djcos()+D,—¢sin6=—M¢b+S onTl, 1‘
Ox dy

Figure 9.1. The two types of boundary conditions for field problems.

B
when M =S=0. This situation occurs on insulated or impermeable boundaries
on axes of symmetry. The situation where either M or S, but not both, are zero’
also possible. :

The inclusion of the derivative boundary condition into the finite eleme
analysis of field problems is done using the interelement vector {I‘} given {
(7.22). This vector is !

{I‘“’}:—J [N]T<Dx%COSO+Dy%Sin9>dr O.
r Ox 0y i
where the integral is around the boundary of the element in a counterclockwil
direction.

The integral in (9.5) is the sum of three integrals (one for each side) when int
grating around a triangular element and the sum of four integrals for the rectang}
lar element. We shall separate {I'®} into two components

U =152} + {11} O
where
- P |
ny=—1 [NT DX;COSO‘FD.fd)SinB dT o.
¥
Tpe 0x (7y i

and I, is the side of the element over which the boundary condition is specifie
The vector {I{¥} contains the integrals of (9.5), which occur on the element sid(
that do not have a boundary condition specified on them. These integrals lead {
the interelement requirements that must be satisfied before Galerkin’s residuals
zero.

Using our definition for {1} and substituting the relationship in (9.1) gives

)= J; [N]T(Mé,—S)dT (9'-"?
be
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where ¢ is given by the element equation
¢ =[N]){®*} ©.9)
Substituting (9.9) into (9.8) produces

)= [ INTOMINY0) —S)aT ©.10)
be
which can be separated into

{182} =( f M[N]T[N] dr> (D@} — J S[N]FdT (9.11)

Tbe Tbe
The boundary condition produces two components. One component adds to
[k] because it multiplies {®}. The other adds to { f@}. The integrals, however,
are different from those previously encountered because they are line integrals

instead of area integrals.
The two components in {I;;'} in (9.11) can be defined as

{142} = [k 1@} — (A} 9.12)
where
(k9] = L M[N]T[N]dT ©0.13)
and §
{89 = J; S[N]TdT ©.14)
be

Before we proceed with the evaluation of the element integrals, it should be

P _
y% —Md)b_s

/////////////

-D
@ = Mo —
D, % = Mgy~ S

a0 _

8 D % =M, —S
D3¢ =Ms,~S * 3y b \
- D =M= S

i — -
D, % =Ms,-S

-D, 2% =M¢,- S

X ax

N\

Figure 9.2. The derivative boundary conditions for a hollow rectangular region.
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[
1

noted that the boundary condition (9.1) takes on different forms as we traver. ;

the outside and inside of a rectangular region with a hole. The various forms f

d d ’
_ <Dx 5? cos 0+ D, % sin 0) (9.1%
are given in Figure 9.2. The sign associated with M and S must be determineq
relative to the information contained in Figure 9.2. This determination is illustrated
in the application chapters that follow. Remember that 8 is the angle from thy
x-axis to the outward normal. ‘

9.2 EVALUATION OF THE ELEMENT INTEGRALS

The integrals in (9.13) and (9.14) are valid for any two-dimensional element ank
can be evaluated once the element shape functions are known. We shall evaluatg
these for the linear triangular and bilinear rectangular elements that were studie&
in Chapter 5. We shall start with (9.14) and the rectangular element because this
combination is the easiest to evaluate. i

Assuming that S is specified over side ij and that the element has a unit thicknes§

gives ’

N; |

b N. )

J S[N]le“zj. i N
The -b Nk

N
where the shape functions are those defined by (5.19) for the gr-coordinate system,

Note, however, that N,=N,,=0 along side ij. Substituting for the nonzero shap&
functions and noting that r= —aq,

;
dq 9.16)
3

[
M

(b—q) 1

{fsge)}zj. S (b+q) d :SL,'j [1

L2l o [ 2 (o
0 0

The quantity S is multiplied by the length of side ij, L;j, which is 25 and divided
equally between the two nodes on side ij. |

There are three other evaluations for the surface integral, one for each of thé
remaining three sides. It is left as an exercise to show that the other results for

{ f39} are

©.17)

J

0 0 1 ;

SLy |1 SLym | O SL.. |0 |

ey jk km im 9.18
s > 1l > 11 and > 1o ( ]
0 1 1 :

for sides jk, km, and im, respectively. If S is specified on more than one side of ali
element, the values for { f{?} for the appropriate sides are added together.
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The evaluation of (9.14) for the triangular element gives results that are very
similar to those in (9.17) and (9.18). The results are

1 0 1
e SL, Sij SLix 919
== (1) : 3 i , and 5 (1) (9.19)

for sides ij, jk, and ik, respectively. The quantities Lij, Lj, and Ly are the lepgths
of the respective sides. They are not the area coordinates. The area coordinates
have numerical subscripts. . o

The first result of (9.19) is obtained as follows. Given side ij,

N.
1 i
{fé”}:j S[N]le"zL,»,» !. SN;rdt 9.20)
rbc 0 N
k
Since N, is zero along side ij,
1 Nl 1 el
{f.éE)}:Lijj S N] d[2=LUJ‘ S (2 d€2 (921)
o 10 ° |0
because the shape functions N; and N; reduce to
N,'=L1 =€1 and Nj=L2=€2 (922)

along side ij. This fact was discussed in Chapter 6. The integr?tion isalong a lipe;
thus we can use the factorial formula (6.17), and the result in (9.19) follows im-

mediately. . . ot
The integrals associated with [k§7] are evaluated in a manner identical to those

just discussed. The major difference is that there are more terms to consider.
The integral in (9.13) expands into
N7 N;N; NiNy  NiNn
. N:N; N} NiNe  NiNw| o 9.23)
WA= My MmN N
NN, NNu  NeNa N2
for the rectangular element. If we assume that M is specified over side ij, then
N,=N,,=0 and (9.23) becomes

N} NN, 0 0
. b N:N; N} 0 0 924
T I R R .24
0 0 0 0

Evaluation of the individual coefficients after noting r= —a gives

b b (b—q) 2b Ly
—-b -
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b b
[ b—gXb+q) , 2b L
J,,,NLNJ"q-"f_,,Td‘I*F—?
and
b rb 2
(b+q) 26 Ly
N2 dg= —dg=""="Y
IR Lo =573
Using these results, we have
’—2 1 0 0
o7 MLy| 1 2 0 o0
Lii?]= 6 [0 0 0 0
L 0 0 0 0
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9.2¢

9.2

9.28

There are three other results for [ki9], one for each of the other sides, Thes

results are

0 0 0 07

e MLy 0 2 1 0
LK1= 6 0 1 2 0
| 0 0 0 0
[0 0 0 07

MLkm 0 0 0 0

k1=

[+7] 6 0 0 2 1

L0 0 1 2.1
and

"2 0 0 17

o MLi,| O 0 0 0

[kh]= 6 |0 0 0 0
| 1 0 0 ZJ

where Ly, Ly, and L;, are the lengths of the respective sides.
The evaluation of (9.13) for the triangular element leads to

[2 1 0]

ML,
[ch‘?]:—6 11 2 0
0 0o o]
0 0 0]

ML.
[kﬁ?]=% 0 2 1
o0 1 2 J

and

[k$7]1=

e
o

6

MLy (g 0 IJ

(9.29

(5.30;

©.31)

9.32)

(9.33)

(9.34)
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9.3 POINT SOURCES AND SINKS

An important physical situation is the concept of a point source or sink. A source
or sink is said to exist whenever Q occurs over a very small area. Examples of l-me
sources include steam and/or hot water pipes within the earth and conducting
electrical wires embedded within a product. In each case, the cross-sectional area
of the pipe or conductor is very small compared with the surrounding media.
Point sinks occur in groundwater problems: They are pumps removing water
from an aquifer.

Sources and sinks occur often enough in the real world to warrant our attention.
Our discussion is structured around the two-dimensional element, but the pro-
cedure can be quickly modified to handle the one- or three-dimensional element.

Consider the triangular element in Figure 9.3 with a source Q* located at
(Xo, Yo). Since the source is located at a point, Q is no longer constant throughout
the element but is a function of x and y. Using unit impulse functions, é(x — X,)
and o(y — Y,) (Kaplan, 1962), we can write

Q=0%d(x—Xo)o(y—Yo) (9.35)
The integral
{fée’}=J Q[N]"dA (9.36)
A
becomes
N;
{fée)}=Q*j Njpolx—Xo)o(y—Yo)dxdy (9.37)
A N,
y
k

X

Figure 9.3. An element with a point source or sink.
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The integral of a quantity multiplied by an impulse function, however, is eq“i
to the quantity evaluated at X, and Y,. Therefore,
Ni(X07 YO) )
N;i(Xo, Yo) (9.3§
Nk(XO’ YO) |

i

(e} =0*

The proportion of Q* allocated to each node is based on the relative values é
N;, N;, and N, evaluated using the coordinates of the point source. Since th
shape functions sum to one at every point within the element, we are not allocatin
more than Q*. (
ILLUSTRATIVE EXAMPLE

A line source @* =52 W/cm is located at (5, 2) in the element shown in Figure 92
Determine the amount of Q* allocated to each node.
The values of the g, b, and ¢ constants are

a; =28, a;="6, a,=—21
b,'=—4, bj=1, bk=3
C,=—1, Cj=—3, Ck=4
The shape function equations can be written after recalling that
ai+aj+ak=2A =13
The equations are
=528 4x )]
=75[6+x—3y]
Ni=15[—21+3x+4y]

% o (6,4)

3.3

(7,0

= X
J
Figure 9.4. A point source in a triangular element.
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gubstituting x=Xo=>5 and y= Y, =2 produces
Ni=r5[28-4(5)-2] =
Nj=15[6+5-3Q2)] =13
Ne=15[—2143(5)+422)] =75

The value of Q* is allotted to nodes i, j, and k by the fractions %, Y5 and 7,
respectively. Therefore,

6| |24

2
{fée>}=f3 5t=120
2 8

The best location for a source or sink is at a node. This location changes the
result given in (9.38). If we assume that the source is at node j (Figure 9.5), then
N;=N,=0 and

8 =0% 11 (9.39)
0

The magnitude of Q*, however, must be modified when the source (sink) is shared
by more than one element. The magnitude of the source is divided among the
elements joining at the node. The source is allocated according to the ratio of the
angle in the element to 360. The correct equation for element (e) in Figure 9.5 is

{8 _% (9.40)

Figure 9.5. A point source at a node.
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There is no need to evaluate a for the various elements. When the equations aj
assembled using the direct stiffness method, the element contributions at th;
node add to Q*. An easier procedure for implementing a node source is to add th
value of Q* to the row of {F} corresponding to the node number. A source |
positive whereas the sink has a negative sign.

PROBLEMS

9.1 The boundary condition around the outside of a rectangular region follow
Determine the magnitude and sign for M and S on each of the sides; th
sides are labeled as shown in Figure P9.1.

d
(a) Dx—¢=6q>,,—3, side 2
ox

0
(b) D, —¢= —4¢,+6, side 1
dy
0
(9] Dx‘¢=5¢>b+2, side 4
0x
0
(d) Dy£=8¢)b—4, side 3
ay
Side 3
Side 4 Side 2
Side 1
Figure P9.1

9.2 Evaluate the integral in (9.14) for:
(a) Side jk of a rectangular element.
(b) Side km of a rectangular element.
(c) Side im of a rectangular element.
(d) Side jk of a triangular element.
(e) Side ik of a triangular element.

9.3 Evaluate the integral in (9.13) for
(a) Side jk of a rectangular element.
(b) Side km of a rectangular element.

(c) Side im of a rectangular element.
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(d) Side jk of a triangular element.
(e) Side ik of a triangular element.

9.4-9.8 Evaluate {f§”} for a point source, Q* =40 W/cm, located at point A
for the corresponding triangular element in Problems 5.7-5.11.

9.9-9.13 Evaluate { f§”} for a point source, 0* =40 W/cm, located at point B
for the corresponding rectangular element in Problems 5.12 to S.16.



Chapter 1 0
IRROTATIONAL FLOW

The irrotational flow of an ideal fluid has been studied extensively because of t
information that can be obtained about flow around corners, over weirs, through
constructions, and about airfoils. Ideal irrotational flow is an approximation.
assumes that no friction occurs between the fluid and a surface (ideal) and that n¢
rotation or distortion of the fluid particles occurs during the movement (irrot,
tional). J

The flow of water through the earth can also be closely approximated by assums
ing irrotational flow. The analysis of groundwater flow is an important aspect
regional planning because many regions within the country depend wholly or if
part on groundwater for their water supply. The flow of water through and und
dams as well as into underground drains are some other important areas that
be studied using the theory.

10.1 FLOW OF AN IDEAL FLUID

The two-dimensional flow of an ideal fluid can be formulated in terms of a stre

function  or a velocity potential function ¢. Lines of constant § are perpendiculaj
to lines of constant ¢ and the governing differential equations are identical. Thes
equations are ‘

3ty o*Y o’ ¢

—t—-——=0 I g

ox? N oy* and ox? * oy?
respectively. The boundary conditions for ¥ and ¢, however, are not the sam

and this difference leads to different calculated values. Both of these formulatio
are discussed in this section.

0 (10.4

10.1.1 Streamline Formulation

Lines of constant i are called streamlines. The volume flow rate, Q;;, between any
pair of streamlines is equal to the difference in their values, "

Qu=vi—¥; (102

There is no flow perpendicular to a streamline. The velocity components ar§
obtained from the calculated values of ¥ using |

v oy i
_ __w 10.
V=g, and h=-o (1
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> V., =5cm/sec

O 45cm 12cm
AR A

'y

Figure 10.1. Flow around a cylinder

v =30

ﬂ =
dx

L —
3x

\w:o

Figure 10.2. Boundary conditions for streamline flow around a cylinder.

The assumption of an ideal fluid implies that the motion of the fluid does not
penetrate into the surrounding body or separate from the surface of the body ar}d
leave empty spaces. These conditions imply that the component gf the fluid
velocity normal to the surface is equal to the velocity of the surface in the same
direction (Duncan et al., 1970). The above implies no flow perpendicular To a
fixed boundary and, therefore, no velocity perpendicular to the boundary. Fl.xed
boundaries as well as an axis of symmetry parallel to the flow are streamlines
because there is no fluid velocity perpendicular to them.

The boundary conditions for streamline flow are discussed relative to the
problem illustrated in Figure 10.1. On the left boundary, V is a uniform 5 cm/sec.
Since ¥, =0, it is concluded from (10.3) that dy/0x=0 on this ed.ge: The s?lme
boundary condition applies to the right-hand vertical side because it is an axis of
symmetry and the streamlines must be symmetrical about this edge. .

The horizontal axis of symmetry and the cylinder boundary form a streaml.me
as well as the upper boundary. A zero value is assigned to the lower strearr%lme.
The upper streamline can have any nonzero value; an appropriate value is 30
because the flow rate is 30 cm?/sec for a unit thickness (one-half of the total flow).
The four boundary conditions are shown in Figure 10.2.

10.1.2 Potential Formulation

The velocity components in the potential formulation are related to ¢ by
_o¢ |Z _% (10.4)

= d ==
ax an Y

Vi 3y
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Relating these to the flow around the cylinder (Figure 10.1) gives d¢)/dx =5 on ¢
left-hand edge and 0¢/0y =0 along the horizontal axis of symmetry and the upp
boundary. Since the velocity normal to the cylinder is zero, 0¢/on=0 along ¢
cylinder. We draw upon our knowledge that potential lines are perpendicular
streamlines to establish the last boundary condition. The right-hand edge must be
potential line because it is an axis of symmetry and all the streamlines are pe
pendicular to it. It is assigned an arbitrary value of 50. The value does not influen
the results, since the velocity components are related to the gradient values. T|
boundary conditions are shown in Figure 10.3.

The numerical value of the flux boundary condition along the left edge is dete
mined by comparing the actual boundary condition with the theoretical bounda
condition. The actual boundary condition is ‘

o¢ ,

and the theoretical equation (see Figure 9.2) is
o6 o9
—Dxa—s or E:—S (10.‘

when D, =1. Equating the second of (10.6) with (10.5) gives S= — 5. ‘
The boundary condition ¢=50 on the right edge of Figure 10.3 is a specil
case. When the body is irregular in shape, the grid must include the downstrea

% _
By_o

dp  _ 3
ay ~0 :

Figure 10.3. Boundary conditions for potential flow around a cyIindefl,

9o _
2 =0
¢ _ ¥
an =0 ¢
%% =V, ¢ = Constant
A
§
1
b _ -
2 =0

Figure 10.4. Boundary conditions for potential flow around an irregular shap@

IRROTATIONAL FLOW 129

side of the shape until a uniform velocity is again attained (Figure 10.4). At this
point, constant potential lines are perpendicular to the flow and ¢ can be given

an arbitrary value.

10.2 GROUNDWATER FLOW

There are two important groundwater problems governed by the field equation.
The first is the seepage of groundwater under dams. The governing equation is

¢ ¢
ot TPrgy =

where D, and D, are the coefficients of permeability (m/day) and ¢ is the piezo-
metric head, in meters, measured from the bottom of a confined aquifer. The
boundary conditions generally consist of known values of ¢ beneath the water,
and a zero seepage condition on the other boundaries (Figure 10.5). A impermeable
vertical wall beneath the dam is modeled by using a narrow gap for the wall
The finite element method automatically enforces the impermeable boundary
condition, d¢/0n=0, on each side of this gap, when no other conditions are
specified.

The second groundwater problem is the calculation of the drawdown at a well
that is removing water from an aquifer. The governing equation for a confined
aquifer is

D 0 (10.7)

2% o0’
- —4+0=0 10.8
xax2+Dy8y2+Q (10.8)
where D,, D,, and ¢ are the same as defined for (10.7). The Q term in (10.8) repre-
sents a point sink, the well, and should be evaluated using the concepts discussed in

Chapter 9. The best results occur when the well is located at a node.

The boundary conditions associated with (10.8) consist of known values on all

D

Figure 10.5. Boundary conditions for groundwater seepage under a dam.
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or a part of the boundary and/or the seepage of water into the aquifer along tL‘
boundary. Seepage is described by the derivative boundary condition ’

q
o 0¢ g
<Dxacos9+Dyasm 0)-_—5 (109
The fluid velocity components are calculated using Darcy’s law !
8¢ 1
I/x = Dx A
Ox l
o¢ !
V,=—-D, 3 (10.1Q]

10.3 COMPUTER EXAMPLES

The computer solutions for two problems using the steady-state field progran
TDFIELD given in Chapter 16 are discussed here. The first problem involves
ideal flow around a cylinder as shown in Figure 10.1. The second involves thé
pumping of water from a confined aquifer. !
10.3.1 Filow Around A Cylinder &
A' grid consisting of rectangular and triangular elements for the configuration it
Figure 10.2 is shown in Figure 10.6. The grid consists of 38 elements and 37 nodes.

Yy
10.50cm [
. 33 ] 37
10 15 200 ) 26
@ ® (12) G o) @D &
4 9 14 19 @D\ fos 32 36
20) @\ > (36)
(3) @) an | agy 24 (351) 35
8 13 18 (19 @&
6cm 3 (17) (34)
23K _(27) 34
) (6) (10 (16) (32)(33) {
, ” 12 17 a5) (26) 30
29
W 5 (14) /122 & 22oem
1
(5) ©) (1) 24) 28
' 6 11 16 | 21/ ~(23)
| 27 x 4
he 8.25cm .

>

Figure 10.6. Finite element grid for irrotational flow around a cylinder.
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The length of 8.25 cm from the cylinder represents a guess as to where a uniform
velocity exists on the upstream side of the cylinder.

The nodal coordinates and calculated values of ¢ and ¥ are given in Table 10.1.
Contour lines for various values of ¢ and ¥ are shown in Figure 10.7. The ¢=0
contour line is not vertical so that a uniform velocity, V;, does not exist along the

left edge.

Table 10.1 Coordinate Data and Results
for Irrotational Flow Around a Cylinder

Node X Y ¢ 1/
1 0.0 0.0 -10.33 0.0
2 0.0 1.5 —10.30 7.43
3 0.0 30 —10.24 14.9
4 0.0 4.5 —10.19 225
5 0.0 6.0 —10.16 30.0
6 27 0.0 4.04 0.0
7 2.7 1.5 4.10 732
8 2.7 3.0 4.26 110.8
9 2.7 4.5 4.41 223
10 2.7 6.0 4.47 30.0
11 4.5 0.0 10.6 0.0
12 45 1.5 10.8 7.01
13 4.5 30 10.3 14.3
14 45 4.5 10.7 220
15 45 6.0 10.8 300
16 6.0 0.0 110.3 0.0
17 6.0 1.5 110.8 6.25
18 6.0 30 210 10.5
19 6.0 4.5 217 215
20 6.0 6.0 220 30.0
21 6.9 0.0 229 0.0
22 7.2 1.2 24.8 0.0
23 7.8 27 30.1 10.66
24 6.9 3.6 26.1 159
25 7.5 4.5 30.2 20.8
26 7.2 6.0 28.8 30.0
27 8.25 0.0 26.5 0.0
28 8.42 0.86 283 0.0
29 891 1.59 333 0.0
30 10.64 2.08 41.1 0.0
31 10.0 33 38.5 10.3
32 8.7 4.5 37.6 1109
33 8.4 6.0 36.1 300
34 10.5 225 50.0 0.0
35 10.5 3.6 50.0 10.3
36 10.5 4.8 50.0 21.5
37 10.5 6.0 50.0 30.0
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132
¢=0 ¢:20 ¢=30 /¢=5()
N 304
Y =25
¥ =20,
=10y
v=15 1
¥=0 |
.4
¢ =40
w=5
$=10 $=25
Figure 10.7. Streamlined and constant potential lines for irrotational flow around
a cylinder.

10.3.2 Regional Aquifer

A small regional aquifer (Figure 10.8) has a single pump removing water. The
upper and lower edges are impermeable, and the left and right edges are far enoughl
from the pump so that a constant head of 200 m is maintained. The pump has a
capacity of 1500 m*/day. The permeabilities, D, and D, are 15 m/day.

The grid used to solve the problem is shown in Fxgure 10.9. The nodal values and

contour lines for ¢ are given in Figure 10.10. The nodal values of X and Y as well
as the calculated values of ¢ are given in Table 10.2. The maximum drawdown:

b 3000 m |
Impermeable 7
7
L3
¢=200m
<2000 -
3000 m Pumpe ¢=200m
T 2000 m
1500 m ‘
L J o
% % ’
Impermeable
.|< 5000 m —>!

Figure 10.8. A pump in a regional aquifer.

10 20 29
)
(20) (33)
9 19 g 4D 33
6
© (18) - (40)
(30)
Q)] 19 ~
g7 (19 |18 . 2 39) 45) 36
3 15y |13
aey | 8 29
12 17 32 (a4
12 22 (38)
4) 12) ) -
a4 | @5 |oe) o
) 7L/ a3 16 21 @7 {3 @Y
' 26 35
@ |© an| 22 (24)|°° (36)
(10) (23)
2 (35) 42
@ 6 15 25
(8 (21) (34)
D s 14 24 30 34
1
Figure 10.9. Finite element grid for the regional aquifer.
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/= |
¢=180; Se=170 16 : ]
200 te177.9/ L6ty /®159.7 \#1608 *168.3 '6=180 200
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/
i b ool ! .159 g 6=170 | 01835
' 161‘1.3'( '.\ 124.9 II, , , |
! ' S P " |
! AN el ’ :
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200 te178 66,1 1604 ) |
'= \ ; !
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Figure 10.10.

Nodal values and contour lines for the regional aquifer.
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: ) ial
. i f several streamlines and equal potentia
. termine and plot the location o car b
::(?':elgitzs fo?;?éd;'{:gi%,?a?ta 101 :ijr?es for the flow of an ideal fluid about the elliptical shape shown in Figure
Aquifer Problem P10.1.
Node X Y ¢
R
1 0 0 200.0 W
2 0 1000 200.0 15¢cm
3 0 2000 200.0
4 0 3000 200.0 40 cm/sec 30cm
5 1000 0 180.2 I g
6 1000 500 179.6
7 1000 1000 178.0
8 1000 2000 1779
9 1000 2500 179.4
10 1000 3000 179.8
11 1500 1000 1661 Figure P10.1
12 1500 1500 164.3
13 1500 2000 165.7 )
ig 5888 50(()) 11222 102 Do Problem 10.1 for the rectangular shape shown in Figure P10.2.
16 2000 1000 160.4
17 2000 1500 1249
18 2000 2000 159.7
19 2000 2500 165.1 12
20 2000 3000 1693 o —
21 2500 1000 1620 50 cm/sec S
2 2500 1500 1598 i LT egm 2aem
23 2500 2000 160.8 o
24 3000 0 1725 10 e
25 3000 500 171.7
26 3000 1000 169.9
27 3000 2000 168.3
28 3000 2500 168.7 Figure P10.2
29 3000 3000 168.7
30 4000 0 185.5
31 4000 1000 184.3 . . . i i 3.
32 4000 1500 1835 103 Do Problem 10.1 for the junction region shown in Figure P10
33 4000 2500 179.5
34 5000 0 200.0
35 5000 1000 200.0
36 5000 2000 200.0
12cm
occurs at the pump as expected, but this occurs only because the pump is at a i
Y

node. The greatest drawdown occurs at the node closest to the pump when the
pump is not located at a node.

PROBLEMS P 50 cm-— =1

Use the computer program TDFIELD discussed in Chapter 16 to analyze the, Figure P10.3
following problems. '
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10.4 Do Problem 10.1 for the triangular region shown in Figure P10.4.

50 cm/sec 3
_— 110cm 30cm

o

Figure P10.4

10.5 Determine the drawdown at the pump in an infinite media when the pu
is removing 2500 m?3/day, D,=D,=20m/day and ¢ =300 m at a dista;
far removed from the pump. §

10.6 Two pumps are located in the confined aquifer shown in Figure P104
Calculate the drawdown at each pump and plot some of the contour lin
The pumping rates are 600 m*/day for pump 1 and 400 m*/day for pump 3
The permeabilities are D, =D, =30 m/day. The region is impermeable of
two sides, and ¢ is maintained at 100 m on the other two sides.

Impermeable
V,
&=100m
Pump 2 @ = =400 m3/day

.
(2000, 2000)

3000 m
D, = D, =30 m/day

Pump 1 Q = —600m3/day

[ ]
(3000, 500)
¢=100m
/4
L Impermeable J
e 5000 m >

Figure P10.6

10.7 Determine the location and plot some of the equal potential lines for th
groundwater seepage problem shown in Figure P10.7. The bottom layer i
impermeable. The permeabilities are D, =D, =20 m/day. )
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impermeable

Figure P10.7

108 Repeat Problem 10.7 for the region shown in Figure P10.8. The permeabili-
ties are D, =20 m/day and D, =15 m/day. The lower layer is impermeable.
An impermeable wall 30 m deep has been placed on the upstream side
of the dam.

* 1m
Ei -

Impermeable

Figure P10.8



Chapter 11

HEAT TRANSFER BY
CONDUCTION AND
CONVECTION

One of the first applications of the finite element method to nonstructural probl
was in the area of heat transfer by conduction and convection (Visser, 1965). :
solution of heat transfer problems using the finite element method is particula,
popular with individuals responsible for analyzing thermal stress problems. T
solution of the heat transfer problem becomes input to the stress analysis probl
and the same grid can be used to solve both problems.

We shall discuss the solution of four different heat transfer problems in t
chapter. Two of these problems involve heat transfer from a fin. The third is
analysis of a composite wall, and the fourth is the classical two-dimension
problem with convection boundary conditions. '

11.1 THE ONE-DIMENSIONAL FIN

The governing differential equation for steady-state heat transfer from a on{
dimensional fin is

d? 5‘
% —hP¢ +hPd,=0 (1L

where k is the thermal conductivity, 4 is the convection coefficient, 4 is the cro!
sectional area, P is the distance around the fin, and ¢ is the temperature. Th
temperature has a single value for all points on the cross section for a particulf
value of x. The boundary conditions associated with (11.1) are usually a specifid

kA

temperature at x=0 v
$(0)=1¢, (114

and convection heat loss at the free end N
p ,

—kA d—¢_hA(d),,—¢f) atx=H (1

where ¢, is the temperature at the end of the fin and is not known prior to
solution of the problem. The convection coefficient in (11.3) may or may not §
the same as the one in (11.1).
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The governing differential equation (11.1) has the general form
dz
Ddd: oore=0 (11.4)
where D=kA, G=hP, and Q=hP¢,. The element contribution to the Galerkin
residual equation {R“)} is

(RO = — J [NT* (D¢ —G¢+Q> dx

=_J [N]T(Dd(i:+Q>dx+J "GINTTdx  (115)
Xi X;

The first integral in (11.5) is the one we studied in Chapters 3 and 4 and is equivalent
to {19} +[k“]{®} —{f*}. The second integral in (11.5) is a new quantity that
needs to be evaluated. Recalling that ¢©=[N]{®} and substituting this into
the integral, we find that

X Xj
J GINT' dx= (J GINT'[N] dx> (@) (11.6)
i Xi
Since the integral multiplies {®'?}, it is a part of the element stiffness matrix. If
we define

[k = j: GINTNT dx (11.7)

then
(RO} = {1 + (kD] + [P @@} — { £6 (11.8)

where [£] is given by (4.11) and { /§} by (4.12).
The integral in (11.7) is most easily evaluated in either the s or €4, €, coordinate
systems discussed in Chapter 6. It is left as an exercise for the reader to show that

GL[2 1
(k&)= [1 2j| (11.9)

The derivative boundary condition defined by (11.3) is incorporated into the
formulation using the interelement vector, {1'®}. This vector is, (4.10),

p4
dx x=X;

(peen 11.10

=g (11.10)
dx x=Xj

and can be split into
49 0
oy =1 el bt d¢ (11.11)
0 dx x=X;
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which is equivalent to j

{19} =1} + {1}

where {I{”} is the interelement requirement and {I{®} is associated with {§
boundary condilion. The nonzero term in {I{'}, however, is the left-hand sidg

(11.3). Thus i

S
hA(Py— o) hA; hA®, '

since ¢, is the same as ®;. Equation (11.12) is equivalent to

|

o |0 0 fo] f 0 :

s willol -t g

= [k ]{ @@} — { f§7} (11:1

where ;
o |00 . 0

W=y | =) i

The complete residual equation is obtained by substituting for {1} in (1
and is '

{RO={L} + ([, ]+ [k + [k D{@} — {167} — { 5} (ll-a
Neglecting the interelement requirement {/{?} gives !

(RO =[] @) —{ £©) ( l!

The contribution of [k§/] to [k'©] occurs only for the last element of the fin af
only when 4 is nonzero for the end of the fin. For example, [k§7] is zero if the q
of the fin is insulated.

A

ILLUSTRATIVE EXAMPLE

Calculate the temperature distribution in a one-dimensional fin with the phy
properties given in Figure 11.1. The fin is rectangular in shape, and is 8 cm 10:
4 cm wide, and 1 cm thick. Assume that convection heat loss occurs from ¢
end of the fin. ‘

The fin is modeled by four elements each with a length of 2 cm. The elemel

matrices are
kA 1 —1| hPL|2 1 0 0
e "~ _
[k ]'L[—l 1]+ 6 [1 2]“{0 hA]

. hPL(bf 0
= { }+{h’1¢f}

and
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k=3 #=20°C
lcm
80° i ’
| 772
I T |<—4cm*)|
|< 8cm |
wm @ . 3 @
1 2 3 4 5

Figure 11.1. A rectangular fin.

where the third matrix in [£‘©] and the second vector in { /'] are applicable only
for element four. The values of the various parameters are

kA_3_( W
L 2 °C

hPL 0.1(10)2 w

_—= =0.333 =
6 6 °C

w
74 =0.1(4)=0400 5=

hPL¢; 0.1(10)20)2)
2 2
hAG=0.1(4)(20)=8 W

=20W

The element quantities are

[ 6.666 —5.667 | 20}
(] _ [ ren
k)= | —5.667 6.666 |’ T {20
for elements one, two, and three and
6.666 —5.667 | 20}
@7 _ { len
[k]= | —5.667 7066 U {28

for element four. The assembly of the element matrices using the direct stiffness
procedure produces the system of equations

6.666  —5.667 0 0 0 ®,| [20
~5.667 13.33 —5.667 0 0 ®,| |40
0 —5.667 13.33 —5.667 0 ®, =140
0 0 —5.667 1333 —5.667||®,| |40
0 0 0 —5.667 7.006 | (®s] |28
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The temperature at node one is known, ®, =80°C; thus the first equation mugf
be deleted and the others modified. The new system of equations is

13.33 —5.667 0 0 ®, 493 ]
—5.667 13.33 —5.667 0 @, |40 |

0 —5.667 13.33 - 5667 || o, " 40

0 0 5,667 70664 |05 |28

NS A

The nodal values are
®}7=[80 539 399 32.8 30.3]
which compares very favorably with the theoretical values of
{®4T=[80 54.3 40.2 332 30.6] {
obtained using equation 2-47 in (Kreith, 1973). “i

11.2 THE COMPOSITE WALL

The governing differential equation for heat transfer through a composite wall xﬁ
4

d?

kA d—‘f:O (11.17‘

where either ¢ is known at one or both surfaces or convection heat loss occuri
from one or both surfaces. The convection boundary conditions are

and

T N

e bt e M .5

d¢

—kd—=hA(¢y—¢;)  atx=H 1. 19

The element stiffness matrix is given by

kAl 1 -1 h4; 0 0 0
ke Z_[ t
W=7 -, 1]“{0 O]J{o hA,]
=[kE+ [k92, 1+ [k%,] (11.2
where the second matrix, [§?,], results from the convection boundary condltxow

at node i and the third matrix, [§2,], results from the convection boundary con
dition at node j and is the same as given in (11.14). The element force vector is |

{r ={M“§f }+{M0¢f} (11.21]

where the first vector comes from (11.18) and the second vector from (11. 19

The quantities, {f*)}, [K}/], and [K{J] are neglected when temperature
specified at both surfaces.
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[LLUSTRATIVE EXAMPLE
Determine the temperature distribution through the composite wall shown in
Figure 11.2 when convection heat loss occurs on the left surface. Assume a unit

ared.
The parameters for element one are

ka_020) W

L™ 2 %
W
hA=0.1(1)=0.1 5

hA¢,=0.1(1)=5)=—05W

02 -0l -0.5
1)) — . { flen _
Lk ]_[—0.1 0.1]’ v "{ 0 }

The parameter for element two is

and

1220.06(1) 001 0\1
L 6 C
and
0.01 —0.01
2y —
L« ]—|:—0.01 0.01]
Assembly of the element matrices using the direct stiffness procedure gives
0.20 -0.10 0 D, =05
-0.10 0.21 —-001 |{®,;=1 O
0 —0.01 0.011 | @, 0
W
r=01 Yo %702 e
& =20°C
¢,=—5°C
k=0.06

cm- "C

2k gems]

2
1 2 3

Figure 11.2. A composite wall.
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Since ®3=20°C, equation three is deleted and the second equation is modiﬁ&
The final system is 3
0.20 —0.10 |j&,| }—-0.50 ﬁ

-0.10 021 ||®,f | 020 a4

and the nodal values are ;

(®)=[-266 —031  20]

i .

i
The calculated values are also the theoretical values because the solution of th
differential equation consists of straight-line segments. j
11.3 THE TWO-DIMENSIONAL FIN a
A two-dimensional fin is a thin piece of metal attached to a hot water or steai
pipe as shown in Figure 11.3. Heat is transferred from the pipe to the fin by cmi
duction and from the fin to the surrounding media (usually air) by convectioj
Convection heat loss occurs from both faces of the fin and the edge. The surfa
area of the edge, however, is small compared to the area of the two faces and th
convection losses from the edge can be neglected.
The governing differential equation for the two-dimensional fin is

52 52

where k£, and k, are the thermal conductivities in the x- and y-directions, res
tively, ¢ is the thickness of the fin, 4 is the convection coefficient, and ¢, is th
temperature of the surrounding fluid. The boundary conditions are :

o()=¢, along the pipe boundary { 1.2j

k

O R

i

2

o(1") specified

9 A .
kot 52 cos 6+ kytja%s'”f’:O

Figure 11.3. A two-dimensional fin and boundary conditions.
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and
8
era—dfcos9+kyt—¢sm9=o (11.24)
0x dy

along the outer edge. The latter condition is the insulated boundary condition.
The heat transfer in the fin is a two-dimensional problem because the fin is too
thin to develop a temperature gradient in the z-direction.

The governing equation (11.22) has a form identical to (7.1) where

D.=tk., D,=tk,, G=2h, Q=2h, (11.25)

The element matrices developed in Chapter 7 are applicable without modification.
The element matrices for an element in a fin were calculated in the Illustrative
Example in Section 7.3 and should be reviewed at this time.

11.4 LONG TWO-DIMENSIONAL BODIES

Another form of two-dimensional heat transfer is that which occurs in long
bodies of constant cross section subjected to the same boundary conditions along
the entire length of the body. In this situation, the temperature gradient in the z-
direction is zero and the governing differential equation is

0% 0%¢
— +k,—+0=0 11.26
* 0x? y 6y2 ( )

where k, and k, are the thermal conductivities and Q is an internal heat source or
sink. The internal source or sink must exist along the entire z-direction for the
heat transfer to be two-dimensional. A two-dimensional problem exists because
the temperature can vary in the xy plane.

The differential equation (11.26) is embedded within (7.1). The parameters for
(7.1) are

k

Di=k., D,=k,, G=0, Q=0 (11.27)

and the element matrices developed in Chapter 7 are applicable.

The item that makes heat transfer in a long body different from that in a fin is
the boundary conditions. The possible boundary conditions are shown in Figure
114 and consist of prescribed temperature values, convection heat transfer, and
surface heat fluxes. The latter two conditions were treated in general terms in
Chapter 9. We shall now look at these conditions relative to heat transfer and
assume that k, =k, =k, which changes the derivative boundary condition (9.1) to

¢

k—=-—Mdp,+S (11.28)
on

11.41 cConvection Boundary Condition

The objective here is to determine the parameters that comprise M and S in
(11.28) as well as the signs on these two quantities for the convection boundary
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Prescribed temperatures

Surface
heat flux

Convectien heat transfer

Figure 11.4. Types of boundary conditions for the classical heat transfer problg

condition. We shall consider two situations: heat leaving the body and M
entering the body. ‘

Consider the convection condition shown in Figure 11.5a, where heat is leav
the body. If heat is leaving, then the gradient d¢/0x must be negative and
heat conducted to the surface is

a K

q.=—kA —¢ (1L

on j

The heat conducted to the surface must equal that leaving the surface; theref
0
n -
Rewriting (11.30) in the form of (11.28) gives %
!
0¢ {
o 1.3
k n hoy+ho, 4l i
B
and we conclude that d
M=h and S=ho, (11.3

We now consider the convection situation when heat is entering the boq
(Figure 11.5b). The gradient 6¢/on is positive; therefore,

E

6 B

qczkA —(é (1 131

on j

A negative sign is not needed because the gradient is positive. Equating (11.3}
to the heat coming to the surface gives {
a a

kA 22 a4 (11-31

/.
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H
qp = hA(d, — o)
n
qp,=hA(¢— p)
(b)
Figure 11.5. Convection heat transfer at a surface.
and
k%z—hdn&hd)f (11.35)
on
We again conclude that
M=h and S=ho, (11.36)

The conclusion of the analysis is that M =h and S=h¢  regardless of whether
heat is coming into or leaving a body during the process of convection heat trgns-
fer. These results hold for exterior surfaces and interior surfaces such as those in a
chimney. .

The above analysis assumes that a positive outward normal, n, is always directed
away from the surface.
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1
11.4.2 Heat Flux into The Body
The situation where heat is applied to a portion of the boundary is show;
schematically in Figure 11.6. The heat must be conducted away from the boundan

Thus

o¢p .
qg.=kA an (11.3‘?
The heat applied to the surface is g*4 and equating heat flows gives
kA (;vd):q*A (11.3
n .

Equating (11.38) and (11.28) yields i
M=0 and S=g* (11.3

where g* is the heat flux per unit area. If heat were being removed from the bod?
then S= —g¢*. .

The conclusion of this analysis is that a heat flux on the boundary does have!
sign associated with it. Heat is positive if it is moving into the body and negatiy
if it is being removed. The coefficient M is zero when a heat flux occurs. |

Figure 11.6. A heat flux applied to a surface.

11.4.3 Concluding Remarks

Convection heat transfer and a flux boundary condition are incorporated intqg
finite element analysis using the element matrices developed in Chapter 9. }
the case of convection heat transfer, M =h and S=h¢, whereas M =0 and S= =t
for the flux condition. Heat into the body is considered positive for both ¢* and

11.5 A COMPUTER EXAMPLE

We close this chapter with a computer example. A grid of heating cables have bef
embedded in a thin concrete slab for the purpose of melting the snow on b
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Heating cables
2cm /
[ ] L [ ] l [ ] L ] \
\ 6cm l—<—4 cm—)‘
Region to be
analyzed \

Insulation

% % TI0000002%

Figure 11.7. Heating cables within a conducting media.

exposed surface (Figure 11.7). The cables are 4 cm on center and 2 cm below the
surface. The slab rests on a thick layer of insulation and the heat loss from the
bottom can be neglected. The conductives are k, =k, =0.0180 W/cm —°C and the
surface convection coefficient is #=0.00340 W/cm? —°C. The latter corresponds
to about a 30-35 km/hr wind velocity. The objective is to determine the surface

1 2 3 4 5

] @ Q| @
6 7 8 9 10

(5) (6) &) ®
11 12 13 14 15

9 | 10
7

(11} 12
16 1 8

1 19 20

13) | (14) (15) | (16)
21 22 23 24 25

an | as)| a9l (20
26 |27 |28 |29 |30

1) | (22) | (23) | (24)
31 32 33 34 35

(25) | (26) | (27) | (28)
36 37 38 39 40

(29), (31)[(32), (34)
30) (33)

41 42 43
(35) (36)

44 45 46
37) (38)

47 48 49

Figure 11.8. The finite element grid for the heat transfer example.
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temperature when the cables produce 0.050 W/cm of heat and the air temperatyg
is —5°C.

The repeated symmetry in the problem reduces the region to be analyzed to o
which is 2 cm wide and 6 cm deep (Figure 11.7). The grid for this region (Figun
11.8) consists of 38 elements arranged so that node 21 is located at a heating cab
Larger elements are used in the lower portion of the grid because previous
perience indicates that the temperature probably does not vary a great deal th

Elements (1), (2), (3), and (4) have the convection boundary condition. The valui
of M and S in each case are )

M =h=0.00340

and

S=h¢ ,=(0.00340) — 5)= —0.0170.

24 24 24 23 2.3

3°C

4°C

5°C
7.39
°C

5.1 e51 51

Figure 11.9. Temperature contour lines and some nodal values for the heat
transfer example.
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Table 11.1  Coordinate Data and Results for the Heat Transfer Example

Node X Y ¢ Node X Y ¢

) 0.0 6.0 24 26 0.0 35 5.6
2 0.5 6.0 24 27 0.5 3.5 5.5
3 1.0 6.0 2.4 28 10 35 50
4 1.5 6.0 23 29 1.5 35 49
5 20 6.0 23 30 20 3.5 48
6 0.0 5.5 31 31 0.0 30 53
7 0.5 55 31 32 0.5 3.0 53
8 1.0 5.5 30 33 1.0 30 5.1
9 1.5 5.5 30 34 1.5 3.0 5.0
10 20 5.5 30 35 20 30 5.0
i 0.0 50 39 36 0.0 2.5 5.2
12 0.5 50 39 37 0.5 25 5.2
13 10 50 37 38 1.0 2.5 5.1
14 1.5 50 36 39 1.5 25 5.1
15 20 50 3.6 40 2.0 2.5 5.1
16 0.0 45 49 41 0.0 20 5.2
17 0.5 45 438 42 1.0 20 5.1
18 1.0 45 43 43 2.0 20 5.1
19 1.5 45 42 44 0.0 10 5.1
20 20 45 4.1 45 1.0 1.0 5.1
21 0.0 40 73 46 20 1.0 5.1
2 0.5 40 53 47 0.0 0.0 5.1
3 1.0 40 48 48 1.0 0.0 5.1
% 1.5 40 46 49 2.0 0.0 5.1
25 2.0 40 45

The nodal coordinates and calculated temperature values (to two significant
digits) are given in Table 11.1. Some contour lines and nodal temperature values
are shown in Figure 11.9. The top surface is close to a uniform value of 24°C.
The lower part of the region is a uniform 5.1°C justifying the use of large elements.

PROBLEMS

111 Verify that [k%'] as defined by (11.7) is equal to (11.9).
1.2 Evaluate [k§] and {f{*} for the derivative boundary condition

dé _
dx

113 Determine the temperature distribution for the fin in Figure 11.1 using the
grid shown in Figure P11.3.

S @ 3) @)
1 2 3 4

|<~1 I 2 ’ 2 ; 3cm ‘

Figure P11.3

D hA(d)b—(,bf) at x=0

e
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§
A
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11.4 Determine the temperature distribution in the circular fin shown in Figlg‘j
P11.4. Include the convection heat loss from the end of the fin.

W

_ _ W = 10°
emec:  h=02gmeg  HT10°C
OT
lcm
a
50°C
6cm
. m @ B3 @
1 2 3 4 5

Figure P11.4

1
11.5 Determine the temperature distribution in the circular fin of Problem 11!
using the three-element grid shown in Figure P11.5. Include the convectiq

heat loss from the end of the fin.

RSy (2 (3)
1

}(1

T

11.6 Calculate the surface temperatures for the wall shown in Figure Pll.s

Convection heat transfer occurs on both surfaces. Assume a unit of surfac

§8

2 3cm

I e
1 we

|
|

Figure P11.5

area.
_ w
k=05 Yoo
2
- w - w
h=15 W // h=005 W
¢/= 5°C ¢f:20°C

re—4 cm——>
(1)

|

Figure P11.6
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117 Calculate the surface temperature at x=4 in Problem 11.6 when the
surface temperature on the left side is specified at 5°C.

11.8 Calculate the surface temperature at x=0 in Problem 11.6 when the surface
temperature on the right-hand side is specified at 30°C.

11.9-11.12 Evaluate [k®] and {f'} for the triangular elements shown in
Figures P11.9 through P11.12. The conductivities are k.=k,=2 W/°C-cm

Figure P11.10

kg (0, 4)

~
e T
~_
—
\ 4,0)

(-2,-2)
Figure P11.11
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¥

ot
i
4

X

Figure P11.12

and #=0.2 W/cm?-°C. The heat sources, Q* in Problems 11.9 and lll
are line sources.

11.13-11.14 Use the computer program TDFIELD, Chapter 16, to analyze ol
of the two-dimensional fins shown in Figures P11.13 and P11.14. T
physical parameters are k, =k, =3 W/cm-°C, 1 =0.010 W/cm?-°C, and ¢,,
20°C. Each fin is 0.3 cm thick. The pipe temperature is 85°C.

11.15-11.19 Use the computer program TDFIELD, Chapter 16, to analyze 01
of the long two-dimensional bodies shown in Figures P11.15 to P11.1
The physical parameters and the boundary conditions are defined in tl
respective figures.

|<———5—J

15cm

[8,}

10cm

Figure P11.13

Figure P11.14

60—

Insulated

x ¥ cm-°C 80 cm

\_64—/160 cm

Figure P11.15



— W
h=15_F

d)f: 20°C

Boundary of the inner cylinder is at 140 C
Diameter of the inner cylinder, 2 cm
Diameter of the outer cylinder, 8 cm

Figure P11.16

- w = o5
h=03_3%.,  ¢;=25C

_ W
h=0372¢

¢r=10°C
All exterior surfaces

\
N

_ W
h=2cm¢

¢y =150°C

100 cm

f TINIEY

fe-— Insulated
v

4cm Material 2

"\ 60°
J 100°C

L—‘30cm—)l

w
cm~°C
w
cm—°C

Material 1 kx=k,=0.1

Material 2 ki=k,=4

Figure P11.17

80cm

AN\
A\ \\

Figure P11.18

Insulated
Z 7
_ W
ke =k, =2050
50 cm
6=60°C 7%
¢=10°C 50

4

Insulated
L_——(IOO cm

Figure P11.19



Chapter 12 |
ACOUSTICAL VIBRATIONS

[

A zero value for Q and a negative value for G in the steady-state field equatid
(7.1), yields the Helmholtz equation :

62 62 .
D, §+Dyay—f+6¢=0 (12.1:
Physical problems governed by (12.1) include the wave motion for shallow bodii
of water and acoustical vibrations in closed rooms or compartments. :

The solution of the Helmholtz equation results in the need to solve an eigenvaly
problem because the boundary conditions are such that the global force vecto
{F}, is zero. The global system of equations has the form [K]{®} ={0}. j

The solution of the Helmholtz equation is the topic of discussion for this chapte
Acoustical vibrations is the subject matter area used to illustrate the solutio
technique. We start by considering the one-dimensional problem because th
calculations can be done by hand. The natural frequencies and vibration mode
for a two-dimensional problem conclude the chapter.

121 ONE-DIMENSIONAL VIBRATIONS

The governing differential equation for the pressure field associated with acoustica
vibrations in a two-dimensional room with rigid boundaries is

09 0*¢p w?
W te

C2
where ¢ is the change in pressure from some ambient value, w is the wave fre
quency, and ¢ is the wave velocity in the media. The condition to be satisfied of
each boundary is

¢=0 (122

%:0 (123
The one-dimensional analog to (12.2) is
2
%@ ¥ =0 (124
with d¢/dx=0 at each end. Equation (12.4) has the general form
D dz_d) —~G¢p=0 (12.55

dx?
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thD=1and G=— w?/c2. The element stiffness matrix for the first term, d2¢/4x

'Wlt'venly (4.11). The contribution of the — G¢ term to the element.stiffness matrix

‘: ggliven by (11.9). The complete element stiffness matrix for (12.5) is

i

JUE S O T S A 6
[k()]zi[—l 1}?[1 2] 126)

i i i ce term in
The element force vector, { 9}, consists of zeros, since there is no source erm |
(12.5) and the d¢/dx=0 boundary conditions (both ends) do not generate any

zero terms in { £} S .
no’lll‘he problem under consideration is the closed pipe in Figure 12.1. The finite

element model consists of two elements. Substituting H/2 for L in (12.6) and
multiplying through by H/2 gives

[km]:[i 'ﬂ_zﬁ ;] (12.7)

_w!H? (12.8)
T 24¢?

where

Combining the two elements matrices gives a system of three equations

-1 2 —1 4P 7—Z) 1 4 114®,1=10 (12.9)
or
([(Kp]—Z[Ke]{®} =10 (12.10)

Both matrices, [Kp] and [K¢], are symmetric; [K¢] is positive definite whereaﬁ
[Kp] is semidefinite (it has a zero determinant). Eigenvalue the.o.ry states that a
of the eigenvalues, Z;, that satisfy (12.9) are distinct, real, and positive numbers and
the corresponding eigenvectors {®}, are independent. .

The eigenvalues, Z;, are the values of 7 that make the determinant of (12.9)

@:
dx 0

R

1 (1) 2 @ 3

Figure 12.1. A two-element grid for a one-dimensional pipe.
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zero. Combining the two matrices gives

(1-22) —-(1+2) 0 b, 0
—-(1+2) 2—427) —(1+2) @, =10 12t

0 —-(1+2) (1-2Z)1\®; 0
The determinant is J
20-22)[(1-2Z2)* - +Z')2]_—-0 (12..1
which has the roots k
Z] =0, Zz Z%, and Z3 =2 (12.1“

!
There is an eigenvector, {®},, associated with each root in (12.13). It is impossib

to uniquely determine the three components of {®}; because the set of equatioi
is homogeneous. The usual procedure is to assign an arbitrary value to one con
ponent and solve for the remaining components in terms of the assigned value::

The eigenvector {®}, is determined by substituting Z, =0 into (12.11). Tt

resulting equations are
1

cbl_ (DZ :0 s
—(D1+2(D2_(D3=0 (12‘1;1
'—q)2+(b3 :O

The first equation says that ®, =®, while the third equation states that ®, =,
thus &, =®, =®; and the eigenvector is

@7=[1 1 1] (121

when @, =1 is used as the arbitrary value.
Substituting Z, =% into (12.11) gives

3 ;

3 3
-5 - 5 ®3=0 (12.16
3
- 5(1)2 =O

The first and third equations state that ®, =0 while the second yields ®; = —®;
Using @, =1 as the arbitrary value, we obtain

(@I=[1 0 —1] (121
It is left for the reader to show that the third eigenvector is

@I=[1 -1 1] (1214
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The theoretical values for the natural frequencies, wy, are given by

nme
= 12.19)
Wn="py (

The calculated values for w, are obtained by substituting the roots Zy, Z,, and Z;
given by (12.13) into (12.8) and solving for w,. The calculated values of w,

3.464¢ 6.928¢
wi=0, wy= T and  wi=—
compare fairly well with the theoretical values of
3.142¢ 6.283¢
w, =0, Wy = i an wy=—p

considering the grid consisted of only two elements.

