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Foreword

This edited volume contains a collection of selected and refereed papers presented at
the Fifth MDEF Modelli Dinamici in Economia e Finanza (Dynamic Models in Eco-
nomics and Finance) International Workshop held at the Department of Economics
and Quantitative Methods of the University of Urbino, Italy, on the 25th–27th of
September, 2008.

It is true without doubt that scientific meetings derive their value not only from
the scientific results presented during the formal sessions, but also and perhaps more
importantly from the atmosphere created amongst the participants during the breaks
and dinners that afford them the opportunity to meet again with old friends and
make new ones. In that respect we are happy that the fifth MDEF meeting gave us
the opportunity to pay tribute to John Barkley Rosser, Jr, an outstanding scientist
and good friend of many of the participants, who celebrated his sixtieth birthday in
2008.

We shall not attempt to give a full list of Barkley’s numerous scientific achieve-
ments here; we shall only mention his important contributions to various areas
that fall within the focus of the Workshop, in particular, his work on the impor-
tance of nonlinearity and complexity in the economic sciences. With some of his
earliest work on these topics appearing in the 1980s, it would be fair to say that
Barkley has been one of the pioneers in the area. The first edition in 1991 of his
book From Catastrophe to Chaos: A General Theory of Economic Discontinuities
brought together and gave a perspective on many of the early contributions. This
book, and its second edition in 2000, had a profound influence on many researchers
who have contributed to nonlinearity and complexity in the economic and social
sciences over the intervening two decades. As one would expect of a scholar who
has very broad and eclectic interests, Barkley’s influence extends beyond the area in
which he originally made his name, and he has made contributions to areas such as
the new traditional economy, econochemistry, the megacorpstate, economic inequal-
ity and the underground economy. No doubt because of his contributions across so
many areas, Barkley assumed the role of Editor of the Journal of Economic Behav-
ior and Organization in 2001. In an era when many top journals seem to be more and
more closed to new or different ways of thinking, this journal remains open to new
and innovative ideas in the economic and social sciences, and as such it provides the
perfect foil for Barkley’s very broad range of interests.
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vi Foreword

After completing a bachelor’s degree with a major in economics and a minor in
mathematics, Barkley completed his master’s and doctoral degrees in economics,
all at the University of Wisconsin-Madison. He has built his entire career with the
Department of Economics at the James Madison University, which he joined in 1977
and where he has occupied various positions. In 1996, Barkley was appointed as the
Kirby L. Cramer Jr. Professor of Business Administration, a position that he still
occupies.

The fifth MDEF workshop was held in a period of severe global economic cri-
sis, probably the worst since the 1930s. The crisis has not only brought about
widespread influences on social and economic life in many countries, but also poses
a challenge to what had developed as the mainstream economic consensus from
about the mid-1970s. This challenge is highlighted by the fact that in order to man-
age the crisis, policy makers in the major economies have had to adopt policies
that run counter to the principal tenets of that mainstream orthodoxy. It therefore
seems very apposite against this backdrop to hold a workshop on issues devoted to
complexity, nonlinearity and heterogeneity in economic science, and that the work-
shop should be dedicated to Barkley who has been at the forefront in criticising
the mainstream orthodoxy and developing new ways of thinking about economic
science.

The papers that appear in this volume deal with a number of different topical
areas involving the application of concepts from the theory of nonlinear dynami-
cal systems, from dynamic models that describe the interactions between economic
activities and the environment, a topic that has been repeatedly stressed in many
papers and books by Barkley, to the description of the wild dynamics of financial
markets, both through deterministic as well as stochastic models. There is also a
set of papers dealing with strategic interaction in economics and the social sciences
by the use of the methods of game theory, as well as some contributions on mar-
kets with heterogeneous agents or models dealing with expectations and learning in
economic systems, an issue that is currently topical in economics, finance and the
social sciences. Some applications of deterministic dynamical systems to business
cycles and labour markets are also presented, as well as dynamic oligopoly games
and nonlinear evolutionary games for the description of social systems and the sus-
tainable exploitation of natural resources. Such a broad spectrum of applications, as
well as the various mathematical methods used to analyse the corresponding mod-
els, are intended to give some perspective on the different streams of the growing
literature in this field. It is thereby our hope that this special volume will stimulate
further collaborations amongst researchers from different fields, through a fruitful
trade-off between theoretical issues and applications. We hope, furthermore, that
this special volume will help the reader to gain an entrée into the main topics in
nonlinear dynamics applied to economics, finance and the social sciences, as well
as their recent advances.

We now give, for the convenience of the reader, a brief review of the twenty
contributions, chosen after a careful selection and revision, in order to give a broad
idea of the kind of dynamical models proposed, the mathematical methods used,
and to show how they reflect some common themes and features.
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In the first paper, Antoci and Borghesi propose a two dimensional evolution-
ary game in continuous time, to describe a perverse effect by which environmental
degradation may induce agents to adopt self-protection strategies that generate neg-
ative externalities by further increasing environmental degradation. The second
paper, by Antoci, Russu and Ticci, considers a model of a small open economy
in order to mimic the situation of developing countries where economic agents dif-
fer not only with respect to income, but also with respect to their vulnerability to
environmental depletion. Their model takes into account two main factors that have
been partially neglected by the economic development literature: the environmental
externalities of human activity and agent heterogeneity in terms of asset endow-
ment and, consequently, in terms of income source and vulnerability to depletion
of natural resources. In a similar vein, the paper by Antoci, Naimzada and Sodini
proposes an overlapping generations model, a quite natural framework in which to
represent problems of sustainable development (a typical intergenerational issue), to
analyse possible feedback effects on environmental degradation, consumption and
economic growth. Another important topic in environmental dynamics (on which
Barkley Rosser has written many interesting papers) is the commercial exploita-
tion of natural renewable resources, such as fisheries. This is also the topic of the
paper by Gu and Lamantia, where a discrete-time dynamic model is proposed to
model different harvesting policies of a single species with age structure, where the
exploiters can compete or cooperate, so that they can try to maximize the profit of a
coalition instead of the individual profit.

The paper by Marta Biancardi investigates the stability of international agree-
ments for environmental protection in a dynamic model of emissions reduction
where the countries involved in the agreement determine their abatement levels in a
dynamic setting, given the dynamics of pollution stock and the strategies of the other
countries. The problem is studied in a differential game setting. Also in a dynamic
game framework, Giovanni Villani analyzes a model of R&D cooperation where
strategic alliances that create synergies are considered, and additional information
increases the probabilities of success of R&D projects, where firms are divided into
leaders and followers and R&D investments are assumed to be characterized by
positive network externalities that induce more benefits in case of reciprocal R&D
success. Within the theme of leaders and followers and in the framework of dynamic
oligopoly models, Tönu Puu makes an important contribution with his attempt to
unify the Cournot and Stackelberg approach, where a Cournot duopolist can shift
to Stackelberg leadership if too disappointed by current profits. Issues on strategy-
switching dynamics are also analyzed from a general point of view, by Weihong
Huang, who applies his results to explore the significance of adopting price-taking
strategy in a quantity-competed oligopoly. R&D public expenditure and knowl-
edge spillovers are considered in the paper by Commendatore, Kubin and Petraglia,
who propose a dynamic capital model with publicly financed R&D activities under
alternative assumptions on the intensity of knowledge spillovers, and obtain new
results about global stability properties of boundary equilibria. The dynamics in
non-binding procurement auctions, with boundedly rational bidders, are considered
by Colucci, Doni and Valori, who study a procurement auction game where buyers
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rank different bids on the basis of both the prices submitted and the quality of each
bidder, which is their private information. These authors assume that bidders have
bounded rationality because they form expectations on market price rather than on
the best price of competitors and also because they update expectations adaptively.

A general analysis of delay differential nonlinear economic models is provided
by Matsumoto and Szidarovszky, who compare fixed and continuously distributed
information lags and show that the two types of models generate identical local
asymptotic behaviour when small delays with exponentially decreasing kernel func-
tions are considered, whereas for large delays the asymptotic properties become
quite different. They apply these general results to the business cycle models of
Goodwin and Kaldor, augmented with a Kaleckian investment lag, and to a Cournot
oligopoly model. The paper by Ferri and Variato studies the relationship between
imperfect competition and economic fluctuations in a macro model with uncertainty.
In such a model, imperfect knowledge economics suggests that the relationships
between the agents and the environment become complex, while a learning process
capable of generating endogenous dynamics takes place. Colombo and Weinrich
analyse persistent disequilibrium dynamics in a theoretical dynamical model involv-
ing temporary equilibria with quantity rationing in each period and price adjustment
between periods. The resulting dynamic system may present a variety of dynamic
behaviours, ranging from the convergence to stationary or quasi-stationary states, to
complex or even chaotic dynamics. Fabio Privileggi analyzes the transition dynam-
ics in a continuous time endogenous growth framework in which knowledge evolves
according to the Weitzman recombinant process, and finds a suitable transformation
for the state and control variables in the dynamical system diverging to asymptotic
constant growth, so that an equivalent ‘detrended’ system converging to a steady
state in the long run can be tackled. An interesting application of continuous-time
stochastic dynamic modelling with optimal control is provided by Longo and Main-
ini, who study a model of electoral competition, where elections serve as a device
for selecting talented politicians, by using dynamic programming techniques. Saltari
and Travaglini propose a behavioral approach to portfolio choice by adopting the
theory of disappointment aversion to show how disappointment aversion affects the
optimal portfolio choice when risk is small. Indeed, the standard portfolio model
predicts a large equity position for most households, whereas empirical evidence
shows however that household wealth is characterized by a small proportion of
risky assets. To solve this paradox, the authors employ the axiomatic theory of
disappointment aversion.

Finally, some applications of dynamic modelling to the description of financial
markets complete the spectrum of new trends of nonlinear dynamics contained in
this book. Of course, the development of new mathematical approaches to simu-
late and control the dynamic behaviour of financial markets is particularly apt at
a time characterised by a general financial crisis. For example, the paper by Frank
Westerhoff proposes an agent-based financial market model where agents following
technical and fundamental trading rules to determine their speculative investment
positions interact and may decide to change their trading behaviour. Despite its sim-
ple mathematical structure, this model is able to replicate some salient features of
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asset price dynamics. Along the same line, Tramontana, Gardini, Dieci and West-
erhoff consider a three-dimensional nonlinear dynamic model of interacting stock
and foreign exchange markets jointly driven by the speculative activity of het-
erogeneous investors, and give a global dynamic analysis by using analytical and
numerical tools. A heterogeneous Capital Asset Pricing Model (CAPM) is proposed
by Chiarella, Dieci and He, where agents are assumed to form optimal portfolios
based upon their heterogeneous beliefs about conditional means and covariances of
the risky asset returns, and in this framework they are able to obtain the exact rela-
tion between heterogeneous beliefs and the market equilibrium returns. The impact
of the dynamics of interest rates of a Central Bank on the behaviour of commercial
banks is analyzed in the paper by Casellina and Uberti, which takes into account the
expectations of economic agents. Their model is calibrated by the VAR approach on
Italian quarterly data from 1990 to 2007.

Before ending this foreword, we wish to thank the various academic colleagues
around the world who have provided prompt and insightful referee reports on all
the papers that were submitted to this special volume. Thanks are particularly due
to Fabio Tramontana who greatly assisted the editors in putting the papers into
the required Springer format. We would also like to express special thanks to
Mrs Dr. Martina Bihn, the Springer Editorial Director, who facilitated the book’s
publication and carefully guided the entire editorial process. Finally, we thank all
the participants at MDEF, whose efforts initiated a very interesting series of fruitful
seminars, and who submitted so many interesting papers to us.

Urbino, Italy Gian Italo Bischi
Sydney, Australia Carl Chiarella
Urbino, Italy Laura Gardini
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Transferring Negative Externalities: Feedback
Effects of Self-Protection Choices in a Two
Hemispheres Model

Angelo Antoci and Simone Borghesi

1 Introduction

In this paper we analyze an economy in which self-protection choices made by
economic agents to face environmental degradation generate environmental nega-
tive externalities on other agents. By self-protection choices we mean choices that
agents may do to protect themselves against some form of social degradation (e.g.
crimes, lack of leisure, depletion of social capital) or environmental degradation
(air and water pollution, loss of biodiversity, growing scarcity of green areas, etc.).
The notion of self-protection choices is not new in the literature. Hirsch (1976)
was the first to introduce the concept of defensive consumption, that is, consump-
tion induced by a growth in negative externalities. The notion originally proposed
by Hirsch concerned a wider set of choices than those induced by environmental
deterioration. The concept, however, has become particularly popular in the environ-
mental literature where there is a major debate on how the Gross National Product
as a measure of welfare should be corrected to take into account defensive expen-
ditures and environmental depletion.1 There exist many alternative classifications
of environmental defensive expenditures generated by self-protection choices (e.g.
Hueting, 1980; Leipert, 1989; Leipert and Simonis, 1989). Among them, a partic-
ularly interesting taxonomy is the one proposed by Bird (1987) and Shogren and
Crocker (1991) who distinguish between environmental self-protection choices that
generate negative externalities and those that produce positive externalities. The for-
mer choices transfer the environmental damage to other agents, while the latter filter
it, transferring the reduction of the environmental damage to other agents. In what

1 See, for instance, Aronsson et al. (1999), Kadekodi and Agarwal (2000), Vincent (2000) and the
special issue (n. 5, 2000) devoted by the journal “Environment and Development Economics” to
the research on this topic.

S. Borghesi (B)
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G.I. Bischi et al. (eds.), Nonlinear Dynamics in Economics,
Finance and the Social Sciences, DOI 10.1007/978-3-642-04023-8 1,
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2 A. Antoci and S. Borghesi

follows we will focus on the former category since it appears to be the larger one
(cf. Shogren and Crocker, 1991).

Everyday life provides many examples of environmental self-protection choices
that may cause negative externalities. In most industrialized countries, for instance,
people spend increasingly more on mineral water since tap water is often undrink-
able. This increasingly frequent consumption habit, however, ends up raising pro-
duction of plastic bottles and the correspondent recycling costs for the community
as a whole. Similarly, many beaches have become progressively more dirty in many
large urban centers, so that individuals may prefer to buy an expensive holiday in
some uncontaminated resort rather than go to the open access, polluted beach near
home. Also this self-protection choice, however, may generate negative external-
ities as it tends to raise the use of cars, ships and airplanes to reach the holiday
resort (depending on its distance from home) and thus also the atmospheric and
water pollutants released by these means of transport. Air conditioners provide
another example of environmental self-protection choice that tend to damage the
other agents. Keeping the inner temperature stable inside buildings and cars, air
conditioners manage to protect the person who buys them from the observed cli-
mate change, but cause the others to suffer from the emission of hot air produced by
air conditioners themselves.

The “textbook” examples of environmental self-protection choices provided so
far are far from exhaustive. As argued by the literature on this issue (see, e.g. Antoci,
2009; Antoci and Bartolini, 1999, 2004; Antoci et al., 2005, 2008; Bartolini and
Bonatti, 2002, 2003; Hueting, 1980), individuals may react to environmental deteri-
oration in many different ways that generate many kinds of self-protection choices.
What all these different kinds of choices have in common is that, generally speak-
ing, when the environment deteriorates, individuals are more incentivated to adopt
consumption patterns based on the use of private goods rather than of free access
environmental goods. Thus, for instance, spending a day on an uncontaminated
beach close to home (the free access environmental good) can be more rewarding
(and generally requires the consumption of a lower quantity of private goods) than
spending a day in town – where the opportunities for spending one’s free time with-
out sustaining expenses are rare; nevertheless, the latter option becomes relatively
more remunerative if the quality of the beach is compromised.

In order to analyse the economic consequences of the self-protection choices,
Shogren and Crocker (1991) have proposed a static model that focuses on sym-
metric Nash equilibria, where all agents make the same choice. Differently from
their approach, in this paper we analyze a dynamic evolutionary model that allows
for heterogeneity of choices; furthermore, our approach underlines the strong path-
dependence nature of the diffusion process of the choices. Other works in the
literature have studied the diffusion of self-protection choices in a dynamic con-
text (see, e.g. Antoci, 2009; Antoci et al., 2005; Bartolini and Bonatti, 2002, 2003).
These works, however, focus on the implications of self-protection choices for eco-
nomic growth and capital accumulation. In our work we study the diffusion process
in a simpler analytical context which allows us to address the problem of the possible
feedback effects due to the interaction between economic agents belonging to two
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hemispheres (the North and the South). Think, for instance, of sea pollution in the
North. The increasing degradation of many Northern beaches may induce agents in
the North to self-protect by purchasing an expensive holiday in a Southern country
where beaches are still relatively clean. However, if the number of Northern agents
that go on holiday to the South is relatively high, this may cause the exploitation of
natural resources in the South, generating an increasing interdependence between
the environmental quality of the two hemispheres. Similarly, the increasing produc-
tion of goods for self-protection purposes in one hemisphere tends to enhance global
pollutants like carbon dioxide that end up damaging the environmental quality in the
other hemisphere as well. In this context we show that there may exist multiple Nash
equilibria (corresponding to attracting fixed points of the dynamics) which can be
ordered in the sense of Pareto. Furthermore, we show that if the North transfer neg-
ative externalities to the South, this can give rise to a feedback mechanism that may
end up decreasing the Northern individuals’ welfare.

The paper has the following structure. Section 2 introduces the model. Sec-
tion 3 provides the basic mathematical results. Section 4 examines the well-being
in the two hemispheres. Section 5 investigates the effects on well-being of transfer-
ring the environmental impact of Northern production to the South. Finally, Sect. 6
concludes.

2 The Model

There are two hemispheres: North (N ) and South (S ). There are two populations of
economic agents: the population of the North (N -agents) and the population of the
South (S -agents).

Time is continuous. At every moment of time t , j -agents (j D N , S ) have to
choose between two strategies:

1. Strategy P: Agents adopting this strategy choose to self-protect against environ-
mental deterioration.

2. Strategy NP: Agents adopting this strategy choose no self-protection device
against environmental deterioration.

Let us indicate with x 2 Œ0; 1� the share of agents that choose strategy P in the
North at time t (consequently, 1� x is the share of agents that choose strategy NP).

Similarly, we indicate with z 2 Œ0; 1� the share of agents that choose P in the
South at time t

Following Bird (1987) and Shogren and Crocker (1991) we assume that, in both
hemispheres, agents’ payoffs at time t depend negatively on the share xt and zt of
agents choosing P at time t . Under this assumption, self-protection choices generate
negative externalities that reduce the payoffs of strategies P and NP, both in the
South and in the North. For the sake of simplicity, we assume the following linear
payoff functions:
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…N
P .x; z/ D a1 � b1x � c1z; …N

NP .x; z/ D a2 � b2x � c2z;

…S
P .x; z/ D d1 � e1x � f1z; …S

NP .x; z/ D d2 � e2x � f2z;

where …N
P and …S

P (…N
NP and …S

NP ) are the payoffs of strategy P (strategy NP)
for N -agents and S -agents, respectively, and bk , ck , ek , fk , k D 1; 2, are strictly
positive parameters.

For the sake of simplicity, we assume that the dynamics of x and z are given by
the so-called “replicator dynamics” (see, e.g. Weibull, 1995):

� :
x D x.1 � x/ �…N

P �…N
NP

� D x.1 � x/ .a � bx � cz/ ;
:
z D z.1 � z/

�
…S

P �…S
NP

� D z.1 � z/ .d � ex � f z/ ;
(1)

where
:
x and

:
z indicate the time derivative of the variables x and z, and aWDa1�a2,

b WD b1 � b2 and so on. We assume that b; c; e; f < 0; that is, the negative
effect of an increase in x and z on the agents choosing P is lower than the nega-
tive effect on the agents adopting NP. In other words, individuals choosing strategy
P are more protected against the negative externalities produced by the diffusion of
self-protective behaviour in the economy.

Dynamics (1) describes an adaptive process based on an imitation mechanism:
each period, part of the population changes its strategy, adopting the more remuner-
ative one. Differently from the typical context in which replicator dynamics are
introduced, that is, random pairwise matching between economic agents, in the
present model the payoff of an individual adopting a given strategy at time t depends
on the strategies that all individuals are choosing at that same moment. Replicator
dynamics may be generated by several learning mechanisms in a random matching
context (see, e.g. Borgers and Sarin, 1997 and Schlag, 1998); however, rationales
for such dynamics can also be found in our context (see, for instance, Sethi and
Somanathan, 1996, for an application of replicator equations in a context similar to
ours).

3 Basic Mathematical Results

3.1 Fixed Points

The dynamic system (1) is defined in the square Q:

Q D f.x; z/ W 0 � x � 1; 0 � z � 1g :
In what follows we will denote with QxD0 the side of Q where x D 0, with

QxD1 the side where x D 1. Similar interpretations apply to QzD0 and QzD1. All
sides of this square are invariant; namely, if the pair .x; z/ initially lies on one of the
sides, then the whole correspondent trajectory also lies on that side.
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Note that the states f.x; z/ D .0; 0/; .0; 1/; .1; 0/; .1; 1/g are always fixed points
of the dynamic system (1). In such states, only one strategy is played in each
hemisphere.

Other fixed points are the points of intersection between the interior of the sides
QxD0, QxD1(where it holds

:
x D 0) and the straight line d � ex � f z D 0 (where

:
z D 0):

.x; z/ D
�
0;
d

f

�
;

�
1;
d � e
f

�
; that exist if

d

f
2 .0; 1/ and

d � e
f
2 .0; 1/

and the points of intersection between the interior of sides QzD0, QzD1(where it
holds

:
z D 0) and the straight line a � bx � cz D 0 (where

:
x D 0):

.x; z/ D
�a
b
; 0
�
;
�a � c

b
; 1
�

, that exist if
a

b
2 .0; 1/ and

a � c
b
2 .0; 1/:

In such fixed points, there is an hemisphere where both available strategies are
played while in the other all agents choose the same strategy. The remaining possible
fixed points are those in the interior of Q at the intersection between the two lines
a� bx � cz D 0 and d � ex � f z D 0; so, generically, the interior fixed point is at
most one and has the coordinates:2

.x; z/ D
�
af � cd
bf � ce ;

bd � ae
bf � ce

�
, that exists if

af � cd
bf � ce 2 .0; 1/

and
bd � ae
bf � ce 2 .0; 1/.

In such state, all strategies coexist. Notice that the system (1) generically admits
at most nine fixed points (one in the interior ofQ, one in the interior of each side of
Q and the four vertices of Q).

3.2 Stability of the Fixed Points

The Jacobian matrix J.x; z/ of system (1) is

	
.1 � 2x/.a � bx � cz/ � bx.1 � x/ �cx.1 � x/

�ez.1 � z/ .1 � 2z/.d � ex � f z/ � f z.1 � z/



:

So, as it can be easily verified, the following proposition applies.

2 This result does not hold only if the two lines
:
x D 0 and

:
z D 0 are coincident, in which case

there exists an infinite number of fixed points.
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Proposition 1. The eigenvalue of .0; 0/ in direction of QzD0 is equal to a and the
eigenvalue in direction ofQxD0 is equal to d .

The eigenvalue of .0; 1/ in direction ofQzD1 is equal to a� c and the eigenvalue
in direction of QxD0 is equal to f � d .

The eigenvalue of .1; 0/ in direction ofQzD0 is equal to b�a and the eigenvalue
in direction of QxD1 is equal to d � e.

The eigenvalue of .1; 1/ in direction of QzD1 is equal to b C c � a and the
eigenvalue in direction ofQxD1 is equal to e C f � d .

Proposition 2. The eigenvalues of the fixed points .i; z/ in the interior of the edges
QxDi (i D 0, 1) are equal to �f z.1� z/ > 0 in direction ofQxDi and .1�2i/.a�
bi � cz/ in direction of the interior of Q.

The eigenvalues of the fixed points .x; i/ in the interior of the edgesQzDi (i D 0,
1) are equal to �bx.1� x/ > 0 in direction of QzDi and .1� 2i/.d � ex � f i/ in
direction of the interior ofQ.

Note that, given a fixed point in the edge Qj Di , j D x; z and i D 0; 1, the sign
of its eigenvalue in direction of Qj Di is always strictly positive; therefore, all the
(hyperbolic) fixed points in the interior of the edges are saddles or sources.

The following proposition concerns the stability of the fixed point .x; z/ in the
interior of the square Q, where both choices coexist in the North and in the South.

Proposition 3. The fixed point .x; z/ is a saddle if bf � ce < 0 and a source
if bf � ce > 0.

The following subsection highlights the basic features characterizing the dynam-
ics of system (1).

3.3 Analysis of the Dynamics

Let us first observe that both a� bx � cz D 0 (where
:
x D 0) and d � ex � f z D 0

(where
:
z D 0) have negative slope; furthermore, above (below) a � bx � cz D 0 it

holds
:
x > 0 (respectively,

:
x < 0) and above (below) d �ex�f z D 0 it holds

:
z > 0

(respectively,
:
z < 0). The signs of

:
x and

:
z derive from the fact that the adoption

process of P has a self-enforcing character: the higher is the share of individuals
choosing to adopt P in both hemispheres, the higher is the incentive to adopt P. This
is due to the fact that self-protection choices damage relatively more the agents who
do not protect, therefore they will be induced to change their strategy and “imitate”
what others do in the population. Consider, for instance, air conditioners as a self-
protection device against global warming. As pointed out above, their use helps
cooling the interior of homes and offices, but give off heat to the exterior, further
contributing to raise the external temperature. Therefore, if an increasing number of
people use air conditioners, then those who do not use them end up suffering even
more from the consequent increase in the temperature, forcing them to modify their
choice while “reinforcing” the others’ decision to use air conditioners.
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The following proposition characterizes dynamics (1).

Proposition 4. The system (1) has the following features:
(a) Every trajectory of the system approaches a fixed point.
(b) Only the fixed points .0; 0/; .0; 1/; .1; 0/; .1; 1/ can be attractive.

Proof. The proof of point (b) is straightforward and follows immediately from local
stability analysis in the preceding section. To prove point (a) we have to show that
limit cycles cannot exist. This is obviously the case when the interior fixed point
.x; z/, 0 < x; z < 1, does not exist or, if existing, it is a saddle point. If .x; z/ is a
source, then it is easy to see that the regions of Q where

:
x and

:
z have the same sign

are positively invariant; this implies that no oscillatory behavior of trajectories may
occur.

Remark. Notice that the vertices ofQ can be simultaneously attractive; in particular,
this is the case when the following conditions hold:

b < a < c; (2)

f < d < e: (3)

When conditions (2) and (3) hold, the fixed point in the interior of Q is a source
and those in the interior of the edges ofQ are saddles. This case is shown in Fig. 1 in
which attractive fixed points are represented by full dots (�), repulsive fixed points
by open dots (ı). Notice that almost every trajectory approaches a vertex of Q,
where each hemisphere ends up choosing a unique strategy (either adopting P or
NP).3 The basins of attraction of the vertices are delimited by the stable manifolds
of the saddle points in the interior of the sides of Q.

4 Well-Being Analysis

In this section we will examine the average well-being level in the two hemispheres.
The average well-being level in the North and in the South is equal to, respectively:

…
N
.x; z/ WD x �…N

P .x; z/C .1 � x/ �…N
NP .x; z/;

…
S
.x; z/ WD z �…S

P .x; z/C .1 � z/ �…S
NP .x; z/:

The following proposition applies.

3 We do not converge to a vertex in a zero measure set, given by the fixed point inside Q and the
stable manifolds of the saddle points along the sides of Q.
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z x = 0

z = 0

1

0 1 x

.

.

Fig. 1 Dynamic regime with simultaneously attracting vertices

Proposition 5. If the fixed point .0; 0/ is a sink, then it Pareto-dominates all the

other attracting fixed points of system (1), that is …
N
.0; 0/ > …

N
.x; z/ and

…
S
.0; 0/ > …

S
.x; z/ for .x; z/ D .0; 1/, .1; 0/, .1; 1/.

Proof. Observe that …
N
.0; z/ D …N

NP .0; z/ and …
N
.1; z/ D …N

P .1; z/ are the
Northern average well-being levels when every N -agent adopts NP and every

N -agent adopts P, respectively. Similarly, for the South we have …
S
.x; 0/ D

…S
NP .x; 0/ and…

S
.x; 1/ D …S

P .x; 1/.

Let us first consider the average payoff of the North. Notice that:…
N
.0; 0/ D a2,

…
N
.0; 1/ D a2 � c2, …

N
.1; 0/ D a1 � b1, …

N
.1; 1/ D a1 � b1 � c1. There-

fore, it is always: …
N
.0; 0/ > …

N
.0; 1/ and …

N
.1; 0/ > …

N
.1; 1/. Furthermore,

…
N
.0; 0/ > …

N
.1; 0/ if a2 > a1 � b1; such condition is satisfied when .0; 0/ is a

sink. The proof of the part of the proposition concerning well-being in the South is
identical.

Remark 1. From the well-being analysis above it follows that, in the case repre-
sented in Fig. 1, each hemisphere achieves its highest well-being level in .0; 0/.
Only one of the four possible vertex selected by the dynamics implies, therefore,
the maximum well-being level. Notice that the lowest well-being level is achieved
in .1; 1/, while intermediate levels are reached in .0; 1/ and .1; 0/.

It is easy to check that if .0; 0/ does not Pareto-dominate all the other fixed points
(in the North and in the South), then the dynamics (1) is trivial, i.e.

:
x and

:
z are
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always positive in Q. In such case, the fixed point (1; 1) is globally attracting and
Pareto-dominates any other possible state .x; z/ in the North and in the South.

5 Comparative Dynamics Analysis: Transferring Negative
Externalities to the South

One of the most debated issues in the environmental literature concerns the possibil-
ity that introducing stricter environmental policies in the North may lead Northern
industries to move polluting productions to the South where ecological regulations
are less severe. To what extent such mechanism, known as environmental dumping,
takes place in reality is still a matter of investigation in the empirical literature. In
the case of worldwide problems like global warming, however, shifting polluting
productions to the South may generate negative feedback effects on the North that
counterbalance Northern ecological policies. The effects of environmental dumping
can be examined by simple comparative dynamics analysis.

In our context, dumping produces an increase in the parameters e1 and e2. This
does not necessarily modify the relative performance of the strategies P and NP for
S -agents (this is the case if the value of the difference e D e1�e2 remains constant).
However, it is reasonable to think that the increase in e2 is higher than that in e1 since
S-agents choosing P are more protected against the growth of negative externalities
generated by the environmental dumping. This produce a reduction of e, so that the
straight line d � ex � f z D 0 (where

:
z D 0) will move downwards. If so, in the

South the strategy P becomes better performing than strategy NP as the Northern
self-protection activities increasingly transfer negative externalities to the South.

The possible consequences of moving polluting productions to the South can be
exemplified by looking at the dynamics showed in Fig. 1. Recall that in this case the
fixed point .0; 0/ Pareto-dominates all other vertex, while .1; 1/ is Pareto-dominated
by all of them; furthermore, all vertices are locally attractive. A reduction in
e-ceteris paribus- may cause the instability of the fixed points in the edge QzD0

(see Proposition 1) giving rise to the dynamic regime represented in Fig. 2. If so,
the fixed point .0; 0/ with the highest well-being level is no longer attractive, while
that with the lowest well-being level .1; 1/ is still attractive. Transferring the nega-
tive externalities generated by Northern agents to the South, therefore, might end up
decreasing well-being in both hemispheres.

6 Conclusions

Nowadays an increasing number of people make self-protection choices to pro-
tect against the deterioration of the environment they live in. This phenomenon
is becoming more and more frequent in modern industrialized economies. This
observation has recently induced some studies to examine the relationship between
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z x = 0

z = 0

1

1 x0

.

.

Fig. 2 Dynamic regime with environmental dumping

environmental defensive expenditures and well-being. The basic idea underly-
ing these works is that negative externalities could contribute to a self-enforcing
diffusion process of self-protection choices that further increase environmental
degradation and reduce individuals’ well-being.

The present paper builds on this literature by extending the analysis from a sin-
gle population to a North–South context. The aim of the paper is to investigate the
possible feedback effects that environmental defensive expenditures may generate
between the two hemispheres and their impact on welfare in rich and poor countries.
We show that the adoption dynamics of self-protection choices are characterized
by “imitation” effects, that is all agents in each hemisphere end up choosing the
same strategy, thus leading to symmetric Nash equilibria. Furthermore, the diffusion
of self-protection choices may give rise to undesirable (i.e. well-being-reducing)
increase in self-protection levels. Both hemispheres, in fact, may end up in a situa-
tion where populations self-protect “too much”: people choose to protect themselves
against pollution, but they might be better-off by investing less in self-protection and
enjoying a cleaner world.

Finally, we show that transferring the environmental impact of Northern individ-
uals to the South (e.g. transferring polluting activities, production waste, exploita-
tion of natural resources) may end up decreasing welfare in both hemispheres.

We are fully aware that the results emerging from this work may appear provoca-
tive, but we believe that they could contribute to shed light on some aspects of the
self-protection activities that have generally been neglected in literature.
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Structural Change, Economic Growth
and Environmental Dynamics with
Heterogeneous Agents

Angelo Antoci, Paolo Russu, and Elisa Ticci

1 Introduction

In many developing countries the asset distribution is highly concentrated and the
economic agents differ not only by income, but also by their vulnerability to envi-
ronmental depletion. The poor, especially in rural areas, tend to be more dependent
on natural resources and more vulnerable to ecosystem degradation. Three quarters
of the poor live in rural areas and more than half of the rural poor depend on breeding
and agricultural activities: cultivation of staple food is the main source of calories,
income and job for the rural poor (IFAD 2001). Moreover, it is commonly recog-
nized that the rural poor in developing countries significantly rely on the common
pool resources of the community they live in (Dasgupta (2001)), while according to
World Resources Institute (2005) estimates, around 1 billion of the world poor rely
in some way on forests (indigenous people wholly dependent on forests, smallhold-
ers who grow farm trees or manage remnant forests for subsistence and income). A
meta-analysis of 54 case studies in developing countries found that the poor tend
to be more dependent on forest environmental income than better-off households
(Vedeld et al. 2004). Natural assets and common or free access resources provide
the poor with other additional services: regulating production services such as flood,
drought and erosion mitigation, soil renewal, soil fertility or the provision of food,
fuelwood and energy and fresh water. Microeconomic studies confirm the relevance
of the dependence of the rural population on the community or free access resources
(Beck and Nesmith 2001; Cavendish 2000; Falconer 1990; Fisher 2004; Jodha 1986;
Narain et al. 2005). On the other hand, the rich have a greater ability to substitute pri-
vate goods for environmental goods. They are thus able to protect themselves from
pollution and to face the depletion of natural capital (United Nations Environment
Programme 2004).

Against this background, we analyze a model that considers an economy with
two sectors: a traditional resource-based sector that relies on self-employment of
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poor households and a sector managed by the rich. Physical capital is completely
concentrated in the endowments of the rich, while all agents -poor and rich- have
access to environmental capital. The polarization of society into two sectors and
two classes of agents is clearly an oversimplification, but this assumption makes
the model tractable using standard methodology. Moreover, although we consider
a highly stylized context, it reflects the ways in which different assets (natural,
physical, social, human capital) are typically distributed in several developing coun-
tries. Physical capital tends to have a concentrated dispersion across the population
because of financial market failures. In absence of perfect information and com-
petition, wealthier individuals and large firms have privileged access to capital
market, because they are more endowed with collateral and have a higher abil-
ity to exploit scale economies. Conversely, services deriving from environmental
resources may be more dispersed and tend to have the characteristics of public goods
(in our model all agents have access to environmental capital). In this context, eco-
nomic agents also differ by feed-back mechanisms and interaction between their
production (consumption) choices and environmental dynamics.

In this setting, we show that economic dynamics are path dependent in that the
model admits a multiplicity of stable steady states. Furthermore, the model may
exhibit a zero-sum game structure. Physical capital endowments allow the Rich to
employ wage labor and this possibility is the root of the difference between the
rich (labor employers) and the poor (labor force providers) in terms of vulnerability
to environmental degradation. The rich are more able to defend themselves from
environmental degradation because they can partially substitute natural capital with
physical capital or wage labor employment. Thus, the rich may be not disadvantaged
by the environmental degradation because they can rely on substitution possibilities
as a defensive strategy. To the contrary, they may benefit from the role played by the
natural capital scarcity in accelerating labor movement from the traditional to the
modern sector. This, in turn, generates incentives to physical capital accumulation.
On the other hand, the poor are disadvantaged because they face a reduction in
productivity of their labor, namely, in their greatest means of subsistence.

In the history of the development theory, structural change, i.e. the movement of
a labor force from the traditional resource-based to the modern sector, is regarded by
some economists as a cause and consequence of economic development and growth
(see e.g. Lewis 1955; Lucas 2004; Ranis and Fei 1961): growth of the non-resource
sectors may permit an unending process of labor productivity growth because they
rely on assets (human capital and physical capital) that can expand over time. Sav-
ing and investment in physical capital can produce an increase in labor productivity
leading to economic expansion. In a dual framework, such vision implies that cap-
ital intensive activities are able to sustain a process of economic growth, while the
production of the subsistence sector is constrained and cannot overcome a certain
threshold because it relies on limited production factors. Therefore a labor shift
towards the “modern” sector leads to a structural change associated with an increase
of social welfare. Conversely, in our model, structural changes may be “perverse” in
the sense of López (2003, 2007), i.e. associated with growing problems of poverty
and environmental degradation. Pressures on natural resources can cause a decline
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in productivity of traditional agricultural activities and the consequent reduction of
labor opportunity costs fuels a labor migration from the agricultural sector. The
result is a movement of the labor force from the traditional resource-based to the
modern sector associated with declining or stagnant wages and with a loss of welfare
for labor force.1

The remainder of the article is organized as follows. Sections 2 and 3 present the
model. Section 4 analyzes the model and investigates some possible dynamics that
may emerge and their implications in terms of welfare. Section 5 draws conclusions.
A mathematical appendix concludes the paper.

2 The Dual Context

We consider a small open economy2 with three production factors: labor, a free
access renewable natural resource (E) and physical capital (K). In this economy,
agents belong to two different populations: the “Rich” (R-agents) and the “Poor”
(P-agents). The R-agents accumulate physical capital, hire the labor force and
employ all their potential work - represented by a fixed amount of entrepreneurial
activity - to produce a storable private good. We call their production “capitalistic
sector” or “modern sector”. The P-agents are endowed only with labor and they have
to choose the distribution of their labor between two activities: working as employ-
ees of the Rich in the capitalistic sector or directly exploiting natural resources to
produce a non storable good. Let “subsistence sector” or “traditional sector” denote
production of the Poor. Given that the Poor cannot invest and accumulate physical
capital, we assume that the capital market is completely segmented and is accessible
only by the Rich.

The population of the Poor is constituted by a continuum of identical individu-
als and the size of the population is represented by the positive parameter N . The
P-population’s welfare depends on two goods:

1. A non storable good deriving directly from free access renewable natural
resources, hereafter referred to as an environmental good.

1 López points out that indirect factors capable of triggering a perverse structural change are inade-
quate policies aimed at fostering productivity in the modern sector in addition to a complete neglect
of the traditional subsistence sector of the rural poor.
2 The majority of developing countries are little open economies. In the last two decades, several
countries have undertaken trade liberalization reforms and, consequently, the importance of the
domestic demand in sustaining economic growth has diminished (at least for trade sectors) because
economies are less constrained by limited national demand. To the contrary in open economies, a
fundamental factor for economic growth is productive competitiveness that depends on, among
other important factors, labour cost. In this sense, Matsuyama’s model (Matsuyama 1992) is par-
ticularly explicative because it shows how the growth process might be driven by different factors
in an open and a closed context: he finds a negative relationship between agricultural productivity
and economic growth in open economies, while detecting the inverse links in closed economies.
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2. A good (hereafter denoted private good) which can be consumed as a substitute
for the services coming from the environmental good.

We assume that the instantaneous utility function of each P-agent is the following

UP .cP ; cS / D ln.cP C acS /; (1)

where:

cS is the consumption of the produced good as a substitute for the environmental
good.

cP is the consumption deriving from the exploitation of the environmental resource.

According to (1), cS and cP are perfect substitutes, with a (constant) rate of
substitution equal to a > 0. That is, the private good produced by the Rich is able
to substitute completely cP . This is a stylized fact, but it can represent the main
components of poor people’s welfare: if they work in the subsistence sector in rural
areas (fishing, forestry, agriculture or breeding) their living standard strictly depends
on their access to and exploitation of E; while if they move to urban zones or they
become a wage labor force, they satisfy their needs mainly through the consumption
of private goods.

Each P-agent, in each instant of time, employs all his potential labor (that we
normalize to unity) in the subsistence sector or in the sector of the Rich. Thus, he
cannot rely on alternative income sources at the same time. However, in the absence
of inter-sectorial moving costs, significant divergences from the case with employ-
ment diversification are not a priori expected. Therefore, for the sake of analytical
simplicity, the hypothesis of indivisible labor allocation will be retained.

Let us indicate with NP and NR the number of Poor that work, respectively,
in the subsistence sector and in the capitalist sector. Consequently, we have NP C
NR D N . The aggregate function of production in the traditional sector is given by3

YP D ˛NPE:

We have assumed that the Poor cannot save and that production is completely
exhausted by their consumption. From this equation, it follows that per capita output
and consumption of the Poor working in this sector is equal to

cP D YP

NP

D ˛E: (2)

The Poor that are hired in the market goods sector receive a real wage equal to w (in
terms of the private good produced by the Rich) that is considered as exogenously

3 This specification was proposed by Schaefer (1957) for fishery and since then it has been widely
adopted in literature in modelling natural resources (see e.g. Brander and Taylor 1998a,b; Conrad
1995; López et al. 2007; McAusland 2005; Munro and Scott 1993).
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given. By (1), the Poor are indifferent between work in the traditional sector and in
the capitalistic sector if and only if

cP D acS D aw (3)

which can be re-expressed as
1

a
˛E D w: (4)

If
1

a
˛E > w (respectively,

1

a
˛E < w), then no Poor (respectively all Poor, i.e.

N ) would like to work in the capitalistic sector. We assume that E is taken as
exogenously given by the Poor, that is, they do not internalize the impact of their
production on natural resources; however, we will return to this issue later. In (4),
the parameter a determines the difference between the wage in the capitalistic sec-
tor and the average output in the traditional sector that allows for the same level of
utility.

The population of the Rich is constituted by a continuum of identical individ-
uals and the size of the population is represented by the positive parameter M .
We normalize the size of the R-population by assuming M D 1. As said, the rep-
resentative R-agent employs all his fixed potential labor in the modern sector as
entrepreneurial activity. Without loss of plausibility, we assume that the marginal
product of entrepreneurial labor in the modern sector is higher than the marginal
product of labor in the subsistence sector. Therefore, the possibility that the Rich
work in the subsistence sector is excluded a priori and the production function of
the modern sector can be specified as follows

YR D ˇK�Eı.ND/1���ı ;

where:

� > 0, ı � 0 and � C ı < 1 (i.e. the production function satisfies the constant
returns to scale assumption).

K is the physical capital accumulated by the representative R-agent.
ND is labor demand by the representative R-agent.
ˇ is a positive parameter representing (exogenous) technical progress.

3 Economic Dynamics

P and R-agents consider the effect of their choices on the environment as negligi-
ble and they do not internalize it; therefore, in their maximization problems they
take the evolution of E as given; that is, they behave without taking into account
the shadow value of the natural resource and so nobody has an incentive to pre-
serve or restore natural resources. Thus, investment in natural capital does not affect
the environmental stock; the dynamics of E is given by the usual logistic function
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modified for human intervention

�
E D E.E � E/� �˛NPE � �Y R; (5)

where:

E is the carrying capacity of the environmental resource, that is, the maxi-
mum stock at which E stabilizes in absence of negative impacts due to P
and R-agents’ economic activities.

�˛NPE is the aggregate environmental impact by the subsistence sector and the
parameter � > 0 represents the exploitation of the natural resource by
P-agents.

� > 0 is a parameter measuring the environmental deterioration caused by the
average production Y R of R-agents.

Since there is no investment in natural capital, the R-agent invests in physical capital
accumulation everything he saves after consumption expenditures and remuneration
of the employed labor force. Therefore the stock of physical capital grows according
to the following equation

PK D ˇK�Eı.ND/1���ı � wND � cR: (6)

Preferences of the Rich are assumed to be representable by a utility function
defined over the consumption of the private good. Let the R-agent’s instantaneous
utility be

UR.cR/ D ln cR:

Therefore UR is twice continuously differentiable, strictly increasing and strictly
concave, that is U 0

R > 0 and U 00
R < 0. The representative R-agent maximizes his

utility by choosing cR and the labor demand ND , that is, he solves the following
intertemporal optimization problem

Max
cR; N D

Z 1

0

.ln cR/e
�rtdt

under the constraints (5) and (6), where r > 0 is the discount rate. The solution to
the R-agent’s problem is found considering the following current value Hamiltonian
function

H D ln cRC�.ˇK�Eı.ND/1���ı�wND�cR/C�.E.E�E/��˛NPE��Y R/;

where � and � are the co-state variables associated to K and E, respectively. It
is easy to verify that the dynamics of K , E and �, do not depend on � . In fact,
we have assumed that agents consider �˛NPE and Y R as given in the maxi-
mization problem above and consequently the resulting dynamics are not optimal;
however, the trajectories under such dynamics are Nash equilibria (see Wirl, 1997),
in the sense that no (Rich or Poor) agent has an incentive to modify his choices
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along each trajectory generated by the model as long as the others do not modify
theirs. The dynamics generated by the model are found by applying the maximum
principle

PK D @H

@�
D ˇK�Eı.ND/1���ı � wND � cR;

�
E D @H

@�
D E.E �E/� �˛NPE � �Y R;

�
� D r� � @H

@K
D �

h
r � ˇ�K��1Eı.ND/1���ı

i
;

where cR, ND and NP are determined by the following conditions

@H

@cR

D 1

cR

� � D 0 (i.e. cR D 1

�
);

@H

@ND
D �.ˇ.1� � � ı/K�Eı.ND/���ı � w/ D 0;

that is
ˇ.1 � � � ı/K�Eı.ND/���ı D w: (7)

The labor market is perfectly competitive and wage is flexible. The equilibrium
value of NP is given by the labor market equilibrium condition [obtained by
equalizing the left sides of (4) and (7)]

˛

a
E D ˇ.1 � � � ı/K�Eı.N �NP /

���ı :

In particular, we obtain

NP D N �
	
aˇ.1 � � � ı/

˛


 1
�Cı

E� 1�ı
�CıK

�
�Cı (8)

if the right side of (8) is not negative, otherwise NP D 0 (i.e. N Poor work in the
capitalistic sector). By substituting NP D 0 in (8) and solving it with respect to
K we obtain the curve that separates the region where NP > 0 from that where
NP D 0 in the plane .E;K/

K D L.E/ WD
"

˛N
�Cı

aˇ.1 � � � ı/

# 1
�

E
1�ı

� ; (9)

where
1 � ı
�

> 1.
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Along and above the curve (9), NP D 0 holds. By substituting ND with the
equilibrium value of N �NP in (7) the equilibrium wage w is found.

Finally, given that (ex-post) Y R is equal to YR, the dynamics generated by the
model are the following

PK D ˇ.� C ı/K�Eı.N �NP /
1���ı � 1

�
; (10)

�
E D E.E � E/� �˛NPE � �ˇK�Eı.N �NP /

1���ı ; (11)
�
� D �.r � ˇ�K��1Eı.N �NP /

1���ı /; (12)

where NP D 0 for .E;K/ above (9) while NP is given by (8) for .E;K/ below
the curve (9). The following restrictions on variables and parameters hold: K , E,
� > 0; a, ˛, ˇ, � , �, �, r , E, N > 0; ı � 0, � C ı < 1.

4 Analysis of the Model

In this section we analyze the existence and stability of the fixed points (i.e. the

stationary states) of the model dynamics, obtained by imposing
�
E D 0, PK D 0,�

� D 0 in the system (10)–(12). Note that, for � > 0, equations
�
E D 0 and

�
� D 0

depend only on E and K and consequently, solving them, we obtain the fixed point
values ofE andK . The corresponding value of � is obtained by solving the equation
PK D 0.

4.1 The Case Without Specialization

In the case without specialization (i.e. N > NP > 0), the condition
�
E D 0 is

satisfied along the graph of the function

K D F.E/ WD E1�ı
�

 
E �E � �˛N

M.ˇ�M���ı � �˛/

! �Cı
�

;

where M WD
�
aˇ.1 � � � ı/

˛

� 1
�Cı

, and the condition
�
� D 0 is satisfied along the

graph of the function

K D G.E/ WD
�
ˇ�

r
M 1���ı

� �Cı
�

E
2ıC��1

ı :
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Therefore, the intersections between F.E/ and G.E/ (occurring below the curve
(9)) identify the fixed points under the regime of no specialization. To state the
existence and stability results on these fixed points, we define

� WD ˛
�

�

a.1 � � � ı/ � �
�
;

	 WD r

ˇ�

�
aˇ.1 � � � ı/

˛

� 1��
�

;

N 1 WD 1

	
�

1��

	
ıa

˛Œ� � �a.1 � � � ı/�

 1���ı

1��

;

E1 WD

�
1C ı

1 � � � ı
�

h�
N 1

�ı
	�
i 1

1���ı

C ˛�N ;

E2 WD ˛�N

1 � � � ı C
 

1

N
ı
	�

! 1
1���ı

:

According to the sign of �, two regimes can be distinguished:

1. REGIME DCS (Dirty Capitalistic Sector). We denote regime DCS (Dirty Capital-
istic Sector) as the scenario in which �, the rate of environmental impact caused
by the capitalistic sector, is relatively high (ceteris paribus) in comparison to the
environmental impact of the traditional sector, measured by ". That is, � > 0

holds, where � > 0 if and only if
�

�
> a.1 � � � ı/.

2. REGIME DTS (Dirty Traditional Sector). We denote regime DTS (Dirty Tradi-
tional Sector) as the scenario in which:� < 0.

Now we can state the following proposition. The proof of such a proposition
requires straightforward but tedious calculations; due to space constraints, we will
therefore omit it.4

4 The proof is available from the authors on request.
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Proposition 1. In the regime DCS (i.e. � > 0), two fixed points with N > NP > 0

at most exist. In particular, two fixed points exist if

N > N 1, E1 < E < E2:

One fixed point exists if
N � N 1, E � E2:

No fixed point exists in the remaining cases.
In the regime DTS (i.e.� < 0), one fixed point with N > NP > 0 at most exists.

In particular, it exists if
E � E2:

No fixed point exists in the remaining cases.

In the regime DCS (i.e. � > 0), if two fixed points exist, in one of these the
curve G.E/ intersects F.E/ from above in the plane .E;K/ (we will indicate such
a point with the letter A) while in the other point (which we will indicate with
B) the opposite holds; in A the value of E is lower than in B . If only one fixed
point is admissible, its configuration is like a point B , namely in it G.E/ inter-
sects F.E/ from below (see Fig. 6 of the mathematical appendix). In the regime
DTS (i.e. � < 0), in the unique fixed point the curve G.E/ intersects F.E/ from
above.

Proposition 1 highlights that the fixed points with N > NP > 0 exist only
when the carrying capacity E overcomes certain thresholds (E � E1 if � > 0

and E � E2 if � < 0). These thresholds are positively correlated to the rate of
environmental impact caused by the two sectors (� and �). Thus, if the economic
activities are too polluting then stationary points with N > NP > 0 do not exist.

Proposition 1 also implies that E or N can always be found so that two fixed
points exist if � > 0 and one fixed point exists if � < 0, namely the maximum
number of admissible stationary points.

Let .E�; K�; ��/ denote the fixed point value of the variables. The stability
properties of fixed points depend on the signs of the real parts of the eigenvalues
associated to the Jacobian matrix J of the dynamic system (10)–(12) evaluated in
.K�; E�; ��/. We define “saddle-point stable” a fixed point that has two eigen-
values with negative real parts, i.e. with a two-dimensional stable manifold. As
a matter of fact, under the perfect foresight assumption, if the fixed point has a
two-dimensional stable manifold, given the initial values K.0/ and E.0/ of the
state variables K and E, R-agents are able to fix the initial value �.0/ of the
jumping variable � so that the growth trajectory starting from .E.0/;K.0/; �.0//

approaches the fixed point. Therefore the fixed point can be reached by growth tra-
jectories. If the fixed point has less than two eigenvalues with negative real parts,
then given the initial valuesK.0/ andE.0/, a value �.0/ does not (generically) exist
so that the growth trajectory starting from .K.0/; E.0/; �.0// approaches the fixed
point.



Structural Change, Economic Growth and Environmental Dynamics 23

Proposition 2. The fixed points without specialization (N > NP > 0) are charac-
terized by the following stability properties:

In the regime DCS (i.e.� > 0), the fixed pointA has always two eigenvalues with
positive real parts. The fixed pointB is always saddle-point stable if �C2ı�1 < 0
while, if � C 2ı � 1 > 0, it can be saddle-point stable or repulsive; however, if

E� >
1

2

�
E � �˛N � rı

�

�
, it is saddle-point stable.

In the regime DTS (i.e. � < 0), the unique fixed point is always saddle-point
stable.

Proof. See appendix.

From Proposition 2, it follows that if the gap between the value of the param-
eter E - denoting the carrying capacity - and E� is not too wide (namely if

E� >
1

2

�
E � �˛N � rı

�

�
), the fixed point B is saddle-point stable. As we will

see in the following sections, this gap depends on demographic pressure and on the
environmental impact of the production of the Poor and the Rich because E� is
decreasing in �, � and N . As long as the parameters �, � and N overcome a certain
threshold, the gap is such that the fixed point cannot be reached.

4.2 The Case with Specialization NP D 0

In this context, the condition
�
E D 0 is satisfied along the graph of the function

K D F0.E/ WD E
1�ı

� .E � E/ 1
�

.�ˇN
1���ı

/
1
�

while the condition
�
� D 0 is satisfied along the graph of the function

K D G0.E/ WD
�
ˇ�

r
N

1
�

� 1
1��

E
ı

1�� :

Therefore the intersections between F0.E/ and G0.E/ identify the fixed points
under the regime of perfect specialization in the production of the capitalistic
sector.

To state the following proposition, we define


 WD 1 � � � ı
2 � 2� C ı ;
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E0 WD
 
N




!�

0
BBBB@

�
ˇ�

r

� 1
1��

�

�r
.1 � 
/

1
CCCCA

1��
2�2��ı

;

N 0 WD r�

�
.1 � 
/

�
ˇ�

r

� 1
�
�

˛�
�

a.1 � 
/.1� � � ı/
� 2�Cı�1

1��

:

With straightforward calculations, we can prove that:5

Proposition 3. Two fixed points with NP D 0 at most exist. In particular, two fixed
point exist if

N < N 0, E0 < E < E2:

One fixed point exists if

E � E2:

No fixed point exists in the remaining cases.

When two fixed points with specialization exist, in one of these points (the fixed
point that we will denote with A0) the graph of G0.E/ intersects that of F0.E/

from above, viceversa in the other fixed point (which we will indicate with B0)
Furthermore, in A0 the value ofE is lower than in B0. If only one fixed point exists,
its configuration is like a point A0 namely in this point G0.E/ intersects F0.E/

from above (see Fig. 7 of the mathematical appendix).

Proposition 4. The fixed point A0 has always two eigenvalues with positive real
parts, while B0 can be saddle-point stable; in particular, it is the case if

E� >
1

2

�
E � r

�.1� �/
�
:

Proof. See appendix.

According to Proposition 4,E� has to be sufficiently high for saddle-point stabil-

ity, i.e.E� >
1

2

�
E � r

�.1 � �/
�

. These are sufficient conditions so that the system

presents a saddle-point stable stationary state with disappearance of the traditional
sector and a complete process of “proletarianization” with all the Poor employed in
capitalistic production.

5 The proof is available from the authors on request.
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Fig. 1 Four fixed points: A0 and B0 with Np D 0, A and B with Np > 0. The parameters’ values
are: ˛ D 2, ˇ D 1, � D 0:4, ı D 0:1, � D 0:1, � D 0:1, a D 1, r D 0:1, E D 0:96, N D 1

We can also investigate whether the existence of fixed points with NP D 0 is
compatible with the existence of fixed points with NP > 0. The following proposi-
tion identifies necessary and sufficient conditions for the simultaneous existence of
four fixed points A, B , A0 and B0.

Proposition 5. Four fixed points exist -A0 and B0 with NP D 0, A and B with
NP > 0- if and only if N 0 > N > N 1, maxfE0; E1g < E < E2 and� > 0.

The proof of this proposition follows from Propositions 1 and 3.
For a numerical example in which four fixed point exist, see Fig. 1. When two

saddle-point stable stationary states exist, the choice between B and B0 depends on
the initial conditions. This is a typical example of path dependence: the initial value
of E and K determines the fixed point (B or B0) that the growth trajectory will
approach.

4.3 Welfare

The following proposition helps to identify the most significant variables that
represent the dynamics of the economy.

Proposition 6. The stationary state value of consumption c�
R of the Rich is pos-

itively proportional to the stationary state value of physical capital K�. More

precisely, c�
R D

r.� C ı/
�

K� holds. The stationary state values of consumption

c�
S of the Poor working in the capitalistic sector and of consumption c�

P of the Poor
working in the traditional sector are positively proportional to the stationary state

value of natural capital E�. More precisely, c�
S D

˛

a
E� and c�

P D ˛E� hold.
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This implies that the Rich are able to face effectively environmental degradation
through physical capital accumulation. It means that exogenous changes leading to
an increase in K� ensure a growing c�

R, even if E� declines. This is not the case for
the Poor, whose welfare is positively proportional to E�.

The above proposition allows to focus on fixed point values of NP , E and
K . From these variables, Poor and Rich agents’ welfare can be computed. The
following proposition concerns Poor agents’ welfare in the context in which two
saddle-point stable stationary states coexist, B and B0.

Proposition 7. When two saddle-point stable stationary states coexist, B and B0,
then the value of E� (and consequently P-agents’ welfare) is higher in B than in
B0; the value of K� (and consequently R-agents’ welfare) may be higher or lower.

The proof of such proposition is straightforward. The numerical simulations in
Figs. 2–5 show how the fixed point values of K and E change, varying the param-
eters E and � . In these figures, the continuous (dotted) lines indicate values of E�
andK� corresponding to saddle-point stable stationary states (respectively, to fixed
points with at least two eigenvalues with positive real part). Note that for some val-
ues of � and E, the conditions set in Proposition 5 are satisfied: four fixed points
exist and the initial levels of E and K determine whether B or B0 will be reached.
Moreover, as E (� ) overcomes a minimum (maximum) level, only B0-type fixed
points with full specialization can be approached. Thus, point B0 can be generated
as a final step of an “excessive” depletion of the stock of environmental resources.

Notice that in the numerical examples in Figs. 2–5 when B and B0 coexist, then
P-agents’ welfare is higher in B than in B0 while the opposite holds for R-agents’
welfare. Furthermore, observe that varying the parameters E and �, Poor agents’
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Fig. 2 The value of K , evaluated at the fixed points with Np > 0 and Np D 0 varying E.
Continuous lines represent saddle-point stable stationary states
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Fig. 4 The value of E , evaluated at the fixed points with Np > 0 and Np D 0 varying E.
Continuous lines represent saddle-point stable stationary states

welfare and Rich agents’ welfare are inversely correlated, if evaluated at the fixed
point without specializationB: a reduction of the endowment of the natural resource
(or an increase of the negative impact of the modern sector on the environmental
resource) leads to an increase ofK� and to a decrease of E�. To the contrary, at the
fixed point with specializationB0, a positive correlation is observed. This difference
is explained by the fact that along B a perverse structural change occurs in that
the reduction of E� generates a reduction of equilibrium wages associated to an
increase of the proportion of Poor employed in the modern sector.
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Fig. 5 The value of E , evaluated at the fixed points with Np > 0 and Np D 0 varying �.
Continuous lines represent saddle-point stable stationary states

5 Discussion of the Results and Concluding Remarks

The bulk of growth models with environmental resources focuses on the relation-
ship between environmental depletion and economic growth or total social welfare,
while the links between environmental degradation, economic growth and asset dis-
tribution has often been overlooked. Indeed, vulnerability to scarcity or to reduction
of natural capital is correlated to asset endowments: it depends on defensive substi-
tution possibilities that, in turn, are affected by the availability of other production
factors. Consequently environmental degradation can be expected to have a dis-
tributive impact too. This effect can be particularly relevant in developing countries
where asset distribution is often highly skewed and the typology of income sources
tend to differ across income levels. From this perspective, this article has attempted
to apply a less aggregative approach to the study of the links between open access
environmental resources, welfare of different population groups, composition and
level of output.

The analysis of the model shows that, in contexts with highly concentrated
physical capital distribution and free-access renewable natural resources, when
physical-capital-intensive activities (i.e. the modern sector in our model) are rela-
tively more polluting or resource demanding than the traditional activities, unex-
pected results can emerge. A labor shift to these activities can be fuelled not only
by advantages in terms of total factor and labor productivity, but also by environ-
mental degradation which, eventually, can lead to a complete specialization in the
capital-intensive sector which drives the economy towardsB0, the unique stationary
point that is admissible. If the environmental impact produced by these activities is
still relatively high but does not overcome a certain threshold, two saddle-point sta-
ble stationary states exist: one with specialization in modern sector production (B0)
and one with the presence of both sectors (B). In this case the economic dynam-
ics are path dependent and the selection between these fixed points is affected by
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the initial level of natural and physical capital. Economies with low natural capital
endowments will be more likely to approach the fixed point B0 and to follow a tran-
sition to a complete specialization. It is worth noting that, in such context, the poor
obtain a higher welfare level in the stationary state without complete specialization
than in the case of a complete process of “proletarianization”. Therefore, our model
shows that a trade-off between the welfare of the poor and the expansion of modern
activities can emerge when environmental externalities and agents’ heterogeneity
are considered in a joint framework. Conversely, expansion of the modern activities
might stimulate counter-intuitive consequences: an immiserizing growth process,
namely, an output growth resulting in a further impoverishment of the poor and in
a worsening of income distribution. In conclusion, our model suggests that in some
contexts6 the expansion of activities usually regarded as the engine of economic
growth and, consequently, necessary (though not sufficient) conditions for poverty
reduction, might actually increase poverty and inequality through the erosion of the
resources upon which poor people depend.7

This trade-off does not emerge in the regime DTS, i.e. when the modern sector
produces a relatively lower environmental impact than the traditional sector. In this
scenario, for both the poor and the rich the welfare effect of an increase in output
production and labor employment of the modern sector is positive.

In conclusion the proposed model shows that environmental degradation may
represent a push factor of economic development in an economy polarized into two
main classes (the rich and the poor) and characterized by the following stylized
facts:

(a) The main income source of the rural poor is self-employment in traditional
activities highly dependent on natural resources.

(b) Labour remuneration in rural sector represents the basic opportunity cost for
(unskilled) labour in the economy. Thus, given that environmental degradation
reduces labour productivity of the rural poor, it may depress wages.

(c) Production of the modern sector managed by the rich is less affected by the
depletion of natural resources; they are able to defend themselves by partially
substituting natural resources with physical capital accumulation and wage
labour employment.

In this context, if the modern sector is sufficiently low-dependent on natural cap-
ital (i.e. the natural capital elasticity of the modern sector output is sufficiently low)

6 When income and asset concentration is high and the capitalistic sector is heavily polluting.
7 Models that predict scenarios with undesirable economic processes are not new in literature.
Actually, Antoci and Bartolini (1999, 2004), Antoci et al. (2005, 2008) and Antoci (2009) have
proposed models in which negative externalities may constitute an engine of economic growth. In
their models, economic growth produces negative externalities that reduce the capacity of natural or
social environment to provide free goods. Agents try to defend themselves from welfare losses by
increasing their labor supply in order to raise their consumption of private goods that are substitute
for free access goods. This, in turn, stimulates economic growth. As a result, defensive strategies
generate a growth path along which the production and consumption of private goods are higher
than the socially optimal level.
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environmental depletion may benefit the modern sector through an increase in low
cost labour supply and, in turn, may stimulate physical capital accumulation and
expansion of the modern sector. However, if the environmental impact of the modern
sector is sufficiently heavy and relatively higher than that of the traditional sector,
the structural change is likely to result in an increase in inequality.

Appendix

Proof Proposition 2

Substituting NP D N �MK
�

�CıE
ı�1
�Cı , the system (10)–(12) becomes

PK D ˇ.� C ı/M 1���ıK
�

�CıE
2ıC��1

�Cı � 1
�
;

�
E D E.E �E/CM.�˛ � �ˇM���ı/K

�
�CıE

ı�1
�Cı � �˛N ;

�
� D �

�
r � ˇ�M 1���ıK� ı

�CıE
2ıC��1

�Cı

�
;

where MD
�
aˇ.1 � � � ı/

˛

� 1
�Cı

. Let .K�; E�; ��/ denote the fixed point values

of .K;E; �/. Remember that the fixed points without specialization are given by
the intersections between the graphs of the functions K D F.E/ and K D G.E/

occurring below the curve K D L.E/ in the plane .E;K/. Figure 6 shows all
possible configurations of curves K D F.E/ and K D G.E/; in this figure,
the curve K D L.E/ is drawn only if K D F.E/ and K D G.E/ have

intersections above it;E1 WD 1 � ı
1C � .E��˛N / indicates the value ofE maximizing

F.E/.
The Jacobian matrix evaluated at the fixed point .K�; E�; ��/ is

J � D
0
@hK hE h�

fK fE f�

gK gE g�

1
A

with
hK D r > 0,

hE D r�K�

�E� ,
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Fig. 6 Fixed points with Np > 0
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h� D 1

.��/2
D
�
r.� C ı/K�

�

�2

> 0,

fK D � �

� C ı
�E�.N �NP /

K� ,

fE D 1C �
� C ı .E1 � E�/,

f� D 0,

gK D �ı

.� C ı/2.K�/2
> 0,

gE D � �

.� C ı/2
�

E�K� ,

g� D 0,

where � D � C 2ı � 1 and� D ˛
�

�

a.1 � � � ı/ � �
�

.

Notice that sign.hE /Dsign.�/, sign.gE /Dsign.��/, sign.fE /Dsign.E1�
E�/ and sign.fK/Dsign.��/.

In order to study the stability properties of fixed points, we apply the method-
ology proposed by Wirl (1997). The eigenvalues of the system are the roots of the
following characteristic polynomial

P.z/ D z3 � t r.J �/z2 C wz � jJ �j;

where

t r.J �/ D hK C fE C g�; jJ �j D h�.fKgE � fEgK/;

w D �h�gK C hKfE � hEfK :

The following results can be easily proved.

Lemma 1. If E� < E1, then t r.J �/ > 0.

Lemma 2. If � > 0, then jJ �j < 0 in A and jJ �j > 0 in B .
If � < 0, then jJ �j > 0 in the unique admissible fixed point.

Lemma 3. If � < 0, then w < 0.
If � > 0 and� < 0, then w < 0.

If � > 0 and � > 0, then E� >
1

2

�
E � �˛N � rı

�

�
is a sufficient condition

for w < 0.

It is now possible to discuss the stability properties of A and B , in the regime
� > 0, and of the unique admissible fixed point in the regime� < 0. As explained
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in the main text, a fixed point .K�; E�; ��/ is said “saddle-point stable” if J � admits
two eigenvalues with negative real parts.

Stability Analysis of A

By Lemma 2, jJ �j < 0 holds in A; therefore, A is either a saddle with two pos-
itive eigenvalues or a sink. Conditions for local attractivity are (see Wirl, 1997):
t r.J�/ < 0, jJ �j < 0 and w > 0. Figure 6 shows that A may assume two pos-
sible configurations. In the cases (a) and (b), � < 0 holds; thus, from Lemma
3, it follows that w < 0, therefore A is not attractive. In the cases (e) and (f),
E� < E1 holds in A; this implies, by Lemma 1, that t r.J�/ > 0. Thus A can-
not be attractive. In short, the fixed point A is always a saddle with two positive
eigenvalues.

Stability Analysis of B and of the Unique Fixed Point
in the Regime � < 0

In B and in the unique fixed point in the regime � < 0, jJ �j > 0 holds; there-
fore, such a fixed point is either a source or a saddle point with a two-dimensional
stable manifold (Wirl 1997). Wirl finds that a positive determinant and a negative
coefficient w are sufficient conditions for saddle-point stability. Given Lemmas 2
and 3, this happens when � < 0 (Fig. 6, cases a–d) or when � > 0 and � < 0

(Fig. 6, case h). If � > 0 and � > 0, the sign of w is not univocally determined.
Consequently, in this case, B may be repulsive or saddle-point stable. However,

by Lemma 3, E� >
1

2

�
E � �˛N � rı

�

�
is a sufficient condition for saddle-point

stability (Fig. 6, cases e–g); this completes the proof of Proposition 2.

Proof of Proposition 4

In the regime NP D 0, the dynamic system (10)–(12) becomes

PK D ˇ.� C ı/K�EıN
1���ı � 1

�
;

�
E D E.E �E/� ˇ�K�EıN

1���ı
;

�
� D �.r � ˇ�K��1EıN

1���ı
/:
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In order to study the stability properties of fixed points, we calculate the Jacobian
matrix J �

0 evaluated at a fixed point .K�; E�; ��/ with NP D 0

J �
0 D

0
@h0K h0E h0�

f0K f0E f0�

g0K g0E g0�

1
A

with
h0K D r.� C ı/ > 0,

h0E D rı.� C ı/K�

�E� > 0,

h0� D r2.� C ı/2.K�/2

�2
> 0,

f0K D �r� < 0,

f0E D E.1 � ı/� .2� ı/E�,

f0� D 0,

g0K D �.1� �/
.� C ı/.K�/2

> 0,

g0E D � �ı

.� C ı/K�E� < 0,

g0� D 0.
The eigenvalues of the system are the roots of the following characteristic

polynomial
P.z/ D z3 � t r.J �

0 /z
2 C wz � jJ �

0 j;
where

t r.J �
0 / D h0K C f0E ; jJ �

0 j D h0K.f0Kg0E � f0Eg0K/;

w D �h0�g0K C h0Kf0Ef0K :

Let us first consider t r.J �
0 /. Figure 7 shows all possible configurations of the

fixed points with NP D 0. The fixed points correspond to the intersections between
the graphs of the functionsK D F0.E/ andK D G0.E/, occurring above the curve

K D L.E/ in the plane .E;K/.8 Notice that f0E > 0 if E� < EM WD E.1 � ı/
2 � ı ,

where EM is the value of E maximizing F0.E/. Being E� < EM in A0, f0E > 0

and t r.J �
0 / > 0 hold in A0 (see cases a-c in Fig. 7).

In Fig. 7a,E� < EM holds inB0; therefore f0E > 0 and t r.J �
0 / > 0. In Fig. 7b,

E� > EM holds in B0; therefore f0E < 0 and the sign of t r.J �
0 / is not univocally

determined.

8 In Fig. 7, the curve K D L.E/ is not drawn when no intersection between K D F0.E/ and
K D G0.E/ occurs below it.
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Fig. 7 Fixed points with Np D 0
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Let us now analyze the sign of jJ �
0 j. We can observe that F 0

0 > G0
0 in A0, while

F 0
0 < G0

0 in B0, where F 0
0 D �

f0E

g0K

and G0
0 D �

g0E

g0K

. It follows that jJ �
0 j < 0 in

A0 while jJ �
0 j > 0 in B0.

Finally, let us consider

w D �r
2.� C ı/
�.1� �/ C r.� C ı/.E.1 � ı/� .2 � ı/E

�/C ı�r2.� C ı/K�

�E� :

Replacing9

K� D �E�.E � E�/
r�

(13)

we obtain

w D r.� C ı/
�
� r

�.1 � �/ CE � 2E
�
�
< 0

if E� >
1

2

�
E � r

�.1� �/
�

.

Stability Analysis of A0

jJ �
0 j < 0 holds inA0; thereforeA0 may be a saddle point with two eigenvalues with

positive real parts or a sink. Given that t r.J �
0 / > 0, local attractivity is excluded.

Stability Analysis of B0

In B0 we have jJ �
0 j > 0; therefore B0 is either a source or a saddle-point stable

stationary state. If E� >
1

2

�
E � r

�.1� �/
�

, then w < 0 and consequently the

fixed point cannot be repulsive (see Wirl, 1997). That is, E� >
1

2

�
E � r

�.1� �/
�

is a sufficient condition for saddle-point stability.
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9 Formula (13) is obtained from equations
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López, R. E., Anriquez, G., & Gulati, S. (2007). Structural change and sustainable development.
Journal of Environmental Economic Management, 53, 307–322.

Lucas, R. (2004). Life earnings and rural–urban migration. Journal of Political Economy, 112,
29–59.

Matsuyama, K. (1992). Agricultural productivity, comparative advantage, and economic growth.
Journal of Economic Theory, 58, 317–334.

McAusland, C. (2005). Learning by doing in the presence of an open access renewable resource:
Is growth sustainable? Natural Resources Modeling, 18, 41–68.

Munro, G. R., & Scott, A. D. (1993). The economics of fisheries management. In A. V. Kneese
& J. L. Sweeney (Eds.), Handbook of natural resource and energy economics (Vol. III).
Amsterdam: North-Holland.



38 A. Antoci et al.

Narain, U., Shreekant, G., & vant Veld, K. (2005). Poverty and the environment-exploring the
relationship between household incomes, private assets and natural assets (Working paper
134). Centre for Development Economics, Delhi School of Economics, Delhi.

Ranis, G., & Fei, J. C. H. (1961). A theory of economic development. American Economic Review,
51, 533–565.

Schaefer, M. B. (1957). Some considerations of population dynamics and economics in relation
to the management of marine fisheries. Journal of the Fisheries Research Board of Canada, 5,
669–681.

United Nations Environment Programme. (2004). Human well-being, poverty and ecosystem
services. Exploring the links. Nairobi: Author.

Vedeld, P., Angelsen, A., Sjaastad, E., & Kobugabe-Berg, G. (2004). Counting on the environment:
Forest incomes and the rural poor (Paper no.9̇8). Washington, DC: World Bank Environment
Department.

Wirl, F. (1997). Stability and limit cycles in one-dimensional dynamic optimisations of competitive
agents with a market externality. Journal of Evolutionary Economics, 7, 73–89.

World Resources Institute in collaboration with United Nations Development Programme, United
Nations Environment Programme, and World Bank. (2005). World resources 2005. The wealth
of the poor: Managing ecosystems to fight poverty. Washington, DC: Author.



Bifurcations and Chaotic Attractors
in an Overlapping Generations Model
with Negative Environmental Externalities

Angelo Antoci, Ahmad Naimzada, and Mauro Sodini

1 Introduction

We analyze an overlapping generations model with the following features. There
exists a continuum of identical individuals whose welfare depends on leisure, on
the stock E of a free access environmental good and on the consumption C of
a private good. The private good is produced by a continuum of identical perfectly
competitive firms via a constant returns technology (represented by a Cobb–Douglas
production function); the representative firm uses physical capitalK and labourL of
the representative individual as productive inputs. Each economic agent considers
as negligible the negative impact of his choices on the environmental good; this
implies that the choices of each agent generate negative externalities on the others.

Following Zhang (1999), Antoci et al. (2007) and Itaya (2008) (among the oth-
ers), we assume that individuals’ utility function is non separable in E and C ; that
is, the marginal utility of C depends on the value of E; in particular, we consider
both the cases in which marginal utility increases (i.e. C and E are substitutes) and
decreases (i.e. C and E are complements) when the value of E decreases.1

The assumption of non separability of the utility function allows us to analyze
possible feedback effects on consumption and economic growth generated by envi-
ronmental degradation. In particular, we show that the dynamics can admit at most
one steady state when C and E are complements while at most three steady states
can exist when C and E are substitutes. In the context in which C and E are

1 It is obvious that the marginal utility deriving from the consumption of private goods may be
reduced by environmental deterioration; for example, to drink a cup of coffee in front of an uncon-
taminated seaside is better than in front of a polluted one. Living in a house on an uncontaminated
river is obviously better than in a house placed on a polluted and smelling one. However, environ-
mental degradation may also increase the marginal utility deriving from the consumption of some
private goods; the relevance of substitutive consumption is stressed by the literature on environ-
mental defensive expenditures (see, e.g. Antoci 2009; Antoci and Bartolini 1999, 2004; Antoci et
al. 2008; Hueting 1980; Leipert 1989; Leipert and Simonis 1988; Shogren and Crocker 1991).
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substitutes, we find that local indeterminacy – i.e. the existence of an infinite number
of (Nash) equilibrium orbits approaching the same steady state – can occur and that
environmental externalities play a key role in generating it. More precisely, we show
that starting from a context in which the environment doesn’t enter in individuals’
utility function and dynamics are not indeterminate, then indeterminacy may occur
(ceteris paribus) introducing E in the utility function.2 Furthermore, by numeri-
cal analysis, we obtain examples of long-run indeterminacy; in particular, we show
that a chaotic attractor may arise; in such case, starting from the same initial value
K0, there exist a continuum of initial values L0 that lead the economy to reach the
attractor. So the long run evolution of the economy depends on the choice ofL0. We
also give examples in which a chaotic attractor and an attracting steady state coexist
giving rise to global indeterminacy;3 in such multistability regime, starting from the
same initial valueK0, there exist a continuum of initial valuesL0 that lead the econ-
omy to approach the steady state and a continuum that lead the economy towards
the chaotic attractor. Finally, in our examples, we find that when global indetermi-
nacy occurs then, along the orbits approaching the chaotic attractor, the values of
L and K are higher than along the orbits reaching the steady state, while individ-
uals’ welfare is lower. This Pareto-dominance result implies that along the orbits
approaching the chaotic attractor the economy experiments a process of undesirable
economic growth: individuals’ welfare would be higher by choosing lower labour
and capital accumulation levels.4

The paper has the following structure. Section 2 introduces the set up of the
model and the associated dynamic system. Section 3 deals with the existence
and local stability of the normalized stationary state. Sections 4 and 5 shows, via
numerical simulations, some complex dynamic regimes generated by the model
and the evolution of individuals’ welfare along the orbits followed by the economy.
Section 6 concludes.

2 The Model

We consider a standard overlapping generations economy. Time is discrete: t D
1; 2; 3; : : : ;1; there exist a continuum of individuals who live for two periods of
time and two generations of individuals (young and old) coexist in each period

2 In economic literature, local indeterminacy is usually generated via the effect of positive exter-
nalities arising from production activity (see, e.g. Benhabib and Farmer, 1999; Bennet and Farmer,
2000; Cazzavillan et al., 1998; Cazzavillan, 2001; Grandmont et al., 1998; Reichlin, 1986).
However, some works focus on the role played by negative externalities as engine of local
indeterminacy; see, for example, Chen and Lee (2007), Itaya (2008), Meng and Yip (2008).
3 The term “global indeterminacy” (see, among the others, Grandmont et al., 1998; Krugman, 1991;
Matsuyama, 1991; Pintus et al., 2000 and, more recently, Benhabib et al., 2008 and Coury and Wen,
2009) refers to the situation where, starting from the same initial value of the state variable, there
exist different equilibrium paths that approach different attractors.
4 This result confirms analogous results obtained under the assumption of substitutability between
C and E (see, e.g. Antoci, 2009; Antoci and Bartolini, 2004; Antoci et al., 2005, 2007, 2008;
Bartolini and Bonatti, 2002, 2003).
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of time t . Individuals work when they are young and consume the private good
when they are old.5 The private good is produced by a continuum of perfectly
competitive firms.

In each period t , the representative young individual has to allocate his time
endowment L� (L� is a fixed parameter) between leisure and labour supply Lt

(L� � Lt � 0) to the representative firm, remunerated at the wage rate Wt . The
remuneration LtWt is entirely invested in productive capital KtC1 (i.e. KtC1 D
LtWt ) that the individual will rent to the representative firm in time t at the inter-
est factor RtC1. The sum obtained, WtLtRtC1, allows him to buy and consume
the quantity CtC1 D WtLtRtC1 of the good produced by the firm (WtLt and
WtLtRtC1 are expressed in unities of the consumption good).

2.1 The Utility Function

We assume the following utility function:

U.L� �Lt ; CtC1; EtC1/ D ln.L� �Lt /C Q

1C �
.PCtC1E

"
tC1/

1�� � 1
1 � � ;

whereEtC1 indicates the stock of the free access environmental good at time t C 1;
1

1C�
is the discount factor,P andQ are positive scale parameters that will be used to

apply the “normalized steady state” technique, " and � are positive parameters, � ¤
1. The parameter � denotes the inverse of the intertemporal elasticity of substitution
in consumption. Notice that if � 2 .0; 1/, then CtC1 andEtC1 are substitutes, while
if � > 1 they are complements, in that:

@2U.lt ; CtC1; EtC1/

@CtC1@EtC1

≶ 0

for � ≶ 1. This function is concave in L� � Lt and CtC1; it is not assumed to be
jointly concave in L� �Lt , CtC1 and EtC1 in that in the decentralized competitive
market economy on which we focus, the variable EtC1 is not a choice variable for
each economic agent.

2.2 The Production Function

We assume constant returns to scale; in particular, the representative firm has the
following Cobb–Douglas production function:

5 This assumption is adopted in several overlapping generations models (see, among the others,
Duranton, 2001 and Zhang, 1999). It simplifies our analysis by abstracting from the consumption-
saving choices of agents.
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Y D AF.Kt ; Lt / D AL1�˛
t K˛

t D A Ltk
˛
t ;

where kt WD Kt=Lt and A is a positive parameter representing (exogenous)
technological progress.

2.3 Economic Agents’ Choices

The economy is assumed perfectly competitive and so, in each period t , the repre-
sentative firm maximizes the profit function:

AF.Kt ; Lt /�WtLt �RtKt (1)

taking the wage rate Wt and the interest factor Rt as exogenously given. As usual,
this assumption gives rise to the following first order conditions:

Wt D A.1 � ˛/k˛
t ; (2)

Rt D A˛k˛�1
t : (3)

The representative individual maximizes the objective function:

maxU.Lt ; CtC1; EtC1/

under the constraints:

CtC1 D RtC1WtLt ; (4)

Lt 2
�
0;L�
 : (5)

In our perfectly competitive economy, Wt and RtC1 are considered as exoge-
nously given. Furthermore, we assume that the representative individual, at time
t , is able to perfectly foresee the value of EtC1. However, EtC1 is considered as
exogenously determined in that the representative individual considers as negligible
the impact of his choices on the environmental quality.

Under these assumptions, the first order condition for an interior solution (it
always holds 0 < Lt < L

�) of the representative individual’s choice problem is

� 1C �
L� � Lt

CQŒPRtC1WtE
"
tC1�

1��

L�
t

D 0: (6)

By substituting (1) and (2) in (6) we obtain

� 1C �
L� �Lt

CQŒP.˛.1 � ˛/A
2k˛

t k
˛�1
tC1 /E

"
tC1�

1��

L�
t

D 0: (7)
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2.4 Dynamics

We assume that the environmental stock EtC1 in time t C 1 depends negatively on
the average production level in time t , that is

EtC1 D E � �AF.K t ; Lt / D E � �ALtk
˛

t ; (8)

where E is a positive parameter representing the endowment of the environmental
good, i.e. the value that EtC1 would assume in absence of the negative impact of
production.Lt , Kt and kt indicate the economy wide average values of Lt , Kt and
kt in time t , respectively; AF.Kt ; Lt / represents average production. The positive
parameter � measures the impact of production on the environmental stock. We
assume that each economic agent considers Lt and Kt as exogenously determined.
However, being all economic agents identical, ex-post Lt D Lt , Kt D Kt and
kt D kt . So, in this model, the choices of the representative individual are not
optimal and generate negative externalities. However, the orbits followed by the
economy are Nash equilibria, in that no single individual has interest to modify his
choices if also the others don’t revise theirs.

By plugging (8) in (7) and taking into account that, by (2), it holds

KtC1 D LtC1ktC1 D LtWt D LtA.1 � ˛/k˛
t

the dynamic system representing the dynamics of the economy is

� 1C �
L� �Lt

CQŒP.˛.1 � ˛/A
2k˛

t k
˛�1
tC1 /.E � �A.Ltk

˛
t //

"�1��

L�
t

D 0; (9)

ktC1LtC1 D A.1 � ˛/k˛
t Lt : (10)

3 Steady States of Dynamics

3.1 The Normalized Steady State

The system (9)–(10) defines ktC1 and LtC1 as functions of kt and Lt . In this
section, we study the stability of fixed points of such discrete dynamic system.
Since our model contains a large number of parameters, to make clear the study
we use the geometrical–graphical method developed by Grandmont et al. (1998)
that allows us to characterize the stability properties of the steady states of this
dynamic system. We impose some conditions on parameters under which a fixed
point .ks:s; Ls:s; Es:s/ with ks:s D Ls:s D Es:s D 1 exists. This allows us to ana-
lyze the effects on stability due to changes in parameters’ values being sure that the
fixed point doesn’t disappear. Without loss of generality, we pose L� D 2.
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By requiring that ks:s D Ls:s D Es:s D 1 [by (9)–(10)] we obtain the following
conditions on parameters’ values:

A D 1

1 � ˛ , E D 1� ˛ C �
1 � ˛ , P D P � WD 1 � ˛

˛
andQ D Q� WD 1C �:

(11)

Using conditions (11), the dynamic system (9)–(10) can be explicitly written as

ktC1 D
"
k˛

t .1C ! � !Lk˛/"L
�

��1

.2� L/ 1
��1

# 1
1�˛

; (12)

LtC1 D Ltk
˛
t

"
.2 � L/ 1

��1

k˛
t .1C ! � !Lk˛/"L

�
��1

# 1
1�˛

; (13)

where ! WD �
1�˛
2 .0;C1/.6 Such system always admits the normalized steady

state defined above; to look for other steady states, notice that the steady states of
system (12)–(13) are characterized by the following conditions:

k D 1;

g.L/ WD
"
.1C ! � !L/"L �

��1

.2 �L/ 1
��1

# 1
1�˛

D 1: (14)

Notice that g.L/ is defined in the interval Œ0; 2/ and that g.1/ D 1. By straight-
forward calculations it is easy to check that at most one fixed point (the normalized
one) exists if � < 1 (i.e. if C and E are complements) while at most three fixed
points exist if � > 1 (i.e. if C andE are substitute). The next section provides some
examples of dynamics admitting one, two or three fixed points.

3.2 The Stability Properties of the Normalized Steady State
and Indeterminacy

In our model, productive capital Kt represents a state variable, so its initial value
K0 is given. Differently from Kt , the variable Lt is a “jumping” variable in that it
represents the representative individual’s labor input, chosen taking into account of
the average labour input in the economy, the expected environmental quality and the
accumulated productive capital. Consequently, individuals have to choose the initial
value L0 (and consequently the initial value of kt D Kt=Lt ). If the normalized

6 Notice that LtC1 D Ltk
˛
t =ktC1.
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steady state is a saddle and K0 is near enough to 1, then there exists an unique ini-
tial value of Lt , L0, such that the orbit passing through .k0; L0/ approaches the
fixed point. When the fixed point is a sink, given the initial value K0, then there
exists a continuum of initial values L0 such that the orbit passing through .k0; L0/

approaches the fixed point; consequently, the orbit the economy will follow is “inde-
terminate” in that it depends on the choice of the initial value L0. The following
results show how indeterminacy depends on the parameters � and " of the model.

The Jacobian matrix of (12)–(13), evaluated at the normalized steady state, is

JN D 1

1 � ˛

 
�˛.˛�1C�"/

.˛�1/
"�.��1/C.1C�/.˛�1/

.��1/.˛�1/
˛."�C˛.˛�1//

.˛�1/
.��1/.˛2�˛C"�/C2.˛�1/

.��1/.˛�1/

!

with:

Det.JN / D 2˛

.1 � �/.1 � ˛/ ; (15)

T r.JN / D 2

.1 � �/.1 � ˛/ C
�

1 � ˛ ": (16)

Let us assume � 2 .0; 1/. In such context, it is easy to check that varying

� in the interval .0; 1/, the point
�

2
.1��/.1�˛/

; 2˛
.1��/.1�˛/

�
[see (15) and (16)]

describes in the plane .T r.J /;Det.J // (see Fig. 1) a half line T1 with slope ˛
(0 < ˛ < 1) starting on the right of the line AC, in the first orthant of the
plane. This implies that, if " D 0 (i.e. E doesn’t enter the utility function), the
point

�
T r.JN /;Det.JN /

�
always belongs to the region “saddle” in Fig. 2, for

every � 2 .0; 1/. Now, we fix the value of � , i.e. we fix a point p1 in T1; for
" D 0, the points p1 and

�
T r.JN /;Det.JN /

�
are coincident; by increasing ", the

point
�
T r.JN /;Det.JN /

�
moves on the right of p1, along an horizontal line. This

Det(J)

B (–2,1)

A (0,  –1)

C (2,1)

source

source

Hopf bifurcation

Flip bifurcation

saddle saddle

Transcritical
bifurcation

1

1 1

sink p1

T1

α

ε

Fig. 1 Stability analysis of the normalized fixed point in case
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Flip bifurcation
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saddle
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P2

P2

P2
α

ε

Fig. 2 Stability analysis of the normalized fixed point in case

implies that the point
�
T r.JN /;Det.JN /

�
always belongs to the region “saddle”

in Fig. 2, for every � 2 .0; 1/ and " � 0.

Under the substitutability assumption � > 1, the point
�

2
.1��/.1�˛/

; 2˛
.1��/.1�˛/

�
describes in the plane .T r.J /;Det.J // (see Fig. 2) a half line T2 with slope ˛ lying
in the third orthant of the plane .T r.J /;Det.J // and approaching the origin of it
for � ! 1. This implies that, if " D 0, the point

�
T r.JN /;Det.JN /

�
belongs

to the region “sink” in Fig. 2 for � high enough. Notice that, by following the same
steps as in case � 2 .0; 1/, it is easy to see that starting from a point p2 of T2 in the
region “saddle”, the point

�
T r.JN /;Det.JN /

�
can enter in the region “sink” by

increasing ", if � is high enough. This implies that an increase of the dependence on
E of individuals’ welfare can be a source of indeterminacy. However, it is worth to
stress that, in our model, indeterminacy can also occur in case " D 0 (but for higher
values of �).

Notice that Hopf bifurcations are ruled out. A flip bifurcation occurs (in case
� > 1) when the line AB in Fig. 2 is crossed, along which it holds T r.J /CDet.J /
C1 D 0; so the bifurcation value of " is

"f lip D
	
�.1 � ˛/ � 2.˛C 1/

.1 � �/


1

�
:

A transcritical bifurcation arises (in case � > 1) when the line AC in Fig. 2 is
crossed, along which it holdsDet.J /� T r.J /� 1 D 0; so the bifurcation value of
" is

"t r D
	
1� 2

1 � �


1 � ˛
�

:
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3.3 Global Analysis and Numerical Simulations

Because of analytic complexity of the equation describing the evolution of the
economy, we cannot find closed form expressions of non-normalized fixed points.
Consequently we fix ˛ D 0:17, � D 0:11 and � D 8, and use " as bifurcation
parameter.7 Figure 3a refers to the case " D 7:2; in such case, there exists only the
normalized fixed point, corresponding to the intersection between the graph of g.L/
[see (14)] and the vertical line k D 1; this point is the unique attractor of the system
and in Fig. 3b three orbits approaching it are represented.

By increasing the value of " up to " D 8:2, two other fixed points arise (see
Fig. 4a), .k; L/ D .1; L1/ and .1; L2/, with L2 > L1 > 1, via a fold bifurcation
(the bifurcation value is " D 7:995); .1; 1/ and .1; L2/ are attracting while .1; L1/

is a saddle whose stable manifold separates the basins of attraction of .1; 1/ and
.1; L2/ (see Fig. 4b).

Trajectories near to .1; L2/ follow to the classical period doubling route to chaos
while the normalized point preserves its stability (see Fig. 4c, " D 8:50). Note that,
since the initial value of labour inputL is a jumping variable, in the dynamic regimes
represented in Fig. 4b–c,8 the long run growth path of the economy is indeterminate
in that a slightly different initial choice of L may determine a rather different long
run behaviour of the economy. This type of indeterminacy differs from that rela-
tive to the orbits approaching the same attracting fixed point in that, in such case,
indeterminacy occurs with respect to transient dynamics only.

A further increase of " causes the disappearance of the strange attractor (" D
8:53) and the normalized point becomes the unique attractor of the system.
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Fig. 3 Example in which the normalized fixed point is the unique attractor

7 All the numerical simulations we have made suggest that similar results are obtained by using ˛,
� or � as bifurcations parameters.
8 For initial conditions in the white area, the system diverges to infinity (same convention for
Fig. 4b–c). Points with white interior part are saddle.
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Fig. 4 Example in which three fixed points exist
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Fig. 5 Example in which three fixed points exist and the normalized fixed point is a saddle

Finally, observe that, for " D 9:7, .1; 1/ and .1; L1/ are coincident while, increas-
ing ", a switching between .1; 1/ and .1; L1/ occurs (see Fig. 5): .1; L1/ and .1; 1/,
with L1 < 1, become respectively an attracting point and a saddle. The overlapping
bifurcation diagrams in Fig. 6 (with initial conditions (4, 1.52) and (0.2, 0.2)) show
the evolution of the attractors.
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Fig. 6 Overlapping bifurcation diagrams varying the parameter

Fig. 7 The fractal nature of the basins of attraction of period-6 and period-4 cycles

The system shows a further interesting dynamic phenomenon non evidenced by
the previous figures. For " D 8:452 a period-6 cycle is born and a coexistence of
three attractors arises up to " D 8:4587. Figure 7 evidences the fractal nature of the
basins of attraction of period-6 and period-4 cycles. The magnification of the supe-
rior part of bifurcations diagram in Fig. 69 describes the evolution of the period-6
cycle that via period doubling bifurcations generates a chaotic attractor (" D 8:465/
with several periodic windows while period-4 cycle preserves the stability. Finally
the chaotic attractor dies and all the trajectories in that area converge to the period-4
cycle.

9 The initial condition for period-4 cycle is (3.5, 1.1). To analyse the evolution of the other attractor,
we used the continuation algorithm of EFChaos.
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Fig. 8 An enlargement of the upper part of the bifurcation diagram in Fig. 6
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Fig. 9 Wellbeing and output evaluated along an orbit approaching the normalized fixed point

4 Wellbeing

In this section we analyze welfare (i.e. the value of the utility function) of each gen-
eration along equilibrium orbits by some numerical exercises. Figures 9a–b show
the behavior of wellbeing and output Y along an orbit approaching the attracting
normalized steady state (˛ D 0:17; � D 0:11; � D 8; " D 7:5). Notice that output
and wellbeing are inversely correlated and so the economy experiments undesirable
economic growth: the increase in production and consumption of output is not able
to compensate the negative effects of environmental degradation.