The theoretical mode shapes have the general form P=cos(nnx/H). The theo-
retical mode shapes and the calculated eigenvectors are shown in Figure 12.2.
The theoretical and calculated shapes for the first mode coincide.

d
#(0) Calculate
A ---- - =Theoretical
1
o X
H
First mode
¢(x)

@(x)

Third mode

Figure 12.2. The theoretical and calculated node shapes for the one-dimensional
pipe.
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12.2 TWO-DIMENSIONAL VIBRATIONS 4‘

The two-dimensional acoustical vibration equation and its boundary conditi(;
were given in (12.2) and (12.3). The element matrices for this equation are thq
given by (7.36) and (7.38) for the triangular element, and (7.49) and (7.55) fors
rectangular element. ‘

A rectangular room, 20m by 10m, is divided into four triangular elemey
(Figure 12.3). Defining Z =w?/c?, we find that the global system of equations i

([Kp]—Z [Ks]}{®}=1{0} 124
where !
[
10 3 0 -3 —10]
3 10 _3 0 —10
[K,,]:% 0 -3 10 3 —10 (124
-3 0 3 10 —10 3
-10  -10 -10 -10 40 | i
100 25 0 25 50
|2 100 2 0 50
[Kel=z| 0 25 100 25 50 (122
25 0 25 100 50
[ 50 50 50 50 200 ]
and

{(D}Tzq)l (Dz (D3 (D4 (Ds] (12.2.

Hand computation of the values of Z that makes the determinant (
[Kp]—Z[Kg]) zero is unreasonable; a computer program should be use
Discussions of direct and iterative methods of evaluating eigenvalues are given i
many textbooks. Bathe and Wilson (1976) present a comprehensive discussion ¢
eigenvalue calculations relative to finite element problems.

8))

4) x 10m
)]
3

1 2

le 20m >|,

Figure 12.3. A four-element gird for a two-dimensional room. f
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The five eigenvalues and eigenvectors for (12.20) are

-0 (@i=(n 1L L L 1]

Zz=0.0307 {‘D}g:[l, —1, _1) 1’ 0]

2,=0120, {®}3=[L , -1, -1, 0] (12.24)
Z4:0'150’ {d)}Z:[l, -1, 1, -1, 0]

7,=0450, {®}I=[-05 ~ -05  -05  —05 1]

The calculated eigenvalues compare reasonably well with the theoretical values
of Z=w?/c?, which are

Z,=0, Z,=0.0247, Z,=0.0987

and

Z4=0.123, ZS =0.395

Each of the mode shapes can be illustrated graphically as was done for the one-
dimensional case. The mode shapes corresponding to {®}, and {®}, are shown in
Figure 12.4.

Dashed lines are inthe xy plane.

@(x, y)

Mode shape {®},

&(x, ¥)

Mode shape {®}4
Figure 12.4. The second and fourth mode shapes for a two-dimensional room.
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PROBLEMS

12.1 Calculate the eigenvalues and eigenvectors for the one-dimensional problq
in Figure 12.1 using one element of length H. 1

12.2  Calculate the eigenvalues and eigenvectors for the one-dimensional proble]
in Figure 12.1 using three equal length elements.

12.3 Solve the vibration problem in Figure 12.1 using several elements andg
computer program to evaluate the eigenvalues and eigenvectors. *

-12.4  Verify the mode shape {<D}3 given in (12.18). H

12,5 Verify the mode shape {®}, given in (12.24).

12.6 Verify the mode shape {®}; given in (12.24).

12.7 The acoustic field in an automotive compartment is an important apphca
tion area for acoustical vibrations. Construct and analyze a grid simila
to that given by Shuku and Ishihara (1973) using linear triangular am
bilinear rectangular elements.

12.8 The buckling load of a simply supported column (Figure P12.8) is governe
by the differential equation

4

d’y P
q
where P is the buckling load and EI is a section property. The boundar
conditions are y(0)=y(H)=0. Evaluate the eigenvalues and eigenvector

for the four-element grid shown in the figure. Compare the calculate
critical loads with the theoretical values given by P, =n’n?EI/H?.

) %) 3 o) !
1 2 3 4 5
_H_ | H y H J H ‘
7 i Sy

Figure P12.8

12.9 Calculate the critical buckling loads for the column in Figure P12.8 usiqi
(a) two equal-length elements and (b) three equal-length elements. ‘

Chapter 1 3

AXISYMMETRIC FIELD
PROBLEMS

There is a group of three-dimensional field problems that can be solved using two-
dimensional elements. These problems possess symmetry about an axis of rotation
and are known as axisymmetric problems. The boundary conditions as well as
as the region geometry must be independent of the circumferential direction.

The Galerkin formulation and the element equations are similar to those for
two-dimensional field problems, but they do differ in some significant ways. The
derivation and results differ enough from those in Chapters 7 and 9 to warrant
the special consideration given in this chapter.

13.1 DIFFERENTIAL EQUATION

The field equation in a cylindrical coordinate system (r, 6, z) is
*¢ D,0¢ Ded*¢ 3¢

Do ort Y r or e P 692+D2F

An axisymmetric problem is independent of 0; thus (13.1) reduces to

0*¢ D, 0 3%

+Q=0 (13.1)

D62+ +D62+Q =0 (13.2)
which can also be written as

1 o¢ *¢

- +D,-5+Q=0 (13.3)

r|:D'6r( 0r>] 0z*

assuming that D, is a constant.
The boundary conditions associated with (13.3) are

¢(I')=specified values (13.4)
on a part of the boundary, call it I';, and
0
D,gd) cos0+D, 6¢ sinf=—M¢p,+S (13.5)

on the rest of the boundary, I',. Both of these conditions must be independent of
the circumferential direction. Equation 13.5 is similar to (9.1) and the numerical
values for M and S are determined similar to the examples in Chapters 10 and 11.
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13.2 AXISYMMETRIC ELEMENTS

The axisymmetric element is obtained by rotating a two-dimensional elema
about the z-axis to obtain a torus. The idea is illustrated with the triangular elemey
in Figure 13.1.

A single triangular element in the r—z plane is shown in Figure 13.2. Tﬁ:
element is identical to the triangular element discussed in Chapter S except that th
coordinate variables are r and z instead of x and y. The element shape functig
are identical to those given in (5.7) through (5.9) with x and y replaced by rand |

r

Figure 13.1. The axisymmetric triangular element.

T Z
¢ | .

Figure 13.2. The axisymmetric triangular element in the r-z plane.
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The variable ¢ and the triangular shape functions in the new coordinate system are

¢=N;®;+ N;®;+ N, (13.6)
where
1
Ni=z—(ai+b; i
Y (a;+bir+c¢;2)
1
Nj= 24 (aj+bjr+c;2)
1
Nk=ﬂ(ak+bkr+ckz) (137)
where
a,:RjZk—Rij, b,‘ZZj—Zk, C,'=Rk—Rj
0J=szi—‘R,'Zk, bj=Zk—Z,', CjzRi—Rk
ak=RiZj—R,-Zi, kaZ,'—‘Zj, Ck-_—Rj—R,‘

A single rectangular element in the r-z plane is shown in Figure 13.3. This element
is similar to the one 1n Figure 5.10 and was discussed in Section 5.3. The shape
functions, however, are different from those given in Section 5.3 because they must
be referenced relative to the origin of the r-z coordinate system. All of the rec-
tangular shape functions in Chapter 5 were written relative to local coordinate
systems.

Noting that

r=Ri+s and z=2Z;+t (13.8)

Z, T i J
Z;
@—Rl-—%-{

R;

Figure 13.3. The axisymmetric rectangular element in the r-z plane.
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rearranging into !
s=r—R; and t=z—27, (13’}

and substituting for s and ¢ in (5.17) gives the rectangular shape functions in theﬁ
coordinate system

1
Ni:m(RJ_r)(Zm_Z) "
N;= ! —RNZm—2)
j_m(r i m—Z
1
Nk=Z‘E(V—RiXZ-Zi) 1
1 H
Nmzm(Rj-—r)(z——Z,-) (13.1‘

13.3 GALERKIN'S METHOD

The weighted residual integral for an axisymmetric field problem is the voluﬂ

integral ¥
(R®) ——J [N]” ( ( ‘2¢)+D aZ¢+Q> dv (13.1;*

rl

The derivative terms must be transformed into lower-order forms using the prodl!
rule for differentiation and Gauss’s theorem. The term involving D, reduces m'
manner identical to (7.12).

The product rule for differentiation gives i

2 [N]To ﬂ

([N]T ) (N 5= 4) [5z] Of (13.1i

Rearranging gives
P¢ 0 e[NT” ,

vy S4=2 vy ) - L oo

The first term in (13.11) is replaced once it is determined that

r A ) o

Rearranging gives

(5L o )T
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Substitution of (13.13) and (13.15) into (13.11) produces

1= (620 T2 )

-[(22 ([N]T ‘3¢>+D (v Z))ar asie

The second volume integral can be transformed into a surface integral using
Gauss’s theorem (Olmstead, 1961). The result is

,[r< <[N]T ¢>C°SG+D [N]T—d)sm())dl“ (13.17)

which simplifies to

J [NTF (D —¢c050+D ?sm@)d (13.18)

The complete residual integral is

o [N o o[N]To
= (02T S vyl

J [N]T ( ¢cos()+D (j,;b sin())dl" (13.19)

Since ¢'9=[ N {®®}, 0¢/or and d¢/dz in the first integral of (13.19) can be re-
placed by

% a[N]{ (e) and %_a[a];]] ‘(])(e)} (13.20)

giving

(] (o, LN, p ANV AND), o))

or  or 0z 0z
-J O[NT" av
1 4
d 0
- J [N]T(D,—('bcos 0+Dz—¢sin 0) dar (13.21)
r or 0z

The first integral in (13.21) multiplies {(D‘e’} thus it is the element stiffness
Matrix. The integral containing Q becomes { '}, while the surface integral is the
interelement requirement for interior element boundaries and the derivative
Oundary conditions for element boundaries on I',. The general form of { R} is

(RO} ={I1} + [k@] {0} — { £} (13.22)
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where
{I(E)Z—Jr [N]T( ,%cos%-D,%?sinf))dF (13_2§
O[N]To[N] J[N]T o[N]
©7—
[£9] = L (D, 3 or +D, 3, % av (13.24
and ’
&= L Q[N]" vV (13.24
The terms in the integral for [k®] are similar to those in (7.20), and (13.24
can be written in the compact form P
(k)= | [B]'[P][B]dV (132
JV
where
(6¢p ‘
(g} =1 o L [B](0) (132
lgv - ad) - t 'mj
0z ‘
and : 5
D 0
=" 13.
o=y ] 133

13.4 ELEMENT MATRICES

2]
The immediate objective is to evaluate the volume integrals that give [k] an
{f©}. The contribution of the derivative boundary condition to these integrd
is discussed in the next section. The discussion is limited to the triangular eleme{
because the integrals are relatively easy to evaluate. The integrals for the rectangl
lar element are usually evaluated using numerical techniques. :
The coefficients in [B] are obtained by differentiating the shape functiol
relative to r and z. This produces a matrix identical to the one in (7.34)

[B]=%[bi i b"] (132

Ci Cj Ck q

Each coefficient in [ B] is a constant. Since [D], as given by (13.28), also consists{
constant coefficients 4

(k] = L [BI"[D][B] 4V =[B]"[D][B] L dv i
_[BY[DIBIV 3

AXISYMMETRIC FIELD PROBLEMS 17

The volume of an area revolved about the z-axis is V =2nr4, where r is the radial
distance to the centroid of the area. The element stiffness matrix is

[k'9]=2nrA[B]"[D][B] (13.31)

This matrix product is easily evaluated to give

[ ¥ bib; bib ¢t cicj cic
27U'D, i vy iUk 2 —Dz i itj itk
[k“]= [bibj bf bib | + s CiCj C,? CjCk (13.32)

44
bibe  bibe  bE 44

CiCx CjCx C)%

The radial distance to the centroid of a triangular element is

- R+Rj+R,
r‘—‘f (13.33)
The element force vector { f§7} is
N,—r
{fé‘”}=J Q[N]"av =2rQ J N;r tdA (13.34)
|4 A
Nkr

since dV =2nrdA. The shape functions in (13.34) can be replaced by area co-
ordinates, and the radial distance r can be written as

r=NiRi+N;R;+ N.Ry =L,Ri+ LoR;+ L3R, (13.35)
and the integral for { f§?} is

Ll(LlRi+L2Rj+L3Rk)
{187} =220 L Lo(Ly R+ LoR;+ LyRy) bdd
L3(L1Ri+L2Rj+L3Rk)

Evaluating the integrals of the area coordinate products using (6.29) produces

1 17(R
1 2 1]4R (13.36)
1 1 24|R,

2nQA

(="

A uniform Q within the element is not distributed equally among the nodes as
OCcurred with the two-dimensional element. Each node receives an amount
related to its radial distance from the origin.

ILLUSTRATIVE EXAMPLE

?311 axisymmetric triangular element with the nodal coordinates given in Figure
4 has a uniform heat generation of Q=3 W/cm?. Calculate [k*®] and {f§"}
¥hen D, = p, 1.5 W/em-°C.
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ka (24, 15)

J
{ (26, 11)
(22, 10)

r

Figure 13.4. The triangular element for the example problem.

By using (13.7), the determinant equation (5.6) and (13.33) gives
bi=_4, bj=5, bk=_1
C,*=—2, Cj=—2, Ck=4

22+4+26+24
fzz

r= cm
and

24=18 cm?
The multiplier coefficients are

27D, 2n7 D, 2m(24)(1.5)

44 44 2(18)
2nQA _ 27:(3)(9)_4
12~ 12 0T
The element stiffness matrix is
16 -20 4 4 4 —8
[£“]=2m]| =20 25 —51+2n 4 4 -8
4 -5 1 —8 -8 16
or

40 -32 -8

[k9]=n| —32 58 —26

-8 -26 34

The element force vector is

AXISYMMETRIC FIELD PROBLEMS 173
2 1 17(2
{f9=45n]1 2 11426
11 21|24
423
{7} =n{441
432

Since Q is a constant within the element, the total heat generated is
'[ Qdv =0 .[ dV =2nrAQ =12961n W
v |4

The components of { f§”} sum to this value, but the quantity is not distributed
equally among the nodes.

13.5 THE DERIVATIVE BOUNDARY CONDITION

The element matrices (13.32) and (13.36) for [£'“] and {f§}, respectively, are
valid for interior elements and boundary elements when ¢(r, z) is specified on the
boundary. When the derivative boundary condition (13.5) is specified, there are
additional contributions to [£'“] and { f*“}. These contributions are considered
in this section.

The element contributions due to the derivative boundary condition come from
the interelement vector (13.23) after substituting the relationship in (13.5). Assuming
that I, is the surface of the element with the boundary condition

Iy =— L [N](—M¢y+S)dT (13.37)
or "
(1 = L M[NT" ¢y dT— L S[N]Tdr (13.38)
The value of ¢ on the boundabrcy, ¢4, is given by qb‘b:’z [N]{®'9}; therefore,
) :( jr MINTTN] dr) (@) — L S[N]Tdr (13.39)
be be

The first integral contributes to [£'©], since it multiplies {®©!; the second is part
of [ /) Both integrals in (13.39) are surface integrals and are evaluated similarly
to those discussed in Chapter 10. The integrals in (13.39) are

(k9] = J M[N]'[N]dl (13.40)
rbc
and

57 = J S[N]"dT (1341)
Tbe



174 FIELD PROBLEq

The integral in (13.41) is the easiest to evaluate giving

Ni 1 Ll ;
{fS(?‘} :SJ Nj dr:ij '[ Y Lz and€2 (1341
rbc 0
Ni Ly

f

assuming that the integration is along side jk. The area coordinates reduceﬁ
L, =0, L,=¢,, and L;=¢, along this side [see (6.34)] and the integral becom¢

0 .
L x
{ S(e)} =27ISij .[ (1" d€2 (13.4
0 €
2r
The radial distance to a point on the boundary is Ja
r=N;Ri+ N;Rj+ N Ry=€,Rj+ €, R, (1364
since N;=0. Substitution for r in (13.43) produces §
. 0
‘fs(e)}—_—zﬂsij J. gl(gle+€2Rk) d{z (13
° €561 Rj+¢3Ry) 3
The integrals of €2, ¢, and €3 are evaluated using (6.17). The final result is
fl
2nSL 0 4
7[ »
{(fir =2 I2R; + R, (1344
The other two results for { £} are a
2R+ R; 2R+ R,
2 ” o 2nSL; ! ;
{57 =—”‘ZL” Ri+2R;}, ”‘ZL k100 (1347
0 Ri+ 2R, T

for sides ij and ik, respectively. |
The surface integral (13.40) is evaluated in a similar manner. Considering sidi
Jk, (13.40) becomes

(o]0 € €]
j M[N]T[N]dl'=2nML,-kj ¢, rde, 1
Fpe 0 ¢, :

1

:2T[Mij .[
]

0 0 0
0 02 rf/z:| de, (134!
0 ¢, ré2
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Substituting (13.44) for r and using the factorial formula (6.17) yields

0 0
k]="2E5 0 GR+R) (R+RY (13.49)
0 (Ri+R)  (R+3R)
The other two results for (13.40) are
[BR:i+R;)  (R+Rj) 0]
[k 1= anL” (R+Rj)  (R+3R) 0 (13.50)
L0 0 0
"BR+R)- 0 (Ri+R)
[k9]= ~2”M Ll ™ 0 0 ] (13.51)
L (R+R) 0 (Ri+3Ry).

for sides ij and ik, respectively.

ILLUSTRATIVE EXAMPLE

Evaluate [k§] and {f{®} for side ij of the element shown in Figure 13.4 when
M=4and S=3.
The pertinent quantities are
Ri=22, R;=26
and

Lij=~(26—22)
The multiplying coefficients are
2nML;; 2(3.14)(4)4.12)

+(11-10)*=4.12cm

= - =8.62
2nSLi; 2(3.14)3)4.12
ﬂz‘sz & )(63)( 12) 159

while
3R+ R;=3(22)+26=92
Ri+R;=22+26=48
R;+3R;=22+3(26)=100
2R+ R;=2(22)+26=170
R;+2R;=22+2(26)=74

The element quantities are

92 48 793 414 0
[k§7]=8.62| 48 100 0|=| 414 862 0

0 0 0 0 0 0

(=]
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) 701 J903l
N=129174=19551
s loJ l_O ]

Note that the diagonal values in [k§7] as well as the values in { £{*} are not ¢f]
same.

and

PROBLEMS

13.1  Evaluate (13.40) for side jk of a triangular element.

13.2  Evaluate (13.40) for side km of a rectangular element.

13.3  Evaluate (13.41) for side ki of a triangular element.

13.4  Evaluate (13.41) for side km of a rectangular element.

13.5  Evaluate (13.25) for a rectangular element using the shape functiof
defined by (13.10).

13.6  Verify that (13.46) and (13.49) behave similarly to (9.19) and (9.33) wi
nodes j and k are on a vertical side, that is, R; = R;. ¥

13.7-13.11 The nodal coordinate and coefficient values for five axisymm
elements follow. Evaluate [k{5'] and { /§”} for one of the elements. Assug
that D, =D,.

Problem Number
Element
Quantity 13.7 13.8 13.9 13.10 13.11

D, 2 3 2 4 5
0 20 30 40 50 60
R 2 10 8 20 6
R; 4 14 12 20 10
Ry 3 14 10 16 10
Z; 0 10 6 20 12
Z; 0 12 10 24 8
Z 4 16 14 24 14

13.12  Use the element data for Problem 13.7 and the values M =6 and S=E

Evaluate [k§/] and { f{*} along side ij. j
13.13  Use the element data for Problem 13.8 and the values M =10 and S——-
Evaluate [k$/] and { /{9} along side ik.
13.14  Use the element data for Problem 13.10 and the values M =6 and S= —i
Evaluate [k§7] and { f4°} along side jk.
13.15 The governing differential equation for a radial symmetric problem is
*¢ D, o0¢

Do+ Q=0

Obtain the general equations for [k5’] and { 7§} by evaluating the residual integrd

(RO} = J[N] (D i‘f-’ﬁla"s Q)dA
or

Chapter 14

TIME-DEPENDENT FIELD
PROBLEMS: THEORETICAL
CONSIDERATIONS

The field problems considered in the previous chapters were steady-state problems.
An equally important set of physical problems are those that are time-dependent.
The finite element solution of time-dependent problems is introduced in this
chapter with the primary emphasis placed on the theoretical aspects. Some practical
aspects of solving time-dependent problems are discussed in Chapter 15. The
discussion in each chapter is build around the one-dimensional equation
2

D Z_‘i’ +0=1 ‘Zdl (14.1)
because the numerical calculations are relatively easy and three-dimensional plots
of ¢-x-t can be constructed.

The two-dimensional time-dependent equation is

D‘;‘fﬂo%‘f ~Go+0=12 (142)

The only new term in each of (14.1) and (14.2) is A0¢/0t. We shall see that it behaves
the same in each dimension so that a discussion of (14.1) is adequate.

141 GALERKIN METHOD

The general procedure for analyzing (14.1) or (14.2) is to evaluate the Galerkin
residual integral with respect to the space coordinate(s) for a fixed instant of time.
This yields a system of differential equations that are solved to obtain the variation
of ¢ with time.

By rearranging (14.1) into

¢ a9
_ — = 4.
DE5+0-15 =0 (14.3)

the residual integral is

{R‘e’}=—rj[W] (D—"’+Q A%) (144)
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where [W]" contains the Galerkin weighting functions. Equation 14.4 separagqg
into ‘

X; 2 Xj !
(RO} =— L [W]T(D%+Q)dx+ L.- [(w]” (/1 %) dx (14

1

A
{R(e)) R(e)} + fRae)l (14.‘
Defining [W]"=[N]" in the first integral of (14.5) yields the same integrals th}
were analyzed in Chapter 3 and «
(R} = (19} + K@) — {19} (14

The only new term is
X; a &
(RY) = j [W]F <x _¢> dx (14
X; 0t i

Equation 14.8 has two different solutions. One solution is called the consistei_
formulation and the other is referred to as the lumped formulation. We sha
consider each of these solutions starting with the consistent formulation.

14.2 THE CONSISTENT FORMULATION

A set of weighting functions and the variation of 6¢/0t with respect to x must b
defined before the integral in (14.8) can be evaluated. The parameter 6¢/6ti
shown schematically in Figure 14.1. One equation that defines the variation stat¢
that the time derivative varies lmear]y between the nodal values. If we denote th
nodal values of d¢/dt by D, ®,,...,®,, the linear variation of d¢/0t within a

[i]
2 @0

olxq, t),

&(xy, t)

Figure 14.1. The d¢/0t as a function of x.
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element can be written as

@_[N N,]{. ,} (149)

or

LR (14.10)

If we also use the linear shape functions for the weighting coefficients, that is,
[W]'=[N]", the residual integral is

Ry = [ AINTINI0) dx

Xj
=([ A[NTTIN] dx) (@) (14.11)
X
=[c){d®)} (14.12)
A similar analysis for (14.2) yields

[(©]= LA[N]T[N] iA (14.13)

where [ N] contains the triangular or rectangular shape functions.

When [¢“] is combined with the other element matrices and summed over all
the elements using the direct stiffness procedure, the final result is a system of first-
order differential equations given by

[Clid) +[K]{®}—{F}={0} (14.14)

where the boundary conditions in {I} have been incorporated into [K ] and {F}
and the interelement requirements discarded. The vector {®} is

. od, 0 oo
(T2 =1772. .7 7p
(D] _[ 3 6:] (14.15)

The new matrix [C], is usually called the capacitance matrix.
The integrals that define [¢] are the same as those associated with the G
term in the steady-state form of the differential equation. We immediately con-

clude that
AL| 2 |
e __"
[9]=" [1 2] (14.16)

for the one-dimensional linear element,

a2 1o
[¢]=2211 2 1 (14.17)
12 |

—
N
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for the two-dimensional triangular element, and

i
4 2 1 2 4
idl2 4 2 1 ;

(ey] _ "%
[¢ ]—36 L 2 4 (14.1g
2 1 2 4 '

H
|

for the two-dimensional rectangular element [see (11.9), (7.38), and (7.49)]. 1
The formulation discussed in this section is called the consistent formulatiog
because the linear variation of d¢/0t with respect to x within an element is identi
or consistent with the linear variation assumed for ¢(x). The same set of weightit
functions, namely [ N]7, is used in both of the integrals in (14.5). 1

14.3 THE LUMPED FORMULATION

An alternate approach to defining the variation in d¢/dt with respect to x ist{l
assume that it is constant between the midpoints of adjacent elements. This concef
is shown schematically in Figure 14.2a for a single element and in Figure 14.24
for a grid of five elements.

ap
Bt
& -
@
T —e-
P
2
; L >|
(@)
3¢
o
® & L — —e x
1 2 3 4 5
(b)

Figure 14.2. The step variation of d¢/dt as a function of x (a) within an elemen!
(b) for a grid.
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The variation of d¢/0t within an element can be written explicitly using step

functions
00 Ly 0@ _ L)%, 14.19
where
L
L 0 S<§
— )= 14.20
h (s 2) 1 L (14.20)
)

and s is measured from node i. The quantities multiplying ®; and ®; in (14.19) can
be thought of as new shape functions, N* and N}, where

L

L
N¥=h (s— 5) (14.21)
Upon using this concept, (14.19) becomes
o « OD; » 00; (o
Y —N: ¥~ I _[N* 14.22
ot Nl ot +NJ ot [ ]1 s ( )
Returning to the residual integral, { RY”}, and using (14.22) gives
X;j a
(R = j ).[W]ngdx
X; !
L .
ZJ' A[WTIN* {0} ds (14.23)
0

Using the same functions in [ W]7 that are used in the relationship for O¢/0t gives

L
Ry =( [ A TINeT dS) (@9 =[]0} (14.24)

0

The element capacitance matrix is defined by
L
[c‘e’] = j A[N*]T[N*] ds (14.25)
0

which is easily evaluated because
NYN¥=NINf=1 and NN} =0

The element capacitance matrix is

0
[9] :’%L [(1) 1:| (14.26)
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for the one-dimensional linear element. It is a diagonal matrix, which means that‘

[C] is also diagonal. Since the formulation produces a diagonal matrix, it ig
usually referred to as a lumped formulation.

The generalization of the step function variation for two-dimensional problems,

is accomplished by defining functions similar to those shown in Figure 14.3. The
shaded region for N* has corners at node i, at the midpoints of the sides that touch
node i and at the center of the element. Defining the functions in this manner
produces N¥ N} products whose value is zero. The resulting diagonal matrices are

[0 o
[l=Ffo 1 o (14.27)
0 0 1

N, ») . k

N¥x, ¥) ' i 7/// y

(b)

Figure 14.3. The step-function variation for two-dimensional elements. (a) #
triangular element. (b) A rectangular element.
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for the triangular element and

[¢“] =%A (14.28)

O OO =
S O = O
S = O QO
- o O O

14.4 FINITE DIFFERENCE SOLUTION IN TIME

The finite element solution of time-dependent field problems produces a system of
linear first-order differential equations in the time domain. These equations must
be solved before the variation of ¢ in space and time is known. There are several
procedures for numerically solving the equations given by (14.14). We shall con-
centrate on the methods associated with the solution of heat transfer problems that
use a finite difference approximation in the time domain to generate a numerical
solution.

Given a function ¢(t) and the interval [a, b], we can use the mean value theorem
for differentiation to develop an equation for ¢(t). The mean value theorem states
that there is a value of ¢, call it &, such that

d(b)-pla)=(b- a)@(é) (14.29)

Rearranging gives

d¢ P(b)—¢(a)

— (é) (14.30)

where At =(b— a) is the length of the interval. The location of ¢ in (14.29) and (14.30)
is not known. This aspect will be dealt with in a few moments.
The value of ¢ at t =a, ¢(a), can be approximated as shown in Figure 14.4.

Ha=90)~ -0 ¢ (1431)

Rearranging gives
d¢

¢(&)=dla)+ (& - ) (é) (14.32)

and after substituting (14.30)
#6=9@+? 0D g (1433)
If we define the ratio 0 as
(¢—a)

0=

A (14.34)
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(1)

P S,
o———————————|\

Figure 14.4. An approximation for ¢ (a) given d¢/ét.

then (14.33) can be written
(&) =(1 —0)p(a) +0¢(b) (14.35)

Equations (14.30) and (14.35) can be generalized to a set of nodal values by
replacing ¢(a) and ¢(b) by column vectors containing the nodal values. Deﬁne;ﬁ
{®}, and {®}, as the vectors containing the nodal values at times a and b, then

dio] {0),— (0],
dt At

(14.36)

and
(O] =(1-0){®],+0{D], (14.37)

at the point r=¢. |
An equation for {F} at t=¢ can be derived using the same procedure that was
used to obtain (14.35). The result is

(F)=(1—0){F.+0{F)}, (14.38).

Equation (14.14) can now be written in terms of {®],, {®},, {F}, and {F}, by.
substituting (14.36), (14.37), and (14.38). The result is

([C1+68 [K D@} =([CT~(1—0) At [K{®},+ Atl(1 ~O){F}o+0{F}y) (1439)

Equation (14.39) gives the nodal values, {®},, in terms of a set of known values,
{®},, the force vector at times @ and b and the ratio . The force vectors, {F},and;
{F}s, must be known. The value of 8 must also be specified. This is equivalent to
specifying the location of ¢ at which the mean value theorem is applied. i
There are four popular choices for 0. These choices and their associated namesg‘

are

1. 60=0, E=a Forward difference method
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1 At .

2. 0 =3 £=7 Central difference method
2 . 2At

3. 0= 3 é =3 Galerkin’s method

4. 0=1, E=b Backward difference method

The finite difference equation for each value of 6 follows.

1. 6=0, Forward difference method
[Cl{®},=([C]-At[K]{®} .+ At {F}, (14.40)
1
3. ():2, Central difference method

A
FSUFLHFL) (44D

(e1+5' (k1) lo=( €1~ 5 1K ) o

2
3. ():3 , Galerkin’s method

(10325 tx1) tohu=(1c1- 5 K1) fo,

4. 0=1

\(1F1b+2 Fi.) (14.42)

, Backward difference method
([C]+ At [KDI®jp=[CI{D} .+ ALt{F},

Regardless of which value is specified for 0, the final system of equations has the
general form

[A]i®),=[Pli®]a+ {F*] (14.44)

where [ 4] and [P] are combinations of [C] and [K] and are dependent on the
time step At. If At and the material properties are independent of time or {®],
then [ 4] is the same for all time points. If either At or the material parameters
change during the solution process, [ 4] and [ P] are re-evaluated for the new time
step. Each solution in time is equivalent to solving a single steady-state problem
when [ 4] and [ P] are evaluated for each time step. The vector, {F*}, in (14.44)is a
combination of {F}, and {F},.

145 HEAT FLOW IN A ROD

The solution procedure along with some of the computational problems that arise
Wwhen solving time-dependent field problems are illustrated in this section using the
heat flow in an insulated rod as the example.

The solution of (14.39) for any value of 6 is accompanied by problems. Euler’s
method (the forward difference method) is known to be unstable when Ar exceeds
a certain value. Solutions obtained using 8 =4 or 0 =% contain numerical oscilla-
lions when Ar is too large. These methods, however, are unconditionally stable.
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The purely implicit method (backward difference method) is unconditionall’
stable, and the calculated values do not oscillate about the correct values.
method, however, becomes less accurate for large values of time. A good discussion;
of the problems that accompany the solution of (14.14) is given by Myers (1971),:
We shall discuss how to avoid these difficulties in Chapter 15. "g
Consider the insulated rod (Figure 14.5) that is modeled by two elements. W9§
shall solve this problem using the consistent formulation, the central difference;
method, and a time step of 1 sec. This time step is below the value that introducesj
numerical oscillations into the solution. The rod is initially at a temperature of
zero with heat applied at the left end. '
The element matrices are given by (3.9) and (14.16) and are

[k‘”]:[_i ‘5] and [c“”]:[i ;‘}

_ W
D=4 cm-°C
A= 12ge
gq=5 W
A=1 cm?
#e b
Dre=r
q i 7/ 7 7
p—
7070007, 7, 7 %
Insulated
- (1) _ ) .
1 2 3
L—Zcm—>‘<—2 cm—)l
@)
¢
L 0.590
0.0347
J— ] x
\’___.__——-—"
-0.104
(b)

Figure 14.5. Heat transfer in a one-dimensional insulated bar. (a) the bar and finig
element grid. (b) The calculated temperatures for the first time step.
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The global matrices are

8 4 0 2 -2 0
[C]=|4 16 41, [K]=]|-2 4 -2
0 4 8 0 -2 2
and
S
{F}=10
0

where {F| is obtained by noting that the heat input is a point source.
Constructing [ 4] and [ P] using (14.41) yields

9 3 0 7 5 0 5
3 18 3{d},=]5 14 51{®},+40 (14.45)
0 3 9 0 5 7 0
which has the general form
[4){®},=[PI{®],+{F*] (14.46)
Multiplying by [4] 7! gives
@)y =[] '[PT{®].+[4]" ' {F*} (14.47)
Since {®],={0] (initial values are zero)
(@), =[4]'{F*] (14.48)
The matrix, [4] 7, is
_ 0.1180 —0.0208 0.0069
[4] '=|-0.0208 0.0625 —0.0208 (14.49)
0.0069 —-0.0208 0.1180
and multiplying gives
[ 0.5900
(D], = 1—0.1040 (14.50)
] 0.0347

These values are shown in Figure 14.5b. The calculated values violate physical
reality. Heat is moving into the rod, but the temperature of node two is decreasing.
This type of result occurs quite often when using the consistent formulation. The
_abnormality disappears after several time steps, but this is not helpful if one is
Iterested in the temperature history near ¢ =0.

An explanation for the abnormal result goes as follows. The matrix [A] in
(14.45) consists entirely of positive coefficients; thus [4]~! must contain some
fcgative coefficients in each column in order for [4][4] " =[I]. When {®},={0},
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4
{®}, is just the first column of [ 4] ! multiplied by five and the negative value foﬂ
node two is one of the results.

It would appear that one way to avoid the undesirable negative value is m!
increase the time step to a point where the negative coefficients in At/2[ K] exceeds_w
the positive coefficients in [C]. The time step that accomplishes this, however,]
exceeds the time step necessary to prevent numerical oscillations. A procedure foi

avoiding this conflict is outlined in Chapter 15. 4

PROBLEMS é

14.1  Solve the problem in Section 14.5 using a lumped capacitance matrix;
Observe that the temperatures at nodes two and three always increase wnﬂu
time. *,‘

14.2  Solve the problem in Section 14.5 using a lumped capacitance matrix an@-
0=0. Obtain the nodal temperatures for the first three time steps.

14.3  Aninsulated rod (Figure P14.3)is initially at 50°C. At time zero, the temper.
ature at each end of the rod is fixed at 10°C. Obtain [4] and [P] for th
four-element grid shown and modify them to account for the fact that the
temperatures at nodes one and five are known, that is, the equations f
nodes one and five must be eliminated. Use the consistent formulation and
6 =4. Do not solve for any of the temperature values. Use At =1 sec.

cm-°C "’ cm3-2C

7

8cm ‘J

1) 2) (3) 4
1 2 3 4 5

Y RN

Figure P14.3

14.4  Solve Problem 14.3 using the consistent formulation and 6 =

145  Solve Problem 14.3 using the lumped formulation and 6 = ,

14.6  Solve Problem 14.3 using the lumped formulation and 6 =0. Use a tin
step of 1 sec and calculate the nodal temperature for the first two time stepd

147 An insulated rod (Figure P14.7) is initially at 30°C when the left end §
reduced to 5°C and the right end is insulated. Obtain [A4] and [P]
the four-element grid shown and modify them to account for the fact th;
the temperature at node one is known; that is, the equation for node 0
must be eliminated. Use the consistent formulation and 8=3. Do M
solve for any of the temperature values. Use At =1 sec.
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—a _W _ _
D=3 cm-°C ' )‘_4cm3-°C
Lz gL
=5C

14.8
14.9
14.10

14.11

14.12

\\

|<‘12ch

P O N - N O P O
1 2 3 4 5
Figure P14.7

Solve Problem 14.7 using the consistent formulation and 0 =0.

Solve Problem 14.7 using a lumped formulation and 0 =

Solve Problem 14.7 using a lumped formulation and 6=0. Use a time
step of 1 sec and calculate the nodal temperatures for the first two time
steps.

Solve the problem in Section 14.5 assuming that @, is fixed at 20°C while
®,=®; =0 initially. Modify [4] and [ P] and solve for the nodal temper-
atures for three time steps. Use the consistent formulation and the central
difference method with At equal to 1 sec.

Solve the problem in Section 14.5 assuming that ®; =10°C while ®,=
®; =0 initially. Use a lumped formulation and 8 =4. Modify [4] and [P]
and solve for the nodal temperatures for three time steps. Use At equal to
1 sec.



Chapter 1 5

TIME-DEPENDENT FIELD
PROBLEMS: PRACTICAL
CONSIDERATIONS

The element matrices for the time-dependent field problems and the numerica:li
solution of the system of differential equations were discussed in the previous%j
chapter. One might assume that the solution process is a straightforward applica»:
tion of this information. Several numerical difficulties, however, arise during thp‘
solution process. The two most important are the failure of the calculated values toj
satisfy physical requirements and the problem of numerical oscillations. The first’
of these was observed in the calculations for heat input into the insulated rod!
(Section 14.5). Adding heat to the rod caused a nodal temperature to decrease.:
Numerical oscillations is a name given to the phenomenon where the calculated;
results oscillate around the correct solution. For one time step the calculated value
is below the correct value. For the next time step, the calculated value is above the:
correct value. The stability of the calculations is also a concern, but there are many
references which prove that the solutions in time using (14.39) are unconditionally -
stable when 0>3.

The objective in this chapter is to establish the requirements necessary to satisfy:
the physical reality of the problem and to avoid numerical oscillations. We then!
use these requirements to make decisions relative to the element sizes and shapes’
which lend themselves to efficient and meaningful calculations.

15.1 PHYSICAL REALITY

The general form of the finite difference solution for the system of differential
equations is ‘

[A1{®)p=[P{®}.+{F*] (15.1)
Multiplying by [4] !, we obtain ‘
(@) =[4] ' [PU @+ [4]H{F*] (152),

The requirements imposed on [4] and [P] such that the physical reality of the’
problem is satisfied are determined by the [4] '{F*} term because {®}, 03111
always be assumed zero for the first time step.

Positive nonzero coefficients in {F*} come from heat input at a node or the
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[41-| -

—_ — . — —_ — +

Figure 15.1. The sign requirements for the entries of [A].

specifying of a nodal temperature that is greater than any of the othe‘r iqitial nodgl
values. In either case, it is expected that the surrounding nodes will increase in
value. Let us analyze a single equation from the [4]™'{F*; product, call it equa-
tion 8. The equation is

bp=Aj ' F¥+ A F¥+ - + A5 F} (15.3)

Given that one or more of the F* terms are positive, the only way to insure that ¢,
increases is to require that each coefficient in [4]~" be positive. This requirement
also insures that ¢ decreases if one or more of the F * are negative. B

It is not immediately clear what the positive coefficient requirement on [A]
means relative to [4]. Maadooliat (1983) has shown that one way of satisfying
this requirement is for the diagonal coefficients of [4] to be positive and all of the
off-diagonal entries to be negative. The signs of the coefficients in [ 4] should be
as shown in Figure 15.1. .

Since the finite element analyst never sees [4] ', the requirement for satisfying
physical reality is written in terms of [A4]. Physical reality is satisfied whe‘n [4]
is a matrix whose diagonal entries are positive and whose off-diagonal entru':s are
negative. The significance of this requirement relative to the lumped or consistent
formulations and element shapes is discussed later in this chapter.

15.2 NUMERICAL OSCILLATIONS

Numerical oscillations in the values of {®}, from one time step to the next are
related to the eigenvalues of the matrix product [4]7'[P] Myers, 1971). The
possible situations involving the eigenvalues are

L. All eigenvalues positive; no oscillations, stable calculations. .
2. Some eigenvalues negative but greater than —1; stable calculations, numerical

oscillations. -
3. One or more eigenvalues less than — 1; unstable calculations.

The criterion for avoiding numerical oscillations is quite clear. All of the eigen-
values of [ 4]~ *[P] must be positive. The question at hand is “How do we satisfy
these criteria?” The discussion in this section is related to answering this question.

Let the eigenvalues of [4]7'[P] be denoted by Bi. An eigenvalue is the value
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of B that satisfies %

det ([4]~'[P]—B[1]=0 (154)

where det () indicates the determinant of the matrix within the parentheses. Smoa
det ([H][J])=det([H])det{[J])

(15.4) is multiplied by det ([ 4]) to obtain |
det ([4]) det ([4]7'[P]-BLI])=0 (15.3)

or ]
det ([A1[4]"'[P]-B[4][1])=0 156)*

and
det ([P]-B[A4])=0 (15. 7]
which is in a more workable form because we have eliminated [4] . f’

Hildebrand (1965) states that (15.7) has positive eigenvalues when both [A]
and [P] are positive definite. The study of the eigenvalues of [4]™'[ P] is now

reduced to a study of [ 4] and [ P], which are related to [C] and [K ] by "fﬁ
[A]=[C]+0A(K] {ISé
[P1=[C]—(1-6)Al[K] (15.9";

Before analyzing [A4] and [ P], we state a fact developed by Fried (1979).
minimum eigenvalue for a global matrix, [ R], is greater than the minimum eig
value for all of its element matrices, that is,

4
min (Bin) < B8, (15. wi

The positive definite characteristic of [4] is easily established because [C] ﬁ
known to be positive definite and [ K ] is at worst singular. The addition of a pat
of [K] to [C] does not change the characteristic that [C] and [A] is posmvg
definite.

The requirement for avoiding numerical oscillations reduces to the analysis Oi
[P]. The question to be answered is “How much of [ K] can be subtracted froq

[C] before the resulting matrix is singular?” i
Define a new element matrix [p®] given by ‘
[p9]=[c'"]-a[£'®] (15.11‘

where a=(1 —6) Ar. We are looking for the value of « that makes [p'] singulag :
that is, makes the minimum eigenvalue zero. Using Fried’s rule, if the minimu

eigenvalue of [p'] is zero, then we know that f¥] >0 and [ P] is positive deﬁmt&
The value of %) is the value of B satisfying 2
det ([p©] - B[1])=0 (15.12j

but since we are looking for a singular matrix, we set =0 and (15.12) becomes g
det ([¢“]—a[k“'])=0 (15.1
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Numerical oscillations are avoided when

o
At<—— 15.14
<15 ( )

and « is the smallest value satisfying
det ([¢“]—o[£9])=0 (15.15)

The smallest value of o occurs in the smallest element of the grid. The estimate in
(15.14) is (by experience) conservative for nonuniform grids, but it is still a good
guide for selecting a numerical value for the time step. Equation 15.14 is an excellent
estimate for uniform grids.

ILLUSTRATIVE EXAMPLE

Determine the time step necessary to avoid numerical oscillations when using a
one-dimensional linear element and the lumped formulation.
The element matrices are

AL[1 0 p[ 1 -1
(e)] -~ @)1
[“]=7 [0 1] and - [K] L[—l 1]

Applying (15.15), we obtain

L[t 0] ap[ 1 -1
a(zle 7 T

or

Evaluating the determinant gives
AL aD\* [aD\? /1L2 D=0
2L L) =4 "

AL?
4D

and

o=

The time step is given by (15.14)
At <

o A2
_ g _—
1—-6 4D(1-0)
The fact that (15.14) is not valid when @=1 has the following interpretation.
When 9 =1,
[P]=[C]-(1-DA([K]=[C]
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Since [C] is positive definite, [ P] is positive definite and there are no numery
oscillations. One of the advantages of the backward difference method, =1
that it is free of numerical oscillations. -
We have established two criteria that should be satisfied when solving tin
dependent field problems. The first specifies the signs of the entries in [ 4] whi
the second requires that [P] be positive definite. We now use these criteria j
make some decisions about element size and formulations.
. §
15.3 LUMPED OR CONSISTENT FORMULATION |
There are two popular methods of formulating the element capacitance matri
the consistent formulation and the lumped formulation. We now analyze the
formulations using the criteria developed in the previous sections. We shall use
uniform grid of one-dimensional elements for the analysis. The analysis of t
dimensional grids proceeds in the same way with very similar results.

15.3.1 Consistent Formulation

The element matrices are

iL[2 1 p[ 1 -1
e __—~ ()]
[1= [1 2] and - [K] L[—l 1]

and the equation for row s in [ 4] is
AL D 44L 2D AL D
(? —9AtZ>(DS_1+(—6— +0AIT> q>s+(? —0AtL>(I>sH (154

The diagonal coefficient in [4] is positive for all values of Ar. The off-diagon
values are negative only if

AL D i

3 —9AtZ<O 1

or '
AL?

i g

At<6D0 15 [

The positive definite characteristic of [ P] exists only if

AL D AL D

(3‘°‘z) (?*“z)

() (D)
6 L 3 L

det =0 (15.1¢

which occurs if
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Figure 15.2. The operating regions for lumped and consistent finite element
formulations in one dimension.

and
az% (15.19)
which gives
AL (15.20)

AM<1pi-9)

Equations (15.17) and (15.20) are two criteria for the time step. The first insures

that physical reality is satisfied; the second insures that the calculated v?.lues do

not oscillate. The two criteria are shown in Figure 15.2. The region in which both
are satisfied is relatively small and exists for 0=4%

15.3.2 Lumped Formulation

The element matrices for the one-dimensional lumped formulation were given
and analyzed in the example problem in the previous section. The time step must

satisfy
AL?
(15.21)
AM<ipi-0)

if [P] is to be positive definite.
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The general equation for row s in [A4] is

D (/IL D D
_<0Atz>(bs_1+ 7+9AIZ>CDS—<6AtZ>(DsH (15.2?

\

The off-diagonal coefficients are negative and the diagonal coefficient is positivi
for all values of At; thus

At>0 (15.23

satisfies the requirement for [A4].

The criteria (15.21) and (15.23) are also shown in Figure 15.2. It is readily appar
ent that the operating region for the lumped formulation is much larger than tha
for the consistent formulation. :

15.3.3 Summary

The consistent finite element formulation is accompanied by restraints on th
time step that significantly reduce its operating range. The method cannot tx
used with Euler’s forward difference method or with the central difference methog
without violating physical reality and being accompanied by numerical oscilla:
tions. The lumped formulation has a full operating range for 6 and allows one t¢
use larger time steps. If a solution is to be obtained using 0 in the range of § to 4
then the lumped formulation is the only choice available. '

154 TWO-DIMENSIONAL ELEMENTS "

The criteria for [ 4] and [ P] is now used to develop some useful information fo
the two-dimensional triangular and rectangular elements. The criteria on [A:
requires that all of the off-diagonal coefficients in [k'] be negative. The criterid
for [ P] is used to calculate some time step estimates.

15.4.1 The Rectangular Element i
The element stiffness matrix for the bilinear rectangular element is given bﬂ

(7.55) as g
2 -2 —1 1 2 too-1 -2,
Da|-2 2 1 -1 Dp| 1 2 -2 -1

(e)y] = >~ pkad
K= -1 1 2 2|Yea|-1 -2 2 1]
1 -1 =2 2 2 -1 1 21!

If each off-diagonal coefficient is to be negative, then
2D.a Db
-+ <

25)
6 T 6a 0 15 !
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and
% B 2D,b <0
6b 6a

These inequalities translate into the requirement that

D, _a_ |2D, (15.27)
2D, b N\ Dsx

The aspect ratio a/b has to be within certain limits. .
The allowable time step for a square with D, =D, =D and a lumped formulation
is related to

(15.26)

1 0 0 0 4 —1 -2 -1
iA]0 1 0 0] aD|-1 4 -1 -2
det| — - — =0
410 0 1 0 6 | -2 -1 4 -1
0 0 0 1 -1 -2 —1 4
which after a considerable amount of algebra yields
AA
= 15.28)
=D (
and
A4
— 15.29
At<1Da=0) (1529)

15.4.2 The Triangular Element

The calculations for the triangle are not within reason unless we assume that
D,=D,=D. If we use the triangle in Figure 15.3, [k*'] is

d* +(c—b)? —d?>—clc—b)  blc—b)
(9= ~d*—clc—b) d*+¢? —cb (15.30)
bc—b) —ch b?

The diagonal coefficients are always positive so that we need to investigate only
the off-diagonal entries. The inequalities are

—d*—c(c—-b)<0 (15.31)
b(c—b)<0 (15.32)
—ch<0 (15.33)

The last inequality states that both ¢ and b must be positive, which means that
.the angle « (Figure 15.3) cannot be greater than 90°. The middle inequality, (15.29),
is satisfied only if c<b, which means that the angle 6 (Figure 15.3) cannot be
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i J
(0,0 (6,0
" b .

Figure 15.3. A general triangular element.

greater than 90°, The first inequality is equivalent to
d’>>clb—c)

which gives the aspect ratio for the triangle.
The solution of the inequalities for the isotropic triangular element can b
summarized by the statement: No interior angle of the triangle should exceed 90'
The allowable time step is calculated for a right triangle to allow a comparisoi
with the results for the square. The element matrices for a triangle with a side‘
length b (4=5%/2) are “i

1 0 0 2 -1 -1 ;
; i
=0 1 o, K=2|-1 1

0 0 1 —1 0 1
For [ P] to be positive definite ;
[ 1 1
3 2 2
_ Da A «D 0 =0 (153!
det 2 3 )
_ Da 0 414 aD (
| 2 3 7)) |
and w‘
A
o :u—A (1 5.4
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which yields a time step of

< 244
9D(1-6)
Remember that the result in (15.36) is for a right triangle with both sides having a

length b. The multiplying coefficient changes with the ratio of the sides and the
magnitude of the interior angles.

A (15.36)

15.4.3 Summary

Several conclusions can be drawn from the calculations done in this section.
First, the element shape is important. Triangular elements should not have any
interior angles greater than 90°, and the aspect ratio, a/b, for a bilinear rectangular
element has to satisfy (15.27). Second, the maximum allowable time step for a
right triangle whose sides have a length 4 is less than one-half the value for a square
of side b. This fact comes from comparing (15.29) and (15.36). Since the area of the
triangle is one-half that of the square, (15.36) becomes At < A*4/9D(1 — 0) compared
with Ar< A*1/4D(1 —6) for the rectangle, where A* represents the area of the
rectangle. This comparison shows that rectangular or square elements should
not be divided into triangles. The triangular element should only be used to
model irregular boundaries.

The third important fact is that the length dimension is always in the numerator
of the time step calculation. One way of increasing the time step is to increase the
size of the element. A good rule of thumb is “Make the elements as large as is
reasonably possible.” Decreasing the element size while keeping the time step
the same does not improve the calculated results. The time step must be reduced
as the size of the element is reduced.

155 DERIVATIVE BOUNDARY CONDITIONS

The last topic of this chapter concerns the derivative boundary conditions. These
boundary conditions as well as the G term in (7.1) produce element matrices that
add to [£§']. For example,

2 1 1
GA
[k‘é’]:E 1 1 (15.37)
1 1 2
for the fin problem of Chapter 11 and
2 1 0
on ML
k1= < T 20 (15.38)
0 0 0

;‘;T the convection boundary condition from side ij of a triangular element (Chapter
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Each of the matrices in (15.37) and (15.38) have positive off-diagonal coefficig 4
If G or M become large, positive off-diagonal entries occur in [4]. The matrig
associated with [k§"] and [k§;] should be lumped to avoid this difficulty. Anoti§
way of stating this fact is that the step function type of shape function should 1
used with every Galerkin residual integral except the one associated with
second-derivative terms. y

The lumping of the matrices in {15.37) and (15.38) produce results of the ty

1 0 0
GA d
[k&’] =3 0 1 0 (15.%
0 0 1 4

and

1 0 0 A
ML,‘ ; K.
[kf‘?] =v—2-j 0 1 0 (15.
0 0 0 1

The lumping of matrices associated with convection heat loss is consistent wif
finite difference methods, which have used this approach for many years.

PROBLEMS

15.1 Calculate the time step necessary to avoid numerical oscillations whe
using the one-dimensional linear element and a lumped formulation §
analyze convection heat loss from a fin. The element matrices are [c*]]
given by (14.26) and

D[ 1 —1] kPL[1 0
(e)] _—
M']“L[—l 1}+ 2[5 1]

The parameters are

W W
D=2—-, hP=010——
(@) cm-"C 0 cm-°C’
L=0.5cm L=6 :
=U. A= _
’ cm3-°C
w W
b) D=3——, =0.05————
() cm-"C hP=005 cm-°C’
) J
L=15cm, A=4 ——
cm”-°C
w W
D=2——, hP=015——,
© cm-°C 15 cm-"C

J

L=2cm, J=5— 1
cm . cm?*-°C
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15.2

15.3

154

15.5

The time step necessary to avoid numerical oscillations in a one-dimensional
lumped formulation using 0 =% is At <1L?/2D. Assume that A=1 and show
that [p'] has a negative eigenvalue when Ar>21%/2D.