In the case showed in Fig. 10 (˛ D 0:17; � D 0:11; � D 8; " D 8:2) there
exist two attracting steady states, the normalized one and a steady state with higher
labour and output levels.
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Fig. 10 Time evolution of wellbeing

Fig. 11 Wellbeing, output Y and stock E of the environmental resource evaluated along orbits
approaching a strange attractor

In such context, wellbeing is evaluated along an orbit approaching the normalized
steady state (that with the higher wellbeing level) and along one approaching the
other attracting steady state.

In Fig. 11a–b wellbeing, output Y and the stock of the environmental resource
E are evaluated along orbits approaching a strange attractor (˛ D 0:17; � D 0:11;

� D 8; " D 8:5). Notice that E is positively correlated with welfare while the
opposite holds for Y . In such context, the normalized fixed point is characterized by
levels of output and labour lower than those corresponding to the orbits plotted in
Fig. 11a–b and it Pareto-dominates them.
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5 Conclusions

By analyzing an overlapping generations model in which the utility function is
non separable with respect to private goods and free access environmental goods,
we have shown that undesirable growth paths may emerge in the context in which
private and environmental goods are substitutes; that is, growth paths may exist that
are Pareto-dominated by other orbits characterized by lower private production and
consumption levels. In such context, we have also showed that two types of indeter-
minacy may occur; a short run indeterminacy, associated (as usual) to the existence
of an attracting fixed point, according to which the orbit that will be followed by the
economy during transient dynamics is not predictable (because it depends on the
choice of the initial value of labour input), and a long run indeterminacy according
to which the initial choice of the labour input deeply affect long run dynamics.
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Stock Dynamics in Stage Structured
Multi-agent Fisheries

En-Guo Gu and Fabio Lamantia

1 Introduction

The sustainable use of public renewable resources is a crucial issue for the long
run survival of mankind. With a rapidly increasing population and a quick economy
development, overexploitation of worldwide renewable resources seriously affects
their ability to renew themselves and therefore their sustainable use (Food and Agri-
culture Organization, 2004; Garcia & Grainger, 2005). To complicate the problem
further, the modelling of commercial exploitation of renewable resources represents
an extremely challenging task, as it always involves nonlinear interaction among
many different components (biological, economic, social) as well as uncertainty. In
particular the issue of fishery management with chaotic and catastrophic dynamics
has been thoroughly discussed in Rosser (2002a). Many researchers have investi-
gated the dynamic of an exploited biomass regarded as a single species (Bischi &
Lamantia, 2007; Bischi, Kopel, & Szidarovszky, 2005; Clark, 1990; Fan & Wang,
1998; Gu, 2007). Recently also the evolution of an exploited stage-structured sin-
gle species has been addressed (see Jing and Ke (2004); Song and Chen (2002);
Gao, Chen, and Sun (2005)). This analysis is of particular significance especially
for those many species whose individuals have different economic value at different
ages. For example, little eels are often called “soft gold,” for their high economic
value, so many agents are interested in harvesting only little eels. But the case is
exactly the opposite for those species whose immature individuals have negligible
economic value, so that exploiters want to harvest only the mature population and
let the immature population grows, so that it can acquire a greater value. Often
also public regulators try to direct the harvesting activity toward a target stage, for
instance by limiting the use of trawl with too small meshes in order to protect the
infant population.

When multi-agents (societies, countries, or exploiters) compete for public
resource exploitation, their strategic interaction can be modeled within the setting
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of (Cournot) oligopoly games, which have attracted economists’ interest in recent
years as (apparently) simple models capable of originating complex dynamics (see
Rosser (2002b)). In fishery economics game-theoretic models are more and more
employed (see, amongst many others, Bischi and Lamantia (2007); Clark (1990);
Hanneson (1995); Mckelvey (1997); Mesterton-Gibbons (1993); Szidarovszky and
Okuguchi (1998, 2002)).

In recent papers on the dynamic of an exploited stage-structured species, deci-
sions on harvesting do not presuppose strategic interaction among agents, as they
are based on concepts such as maximum sustainable yield (Jing & Ke, 2004) or
constant effort exploitation (Gao, Chen, & Sun 2005; Song & Chen 2002). Instead
in this paper we derive a total harvesting function within a game-theoretic frame-
work, as outlined below. First we assume that the population of exploiters is ex-ante
subdivided into two fractions: one fraction 0 � � � 1 of the population acts as
a cooperative venture and consequently tries to maximize the overall profit of the
coalition; on the other hand, each exploiter in the complementary fraction of the
population, .1 � �/, behaves as a selfish profit maximizer (referred to as a “defec-
tor” in the following). These assumptions generalize those given in Bischi, Kopel,
and Szidarovszky (2005), as cooperators and defectors are assumed to coexist and
the two limiting cases of all cooperators and all defectors considered in that paper
are here obtained as limiting case, given by � D 1 and � D 0, respectively. A fish-
ery model with interaction between cooperators and defectors has been proposed in
Bischi, Lamantia, and Sbragia (2004), where, differently from the present paper, the
fraction of agents in the two groups dynamically changes according to an evolutive
process.

Assuming that a representative agent of each type (cooperator or defector)
harvests at each time period exactly the quantity prescribed by its Nash equilibrium
strategy (see Sethi and Somanathan (1996)), we derive a total harvesting function
for each age class by each representative agent. Note that in this model, agents do
not aim at preserving the resource for future generations, as they are not enforced
by an authority to do so. In fact from the point of view of intergenerational altruism,
we can say that all agents are non cooperators. In any case this kind of model is
interesting, since it can shed some light on the dynamics of unregulated harvesting
and provide hints on the type of control that a regulator can pose to enable resource
conservation.

Although we formulate the game theoretical model with m exploitable age
classes, we consider its dynamic version for the case of a fishery where a single
species is subdivided into two exploitable stages (young and mature). In this way,
we keep the model tractable still capturing its main features. Moreover the biolog-
ical model without harvesting (proposed in Gao and Chen (2005)) has the simplest
asymptotic behavior, namely convergence to a globally stable fixed point, which can
correspond to extinction of the species or to the natural carrying capacity, accord-
ing to the parameter values. Consequently the complex dynamic we find is entirely
induced by human harvesting.

All in all we consider three main cases for the discrete time dynamical systems
at hand, i.e., the exclusive harvesting of young individuals, mature ones and the
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complete model with harvesting from both stages. Since, in general, landed resource
from different stages can be sold in different markets, those goods are sold in two
(independent) markets in the complete model. For each case we carry out sepa-
rate analysis, first studying the existence of positive equilibria and then exploring,
mainly numerically, their local stability and asymptotic behavior. In order to answer
questions related to the crisis of extinction, we use a global dynamic approach based
on numerical and geometric methods to analyze the topological structure of the set
of initial conditions which generate acceptable or feasible time path. We believe that
an important parameter in this model is represented by the fraction of cooperators � ,
which can be increased by an authority whenever conservative consciousness of
exploiters is developed. Therefore we mainly focus on the impact of this parameter
on the long-run dynamic of the biomass.

The paper is organized as follows. In Sect. 2, a game-theoretical model with
multi-agents is outlined, leading to the formulation of a total harvest function. In
Sect. 3 the dynamical model of resource exploitation is derived, under different
assumptions on the harvested stage. In Sect. 4 existence of positive equilibria and
their local stability are studied. Section 5 focuses on some global dynamic issues,
mainly studying the impact of the cooperative rate on the structure of the feasible
set. Section 6 concludes.

2 The Game-Theoretical Model

Let us assume that n players can harvest in a fishery subdivided in m age classes.
The landing from each age class is sold in a different market, as it has, in general,
its own economic value. The inverse demand function of harvested stock for the j th
market, j D 1; : : : ; m is given by

pj D aj � bjHj ; Hj D
nX

iD1

hi;j ; (1)

with maximal price and marginal demand given respectively by aj ; bj > 0. Total
harvesting in the j -th age class is denoted by Hj .t/ and so hi;j .t/ D xj .t/qi;j ei;j

is the amount of resource in age class j harvested by agent i at time period t . We
assume that individual harvesting for age class j is proportional to the resource
stock level in the class, a specific catchability coefficient (related to the adopted
technology) and the exerted harvesting effort, denoted respectively by xj .t/, qi;j ;

ei;j . On the cost side we assume that each player’s harvesting cost depends on the
harvesting effort. In the easiest case, namely the linear one, the cost function of
player i is given by

Ci D Ci .e1; : : : ; em/ D
0
@ mX

j D1

ci;j ei;j

1
A � cf

i ; (2)
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where cf
i is a fixed cost and ci > 0 represents a variable cost or a technological

parameter.
As we assume that the technology levels are fixed, the only decision variable is

given by the harvesting effort to exert for each age class. Moreover we assume that
n� agents act as one player, so forming a cooperative venture. Consequently they
try to maximize the overall profit of coalition (here 0 � � � 1 is the fraction of
agents with cooperative attitude toward exploitation); the remaining .1��/n agents
behave as selfish profit maximizers.

Let hc
i;j and hd

v;j represent the quantities harvested (and sold) on market j by
cooperators i; i D 1; 2; �; n� , and defectors v; v D 1; 2; � � � ; .1 � �/n respectively.
Total harvest (and supply) on market j is Hj D H c

j C Hd
j D

Pn�
iD1 h

c
i;j CPn.1��/

iD1 hd
i;j . Therefore, the expected profit of i th cooperator and defectors are


T
i D

mX
j D1

hT
i;j

�
aj�bjHj

��CiD
mX

j D1

hT
i;j

2
4aj�bj

0
@ n�X

iD1

hT
i;j C

n.1��/X
iD1

hT
i;j

1
A
3
5�Ci ;

(3)
where T 2 fc; d g denotes the type of the agent (cooperator or defector) and

Ci is given in (2). Consequently each agent decides how much effort ei;j to exert
for each subclass j , by solving m optimization problems. Formally there are m
first order conditions for each agent, but if we construct the model in this way,
it is straightforward to observe that this maximization problem is equivalent to m

distinct maximization problems (one for each age class), because it is @2�i

@ei;pei;q
D 0

for classes p ¤ q.
The defectors solve the optimization problem max ed

i;j

d

i , which leads, assuming

interior optimum, to the following m FOCs

@
d
i

@ed
i;j

D .aj � bjHj /q
d
i;jxj � bj q

d
i;jxjh

d
i;j � cd

i;j D 0; j D 1; : : : ; m: (4)

Instead, each cooperator determines ec
i;j by solving the optimization problem

max ec
i;j

 , where 
 D Pn�

iD1 

c
i denotes the total profit of the cooperative ven-

ture. Assuming interior optimum also in this optimization problem, the first order
conditions are

@


@ec
i;j

D .aj � bjHj /q
c
i;jxj � bj q

c
i;jxjH

c
j � cc

i;j D 0; j D 1; : : : ; m: (5)

By employing conditions (4) or (5), each agent decides her harvesting activity
according to the corresponding Nash equilibrium level, as proposed in Sethi and
Somanathan (1996).
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Dividing equation (4) by qd
i;jxj and then adding it for all i , we have

n.1 � �/.aj � bjHj / � bjH
d
j �

n.1��/X
iD1

cd
i;j

qd
i;j

1

xj

D 0: (6)

Adding equation (5) for all i and then dividing it by .
Pn�

iD1 q
c
i;j /xj , it results

.aj � bjHj / � bjH
c
j �

Pn�
iD1 c

c
i;jPn�

iD1 q
c
i;j

1

xj

D 0: (7)

Adding equation (6) and (7), we obtain the total harvesting function for age class j
as

Hj .xj / D 1

.nC 2 � n�/bj

2
4.nC1 � n�/aj �

0
@n.1��/X

iD1

cd
i;j

qd
i;j

C
Pn�

iD1 c
c
i;jPn�

iD1 q
c
i;j

1
A 1

xj

3
5 ;
(8)

which is meaningful provided that xj > Hj .xj / � 0: As conditions ensuring
meaningful harvesting are not obvious in the general case, we discuss them in the
next section, under the same assumptions on agents’ homogeneity carried out for
the dynamic model.

3 Dynamic of the Stage-Structured Single Species
with Harvesting

To reduce the dimension of the dynamical system to a bidimensional one, we con-
sider only two age classes. Without harvesting, the single-species population model
with two stages can be expressed by the following biological growth law (see Gao
and Chen (2005); Tang and Chen (2002)):

� Px.t/ D re�N.t/y.t/ � d1x.t/ � ıx.t/;
Py.t/ D ıx.t/ � d2y.t/;

(9)

where x and y are the population densities of immature and mature, respectively.
N.t/ D x.t/C y.t/, re�N.t/ is the birth rate of mature population, d1 > 0; d2 > 0

are the death rate constant of immature and mature respectively, and r > d1 C d2.
The maturity rate ı > 0 determines the mean length of the juvenile period.

According to (9), we can investigate the corresponding discrete population
model: �

xnC1 D re�Nnyn C .1 � d1 � ı/xn

ynC1 D ıxn C .1 � d2/yn
n 2 N; (10)



60 E.-G. Gu and F. Lamantia

whereNn D xnCyn, N denotes the set of non-negative integers. Let ˛ D 1�d1�
ı; � D 1 � d2. For ecological reasons, we assume that 0 < ˛ < 1 so that we have
0 < ı < 1; 0 < � < 1; 0 < ˛ C ı < 1. System (10) yields

�
xnC1 D re�Nnyn C ˛xn

ynC1 D ıxn C �yn
n 2 N: (11)

Clearly, E0 D .0; 0/ is the trivial equilibrium of system (11), corresponding to the
extinction of the species. There exists also a unique positive equilibrium

E� D
�

1 � �
ı C 1 � �ln

rı

.1 � ı/.1 � �/;
ı

ı C 1 � �ln
rı

.1 � ı/.1 � �/
�
; (12)

provided that R0 D rı
.1�ı/.1�	/

> 1, which can be referred to as a natural carrying
capacity equilibrium.

For the local and global stability of equilibriaE0 andE�, we recall the following
theorems (see Gao and Chen (2005)):

Theorem 1. E0 is locally asymptotically stable if R0 < 1, and unstable if R0 > 1;
E� is locally asymptotically stable if R0 > 1.

Theorem 2. E0 is globally asymptotically stable if R0 < 1; E� is globally
asymptotically stable if R0 > 1.

As remarked in Gao and Chen (2005), R0 D rı
.1�ı/.1�	/

is the intrinsic net
reproductive number, or net reproductive rate. From theorem (2), if R0 > 1, then
the positive equilibrium E� exists and is globally asymptotically stable, so that,
on average, individuals replace themselves before they die, leaving constant the
unharvested population.

Now we introduce harvesting, as in the game theoretic framework described in
the previous section. The dynamics of harvested stock can be represented by the
two-dimensional system:

�
xnC1 D re�Nnyn C ˛xn �‚1H1.xn/

ynC1 D ıxn C �yn �‚2H2.yn/
n 2 N; (13)

where ‚1; ‚2 are two binary variables taking on the values f0; 1g. The reason to
introduce variables‚i is that of modelling the protection of a given age class by the
government so that if ‚i D 0 then no fishing from class i is allowed. Moreover we
can study (at least numerically) what happens where‚1 D 1 and ‚2 D 1.

Denoting by Aj D Œn.1 � �/C 1� aj ; Bj D Œn.1 � �/C 2� bj ; ˇj DPn.1��/
iD1

cd
i;j

qd
i;j

C
Pn�

iD1
cc

i;jPn�

iD1
qc

i;j

, j D 1; : : : ; m, then we have

Hj .xj / D Aj

Bj

� ˇj

Bj xj

; (14)
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which is nonnegative if xj � ˇj

Aj
. However, it is important to remark that the pro-

posed total harvesting function is meaningful provided that xj > Hj .xj / � 0:

When Bj >
A2

j

4ˇj
then condition xj > Hj .xj / holds true, and so harvesting is

meaningful whenever xj � ˇj

Aj
: On the other hand when Bj � A2

j

4ˇj
; then it is easy

to show that a sufficient condition for xj > Hj .xj / is that the biomass in age class

j is above a survival threshold, namely xj >
1
2

�
Aj

Bj
C
r

A2
j

�4Bj ˇj

B2
j

�
, which also

implies nonnegative harvesting. For these reasons we will assume, also in numerical

simulations, that Hj .x/ D min
h
x;max

h
0;

Aj

Bj
� ˇj

Bj x

ii
:

To simplify the notation, we set henceforth .xn; yn/ D .x; y/, and we denote by
0

the unit-time advancement operator.
Note that for ‚1 D 1 and ‚2 D 0, i.e., when only immature stock is harvested,

the two-dimensional dynamical systems in (13) can be represented as iterated point
mapping1

T1 W
�
x

0 D rye�.xCy/ C ˛x �H1.x/;

y
0 D ıx C �y; (15)

whereas for‚1 D 0 and ‚2 D 1 the system in (13) becomes

T2 W
�
x

0 D rye�.xCy/ C ˛x;
y

0 D ıx C �y �H2.y/:
(16)

Finally for ‚1 D 1 and ‚2 D 1 we have the dynamics of a species where no
fishing limitation at all is imposed by the government, i.e.,

T3 W
�
x

0 D rye�.xCy/ C ˛x �H1.x/;

y
0 D ıx C �y �H2.y/:

(17)

For simplicity from now on, we assume that all agents of the same type T 2
fc; d g (cooperators or defectors) are homogeneous, i.e., cT

i D C T ; qT
i D qT ,

hT
i;j D hT

j , eT
i;j D eT

j , so that we can also write ˇ D n.1 � �/C d

qd C C c

qc .
Under these assumptions, by (3) and (14), profits of a representative agent of type

T 2 fc; d g from harvesting xj from stage j can be written as


T
j D

hT
j

n.1 � �/C 2
	
aj C ˇj

xj



�
�
C T eT

j C cf
�
; (18)

which are positive for all xj , provided that the coefficients in the cost function are
sufficiently low.

1 When only one age class is harvested, we suppress the subscripts in A, B , ˇ, as no confusion
arises.
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An interesting characterization can be given in particular, when all agents (coop-
erators and defectors) are homogeneous, i.e., if qc D qd D q and C c D C d D C .

In this case condition xj >
ˇj

Aj
(ensuring nonnegative harvesting) reduces to

xj >
C

aj q
: From homogeneity within groups of agents and from (8), we have that

@Hj

@�
D n

h
2C d �qd

�
C c

qc Caj xj

�i
bqd xj .2Cn.1��//2 < 0 if and only if xj >

2qc C d �qd C c

aj qc qd : Again, when

cooperators and non-cooperators are homogeneous this last condition reduces to
xj >

C
aj q

, which coincides with the condition on non-negativity of harvesting. To
Conclude, agent homogeneity is sufficient to ensure that as the cooperative level
� is increased a lower total harvesting for age class j is achieved. This point is
particularly important, since more cooperation among agents is equivalent to lower
harvesting in each stage class.

4 Fixed Points and Local Stability

We begin our analysis on equilibria in the benchmark cases (15) and (16) where only
one age class is exploited. Then we briefly consider the general case of harvesting
in both stages (17). As we showed earlier, when biomass level in a given age class
is too low, no harvesting takes place so that the model reduces to the one considered
in Gao and Chen (2005), whose equilibrium analysis has been previously outlined.
Hence, for the analysis of the three main cases (15), (16), and (17), the harvesting
function is taken as in (14), i.e., without constraints, unless otherwise stated.

4.1 Exclusive Harvesting of Infant Population

Let us consider the case of exclusive harvesting of infant population. The positive
steady state E. Nx; Ny/ of the system (15) satisfies the following equation:

1 � ˛ C A

Bx
� ˇ

Bx2
D rı

1 � � exp

�
�1C ı � �

1 � � x

�
: (19)

Condition (19) says that the fixed point coordinate Nx is determined from the inter-
section points of an exponential function,  .x/ D rı

1�	
exp

� � 1Cı�	
1�	

x
�

with the

function �.x/ D 1� ˛C A
Bx
� ˇ

Bx2 . Clearly, the function  .x/ is strictly decreas-

ing and convex, with  .0/ D rı
1�	

> 0 and asymptotic to the horizontal axis

(limx!C1  .x/ D 0). On the other hand, the function �.x/ is unimodal, being

�
0

.x/ D 2ˇ�Ax

Bx3 , �
0

.x/ > 0 if 0 < x < 2ˇ
A

and �
0

.x/ < 0 if x > 2ˇ
A

, and with

limx!0C �.x/ D �1 and limx!C1 �.x/ D 1 � ˛ > 0. Notice that �.bx/ D 0 at

bx D �AC
p

A2C4Bˇ.1�˛/

2B.1�˛/
> 0. From the geometric properties of  .x/ and �.x/, it
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(a) (b)

y(x)

y(x)
f(x)

f(x)

Fig. 1 Sketches of the existence of the positive equilibrium for the system (15). Parameters are
given as r D 20; ˛ D 0:7; � D 0:6; a D 3; b D 1:5; n D 100; C c D Cd D 0:1; qc D qd D
0:75; � D 1. (a) ı D 0:2 W a unique equilibrium .x; y/ exists; (b) ı D 0:1 W three equilibria with
coordinates x1; x2; x3 exist

follows that system (15) has at least one positive steady state E D . Nx; Ny/ with coor-
dinates Nx and Ny satisfying Nx > bx and Ny > ıbx

1�	
respectively (see Fig. 1a), provided

that if B > A2

4ˇ
then Nx � ˇ

A
, or if B � A2

4ˇ
then Nx > 1

2

�
A
B
C
q

A2�4Bˇ

B2

�
so that

harvesting at equilibrium is meaningful, as explained at the end of Sect. 3. Moreover
multiple equilibria can be obtained (see Fig. 1b). In this case for the positive equilib-
riumE D . Nx; Ny/ it must also be that Nx < 2ˇ

A
and Ny < 2ˇı

A.1�	/
: Sufficient conditions

for uniqueness of the positive equilibrium can be stated. For instance, it is easy to
verify that condition rı

.1�	/.1�˛/
< 1 ensures that only one equilibrium exists. Con-

dition  .0/ � �
�

2ˇ
A

�
, i.e., rı�.1�˛/.1�	/

1�	
< A2

4Bˇ
, ensures the uniqueness of a

positive equilibrium E D . Nx; Ny/ such thatbx < Nx < 2ˇ
A

and ıbx
1�	

< Ny < 2ıˇ
A.1�	/

:

In general, the stability conditions of the positive fixed points can not be analyt-
ically given, as the analytical expression of positive fixed points can not be gained
and conditions on trace and determinants of the Jacobian matrix are quite involving.
To give some insights on the stability of equilibria, we rely on numerical analysis,
in particular to the so-called bifurcation diagrams, showing the possible long-term
values (equilibria/fixed points, periodic or chaotic orbits) of the system as a function
of one or two bifurcation parameters. As propensity to cooperate can be increased
by improving the conservative consciousness of exploiters, we mainly focus on the
impact of parameter � on biomass for each age class.

To begin with, let us consider a situation with n D 100 agents, whose catchability
coefficients and marginal costs are equal, disregarding the fact that they cooperators
and defectors. We set C c D C d D 0:5; qc D qd D 0:75 and we assume that the
landed resource (only infant population in this case) is sold in a market with maxi-
mum price a1 D a D 3 and marginal demand b1 D b D 1:5:Biological parameters,
following Gao and Chen (2005), are given by ˛ D 0:7; ı D 0:2; � D 0:6, and
r D 60. Moreover we considered the initial conditions (i.c.) x0 D y0 D 5. As the
net reproductive rate in this case is R0 D 37:5 , we know that, without harvest-
ing, the system converges asymptotically to the carrying capacity equilibrium E�



64 E.-G. Gu and F. Lamantia

Fig. 2 Bifurcation diagrams of the system (15), with i.c. x0 D y0 D 5I n D 100 ; Cc D Cd D
0:5I qc D qd D 0:75; a D 3I b D 1:5I ˛ D 0:7I ı D 0:2I � D 0:6I r D 60I � 2 Œ0; 1�

given in (12). With harvesting it is possible to show, at least numerically, that for
any � 2 Œ0; 1� a unique steady state exists.

As we showed earlier, in this case total harvesting is a decreasing function of
the rate of cooperators � , so we are interested in understanding how a change in
the “propensity to cooperate” parameter � influences the long run behavior of the
system. In Fig. 2a, b two bifurcation diagrams for the state variables x and y are
presented with bifurcation parameter � 2 Œ0; 1�. It is interesting to observe that
when all agents are cooperators (� D 1) the system still converges in the long run
to an equilibrium point. However, as long as a very small amount of agents begins
to defect, i.e., � < 1, then the steady state looses stability through a flip bifurcation.
For low values of � , a two pieces chaotic attractor exists, which vanishes through a
sequence of period halving bifurcations as � is increased to the value � D 1. Many
other numerical experiments confirm the complex dynamic arising when only the
infant population is exploited and � < 1.

However, the fact that all agents are cooperators does not necessarily implies that
the system converges to a fixed point. In fact another source of instability for this
model is a decreasing marginal demand b. Let us consider again the parameters
as in Fig. 2, with � 2 Œ0; 1� and let us take the marginal demand b 2 Œ1:1; 3�.
The corresponding double parameters bifurcation diagram, depicted in Fig. 3 clearly
shows the typical period doubling route to chaos, obtained by decreasing � and/or
b (see white area). Indeed for this parameter constellation, it is always possible, for
any level of � , that a stable fixed point flip bifurcates to a chaotic attractor as long
as marginal demand b is reduced, or equivalently as long as the demand curve gets
more inelastic, being the elasticity Ed D �1 C a

bq
. This result is similar to the

one obtained in Onozaki, Sieg, and Yokoo (2000). We incidentally observe that for
essential goods, like food, price elasticity is usually low, so that complex behavior
is reasonable for the model at hand.
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Fig. 3 Two-parameters bifurcation diagram for b 2 Œ1:1; 3� and � 2 Œ0; 1� and other parameters
as in Fig. 2

We end this section by showing a last bifurcation diagram, with all parameters
as in Fig. 2, but n D 50 and r D 2000. Also in this case the unique equilibrium
(12) is stable when no harvesting takes place. When all agents cooperate (� D 1),
a generic trajectory is attracted by a stable 8, that flip bifurcates to higher order
cycles and a one piece chaotic attractor as soon as we decrease � . It is interest-
ing to observe the existence of a window with a three pieces chaotic attractor for
0:8566 � � � 0:8801 with a sudden jump in biomass of both age classes and a
window with a period five cycle for 0:8127 � � � 0:8177 (see Fig. 4). From our
numerical experiments, we can infer that, on average, resource variability for both
age classes is decreasing in �: This last case will be compared with the one obtained
by harvesting only adult population.

4.2 Exclusive Harvesting of Adult Population
and the Complete Case

The positive steady stateE. Nx; Ny/ of the system (16) satisfies the following equation:

.1� ˛/f .y/
y

D r exp.�y � f .y//; (20)
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Fig. 4 Bifurcation diagrams for � 2 Œ0; 1� of the system (15), with n D 50 and r D 2000 and all
other parameters as in Fig. 2

where f .y/ D 1
ı

�
.1 � �/y C A

B
� ˇ

By



. Condition (20) says that the fixed

point coordinate Ny is determined from the intersection points of the function
�.y/ D r exp.�y � f .y// with the function �.y/ D 1�˛

ı

�
.1 � �/ C A

By
� ˇ

By2



.

Clearly, �.y/ is strictly decreasing, convex, and asymptotic to coordinate axes, being
limy!0C �.y/ D C1 and limy!C1 �.y/ D 0. On the other hand �.y/ is again

an unimodal function, with �
0

.y/ D .1�˛/
ı

2ˇ�Ay

By3 , �
0

.y/ > 0 if 0 < y < 2ˇ
A

and �
0

.y/ < 0 if y > 2ˇ
A

, with limy!0C �.y/ D �1 and limy!C1 �.y/ D
.1�˛/.1�	/

ı
. Similarly as the previous case, we observe that �.by/ D 0 at by D

�AC
p

A2C4Bˇ.1�	/

2B.1�	/
> 0. Therefore, we can state the existence for system (16) of

one positive steady stateE. Nx; Ny/with coordinate Ny satisfyingby < Ny and Nx D f . Ny/.
Also in this case we can numerically verify the multiple equilibria can be obtained.

Again it is not possible to give here analytical stability conditions for the gen-
eral case. Therefore we explore numerically the behavior of model (16) as main
parameters are changed.

Let us reconsider parameters as in Fig. 4 but now for the model (16) where only
adult population is exploited. This case is represented in Fig. 5, where, similarly
to the case in the previous section, on average variability is decreasing in � and
periodic windows with low period cycles exist. For � 2 .e�; 1�, with e� � 0:84382,
the only attractor of the model is a stable two-cycle. This stable two-cycle undergoes
a (supercritical) Neimark–Sacker (NS) bifurcation at � D e� , through which a two-
piece quasi periodic attractor becomes stable. Chaotic attractors are then created by
sequences of flip bifurcations as � is further reduced. In our numerical experiments,
we did not observe NS bifurcations for the model of exclusive harvesting of infant
population (15), so we conjecture that this is a typical feature of harvesting of the
adult stage only.
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Fig. 5 Bifurcation diagrams for � 2 Œ0; 1� of the system (16), with all parameters as in Fig. 4

Now we consider a case with heterogeneity between cooperators and defectors.
As cooperative behavior could be regarded as a virtuous one, it can be either the
case that defectors are punished by the government (for instance by imposing taxes
on their catches) or that cooperators activity is less controlled by the authority. As a
consequence, harvesting by cooperators can be cheaper and/or more effective, i.e.,
respectively C c < C d and/or qc > qd . We investigate such a case with n D 10

agents who harvest only adult fish population, with C c D 0:1; C d D 0:5, qc D 0:3,
and qd D 0:2. Market demand (for the adult population) is specified by a2 D a D 3;
b2 D b D 1:5. Biological parameters given by r D 5; ˛ D 0:2; ı D 0:6, and
� D 0:9: A unique positive fixed point E. Nx; Ny/ exists for all � and it is stable
for all � 2 Œ0; �c �, where �c D 0:9485. As the value of the cooperative rate �
crosses the bifurcation value �c , the positive fixed point E. Nx; Ny/ loses its stability
through a flip bifurcation (see Fig. 6a, b). Further cascades of flip bifurcations lead
to a chaotic attractor as the cooperative rate � is further increased. For values of
� near its maximum level 1, diverging trajectories are obtained, as described in
the next section. This result is the opposite of the one obtained when cooperators
and defectors are homogeneous, in the sense that in this case the increment of the
cooperative rate � has a destabilizing role for the fixed point.

Now we briefly consider the case when both age-classes can be harvested. The
corresponding dynamical system is given in (17). To analyze equilibria, we begin by
considering the system (17) with Hj .:/ defined as in (14), so that a positive steady
state E. Nx; Ny/ of the system (17) satisfies the following equation:

A1

yB1

� ˇ1

B1yf .y/
C .1 � ˛/ f .y/

y
D r exp .�y � f .y// (21)
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Fig. 6 From a simple attractor to chaos with agents’ heterogeneity. Parameters are given as n D
10; Cc D 0:1I Cd D 0:5I qc D 0:3I qd D 0:2; a D 3I b D 1:5I ˛ D 0:2I ı D 0:6I � D 0:9I
r D 5I i.c. x0 D y0 D 5: (a) � 2 Œ0; 1�; (b) zoom in with � 2 Œ0:9; 1�

where f .y/ D 1
ı

�
y.1 � �/C A2

B2
� ˇ2

B2y

�
has already been studied in the previ-

ous paragraph. So the fixed point is an intersection between the strictly decreasing
exponential function �.y/, already considered in the previous paragraph , with the
function �.y/ D A1

yB1
� ˇ1

B1yf .y/
C .1 � ˛/ f .y/

y
. In this case, we have again that

limy!0C �.y/ D �1 and limy!C1 �.y/ D .1�˛/.1�	/
ı

, but now there also

exists a unique real number by D �A2C
p

.A2/2C4B2ˇ2.1�	/

2B2.1�	/
> 0 such that the

line y D by is a vertical asymptote for �.y/, with limy!by� �.y/ D C1 and
limy!byC �.y/ D �1. Also considering the constraints on harvesting, we have that
the dynamical system (17) has at least two equilibria

�
x�

1 ; y
�
1

�
and

�
x�

2 ; y
�
2

�
, with

y�
1 < by < y�

2 and x�
1 < f .by/ < x�

2 provided that at the lower equilibrium levels
x�

1 and y�
1 ; biomass at each stage is above the threshold specified in (3). Depending

on parameters, other cases can be treated similarly.
As for the previous cases, also here it is necessary to rely on numerical sim-

ulations. However we do not present new figures, as the dynamical scenarios are
similar to the ones previously described. In particular we remark that for low levels
of reproductive capacity r , the generic trajectory of system (17) diverges to minus
infinity as long as harvesting takes place. In this case harvesting will so deplete the
resource that it becomes extinct in finite time.

5 Some Insights on Global Dynamics

In this section, we use a global dynamic approach based on numerical methods
to analyze the topological structure of the set of initial conditions which generate
acceptable or feasible time path. Following Gu (2007), we shall refer to the set of
points leading to a whole trajectory contained in R2C D f.x; y/jx � 0; y � 0g as
the feasible set.
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In the numerical examples described in this section, we reconsider the case of
agents’ heterogeneity depicted in Fig. 6, i.e., biological parameters are given as r D
5; ˛ D 0:2; ı D 0:6; and � D 0:9, players’ parameters as n D 10; C c D 0:1;

C d D 0:5; qc D 0:3; and qd D 0:2 and market’s parameters as a D 3 and b D 1:5.
As we remarked in the previous section, in this case defectors bear higher costs for
their activity, for instance because the government wants to punish them for their
attitude.

We focus on the impact of changes in the cooperative ratio on the extent of the
feasible set. The influence of changes in the cooperative rate is of significant interest
to policy makers, since the cooperative rate can be increased by developing the
conservative consciousness of exploiters. Furthermore, we shall also investigate the
influence of changes in the cooperative rate on the structure of attractors (stable
equilibrium or cycles).

We first investigate the benchmark case (16), i.e., only mature biomass is har-
vested. Intuitively speaking, the high cooperative rate should prevent overexploita-
tion and lead to more conservation of biomass. However, apparently counterintuitive
results are possible when only adult population is harvested. This can be explained
by the assumed agents’ asymmetry, which advantages the cooperative attitude. Let
us consider the cases in Fig. 7, where the phase space is depicted for different levels

Fig. 7 The feasible sets for the system (16) with parameters r D 5; ˛ D 0:2; ı D 0:6: � D 0:9;

a D 3; b D 1:5; n D 10; C c D 0:1; C d D 0:5; qc D 0:3; qd D 0:2. (a) � D 0:9485; (b)
� D 0:958; (c) � D 0:96; (d) � D 0:986; (e) � D 0:99; (f) � D 0:995
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of � . As the cooperative rate � is increased, the feasible set shrinks. For example,
the feasible set as shown in Fig. 7a, b is first quadrant R2C for � < 0:958. That is,
for a value of � up to a certain level, the steady state (see Fig. 7a) and, after the flip
bifurcation (at �c D 0:9485 as described in the previous section), the two-cycle (see
Fig. 7b) and higher order cycles (see the 10-cycle in Fig. 7e) are global attractors
in R2C. As � reaches the value �d D 0:958, one cyan tongue, which characterizes
extinction of the species in finite time, appears in the first quadrant and its size
increases as � is increased from 0:96 to 0:995 (see Fig. 7c–f). In this case, the fea-
sible set for � > 0:958 is obtained by subtracting from the first quadrant R2C one
tongue, which represents the basin of attraction of diverging trajectories. Moreover
chaotic attractors arise as the cooperation rate is close to its maximum level [see
Fig. 7f where �e D 0:995].

From this analysis we draw the conclusion that, under particular circumstances,
an increment in the fraction of agents who cooperate can lead to a reduction in
stability, both in the sense of a destabilization of simple attractors (equilibrium or
cycles) with birth of chaotic attractors and shrinking in the basin of attraction of
feasible trajectories. In fact, the shrinking of the feasible set may cause higher prob-
ability of extinction. Moreover, despite a seemingly large feasible set [see again
Fig. 7f], the boundary of the chaotic attractor is quite close to the boundary of its
basin of attraction (white region). In this case, small perturbations in the biomass
(e.g., an external event of modest proportions happens) might lead to the extinc-
tion of the species in finite time. So, although this dynamic is feasible over time, a
small displacement of its trajectory could lead to extinction of the species. As shown
in Fig. 7, in this example as the parameter � is increased, the attractor changes
from a steady state to a cycle to chaotic oscillation and also its basin of attrac-
tion acquires a more complex structure, with the appearing of tongues of the basin
of diverging trajectories. However we remark that, in general, the complexity of
the attractor and of its basin are uncorrelated phenomena in discrete dynamical
systems.

As it is visible in Fig. 7f, the chaotic attractor is near the tongue of the unfeasible
set, so that when � is further increased, a contact between them occurs and a global
bifurcation called final bifurcation (or boundary crisis) happens. After this contact,
the disappearance of the chaotic attractor takes place so that a generic trajectory
is unfeasible, i.e., extinction of the species in finite time occurs. We recall that the
global bifurcations causing qualitative changes on the structure of the feasible set
can be explained by using the concept of critical curves for a non-invertible (many
to one) map (Mira, Gardini, Barugola, & Cathala, 1996).

For the same parameters but under the assumption that only infant popula-
tion is harvested, we found from numerical experiments that for all � 2 Œ0; 1�,
any trajectory starting in R2C exits this set after a finite number of iterations. So
the feasible set is always an empty set. Under this parameter constellation, har-
vesting the infant population leads to the extinction of the species, whereas the
harvesting of adult population results sustainable for most levels of � . In fact, for
values of � before the boundary crisis, the population might fluctuate, but never
becomes extinct as long as the initial fish stock is in the feasible set (see again
Fig. 7).
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6 Conclusions

Many researchers have studied the exploitability of common resources based on
game theoretical models. Most of them assume that all agents maximize their indi-
vidual profit competing for common resource or maximize their whole profit, i.e.,
they act as one agent. However, in the real world, agents may have different level of
consciousness for protecting the resource, and thus they may take different lines of
action. Furthermore, the underlying dynamical model is often based on exploitation
of a single species with no age structure. However, many species may have different
economic value in different ages, so that it is important to explicitly consider this
point.

In this paper, we have formulated a dynamical model assuming harvesting of dif-
ferent stages and multi-agent exploiters (cooperators and defectors). For this model
we have analyzed the existence and stability of positive equilibria, which character-
ize the sustainable use of the renewable resource, under different exploitable stages.
The underlying biological model without harvesting, proposed in Gao and Chen
(2005), has the simplest asymptotic behavior, i.e., convergence to a carrying capac-
ity. By contrast, we found a rich dynamic behavior as soon as harvesting takes place.
In particular, when all agents have the same economic parameters, then the more
they compete, the higher harvesting takes place. As a consequence the dynamic
complexity increases as soon as more agents defect, with a destabilizing influence
on sustainability of resource exploitation. Similar results are obtained by reducing
the demand elasticity of biomass.

We have also analyzed cases with agent heterogeneity. In particular we have
considered a situation in which defectors are punished for their behavior (e.g., they
are more heavily taxed or controlled by the authority). As a consequence the system
can be destabilized if many cooperators are present. For this example we carried out
a global study of the model showing a possible route to the extinction of the species
through a so called final bifurcation. Under these conditions, harvesting the infant
population should be forbidden, as it always leads to the extinction of population in
finite time.
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International Environmental Agreement:
A Dynamical Model of Emissions Reduction

Marta Elena Biancardi

1 Introduction

Over the last two decades, the interest in international environmental problems such
as climate change, ozone depletion, marine pollution has grown immensely and it
has driven an increased sense of interdependence between countries.

Cooperation among different countries appears necessary and this results in Inter-
national Environmental Agreements (IEA) such as Helsinky and Olso Protocol
signed in 1985 and 1994; Montreal Protocol on the reduction of CFCs that deplete
the ozone layer, signed in 1987; Kyoto Protocol, on the reduction of greenhouse
gases causing global warming, signed in 1997. In these IEAs, the number of signa-
tories varies considerably and this justifies the increasing interest of many authors
to explain why IEAs are ratified only by a fraction of the potential signatories and
to suggest strategies to increase their number.

Economists have emphasized two important aspects: agreements must be prof-
itable (there must be gains to all signatory countries), agreements must be self-
enforcing (in the absence of any international authority, there must be incentives for
countries to join and to remain in an agreement). So, the participation of countries in
an international agreement, to improve the quality of the environment, is a complex
question for different reasons. First, countries are sovereign and their participation
to IEA is voluntary, there is no supra national authority that forces countries to par-
ticipate to an agreement, as well as there is no international environmental judicial
system powerful enough to guarantee compliance to an IEA. Second, each country
may have an incentive to free-ride, in fact while the costs for reducing emissions are
carried out exclusively by the country that is taking action, the benefits of a reduc-
tion in emissions are shared by all countries, so that each country has the incentive
to wait for the others to reduce their emissions.

Literature has focused on IEA’s stability concepts in order to obtain some con-
clusions on the size that can be expected and to explain why some IEAs are large
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and others are not. Stable IEA means that no individual signatory country has any
incentive to leave the IEA and no non-signatory country has an incentive to join
the IEA.

Both Cooperative and Non-Cooperative game theory have been used to study
coalition formation.

In the Cooperative Game framework, Chander and Tulkens (1995) define � -core
concept starting from the classical core concept. Basically the coalitional stability
idea behind the � -core assumes that if a single player deviates from the grand coali-
tion, which is the coalition ratified by all potential signatories, this will lead to a
complete disintegration of the coalition so that we end up in the non-cooperative
Nash equilibrium in which all players act as singletons. The authors, using the
above concept and implementing transfers to solve the heterogeneity of the coun-
tries, reach the stability of the grand coalition which represents the full cooperative
solution. This approach supposes the existence of a large number of countries that
are predisposed to sign the agreement, from which the naming “grand coalition”
approach. It leads to an optimistic view on the size of the stable coalition.

In the Non-Cooperative Game framework the concept of Internal and External
stability has been applied to obtain the size of a coalition. The idea is to check for
which size of a coalition an individual country is indifferent either remaining in the
coalition or leaving it. Carraro and Siniscalco (1993), Hoel (1992), de Zeeuw (2008)
show that if signatories act in a Cournot fashion with respect to non-signatories then
the size of a stable coalition is very small. If countries act in a Stackelberg fashion,
where signatories are the leaders and non-signatories are the followers, a stable IEA
can have any number of signatories between two and the grand coalition (see Barrett,
1994; Diamantoudi and Sartzetakis, 2006; Rubio and Ulph, 2006). This approach,
known as the “small coalition” approach, leads to a pessimistic result about the
coalitions which can emerge.

The mechanism of the � -core is too strong, since it assumes that the initial coali-
tion falls apart completely, but the mechanism of internal and external stability is
too weak, since it assumes that only a deviation takes place.

Recent developments in game theory advocate the concept of farsighted stable
coalitions against previous notions of stability which are myopic and don’t reflect
the complexity and foresight of countries’ decisions about agreements.

When an agent contemplates leaving a coalition, it compares the welfare it enjoys
as a member of the coalition with the welfare it will enjoy once it leaves. The agent
implicitly assumes that once it deviates, no one else will want to deviate. But this
is not always the case. In fact, it is possible that another country may wish to leave
the coalition and so on. Thus, the agent must compare the starting situation with the
outcome at the end of the process, after a number of deviations. The final outcome
can be characterized as such only if no more countries wish to leave and no more
countries wish to join.

The concept of farsightedness inspired a series of works in an abstract environ-
ment such as Chwe (1994), in which the Largest Consistent Set captures this notion.
An outcome is stable and it is in the Largest Consistent Set if and only if deviations
from it do not occur because the deviation itself or potential further deviations are
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not unanimously preferred to the original outcome, by the coalition considering the
deviation.

The concept of farsightedness inspired also a series of papers in which this notion
of stability is applied in the context of IEA, such as Diamantoudi and Sartzetakis
(2002), Eyckmans (2001), de Zeeuw (2008).

This literature shows that farsightedness allows both large and small stable coali-
tions and so this concept reconciles the cooperative and non-cooperative approaches.
All papers quoted above study the stability of an IEA in a static context while
dynamic aspects are ignored, but environmental problems and in particular abate-
ments processes, are usually dynamic as well as the evolution of the stock pollutant.
In most models, it is assumed that countries reduce emissions in one step, but it is not
realistic and also not rational. The analysis of the stability of an IEA needs to incor-
porate the dynamic of the stock pollutant and of behavioural reactions of agents. For
these reasons we propose a non-cooperative game theoretic analysis of the IEAs
with a stock pollutant in a dynamic setting. Other authors as, for example, Rubio
and Casino (2005) and de Zeeuw (2008) have applied differential games and opti-
mal control methodologies to analyse environmental problems. In particular, Rubio
and Casino (2005) analyse the internal and the external stability of environmental
agreements in a dynamic framework, when environmental damages are associated
with a stock externality. Coalition formation has been designed as a two stages game
in which, in the first stage each country decides to join or not the coalition and in
the second stage signatories and non signatories play an emissions differential game.
Authors calculate open loop equilibrium and show, by a numerical simulation, that
a bilateral coalition is the unique self enforcing IEA. In de Zeeuw (2008) a model of
abatement is proposed as a difference game, because the state transition is given as a
difference equation. The feedback Nash equilibrium is found and, in order to study
the stability of an IEA, the concept of dynamic farsighted stability is introduced
showing as large and small stable coalitions can occur.

In this paper we propose an optimal control model with the objective to reduce
pollution at the lowest costs. Players determine their abatement levels in a dynamic
setting defined in continuous time. In the absence of cooperation, the abatement
process is slower and has higher costs than in case some countries cooperate. In the
differential game proposed, Open Loop Nash equilibria and Feedback Nash equilib-
ria are calculated in order to determine the optimal paths of the abatement levels and
of the stock pollutant. The results obtained are the same and depend on the param-
eter p which is defined in the cost function and which can be seen as a measure of
the environmental awareness of countries. Stability conditions, such as internal and
external stability or farsighted stability, are applied showing that different answers
about the size of a stable IEA can be obtained.

The paper is organized as follows. In Sect. 2 we describe the model; in Sect. 3
the open loop Nash equilibria of the differential game are calculated and in Sect. 4
the analysis of the stability is proposed. In Sect. 5 Feedback Nash equilibria are
obtained showing that they agree with the ones obtained using open loop strategies.
Some concluding remarks are given in Sect. 6.
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2 The Model

Let us assume that n identical countries decide to abate emissions in order to reduce
the environmental pollution. Initially the accumulated emissions are at a level s0 and
each country i chooses an abatement level, ai .t/, i D 1; 2; : : : ; n, where ai .t/ � 0,
like an investment in green technology or a structural change. The dynamic of
accumulated emissions is given by the following differential equation

Ps.t/ D L �
nX

iD1

ai .t/ � k s.t/ s.0/ D s0: (1)

L represents a constant source of pollutant, resulting from business-as-usual, with-
out environmental concern, it is the baseline emissions, i.e. the level of emissions
when the countries do not abate and it is assumed to be constant over time. In order
to reduce accumulated emissions, abatement has to compensate the constant source
of pollutant and so this implies thatL will affect the abatement levels. k is a positive
rate of pollution decay by natural processes.

Since s.t/ � 0 the following constraint must be satisfied

0 � ai .t/ � L

n
8 i D 1; 2; : : : ; n (2)

so, we suppose, by the symmetry, that a single country is allowed to abate only a
fraction of the emissions produced by itself.