Calculate the time step criteria for a equilateral triangle whose base is b.
Assume a lumped formulation. Note that the value is greater than the
allowable value for a right triangle given by (15.36).

Develop an equation similar to (15.36) for the consistent formulation;
that is, [¢!©] is given by (14.17). Assume a right triangle with both sides
having a length b.

Obtain inequalities similar to those in (15.31) to (15.33) for the situation
where D, #D,. Use the triangle in Figure 15.3. Show that the 90° rule is
still valid (no interior angle should be greater than 90°).



Chapter 16

COMPUTER PROGRAM
FOR TWO-DIMENSIONAL
FIELD PROBLEMS

The finite element method involves large systems of linear equations and hag
limited usefulness if a digital computer is not available. A computer program
solving the two-dimensional steady-state field equation is discussed in this chap
It is written in standard FORTRAN 1V and it is written for educational u
rather than commercial problem solving. The program contains several diagno
checks to locate errors that are common to the beginning user. The primaf
advantage of the program from a teaching point of view is that the program optiof
are at a minimum and the input data is limited to one type of problem. Th
characteristics allow the input data to be discussed in one class period.

The program is not accompanied by a grid-generating program. This author h
found that students do not understand or appreciate grid-generating progran
until they have generated the element data by hand.

161 THE EQUATIONS

The computer program TDFIELD and its subroutines solve problems govem*
by the two-dimensional differential equation

o’ ¢
with the boundary conditions :
¢=¢('y) (16
onI; and
0
D, g—¢cosﬂ+D a—d)smﬂ_—Md)b+S (16.]

on [',, where I'; and I', comprise the boundary of the region. :
The computer program allows the user to analyze grids consisting of lm
triangular elements and bilinear rectangular elements. The coefficients D,, Dy,
and Q may differ between elements. The coefficients M and S may vary along
boundary. Equations (7.36) and (7.38) are used for [k$'] and [k{] for the
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angular element while (7.49) and (7.55) are used for the rectangular element. The
clement force vectors are given by (7.40) and (7.46). The boundary condition
contributions to [k%7] and { /{?} are those given in (9.28) through (9.34) and (9.18)
and (9.19). The gradient values are calculated using (7.34) and (7.51).

16.2 PROGRAM LISTING

A listing of the main program TDFIELD and the four subroutines ELSTMF,
MODIFY, DCMPBD, and SLVBD are given on the following pages. The pro-
gram logic is similar to the flow chart in Figure 4.6.

The input data for TDFIELD and MODIFY are described by comment cards
in the respective programs. The input data is free-format (independent of the
column location on a card). The numbers must be separated by a space or a
comma. The data organization is illustrated for a sample problem later in this
chapter.

The input and output units are defined by integer variables within the READ
and WRITE statements. The numerical values of IN and 10 are defined at the
beginning of each program. The values of IN and 10 must be changed to match
the values for the computer system being used.

This program stores the coefficients of {®}, {F}, and [K] in a single vector {4}
denoted by A() in the program. Vector storage eliminates the need to change the
dimension of [ K] each time a new problem is solved. The vector storage concept
can be illustrated using the system of equations

> 1 0 1 0o olf®,) (900
1 6 1 2 2 ofle,| |s500
0 1 2 0 1 ollesl 2600

- 16.4
1t 2 0o 6 2 1|le." 74900 (164)
o0 2 1 2 6 1f|les] 6500
0 0o o 1 1 2f{®s [2000

Conventional storage of this system would require 48 memory spaces, 36 for [K ]
and 6 each for {®} and {F}. The system has a bandwidth of four and is symmetric;
therefore, only part of the coefficients in [K] are needed to obtain a solution.
These coefficients can be stored in the rectangular array

2 1 0 1
6 1 22
20 1 0
16.5
6 2 1 x (16.5)
6 1 x X
(2 x  x  x]

“{here the x’s indicate nonexistent numbers. The first column of (16.5) is the main
diagonal of [ K], the second column is the first off-diagonal (upper), and so forth.
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I
|

ON= |=2=NO |=NO=w= | NOONON

|
|

/
AN

Figure 16.1. Storage of the system of equations in the A vector.

When using a vector storage, the nodal values {®} are located at the top follo
by {F} and then the columns of [ K] as they appear in (16.5). The storage of (&
using a one-dimensional array is illustrated in Figure 16.1.

The location of the first coefficient of {®}, {F}, and [ K] is calculated within¥
program as well as the length of 4() needed for a particular problem. Allof §
calculations associated with the solution of [K]{®} ={F} are done within {4

The derivative boundary conditions occur on one or more sides of an eleme
The sides have been numbered to facilitate the input. These numbers are show
Figure 16.2.

The subroutines perform the following functions.

Suboroutine ELSTMF. The subroutine ELSTMF evaluates the element stiffi§
matrix and force vector using the equations referenced in the previous sects
The element matrices can be printed to allow students to check hand calculatiéy
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k

Side 3

m k
Side 4 Side 2
' Side 1 !

Figure 16.2. Procedure for denoting the sides of the element.

Subroutine MODIFY. The subroutine MODIFY incorporates the specified nodal
values into the system of equations using the method of deletion of rows and
columns (see Appendix III). The subroutine is also used to add point source or
sink values directly to {F} as discussed in Section 9.3. It is important that the
user realize that this subroutine has READ statements.

Subroutine DCMPBD. The subroutine DCMPBD decomposes the global stif-
fr{ess matrix [K] into an upper triangular form using the method of Gaussian
elimination (Conte and deBoor, 1980). This subroutine assumes that [K ] is sym-
Metric and only those elements within the bandwidth and on or above the main
diagonal are stored. The programming logic is not easy to follow because the
Coeflicients of [ K ] are stored in a vector rather than a two-dimensional array.

Subroutine SLVBD. The subroutine SLVBD is a companion program to
tthPB D. This subroutine decomposes the global force vector, {F}, and solves
system of equations using back substitution. The solution of the system of
®Quations is separated into two subroutines so that they can be used to solve time-
delgendem problems where each new time step requires the decomposition of
tF} but may not require that [ K | be converted into an upper triangular form.
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c

PROGRAM TDFIELD (INPUT,OQUTPUT,TAPE6O=INPUT,TAPE61=0UTPY
COMMON/ELMATX/ESM (L, b) ,EF (L) , X (4),Y (&) ,KL
COMMON/MATL/DXE,DYE,GE, QE
COMMON/HCV/ | DBC (50,2) ,DBC (50,2) ,NDBC
COMMON/AV/A (5000) , JGF , JGSM, NP, NBW
COMMON/TLE/TITLE (20)

DIMENSION NEL (300,4) ,NMTL (300) ,XC (250) ,YC (250)
DIMENSION NS (L) ,PHI (4) ,GDX (L) ,GDY (&), GDN (4)
DIMENSION DX (5),DY{(5),6G(5),Q(5),GRDC (5,2)
DIMENSION B(3),C(3),!CK(250)

DATA GRDC /-1.,-1.,1.,-1.,=1.,1.,0.,1.,-1.,-1./
DATA IN/60/,10/61/,1FE/0/,VOL/0./

Cofedsedsksedes
C ks ksdeskdes

c

C DEFINITION OF THE INPUT PARAMETERS

C

Chdedokstdlodate
CHededeseskdededest

c

c
c
c
C
C
c
C
c
C
C
C
c
c
c
c
c
c
c
c
C
C
C
c
C
c
c
c
c
c
c
c
C
c
C
C
C

TITLE

EQUATION COEFFICIENTS A
THE NUMBER OF SETS MUST EQUAL NCOEF 4

NODAL

AND PARAMETERS

TITLE - A DESCRIPTIVE STATEMENT OF THE PROBLEM
BEING SOLVED
NP - NUMBER OF EQUATIONS (ALSO NUMBER OF NODES)
NE - NUMBER OF ELEMENTS
NCOEF - NUMBER OF SETS OF EQUATION COEFFICIENTS
MAXIMUM OF FIVE
NDBC - NUMBER OF ELEMENT SIDES WITH A DERIVATIVE
BOUNDARY CONDITION
ITYP - TYPE OF FIELD FROBLEM BEING RUN
1 - TORSION PROBLEM
2 - IDEAL FLUID, STREAMLINE FLOW
3 - IDEAL FLUID, POTENTIAL FLOW
L - GROUNDWATER FLOW
5 - HEAT TRANSFER
IPLVL - PRINT LEVEL
O - DON'T WRITE THE ELEMENT MATRICES
1 - WRITE THE ELEMENT MATRICES ;
IPLVL IS SET TO ZERO WHEN NE EXCEEDS 10,§

DX (1) - MATERIAL PROPERTY IN THE X DIRECTION

DY (1) - MATERIAL PROPERTY IN THE Y DIRECT!ON B
G(1) - COEFFICIENT MULTIPLYING PHI IN THE DIFF. E
Q(l) ~ CONSTANT COEFFICIENT N THE DIFF. EQUATION

COORDINATE VALUES

XC(i) - X COORDINATES OF THE NODES

YC(1) -~ Y COORDINATES OF THE NODES
THE COORDINATES MUST BE IN NUMER!CAL SEQq’
RELATIVE TO THE NODE NUMBERS

60

65

70

75

80

85

90

95

100

105

o

sNeNsNelsNaeNsNeNeNeEsNeslsNesNeNeNeNeNeNeNeoeNeNe e

ELEMENT DATA

N - ELEMENT NUMBER

NMTL - INTEGER SPECIFYING THE EQUATION COEFFICIENT SET

NEL (N,1) - NUMERICAL VALUE OF NODE !

NEL(N,2) - NUMERICAL VALUE OF NODE J

NEL(N,3) - NUMERICAL VALUE OF NODE K

NEL (N,4) - NUMERICAL VALUE OF NODE M
NEL(N,4) 1S SET EQUAL TO ZERO FOR
THE TRIANGULAR ELEMENT

DERIVATIVE BOUNDARY CONDITIONS
THE NUMBER OF VALUES MUST EQUAL NDBC

I0BC (i,1) - ELEMENT NUMBER WITH A DERIVATIVE
BOUNDARY CONDITION

1DBC(1,2) - SIDE OF THE ELEMENT WITH THE
DERIVATIVE BOUNDARY CONDITION

DBC(I,1) - (M COEFFICIENT) * (LENGTH OF THE SIDE)

DBC(1,2) -~ (S COEFFICIENT)*{(LENGTH OF THE SIDE)

DATA IS READ BY THE SUBROUTINE MODIFY

Cdedesesededests
Coededededesaess
C
C DATA INPUT SECTION OF THE PROGRAM
C
Cokedededesieaess
C sty
C
C INPUT OF THE TITLE CARD AND CONTROL PARAMETERS
%
READ (IN,3) TITLE
3 FORMAT (20A4)
READ (IN,*) NP,NE,NCOEF,NDBC,ITYP,IPLVL
IF(NE.GT.10) IPLVL=0
IF(IPLVL.GT.1) 1PLVL=0
c
C COMPARISON OF NP, NE, NDBC, AND ITYP WITH
c THE VALUES (N THE DIMENS!ION STATEMENTS
c
1STOP=0
C CHECK OF NP
FF(NP.LE.250) GOT0600
WRITE (10,10)
10 FORMAT (10X, 27HNUMBER OF NODES EXCEEDS 250/
+/10X, T6HINPUT TERMINATED)
ISTOP=1
C CHECK OF NE
600 IF(NE.LE.300) GOT0601
WRITE (10,2)
2 FORMAT (10X, 30HNUMBER OF ELEMENTS EXCEEDS 300/
+10X, 16HINPUT TERMINATED)
ISTOP=1
C CHECK OF NDBC
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120

125

130

135

140

145

150

155

160

165

170

601 IF (NDBC.LE.50) GOT0602
WRITE (10,L47)
Ly FORMAT (10X, 34HDERIVATIVE BOUNDARY CONDITION DATA/
+23HEXCEEDS DIMENSION OF 50/10X, 16HINPUT TERMINATED)
ISTOP=1
C CHECK OF ITYP
602 IF(ITYP.LE.5) GOTO0603
WRITE (10,101)
101 FORMAT (10X, 14KHITYP EXCEEDS 5/10X,
+16HINPUT TERMINATED)
1STOP=1
C CHECK OF NCOEF
603  IF(NCOEF.LE.5) GOTO109
WRITE (10,604)
604  FORMAT (10X, 15HNCOEF EXCEEDS 5/10X,
+16HINPUT TERMINATED)
1STOP=1
109  IF{ISTOP.EQ.1) STOP
o
C INPUT OF EQUATION COEFFICIENTS AND THE NODAL
o COORDINATES
o

READ (IN,#%) (DX (1),DY(1),G(}),Q(1),I=1,NCOEF)
READ (IN,%) (XC(t),I=1,NP)
READ (IN,%) (YC(l),I=},NP)
c
C OUTPUT OF THE TITLE AND PARAMETERS
¢
WRITE (10,4) TITLE,NP,NE,ITYP,IPLVL
L FORMAT (1H1///10X,20A4//10X,5HNP = ,{5/10X,5HNE = ,15/
+10X,8HITYP = ,12/10X,8HIPLVL = ,12}

C OUTPUT OF THE EQUATION COEFFICIENTS

WRITE (10,48)
48 FORMAT (//10X,2 THEQUAT ION COEFFICIENTS, /10X,
+BHMATERIAL/13X, 3HSET, 8X, 2HDX, 13X, 2HDY, 13X, 1HG, 14X, 1HQ)
WRITE (10,16) (1,DX(+),DY (1),G6(1),Q(1),I=1,NCOEF)
16 FORMAT (14X, 12,4E15.5)
c
C OUTPUT OF THE NODAL COORDINATES
¢
WRITE (10,11)
1 FORMAT (//10X, 17HNODAL COORDINATES/10X,
+L4HNODE , 5X, THX, 14X, THY)
WRITE (10,12) (1,XC(1),YC(I),I=1,NP)
2 FORMAT (10X, I 4, 2E15.5)

1
o
C INPUT AND ECHO PRINT OF THE ELEMENT NODAL DATA
C

WRITE (10,8) TITLE
8 FORMAT (1H1///10X,20A4//10X, 12HELEMENT DATA/
+15X, 3HNEL, bX, LHNMTL , 4X, 12HNODE NUMBERS)
NiD=0
DO9KK=1,NE
READ (IN,%) N,NMTL(KK), (NEL(N,1)},1=1,4)
IF ((N-1) .NE.NID) WRITE(10,17) N

175

180

185

190

195

200

205

210

25

220

225

17 FORMAT (10X, JHELEMENT, I 4, 16H NOT IN SEQUENCE)
NID=N
IF (NEL(N,4) .EQ.O)WRITE (10,7) N,NMTL (KK) , (NEL (N, 1),1=1,3)

9 IF(NEL(N,4) .NE.O) WRITE(10,7) N,NMTL(KK), (NEL(N,1),1=1,4)
FORMAT (15X, 13,5X,13,2X,414)

INPUT AND ECHO PRINT OF THE DERIVATIVE
BOUNDARY CONDITICN DATA

OO0 0O~

IF (NDBC.EQ.0) GOTO72
WRITE (10,49)
L9 FORMAT (//10X, 34HDERIVATIVE BOUNDARY CONDITION DATA/
+15X, JHELEMENT, 4X, 4HSiDE, 7X, 2HML, 13X, 2HSL)
DOLSI=1,NDBC
READ (IN,*) IDBC(I,1),IDBC(I,2),DBC(I,1),DBC(i,2)
L5 WRITE (10,71) I1DBC(1,1),1DBC(},2),DBC(1,1),DBC(I,2)
71 FORMAT (15X, 14,9X,11,2E15.5)

C
C ANALYS!S OF THE NODE NUMBERS
C

Coededeedededesk

Coedledededlesedede

C

C INITIALIZATION OF A CHECK VECTOR
c

72 DO5001=1,NP

500 ICK(1)=0

o
C CHECK TO SEE IF ANY NODE NUMBER EXCEEDS NP
C

D050t I=1,NE

KL=4

1F(NEL (!,4) .EQ.0) KL=3
D0502J=1,KL
K=NEL (1, J)
1CK (K) =1
502  IF(K.GT.NP) WRITE(10,503) J,I,NP
503  FORMAT (/10X,L4HNODE, |4, 11H OF ELEMENT, (L,
+13H EXCEEDS NP =, IL)
501  CONTINUE
o
C CHECK TO SEE IF ALL NODE NUMBERS THROUGH
o NP ARE !NCLUDED
o

D05051=1,NE
505 IF{(I1CK(I) .EQ.0) WRITE(10,506) 1|
506 FORMAT (/10X, LHNODE, {4, 15H DOES NOT EXIST)

C

Coedodsededdeded

C dededededeseaedest

c

C CREATION AND INITIALIZATION OF THE A VECTOR
C

Caedesadesedenedes




235

240

245

250

255

260

265

270

275

280

285

C CALCULATION OF THE BANDWIDTH

INBW=0
NBW=0
D020KK=1,NE
KL=b
IF(NEL (KK,4) .£Q.0) KL=3
D0251=1,KL
25 NS (1) =NEL (KK, 1)
LK=KL-1
D0211=1,LK
1J=1+1
DO21J=1J,KL
NB=1ABS (NS (1) -NS (J))
IF (NB.EQ.O) WRITE(10,26) KK
26 FORMAT (/10X, JHELEMENT, | 3, 18HHAS TWO NODES WITH/
+10X,25HWITH THE SAME NODE NUMBER)
IF (NB.LE.NBW) GOTO02]
INBW=KK
NBW=NB
21 CONTINUE
20 CONTINUE
NBW=NBW+1
WRITE (10,27) NBW, INBW
27 FORMAT (//10X,12HBANDWIDTH 1S, 1h, 11H IN ELEMENT, I4)

CALCULATION OF POINTERS AND INITIALIZATION OF
THE COLUMN VECTOR A({ )

s NeNeNal

JGF=NP
JGSM=JGF+NP
JEND=JGSM+NP=NBW
IF (JEND.GT.5000) GOTD22
DO241=1,JEND
24 A(1)=0.0
G0T030
22 WRITE (10,23)
STOP
23 FORMAT (10X,30HDIMENSION OF A VECTOR EXCEEDED)
Sedfdeded
C* Tedeeed

C GENERATION OF THE SYSTEM OF EQUATIONS

30 DO32KK=1,NE
KL=k
JF (NEL (KK, 4) .EQ.0) KL=3

C RETRIEVAL OF NODAL COORDINATES AND NODE NUMBERS

DO311=1,KL
NS (1) =NEL (KK, 1)
J=NS (1)

X (1)=xC(J)

31 Y{1)=yCc ()

290

295

300

305

310

315

320

328

330

335

3ko

o
C ELEMENT COEFFICIENTS
c
I 1 =NMTL (KK)
DXE=DX (1 1)
DYE=DY (I 1)
GE=G (11}
QE=Q (11)
c
C° CALCULATION OF THE ELEMENT STIFFNESS MATRIX
c AND ELEMENT FORCE VECTOR
c
CALL ELSTMF (KK, IPLVL)
c
C DIRECT STIFFNESS PROCEDURE
o
D0331=1,KL
F1=NS (1)
A (JGF+11)=A (JGF+I.1)+EF (1)
DO34J=1,KL
JJ=NS (J)+1-11
IF(JJ.LE.O) GOTO3L
J1=JGSME (JJ=1) %NP+I 1= (JJ=-1) % (JJ-2) /2
A(J1)=A(JI)+ESM(1,J)
34 CONTINUE
33 CONTINUE
32 CONTINUE
CoekdeRkkkdkkk
Cedededededdeiesk
¢
C MODIFICATION AND SOLUTION OF THE SYSTEM OF EQUATIONS
o OUTPUT OF THE CALCULATED NODAL VALUES
c
Chedekdedfdkdx
C fededkededescat e

WRITE(10,62) TITLE
62 FORMAT (1H1//10X, 20AL)

CALL MODIFY (IFE)

CALL DCMPBD

CALL SLvBD
c
C OUTPUT OF THE CALCULATED VALUES
C

WRITE (10,65)
65 FORMAT (//10X,2 THCALCULATED QUANTITIES/
+12X,20HNODAL VALUES FOR PHI )
WRITE(10,66) (1,A(1),1=1,NP)
66 FORMAT (12X, 13,E14.5,3X,13,E14.5,3X,13,E14.5)
(o 3.2.3.2:21% 3174
ChikFddekftk
C
C EVALUATION OF THE VOLUME UNDER THE PHI SURFACE AND THE
€ ELEMENT GRADIENTS
c
[ 3382513341
[0k 23 2:2:2.2:3:¢
C START OF THE LOOP ON THE ELEMENTS
o



345

350

355

360

365

370

375

380

385

390

395

400

ILINE=0
DO83KK=1,NE
1F (ILINE.GT.0) GOTO110
o
C OUTPUT OF THE CORRECT GRADIENT HEADING
o
WRITE (10,43) TITLE
43 FORMAT (1H1///10X, 20A4)
FF(ITYP.EQ.1) WRITE(10,4k)
Lk FORMAT (//10X, THELEMENT, 4X,8HLOCATION, 7X, THTAU (ZX) ,
+8X, THTAU (ZY))
IF (ITYP.NE.1.AND.ITYP.NE.5) WRITE (10,147)
147 FORMAT (///10X, THELEMENT, LX,8HLOCAT 1 ON, 8X, 6HVEL (X) ,
+10X, 6HVEL (Y))
IF(ITYP.EQ.5) WRITE (10, 1L6)
146 FORMAT (///10X, JHELEMENT, 4X,BHLOCAT1ON, 10X, 4HQ (X) ,
+11X, 4HQ (Y))

c
C INCREASE THE LINE COUNT
C
1

10 KL=k
1F (NEL (KK, &) .EQ.0) KL=3
IF(KL.EQ.4) [ILINE=ILINE+L
IF(KL.EQ.3) !LINE=ILINE+2
IF(ILINE.GT.50) ILINE=0

c
€ RETRIEVAL OF THE NODAL COORDINATES, THE NODE NUMBERS
o AND THE NODAL VALUES OF PHI
c

SP=0.0

DOLOI=1,KL

NS (1) =NEL (KK, 1)

J=NS (1)

X (1)=xc(J)

Y (1)=YC(J)

PHI (1) =A (J)

LO SP=SP+PHI (1)

o
C ELEMENT COEFFICIENTS FOR THE GRADIENT VALUES
o

1 I=NMTL (KK)

DXE=DX (11)

DYE=DY (1)
(o
C EVALUATION OF THE ELEMENT GRADIENTS
o

IF(KL.EQ.4) GOTO51
o
C TRIANGULAR ELEMENT
o

B(1)=Y(2)-Y(3)
B(2)=Y(3)-v (1)
B(3)=y (1)-Y(2)
C(1)=x{(3)-%x(2)
C(2)=x(1)-x(3)
C(3)=x(2)-x(1)
AR2=X (2) *Y (3) +X (3) *Y (1) +X (1) %Y (2)
+-X(2) %Y (1) -X (3) #Y (2) -X (1) *Y (3)

405

K10

)

420

425

430

435

ko

W5

k5o

455

GRADX= (B (1) %PHI (1) +B (2) *PHI (2) +B (3) *PHI (3) ) /AR2
GRADY=(C (1) #PH| (1) +C (2) %PH | (2)+C (3) *PHI (3) ) /AR2
GRADX=DXE*GRADX*GRDC (! TYP, 1)
GRADY=DYE*GRADY*GRDC (I TYP, 2)

C OUTPUT FOR TORSION AND STREAMLINE FLOW

o

IF(ITYP.LE.2) WRITE(10,52) KK,GRADY,GRADX

OUTPUT FOR POTENTIAL FLOW, GROUNDWATER FLOW,
AND HEAT TRANSFER

s aNeNel

IF(ITYP.GE.3) WRITE(10,52) KK,GRADX,GRADY
52 FORMAT (/13X,13,5X,6HCENTER, 2X,2E15.5)

C CALCULATION OF THE VOLUME UNDER THE ELEMENT

(g}

VOL=VOL+SP*AR2/6.0
GOT083

RECTANGULAR ELEMENT

oo

1 AA=Y (L) -Y (1)
BB=X (2) -x (1)
AR=AA%BB
GDX (1)=(PHI (2)-PHI (1)) /BB
GDX (2) = (-PHI (1) +PHI (2) +PH1 (3) -PHI (&)} / (2.%*BB)
GDX (3)=(PH! (3) -PHI (L)) /BB
GDY (1) = (PH1 (L) -PHI (1)) /AA
GDY (2) = (=PHI (1) =PH1 (2) +PH | (3)+PH I (L)) / (2.%AA)
GDY (3) = (PHI (3) -PH1 (2)) /AA
DO 82 1=1,3
GOX (1) =DXE%*GDX (1) *GRDC (ITYP, 1)
82 GDY (1) =DYE*GDY (i) *GRDC (ITYP, 2)
IF(ITYP.GE.3) GOT085

o
C OUTPUT FOR TORSION AND STREAMLINE FLOW
o
WRITE(10,53) KK,NS(1),6DY(1),GDX(1)
WRITE (10,54) GDY (2),GDX (2)
WRITE (10,55) NS(3),GDY (3),GDX(3)
GOT086
o
C OUTPUT FOR POTENTIAL FLOW, GROUNDWATER FLOW,
o AND HEAT TRANSFER
o
85 WRITE (10,53) KK,NS(1),GDX(1),GDY (1)

WRITE (10,54) GDX (2),GDY (2)

WRITE (10,55) NS(3),GDX (3),GDY (3)
53 FORMAT (/13X,13,5X,5HNODE ,13,2E15.5)
5L FORMAT (21X,6HCENTER, 2X,2E15.5)
55 FORMAT (21X, 5HNODE ,13,2E15.5)

CALCULATION OF THE VOLUME UNDER THE ELEMENT

VOL=VOL+SP=AR/4.0
CONTINUE

(oMo -Nalalel
w



L6o

465

470

20

25

30

35

4o

[ %)
Colesek
c
C OUTPUT OF THE INTEGRAL VALUE
C
Cotdesededesdesdest
Coedesossdedesedest
VOL=VOL*2
IF(ITYP.EQ. 1) WRITE (10,56) voL

56 FORMAT (//10X, 29HTHE TORQUE FOR THE SECTION IS,E15.5)
sTop

END

SUBROUTINE ELSTMF (KK, IPLVL)
COMMON/ELMATX/ESH(&,&),EF(h),X(h),Y(h),KL
COMMON/MATL/DXE,DYE,GE,QE
COMMON/HCV/IDBC(SO,Z),DBC(SO,Z),NDBC
DIMENS|ION ES(k,h),ET(b,h),EG(h,h)
DIMENSION B (3),C(3)
REAL LG
DATA ES/Z.,-2.,-].,l.,-2.,2.,]..-1
+-].,]..2.,-2.,l.,~l.,-2.,2./
DATA ET/Z.,]..-].,-2..1-.2.,-2.,-1..
+-10,-2.,20,00,-20,-1.,1.,2./
DATA EG/b..Z.,l..Z.,Z.,k.,Z.,].,
+1,2.,00,2.,2.,1.,2.0,b4./
10=61
IF(KL.EQ.4) GOTO2
Cohrdedededndkk
Calededesdede sk oot
c
C LINEAR TRIANGULAR ELEMENT WITHOUT THE DERIVATIVE
c BOUNDARY CONDITION
C
Coesedestdedeaeden:
Cotesesedessesesest
B(1)=Y(2)-Y(3)
B(2)=Y(3) -y (1)
B(3)=Y(1)-Y(2)
C(1)=x(3)-x(2)
C(2)=x(1)-x(3)
C(3)=x(2)-x (1)
AR2=X (2) %Y (3) +X (3) %Y (1) +x (1) %Y (2) -x (2) xy (1)
+=X(3) %Y (2) -X (1) %Y (3)
I'F (ABS (AR2) .LT.0.0001) GOT05

DO11=1,3
EF (1) =QE*AR2/6.
D014=1,3
A=1.0
IF(1.EQ.J) A=2.0
1 ESM(I,J)=((DXE*B(I)*B(J)+DYE*c(|)*c(J))/(AR2*2_))

++AXGEXAR2/24 .
IF (NDBC.EQ.O) GOTO7
GOTO4
Colesesefesesedesen
Coosededestess

c

b5

50

55

60

65

70

75

80

85

90

95

100

BILINEAR RECTANGULAR ELEMENT WITHOUT THE DERIVATIVE

BOUNDARY CONDITION

’Z‘AA;;(A)-Y(I)

BB=X (2) -X (1)

AR=AA*BB

IF (ABS (AR) .LT.0.0001) GOTO5

D031=1,4

EF (1) =QE*AR/L.

D03J=1,4
ESa(I,J)=DXE*AA*ES(I,J)/(6.*BB)+DYE*BB*ET(I,J)/(G.*AA)

+GEARXEG (1,J) /36.

IF (NDBC.EQ.O0) GO TO 7

C DERIVATIVE BOUNDARY CONDITION

C
Cfesedlesesek ek
Coedesfedesedededest
DOI11=1,NDBC
IF(1DBC(1,1) .NE.KK) GO TO 11
J=1DBC (1,2)
K=J+1
IF(J.EQ.KL) K=1
EF (J)=EF (J)+DBC (1,2) /2.
EF (K)=EF (K)+DBC (1,2) /2.
ESM(J,J)=ESM(J,J)+DBC (1,1) /3.
ESM(J,K)=ESM(J,K)+DBC (1,1) /6.
ESM(K,J)=ESM (J,K)
ESM{K,K)=ESM(K,K)+DBC (1,1) /3.
N CONTINUE
C*
C
o
C OUTPUT OF THE ELEMENT MATRICES
C
C
c*
7 If (IPLVL.EQ.O) RETURN
WRITE(10,8) KK
8 FORMAT (/10X, THELEMENT, 1 4/10X, 12HFORCE VECTOR, 10X,
+16HSTIFFNESS MATRIX)
DOYI=1,KL
9 WRITE(10,10) EF (1), (ESM(1,J),J=1,KL)
10 FORMAT (10X,E12.5,10X,L4E13.5)
RETURN
Cs +H
Cs S
C
C DIAGNOST!IC OUTPUT
o
Cxes
o
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L5

6

5 WRITE (10,6) KK

FORMAT (//10X, 19HTHE AREA OF ELEMENT, L,
+20H IS LESS THAN 0.0001/
+10X,39HTHE NODE NUMBERS ARE IN THE WRONG ORDER/
+10X, 33HOR THE NODES FORM A STRAIGHT LINE/
+10X,20HEXECUTION TERMINATED)

STOP

END

SUBROUTINE MODIFY (IFE)
COMMON/AV/A (5000) , JGF , JGSM,NP,NBW
DATA IN/60/,10/61/

Coedeaddedestaest
Coededesededesesit
c

C
c
c
c
c
C
C
C
c
o
c

INPUT OF THE NODAL FORCE VALUES
FOR FIELD PROBLEMS
18 - NODE NUMBER
BV - SOURCE OR SINK VALUE
FOR SOLID MECHANICS PROBLEMS
IB - DEGREE OF FREEDOM OF THE FORCE
BV - VALUE OF THE FORCE

INPUT OF 1B AND BV IS TERMINATED BY
INPUTTING A ZERO VALUE FOR IB

okttt
Coledesedefidedednk

Niw =0
202 READ (IN,%*) (B
IF(IB.LE.O) GOTO0216
1F(NIW.EQ.O.AND.IFE.EQ.0) WRITE{10,200)
IF(NIW.EQ.O.AND.IFE.EQ.1) WRITE(10,201)
200 FORMAT (//10X,22HSOURCE AND SINK VALUES)
201 FORMAT (//10X, 31HCONCENTRATED FORCES AND MOMENTS)
NIW=1
READ (IN,*) BV
A (JGF+1B) =A (JGF+1B) +BV
WRITE (10,203) 1B,BV
203 FORMAT (10X, 13,E15.5)
G0T0202
Cledesededededes:
[ 333512231
C
C INPUT OF THE PRESCRIBED NODAL VALUES
c FOR FIELD PROBLEMS
C I8 - NODE NUMBER
C BV - KNOWN VALUE OF PHI
C FOR SOLID MECHANICS PROBLEMS
c 1B - DEGREE OF FREEDOM OF THE KNOWN DISPLACEMENT
[« BV - THE VALUE OF THE DISPLACEMENT
C
C INPUT OF B AND BV IS TERMINATED BY INPUTTING
C A ZERO VAUE FOR IB
c
Cesfesfastest

50

55

60

65

70

75

8o

20

2
2

C
C
C
c
c

09 READ(IN,*) IB
1F (1B.LE.O) RETURN
IF(NIW.EQ.O.AND.IFE.EQ.O) WRITE (10,212)
IF(NIW.EQ.O.AND.IFE.EQ.1) WRITE (10,208)
12 FORMAT (//10X, 25HKNOWN NODAL VALUES OF PHI)
08 FORMAT (//10X, 25HKNOWN DISPLACEMENT VALUES)
NIW=1
READ (IN,%) BV

MODIFICATION OF THE GLOBAL STIFFNESS MATRIX AND
THE GLOBAL FORCE VECTOR USING THE METHOD
OF DELETION OF ROWS AND COLUMNS

K=1B-1
D0211J=2,NBW
M=1B+J-1
IF (M.GT.NP) GOTO210
1 J=JGSM+ (J-1) *NP+{B- (J-1) % (J-2) /2
A (JGF+M) =A (JGF+M) -A (1J) *BV
A(1J)=0.0
210 IF(K.LE.O) GOTO 211
KJ=JGSM+ (J=1) =NP+K=- (J-1) % (J-2) /2
A (JGF+K) =A (JGF+K) -A (KJ) *BV
A(KJ)=0.0
K=K-1
CONTINUE
A (JGF+1B) =A (JGSM+IB) *BV
CONT INUE
WRITE (10,203) 1B,BV
G0T0209
END

21

N
N

SUBROUTINE DCMPBD
COMMON/AV/A (5000) , JGF, JGSM,NP,NBW
10=61

P

DECOMPOSITION OF A BANDED MATRIX INTO AN UPPER
TRIANGULAR FORM USING GAUSSIAN ELIMINATION

&

nnnnnn()r\

NP 1=NP-1
D0226i=1,NP1
MJ=1+NBW-1

IF (MJ.GT.NP) MJ=NP
NJ=t+1

MK=NBW

IF ((NP-141) .LT.NBW) MK=NP-I+1]
ND=0

D0225J=NJ,MJ
MK=MK-1

ND=ND+]

NL=ND+1
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o]

225
226

c-’»
[ok:4
c
C
C

D0225K=1, MK
NK=ND+K

JK=JGSM+ (K-1) ENP+J- (K- 1) % (K-2) /2
INL=JGSM+ (NL-1) =NP+1- (NL-1) % (NL-2) /2
INK=JGSM+ (NK-1) #NP+1- (NK-1) % (NK-2) /2
I 1=JGSM+I

A (JK) =A (JK) A (INL) =A (INK) /A (L1)

CONT INUE

RETURN

END

SUBROUTINE SLVBD
COMMON/AV/A (5000) , JGF , JGSM, NP, NBW
NPI=NP-1

DECOMPOSITION OF THE GLOBAL FORCE VECTOR

25
cx

OO0 00

251
252

D02501=1,NP1

MJ={+NBW-1

iF(MJ.GT.NP) MJ=NP

NJ=1+1

L=1

D0250J=NJ, MJ

L=L+1

IL=JGSM+ (L=1) =NP+1-(L-1) % (L-2) /2

BACKWARD SUBSTITUTION FOR DETERMINATION OF

THE NODAL VALUES

A (NP) =A (JGF+NP) /A (JGSM+NP)
D0252K=1,NP}

I=NP-K

MJ=NBW

IF ((I+NBW=1) .GT.NP) MJ=NP-|+1
SUM=0.0

00251J=2,MJ

N=1+J-1

1J=JGSM+ (J-1) #NP+1 - (J=1) % (J-2) /2
SUM=SUM+A (1J) %A (N)
A(1)=(A(JGF+1) ~SUM) /A (JGSM+1)
RETURN

END

A(JGF+J) =A (JGF+J) -A (IL) %A (JGF+!) /A (JGSM+1)

COMPUTER PROGRAM FOR TWO-DIMENSIONAL FIELD PROBLEMS 219

16.3 AN EXAMPLE PROBLEM

The data and computer solution of a heat transfer problem is given in this section.
The problem was designed to illustrate all of the possible data inputs and has
little or no practical use

The problem configuration is shown in Figure 16.3. It consists of a five-sided
region with the upper and lower surfaces insulated, 0¢/0y =0. The temperatures

2= 10cm >l 5cm —)1
r Insulated ,]
/ 7 A
7r /
a¢ 9 cing=—
D, 5 cos6+D, 3y Siné 2¢y + 10
¢ =20°C
_ w
Dy=5 cm-°C
15¢cm
\j\\ T
Y > _L
v
’ Insufated
|,-4 20cm ‘!

Figure 16.3. Region and basic data for the example problem.

16
4 8 12
3 ®) €)]
15 13
3 7 11 19
12
) &) ®
(D
2 6 10 14
18
1) 4) ) (10)
1 5 9 13 17

Figure 16.4. Finite element grid for the example problem.
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Table 16.1 Computer Data

Title TEXTBOOK EXAMPLE PROBLEM
Parameters 19132350 :
B
Material 2. 2. 0. 0.
coefficients 5. 5. 0. 0.
0. 0. 0. 0. 5. 5. 5. 5.
X-Coordinates 10. 10. 10. 10. 5. 15. 15, 15,
20. 20. 17.5
0. 5. 10. 15. 0. 5. 10. 15.
Y-Coordinates 0. 5. 10. 15. 0. 5. 10. 15,
0. 5. 10.
1 ] 1 5 6 2
2 1 2 6 7 3
31 3 7 8 4
4 1 5 g 10 6
5 i 6 10 N 7
6 1 7 m 12 8
Element data 7 2 9 13 1k 10
8 2 10 4 15 1)
9 2 11 15 16 12
10 2 13 17 18 14
1 2 14 18 19 0
12 2 14 19 15 0
13 2 19 16 15 0
Derivative 102 0. 50.
boundary 12 11.18 55.90
conditions 121 1.18 55.90
Source 10 200. o
Known ¢ values 1 20. 2 20. 3 20. 4 20. O

along the left vertical edge are maintained at 20°C while the boundary condition’

o o¢

Dx6x0059+D E ;

is imposed on the right vertical surface and the sloping surface. There is a poinf“

source of 200 W/cm located within the region. The region is long in the z dlrecuon,
thus the analysis is performed on 1 cm of thickness.

The grid used to solve the problem is given in Figure 16.4. The grid consists of»a
13 elements and 19 nodes. The giid has not been refined to increase the accuracy
the solution.

The computer program data is given to the right of the solid line in Table 161 ,
The titles on the left of the line indicate the nature of the data. Each line represents &
card of input. The computer output is presented as a sequence entitled Figure 16.

sin=—2¢,+10 (16.6)%.

TEXTBOOK EXAMPLE PROBLEM

NP = 19
NE = 13
ITYP = 5
jpLVL = O

EQUATION COEFFICIENTS

MATER AL
SET DX DY
1 .20000E+01 .20000E+01
2 .50000E+01 .50000E+01
NODAL COORDINATES
NODE X Y
1 0. 0.
2 0. .50000E+01
3 0. . 10000E+02
4 0. . 15000E+02
5 .50000E+01 0.
6 .50000E+01 .50000E+01
7 .50000E+01 . 10000E+02
8 .50000£+01 . 15000E+02
9 . 10000E+02 0.
10 . 10000E+02 .50000E+01
M . 10000E+02 . 10000E+02
12 . 10000E+02 . 15000E+02
13 . 15000E+02 0.
14 . 15000E+02 .50000E+01
15 . 15000E+02 . 10000E+02
16 . 15000E+02 . 15000E+02
17 .20000E+02 0.
18 .20000E+02 .50000E+01
19 .17500E+02 . 10000E+02

TEXTBOOK EXAMPLE PROBLEM

ELEMENT DATA

NEL NMTL NODE NUMBERS

1 1 ! 5 6 2
2 i 2 6 7 3
3 1 3 7 8 &
L 1 5 9 10 6
5 1 6 10 M 7
6 1 7 1 2 8
7 2 g 13 14 0
8 2 10 14 15 1
9 2 1115 16 12
10 2 13 17 18 14
11 2 ‘h 18 19
12 2 b 19 15
13 2 19 16 15



DERIVATIVE BOUNDARY CONDIT!ION DATA

ELEMENT SIDE ML
10 2 . 10000E+4+02
11 2 . 111808402
12 1 .11180E+02

BANDWIDTH 1S 6 IN ELEMENT |

TEXTBOOK EXAMPLE PROBLEM

SOURCE AND SINK VALUES
10 .20000E+03

KNOWN NODAL VALUES OF PHI

i .20000E+02
2 .20000E+02
3 .20000E+02
4 .20000E+02

CALCULATED QUANTITIES
NODAL VALUES FOR PHI

SL
.50000E+02
.55900E+02
.55900E+02

QWU MW OV

Q(Y)

.48199E+00
.96398E+00

.26306E+00
.52612E+00

.48199E+00
-96398£+00

.96398E£+00

28900E+01

.67439E+01

.52612E+00
.43379E+01

) .20000E+02 2 .20000E+02
L .20000E+02 5 .27428E+02
7 .23703E+02 8 .21293E+02

10 .42083E+02 1 .21709E+02
13 .20764E+02 T .15293E+02
16 .18851E+02 17 .91043E+0]1
19 .10237E+02
ELEMENT LOCATION Q(X)
1 NODE | -.29713E+01 0.
CENTER -.248B9LE+0]
NODE 6 -.20074E+01
2 NODE 2 -.20074E+01 0.
CENTER -.17443E+01
NODE 7 - 14812E+401
3 NODE 3 -.14B12E+01 0.
CENTER -.99925E+00
NODE 8 -.51726E+00
I NODE 5 .88192E+00
CENTER -.29720E+01 -.
NODE 10 -.68260E+01 -
5 NODE 6 -.68260E+01
CENTER -.301L1E+01
NODE 11 .79766E+00

.81497E+01

.20000E+02
.25018E+02
.25224E+02
.19521E+402
.16297E+02
.85150E+01

TEXTBOOK EXAMPLE PROBLEM

NODE 7
CENTER
NODE 12
NODE 9
CENTER
NODE 14
NODE 10
CENTER
NODE 15
NODE 1}
CENTER
NODE 16
NODE 13
CENTER
NODE 18
CENTER
CENTER
CENTER

.79766E+00
.75325E+00
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PART THREE

STRUCTURAL AND
SOLID MECHANICS

The application of the finite element method to the solution of struc-
tural and solid mechanics problems is discussed in the next nine
chapters. These chapters provide an introduction to the analysis of
plane structures and elasticity problems. Chapters | and 2 contain
the prerequisite material for Chapters 17 through 21. Chapters 5
and 6 should be covered before reading Chapters 22 through 25.
Chapters 17 and 18 duplicate some of the material covered in
Chapters 3 and 4 and can be covered rather quickly if Chapters 3
and 4 have already been read.



Chapter 17
AXIAL FORCE MEMBER

The finite element method is applicable to the analysis of both discrete and con-
tinuous structures. Discrete structures are those with individual members such as
trusses, beams, and rigid frames. Continuous structures are plate- and shell-type
structures as well as machine and structural components that must be analyzed
using the theory of elasticity. The analysis of both discrete and continuous struc-
tures can be approached from several points of view. Only one of these, the principle
of minimum potential energy is used in this book. The objective of this chapter is to
introduce the principle and show how it can be applied to the solution of some
simple statically indeterminate problems involving axial force members. These
problems are similar to those encountered in a first course in the mechanics of
deformable bodies.

171 THE ONE-DIMENSIONAL MODEL

The finite element grid for a system of axial force members is identical to that
discussed relative to a differential equation in Chapter 2. It consists of a straight-
line segment with nodes wherever there is a change in the material properties or
the cross-sectional area. The only new rule involves externally applied forces. A
node is placed wherever there is an external axial force. This is done to simplify the
calculation of the work term in the potential energy equation. By placing a node
where the force is applied, the work done by that force can be written as a force
times a displacement. This idea is illustrated in Figure 17.1. The system is divided
into three elements even though the member does not possess a change in area or
material properties. A node is placed at each point where a force is applied.

A major difference between the grids for axial force members and those for an
approximate solution to (2.1) is the concept of grid refinement. A finite element
§01ution for the displacements in a discrete structure yields the correct values. No
Improvement is obtained by subdividing each member into several smaller el-
¢ments. Each member is represented by a single element except when there are
applied loads between its end points.

The quantities calculated in a finite element analysis of a discrete or continuous
Structure are displacements. The nodal displacements and externally applied
forces are often indicated using arrows (Figure 17.1). A positive displacement is
always in a positive coordinate direction. Both translational and rotational dis-
Placements are denoted by U in this book.
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Figure 17.1. A node is located at every external force.

17.2 PRINCIPLE OF MINIMUM POTENTIAL ENERGY

The equations that yield the joint displacements of a structural system can hi
derived using the principle of minimum potential energy. A statement of th
principle and a discussion of its important points is presented here, and illustra:
tions of its implementation are given in a later section. The derivation is a topif
in continuum mechanics courses and is not discussed here. The reader wholi
interested in the derivation should see Fung (1965). The statement of the theoreﬂl
as given here is similar to that given by Cook (1982).

The principle of minimum potential energy states: Among all the dlsplacemena
equations that satisfy internal compatibility and the boundary conditions, those thal
also satisfy the equations of equilibrium make the potential energy a minimum in d
stable system.

The above principle implies the following: "

1. The writing of a displacement equation for each member. These equation§
must be compatible. The equations must ensure that all members connecting
at a rigid joint rotate the same amount or that a beam has a continuous ﬁrj
derivative.

2. Incorporation of the boundary (support) conditions so that the dlsplacemen'i
equations satisfy all of the physical support conditions.

3. The writing of an equation for the potential energy within the structural
system in terms of some unknown displacements.

4. Minimization of the potential energy with respect to the undetermined dlS‘
placements within the displacement equations. .

The completion of these four steps leads to a system of equilibrium equatlonl
that are solved for the joint displacements. Once the joint displacements arc
known, the internal force and/or moment in each member is calculated.

£

The minimization process clearly implies the need for a potential energy equa"
tion written in terms of the displacements. The potential energy in an elastig

i

structure is the energy contained in the elastic distortions and the capacity of tht
loads to do work. The potential energy contained in the elastic distortions is th
strain energy. The capacity of a concentrated load to do work is P- U, where }
is the magnitude of the concentrated load and U is the displacement. A positiV
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force and the corresponding positive displacement always have the same direc-

tions.
The total potential energy in the axial force member is

M=A—W=A-PU (17.1)

where A represents the strain energy and W is the work done by an external force.
When there are several members and external loads

n P
N=) A9-% PU; (17.2)
e=1 i=1
where the strain energy is summed over the number of elements, n, and the work
is summed over the number of nodes, p. The negative sign appears with the work
term because each force looses some of its capacity for doing work when it dis-
places in the direction it acts.
Equation (17.2) is used for the systems considered in this chapter. The work
term in (17.2) involves a displacement, but the strain energy must be written in
terms of the nodal displacements.

17.3 THE STRAIN ENERGY EQUATION

The equation that gives the strain energy in an axial force member is derived in
most introductory textbooks covering the mechanics of deformable bodies. The
reader unfamiliar with these equations may wish to consult Popov (1976), Higdon,
et al. (1976), or other similar books. The equation is

A© — J Oxxbxx dv (17.3)
v 2

where o, and &,, represent the normal stress and strain components, respectively.
This equation can be written in terms of either the stress component or the strain
component using Hooke’s law

xszgxx (174)

The equivalent equations are

(e) __ xx Eszcx
A I 2E dV = L > dv
The objective of this section is to evaluate one of the integrals of (17.5) such thata
strain energy equation written in terms of the nodal displacements is obtained.
The axial force member is modeled by a straight-line segment (Figure 17.2),
with a displacement at each end, U; and U;. The member has a cross-sectional
area 4; an elastic modulus E; a coefficient of thermal expansion o; a length L;
and an internal force F*, which is developed by the externally applied loads.
Information available from a first course in the mechanics of deformable bodies
Includes

(17.5a, b)

exx:d—u:constam (17.6)
dx
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Figure 17.2. The axial force member. A

N

where e,, is the total strain and u is the displacement equation. The total strain
€xx, 18 not the same as ¢, in (17.5b). The two are related by ‘

Cxx=Exxt+E&r (17.7?

The total strain is the sum of the elastic strain, &xx, resulting from the appliea

loads and the strain produced by a thermal change, ¢7. A simple rearrangemeny
gives :

Exx=€xx—Lr (]7'M

and the substitution of (17.6) yields }
du |

b= — 20T (17.?3

since er=ad T, where 4T is the temperature change.
Substitution of (17.9) into (17.5b) gives the strain energy equation

E 2
A‘”:J 5(% —oz(ST) dv
| 4

E [du\? du E(@dT)?
= () av— | ExsT™av ~
L 3 (dx) L ot dxd + L 3 dV (17.1%

The incremental volume dV is dV =dA dx and the volume integrals can be re!
placed by 2

d

3

N N Ty T

0 0

assuming that the cross-sectional area is constant. If we use this replacement, the
integrals in (17.10) are

AE " (du\? (Y du AE@OT)? (*
AO="" — | dx—AExd = —
5 L (dx) dx—AEx3T N dx + 3 . dx (17.12,]

The final step is to select an element displacement equation. The constant valug
for e,y, (17.6), implies a linear equation for the axial displacement. The general
form for a linear equation was developed in Chapter 2. Writing (2.6) in terms Q
the nodal displacements gives

Xj_x .X_X,' ‘J
u-( I )U.“F( 3 )UJ: (17.13j

4
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[n this situation, X;=0and X ;=L.
The derivative of the displacement equation is
di’ _ Ui+ U;
dx L
Since du/dx is a constant, this term can be taken outside the integrals in (17.12).
Completion of the integration produces

< 2 2
A‘f):A_gL (ﬁ) —AEL a&T(%)+iILg“ST—) (17.15)

Substitution of (17.14) yields the strain energy equation for an axial force member
written in terms of the nodal displacements.

AE AEL(aST)?
A<f):i(uf—2uiu,~+ U)—AEadT(- U+ U,~)+(f)

The nodal displacements are the unknowns in the potential energy formulation.
Their magnitudes are determined by finding the set of values that makes the
potential energy a minimum. The last term of (17.16) is not related to the nodal
values and disappears during the minimization process. Since the constant does
not influence the final results, it is usually discarded and (17.16) is written as

AE
Al ’:i(U,-z—2U,-Uj+Uf)—AEaéT(— Ui+ Uj) (17.17)

(17.14)

(17.16)

17.4 A SYSTEM OF AXIAL FORCE MEMBERS

The application of (17.17) in conjunction with (17.2) is illustrated by working
through a problem consisting of three axial force members subjected to a pair of
concentrated forces and a temperature change (Figure 17.3). The system is modeled
by three elements and four nodes. The labeling of the model provides for a dis-
placement and an externally applied force at each node. A positive force acts in
the same direction as a positive displacement.

Analyzing the physical problem reveals that U, =U4=0 because of the rigid
walls and that P, =P,=0, P,=10000 N, and P;= — 20000 N. The negative sign
for P; results because the load is opposite to the direction of a positive displace-
ment.

The potential energy of the system is given by (17.2) with =3 and p=4. Ex-
Panding (17.2), we obtain

M=AD+AD+A® P, U, —P,U,~PU;—P,U, (17.18)
or
=AM+ A? 1 A® —(10000)U , — (— 20000)U (17.19)

since the values of U, Ug, P, and P3 are known. The strain energy in each member
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Figure 17.3. A system of three axial force members.

is given by (17.17). The element information needed for (17.17) is summarized.

in the following table.

E X
e i j A L ;T AExST

1 1 2 15 75 2(10°) 33000
2 2 3 15 75 2(10%) 33000
3 3 4 24 60 4(10°) 52800

Utilizing the element information gives

A =210 U2 —2U, U, + U2)—33000(— U, + U,) (17.20).
AP =2(10°)U3 - 2U,U; + U3)—33000(— U, + Us) (17-2151
and L
AP =4(10°(U3 — 2U3U 4 + U%)— 52800(— U + Us) (17.22)

The equations for A" and A® simplify to

A =2(10%)U2 — 33000V, (17.23)

and

AP =4(10°U 3 + 528000 4 (17.24),

because U, =U,=0.
Substituting (17.21), (17.23), and (17.24) into (17.19) yields
IM=2(10°)U3— 330000, + 2(10°N U3 —2U, U5+ U3) B
—33000( — Uy + U3)+4(10°)U35 4 52800U ; — 10000U , + 20000 U , (1 7.25}
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or
IT=4(10°U2% — 4(10°)U, U + 6(10°)U3 — 10000V, + 39800U,  (17.26)

The values of U, and U; that make Il a minimum satisfy the equations

on
2 = 8(109) U, — 4(10°)U 5 — 10000 =0

oU,
and (17.27)
oIl 6 o r
——=—4(10°)U, + 12(10°)U ; + 39800 =0
0U3
Solving this pair of equations gives
U, = —0.0004900 cm and U;=—0.003480 cm (17.28)

The negative signs indicate that both nodes move to the left.