We assume that players minimize a cost function ci .ai .t// which is the sum of
two terms: the abatement costs and the costs due to remaining pollution. It is very
common in literature to consider this kind of cost functions in which the two terms
can be linear or quadratic function. In this model we consider the first term quadratic
and the second one linear. So, the cost function for each country is

ci .ai .t// D 1

2
ai .t/

2 C 1

2
p s.t/: (3)

A major role is played by the parameter p > 0; it can be seen as a measure of the
environmental awareness of countries, i.e. it denotes the relative weight attached to
the damage costs as compared to the abatement costs. By symmetry, p is the same
for every country.

We follow the non-cooperative game theory approach in order to describe the
formation of coalitions because countries, in international negotiations care only
about their self interest and moreover because the predictions coming from the
cooperative game theory, about abatement levels and global costs, do not fulfill. As
most of the literature quoted into introduction, we discuss a class of non-cooperative
games of coalition formation, where all players announce simultaneously and
independently their decision to form coalitions and their abatement levels. This
assumption excludes the possibility that one of the countries has any advantage in
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the game (see Carraro and Siniscalco, 1998). Among the simultaneous games, we
considers open membership games in which any player is free to join or leave a
coalition. Accordingly, players cannot specify in advance the coalition they wish to
form, rather players announce a message and coalitions are formed by all players
who make the same announcement. So, we have a two stages game, in which in the
first stage each country decides whether to join or not the agreement while in the
second stage each country chooses his abatement level.

The game is solved in a backward order. Let us assume that, as the outcome of
the first stage game, there are m signatory countries (i D 1; : : : ; m) and n � m
nonsignatory countries (j D m C 1; : : : ; n). So, we consider a simple structure
in which there is only one coalition while the other countries play as individual
outsiders.

In the second stage, non signatory countries choose their abatement levels act-
ing non-cooperatively in order to minimize the present value of their costs taking
as given the strategy of the other countries; signatory countries choose their abate-
ment levels acting non-cooperatively against nonsignatories in order to minimize
the present value of the aggregate costs of the m signatories. Signatories also take
as given the strategies of nonsignatories. The optimal abatement levels and accu-
mulated emission paths are given by the Nash equilibria of a differential game.
Consequently it is possible to obtain the equilibrium present value of the costs of
a signatory country Ci .m/ and of a nonsignatory country Cj .m/. In the first stage,
countries have the choice between acceding to an IEA or remaining a non signatory.
The Nash equilibria of a game, as the one described above, correspond to internal
and external stability conditions, introduced by D’Aspremont et al. (1983) in the
context of cartel formation and applied by Carraro and Siniscalco (1993) to IEAs.
Internal and External Stability have been proposed for static emission games, but
can be extended to dynamic games.

A coalition of size m is internally stable if no member has an incentive to leave
the coalition because the costs for an outsider in respect to a coalition of size m� 1
are larger than the costs for a member of an m-sized coalition. External stability
means that no country has an incentive to join a coalition of size m because the cost
for a member of a coalition of sizemC1 is higher than for an outsider to a coalition
of size m. We have the following definition:

Definition 1. A coalition of size m is said to be stable if it is internally stable,
i.e. Ci .m/ � Cj .m � 1/ and externally stable, i.e. Ci .m C 1/ � Cj .m/ where
i D 1; : : : ; m and j D mC 1; : : : ; n.

The concept captures the idea of voluntary participation since it can be shown that
if a coalition is internally stable it is also profitable, that is, all participants receive
more than in the status quo. A deeper investigation shows that the internal and
external stability definition is too weak, since this assigns a myopic behaviour to
players assuming that no further deviations take place. Moreover key results of this
stability concept are that the number of signatories falls short of the grand coali-
tion and the equilibrium coalition is usually rather small. For most model, in this
traditional approach, the result about the stability is rather grim but small coalitions
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which are stable can exist. In particular in our model , using the internal and the
external stability, we will see that ifm D 1 we obtain the standard Nash equilibrium
between individual countries which is not externally stable and so no stable. So, it
is quite realistic to start from the situation in which all countries are singleton and
to arrive to the formation of small stable coalitions. In fact, the instability of the
coalition of size one, induces countries to join an agreement and we will reach the
conclusion that coalitions of size 2 and 3 are self-enforcing. In these cases, in fact,
cooperation decreases the costs and so, if there are only two or three signatories in
the agreement they lose leaving the coalition. On the other hand, we also we will
find that nonsignatories cannot gain joining the agreement, so that it is stable.

To overcome all these drawbacks, the concept of farsightedness has been intro-
duced in literature, see, e.g. Chwe (1994). The concept of farsightedness is suffi-
ciently rich to allow for a set of large and small stable coalitions.

A country belonging to a coalition of size m decides to abandon the coalition if
its current cost Ci .m/ is higher than the cost he should pay leaving the coalition.
Nevertheless, by the farsighted approach, he will not simply compare its actual cost
with the outsider cost Cj .m � 1/, but he will take into account the possibility that
if he leaves the coalition then other coalition members may find it convenient to
abandon the coalition, too. So, a disgregation process of the coalition can arise and
then a country which decides to abandon a coalition of size m must compare its
cost as a member of the coalition with the cost that it should pay as an outsider of
the remaining coalition at the end of this disgregation process. If no country has
an incentive to leave a coalition of size m, behaving in a farsighted way, then the
coalition is said to be internally farsighted stable. A similar definition is given for
the external farsighted stability.

The following definition, based upon the concept of the Largest Consistent Set
by Chwe (1994) and proposed by Diamantoudi and Sartzetakis (2002) in order to
study the farsighted coalitional stability, captures the above ideas and it shows that
it is possible to construct a farsighted coalition, step by step, in a recursive way.

We consider a set � which is the collection of all farsighted stable coalitions,
where a coalition is called farsighted stable if it is both internally farsighted and
externally farsighted stable. The construction of � can appear complicated because
of its recursive nature. But this recursivity defines some kind of consistency require-
ment for deviation. The recursivity is resolved assuming that coalitions of size 1
belongs to the set � of farsighted stable coalitions.

Definition 2. A coalition of sizem is internally farsighted stable if a finite sequence
of coalitions of sizem�1; : : : ; m� s, where s 2 1; 2; : : : ; m, such that the coalition
of size m � s is in � and Ci .m � j / > Cj .m � s/ 8j D 0; 1; : : : ; s � 1, doesn’t
exist.

A coalition of size m is externally farsighted stable if a finite sequence of coali-
tions of size mC 1; : : : ; mC s, where s 2 1; 2; : : : ; n �m, such that the coalition
of size mC s is in � and Ci .mC s/ < Cj .mC j / 8j D 0; 1; : : : ; s � 1, doesn’t
exist.
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3 The Open Loop Nash Equilibria of the Differential Game

In order to obtain a self enforcing IEA, we calculate the open loop Nash equilibria
of the abatements differential game. Let us assume that ı > 0 is the discount rate,
assumed common to all countries. Given the abatement levels of outsiders, signato-
ries commit to a level of abatement that minimize the sum of the costs present value
of the countries in the agreement

min
ai

mX
hD1

Z C1

0

e�ıt

�
1

2
ah.t/

2 C 1

2
p s.t/

�
dt (4)

which is equivalent to

max
ai

mX
hD1

Z C1

0

� e�ıt

�
1

2
ah.t/

2 C 1

2
p s.t/

�
dt: (5)

Given the abatement levels of cooperators, nonsignatories commit to a level of
abatement that minimize the discounted present value of the costs which is equiva-
lent to

max
aj

Z C1

0

� e�ıt

�
1

2
aj .t/

2 C 1

2
p s.t/

�
dt: (6)

In both cases, countries face the same dynamics

Ps.t/ D L �
mX

iD1

ai .t/ �
nX

j DmC1

aj .t/ � k s.t/ s.0/ D s0 (7)

with the constraint on the control variables given by (2).
Let us define the current value of the Hamiltonian in the standard way

Hi D �
mX

hD1

�
1

2
a2

h C
1

2
p s

�
C�i

0
@L �

mX
hD1

ah �
nX

j DmC1

aj � ks
1
A ; i D 1; : : : ; m;

Hj D �
�
1

2
a2

j C
1

2
p s

�
C�j

0
@L �

mX
iD1

ai �
nX

j DmC1

aj � ks
1
A ; j D mC 1; : : : ; n;

where �i and �j are the adjoint variables. We obtain the following set of necessary
conditions for an interior open-loop equilibrium

ai D ��i ; i D 1; : : : ; m; (8)

aj D ��j ; j D mC 1; : : : ; n; (9)
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provided these expressions stay within the interval Œ0; L=n�.
Note that the second derivative of H with respect to ai and aj is @2H=@a2 D

�1 < 0, so that (8) and (9) satisfy the second order condition for the maximum of a
function.

The adjoint equations are

P�i D .ı C k/�i C 1

2
mp; i D 1; : : : ; m; (10)

P�j D .ı C k/�j C 1

2
p; j D mC 1; : : : ; n; (11)

and the transversality conditions

lim
t!C1 e�ıt�i D 0; i D 1; : : : ; m; (12)

lim
t!C1 e�ıt�j D 0; j D mC 1; : : : ; n: (13)

Because of the symmetry assumption, the n equations given by (10) and (11) reduce
to two. Solving them and using the transversality conditions (12) and (13) which are
sufficient because the Hamiltonian functions are strictly concave in s, we obtain

�i D � mp

2.ıC k/ and �j D � p

2.ı C k/ :

The constraint on the control variables given by (2), (8) and (9) lead to the following
optimal abatement levels

ai D

8̂
ˆ̂<
ˆ̂̂:

mp

2.ıC k/ if 0 � mp

2.ıC k/ �
L

n
i D 1; : : : ; m;

L

n
if

mp

2.ı C k/ >
L

n
;

for a signatory country;

aj D

8̂
<̂
ˆ̂:

p

2.ıC k/ if 0 � p

2.ıC k/ �
L

n
j D mC 1; : : : ; n;

L

n
if

p

2.ı C k/ >
L

n
;

for a non signatory country.
Note that if 0 � p

2.ıCk/
� L

n
the abatement levels are always higher under coop-

eration otherwise they are the same for cooperators and defectors. In particular, if
0 � mp

2.ıCk/
� L

n
the abatement level ai , due to each member of the coalition is

positively correlated with the size m of the coalition. It means that if the number of
countries that sign the agreement increases then the abatement level increases; a non
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signatory country, instead, considers only its own abatement level which does not
depend on the number of the signatory countries. Both the abatement levels ai and
aj are positively correlated with p and so, if the relative weight of the damage costs
compared with the abatement costs increases, also the abatement levels of signato-
ries and of nonsignatories increase too, confirming that the parameter p is also an
indicator of the environmental awareness of the countries. Moreover ai and aj are
inversely correlated with the natural decay rate k and with the discount rate ı. This
means that if k increases and so, if there is a fast natural decay of the accumulated
emissions, then abatement level decreases, in the same manner if ı increases and
so, if countries don’t give value to the future because they are less farsighted, the
abatement levels decreases, too.

In order to simply the computations and to compare the abatement levels and the
discounted present value of the costs, let

r D 2L.ı C k/
np

a parameter which represents the combined effects of the values assumed byL; ı; k,
of the number of the countries and of the relative weight p.

We have distinguished three different cases, depending on the value of the
parameter r , with regard to the number of cooperatorsm.

Case I

If r � m then

ai D mp

2.ı C k/ i D 1; : : : ; m and aj D p

2.ı C k/ j D mC 1; : : : ; n: (14)

Optimal abatement levels are constant and signatories abate m times more than
nonsignatories, so the abatement levels of nonsignatories are smaller than of sig-
natories. The accumulated emission path is

s.t/ D s0e�kt C 1

k

	
L � m2p

2.ıC k/ �
.n �m/p
2.ı C k/



.1 � e�kt / (15)

which is a positive, increasing and concave function if s0< 1
k

h
L� m2p

2.ıCk/
� .n�m/p

2.ıCk/

i
otherwise it is a decreasing and convex one. Moreover, in both cases, for t ! C1,

s.t/ approaches asymptotically the value 1
k

h
L � m2p

2.ıCk/
� .n�m/p

2.ıCk/

i
, which repre-

sents the steady state value of accumulated emissions for the first case. It is easy to
prove that this value decreases as the number of countries that sign the agreement
increases.

Case II

If 1 � r < m then
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ai D L

n
i D 1; : : : ; m and aj D p

2.ıC k/ j D mC 1; : : : ; nI (16)

Optimal abatement levels are constant but while cooperators stop producing emis-
sions, outsiders abate the same quantity of the first case. The accumulated emissions
path is

s.t/ D s0e�kt C .n �m/
k

	
L

n
� p

2.ı C k/


.1 � e�kt / (17)

which is a positive, increasing and concave function if s0 <
.n�m/

k

h
L
n
� p

2.ıCk/

i
otherwise it is a decreasing and convex one. Moreover, in both cases, for t ! C1,

s.t/ approaches asymptotically the value .n�m/
k

h
L
n
� p

2.ıCk/

i
, which represents the

steady state value of accumulated emissions for the second case. Also here, this
value decreases if the cooperators increase.

Case III

If r < 1 then

ai D L

n
i D 1; : : : ; m and aj D L

n
j D mC 1; : : : ; n: (18)

Optimal abatement levels are constant and both cooperators and defectors stop
producing emissions. In this case the role of a signatory and of a non signatory is
the same. The accumulated emissions path is

s.t/ D s0e�kt (19)

which is a positive, decreasing and convex function and for t ! C1, it approaches
zero.

4 Stability

We want to apply the conditions of myopic and farsighted stability proposed in the
above sections, in order to obtain the size of stable coalitions.

First of all we need to calculate Ci .m/ and Cj .m/; substituting the obtained
optimal control paths of the pollution stock and of the abatement levels in (4) and in
(6), we have the following results.

Case I

If r � m then

Ci .m/ D m2p2

8ı.ıC k/2 C
p

2ı.ıC k/
	
L � m2p

2.ıC k/ �
.n �m/p
2.ıC k/



C ps0

2.ı C k/ ;
(20)
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Cj .m/ D p2

8ı.ıC k/2 C
p

2ı.ıC k/
	
L � m2p

2.ı C k/ �
.n �m/p
2.ı C k/



C ps0

2.ıC k/ :
(21)

Case II

If 1 � r < m then

Ci .m/ D L2

2ın2
C p.n �m/
2ı.ı C k/

	
L

n
� p

2.ı C k/


C ps0

2.ı C k/ ; (22)

Cj .m/ D p2

8ı.ıC k/2 C
p.n �m/
2ı.ı C k/

	
L

n
� p

2.ı C k/


C ps0

2.ı C k/ : (23)

It is very easy to prove that, both in the first and in the second case, the present value
of the costs of a nonsignatory country is lower than the discounted present value of
the costs of a signatory for all m in the interval Œ2; n�, i.e.

Ci .m/ > Cj .m/:

If m > 1 the following inequality is satisfied

Cj .m/ < Cj .1/:

It means that the present value of the costs of the outsiders are also lower then
the present value of the costs in the Nash equilibrium between individual countries
(m D 1). The result will be that the coalition of size one will be instable.

Moreover it is possible to prove that both the discounted present value of the
costs of signatories and the discounted present value of the costs of nonsignatories
decrease if the number of signatories increase. The result will be that signato-
ries always do better withdrawing from the agreement whenever the number of
signatories is higher than 3 and so that a low level of cooperation can be expected.

Case III

If r < 1 then

Ci .m/ D Cj .m/ D L2

2ın2
C ps0

2.ı C k/ : (24)

In this case the costs are the same indifferent if there is participation to a coalition.
Therefore in the following we definitively assume that r � 1 and in our analysis we
consider only the first and the second case.

4.1 Myopic Stability

In order to have the internal stability of a coalition of size m > 1 (it is not possible
to prove the internal stability of a coalition of size m D 1) we need
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Ci .m/ � Cj .m � 1/: (25)

We start supposing that m satisfies the constraint given by the first case, i.e. r � m;
obviously r � m�1 and so Ci and Cj are given respectively by (20) and (21). Then
(25) becomes

m2p2

8ı.ıC k/2 C
p

2ı.ı C k/
	
L � m2p

2.ı C k/ �
.n �m/p
2.ı C k/



C ps0

2.ıC k/

� p2

8ı.ı C k/2 C
p

2ı.ı C k/
	
L � .m � 1/

2p

2.ı C k/ �
.n �mC 1/p
2.ıC k/



C ps0

2.ıC k/ :

Solving the above inequality we have that its solution doesn’t depend on r and it
holds if 1 � m � 3.

If we suppose thatm satisfies the constraint given by the second case, i.e. r < m,
it is necessary to consider two different subcases.

If m � 1 < r then 1 � r < m < r C 1 and Ci and Cj are given respectively by
(22) and (21). Then (25) becomes

L2

2ın2
C p.n �m/
2ı.ıC k/

	
L

n
� p

2.ıC k/


C ps0

2.ıC k/

� p2

8ı.ı C k/2 C
p

2ı.ı C k/
	
L � .m � 1/

2p

2.ı C k/ �
.n �mC 1/p
2.ıC k/



C ps0

2.ıC k/ :

Solving the above inequality we can conclude that the subcase analysed give us
coalitions of size m which are internally stable if 2 � m � 3 and 1 � r � 3;
otherwise, if r > 3 there aren’t coalitions which are internally stable.

The second subcase is obtained considering, again, that m > r but that also
m � 1 > r ; so we have that m > r C 1 > r � 1 and Ci and Cj are given
respectively by (22) and (23). Then (25) becomes

L2

2ın2
C p.n �m/
2ı.ıC k/

	
L

n
� p

2.ıC k/


C ps0

2.ıC k/

� p2

8ı.ıC k/2 C
p.n �mC 1/
2ı.ıC k/

	
L

n
� p

2.ı C k/


C ps0

2.ı C k/ :

Solving the above inequality it is possible to prove that its solution doesn’t depend
on m and it is always true if and only if r D 1. So, we conclude that if r 6D 1 there
aren’t coalitions which are internally stable, if r D 1 then any coalition of size m is
internally stable.

In order to have the external stability of a coalition of size m � 1 we need

Ci .mC 1/ � Cj .m/: (26)
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Ifm D 1, i.e. if we consider the full non-cooperative abatement, the analysis reduces
only to the first case when r � 1, then Ci and Cj are given respectively by (20) and
(21) and (26) becomes Ci .2/ � Cj .1/ which is equivalent to

4p2

8ı.ıC k/2 C
p

2ı.ıC k/
	
L � 4p

2.ıC k/ �
.n � 2/p
2.ı C k/



C ps0

2.ı C k/

� p2

8ı.ıC k/2 C
p

2ı.ıC k/
	
L � p

2.ı C k/ �
.n � 1/p
2.ıC k/



C ps0

2.ıC k/ :

It is never held, so we conclude that the Nash equilibrium between individual
countries is not externally stable and so it is instable.

Now, we suppose that m > 1 satisfies the constraint given by the first case, i.e.
r � m, if also m C 1 � r then Ci and Cj are given respectively by (20) and (21)
and (26) becomes

.mC 1/2p2

8ı.ıC k/2 C
p

2ı.ı C k/
	
L � .mC 1/

2p

2.ıC k/ �
.n �m � 1/p
2.ı C k/



C ps0

2.ıC k/

� p2

8ı.ı C k/2 C
p

2ı.ı C k/
	
L � m2p

2.ı C k/ �
.n �m/p
2.ı C k/



C ps0

2.ı C k/
which holds 8m � 2.

If we suppose thatm satisfies the constraint given by the first case, i.e. r � m but
if mC 1 > r then r � 1 < m � r , so Ci and Cj are given respectively by (22) and
(21) and (26) becomes

L2

2ın2
C p.n �m � 1/

2ı.ıC k/
	
L

n
� p

2.ı C k/


C ps0

2.ı C k/

� p2

8ı.ıC k/2 C
p

2ı.ıC k/
	
L� m2p

2.ıC k/ �
.n�m/p
2.ıC k/



C ps0

2.ı C k/ :

Solving it, we obtain that if 2 �p2 < r < 2Cp2 then coalitions of size m, with
2 � m � 3, are externally stable, instead, if r < 2 � p2 _ r > 2 C p2 then all
coalitions of size m with r � 1 < m < r are externally stable.

If we suppose thatm satisfies the constraint given by the second case, i.e. r < m,
then obviously r < mC 1 and so Ci and Cj are given respectively by (22) and (23)
and (26) becomes

L2

2ın2
C p.n �m � 1/

2ı.ıC k/
	
L

n
� p

2.ı C k/


C ps0

2.ı C k/

� p2

8ı.ı C k/2 C
p.n �m/
2ı.ı C k/

	
L

n
� p

2.ı C k/


C ps0

2.ı C k/
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which doesn’t depend on m and is always true.
Combining internal and external stability we have shown that the requirement of

myopic stability is only satisfied for very small coalitions, in particular, only coali-
tions of size 2 and 3 can be stable, confirming the results obtained in the literature
quoted in Sect. 1.

4.2 Farsighted Stability

We want to determine the size of farsighted stable coalitions. We use a recursive
argument. Let us assume that a farsighted stable coalition of size m � 1 exists and
we start supposing that m satisfies the constraint given by the first case, i.e. r � m.
In order to have the smallest farsighted stable coalition larger than the coalition of
size m, we need to find the smallest integer h such that 1 � h � n �m and

Ci .mC h/ � Cj .m/: (27)

Before studying the conditions for which (27) is satisfied, we have to characterize
the costs of cooperators and of defectors which depend on the relative positions of
mC h and r . In fact, if mC h � r , then Ci and Cj are given, respectively by (20)
and (21); if mC h > r then Ci is given by (22) while Cj by (21), again.
If we suppose that mC h � r , then (27) becomes

.mC h/2p2

8ı.ı C k/2 C
p

2ı.ıC k/
	
L� .mC h/

2p

2.ıC k/ �
.n �m � h/p
2.ıC k/



C ps0

2.ıC k/

� p2

8ı.ı C k/2 C
p

2ı.ı C k/
	
L � m2p

2.ı C k/ �
.n �m/p
2.ı C k/



C ps0

2.ı C k/
which is satisfied if

h � p2m.m� 1/� .m � 1/ ;
that is

mC h �
p
2m.m� 1/C 1:

Let g.m/ defined as the smallest integer greater than or equal to
p
2m.m � 1/C 1,

i.e.
g.m/ D Œp2m.m� 1/C 1�:

If g.m/ � minfŒr�; ng then the size of the smallest farsighted stable coalition larger
than the coalition of size m is g.m/.

If we suppose that mC h > r , then (27) becomes

L2

2ın2
C p.n �m � h/

2ı.ıC k/
	
L

n
� p

2.ı C k/


C ps0

2.ıC k/
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� p2

8ı.ı C k/2 C
p

2ı.ı C k/
	
L � m2p

2.ı C k/ �
.n �m/p
2.ı C k/



C ps0

2.ı C k/
which is satisfied if

h � 1

2
.r C 1/C m.m� r/

r � 1 ;

and so

mC h � 2m2 � 2m � 1C r2

2.r � 1/ 	 �:

Let w.m/ defined as the smallest integer greater than or equal to �, i.e.

w.m/ D Œ�� :

If w.m/ � Œr� C 1 and Œr� C 1 � n then the size of the smallest farsighted stable
coalition larger than the coalition of size m is Œr�C 1.

Now, we suppose that 1 � r < m, then Ci and Cj , in (27), are given by (22) and
(23) and we have

L2

2ın2
C p.n �m � h/

2ı.ıC k/
	
L

n
� p

2.ı C k/


C ps0

2.ıC k/

� p2

8ı.ı C k/2 C
p.n �m/
2ı.ı C k/

	
L

n
� p

2.ı C k/


C ps0

2.ı C k/
which is satisfied if

h � r C 1
2

and so

mC h � mC r C 1
2

:

Let z.m/ defined as the smallest integer greater than or equal to mC r C 1
2

, i.e.

z.m/ D
	
mC r C 1

2




then the size of the smallest farsighted stable coalition larger than the coalition of
size m is z.m/, provided that z.m/ � n.

We propose some numerical examples which show how the size of the farsighted
stable coalitions changes, as the value of p varies.

We fix the following values: n D 100; L D 100; k D 1; ı D 1; s0 D 0.
Let p D 0:01, then the following coalitions are farsighted stable
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m = 2
m = 3
m = 5
m = 8

m = 12
m = 18
m = 26
m = 38
m = 55
m = 79

Let p D 0:1, then the following coalitions are farsighted stable

m = 2
m = 3
m = 5
m = 8

m = 12
m = 18
m = 26
m = 38
m = 41
m = 62
m = 83

Let p D 1, then the coalitions of sizem D 2 andm D 3 are farsighted stable. More-
over any coalition of sizem D 3t � 1 with t D 2; 3; : : : ; 33 is farsighted stable. The
largest farsighted stable coalition is m D 98.
Let p � 4, then any coalition is farsighted stable.

Concluding this section we can say that using the concept of farsighted stability
both large and small coalitions can occur. Moreover we observe that the parame-
ter p has an interesting role in the determination of the size of stable coalitions,
in fact the numerical simulation shows that if p value increases then the size of
coalitions which are farsighted stable increases too. This result underlines how the
greater environmental awareness of countries leads to stable coalitions which have
greater sizes. In this way it is possible to obtain also the stability of the grand
coalition.
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5 Feedback Nash Equilibrium

Open loop strategies imply that each player commits himself to his entire course
of action at the beginning of the game and will not revise it at any subsequent
moment. In this section we abandon this assumption assuming that players use
feedback strategies. A feedback strategy consists of a contingency plan that indi-
cates the optimal value of the control variable for each value of the state variable at
each point in time. It has the property of being subgame perfect, because after each
player’s actions have caused the state of the system to evolve from its initial state to
a new state, the continuation of the game may be regarded as a subgame of the orig-
inal game. We can say that in this case each player has committed to a rule which
yields the optimal value of the control variable in each moment as a function of the
state of the system at that moment. A feedback strategy must satisfy the principle of
optimality of dynamic programming.

The Hamilton–Jacobi–Bellman equation for signatories is

ıVi D max
faig

8<
:�

mX
hD1

�
1

2
a2

h C
1

2
p s

�
C V 0

i

0
@L �

mX
hD1

ah �
nX

j DmC1

aj � ks
1
A
9=
; :
(28)

The Hamilton–Jacobi–Bellman equation for nonsignatories is

ıVj D max
faj g

8<
:�

�
1

2
a2

j C
1

2
p s

�
C V 0

j

0
@L �

mX
iD1

ai �
nX

j DmC1

aj � ks
1
A
9=
; ; (29)

where Vi .s/ and Vj .s/ denote the optimal control value functions of the coalition
and of a nonsignatory associated with the optimization problem (5) and (6), i.e. they
denote the minimum present value of the cost flow subject to the dynamic constraint
of the accumulated emissions; V 0

i and V 0
j are the first derivative with respect to the

state variable s.
The optimal value of the control variables must satisfy the first order conditions

for an interior feedback Nash equilibrium, that is

� ai � V 0
i D 0; i D 1; : : : ; m; (30)

� aj � V 0
j D 0; j D mC 1; : : : ; n: (31)

These conditions define the optimal strategies of abatements as functions of accu-
mulated emissions; so, the constraint on the control variables given by (2), (30) and
(31) lead to the following conditions on the abatement levels



90 M.E. Biancardi

ai D

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

0 if � V 0
i < 0;

�V 0
i if 0 � �V 0

i �
L

n
i D 1; : : : ; m;

L

n
if � V 0

i >
L

n
;

for a signatory country;

aj D

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

0 if � V 0
j < 0;

�V 0
j if 0 � �V 0

j �
L

n
j D mC 1; : : : ; n;

L

n
if � V 0

j >
L

n
;

for a nonsignatory country.
We have analysed all possible combinations between interior and boundary ai

and aj values.

If we suppose that 0 � �V 0
i �

L

n
and 0 � �V 0

j �
L

n
, then ai D �V 0

i and

aj D �V 0
j . Substituting these abatement level expressions in (28) and in (29), we

obtain the following nonlinear differential equations

ıVi D m

2
.V 0

i /
2 C V 0

i .LC .n �m/V 0
j � ks/ �

1

2
mps; (32)

ıVj D
�
2n� 2m � 1

2

�
.V 0

j /
2 C V 0

j .LCmV 0
i � ks/ �

1

2
ps: (33)

In order to compute the solution of the above equations, given the linear quadratic
structure of the game, we guess that the optimal value functions are quadratic and
consequently the equilibrium strategies are linear in respect to the state variable.
Precisely, we postulate quadratic value functions of the form

Vi D 1

2
˛i s

2 C ˇi s C �i ; (34)

Vj D 1

2
˛j s

2 C ˇj s C �j ; (35)

where ˛; ˇ; � are constant parameters of the unknown value functions which are to
be determined. Using (34) and (35) to eliminate Vi , Vj , V 0

i and V 0
j from (32) and

from (33) and equating, we yield the following system of algebraic Riccati equations
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for the coefficients of the value functions

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
:̂

1
2
˛iı D m

2
˛2

i C .n �m/˛i˛j � k˛i ;

ˇiı D m˛iˇi C L˛i C .n �m/˛iˇj C .n �m/ˇi˛j � kˇi � 1
2
mp;

�iı D ˇi

hm
2
ˇi C LC .n �m/ˇj

i
;

1
2
˛j ı D

�
2n � 2m � 1

2

�
˛2

j Cm˛i˛j � k˛j ;

ˇj ı D .2n � 2m � 1/˛jˇj C L˛j � kˇj Cm˛jˇi Cm˛iˇj � 1
2
p;

�j ı D ˇj

	�
2n � 2m � 1

2

�
ˇj C LCmˇi



:

This system has four solutions, but only one produces value functions satisfying
the stability condition. To obtain this condition we substitute the linear strategies

ai D �˛i s � ˇi ; aj D �˛j s � ˇj (36)

in the dynamical constraint of accumulated emissions. We obtain the following
differential equation

Ps D Œm˛i C .n �m/˛j � k�s C LCmˇi C .n �m/ˇj : (37)

The stability condition is

d Ps
ds
D m˛i C .n �m/˛j � k < 0

which is satisfied only by the following solution of the system

˛i D ˛j D 0; ˇi D � mp

2.k C ı/ ; ˇj D � p

2.k C ı/ ;

�i D �mp.4kLC 4Lı � p.m
2 � 2mC 2n//

8ı.k C ı/2 ;

�j D �p.4kLC 4Lı � p.2m
2 � 2mC 2n� 1//

8ı.k C ı/2 :

This solution, combined with the constraints 0 � �V 0
i �

L

n
and 0 � �V 0

j �
L

n
,

gives us the optimal abatement levels:
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ai D mp

2.ı C k/ and aj D p

2.ıC k/
when the following condition on p is satisfied

p � 2L.ı C k/
mn

which is equivalent to
m � r :

It is possible to conclude that the Feedback Nash equilibrium obtained, coincide
with the open loop Nash equilibrium given by case I.

If we suppose that �V 0
i >

L

n
and 0 � �V 0

j �
L

n
, then ai D L

n
and aj D �V 0

j .

Reasoning as above we obtain

ai D L

n
and aj D p

2.ıC k/
when the following condition on p is satisfied

2L.ı C k/
mn

< p � 2L.ı C k/
n

which is equivalent to
1 � r < m :

Again we conclude that the Feedback Nash equilibrium obtained coincides with
the corresponding open loop one given by case II.

If we consider the remaining combinations between ai andaj values, it is possi-
ble to prove that solutions of the Riccati system don’t satisfy the constraints and so
they don’t represent feedback Nash equilibria.

So, we conclude this analysis, claiming that, in the model proposed, Feedback
and Open Loop Nash equilibria are the same.

6 Concluding Remarks

The present paper studies the problem of computing the size of a stable coalition in
an International Environmental Agreement.

We studied a differential game in which abatement levels are associated with a
stock pollutant. Coalitions formation has been designed as a two stages game in
which in the first stage each country decides to join or not a coalition, instead, in
the second stage, nonsignatories and signatories determine the optimal paths of the
abatements and so, the path of the global emissions.
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The model has the objective to reduce pollution at the lowest costs; the cost
function of every country is characterized by the presence of a parameter p which
gives us the measure of the environmental awareness of countries.

Open loop Nash equilibria and Feedback Nash equilibria have been analysed
showing that they carry out to the same solution of the differential game.

Stability conditions, such as myopic stability or farsighted stability have been
applied showing that different results about the size of a stable IEA can be obtained.
In fact using internal and external stability, which characterize myopic stability, we
reached the conclusion that only coalitions of size 2 and 3 are stable, independently
of p value. This result confirms the pessimistic conclusion to which some papers
quoted in the introduction arrived. Using the concept of farsighted stability we have
shown that both large and small stable coalitions can occur. In particular, our numer-
ical simulation shows that the parameter p has an interesting role in the determina-
tion of the size of stable coalitions, in fact if p value increases the size of coalitions
which are farsighted stable increases too, and this result underlines how the greater
environmental awareness of countries leads to stable coalitions which have greater
sizes. In this way it is possible to obtain also the grand coalition’s stability.

A possible step for a forthcoming paper could be the study of stable coalitions
modifying the costs function or relaxing some assumptions of the game’s rules.
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R&D Cooperation in Real Option Game
Analysis

Giovanni Villani

1 Introduction

In recent years, the real option theory has been widely used in evaluating invest-
ment decisions in a dynamic environment. The market developments are complex
and so the conventional NPV (Net Present Value) rule undertakes the value of a
project because this method fails to take into account the market uncertainty, irre-
versibility of investment and ability to delay entry. The well accepted paradigm in
real option theory states the equivalence between investment opportunities of firms
and financial contingent claims, allowing for managerial flexibility.

Several models, such as Lee (1997); Shackleton and Wojakowski (2003); Trige-
orgis (1991) and so on, are based on the assumption that the option exercise price,
and so the investment cost, is fixed. But, particularly for the R&D investments, it
is reasonable to consider that the evolution of the investment cost is uncertain. The
R&D investment opportunity corresponds to an exchange option, i.e., the swap of
an uncertain investment cost for an uncertain gross project value. The most impor-
tant valuation models of exchange options are given in Armada, Kryzanowsky, and
Pereira (2007); Carr (1988, 1995); Margrabe (1978); McDonald and Siegel (1985).
In particular way, McDonald and Siegel (1985) value a simple European exchange
option while Carr (1988) develops a model to price a compound European exchange
option. Both models consider that assets distribute “dividends” that, in real options
context, are the opportunity costs if an investment project is postponed (Majd &
Pindyck, 1987).

In addition the real option approach, combined with game theory, allows to
consider the strategic interactions among real option holders and also the market
dynamics.

In this paper we analyze a cooperation between two firms that invest in R&D.
Following Dias and Teixeira (2004); Dias (2004); Villani (2008) models, we assume
that the R&D investments generate an “information revelation” about their success
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and so, by delaying an investment decision, new information can be revealed that
might affect the profitability of the R&D projects. By the alliance between two
players, we show as the information is wholly revealed and captured by two firms
to improve their R&D success probabilities. The mutual information gain implies
positive network externalities (as it is shown in Huisman (2001); Kong and Kwok
(2007)) which lead more benefits in case of reciprocal R&D success. Therefore, the
externalities can involve different entry decisions inducing the cooperation between
two firms in order to maximize the partnership return. Accordingly to positive net-
work externalities, we introduce the growth market coefficients depending by the
success or failure of two players.

Our model is suitable for joint ventures of car producers, alliance between phar-
maceutical and oil companies and other cooperation forms that involve a reduction
of R&D risk. For instance, Chi (2000) and Kogut (1991) demonstrate the power of
viewing joint ventures as real options to expand in response to future technological
and market developments.

The paper is organized as follows. Section 2 reviews the Simple and Compound
European exchange option pricing models and Sect. 3 introduces the basic model
and also derives the final payoffs of two firms in a noncooperative framework. Sec-
tion 4 analyses the cooperation between two firms. We show how both players can
split the surplus of cooperation. In Sect. 5, we present two numerical examples for
the cooperative R&D game. Section 6 concludes.

2 Exchange Options Methodology

In this section we present the final results of the principal models to value European
exchange options. McDonald and Siegel (1985)’s model gives the value of a Sim-
ple European exchange option (SEEO) to exchange asset D for asset V at time T .
Denoting by s.V;D; T � t/ the value of SEEO at time t , the final payoff at the
option’s maturity date T is s.V;D; 0/ D maxŒ0; VT � DT �. So, assuming that V
and D follow a geometric Brownian motion process given by

dV

V
D .�v � ıv/dt C �vdZv; (1)

dD

D
D .�d � ıd /dt C �ddZd ; (2)

cov

�
dV

V
;
dD

D

�
D �vd�v�d dt; (3)

where �v and �d are the equilibrium expected rates of return on two assets,
ıv and ıd are the corresponding “dividend-yields,” �v and �d are the respec-
tive volatilities, Zv and Zd are two brownian standard motions with correla-
tion coefficient �vd , and considering that the coefficients �v, �d , ıv, ıd , �v, �d ,
and �vd are nonnegative constants, McDonald and Siegel (1985) show that the
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value of a SEEO on dividend-paying assets, when the valuation date t D 0, is
given by

s.V;D; T / D Ve�ıvTN.d1.P; T // �De�ıd TN.d2.P; T //; (4)

where

� V and D are the Gross Project Value and Investment Cost, respectively;

� P D V
D
I � D

q
�2

v � 2�vd�v�d C �2
d
I ı D ıv � ıd I

� d1.P; T / D log P C
�

�2

2
�ı
�
T

�
p

T
I d2 D d1 � �

p
T I

� N.d/ is the cumulative standard normal distribution.

The current values for V andD are known in (1) and (2). Their future values depend
on two components: the first is deterministic corresponding to the drift while the
second is a stochastic process with variance increasing with time.

Carr (1988) develops a model to value the Compound European exchange option
(CEEO) whose final payoff at maturity date t1 is c.s; 'D; 0/ D maxŒ0; s�'D�. The
CEEO value, considering the valuation date t D 0, is given by

c.s.V;D; T /; 'D; t1/ D Ve�ıvTN2

�
d1

�
P

P � ; t1
�
; d1 .P; T / I �

�

�De�ıd TN2

�
d2

�
P

P � ; t1
�
; d2 .P; T / I �

�

�'De�ıd t1N

�
d2

�
P

P � ; t1
��

; (5)

where

� ' is the exchange ratio of CEEO;
� t1 is the expiration date of the CEEO;
� T is the expiration date of the SEEO, where T > t1;

� � D T � t1 is the time to maturity of the SEEO and � D
q

t1
T
I

� d1

�
P

P � ; t1
� D log

�
P

P �

�C ��ı C �2

2

�
t1

�
p
t1

I d2

�
P

P � ; t1
� D d1

�
P

P � ; t1
���pt1 I

� P � is the critical price ratio that solves the following equation:

P �e�ıv
N.d1.P
�; �// � e�ıd 
N.d2.P

�; �// D 'I

� N2.a; bI �/ is the standard bivariate normal distribution function evaluated at a
and b with correlation �.
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3 The Basic Model Game

In our model we consider two firms (A and B) that have the option to realize their
R&D investment at initial time t0 or to delay the decision at time t1. As it is known,
the R&D investment depends on the resolution of several source of uncertainty
that may influence the investment decision of each firm. Assuming by q and p the
R&D success probability of firms A and B respectively, we introduce two Bernoulli
random variates:

Y W
(
1 q

0 1 � q X W
�
1 p

0 1 � p :

The R&D success or failure of one firm generates an information revelation that
influences the investment decision of the other firm. So, if firm A’s R&D is success-
ful, the firm B’s probability p changes in positive information revelation pC, while
p changes in negative information revelation p� in case of A’s failure. Symmetri-
cally, the firm A’s R&D success changes in qC or in q� in case of firm B success or
failure at time t0. Using Dias (2004)’s model, it results that:

pC D P robŒX D 1=Y D 1� D p C
s
1 � q
q
�
p
p.1 � p/ � �.X; Y /;

p� D P robŒX D 1=Y D 0� D p �
r

q

1 � q �
p
p.1 � p/ � �.X; Y /;

qC D P robŒY D 1=X D 1� D q C
s
1 � p
p
�pq.1 � q/ � �.Y;X/;

q� D P robŒY D 1=X D 0� D q �
r

p

1 � p �
p
q.1 � q/ � �.Y;X/;

where the correlations �.X; Y / and �.Y;X/ are a measure of information revelation
from Y to X and from X to Y , respectively. Obviously, the information revelation
is considerable when the investment is not realized in the same time. So, if both
players invest simultaneously in R&D or they wait to invest, there is not information
revelation and consequently it results that p D pC D p� and q D qC D q�. The
condition to respect to have 0 � pC � 1 and 0 � p� � 1 is:

0 � �.X; Y / � min

(s
p.1 � q/
q.1 � p/ ;

s
q.1 � p/
p.1 � q/

)
: (6)

The condition (6) must be respected also for the information revelation process that
benefits firm A, namely �.Y;X/, to have that 0 � qC � 1 and 0 � q� � 1.

So, with the alliance between A and B, we can assume that information is wholly
revealed and we can setting that the cooperative information �max is equal to:
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�max D min

(s
p.1 � q/
q.1 � p/ ;

s
q.1� p/
p.1 � q/

)
: (7)

We can observe that, in the case in which both firms have the same success prob-
ability p D q, it results �max D 1 and so qC D 1 and pC D 1. This means
that, in case of A’s R&D success at time t0, it involves the B’s success at time t1
in the cooperation treatment since the information revelation is fully captured and
vice-versa.

Moreover, we assume that R&D investments are characterized by network exter-
nalities that induce more benefits in case of reciprocal R&D success. So we denote
by

K0S 0S
I K0S 1S

I K1S 0S
I K1S 1S

the growth market coefficients in case of A and B success. The 0 and 1 mean that
the R&D investment is realized at time t0 or t1 respectively, while the S denotes the
success. The first part denotes the operation of considered firm, while the second
part is the situation of the other firm. For instance, if A and B invest successfully in
R&D at time t0 and t1 respectively, firm A takes K0S 1S

while B obtains K1S 0S
: In

the same way, assuming the failure (denoted by F ) of the other player and consid-
ering that the unsuccess of one firm does not produce network externality, we can
write the growth market coefficients for the winning firm as

K0S 0F
D K0S 1F

	 K0S
I K1S 0F

D K1S 1F
	 K1S

I

Finally, in case of failure of considered firm, its market coefficient will be equal
to zero whether in case of success or failure of other player. Now we can set the
relations among the growth market coefficientsK using these assumptions:

� Positive Network Externality: As it is shown Huisman (2001), the growth market
coefficients in case of both R&D success will be bigger than the situation in
which only one firm invests successfully and so:

KSS > KS I (8)

� R&D Success Time: The market coefficient increases if the reciprocal R&D suc-
cess is realized at time t0 rather than t1 because there is more time to benefit both
network externalities and R&D innovations. In the situation in which only one
firm invests successfully, the market coefficient enlarges if the success is realized
at time t0:

K0S 0S
> K1S 1S

I K0S
> K1S

I (9)

� First Mover’s Advantage: The firm that realizes with success the R&D invest-
ment at time t0 will receive an higher market coefficient than other player that
postpones successfully the project at time t1:

K0S 1S
> K1S 0S

: (10)
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To determine the growth market coefficients K , we assume that they depend by a
parameter k involving the R&D innovation and by length of R&D benefits until the
expiration time T . For the positive network externality, we take into account two
times the one firm market coefficient. So, assuming that the initial time t0 D 0, we
have that

K0S
D kT; (11)

K0S 0S
D 2kT; (12)

K1S
D k.T � t1/; (13)

K1S 1S
D 2k.T � t1/: (14)

Finally, to determineK0S 1S
andK1S 0S

, we assume that

K0S 1S
D 2k.T � t1/C kt1; (15)

K1S 0S
D 2k.T � t1/ � kt1: (16)

If one firm invests successfully at time t0 and the other player at time t1, we have that
the first firm takes the network externality starting from time t1, namelyK1S 1S

, plus
the first mover’s advantage kt1 until time t1. Symmetrically, the market coefficient
K1S 0S

for the other firm that postpones its choice will beK1S 1S
minus kt1. Finally,

to ensure that condition (8) holds, we need to impose that t1 < T
3

. This condition
is reasonable with the consideration that the information revelation disappears in
time and furthermore, if one firm invests at time t0, then the other firm decision
will be made within t1 < T

3
to allow the realization of the development phase in

T � t1.
First to start, we state as Leader the pioneer firm (A or B) that invests in

R&D at time t0 earlier than other one, namely the Follower, that postpones the
R&D investment decision at time t1. We denote by R the R&D investment for
the development of a new product, V the overall market value deriving by R&D
innovations and D is the total investment cost to realize new goods. We consider
that the production investment of each firm is proportional to its market share
and it can be realized only at time T , that is the time needed to develop the new
product.

3.1 The Leader’s Payoff

We analyze the Leader’s payoff assuming that firm A (Leader) invests in R&D at
time t0 while firm B (Follower) decides to wait to invest. So, the Leader spends the
investment R at time t0 and obtains, in case of its R&D success with probability q,
the development option. In particular way, if also the Follower’s R&D investment is
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successfully at time t1, the growth market coefficient will beK0S 1S
and the Leader

holds the development option s
�
K0S 1S

V;K0S 1S
D;T

�
that gives the opportunity

to invest K0S 1S
D at time T and to claim a market value equal to K0S 1S

V . So the
Leader’s payoff is

LS
A.V;D/ D �RC qk.2T � t1/

�
Ve�ıvTN.d1.P; T // �De�ıd TN.d2.P; T //

�
:

(17)
The probability to have K0S 1S

depending by the Follower’s R&D success that is
pC since it receives the information revelation from Leader’s investment occurred
at time t0. But if the Follower’s R&D fails, the Leader’s market coefficient, in case of
its R&D success, isK0S

and it receives the development option s
�
K0S

V;K0S
D;T

�
.

So the Leader’s payoff is:

LF
A .V;D/ D �RC qkT

�
Ve�ıvTN.d1.P; T // �De�ıd TN.d2.P; T //

�
(18)

So, computing the expectation value between (17) and (18), the final Leader’s payoff
(firm A) at time t0 is

LA.V;D/ D pC � LS
A.V;D/C .1 � pC/ � LF

A .V;D/: (19)

Symmetrically, assuming that firm B (Leader) invests at time t0 while firm A
(Follower) decides to postpone its decision, the final Leader’s payoff at time t0
becomes

LB.V;D/ D qC � LS
B.V;D/C .1 � qC/ � LF

B .V;D/: (20)

3.2 The Follower’s Payoff

Now we focus on the Follower’s payoff assuming that firm B (Follower) decides
to postpone its R&D investment decision at time t1 and firm A (Leader) invests
at time t0. If the Leader’s R&D investment is successfully (with a probability q),
then the Follower’s probability success becomes pC and its growth market coeffi-
cient is K1S 0S

. So, after the investment R, the Follower holds with a probability
pC the development option s.K1S 0S

V;K1S 0S
D; �/ to invest K1S 0S

D at time T
and claims a market value equal to K1S 0S

V . So the Follower’s payoff at time t0 is
a CEEO with maturity t1, exercise price equal to R and the underlying asset is the
development option s.K1S 0S

V;K1S 0S
D; �/. According to Carr (1988)’s model, we

assume that R D 'D is a proportion ' of asset D. Hence, denoting by c.pC/ the
CEEO at time t0, namely:

c.pC/ 	 c.pCs.K1S 0S
V;K1S 0S

D; �/; 'D; t1/;
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we can write, using the (5), the value of CEEO with positive information

c.pC/ D pCk.2T � 3t1/Ve�ıvTN2

 
d1

 
P

P �
upB

; t1

!
; d1 .P; T / I �

!

�pCk.2T � 3t1/De�ıd TN2

 
d2

 
P

P �
upB

; t1

!
; d2 .P; T / I �

!

�'De�ıd t1N

 
d2

 
P

P �
upB

; t1

!!
; (21)

where P �
upB is the critical value that makes the underlying asset of c.pC/ equal to

exercise value. Hence P �
upB solves the following equation:

pCs.K1S 0S
V;K1S 0S

D; �/ D 'D;

and assuming the asset K1S 0S
D as numeraire, we can rewrite the above equation

as

P �
upB e

�ıv
N.d1.P
�
upB ; �// � e�ıd 
N.d2.P

�
upB ; �// D

'

pC.2T � 3t1/ :

Alternatively, in case of Leader’s failure, the Follower’s R&D success probability
changes in p� and its market coefficient is K1S

. Denoting by c.p�/ the CEEO at
time t0 with negative information, we can write, using the (5), the value of CEEO
with negative information:

c.p�/ D p�k.T � t1/Ve�ıvTN2

 
d1

 
P

P �
dwB

; t1

!
; d1 .P; T / I �

!

�p�k.T � t1/De�ıd TN2

 
d2

 
P

P �
dwB

; t1

!
; d2 .P; T / I �

!

�'De�ıd t1N

 
d2

 
P

P �
dwB

; t1

!!
; (22)

where P �
dwB

is the critical price that solves the following equation:

P �
dwB e

�ıv
N.d1.P
�
dwB ; �// � e�ıd 
N.d2.P

�
dwB ; �// D

'

p�k.T � t1/

The Follower obtains the CEEO c.pC/ in case of Leader’s success with a probabil-
ity q and the CEEO c.p�/ in case of Leader’s failure with a probability .1 � q/.
Hence, the Follower’s payoff at time t0 is the expectation value between (21)
and (22):
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FB .V;D/ D q c.pC/C .1 � q/ c.p�/: (23)

Similarly, if we consider that firm B (Leader) invests in R&D at time t0 and firm A
(Follower) decides to wait to invest, we have that

FA.V;D/ D p c.qC/C .1 � p/ c.q�/ (24)

3.3 The A and B Payoffs in Case of Simultaneous Investment

In this case, we analyze the situation in which both firms invest in R&D at time
t0. We can assume that there is not information revelation since the investment is
simultaneous but both players can benefice of network externalities. First of all, we
determine the firm’s A payoff. Assuming the firm B’s R&D success, A receives
the development option with a growth market coefficientK0S 0S

in case of its R&D
success. So, after the investment R at time t0, player A receives the development
option s.K0S 0S

V;K0S 0S
D;T / with a probability q:

SS
A .V;D/ D �R C q2kT

�
Ve�ıvTN.d1.P; T // �De�ıd TN.d2.P; T //

�
: (25)

But, assuming the firm B failure, A receives the development option s.K0S
V;K0S

D;T / with a growth market coefficientK0S
in case of its success:

SF
A .V;D/ D �R C qkT

�
Ve�ıvTN.d1.P; T // �De�ıd TN.d2.P; T //

�
: (26)

So, recalling that firm B’s probability success is p, the firm’s A payoff in case of
simultaneous investment will be the expectation value between (25) and (26):

SA.V;D/ D p � SS
A .V;D/C .1 � p/ � SF

A .V;D/: (27)

Symmetrically, the firm’s B payoff will be

SB.V;D/ D q � SS
B .V;D/C .1 � q/ � SF

B .V;D/: (28)

3.4 The A and B Payoffs When Both Firms Wait to Invest

Finally, we suppose that both firms decide to delay their R&D investment decision
at time t1 and we can setting that there is not information revelation. First of all, we
analyze the firm A’s payoff. Assuming the R&D success of firm B, then the growth
market coefficient of player A will be K1S 1S

. So, after the investment R at time t1,
firm A holds with a probability q the development option s.K1S 1S

V;K1S 1S
D; �/
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to invest K1S 1S
D at time T and claims a market value equal to K1S 1S

V . Then the
firm’s A payoff at time t0 is a CEEO with maturity t1, the exercise price equal to
R and the underlying asset is the development option s.K1S 1S

V;K1S 1S
D; �/ with

a probability q. Thus, according to Carr (1988)’s model and assuming that R is a
proportion ' of asset D, the CEEO in case of firm’s B success is

W S
A .V;D/ D c

�
q � s.K1S 1S

V;K1S 1S
D; �/; 'D; t1

�

and specifically

W S
A .V;D/ D q2k.T � t1/Ve�ıvTN2

�
d1

�
P

P �
wsA

; t1

�
; d1 .P; T / I �

�

�q2k.T � t1/De�ıd TN2

�
d2

�
P

P �
wsA

; t1

�
; d2 .P; T / I �

�

�'De�ıd t1N

�
d2

�
P

P �
wsA

; t1

��
; (29)

where P �
wsA is the critical value that solves the following equation:

P �
wsAe

�ıv
N.d1.P
�
wsA; �// � e�ıd 
N.d2.P

�
wsA; �// D

'

q2k.T � t1/ :

But, in case of firm’s B failure, the firm A growth market coefficient will be K1S
.

So, after the investment R at time t1, firm A obtains with a probability q the devel-
opment option s.K1S

V;K1S
D; �/. Thus, using Carr (1988)’s model, the firm’ A

payoff at time t0 is a CEEO where the underlying asset is s.K1S
V;K1S

D; �/ with
a probability q and specifically

W F
A .V;D/ D qk.T � t1/Ve�ıvTN2

 
d1

 
P

P �
wfA

; t1

!
; d1 .P; T / I �

!

�qk.T � t1/De�ıd TN2

 
d2

 
P

P �
wfA

; t1

!
; d2 .P; T / I �

!

�'De�ıd t1N

 
d2

 
P

P �
wfA

; t1

!!
; (30)

where, as seen before, P �
wfA

is the critical value that solves the following equation:

P �
wfAe

�ıv
N.d1.P
�
wfA; �//� e�ıd 
N.d2.P

�
wfA; �// D

'

qk.T � t1/ :

Hence, recalling that the firm B success is equal to p, we can compute the firm A
payoff as the expectation value between (29) and (30):
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WA.V;D/ D pW S
A .V;D/C .1� p/W F

A .V;D/: (31)

Similarly, the firm B payoff is

WB.V;D/ D q W S
B .V;D/C .1 � q/W F

B .V;D/: (32)

3.5 Noncooperative Critical Market Values

Now, to determine the noncooperative Nash equilibriums denoted by v.A/ and v.B/,
we analyze the relations among the strategic payoffs according to several expected
market values V at time t0 and considering fixed the invest costD at time t0. There-
fore, we are able to determine the critical market values that delimit the several
Nash equilibriums. First of all, we study the relations between the Leader and Wait-
ing strategies considering only the variable V and, to simplify the notation, we do
not take into account the dividends to compute the derivatives. We can observe that

� LA.0/ D LB .0/ D �RI WA.0/ D WB.0/ D 0I
� @LA

@V
D qN.d1.P; T //kŒp

C.2T � t1/C .1 � pC/T �;

� @LB

@V
D pN.d1.P; T //kŒq

C.2T � t1/C .1 � qC/T �;

� @WA

@V
D 2pqk.T � t1/N2

�
d1

�
P

P �
wsA

; t1

�
; d1.P; T /I �

�

C .1 � p/qk.T � t1/N2

 
d1

 
P

P �
wfA

; t1

!
; d1.P; T /I �

!
I

� @WB

@V
D 2qpk.T � t1/N2

�
d1

�
P

P �
wsB

; t1

�
; d1 .P; T / I �

�

C .1 � q/pk.T � t1/N2

 
d1

 
P

P �
wfB

; t1

!
; d1 .P; T / I �

!
I

� @LA

@V
>
@WA

@V
> 0;

@LB

@V
>
@WB

@V
> 0;

as N.a/ > N2.a; bI �/. Then, the following proposition holds:

Proposition 1. There exists, for each firm i D A;B , a unique critical market value
V W

i that makes Li .V
W

i / D Wi .V
W

i /. Denoting by V �
W D min.V W

A ; V W
B / and

V �
Q D max.V W

A ; V W
B /, it results that

Li .V / < Wi .V / for V < V �
W I

Li .V / > Wi .V / for V > V �
Q:
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Moreover, if A’s success probability is higher than B, for V 2�V �
W ; V

�
QŒ it results

LA.V / > WA.V /I LB .V / < WB.V /I

otherwise, if B’s success probability is higher than A, for V 2�V �
W ; V

�
QŒ it results

LA.V / < WA.V /I LB.V / > WB.V /:

Now we analyze the relation between the Follower and the Simultaneous strategies.
Then, we can observe that

� FA.0/ D FB .0/ D 0I SA.0/ D SB.0/ D �R;

� @FA

@V
D pqCk.2T � 3t1/N2

 
d1

 
P

P �
upA

; t1

!
; d1.P; T /I �

!

C .1 � p/q�k.T � t1/N2

 
d1

 
P

P �
dwA

; t1

!
; d1.P; T /I �

!
I

� @FB

@V
D qpCk.2T � 3t1/N2

 
d1

 
P

P �
upB

; t1

!
; d1.P; T /I �

!

C .1 � q/p�k.T � t1/N2

 
d1

 
P

P �
dwB

; t1

!
; d1.P; T /I �

!
;

� @SA

@V
D qN.d1.P; T //kT Œ1C p�; @SB

@V
D pN.d1.P; T //kT Œ1C q�;

� @Fi

@V
> 0;

@Si

@V
> 0;

for i D A;B: In this case we have that both derivatives are positive but the intersec-
tion between Follower and Simultaneous strategies exists if @Si

@V
> @Fi

@V
for i D A;B .

So the following proposition holds:

Proposition 2. If @SA

@V
> @FA

@V
, then there exists a unique critical market value V �

P

that makes SA.V
�

P / D FA.V
�

P / and it results that

SA.V / < FA.V / for V < V �
P I

SA.V / > FA.V / for V > V �
P I

otherwise, if @SA

@V
� @FA

@V
, then SA.V / < FA.V / for every value of V .

If @SB

@V
> @FB

@V
, then there exists a unique critical market value V �

S that makes
SB.V

�
S / D FB .V

�
S / and it results that

SB.V / < FB.V / for V < V �
S I

SB.V / > FB.V / for V > V �
S I
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otherwise, if @SB

@V
� @FB

@V
, then SB.V / < FB .V / for every value of V . Moreover, if

firm A’s success probability is higher than B , then V �
P < V �

S otherwise V �
S < V �

P .

4 The Cooperation Between A and B

In this section we analyze the cooperation between firms A and B that allows to
capture the whole information revelation and so to improve the R&D success prob-
abilities. In particular way, we assume that the value achieved by the cooperation
can be transferred from one player to the other. We show as the strategic alliance is
the joint best response to the noncooperative alternative and so the equilibriums that
both firms obtain through the cooperation are Pareto-dominate all the noncoopera-
tive ones. As we consider two players, we denote by C.A [ B/ the feasible set for
the coalition, namely is the set of outcome which can be obtained by two players
acting together. The cooperation value is given by the sum of two firms’ payoffs
using the whole information revelation �max deriving by their R&D investments.
Both players can agree upon several partnership contracts. For instance, A and B
can share equitably the surplus of cooperation C.A[B/� .v.A/C v.B// using the
Shapley values:

ShA D v.A/C C.A[ B/� .v.A/C v.B//

2
; (33)

ShB D v.B/C C.A[ B/� .v.A/C v.B//

2
: (34)

This solution looks natural in the symmetric case p D q in which both firms have
the same success probability otherwise, we can assume also asymmetric shares to
split the cooperation value according to success probability of each firm:

PA D v.A/C q

p C q .C.A[ B/� .v.A/C v.B/// ; (35)

PB D v.B/C p

p C q .C.A[ B/ � .v.A/C v.B/// : (36)

We can observe that, if p D q, then Shi D Pi for i D A;B and the efficiency
property is satisfied as ShA C ShB D PA C PB D C.A [ B/. The cooperative
information �max influences the Leader and Follower payoffs that we denote by
LC

i .V / and F C
i .V / for i D A;B , where C means the cooperative action. The four

possible cooperation strategies are:

� Both players decide to wait to invest at time t0:

C.A[ B/ D WA.V /CWB.V / 	 WC .V /
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� The firm A invests at time t0 while the firm B delays its decision at time t1:

C.A [ B/ D LC
A .V /C F C

B .V / 	 LFC .V /

� Symmetrically, B invests at time t0 and A delays its decision at time t1:

C.A [ B/ D F C
A .V /C LC

B .V / 	 FLC .V /

� Both players decide to invest simultaneously at time t0:

C.A[ B/ D SA.V /C SB.V / 	 SC .V /

4.1 Cooperative Critical Market Values

The aim of two firm acting together is to improve their position compared with no
partnership situation and to reach a Pareto optimal solution. To realize this objective,
we have to determine the maximum value among the four cooperation strategies
according to several expected market values V . Hence we compute the cooperative
critical market values that delimit the maximum payoff C.A[B/. So it results that

� WC .0/ D 0I SC .0/ D �2RI LFC .0/ D �RI FLC .0/ D �RI
� @WC

@V
D 2k.T � t1/pqN2

�
d1

�
P

P �
wsA

; t1

�
; d1.P; T /I �

�

C 2k.T � t1/pqN2

�
d1

�
P

P �
wsB

; t1

�
; d1.P; T /I �

�

C k.T � t1/.1 � p/qN2

 
d1

 
P

P �
wfA

; t1

!
; d1.P; T /I �

!

C k.T � t1/.1 � q/pN2

 
d1

 
P

P �
wfB

; t1

!
; d1.P; T /I �

!
;

� @SC

@V
D qkTN.d1.P; T // Œ2p C .1 � p/�C pkTN.d1.P; T // Œ2q C .1 � q/�;

� @SC

@V
>
@WC

@V
> 0;

as N.a/ > N2.a; bI �/. Now we can remark that, if q D p, then it results
LFC .V / D FLC .V / as LC

A .V / D LC
B .V / and F C

A .V / D F C
B .V / and so both

strategies give the same value. But, if q > p, then we have that LFC .V / >

FLC .V / and, if q < p, then LFC .V / < FLC .V /. So, to determine the maxi-
mum value, we consider the cooperation strategy in which the Leader is the firm
with the highest success probability. Assuming that q � p, we take into account the
cooperative action LFC . We have that
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� @LFC

@V
D qN.d1.P; T //kŒp

C.T � t1/C T �

C qpCk.2T � 3t1/N2

 
d1

 
P

P �
upB

; t1

!
; d1.P; T /I �

!

C .1 � q/p�k.T � t1/N2

 
d1

 
P

P �
dwB

; t1

!
; d1.P; T /I �

!
I

� @LFC

@V
>
@WC

@V
> 0I

since P �
upi < P

�
wsi < P

�
wf i

for i D A;B . So, the following proposition holds:

Proposition 3. There exists a unique critical market value V �
C such that LFC .V

�
C /D WC .V

�
C / and

LFC .V / < WC .V / for V < V �
C I

LFC .V / > WC .V / for V > V �
C :

Now we analyze the several cooperative equilibriums that can be occur.

4.1.1 First Case

If @LFC

@V
� @SC

@V
, then there is not intersection between LFC and SC . Moreover, the

intersection LFC andWC occurs before than SC and WC . So, in this case, we have
to consider only the critical market value V �

C given by Proposition 3 and we can state
that, if V < V �

C , the maximum payoff that both players can obtain by cooperation
is WC .V / otherwise, if V > V �

C , the maximum payoff attainable cooperating is
LFC .V /.

In this case, the best strategic cooperation is the waiting policy (WC ) until the
expected market value V is below the critical value V �

C and, if V > V �
C , the optimal

strategy is the Leader–Follower one (LFC ) in which the firm with highest success
probability realizes the R&D investment at time t0 and the other player postpones
its decision at time t1.

4.1.2 Second Case

If @LFC

@V
< @SC

@V
, then there is intersection between the functions LFC and SC . So

the following proposition holds:

Proposition 4. If @LFC

@V
< @SC

@V
, then there exists a unique critical market value V �

G

such that LFC .V
�

G / D SC .V
�

G / and it results that

SC .V / < LFC .V / for V < V �
G I

SC .V / > LFC .V / for V > V �
G :
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Moreover, as @.LFC �WC /
@V

� @.SC �LFC /
@V

, it results that V �
C < V �

G . Using the Propo-
sitions 3 and 4, we have that the optimal cooperation action is the waiting policy
(WC ) when the expected market value V is below V �

C while, if V is in the range
ŒV �

C ; V
�

G �, then the maximum payoff is obtained by the Leader–Follower (LFC )
strategy and finally, if V > V �

G , both firms realize their R&D investment at time t0.

5 Real Applications

To illustrate the concepts presented, we develop some numerical examples for the
cooperative R&D game and, in particular way, we assume that A has a more efficient
Know-How than B that implies the highest success probability. So we assume that

� R&D Investment: R D 250,000 $;
� Development Investment:D D 400,000 $;
� Market and Costs Volatility: �v D 0:93; �d D 0:23;
� Proportion ofD required for R: ' D R

D
D 0:625

� Correlation between V and D: �vd D 0:15;
� Dividend-Yields of V andD: ıv D 0:15I ıd D 0I
� R&D innovation parameter: k D 0:30
� Expiration Time of Simple Option: T D 3 years;
� A and B success probability: q D 0:60; p D 0:55;
� Noncooperative Information Revelation: �.X; Y / D �.Y;X/ D 0:40;
� Cooperative Information Revelation: �max D 0:9026;

5.1 Numerical Application of First Case

Assuming that the R&D investment decision can be delay at time t1 D 0:5 year, we
obtain, using the (11)-(16), the following growth market coefficients:

K0S 0S
D 1:8I K0S 1S

D 1:65I K1S 1S
D 1:50I K1S 0S

D 1:35I
K0S
D 0:90I K1S

D 0:75:

As we can show in the Fig. 1a, the @SC

@V
< @LFC

@V
and so, using the Proposition 3,

we compute the critical market value V �
C to determine the best cooperation strategy.

For our adapted number, it results that V �
C D 700; 037. So, if V < 700; 037, both

players decide to wait to invest andC.A[B/ D WC .V / otherwise, if V > 700; 037,
the best cooperation strategy is the Leader–Follower one in which firm A invests at
time t0 and B delays its decision at time t1 and so C.A[ B/ D LFC .V /.

Now, to determine the partnership shares .ShA; ShB / and .PA; PB /, we need to
compute the noncooperative critical market values V �

W , V �
Q, V �

P , and V �
S that allow

to determine the Nash equilibriums. So, using the Propositions 1 and 2, it results:
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Fig. 1 Comparison between two cases assuming t1 D 0:5 and t1 D 0:8, respectively

Table 1 Firms A and B cooperative payoffs assuming k D 0:30 and t1 D 0:5

Market Leader–Follower Follower–Leader Simultaneous Waiting Value
Value V Value LFC Value FLC Value SC WC

600,000 17,412 12,486 �146,693 62,269
900,000 257,854 248,968 107,985 183,345

1,050,000 390,083 378,605 241,780 262,199
1,100,000 435,386 422,974 287,075 290,593
1,250,000 574,220 558,837 424,694 381,060
1,400,000 716,600 698,053 564,510 478,170

V �
W D 1; 028; 380I V �

Q D 1; 066; 240I V �
P D 1; 200; 470I V �

S D 1; 268; 650:

If V < 1; 028; 380, the waiting policy .WA;WB/ is optimal in Nash meaning
for both players at time t0, if 1; 028; 380 < V < 1; 066; 240 and 1; 200; 470 <
V < 1; 268; 650, we have one Nash noncooperative equilibrium .LA; FB /, if
1; 066; 240 < V < 1; 200; 470, then we obtain two Nash equilibriums .LA; FB /

and .FA; LB / and finally, if V > 1; 268; 650, it results one Nash equilibrium
.SA; SB/.

Let us examine the partnership between firms A and B combining the coop-
erative and noncooperative critical market values. The second and third column
of Table 2 contains the noncooperative Nash-equilibriums v.A/ and v.B/. More-
over, the Table 1 summarizes the cooperative values C.A [ B/ according to four
strategic cooperations and, in particular way, the bold type values are the maxi-
mum ones deriving by the optimal strategic alliance. Using the (33)-(36), firms A
and B can split the cooperative value C.A [ B/ by the Shapley .ShA; ShB / or
the Asymmetric .PA; PB/ values that are shown in the Table 2. Comparing the
cooperative and the noncooperative values, we can observe that the partnership is
favorable for both players since each firm improves its payoff deriving from non-
cooperative Nash equilibrium. So we can state that the couples .ShA; ShB/ and
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Table 2 Shapley and asymmetric values assuming k D 0:30 and t1 D 0:5

Market Noncoop. Noncoop. Shapley Shapley Asym. Asym.
Value V v.A/ v.B/ Value ShA Value ShB Value PA Value PB

600,000 33,244 29,024 33,244 29,024 33,244 29,024
900,000 96,736 86,609 133,990 123,863 135,610 122,244

1,050,000 141,889 142,306 194,833 195,250 197,135 192,948
1,100,000 165,819 156,705 222,250 213,136 224,704 210,682
1,100,000 169,582 144,077 230,445 204,940 233,092 202,294
1,250,000 238,525 202,120 305,312 268,907 308,216 266,004
1,400,000 296,958 267,552 373,003 343,597 376,309 340,291
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Fig. 2 A and B equilibriums

.PA; PB/ are Pareto optimal with respect to .v.A/; v.B//. Only if V < 700; 037,
and so V D 600; 000, then the partnership does not add value to each player
because the surplus of cooperation WC .V / � .WA.V / C WB.V // is equal to
zero.

Finally, the Fig. 2a represents the overall situation assuming V D 1; 400; 000.
In particular way, the black line denotes the feasible set of partnership, namely it
represents all the combinations to split C.A [ B/. But only the segment T-H is
important to analyze because otherwise firms have the incentive to deviate from
cooperation. In fact, we can observe that Shapley .ShA; ShB / and Asymmetric
.PA; PB/ values belong to the segment T-H. Moreover, the Fig. 2b shows the four
noncooperative strategies and in particular way the Nash equilibrium .SA; SB/.
We can notice that the segment joins the couples .SA; SB/ and .ShA; ShB/ has
a 45ı slope because, by the Shapley value, A and B share equitably the surplus of
cooperation C.A[ B/� .v.A/C v.B//.
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5.2 Numerical Application of Second Case

If we assume now that t1 D 0:8 year, using (11)-(15), we have that the growth
market coefficients are

K0S 0S
D 1:8I K0S 1S

D 1:56I K1S 1S
D 1:32I K1S 0S

D 1:08I
K0S
D 0:90I K1S

D 0:66:

As is shown in the Fig. 1b, the @SC

@V
> @LFC

@V
and so we have two critical market

values: V �
C D 815; 710 and V �

G D 1; 796; 130. Using the Propositions 3 and 4, we
are able to state the optimal cooperation strategy. So, if V < 815; 710, then the best
partnership strategy is to wait to invest and C.A [ B/ D WC .V /, if 815; 710 <
V < 1; 796; 130, then both players choose the cooperation form Leader–Follower
and hence C.A [ B/ D LFC .V / and finally, if V > 1; 796; 130, then both firms
prefer to invest simultaneously at time t0 and so C.A[ B/ D SC .V /.

Now, using the Propositions 1 and 2, we compute the four noncooperative critical
market values V �

W , V �
Q, V �

P , and V �
S :

V �
P D 1; 019; 230I V �

S D 1; 064; 060I V �
W D 1; 075; 210I V �

Q D 1; 120; 840:

If V < 1; 064; 060, both players prefer to wait .WA;WB/ and to defer their R&D
decision at time t1, if 1; 064; 060 < V < 1; 075; 210 we obtain two Nash equilibri-
ums .WA;WB/ and .SA; SB/ and finally, if V > 1; 075; 210, then the simultaneous
R&D investment .SA; SB/ at time t0 is optimal in Nash meaning.

As we have seen in the first case, the second and third column of Table 4
summarizes the noncooperative Nash equilibriums. Moreover, the Table 3 con-
tains the partnership values C.A [ B/ according to four cooperative strategies
and, in particular way, the bold type values are the maximum payoffs deriving
by best alliance. Both players can split the cooperative value C.A [ B/ by the
Shapley .ShA; ShB / or the Asymmetric .PA; PB / values (see (33)–(36)) that are
shown in the Table 4. We can observe that, if V D 600; 000 and more generally
V < 815; 710, then the cooperation does not add any value because the cooperation

Table 3 Firms A and B cooperative payoffs assuming k D 0:30 and t1 D 0:8

Market Leader–Follower Follower–Leader Simultaneous Waiting
Value V Value LFC Value FLC Value SC Value WC

600,000 �2,942 �9,300 �146,693 70,307
900,000 206,691 195,683 107,985 179,469

1,040,000 313,413 299,940 232,760 242,729
1,070,000 336,830 322,809 259,860 257,105
1,100,000 360,419 345,844 287,075 271,745
1,200,000 440,190 423,726 378,553 322,325
1,900,000 1,032,079 1,001,380 1,041,912 731,393
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Table 4 Shapley and asymmetric values assuming k D 0:30 and t1 D 0:8

Market Noncoop. Noncoop. Shapley Shapley Asym. Asym.
Value V v.A/ v.B/ Value ShA Value ShB Value PA Value PB

600,000 37,169 33,138 37,169 33,138 37,169 33 138
900,000 94,187 85,282 107,798 98,893 108,390 98,301

1,040,000 127,095 115,633 162,437 150,975 163,974 149,439
1,070,000 134,565 122,539 174,428 162,402 176,161 160,669
1,070,000 140,425 119,434 178,910 157,919 180,584 156,246
1,100,000 154,408 132,666 191,080 169,338 192,675 167,744
1,200,000 201,411 177,142 232,229 207,960 233,569 206,621
1,900,000 542,253 499,659 542,253 499,659 542,253 499,659

surplus WC .V / � .WA.V / C WB .V // is equal to zero. So the wait and see pol-
icy is optimal also considering the cooperation way between A and B. Even if
V D 1; 900; 000 and more generally V > 1; 796; 130, then the cooperative gain
SC .V /�.SA.V /CSB.V // is equal to zero. So the simultaneous R&D investment at
time t0 is preferable both in the cooperative strategy and in the noncooperative one.
Moreover, the Fig. 2b illustrates the cooperative and noncooperative equilibriums
when V D 1; 200; 000.

6 Concluding Remarks

In this paper we have proposed an R&D cooperation between two firms using the
real option approach. By the alliance, the information is wholly revealed and cap-
tured by two players. Moreover, we have shown that the unique cooperation strategy
that allows to increase the information revelation with respect to the noncooperative
situation is the Leader-Follower strategy in which one firm realizes the R&D invest-
ment at time t0 while the other one delays its decision at time t1. In particular way, as
the mutual information gain implies positive network externalities, we have shown
that the Leader role is assumed by the firm with the highest success probability.

Finally, computing the noncooperative and the cooperative critical market val-
ues, we are able to determine the range game in which is optimal each partnership
strategy. Moreover, using the Shapley values .ShA; ShB /, both firms split equitably
the cooperation surplus but they can agree upon several partnership contracts such
as the Asymmetric shares .PA; PB / based on different success probability.
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Unifying Cournot and Stackelberg Action
in a Dynamic Setting

Tonü Puu

1 Introduction

1.1 Background

Heinrich von Stackelberg, like Harold Hotelling, was one of those scientists of the
early twentieth Century, who put down many seeds for new original ways to look
at old problems in theoretical economics, often pointing at paradoxical issues with
no obvious solution. Stackelberg’s contribution to duopoly (von Stackelberg, 1934,
1938), one Century after Cournot’s initiation (Cournot, 1838), is probably his most
well known contribution.

Even if Stackelberg departs from Cournot in his leader/follower dichotomy, in
contrast to Cournot, there is no clue to any dynamization of the model. It is all
static equilibrium theory. One competitor can learn and take account of the Cournot
reaction function of the other and then maximize profits. If the latter indeed follows
the proper reaction function, everything is fine, there is a Stackelberg equilibrium.
The other competitor can do the same, and again, if the first then follows its reaction
function, everything is fine again, there is another Stackelberg equilibrium. They
can also both adhere to their reaction functions, and then one is back to Cournot’s
original case. However, if both competitors attempt leadership at once, then there is
trouble; both are disappointed as expectations show up wrong.

What will then happen? Will one of the competitors, or both, resign leadership,
and the system go to the Cournot or one of the Stackelberg equilibria? Stackelberg
did not give any clue at all to this.

A consequence of this is also that it is difficult to see how the Cournot and
Stackelberg models at all fit together. Suppose one sets up a dynamic Cournot
model, with, as it is popular to say now, “naive” expectations (as if not all hitherto
modelled expectations were naive). Further, suppose one of the competitors chooses
Stackelberg leadership action, and the other responds according to the Cournot
reaction function. In the Cournot setting, even if the other competitor responds as
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expected, the first would in the next run of the Cournot game always find Cournot
action better than adhering to the leadership attempt. The Stackelberg equilibria can
therefore simply not be considered as fixed points of the Cournot iterative map. And,
as for the reverse, Stackelberg theory is just static.

Current literature on Stackelberg duopoly focuses traditional static issues such as
existence of equilibrium, or compares equilibrium profits to those from the Cournot
case. (See Flam, Mallozzi, and Morgan (2002); Dastidar (2004); Colombo and
Labrecciosa (2008).) When dynamics is addressed the Stackelberg case is put in
an adaptive system, as is often done with the Cournot case (see Richard (1980)), but
the present author has not seen any attempt to integrate the traditional Cournot and
Stackelberg cases so that they turn up as fixed points of the same dynamic system.

1.2 Agenda

We would like to formulate a single more general map in which both the Cournot
and the Stackelberg equilibria can exist as fixed points. To this end we suggest a
rule for flipping between Cournot and Stackelberg action on the basis of expected
profits. The idea is to compare expected next period profits under Cournot action
to profits resulting from Stackelberg leadership. But, as already mentioned, (naively
expected) Cournot profits always exceed Stackelberg leadership profits, so we pro-
pose to locate the balance point between current Cournot and Stackelberg profits,
incorporating a scaling parameter. Such a rule is contestable, but it is at least a start.

By this, we can formulate a single model which contains both the Cournot and
Stackelberg solutions as fixed points, even including the point where both competi-
tors go on trying to remain leaders. The model may display multistability, and it
is also a specimen of heterogenous agent models. Normally, agent heterogeneity is
taken to mean that the agents stick to the same kind of behavior decided once and
for all. In the proposed model they can and do shift behavior, depending on the
unfolding of the process itself. By the way, Stackelberg’s original model must be
one of the earliest heterogenous agent models ever proposed before the term itself
came in use.

Having this agenda we choose a simple setup, used repeatedly by the present
author: A smooth iso-elastic demand function combined with constant marginal
costs for the competitors (see Puu (1991, 2004, 2000)). Arguments can be given both
for and against the iso-elastic case. To the advantage of the iso-elastic case speaks
that it results for individual consumers from Cobb-Douglas utility functions, and
further aggregates to the same kind of iso-elastic aggregate market demand func-
tion. The obvious alternative, linear demand functions, have discontinuity points,
and they aggregate to a kinked train of linear segments resulting in a Robinson
type of marginal revenue that jumps up and down. Such models with kinked lin-
ear demand functions may themselves offer prospects for interesting models (see
Puu and Sushko (2002)), though they would complicate things unnecessarily in the
present setting. An arguably minor disadvantage of the iso-elastic is that it is not
suitable for the discussion of collusion or monopoly.
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2 Model Setup

2.1 Cournot Action

2.1.1 Reaction Functions

Assume the inverse demand function

p D 1

x C y ; (1)

where p denotes market price and x; y denote the outputs of the duopolists. Given
the competitors have constant marginal costs, denoted a; b respectively, the profits
are

U D x

x C y � ax; (2)

V D y

x C y � by: (3)

Putting the derivatives @U=@x D 0 and @V=@y D 0, and solving for x; y, one
obtains

x0 D
r
y

a
� y; (4)

y0 D
r
x

b
� x; (5)

as the reaction functions. The dash, as usual, represents the next iterate, i.e., the
“best reply” of one competitor given the observed supply of the other.

2.1.2 Constraints

Obviously, (4) returns a negative reply x0 if y > 1=a, and (5) a negative reply y0 if
x > 1=b. To avoid this, we put x0 D 0 whenever y > 1=a, and y0 D 0 whenever
x > 1=b. This means reformulating (4)–(5) as follows

x0 D
( q

y
a
� y; y � 1

a

0; y > 1
a

; (6)

y0 D
( q

x
b
� x; x � 1

b

0; x > 1
b

: (7)
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2.1.3 Equilibrium

Putting x0 D x; y0 D y, one can solve for the coordinates of the Cournot equilib-
rium point

x D b

.aC b/2 ; (8)

y D a

.aC b/2 : (9)

Substituting back from (8)–(9) in (2)–(3), one gets the profits of the competitors in
the Cournot equilibrium point

U D b2

.aC b/2 ; (10)

V D a2

.aC b/2 : (11)

It is obvious that the firm with lower unit costs obtains the higher profit.

2.1.4 Profits

Note that (10)–(11) are the profits in the Cournot equilibrium point. During the
Cournot iteration process (4)–(5) profits can also be considerably higher than in
equilibrium. As we will see below, the Stackelberg leadership profits are always
higher than the Cournot equilibrium profits, but in the Cournot process tempo-
rary profits can exceed the leadership profits. To calculate temporary profits, just
substitute from (4) into (2), and from (5) into (3), and obtain

U D �1 �pay�2 ; (12)

V D
�
1 �
p
bx
�2

: (13)

Note that these may always seem to be nonnegative. But if y > 1=a or x > 1=b ,
i.e., the constraints for the first branches of (6)–(7) are violated, then this is due to the
fact that negative costs dominate over negative revenues, which in terms of subject
matter is nonsense. Anyhow, we already restricted the map (4)–(5) to (6)–(7), so we
need not be further concerned.

2.1.5 Stability

Of course, the Cournot equilibrium (8)–(9) can be stable or unstable. To check,
calculate the derivatives of (4)–(5)
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@x0

@y
D 1

2

1p
ay
� 1; (14)

@y0

@x
D 1

2

1p
bx
� 1: (15)

In the Cournot point, substitute from (8)–(9) to obtain

@x0

@y
D 1

2

b

a
� 1
2
;

@y0

@x
D 1

2

a

b
� 1
2
:

Note that both these Cournot equilibrium derivatives have an infimum value �1
2

;
hence neither can become smaller than �1, but either can become larger than 1, if
b
a
> 3 or a

b
> 3. Note that the derivatives always have opposite signs. To check

stability, compose the Jacobian

J D
	
0 b�a

2a
a�b
2b

0



: (16)

Iff ˇ̌̌
ˇ̌ .a � b/2
4ab

ˇ̌̌
ˇ̌ < 1 (17)

holds, then the Cournot equilibrium is stable, otherwise not. The condition is equiv-

alent to b
a
2
h
3 � 2p2; 3C 2p2

i
. In previous publications (see Puu (1991, 2004,

2000)) it was shown that, once the equilibrium point loses stability, there follows a
period doubling cascade of bifurcations to chaos.

2.2 Stackelberg Action

2.2.1 First Equilibrium

According to Stackelberg’s idea, the competitor controlling x can take the reaction
function (5) of the other for given, and substitute it in its own proper profit function
(2), to obtain

U D
p
bx � ax:

Putting dU=dx D 0, and solving, one gets

x D b

4a2
: (18)
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The corresponding value of y, provided that firm really adheres to its Cournot
reaction function, is obtained through substituting (18) in (5) and equals

y D 2a � b
4a2

: (19)

Using (18)–(19) in (3), the Stackelberg leadership profit can be easily calculated

U D b

4a
: (20)

2.2.2 Second Equilibrium

Similarly, the second firm can try leadership, substituting (4) in (3), and maximizing

V D pay � by;

to obtain
y D a

4b2
: (21)

The corresponding Cournot response of the first firm would then be

x D 2b � a
4b2

; (22)

and the Stackelberg leadership profit

V D a

4b
: (23)

It is easy to check that Stackelberg leadership profits always exceed the respective
Cournot equilibrium profits, i.e., (20) is higher than (10), and (23) higher than (11).

2.2.3 Stability

Even if the Stackelberg model is static, we could consider stability as only the leader
keeps to constant leadership action, (18) or (21), whereas the follower reacts accord-
ing to the Cournot reaction function, (5) or (4) respectively. We can hence consider
the stability of these partial reactions, as it is obvious that tiny disturbances of the
reacting competitor might make the system diverge from the Stackelberg equilibria.
So, if the first firm is a Stackelberg leader, then substituting from (18) in (15) yields

@x0

@y
D a

b
� 1; (24)
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which can never become less than �1, but can exceed 1. Hence, for stability we
require

a < 2b: (25)

Likewise we can substitute from (21) in (14), obtaining

@y0

@x
D b

a
� 1; (26)

and the stability condition
a < 2b (27)

for the second Stackelberg equilibrium.
Note that the fulfilment of these stability conditions (25) and (27) also guarantee

nonnegativity of the followership reactions according to (19) and (22). Further, note
that the Stackelberg stability conditions (25) and (27) are stronger than the condition
for Cournot stability (17).

2.2.4 Problems

These equilibrium solutions are consistent, provided one competitor in each case
agrees to act as a Cournot follower. If not, there is a problem that was noted by
Stackelberg.

But there is more to it because Cournot’s theory is dynamic, Stackelberg’s static.
One may ask: Could the Stackelberg equilibria (18)–(19) and (21)–(22) be fitted
into the Cournot dynamical system (4)–(5) as fixed points of the map?

The answer is no! If one competitor chooses to try leadership according to (18),
and the other indeed follows according to (19), then, in the next move, retaining
leadership by the first firm is no longer optimal under the dynamic Cournot map.
The leader could in fact obtain a higher profit through returning to Cournot action;
after all Cournot best reply was defined that way. The Stackelberg equilibria hence
cannot be fixed points of the dynamic Cournot map; it has to be modified in order
to accommodate these additional fixed points.

3 A Proposed Map

3.1 Profit Considerations

Above in (6)–(7), the output positivity constrained Cournot map was given. We
now want to amend this map through considering possible jumping to Stackelberg
leadership. It is close at hand then to compare current expected Cournot action profit,
as given in (12)–(13), to Stackelberg leadership profit according to (20) and (23).
We assume that there is a certain proportionality constant k such that the firms keep
to Cournot action as long as expected current profits are not less than Stackelberg
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leadership profits multiplied by this k, i.e.,

�
1 �pay�2 � k b

4a
; (28)

�
1 �
p
bx
�2 � k a

4b
: (29)

The value of the parameter k indicates how adventurous the competitors are at
attempting a jump to leadership action.

3.2 The Map

We can now specify the map resulting from these considerations with three branches
for each actor.

x0 D

8̂<
:̂

q
y
a
� y; y � 1

a
&
�
1 �pay�2 � k b

4a

b
4a2 ; y � 1

a
&
�
1 �pay�2 < k b

4a

0; y > 1
a
;

(30)

y0 D

8̂̂
<̂
ˆ̂̂:

q
x
b
� x; x � 1

b
&
�
1 �pbx

�2 � k a
4b

a
4b2 ; x � 1

b
&
�
1 �pbx

�2

< k a
4b

0; x > 1
b
:

(31)

This map can accommodate the Cournot equilibrium as well as both Stackelberg
equilibria.

4 Fixed Points

4.1 Cournot Equilibrium

4.1.1 Existence

In order to confirm that the Cournot equilibrium point is indeed located in its proper
region of application we have to check (28) and (29) for the Cournot point (8)–(9).
Substitutions result in just one single condition

k � 4ab

.aC b/2 ; (32)

which depends on k and the ratio b=a. The Cournot equilibrium (8)–(9) exists in its
region of definition iff (32) holds. As the right hand side attains a unitary maximum
value for a D b, we conclude that for (32) to hold it is then necessary that k � 1.
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4.1.2 Stability

The stability conditions for Cournot equilibrium were already stated above,

b

a
2
h
3 � 2p2; 3C 2p2

i
:

As Cournot equilibria according to (32) can be defined for b=a 2 Œ0;1/ the
requirement on stability constrains the existence region.

4.2 Stackelberg Equilibria

4.2.1 Existence

First Stackelberg Equilibrium

In a similar way we can deal with the existence problem for the Stackelberg fixed
points. Assume first that the firm supplying x is the leader, the firm supplying y
the follower. Then the coordinates of the fixed point are (18)–(19), whereas the
conditions for the branch definition are (28), sign reversed, and (29). Substituting
from (18)–(19), we get two conditions,

k >

 
2 �

r
2 � b

a

!2
a

b
;

k �
�
2 � b

a

�2
b

a
:

Again note that they only depend on the parameter k and on the ratio b=a.

Second Stackelberg Equilibrium

Reversing the roles of the firms, consider the fixed point (21)–(22), which must fulfil
the branch conditions (28), and (29), sign reversed. Again, substitution gives

k �
�
2 � a

b

�2 a

b
;

k >

�
2 �

r
2 � a

b

�2
b

a
:

In parameter space b=a; k (displayed in Fig. 1), the Stackelberg equilibria are
located in their proper branch ranges in the two small lens shaped areas. Note that
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Fig. 1 Existence regions in parameter space for Cournot point (lower hump), the regular Stackel-
berg leader/follower pairs (small lens shaped areas), and simultaneous persistence on Stackelberg
leadership (upper region with cuspoid bottomline)

they are disjoint, and separated by a vertical line at b=a D 1. Hence, for each
parameter combination, only one of the Stackelberg equilibria exists as a fixed point
(the one where the firm with lower unit cost is the leader).

In the same picture we also display the lower region of existent Cournot fixed
points. Note that it is disjoint from both Stackelberg equilibrium areas.

Persistence on Leadership by both Competitors

Finally, under the proposed map, there can also exist a fixed point where both firms
keep to Stackelberg action, choosing (18) and (21) respectively. It is a fixed point of
the map provided (28) and (29), both signs reversed, hold, which upon substitutions
from (18) and (21) become

k >
�
2 � a

b

�2 a

b
;

k >

�
2 � b

a

�2
b

a
:

The region in Fig. 1 of the parameter plane with the saw-toothed lower boundary
represents the cases where both firms keep to Stackelberg leadership, though it is
not any normal Stackelberg equilibrium. (In addition we have two more fixed points,
where any one firm persists at its Stackelberg leadership, and supplies so much
that the other firm drops out. Their regions of definition are not represented in the
picture.)
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As for the region outside the depicted existence regions for the fixed points, it
is not possible to say from the preceding simple analysis which kinds of attractors
may emerge there. Numerical experiment indicates periodic orbits.

Note the way Fig. 1 is constructed. The system is completely symmetric with
respect to a

b
and b

a
. Therefore, actually two diagrams, in b

a
; k-space and in a

b
; k-

space respectively were put back to back, with b
a

increasing to the right, and a
b

increasing to the left and b
a
D a

b
D 1 as the common dividing line. Had we chosen

just one of the ratios as the horizontal coordinate, then one half of the diagram
would have been squeezed in the interval .0; 1� whereas the other would extend
over Œ1;1/. This distortion would make it impossible to see the symmetry.

4.2.2 Stability

We already concluded that the regular Stackelberg equilibria are stable if

1

2
< b=a < 2:

Accordingly, the Stackelberg equilibria, unlike the Cournot equilibria, are always
stable when they exist.

5 Numerical Study

5.1 Bifurcation Diagram

5.1.1 Fixed Points

In Fig. 2, the bifurcation diagram, resulting from numerical experiment performed
to detect periodic orbits of the system (30)–(31) when starting from a point close
to the Cournot equilibrium point, is shown. To improve resolution, only the right
half of the diagram as compared to Fig. 1 is displayed. Obviously most of the plane
contains areas representing period 1 orbits, i.e., attracting fixed points. These are of
four different types (six in the format of Fig. 1), most of which can also be seen in
Fig. 1 that represented existence regions for fixed points.

1. At the bottom of the picture the Cournot attracting equilibrium area is shown.
It looks quite as in Fig. 1, though it yields periodic orbits where the Cournot
equilibrium turns unstable, at b=a D 3C 2p2, as we saw.

2. There is also the tiny lens shaped attracting Stackelberg area for the leader/
follower pair, also quite as in Fig. 1.

3. Likewise there is the region with the cuspoid bottom line, representing the
non-standard Stackelberg case where both competitors insist on sticking to
Stackelberg leadership (which Stackelberg in the equilibrium format considered
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Fig. 2 Observable are regions of periodic orbits. There are fixed points (period 1) of four different
types, further orbits of periods 3, 4, 8, 10, 12, and 14. Enlargements may display more detail. The
black area indicates higher periodicity, quasiperiodicity, or chaos

unresolvable). True, both competitors get disappointed, as the assumption that
the other acts as a follower does not hold, but under the defined map, neither
could find expected current profits from Cournot action more profitable. Also
this region has a corresponding one in Fig. 1.

4. There is further the region in the upper right part of Fig. 2, marked with a period 1
label, which was not shown if Fig. 1. It represents the case where one competitor
sticks to Stackelberg leadership, whereas the other finds no better action than to
suppress production altogether. It might seem to be a kind of monopoly. However,
as mentioned in the introduction, the model, in particular the iso-elastic demand
function, is not suitable to treat either monopoly or collusion. The reason is that
under iso-elastic demand market revenue is a constant. Hence a monopolist (or
a pair of collusive duopolists) could retrieve the whole revenue as profit without
incurring any production costs if they produce nothing and sell this nothing at
an infinite price. Such a solution is purely mathematical and has no meaning in
terms of economics; it is just a shortcoming of one assumption.

However, it can hardly be regarded as a major defect that the model is unsuitable
for the analysis of market situations which in the real world as a rule are forbidden
by law. Further, the dynamic model proposed can never end up at monopoly or
collusion, because the origin where the reaction functions (4) and (5) intersect (the
collusion state) is as unstable as anything can be, both derivatives according to (14)
and (15) being infinite at x D y D 0. There is just a little snag in the numerics;
the computer interprets zero as an exact number, so a computation may stick to
the origin despite of its instability. To avoid this, the exact zero in the definition of
(30)–(31) is replaced by a small number " D 10�6 in the experiment.
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Fig. 3 Blowup picture of part of Fig. 2 to show more of periodic orbits and overlaps. The black
regions indicate higher periodicities or more complex dynamics

5.1.2 Periodic Orbits

As so much of the area in Fig. 2 is taken up by fixed point regions, little is left for
other attracting orbits. We can see periodic orbits, labelled 3, 4, 8, 10, 12, and 14.
This is at the chosen part of parameter plane and the resolution of the picture, as no
higher periods were checked by the computer. The black area may contain higher
periodicities, quasiperiodicity, or even chaos.

There seems to be some irregularity in the lower part of Fig. 2 in the interval
a=b 2 Œ6; 7�, so we take a close up picture of it in Fig. 3. Notable are the two humps
of a spiky appearance. They indicate coexistence of attractors; for some parameter
combinations the chosen initial condition leads to one periodicity, for a nearby com-
bination to another. As we will see below, the model is proficient in such coexisting
attractors.

There are many potentially interesting bifurcation scenarios to pursue. We will
just pick one, with a=b D 3 fixed, and k 2 Œ0:65; 0:75�, indicated by the tiny
line segment in Fig. 2. In Figs. 4–7, the phase diagram is displayed for k D 0:65,
k D 0:7, k D 0:745, and k D 0:75.