One objective of any structural analysis is to calculate the stresses within the
individual members. The axial force acting in each member must be known to
do this. The axial forces can be calculated once the nodal displacements are
known. Since this calculation occurs in every analysis, it is convenient to have a
general equation that gives the axial force in terms of the nodal displacements.

The axial force in an element is

S =0, A (17.29)

where o, is the normal stress. The normal stress is related to the normal strain
by Hooke's law

Oxx= EEXX (1 730)
and
S9=AEe,, (17.31)

The normal strain is related to the displacements and thermal change by (17.9);
thus

SO~ AE (du — s T) (17.32)
dx
Replacing the derivative term by (17.14) gives
AE

Equation (17.33) gives the internal axial force S' in terms of the nodal displace-
ment and the temperature change.
Application of (17.33) to the system in Figure 17.2 gives

AE
S“):T(Uz_ Ul)‘—AE adT
= 4(10°)— 0000490 — 0) — 33000
= —34960 N
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s<2>=%(u3— U,)—AEadT

=4(10°)[ —0.003840 — (—0.0004900) ] — 33000

= —44960 N
and
SH):AL—E(U4— U3)_AE T
— 8(106)[0 —(— 0.003480)] — 52800
= —24960 N ,
The negative values for S, S, and $** indicate that each member is in com:
pression.

The solution of structural problems that involve the discrete elements cay

Joint two:

34960 34960 44960 44960

34960 ; 44960
?(1) 10000 L@ Ei
F,. =0
Joint three:
24960 24960

44960
=K

3)

SF,=0 |

Figure 17.4. Free body diagrams of the individual members of the example g
problem.
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always be checked by analyzing the equilibrium of the internal joints and/or the
equilibrium of the complete structure. If a joint is not in equilibrium, then some of
the member forces (or moments) are wrong. Free body diagrams of the joints in this
example are shown in Figure 17.4. The forces do sum to zero.

The displacements should be calculated to four significant digits to insure an
accurate equilibrium analysis.

17.5 MATRIX NOTATION

The system of equations (17.27) can be written using matrix notation. The matrix
equation for structural problems is

[K]{U}—{F}—{P}={0} (17.34)

where [ K ] is the stiffness matrix and {F} and {P} are force vectors. The force
vector |F} comes from element contributions and is usually a result of thermal
changes. The force vector | P contains the external forces applied at the joints.
The vector (U} contains the nodal displacements.

The equations in (17.27) can be written in the form of (17.34) by separating the
thermal forces from the external forces. Returning to (17.25), we find that Il can be
written as

M =4(10%)U3—-4(10%)U, U5+ 6(10°)U}3
—(0U,—19800U3)— (10000U , — 20000U 3) (17.35)
The first set of forces, the 0 and 19800 values, come from the thermal term AE a6 T.
The last pair, 10000 and — 20000, are the external forces applied at the joints.
Differentiation of (17.35) yields

8(109)U, — 4(10°)U ; — 0 — 10000 =0
and (1736)
—4(108)U, + 12(10%)U 5 — (— 19800) — ( — 20000) =0

This pair of equations can be written

JJ 8 —4u, 0 10000] _ {0
10 [—4 12]{03}_{—19800}—{-20000}”{0} a7.37)

which is in the same form as (17.34).

PROBLEMS

17.1-17.5 Calculate the axial force in each member of the structural system
shown in the corresponding figure. In each problem, E=20(10°) N/cm?
and x=11(10")/°C.
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Chapter 18

ELEMENT MATRICES:
POTENTIAL ENERGY
FORMULATIONS

The concepts of an element stiffness matrix and an element force vector were
introduced in Chapter 4. These quantities were used with the direct stiffness method
to generate the coefficients in [K ] and {F} without writing the residual equation
for each node. The same concept can be implemented for structural and solid
mechanics problems. The determination of the element matrices eliminates the
need to write the potential energy equation.

The element stiffness matrix and the force vector for the axial force member are
developed in this chapter and are used to solve the axial force system considered in
Chapter 17. A general procedure for determining the element matrices is derived
after the example problem. The results of this derivation are used to establish the
element matrices in the structural and solid mechanics chapters that follow.

18.1 THE AXIAL FORCE ELEMENT

The system of equations associated with the potential energy formulation is
obtained by minimizing the potential energy. If we assume that every displacement
is unknown, the minimum value results when

on oIl on o1l

—=0, —=0,..., =0, =

oU, oU, oU,_; ou,
These derivatives can be written as a column vector. The derivative of I1 with
respect to the vector of displacements, {U}, is
oll
oU,
oIl
= aUz

0 (18.1)

(18.2)

D
<

o1l
au,
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This vector is similar to the residual vector (4.1). Each component represents a
single equation. o

The potential energy in a system of axial force members is given by (17.2) and
rewritten here for convenience:

n p
Nn=Y A‘“—Z P.U; (18.3)

— Py (18.4)

This is equation B in the final system of equations. The element contribution to
this equation is contained within the summation. Expanding the summation gives

nOA® 9AD 9N oA

= + + + 18.5
e=1aUﬂ 6Uﬂ aUﬁ aUﬂ ( )
The strain energy in an axial force element is
AE
A<f)=27(uf—2u,-uj+ U7)—AEadT(—U;+ U)) (18.6)

and is a function of only two displacements, U; and U;. The derivative dA'9/0Up,
therefore, is zero unless f=i or f=j. If the strain energy in the element is not a
function of Uy, the element contributes nothing to equation f.

The element contribution to the system of equations is obtained by evaluating
the derivatives of A with respect to U; and U ;. This operation yields

OA'®  AE
=" (U;=U))+AE%T
U T L ( 7 a
and (18.7)
0N AE .
—=—(—U;+U;)—AEadT
cU; L ( i)
The equations in (18.7) can be written as
a/\“‘)l
CA L| -1 1 {U; AEodT
ou;

which is equivalent to

I

Gryen = KOTU = (18.9)
{ §
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The element stiffness matrix is

- i

(k] = (18.1

-1 1 M

and the element force vector is ‘
—AE adT :

[ e __ :

‘ ‘_{ AE uéT} (1814

The vector { U} in(18.9) contains the element displacements, { U} T =[ U; Uj}
The element matrices as given by (18.10) and (18.11) have the same propertie
as those discussed in Chapter 4. They are easy to program for computer evaluatio;
it is also easy to determine where each individual coefficient is located in the ﬁn%
system of equations.
The vector JI1/0{ U} represents the system of equations

Ak TN 2

or
g = KNV =P} =P =10) (18.,1%
Equation 18.8 states that the coefficients in the first row of [£'“] and {f®} an
located in row i of [K] and [F} because 6A*//0U; contributes to the summatiog
associated with dI1/0U;, which is row i in the final system of equations. Also, t
coefficients in the second row of [k'”] and { /'] are located in row j of [K]
{F| because 0A“/0U; contributes to the summation associated with JI1/3Uj
The coefficients of [k“'] are located in columns i and j of [ K] because the co
efficients in the first column multiply U; while those in the second column multips

Uj.

ke | I

18.2 A SYSTEM OF AXIAL FORCE MEMBERS

The direct stiffness procedure is illustrated by constructing the system of equation
for the three axial force members analyzed in Section 17.4. The system and elemeg
models are shown in Figure 18.1. The element stiffness matrix is given by (18. lﬂ
and the element force vector is given by (18.11). The element data are

e i J — AE 20T

—_—
[N

4(10°) 33000
2 2 3 4(10°) 33000
3 3 4 8(10%) 52800
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Steel: E = 20(10%) N/cm?
o« =11(1078)/°C

A=24cm?
20000N N 6T=10°C

A=15cm?
10000 N ——>-

Yy

60

75 cm T 75

U.Pry . UaP 2y U Py3)
1 2 3 4
Figure 18.1. A system of three axial force members.

Uy, Py

The element matrices are

I 2
4 41 33000) 1
(M71_10° ! 11))
[e]=10 [—4 4]2’ f { 33000}2
2 3
4 —4]2 —33000) 2
(2) =1 6 f (2)1:
[e=]=10 [—4 4]3’ Yo { 33000}3
3 4

8§ -8]3 ~52800) 3
3 —=10° f 3N _
[]=10 [-8 8}4’ S ‘_{ 52800}4

Initializing [ K] and {F} with zeros and adding the coefficients of element one
yields

4 —4 0 0 — 33000
4 0 0 33000
—10° f —
0 0 0 0 0

Adding the values of element two gives

4 _4 0 0 —330001
4 8 —4 0 0
K]=10° SR
[K] 0 —4 4  0of ok 33000
0 0 0 0 0



242 STRUCTURAL AND SOLID MECHAN

Adding the values of element three yields

4 -4 0 0 —33000
—4 8  —4 0 0
_ 6 Yy
[K]=10 0 —4 12 -8l = — 19800
0 0 -8 8 52800

The addition of element three finishes the summation through the elements. Th
final system of equations is

4 -4 0 0 Ull — 33000 Pll 0
—4 8  —4 ollu 0 P 0 '
100 2L -9 2r=
0 -4 12 —8||us[ " ]-19800] " ]P,[ T o0 18.3

The final result of the direct stiffness method is a system of four equations. Tw
of these equations should not be included, however, because U, and U, hawv
known values; that is, U, =U,=0. The potential energy can be minimized onl
with respect to the unknown displacements. Deleting equations one and fou
gives

—4(105)U, +8(10%)U, —4(10%)U 3 + 0— P, =0
—4(10%)U, + 12(10%)U ; — 8(10°)U , + 19800 — P, =0 (18.14

Substituting the known values for U, and U, as well as for P, and P; yields

8(109)U, — 4(10%)U 5 +0— 10000 =0
— 4(108)U , + 12(108)U 5 + 19800 + 20000 =0 (18.15

which is the same as (17.27).

18.3 A GENERAL FORMULATION

The element stiffness matrix and force vector developed for the axial force membe
were obtained by differentiating the strain energy equation. The strain energ
equations for other structural elements are more complicated than (18.6). Ther
is a more efficient way to develop [k'“] and { f'9}.
The general form of the finite element equations for potential energy formula
tions is
oIl
olu;
The global stiffness matrix [ K ] and the global force vector { F | come from elemen
contributions whereas the force vector { P} results from defining a force for ever.
possible displacement. The force vector {P} exists for all structural and soli¢

mechanics problems and needs no further discussion. The element contribution
to [K] and {F| are the items that need to be discussed.

—[K){U} - (F} = {P} =10} (1816
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The total potential energy in a structural system consists of the sum of the
element contribution minus the work done by the concentrated forces and moments
applied at the nodes

In= Zl H(E)_.:Zl U,P, (18.17)

where  is the total number of displacements and is usually a multiple of the
pumber of nodes. The quantity [T consists of the element strain energy minus
the work terms that are element-related.

M@ =A® — W (18.18)

Examples of W include the work done by body forces and distributed loads
acting within and on the boundary of the element, respectively.
Equation f in the final system is
on & eon
Uy 2y 0Uy
where 0T1//6U ;=0 unless f is one of the element displacements. The element
contribution to equation f comes from evaluating 6I1/é¢U;. The element con-

tribution to the final system of equations comes from evaluating oI1/a{ U},
where {U'®) contains the element displacements. The element contribution is

ore
LU,
The theoretical developments in structural and solid mechanics applications
always produce a I1'” that has the matrix form
l—[(e):_%{u(e)}T[A]{U(?)} _ {U“”} T{C} (18.21)

where [ 4] is symmetric and {C} is a column vector. The fact to be proved here is
that [4] and {C} in (18.21) are actually [k'] and { /']

Differentiating (18.21) with respect to {U'’] and using the rules of matrix
calculus developed in Appendix 11 produces

o

—P,=0 (18.19)

=[kO U - (F) (18.20)

1
a—_rUm)}:i[A]T{U(e” [A]‘U“’" ) (18.22)
L
Since [ 4]=[A]7([A4] is symmetric),
on®
U] =[4]iU®} -{C} (18.23)
Equating (18.20) and (18.23) gives
[©]=[4] and [f©)={C] (18.24)

The result is very useful. The element stiffness matrix and force vector are known
a8 soon as I1¢ has been written in a form similar to (18.21). It is relatively easy to
Write IT in this form, much easier than obtaining an explicit equation for 1
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and than differentiating the equation with respect to the element displacemen y
The strain energy equation for the axial force member, (18.6), has the matrix forsy

AE AE &
[U; Uj] - -

A1 ’ L L Ui
: _ae 4E|(Y A
L L i
o

[U; Uj] |—AEadT

AE adT (18'25?
The element quantities are easily identified and agree with (18.10) and (18.11), =
18.4 INTERNAL FORCES ”

The internal forces acting at the ends of a structural element are calculated ondi
the element displacements are known. These forces are easily calculated if af
energy theorem developed by Castigliano (Langhaar, 1962) is used. This 1hcoreﬂ
states that fﬂ

oA :

o 18.26)
aU, S ( q

where S; is the force acting in the direction of displacement Uy. If Ugis a rotatlon,,
then S; is a moment. The set of element forces, (S}, is given by

(
(¢) #
{Sle)} 8215)7 :[k(e)](U(t’)l i )1:)} (18 2%
where { £} is the strain energy’s contribution to { /. The internal forces at thﬁ
nodes of an element can be calculated using the element stiffness matrix and 'y
part of the element force vector. The physical meaning of the components'
[S} changes with the element under consideration. *
Applying (18.27) to the axial force element gives

g5

D) _ , CAF 08 |

SOV _AE[ 1 Hfu f-AExT 1828

ST~ i [lu, AE 20T

where S and SY” are the axial forces at nodes i and j. respectively. A positive

value indicates that the force is in the direction of a positive displacement.
application of (18.28) is shown in the following example.

ILLUSTRATIVE EXAMPLE

R
e
34
Calculate the internal axial force in member two of the axial force system sho"g
in Figure 18.1. The displacements of nodes two and three were calculated
Chapter 17, (17.28), and are

U, = —0.0004900 cm and U;=—-0.003480 cm
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The physical parameters for member two are

AE

T:4(106) and  AE «dT =33000

Substituting these values and the calculated displacements in (18.28) gives
N 6 4 —4|{—0.0004900 — 33000
{5*32’}2(10 )[—4 4]{—0.003480 }_{ 33000}
3 { 11960}_ {—33000}_ { 44960}
— 11960 33000 — 44960
The positive value for S¥ indicates that its direction is the same as that of a
positive U,. The minus sign on S$ indicates that its direction is opposite to that

of a positive Uj. The signs lead us to the conclusion that member two is in com-
pression.

PROBLEMS

18.1 Solve Problem 17.1 using the direct stiffness procedure discussed in this
chapter.

18.2 Solve Problem 17.2 using the direct stiffness procedure discussed in this
chapter.

18.3 Solve Problem 17.3 using the direct stiffness procedure discussed in this

chapter.

184 Solve Problem 17.4 using the direct stiffness procedure discussed in this
chapter.

18.5 Solve Problem 17.5 using the direct stiffness procedure discussed in this
chapter.



Chapter 19
THE TRUSS ELEMENT

o~

A

¥

The efficient implementation of the displacement method of structural analysig
utilizes an element stiffness matrix and force vector. A general procedure for:
determining these quantities was developed in the previous chapter. This chaptqi
is the first of six in which the derivation of specific element matrices is considereth:
The truss element, a member pinned at each end, is discussed in this chapter. Itig
an ideal starting point for the discussion of structural elements because the elemen'f‘

equations are related to the axial force member discussed in the previous twq
chapters.

ra

al,

191 THE STRUCTURAL MODEL

An axial force member in a truss has an arbitrary orientation and is connected tp'
other members with arbitrary orientations. The joint displacements of a loade"‘
truss are generally neither horizontal nor vertical, although they can be resolved
into horizontal and vertical components. The accepted procedure in structus
analysis is to use the displacement components as the unknown quantities rathwg
than the resultant displacement and its direction.

The displacement components at an arbitrary joint, i, are shown in Figure 19. l
Both are denoted by U with a subscript to indicate the difference between th
The horizontal component is always U,;_,; whereas the vertical component lgg
U,:.. The two displacements carry consecutive numerical subscripts that are
calculated using the joint number. For example, if i=5, then the joint displacex:
ments are Uy and U (Figure 19.15).

Uyo Pyo

Uy, Pq

(@ (b)

Figure 19.1. Displacement notation for a truss joint. (a) General notation. (%
Notation for joint five.
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5000 N

30000 N

1 U, p 2

Figure 19.2. Nodal displacements and forces for a specific truss.

The external force acting on a joint can also be resolved into components paral-
lel to the displacements. These components are P,;_; and P,;. They carry the
same subscripts as the displacements, and they are positive when they act in the
same direction as a positive displacement.

The idealization of a two-dimensional structure parallels the procedure used
in the previous chapters. The members and nodes are labeled, and the known
support conditions and joint loads are identified. The implementation of this
procedure for a pin-connected truss is shown in Figure 19.2. The structure is
always separated from its supports during the idealization process. The member
numbers are in parentheses.

The support conditions for the truss in Figure 19.2 are U, = U, =U,=0. These
are incorporated after the system of displacement equations is developed. The
L())ading conditions are P;=30000N, P¢=—50000N, and P, =P,=P3;=P,=

8=P5;=0.

19.2 THE ELEMENT MATRICES

The axial force member under discussion has an arbitrary orientation; therefore,
the x, y-coordinate system, which is parallel to the displacements, is generally not
Parallel with the member. A member coordinate system, (x, y) with the origin at
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node i and x directed along the member is introduced. The general orientatjoy
of the truss element and the two coordinate systems is shown in Figure 19.3,
member has a cross-sectional area A4, an elastic modulus E, a length L, a thermd
coefficient o, and a temperature change o T. It is oriented at an angle 6 from thi
X-axis. 3
The strain energy in the member coordinate system is ‘

A©=1! U(en T[i('(e)]IU(e)l _ r[](m Tff_‘(e)l (19. ”

where { U@} contains the nodal displacements parallel to the member. The elemenl
matrices are denoted as [k'®] and {f '} because they are for the member cox
ordinate system. They are the same as those given in (18:10) and (18.11). 4

The displacement vector for the truss element is { U} g

(UOT=[Usisr  Un  Uyoy Uy 194

The two sets of displacements are shown in Figure 19.3. The strain energy equatnoﬂ
(19.1), can be written in terms of {U'®} if a relationship between {U''} and { U}
is available. g

After analyzing Figure 19.3, it becomes clear that

U;:U;_,'_l C056+U2i sin 6

and (193]
- %
Uj=U,j—, cos 0+ U,;sin0 »
The two sets of displacements are related by 5
§
_ UZE— 1 Il
U; _ cos 6 sin 6 0 0 U,; (19 ‘
uif | o 0 cos  sinf||U,,_, 4
U,j
U2j
g,
Uzj-1

i Uz,
Figure 19.3. The two sets of displacements for a general truss element.
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or
U =[T]U") (19.5)
where [ T] is the transformation matrix
cos ¢ sin 0 0 0
19.6
L7]= [ 0 cos 0 sin 0] (19.6)

Using (19.5) and the transpose property of matrix algebra allows the strain energy
to be written as

AO =L UNT[ T O[T U = U [T]T @) (19.7)

By using the results of the previous chapter, the element matrices are easily recog-
nized as

[k =[T]"[kIT] (19.8)
and
f(e)l [T]Tff(en (19‘9)

Substitution of (18.10) for [k'“'] and (18.11) for { £} along with (19.6) and per-
forming the matrix operations give

2i-1 2% 2j-1 2j
c? s —c* —csT2i-1
) cs s —cs -S|
K9l=7"|-c2  -cs ¢ cs| 2 (19.10)
—cs -8 cs s ]j-1
and
’-AEaéT(C)l 2i—1
oy | TAEXOT S]] 2 (19.11)
AEST (C) 2,—1
AEadT (S)

where C =cos ) and S =sin 0.

The first row of [k*’] and {f'“} contributes to the minimization equation
oN/ou,, , =0; therefore, each coefficient in this row is located in row 2i—1 of
[K] and ' F}. For example, if i=6, the coefficients in the first row of [k*"] and
L/} are located in row 11 of [K] and {F}. In general, the rows of [£*’] and
() are associated with rows 2i — 1, 2i, 2j— 1, and 2j of [K ] and {F . The columns
of [k'] are associated with columns 2i— 1, 2i, 2j— 1, and 2j of [ K ]. The indices for
the rows and columns are given with [k*)] and { £’} in (19.10) and (19.11). These
indices are the same and in the same order as the subscripts on the displacements
in {U“!. This is true for all solid and structural mechanics problems.

Equations (19.10) and (19.11) are the element matrices for the truss element.
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They are used in the formulation of the global stiffness matrix [K] and glohi
force vector { F} as discussed in Chapter 18. They can also be used to calculate

horizontal and vertical force components at each node. The axial force directq
along the member can be obtained by resolving S,;_; and S, into a single forg
or it can be calculated using a variation of (18.28) written in the member coordimi

system.
SN AE[ 1 —1(0, —AEadT 3
ROIGEEE 5T (19.1
ST L -1 110; AEaST .
_ - ¢
Substituting (19.3) for U; and U, and evaluating the matrix product gives

—o AE '
Sff’:T [(Uzic1=Ugzj- 1) cos 0+(Uyi—Uy)) sin 0]+ AEadT (1914
4

AE ’
[(Uzj—l_ Uz,'fl) COoS 0+(U21_ Uz,') sin 0]—AE T (19.14

L
Since S‘}"’: —S";‘, only one equation, (19.13) or (19.14), needs to be evaluated. T]%

force at j, S}"’,_is usually selected because the force in the member can be interprete
as tension if $%” is positive and compression if S is negative.

o
S =

‘
i

3

19.3 ANALYSIS OF A PINNED TRUSS

The objective here is to analyze the three-member pinned truss shown in Figun
19.4. The truss is statically determinant, but the procedure applies equally well t
statically indeterminate trusses. The truss experiences a temperature change o
5°C. The members are made from steel with the properties E=20(10%) N/cm'
and a=11(10"°)°C. A 100-kN load is applied as shown. ,

The truss is modeled using three line segments to represent the members. Th

Figure 19.4. A three-member truss.
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podes and members are numbered counterclockwise, although the direction is
pot important. The nodal displacements are shown in Figure 19.5. The known
displacements are U; =U,=U,=0 because of the pinned support at node one
and the roller at node two. The known forces are Py =P, =P3=P,=Ps=0, and
pe=—100 kN. .

The first step is to calculate the element matrices and merge them to obtain
the global stiffness matrix [K ] and the global force vector { F§. The general system
of equations is

[K1(U}={F} - (P} ={0]
where
{P}T=[0 0 0 0 0 — 100000]

The first step in calculating the element matrices is to define the origin of the
local coordinate system. This is the same as defining node i of the element. Member
one is defined as going from i=1 to j=3, member two from i=1 to j=2, and
member three from i=3 to j=2. The orientation of each member is shown in

Figure 19.6.
The pertinent member properties can be tabulated. They are

Member A L cos 8 sin ¢
1 10 1135 0.7928 0.6095
20 500 1.0 0.0
3 20 800 —05 —0.8660
U6’ PG

U5,P5

U2,P2

Us, Py

1 U.P 2

Figure 19.5. Nodal displacements for the three-member truss.
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y oy

U6' PG o i
Gar,

U5, P5 U5, P5 'i

s

}

1)

Uy Py Uy, Py

Ty
TUz, P2
14 (2

1 > Us, Py
UI'PI x Ul'Pl x

> Us, P3 2 »
i

Figure j9.6. The local coordinate system and nodal displacements for oat
member in the truss example. i

A study of the element matrices indicates that there are five quantities that nee
to be evaluated for each member.

Member
1 2 3
(AE cos?® 8)/L 110800 800000 125000
(AE cos 0 sin 6)/L 85150 0 216500
(AE sin20)/L 65460 0 375000
AE adT cos 6 8721 22000 — 11000
AE odT sin 6 6705 0 — 19050

The element stiffness matrices and their degrees of freedom are

! 2 5 6
110800 85150  —110800  —851507 I
k]| 5150 6460 8IS0 —65460 |2
~110800  —85150 110800 85150 | 5
—85150  —65460 85150 65460 6

1 2 3 4

800000 0  —800000 07 I

k] 0 0 0 0|2

—800000 0 800000 O3

0 0 0 ol4
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5 6 3 4
125000 216500 — 125000 —2165007 S
[K]= 216500 375000 —216500 —375000 | 6
— 125000 —216500 125000 216500 | 3
— 216500 — 375000 216500 3750004 4

The element force vectors are

[—8721 1 [—220001 1
. 6705 2, an_ ol 2
¢ 8721 5 * ! 22000| 3
6705) 6 0) 4
and

110001 5

(o _ 19050 6

o —11000} 3

—~19050) 4

Adding the element stiffness matrices using the direct stiffness method gives

910800 85150 — 800000 0 —110800 —85150'\

85150 65460 0 0 —85150 —65460

[k | ~800000 0 925000 216500 —125000 — 216500
0 0 216500 375000 —216500 — 375000

— 110800 —85150 —125000 —216500 235800 301700

| —85150 —65460 —216500 —375000 301700 440400 ]

Three checks can be made on the accuracy of [K |. First, it should be symmetric.
Second, each of the diagonal coefficients should be positive. Third, the sum of
each row and column should be zero. Each of these checks comes from similar
Properties that exist for [£'"]. Since [ K ] as given above satisfies all of these proper-
ties, the calculations are reasonably correct. There is always a possibility of errors
in the basic calculations.

The coefficients of the global force vector come from the sum of the three element
force vectors added in the direct stiffness sense. The vector is

—30720
— 6705
11000
— 19050
19720
25760

)
I
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The final system of equations is obtained by deleting rows one, two, and fo g
from [K] and {F]. Deleting these equations, combining the {F} and {P} vectog
and noting that U; =U,=U,=0 yields

92500 — 125000 —216500 1| U, 11000
— 125000 235800 301700 |y Usp=1 19720
—216500 301700 4405001 (U — 74240

|
as the system of equations that must be solved for the unknown displacements
Using the Gaussian elimination process gives these displacements as
U;=-0.1020 cm Us=2.500 cm and Ue=—1930cm
The axial force in each member is calculated using (19,]4).

Member One. i=1, j=3.
) AE )
SY =7 [(Us=U,)cos 0+(Ug—U,)sin 0]— AE 20T

=176200[2.5(0.7928)+ (— 1.930)0.6095)] — 11000
=131000 N

Member Two. i=1,;=2.
o _AE . .
SY =T[(U3—U1)cos0+(U4—U2)sm6—AEa()T

=800000[(—0.1020)(1) + (0)(0)] — 22000
= —103600 N

Member Three. i=3,j=2.
=3 AE .
S5 )ZT [((Us—Us)cos 0+(Uy—Ug)sin 0] — AE adT

=500000[(—0.1020 — 2.50)( — 0.50)+ 0 — (— 1.930)( — 0.8660)] — 22000
=—207200 N

The member forces are shown on the free body diagram in Figure 19.7. A (T,
means tension and (C) means compression.

The member forces of a statically determinant truss can be obtained faster using
statics, but the displacement method of analysis gives the joint displacements and
the member forces. We now know that joint three moves 2.50 cm to the right and
downward 1.930 cm. A statics analysis does not give this information, and it i
not easily obtained using “strength of materials” techniques.

A comment on the global stiffness matrix | K] closes this chapter. The stiffness
matrix is singular and the system of equations cannot be solved until at least thre¢
support conditions are incorporated. These conditions must prevent rigid body
translations and rotation. If the matrix remains singular after this fixation, thé
structural system is kinematically unstable and it will collapse under a load.
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103600 (C)

707, L

Figure 19.7. The calculated force in each member of the truss example.

PROBLEMS

19.1-19.6 Each joint of the structural systems shown here is a pinned joint. The
node numbers and element numbers are given on the sketch. The cross-
sectional area of each member in cm? is underlined. Each member is
made from steel, E =20(10°) N/cm?. All lengths are given in centimeters.
Calculate the unknown nodal displacements and the axial force in each
member, and show that the calculated axial forces produce a system that
is in equilibrium. There is no temperature change.

80 cm

50000 N

Figure P19.1



(1)

20
§2 @ 30 3
I 300

100 kN

Figure P19.2

150 kN
400 |
400

800 ‘l

Figure P19.3

40000 N

Figure P19.4
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19.7

1000N
Figure P19.5

Figure P19.6

The displacements for the truss shown in Figure P19.7 are

U= 00 U,= 00
U= 1748 U,=-0.3333
Us=—0.5000 Ug= 00
U,= 2248 Ug=—3.690

The area of each member in square centimeters is underlined. The length
dimensions are in centimeters and each member is made from steel, E =
20(10%) N/cm?2. Calculate the axial force in each member connected to
joint two and show that this joint is in equilibrium. There is no temperature
change.
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19.8
19.9
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@) 10 4

200 kN

| |
<— - 500 - 500
% N |

Figure P19.7

Do Problem 19.7 for joint four.
Do Problem 19.7 for joint three.

19.10 The displacements for the truss shown in Figure P19.10 are

U,=-03333  U,=—2780
Us= 08700 U,=—1847
Us=—02667 Ug=—09590
U;= 07812  Ug= 00
Us= 00 Uio= 00

The area of each member in square centimeters is underlined. The length
dimensions are in centimeters and each member is made from steel, E=
20(10°) N/cm?. Calculate the axial force in each member connected to

joint one and show that this joint is in equilibrium. There is no temperature
change.

)—e ~~~~~~~ 400 ’L 400 |

Figure P19.10
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19.11 Do Problem 19.10 for joint two.

19.12 Do Problem 19.10 for joint three.

19.13 Verify to your own satisfaction, by evaluating the element stilfness matrices,

19.14

that it does not make any difference in the final results which node of the
element shown in Figure P19.13 is denoted as node i.

£ = 20(10%)N/cm?

Figure P19.13

Calculate the axial force in each member of the truss system shown in
Figure P19.14 using the computer program FRAME discussed in Chapter
25 The truss is made from steel, E=20(10°) N/cm?. The cross-sectional
area of each member in square centimeters is underlined. All length
dimensions are in centimeters. There is no temperature change.

300
7—800N
©)
300cm 4 /(8
3
3 M
o — 5 = 2000 N
3
3
2 3
300 ®)
4 ®
D A 3 ERNC) 800N
4
W 3 (10)
300 A @ |3

v
f<——500cm———>

Figure P19.14
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5000 N

260
19.15 Do Problem 19.14 for the configuration shown in Figure P19.15.
5000 N
g1 4 3 4 ®ys 4 uml
@ 4 s 6 !
. SA . Doy _—Tn
d 6
400 cm @ (5) = 6
®)
o &7
Sy '
2
200 I 200 I 300%

Figure P19.15

19.16 Do Problem 19.14 for the configuration shown in Figure P19.16.

200 } 400 200
2 8 (3)
5 5 8
8
400 @ @ ®)
¢V
1 (6) 3 3 %) 5 5
W/ %A

‘ 20000 N
I 400

Figure P19.16

Chapter 20
A BEAM ELEMENT

Any member subjected to a transverse load is a beam. The transverse load induces
normal and shear stresses within the beam and displacements perpendicular to
its longitudinal axis. Beams can be straight or curved. They can have a constant
depth or the depth can vary with the length. The cross-sectional shape can have
two axes of symmetry, such as the I-beam, one axis of symmetry, such as a T-
beam, or no axes of symmetry. The loading can consist of concentrated and/or
distributed forces, and the forces can act in one or more planes. Any systematic
method of beam analysis must be capable of handling the numerous possible
combinations of loads and shapes that can occur.

This chapter contains an introduction to beam analysis. The discussion is
limited to straight beams with a uniform depth and at least one axis of symmetry.
The discussion is limited to concentrated loads; these loads must lie in the plane
of symmetry.

201 THE STRUCTURAL MODEL

A straight beam is modeled by a line segment with a vertical displacement and a
rotation at each end. The beam has a length L and a section property EI that
combines the elastic modulus E with the area moment I (Figure 20.1).

The specific nodal displacements are vertical translations, U,;_, and Uyj-y,and
rotations U,; and U,;. Positive translations are in the positive y-coordinate
direction. Positive rotations are counterclockwise. These positive directions are

Upi—1
UQJ
£l ( Ik > X, X
J
2 L >

Figure 20.1. The beam element and its nodal displacements.
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shown in Figure 20.1. The element vector of nodal displacements, ey,
{UM}TZ[UL:] U, Uzjs Us)l

where the even-numbered displacements are rotations, whereas the odd-num
displacements are vertical translations.

is :

coincides with that of a positive displacement. The word Sorce is used here
generalized sense. It denotes either a concentrated force or a concentrated monmj

The guidelines for locating the nodes when modeling a continuous beam incly
placing nodes

1. At each external support.

2. At each end of the beam.

3. Wherever the section property EJ changes.

4. Wherever there is a concentrated moment.

5. Wherever there is a concentrated force.

6. Wherever the value of the deflection is needed.

A beam subjected to two concentrated forces and a concentrated momcﬁ
(Figure 20.2) is modeled using three elements. Nodes are located at both con
centrated forces as well as the two supports. The elements and nodes are numberey
in the usual manner. There are eight nodal displacements: four vertical and fog
rotational displacements. The vertical displacements, U, and Us, are zero as wej

as the rotation U,. The nonzero concentrated forces are Py= — 5000 N and
P;=10000 N. The nonzero concentrated moment is P, =20000 N - cm. The othey
joint forces and moments, Py, P,, Ps, P¢, and Pyg, are zero. £
A

1

15000 N 10000 N )

% A\2000O N-cm } :
7 X\ =z

PR O R ) RC N

! 2 ST ¢

Uy, Py Us, Py Us, Py U, P,
d { t ( T ( l

Uz P Uy, Py \Uﬁ, Ps\ Ug, Py

Figure 20.2. The elements and nodal displacements for a specific beam.
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20.2 THE STRAIN ENERGY EQUATION |
The total potential energy for a continuous beam with » elements is
= Z AO—U T P] (20.2)
1

o=
; ; fPVis the
where | U | is the vector containing all of the possible nodal values and { P} is t

tor of joint forces. . . o ‘
VC(I:n order to utilize the principle of minimum potential energy, A must be written

in terms of the joint displacements. This is a two-part process. An equation iiorﬂthe
T ain energy in a beam must be developed; then an equation fo.r thg beam_ e ecii
:i:m must be specified. The strain energy equation is developed in this section an
the deflection equation in the next.

The strain energy in a beam is

Ao =L J e2x dV (20.3)
2 W

ibuti i igible. The total
assuming that the contribution from the shear stress t,, is negligib

strain e, is related to the beam defiection, v, by
2,
xx dxz

where a negative strain occurs at the top of the beam for positi\{e curvatlgre.
Equation (20.4) is derived in all basic books covering the mechar.ncs of. solids,
(Popov, 1976 or Higdon, et al., 1976). In our case, e,, =&,,, since we will not include

a thermal change. '
Substitution of (20.4) into (20.3) gives

2
o E [ (=, 4y _EJ 2 @) av (20.5)
A= L(_} W) av=3 | (e

If we note that dV =dA dx, (20.5) can be written as

E L d2U>2 < j. 2 > 20 6)
€@ == — dA )dx (20.
A=3 L (dx2 e

The area integral is the definition of the area moment of inertia, I; therefore,
L 2 2
Ao EL [T (d7o) (20.7)
2 Jo \dx?

Equation (20.7) gives the strain energy in terms of the t?eam deﬂectior(;, v. Tll)ns
integral cannot be evaluated until an equation, v = f(x), which accurately describes
the beam deflection, has been specified.

20.3 THE DISPLACEMENT EQUATION

The selection of a displacement equation to describe the action of a beam SUbi
jected to different types of loadings is relatively easy because there are severa
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guidelines. First, there is the governing differential equation for beam deﬂectioﬂ

d* -
£l wix) 0k

dx*

where w(x) is the distributed load (Popov, 1976). Second, there are four boundar]
conditions to impose g

)
'

v(0)=U; -, U(L):Uzj—l
dv dv .
p 0)=U,; dx (L)=U,; (20.%

These boundary conditions require that the equation have four undetermineg
coefficients. A third but less obvious condition is that the equation must have §
continuous first derivative; otherwise, the integral in (20.7) is not defined.

The nodal conditions of (20.9) are compatible with the differential equatior
(20.8), since it is a fourth-order equation. If we assume that no distributed loads

w(x)}=0, the differential equation becomes
H

d*v
—. =0 20.10;
dx* ( '
which has the general solution
v=a,+a,x+asx* +asx® (20.11)

The solution of beam problems is built around this equation.

Note that x as used in (20.10) and (20.11) is a local coordinate system rather
than a global system. The x-coordinate as used here is identical to the s-coordinate
discussed in Chapter 6.

Application of the boundary conditions (20.9) to (20.11) generates the system of
equations

Uji-1=a,
U,i=a;
Usjo1=a, +a,L+as1*+a,l’
U,j=a,L+2a3L+3a,1’ (20.12)
which can be solved for a,, a,, a3, and a, yielding
a=U;_,
a,=Ujy;

3 1
aSZE(Uijl_UZifll— z(2U2i+ U,j)

2 1
*(Uwﬂ—U7jf1)+'L7(Uzi+U2j)

dg= 2 2
L3
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Gubstituting these results into (20.10) and rearranging gives

p=Nyi Usio1 4+ NaiUsi+ Naj o1 Usjo 1+ NojUs, (20.14)
where
R s S .
B ) , L3 o (20.15)
2 g

Equation (20.14) can also be written in the familiar form
U:[Nz.'fx N, Naj-1 sz]:U(")}:[N]{UM} (2016)

The shape functions in (20.15) belong to the class of interpolating polynomials
known as the Hermite polynomials (Conte and deBoor, 1981). These polynomials
are used to construct interpolation functions for which the first derivative must
be continuous. They possess a different set of properties from those observed for
the linear shape functions of Chapters 2 and 5. The following relationships hold
at nodes i and j.

At node i:
Ny =1, NZi:NZf*IZNZI':O
dNa_ o ANy AN ANy 2017
dx ’ dx dx dx
At node j:
Naja=1, Nyio1=N3i=Ny;=0
szj_l CINZi"—dNZi:dL”izo
7(1.*:_— ’ d,\' - d_x dX
Also
Nai-1+Nyjor =1 (20.19)

for all values of x.

204 THE ELEMENT STIFFNESS MATRIX

The element matrices emerge after the displacement relationship (20.1‘6) has been
substituted into the strain energy equation (20.7). Differentiating the displacement
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equation twice gives e"
ﬁ:dz[N]{U((’)': dzNg,'_l dzNzl' dZN)_j_l dZsz "U((’)]
dx*  dx? ! dx?  dx? dx? x> |'7
~[B, B, By BJIUY=[BllUY} (2020)
where
dsz,'_l llzNZi
_ 2 B,=—
By dx* 2T dx? 2021
.21
B d’Nyj-, B d*Nj (20.21)
3= > 4=
dx dx ;
The square of dv/dx? is
dZL‘ 2 .
(d) — (U TB)'[B) U] (2022)
Substituting this into (20.7) produces '
w _EL (5 et mrr g g en
A =3 OIU J'[B]'[B]IU dx
I , L ;
=y <E1 j [B)"(B] d,\-> (U (2023)
0

The product [ B]'[B] is symmetric; therefore, (20.23) has the general form given
in (18.21) and [k'"] is identified as

[k“]=El LL [B]"[B] dx (20.24)

The element force vector | /') is zero because a temperature gradient across the
beam depth was not included in the analysis.

Evaluation of the integral in (20.24) is straightforward but somewhat tedious.
The matrix product to be integrated is

B% B]BZ B]B3 BIB4

k] = jL EI|B,B, B} BBy BB,
~Jo L*|BiB; BB, B3 BB,
BB, BB, BB, B:

!

Consider the B, B, product

L LIAPN, - XN,
J Bledx:J (‘ l\—Z - (_175_7 dx (20.26)
0 o\ ¥ dx 5

d*Nji_y 6 12x
—-—
dx? L L’

where

, .
Ny 4 o (2027

and e TR i
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thus

L Lr2 Tx 6x? 6
J;) BIBZ dx=12 J-O (E - B+f5-) dx —_—P (2028)

Evaluation of the other nine coefficients gives the element stiffness matrix

2i—1 2i 2j—1 2j
12 6L —-12 6L 7 2i—1
€] _EL| 6L 41> —6L 212 | 2i (20.29)
L | -12 —6L 12 —6L | 2j—1 '
6L 217 —6L 4121 2j

The indices to use with the direct stiffness procedure are given in (20.29). These
indices have the same values and ordering as the subscripts of [ U},

The four internal forces, two at each node, are calculated using (18.30). Since
{1 is zero, the calculation is

[ Sh‘-‘”l
M!L’)
(S(tl)l — ! — kt(’) IUu’)) (20 30)
t J ¢ .
Sh(j ) [ ]l §

M((’)

Jj o

The shear forces, Shi” and SA”, and moments, M’ and M|{", acting at the two

nodes are shown in Figure 20.3. The shear forces and moments are positive as
shown.

y

Sh (e
Sh@ 4
i
i X (e) 1 ‘T] ©
—e! "
k_y M© s
i

Figure 20.3. The internal shear forces and bending moments acting at each node.

20.5 ANALYSIS OF A STATICALLY INDETERMINATE BEAM

A beam, fixed at one end and supported by a roller at the other end, has a 20000 N
Concentrated load applied at the center of the span (Figure 20.4). Calculate the
deflection under the load and construct the shear force and bending moment
diagrams for the beam.
A study of the beam reveals that U, =U,=Us=0, Py= —20000 N, and P, =
:=P,=P,=P,=0.
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20000 N i
E = 20(10% N/cm?
% ¥~ L I1=2500cm*
7 Vi
-~ -—-500 cm--~ —>e—— —-500—-~~—>
Uy, P, Us, P; Us, Ps

1 ) (e o 3
L, Uy, P, & Us Py N7 Ve Po

Figure 20.4. A single span beam supporting a concentrated load.
v

The element stiffness matrix (20.29) has four different parameters whose nume'i{i
cal values are

. \
fé = 250%&)03)& =400 N/cm
6L =6(500)=3000 cm
4.2 =4(500)* = 1000000 cm? _
=2(500)% = 500000 cm? ot

The mixture of units occurs because the displacements have different unlu
The translations are in centimeters; the rotations are in radians. The values
{ P} have units of N or N ¢cm depending on whether they are a force or a momet

If we use the parameters calculated above and the displacement subscrlptl
given on the element grid (Figure 20.4), the element matrices are

1 2 3 4 S
12 3000 ~12 30007 1 |
3000 1000000 —3000 500000 | 2
D :4 O 20.31
PI=4001 y 3000 PR S
[3000 500000 —3000 1000000 4 E
3 4 5 6
C 12 3000 - 12 30007 3 "
(k] _app| 000 1000000 3000 500000 4 g
—12 -3000 12 -3000(s
13000 500000 —3000 1000000 6 A

Combining [k'"'] and [k'*'] using the direct stiffness method, and modifyd '
the resulting six equations to incorporate the known displacements U, =U1;;_
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Us=0, yields the system of equations

24 0 30007 [ U3y — 20000
4001 0O 2000000 500000 |y Uyp = 0
3000 500000 1000000 | Ug 0

The solution of this system gives
Uy=—3.646 cm, U,=-0.003125 rad, and U, =0.01250 rad
The complete displacement vector for the beam is
UiT=[0 0 —3.646 —0.003125 0 0.01250]

The internal forces at each end of an individual member are obtained by using
(20.30). The calculations for member one are

ls#,“l ’ 0 l
M(l) O
} 1 L =] [ (20.33)

fQiin
ST = S/z‘;'j : — 3.646
My —0.003125
because i=1 and j=2 for element one. Combining these with [£'"], (20.31), we
find that
12 3000 —12 3000 ‘ 0 ‘
{S”’: 400 3000 1000000 — 3000 500000 ‘ 0 ]
12 —3000 12 —3000 || —3.646 |
- 3000 500000 — 3000 1000000 d | —0.003125
and
13750 N ‘
3750000 N - cm
(Stl)) — L 3
e —13750 N (20.34)
3125000 N - cm
The forces on member one are shown in Figure 20.5a
The displacement vector [ U} is
(U T=[~3646  —0003125 0  0.01250] (20.35)

Using (20.32) for [&*'] gives
[S/z"‘] ‘ —~ 6251 N
M — 3125000 N - cm
fgen _ 2L § ’
o lSh‘f’l 6251 N l (20.36)
M@ ON-cm
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«<|

3125000 N -cm

% &) #ﬁ

3750000 N-cm

13750

13750 N
€)]
y
3125000 N-cm T 6251 N
( l % @ T
| —
6251 N
(b)
20000
3125000 3125000
( — 3
13750 6251
©

Figure 20.5. The internal nodal forces for each member of the beam example
and a free body diagram of joint two.

These forces are illustrated in Figure 20.5b. Note that M =0 as expected at the
roller support.

The accuracy of the calculations can be checked by performing an equilibrium
analysis of joint two. The forces acting on this joint are shown in Figure 20.5¢.
Applying the equations of statics gives

+1ZF,=137504+ 6251 —20000=1 =0
+)ZM =3125000— 3125000 =0

The joint is in equilibrium; thus the calculations are correct.

The shear force and bending moment diagrams are shown beneath the members
in Figure 20.6. Note that there are two different sign conventions involved: (1) the
positive shear and moment definitions that are used in the analysis and in the
interpretation of the calculated results; and (2) an entirely different sign convention
used to construct the shear force and bending moment diagrams. The latter sign
convention is shown in Figure 20.6. These two sign conventions can be a source
of confusion. The sign convention for shear force and bending moment diagrams
is not to be used until the calculated values have been interpreted using the analysis
sign convention.

A BEAM ELEMENT 2n

3125000
2 *6251

137ﬂl2§ <i2 3

Vi |

o 2220222722227

3125000
/ 2
0

3750000( 13750 @
1

(=

values
0 %
—3750000

Figure 20.6. Shear force and bending moment diagrams for the Members of the
example problem.

PROBLEMS

20.1-20.12 Calculate the nodal displacements and the internal member forces
for each of the beam loadings shown. Construct the shear force and
bending moment diagram for each member. Check the accuracy of your
solution by considering the equilibrium of each member. Use the element
and nodes shown under each figure. Use E=20(10°)N/cm?® and I=
8000 cm? in each problem

50000 N

12m

@ 2

T
¥

NG
we

Figure P20.1
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< 8 m‘—>‘ '
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7 7 . ) R 2) ~
| 12m ,1‘ ! 3 s
Figure P20.5
o @ .
1 2 )
Figure P20.2
50000 N
50000 N 5m
| £ 1 |
El
gm > 2 7 s
7/97' 7 10m \J|
7 7,
| 12 &) . @ _
‘ " 1 2 3
PR O ) - Figure P20.6
1 2 ‘3
Figure P20.3
50000 N
50000 N 5
Y/, — )
77 o
Z 10m l
5m
. ) _ @ R
1) 1 2 3
1 >

Figure P20.7
Figure P20.4
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l(——2 m—)l
50000 N

25000 N-cm
N

3
7 SNS
\

322224 4m >I
< .
= tom [ . ) R @ .
1 2 3
. @ . @ . Figure P20.11
1 2 3
Figure P20.8
6m \—f
50000 N p = 25000 N-cm
Lis m——>1 / %
V/ % |
12m
/ |
~ (1) ~ @ R
tom 1 2 3
) 2 Figure P20.12
1 2 3
Fi P20.9
rgure 0.13  Evaluate the coefficient in [''] resulting from
L L
(a)=EI j BB dx (b)=EI J BB, dx
0 0
50000 N L L
l (c)=EI j B3B, dx (d)=E! j B3 dx
4 m——m—m> o 0
7 20.14  Show that the strain energy equation is
' EI (*(d%\*  ElaoT *(d%
A="| | == dx+ —3 | d:
P L <dx2> T L dx2)
&m when there is a linear thermal gradient across the depth of the beam. In
| this case,
_ 1) _ 2 N ST
I 2 § €xx =Exx + Ta+7y

Figure P20.10
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. 3
where T, is the average temperature, 07T is the temperature differeq
between the top and bottom of the beam, and 4 is the beam depth. ¢
Use the equation for A® given in Problem 20.14 along with (20.16) a‘

show that 0
EI adT 1

(o) = — EIoc(STJ' [B] dx p 'l OJ
-1

Solve one or more of the beam deflection problems in 20.1 through 20)‘
using the FRAME program discussed in Chapter 25.

Chapter 21

A PLANE FRAME ELEMENT

Bolted or welded joints are very common in machinery and building frameworks.
All welded joints and any joint with two or more bolts behave as a rigid joint. All
members connecting at a rigid joint translate and rotate the same amount. The
members connecting to a rigid joint must support axial and shear forces as well as
a bending moment. The plane frame element discussed in this chapter is used to
model two-dimensional members that connect at a rigid joint.

211 THE STRUCTURAL MODEL

The plane frame element is a combination of the two-dimensional axial force
element and the beam element. It has a horizontal and vertical displacement at
each node plus a rotation (Figure 21.1). The generalized notation places consecu-
tive subscripts on the horizontal and vertical displacements and rotation, respec-
tively. For example, if i=35, then the generalized displacements are U, 3, U4, and
Uis. The external forces applied at joint five are P, 3, P4, and P, 5. Positive forces
have the same direction as positive displacements.

The important element parameters are the elastic modulus, E; the cross-sectional
area, 4; the area moment, [; and the length L. A temperature change is not in-
cluded in this discussion.

Usj—1

Figure 21.1. The frame element and its nodal displacements.
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21.2 THE ELEMENT STIFFNESS MATRIX

The element stiffness matrix has six rows and columns because there are i
element displacements. The most convenient procedure for developing the elemep
stiffness matrix is to start with a horizontal member and a member coordinats
system and add the results for the axial force member and the beam elemeﬁsi
Once [£'“] is known, [£'“] can be obtained for an arbitrary orientation using g

coordinate transformation.
Consider the horizontal member in Figure 21.2 with the nodal dnsp]acements
in the following ordering "<'
(U T =i Ui o u; v; 9] 2Ly

. \Y'V

The bars indicate that the displacements are for'a member coordinate system,
The strain energy in this member is the sum of the strain energy due to the axng{

displacement, A%, and that resulting from bending, A%, 4

A©=AP+AY (212)

The two components, A and A¥’, can be written in terms of the element nodaf
displacements given in (21.1).

The axial strain energy given by (18.25) can be written in terms of the ney
displacements by expanding (18.10) and assigning zero values for the coeﬁicxent&

that multiply 5;, ¢;, ¥ v;, and ¢, The result is i

AQ =3 GO TR T (213
where “)
r AE AE n
= 0 0 - 0 0
L L
o 0 o0 R -
- 0 0 0 0 0 0
k¥]= AE AE @
- = 0 0 0 — 0
L L
0 0 0 0 0 0
L 0 0 0 0 0 0J

&;a K,f

Figure 21.2. The nodal displacements for a frame element in the membé
coordinate system.
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The strain energy for bending, (20.23), can be written in terms of the six nodal
displacements as

AR = Uk U@} (21.5)
where
I 0 0 0 0 0 ]
0 12 6L 0 —12 6L
EIl O 6L Y ) —6L 212
o= E! (21.6)
L*lo 0 0 0 0 0
0 —12 —6L 0 12 —6L
Lo 6L 21> 0 —6L 4L

Adding [£'{'] and [k%'] gives the total strain energy in the member coordinate-
system as

A = % a)) T[k(e)]f U(t’)l (217)
where [k'¥] is given by
AlL? AL? i
2= 0 et 0 0
I 0 1
0 12 6L 0 —-12 6L
el oo 6L 412 0 —6L 212
[k =—5 e AL (21.8)
_ 0 0 - 0 0
I I
0 -12 —6L 0 12 —6L
0 6L 217 0 —6L a1?|

The next step is to write A in terms of the generalized displacements. The

generalized element displacement vector, {U}, is
U T =[Usi-, Usi-1 Uai Usj-2 Usj-1 Us;] (219)

The two sets of element displacements for node i are shown in Figure 21.3. A
similar set exists for node j. The two displacement vectors are related by

(U =[T{U“) (21.10)

Where [ T] is the coordinate transformation matrix

cos 0 sin 6 0 0 0 0
—sin 8 cos 0 0 0 0 0
0 0 1 0 0 0
= 21.11
L7] 0 0 0 cos 0 sin 0 0 ( )
0 0 0 —sin 0 cos 0 0
| 0 0 0 0 0 1]
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? -; 4

\ ] L
\Z; |

U3z! d’(

Figure 21.3. The member and global displacements at node /.

The first, second, fourth, and fifth rows in (21.11) come from equations similar:a;
(19.3); the third and sixth row state that ¢, = U, and ¢;=U;,. The transformati
matrix in (21.11) is similar to, but not the same as, the one used with the trg
element, (19.6).

Substituting (21.10) into (21.7) produces k

AO=3 U TTTT RN TI ) et
The element stiffness matrix is immediately recognized as ;
[k“1=[T]" k][ T] QL

where [ T] is defined by (21.11) and [k'] is defined by (21.8). The element stiffné
matrix is defined by a sequence of matrix products. This is the best form in whi¢
to leave it. Program the computer to calculate [T] and [£'] and the matrl
multiplications.

21.3 THE INTERNAL FORCES i

The internal nodal forces for the plane frame element are given by
- cA© |
N e Te
(5 =B e @i
c u
The internal force values are needed in the member coordinate system, where th
axial and shear forces are parallel and perpendicular to the member. This orientd
tion makes it easier to construct the shear force and axial force diagrams needet
by the analyst. The nodal forces can be written in terms of the calculated noda
displacements using (21.10)

(SO =[O T] U (21.13
The components of { S} are '

(SNT—[4x, Sh, M, Ax; Sh; M,] (21-155
A
These components are shown in Figure 21.4. j

&
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Figure 21.4. The internal axial force, shear force, and bending moment acting
at each node.

[LLUSTRATIVE EXAMPLE
The displacement vector for the two-member rigid frame in Figure 21.5 is
‘Ui =0 0 0 0.06619 —0.1989 0.0001776 0 0 0]

Calculate the nodal forces for member one.
The nodal forces are given by (21.15); thus numerical values are needed for the
coefficients in ['V] and [ T'"]. The parameters in [£''] are

EI_20(10°)400)

= ~125N
(27 003 B Nem
AL? 30(400?)

_ = = 2
a0 2%

212 =2(4002) = 320000 cm?
41.% = 640000 cm>

6L =24000 cm
S
y k< 400 cm ,
100000 N
\
@ J\
2 3
25000 N-cm §
A=30cm?
I= 400 cm*

E = 20(108) N/cm? for both members

Figure 21.5. A two-member rigid frame.
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Figure 21.6. The nodal forces and moments and appropriate diagrams for membei

one.

Substituting these calculated values into (21.8) yields

[ 12000 0 0 —12000
0 12 2400 0
_ 0 2400 640000 0
(17 _
PT=1251 15000 0 0 12000
0 —12  —2400 0
0 2400 320000 0
The transformation matrix [ 7")] defined by (21.11) is
[ 07071 07071 0 0
—-0.7071 07071 0 0
, 0 0 1 0
T(l) —
[T] 0 0 0 0.7071
0 0 0  —07071
0 0 0 0

0
—12
— 2400

12
—2400

o O

0.7071
0.7071

2400

320000 | ;

—2400 |+
640000 |-

- o OO0 O O
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The element nodal forces are
(S =[KD [TV UM
where {U} is
{umMMT=[o 0 0 0.06619 —0.1989 0.0001776]
The numerical values are
{8(1)}T=[140700 334.5 63340 —140700 —334.5 70450] (21.17)

These force components are shown in Figure 21.6. The axial force is compressive,
and the 63340 N - cm moment at node one is negative relative to the construction
of the bending moment diagram even though it is positive in (21.17).

PROBLEMS

21.1 Calculate the nodal forces (internal) for member two of the configuraiion
shown in Figure 21.5.

21.2  Calculate the displacement at the free end of the inclined beam shown in
Figure P21.2.

20000 N

I=2000cm?
A=25cm?

Figure P21.2

213 Do Problem 21.2 when the applied load is parallel to the x-axis and has a
magnitude of 15000 N.

24 Writca computer subroutine that will evaluate [£'“] given 4, EI, L, and 0.

21.5-21.10 Use the computer program FRAME Chapter 25, to analyze the
rigid frames shown in the respective figures and construct shear force and
bending moment diagrams for the individual members. Fach frame is
made from steel, E=20(10°) N/cm?2. There is no thermal change. Every
Joint where two or more members are connected is a rigid joint. All length
values are in centimeters.
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I= 60000 cm* for
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Figure P21.5
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1 50000 N
& 300

3

A=80cm?
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Figure P21.7
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A=30cm?
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Figure P21.8

10000 N

A =25 cm?
N J = 4000 cm*

Figure P21.9

A = 50 cm?
I= 10000 cm?* for 80000 N
all members
N! ) 2 (2 3)
N
1(3) 4) 350
N 4 ) 5 (6) 6
\{
[,< 350 Jr 350 ~!

Figure P21.10



Chapter 22
THEORY OF ELASTICITY

Applications of the finite element method to solid mechanics problems are ey,
tensive. These applications include elasticity problems, the analysis of plates and
shells, the buckling of structures, continuum vibrations, elastic-plastic behaviog
and viscoelastic analysis. The discussion in this book is confined to elasticigy
problems and is divided into three chapters. A general derivation of the equatiom
for the element matrices is presented in this chapter. A discussion of twp
dimensional elasticity follows in Chapter 23 and the analysis of axisymmetsy
configurations is in Chapter 24. @
The derivation of the equations for [£'"] and { £} given in this chapter and&
derivations for other solid mechanics problems are very similar. A thorou
understanding of this derivation forms a good basis for understanding the deriﬁ
tions for plate or shell structures. Some of the definitions change in these o%

topic areas, but the general procedure remains the same. ?

221 STRESS, STRAIN, AND HOOKE’S LAW

The theory of elasticity involves several concepts that were not used in the previd

RACENES

chapters. These concepts are briefly reviewed here. ,
The state of stress at a point is defined by the six stress components shos

outward normal is in a positive coordinate direction and the stress compo
is in a positive coordinate direction. There is a similar definition for the “;
ponents acting on a negative face. These six components are placed in the col g
vector {o}. 3

f VT __
‘lo-l '_[GXX U_\‘,\‘ (P O'xy Ox: U_rz]

The application of forces and/or heat to a solid body causes the body to def:’
Each point in the body moves to a new location. The resultant displacens
has three components u, v, and w parallel to the x-, y-, and z-axes, respectivi
Six strain components are defined to assist in the study of how a body defo§
Since the deformation of the body can result from applied loads and/or ther
changes, the strain components are separated into elastic (Ioad—produced)'
thermal strains. The three sets of strain components are the total strain, (e}, el
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—

Figure 22.1. The six stress components acting at a point.

strain, {&,, and thermal strain, {e7}. The entries in each vector are

{(’} = [exx €yy €22 Exy €xz eyz] (222)

e} T =[txx €4y s Exy Exz €y ] (22.3)
and

er'=[adT  «T 6T 0 0 0] (22.4)

where o is the coefficient of thermal expansion and 6T is the temperature change.
The three strain vectors are related by

fe}=te}+ fer) 225)

The stress and elastic strain components are related by a set of coefficients
!(nowu as the generalized Hooke’s law. The coefficients are established by sub-
Jecting a piece of material to loadings that produce known stress distributions.

The strains are calculated from the measured deformations.
The generalized Hooke's law can be written as

el =[C]lio} or {o) =[D]{e] (22.6)
The coefficients in [C]are

I —u  —x 0 0 0]
L l o g g
=-{—# -—n
El o 0 0 a 0 0 @27)
0 0 0 0 a 0
0 0 0 0 0 af

Where [ js he elastic modulus, p is Poisson’s ratio, and a =2(1 + ).
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The coefficients in [D] are

[« 5 b 0 0 0]
b d b 0 0 0
b b d 0 0 0
[P] "?’ﬁ 0 0 0 ¢ 0 0 (228)
0 0 0 0 ¢ 0
_O 0 0 0 0 ¢ |
where
d =1 b_m and c=5 (22.9):;

Note that [D][C]= [C][D] [/]. where [I] is the identity matrix. Poxssons
ratio must be less than 1 for (22.7) and (22.8) to be valid. D

H
t

il

22.2 THE STRAIN-DISPLACEMENTS EQUATIONS

Each displacement component of each point is a function of the three coordmatéZg

directions, that is, =

L
3

w=h(x, y, 2) (22.10),
The objective of every analytical and finite element analysis is to determine M
equations corresponding to f(x, y, z), g(x, y, z), and h(x, y, z). The finite element"
approximations for these functions are continuous, piecewise smooth equatim¥

u=f(x, y z), v=g(x,y,z) and

defined over the individual elements. The element equations depend on the type ok
element used to solve the problem. Since there are several elements to choose from!
when solving elasticity problems, the displacement equations are left in the genera
form

?
u 4
—[NJ(U®) @214

w . fvz

where {U'“} is a column vector containing the element nodal displacements. Wi
matrix [ N ] contains the element shape functions. It has three rows and as many
columns as there are components in {U©]. -5

The strain components in e} and the displacements are related. These relatios*.
ships are called the strain- dlsp]acement equations and are derived in all elastlcﬁf
books (Fung, 1965). The set consists of b

iy
R
u ov ow 2z
Cxx=72"> Cyy =7"» é)::z:")*
ox dy 0z 22. 1%
du Ov ou Ow ov  Ow
Cxy=7"T7% " > €xz=7"1tT= > yz ™ A~ T A
cy ox Jz 0Ox 0z 0y

THEORY DF ELASTICITY 289

[t is important to realize that these equations relate the total strains and the
displacements. Most books consider the equations as relationships between the
elastic strains and displacements. This is correct only when the thermal strain is

zero.
The equations in (22.12) are used to obtain the strain energy equation in the next

section. A general matrix [ B] is defined to assist with this evaluation.
tej =[BJ{U" (22.13)

The matrix [B] has six rows and as many columns as there are rows in {U'}.
The first row of [ B] is obtained by differentiating the displacement equation for u
with respect to x, that is, du/dx. The second row contains dv/dy, and so on. Each
equation of (22.12) is used to generate one row of [ B].

22.3 THE ELEMENT MATRICES

The element stiffness matrix and the element force vector are the element’s con-
tribution to the system of equations that result when the potential energy is
minimized. The potential energy consists of the strain energy in the system minus
the work done by the forces acting on the system. This derivation is divided into
two parts: a discussion of the strain energy term and a discussion of the work terms.

22.31 The Strain Energy Equation
The strain energy in a three-dimensional elastic body is
A =1 J (Oxxxx+ Oy + 022800+ Orybay+ 0280+ 02800 dV - (22.14)
|4
which can be neatly written as

no=t | tolmisav (2219)
4

The stress components can be replaced using the second form of (22.6). This
substitution produces

K=y [ taT[pte) av (2216
v

because [D] is symmetric.

The strain energy, A, must be written in terms of the displacements. The nodal
displacements, however, are related to the total strain components not the elastic
Strain components. Solving (22.5) for {¢} gives

{e} ={ej —{er (22.17)
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Substitution for {¢} in (22.16) yields

A=y [ (e ler DN e}~ o) dV (218)
14 . y

o
\

Expanding gives
No=4 [ el TDYel av =1 | (e} TDYen} av
14

4 [ enioYebav s | e DYe v 219
14 14
The product [D]{e} is a column vector; therefore,
{e}"([DYer))=([D){er)) e}
=ler}[D] e} =ler}T[D]ie] (22.20)

The matrix operations in the second and third integrals of (22.19) are identical.
Using this property and the fact that the last integral is independent of the dis-:
placements (and can be discarded). (22.19) can be simplified to

A=} J te}"[D]ie} dV—J. te}"[D)er; dV (22.21),
Vv vV

The last step is to substitute (22.13) for {e}. The strain energy equation written
in terms of the element nodal displacements is ‘

no=g | OBy DIBN U av - [ (U BT DY v 22
14 1 4

22.3.2 The Work Terms

The work done by the applied loads can be separated into three distinct parts:
that due to the concentrated loads, that resulting from the stress components
acting on the outside surface, W,, and that done by the body forces, W,,.

The work done by the concentrated forces is the {U}T{P} product observed
with the structural applications. Minimization produces the {P} vector in the
final system of equations.

The work done by the body forces, 2, %, Z, is given by

Wi = J WZ+o¥+wZ)dv (22.23)
14

where u, v, and w are the x-, y-, and z-components of the displacement within the
element. The integral is necessary because u, v, and w along with 2, @, and Z
can vary within the element. Using (22.11) allows (22.23) to be written as
x
Wff’=f (VTN (¥ pdV (22.24)
| 4
&
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The work done by the distributed loads that act on the surface is
W= jr (upx+uvpy+wpz)dl (22.25)

where u, v, and w are the displacement components and p,, p,, and p, are thf: stress
components parallel to the x-, y-, and z-coordinate directions. A comparison of
(22.25) and (22.23) indicates that they are identical in form; therefore,

Px
W(;»:J (UYTIN] 4 p, +dT (22.26)
T

P:

22.3.3 The Element Matrices

The total potential energy in a continuous three-dimensional elastic system is

M=y N¥-{U}T P} (22.27)
e=1

where
MO =AC - W) — WY (22.28)

Substituting (22.22), (22.24), and (22.26) for the three terms in (22.28) gives

me—yoey?( [ syl av ) i)

-{U‘”}T<L[B]T[D]{er}dV+L[N]T g av
+L INT? ﬁ: dr) (22.29)

P:

which is in the same form as (18:21). Thus the element stiffness matrix is

[k | [BYIDIBYaY (22.30)
| 4
and the element force vector is
X Dx
= BYmYern av+ [ N1 1@ v+ [ IV par @23
|4 \4

Z p:
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224 THE STRESS COMPONENTS

The design criteria for structural and machine components involves the values of
the stress components or the maximum displacement. The nodal displacements
are available once the system of finite element equations has been solved. The
element stress components are calculated once the element nodal displacements
are known.

The general equation for calculating the stress components emerges after severa}
of the equations discussed in the first two sections of this chapter are combined,
Starting with the second equation of (22.6), we obtain

{o}=[D]l¢} (22.32)

and replacing {¢} with (22.17),
oy =[D](le} —ler}) (2233
This equation can be written in terms of the element nodal displacements using

(22.13). The final result gives the stress components as a function of the element
nodal displacements and thermal strain vector '

(o} =[DI[BY U} ~ ler) (2234

Chapter 23

TWO-DIMENSIONAL
ELASTICITY

The derivation presented in the previous chapter assumed a three-dimensional
state of stress within an elastic body. Special cases of this theory are now considered.
Two-dimensional problems are discussed in this chapter and axisymmetric
problems in Chapter 24. The discussion is confined to the triangular element
because the integrals can be evaluated relatively easily. The element matrices for
the rectangular element and all higher-order elements are evaluated using the
numerical integration techniques discussed in the last chapters of this book.

231 PLANE STRESS AND PLANE STRAIN

The reduction of a three-dimensional problem to a two-dimensional problem can
occur in two ways. These choices are called plane stress and plane strain. The
resulting equations for each option are developed in this section.

23.1.1 Plane Stress

A state of plane stress is said to exist when the elastic body is very thin and there
are no loads applied in the coordinate direction parallel to the thickness. The
stress components associated with the thickness direction, o,., 0., and g, are
very small and assumed to be zero, when the applied loads lie in the x-y plane
(Figure 23.1).

Substituting the zero values for o, 0., and o, into (22.1) indicates that the non-

Zero stress components are o,,, ¢,,, and o,,. The stress vector can be written as

o) T=[0x Oy 0] (23.1)

Substitution of the zero stress values into Hooke's law (¢} =[C]{o} using (22.7)
for [C] shows that

£, =6y, =0 (23.2)

The normal strain ¢z; is not zero but it can be calculated once o, and o,, are known.
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1]

Figure 23.1. A thin body in a state of plane stress.

The two shear strains associated with the z-axis are zero. The elastic strain vector is

{6} T =[x Eyy Exy ] (23.3)
The total strain vector reduces to
leiT=[exx €y exy] (23.4)
while
{er}T=[20T 0T 0] (23.5)

The matrix [ D], which relates {¢} and {¢} for plane stress, is obtained by deleting
rows and columns three, five, and six from (22.7) and inverting the remaining
3 x 3 matrix. The final relationship is

1 0
E
D=
[P]=1— 10 (23.6)
o o —H
2

23.1.2 Plane Strain

The state of plane strain occurs in members that are not free to expand in the
direction perpendicular to the plane of the applied loads. If we assume that the
applied loads lie in the x-y plane, then w, the displacement in the z-direction is
zero and the displacements » and v are functions of only x and y. This set of dis-
placements makes e.., e,., and ¢,. each zero.
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Substitution for the zero values reduces the strain vectors to

{e}T=[exx €y  ex] (23.7)
e T=lexx &y  &x] (23.8)
and
—[0T 0T 0] 239)
while
o7 =lox 0y 0y] (23.10)

The above three vectors are identical to those which occur in a state of plane stress.
The stress vector, (23.10). is obtained by substituting ¢,. =¢,, =¢,, =0 into Hooke’s

law |0} =[D]{¢], using (22.8) for [D] and noting which stress components are
unknown In this case, ¢, and o,, are zero while
E U l—u
= Oxx —— |adT 23.11
.. 1+y[1_ (G4 0y,) - (1*2# ; (23.11)

The Hooke’s law relationship for plane strain is obtained by deleting rows and
columns three, five, and six from (22.8). The resulting matrix is

E d b 0
[D]:1 o 0 (23.12)
“lo o 1
where
l—p ) 2
d—m and b—1—2/,1

23.2 THE DISPLACEMENT EQUATIONS

There are two unknown displacements in a two-dimensional elasticity problem,
uand v. The displacement parallel to the z-axis, w, is zero when plane strain exists
and is related to u and v when plane stress exists.

The u and v displacements are modeled in a continuum element by defining two
displacement components at each node (Figure 23.2). The notation used here is
identical to that used for the truss element.

The simplest model for u and v is to use a linear variation for each displacement
within the element. The horizontal displacement u is approximated using

u(x, y))=NiUzi- 1+ N;jUj- 1 + Ny Upi—y (23.13)
while the vertical component v is represented by

v(x, ¥)=NiUi+N;U,j+ N Uy (23.14)
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Usi—q

Figure 23.2. The nodal displacements for a triangular elasticity element.

In each equation, N;, N;, and N, are the linear shape functions developed in
Chapter 5 and given by (5.8), (5.9), and (5.10).

Equations (23.13) and (23.14) can be written in terms of all the nodal values by-

adding zeros that multiply the missing displacements. The displacement equations
become

Ll:N,'Uz,'fl +0U2,'+NJ'U21‘71 +0U2j+NkU2k_1+0U2k
l,‘:OUz,‘-l+N,‘U2j+OU2j_1+NjU2j+0U2k_1+NkU2k (2315)

Utilizing matrix notation yields

UZiv 1
Uai .
ul, Y){ | Ni 0 N; 0 Ni 0] Uzj- (23.16)
l‘(X, _}) 0 N,‘ 0 Nj 0 Nk UZj
UZk— 1
UZk
or
wlx, Y| _ [N] LU 23.17
r(x, 1)

L. . frre
where [N is the 2 x 6 matrix containing the element shape functions and (U}

contains the element nodal displacements.
The three-dimensional strain-displacement relationships, (22.12), reduce to

Ou cv ou O (23.18).

and €y

14 = — Oy =— _
XX AL yy ay > ) ay (')x
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because w is zero and u and v are not functions of z. Applying the operations defined
in (23.18) to (23.13), we find that

1

(’xx:ﬂ(biUzi—l+hjUz,>1+ka2k,1)
1

e,\'y:ﬂ(('iU2i+('jU2j+('kU2k) (23.19)
1

()xy:ﬁ(ciUzi— v iU+ cUsjo +b;Uzj+ e Usi— 1 + b U 5

where the b and ¢ coefficients are defined in Chapter S. The equations in (23.19)
have the matrix form

Uli—l
Ui
exxl 1 bn 0 bj 0 bk 0 U2
€y 1 =x Ci 0 Cj 0 Cr -l (2320)
l] o b b bl [V
€x Ci i C ; C
T T U
Ui
or
le} =[B]LU (23.21)

Equation (23.21) defines the gradient matrix [B] for the triangular element. It
is a 3 x6 matrix. The number of rows exceeds the dimension of the problem
because there are three unknown strain components in the two-dimensional
problem.

23.3 THE ELEMENT MATRICES

The element stiffness matrix is given by (22.30)

wel= | (81 o1B v (2322)

where [ B] is defined by (23.21) and [ D] is either (23.6) or (23.12). This integral is
readily evaluated because [B] and [D] consist entirely of constant terms. The
result is

[k ]=[B]'[D][B]:4 (23.23)

Where ¢ is the element thickness and 4 is the element area. The matrix product
[B]'[D][B] is not evaluated because the final result is quite complicated when
Written in equation form. The best approach is to evaluate [B] and [D] and let
the computer perform the multiplications.

The value of 1 used in (23.23) is the actual thickness of the body for plane stress
and unity for plane strain.
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The element force vector is given by (22.31) after neglecting the body force 2
and the surface stress p,. Neither of these components exist in the two-dimensional
problem. The resulting equation is

= [ BYIDYter) av s [ [N)T {f;} av | v {ﬁ} ar (@324

where [ N] is defined by (23.17).
The first integral in (23.24) is easily evaluated because the matrices contain
constant coefficients. The integral yields

| (81 DY ar} av =[BT (D for}rd @29

The matrix product is relatively easy to evaluate, but the best procedure is to let
the computer perform the products. Note that the [B]"[D] product also occurs
in [£"], (23.23). If this is evaluated first, both (23.23) and (23.25) can be evaluated
in the same DO-loop.

The volume integral involving the body forces is easy to evaluate if the shape
functions are replaced by their equivalent area coordinate. The body force integral
is

[~ n

N; 0
0 N;
Z N 0 X
N]T dV:J ! dVv
JV[ ] {@} v O N; [\ ¥
N, 0
A
N; ¥ L% &
Njﬂn L, 4 tA | &
= dV =t dA=— 23.26
.[v N; ¥ _L L,% 3 |% ( )
N, Z L, 7 X
N. % L, @J »

The integral is dividing each body force component t4 & or tA% equally among
the three nodes.

The integral in (23.24) involving the surface stresses p, and p, must be integrated
along the edge of the element. Noting that dI"=td¢,, we find that the integral is

L [N]r{;;:} dU =1L Ll [N]T{iz} i, 2327

where L is the length of a side. The integral in (23.27) has three different values,
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one for each side of the element. By assuming that the surface stresses act on the
side ij, (23.27) becomes

N; 0
0 N;
1 1 N O
tL.--j N T{p"}dé’ :tL,»-jF ’ { "}d( 23.28
J 0[ ] py 2 J o O Nj py 2 ( )
N, 0
| 0 N,

However, N, is zero along side ij. Using this fact and substituting the area co-
ordinates for the shape functions yields

lex px'
flpy Py

1 1
x ¢ X ij x

tLuJ [N]T{i }dfz =zLi,~J ;p de,="Lilp (23.29)
0 v o [¢2Py 2 |py
0 0
0 0
Py
Py
Py

Py

Figure 23.3. The direction of positive surface stresses.
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]

4

[
3

)
&

The resulting equation (23.29) can be interpreted as follows. The quantities PpxtLy K

and p,tL;; represent the force components acting on side ij. The integral has
allotted one-half of each force component to each node on side ij.

Evaluation of the surface integral gives similar results for the other sides. The
results are

0 Px
0 Py
px tij px 1Lik 0
N]* dl=—= P = 23.30
Jr[ ] {P>} 2 |p 2 0 ( )
px px
Py Py

for sides jk and ik, respectively.
[t is important to realize that p, and p, are positive when they are directed in the
positive coordinate directions. These positive directions are shown in Figure 23.3.

ILLUSTRATIVE EXAMPLE

Calculate the element stiffness matrix and the thermal force vector for the plane
stress element shown in Figure 23.4. The element experiences a 10°C increase in
temperature.

The element stiffness matrix is given by (23.23) as [k'“]=t4[B]"[D][B]. The
gradient matrix [B] is
R N T A A
[B] =—10 Ci 0 Cj 0 Ck
24
Ci bi Cj bj Cx by

y
r 1,3)
k
t=05cm
E = 15(10%) N/cm?
u=0.25
a=6(107%)/°C
i Y X
©.0) 2,0

Figure 23.4. A triangular elasticity element.
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where 4=(3)(2)/2=3 cm? and

b1:Y]~yk:“3 (',':Xk'—Xj:-—l
bk:Y;—}IJ:O Ck:Xj_Xi:2
Substitution gives
q -3 0 3 0 0 0
[B].:8 0 ~1 0 -1 0 2
—1 -3 —1 3 2 0
The Hooke’s law matrix [D] given by (23.6) is
1 u 0
E
—u (o
0 0 —
' 2
1 1 0 1
15109 |, 3 e 40
=——==z 1 O|=10°| 4 16 0
1-0.25
0 0 2 0 0 6

The evaluation of ['] starts by evaluating [B]’[D] because this product also
occurs in the evaluation of the thermal force vector.

[ 3 0 -—1|[6 4 o
o -1 -=3|l4 16 o0
100 | 3 o -1llo o ¢
B)"[D]=—
BYPI="¢-| o 3
0 0 2
0 2 0]
—48 12 —¢]
4 —~16 —18
109 | 48 2 -6
B)[D]=—
BIPI="-| 4y ¢ 18
0 0 12
| 8 32 0
(48 -12 —6][-3 0 3 0 0 o
-4 —16 -18|l 0 -1 0 —1 o0 2
6
L B A | R S B B
36 [ -4 —16 18
0 0 12
) 0]
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150 30 —138 -6 —12  —24
30 70 6 —38 -3 —32

[k = 41667 —138 6 150 —-30 —12 24
-6  —38 -30 70 36 —32

—12 =36 -12 36 24 0

| -24 -3 24 =32 0 64 |

The thermal force vector given by (23.25) is { ;'] =[B]"[D]!¢r|tA. The strain
vector is

@S T 601
(61 =100T [ =10"°71607
0 0
Using the [ B]"[D] product evaluated earlier, we obtain
[—48  —12 —6] — 600
-4 —16 —18 60‘ —200
(o _(10710%) | 48 12 =6l L ] 600
el —4  —16 1811, |-200
0 0 12 0
| 8 3 0 400
ILLUSTRATIVE EXAMPLE

Calculate the equivalent set of concentrated forces acting at the nodes 10, 12, and
18 (Figure 23.5). The length of each element perpendicular to the surface stress is
given.

We could use one of the surface integrals in (23.29) or (23.30) to evaluate the
force components, but an easier and faster method is to use the physical interpreta-
tion of these equations. We calculate the total force acting on the side of the element
and then divide it equaily between the two modes.

Starting with element one, we find that

force'V =p,A=p,tL
=5000(2.5(1.5)=18750 N

while

force'? =p,A=p,tL
=5000(2.5)2)=25000 N
Alloting the forces to the nodes produces the situation shown in Figure 23.64.

Adding the two forces at node 12 gives the three forces shown in Figure 23.6b.

Resolution of the forces in Figure 23.6f into their x- and y-components produces
the set of forces in Figure 23.6¢. The forces in Figure 23.6¢ can be handled in the

Figure 23.5. Surface stress and elements along an exterior boundary.

12500
12500

(a) (b)

4688

10825

©
fFlgure 23.6. (a) The element contributions to the nodal forces. (b) The nodal
Orces. (c) The nodal forces resolved into components.
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same manner as any other concentrated force. This set of forces is equivalent to

PIQ:#10825N Pyy=—18944N,  P,s=—81I9N
Lo=—6250N,  Po,=—10938 N,  P3o=—4688 N

23.4 ELEMENT STRESSES

The desired results in any elasticity problem are the stress components acting
within the body. The stress components within an element can be calculated once
the element nodal displacements are known. The stress components are given by
(22.34) using the vectors {0}, {¢], and (&7 as defined at the beginning of thig
chapter. .

ILLUSTRATIVE EXAMPLE

Calculate the stress Lomponents for the element in Figure 23.5 when the nodal
displacements are
L"zi_l.—._ s U_?_j?]:0.000l cm,
(/Tz,' :0, UZj 200006 cm,

UZk— 1 =0.0004 cm
U,,=-0.0010cm

The stress components are given by {¢] =[D([B]{U'”} —{er]). Using for.

[B], [P], and {¢;} the matrices developed for the example associated with Figure
23.5, we obtain

0
3 0 3 0 0 0 0
[B]‘U“'NJ 6 ~1 0 -1 0 2 0.0001
S | i 9 o 0.0006
-1 -3 B - 0.0004
—0.0010
J’sol
=10"°1433¢
267
and

601

50 l
[B]LU“" —ep) =107 14331 —107° 160 |
1267 lo |
—10|
=10"04373 ¢
267]
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The stress components are

16 4 0][-10007%)] [1332
(0)=10°] 4 16  0[{373(107 %) =15928
o o 8l{267010-%] 2136

The stress components are constant within the linear triangular element. They
are generally assumed to be the values at the centroid of the triangle. The set of
constant values is a major disadvantage of the linear element.

23.5 DISCUSSION OF A COMPUTER EXAMPLE

The thin plate subjected to a distribuied load in the middle third of one side as
shown in Figure 23.7 is analyzed in Chapter 25 in conjunction with the discussion
of the computer program STRESS. The bottom surface of the plate is free to
move horizontally relative to the suppoert surface. The finite element grid used to
solve for the stress distribution is shown in Figure 23.8. The horizontal displace-
ments at nodes 1, 5,9, and 13 are zero as well as the vertical displacements at nodes
1,2,3,and 4. The complete computer output is given in Chapter 25. The three stress
components in each element are summarized in Table 23.1.

The objective of this section is to illustrate an equilibrium analysis of the plate
as a check on the calculated stress values. The stress components are constant
within the triangular element and the values are usually assumed to act at the
centroid of the element. The stress values acting on two cutting planes, 4-4 and
B-B (Figure 23.9) are shown in free body diagrams in Figures 23.10, 23.11, and
23.12. The free body analysis of each diagram is discussed in the following para-
graphs.

The cutting plane 4A-4 passes through elements (1), (2), (3), (4), (5), and (6)
(Figure 23.10). The exposed area of each element is (5)3)=15 cm?. A summation

20%‘(— 20%'(— 20—

10000 N/cm?

E = 20(10% N/cm? !
=025 30cm

t=30cm

Lubricated surface

Figure 23.7. A thin plate with a distributed load over a part of one side.
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Figure 23.8. A finite element grid for the partially loaded plate.
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Figure 23.9. Location of the cutting planes A-A and B8-8.
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Figure 23.10. The stress component g,, on the cutting plane A-A.

Figure 23.11.
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The stress componento,, on the cutting plane B-8.
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of forces in the vertical direction gives

+TZF, =(5594.5 + 4150.1 +4459.342246.6 + 2412.8 + 1137.6)(15)— (10000)10)3)
—(200000.9)(15)— (10000}30)=13.5 N 20

Table 23.1 Element Stress Components

Element Ox Oy Oy
1 710.9 —5594.5 5298
2 1190.6 —4150.1 —474
3 —46.2 —4459.3 788.5
4 4493 —2246.6 —243
5 -219.7 —25128 462.7
6 11.0 —1137.6 11.0
7 —69.1 —6425.1 1272.4
8 1036.5 —4292.1 300.8
9 -5739 —4694.7 1627.5
10 606.5 — 1848.5 419.5
11 —290.8 —2072.8 582.2
12 216.8 —666.8 8.1
13 —3206.2 —7858.5 21415
14 3372 —4800.0 160.9
15 —784.0 —5080.3 2261.2
16 348.2 —1006.6 699.4
17 101.8 —1068.2 186.4
18 180.8 - 101.8 —101.8

There is a small imbalance in the forces, but the 13.5-N force is close enough to
zero to assume that the calculated values of ¢, comprise a set of stresses that are in
equilibrium with the applied load.

The distribution of ., on section B-B is shown in Figure 23.11. This cutting
plane passes through elements (5), (6), (11), (12), (17), and (18) and the exposed area
for each element is 15 cm?. The force produced by the o, distribution must be zero
because there are no external forces applied to the body in the x-direction. The
summation of forces yields

+—-XF,=(101.8+180.8—290.8 +216.8 —219.7410.97)(15)
=(—0.13)(15)=—-195N =20

Equilibrium in the x-direction is satisfied.

The cutting planes, 4-A4 and B- B, have two stress components acting on the
exposed surface, a normal stress and a shear stress. Only the normal stresses weré
shown in Figures 23.10 and 23.11. A free body diagram of the section to the right
of B-B with the shear stress o, is shown in Figure 23.12. The normal stresses Ox
are the same (opposite direction) as those in Figure 23.11 and are not shown. The

normal stress acting upward on element (6) is the g, value for this element. A
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Figure 23.12. The stress component ¢,” on the cutting plane B-8.

summation of forces produces

+1Z F,=(—186.4+101.8 —582.2—8.11 —462.7 —10.97}(15) +(1137.6)15)
=1647N

The summation is not as close to zero as the previous two because the o,, =1136.6
value applied to the exterior boundary of element (6) is not correct. A free body
analysis that places o,,=1137.6 at the centroid of element (6) and eliminates the
10.97 shear stress value yields a net vertical for of zero newtons.

The three free body analyses discussed here verify that the stress distributions
satisfy the equilibrium equation. More accurate stress values can be obtained by
refining the grid.

PROBLEMS

23.1-23.8 The nodal coordinates and the nodal displacements for some plane
stress elasticity elements are listed in the following problems. Calculate
the element stiffness matrix, [k'“], and the element stress vector {a;. The
coordinates and displacements are given in centimeters. The element
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23.1

23.2

233

234

235

23.6

237

23.8
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thickness is 2 cm. The material matrix is

X;=2
Y, =0

Usi, =0.003
U,i=0.0
X,=4

Y,=3
Uji- 1 =0.004
U, =—0.001
X,=66
Y,=3.0

Uji-, =0.007
U,;=—0.001
X;=9.9
¥,=0.0

Uji-y =0012
U,;=0.0
X;=11.0
Y,=2.0
Usi-,=0016
U,:=—0.0008
X,=0.0
Y,=0.0

Ujsio1 =00
U,i=00

X;=100
Y,=00
Usi_,=00011
U,i=00
X,=00
Y,=20.0

Usio, =00
U, = —0.006

16
[D]=10°| 4
0
X;=1
Y,=1
U, 1=0001
U= —0.0003
X;=2
Y,=4
Uj- 1 =0.0026
U= —0.0013
X;=79
Y,=4.0
Usj- 1 =0.006
Uy;=—0.0015

X;=85
Yj=1.0

Usj—1 =0.010
Uyj=—0.003
X;=100
Y,=18

U1 =0015
U,;=—0.0006
X;=10.0
Y;=10.0
Us;_ 1 =0.001
Uy;=—0.0022

X;=200
Y,=10.0
Uy 1 =0.0016
U= —0.0012
X;=100
Y;=300
Uaj 1 =—0.0006
U,;=0.007

4 0
16 0

0 6
Xo=1

Y, =0
Uiy =0.0015
Uy =00

X,=2
Y=3
Use- 1 =0003

U2k= —0001

X, =60
Y,=4.0
Us 1 =0.006
U= —0.0018
X, =80
Y, =0.0
Usi-1 =0.010
U2=00
X, =100
Y%,=15
Usi-,=0014
U= —0.0004
X, =00
Y,=10.0
Uz-1=00
U= —0.0028
X, =100
Y,=10.0
U1 =0.0011
U= —0.0022

X,=00
Y,=30.0
Uy-1=00
U= —0.0096
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239  Evaluate the contribution of a thermal change of 6T =10°C to { f©} for
the element in Problem 23.1 using o = 12(10~ ¢)/°C.

23.10 Do Problem 23.9 for the element in Problem 23.2.

23.11 Evaluate the surface integral

J o e

for the surface loading shown in Figure P23.11.

Py

Figure P23.11

23.12 Evaluate the surface integral in Problem 23.11 for the surface loading shown
in Figure P23.12.

—

Po is the largest value

Figure P23.12

2313 Solve the plane stress problem shown in Figure 23.7 using the computer
program STRESS discussed in Chapter 25 and a minimum of 30 elements.

23.14-23.18 Calculate the stress distribution in one of the bodies shown below
using the computer program STRESS discussed in Chapter 25. Make
use of symmetry when possible.
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Chapter 24
AXISYMMETRIC ELASTICITY

An important group of elasticity problems involves'a body of revolution with an
axisymmetric loading. The body is three-dimensional, but the geometry of the
body and loading are not a function of the circumferential direction. The body
can be analyzed using two-dimensional techniques. The axisymmetric triangular
element is obtained by revolving the linear triangular element through 360 degrees
to form a triangular torus.

The element integrals for the axisymmetric problem look very similar to those
evaluated in the previous chapter. The evaluation process and results, however,
are quite different. Our objective here is to discuss axisymmetric elasticity problems
and to highlight those areas where it differs significantly from the two-dimensional
problems.

241 DEFINITIONS IN CYLINDRICAL COORDINATES

The first and most obvious change from two-dimensional to axisymmetric prob-
lems is the change in coordinate systems. Axisymmetric problems are solved
using a cylindrical coordinate system with coordinates r, 6, z (Figure 24.1). The
elasticity quantities in this coordinate system are discussed by Fung (1965) and
summarized here.

The vector of stress components is

{O-} T= [0”‘ Og0 G G.g (g aﬂz] (24.1)
The elastic strain components are
{8} = [8" €0 &z ] &z 892] (24'2)

and the total strain components are

{etT=[e. e € eo €. en] (243

The thermal strain vector remains the same as (22.4) whereas [D] in Hooke’s law
{0} =[D]{e}, is the matrix defined in (22.7). The relationship (22.5), {e} = {&} + {er}
is also valid. The body force components in (22.23) and the surface stress com-
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Orz

A
/

o, &7 l
Orz
_

- ——

r

Figure 24.1. The stress components in a cylindrical coordinate system.

ponents are

I R D
19 and Do
Iff p:

respectively.
The equations that define the relationship between the total strains and the
three displacements have a new look. These equations are

u
€y -~ €, st -
or Tro0 or  r
u+1 Ov Ou ow
Cop=—+—— € =—
“ a0 0z Or
ow Gv+1 ow
€z =7 €= 1T ~ o
oz %oz rab (24.4)

where u, v, and w are the displacements in the r-, -, and z-directions, respectively.

The derivation of the equations for the element matrices in cylindrical co-
ordinates proceeds exactly as given in Section 22.3. In fact, the end result is sym-
bolically identical,

[k = L [B]'[D1[B]dV (24.5)
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and

rot= [ ot av+ | v M v [ Ny phar osg
z p:

The actual coefficients in [ B], however, are different because the strain-displace-
ment equations, (24.4), are not the same as those defined by (22.11).

24.2 AXISYMMETRIC ELASTICITY

An axisymmetric problem exists when neither the geometry nor the surface loading
are a function of the circumferential direction 6. This situation makes the circum-
ferential displacement v zero and leaves the ¥ and w displacements as functions
of r and z only. In a general form, the displacements equations are

u=f(r, z), v=0, and w=gl(r, z) (24.7)

Knowing that v=0 and that ¥ and w do not vary with 0 reduces the strain-
displacement equations (24.4) to

Cu u ow
€, =— Cop = — e.,,=—
r ar b r b 2z az
ou ow /
e6=0, €r; = 2z o’ €p, =0 (24.8)
P

There are four nonzero total strain components. The zero values for e, and e,
imply that £4=¢,, =0 and there are four nonzero elastic strain components. The
strain vectors for axisymmetric elasticity are

{(’} T= [err €9 €2 erz] (249)
{8)' = [81'1' ] €22 &z (2410)

and
ery ' =[0T 28T 23T 0] (24.11)

Substitution of ¢,=¢,.=0 into Hooke's law, (o) =[D]}¢}, reveals that g,4= .

g¢-=0 and there are four nonzero stress components. The vector of stress com-
ponents is

{O-} r = [O-rr Gog O-- G,»:] (2412]

The stress components are shown in Figure 24.1. The materials matrix [D] in
Hooke’s law reduces to

d b b 0
E|b d b 0
Dl=—— 3
[D] ivals b 4 o (24.13)
0 0 o !
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where

1—p Iz
= d b=——
1—2u an

d =1—2/1

The body force vector and the surface stress vectors reduce to

R ) P
{9’} and {pz} (24.14)

24.3 ELEMENT MATRICES

The unknown displacements in an axisymmetric problem are u and w. These
displacements can be written in terms of the element nodal values similar to
(23.15). The displacement equations are

respectively.

UZi*l
Ui
ulr,2)] _[ N 0 N, 0 Ny 0] Ujj-1 (24.15)
w(r, z) 0 N; 0 N; 0 N | Uzj
UZk*l
UZk
or
ulr, z)
~[N]U® (24.16)
o(r, z)

The shape functions are identical to those given in (5.8) through (5.10) with x
replaced by r and y replaced by z. The equation for N; is

1
Nl-=7(a,'+b,'r+(','2) (2417)

24
with a,--——R,-Zk—Rij, b,'=Zj‘—Zk, and (',-ZRk—Rj.
The differentiation of (24.15) using the strain-displacement relationships in
(24.8) yields

[ &, 0 b; 0 by 0]
ek ) 0
S 0 r r (U (24.18)
[ N
24 0 Ci 0 Cj 0 Ck
Ci bg Cj bj Ck bk

The coefficient matrix in (24.18) is [B], since {e} =[B]{U""}.
The evaluation of the element integrals is no longer the simple procedure that
occurred for the two-dimensional problems. The [ B] matrix contains terms that
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are a function of the coordinates and cannot be removed from under the integra)
sign. One popular procedure for evaluating the integrals is to make [ B] a constant

by evaluating the 24Ny/r terms using 7 and z. This procedure allows [ B] to be
removed from under the integral sign, or

(k] =[B]"[D](B] j av (419

The integral is the element volume that is ¥V =2n7A4; thus the final equation for
(k'] is

(k] =2r47[B]"[D][B] (24.20)

The bar on [B] indicates an approximate value. Equation 24.20 yields acceptable
results if a subdivision consistent with the final stress distribution is used, that is,
small elements in the regions of high stress gradients.

The column vector associated with the thermal change is handled in the same
manner, since [ B] occurs in the integral. The approximate solution is

J [BI[D)les) dV =277 A[B)T[D] ¢r! (2421)

The volume integral involving the body forces can be integrated exactly by
using area coordinates. The integral written in terms of area coordinates is

’—rLl 01
0 rL1
£ pen _ rL; 0 A 4
Jo J—L 0 'L {f 2ndA (24.22)
rL3 O
| 0 VL3_

where 2nr dA has been substituted for d V. The radial distance r can also be written
in terms of area coordinates

r:R;L1+RjL3+RkL3 (2423)

and substituted into (24.22). This substitution produces L;L,- and L{-type prod-
ucts, which are evaluated using (6.29). The final result is

(R, +37F) A

(R + 37)

o 21A (R + 37F):

fpten =77 J 24.24

YT (R4 30) ( )
(Ri + 37)

(Re+ 37)

where 3r=R;+ R;+ R,. Equation (24.24) does not distribute # or 2 equally

SR

9

ks k
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between the three nodes. The nodes farthest from the axis of revolution receive a

Jarger share of the body forces. ‘
The integral involving the surface stresses is also evaluated using area co-

ordinates. The integral is

= J [N]" {p } dr (24.25)
r P

where p, and p. are the surface stresses in the r- and z- directions. Confining our
discussion to the side, between nodes i and j means that N, =0 and

—rLl 0]
0 rL;
(fen —p. Jl m rL, 0 {p.} dé, (24.26)
o=t |0 o | s
0 0
L 0 0 -

where dT” =27nrd€ ,. This integral is evaluated using (6.29) after substituting (24.23).
The final result is

(2Ri+Rj)p:
2R+ Rj)p-
( pen 2mLy; (Ri+2R;)p:
Vel T 6 [(Ri42R)p:
0
0

(24.27)

Equation (24.27) is applicable to any surface. For a vertical surface we find that
R,': Rj:R, and

(24.28)

The stress components are converted to forces and distributed equally between the
nodes. This is identical to the results obtained for the two-dimensional problem.
On the other hand, if we are considering a horizontal surface, R;#R;, and a larger
proportion of the load is given to the node farthest from the axis of revolution.
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The other two solutions to (24.25) are

0
0

2nLy | QR+ Rop,
6 |QR+Rp:|’
(R;+ 2R )p,
(Rj+2R)p.

on sides L and Ly, respectively.

24.4 SURFACE LOADS

STRUCTURAL AND SOLID MECHANjCS: -

QR+ R )p.
(2Ri+ Ry)p.
2n L 0
6 0
(Ri+2Ri)p.
(Ri+ 2R )p-

(24.29)

The surface stresses p, and p, cannot be calculated in an intuitive way when the
surface is not vertical. We illustrate this by considering the simple example of a
cylinder subjected to an axial compression load.

Consider the cylinder shown in Figure 24.24 with the element subdivision shown
in Figure 24.2b. Only the elements near the load are shown. Assume that side jk

{ flen

of each element is subjected to the load; then | » ) is given by the first vector of

(24.29)

_ 27'(ij

==

The extra zeros result because p, =0.

0

0

0
(2R;+ R)p:

0
(R;+2R)p.

The data required for the computations are summarized in the following table.

e Rj Rk (2Rj+ Rk) (Rj'f‘ZRk)
1 2 0 4 2
2 4 2 10 8
36 4 16 14

The forces acting at the element nodes are

. 27[ij
NOdej: PJ:T (2R1+Rk)pz:400n(2RJ+ Rk)

27(ij

Node k: P,= 5

(R]‘+' 2Rk)pz =4OOR(R]+ ZRk)
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(a)

ey

p, = 600 N/cm?

24

¢! ) 3)

(b)

Figure 24.2. A uniformly distributed load acting on the ends of a cylinder.

Substituting for R; and Ry in each element gives

Element
Node () Q) 3)
j 16007 4000n 64007
k 8007 32007 5600
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1600+~ 4000+ 6400+
800n Iy 3200~ 5600~

21 22 23

24

I 7 7 ]

(@

800~ 4800 9600 64007

21 22 23 24

(b)

Figure 24.3. (a) Element contributions to the nodal forces. (b) Calculated nodal

forces.

These forces are shown in Figure 24.3a. The final set of nodal forces is shown in
Figure 24.3b. This set of forces is equivalent to

P42 = 8007[, P44 = —48007[, P46 = —96007{, P43 = —6400x

It is clear from Figure 24.3b that the concentrated forces are not equal.

PROBLEMS

24.1-24.5 The nodal coordinates for five axisymmetric elasticity elements are

given below. Evaluate [B] for the element. The coordinates are in centi-
meters.

STRUCTURAL AND SOLID MECHANICg »
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24.6

24.7
24.8

24.9

24.10

24.11

24.12

Problem Number

Element
Quantity 24.1 242 243 244 24.5

R 1.0 60 20 100 180
Z; 1.0 70 40 20 160
R; 30 80 40 140 220
Z, 10 70 40 20 180
R, 30 90 30 140 180
Z 40 100 60 40 180

Evaluate | f{”} given by (24.21) for the element in Problem 24.1 when
x=10(10"°)/°C and 6T =15°C. Use E=20(10°) N/cm? and pu=1/4.

Do Problem 24.6 for the element in Problem 24.2.

A body force of Z =10N/cm? exists in the element in Problem 24.3.
Evaluate | £’} given by (24.24). The body force Z is zero.

A body force of Z=20N/cm? exists in the element in Problem 24.4.
Evaluate | £} given by (24.24). The body force Z is zero.

Calculate the equivalent concentrated forces at nodes one, two, three, and
four for the distributed surface stress shown in Figure P24.10. The surface
stress p, is zero. The dimensions are in centimeters.

z

p, = 500 N/cm?

s

Figure P24.10

Calculate the equivalent concentrated forces at nodes two, three, and four
for the distributed surface stress shown in Figure P24.11. The surface
stress p, is zero. The dimensions are in centimeters.

Evaluate the surface integral in Figure P24.12 for the variable surface
loading acting on the horizontal surface of an axisymmetric element.
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Py = 300 N/cm?

b
S
¥

w
F N
I

Figure P24.11

P,
Py
k .
J
i

R

R, >

—> T

Figure P24.12

24.13  Show that the stress vector {o! defined by (24.12) is related to the nodal
displacements by

(o} =[DI[BI(U"} ~[D]er)

24.14  Calculate the components of {o} as defined by the equation in Problem
24.13 for the element in Problem 24.1 given that 6T =0 and

Uz,'_1=0.0 Uzj_1=0.005 Uz,(_,z0.00l
Uz,' :00 UZJ 200002 UZk :()008
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24.15 Calculate the components of {g} as defined by the equation in Problem
24.13, for the element in Problem 24.2 given that 6T =0 and

U2i'l :OOOS UZj- 1 :0003 UZk*l 20006
Uy, =00 U,;, =0002 Uy =000l

24.16 Evaluate [ B] for an axisymmetric rectangular element. Remember that
the shape function equations must be written relative to the origin of the
global coordinate system. See equation (13.10).

24.17 Evaluate {f,'} for the surface stress p, shown acting on the rectangular

element in Figure P24.17. See equation (13.10).

Figure P24.17



Chapter 25

COMPUTER PROGRAMS
FOR STRUCTURAL AND
SOLID MECHANICS

The matrix analysis of structures and the finite element solution of elasticity
problems have a limited usefulness if a digital computer is not available. Computer
programs that can be used to analyze plane structures and plane stress elasticity
problems are presented in this chapter. Both programs are written for educational
use rather than commercial problem solving. The elasticity program, in particular,
contains several diagnostic checks to locate errors that are common to the begin-
ning user.

251 PROGRAM FRAME

The computer program FRAME is used to analyze one- and two-dimensional

plane structures. The program uses the element stiffness matrix for the plane frame .

member, (21.13), in an expanded form and obtains the element stiffness matrix
for the axial and truss elements by setting the area moment, I, to zero. The element
stiffness matrix for the beam element is obtained by keeping the plane frame
element horizontal.

The program FRAME has five subroutines; MODFRM, DCMPBD, SLVBD,
CONVERT and INVERT. A brief discussion of each program is given in the fol-
lowing paragraphs.

Subroutine MODFRM. The subroutine MODFRM incorporates the specified
nodal displacements into the system of equations using the method of deletion of
rows and columns (see Appendix II). The subroutine is also used to add con-
centrated force and moment values directly to {F}. It is important that the user
realize that this subroutine has READ statements and that these statements
must be terminated by specifying a numerical value before execution is returned to
the main program.

The subroutine MODFRM s nearly identical to the subroutine MODIFY
used with the programs TDFIELD (Chapter 16) and STRESS. The major dil-

ference is that MODFRM calls the subroutines CONVERT and INVERT whereas

MODIFY does not.
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subroutine DCMPBD. The subroutine DCMPBD decomposes the global
stiffness matrix [ K] into an upper triangular form using the method of Gaussian
elimination (Conte and deBoor, 1980). This subroutine assumes that [ K] is sym-
metric and only those elements within the bandwidth and on or above the main
diagonal are stored. The programming logic is not easy to follow because the
coefficients of [ K ] are stored in a vector rather than a two-dimensional array.
Subroutine SLVBD. The subroutine SLVBD is a companion program to
DCMPBD. This subroutine decomposes the global force vector, fF}, and solves
the system of equations using back substitution. The solution of the system of
equations is separated into two subroutines so that they can be used to solve time-
dependent problems, where each new time step requires the decomposition of
{F} but may not require that [K] be converted into an upper triangular form.
Subroutine CONVERT. The subroutine CONVERT makes the program FRAME
look like an axial force, truss, beam, or frame program to the user. The element
stiffness matrix in FRAME has three displacements at each node, but CONVERT
makes the program appear as though it has one, two, or three displacements at a
node depending on the numerical value of ITYP (line 30 of FRAME).
Subroutine INVERT. The subroutine INVERT is a companion program (0
CONVERT. The subroutine takes results calculated using three displacements
at a node and presents them so the program appears as though it has one, two,
or three displacements at a node depending on the numerical value of ITYP.

PROGRAM FRAME (INPUT, QUTPUT,TAPE6O=INPUT,TAPE61=0UTPUT)
DIMENSION NS (6) ,ESM(6,6) ,EF (6) ,F (6),XC(100),YC (100)
DIMENSION ELMOD (2) ,PROP (50,2) ,NEL (50,2) , I SECT (50)
DIMENSION 1CK (100)

5 COMMON/TLE/TITLE (20)
COMMON/AV/A (5000) , JGF , JGSM,NP,NBW
COMMON/CT/ITYP,IB
DATA ELMOD /20000000.,0./
DATA IN/60/,10/61/

10 DATA YC/100%0.0/

Coex
9
C DEFINITION OF THE INPUT VARIABLES FOR THIS PROGRAM
15 C THIS LIST DOES NOT INCLUDE VALUES
C READ BY THE SUBROUTINE MODFRM
¢
C
C
20 o
C TITLE AND PARAMETERS
c
C TITLE - DESCRIPTIVE STATEMENT OF THE PROBLEM
c BEING SOLVED
25 c NN - NUMBER OF NODES
c NE - NUMBER OF MEMBERS
9 NSP - NUMBER OF SETS OF SECTION PROPERTIES
c IEM - ELASTIC MOBULUS INDEX
C } - STEEL, S| UNITS, NEWTONS/SQ. CM.