5.2 Attractors and Basins

5.2.1 Coexistence

The phase diagrams show the two Cournot reaction curves, along with the lines
representing Stackelberg leadership action, further the different attractors, and their
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Fig. 4 Coexistent Cournot equilibrium and six-period SIM cycle at a=b D 3, k D 0:65
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Fig. 5 Coexistence of Cournot equilibrium three-period cycle, and two six-period cycles, one SIM
and one SEQ, at a=b D 3, k D 0:7

basins of attraction. Note that the periodic orbits are located on the intersection
points of a grid of three or four horizontal and vertical lines, hence producing
nine or sixteen attractor points. These are distributed between orbits of different
periodicities, such as 1C 3C 6C 6 D 16, or 3C 6 D 9, or 1C 4C 4 D 9.

First, take a look at Fig. 5, where b=a D 3; k D 0:7. As the fixed Cournot point is
destabilized only at k D 0:75, it remains stable. Its basin is the tiny rectangle around
the intersection of the Cournot reaction curves, and a few other tiny rectangles in
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Fig. 6 Same as previous picture at a=b D 3, k D 0:745, though two basins are about to disappear
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Fig. 7 The subcritical bifurcation, only the three-period cycle, and the six-period SEQ cycle
remain at a=b D 3, k D 0:75

the same shade. The cross, in the middle of which the main basin for the Cournot
point lies, also contains the points of a six-period orbit.

In addition there is another six-period orbit whose points lie on the Cournot reac-
tion function (including the Stackelberg lines). Some researchers call such orbits
“Markov perfect equilibria” (MPE).In the present author’s opinion this is mislead-
ing, as it is a periodic orbit and no fixed point. Earlier literature in stead distinguished
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between “sequential adjustment” (SEQ), where the competitors take turns in adjust-
ment, and “simultaneous adjustment” (SIM), where they adjust both at the same
time; though it was believed that the adjustment type must be chosen beforehand.
The points of a SEQ orbit necessarily lie on the reaction functions. Later it became
obvious that a SIM system, that was more general, could itself settle on a SEQ orbit.
Despite this mistake the present author finds it better to refer to the first six-orbit as
SIM, and to the second six-orbit as SEQ.

Finally, there is also a three-period orbit. So, 1 C 3 C 6 C 6 D 16, quite as
suggested.

Next, consider Fig. 6, where k D 0:745, and the cross has almost disap-
peared. Hence the basin of the Cournot point has shrunk to almost nothing, as
has the cross itself, which provides the basin for one of the six-period orbits. The
same orbits remain as in the previous picture, though two of them are about to
disappear.

This indeed happens at k D 0:75, the subcritical bifurcation in Fig. 7, where
both the Cournot equilibrium, and one of the six-period cycles have disappeared.
What remains are two attractors; the three-period orbit, and the six-period SEQ
cycle. In all, there are now 3 C 6 D 9 grid points in the intersections of three
(horizontal and vertical) lines. For further increasing k, the three- and six-cycles
remain.

Finally, Fig. 4 displays the case k D 0:65. The higher Stackelberg line is
not yet visited, so there is one SIM cycle, now of period 4, within the cross,
and another SEQ four-period cycle, with points on the reaction functions, as its
companion. Further, the Cournot point is, of course, also stable. In all, there are
1 C 4 C 4 D 9 periodic points on a grid of three by three lines. For k increas-
ing from below, this situation emerges at about k 2 Œ0:61; 0:62�. For lower k,
there is just the Cournot equilibrium point and one basin. It seems that the two
four-period orbits arise simultaneously at a bifurcation for some critical k, which
notably is considerably lower than the value at which the Cournot equilibrium is
destabilized.

5.2.2 Subcriticality

The fact that Cournot point, contained in a small basin, remains along with other
attractors indicates that the bifurcation from Cournot point to periodic orbits is sub-
critical, i.e., the fixed point is not just destabilized and replaced by another attractor
as in the supercritical bifurcation. It rather disappears through its basin contract-
ing and eventually vanishing, so that other attractors that already coexisted with it
remain the only ones. The scenarios connected with such subcritical bifurcations
often display quite complicated bifurcation structures in the boundary regions as
shown in Agliari, Gardini, and Puu (2005a,b). Further, subcritical bifurcations are
“hard” compared to the “soft” produced by supercritical bifurcations, and lead to
dramatic changes in the system when they occur.
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5.2.3 Profits

It may be of interest to check average profits over the various coexistent cycles.
Again take Fig. 5 for a start.

The Cournot point profits are then

U D 0:562;
V D 0:062;

as can be calculated from (10)–(11) when a D 0:5; b D 1:5. The firm facing three
times higher marginal cost hence receives slightly more than one tenth of the prof-
its of the other firm. According to (20), the first firm could even obtain a profit
U D 2:25 if it becomes a Stackelberg leader in equilibrium, but this situation is not
sustainable under the assumed parameter combination.

For the three-cycle, profits become

U D 0:377;
V D 0:240;

for the SEQ six-cycle
U D 0:446;
V D 0:172;

and for the SIM six-cycle
U D 0:461;
V D 0:160:

It hence always pays for the firm facing the higher marginal cost to try to break
out from a Cournot equilibrium to a cyclic solution, as this alters the profit shares to
its advantage; especially in the three-period cycle, where the profits of the duopolists
have the same order of magnitude.

For k D 0:745 or k D 0:75, Figs. 6 and 7, the situation remains the same,
the profit entries are not even changed at the chosen number of significant digits
displayed, though in the latter case the Cournot equilibrium and the SIM six-cycle
no longer exist.

As for the case k D 0:65, in Fig. 4, the facts are changed; the Cournot profits
remain the same, but for the four-period SEQ orbit we get

U D 0:601;
V D 0:074;

and for the four-period SIM orbit

U D 0:579;
V D 0:070:
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Thus, the competitor facing the higher production cost can not earn much from
periodic orbits, the profits remain about the same as in Cournot equilibrium.

5.2.4 Rational Expectations

The question now arises if the agents could learn the periodicity they produce. This
is easiest if the periodicity is low and the coexistent attractors have the same period.
We could choose the case displayed in Fig. 4, with just two four-period orbits. But
things become complicated enough, so check the facts at a parameter point b=a D
6; k D 0:4 within the bigger four-period tongue in Fig. 2.

There then exists just one four-period cycle of SEQ type, and a unique basin. The
four orbit points are:

(A) The competitor controlling y having chosen Stackelberg leadership, the one
controlling x responds with Cournot action.

(B) The competitor controlling y chooses Cournot action as it is better under the
map than keeping to Stackelberg action

(C) The competitor controlling x again responds with Cournot action
(D) The competitor controlling y now finds it better to return to Stackelberg action.

The profits from this four-cycle are now

U D 0:725;
V D 0:030;

which is not much different from the Cournot profits

U D 0:735;
V D 0:020;

but the point is no longer stable.

Given the simple regularity, suppose the agents learn the periodicity, and react,
not to the competitor’s action one period back, but four periods back. What would
be the outcome?

If one only considers the dynamic every fourth period, the outcome is exactly as
before. But, in the three intervening periods, the system will settle to an independent
cycle of the same type. The result is a composition of four four-cycles successively
displaced in time, and, even if we just have one original cycle, it is impossible to
make the composition break down to a four-cycle. The outcome is a 16-period cycle.
To see the point, consider a single four-cycle, whose points are denoted ABCD.

Try to arrange a four cycle. In the first line of the table there are three blanks
between the entries. To produce ABCD again, choose BCDA for the first blanks,
CDAB for the second, and DABC for the third, thus completing the sequence.
(Each new choice of entries is indicated in bold face.)
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A � � � B � � � C � � � D � � �
A B � � B C � � C D � � D A � �
A B C � B C D � C D A � D A B �
A B C D B C D A C D A B D A B C

So what is the outcome? The resulting sequence in the bottom row indeed starts
with ABCD, but it is not repeated, because then follows BCDA, CDAB , and
DABC . Only the full 16-sequence of the bottom line is repeated.

So, if the agents learn the periodicity of 4, they actually produce a periodicity of
16. The reader can try to arrange the sequences differently, but the outcome is always
the same; a 16-period cycle. The first four entries in the sequence of 16 determine
all the following, according to the order established in the original four-cycle, and
as we have four choices for each entry, there would now seem to exist 44 D 256

different cycles.
However, only 16 are different. The reason is as follows. Each recurrent sequence

of 16 entries contains 16 different four-sequences of entries, as we can start with any
one of the entries. (If we start with one of the three last entries, we just have to add
one, two, or three of the entries in the beginning of the full sequence.) But, as any
four subsequent entries in the sequence determine the whole 16-period cycle, any
of the 256 sequences belongs to a group of 16 identical orbits (only chosen with
different starting points). Hence, the total number of distinct orbits is 16.

Note that average profits in the 16-period cycle remain the same as in the four-
period cycle, because the same points ABCD are visited with the same relative
frequency as before though under different permutations.

To sum up; starting with one four-period cycle and one basin, learning produced
16 different 16-period cycles, and, of course, 16 different basins, though. we cannot
produce any picture of the basins in the phase diagram as it is eight-dimensional.
And so it goes on, learning and adjusting to the 16 periodicity produces a host of dif-
ferent 256-period cycles. The conclusion is that the idea of “rational expectations”
is untenable even in the simplest case of only one original orbit of low order. The
only periodicity that is possible to learn is a fixed point. For a general argument, see
Puu (2006).

6 Discussion

The purpose of this article was to define a dynamic duopoly system, as simple as
possible, but able to contain both the Cournot and the Stackelberg points as partic-
ular equilibria or fixed points. For this reason a traditional Cournot type of stepwise
adjustment was assumed, but it was amended through assuming that the competi-
tors might jump to Stackelberg leadership action if they were too disappointed by
currently expected Cournot profits. Depending on the two parameters of the simple
system, the unit production cost ratio and the coefficient for jumping to attempts at
leadership, different kinds of attractors could be detected.
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There could exist a stable Cournot equilibrium state or various Stackelberg equi-
libria, and the system could also go to periodic solutions, such as 3, 4, 6, 8, 10, 12, or
14. In certain parameter regions there could even be attractors of higher complexity.
A typical feature was that periodic attractors coexisted, with each other, and with
fixed points, and that the bifurcations were subcritical.

Stable Stackelberg points could exist for traditional leader/follower pairs
(depending on the unit cost ratio), but the system could also stick to both competi-
tors persisting in being Stackelberg leaders. It could also happen that a Stackelberg
leader managed to drive the competitor out of business.

In certain situations of multistabilty, the periodic orbits provided for considerably
better profit situations for the competitor facing high productions costs than would
the Cournot equilibrium.

The question was also raised if the competitors could learn the actual periodic-
ity and react accordingly with an appropriate delay. It was shown that even in the
simplest cases of just one attractor of low periodicity this was impossible, because
such learning and adaptation would inevitably alter the resulting periodicity. In a
superficial sense this is similar to the uncertainty principle in physics; in the present
case learning and adapting to a periodicity the competitors produce is bound to
change the periodicity itself. Rational expectations are hence impossible, except for
the single case of a fixed point.

The proposed integration of Cournot and Stackelberg, admittedly, is very simple,
and should be amended by other strategic action rules that tell how the competitors
break out from situations that are neither Cournot points nor traditional Stackelberg
leader/follower pairs. But it seems important to start trying to integrate Cournot and
Stackelberg in one dynamic model.
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Issues on Strategy-Switching Dynamics

Weihong Huang

1 Introduction

In many economic dynamic models, economic agents rationally and constantly
switch to more profitable strategies in response to the outcomes as well as the
environments.1 In most cases with finite agents, the payoff for adopting an opti-
mal strategy by each agent depends not only on the strategies space but also on
the frequency with which different strategies are adopted. A strategy that is rela-
tively superior to the others in a particular distribution can turn inferior in other
distributions. The nonexistence of a strategy, that is superior to all other strate-
gies for all distributions, forces rational agents to switch their strategies now and
then in response to changing frequency. In other words, economic agents “migrate”
constantly among the different strategy groups.

In such a set-up, the traditional concept of static equilibrium frequency (at which
agents in different strategy groups have identical benefits) is not applicable in
determining the final outcome of strategy-switching dynamics, for the reason that
certain variation may improve some agents’ payoffs and hence induce the “migra-
tion trend”. Such “migration” continues until none of them have incentive to change
further, a state of dynamic equilibrium, at which the profits across different strategy
groups may differ significantly.

1 The term of “strategy” adopted in this article is more general than the common usage in game
theory and most researches in industrial economics. It refers to the different options of dynamic
behavioral principle in contrast to the different choices of action variables. In quantity-competed
oligopolistic model, it is not the particular level of quantity but the different ways that determine
the quantity, such as “Cournot best-response”, “Stackelberg leader”and “price taking” that form
different strategies. In other words, we regard different “reactions curves” as different “strategies”,
while game theory interprets different points along a particular reaction curve (such as “the best-
response curve”) as different “strategies”.
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The aim of current research is to explore the new equilibrium and stability con-
cepts for the dynamic competition model involving frequency-dependent payoffs
and to evaluate the dynamic strategies from the perspective that is consistent with
the normative economic theory.

2 Illustration of Strategy-Switching Dynamics

To illustrate, consider a simple situation in which N players are allowed to take
two strategies: S D fX; Y g, with n players taking strategyX (belonging to strategy
group X ) and remaining N � n players taking strategy Y (belonging to strategy
group Y ).

We shall refer the distribution of players in the different strategy groups, denoted
by Nn D .n;N � n/ with 0 � n � N , as a state of the switching dynamics. Given
the state Nn, we denote 
x . Nn/ and 
y . Nn/ as the payoffs for the relevant players,
respectively.

All players are allowed to join or switch to each strategy group freely. The fol-
lowing two assumptions are essential to get a vivid picture of switching dynamics.

Assumption (Intra-group ordering). For each group, the members follow a certain
order in deciding whether to adjust his strategy (migrate to another), one member
at a time.

Assumption (One-step limited foresight). All players are bounded-rational in the
sense that they can only predict the outcome of their own action (whether to switch
or which strategy to switch) and make the decision based on such limited foresight.

At first, we shall see that, so long as one of 
x and 
y varies with Nn, the
traditional concept of static equilibrium frequency Nn� D .n�; N � n�/ at which

x . Nn�/ D 
y . Nn�/ is not always consistent with the final outcome.

Example 1. Let N D 6 and consider three different payoffs structures.
Table 1a depicts a typical situation in which increasing the size of strategy group

X benefits all agents. There exists a unique static equilibrium .3; 3/ at which we
have 
x .3; 3/ D 
y .3; 3/. However, it is not dynamically stable since the agents
in group Y has incentive to defect to group X due to 
x .4; 2/ > 
y .3; 3/. In fact,
we have 
x .n; 6 � n/ > 
y .n � 1; 6� nC 1/ for all 1 � n < 6; thus starting
with any n < 3, the static equilibrium can be reached but cannot be sustained due
to one-way migration trend:

.0; 6/! .1; 5/! .2; 4/! .3; 3/! .4; 2/! .5; 1/! .6; 0/ :

The monotonicity characteristics of the above one-way migration makes .6; 0/
be the final outcome, which will be referred to as a dynamical equilibrium.

Table 1b reflects another typical situation of the so-called “size advantage”, i.e.,
the strategy group with more players profits more than the one with less players. The
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Table 1a The unique static equilibrium is reachable but dynamically unstable
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 70 80 90 100 110
% % % % % %


y .n; 6� n/ 50 65 75 80 85 95 –

Table 1b A unique static equilibrium is both dynamically unstable and unreachable
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 70 80 90 100 110
. . . % % %


y .n; 6� n/ 110 100 90 80 70 60 –

Table 1c Static equilibrium is dynamically stable and reachable
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 75 85 90 80 70 60
% % % . . .


y .n; 6� n/ 60 70 80 90 85 75 –

distribution .3; 3/ is again a static equilibrium. It is dynamically unstable because
the players in group X has incentive to defect to group Y due to 
y .2; 4/ >


x .3; 3/ while the players in group Y has incentive to defect to group X for the
reason of 
x .4; 2/ > 
y .3; 3/. If the defections do not occur simultaneously, we
shall observe an one-way migration route until all firms adopt Strategyr X:

.3; 3/! .4; 2/! .5; 1/! .6; 0/

or an one-way migration pattern until all firms adopt Strategy Y:

.3; 3/! .2; 4/! .1; 5/! .0; 6/ :

Monotonicity exhibited in the above two migration routes implies that .3; 3/ is
not reachable unless it happens to be the initial distribution. In contrast, the two
extremes, .6; 0/ and .0; 6/ are both dynamically stable states.

As shown in Table 1c, the static equilibrium may also coincide with the dynamic
equilibrium, as shown by the payoff structure that is associated with the so-called
“size disadvantage”, that is, the strategy with less players makes higher payoffs than
the other2 (where migrations occur so long as the groups sizes are not equal).

.0; 6/! .1; 5/! .2; 4/! .3; 3/  .4; 2/ .5; 1/ .6; 0/ :

2 Such situations reflect the over-exploit of commons.
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Table 2a A unique dynamic equilibrium exists at one extreme
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 70 80 90 100 110
% % % % % %


y .n; 6� n/ 50 60 70 80 90 100 –

Table 2b Both extremes are dynamic equilibria
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 50 40 50 60 70
. . . % % %


y .n; 6� n/ 70 60 50 40 50 60 –

Table 2c The even distribution is the unique dynamic equilibrium
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 70 80 70 60 50
% % % . . .


y .n; 6� n/ 50 60 70 80 70 60 –

Example 2 (All bimodal distributions are static equilibria).

The inconsistency of the static equilibrium concept with the outcome of strategy-
switching dynamics even exists when two strategies have identical payoffs for all
bimodal distributions, that is, 
x .n; 6 � n/ D 
y.n; 6 � n/ for 1 < n < N .
As illustrated in Tables 2a–c, all the possibilities shown in Example 1 can be
reproduced.

Secondly, we shall see that, even when one strategy “statically” dominates the
other, say, 
y.n;N � n/ > 
x.n;N � n/ for all n, all the above possibilities can
still appear. Moreover, there exist possibilities in which none of the players is willing
to adopt the very strategy.

Example 3 (“Static dominant strategy” is unfavorable).

In Table 3a, even when 
y .n;N � n/ > 
x.n;N � n/ for all n, the players in
Group Y have the incentive to migrate to Group X such that not a single player is
willing to take static dominant strategy in the final outcome.

In contrast, Table 3b demonstrates the possibilities of multi-equilibria. Although

y .n; 6 � n/ > 
x.n; 6 � n/ for all n ¤ 0, 6, all distributions are stable in the
dynamic sense because players in Group X are indifferent before and after strategy-
switching.

The above examples call for meaningful concepts relevant to the strategy-
switching dynamics, which leads us to the next section.
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Table 3a Static inferior strategy is dynamically preferred for all distributions
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 70 80 90 100 110
% % % % % %


y .n; 6� n/ 55 65 75 85 95 105 –

Table 3b Static inferior strategy is dynamically indifferent for all distributions
.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 60 70 80 90 100 110
� � � � � �


y .n; 6� n/ 60 70 80 90 100 110 –

3 Dynamic Stability and Dynamic Dominance

Examples shown in Sect. 2 demonstrated the importance to distinguish the final
dynamic equilibrium of a strategy-switching regime from its traditional counterpart
as well as distinguish the static dominance concept from the dynamic dominance
concept for the strategies involved. This section intends to provide the relevant
definitions.

3.1 Dynamical Stability of Switching-Dynamics

In general, for a dynamic model involving finite population (N ) and finite dynamic
strategy space S D fsj glj D1, we are able to associate a state n PD .n1; n2; : : : ; nl /

with
Pl

j D1 nj D N and a payoff 
 i .n/ for the firms who adopt strategy i when
ni > 0; for i D 1; 2; : : : ; l .
Definition 1. A state Nn is said to be statically stable (or equivalently static equilib-
rium ) if all strategic groups enjoy identical payoffs, i.e., for all Nni > 0, Nnj > 0 and
i ¤ j , we have 
 i . Nn/ D 
j . Nn/.
Definition 2. A state Nn is said to be dynamically stable (or equivalently dynamic
equilibrium ) if


j
� Nn1; : : : ; Nni�1; : : : ; Nnj C 1; : : : ; Nnl

�
<
 i

� Nn1; : : : ; Nni ; : : : ; Nnj ; : : : ; Nnl

�
; if Nni>1;

(1)


 i
� Nn1; : : : ; NniC1; : : : ; Nnj�1; : : : ; Nnl

�
< 
j

� Nn1; : : : ; Nni ; : : : ; Nnj ; : : : ; Nnl

�
; if Nnj>1;

(2)

for all i ¤ j , i; j 2 f1; 2; : : : ; lg.
Remark 1. Condition (1) implies the internal stability for Group i: no firm in Group
i has incentive to defect to any other group. Condition (2) indicates the external
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stability for Group i because no firm in any other group has incentive to join Group
i for all i ¤ j , i; j 2 f1; 2; : : : ; lg.

For the two-strategy competition presented in Example 1.(b), both .6; 0/ and
.0; 6/ are stable distributions. However, in between these two stable distributions,
there exists an intermediate distribution .3; 3/, at which there is mutual attraction
between both groups. A member of Group Y finds its more profitable to migrate to
the Group X while a member of Group X also finds it beneficial to join Group Y
(or regret to betray from the latter). If the migrations to each group occur simultane-
ously, then the migration will last forever so that the distribution .3; 3/ remains
invariant. Such an equilibrium-alike phenomenon stimulates us to introduce the
concept of transiently stable distribution.

Definition 3. A state Nn is said to be transient-stable (or equivalently transient
equilibrium) if there exists some pair of .i�; j �/ such that Nni� > 1, Nnj � > 1 and


j � � Nn1; : : : ; Nni� � 1; : : : ; Nnj � C 1; : : : ; Nnl

�
> 
 i� � Nn1; : : : ; Nni� ; : : : ; Nnj � ; : : : ; Nnl

�
,


 i� � Nn1; : : : ; Nni� C 1; : : : ; Nnj � � 1; : : : ; Nnl

�
> 
j � � Nn1; : : : ; Nni� ; : : : ; Nnj � ; : : : ; Nnl

�
,

while inequalities (1) and (2) are satisfied for other irrelevant indices.

Remark 2. A state Nn is said to be transient-stable if there exists incentive for migra-
tion among some strategy groups and no incentive among the other groups. Unlike
the dynamically stable distribution, a transiently stable distribution is dynamically
unstable because any bias from it will direct the migration towards one of the nearby
dynamically stable distributions.

For a finite strategy space S D fsj glj D1, the dynamical-stability of a state Nn
requires .l2/ times of checking inequalities (1) and (2). Apparently, some of the
checking are overlapping. Therefore, q more efficient measure is resorted to simplify
the comparison and checking as well as to enable us to analyze how players migrate
from one group to the other to pursue higher payoff.

Definition 4. Marginal benefit of strategy-switching: by which we mean the poste-
rior increment in absolute payoff if a member of group j migrates to group i :

ıij

�
ni ; nj

� PD
 i
�
n1; : : : ; ni ; : : : nj ; : : : nl

�
�
j

�
n1; : : : ; ni � 1; : : : nj C 1; : : : nl

�
, ni � 1. (3)

The definition (3) suggests that

ıij

�
ni ; nj

� D �ıj i

�
nj C 1; ni � 1

�
for any j ¤ i ,

which implies that we only need to define the number of marginal benefit of strategy-
switching for those j > i . Then the set of .l2/marginal benefits of “defections” serve
well for the purpose of simplifying the analysis of migration effects. This is because,
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assuming that all ns , s ¤ i; j , are being fixed, ıij characterizes vividly the trend
of strategy-switching between Group i and Group j . Starting with any strategic
distribution

�
ni ; nj

�
, an incentive exists for a member of Group j to migrate to

Group i if ıij

�
ni ; nj

�
> 0.3 The migration ceases at

�
ni ; nj

�
in both directions

when ıij

� Nni ; Nnj

�
> 0 and ıij

� Nni C 1; Nnj � 1
�
< 0, which are nothing but (1)

and (2). Therefore, just by examining the signs of ıij

� Nni ; Nnj

�
for different

� Nni ; Nnj

�
combinations, we are able to see how the migration proceeds between Group i and
Group j (that is, how the states transit among them).

Example 4. For a two-strategies competition, say, S D fX; Y g, for any
given fixed number of players N , we have ny D N � nx . By denoting
ıN .nx/ PDıxy .nx; N � nx/, the marginal benefit of switching from strategy x

(Group X) to strategy y (Group Y) degenerates into a mathematical function with
single variable nx , should N be fixed. Since it is the sign of ıN .n/ that determines
the direction of strategy-switching, the monotonicity of ıN .n/ characterized by the
derivative ı0

N .n/ offers the sufficient condition to attain the relevant stable distri-
bution. In addition, ıN .1/ and ıN .N / are two important indicators for the trend of
strategy-switching. Based on the signs of these two indicators and the condition that
the sign of ıN .n/ is a monotonically function of n, we are able to characterize some
of the most typical types of stable distributions. These are summarized in Table 4
and illustrated in Fig. 2.

A state . Qn;N � Qn/ is transiently stable if ıN . Qn/ � 0 and ıN . QnC 1/ > 0. A tran-
siently stable distribution always occurs in between two extremal stable distributions
.N; 0/ and .0;N /, as illustrated by Pattern III of Fig. 1.

3.2 Stable Cluster

The relationships between the analytical property of payoffs and the possible pat-
terns of migration dynamics are by no mean straightforward. To see this, we proceed

Table 4 Typical patterns of stable distributions

Pattern Sign pattern of ıN .n/ Stable distribution(s) Sufficientconditions

I .�;�; � � � ;�;�; � � � ;�;�/ .0; N /
ı0
N .n/ < 0; ıN .1/ < 0

ı0
N .n/ > 0; ıN .N / < 0

II .C;C; � � � C;C; � � � ;C;C/ .N; 0/
ı0
N .n/ > 0; ıN .1/ > 0

ı0
N .n/ < 0; ıN .N / > 0

III .�;�; � � � �;C; � � � ;C;C/ .0; N / and .N; 0/ ı0
N .n/ > 0; ıN .1/ < 0; ıN .N / > 0

IV .C;C; � � � C;�; � � � ;�;�/ .n�; N � n�/ ı0
N .n/ < 0; ıN .1/ > 0; ıN .N / < 0

3 Additionally, we may assume that a member of Group j has incentive to migrate to Group i even
when ıij

�
ni ; nj

� D 0 but 
i
�
n1; : : : ; ni ; : : : nj ; : : : nl

�
> 
j

�
n1; : : : ; ni ; : : : nj ; : : : nl

�
. In other

words, the migration can be proceeded even if it results in relative profitability without sacrificing
the absolute profitability.
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n

1 2 N−1 N

(a) Unique stable equilibrium: (0;N)

1 2 N−1 N

(b) Unique stable equilibrium: (N;0)

n

0 0

n

1 2 n∗ n∗ + 1 N−1 N 1 2 n∗ n∗ + 1 N−1 N

(c) Unique stable equilibrium: (n∗;N − n∗)

n

0 0

(d) Coexistence of stable equilibria ((0,N) and (N,0))
with a transient equilibrium (k∗,N − k∗)

dN(n)

dN(n) dN(n)
dN(n∗) ≥ 0, dN(n∗ + 1) < 0 dN(n∗) ≤ 0, dN(n∗ + 1) > 0

dN(n)
dN(n) < 0, ∀n dN(n) > 0, ∀n

Fig. 1 Typical patterns of stable distributions

to examine the simplest case where all payoffs are monotonic to n.4 Even if

 i .n/ ; i D x; y, are both monotonic, the marginal benefit of switching ıN .n/

is monotonic only if .d
x=dn/.d
y=dn/ < 0, under which, the stable distri-
bution patterns are limited to four possible cases illustrated in Fig. 1. However, if
.d
x=dn/.d
y=dn/ > 0, more possible patterns can occur, as illustrated by the
following two examples for the cases in which d
x=dn < 0 and d
y=dn < 0.

4 A payoff function 
i .n/, i D x; y, is said to be monotonic with respect to n if d
i .n/ =dn does
not change sign for all n.
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Table 5a Coexistence of .N; 0/ and .n�; N � n�/

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 150 135 125 120 115 110
% . . . . %


y .n; 6� n/ 145 140 135 125 120 105 –
ıN .n/ – 5 �5 �10 �5 �5 5

Table 5b Coexistence of .0; N / and .n�; N � n�/

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 145 140 135 125 115 105
. % % % � .


y .n; 6� n/ 150 135 125 120 115 110 –
ıN .n/ – �5 5 10 5 0 �5

Table 5c Multiple stable states

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 85 80 65 62 55 50
. % . % . %


y .n; 6� n/ 90 75 70 60 58 45 –
ıN .n/ – �5 5 �5 2 �3 10

Example 5 (Coexistence of two stable states). There may coexist two stable states
such as .N; 0/ [ .n�; N � n�/ or .n�; N � n�/ [ .0;N / as illustrated in Tables 5a
and 5b, respectively. If the derivative ı0

N .n/ behaves irregularly, then multiple
bimodal equilibria can occur, as seen in Tables 3b and 5c.

The possibilities of coexistence of three or more dynamically stable states would
in turn suggest the coexistence of multiple transiently stable states. The following
proposition follows from intuition straightforwardly.

Proposition 1. For a two-strategy competition, between every two dynamically sta-
ble states

�
n�

1 ; N � n�
1

�
and

�
n�

2; N � n�
2

�
, with n�

2 > n�
1 C 1, there exists at least

one transiently stable state.

For a two-strategies competition, there always exists a stable state. Starting with
any unstable distribution, the strategy-switching behavior proceeds if necessary until
a local stable state is reached. In the terminology of dynamic theory, the strategy-
switching dynamics is monotonic converging, either to a local equilibrium, or to a
global equilibrium. Additionally, a stable cluster of states can also appear as shown
in the next few examples.

For a two-strategies competition, two neighborhood states .n;N � n/ and
.n � 1;N � nC 1/ are said to be indifferent if dN .n/ D 0. Indifferent states form
a cluster, which is locally stable if all the states outside of this cluster will transit
to it.
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Table 6a A stable cluster formed by indifferent states

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 70 65 55 45 40 35
% % � � . .


y .n; 6� n/ 65 60 55 45 55 60 –

Table 6b An unstable cluster formed by indifferent states

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 40 45 50 55 60 65
. . � � % %


y .n; 6� n/ 45 48 50 55 57 60 -

Table 6c An unstable cluster formed by indifferent states

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 40 45 50 55 60 65
% % � � % %


y .n; 6� n/ 35 40 50 55 57 60 –

Table 7a A stable cluster formed by transient state

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 40 50 40 50 40 35
% % . % . .


y .n; 6� n/ 35 45 50 40 45 40 –

Table 7b A stable cluster formed by transient state and indifferent state

.0; 6/ .1; 5/ .2; 4/ .3; 3/ .4; 2/ .5; 1/ .6; 0/


x .n; 6� n/ – 40 50 40 50 45 35
% % . % � .


y .n; 6� n/ 35 45 50 40 45 40 –

Example 6 (Stable and unstable cluster resulted from indifferent states). The payoff
structure shown in Table 6a presents a case of stable cluster. An extreme case occurs
when all states form a stable cluster, as shown in Table 3b.

A cluster can also be unstable if at least one of the states can transit to the states
outside the cluster, as illustrated in Tables 6b,c where the states .2; 4/, .3; 3/ and
.4; 2/ form a cluster.

Example 7 (Stable cluster resulted from transient equilibrium). A stable cluster can
also consist of a transient equilibrium and two nearby stable states, as shown in
Table 7a.

A mixed type of stable cluster that consists of indifferent transition and transient
equilibrium can be easily constructed, as shown in Table 7b.
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The possibility for stable cluster stimulates us to generalize the concept of
dynamic stability for a single state to the one for a stable cluster. When more than
three strategies are involved, the strategy-switching dynamics turns out to be much
more complex than the two-strategies competition. With some initial distribution,
the players may migrate cyclically. If all possible distributions result in a cyclical
evolutionary pattern, no stable distribution can exist. Instead of defining the stability
of the neighborhood of a cluster directly, a more general concept of stability to cover
both cyclical path and neighborhood cluster is provided as the following:

Definition 5. Directly linked distributions: two distributions n.k/ PD. Nn.k/
1 ; Nn.k/

2 ; : : : ;

Nn.k/

l
/, k D 1; 2 are said to be directly linked if there exist two indices i and j such

that Nn.1/
i D Nn.2/

i C 1 and Nn.2/
j D Nn.1/

j C 1 and Nn.1/
s D Nn.2/

s for all s ¤ i; j . In other
words, two distributions are directly linked to each other if one can reach the other
by a single migration activity.

Definition 6. A collection of distributions fn.k/g is said to form a cluster if any one
of them is directly linked to at least one other member of the collection.

Remark 3. If we visualize a distribution n.k/ as a node in a multi-dimensional lattice
(network) and connect any two directly linked distributions either with an one-way
arrow (to indicate possible one-way transit) or a two-way arrow (to indicate a pos-
sible two-way transit, which occurs when ıij

�
ni ; nj

� D 0), then starting with any
initial node in a neighborhood, all other nodes can be reached with at least one
arrow.

Definition 7. A cluster of states N� PDfNnkg is said to be a dynamically stable
attractor if:

1. External stability: all distributions linked directly to any one member of N�will
transit to it.

2. Internal stability: the distributions within the collection do not transit to those
that do not belong to the collection.

The above definition is particularly important for the strategy-switching dynam-
ics involving more than two-strategies, which will not be explored in the current
presentation (see Huang, 2009). But it is essential to point out that it is exactly
when more than two strategies are involved that the analysis of dynamics becomes
interesting: the stable attractor can be either a cyclical path or a chaotic cluster.

3.3 Dominance of Dynamic Strategy

As a complement to the concepts for the static “strategy” defined in game theory,
we conclude this section with an analogous one for the “dynamic strategy” under
the framework of strategy-switching dynamics.
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Definition 8. A strategy sj 2 S is said to be dynamically feasible if there exists at
least a dynamically stable state Nn with Nnj � 1.

Definition 9. A strategy sj 2 S is said to be dynamically stable if there exists a
unique dynamically stable state Nn such that Nnj � 1.

Definition 10. A strategy sj 2 S is said to be dynamically infeasible if for all
dynamically stable state Nn; we have Nnj D 0.

Remark 4. When there are more than two strategies involved, there may not exist
any dynamically stable distribution. Equivalently to say, there may exist possibilities
in which all strategies are infeasible.

Definition 11. An economically stable strategy si 2 S is said to be dynamically
dominant if for all j ¤ i , we have

ıij

�
ni ; nj

�
> 0 for all 1 � ni � Nij ;

where Nij D N �Ps¤i;j ns .

Remark 5. To distinguish from the “static” concept of strategy dominance in the
standard game theory, we may regard the economic-dominance as a dynamic
dominance concept.

If the strategy si is dynamically dominant, then .0 � � �0;N; 0 � � �0/ must be the
unique dynamically stable distribution. The converse, however, is always true for
two-strategy competition but not when the strategy space consists more than two
strategies.

The following facts, however, can be proved straightforward.

Proposition 2.

1. There exists at most one dynamically dominant strategy.
2. If a strategy is dynamically dominant, all other strategies must be dynamically

infeasible.

4 Economic Applications: Dominance of Price-Taking Strategy

The ad-hoc examples provided in previous sections serve only as illustrations. To
appreciate the newly defined concepts and their implications, it is necessary at this
point to apply these concepts and the relevant framework to a concrete economic
problem. We choose the traditional quantity-competed oligopoly model to serve
such a purpose for the reason that the distinction between the static dominance and
dynamic dominance can be best illustrated.
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4.1 Static Dominance of Price-Taking Strategy

Consider an oligopoly market, in which N firms produce a homogeneous product
with quantity qi

t , i D 1; 2; : : : ; N , at period t . The market inverse demand for the
product is given by pt D D.Qt /, where D0 � 0. It is assumed that the actual
market price adjusts to the demand so as to clear the market at every period, that is,
Qt DPN

iD1 q
i
t . The payoffs of firm i is given by


 i
�
Qt ; q

i
t

� D D .Qt / q
i
t � Ci

�
qi

t

�
.

Definition 12. By the price-taking strategy we mean any firm adjusts its output Nqi

dynamically in response to market price so that5

D .Qt / D C 0
i

� Nqi
t

�
. (4)

Then we have the following beautiful result on the (static) dominance of price-
taking strategy (Huang, 2008):6

Theorem 1. If D0 < 0 and C 00
i > 0 are satisfied, for all j such that Cj D Ci , we

have

 i .Qt ; Nqi

t / � 
j .Qt ; q
j
t /; (5)

where Qt D Nqi
t C qj

t C
P

l¤i;j q
l
t and the equality holds if and only if qj

t D Nqi
t . In

other words, a firm adopting price-taking strategy has the relative profitability over
any other firm who has identical cost but produces at different output level.

The conclusions drawn in Theorem 1 is generic in the sense that it is robust to the
changes (during the evolutionary process) in the market environments such as the
market demand, entry and exit of oligopolistic firms, advances in some or overall
technology level.

The driving force behind the long run outcome in the evolutionary literature is
the relative payoff (Schaffer, 1989), rather than the absolute payoff assumed in most
fields of economics, including standard game theory. From this regard, the price-
taking strategy defined above is definitely evolutionary stable. However, according
to the normative economic theory, it is the absolute profit, not the relative profit,
that an economic agent should pursue. Although a firm can enjoy a relative payoff
advantage over the other firm by adopting a certain evolutionary stable strategy, it
may find it worthwhile to give up such advantage by switching to the other “inferior”
strategies to gain extra increment in the payoff. Extreme cases may arise in which

5 It needs to emphasize that this definition is different from the price-taking strategy defined in
evolutionary game theoretic literature, where the output level of competitive equilibrium is defined
as the price-taking strategy.
6 The relative profitability of the price-taking strategy was first formally proposed in Huang (2002)
where the proof was mistakenly omitted in the editorial process.
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none of the agents adopts an evolutionarily stable strategy. These points can be made
clearer with a symmetric oligopolistic model.

Assume that N oligopolistic firms have identical cost and are divided into two
strategic groups, X and Y. Group X consists of n price-takers whose output x is
determined by

D .Q/ D C 0 .x/ . (6)

The restm D N�n firms in Group Y are Cournot optimizers who adopt individually
the conventional Cournot best-response strategy (C ). Denote these firms’ average
output as y, then y is implicitly determined by7

D .Q/C yD0 .Q/ D C 0 .y/ , (7)

where Q � nx Cmy.
Apparently, the equilibrium profits at an equilibrium . Nx; Ny/ established by (6) and

(7) for each firm in these two strategy groups, denoted as 
x and 
y , respectively,
depend on .n;m/, the state:


x .n;m/ D Nx �D .n Nx Cm Ny/ � C . Nx/ ,


y .n;m/ D Ny �D .n Nx Cm Ny/� C . Ny/ .

The extremal distributions .N; 0/ and .0;N / thus correspond to the competitive
equilibrium and the Cournot equilibrium, respectively.

Denote
	
xy .n;m/ � 
x .n;m/ � 
y .n;m/ (8)

as the profit difference for n � m > 0. It follows from (5) that 	
xy .n;m/ > 0

for all n � m > 0, providing C 00 > 0 and D0 < 0. In words, regardless of how
N firms are distributed between the two groups, any member of Group X (if is
not empty) makes higher profit than the firms in Group Y. If firms are after the
relative payoffs, all members of Group Y will defect to become price-takers so that
competitive equilibrium .N; 0/ ends up as the unique dynamic stable equilibrium
distribution. On the other hand, if firms pursue absolute profits, at any distribution
of .n;N � n/, 1 � n � N; there exists economic incentive for any member of
Group X to join Group Y if

ıN .n/ � 
x .n;N � n/� 
y .n � 1;N � nC 1/ < 0.

This is the situation where a price-taker is willing to sacrifice its relative prof-
itability in exchange for the absolute profitability by migrating back to Group Y. In
consequence, an exact opposite outcome may occur, that is, all firms may abandon
the evolutionary stable strategy and switch to Cournot best-response strategy so that

7 Here we assume that firms in Group Y do not collude together, which is equivalent to assume that
each and every firm in Group Y knows nothing about the group size N � n.
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.0;N / becomes the unique stable distribution. Alternatively speaking, the Cournot
best-response strategy turns out to be dynamically dominant, although the price-
taking strategy is static-dominant. Such extreme case can be easily constructed, as
shown in the next subsection.

4.2 The Price-Taking Strategy Can Be Dynamically Infeasible

Let the market demand be iso-elastic: D .Q/ D 1=Q, and the cost function be
quadratic (linear marginal cost): C .q/ D cq2=2. (6) and (7) turn out to be

1

nx C .N � n/ y D cx;
1

nx C .N � n/ y �
y

.nx C .N � n/ y/2 D cy;

from which an equilibrium . Nx; Ny/ is solved as

Nx D
p
g .n/ �N Cmp

2cn
, Ny D n .N C 1 � g .n//

.N � n/p2cn .g .n/ �N C 1/ ,

where g .n/ �
q
.N � 1/2 C 4n. The equilibrium profits for each firm of two

groups are respectively


x .n;N � n/ D 1

4n
.g .n/ �N C 1/;


y .n;N � n/ D .N C 1/2 C .N � n/ .N � 1/� .2N C 1 � n/ g .n//
4 .N � n/2 :

It can be easily checked that 	
xy .n;N � n/ > 0 for all 1 � n � N � 1, i.e.,
the price-takers make more profit than the Cournot optimizers for all distributions.

It turns out that ıN .n/ < 0 for all 1 � n � N , which suggests that
.0;N / is the unique stable distribution and hence the price-taking strategy is
completely abandoned by all firms. Following our earlier definitions, the Cournot
best-response strategy is dynamically dominant although the price-taking strategy
is static dominant.

However, the beauty of price-taking strategy should not be undermined just
by this particular example. The dynamic dominance of a particular strategy relies
strongly on the market demand, the cost structure, and even on the number of firms
involved, as illustrated in the next section.
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4.3 The Price-Taking Strategy Can Also Be Dynamically
Dominant

Let the market demand be linear:8 D .Q/ D 1 �Q, and the cost function remains
to be C .q/ D cq2=2. Equations (6) and (7) now become

1 � nx � .N � n/y D cx;

1 � nx � .N � n/y � y D cy;

which yield . Nx; Ny/ D ..1C c/ = .nC c .N C 1C c//, c= .nC c .N C 1C c/// so
that


x .n;N � n/ D c .1C c/2
2 .nC c .N C 1C c//2 ;


y .n;N � n/ D c2 .2C c/
2 .nC c .N C 1C c//2 :

Again it can be easily checked that	
xy .n;N � n/ > 0 for all 1 � n � N �1,
that is, the price-taking strategy is static dominant. However, the sign of marginal
benefit of switching ıN .n/ now depends on the size of the industry.

Denote d�e and b�c as the ceiling function and floor functions, respectively, which
returns the smallest (largest) integer greater (less) than or equal to a non-negative

number. Let Nl PDmaxf2;
j
1Cpc .c C 2/kg and Nu PD

l
1C .c C 1/p1C 2=cm,

then the relationship between the market size and the dominance of price-taking
strategy can be seen in Fig. 2 and summarized in the following proposition.

Proposition 3. When D .Q/ D 1 � Q and C .q/ D cq2=2, the outcome of the
strategy-switching dynamics depends strictly on the number of N :

Case (I) when N � Nl , the Cournot best-response strategy is dynamically
dominant (equivalently, .0;N / is the unique stable distribution).

Case (II) when Nl < N < Nu, there is no dynamically dominant strategy so
that both strategies are economically feasible (equivalently, two stable distributions
.N; 0/ and .0;N / coexist with a transiently stable distribution . Qn;N � Qn/).

Case (III) when N � Nu, the price-taking strategy is dynamically dominant
(equivalently, .N; 0/ is the unique stable distribution).

We are able to conclude that:

(1) Unless c is very large (c 
 1), condition N � Nl is rarely satisfied for N
greater than 2. On the other hand, regardless of c, condition N > Nu is easily
satisfied when N is sufficiently large.

8 The linear demand is conventionally assumed to take the form of D .Q/ D a � bQ (see Fisher,
1961 and Rothschild, 1990). It can be verified that, with appropriate change of quantity variable Q
as well as redefinition of parameters, the effects of parameters a and b can be summarized into the
cost parameter c.
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Fig. 2 Illustrations of Nl and Nu

(2) The difference between Nl and Nu decreases with increasing c and approaches
a limit that equals to unity. When c � 2, that is, c is relatively large, the dif-
ference between Nl and Nu peaks at unity, which suggests that Case II do not
occur. Only when c is relative small (c � 1) that the difference between Nl

and Nu is large enough to generate Case II.
(3) When c � 1, a single new firm may make a huge difference as it may turn the

stable distribution from .0;N / to .N C 1; 0/.
(4) Regardless of c, increasing N increases the dynamic dominance of the price-

taking strategy.

5 Conclusions

The strategy-switching dynamics in the dynamic competition models where the
agents are after the absolute profitability, with the bounded rationality, and the pay-
offs are frequency-dependent are studied. The relevant equilibrium and stability
concepts have been defined for the dynamic strategies from a perspective that is
consistent with the normative economic theory, and complement the ones defined
for the static strategies from the evolutionary game-theoretical perspective. Based
on such a framework, the appreciation of price-taking strategy can be reexamined.

Compared to the model with two strategies, the strategy-switching dynamics for
multi-strategies are more difficult to analyze. This is because, for the two-strategy
competition, the actual realization of switching path is consistent with the “incen-
tive”of switching because only one target is considered. On the contrary, when the
size of the strategy space is more than two, there exists the possibility that a member
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of a strategy group has incentive to migrate to several other strategy groups. If pay-
offs are identical for some of these target groups, the actual migration path is not
unique, even after an additional assumption that the agents are all after higher payoff
is imposed. Such indeterminacy of strategy-switching results in the indeterminacy
of the next state along a migration path. Moreover, if such phenomenon occurs
within a stable cluster, a chaotic-like behavior can be observed along the trajectory
of migration. These issues will be explored further in the subsequent study.

Many interesting questions remain unanswered from the aspect of “strategy”. It
is unclear whether the dynamic dominance property of a particular strategy can be
affected if the original strategy space is expanded. For instance, if X dynamically
dominates Y , Y dynamically dominates Z, will X dynamically dominate Z? In
other words, the answer to whether the dynamic dominance characteristics can be
preserved transitively remains unknown.

Even for the symmetric oligopoly model with heterogeneous strategies as pre-
sented in Sect. 4, it is unclear when the price-taking strategy can be dynamic
dominant. Future research will include identifying the necessary and/or sufficient
conditions for the dynamic dominance of price-taking strategy.
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R&D Public Expenditure, Knowledge
Spillovers and Agglomeration: Comparative
Statics and Dynamics

Pasquale Commendatore, Ingrid Kubin, and Carmelo Petraglia

1 Introduction

Since the introduction of the influential core-periphery (CP) model by
Krugman (1991), New Economic Geography (NEG) models have provided a natural
framework for non-linear dynamic analysis.1 Moreover, as shown by the compre-
hensive picture of policy implications of the NEG paradigm provided by Baldwin
et al. (2003), a well established finding is that policy changes have non-linear effects
on industrial location, in general.

Why economic activities tend to cluster in space is an old question. Often refer-
ring to Marshall’s famous classification, regional and urban economists analysed
the agglomerative effects of better access to public goods in central locations, of
knowledge spillovers between firms and of labour market pooling (see for a recent
survey Duranton and Puga 2004). Instead, the NEG focuses on the trade costs,
increasing returns at the firm level and factor mobility, and determines endogenously
the spatial distribution of (monopolistically competitive) firms by the interplay of
agglomeration and dispersion forces (see Venables 2008).