30

35

Lo

L5

50

55

60

65

70

75

8o

85

OO0 OO0

3

OO0 OO0 00O0000 0000000000000 000000000000

2 - EXTERNALLY DEFINED VALUE
ITYP - TYPE OF PROBLEM

1 - AXIAL FORCE MEMBERS

2 - TRUSS MEMBERS

3 - BEAM MEMBERS

L - FRAME MEMBERS

SECTION PROPERTIES
NSEC - SECTION NUMBER
PROP (NSEC, 1) - CROSS SECTIONAL AREA
PROP (NSEC,2) - AREA MOMENT
EXTERNALLY DEFINED ELASTIC MODULUS VALUE
ELMOD (2) - READ WHEN |EM=2, SKIPPED WHEN [EM=1
NODAL COORDINATES

XC(1) - X COORDINATES OF THE NODES IN NUMERICAL SEQUENCE
YC (i) - Y COORDINATES OF THE NODES IN NUMERICAL SEQUENCE
Y COORDINATES NEEDED ONLY FOR TRUSS AND FRAMI

PROBLEMS

ELEMENT DATA

N - ELEMENT NUMBER

ISECT(N) - SECTION NUMBER OF ELEMENT N
NEL(N,!) - NODE NUMBER OF NODE |
NEL(N,J) - NODE NUMBER OF NODE J

et

INPUT SECTION OF THE PROGRAM

INPUT OF THE TITLE CARD AND THE CONTROL PARAMETERS

READ (IN, 1) TITLE
FORMAT (20A4)
READ (IN,=) NN,NE,NSP,IEM,ITYP
WRITE(10,3) TITLE
3 FORMAT (1H1////10X,20AL)

COMPARISON OF NN, NE, NSP, [EM, AND ITYP WITH
THE DIMENSIONED VALUES

ISTOP=0
CHECK NN
IF{(NN.LE.100) GOTO32
WRITE(10,3))
FORMAT (10X, 27HNUMBER OF NODES EXCEEDS 100/
+10X,20HEXECUTION TERMINATED)
|STOP=1

90

95

100

105

110

15

120

125

130

135

140

32
33

36

37

39

Lo

OO0

OO0~ o

12

3
L

1
1
C
C
C

CHECK NE
IF(NE.LE.50) GOTO3k
WRITE (10, 33)
FORMAT (10X, 29HNUMBER OF ELEMENTS EXCEEDS 50/
+10X,20HEXECUTION TERMINATED)
ISTOP=]
CHECK NSP
IF (NSP.LE.50) GOTO36
WRITE (10, 35)
FORMAT (10X, 29HNUMBER OF SECTIONS EXCEEDS 50/
+10X, 20HEXECUTION TERMINATED)
1STOP=}
CHECK IEM
IF (IEM.LE.2) GOTO38
WRITE (10, 37)
FORMAT (10X, 34HNUMBER OF MODULUS VALUES EXCEEDS 2/
+10X, 20HEXECUTION TERMINATED)
I1STOP=)
CHECK ITYP
'F(ITYP.LE.4) GOTOLO
WRITE (10, 39)
FORMAT (10X, 21HTYPE NUMBER EXCEEDS 4/
+10X, 20HEXECUTION TERMINATED)
ISTOP=1
[F(ISTOP.EQ.1) STOP
WRITE (10,5)
FORMAT (//10X, 18HSECTION PROPERTIES/10X,JHSECTION,
+6X, 4LHAREA, 9X, 1 THAREA MOMENT)
INPUT OF THE SECTION PROPERTIES

DO4I=1,NSP

READ (IN,*) NSEC,PROP (NSEC,1),PROP (NSEC,2)
WRITE (10,8) NSEC,PROP (NSEC, 1) ,PROP (NSEC,2)
FORMAT (13X, 13,2£15.5)
IF(ITYP.EQ.1.0R.ITYP.EQ.2) PROP(NSEC,2)=0.
IF(ITYP.EQ.3) PROP(NSEC,1)=0.

INPUT OF A DIFFERENT ELASTIC MQDULUS VALUE

IF(1EM.EQ.2) READ (IN,*) ELMOD(2)
WRITE(10,7) ELMOD (IEM)
FORMAT (/10X, 17HELASTIC MODULUS =,E15.5)

INPUT AND ECHO PRINT OF THE NODAL COORDINATES

WRITE (10,12)

FORMAT (///10X, 17HNODAL COORDINATES/10X,
+4HNODE, 9X, THX, 14X, 1HY)

READ (IN, %) (XC(1),1=1,NN)

[F(OTYP.EQ.2.0R.ITYP.EQ.L)} READ (IN,%) (YC(1),I=1,NN)

DO13i=1,NN
WRITE (10, 14) 1,XC(1),YC (1)
FORMAT (10X, 14,F12.2,3X,F12.2)

INPUT AND ECHO PRINT OF ELEMENT DATA



145

150

155

160

165

170

175

180

185

190

195

200

WRITE (10,21)
21 FORMAT (//10X, 12HELEMENT DATA/32X%,4HNODE/
+\OX,7HELEMENT.3X,7HSECTION,3X,7HNUMBERS)
D0231=1,NE
READ (IN, %) N,ISECT(N),NEL(N,]),NEL(N,Z
23 WRITE (10,24) N, 1SECT (N) ,NEL (N, 1) ,NEL (N, 2)
24 FORMAT(]ZX,I},BX,I],SX,ZIH)
[of: 12313 b
e

DO5001=1,NN
500 1CK (1) =0
C
C CHECK TO SEE IF ANY NODE NUMBER EXCEEDS NP
o

DO5011=1,NE
00502J=1,2
K=NEL (1,J)
1 CK (K) =1
502  IF(K.GT.NN) WRITE(10,503) J,!,NN
503  FORMAT (/10X,4HNODE, L, 1 1H OF ELEMENT, 14,
+13H EXCEEDS NN =, 14)
501  CONTINUE
C
C CHECK TO SEE IF ALL NODE NUMBERS THROUGH
C NN ARE INCLUDED
C

DO5051=1,NN
505 IF(ICK(1).EQ.0) WRITE(i0,506) I
506  FORMAT (/10X,4HNODE, 4, 15H DOES NOT EXIST)

Corsrksnisbt st dst

[T 333332 8133333
c
C INITIALIZATION OF THE A VECTOR
o
Caddstkkfkithik
[ 333 232 8232223
c
C DETERMINATION OF THE BANDWIDTH, NBW X
c NBW - BANDWIDTH OF THE SYSTEM OF EQUATIONS
o
NBW=0
D0521=1,NE
1J=1ABS (NEL {1,1)-NEL (1,2))
52 1F (1J.GT.NBW) NBW=1J

NBW= (NBW-+1) %3
c
C INITIALIZATION OF THE COLUMN VECTOR A()
c

NP=NN#3

205

210

215

220

225

230

235

240

245

250

255

63

Codokimtk

Cordfededdtdossdott

c

c

JGF=NP
JGSM=JGF+NP
JEND=JGSM+NP*NBW
D0611t=1,JEND
61 A(1)=0.0
1F (JEND.GT.2500) GOT062
GOT069
62 WRITE(10,63)
FORMAT (//10X, 26HMEMORY REQUIREMENTS EXCEED
+30H THE DIMENSION OF THE A VECTOR)
STOP

GENERATION OF THE SYSTEM OF EQUATIONS

Coededdeffokdleide
C fedededsrsksysbdeedi

c
69

9
o
C
70

[a N el

(@]

(o)

| FORCE=0
EM=ELMOD {1EM)
KK=1

RETRIEVAL OF THE SECTION PROPERTIES

J=I1SECT (KK)
AREA=PROP (J, 1)
RI=PROP (J,2)

CALCULATION OF THE GEOMETRIC DATA

JI=NEL (KK, 2)

J2=NEL (KK, 1)
XL=XC (J1) -XC (J2)
YL=YC (J1) -YC (J2)
EL=SQRT (XLH*XL+YL%YL)
CS=XL/EL

SN=YL/EL

CALCULATION Of THE ELEMENT DEGREES OF FREEDOM

NS (1) =J2%3~-2
NS (2) =J2#3-1
NS (3) =J2%3
NS (4) =J1%3-2
NS (5) =J1%3-1
NS (6) =J1%3

CALCULATION OF THE ELEMENT STIFFNESS MATRIX

RM=EM/EL

ESM(1,1)=(AREA®CS# %2 +12 *RI#SN#%2 JEL*%2 ) %RM
ESM(2,1)=(AREA- (12.%RI/EL%*%2 )) #CS%HSN*RM
ESM(2,2) = (AREA®SN¥%2 + (12, %RI/EL#%2 ) %CS%%2 )%
ESM(3,1)==(6.%RI/EL) *SN#*RM

ESM(3,2) =RM*CS*6.*RI/EL

ESM (3, 3) =4.%R|*RM

‘RM



260

265

270

275

280

285

290

295

300

305

310

o

o

ESM(L,1)=-ESM(1, 1)
ESM(L,2)=-ESM(2,1)
ESM(L,3)=-ESM(3,1)
ESM(4,b)=ESM(1, 1)
Esn(5,1)=+£sn(u,z
ESM(5,2)=-ESM(2,2)
ESM(5,3)=-ESM(3,2)
ESM(5,4)=+ESM(2,1)
ESM(5,5) =+ESM(2,2)
ESM(6,1)=+ESM(3,1)
ESM(6,2)=+ESM(3,2)
ESM(6,3) =+2.%RI*RM
ESH(6,4)=~ESM(3,1)
ESM(6,5)=~ESM(3,2)
ESM(6,6)=+ESM(3,3)
D0731=1,5
K=1+1
D073J=K,6

73 ESM(1,J)=ESM(J, 1)

F(IFORCE.EQ.1) GOTO85

DIRECT STIFFNESS PROCEDURE

Do76i=1,6

I 1=NS (1)

D075J=1,6
JJ=NS (J) =NS (1) +1
IF(JJ.LE.O) GOTO75

J1=JGSMH (JJ-1) #NP+I - (JJ-1) %

A(JT)=A{J1)+ESM(1,J)
75 CONTINUE
76 CONTINUE

ANOTHER ELEMENT?

KK=KK+1
IF (KK.LE.NE} GOTO70

C steeskdedededededededoded
C e dededesedoksedeodek

o

C MODIFICATION AND SOLUTION OF THE SYSTEM OF EQUATIONS
DATA IS CALLED BY MODFRM

c
c

C edfedededie oo
Coddedes

c
C
o

101
C
c
C

(JJ-2) /2

SETTING ZERO DIAGIONAL VALUES TO ONE

Dol101I=1,NP

LF (A (JGSM+!) .GT.0.01) GOTO10)

A (JGSM+1)=1.0
CONTINUE

THE SOLUTION SUBROUTINES

CALL MODFRM
CALL DCMPBD

315

320

325

330

335

340

345

350

355

365

370

CALL SLVBD
C
C OUTPUT OF THE CALCULATED DISPLACEMENT VALUES
c

WRITE(10,110) TITLE

110 FORMAT (1H1///10X,20A4// /10X, 25HNODAL DISPLACEMENT VALUES)
IF(ITYP.EQ.1) WRITE(10,111)

1117 FORMAT (//10X, 4HNODE,6X. 12HX DEFLECTION)
JIF(ITYP.EQ.2) WRITE(10,112)

112 FORMAT (//10X, 4LHNODE ,6X, 12HX DEFLECTION,6X, 12HY DEFLECTION)
IF(JTYP.EQ.3) WRITE(10,113)

113 FORMAT (//10X,4LHNODE,6X, 12HY DEFLECTION,8X, 10HZ ROTATION)
IF(ITYP.EQ.L) WRITE (10, 114)

114 FORMAT (//10X,4HNODE ,6X, 12HX DEFLECTION,6X, 12HY DEFLECTION,

+8X, 10HZ ROTATION)

D01021=1,NN

1F(ITYP.EQ.1) WRITE(10,103) 1, A{1%3-2)

IF(ITYP.EQ.2) WRITE(10,103) ,A(1%3-2),A(1%3-1)

IF(tTYP.EQ.3) WRITE(10,103) I,A(1%3-1),A(I% )
I,

IF(ITYP.EQ.4) WRITE(10,103)

102 CONT INUE

103 FORMAT (11X,13,3X,E15.6,3X,E15.6,3X,E15.6)
C******‘Y*****

BRI EE i 134

C

C CALCULATION OF ELEMENT NODAL FORCES
C
Cestesestesyst
Cesedededeseededesdledt
o
C OUTPUT OF HEADINGS
C

A{1%3-2) ,A(1%3-1) ,A(1%3)

EE

WRITE (10,80)
80 FORMAT (////10X,20AL//10X,20HELEMENT NODAL FORCES )
IF(ITYP.EQ.1.0R..ITYP.EQ.2) WRITE(10,82)
82 FORMAT (//10X, 7HELEMENT, 3X, kHNODE , kX, 1 THAXIAL FORCE)
IF(ITYP.EQ.3) WRITE(10,83)
83 FORMAT (//10X, THELEMENT, 3X, 4kHNODE, kX, 1 THSHEAR FORCE,
+3X, T4HBEND ING MOMENT)
F(ITYP.EQ.4) WRITE(10,81)
81 FORMAT (//10X, THELEMENT, 3X, 4bHNODE , 4X, 1 THAXI AL FORCE,
+4X, VIHSHEAR FORCE,3X, 14HBENDING MOMENT)

o
C EVALUATION OF THE ELEMENT STIFFNESS MATRIX
o

IFORCE=1

EM=ELMOD (1EM)

KK=1

GOT070
o
C CALCULATION OF THE ELEMENT FORCES IN
o THE LOCAL COORDINATE SYSTEM
c
85 pD0861=1,6

F(1)=0.0

D086J=1,6

K=NS (J)



86 EF (1) =EF (1) +ESM (I, J) *A (K) 203 FORMAT (10X, 13,E15.5)
o G0T0202
C TRANSFORMATION OF THE ELEMENT FORCES C .
375 c TO THE MEMBER COORDINATE SYSTEM 30 C
o c
F (1) =CS*EF (1) +SNXEF (2) C INPUT OF THE PRESCRIBED NODAL VALUES
F (2) =-SN*EF (1) +CS%EF (2) c IB - DEGREE OF FREEDOM OF THE KNOWN NODAL VALUE
80 igi;=ig(gi(u)+su F (5) c BV - KNOWN NODAL VALUE
e % 35 C  INPUT OF IB AND BV IS
F (5) =-SN%EF (b) +CS*EF (5) c A ZERO VAUE FOR IBTERMINATED BY INPUTTING
F (6) =EF (6) o
o Cx 3
C OUTPUT OF THE ELEMENT NODAL FORCES c E
385 o Lo 216 NIW=0
IF(ITYP.EQ.1.0R.ITYP.EQ.2) WRITE(10,95) KK,NEL (KK, 1) ,F (1), 209  READ(IN,%) IB
+NEL (KK, 2) , F (b) PF(IB.LE.O) RETURN
95 FORMAT (/13X, 12,5X,13, 1X,E15.6/20X%,13,1X,E15.6) IF(NIW.EQ.O) WRITE (10,208)
FE(ITYP.EQ.3) WRITE(10,96) KK,NEL(KK,1),F(2),F(3), 208  FORMAT (//10X, 25HKNOWN DISPLACEMENT VALUES)
390 +NEL (KK, 2) ,F (5) ,F (6) 45 NiW=]
96 FORMAT (/13X,12,5X,13,1X,2E15.6/20X,13,1X,2E15.6) CALL CONVERT
IF (ITYP.EQ.L) WRITE(10,93) KK,NEL(KK,1),F(1),F(2),F(3), READ (IN,%) BV
NEL (KK, 2) ,F (b) ,F (5) ,F (6) C
93 FORMAT (/13X,12,5X,13,1X,3E15.6/20X,13,1X,3E15.6) C MODIFICATION OF THE GLOBAL STIFFNESS MATRIX AND
195 ¢ 50 c THE GLOBAL FORCE VECTOR USING THE METHOD
¢ ANOTHER ELEMENT? c OF DELETION OF ROWS AND COLUMNS
c C
KK=KK+1 K=1B-1
iF (KK.LE.NE) GOTO70 D0211J=2,NBW
400 END 55 M=|B+J-1
IF (M.GT.NP) GOT0210
I J=JGSM+ (J=1) *NP+1B- (J-1) % (J-2) /2
SUBROUTINE MODFRM A (JGF+M) =A (JGF+M) -A (1J) BV
COMMON/AV/A (5000) , JGF, JGSH, NP, NBW A(19)=0.0
COMMON/CT/ITYP, 1B 60 210 IF(K.LE.O) GOTO 211
DATA IN/60/,10/61/ KJ=JGSM+ (J-1) ANP+K=- (J-1) % (J-2) /2
5 C* : A (JGF+K) =A (JGF+K) -A (KJ) *BV
cx A (KJ)=0.0
C K=K-1
C INPUT OF THE NODAL FORCE VALUES 65 211 CONTINUE
c |8 - DEGREE OF FREEDOM OF THE FORCE A (JGF+1B) =A (JGSM+1B) %BV
10 C BV - VALUE OF THE NODAL FORCE 221 CONTINUE
C INPUT OF (B AND BV IS TERMINATED BY CALL INVERT
c INPUTTING A ZERG VALUE FOR IB WRITE (10,203) IB,BV
c 70 GOT0209
Cx . END
]5 C*% %
NIW =0
202 REQD(uNé*£)|20T0216 SUBROUTINE DCMPBD
iF(IB.LE. COMMON/AV
IF (NIW.EQ.O) WRITE(10,201) 10=61 /RV/A(5000) . JGF, JGSH, NP, NEW
20 201 FORMAT (//10X, 31THCONCENTRATED FORCES AND MOMENTS) Csei kit s
NiwW=1 5 sk dededesedeen:
CALL CONVERT c
iiggél?é?)Aigcr+|B)+Bv C DECOMPOSITION OF A BANDED MATRIX INTO AN UPPER
= o
’ e mr ‘ TRIANGULAR FORM USING GAUSS!IAN ELIMINATION
WRITE (10,203) 1B,BV 10 Cfeskdodkdedkde e



20

25

30

20

25

30

Cededtededeeses

225
226

NP 1=NP-1}

D02261=1,NP}

MJ=|+NBW-1

FF (MJ.GT.NP) MJ=NP

NJ=1+1

MK=NBW

PF((NP-i+1) .LT.NBW) MK=NP-1{+]
ND=0

D0225J=NJ,MJ

MK=MK -1

ND=ND+1

NL=ND+1

D0225K=1, MK

NK=ND+K

JK=JGSM+ (K- 1) sNP+J- (K-1) % (K-2) /2
INU=JGSM+ (NL-1) *NP+1-(NL-1) % (NL-2) /2
INK=JGSM+ (NK-1) NP+1- (NK-1) % (NK-2) /2
1 1=JGSM+I

A(JIK) =A (JK) -A (INL) %A (INK) /A (4 1)
CONT { NUE

RETURN

END

SUBROUTINE SLVBD
COMMON/AV/A (5000) , JGF , JGSM, NP, NBW
NP1=NP- |

C seskestasdeststatt

C dededededededevek

OO0

DECOMPOSITION OF THE GLOBAL FORCE VECTOR

D02501=1,NP1

MJ=1+NBW-1

IF (MJ.GT.NP) MJ=NP

NJ=|+1

L=1

D0250J=NJ,MJ

L=L+1

IL=JGSM+ (L-1) *NP+1-(L-1) % (L-2) /2

A(JGF+J) =A (JGF+J) -A (IL) <A (JGF+1) /A (JGSM+I)

BACKWARD SUBSTITUTION FOR DETERMINATION OF

THE NODAL VALUES

A (NP) =A (JGF+NP) /A (JGSM+NP)
00252K=1,NP1

1=NP-K

MJ=NBW

[F ((1+NBW=1) .GT.NP) MJ=NP=-1+]

35

Lo

20

25

O

251
252

c
c
C

SUM=0.0
D02514=2,MJ
N=1+J-1

[J=JGSM+ (J=1) %NP+1- (J=-1) % (J-2) /2

SUM=SUM+A (1J) *A (N)

A(1)=(A(JGF+1) ~SUM) /A (JGSM+1)

RETURN
END

SUBROUTINE CONVERT
COMMON/CT/ITYP, 1B
'F(ITYP.EQ.4) RETURN
IF(ITYP.GT.)) GOTOI

AXFAL FORCE MEMBER

IB=3%1B-2

RETURN

IND=(IB+1) /2
ICK=(1B/2) %2
IF(ITYP.GT.2) GOTO2

TRUSS MEMBERS

'F (ICK.NE.IB) IB=3*%IND-2
'F (JCK.EQ.IB) 1B=3%IND-1
RETURN

BEAM MEMBERS

IF (ICK.NE.1B) IB=3%IND-1
IF (1CK.EQ.IB) IB=3%IND
RETURN

END

SUBROUTINE INVERT
COMMON/CT/ITYP, tB
[F(ITYP.EQ.4) RETURN
IF(ITYP.GT.1) GOTO}

AXTAL FORCE MEMBER

18=(18+2) /3

RETURN

ICK=(18-2) /3%3+2
IF(ITYP.GT.2) GOTO3

TRUSS MEMBERS

IF(ICK.EQ.1B) GOTO2
IND=(1B+2) /3

| B=2%|ND-1

RETURN

IND=(1B+1) /3
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20 1B=231ND
RETURN

BEAM MEMBERS

w o o0

IF(ICK.EQ.1B) GOTOL
IND=1B/3
|B=2%IND
RETURN
4 IND=(1B+1) /3
30 |B=2%IND-1
RETURN
END

25

STRUCTURAL AND SOLID MECHANICS

25.2 AN EXAMPLE PROBLEM FOR FRAME

The input data and the computer output for the two-member rigid frame shown

in Figure 25.1 are discussed here. The secti
are given in the figure.

The input data for the FRAME program
to the right of the solid vertical line. The titl
data. Each line represents a card of input. Th

The interpretation of the member forces i

on and elastic properties of the frame

are given in Table 25.1. The data are
es on the left indicate the nature of the
e computer output follows Figure 25.1.
s given in Figure 25.2. Remember that

the calculated member forces must be interpreted relative to the member co-
ordinate system, (x, y), and that the origin of this system is always at node i with
x directed along the member. The numerical values given contain four significant

digits.

100000 N
2) V
2 3
1
282.8 cm W A= 30cm?
I= 400 cm*
T both members
— =] ——>
i(——282.8 400
Figure 25.1. A two-memberrigid frame.

FRAME EXAMPLE PROBLEM

SECTION PROPERTIES

SECTION AREA AREA MOMENT
1 .30000£+02 .4LOODOE+03
ELASTIC MODULUS = .20000E+08
NODAL COORDINATES
NODE X Y
1 0.00 0.00
2 282.80 282.80
3 682.80 282.80
ELEMENT DATA
NODE
ELEMENT  SECTION  NUMBERS
1 | 12
2 1 2 3

CONCENTRATED FORCES AND MOMENTS
5 -.10000E+06

KNOWN DISPLACEMENT VALUES

1

O O~ N
[oleNeNeNel

FRAME EXAMPLE PROBLEM

NODAL DISPLACEMENT VALUES

NODE X DEFLECTION Y
1 0. 0

2 L66LILIE-O1 -

3 c. 0
ELEMENT NODE AXIAL FORCE
1 1 . 140990E+06

2 . 140990E+06

2 2 .996211E+05

3 -.996211E+05

DEFLECTION

:199321E+00

SHEAR FORCE

.104363E+03
-.104363E+03

-.231266E+03
.231266E+03

Z ROTATION
-.817600E~-03

.225716E-03
0.

BENDING MOMENT

.582077E-09
.417389E+05

-.417389E+05
-.507676E+05
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STRUCTURAL AND SOLID MECHANIC:

Table 25.1 Computer Data for FRAME

Title
Parameters
Section

properties
X-coordinates
Y-coordinates
Element

data
Known force
Known

displacements

TEXTBOOK FRAME EXAMPLE PROBLEM
3 2 I i 4

1 30. 40O.

0 282.8 682.8
0. 282.8 282.8
o1 2

2 1 2 3

5 -10000. O

1 0. 2 0. 7 O. 8 o. 9 0. 0

y
A
41740 N-cmXMlON 41740 N-cm 231.3N

! x (2)

2 99620 N lo >~ —

\ ~€>v2 3T<)—99620N

W 104.4N 231.3N 50770 N-cm
100000
v e 231.3

104.:'\ f
/\

410N

Figure 25.2. The

AN 41740
104.4 99620
41740}2\
Joint 2

1410

calculated axial and shear forces and bending moments in each

member of a two-member rigid frame.

25.3 PROGRAM STRESS

The computer program STRESS is used to analyze two-dimensional, plane stress
elasticity problems. The program does not include the possibility of body forces,
thermal changes, or composite construction. The program is written for educa-
tional purposes only. The input data are relatively simple and the program con-
tains several diagnostic checks to detect common errors made by new users.
The program uses only the three-node triangular element.

PROGRAM STRESS (INPUT,OQUTPUT,TAPEGO=INPUT,TAPEG1=0UTPUT)
COMMON/ELMATX/ESM(6,6) ,x(3),Y(3),D(3,3),IELR
COMMON/GRAD/B (3,6) ,AR2

COMMON/MTL/EM,PR,TH

COMMON/TLE/TITLE (20)

COMMCN/AV/A (8500) , JGF , JGSM,NP ,NBW

DIMENSION NEL (250,3),XC(200),YC (200)

DIMENSION NS (6),U(6),STRA(3) ,STRE (6),ICK (250)

20

25

30

35

Lo

k5

50

55

60

DATA IN/60/,10/61/,1FE/1/

DEFINITION OF THE INPUT VARIABLES FOR THIS PROGRAM

THIS LIST DOES NOT INCLUDE VALUES READ BY
THE SUBROUTINE MODIFY

TITLE AND PARAMETERS

TITLE - A DESCRIPTIVE STATEMENT OF THE PROBLEM
NN - NUMBER OF NODES
NE - NUMBER OF ELEMENTS
IPLVL - PRINT LEVEL
O - DO NOT WRITE THE ELEMENT MATRICES
I - WRITE THE ELEMENT MATRICES

MATERIAL PROPERTIES AND THICKNESS

EM - MODULUS OF ELASTICITY
PR -~ POISSON'S RATIO
TH - THICKNESS OF THE REGION

NODAL COORDNATES

XC (1) - X COORDINATES OF THE NODES IN NUMERICAL
SEQUENCE

YC(I) - Y COORDINATES OF THE NODES IN NUMERICAL
SEQUENCE

ELEMENT DATA

N - ELEMENT NUMBER

NEL (N, 1) - NUMERICAL VALUE OF NODE |
NEL (N,J) - NUMERICAL VALUE OF NODE J
NEL (N,K) - NUMERICAL VALUE OF NODE K

INPUT SECTION OF THE PROGRAM

INPUT OF THE TITLE CARD AND PARAMETERS

aNeNasNeNeNaNaNasNgNsNeNaNsNaeNasNaNaNeNesNaNesleNeNeNeNalesNeNeNaNaNeNeNoNaleNaNeNaNoNeoNesNeNaNeNasNaNgNel

READ (IN,3) TITLE

3 FORMAT (20AL)
READ (IN,*%) NN,NE, IPLVL
NP=2%NN
TF(1PLVL.GE.1) IPLVL=0
1F (NE.GE.10) IPLVL=0



65

70

75

80

85

90

95

100

105

110

115

120

C
C COMPARISON CHECK OF NN AND NE WITH THE VALUES USED
C IN THE DIMENSION STATEMENTS
C
1STOP=0
C CHECK NN
IF (NN.LE.200) GOTO6
WRITE (10, 10)
10 FORMAT (10X, 27HNUMBER OF NODES EXCEEDS 200/
+10X,20HEXECUTION TERMINATED)
1STOP=1
¢ CHECK NE
6 IF (NE.LE.250) GOTO!
WRITE(10,2) '
2 FORMAT (10X, 30HNUMBER OF ELEMENTS EXCEEDS 250/
+10X,20HEXECUTION TERMINATED)
ISTOP=)
1 IF (1STOP.EQ.1) STOP
c
C INPUT OF THE MATERIAL PROPERTIES, THICKNESS
c AND NODAL COORDINATES
C
READ (IN,*) EM,PR,TH
READ (IN,®) (XC(1),i1=1,NN)
READ (IN,=%) (YC(1),1=1,NN)
C
C OUTPUT OF TITLE AND DATA HEADINGS
c

WRITE(10,4) TITLE,NN,NE
L FORMAT (1HY////10X,20A4//13X,5HNN =16/13X,5HNE =16)
WRITE(10,16) EM,PR,TH
16 FORMAT (//10X, 16HPARAMETER VALUES/13X,4HEM =,E15,5/13X,4HPI
+E15.5/13X,4HTH =,E15.5)
WRITE(10,11)
11 FORMAT (//10X, 17HNODAL COORDINATES/10X, 4HNODE,5X, THX, 14X, 1t
WRITE (10,12) (1,XC(1),YC(1),I=1,NN)
12 FORMAT (10X, I 4, 2E15.5)
C
C INPUT AND ECHO PRINT OF ELEMENT DATA
o CHECK TO SEE IF THE ELEMENTS ARE IN SEQUENCE
o
28 WRITE(10,8) TITLE
8 FORMAT (1H1,///10X,20Ak//10X, 3HNEL, LX, 12HNODE NUMBERS)
N1D=0
DO9KK=1,NE
READ (IN,*) N, (NEL(N,I),1=1,3)
VF((N-1) .NE.NID) WRITE(IO,17) N
17 FORMAT (10X, 7THELEMENT, 14, 16H NOT IN SEQUENCE)

N(D=N
9 WRITE(10,5) N, (NEL(N,1),1=1,3)
5 FORMAT (10X, 13, 2X, 31 4)

Coesadaededtedodss

Coodmededededeses

C

C ANALYS!S OF THE NODE NUMBERS
c

C odededlestes

125

130

135

140

145

150

155

160

165

170

175

OO0

500
C
c
c

502
503

501
C

c
C
C

% %

OO0 000
o v Yy

25

26

e Nal

INITIALIZATION OF A CHECK VECTOR

D05001=1,NN
ICK (1) =0

CHECK TO SEE IF ANY NODE NUMBER EXCEEDS NP

D05011=1,NE

D0502J=1,3

K=NEL (1,J)

I1CK (K) =1

IF (K.GT.NN) WRITE(10,503) J,I,NN

FORMAT (/ 10X, 4HNODE, {4, 11H OF ELEMENT, L,
+13H EXCEEDS NN =, &)

CONTINUE

CHECK TO SEE IF ALL NODE NUMBERS THROUGH

NN ARE INCLUDED

DO5051=1,NN
IF(ICK (1) .EQ.0) WRITE (10,506) |
FORMAT (/ 10X, 4bHNODE, I 4, 15H DOES NOT EXIST)

DR

R

CREATION AND INITIALIZATION OF THE A VECTOR

CALCULATION OF THEPBANDWIDTH

JEL=0
I NBW=0
NBW=0
DO20KK=1,NE
B0251=1,3
NS (1) =NEL (KK, )
D0211=1,2
1J=141
D021J=1J,3
NB=1ABS (NS (1) -NS (J))
IF(NB.EQ.0) WRITE(10,26) KK
FORMAT (/10X, JHELEMENT, 13,
+39HHAS TWO NODES WITH THE SAME NODE NUMBER)
|F (NB.LE.NBW) GOTO2t1
I NBW=KK
NBW=NB
21 CONTINUE
20 CONTINUE
NBW= (NBW+1) %2
WRITE (10,27) NBW, INBW
27 FORMAT (10X, 12HBANDWIDTH 1S, 1k, 11H IN ELEMENT, 1L)

INITIALIZATION OF THE COLUMN VECTOR A ()



180

185

190

195

200

205

210

215

225

230

235

c
c

(@]

woOoooo

o

(@}

JGF=NP
JGSM=JGF+NP
JEND=JGSM+NP*NBW
iF(JEND.GT.8500) GOTO022
JL=JEND-JGF
DO241=1,JEND

2L A(1)=0.0
GOT030

22 WRITE (10,23)

23 FORMAT (10X, 30HDIMENSION OF A VECTOR EXCEEDED/

+10X,20HEXECUTION TERMINATED

R
=D (1,1)
=R (1.0-PR) /2.
D(1,2)=PR*R
D(2,1)=D(1,2)
D(1,3)=0.0
D(3,1)=0.0
D(2,3)=0.0
0(3,2)=0.0

START OF THE LOOP FOR THE ELEMENT MATRICES

iELR=0
Kh=1

GENERATION OF THE NODAL DEGREES OF FREEDOM
RETRIEVAL OF THE NODAL COORDNATES

D0311=1,3
J=NEL (KK, 1)
NS (271 -1) =J%2-1
NS (251) =J%2
X (1)y=XC (J)
31 Y (1) =YC (J)

CALCULATION Of ELEMENT MATRICES

CALL ELSTMX (KK, IPLVL)

DIRECT STIFFNESS PROCEDURE

D0331=1,6
I F=NS (1)
DO3LJ=1,6

240

245

250

255

260

265

275

280

290

JJ=NS (J)+1-11
IF(JJ.LE.O) GOTO3h
JI=JGSM+ (JJ-1) =NP+I - (JJ-1) % (JJ-2) /2
AU =AY +ESM(1,J)
34 CONTINUE
33 CONTINUE
KK=KK+1
IF(KK.LE.NE) GOTO032

C ats
c
C MODIFICATION AND SOLUTION OF THE SYSTEM OF EQUATIONS
C DATA IS CALLED BY THE SUBROUTINE MODIFY
C
C :': R U )
Cc=x 14
WRITE (10,110) TITLE
110 FORMAT (1H1///10X, 20AL)
CALL MODIFY (IFE)
CALL DCMPBD
CALL SLVBD
o
C OUTPUT OF THE CALCULATED DISPLACEMENTS
o

WRITE (10,112)
112 FORMAT (///10X,25HNODAL DISPLACEMENT VALUES/
+/10X,4HNODE, 6X, 12HX DEFLECTION,6X, 12HY DEFLECTION)
DOT131=1,NN
13 WRITE (10,111) I, A(1%2-1),A(1%2)
11 FORMAT (11X,13,3X,E15.6,3%X,E15.6)

AND THE PRINCIPAL STRESS VALUES

1
1
C
9
C
C CALCULATION OF THE ELEMENT STRESS AND STRAIN COMPONENTS
C
9
C
C

IPLVL=0

JELR=1

WRITE (10,110) TITLE

DOY6KK=1,NE

IF (KK/9%9.EQ.KK) WRITE (10,110) TITLE

GENERATION OF THE NODAL DEGREES OF FREEDOM
RETRIEVAL OF THE NODAL COORDINATES

[aNeNaNe

DO 51 1=1,3
J=NEL (KK, 1)
NS (2%i-1)=25%J-1
NS (2%1) =25
X (I)=XxC (J)

] Y (1)=YC(J)

RETRIEVAL OF THE ELEMENT NODAL DISPLACEMENTS

oo oWwnm

65 D0731=1,6,2



NS1=NS (1) 10 DO 20 1=1,3
295 NS2=NS (1+1) DO 20 J=1,6
U(I)=A(NST) 20 B(1,J)=0.0
73 U(I+1)=A(NS2) B(1,1)=Y(2)-Y(3)
c B(1,3)=Y(3)-Y (1)
C CALCULATION OF THE STRAIN VECTOR, (STRAIN) = (B) (U) 15 B(1,5) =Y (1)-Y(2)
300 C B(2,2)=X(3)-X(2)
CALL ELSTMX (KK, IPLVL) B(2,4)=X(1)-X(3)
DO 1155 I=1,3 B(2,6)=x(2)-x(1)
STRA (1)=0.0 B(3,1)=B(2,2)
DO1155Kk=1,6 20 B(3,2)=B(1,1)
305 1155  STRA(1)=STRA(I)+B(I,K) *U(K) /AR2 B(3,3)=B(2,4)
C B(3,4)=B(1,3)
C CALCULATION OF THE STRESS VECTOR, (STRESS) = (D) (STRAIN) B(3,5)=B(2,6)
C B(3,6)=B(1,5)
D0581=1,3 25 AR2=X (2) %Y (3)+X (3) %Y (1) +X (1) %Y (2) =X (2) *Y (1) -
310 STRE (1)=0.0 +X (3) %Y (2) =X (1) %Y (3)
DO 58 K=1,3 IF(1ELR.EQ.1) RETURN
58 STRE (1)=STRE (1)+D (1 ,K) * (STRA (K)) C
¢ C MATRIX MULTIPLICATION TO OBTAIN C = (BT) (D)
C CALCULATION OF THE PRINCIPAL STRESSES 30 C
315 c D0 22 I=1,6
AA= (STRE (1) +STRE (2)) /2. DO 22 J=1,3
AB=SQRT ( ((STRE (1) -STRE (2) ) /2.) #%2+STRE (3) #%x2) c(t,J)=0.0
S1=AA+AB D022K=1,3
S2=AA-AB 35 22 C(1,J9)=C(l,4)+B (K, 1) *D(K,J)
320 TM=AB o
I'F (ABS (STRE (1) -STRE(2)) .LT.0.001) GOT093 ¥ MATRIX MULTIPLICATION TO OBTAIN ESM
AC=ATAN2 (2.%STRE (3) ,STRE (1) -STRE (2)) o ESM = (BT) (D) (B) = (C) (B)
THM=((180.0/3.14159265) *AC) /2.0 c
GO TO Sk Lo 0O 27 1=1,6
325 93 THM=90.0 D0 27 J=1,6
o SUM=0.0
C PRINTING OF THE RESULTS DO 28 K=1,3
¢ 28 SUM=SUM+C (1,K) *B (K, J)
9k WRITE (10,57) KK 45 ESM(1,J) =SUMXTH/ (2.%*AR2)
330 57 FORMAT (/ 10X, JHELEMENT, I L) 27 CONTINUE
WRITE (10,95) STRA(1),STRE (1),S1,STRA(2) ,STRE (2),52, c
+STRA (3) ,STRE (3) ,TM, THM C OUTPUT OF THE ELEMENT STIFFNESS MATRIX
95 FORMAT (15X, 5HEXX =,E12.5,5X,5HSXX =,E12.5,5X%,5HS1 =, ¢
+E12.5/15X%,5HEYY =,E12.5,5X,5HSYY =,E12.5,5X,5HS2 =, 50 IF(1PLVL.EQ.0) RETURN
335 +E12.5/15X,5HGXY =,E12.5,5X,5HTXY =,E12.5, kX, WRITE (10,30) KK
+6HTMAX =,E12.5/59X,5HANGLE,F8.2,4H DEG) 30 FORMAT (//5X,28HSTIFFNESS MATRIX FOR ELEMENT, I3)
96 CONTINUE D0311=1,6
STOP 31 WRITE(10,32) (ESM(I,J),J=1,6)
END 55 32 FORMAT (5X,6E15.5)
RETURN
END
SUBROUTINE ELSTMX (KK, IPLVL)
COMMON/MTL/EM, PR, TH
COMMON/GRAD/B (3,6) , AR2
COMMON/ELMATX/ESM(6,6) , X (3),Y (3),D(3,3), IELR SUBROUTINE MODIFY (1FE)
5 DIMENSION C(6,3) COMMON/AV/A (8500) , JGF, JGSA,NP, NBW
10=61 DATA IN/60/,10/61/
C fede eSS
C GENERATION OF THE B MATRIX 5

C




20

25

30

35

Lo

L5

50

55

60

INPUT OF THE NODAL FORCE VALUES
FOR FIELD PROBLEMS
1B - NODE NUMBER
BV - SOURCE OR SINK VALUE
FOR SOLID MECHANICS PROBLEMS
tB - DEGREE OF FREEDOM OF THE FORCE
BV - VALUE OF THE FORCE

INPUT OF 1B AND BV 1S TERMINATED BY
INPUTTING A ZERC VALUE fOR IB

NIW =0

202 READ (IN,*) 1B

IF(IB.LE.O) GOT0216
IF (NIW.EQ.O.AND.IFE.EQ.0) WRITE (10,200)
IF(NIW.EQ.O.AND.IFE.EQ.1) WRITE(10,201)

200 FORMAT (//10X,22HSOURCE AND SINK VALUES)
201 FORMAT (//10X,3THCONCENTRATED FORCES AND MOMENTS)

NiwW=1

READ (IN, %) BV

A (JGF+1B) =A (JGF+1B) +BV
WRITE (10,203) 1B,BV

203  FORMAT (10X, 13,E15.5)

GOT0202

Lotk

Coeseaedersiontesk

C

C INPUT OF THE PRESCRIBED NODAL VALUES

C FOR FIELD PROBLEMS

9 IB - NODE NUMBER

c BV - KNOWN VALUE OF PHI

9 FOR SQOLID MECHANICS PROBLEMS

o IB - DEGREE OF FREEDOM OF THE KNOWN DISPLACEMENT
C BV - THE VALUE OF THE DISPLACEMENT

c

C INPUT OF 1B AND BV IS TERMINATED BY INPUTTING
c A ZERO VAUE FOR IB

C

Cee

[T 3

216 NIW=0

209 READ (IN,*) 1B

212
208

aNeNalelNel

IF(1B.LE.O) RETURN
IF(NIW.EQ.O.AND.IFE.EQ.O0) WRITE(10,212)
JF(NIW.EQ.O.AND.IFE.EQ.1) WRITE(10,208)
FORMAT (//10X, 25HKNOWN NODAL VALUES QOF PHI)
FORMAT (//10X,25HKNOWN DISPLACEMENT VALUES)
Niw=1

READ (IN, %} BV

MODIFICATION OF THE GLOBAL STIFFNESS MATRIX AND
THE GLOBAL FORCE VECTOR USING THE METHOD
OF DELETION OF ROWS AND COLUMNS

65

70

75

80

20

25

30

K=1B-1
D0211J=2,NBW
M=1B+J-1
{F (M.GT.NP) GOT0210
1 J=JGSM+ (J=1) NP+ B- (J-1) % (J-2) /2
B (JGF+M) =A (JGF+M) -A (1 3) *BV
A(1)=0.0

210 1F(K.LE.O) GOTO 211
KJI=JGSM+ {J-1) =NP+K- (J-1) % {J-2) /2
A (JGF+K) =A (JGF+K) -A (KJ) BV
A(KJ)=0.0
K=K-1

211 CONTINUE
A(JGF+IB) =A (JGSM+1B) =BV

221 CONTINUE
WRITE (10,203) 1B,BV

6070209
END

SUBROUT INE DCMPBD
COMMON/AV/A (8500) , JGF , JGSM, NP, NBW
10=6)

ok
Cre
c
C DECOMPOSITION OF A BANDED MATRIX INTO AN UPPER
C TRIANGULAR FORM USING GAUSSIAN ELIMINATION
C
Cesx
(&3 et
NP1=NP-1
D02261=1,NP}
MJ=1+NBW-1
IF (MJ.GT.NP) MJ=NP
NJ=1+1
MK=NBW
IF ((NP-t+1) .LT.NBW) MK=NP-I+]
ND=0
D0225J=NJ,MJ
MK=MK-1
ND=ND+1
NL=ND+1
D0225K=1, MK
NK=ND+K

JK=JGSM+ (K-1) #NP+J- (K-1) % (K-2) /2
INL=JGSM+ (NL-1) &NP+1- (NL-1) 35 (NL-2) /2
INK=JGSM+ (NK= 1) seNP+1— (NK=1) % (NK-2) /2
| I=JGSM+I

225 A (JK) =A (JK) ~A (INL) %A (INK) /A (1)

226  CONTINUE
RETURN
END
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SUBROUTINE SLVBD
COMMON/AV/A (8500) , JGF, JGSM,NP,NBW

NP1=NP-1
C fesedeedlededentst
5 C et steed
C
C DECOMPOSITION OF THE GLOBAL FORCE VECTOR
C
Cdededesededesedest
10 C dededesesestsedest
D02501=1,NP1
MJI=1+NBW-1
tF (MJ.GT.NP) MJ=NP
NJ=1+1
15 L=1
D0250J=NJ,MJ
L=L+1

FL=JGSM+ (L-1) *NP+1~- (L-1) % (L-2) /2

250 A (JGF+J) =A (JGF+J) -A (1L) A (JGF+1) /A (JGSM+1)
20 C oo dededentedtest

Cdfededtsedtodestest

c

C BACKWARD SUBSTITUTION FOR DETERMINATION OF
c THE NODAL VALUES
25 c
Coedestes
C

A (NP) =A (JGF+NP) /A (JGSM+NP)
D0252K=1,NP1
30 I =NP-K
MJ=NBW
IF ((1+NBW-1) .GT.NP) MJ=NP-I[+1]
SUM=0.0
D0251J=2,MJ
35 N={+J-1
FJ=JGSM+ (J-1) *NP+I= (J=1) % (J-2) /2
251 SUM=SUM+A (1J) *A (N)
252 A(1)=(A(JGF+1i)-SUM) /A (JGSM+1)
RETURN
40 END

The computer program STRESS has four subroutines: ELSTMX, MODIFY,

DCMPBD and SLVBD. The last two, DCMPBD and SLVBD, were discussed in
Section 25.1. The subroutine MODIFY is identical to the subroutine MODIFY
discussed in Section 16.2.
Subroutine ELSTMX. The subroutine ELSTMX evaluates the element stiffness
matrix, [£'“7], for the linear triangular element using (23.22). The individual
matrices, [B] and [D], are evaluated using (23.20) and (23.6), respectively. The
matrix product [ B]"[D][B] is evaluated within the subroutine. The subroutine
also provides the option of printing the element stiffness matrix so that students
can check a hand calculation of [£'“]. The subroutine also evaluates [B] in the
loop that calculates the stress components in each element.

COMPUTER PROGRAMS FOR STRUCTURAL AND SOLID MECHANICS 351

25.4 AN EXAMPLE PROBLEM FOR STRESS

The input data and the computer output for a small two-dimensional elasticity
problem are given in this section. The problem consists of a plate with a load
applied over a segment of one side and continuously supported along the opposite
side (Figure 25.3). The elements and node numbers are given in Figure 25.4.

e 20 >}< 20 == 20 >

10000 N/cm?

E = 20(10%) N/cm? T
u=025 3

Ocm
t=3.0cm ‘L
Lubricated surface

Figure 25.3. A thin plate with a distributed load over part of one side.

150000 N
I 150000 N
16
13 14 15 T
(13) (15) 17)
10
(14) (16) (18) l
12
9 10 11 ‘T
) 9) (11)
10
(8) (10) (12)
5 8
6 7
1) 3) )
10
) ) ®) l
X
1 2 3 4
L’ 10 10———e4<—4410———+4

Figure 25.4. The finite element grid for the partially loaded plate.
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The data for the program STRESS are given 10 the right of the solid vertical

ool Re]

. 10000E+02
. 10000E+02
. 10000E+02
. 10000E+02
.20000E+02
.20000E+02
.20000E+02
. 20000E+02
. 30000E+02
. 30000E+02
.30000E+02
.30000E+02

line in Table 25.2. The headings on the left of the line indicate the nature of the NODAL COORDINATES
data. NODE X
2 . 10000E+02
Table 25.2 Computer Data for STRESS 2 -20000E+02
.30000E+02
Title 16 18 0 5 0.
Parameters 3 ‘;ggggiigi
Material 20000000. 0.25 3.0
properties g . 30000E+02
10 . 10000E+02
X-coordinates | {o. 10.  20.  30. 0. 10. 20. 30. 1 . 20000E+02
I lo. 10. 20. 30. 0. 10. 20. 30. 12 . 30000E+02
13 0.
Y-coordinates 0. 0. 0. 0. 10. 10. 10. 10. 14 . 10000E+02
20. 20 20 20 30.  30. 30. 30. 15 . 20000E+02
16 .30000E+02
1 1 6 5
2 1 2 6
3 02 7 6
L 2 3 7 ELASTICITY EXAMPLE PROBLEM
Elément 5 3 8 7
data 6 3 4 8 NEL NODE NUMBERS
7 5 10 9 1 1 6 5
8 5 6 10 2 12 6
| 9 6 11 10 3 2 7 6
| 10 6 7 1 L 2 3 7
Mmoo7 2N 5 3 8 7
27 8 12 6 3 4L 8
13 9 14 13 7 5 10 9
W9 10 1k 8 5 6 10
15 10 15 14 9 6 11 10
6 10 11 15 10 6 7 N
17 11 16 15 11 7 12 11
18 11 12 16 12 7 8 12
K , 139 1k 13
nown nodal 26 -15000. 28 -15000. O 1 9 10 1k
forces 15 10 15 1k
Kn9wn nodal i 0. 2 0 4 0. 6 0 :67) I\? }2, 12
displacements 8 0. 9 0. 17 0. 25 O 0 18 11 12 16

The computer output follows.

ELASTICITY EXAMPLE PROBLEM

BANDWIDTH IS 12

IN ELEMENT 1

ELASTICITY EXAMPLE PROBLEM

NN = 16

NE = 18 CONCENTRATED FORCES AND MOMENTS
26 -.15000E+06
28 -.15000E+06

PARAMETER VALUES

EM = .20000£+08

PR = .25000£+00 KNOWN DISPLACEMENT VALUES

TH = .30000E+01 1 0.
2 0.
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NODAL DISPLACEMENT VALUES

NODE

O\ 0O~ VWY 2w N —

U W N —

>

ELASTICITY EXAMPLE PROBLEM

ELEMENT 1
EXX =
EYY = -
GXY =

ELEMENT 2
EXX =
EYY = -
GXY = -

ELEMENT 3
EXX =
EYY = -
GXY =

ELEMENT 4
EXX =
EYY = -
GXY = -

.10548E-03
.28861E-03
.66223E~04

.11140E-03
.22239E-03
.59258E-05

.53432E-04
.22239E-03
.98567E-04

.505L1E-04
.11790E-03
.30351E-05

DEFLECTION Y DEFLECTION
0.

L 111404E-02 0.

.1619458-02 0.

L176714E-02 0.