In Krugman’s CP model, mobile workers spend their incomes locally and the spa-
tial distribution of industrialized activities is driven by three effects. The “market-
access” effect (i.e. the tendency of imperfectly competitive firms to locate in the
large market and export to small markets) and the “cost-of-living” effect (i.e.
goods are cheaper in regions with higher concentration of industrial firms) encour-
age agglomeration. The “market-crowding” effect (i.e. the tendency of imperfectly

1 Noticeable previous contributions on non-linear dynamics in regional economics are those by
Mees (1975), Puu (1981) and White (1985). Mees (1975) demonstrated that slow improvements
in transportation and communication can result in the catastrophic agglomeration of population
in cities. In 1981, Puu established the possibility of catastrophic changes in the structure of intra-
regional trade flow patterns. In 1985, White examined the onset and character of chaotic behaviour
in a multisector multicentre simulation model.
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competitive firms to locate in regions with less competitors) favors dispersion. Com-
bining the “market-access” effect and the “cost-of-living” effect with migration
creates the potential for cumulative causality and self-reinforcing agglomeration
processes (Baldwin et al. 2003, p. 10). As a result, complete agglomeration in one
region may be a stable equilibrium. Within the NEG, the CP model impresses with
the richness of delivered results; however, due to cumulative causality, it is difficult
to manipulate analytically and most results are obtained via numerical simulation.

The Footlose Capital (FC) variant of the CP model, originally proposed by
Martin and Rogers (1995), assumes that the mobile factor (capital) repatriates all
of its earnings to its region of origin. Such an assumption cuts off “cumulative
causality” thus rendering the analysis much more tractable.

The use of NEG models for policy analysis is a quite new (and still controver-
sial) achievement (see Neary 2001; and also Sachs and McCord 2008).2 In two
recent papers we contribute to this literature by introducing into a FC model public
goods as another potentially agglomerative force;3 in particular, we explicitly mod-
eled productivity enhancing public expenditure and decomposed its overall effect on
industrial location into two components. First, the productivity effect: an increase
in the provision of public services in one region lowers labour input requirements
and leads firms to relocate there. Second, the demand effect: the increase in taxation
required to finance this provision and the consequent contraction in private expen-
diture for manufactured goods favour dispersion via a change in the relative market
size. In Commendatore et al. (2008b) we adopt a two-region FC model with endoge-
nous capital and focus our analysis on the equilibrium outcomes. In Commendatore
et al. (2009), we consider a much simpler analytical framework – a FC model with-
out an investment sector – and fully characterize the dynamic process underlying
capital movements (including an explicit existence and local stability analysis of
the emerging fixed points).

Our present contribution departs from Commendatore et al. (2008b, 2009) in
three main aspects. First, we restrict our attention to R&D public expenditure and
assume that the productivity enhancing effect induced by public policy takes place
via a reduction of fixed costs in the manufacturing sector. Consequently, the stan-
dard equalisation between number of firms and capital units does not apply. Second,
we are able to consider how public policy impact on the spatial distribution of cap-
ital, also altering both the localisation and the number of firms. Third, we relax
the assumption of pure local effects of productive public expenditure, studying the
spatial spillovers effects of public policy.

2 Commendatore et al. (2008a) show that the policy propositions derived in Baldwin et al. (2003)
are not robust with respect to the temporal specification of the economic geography model
employed (continuous vs discrete time).
3 Note that we do not incorporate direct knowledge spillovers between firms (another of the poten-
tially agglomerative forces mentioned above). Bischi and Lamantia (2002) and Bischi et al. (2003a,
2003b) analyse in an industrial organization modelling framework the complex clustering dynam-
ics generated by such direct knowledge spillovers. Extending our model in this direction is left for
further research.
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Assuming that knowledge creation is financed by the public sector, we will
explore the location effect of knowledge creation and diffusion across regions.
Publicly financed local universities and research centres (or the government itself)
undertake R&D activities which have a positive productivity effect on firms via a
reduction of fixed costs. We will pursue the analysis for both the cases of global
and of local knowledge spillovers. In the first scenario, we will assume that once
new ideas have been generated they can freely circulate across regions and firms
can benefit to the same extent from publicly financed R&D activities, regardless of
their location (perfectly global spillovers). In the second case, we will maintain that
knowledge generated by R&D activities undertaken in one region is beneficial to
both local and foreign firms to a different extent though (perfectly/partially local
spillovers).

We will disentangle the demand and productivity effects induced by changes in
public expenditure on R&D and their impact on industrial location equilibria. This
will be done under the alternative assumptions of global and (partially/perfectly)
local knowledge spillovers. Both local and global dynamics of the model will be
studied. In particular, we will deliver a local dynamic analysis on the impact of
trade freeness on the long-term regional allocation of capital and an analysis of the
complex structure of the basins of attraction of the boundary fixed points.

The remainder of the paper unfolds as follows. Section 2 introduces the assump-
tions of the model. Section 3 reports the derivation of the short-run equilibrium.
Section 4 introduces the complete dynamic model. In Sects. 5 and 6 we study the
impact of public policy on industrial location in the cases of global and local knowl-
edge spillovers respectively, focussing on the local dynamics properties. Section 7
deals with global dynamics properties. Section 8 concludes.

2 Assumptions

Our analytical framework is based on the FC model (Martin and Rogers 1995). The
economy is composed of two regions, labelled 1 and 2. Each region has a perfectly
competitive agricultural sector and, potentially, a manufacturing sector. There are
two productive factors, labour and capital, equally distributed amongL households,
which are in turn symmetrically distributed across regions (that is, L=2 households
reside in each region). Each household supplies inelastically one unit of labour, thus
L represents also total labour supply. Households move freely within a region but
are not prepared to migrate across regions and spend all their earnings in the region
where they live. Physical capital, however, is allowed to move between regions. We
denote by K the overall number of capital units.

A local government may provide a public good which reduces manufactur-
ing firms (fixed) costs. For simplicity we assume that the provision of the public
good does not impact on consumers’ utility. We interpret such public good as
R&D activities undertaken by universities or by other institutions financed by the
government.



160 P. Commendatore et al.

The representative household’s utility function is4

U D C 1�	
A C

	
M (1)

where CA and CM correspond to the consumption of the homogeneous agricultural
good and of a composite of manufactured goods:

CM D
nX

iD1

c
��1

�

i (2)

where ci is the consumption of good i , n is the total number of manufactured goods
and � > 1 is the constant elasticity of substitution; the lower � , the greater the con-
sumers’ taste for variety. The exponents in the utility function 1�� and � indicate,
respectively, the invariant shares of disposable income devoted to the agricultural
and manufactured goods, with 0 < � < 1.

One unit of L is required to produce one unit of the homogeneous agricultural
good. We also assume that the so-called “non-full specialisation condition” holds;
i.e. the agricultural sector in each region is not large enough to satisfy the demand
of the overall economy and both regions produce the agricultural good (Baldwin
et al. 2003, p. 72).

Each local public sector finances R&D activities aiming to increase productivity
in the regional manufacturing sector. For one unit of such a public good, labelled
CAG, one unit of the agricultural good is used:

H D CAG (3)

R&D public expenditure is financed by income taxation under a balanced govern-
ment budget constraint.

Manufacturing is modelled as a Dixit-Stiglitz monopolistically competitive sec-
tor. Increasing returns prevail: each manufacturer requires a fixed input of ˛ units
of capital to operate and has a constant labour requirement ˇ for each unit of
production.

We assume that ˛ depends (negatively) upon R&D activities financed by the
local public sector. Moreover, fixed cost reduction may also result from the use
of new ideas spilled over from the other region.5 More formally, we assume that
the provision of public goods affects the capital input requirement according to the

4 In this section, we differentiate notation between regions 1 and 2 only when necessary. Moreover,
we introduce the notation concerning the time sequence only in the next section.
5 For simplicity, we assume that the provision of public goods only affects the fixed input. For
the case in which the provision of productivity enhancing public goods affects the variable input
requirement ˇ, see Commendatore et al. (2008b, 2009). In a more general framework, one could
assume that public goods affect both fixed and variable factor productivity (see, for instance, the
Footloose Entrepreneur model by Brakman et al. 2008).



R&D Public Expenditure, Knowledge Spillovers and Agglomeration 161

following relationship:

˛r D f .Hr ; Hs/ D 1

1C A.Hr C �Hs/
(4)

where r; s D 1; 2, r ¤ s, A > 0 and � measures the ability of firms located in
region r to absorb knowledge created in region s. Hence, the term (Hr C �Hs)
defines “global knowledge” potentially available to firms located in region r and the
parameter 0 � � � 1 measures the degree to which R&D activities undertaken in
region s affect capital productivity in region r via knowledge diffusion from the for-
mer to the latter.6 Imposing � D 1 implies that knowledge spillovers are perfectly
global, i.e. the impact of knowledge on productivity is independent of where knowl-
edge is originated and firms can benefit to the same extent from public expenditure
on R&D regardless of their location. When 0 � � < 1, instead, a firm’s capacity to
take advantage of knowledge is affected by its location (the extreme case � D 0 rep-
resenting “perfectly local spillovers”, with no knowledge transfer from one region
to the other).7

Given consumers’ preference for variety and increasing returns, a firm will
always produce a variety different from those produced by other firms. Furthermore,
denoting by � the share of capital located and used in region 1 and considering that
˛r units of capital are required for each manufacturing firm in region r (r D 1; 2),
the number of varieties produced in region r corresponds to

n1 D �K

˛1

andn2 D .1 � �/K
˛2

(5)

The total number of firms/varieties is

n D n1 C n2 D ˛2�C ˛1.1 � �/
˛1˛2

K (6)

Equations (4), (5) and (6) imply that the total number of firms and, for 0 < � < 1,
the number of firms located in each region depend on the local provision of public
goods.

6 For a similar concept, applied to “technological spillovers”, see Baldwin and Martin (2004).
7 The driving forces of knowledge diffusion across borders are not studied here. A possible exten-
sion to our model, that we leave for future work, would be to endogenize the degree of international
knowledge spillovers, with � being a function of some concept of distance. The empirical evidence
provided by Jaffe et al. (1993), for instance, would suggest imposing a linear (negative) relation-
ship between � and geographical distance (knowledge spillovers are mainly of the local type). On
the other hand, using the concept of “cognitive” distance (Nooteboom 2000) one should impose a
non-linear relationship between the former and � in order to have effective knowledge spillovers,
as agents (or regions) exchanging knowledge should have a sufficient level of common knowl-
edge in order to communicate (i.e. a sufficiently small cognitive distance) and a sufficient level of
heterogenous knowledge (i.e. sufficiently large cognitive distance) in order to have non-redundant
transfers of knowledge. Furthermore, increasing values of � could capture a higher “technologi-
cal” distance dividing firms located in the two regions, implying that knowledge becomes more
and more specific to local production as such a distance increases.
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Finally, it is assumed that the agricultural good is traded costlessly, while trans-
port costs for manufacturers take an iceberg form (Samuelson 1954): when 1 unit
is shipped only a fraction 1=T arrives at the destination, where T � 1. Follow-
ing Baldwin et al. (2003), we introduce the “trade freeness” parameter � 	 T 1�� ;
where 0 < � � 1, with � D 1 corresponding to no trade cost (T D 1) and with
� ! 0 corresponding to trade cost becoming prohibitive (T !1).

3 Short-run General Equilibrium

In this section, we explicitly introduce time by characterising a short-run general
equilibrium. In period t , a short-run general equilibrium is contingent on the given
spatial allocation of capital, �t . As �t changes through time, the short-run equi-
librium changes accordingly. In the agricultural market, short-run equilibrium is
instantaneously established. With perfect competition agricultural profits are zero
and the equilibrium nominal wage of workers in period t is equal to the price of the
agricultural good. Moreover, in the absence of transport costs, the agricultural price
is identical in both regions; it follows that nominal wages are also equalised across
regions. We take this wage/agricultural price as the numéraire. Under the assump-
tion of identical behaviour, each firm sets the same local (mill) price p using the
Dixit-Stiglitz pricing rule. Given that the wage is 1, the local price of every variety
is:

p D �

� � 1ˇ (7)

Taking into account transport costs, the effective price paid by consumers for one
unit of a variety produced in the other region is pT.

Short-run general equilibrium in period t requires that each manufacturer meets
the demand for its variety.8 For a variety produced in region r :

xr; t D dr; t (8)

where xr;t is the output for each manufacturing firms in region r and dr;t is the
demand for that firm’s variety. From (7), the short-run return to a unit of capital in
region r is:


r;t D prxr;t � ˇxr;t

˛r

D prxr;t

˛r�
D ˇ

˛r .� � 1/xr;t (9)

Consumers face regional manufacturing price indices given by:

P1; t D .n1; tp
1�� C n2; tp

1��T 1�� /
1

1�� D
	
�t

˛1

C .1 � �t /�

˛2


 1
1��

K
1

1�� p

8 As a result of Walras’ Law, equilibrium in all product markets implies equilibrium in the regional
labour markets.
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P2; t D .n1; tp
1��T 1��Cn2; tp

1�� /
1

1��D
	
�t�

˛1

C .1 � �t /

˛2


 1
1��

K
1

1�� p (10)

Consumption per variety in each region is:

d1;t D .M1P
��1
1;t CM2P

��1
2;t �/p��

d2;t D .M1P
��1
1;t � CM2P

��1
2;t /p�� (11)

Mr denotes the expenditure on manufactured goods in region r ; M D M1 CM2

defines the world expenditure on manufactures and sE D M1=M its regional split.
As we will see below, Mr , M and sE are independent of �t . From (8), (10) and
(11), it follows:

x1;t D d1;t D
"

sE
�t

˛1
C .1��t /�

˛2

C .1 � sE /�
�t �
˛1
C .1��t /

˛2

#
1

p

M

K

x2;t D d2; t D
"

sE�

�t

˛1
C .1��t /�

˛2

C 1 � sE
�t �
˛1
C .1��t /

˛2

#
1

p

M

K
(12)

Therefore, from (9), the short-run equilibrium return to a unit of capital in region
r is:


1;t D
	

sEa

�taC .1 � �t /�
C .1 � sE /�a
�ta� C .1 � �t /



1

�

M

K


2;t D
	

sE�

�taC .1 � �t /�
C 1 � sE
�ta� C .1 � �t /



1

�

M

K
(13)

where a 	 ˛2 = ˛1 in order to simplify the notation. Moreover, regional and world
capital incomes,…r; t and… respectively, are given by

…1; t D �tK
1; t …2; t D .1 � �t /K
2; t … D M

�
(14)

(for the latter use (13)) and world gross income is given by Y D LC M
�

.
Denoting byHr the level of public goods provided in region r , the overall provi-

sion of public goods corresponds to †H D H1 CH2. Moreover, considering that
one unit of the public good has a unitary cost (the agricultural commodity is the
numéraire), the regional government balance budget constraint implies that the tax
burden TBr for region r is

TBr D Hr (15)

Regional expenditure on manufactured goods is therefore given as

Mr D �
�
LC…
2
� TBr

�
D �

 
LC M

�

2
�Hr

!
(16)
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and the overall expenditure on manufactured goods is M D M1 CM2 D �
�
LC

M
�
�†H �. Therefore,

M D ��

� � �.L�†H/ (17)

and its regional split is

sE D 1

2

�
1 � � � �

�

H1 �H2

L �†H
�

(18)

where, to have 0 < sE < 1 it must be Hmin
1 < H1 < Hmax

1 , where Hmax; min
1 D

H2 ˙ �
��	

.L �†H/.
From (18), it follows

sE � .>/1
2

for H1 � .</H2 (19)

That is, given the balanced government budget constraint, if public expenditure and
the corresponding provision of public goods is larger in region 1 than in region 2,
then the after-tax expenditure share for manufactured goods will be smaller in region
1 than in region 2.

Finally, (13), (17) and (18) give the short-run equilibrium regional returns to one
unit of capital, 
r; t . The relative profitability of capital


1; t


2; t

D R.�t / D asE Œ�ta� C .1 � �t /�C .1 � sE /�Œ�taC .1 � �t /��

sE�Œ�ta� C .1 � �t /�C .1 � sE /Œ�taC .1 � �t /��
(20)

is crucial for the subsequent dynamic analysis.9

4 Capital Movements and the Complete Dynamic Model

In a FC model, the representative capitalist does not move herself but allocates the
physical capital she owns between the regions and repatriates the income. Her incen-
tive to move capital from one region to the other is based on real net capital income,
taking as given the level of publicly provided goods. Since we assumed taxation
according to the residence principle, capital income is taxed and spent in the home
region of the capital owners and the relevant tax rate and price index for calculating
real net capital income are the ones at home, irrespective of the regional capital allo-
cation. Therefore, location choices based on real net income and on nominal gross
income are equivalent.

9 Note that, for a constant sE , R.�t / has a negative slope, that is, @R.�t / = @�t < 0. This is known
as “competition” effect: a higher �t increases the competition in region 1 and therefore reduces
relative profitability.
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The central dynamic process follows the “replicator dynamics”, widely used in
evolutionary economics and evolutionary game theory (see e.g. Weibull 1997; see
also Fujita et al. 1999). At the transition between period t and period t C 1, the
representative capitalist modifies the share of physical capital in region 1 – and,
consequently, in region 2 – in response to a discrepancy in period t between the rate
of profit in region 1 and the average rate of profit, given by �t
1;t C .1 � �t /
2;t :

F .�t /� �t

�t

D � 
1;t � Œ�t
1;t C .1 � �t / 
2;t �

�t
1;t C .1 � �t / 
2;t

(21)

We refer to � > 0 as the “speed” at which the representative capitalist alters the
share of capital in region 1 in response to economic incentives. Equation (21) can be
transformed into a law of motion depending upon the ratio in regional profitability,
R.�t /:10

F.�t / D �t C ��t .1 � �t /
R .�t /� 1

�tR .�t /C .1 � �t /
(22)

Taking into account the constraint 0 � �tC1 � 1, the piecewise smooth one-
dimensional map whereby �tC1 is determined by �t is:

�tC1 D Z.�t / D
8<
:

0 if F.�t / < 0

F.�t / if 0 � F.�t / � 1
1 if F.�t / > 1

(23)

where �t in [0,1] implies that �tC1 is in [0,1]. Fixed points for the dynamic system,
which correspond to long-run equilibria, are defined by Z.�/ D �. Core-periphery
equilibria, i.e. �CP.0/ D 0 or �CP.1/ D 1, are boundary fixed points of the map (23).

A central question of the NEG concerns critical values for trade freeness (or for
any other parameter) at which agglomeration in either region is sustainable. The so-
called sustain points give conditions under which “the advantages created by such a
concentration, should it somehow come into existence, [are] sufficient to maintain
it” (Fujita et al. 1999, p. 9). Sustain points therefore specify conditions at which
the boundary equilibria �CP.i/ (where i D 0, 1) become (at least locally) stable.
These sustain point values are defined by F 0.�CP.i// D 1, with the latter indicating
the derivative of the first return map (22). The latter condition can be reduced to
R.�CP.i// D 1 and solved for

�
S.0/
1;2 D

1˙p1 � 4a2sE .1 � sE /
2a.1 � sE / �

S.1/
1;2 D

a˙pa2 � 4sE .1 � sE /
2sE

(24)
where �S.i/ indicates the sustain point for �CP.i/. Tables 1 and 2 summarize the
properties of the sustain values.

10 Note that – from an analytic perspective – this specification is a good approximation to the
discrete time counterpart of the process assumed by Puga (1998) in his core-periphery model.
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Table 1 Properties of sustain values for the boundary equilibrium �CP.1/

Properties of �S.1/1;2

1 < a �
S.1/
1;2 are both real and 0 < �S.1/2 < 1 < �

S.1/
1 holds

�
S.1/

1;2 are both real
2
p
sE .1� sE/ < a < 1 sE < 0:5: sE > 0:5:

0 < �
S.1/
2 < �

S.1/
1 < 1 1 < �

S.1/
2 < �

S.1/
1

a < 2
p
sE .1� sE/ No real �S.1/1;2 exists

Table 2 Properties of sustain values for the boundary equilibrium �CP.0/

Properties of �S.0/1;2

1 < 1

2
p
sE .1�sE/

< a No real �S.0/1;2 exists

�
S.0/
1;2 are both real

1 < a < 1

2
p
sE .1�sE/

sE < 0:5 W sE > 0:5 W
0 < �

S.0/

2 < �
S.0/

1 < 1 1 < �
S.0/

2 < �
S.0/

1

a < 1 �
S.0/
1;2 are both real and 0 < �S.0/2 < 1 < �

S.0/
1 holds

Note that for a D 1 the sustain points reduce to �S.0/ D sE

1�sE
and �S.1/ D

1�sE

sE
. Moreover, for sE D 1

2
, it holds that �S.0/ D �S.1/ D 1.

In addition to the boundary fixed points, an interior fixed point is given by

�� D 1

2
C a.1 � �/.1C �/
.a � �/.1 � �a/

	
sE � 1

2

.aC �/.1 � a�/

.1 � �/.1C �/a



(25)

Note that in order to have 0 < �� < 1, the condition �
a

1��a

1��2 < sE < 1��a

1��2 must
hold.

A second central question of the NEG concerns crucial values for the trade
freeness (or for any other parameter) at which an (interior) equilibrium without spa-
tial concentration “breaks up”. This so-called break point gives conditions under
which “small differences among locations [will] snowball into larger differences
over time, so that the symmetry between identical locations will spontaneously
break” (Fujita et al. 1999, p. 9). That is, it gives conditions under which an
interior fixed point �� becomes (at least locally) unstable and the dynamics is
attracted to one of the boundary equilibria. Analytically, the break point is defined
by F 0.��/ D 1. In our model, the break point �B arises when the interior
fixed point coincides with one of the boundary fixed points and it is equal to
the corresponding sustain point. At this value of the trade freeness a transcritical
bifurcation occurs (see Alligood et al. 1997). Two fixed points (that is, the inte-
rior fixed point and one of the boundary fixed points) cross each other (with the
interior fixed point leaving the admissible interval) and exchange stability (with
the interior fixed point losing and one of the boundary fixed points gaining local
stability).

In our model, the interior fixed point can also lose stability when the derivative
of the map (22) evaluated at �� crosses – 1. If by varying one parameter (or more
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parameters simultaneously) the equality F 0.��/ D �1 is violated, an attracting
period two-cycle emerges through a flip bifurcation. The condition F 0.��/ D �1
allows determining critical parameter values. More specifically, a flip bifurcation
occurs, if the parameters satisfy the following condition:

� � 2
�

asE .1 � sE / .1 � �
2/2

�
D sE .a2 � 1/.1� �2/C .1 � a�/2 (26)

This equation cannot be solved explicitly. However, focusing on the trade freeness
parameter we state the following proposition:

Proposition 1. For � > 2, (26) implicitly defines a unique bifurcation value �bif

for the trade freeness parameter, with 0 < �bif < 1.

For a proof, see the Appendix.

5 Perfectly Global Spillovers

In this section we explore the case of perfectly global spillovers. That is, knowledge
diffuses from one region to the other without impediments and firms “absorptive
capacity” is independent of where knowledge is originated. In terms of our nota-
tion, perfectly global spillovers correspond to the assumption � D 1, from which it
follows a D 1.11

5.1 Comparative Statics

When spillovers are perfectly global, the interior equilibrium becomes

�� D 1

2
C 1C �
1� �

�
sE � 1

2

�

where 0 < �� < 1 for �
1C�

< sE < 1
1C�

and �� � .>/1
2

for sE � .>/1
2

.

Hence, for a given degree of trade freeness (i.e. economic integration), the equi-
librium share of capital located in region 1 depends on the relative market size, i.e.
on the expenditure share for manufactured goods. The lower (higher) the expendi-
ture share in region 1, the lower (higher) the share of capital located in the same
region.

Concerning the effect of � on ��, it is positive, negative or nil depending on
region 1’s relative market size. That is, noticing that @��

@�
D 2

.1��/2

�
sE � 1

2

�
, we

have @��

@�
� .>/0 for sE � .>/1

2
.

11 Notice that with this assumption the model’s structure becomes analytically equivalent to the
one used in Commendatore and Kubin (2006).
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Hence, a higher degree of trade freeness (i.e. an increase in �) leads capital to
relocate in the region with the relatively larger market. For instance, when region
2 concentrates a higher share of expenditure in manufactured goods as compared
to region 1, the equilibrium value of the share of capital located and used in the
former region will be positively affected by higher economic integration. That is, in
the NEG terminology, lowering trade costs magnifies the market-access effect.

Turning to policy analysis, (15) and (18) imply that, given public expenditure in
region 2, the relative market size of region 1, sE , depends on the provision of public
goods in the same region, H1, and on the corresponding taxation. We call demand
effect the impact of the provision of public goods in region 1 on �� via a change
in the relative market size (see Commendatore et al. 2008, 2009). For the case of
perfectly global spillovers, public expenditure in R&D can affect �� only through
this channel:

@��

@H1

D 1C �
1 � �

@sE

@H1

where @sE

@H1
D � .��	/.L�2H2/

2�.L�H/2 is negative forH1�H2 > �.L�†H/ and a fortiori
for H1 > H2.

That is, when knowledge freely circulates across regions and firms in the two
regions benefit to the same extent from new ideas, increasing public expenditure
on R&D in region 1 leads to a reduction in the share of capital located in the same
region. This occurs because the relative market size of region 1 shrinks due to higher
taxation. In the terminology used in Commendatore et al. (2008b, 2009), higher
productive public expenditure in one region only affects the regional distribution of
capital via the demand effect.

On the other hand, the impact of public expenditure on R&D activities affects
the regional distribution of firms through the combination of two effects. Indeed,
as suggested by expression (5), H1 may affect the equilibrium number of firms
located in region 1, n�

1 , via the impact on ��, due only to the demand effect, and
also via a change in the capital input coefficient. Intuitively, the equilibrium number
of firms located in the region where public expenditure increases depends on the
extent to which the share of local capital drops due to the demand effect as well as
on the extent to which the productivity of local capital improves. The overall effect
is given by

@n�
1

@H1

D n�
1

H1

�
@��

@H1

H1

�� �
@˛1

@H1

H1

˛1

�
(27)

From the above expression, it is possible to deduce the following: for H1 �H2 <

�.L � †H/, the effect of public expenditure in region 1 on n�
1 is positive and the

spatial distribution of firms changes in favour of region 1. On the other hand, for
H1 � H2 > �.L � H/, the effect on the equilibrium number of firms located in
region 1 will be positive (negative or nil) if the effect of H1 on �� is not larger than
(smaller than or equal to) its effect on ˛1 (in percentage terms). That is, following
an expansion in public expenditure in region 1, the number of firms located in the
same region will increase only if the positive effect of more productive local capital
will prevail over the negative effect of a smaller relative local market.



R&D Public Expenditure, Knowledge Spillovers and Agglomeration 169

Given the assumption of � D 1, which implies ˛1 D ˛2 D ˛, the opposite
holds for n�

2 ; whereas the effect on the total number of firms n�, is always positive,
@n�

@H1
D �n�

˛
@˛

@H1
> 0.

Turning to the core-periphery equilibria, when manufacturing is agglomerated in
one region, then the number of firms in that region is equal to K=˛ and zero in the
other region. The total number of firms always increases with H1.

5.2 Local Bifurcation Analysis

Next, we explore the local stability properties of the map (23) for the case of
perfectly global spillovers. Given the assumption � D 1, we simplify (26) as follows

� � 2
�

sE .1 � sE / D �

.1C �/2 (28)

As stated above (see also Commendatore and Kubin 2006), this equation allows
to identify a unique bifurcation value �bif for the trade freeness parameter within
the range 0 < � < 1. It is easy to verify that starting from the symmetric case,
H1 D H2 (sE D 1 = 2/, �bif is reduced by increasingH1 (orH2).

Figures 1a,b present bifurcation diagrams showing the impact of trade free-
ness, �, on the long-run allocation of capital �t for global spillovers and for (a)
H1 D H2 D 0 and (b) H1 D 0:05 and H2 D 0. When H1 D H2 D 0, regions
1 and 2 are symmetric, i.e. the market for manufactured goods is equally split
between the regions, i.e. sE D 1 = 2. The map Z.�t / exhibits symmetric proper-
ties.12 Figure 1a shows that the interior equilibrium, �� D 1

2
, is stable over the range

�bif < � < 1. At � D 1, the interior fixed point loses stability via a transcritical
bifurcation. Since for our model break and sustain points are equal, corresponding to
�S.0/ D �S.1/ D 1, it is also true that the two boundary equilibria �CP.0/ and �CP.1/

are always (locally) unstable for 0 < � < 1.13 For the symmetric case, the bifur-
cation value of trade freeness only depends on the speed at which capital owners
react at the economic incentive, with �bif increasing in � . Below �bif a period dou-
bling bifurcation route to chaos takes place. The time path exhibits locally attracting
cycles of any period or even chaotic cycles (not all of them visible in Fig. 1: sym-
metric counterparts co-existing with a different basin of attraction) with an ever
increasing volatility of the regional shares of capital. Below �A the volatility that
results for relatively high trade costs leads to the concentration of all manufacturing
activity in one of the regions. Given the mobility hypothesis specified in expression
(23), the share of capital does not longer change once one of the boundary values

12 For a detailed account of the symmetric properties of a FC model with no government sector,
see Commendatore et al. (2007).
13 Since they coincide with the sustain points, we do not mark the break points in the Figures.



170 P. Commendatore et al.

Fig. 1 Bifurcation on trade freeness with different values of R&D public expenditure and
knowledge spillovers

0 or 1 is reached. A core-periphery outcome emerges even though both boundary
fixed points are locally unstable.

WhenH1 > H2 (as assumed for Fig. 1b) the regions are asymmetric, with region
1 characterized by a smaller relative market size, sE < 1=2. Comparing Fig. 1a with
Fig. 1b, the following differences emerge. First, from the properties of the sustain
points (see above), it follows:

�S.0/ D sE

1 � sE < 1 < �S.1/ D 1 � sE
sE

The boundary equilibrium �CP.1/ is (locally) unstable for 0 < � � 1. Moreover,
in an economy highly integrated (i.e. low transport costs or high trade freeness),
specifically for �S.0/ < � � 1, no interior fixed point exists in the interval (0, 1) and
the boundary equilibrium�CP.0/ is (locally) stable. Second, trade freeness affects the
value of the interior equilibrium. As � falls below the sustain point value �S.0/ a
transcritical bifurcation occurs, �CP.0/ loses stability; the interior fixed point enters
the interval (0, 1) and becomes locally stable for �bif < � < �S.0/. In this interval
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�� increases as � declines. The larger market size favors capital location in region
2, this effect being reduced as trade becomes less free. Finally, also the dynamic
properties holding in the interval 0 < � < �bif are altered: the flip bifurcation
value �bif is smaller and fluctuations in the regional shares of capital are narrower.
Below �A, due to the asymmetry of the mapZ.�t /, the boundary equilibrium �CP.0/

emerges more often.

6 Local Spillovers

In this section, we study the case when knowledge produced in public research
laboratories does not diffuse uniformly across space. This can occur because of its
specificity to local production. Also, other impediments could be responsible for a
lower absorptive capacity of foreign firms as compared to the one of firms located
in the region where new ideas are originated. When spillovers are (at least partially)
local we have 0 � � < 1, implying a � .</1 forH1 � .</H2.

6.1 Comparative Static Analysis

With local spillovers, the effects of trade freeness on the interior equilibrium, ��,
given by (25), are summarised in the following proposition:

Proposition 2. A) Let 0 < sE < 1
1Ca2 < 1

2
, then there exists a value of trade

freeness, Q�2, such that �� reaches a minimum at � D Q�2; that is ��
min D ��. Q�2/,

with 0 < Q�2 D a.1�2sE /�.a2�1/
p

sE.1�sE/

a2.1�sE/�sE
< �

S.1/
2 < 1 and ��

min < 1. Moreover,

��
min > 0 if sE < a�p

a�1
2a

< 1
1Ca2 holds. B) Let sE > 1

1Ca2 >
1
2

, then there exists

a value of trade freeness, Q�2, such that �� reaches a maximum at � D Q�2 that is,
��

max D �. Q�2/, with 0 < Q�2 < �
S.0/
2 < 1 and ��

max > 0. Moreover, ��
max < 1 if

sE > 1Cp
1�a2

2
> 1

1Ca2 holds. For a proof, see the Appendix.

Turning to policy analysis, the provision of public services in region 1 affects ��
as follows:

@��

@H1

D �

.a � �/2
	
1C .1 � �

2/.a2 � 1/
.1 � a�/2 sE



@a

@H1

Ca 1 � �2

.a � �/.1 � a�/
@sE

@H1

(29)

According to this expression, when spillovers are localised, it is possible to identify
two effects that an increase in H1 could exert on the location of the manufacturing
sector: the demand effect and the productivity effect.

The demand effect is expressed by the second term on the right-hand side of
(29) and, as before, its direction depends on the sign of @sE=@H1. The productivity
effect is expressed by the first term on the right-hand side in (29) and is equal to zero
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for the case of perfectly global spillovers. According to the productivity effect, the
provision of public goods in region 1 affects �� via its impact on capital productivity
in region 1. Since the term in the square brackets is positive for 0 � sE � 1 and

@a
@H1

> 0, the productivity effect is positive on ��. As stated in Commendatore
et al. (2008b, 2009), the overall effect of H1 on �� can be non monotonic (with at
least an initial range of values of � for which �� is increasing), depending on the
relative strength of demand and productivity effects.

Taking into account (27), when the demand effect is larger than the productivity
effect, @��=@H1 < 0, the results concerning the sign of the effect of H1 on the
number of firms located in region 1 (and in region 2) as derived in Sect. 5 for global
spillovers carry over to the case of local spillovers. Instead, when @��=@H1 > 0,
the relative number of firms in region 1 is always increasing in H1; whereas it
also increases in region 2 only if the effect of knowledge spillovers on capital
productivity in this region is sufficiently strong to overcome the reduction in its
share.

The effect of public expenditure in region 1 on the total number of firms
corresponding to the interior equilibrium is

@n�

@H1

D @��

@H1

�
˛2 � ˛1

˛1˛2

�
K �

�
n�

1

˛1

@˛1

@H1

C n�
2

˛2

@˛2

@H1

�
(30)

This effect can also be non monotonic, depending on the relative strength of the
demand and productivity effects acting on n� (simulations, not presented here, show
that for some parameter values it initially increases with H1 until a maximum value
is reached and decreases thereafter).

Finally, turning to the core-periphery equilibria when manufacturing is agglom-
erated in region i the number of firms in this region is K = ˛i and zero in the
other region. The total number of firms always increases with H1, except when the
manufacturing sector is fully agglomerated in region 2 and spillovers are perfectly
local.14

6.2 Local Bifurcation Analysis

Due to its analytical complexity, we proceed with numerical simulations in order to
study the local stability properties of the map Z.�t / for the case of local spillovers.

Figure 1c, d presents bifurcation diagrams showing the impact of trade freeness
� on the long-term regional allocation of capital �t for (c) � D 0:99 and (d) � D 0.
From the properties of the sustain values for the boundary fixed points it follows,

14 The case of perfectly local spillovers is also explored in Commendatore et al. (2008b, 2009). In
those papers, however, the number of firms does not change since the provision of the public good
does not affect capital productivity.
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since a > 1

2
p

sE.1�sE/
> 1, that no real sustain value for �CP.0/ exists; moreover,

the sustain value �S.1/
2 < 1 for �CP.1/ is visible in both diagrams.

Comparing Fig. 1c with Fig. 1b, we can notice that for 0 < � � �bif the behaviour
of �t is qualitatively similar. The most notable changes, following the slight reduc-
tion of the parameter � from 1 to 0.99, occur within the interval �bif < � � 1 where

even though the interior fixed point decreases over the range �bif < � < Q�2

as in Fig. 1b, unlike that diagram it increases over the range Q�2 < � < �
S.1/
2 .

With increasing economic integration, the larger productivity rise in region 1 –
induced by a larger provision of public goods and by the exploitation of localised
spillovers – overcomes the disadvantage of a smaller market size and favours
agglomeration in this region. Moreover, further increasing �, as the sustain point
�

S.1/
2 is crossed, the interior fixed point undergoes a transcritical bifurcation, involv-

ing an exchange of stability with the boundary fixed point �CP.1/, and exists the (0,
1) interval. Unlike the case of perfectly global spillovers presented in Fig. 1b, strong
economic integration determines a “near catastrophic” agglomeration of capital in
region 1.15

Figure 1d presents the case of perfectly local spillovers, � D 0. We notice that as
all productivity improvements occur in region 1, the sustain value of � for the core-
periphery equilibrium �CP.1/ (corresponding to full agglomeration in region 1) is
much smaller than in Fig. 1c. Moreover, the interior equilibrium is always increas-
ing with � within the interval �bif < � < �

S.1/
2 . Finally, the crossing of the flip

bifurcation point, which is shifted to the left, is followed by narrower fluctuations in
the interval �A < � < �bif and below �A, due to the asymmetry of the map Z.�t /,
by a more frequent emergence of the boundary equilibrium �CP.1/.

7 Global Dynamics

So far, we have analysed the local dynamics around the interior fixed point. In this
section, we investigate the properties of the global dynamics for both cases of per-
fectly global and local spillovers. In particular, since our map involves two boundary
conditions, local properties around the interior fixed point do not necessarily hold on
a global level. It is possible to analytically derive conditions on the parameters for
which no, one or both boundary conditions impact upon the first return map. Since
those conditions are not explicitly solvable, Fig. 2 – which uses five different values
of the spillovers parameter � –16 illustrates parameter regions that imply different
properties for the first return map.

15 This phenomenon has been detected for the case of perfectly local spillovers in Commendatore
et al. (2009).
16 Figure 2 is also drawn for � D 10, A D 4, L D 1, � D 0:6, � D 3, H2 D 0 and by implication
for Hmax

1 D 0:556.
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Fig. 2 Bifurcation on R&D public expenditure in Region 1 and trade freeness for different values
of knowledge spillovers

In the regions N trade is sufficiently free, in particular the trade freeness param-
eter is greater than the respective sustain value and no interior fixed point exists.
In region N0 (N1) the boundary fixed point �CP.0/ (�CP.1// is locally and globally
stable. The respective other boundary fixed point is locally and globally unstable.
For all other parameter constellations, both boundary equilibria are locally unstable
and an interior fixed point exists, which is locally stable as long as � > �bif . It
is particularly interesting to analyse parameter constellations for which the global
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dynamics is attracted to the (locally unstable) boundary fixed points. Decisive for
that to occur is whether or not the boundary conditions impinge upon the dynamics,
i.e. whether or not 0 � F.�/ � 1.

In region A, no boundary condition affects the dynamics, i.e. Min.F.�// � 0

and Max.F.�// � 1 (see also Fig. 3, middle left panel for a typical first return
map). Therefore, the two boundary fixed points, which are locally unstable, are also
globally unstable and no time path starting at an arbitrary initial condition will be
attracted to them. Either the interior fixed point or the periodic orbit (born after the
flip bifurcation) is also globally stable – almost all initial conditions will be attracted
to them.17

In region B only the lower boundary condition is binding, i.e. Min.F.�// < 0

and Max.F.�// < 1 (see Fig. 3, middle right panel for a representative first return
map). In this region, the boundary fixed point �CP.0/ has a basin of attraction: initial
conditions �0 for which F.�0/ � 0 – i.e., initial conditions on the bold segment
in the return map depicted in Fig. 3, middle right panel – and all pre-images of that
range will be attracted to it. Some initial conditions will be attracted to a trapping
set, which is constructed using Max.F.�// and its iterates (see Fig. 3, bottom right
panel). Therefore, in region B both the boundary fixed point �CP.0/ and the interior
fixed point have a basin of attraction. Figure 3 top left panel illustrates the respective
basins of attraction.

Figure 3 is drawn for the same parameters as Fig. 2, in addition we assume � D
0:2 and � D 0. On the horizontal axesH1 is varied between zero and its upper limit
and the vertical axes represents possible values for the initial condition. A white
(black) tile indicates that a time path emerging from the respective initial condition
converges to the boundary fixed point �CP.0/ (�CP.1/); and a grey tile indicates that
the time path is attracted to an interior fixed point. For region B this figure clearly
shows the co-existing basins of attraction for �CP.0/ (white tiles) and for the interior
fixed point (grey tiles).18

In Region C, both boundary conditions are binding, i.e. Min.F.�// < 0 and
Max.F.�// > 1. Now almost all initial conditions are attracted to either of the
boundary fixed points:19 initial conditions �0 for which F.�0/ > 1 (F.�0/ < 0)
and all pre-images of that range will be attracted to the boundary fixed point �CP.1/

(�CP.0/). Figure 3, top left panel and top right panel (which is an enlargement of
the former) illustrate the highly fractal structure of the two basins of attraction: a
white (black) tile indicates that for the respective �0–H1 combination the time path
converges to the boundary fixed point �CP.0/ (�CP.1/).

Region D is a mirror image of region B: now only the upper boundary condition is
binding, i.e. Min.F.�// > 0 and Max.F.�// > 1. In this region, the boundary fixed

17 There might exist unstable fixed points (with different periodicity); these and their pre-images
are not attracted to the stable fixed points.
18 As noted before, for � D 1 the model coincides from an analytical point of view with the one
analysed in Commendatore and Kubin (2006), where this case is studied in greater detail.
19 Exceptions are again the possibly existing unstable fixed points (with different periodicity) and
their pre-images.
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Fig. 3 Upper panels: Bifurcation on R&D public expenditure in Region 1 and the share of capital
located in Region 1 at t D 0. Lower panels: Plot of the first return map for different values of R&D
public expenditure in Region 1

point �CP.1/ has a basin of attraction: initial conditions �0 for which F.�0/ � 1

and all pre-images of that range will be attracted to it. Some initial conditions will
be attracted to a trapping set, which is constructed using Min.F.�// and its iterates.
Therefore, in this region both the boundary fixed point �CP.1/ and the interior fixed
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point have a basin of attraction. Figure 3 top left panel illustrates the respective
basins of attraction and shows the co-existing basins of attraction for �CP.1/ (black
tiles) and for the interior fixed point (grey tiles).

To conclude, whether both regions co-exist or whether the agglomeration ends
up in region 1 or 2 can be – depending upon the parameters – highly volatile.
Of particular interest is the role of the spillover intensity � . There are no analytic
results available. However, based upon inspection of Fig. 2 it can be surmised that
a lower � , i.e. more localized spillovers, tends to have the following effects: region
A shrinks – the parameter space for which both regions co-exist shrinks; regions
N1 and D increase – therefore the parameter space for which manufacturing will be
agglomerated in region 1 increases; finally, Regions N0 and B shrink – the parameter
space for which manufacturing will be agglomerated in region 2 shrinks. Therefore,
a lower � , i.e. more localized spillovers, apparently tends to favour agglomeration;
and it tends to favour agglomeration in region 1 (consistent with the fact that in the
case under considerationH1 > H2).

8 Conclusions

Building upon our previous work, we have delivered further insights on the channels
through which productive public expenditure might influence industrial location. We
have presented a FC model with a public sector involved in R&D activities which
have the effect of enhancing productivity in the manufacturing sector.

Results include (a) comparative statics on the impact of public policy on indus-
trial location; (b) local dynamic analysis on the impact of trade freeness on the
long-term regional allocation of capital; (c) global dynamic analysis.

The comparative static analysis of the impact of R&D public expenditure on
industrial location is delivered under the alternative assumptions of global and (par-
tially/perfectly) local knowledge spillovers. Results are in line with our previous
work, as the demand and productivity effects occur. When knowledge spillovers
are global, public policy can only affect the regional distribution of capital via the
demand effect, whereas its impact on the spatial distribution of firms also depends
upon the productivity effect. On the other hand, assuming either partially or per-
fectly local knowledge spillovers, the overall effect of an increase in R&D public
expenditure on the spatial distribution of capital depends on the relative strength of
the demand and productivity effects. The same holds for the spatial distribution of
firms.

We have used bifurcation diagrams to depict the local stability properties of
industrial location equilibria for both cases of global and local knowledge spillovers.
Studying the impact of trade freeness on the long-term regional allocation of capi-
tal, we concluded that when knowledge spillovers are at least partially local, strong
economic integration leads to a “near catastrophic” agglomeration of capital in the
region with the relatively higher R&D effort.
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Finally, global dynamic analysis has shown the crucial role played by the degree
of knowledge diffusion across regions in determining the global stability properties
of industrial location equilibria. Although not supported by analytical results, graph-
ical analysis of the basins of attraction of boundary fixed points led us to conclude
that equilibria are highly volatile depending on the spillover intensity parameter � .
In particular, more localized spillovers tend to favour agglomeration in the region
with a higher R&D effort.

Acknowledgements We would like to thank Theresa Grafeneder-Weissteiner and Elisabetta
Michetti for valuable comments. The usual caveat applies.

Appendix

Proof of Proposition 1

Consider that (a) the left-hand side defines a function of �, f .�/ D ��2
�

asE .1 �
sE /

.1��2/2

�
which is positive for � > 2 and � ¤ 1, it has an asymptote at 0 and

it is decreasing over the range 0 < � < 1 (whereas it is increasing for � > 1 and
tangent to the horizontal axis at � D 1/; (b) the right-hand side, instead, defines a
quadratic function of �, g.�/ D sE .a2�1/.1��2/C.1�a�/2. It has a minimum at
N� 	 a

a2.1�sE/CsE
, that is, g. N�/ D sE.1�sE/.a2�1/2

a2.1�sE /CsE
, which is always positive (zero)

for a ¤ 1 .a D 1/ but finite (given the constraints over the parameters), g. N�/ � 0.
Given the behavior of f .�/ and g.�/, there exists a unique flip bifurcation value
�bif in the range 0 < � < 1. Finally, notice that for a D 1, (25) is also satisfied for
� D 1.