: -.288612£-02
.1054788-02 -.222389£-02
.158910€-02 -.117896E-02
.178086E-02 -.570193E-03
. -.609005E-02
.768601E-03 -.Lkk9g51E-02
.106851E-02 -.217900E-02
.118223€-02 -.930698£-03
. -.961853E-02
.620767£-03 -.694166£-02
.377746E-03 -.272581€-02
.193326E-03 ~-.104652E-02

SXX = .7109L4E+03 S1 =
SYY = -_.55QL5E+0k $2 =
TXY = .52979E+03 TMAX =
ANGLE

SXX = .11906E+04 St =
SYY = -.41501E+04 S2 =
TXY = -.47407E+02 THMAX =
ANGLE

SXX = -.L6199E4+02 Sl =
SYY = - L4593E+0L4  S2 =
TXY = .78853E+03 THAX =
ANGLE

SXX = .LL9L3E+03 S) =
SYY = ~-.22456E+04 $2 =
TXY = -.24281E+02 THAX =
3

.75515E+03
.56387E+0h
.31969E+0k

L.77 DEG

.11910£+04
.4 1506E+04
.26708E+04

-.51 DEG

.90L6LE+02
.45960E+04
.23432E+0h

9.83 DEG

L LLQBLE403
.22458E+04
. 13477E+0L

-.52 DEG

ELEMENT 5
EXX =

EYY = -,
.57841E-04

GXY =

ELEMENT 6
EXX =
EYY = -
GXY =

ELEMENT 7
EXX =

EYY = -,
. 15905E-03

GXY =

ELEMENT 8
EXX =

EYY = -,
.37605E-0k

GXY =

ELASTICITY EXAMPLE PROBLEM

ELEMENT 9
EXX =
EYY = -
GXY =

ELEMENT
EXX
EYY
GXY

—_

ELEMENT
EXX
EYY
GXY

ELEMENT
EXX
EYY
GXY

no

ELEMENT 13
EXX = -

EYY = -,
.26769E-03

GXY =

.19176E-04

11790E-03

.14769E-04
.57019E-04
.13718E-05

.76860E-0k

32039E-03

.10548E-03

22756E-03

.29990E-04
.22756E-03
.20343E-03

.53432E-04
. 10000E-03
.52433E-04

L11372E-0bL
. 10000E-03
L72771E-04

.19176E-04
.36050E-04
.10134E-05

.62077E~-0L

35285€-03

SXX
SYY
TXY

SXX
SYY
TXY

SXX =

SYY
TXY

SXX
SYy
TXY

SXX
SYY
TXY

SXX
SYy
TXY

SXX
SYY
TXY

SXX
SYY
TXY

SXX
SYY
TXY

]

.21963E+03
.2hk128E+04
.46273E+03

.1097LE+02
.11376E+04
. 1097LE+02

.69081E+02
.6L4251E+0L
.1272LE+0L

. 10365E+04
-.42921E+0k
. 30084E+03

-57387E+03
L69LTE+OL
.16275E+0k

.60652E+03
. 18485E+0L
.L41947E+03

.29075E+403
.20728E+0k
.58217E+03

.21682E403
.66680E+03
L8107 1E+01

~.32062E+04
.78585E+0kL
<21415E+04

$2 = -

TMAX =
ANGLE

S1 =

TMAX =
ANGLE

S1 =
S2 =
TMAX =
ANGLE

Si =
$2 =
TMAX =
ANGLE

.12605E+03
.25065E+0k
.11902E+0k

11.44 DEG

< 11079E+02
-11377E+0L
L574LTE+03

.55 DEG

.17619E403
.6670LE+OL
.34233E+04

10.91 DEG

. 10535E+04
.43090E+04
.26813E+04

3.22 DEG

.86572E+0]
.52599E+04
.26256E+04

19.15 DEG

.67621E+03
.19182E+04
.12972E+04

9.43 DEG

LV1742E403
.22L61E4+04
.106L3E+04

16.58 DEG

.21690E+03
.66688E+03
LLL189E+03

.53 DEG

.23705E+04
.869L1E+0L
.31618E+04

21.32 DEG



ELEMENT 14
EXX =

GXY =

ELEMENT 15
EXX =

GXY =

ELEMENT
EXX =
EYY = -
GXY =

ELEMENT
EXX
EYY
GXY

ELASTICITY EXAMPLE PROBLEM

.76860E-04
EYY = -,

2L422E-03

.20117E-04

.2L302E-04
EYY = -,
.28265E-03

24422E-03

.29990E-04
.54681E-04
.87425E-04

L18LL2E-0L
.54681E-04
.2330LE-04

ELEMENT 18
EXX = .11372E-04
EYY, = -.115828-04
GXY = -.12725E-04

SXX
SYy
TXY

SXX
SYy
TXY

SXX
SYy
TXY

SXX
SYY
TXY

SXX
SYY
TXY

nouon " onn oo

.33720E+03
.480O0OE+04
.1609LE+03

.78L404E+03
.50803E+0L
.22612E+0L

.34816E+03
. 10066E+04
.69940E+03

.10180E+03
.10682E+04
.18643E+03

. 1808LE+03
. 18643E+03
.10180E+03

S1 =
§2 =
TMAX =
ANGLE

<34224E+03
.48050E+04
.25736E+04

1.79 DEG

.18671E+03
.60511E+04
.31189E+04
23.23 DEG

.6LLLLE+03
- 13029E+04
.97365E+03
22.96 DEG

.13079E+03
.10972E+0k
.61397E+03

8.84 DEG

.20717E+403
.21276E+03
.20997E+03
-14.50 DEG

PART FOUR

LINEAR AND
QUADRATIC

ELEMENTS

Commercial finite element programs provide the option to use linear
or quadratic elements. These program packages also use numerical
integration techniques to evaluate the element matrices. General
procedures for evaluating the element shape functions and numeri-
cally evaluating the integrals for the element matrices are discussed
in this part of the book. The chapters that follow can be covered
after one of the applications sections has been studied.



Chapter 26

ELEMENT SHAPE
FUNCTIONS

Elements with linear variations in the nodal values were used in all of the previous
application chapters except those involving the beam element. The finite element
method is not restricted to the use of linear elements. Most commercial finite
element programs allow the user to select between elements with linear or quadratic
interpolation functions.

Quadratic elements are useful because fewer elements are needed to obtain the
same degree of accuracy in the nodal values; also, the two-dimensional quadratic
elements can be shaped to model a curved boundary. The use of the quadratic
elements, however, does not always lead to a reduction in the total computation
time. Numerical integration techniques are used to evaluate the element matrices,
and these techniques can involve a large number of calculations.

The shape functions for the one- and two-dimensional elements are developed
in this chapter. The numerical integration techniques used to evaluate the element
matrices are discussed in the next chapter. The computer implementation and the
solution of some sample problems are discussed in Chapter 28.

26.1 LOCAL NODE NUMBERS

As the number of nodes associated with an element increases, it is no longer
convenient to denote the nodes by letters. Some three-dimensional elements have
20 or more nodes. The standard procedure is to denote each element node using
an integer. The numbering system for each element considered in this book is
given in Figure 26.1.

The element node numbers are called local node numbers and should not be
confused with the global node numbers. Consider the grid in Figure 26.2. The
relationship between the local and global node numbers is given in Table 26.1.
The equation for ¢ in each element is

¢(1):N(1“(D4+N(21)(D5+N(3”(D2+Nhl)q)1
P = NPO;s + NP+ NPy + NPD,
¢(3):N(13)d)7+N(23)¢8+N(33)(D5+N1t3)(1)4 (26.1)



Figure 26.1. Local node numbers. (a) One-dimensional elements, (b) Triangular

elements, (c) Quadrilateral elements.

Figure 26.2.

8
The global node numbers for a three-element grid.
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Table 26.1 Global
Node Numbers for the
Elements in Figure 26.2

(e} Global Node Numbers

1 4 5 2 1
2 5 6 3 2
3 7 8 h 4

The nodal values, ®, have a global node number as a subscript, but the shape
functions retain their 1, 2, 3, or 4 value. Nothing is gained by referencing the
shape functions to the global coordinate axis because all of the shape functions
are developed relative to a natural coordinate system defined within an element.

26.2 EVALUATING THE SHAPE FUNCTIONS

The one-dimensional linear shape functions were evaluated in Chapter 2, and the
shape functions for the triangular and rectangular elements were evaluated in
Chapter 5. In each case, a system of equations was solved for some unknown
coeflicients. These coefficients were then substituted into the interpolation equation
and the interpolation equation was rearranged to obtain the shape functions. This
procedure becomes more difficult to apply as the number of unknown coefficients
increases.

An alternate procedure for generating the shape functions is to assume that
each shape function is a product of two functions

Ny=F4G (26.2)
B BYB

where F is a function that is zero at specific nodes and/or on specific sides, and
G is selected so that Ny has the same powers of the coordinate variables as the
interpolation function. The first function, F, is usually a product of two or more
simple polynomials. The second function, Gy, contains unknown coefficients
that are evaluated by requiring N, to be one at its own node and zero at those
nodes not included in F.

The procedure outlined above is clarified in the sections that follow. The method
is based on the following three properties:

1. Each shape function has a value of one at its own node and is zero at each of
the other nodes.

2. The shape functions for two-dimensional elements are zero along each side
that the node does not touch.

3. Each shape function is a polynomial of the same degree as the interpolation
equation.

All of the shape functions developed in this chapter are developed by using a
natural coordinate system. The reason is that the most popular numerical integra-
tion techniques used to evaluate the element matrices are defined relative to
natural coordinate systems.
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26.3 THE ONE-DIMENSIONAL ELEMENT

The shape functions for the one-dimensional linear element relative to the &-
coordinate system were developed in Chapter 6. The shape functions are

Ni=31-¢) and  N,=3(1+9 (26.3)

These shape functions have the general form of (26.2), when G is a constant.

The interpolation equation for the one-dimensional quadratic element (Figure
26.3a) is

d)=a, +at +axt? (26.4)

To evaluate N, we select F(&)=¢&(€ — 1) because this function is zero at nodes
two and three. Note that it is a product of the two functions given in Figure 26.35.
Since Fy =¢&%—¢, that is, it contains the linear term ¢ and the quadratic term &2,
G, must be a constant. Therefore,

N, =CE¢¢~1) (26.5)
but N, =1 at node one (¢ = — 1); thus
1=C(—1)—-1-1)=2C

C—l
2

and

N;(é)=§(é—1) (26.6)

It is left to the reader to verify that

Frl)=CE+1)¢-1) (26.7)

7K_ [k ]
roj~
)
Y e

(E+1) £ (¢t-1

(b)

Figure 26.3. (a) The one-dimensional quadratic element. (b) Functions of ¢ that
are zero at the respective nodes.
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and
Fy(&)=LE+1) (26.8)
lead to the shape function equations
Ny=—(+1)}¢-1)  and N3=§(é+1) (26.9)

26.4 TRIANGULAR ELEMENTS

The shape functions for the linear triangular element written in terms of the area
coordinates were developed in Chapter 6 and are

Ni=Ly, N,=L,, and N3=L3 (2610)

The shape functions are the area coordinates. Recall, however, that each shape
function is linear in x and y, thatis, Ny =a; + b, x+ ¢, y. Thus each area coordinate
is also linear in x and y.

The interpolation equation for the quadratic triangular element (Figure 26.15) is

O(x, y)=a, +a,x+asy+asx* +asxy+aey’ 26.11)

This equation is equivalent in form to
A(x, y)=C(Ly—do(Ls—ds) (26.12)

because each term within the parentheses is linear in x and y and the product
contains the x?, xy, and y? terms that occur in (26.11). The equation L, =d, repre-
sents a line of constant L,, and the function L, —d, is zero for all points on this line.

The shape function equations must have the same form as the interpolation
equation; therefore,

Ng=C(Ly—d:)(Ls—ds) (26.13)

where (L, — d,) and {L;— ds) represent two lines that pass through all of the nodes
except node . The constant C is evaluated by requiring that Ny be one at node f.
The use of (26.13) is illustrated by evaluating a couple of shape functions. The
evaluation of the other four is a very similar procedure and is left to the reader.
Consider the evaluation of N,. We are looking for two lines that pass through
all of the nodes except node one. These lines are shown in Figure 26.4 and are
L,=0 and L,=4 The functions in (26.13), therefore, are (L, —0) and (L, —3})

giving
Ny=C(L;~O0XL,~%) (26.14)

The L, coordinate of node one is L, =1; thus

1\ ¢
1=C(1—O)<1~§)=§
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and

1

The two lines that pass through every node except node two are L, =0 and
L,=0. Thus
N,=C(L;-0)L,—0)=CL,L, (26.16)
The coordinates of node two are L, =L, =% and
N,=4L,L, (26.17)

The shape functions for the quadratic element are summarized in Figure 26.5.
These functions are given in terms of two coordinates, L, and L,, since L; is not
an independent coordinate.

(b)

Figure 26.4. (a) Two lines passing through every node except node one. (b) Two
lines passing through every node except node two.
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Ny=1,2Ly=1)
5 N,=4LL,
Ny=L,2L,=1)
Ny=48Ly,(1— Ly~ Ly
Neg=1—=3(L + Ly)+2(L, + LY
Ne=4Li(1—L, =Ly

X

Figure 26.5. The quadratic shape functions for the triangular element.

26.5 QUADRILATERAL ELEMENTS

The two-dimensional quadrilateral elements are very useful and are one of the
element choices in commercially available finite element computer programs. A
special case of this element, the bilinear rectangle, was discussed in Chapters 5 and
6. Three quadrilateral elements are discussed in this section: the linear element
and two versions of the quadratic element. All of the element shape functions
are written in terms of the natural coordinates (, n) because continuity exists
between elements when this is done.

26.5.1 The Linear Quadrilateral Element

The shape functions for the four-node, linear quadrilateral element are generaliza-

tions of those developed for the rectangular element in Chapter 5 and given in

natural coordinates as (6.19). The shape functions are
Ny=3z(1-8&1—n),  Ny=z(1+&)1 +n)

> 26.18
No=4(1+&1=n), Na=4(1-E)1 +n) ( )

E+1

n+1
Figure 26.6. Functions that are zero along a side of the quadrilateral element.
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Note that these functions have the form given in (26.2) when G and Fy consist
of the product of simple functions that are zero on the sides of the elements. These
functions are shown in Figure 26.6 and are used in conjunction with one of the
quadratic elements.

26.5.2 The Lagrangian Element

One of the quadratic quadrilateral elements that is available for finite element
computations is the nine-node element shown in Figure 26.7. The element is
called the Lagrangian element because the shape functions are products of the
one-dimensional Lagrangian interpolation functions. These Lagrangian functions
are the same as (26.6) and (26.9).

The shape functions for the Lagrangian element match the method defined in
(26.2) when F; is the quadratic shape function written in terms of £, which has a
value of one at the node while G has a similar property and is written in terms of #.
For example,

4 n ¢
Ny=3C¢-D50-D=;(¢-Din-1) (26.19)
The complete set of shape functions is
lei_”(g_nm_n, No==Zn-1)E-1)
én ¢ 2
Na=7C@+0n—1,  Na=— 3+’ ~1)
Ns=i—”(é+1)(n+l), No==2(n+1)X& = 1)
N7=i—r’(é—1)(rl+1), Ng=— g(é—l)(nz-”
No=(&=1)n*-1) (26.20)
0121(n+1) : % 3
” L
—-1— p—(7° — 1) 8¢ 2 o *4
L g(n"l) ° 3 3
|—>£
fe-1 ~@-1 5(5;1)

Figure 26.7. The Lagrangian quadrilateral element and the one-dimensional quad-
ratic shape functions.
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Multiplication of the factors in each shape function and collecting terms shows
that the general form for ¢ is

d=a,+a+am+asln+asé® +aen® +a:8*n+agén? +aséin? (26.21)

26.5.3 The Eight-Node Quadratic Element

The interpolation equation for the eight-node quadratic quadrilateral element
shown in Figure 26.8 is

G =a, +a +asn+alln+asé® +agn® +a&*n+agén? (26.22)

which is identical to (26.21) except for the last term, which is deleted because there
is one less node. The shape functions have the general form Ng=F4(¢, n)Gg(E, n).
The first function, F4(&, n), is selected such that Ny is zero on each side it does not
touch. The second function, G4(&, 1), is defined after Fy(&, n) is known and contains
those powers of £ and 5 required to obtain the general form (26.22). The coefficients
in Gy4(&, n) are determined by requiring Ny to be zero or one at those nodes not
inctuded in Fy(&, ).

The procedure is illustrated by evaluating N;. Since node one does not touch
sides 3-4-5 or 5-6-7,

Fi& n)=(1-¢X1—n)
=1-¢—n+&n (26.23)

The function G,(&, ) must contain three terms because the conditions for N,
at nodes one, two, and eight have not been satisfied. The equation for G,(¢, n) is

Gi(&,mM=C+C{+C3n (26.24)

which is linear in £ and 7 so that the F,(&, 7)G (¢, n) product contains the correct
powers of £ and 5. The three nodal conditions are

N,=1 when =-1, n=-—1
N,;=0 when =0, n=-—1
N,=0 when E=—1, n=0

Figure 26.8. The eight-node quadratic quadrilateral element.
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Substitution of these conditions into (26.24) produces

1=4C, —4C,—4C,
0=2C,-2C,
0=2C,-2C,

which yields C; = C, =Cy=4. The shape function is
Ny=—31=&1—n1+E+n) (26.25)

The product functions Fy(E, n) and G4(E, ) have the same general form for each
corner node, and the other three evaluations are similar to the one just discussed.
The four midside nodes are also similar in form, but the form is different from
that observed for a corner node. [t is instructive to consider one of the midside
nodes.

The second shape function is given by

N,=F,(& G, n) (26.26)
where
Fogom=01-=1—n)1+)
=1-&—n+né? (26.27)
Equation (26.27) is zero at every node except node two; therefore, G,(E, 17) consists
of only one term because the only nodal condition to satisfy is N, =1 at (0, —1).
If G,(¢, n) contains either ¢ or n, then terms of the type &3, &35, or £21? occur in the
F>(&, 1)G,(E, n) product. Since these terms are not in (26.22), we conclude that
G,(¢, n)=C. Applying the nodal condition gives

[=C(1=0>— (= 1)+ (~1)0)=2C
or C =1, and the shape function is
Ny =3(1-n}1-¢?%) (26.28)

The complete set of shape functions for the eight node quadrilateral is

Ny==3(1=0=n+&+n.  Ny=301-E)1-n)
Ny=2l+ =& —n~1), Ny=3(1-n*)1+¢)
Ns=a(l+(L+n)é+n-1), Ne=41-E)1+n)
No=—3(1=O+n)é—n+1),  Ng=51-n’)1-¢) (26.29)
PROBLEMS

26.1  Derive the one-dimensional linear shape [unctions given in (26.3) using
the method defined by (26.2).

26.2 Develop the one-dimensional quadratic shape [unctions given in (26.9)
using the definitions in (26.7) and (26.8).

26.3  Develop the one-dimensional quadratic shape functions for the s-
coordinate system and node location shown in Figure P26.3. Use the
method defined by (26.2).
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26.4

26.5

26.6
26.7
26.8
26.9

26.10

26.11

26.12

‘ 1 2

3
T
2

fo~

= 2 1

Figure P26.3

Develop the one-dimensional quadratic shape functions in terms of ¢ for

the node location shown in Figure P26.4. Use the method defined by (26.2).

L L
i 2 ¢
T *2 *3
L 21
3 V 3 1
Figure P26.4

Develop the shape functions for the one-dimensional cubic element shown
in Figure P26.5. Use the procedure defined by (26.2). The interpolation

equation is

PE)=ay +arC+ayé? +asl’

[N

[

Figure P26.5

Wt~
Wit~

‘T'J' K
wit~

Evaluate N5 and N, for the quadratic triangular element.

Evaluate Ns and N, for the quadratic triangular element.

Verify that the set of shape functions given in Figure 26.5 sum to one.

The cubic triangular element is shown in Figure P26.9. The shape functions
are given by the general equation

Ny=C(L,— a(Ls—as)(L,—a,)

Evaluate N,, N,, and N; for this element. The side nodes are equally
spaced. Node 10 has the area coordinates (3, 3, 3). Hint: You need 1o find
three straight lines that pass through all of the nodes except node .
Evaluate N,, Ns, and N, using the method and element discussed in
Problem 26.9.

Evaluate N,, Ng, and N, using the method and element discussed in

Problem 26.9.
Evaluate N, and N, for the eight-node quadratic element in Figure 26.8.
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[}

Figure P26.9.

26.13 Evaluate N5 and N, for the eight-node quadratic element in Figure 26.8.

26.14 Evaluate N, and Nj for the eight-node quadratic element in Figure 26.8.

26.15 Verify that the shape functions in (26.29) sum to one.

26.16 The temperature at three consecutive equally spaced points is known to be
@, =30°C, &, =45°C, and ®;=50°C. Evaluate the temperature at a point
Scm from the origin. The nodal locations are given in Figure P26.16.

Figure P26.16

26.17 Do Problem 26.16 for a point 3 cm from the origin.
26.18 Develop an equation that gives the value of ¢ at the center of the eight-
node quadrilateral element (£ =1 =0) in terms of the eight nodal values.
26.19 Show that the shape functions for one of the following two-dimensional
elements reduce to the one-dimensional shape functions along each edge of:
(a) The quadratic triangular element.
(b) The Lagrangian quadrilateral element.
(c) The eight-node quadrilateral element.

Chapter 27
ELEMENT MATRICES

When elements have curved boundaries, the integrals for the element matrices
are most easily evaluated using a natural coordinate system. The two-dimensional
elements become squares or triangles in a natural coordinate system and there is
no need to find equations for the curved boundaries. Evaluating the integrals in a
natural coordinate system, however, is not without its problems. The integration
must be done numerically because explicit equations cannot be obtained for all
of the steps. The objective of this chapter is to discuss the numerical techniques
used to evaluate the integrals that give the element matrices.

27.1 CHANGING THE VARIABLES OF INTEGRATION

The integrals that define the element matrices are written with respect to dx or
dx dy. A change in the integration variable(s) must be made if the integrals are to
be evaluated in a natural coordinate system.

2711 One-Dimensional Integrals

The equation for the change of variable in a one-dimensional integral was intro-
duced and used in Chapter 6. The equation is

Xm p2 d(x(p))
[ reaa=[" an (*52) 0 @)
X P1 dp
where x(p) is the equation that relates the two-coordinate systems and
dx(p) ¢ a
a0 =[J]=J (27.2)

is called the Jacobian matrix for the transformation equation. The matrix consists
of one term in this case, which is denoted by J.
We wish to evaluate the integral using the natural coordinate ¢: therefore,

(27.1) becomes

X 1

J f (x)dxzj g(é)(d(x(é))) dé (27.3)
X; 1 d¢

and we need an equation that gives x as a function of £. This transformation
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equation is established by using the element shape functions and writing
x=NiQ)X i+ +NulDXn (21.4)

where X, X,,..., X,, are the global coordinates for the local node numbers
b %ons;(;?:r the linear element with two nodes. The transformation equation is
x(E)=N(OX+N2(OX,
=3(1-9X, +3(1+ )X, (27.5)
using the shape functions given in (26.3). The Jacobian of the transformation is
dx(é)_ X, X, X,—X, L

&2 2T s (26.6)
where L is the length of the element. The new integral is
X L 1
| Trman=3 [ o @)
X, 2 )
Equation (27.7) also holds for the one-dimensional quadratic element.
27.1.2 Two-Dimensional Iintegrals
The change of variables equation for a double integral is
1 1
J f(x, y)dx dy= J. J. g(&, n)|det[J] d¢ dn (27.8)
A -1 -1
when the new variables are the natural coordinates n and ¢ and
1 1-L,
'[ flx,y)dA= J J g(Ly, Ly)|det[J]| dL, dL, (27.9)
0 JO

when the new variables are area coordinates. [n each case [ J ] is the Jacobian matrix
of the transformation equations. Two transformation equations exist for the two-
dimensional problem because there are two possible local coordinate systems.
The Jacobian matrices are

0x @y.‘ [ ox cy
& ¢ oL, L,
=[J]= (27.10)
0x Oy Ox éy
an - on eL, Ly

for the (¢, n) and (L,, L,) systems, respectively.
The two-dimensional transformation equations are established using a pro-
cedure identical to that used for the one-dimensional problem; the equations are
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written using the element shape functions and the global coordinates for the
nodes. For example, consider the linear triangular element. The transformation
equations are
x(Ly, Ly)=N(Ly, L)X+ No(Ly, L)X+ Ns(Ly, L)X
WLy, Ly)=Ny(Ly, L)Y+ Ny(Ly, Ly)Y> + Ns(Ly, Ly)Ys (27.11)
where X, X5, X3, Y1, Y5, and Y; are the global coordinates of the three-element
nodes. Replacing the shape functions by their area coordinate equivalents gives
XLy, Ly)=L, X+ L, X, +(1—-L—L;)X;
}"(Ll,Lz)ZLIYI‘*'LZ Y2+(1"'L1—L2)Y3 (27]2)

since N3=L3=1—L,—L,. The components of the Jacobian matrix are

0x oy

E_XI—X:” aLl—Yl_YB

O x,-x Yy, (27.13)
ELZ_ 2 3 ﬁLZ_ 2 3 N

and the Jacobian matrix is

(X1—Xy (Y= Yy)
Jl= 27.14
/] L&—Xﬂ (n—nJ (2714)

Itis left to the reader to verify that |det[J ]| =24, where A4 is the area of the triangle.

Evaluation of [J] becomes more difficult as the number of nodes increases
because the shape functions are more complicated. The evaluation of [J] for a
linear quadrilateral element is done in the following example problem.

ILLUSTRATIVE EXAMPLE

Evaluate [J] at { =n=1 for the linear quadrilateral element shown in Figure 27.1.
The transformation equations are given by

x=N(& X+ NS X+ N3(EmX s+ Nol& X,
(f }'] Y]'f‘Nz(f Y7+N3( )Y3+N4(6. 7])Y4 (2715)

where N, N,, N3, and N4 are given by (26.18)and X |, Y|, and so on, arc the global
coordinates of the nodes. The Jacobian matrix can be written as the matrix product

(_7\'N1 ENZ EN:; (:N4 X] Yl

~

o¢ ¢ o€ a1 Xs Y

J]= ? ’
UI=lon, oy oy an|| Xy v (2710
on an on on X4 Y,
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. (8, 10)

3.8)

(7,9)

4.9

.

L,

Figure 27.1. The quadrilateral element for the example problem.

The respective derivative quantities are

ONy_ 1 ON,
05— 4(1 1), W__Z(l_é)
Wy L N
3¢ —4(1 1), ?'7———1(14'5)
oN,_L1 oN, 1
a2 —4(1+n), W‘Z(”é)
6N4__1 ON, 1
E R S ma Uty
Therefore,
X,
[J]zl[—(l—rl) (I-n)y  (1+n) —(1+’1)] X,
4 -(1-¢) -(1+¢) 1+ 1=-91| X5
X4

27117

(27.18)

Equation 27.18 is the general form of [J] for the linear quadrilateral element.

Substituting § for £ and  and the global coordinates gives

4 4
1[-1 13 =37 s

J]=-<
[]8[—1 -3 3 1}8 10
308

118 7
8L2 19

and |det[J]| =[18(19)— (2X7)]/64 = 41/8.
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27.2 NUMERICAL INTEGRATION TECHNIQUES

The numerical integration technique associated with the natural coordinate
systems & and (&, n) relative to evaluating the element matrices is the Gauss—
Legendre quadrature (Conte and deBoor, 1980). The Gauss—Legendre quadrature
locates the sampling points to achieve the greatest accuracy. This means that for
n sampling points, a polynomial of degree (2n— 1) can be integrated exactly. The
sampling points and weighting coefficients are presented in Table 27.1. The
sampling points are defined on the interval — 1 to 1; the location of the points for
n=2and n=3 are shown in Figure 27.2.

Table 27.1 Location and Weights
for Gauss—Legendre Quadrature

n=1 =00 W.=20
n=2 & =+0.577350 W.i=10
n=3 £:=00 W,=%
&= +0.774597 W,=3
n=4 &=+0.861136 W;=0.347855
;= +0.339981 W;=0.652145
f(&)
P—_\ﬂ f(&)
—0.577350 0.577350
-1 1
ﬁf
(@
{63)) f(€&)
h
f(&3)
—0.774597 0.774597
-1 1
¢

(b)
Figure 27.2. Gauss-Legendre integration points for (A) n = 2, and (b) n = 3.
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27.2.1 One-Dimensional Integrals

The one-dimensional integral is replaced by a summation, that is,

L 1
5 J, g(&ydé==; Z g(& (27.19)

where the functions ¢(¢;) are evaluated at each of the sampling points and multi-
plied by the corresponding weighting coefficient, W, The number of sampling
points, n, is determined by equating (2n— 1) to the highest power of . As a simple
example, consider J1, (3¢% + &%) d&. The highest power of ¢ is 3; thus (2n—1)=3
and n=2. When n is a fraction, use the next highest integer value.

The numerical evaluation of the integral in the previous paragraph goes as
follows

!
J e
-1

6=, ot

[3(—0.577350)2 + (—0.577350)*]1.0 + [3(0.577350)2
+(0.577350)*]1.0
=[6(0.333333)+0]1.0=2.0

Since n=2, the sampling points are ¢, = —0.577350 and &, =0.577350, whereas
the weighting coefficient is 1.0 at each sampling point.

I

27.2.2 Quadrilateral Regions

The area integrals in the (&, ) coordinate system have the general form

j J S(& n)dn dS (27.20)

and are evaluated numerically by first evaluating the inner integral, keeping &
constant, and then evaluating the outer integral. Evaluating the inner integral gives

1
J g(& nydn= Z g(&, )W, =h(&) (27.21)
B} P

where #; and W, are the Gauss—Legendre sampling points and weighting co-
efficients given in Table 27.1. The outer integral becomes

1 m
|| eraz=3 meam 27.22)

-1 i

Substituting (27.21) for A(<) yields

1 1 m
J J. gl mydndé=Y Z WiW,g(&i, nj) (27.23)

-1 -1 i=1 j=1

The values of m and n are obtained by equating (2m — 1) to the highest power of
¢ and (2n— 1)to the highest power of . Equation (27.23) is usually implemented as a
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single sum over K=nxm sampling points with W;W;-type products being the
weighting coefficient of a specific point.

27.2.3 Triangular Regions

The area integral over a triangular region is

1 pl-L,
J S, y)dA= _[ j gLy, Ly)dLy dL, (27.24)
0 Jo
where g(L,, L,) includes the |det[J]| term. The sampling points that have become

associated w1th the finite element method were formulated by Hammer, et al.
(1956). The location of the sampling points and the corresponding weighting
functions are summarized in Table 27.2. The use of these sampling points is
equivalent to replacing (27.24) by the single sum

1 1-L, n
J J g(Ly, Ly)dLy dLy= ) g(Lyy, Lo)W, (27.25)

0 JO i=1

Table 27.2 Sampling Points and Weighting
Coefficients for a Triangular Region

Coordinates

n Points L, L, W Error
2 a 3 3 5 O(h)
3 a 3 0 %
) 3 3 & Ofh%)
¢ 0 5 6
6 a i i 0.11250
b « B
¢ R B 00661971 O(h®)
d p
¢ ) v
! A b 00629696
g i A
x=0.0597159
B=0470142
+=0.101287
A=0.797427
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The value of n is determined by summing the powers of L; and L, in each term and
using the largest sum. For example, to integrate the product L L,, n must be three
or greater.

27.3 AN INTEGRATION EXAMPLE

There are three types of integrals associated with the element matrices, those
involving [N]™ and [N]"[N], those involving [B] such as [B]"[D][B] and
surface integrals. We will work through an example involving [N]"[N] for the
one-dimensional quadratic element in this section. The integrals involving [B]
are discussed in the next section, and a discussion of surface integrals concludes
this chapter.

We wish to numerically evaluate

L 1
. J [N]T[N]dé (27.26)
-1
for the quadratic element. The shape functions are
¢
Ni(@)=5-1)
N2(&)=—-(-1) (27.27)

Ny(©=3E+1)

The matrix product [ N ]'[ N ] contains products of the type N, N,, N3, and so on.
Since each shape function has & terms, the products have £* terms and (2n—1)=4
yields n=3. We must use three sampling points to evaluate the integral. The
integral in (27.26) is replaced by the summation

L ! L3
5 J [NT'IN]dé=5 ¥ [NETINGIW; (27.28)
1 i=1
where ¢; and W, are given in Table 27.1.

The sampling points are &, =—0.774597, ¢, =0, and &;=0.774597. Starting
with &, gives

—0.774597
N1(61)=%(él - 1)=—2— (—0.774597 —1)
=0.687299
N,(&,)= — (&1 —1)=0.400000
¢

Na(éx)=—2~(él +1)=—0.087298

and

g€ )=[NCEHT'[NE))]
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0.68729¢ [0.687299 0.400000 —_ 0.087298]
= 0.400000
—0.087298
0.472380 0.274920 —0.060000
= 0.274920 0.160000 —0.034919
—0.060000 —0.034919 0.007621
Next consider &, =0.0, which results in
. S,
Ni(&2)=75 (€= 1)=0
Ny(é)=—(3-1)=1
. Ca
Ns(Cz)=§(§z+ 1)=0
and
0 0 0
y(éz)z[N(éz)]T[N(éz)]: 0 1 0
0 0 0

The final sampling point is &3 =0.774597. Substitution of this values into the shape
function equations yields

N (&3)=—0.087298

N »(&3)=0.400000

N;3(&3)=0.687299

and

g(3)=[N(&;]] T[N(éﬂ]

0.007621 —0.034919 —0.060000

= [—0.034919 0.160000 0.274920

—0.060000 0.274920 0.472380

Since W, = W;,
L . . L
3| IVITINDde=3 IWLote )+ gieall+ Waglen)

Substituting the matrices for g(&,), g(<), and ¢g(¢3) into the above equation and
performing the addition yields

L 1
EJ [N]T[N]dé

-1

0.480 0.240 —0.120 0 0 0
0.240 0.320 0240 |+-| O | 0
—0.120 0.240 0.480 0 0 0

_L(s
219
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Evaluating the products and addition gives

0.1333 0.0667 —0.0333

1
L J [N]T'[N]dé=L| 0.0667 0.5333 0.0667 (27.29)
2o ~00333 00667 0.1333
An analytical integration gives
4 2 —1

L (! - ., L
= [N]'[N]dé=— 2 16 2 (27.30)
20 o 2 4

which is equivalent to (27.29).

27.4 EVALUATING [B]

The numerical evaluation of the integrals involving [B], namely § [B]"[D][B] d4
or J D[B]"[B]dx, proceeds in the same manner as illustrated in the previous
section. The difficulty comes in determining the coefficients in [B]. To illustrate
this, we consider the one-dimensional quadratic element where

[B] =[le A2 %] (27.31)

dx dx dx

The row vector [ B] contains derivatives with respect to x, but these derivatives
must be written in terms of ¢ before the numerical integration can be performed.
The change of variables requires that

X 1
j [B(9]"[B(x)] dngj [BE)][B(E)] dé (27.32)
X; -1
where
. dN] . dNZ . dN3 .
L dNs 27.33
[B(c)]—[ e (&) T () T (c)} (27.33)

The derivatives in [B] are obtained as a function of ¢ by using the chain rule,
which states that
RS 2739
d¢ dx dé
We know Ny(&) so that we can evaluate dNy(¢)/d<. We also know x(é), 27.5),
and dx(E)/dé=1L/2, (27.6). Equation (27.34) can be solved for dN,(¢)/dx. The

result is

‘Iﬂ ¢ :lﬂl_ﬂic_) 71, :%dl\lﬂ_@ (27.35)
dx 7 dé zlx(C;) L dé
dé
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Using the quadratic shape functions, (26.6) and (26.9), gives

ANy o 2d (e, N 2(, 1
P (g)—id_cf(z(é 1)>—L(é 2)
ANy o 2d A 27.36
i~ (i)—Ldé( (¢*-1)= I ( )
dN; . 2d (¢, 2.1
K(é)_ZE<2(S+U>~L(€+2>

and

[B@]:i[(é_%) —% (“‘f;_)] (27.37)

It is re-emphasized that [ B(¢)] contains the derivatives of the shape functions
with respect to x but written in terms of . Note that dx(&)/d¢=L/2, (27.34), is
also the Jacobian matrix, [J], and that 1/(dx()/d&) is [J] 7"

In the two-dimensional case, [B] contains quantities related to the partial
derivatives of the shape functions with respect to x or . These derivatives, how-
ever, must be functions of ¢ and » or L; and L,. The desired terms are again ob-
tained by applying the chain rule for differentiation. Starting with N, and using
the variables ¢ and #, we obtain

EN](&# VI)_(”\Nl(éa ’7 (";X( fa ")+6-)V1(Cja "]) 5.}'( f, V]‘)
&6 Ox ¢ Cy cé

. . . . (27.38)
ONAE M) _ONA(E M) EX(E, ) ON (S M) Ex(E, )
on Cx on Cy én
This pair of equations can be written as
ON ox 0y 1(EN
e ")1
AT = I RN (27.39)
cN, ox ay 0N, .
~ A A ~ ( s )
on an on cy

The coefficient matrix is the Jacobian matrix, [J], (27.10). Inverting [J] gives

0N, . ON

=tEm {‘;_f En ]

Ny IR ' (27.40)
N ]-Ofv‘(é ),

0}’

The Jacobian matrix and the column vector on the right-hand side of (27.40) are
easily evaluated because both contain the element shape functions written in
terms of ¢ and n. The coefficients in [J], however, are usually functions of ¢ and
nor L, and L,, and an explicit inverse cannot be obtained. The derivatives must
be numerically evaluated for each integration point. The inabilily to obtain an
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explicit inverse for [J] is the reason why the element integrals must be evaluated
numerically.

ILLUSTRATIVE EXAMPLE

Evaluate the first partial derivative of each shape function with respect to x and
y for the linear quadrilateral element considered in the example in Section 27.1
(Figure 27.1). Evaluate the derivatives at { =5 =3.

The Jacobian matrix and its inverse are

R IR

The first derivatives of each shape function with respect to ¢ and n are given in the
previous example. Evaluating these derivatives at ¢ =y =% produces

ON, 1 oN, 1
o 8 on 8
N, 1 N, 3
o0&~ 8 on 8
éN; 3 4N; 3
o0& 8 an 8
dNgy 3 0N, _1
¢ 8 on 8

The values of 0N, /éx and ¢N,/dy are given by the matrix product in (27.40)

ON, 1 12
ox | 1] 19 =7 8] | 328
N[ 41| =2 18 1 16
dy 8 328
Similar products yield

ON, 40 ON, 56

ox 328 oy 328

ON;s 36 ON; 48

ox 328 dy 328

N, 50 ON, 24
ox 328 dy 328

27.5 EVALUATING THE SURFACE INTEGRALS

Several types of surface integrals occur in the element matrices. These include

[F M[N]'[N]dl,  and [ [N]T{IZT} dr (27.41)
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The evaluation of these integrals is relatively easy because each set of two-
dimensional shape functions reduces to its one-dimensional counterparts along the
edge of a triangular or quadrilateral element.

The fact that makes the evaluation of the surface integrals easy is that we have
already evaluated each product that occurs in the integrals. Consider the integral
Jr M[NJ'[N]dT along side 2-3 of a linear quadrilateral element. The integral is

0 0 0 0
L,y (! 0 N3 NyN3
M[N]" I'=-—2r M 42
[ovrvger==2 o o N Ve e
0 0 0 0

The rows and columns of zero occur because N;=N,=0 along side 2-3. The
shape functions N, and N3, (26.18), reduce to

No=3(1+n) and  Ny=3(1-n) (27.43)
because ¢ =1 along this edge. The products are easily integrated to yield
0 0 0 0
ML,5] 0 2 1 0

6 0 | 2 0
0 0 0 0

j M[N][N]dT = (27.44)

The nonzero coefhicients in (27.44) are the coefficients associated with the integral

Xj
[, vV as
X

lor the one-dimensional element. A similar situation occurs for the quadratic
elements. The nonzero coefficients in fr M[N]'[N] dI" over any side of a quad-
ratic element are those associated with f' | [N]7[N] d¢, which are given in (27.30).
For example, fr M[N]'[N]dTl over side 3-4-5 of an eight-node quadratic
element is

[0 o 0 0 0 0]
0 0 0 0 0 0
MLys| 0 0 4 2 -1 0
T _ 27.46
J[rM[N][N]dr 30 o 0 2 16 20 (27.46)
0 0 -1 2 4 0
(0 0 0 0 0 0]

where L4 is the length of side 3-4-5.

PROBLEMS

27.1  Write the transformation equation for the one-dimensional quadratic
element and show that J =L/2.
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27.2

273

27.4

27.5
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Verify that |det[.J]|=24 for the linear triangular element. Recall that [J]
is given by (27.14).

Derive an equation for |det[J ]| in terms of the element area when the linear
quadrilateral element is a rectangle. Start with (27.18).

Numerically evaluate one of the following integrals:

1 1 1 1
(@) I 6E+EDde (b) J @E+EdE (© J[ J[ 620 dn d¢
-1 —1 -1 =1

1 el 1 pl-1,
(d) I J 3E3n* dn dé (e) J‘ J LyL3dL,dL,
-1 J-1 0

0

1 p1-L,
(f} J‘ J Llesz dL]
o Jo
Evaluate the surface integral fr [N]" dT" along side 1-2-3 of a quadratic
triangular element. Evaluate the integral analytically using area coordi-
nates.

27.6-27.9 The corner coordinates for four rectangular elements are given in

the following table. Evaluate [ B] for the integration point £ =1 =0.577350
when eight nodes are used to define the quadratic interpolation surface.
Use (7.27) for [B].

Problem Number
Element S S
Quantity 27.6 277 27.8 279

2.0 1.0 20

X, 20

¥, 10 20 10 50
Xs 50 60 30 40
Y, 10 20 10 50
X, 50 60 30 40
Y 30 50 50 70
X- 20 20 10 20
¥ 30 50 5070

27.10-27.13 The corner coordinates for four triangular elements with straight

sides are given in the following table. Evaluate [B] for the integration
point L, =L, =% when six nodes are used to define the quadratic inter-
polation surface. Use (7.27) for [ B].

Problem Number

Element ———

Quantity 27.10 2711 27.12 27.13
X, 0.0 1.0 0.0 3.0
Y, 0.0 2.0 0.0 0.0
X5 6.0 6.0 5.0 8.0
i 1.0 0.0 0.0 50
X 2.0 7.0 0.0 0.0
Ys 6.0 S0 6.0 5.0
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27.14 Numerically evaluate { £} =/, Q[N]" dA for the element in Problem
27.6. Assume a linear quadrilateral element.

27.15 Numerically evaluate the integral in Problem 27.14 for the element in
Problem 27.10. Assume a quadratic variation for ¢.

27.16 Numerically evaluate the integral in Problem 27.14 for the linear quadri-
lateral element in Figure P27.16.

Y

(3, 8) ' (15,9)

4.3
(13, 2)

Figure P27.16

27.17 Numerically evaluate the integral in Problem 27.14 for the quadratic
triangular element in Figure P27.17.

y

(4,11)

(9.66, 8.66)

4,3 (12, 3)

Figure P27.17

27.18 Numerically e¢valuate the integral in Problem 27.14 for the quadratic
quadrilateral element in Figure P27.18. Use the linear shape functions to
obtain [J].
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(14, 11)
(3.9

(14, 5)
3.3)

Figure P27.18

Chapter 28

ISOPARAMETRIC
COMPUTER PROGRAMS

The flow of computations in an isoparametric computer program is similar to
those for programs using the linear elements and shown in Figure 4.6. The primary
change is the loops needed to numerically evaluate the element integrals and the
gradient values at specific points within the element. A relatively simple isopara-
metric computer program is presented and discussed in this chapter as well as the
flow of computations needed for evaluating [£'“'] and | /*9}.

28.1 COMPUTER EVALUATION OF [«“’] and {f“}

The flow of computations for the numerical integration of [k'“'] and { '} is
shown in Figure 28.1. The computation starts with the initialization of [£'] and
{19} with zeros. The next step is to determine the number of integration points
needed, and to define their coordinates and the weighting coefficient at each point.

The outer DO loop in Figure 28.1 is for the number of integration points, M,
which varies with the type of element and the level of integration. The arithmetic
calculations within this loop include the evaluation of Ng, dNg(&, n)/0&, and
ONg(E, n)/dn. These quantities are always evaluated in a separate subroutine that
is written for a specific element. Once Ny and its derivatives are known, [J] is
constructed and [J] ™! and |det[J]| are evaluated. This step is followed by the
evaluation of 6N4(&, n)/ox and ON (&, n)/dy, which are needed in [ B]. Once these
derivatives are known, the matrix product [ B]"[ D[ B] is calculated for the integra-
tion point.

When solving field problems, the matrix product G[N]'[N] must also be
evaluated as well as any contributions from derivative boundary conditions. The
end result of this step is the numerical values for the matrix sums [K§']+ [k&] +
(k5] and [ £57) + 1 f§°) for the specific integration point. The coefficients in these
sums are then multiplied by |det[J]| and WC(KK) and added to the previously
calculated values of [k} and { f'}]. These multiplications and additions are done
in the DO loops on [ and J shown in Figure 28.1. The variable NR is the number
of rows in { £} and [k'“] and is a function of the number of element nodes.

It is important that Ny, dN4(¢, n)/0¢ and ON4(E, n)/on be evaluated in a separate
subroutine because the rest of the calculations depend only on the number of



Initialize k)] and
{f©)} with zeros

Select the M integration points
and weighting coefficients

DO
KK=1M
aN, aN,
8 8
Evaluate Nﬁ, & T

Evaluate [J], [/}
and | Det[J]|

:

. aN
Evaluate ﬂ , d,_é
ax dy

Build [N, [B],

GIN1T(N], [BIT[DI(B], etc.

. NR

{FO) = (£} + QIN]T+| Det[J]] * WC(KK)

[£©]=[k©] + [B]T[D][B]* | Det[J]|* WC(KK)

Figure 28.1.

Flow chart for evaluating the element matrices.
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rows and columns in [£'] and thus are applicable for all elements that might be
used to solve a certain type of problem. Placing the element quantities in a separate
subroutine provides for maximum flexibility. A new element can be introduced;
all that needs to be written and checked is the element subroutine.

The above discussion applies equally well to triangular elements. The variables
¢ and y are replaced by L, and L,.

28.2 CURVED BOUNDARIES

The location of the nodes used to define the element shape and the determination
of the nodal values in { '} is not difficult when the element boundaries are
straight. The existence of stresses or derivative boundary conditions on curved
boundaries, however, complicates the determination of |/} and [k'”]. The
length of the boundary is needed for evaluating { /'] in both cases and [k'']
when derivative boundary conditions occur. In addition, the midside node must
divide the length into two equal segments. The determination of the length of the
side and the location of the midside node is the subject of discussion in this section.

The mathematical determination of arc length involves the integral

b dr\?
&= [ \ﬂ +<> dx (28.1)
Ja (IX

where y= f(x) and the length is desired between points « and b. Equation 28.1
is a summation of lengths, d £, each calculated using d #? =dx? +dy*. The integral
in (28.1) can be approximated by calculating the length d . for very small incre-
ments in x and then summing all the increments.

The one-dimensional shape functions can be used to calculate the incremental
length d £. We start with the curve y = f(x) defined on the interval [a, b] (Figure
28.2). The curve is approximated using a quadratic polynomial; therefore, one
additional node, equally spaced between a and b, is located. The values of y at
these nodes, Y|, Y5, and Y;, are determined and y is approximated using the one-
dimensional quadratic shape functions:

v l
r=[N, N, N3]y Y (28.2)
d

The next step is to subdivide the x-axis into several increments (50 to 100) and
calculate the length of the curve over each increment using

AL =X, =X P+ (- ) (28.3)

The addition of all the incremental lengths gives the total length. The coordinates
of the point that divides the arc length into two equal segments is determined by
storing a cumulative-length value as the individual increments in x are considered.
Once the total length is known, it is easy to go back and find the two points on the
x-axis between which the node is located. The x-coordinate of the midside node is
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Y, Y, Y,
Y, ; y=f(x)
| Y;

|
|
|
|
|
|
!
|
I
l
|

|
!
!
|
I
!
|
|
|

1 Lo x
a X, X b

Figure 28.2. Approximating a curve using three values.

determined assuming a linear variation between these two points. The y-coordinate
can be calculated using (28.2) once the x-coordinate is known.

28.3 SOLVING TIME-DEPENDENT FIELD PROBLEMS

The solution of time-dependent field problems using quadratic quadrilateral or
triangular elements is often accompanied by increases or decreases in ¢ that
violate the physical aspects of the problem. The difficulty arises because the
quadratic elements do not satisfy the sign criteria discussed in Chapter 15. The
diagonal coefficients in [k'] are positive, but not all of the off-diagonal values are
negative. The element stiffness matrix for the equilateral triangle (Figure 28.3), is

- 577 —384 9.6 0.0 96  —384-
~384 2300 384  —769 00  —76.
96 384 577 —384 96 0.0
00 -769  —384 2300 -384 —769 | (284
9.6 0.0 96  —384 577 —384
[ 384 —769 00 —769  —384 2300
(0.5, 0.866)

D, =D, =100

(0, 0) (1,0)
Figure 28.3. An equilateral triangular element.
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Note that k3 as well as k5 and k35 is positive. The same type of situation occurs
for a square quadratic element.

The square and the equilateral triangle are the best possible shapes for the two-
dimensional quadratic elements. Since these two elements do not satisfy the
positive diagonal, negative off-diagonal rule, the quadratic element should be
used with caution. It is the author’s opinion that quadratic elements should not
be used to solve time-dependent field problems.

28.4 THE COMPUTER PROGRAM ISOFLD

A relatively simple isoparametric computer program is included in this book and
is discussed in this section. The computer program ISOFLD uses the quadratic
quadrilateral element to solve the general field equation, (7.1), with the derivative
boundary conditions discussed in Chapter 9.

The program utilizes eight subroutines, three of which were used by the previ-
ously discussed programs STRESS and TDFIELD. These subroutines, MODIFY,
DCMPBD, and SLVBD, were discussed in both Chapters 16 and 25. The new

INGPTS
ELSTMX
PDERV —— QDSHFN
MODIFY
=
<
o
3
S DCMPBD
a
Z
<C
= SLVBD
INGPTS
ELGRAD
PDERV QDSHFN

Figure 28.4. Subroutine hierarchy for isoparametric computer program.
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subroutines are ELSTMX, ELGRAD, INGPTS, PDERV, and QDSHFN. Some
of the subroutines are called by other subroutines. The subroutine hierarchy is
illustrated in Figure 28.4. The objective of each new subroutine is discussed below.

Subroutine ELSTMX. The subroutine ELSTMX evaluates the element stiffness
matrix and element force vector using Gauss Legendre integration techniques.
The numerical values of Ny and ¢ Ny/6x and éNg/dy are supplied by the subroutine
PDERV. The integration coordinates and weighting coefficient are supplied by
the subroutine INGPTS. The coefhicients for the surface integrals are contained
in the dimensioned arrays H and FC. The array NSIDE contains the local element
node numbers for the four sides.

Subroutine ELGRAD. The subroutine ELGRAD evaluates the gradient related
quantities +D, ¢¢/dx and + D, ¢¢/dy at the eight-clement-node points and the
center of the element. It evaluates ¢¢/¢x and ¢¢/¢y using the subroutines PDERV
and ODSHFN and selects the appropriate sign using the integer variable ITYP
and the values stored in the array GRDC.

Subroutine INGPTS. The subroutine INGPTS generates the & and n coordinates
and the corresponding weighting coefficient for a nine-point Gauss -Legendre
integration of the area integrals.

Subroutine PDERV. The subroutine PDERV evaluates the Jacobian trans-
formation matrix, [J], and uses [J]™' to obtain ¢Ny/¢x and ¢ Ny/Cy as functions
of ¢ and ». The subroutine obtains ¢Ny/c¢ and ¢Ny/cn from the subroutine
QDSHFN.

Subroutine QDSHFN. The subroutine QDSHFN returns the numerical values
of Ny, ¢Ny/éé and ¢Ny/cn for the coordinate pair (, i7). The subroutine QDSHFN
is called by the subroutine PDERV.

The listing of the statements in ISOFLD and the new subroutines follows.

PROGRAM [SOPFLD (INPUT,OUTPUT,TAPE6C=INPUT,TAPES1=0UTPUT)
COMMON/ELMATX/ESM(8,8) ,EF (8) ,PHI (8) ,NS (8) ,VOL
COMMON/MATL/DXE,DYE,GE,QF
COMMON/HCV/1DBC (50,2) ,DBC (50,2) ,NDBC

5 COMMON/CRD/XC (200) ,YC (200)
COMMON/TLE/TITLE (20)
COMMON/AV/A (5000) , JGF , JGSM,NP ,NBW
DIMENSION NEL (50,8) ,NMTL (50) , i CK (50)
DIMENSION DX (5),DY(5),G(5),Q(5)

10 DATA IN/60/,10/61/,1FE/0/,V0L/0./

C

€

C

C DEFINITION OF THE INPUT PARAMETERS
15 C

C

C

C

C TITLE AND PARAMETERS

20

25

30

40
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55
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70
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TITLE - A DESCRIPTIVE STATEMENT OF THE
PROBLEM BEING SOLVED
NP - NUMBER OF NODES
NE - NUMBER OF ELEMENTS
NCOEF - NUMBER OF COEFFICIENT SETS
NDBC - NUMBER OF ELEMENT SIDES WITH A DERIVATIVE
BOUNDARY CONDITION
ITYP - TYPE OF FIELD PROBLEM BEING SOLVED
1 - TORSION PROBLEM
2 - IDEAL FLUID, STREAMLINE FLOW
3 - IDEAL FLUID, POTENTIAL FLOW
L - GROUNDWATER FLOW
5 - HEAT TRANSFER

EQUATION COEFFICIENTS
THE NUMBER OF SETS MUST EQUAL NCOEF

DX (1) - MATERIAL PROPERTY IN THE X DIRECTION

DY (1) - MATERIAL PROPERTY IN THE Y DIRECTION

G(I) - COEFFICIENT MULTIPLYING PHI IN THE DIFF. EQUATION
Q (1) - SOURCE COEFFICIENT N THE DIFF. EQUATION

NODAL COORDNATES

XC(1) - X COORDINATES OF THE NODES IN NUMERICAL
SEQUENCE

YC(1) - Y COORDINATES OF THE NODES IN NUMERICAL
SEQUENCE

ELEMENT DATA

N - ELEMENT NUMBER

NMTL - COEFFICIENT SET FOR THE ELEMENT

NEL(N, 1) -~ THE ELEMENT NODE NUMBERS FOR ELEMENT N
EIGHT NODE NUMBERS ARE SPECIFIED FOR EACH
ELEMENT

DERIVATIVE BOUNDARY COND!TION DATA
THE NUMBER OF SETS OF DATA MUST EQUAL NDBC

IDBC(1,1) - ELEMENT NUMBER WITH A DERIVATIVE
BOUNDARY COND!TION

IDBC(1,2) - SIDE OF THE ELEMENT WITH THE
DERIVATIVE BOUNDARY CONDITION

ODBC(I,1) - (M COEFFICIENT)* (LENGTH OF THE SIDE)

DBC(1,2) - (5 COEFFICIENT)* (LENGTH OF THE SIDE)

DATA IS ALSO READ BY THE SUBROUTINE MODIFY

OO OO0 OO0 000 OO0 0O00O000O0000000000000000O0000000000000O0000n00n0O0

DATA INPUT SECTION OF THE PROGRAM

[ ale
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130

INPUT OF THE TITLE CARD AND PARAMETERS

aNeNeNel

READ (iN,3) TITLE
3 FORMAT (20Ak4)
READ (IN,*%) NP,NE,NCOEF,NDBC,!TYP
IF(NP.LE.200) GOTO6
WRITE(10,10)
10 FORMAT (10X, 27HNUMBER OF NODES EXCEEDS 200/
+10X,20HEXECUTION TERMINATED)

STOP
6 IF(NE.LE.50) GOTO!
WRITE (10,2)

2 FORMAT (10X, 29HNUMBER OF ELEMENTS EXCEEDS 50/
+10X,20HEXECUTION TERMINATED)

sTOP
1 ) F (NDBC.LE.50) GOTOLOO
WRITE (10,70)

70 FORMAT (10X, 34HDERIVATIVE BOUNDARY CONDITION DATA/
+23HEXCEEDS DIMENSION OF 50/10X, 16HINPUT TERMINATED)
STOP

c
C INPUT OF THE EQUATON COEFFICIENTS AND THE NODAL COORDINATES
c
400  READ(IN,%) (DX (1),0Y{1),G{1),Q(1),I=1,NCOEF)

READ (IN,%) (XC(I),i=1,NP)

READ (IN,*) (YC(!),I=1,NP)

C OUTPUT OF THE TITLE AND PARAMETERS

WRITE(I10,4) TITLE,NP,NE,ITYP
b FORMAT (1H1////10X,20AL//10X,5HNP =, 16/10X,5HNE =, 16/
+10X,6HITYP =,15)

C OUTPUT OF THE EQUATION COEFFICIENTS

WRITE (10,L48)
L8 FORMAT (//10X, 2 THEQUATION COEFFICIENTS, /10X,
+8HMATERIAL/13X, 3HSET,8X, 2HDX, 13X, 2HDY, 13X, 1HG, 14X, 1HQ)
WRITE(10,16) (1,DX(1),DY(1),G(1),Q(1), i=1,NMTL)
6 FORMAT (14X, 12,4E15.5)

1
c
C OUTPUT OF THE NODAL COORDINATES
C

WRITE(10,11)
11 FORMAT (//10X, 17HNODAL COORDINATES/10X,
+L4HNODE, 5X, 1HX, 14X, 1HY)
WRITE (10,12) (1,xC(1),YC(1),I=1,NP)
2 FORMAT (10X, 1 4,2E15.5)

]
o
C INPUT AND ECHO PRINT OF THE ELEMENT NODAL DATA
C
WRITE(10,8) THTLE
8 FORMAT (TH1///10X,20A84/ /13X, IHN, 2X, 4HNMTL,

+13X, 12HNODE NUMBERS)
N1D=0

135

140

145

150

155

160

165

170

175

180

185

190

DO9KK=1,NE
READ (IN,=) N,NMTL (N), (NEL(N,}),t=1,8)
IF ((N-1) .NE.NID) WRITE(I0,7}) N

71 FORMAT (10X, THELEMENT, 14, 16H NOT IN SEQUENCE)
NID=N

9 WRITE (10,5) N,NMTL(N), (NEL(N,1),1=1,8)

5 FORMAT (10X,215,3X,815)

c

C INPUT AND ECHO PRINT OF THE DERIVATIVE

c BOUNDARY CONDITION DATA

C

{F (NDBC.EQ.O0) GOTO026
WRITE (10, 18)
18 FORMAT (//10X, 34HDERIVATIVE BOUNDARY CONDITION DATA/
+15X, THELEMENT , bX, LHSIDE, 7X, 2HML, 13X, 2HSL) .
DO17J=1,NDBC
READ (IN,*%) 1DBC(t,1),!1DBC(l,2),DBC(},1),DBC(I,2)
17 WRITE (10,119) 1DBC(I,1),1DBC(1,2),DBC(I,1),DBC(I,2)
119 FORMAT (15X, 14,9X,11,2E15.5)

O

Crest
C
C ANALYSIS OF THE NODE NUMBERS
C
(o)
C
o
C INITIALIZATION OF A CHECK VECTOR
C
DO5001=1,NE
500 1CK (1) =0
C

C CHECK TO SEE I|F ANY NODE NUMBER EXCEEDS NP
c
D0O5011=1,NE
00502J=1,8
K=NEL (1,J)
502  IF(K.GT.NP) WRITE (10,503) J,I,NP
503  FORMAT (/10X,L4HNODE, 14, 11H OF ELEMENT, 4,
+12HEXCEEDS NP =, | 4)
501 1CK (K) =1
o
C CHECK TO SEE IF ALL NODE NUMBERS THROUGH
o NP ARE INCLUDED
o

D05051=1,NE
505 IF(ICK(1).EQ.0) WRITE(10,506) |
506 FORMAT (/10X, 4bHNODE, I 4, 15H DOES NOT EXIST)
C&% S
Ces
c
C CREATION AND INITIALIZATION OF THE A VECTOR
C
Loedededededededte
Lo
C
C CALCULATION OF THE BANDWIDTH




o DXE=DX (J)

26 NBW=0 250 DYE=DY (J)
DO20KK=1,NE GE=G (J)
195 D0251=1,8 QE=Q (V)
25 NS (1) =NEL (KK, I) C
LK=7 C CALCULATION OF THE ELEMENT STIFFNESS MATRIX
00211=1,LK 255 c AND THE ELEMENT FORCE VECTOR
1J=1+1 C
200 D021J=1J,8 CALL ELSTMX (KK)
NB=1ABS (NS (1) =NS (J)) C
IF(NB.EQ.O) WRITE(10,27) KK C DIRECT STIFFNESS PROCEDURE
27 FORMAT (10X, JHELEMENT, I &4, 260 C
+L4LOH HAS TWO NODES WITH THE SAME NODE NUMBER) D0331=1,8
205 iF (NB.LE.NBW) GOTO02} ‘ F1=NS (1)
INBW=KK A(JGF+1 1) =A(JGF+I 1) +EF (1)
NBW=NB D03k4J=1,8
21 CONTINUE 265 JJ=NS (J)+1-11
20 CONTINUE IF(JJ.LE.O) GOTO3h
210 NBW=NBW+1 J1=JGSM+ (JJ-1) NP+ 1= (JJ-1) % (JJ-2) /2
WRITE (10,270) NBW, INBW A(J1)=A(J1)+ESM(1,J)
270  FORMAT (//10X, 12HBANDWIDTH IS, 14, 11H IN ELEMENT, 14) 34 CONTINUE
C 270 33 CONTINUE
C INITIALIZATION OF THE COLUMN VECTOR A () 32 CONTINUE
215 c c e
JGF=NP C
JGSM=JGF+NP C
JEND=JGSM+NP#NBW 275 C MODIFICATION AND SOLUTION OF THE SYSTEM OF EQUATIONS
I'F (JEND.GT.5000) GOT022 C AND OUTPUT OF THE CALCULATED NODAL VALUES
220 JL=JEND-JGF c
DO2L1=1,JEND c
24 A(1)=0.0 cx z
GOTO030 280 CALL MODIFY (IFE)
22 WRITE(10,23) CALL DCMPBD
225 23 FORMAT (10X, 30HDIMENSION OF A VECTOR EXCEEDED/ _ CALL SLVBD
+10X,20HEXECUTION TERMINATED) c
STOP C OUTPUT OF THE CALCULATED VALUES
Coesededest 285 c
c* WRITE (10, 165)
230 c 165  FORMAT (//10X,21HCALCULATED QUANTITIES/
C GENERATION OF THE SYSTEM OF EQUATIONS +12X, 12HNODAL VALUES)
c

WRITE (10,166) (1,A(1),1=1,NP)

Coesesedededdedon 290 166 FORMAT (12X, 13,E14.5,3X,13,E14.5,3%,13,E14.5)
Coodsondokdedi C %
235 c C#*
C START OF THE LOOP TO BUILD THE SYSTEM C
c OF EQUATIONS C EVALUATION OF THE VOLUME UNDER THE PHI SURFACE
¢ 295 C  AND THE GRADIENT VALUES
30 DO32KK=1,NE o
240 o C
C RETRIEVAL OF THE ELEMENT NODE NUMBERS Coesfeddosssess
o ILINE=0
pDo311=1,8 300 DO83KK=1,NE
31 NS (1) =NEL (KK, I) IF(JLINE.GT.0) GOTOl10
245 o C
C ELEMENT COEFFICIENTS C OUTPUT OF THE CORRECT GRADIENT HEADING
c c

J=NHTL (KK) 305 WRITE (10,43) TITLE
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315

320

325

330

335

340

345

350

355

43 FORMAT (1H1///10X, 20A4)
FF(ITYP.EQ.1) WRITE (10,4k)
Ly FORMAT (//10X, THELEMENT , 4X, 8HLOCATION, 7X, THTAU (ZX) ,
+8X, JTHTAU(ZY))
[F (ITYP.NE.1.AND.ITYP.NE.5) WRITE (10, 147)
147 FORMAT (///10X, THELEMENT, 4X,8HLOCATION, 8X,6HVEL (X) ,
+10X,5X, 6HVEL (Y))
PF(ITYP.EQ.5) WRITE (10, 1L6)
146 FORMAT (///10X, JHELEMENT, kX, BHLOCATION, 10X, LHQ (X) ,
+11X,4HQ (Y))

RETRIEVAL OF THE NODE NUMBERS AND THE NODAL
VALUES OF PHI FOR THE ELEMENT

— OO0

10 DO4OI=1,8
NS (1) =NEL (KK, I)
J=NS (1)
Lo PHI (1) =A(J)

ELEMENT COEFFICIENTS FOR CALCULATING
THE GRADIENT VALUES

o000

J=NMTL (KK)
DXE=DX (J)
DYE=DY (J)

EVALUATION OF THE ELEMENT CONTRIBUTION TO
THE VOLUME UNDER THE SURFACE.
EVALUATION OF THE X AND Y GRADIENTS AT
THE NODE POINTS

aNeNeNeNeNel

CALL ELGRAD (KK, ITYP)

(@]

C LINE COUNTER

ILINE=ILINE+10
IF(ILINE.GT.50) ILINE=O
83 CONTINUE
CHededededesadens

Cheseseededei ik

C OUTPUT OF THE INTEGRAL VALUE

VOL=VOL*2.
IF(ITYP.EQ.1) WRITE(10,56) VOL
56 FORMAT (//10X,29HTHE TORQUE FOR THE SECTION IS, E15.5)
sToP
END
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C THIS SUBROUTINE EVALUATES THE ELEMENT STIFFNESS

o MATRIX AND ELEMENT FORCE VECTOR USING

o NUMERICAL INTEGRATION TECHNIQUES

o

Caxisx

CHaAxXARLEX

COMMON/ELMATX/ESM(8,8) ,EF (8) ,PHI (8) ,NS (8) ,vOL
COMMON/MATL/DXE,DYE,GE,QE
COMMON/HCV/1DBC (50,2) ,DBC (50, 2) ,NDBC
COMMON/PDXY/VN (8) ,PNX (8) ,PNY (8) , XX (8) ,YY (8) ,XD,YD,DET
COMMON/ IPTS/VX (9) ,VY (9) ,WC (9)
COMMON/CRD/XC (200) , YC (200)
DIMENSION H(3,3) ,FC(3),NT(3),NSIDE (3,4)
DATA NSIDE/1,2,3,3,4,5,5,6,7,7,8,1/
DATA H/b.,2.,-1.,2.,16.,2.,-1.,2.,k./, FC/1., k., 1./

CEAXXKERAY

(232133334

c

C INITIALIZATION OF THE ELEMENT MATRICES

CEAREXAXAXL
CRARXAXALR
c -
C RETRFIEVAL OF THE ELEMENT NODAL COORDINATES
c

CExERKXLXX
CRAXKAARLL
po1ol=1,8
J=NS (1)
XX (1) =XC (J)
10 YY (1)=YC (J)
ChikkhihiEk
CRARRAAALX
c
C EVALUALTION OF THE ELEMENT MATRICES WITHOUT
c A DERIVATIVE BOUNDARY COND!TION
C
(%2333 5331
(B3t 24374
CALL INGPTS
D0311=1,9
CALL PDERV(VX(11),vY (I1))
Do21=1,8
EF (1)=EF (1)+QE4VN (1) *DET=WC (1 1)
D02J=1,8

A= (DXE=PNX (1) #PNX (J) +DYE*PNY (1) *PNY (J) ) #DET=WC (11)
B=GEXVN (1) *VN (J) *DET=*WC (I 1)

2 ESM(1,J)=ESM(I,J)+A+B

3 CONTINUE
If (NDBC.EQ.O) RETURN

CEELRRAAAXL
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C
C ADDITION OF THE DERIVATIVE BOUNDARY COND!TION

C

CAXZXRAXAS

*

DO71J=1,NDBC

1F (1DBC (1J,1) .NE.KK) GOTC7

K=1DBC(1,2)

DOL1=1,3
4 NT (1) =NSIDE (1,K)

D05I1=1,3

tI=NT (1)

EF (11)=EF (11)+DBC(1,2) *FC (1) /6.

D05J=1,3

JJ=NT (J)

5 ESM(11,JJ)=ESM(11,JJ)+DBC(1,1)*H(1,J)/30.

7 CONTINUE

RETURN

END

SUBROUT INE ELGRAD (KK, ITYP)

3

POINT AND AT THE CENTER OF THE ELEMENT.

aNeNeNeNaNaNeNeNeNel

COMMON/ELMATX/ESM(8,8) ,EF (8) ,PHI (8) ,NS (8),VvOL
COMMON/PDXY/VN (8) ,PNX (8) ,PNY (8) , XX (8),YY (8),XD,YD,DET

COMMON/MATL/DXE,DYE,GE, QE
COMMON/IPTS/VX (9) ,VY (9) ,WC (9)
COMMON/CRD/XC (200) , YC (200)

DIMENSION XG(9),YQ(9),GDX(9),GDY (9),GRDC (5,2)
DATA GRDC/-1.,-1.,1.,=1.,=1.,1.,01.,1.,-1.,-1./

DATA XQ/-1.,0.,1.,1.,1.,0.,-1.,-1.,0/
DATA YQ/-1.,-1.,-1.,0.,1.,1.,1.,0.,0./
DATA 10/61/

RETRIEVAL OF THE ELEMENT NODAL COORDINATES

OO0 O00n

DO1i=1,8

J=NS (1)

XX (1) =xC (J)
1 YY (1) =YC (J)

THIS SUBROUTINE CALCULATES THE ELEMENT CONTRIBUT!ON
TO THE EVALUATION OF THE VOLUME UNDER THE PHI
SURFACE AND THE GRADIENT VALUES AT EACH NODE

35
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(e NeNeNaNel

C
C
C

[ 213

EVALUATION OF THE VOLUME UNDER THE PHI

CALL INGPTS

Do5ti=1,9

CALL PDERV (VX (t1),vY(11))
0061=1,8

6 VOL=VOL+VN (1) %PHI (1) *WC (11) =DET
5 CONTINUE

SURFACE

EVALUATION OF THE GRADIENTS AT THE ELEMENT NODE

POINTS AND THE CENTER OF THE ELEMENT

Clesededlededese

5i
55

54

c

D0l0I=1,9

GDX (1)=0.

GDY (1) =0.

CALL PDERV(XQ(1),YQ (1))
DO11J=1,8

GDX (1) =GDX (1) +PNX (J) *PHI (J)

11 GBY (1) =GDY (1) +PNY (J) *PH1 (J)
GDX (1) =DXE*GDX (1) %GRDC (I TYP, 1)
GDY (1) =DYE*GDY (1) *GRDC (I TYP, 2)

10 CONTINUE

$esed!

IF(1TYP.GE.3) GOTO50

GRADIENT OUTPUT FOR TROSION AND
STREAMLINE FLOW

WRITE (10,53) KK,NS(1),GDY (1) ,GDX (1)
FORMAT (/13X,13,5X%,5HNODE ,13,2E15.5)
DO511=2,8

WRITE (10,55) NS{I),GDBY (I),GDX (1)
FORMAT (21X, 5HNODE ,13,2E15.5)

WRITE (10,54) GDY (9),GDX (9)

FORMAT (21X, 6HCENTER, 2X, 2E15.5)
RETURN

C GRADIENT OUTPUT FOR POTENTIAL FLOW,

c
C
50

52

GROUNDWATER FLOW AND HEAT TRANSFER

WRITE (10,53) KK,NS(1),GDX(1),GDY (1)
D0521=2,8
WRITE (10,55) NS(I),GDX(1),GDY (1)



20

20

25

WRITE (10,54) GDX(9),GDY (9)
RETURN
END

SUBROUTINE INGPTS

COMMON/ IPTS/VX (9) , VY (9) ,WC (9)
DIMENSION A(3),B(3)

DATA A/-0.774597,0.0,0.774597/
DATA B/5., 8., 5./

Coedededeskdededk
Coededefsedohsk
c
C GENERATION OF THE NINE INTEGRATION POINTS
c FOR THE FQUADRATIC QUADRILATERAL
c ELEMENT
c
CAdckdseskkdek
Crkdhkksknk
N=0
DO1i=1,3
DO1J=1,3
N=N+1
VX (N) =A (1)

VY (N) =A (J)

WC (N) =B (1) *B (J) /81.
RETURN

END

p—

SUBROUT INE PDERV (X1,X2)

o0

TH1S SUBROUTING EVALUATES THE JACOBIAN
TRANSFORMAT ION MATRIX AND USES
THE INVERSE JACOBIAN MATRIX TO
OBTAIN THE DERIVATIVES OF THE SHAPE
FUNCTIONS WITH RESPECT TO X AND Y

CooO0O0o0O0o0o0

COMMON/PDXY/VNN(B) PNX (8) ,PNY (8) ,X (8),
COMMON/DERV/VN (8) , PNS(8) PNE(8)
REAL JOCB(2,2)

INITIALIZATION OF THE JACOB1AN MATRIX

coooo0o0oo0

poll=1,2
DolJ=1,2
1 JocB(l,J)=0.0

Y (8) ,XD,YD,BET

30

35
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C
C
C
C EVALUATION OF THE SHAPE FUNCTIONS AND
C THEIR DERIVATIVES

Cc &

c

o
c
C
C CALCULATION OF THE COORDINATES OF THE
c INTEGRATION POINT (XD,YD)

C AND THE JOCABIAN MATRIX

C

C

c

Tl
D021=1,8
XD=XD+VN( )Y EX (1)
YD=YD+VN (1) *Y (I)
JOCB(1,1)=J0CB (1, 1)+PNS (1) =X (1)

JocB (1,2)=JocB (1, 2)+PNS(I)'Y(I)
JOCB (2, 1) =JOCB (2, 1) +PNE (1) X (1)
2 JOCB(2,2)=J0CB(2,2)+PNE (1) =Y (1)

C
C
c
C CALCULATION OF THE INVERSE OF THE JOCABIAN MATRIX
C
C
C

A=JOCB (1,1)*JOCB(2,2) -JOCB(2,1)*JOCB(1,2)
B=J0OCB(1,1)
JOCB(1,1)=J0CB (2,2) /A
JOCB(1,2)=-340CB(1,2) /A
JOCB(2,1)=-J0CB(2,1) /A
JOCB (2,2)=B/A
DET=ABS (A)

Clsesedoest

Sk

o

C
C CALCULATION OF THE PART{AL DERIVATIVES
C WiTH RESPECT TO X AND Y
C
C %
C
D03t=1,8
VNN (1} =VN (1)

PNX (1) =JOCB (1, 1) *PN
3 PNY (1)=J0CB(2,1)*PN

RETURN

END

S{1)+JOCB (1,2) *PNE (1)
S (1)+JOCB(2,2) *PNE (1)
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SUBROUT INE QDSHFN(SI,ETA)

S o st

FUNCTIONS AND THEIR DERIVATIVES FOR

THIS SUBROUTINE CALCULATES THE VALUE OF THE SHAPE

THE

QUADRATIC QUADRILATERAL ELEMENT GIVEN

SPECIFIC VALUES OF KSI AND ETA
VN - VALUE OF THE SHAPE FUNCTION N

PNS - PARTIAL DERIVATIVE WITH RESPECT TO KSi
PNE - PARTIAL DERIVATIVE WITH RESPECT TO ETA

C ekttt

C feskstsedotatest

COMMON/DERV/VN (8) ,PNS (8) , PNE (8)
DIMENSION SQ(8),EQ(8)

DATA $Q/-1.,0.,1.,1.,1.,0.,-1.,-1./,
10.,1.,1.,1.,0./

CfRsietksssy
(333223 23 14

Cst

et

C*
c

C

CORNER NODES

DO51=1,7,2
VN (1) =0.25%(1.+51%5Q (1)) = (1 .+ETA*EQ (I
+% (S1%SQ (1) +ETA%EQ(I)-1.)

EQ/-1.,-1.,-1

))

PNS (1) =0.25% (1.+ETA®EQ (1)) % (2. %xSI+ETA%EQ (1) *SQ (1))

MIDSIDE NODES, KS! EQUAL ZERO

Ciedesedesosadesk
(k331835 3 33

D061=2,6,L
UN(1)=0.5%(1.-S1%%:2) % (1. +ETAXEQ(]))
PNS (1) =-S1% (1. 4+ETA%EQ (1))

5 PNE (1)=0.25% (1.451%5Q (1)) % (2. %ETA+S1%SQ (1) *EQ (1))

C ek
Cestesesest

c

o

C

C
Ca

6 PNE (1)=0.5%EQ (1) (1.-S1%=%2)

e

MIDSIDE NODES, ETA EQUAL ZERO

D071=4,8,4

VN(')=0-5*(].+S|*SQ(I))*(].~ETA**2)
PNS (1) =0.50=SQ (1) * (1. ~ETA%%2)
7 PNE (1) =-ETA% (1.451%5Q (1))
RETURN
END

.
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28.5 A COMPUTER EXAMPLE

Data input for the computer program 1ISOFLD discussed in the previous section
is illustrated by solving the convection heat transfer problem given in Problem
11.16 and shown in Figure 28.5. The body has a vertical axis of symmetry and a
known temperature distribution on the inside boundary. Convection heat transfer
occurs on the outer boundary.

The heat transfer problem is solved using the four-element grid shown in
Figure 28.6. The nodes 1, 4, 6, 9, 11, 14, 16, 19, and 21 divide the innercircular
boundary into eight equal arc lengths (22.5° increments); nodes 3, 5, &, 10, 13, 15,
18, 20, and 23 do the same for the outer circular boundary. The four-element grid
is probably too coarse for this problem, but it is sufficient to illustrate all aspects
of the data input.

The input data for ISOFLD are given to the right of the vertical line in Table
28.1. General comments about the data are given to the left of the line. The data
required for a solution are very similar to those required by TDFIELD, which
used the linear triangular and bilinear rectangular elements.

The calculated nodal temperatures are shown in Figure 28.7. The calculated
nodal values are probably fairly good values because the heat flow perpendicular
to surface 1-2-3 is 2.97 W/cm? and 1.91 W/cm? perpendicular to surface 21-22-23.
The values of g, at the nodes are shown in Figure 28.8. The total heat flow was
obtained using Simpson’s quadrature. The values of 1.91 and 2.97 are close to the
theoretical values of zero and would decrease if the number of elements was
increased.

cm-°C

Boundary of the inner cylinder is at 140°C
Diameter of the inner cylinder, 2 cm
Diameter of the outer cylinder, 8 cm

Figure 28.5. The physical configuration of the heat transfer example.
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Y 5,

Figure 28.6. The isoparametric finite element grid.

The computer output follows.

20

| SOPARAMETRIC COMPUTER EXAMPLE

NP o= 23
NE = b
ITYP = 5

EQUATION COEFFICIENTS
MATERIAL
SET DX
1 .20000E+01

NODAL COORDINATES

NODE X
1 0.
2 0.
3 0.
4 . 38300E+00
5 .15310E+01
6 .70700E+00
7 .17680E+01

DY
.20000E+01

.20000E+01
.30000£+01
.4O000E+01
.19240E+0}
.36960E+01
.17070E+01
.22680E+01

0.

10
"
12
13
Ty
15
16
17
18
19
20
2)

23

.28280E+01
.92400E+00
.36960£+01
. 10000E+01
.25000E+0}
.40000E+01
.92400E+00
.36960E+01
.70700E+00
.17680E+01
.28280E+01
.38300E+00
.15310E+01

.28280E+01
.13830E+01
.15310€+01
. 10000E+01
.50000E+00
0.
.61700E+00
-.15310E401
.29300£+00
. 12680E+01
.28280E+01
.76000E-01
.36960E+01

]

)

.20000E+01
.LO000E+01

| SOPARAMETRIC COMPUTER EXAMPLE

N NMTL NODE NUMBERS
1 1 6 7 8 5 3
2 1 1112 13 10 8
3 1 i6 17 18 15 13
I } 21 22 23 20 18
DERIVATIVE BOUNDARY CONDITION DATA
ELEMENT SIDE ML
1 2 .L7100E+01
2 2 .L7100E+01
3 2 .47100E+01
L 2 .4L7100E+01
BANDWIDTH IS 8 IN ELEMENT 1}
KNOWN NODAL VALUES OF PHI
] . 1LO00E+03
L . 1LOOOE+03
6 . 14000E+03
9 . 1L000E+03
11 . 1L000E+03
1k . 14000E+03
16 . 14000E+03
19 . 14000E+03
21 . 14O00E+03
CALCULATED QUANTITIES
NODAL VALUES
1 . 14000E+03 2 .8BL74E+O2
L . 14O00E+03 5 .54 188E+02
7 .83889E+02 8 .50207E+02
10 .L45870E+02 11 .1L000E+03

2 1
7 6
12 11
17 16
SL
.94200E+02
.9L4200E+02
.94200£+02
.94200E+02

MO VW

L

9
14

19

.55705E+02
. 14000E+03
. 14000E+03
.76059E+02



13
16
19
22

.42352E+02 Th . 14000E+03
. 14000E+03 17 .70721E+02
. 14000E+03 20 .36557E+02
.68966E+02 23 .36580F+02
ISOPARAMETRIC COMPUTER EXAMPLE
ELEMENT LOCATION Q(X)

] NODE 6 .82271E402
NODE 7 .58253E+02

NODE 8 .30612E+02

NODE 5 .19532E+02

NODE 3 .97118E+00

NODE 2 .31631E401

NODE 1 L1624 TE+01

NODE &4 .46800E+02

CENTER .35709E+02

2 NODE 11 .10588E+03
NODE 12 .63106E+02

NODE 13 .23635E+02

NODE 10 .29575E+02

NODE 8 .30806E+02

NODE 7 .59983E+02

NODE 6 .83652E+02

NODE 9 .10357E4+03

CENTER .66909E+02

3 NODE 16 .67686E+02
NODE 17 .36L09E+02

NODE 18 .10561E+02

NODE 15 . 16687E+02

NODE 13 .23180E+02

NODE 12 .62614LE+02

NODE I . 104L9LE+03

NODE 14 .91342E+02

CENTER .51419E+02

N NODE 21 . 120L8E+01
NODE 22 -31342E+00

NODE 23 .10LOBE+01

NODE 20 .46919E+01

NODE 18 .88717E+01

NODE 17 .35788E+02

NOBE 16 .65775E+02

NODE 19 .34831€+02

CENTER .18LOLE+02

15
18
21

.39383£+02
-37913E402
. 14000E+03

Q(Y)

.8L27LE+02
.4998LE+02
.22346E+02
.37748E+02
L46782E+02
.84295E+02
L12181E+03
.11293E+403
.73720E+02

LHE1N7E+00

.59765E+01
.34566E+0]

.67015E+401
.21978E+02

.L6710E+02
.B1663E+02
.42921E+02
. 188L5E+02

.66077E+02
.LO677E+02
11514E+02
. 10055E+02
.48218E+01
.7L5LEE+O1
.13992E+01
.37855E+02
.27327E+02

.90358E+02
.51710E+02
.13061E+02
.13595E+02
. 12662E+02
.41098E+02
.67376E+02
.8LOLEE+02
LL92L7E+02

0.97

55.7

3.16

1.62

459

424

394

0.3] =—>9

Figure 28.8. Heat flow along the axis of symmetry in the

heat transfer example.

Nodal temperature values for the heat

Figure 28.7.

transfer example.



Table 28.1

Computer Data for ISOFLD

Title
Parameters

Equation
coefhicients

X-coordinates

Y-coordinates

Element data

Derivative
boundary
conditions

Source and sink

Known values

of ¢

| SOPARAMETRIC COMPUTER EXAMPLE

23 &

2

O —-0O0

Fw o —

W N -

OO — =N

.0

.707

0

-293 -

.707

.707

2.0

11
16
21

SIS RN B N

140.
140.

o~ N — O

N — O MW

Rl ol S

L5

0.

~ U~y
oN O O
o o

268
50
268

12
17
22

.71
71
A
A

16

oo s oNENO

0.

0o O ™

[0 -]
~N

O o

n

N

N

NN

140.
140.

oo oo

o o0

5
10
15
20

0.383
0.924

0:383
L9243

.383 1
617 -1

O O = v

3 2
8 7
1312
18 17

6 140.
19 1bo.

.531
.696
.696
53

.696
53
.531
.076 -3.

696

6
1
6

S
21

4

9
T

9

140.
140.

11
0

140.
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Appendix 1
MATRIX NOTATION

The principles of the finite element method are presented using matrix notation.
Matrices are often denoted in printed material using boldface type such as B,D, N,
and so on. The difficulty with this notation is that the boldface type is very difficult
to duplicate in a classroom situation. It is much easier to identify matrices and
vectors on a chalkboard when they are enclosed in brackets. Since this book is a
textbook and the written material will be presented in a lecture format, all of the
matrices and vectors have been enclosed in brackets. The following notational
rules are used throughout this book.

1. All column vectors are enclosed in pointed brackets, that is,

Fy

2. Allrow vectors and matrices are enclosed in regular brackets, that is,
[N]=[N: N>~ N,]
bl 1 bl 2 b13
81| ’
bZl b22 23
The two rules given above should make it easier to distinguish between row

vectors and column vectors. The use of brackets to denote matrices allows instruc-
tors to use the same notation during lectures that is used within this book.



Appendix 2

DIFFERENTIATION OF
MATRIX EQUATIONS

The minimization procedure discussed in Chapter 18 required the differentiation
of matrix products {U}7{C} and {U}T[4]{U} with respect to {U}, where {C} isa
column vector and [A] is a square symmetric matrix. These differentiations are
relatively easy to perform but, since the results are not given in many references for
matrix algebra, we consider them in this appendix.

Starting with the quantity

A=1UJTC (1)
or
C,
A=[U, Uy~ UJ1C ?)
C,

we find that the desired derivative is 6A/¢{U}. This derivative is equivalent to the
column vector of derivatives

The derivatives in (3) can be evaluated aflér the product in (2) has been evaluated.
In this case

A:Uv|C1+U2C2+ +U‘.C,-

The derivatives become

oA oA oA
= s A :Cv,...,a :C‘, 4
6U1 ! C’Uz - (]U,, ( )

DIFFERENTITATION OF MATRIX EQUATIONS 415

Substituting these derivatives into (3) produces

C,

A C
o _1Cloi

GKU’ N

C.

and
auiticy)
CINIR :lCJ
L )
The other derivative of interest is

o(LUTTAILUY)

oluU}

The expansion of [4]{ U} gives the column vector

A11U1+A12U2+"' +A1,.U,.]

Ay Ui +A4,,U+ - +4,.U,
[4](U} = 21: 1 22: 2 z:

Aﬁ‘l Ul +Ar2U2 + +AI'I‘UI' J
Completion of the product {U}T[A]{U} gives the single term

A={U}TLALY)
=AU+ (A1 + AU U+ (A3 + 43U Us+ -
+(A1r+Ar1)UrU1+ +(Anm+Amn)UnUm+ +Ar1U3

The evaluation of the derivatives yields

oA
;T=2A11U1+(A12+A21)U2+"' +(4,+ AU,
1
oA
W=(A21+A12)U1+2A22U2+ (At AU,
2
oA
U =(An+ AU +(A+ AU+ - +24,.U,
Each of the derivatives can be separated into two sums as follows
oA
m=(A11U1+A12U2+ e+ AL U)+H(ALW U+ A/ U+ + 4, U)
1
oA
a—U—z(A21U1+A22U2+“'+A2rU,)+(A12U1+A32U1+“'+A,.3U,,)
2
oA

w:.(Arl U1+A,—2U2+"' +ArrUr)+(AlrU1 +AZI‘UZ+'” +Ar2ljrj

()
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The above equations are equivalent to
U4 UY) :
N TR I T 10)
When [ 4] is symmetric,
QU T[ATIUS)
W,

=2[4]{U] (i1)

Appendix 3

MODIFYING THE SYSTEM
OF EQUATIONS

The system of equations
[K]i®)={F]
or
[K]'U} = {F}+(P)

obtained by using the direct stiffness procedure must be modified whenever some
of the values in {®} or {U} are known. All field problems except some problems
involving convection heat transfer must have some of the boundary values specified
and all solid mechanics problems must have displacements specified to eliminate
rigid body motion. Therefore, the modification of the system of equations to
incorporate known nodal conditions is more the rule than the exception.

Our objective here is to discuss and then illustrate a systematic procedure for
modifying [K ] and | F] such that we satisfy two criteria. First, we must obtain
the correct answers for all values in {®] or [U . Second, we do not want to change
the size of [K], {F}, and [ P] because this leads to programming difficulties. We
shall consider the steady-state situation first and then discuss the modification of
equations associated with time-dependent field problems.

I11.1 STEADY-STATE EQUATIONS

The modification of the system of equations [ K]{®] = | F| is a two-step procedure
once the subscript of the known nodal parameter is available. For example,
suppose that @5 has a known value. The modification proceeds as follows.

1. All of the coeflicients in row five are set equal to zero except the diagonal

term, which is left unaltered. In equation form, Ks;=0, j=1,...,n and j#5.
The associated term in the column vector {F], Fs, is replaced by the product

2. All of the remaining equations are modified by subtracting the product
K;s®s from Fjand then setting K;5s =0, j=1,...,n,j#5.
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ILLUSTRATIVE EXAMPLE
Modify the following system of equations when ®; =150 and & =40.
55 —46 0 0 0 |, 500
—46 140 —46 0 01|®, 2000
4 —46 110 —46 4 [{®; =+ 1000
0 0 —46 142 —46 ||, 2000
0 0 4 —46 651 | d, 900

To implement step one, we set all of the coefficients in rows one and five to zero
except the diagonal terms, which are left unaltered. The corresponding terms in
{F}, F, and Fs, are then replaced by F, =K, ®, and Fs=Kss®s, respectively.
This step yields

55 0 0 0 07, 8250
—46 140 —46 0 0 Jsz 2000
4 -46 110 —46 4 1405 =4 1000

0 0 —46 142 —46 | (D, 2000

0 0 0 0 65d s 2600

The second step involves the elimination of the columns of coefficients that
multiply ®; and ®;. This is accomplished by transferring the coefficients involving
®, and @5 to the right-hand side. For example, F, becomes 2000+ 46®, or 8900.
Completion of this step gives

55 0 0 0 01, 8250
0 140 —46 0 0 [cb2 8900
0 46 110 —46 0ldo, =1 240
0 0 —46 142 of|lo,| [3840
0 0 0 0 651|ms| (2600

111.2 TIME-DEPENDENT EQUATIONS

The incorporation of specified nodal values in time-dependent problems is more
complicated because the solution procedure involves combinations of [C] and
[K], namely [A4] and [P]. We shall place the same requirement on the time-
dependent solution that was placed on the steady-state solution. We want to keep
the dimensions of [C | and [K ] and thus [ 4] and [ P] the same after modification
as they were before modification.

The algorithm for modifying [C] and [K | is more easily understood once we
have looked at a specific problem. Let us reconsider the problem in Section 14.5
without the heat source at node one. Instead we assume that ®,; =40°C for all time
values. The vector of initial conditions {®], becomes {®}7=[40 0 0]

MODIFYING THE SYSTEM OF EQUATIONS 419

Our desire is to maintain [4] and [ P] as 3 x3 matrices with the new property
that ®, =40°C for all of the calculated solutions.

If we use a lumped capacitance matrix with the [ K] that was obtained for the
example problem in Section 14.5, the system of differential equations is

)
12‘Q+2¢1—2¢2:0
dt
)
24'(17:2 —20, +4d, — 20, =0
12995 —20,+20,=0 (1)

At
The first equation of (1) comes from R; =0. Since ®, has the fixed value of 40, the

first equation should not be included. We must eliminate the residual equation for
node one because @, is known. The correct system of differential equations is

@
24d1—[2+4¢>2—2®3—80:0
[4

)
12"1—[3—2q>2+2<p3=0 )
[4

The value —80 in the first equation of (2) comes from substituting ®, =40 into
—2®, in the original equation.
The equivalent matrix form is

24 0 |dio* 4 -2, 80 0
*| — = 3
[o 12} a2 277 Lof o @)
where (®*]T=[®, ;]
A central difference solution of (3) using Ar=1 is

26 —1 22 -1 80
5 e 5 e @

Our objective is to have a system of equations that includes (4) but which also
gives the correct value of ®, for each time step. One way of achieving this objective
is to expand (4) into a larger system as follows.

12 0 0 12 0 0 0
0 20 —1|{ol,=] 0 2 —1 '@l +180 (5)
0 -1 13 0o -1 1 0

The diagonal values 4, and P, are set equal to C,,. All of the other coefficients
in the first row of [ 4] and [ P] are zero. When (5) is solved, ®, at t =b will be the
same as @, at r=a.

The modification of a system of differential equations when some of the nodal
values are known can be accomplished by the following algorithm. Assume that
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®; is the known nodal value.

1. Add the products K;;®;, j=1,...,n to the corresponding coefficient in [ F},
that is, F;.

2. Replace the coefficients in row i and column i of [ K ] by zeros. An swers to S e I e Ct e d
3. Set Fi —_—0 '
4. If [C] comes from the consistent formulation, sum the coefficients in row i

and replace C;; with this sum. Set all of the off-diagonal coefhicients in the row Pro b I e ms

to zero.

When these three steps are completed, [ 4] and [ P] have properties similar to
the matrices in (6). The diagonal coeflicients, 4;; and P;;, are the same as Cj;; thus,
®; at time b is the same as ®; at time a.

4
11 y=— L;gl sin %‘ 32 ¢,=19.1, d,=—4.48
Y/
0013260 3.4 (a) B, =225, &, =3.50, &, =3.75
13 y=— — 7 wH in % 3.4 (c) ®,=0.50, &, = —0.25,
El ®,=—025
2
1.6 y=— 21‘43011 oin ™ 38 Y,=—733, Y;=—1067,
m3El H Y,=—7.33
0.0645SMoH?  nx 55 Ni+Nj+ +N,=1
1.9 y=— 0T i
El H 5.7 (a) $=171.7, (b) (0.21, 0.04),
S, (0.202,0.088),
111 y=— sin R
tenEl — H ©%_ _2308,%%_ _3341
114 4MoH* ox €y
YT R 5.9 (a) $=170.9, (b) (0.183, 0.13),
( 1 3nx> (0.166, 0.1606),
X smw-{—— in—- R
B2 (c) aﬁ: ~283.3, gi’z — 1333
1.16 x/H =0.3008 ox ¥
2.1 (a) 509, (c) 55.8 5.12 (a) $=92.47, (b) (0.368, 0.18),
2.2 (a) —11.3,(c) =120 (0.346, 0.25),
N 0¢ _ fidj_ _
2.5 Nis)=1—+, Njls) 7 (c) P —4204, 5= 134.7
s : 5.14 (a) ¢ =140.3, (b) (0.259, 0.060),
28 N 2(1— “)(“ L) (0.250, 0.095),
No="(1- 1) N2t ( )%:—4181 j—?=—929
L ' LL,

2 r r
t s _-_r ot
N,ﬂ:_(l_a) 64 No=3 - [ N=3+]
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L 2L
6.6 (3)3, (C)E

ANSWERS TO SELECTED PROBLEMS

113 (®)7=[80 64.2 453 352 299]
115 (®)7=[50 440 170 11.1]
11.8 ¢, =538

1.9 [£“]
1886 —0752 —0.722
=|—-0752 1386 -0222],
—0.722 —-0222 0944
(FNT=[1383 1383 167]

111 [£]
1422 —0500 —0.289
=|-0500 125 -0.750
~0289 —0750  1.672
(feNT=[9.35 0 9.35]

12-1 Z| :O, 22:2

A A
9 (a) =, ()=
6 (3)30,(«?)2
04 2GA
. _— 2 o
7.1 (a) 4 72 (a) 5
y 21 1 Qil
7.4 {f‘"’}:ﬁl 2 1|4t
11 2 QkJ
7.9 (a)
Ll
0.6238 —0.2891 —0.3243
=] -02891 05469 —0.2474 |
—03243 —02474  0.5821
(fOT=[0.0130 00130 0.0130]
0.3420 —0.1207
7.10 (b) [k¥9] = —0.1207 0.3420
’ —0.1625 —0.0433
—0.0433  —0.1675

[ T=[0.0420 0.0420 0.0420 0.0420]

—0.1625 —0.0433

—0.0433 —0.1675
0.3420 —-0.1207 |

—0.1207 0.3420

8.1 &, =2180,®,=159.8, ®,=123.5

84 1., =—1333,1,=2833,
T =1.190

8.6 1., =—385,1,=2308, T'"=2.782
810 7., =~-1928, 7,,=375.0,

T =0.507
812 1_,=—1250, 7,,=450.0,

T =0.440
9.1 (ayM=—-6,S=-3
9.4 15T =[896 234 7.72]

9.7 {f51T=[166 62 172]
9.10 { ¢ T=[143 286 381 19.0]
9.12 {f§NT=[152 114 571 7.62]

ha 0 A
112 [k7]= [ O],:/;"‘;:{” O‘pf}

12.2 Z,=0, Zz:%, Zy=1,724=2
12.8 7Z,=0.108, Z,=0.500, Z;=1.32

13.7 (£ T=[461 545 503]
139 | ““7 =[9549 10555 10052]
(628 377 0
13.02 [k]=| 37.7 880 0
Lo 0 0

[0 0 0
13.14 [k7=|0 1591 754
[0 754 1424

14.1 {cb;§=[o.3so 00149 0.0011]

16 1 0
14411 16 1
0 1 16

v

fan]

ANSWERS TO SELECTED PROBLEMS

[ 0 3}[‘”21. Lol

Dy +
0 4 10 lcm_la 130

=[10 439 495 439 10]
2 0 07|,
8 2 0f|®,|
2 8 2|lo,
0 2 4]|wm,

b
o Lol
‘<D4 ol
D51, 10

[5 299 30 30 30]

O W O W
w N W O
w W O O

6
3
0
0

14.10 {®}]=

14.12 {®}T=[10 141 0243]
15.1 (a) Ar<0.1867/(1—0)
15.4 Ar</A/18D(1 —0)
17.1 U,=0.002679
17.3 U,=U;=0.00500
19.1 Us=—0.001869, U, = —0.06906
[—0500 0 0.500
_ 0.143 0 0.143
24.1 [B]=
LBl=] 0 0
L 0 —0.500 —0.333
[—-0.500 0 0.500
_ 0111 0 0.111
243 [B]=
L5] 0 -0250 0
) —0.500 —0.250
247 | T=[—2741 1002 3262
248 [fNT=[0 1152 0 1361 0

423

19.3 U;=0.100, U, = —0.3121,

Us=0.200
19.5 U, = —0.00004270,
U, = —0.005390

19.7 S4=283000(T), S5 = 199800(C),
S = 200000(T)
19.10 S =33300(T), S = 60340(C)

20.1 U,=—0.027780, U;= —8.8890,
Us=—0.01111, Ug=0.02222

20.2 Uy=—1.9753, U, = —0.003704
204 Us=—13.021, Uy = —0.03906

20.8 U,=—2.8483, U, =—0.002441,
Ue=0.009766

20.12 U;=—0.001758,
U4 =-0.00001465,
U =0.00001172

10.13 (a) —6EI/L?
21.2 U, =5.325, Us=—5.341,
Ue= —0.02828

23.1 {¢)T=[22800 1200 —3000]

233 (01T=[ 2821 —11284 —5053]
235 (g)T=[2660 —9340 19600]
238 (g)T=[—2400 —6000 9960]
2311 [T
L
_Po 20 0 1 0 0 2]
o 0 o0
0 0143 0
~0333 0 0333
0.500 0.333 0
o 0 0
0 011 0
0250 0 0500
0.500 0500 0

—3000 261 1998]

125.7]



424 ANSWERS TO SELECTED PROBLEMS

INDEX

241 ﬁ:;_gzgf‘]g’ Pe=—84823, 26.16 48.75 273 [J]:?
2412 {f;"’}’:zn’l’zzLj" 27.4 (e) 0.01666485
[0 0 0 BRi+RJ 0 (R+Ry] 0.091507  0.122009]
24.15 {5)7 —0.122009 —0.222222
=[—-24472 1256 —19144 18664] 0.030502 0.151781
264 Ny=—3G+E1-8), 7.7 [B] = 0.166667 —0.607122
N,=g(1+&(1-9), ' 0.341506  0.455341
N3=3(+81+9) —0.455342 0222222
269 N,=%L,(L,~3(L,-%, 0.113836  0.040669
N,=%1L,Ly(L,—%), 0.166667 —0.162678
N3=%L;LyL,—%)
1[=5 2 6 -2 1 =2
27.10 [3]234[—4 -12 =2 12 -6 12]
27.15 {f§")"=[0 567 0 567 0 567]
27.17 {f§"7=[0 1509 0 1952 0 15.09]
27.18 { N T=[-550 220 —550 3153 —550 220 —5.50 1247]

Acoustical vibrations:
one-dimensional, 158-161
two-dimensional, 161-163

Area coordinates, 73-78

Axisymmetric elasticity, 314-322

Axisymmetric field problems, 165-175

Bandwidth, 47, 49, 56
Beam:
displacement equation, 263-264
element, 261-262
element matrices, 265-267
example problem, 32-34, 44-47, 267-271
internal forces, 267
shape functions, 265
strain energy, 263
Body forces, 243, 290, 298, 318
Boundary conditions:
axisymmetric field problem, 173-175
convection:
one-dimensional, 139-140, 142
two-dimensional, 145-147
heat flux, 148
stress, 243, 291, 298, 302-304, 319-322
time-dependent field problems, 199-200
two-dimensional field problems, 115-120
Buckling, column, 164

Collocation method, 4, 8
Computer examples:
aquifer, 132-134
field problem, 219-223
flow around cylinder, 130-132
heat transfer, 148-151
isoparametric, 405-410
plane frame, 338-340
plane stress elasticity, 305-309, 351-356
torsion of square bar, 109-111
Computer programs:
main programs:
FRAME, 326-334
ISOFLD, 391-399

STRESS, 340-346

TDFIELD, 203, 206-216
subprograms:
CONVERT, 327. 337
DCMPBD. 205, 217-218
ELGRAD, 392, 400-402
ELSTMF, 204, 214-216
ELSTMX, 346-347, 350, 392, 399400
INGPTS. 392, 402
INVERT, 327, 337-338
MODFRM, 326, 334-335
MODIFY, 2085, 216-217. 347-349
PDERYV, 392, 402-403
QDSHFN, 392. 404
SLVBD, 205, 218, 327. 336-337. 350
Continuity between elements. 78-80
Contour line, 60, 63-64
Coordinate systems:
area coordinates, 73-78
cylindrical, 314
one-dimensional:
local, 68-70
natural, 70-73
two-dimensional, natural, 73

Differentiation of matrix equations, 414-416
Displacement equation:
axial force element, 230
beam element, 263-264
triangular elasticity, 295-296
Distributed loads, 243, 291, 298, 302-304,
319-322

Elasticity:
axisymmetric, 316-317
body forces, 290, 298, 318
cylindrical, 314-316
displacement equations, 295-296
element matrices, 289-291, 297-302,

317-320

strain components, 287, 294, 295, 314, 316
strain energy, 289-290
stress components, 286, 292, 304-305
surface stresses, 290, 302-304, 320-322
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Elasticity ( Continued)
three-dimensional, 286-289
two-dimensional:

plane strain, 294-295
plane stress, 293-294

Element matrices:
axial force, 238-239
axisymmetric triangle:

elasticity, 317-320

field problem, 170-171, 174-175
beam, 265-267
boundary conditions, 118-120, 382-383
numerical integration of, 375-383
one-dimensional field, 40-43
plane frame, 278-280
rectangular element, 94-97
three-dimensional elasticity, 289-291
triangular:

elasticity, 297-300

field, 91-94

truss, 249

Elements:
axial force, 230-231
axisymmetric, 166-168
beam, 261-262
continuity between, 78-80
one-dimensional:

linear, 17-22
quadratic, 362-363
plane frame, 277
quadrilateral:
eight node, 367-368
Lagrangian, 366--367
linear, 365-366
rectangular, 51-52, 61-63
time-dependent field problems, 196-197
triangular:
elasticity, 296
linear, 51-54, 56-58, 59-60
quadratic, 363-365
truss, 247-248

Field problems:

acoustic vibrations, 158-163

axisymmetric, 165-175

computer programs, 202-223

derivative boundary conditions, 115-120

heat transfer, 138-151

irrotational flow, 126-134

point source or sink, 121-124

time-dependent practical considerations,
190-200

time-dependent theoretical considerations,
177-188

INDEX

torsion of noncircular sections, 100-111
Finite difference method, 4
Finite element method, characteristics, 11
Frame analysis:

element, 277

element matrices, 278-280

example problem, 281-283

internal forces, 280

strain energy, 278-280

Galerkin’s method, 4, 9
axisymmetric, 168-170
one-dimensional, 27-32, 4043
time-dependent, 177-178
two-dimensional, 89-91

Gauss-Legendre quadrature, 375-377

Grids:
one-dimensional, 17-18, 227-229
two-dimensional, 51-56

Groundwater, 121, 129-130

Heat transfer:
composite wall, 142-144
computer example, 148-151
convection boundary condition, 145-147
fin:
one-dimensional, 138-142
two-dimensional, 144-145
heat-flux boundary condition, 148
two-dimensional, 145-148
Helmbholtz equation, 88-89, 158
Hermite interpolation functions, 265
Hooke’s law:
axisymmetric, 316
cylindrical coordinates, 315
one-dimensional, 229
plane strain, 295
plane stress, 293-294
three-dimensional, 287-288

Integration:
change of variables, 69-70, 371-373
numerical:
example, 378-380
Gauss-Legendre, 375-377
triangular regions, 377-378

Interelement requirement, 30, 31, 32, 90, 116

Internal forces:
axial force member, 233, 244-245
beam element, 267
plane frame element. 280-281
truss element, 250

Irrotational flow:
computer example, 130-134

INDEX

groundwater, 129-130
potential formulation, 127-128
streamline formulation, 126-127

Least squares method, 5
Numerical oscillations, 191-193

Potential energy, 10-11, 243
principle of minimum, 228-229
Potential flow, 127-129

Shape functions:
beam element, 265
evaluation procedure, 361
one-dimensional linear, 19, 69-72
one-dimensional quadratic, 362-363
quadrilateral:
eight-node, 367-368
Lagrangian, 366-367
linear, 365-366
rectangular element, 62-63
triangular:
linear, 57, 59-60
quadratic, 363-365
using step functions, 180-183
Sink, 121-124
Source, 121-124
Stiffness matrix, global, 4748
Stiffness method, 43-44
example problem, 4447
Strain components, 287, 294, 295, 314,
316
Strain-displacements equations:
axisymmetric, 316
cylindrical, 315
three-dimensional, 288
two-dimensional, 296
Strain energy:
axial force member, 229-231, 239
beam element, 263
elasticity, 289-290
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plane frame element, 278-279
truss element, 248-249
Streamline flow, 126-127
Stress components:
plane strain, 295
plane stress, 293, 304-305
three-dimensional, 286, 292
Subdomain method, 5, 8
Surfaces stresses, 243, 291, 298, 302-304,
319-322, 382-383
Systems of equations, modifying, 417-420

Time-dependent field problems:
consistent formulation, 178-180, 194-195
Galerkin formulation, 177-178
heat flow in a rod, 185-188
lumped formulation, 180-183, 195-196
numerical oscillations, 191-193
physical reality, 190-191
solution in time, 183-185
Torsion of noncircular sections, 100-111
Truss:
element, 248
element matrices, 248-250
example problem, 250-254
internal forces, 250
strain energy, 248

Variational method, 4, 7-8
Vibrations, acoustical, 158-163

Weighted residual formulation, 27
axisymmetric, 168-170
one-dmensional, 30-32, 4043
time-dependent, 177-178
two-dimensional, 89-91

Weighted residual methods:
collocation method, 5, 8
Galerkin’s method, 5, 9
least squares method, 6, 9
subdomain method, 5, 8

Weighting functions, 27-29, 178, 179, 180