Proof of Proposition 2

Statement A) corresponds to the case a > 1.H1 > H2/. The derivative @��

@�
is

equal to zero at Q�1; 2 D a.1�2sE /˙.a2�1/
p

sE.1�sE/

a2.1�sE/�sE
. For sE < 1

1Ca2 , we have that

0 < Q�2 < Q�1. Since a > 1, it is also true that Q�2 < �
S.1/
2 . This can be verified

considering that Q�2 is a monotonically decreasing function of sE within the range
0 � sE < a2

1Ca2 , with a2

1Ca2 >
1

1Ca
; that also �S.1/

2 is a monotonically decreasing
function of sE for sE > 0; and that the former function lies always below the latter
within the range 0 < sE < a

1Ca2 . It follows that, �. Q�2/ is a minimum since the

interior equilibrium is equal to sE at � D 0 and it is equal to 1 at � D �S.1/
2 . Finally,

�� does not cut the 0 line as long as sE < a�p
a�1

2a
< 1

1Ca2 , condition which ensures

that there is no real sustain point for �CP.0/ D 0 (see Table 1). Statement B), instead,
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corresponds to the case a < 1 .H1 > H2/. As before we have that 0 < Q�2 < Q�1.
Since a < 1, it is also true that Q�2 < �

S.0/
2 . This can be verified considering that

Q�2 is a monotonically increasing function of sE within the range a
1Ca2 < sE � 1,

with a
1Ca2 <

1
1Ca

; that also �S.0/
2 is a monotonically increasing function of sE for

sE > 0; and that the former function lies always below the latter within the range
a

1Ca2 < sE < 1. It follows that, �. Q�2/ is a maximum since the interior equilibrium

is equal to sE at � D 0 and it is equal to 0 at � D �
S.0/
2 . Finally, �� does not cut

the 1 line as long as sE > 1Cp
1�a2

2
> 1

1Ca2 , condition which ensures that there is

no real sustain point for �CP.1/ D 1 (see Table 2).
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Dynamics in Non-Binding Procurement
Auctions with Boundedly Rational Bidders

Domenico Colucci, Nicola Doni, and Vincenzo Valori

1 Introduction

Auction theory has always recognised that in many settings bidders’ strategies can
be influenced by the revelation of some information that is privately held by the auc-
tioneer. Usually it is assumed that the auctioneer holds some information regarding
the item put up for auction. As a consequence, its revelation can allow bidders to
have a more accurate estimate of their valuation for the object and to make less
uncertain their utility in case their bid is accepted.1

Some recent papers investigate the importance of a different kind of auction-
eer’s private information: in multidimensional auctions, bidders can be ignorant
about the real awarding rule. Katok and Wambach (2008) define this competitive
mechanism as “non-binding auctions”. More specifically, it is often assumed that
a buyer can rank different bids according not only to the prices, but also to the
quality associated to each proposals. The qualitative assessment usually depends on
buyer’s preferences that can be her private information because they are related to
her tastes or to her specific requirements.2 In this case bidders can always calculate

1 Milgrom and Weber (1982) represents the seminal paper on this issue. By analysing an affiliated
values auction model they stated the celebrated linkage principle, according to which expected
revenue increases if the auctioneer commits to reveal any information about the value of the object.
More recently some authors have shown that this principle can be wrong in some different contexts.
See Ganuza (2004), Board (2009).
2 See Gal-Or et al. (2007), Rezende (2009), Katok and Wambach (2008) for an analysis of this issue
in procurement settings. Cason et al. (2003) and Chan et al. (2003) emphasise how this issue affects
the awarding of subsidies in natural resource management programs. Note that a secret award rule
is often present also in the procedures for the privatization of previously State-owned enterprises:
Governments usually compare different proposals and at the end they select one private firm on
the basis not only of the economic offers, but also of different factors, like political, social and
environmental considerations.
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thoroughly the ex-post profit associated to each specific bid; however, the informa-
tion policy adopted by the buyer influences their estimate of the probability to be the
winner. When the buyer chooses to reveal privately (publicly) her information sup-
pliers are involved in a standard auction setting, with independent private (public)
values. Conversely, the case in which the buyer conceals her information represents
a novelty in the auction literature, and that is why we want to explore in more depth
the characteristics of this game and the properties of its Nash equilibrium.

In the next section we introduce the general model of an auction where the
buyer conceals her private information, as proposed by Gal-Or et al. (2007) and
we show that this specific setting is closely related to classic models of horizontal
differentiation. In particular, we emphasise how, in the case with only two bidders,
their equilibrium bidding strategies are equivalent to duopolists’ pricing strategies
in the Nash equilibrium of an Hotelling model with exogenous location. For this
purpose we follow the recent generalization of the Hotelling model put forward
by Kim (2007). In the general case of n bidders a multidimensional auction with
concealment of buyer’s private information is formally identical to the model of
product differentiation studied by Perloff and Salop (1985): the only difference
is the analysis of the strategic value of the buyer’s private information in Gal-Or
et al. (2007) with respect to the otherwise more general model of Perloff and Salop
(1985).

In Sect. 3 we study a simple dynamic version of the above model. To this end
we posit a sequence of auctions take place in time, to which a given set of suppliers
participate without actually knowing the quality assessments held by the auction-
eers. It is thus a situation in which a given set of suppliers compete repeatedly to
procure a specific good. We simply assume that every buyer is characterized by
a vector of quality assessments, one for each supplier.3 From the suppliers stand-
point, buyers’ assessments correspond to independent random draws from a given
probability distribution. Each supplier maintains some kind of expectation regard-
ing their opponents’ behaviour which we shall suppose to be wrapped up in an
expectation about a mean of the opponents’ prices. Clearly this hypothesis qualifies
agents as having bounded rationality, in that the opponents are treated as if they
were one, whereas a fully rational player would have to figure out the best response
to the predicted bids of every other player. This depends on the fact that these auc-
tions are non-binding, so that qualities as well as bids determine the winner. While
considering a mean price is clearly suboptimal, it nonetheless has the property of
depending on the entire set of choices by the competitors as implied by full ratio-
nality. On the contrary, concentrating only on the others’ best price, as would be
optimal in standard auctions, is not rational in this context because the contract is
not necessarily awarded to the lowest bidder. In turn expectations about the oppo-
nents’ mean price are updated adaptively. This model entails a moderate departure
from rationality in the vicinity of the steady state, which turns out to be unique and

3 We could also imagine the case in which there is a unique buyer who, perhaps due to frequent job
rotation related to political evolution, has time-changing quality assessments.
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implies coordination on the Nash equilibrium of the stage game, and our purpose is
precisely to study local stability: these observations are the rationale for using the
above limited rationality model of choice.

Alternatively the dynamic model can be seen in the Hotelling framework as a
straightforward way to model the repeated situation of market competition in a hor-
izontally differentiated oligopoly with boundedly rational sellers. The vast literature
on oligopoly dynamics focuses mainly on the Cournot model and is neatly surveyed
by Barkley-Rosser (2002). Relatively fewer papers examine the dynamics in the
Hotelling setting (for an example, see Puu and Gardini (2002)). However they focus
on the spatial competition, in which firms choose both a price and a location. Con-
versely, in the present paper we analyse the dynamics of (price-only) competition in
the framework formalized by Perloff and Salop (1985). The stability of the dynam-
ical system is not easy to assess in general because the reaction functions may be
non-differentiable at the steady state. In such a case the analysis can resort to the
derivative of the reaction function in a neighborhood of the steady state. We will
show how the stability of the Nash equilibrium of this game is affected by the dis-
tribution from which bidders’ qualities are drawn. More specifically if n D 2 then
the Nash equilibrium is always stable whatever the quality distribution. Conversely
when n > 2 stability can be violated. In fact, if bidders’ qualities are drawn from
a specific class of densities then in equilibrium reaction functions are negatively
sloped and the system may fail to converge.

2 Auctions with Horizontally Differentiated Suppliers

2.1 Equilibrium in Non-Binding Auctions

Assume there is a unique buyer wishing to procure a single unit of a specific product
by means of an auction procedure. There are n firms, competing to supply the item.
Both the buyer and the suppliers are assumed to be risk-neutral. We allow the buyer
to value the specific product provided by each seller differently. Let qi denote the
buyer’s evaluation of the quality associated to the bid of supplier i . We assume that
the quality parameters are independent and identically distributed (i.i.d.) random
variables with a continuous density f (with cumulative distribution function F )

over the support
h
q; Nq

i
and that their realisations are privately known by the buyer

only.
The utility the buyer can obtain contracting with a specific supplier depends on

the quality of his product and the price asked to provide it:

U.qi ; pi / D qi � pi i D 1; : : : ; n:
A multidimensional auction is held in order to select a supplier, and we assume

that the score function used to rank alternative bids is the same as the buyer’s utility
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function.4 Suppliers are characterized by identical production costs, normalized to
be 0. Every competing bidder submits an economic bid pi in order to maximise his
expected profit, equal to his ex-post profit times the probability of being the selected
contractor:

max
pi

pi Prfqi � pi � max
j ¤i

qj � pj g

By taking into account how the quality of each competitor is distributed we can
rewrite the maximization problem as follows:

max
pi

pi

Z Nq

q

0
@Y

j ¤i

F
�
qi C pj � pi

�
1
Af .qi / dqi (1)

Further, restricting the attention only to symmetric equilibria and assuming the
common bid submitted by competitors other than i equals Np the above rewrites as

max
pi

H .pi ; Np/ (2)

H .pi ; Np/ 	 pi

Z Nq

q

.F .qi C Np � pi //
n�1 f .qi / dqi

Notice that, defining V .x/ D Prfmaxj ¤i

˚
qj

� � qi � xg and v .x/ D V 0 .x/ (i.e.
the density of the difference between the highest quality of i ’s competitors and i ’s
own quality, which can be written explicitly using convolutions) the maximization
problem can also be written as

max
pi

piV . Np � pi /

Optimising with respect to pi the first order condition @H.pi ; Np/
@pi

D 0 can be
expressed as

V . Np � pi / � pi v . Np � pi / D 0 (3)

Imposing pi D Np D p� we obtain the (candidate) Nash equilibrium of this game:

p� D V .0/

v .0/
D 1=n

.n � 1/ R Nq
q ŒF .qi /�

n�2 f 2 .qi / dqi

(4)

Obviously, the second order condition @2H.p�;p�/

@p2
i

< 0 or, 2v .0/� V .0/
v.0/

v0 .0/ > 0
needs to hold for the above equilibrium price to be the solution of problem (2):
the density v .�/ has to be differentiable in zero for this to make sense, otherwise

4 Notice that the buyer’s utility might be negative even with her best buy: we are implicitly ruling
out the outside option of not purchasing the good at all.
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we need the function appearing in (3) to be decreasing around p�. A condition
which bypasses the possible non-smoothness of v .�/ and which ensures that p� is a
Nash equilibrium, is that the distribution V .�/ be log-concave.5 In turn, a condition
which ensures this is that f .x/ be log-concave6 (see An (1998) and Bagnoli and
Bergstrom (2005)). Interestingly, it also turns out to be sufficient for stability, as we
shall explain in Sect. 3.

Formula (4) emphasises the way in which the optimal bidding strategy is affected
by the (common) beliefs of suppliers over the buyer’s preferences, represented by
the distribution function F . This solution is the same as the equilibrium price of the
model of monopolistic competition proposed by Perloff and Salop (1985) (see 12
and 13, p. 110).They analyse the outcome of competition in a differentiated mar-
ket with n firms and L consumers. Each consumer is identified by specific tastes,
represented by an n-dimensional vector of values, one for each firm, and corre-
sponding to independent draws from the same probability function F . Consumers
maximize their net utility, given by the difference between each firm’s value and
the correspondent price. So the oligopolist’s maximization problem in this product
differentiated market is formally equivalent to the bidder’s maximization problem
in a non-binding auction. The only exception is that oligopolists face L consumers,
while bidders compete to serve a unique buyer. However this difference does not
affect the price equilibrium that is identical for these two games.

Perloff and Salop (1985) prove that there can be at most one symmetric price
equilibrium. However, in the case of n > 2 the possibility of equilibria in asymmet-
ric prices is not ruled out, even though costs are identical for each firm. Conversely,
in the case in which n D 2 the existence of a multiplicity of equilibria is not
admissible, so the symmetric equilibrium is surely unique. The case with only two

5 The log-concavity of V means that the ratio v
V

is decreasing. This implies that, if the first order
condition holds, i.e.

V . Np � pi /

�
1� pi

v . Np � pi /

V . Np � pi /

�
D 0

then, for a positive quantity ı

1� .pi C ı/
v . Np � pi � ı/

V . Np � pi � ı/
< 0

and

1� .pi � ı/
v . Np � pi C ı/

V . Np � pi C ı/
> 0

which guarantees that the first order condition selects indeed a maximum. Notice that the above
means that the objective function in (2) is pseudo-concave (so its critical point is a global
maximum).
6 Indeed log-concavity of the density fX implies the log-concavity of the density of the mirror
image f�X and of the distribution function F (see Bagnoli and Bergstrom (2005), Theorem 8 and
Theorem 1 respectively). In turn it is easy to see that the distribution function F n and its associated
density nF n�1f are both log-concave. The convolution of nF n�1f and f�X gives the density
v which is again log-concave (see An (1998), Corollary 1). Finally, Theorem 1 of Bagnoli and
Bergstrom (2005) implies that V is also log-concave.
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firms is particularly interesting because it has a formal correspondence with the
model of price competition in the classic duopoly à la Hotelling. In the next section
we will show how the distribution representing buyers’ preferences is very close to
the distribution of consumers along the Hotelling line.

2.2 Optimal Price Strategy in an Hotelling Game
with Non-Uniform consumers

Imagine there are two suppliers, A and B, having production costs equal to 0 and
located at either end of a Hotelling line of unit length. Consumers are characterized
on the basis of their location parameter � 2 Œ0; 1�, and they are distributed on this
Hotelling line according to a cumulative distributionG.�/, having a strictly positive
density g.�/ over the interior of the support. Their utility function when they buy
the product from supplier i is equal to:

U D v � pi � bdi i D A;B
where v is their reservation price for each good, pi is the price charged by supplier
i , di is the distance from supplier i , where dA D � , dB D 1� � , b is the linear cost
of transport. In such a setting, given a price pair .pA; pB/, we can define e� as the
consumer indifferent between supplier A and B, where:

e� D b C pB � pA

2b

As a consequence all the consumers on the left ofe� prefer supplier A, while those on
the right prefer supplier B. Therefore, the maximization problems of both suppliers
are:

max
pA�v�b

pA.G.e�// and max
pB �v�b

pB.1 �G.e�//
If we assume that consumers’ reservation price, v, is sufficiently high, so that in
equilibrium all of them buy some product, we have that in the Nash equilibrium of
this game suppliers’ optimal price strategies are:

pA D 2bG .�
�/

g .��/
and pB D 2b 1 �G .�

�/
g .��/

(5)

where �� must satisfy the following implicit equation

�� D 1

2
C 1 �G .��/

g .��/
(6)
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Remark that this solution is also valid if we assume that suppliers A and B com-
pete in a market with a single buyer, whose position is unknown to them. If G.�/
represents their common beliefs over his possible position the maximization prob-
lems are unchanged, except for the fact that in this case suppliers maximize their
expected profit. On the basis of this new interpretation of the Hotelling game we
can state the following proposition:

Proposition 1. The Nash-equilibrium of the auction game with concealment of
buyer’s private information when there are only two suppliers is equivalent to the
Nash-equilibrium of the Hotelling game if

(1) buyer’s position � is a function of suppliers’ quality in the auction game, � D
bCqB �qA

2b
and

(2) suppliers’ beliefs over � are consistent with their beliefs over the initial
qualities.

Proof. In order to prove the result we need to derive g.�/. First we define z D
qB � qA. z is then distributed as the difference between suppliers’ qualities and its
density has positive values on the support Œ�b;Cb� according to the convolution

h.z/ D
Z C1

�1
f .zC q/ f .q/ dq

where we are assuming f .�/ to be identically zero outside the support Œq; Nq�. Now
we can note that � is a monotone transformation of the random variable z. In
fact:

� D 1

2
C z

2b

As a consequence, � is distributed over the support Œ0; 1� according to the following
density function:

g.�/ D 2bh.2b� � b/
It is easy to note that h, and consequently g, are symmetric functions. This fact
implies that G .1=2/ D 1=2 and consequently condition (6) is satisfied for � D 1=2
Substituting this value in (5) we obtain:

pA D pB D
2bG

�
1
2

�
g
�

1
2

� D 1

2h .0/
D 1

2
R Nq

q f
2 .q/ dq

But this solution is coincident with formula (4) when n D 2.

Therefore the conclusion of Perloff and Salop (1985) and Gal-Or et al. (2007),
according to which firms’ optimal price strategy depends on the distribution of
buyers’ tastes, corresponds to the result achieved by Kim (2007), that the optimal
price strategy of duopolists in an Hotelling setup depends on the distribution of
consumers’ location along Main Street.
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3 Economic Dynamics Under Bounded Rationality

In this section we shall embed the above analysis into a simple dynamic frame-
work, meant to be a rough indicator of whether the Nash equilibrium derived above
is bound to be actually reached if agents are either boundedly rational and/or are
unsure about the other players’ rationality. Each seller is supposed to be participat-
ing in a sequence of auctions in which, at each time, the seller’s quality parameter is
drawn from the same distribution. In the stage game each seller has a best strategy
which depends on the bids of his competitors. The reaction function of a generic
seller can be derived by solving for pi in the first order condition applied to the
objective function in (1):

Z Nq

q

0
@Y

j ¤i

F
�
qi C pj � pi

�
1
A f .qi / dqi � pi

Z Nq

q

X
j ¤i

f
�
qi C pj � pi

�

�
Y

h¤j;i

F .qi C ph � pi / f .qi / dqi D 0 (7)

Notice that the best response of seller i , p�
i , does not depend on the competitors’

bids which have no chance of winning. More precisely ph � minj fpJ g > Nq � q
implies that

@p�
i

@ph
D 0. While the converse is not always true we can observe that,

generically, a change in the strategy of a possibly winning competitor affects the
optimal bid p�

i . So when price dispersion is sufficiently low, a bidder’s best response
is influenced by the full vector of competitors’ bids.

Therefore in this context each bidder’s optimal strategy is not focused on beating
the best price, as in standard first price auction. However, even with a restricted
number of competitors it is quite difficult to calculate explicitly the best response
function (see (7)). For this reason we hypothesise that agents simplify their problem
by treating their opponents as if they were all bidding a price equal to a mean of the
full vector of competitors’ prices and we let sellers update their expectations about
its value adaptively. Results are robust to having subject-specific weighted averages;
due to the heavier required notation we shall stick to simple means in the following
(see Footnote 7).

Summing up, sellers at each time t , solve the same optimization problem using
the first order conditions in (3) given a different value for the opponents’ mean price,
and will therefore be using the same reaction function evaluated at these different
values. The symmetry imposed over the sellers implies that each shall have the

same reaction function, R./. So seller i at time t will choose pt;i D R
�
Npe
t;�i

�
and compute the expected mean price of the opponents according to

Npe
t;�i D Npe

t�1;�i C ˛i

� Npt�1;�i � Npe
t�1;�i

�
(8)

Npt;�i D
X
j ¤i

pt;j

n � 1
pt;i D R

� Npe
t;�i

�
(9)
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Notice that we allow some behavioral heterogeneity in that ˛i may vary across dif-
ferent sellers. These equations define the following n-dimensional discrete dynami-
cal system in Npe

t;�i

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

Npe
tC1;�1 D Npe

t;�1 C ˛1

 P
j ¤1 R

�
Npe
t;�j

�
n�1

� Npe
t;�1

!

: : :

Npe
tC1;�n D Npe

t;�n C ˛n

 P
j ¤n R

�
Npe
t;�j

�
n�1

� Npe
t;�n

! (10)

which possesses a single steady state whereby

Npe
t;�i D p� i D 1; : : : ; n

where p� is the Nash equilibrium derived above in (4). Stability of the steady state
can be characterised as usual studying the Jacobian matrix of the system evaluated
at the steady state, provided the reaction function is differentiable at p�: in this case
we have

Jn D

0
B@

1 � ˛1 ˛1
R0.p�/

n�1
� � � ˛1

R0.p�/
n�1

� � � � � � : : : � � �
˛n

R0.p�/
n�1

˛n
R0.p�/

n�1
� � � 1 � ˛n

1
CA

We aim at giving conditions on the underlying parameters of the model that ensure
that the spectral radius of Jn is less than one for any choice of the vector of gain
parameters ˛1; : : : ; ˛n in .0; 1/n or, symmetrically, provide conditions under which
a suitable choice of such parameters implies instability of the steady state and there-
fore that the Nash equilibrium will not be reached as t grows. In particular it is well
known that if k�k is a matrix norm on Jn and � .Jn/ is its spectral radius then

� .Jn/ � kJnk

Consider for example
��� A

n�n

��� D maxi

Pn
j D1

ˇ̌
aij

ˇ̌
. In the case of the above matrix

Jn it is
kJnk D max

i
1 � ˛i C ˛i

ˇ̌
R0 �p��ˇ̌ (11)

Therefore jR0 .p�/j � 1 implies � .Jn/ � 1 for all possible choices of ˛i and
therefore stability of the steady state7. So it is interesting to establish conditions
ensuring a bound on the (absolute value of the) derivative of the reaction function in

7 Note that this would not change if in (10) heterogeneous weighted averages replaced the arith-
metic means. Indeed such generalisation would not alter the matrix norm (11) and therefore the
stability conditions.
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p�. This is what we do in Proposition 2. But first, we need to set conditions granting
differentiability of R on the steady state.

Lemma 1. For the problem (2) differentiability of the reaction function at p� holds
if and only if

f . Nq/ D f
�
q
�
D 0 when n D 2

f . Nq/ D 0 when n > 2
(12)

Proof. We now want to ascertain the differentiability of v i.e.

v .z/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0 if z < q � NqR Nq
q�z .n � 1/ ŒF .q C z/�n�2 f .q C z/ f .q/ dq if q � Nq � z < 0R Nq�z
q

.n � 1/ ŒF .q C z/�n�2 f .q C z/ f .q/ dq if 0 � z � Nq � q
0 if z > Nq � q

Let n D 2. Using Leibnitz’s rule we get

v0 .0�/ D f 2
�
q
�
C
Z Nq

q

f 0 .q/ f .q/ dq D f 2 . Nq/
2
C
f 2

�
q
�

2

v0 �0C� D �f 2 . Nq/C
Z Nq

q

f 0 .q/ f .q/ dq D �
0
@f 2 . Nq/

2
C
f 2

�
q
�

2

1
A

therefore v0 .0/ exist if and only if f 2
�
q
�
D f 2 . Nq/ D 0, in which case v0 .0/ D 0.

Instead, when n > 2

v0 .0�/ D
Z Nq

q

.n � 1/ .n � 2/ ŒF .q/�n�3 f 3 .q/C .n � 1/ ŒF .q/�n�2 f 0 .q/ f .q/ dq

v0
�
0C
�
D � .n� 1/ f 2 . Nq/C v0 .0�/

so v0 .0/ exist if and only if f 2 . Nq/ D 0 and v0 .0�/ ¤ ˙1.

Proposition 2. Consider the problem (2) under condition (12). When n D 2 we
have R0 .p�/ D 1

2
; in this case the dynamical system (10) is always locally sta-

ble. When n > 2 condition R0 .p�/ < 1 always holds, while R0 .p�/ > �1 (and
therefore local stability) holds if and only if

v0 .0/
v .0/2

<
3

2
n (13)

Proof. Under differentiability of the density v we can apply implicit differentiation
to (3) to get:
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R0 �p�� D v .0/� p�v0 .0/
2v .0/ � p�v0 .0/

(14)

Therefore, when nD 2, Lemma 1 shows that v0 .0/ D 0, so (14) impliesR0 .p�/ D 1
2

as stated.
When n > 2 we have

R0 �p�� < 1, v .0/� p�v0 .0/
2v .0/� p�v0 .0/

< 1

which always holds, given the second order condition 2v .0/�p�v0 .0/ > 0 and the
fact that v .0/ D R Nq

q
.n � 1/ .F .q//n�2 f 2 .q/ dq > 0.

Finally:

R0 �p�� > �1, v .0/� p�v0 .0/
2v .0/ � p�v0 .0/

> �1

, v0 .0/
v2 .0/

<
3

2
n

The above result, implying that the n D 2 case is a threshold above which sta-
bility is not necessarily granted, is reminiscent of classic results from the literature
on dynamics in the Cournot model such as Theocharis (1960). Remark that the con-
ditions for stability when n > 2 can be violated only if the reaction function at

p� is decreasing. Notice that R0 .p�/ D � @2H.p�;p�/
@ Np@pi

= @2H.p�;p�/

@p2
i

can be negative

only if @2H.p�;p�/
@ Np@pi

is negative, given the second order condition @2H.p�;p�/

@p2
i

< 0.

This means that only under strategic substitutability at equilibrium can the system
fail to converge to the Nash equilibrium. In other words it has to be the case that a
more aggressive strategy by suppliers j ¤ i (i.e. a lower bid) raises i ’s marginal
profit. Vice versa strategic complementarity at equilibrium is always associated with
a (dynamically) stable Nash equilibrium.

A specific example in which (13) fails is as follows: let n D 3 and consider the
beta density function with parameters a D 3=4; b D 3

f .x/ D x� 1
4 .1 � x/2R 1

0
x� 1

4 .1 � x/2 dx

We get v0.0/

v2.0/
' 5:4604, thus violating condition (13), and p� D V .0/

v.0/
' 1=3

1:5595
D

0:21374 implying

R0 �p�� D v .0/� p�v0 .0/
2v .0/ � p�v0 .0/

' �4:5591
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In this case8 the system’s Jacobian at the steady state is

J3 D

0
B@
1 � ˛1 ˛1

R0.p�/
2

˛1
R0.p�/

2

˛2
R0.p�/

2
1 � ˛2 ˛2

R0.p�/
2

˛3
R0.p�/

2
˛3

R0.p�/
2

1 � ˛3

1
CA

which for the above specific value of R0 .p�/ has eigenvalues outside the unit circle
for suitable values9 of ˛1; ˛2; ˛3.

Our last point regards dynamics in the n D 2 case when the density v .�/ is not

differentiable in zero. In this case, which happens if either f . Nq/ or f
�
q
�

are non-

zero, v0 .0�/ > 0 and v0 �0C� < 0 so in turn R0 .p��/ < 0 < R0 �p�C� < 1.
This implies that, locally, a perturbation (either positive or negative) from p� will
eventually lead the dynamics to a decreasing path towards p� which therefore turns
out to be locally stable.

4 Conclusions

We have shown that the non-binding auction model analysed by Gal-Or et al. (2007)
is formally equivalent to the differentiated market studied by Perloff and Salop
(1985) and, for the n D 2 case, to the generalisation of the Hotelling duopoly
recently proposed by Kim (2007). We have examined more in depth the symmet-
ric equilibrium of this class of games. In particular, we have emphasised how a
sufficient condition for both the existence and the stability of such equilibrium
requires the log-concavity of the probability density of bidders’ (oligopolists’) qual-
ities. However, there exist distribution functions for which stability can be violated.
This is the result of an extension of these models to a dynamic framework in which
bidders behave according to some expectation over the prices of their competitors
(summarized by their mean), and update these expectations adaptively on the basis
of the data from previous auctions. The steady state of such a system is unsta-
ble only if, in equilibrium, bidders’ reaction functions are negatively sloped, i.e.
under strategic substitutability. The dynamic analysis of oligopoly thus far has been
focused mainly on the Cournot model. This work then represent an attempt to adopt

8 Notice that a case like this would not be possible if f were log-concave. Indeed that would make
V log-concave as well and therefore, given p� D V .0/

v.0/ ,

v2 .0/� V .0/ v0 .0/ > 0 ) v .0/� p�v0 .0/ > 0

andR0 .p�/ > 0 as a consequence. This argument also shows that, under log-concavity the reaction
function has positive slope and, because such slope cannot exceed 1, local stability is ensured.
9 For example ˛1 D 0:3; ˛2 D 0:4; ˛3 D 0:5 imply the following eigenvalues: 1:5777; 1:4285;
�1:2062.
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the same approach in analysing other forms of market imperfections. Moreover, we
have shown how this methodology can be applied also in an auction framework, at
least when bidders have no private information and the Nash equilibrium is in pure
strategies. Future research can be devoted to investigate the potentiality of such
analysis in these kind of settings.
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Delay Differential Nonlinear Economic Models

Akio Matsumoto and Ferenc Szidarovszky

1 Introduction

The asymptotical behavior of dynamic economic systems has been the focus of
a large number of studies with both discrete and continuous time scales. They
are based on the qualitative theory of difference or ordinary differential equations
(Bellman, 1969; Goldberg, 1958). It has been shown by many authors that the
introduction of information delay into the dynamic models significantly changes
their asymptotical properties. For example, Chiarella and Szidarovszky (2004) con-
sider dynamic oligopolies with partial information on the price function and Huang
(2008) examines the role of information lag in economic dynamics, to name a few.
There is a significant difference between models with fixed time lags and models
with continuously distributed delays. In the first case there is an infinite spectrum,
and in the second case with gamma-function type kernel functions, the spectrum is
finite. An important special case of continuously distributed time lags is given by
exponentially decreasing kernel functions.

In this paper we compare dynamics generated by fixed time lags and con-
tinuously distributed delay with exponential kernel function. We will first show
that these two types of models generate the same local dynamics if the delay is
sufficiently small. This is, however, not true if the delay becomes large.

The theoretical findings are illustrated by three well known economic models:
the Goodwin model, the Kaldor–Kalecki model and the Cournot oligopoly model.

This paper is organized as follows. Section 2 introduces the main mathematical
results, and the particular models are discussed in Sect. 3. Conclusions are drawn in
Sect. 4.
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2 Mathematical Results

Consider first the general linear differential-difference equation

nX
kD0

˛ky
.k/.t/C

nX
kD0

ˇky
.k/.t C �/ D 0 (1)

with a single delay �; where

y.k/.t/ D dk

dtk
y.t/ and y.k/.t C �/ D dk

dtk
y.t C �/:

Assuming small �; linearization with respect to � gives the approximation

 
nX

kD0

˛ky
.k/.t/C

nX
kD0

ˇky
.k/.t/

!
C
 

nX
kD0

ˇky
.kC1/.t/

!
� D 0:

This is a linear homogeneous equation. As usual, looking for the solution in an
exponential form y.t/ D ve�t gives

nX
kD0

.˛k C ˇk/ �
ke�t vC

nX
kD0

ˇk�
kC1e�t v� D 0;

and after simplification the characteristic polynomial of the system becomes

nX
kD0

˛k�
k C

 
nX

kD0

ˇk�
k

!
.1C ��/ D 0; (2)

which is a polynomial of degree nC 1 in �:
Consider next the equivalent delayed equation,

nX
kD0

˛ky
.k/.t � s/C

nX
kD0

ˇky
.k/.t/ D 0: (3)

Assuming continuously distributed lag with exponential kernel function,

w.t � s/ D 1

�
e� t�s

�

and taking delay expectation, a Volterra-type integro-differential equation is ob-
tained Z t

0

w.t � s/
nX

kD0

˛ky
.k/.s/ds C

nX
kD0

ˇky
.k/.t/ D 0: (4)
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In the first factor we can introduce the new variable z D t � s to have

Z t

0

w.z/
nX

kD0

˛ky
.k/.t � z/d zC

nX
kD0

ˇky
.k/.t/ D 0:

If we seek the solution in the usual exponential form y.t/ D ve�t and substitute it
into the above equation, we get

Z t

0

1

�
e� z

�

nX
kD0

˛k�
ke�.t�z/vd zC

nX
kD0

ˇk�
ke�t v D 0:

By dividing both sides by e�t v and letting t !1 we have a simplified expression
for the first term:

Z 1

0

1

�
e�z.�C 1

�
/d z

nX
kD0

˛k�
k D 1

�

e�z.�C 1
�

/

�.�C 1
�
/

#1

zD0

nX
kD0

˛k�
k D 1

�� C 1
nX

kD0

˛k�
k;

so the equation further simplifies as

1

�� C 1
nX

kD0

˛k�
k C

nX
kD0

ˇk�
k D 0; (5)

which is equivalent to (2). Therefore the local asymptotic behavior of the two
dynamics is identical. We summarize this result:

Theorem 1. Local dynamics generated by the general delay differential equation
with a single and small delay is the same as the dynamics by the general dif-
ferential equation with continuously distributed time lag with exponential kernel
function.

In the case of the general kernel function

w.t � s/ D 1

nŠ

�n
�

�nC1

.t � s/ne� n.t�s/
� ;

we know that as � !1 or n!1; the function converges to the Dirac-delta func-
tion centered at t�s D 0 and t�s D �; respectively. Therefore, in this limiting case
the integro-differential equation (4) converges to the deterministic case with fixed
delay. It is very interesting that in the exponential kernel function (n D 0) case, the
two processes are even equivalent concerning the local behavior of the equilibrium.
This is not true however for larger values of n; as it is demonstrated in Matsumoto
and Szidarovszky (2009).
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3 Economic Examples

We confirm Theorem 1 by examining various delay economic models when the
time delay is small and investigate the global dynamics of the delay models with
continuously distributed time delay when the time delay is large.

3.1 Goodwin Model with Investment Lag

Goodwin (1951) constructed a business cycle model with nonlinear acceleration
principle of investment and showed that the model gives rise to cyclic oscillations
when its stationary state is locally unstable. Goodwin’s basic model is summarized
as a 1D nonlinear differential equation,

" Py.t/ � '. Py.t//C .1 � ˛/y.t/ D 0;

where a time variable y is national income, ˛ the marginal propensity to consume,
which is a positive constant and less than unity, " a positive adjustment coefficient
of y and '. Py.t// denotes the induced investment that is dependent on the rate of
change in national income. The dot stands for differentiation with respect to time
t: Goodwin’s model adopts the nonlinear acceleration principle, according to which
investment is proportional to the change in national income in a neighborhood of
the equilibrium income but becomes inflexible for the extremely larger or smaller
values of income.

“In order to come close to reality” (Goodwin, 1951, p. 11), the production lag
� between decisions to invest and the corresponding outlays is introduced into the
above model and then the modified model becomes

" Py.t/ � '. Py.t � �//C .1 � ˛/y.t/ D 0: (6)

This is a neutral delay nonlinear differential equation in which � is the fixed time
lag. Since it is difficult to analytically solve this delay nonlinear model, it is a natural
way to use a tractable approximation of (6). In particular, to investigate dynamics,
we rewrite the equation as

" Py.t C �/ � '. Py.t//C .1 � ˛/y.t C �/ D 0;
and expands it with respect to � around � D 0 to obtain the following second-order
nonlinear differential equation:

"� Ry.t/C Œ"C .1 � ˛/�� Py.t/ � '. Py.t//C .1 � ˛/y.t/ D 0:

Clearly, y.t/ D 0 for all t is a stationary state of this equation. Its asymptotic behav-
ior is determined by the eigenvalues, which are the solutions of the characteristic
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equation,
"��2 C Œ"C .1 � ˛/� � ���C .1 � ˛/ D 0; (7)

where � D ' 0

.0/: The characteristic roots are

�1;2 D �k ˙
p
k2 � 4"�.1� ˛/
2"�

;

where k D "C .1 � ˛/� � �: It follows that the product of the characteristic roots
is positive since 0 < ˛ < 1 and both " and � are positive:

�1�2 D 1 � ˛
"�

> 0;

which excludes the possibility of saddle stationary point. It also follows that the sum
of the characteristic roots can be of either sign,

�1 C �2 D �"C .1 � ˛/� � �
"�

� 0:

Given the values of ˛ and "; the indeterminacy of the sign of the last expression
means that the .�; �/-space is divided into two parts by the partition line

� D "C .1 � ˛/�:

For all � above this line, the sum of the characteristic roots is positive, hence the
stationary state is locally unstable. In the same way, the stationary state is locally
asymptotically stable for all � below this line.

Continuously distributed time delay is an alternative approach to deal with time
delay in investment. If we adopt it and denote the expected change of national
income at time t by Pye.t/; then Goodwin’s delayed equation (6) can be written
as the system of Volterra-type integro-differential equations:

8̂
<̂
ˆ̂:

" Py.t/ � '. Pye.t//C .1 � ˛/y.t/ D 0;

Pye.t/ D
tR

0

1

�
e� t�s

� Py.s/ds;
(8)

where � is a positive real parameter which is associated with the length of the delay.
The second equation of (8) shows that the weighting function of the past changes
in national income gives the most weight to the most recent income change and the
weight is exponentially declining afterwards. Before turning to a closer examination
of this model, we rewrite it as a system of ordinary differential equations. The time-
differentiation of the second equation of (8) gives a simple equation for the new
variable z D Pye:

Pz.t/ D 1

�
. Py.t/ � z.t// : (9)
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Solving the first equation for Py; replacing Pye with z; replacing Py in (9) with the new
expression of Py and then adding the new dynamic equation of z will transform the
system of the integro-differential equations to the following 2D system of ordinary
differential equations:

8̂
ˆ̂<
ˆ̂̂:

Py.t/ D �1 � ˛
"

y.t/C 1

"
'.z.t//;

Pz.t/ D 1

�

�
�1 � ˛

"
y.t/C 1

"
'.z.t// � z.t/

�
:

(10)

The Jacobian matrix of this system at y D z D 0 has the form

JG D

0
BBB@
�1 � ˛

"

�

"

�1 � ˛
"�

1

�

��
"
� 1

�

1
CCCA : (11)

The corresponding characteristic equation is quadratic in �:

�2 C "C .1 � ˛/� � �
"�

�C 1 � ˛
"�
D 0:

Notice that this characteristic equation is equivalent to the characteristic equation
(7). It follows that the local stability conditions are also identical. This means that
the two delay dynamic systems generate the same dynamics in the neighborhood of
� D 0:

We now turn our attention to the dynamics of (8) when � is large. It is well-
known that the Goodwin model generates a limit cycle when its stationary point is
locally unstable. Goodwin (1951) assumed a piecewise linear investment function
in his simulations. We numerically confirm his result but for the sake of analytical
convenience, we assume a hyperbolic tangent type investment function:

'. Py/ D ı .tanh. Py � a/ � tanh.�a// ; ı > 0 and a D 1: (12)

We perform numerical simulations with the parameter values " D 0:5 and ˛ D
0:6 as in Goodwin (1951). To make the stationary point locally unstable, we take
� D 0:8 and ı D .1C a2/."C .1� ˛/�/C 0:01: The numerical result is illustrated
in Fig. 1 in which two trajectories, one continuous line starting at point a and the
other dotted line at point b; are seen to converge to the limit cycle.

Recently, Matsumoto (2009) reexamined Goodwin’s model and showed the
coexistence of multiple limit cycles, a stable cycle surrounding a unstable cycle
when the stationary state is locally stable. This is illustrated in Fig. 2 in which there
are two limit cycles depicted as bold curves and the two trajectories starting at



Delay Differential Nonlinear Economic Models 201

y

y = 0

z = 0

a

z
b

Fig. 1 Existence of a stable limit cycle

Fig. 2 Co-existence of a stable and an unstable limit cycles

points a and b converge to the outer limit cycle whereas a trajectory starting at
point c approaches the stable stationary point. A parametric difference between the
first simulation and the second simulation is that only the value of ı is changed to
.1C a2/."C .1 � ˛/�/ � 0:01 from .1C a2/."C .1 � ˛/�/C 0:01:
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3.2 Kaldor–Kalecki Model with Investment Lag

Kaldor (1940) presented a business cycle model in which investment was positively
related to the levels of income via a nonlinear relationship. Kalecki (1935) added a
lag between the investment decision and the installation of investment goods. His
model used a linear difference-differential equation to generate cyclic dynamics.
The Kaldor–Kalecki model is a combination of nonlinear investment and a time
lag in the capital accumulation. Let Y be the national income and K the capital
stock. Then the Kaldor–Kalecki model can be written as

8<
:
PY .t/ D ˛ ŒI.Y.t/;K.t// � S.Y.t//� ;

PK.t/ D I.Y.t � �/;K.t// � ıK.t/;
(13)

where I.Y;K/ is an investment function and S.Y / is the saving function. Investment
depends positively on income and negatively on capital, so dI=dY D IY > 0 and
dI=dK D IK < 0: Furthermore, it takes a S -shaped profile with respect to Y indi-
cating that investment becomes inflexible for low as well as high levels of income.
Savings depends on income in the usual way, i.e., 0 < dS=dY D SY < 1: We
assume also that IY �SY > 0 at the fixed point of (13), that is, investment increases
faster than savings as national income increases in a neighborhood of the fixed point,
following Kaldor. In addition, ˛ > 0 is the adjustment coefficient and ı > 0 is the
depreciation rate of the capital. The first equation of (13) states that income changes
proportionally to the excess demand in the goods market. The second equation is a
standard capital accumulation equation but includes a time lag � .

Consider first the local stability of (13) without time delay (i.e., � D 0), which is
equivalent to the original Kaldor model. The Jacobian matrix has the form

JK D
�
˛.IY � SY / ˛IK

IY IK � ı
�

with the determinant

detJK D ˛.IY � SY /.IK � ı/� ˛IKIY

and the trace
trJK D ˛.IY � SY /C .IK � ı/:

Kaldor (1940) made two basic assumptions: detJK > 0 in order to exclude the
possibility that a stationary point is saddle and trJK < 0 to make the stationary
point unstable. As seen in Chang and Smyth (1971), the gist of Kaldor’s argument
can be translated to show an existence of an endogenously persistent fluctuation by
applying the Poincaré–Bendixson theorem. For this end, the local instability of the
stationary point is the first requirement. Figure 3 illustrates the birth of a Kaldorian
limit cycle with the following configuration of the model: The investment function
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Y

Y = 0

K = 0

K

a

b

Fig. 3 Existence of a Kaldorian limit cycle

is separable with respect to Y and K;

I.Y;K/ D �.Y /C ˇK; ˇ < 0;

where �.Y / is assumed to be a symmetric S -shaped function,

�.Y / D A

1C e�BY
� A
2
; A > 0 and B > 0;

and the parameters are specified as A D 4; B D 1; c D 0:6; ˛ D 0:8; ˇ D �0:2
and ı D 0:05: It can be seen that the limit cycle attracts two different trajectories,
one starting at point a and the other starting at point b in the neighborhood of the
stationary point.

Although we numerically confirm the existence of the Kaldorian limit cycle when
the stationary point is locally unstable, we are interested in the destabilizing effect
caused by a delay in investment so that the stationary point becomes asymptotically
stable when trJK < 0. In Fig. 4, two trajectories belonging to the two different initial
points a and b spiral toward the stationary point when ˇ D �0:4 and ı D 0:2 with
the other parameters being unchanged.

Now we are back to the delay Kaldor–Kalecki model (13). We first rewrite the
capital accumulation equation as

PK.t C �/ D I.Y.t/;K.t C �// � ıK.t C �/:

If the time lag is small enough, then linearizing it with respect to � around � D 0

gives
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K
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b

K = 0

Y = 0

Fig. 4 A stable Kaldorian stationary point

PK.t/� fI.Y.t/;K.t// � ıK.t/g C ˚ RK.t/ � IK
PK.t/C ı PK.t/� � D 0:

Introducing the new variable, Z.t/ D PK.t/, the delayed Kaldor–Kalecki model is
reduced to a 3D system of ordinary differential equations:

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

PY .t/ D ˛. I.Y.t/;K.t// � S.Y.t// /;

PK.t/ D Z.t/;

PZ.t/ D 1

�
fI.Y.t/;K.t// � ıK.t/g C f.IK � ı/ � 1

�
gZ.t/:

(14)

The Jacobian matrix is

JD D

0
BB@
˛.IY � SY / ˛IK 0

0 0 1
1

�
IY

1

�
.IK � ı/ .IK � ı/ � 1

�

1
CCA

with the determinant,

detJD D �detJK

�
< 0

and the trace

trJD D trJK � 1
�
< 0;

where the inequalities are due to the assumptions detJK > 0 and trJK < 0 in the
Kaldor model. The characteristic equation of JD is
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�3 C a1�
2 C a2�C a3 D 0; (15)

where the coefficients are

a1 D �trJD > 0;

a2 D ˛.IY � SY /.IK � ı/� 1
�
.˛.IY � SY /C .IK � ı// ;

a3 D �detJD > 0:

If we assume continuously distributed time lag in the capital accumulation pro-
cess, then Y.t � �/ is replaced by the expected income Y e.t/; which is defined as
the weighted average of the past realized incomes from zero to time t;

Y e.t/ D
Z t

0

1

�
e� t�s

� Y.s/ds:

The delay 2D Kaldor–Kalecki model (13) can be reduced to a 3D system of ordinary
differential equations:

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

PY .t/ D ˛ ŒI.Y.t/;K.t// � S.Y.t//� ;

PK.t/ D I.Y e.t/;K.t// � ıK.t/;

PY e.t/ D 1

�
.Y.t/ � Y e.t// ;

(16)

where the last equation is obtained by time differentiation of Y e.t/: The Jacobian
matrix at the stationary point is

JC D

0
BB@
˛.IY � SY / ˛IK 0

0 IK � ı IY

1

�
0 � 1

�

1
CCA :

It can be easily checked that the Jacobian matrix JC has the same characteristic
equation as (15). Hence the two different dynamic systems (14) and (16) generate
the same dynamics in a neighborhood of the stationary point if � is sufficiently
small. According to the Routh–Hurwitz stability criterion, a necessary and sufficient
condition that all roots of the cubic characteristic equation (15) have negative real
parts is that a1 > 0; a2 > 0; a3 > 0 and a1a2 � a3 > 0: Notice that a1 > 0

and a3 > 0 are already shown to be positive due to Kaldor’s assumptions. For
sufficiently small �; a2 could be positive because its second term �trJK=� > 0 is
positive and can dominate the first term. By the same token a1a2�a3 can be positive
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for a small �: Hence it is safe to presume that the delay Kaldor–Kalecki system is
stable when the investment delay is sufficiently small. Since a small � means a small
lag effect, this result is reasonable under the assumption that the original Kaldor
model is stable as shown in Fig. 4. The next question which we raise is whether or
not the stability of the stationary state changes as the lengths of delays increase. We
consider this question in model (16) only, since (14) is inappropriate for a large �:

Now we turn our attention to the dynamic behavior of the delay Kaldor–Kalecki
model with a large �: As seen above, the coefficients a1 and a3 of the characteristic
equation are positive. However, the sign of a2 is not determined. Solving a2 D 0

for � yields the critical value of � ,

�2 D ˛.IY � SY /C .IK � ı/
˛.IY � SY /.IK � ı/ > 0

implying that a2 is positive for � < �2: By the definitions of the coefficients of (15),
we have

a1a2 � a3 D �A�
2 C B� � C
�2

;

where
A D ˛.IY � SY /.IK � ı/ Œ˛ .IY � SY /C .IK � ı/� > 0;

B D Œ˛.IY � SY /C .IK � ı/�2 C ˛IKIY � 0;

C D ˛.IY � SY /C .IK � ı/ < 0:
Let us denote the numerator of the last equation by f .�/: Since f .�/ is a concave
quadratic polynomial, f .0/ D �C > 0 implies that f .�/ D 0 has one positive
root, ��;

�� D B CpB2 � 4AC
2A

:

Since f .��/ D 0; f .�/ < 0 for � > ��: Furthermore f .�2/ D .�2/
2.�a3/ < 0

and �� < �2 imply that a2 > 0 at � D ��: To emphasize the dependency of the
coefficients on �; we denote ai .�/ for i D 1; 2; 3: For � D ��; a1.�

�/a2.�
�/ �

a3.�
�/ D 0. By replacing a3.�

�/ of the characteristic equation with a1.�
�/a2.�

�/;
we are able to factor the characteristic equation,

.�C a1.�
�//.�2 C a2.�

�// D 0

that can be explicitly solved for �:One of the three roots is real and negative whereas
the other two are pure imaginary,

�1 D �a1.�
�/ < 0 and �2;3 D ˙i

p
a2.��/ D ˙i�:

In order to apply the Hopf bifurcation theorem, we have to show that the real
parts of the complex roots are sensitive to a change in the bifurcation parameter,
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�: Suppose that � is a function of � . By implicitly differentiating the characteristic
equation with respect to � we have

d�.��/
d�

D 1

�
�2

�.��/2 � trJK�.�
�/C detJK

3�.��/2 C 2a1.��/�.��/C a2.��/
:

Substituting � D ˙i� and arranging terms yield

Re

�
d�.��/
d�

�
D 1

�
�2

�2 � detJK � a1.�
�/trJK

2.�2 C a1.��/2/
;

where the denominator is positive. We can show that the numerator is never zero.
Substituting

a1.�
�/ D �trJK C 1

��
and

�2 D a2.�
�/ D detJK C ˛IKIY � 1

�
trJK

into the numerator and assuming that the resultant expression is zero yield

.trJK/
2 C ˛IKIY � 2

�
trJK D 0:

However a2.�
�/a1.�

�/ D a3.�
�/ means that

�
1

��

��
detJK C ˛IKIY � 1

�� trJK

�
D 1

�� detJK

which can be rewritten as

trJK

	
1

��2
� ˛ .IY � SY / .Ik � ı/



D 0;

where the equality is impossible, since trJK < 0; IY � SY > 0; Ik � ı < 0 and
�� > 0: Therefore we have

Re

�
d�.��/
d�

�
¤ 0:

This implies that the real parts of the complex roots change signs as � � ��
changes from negative to positive values. That is, it guarantees the existence of
Hopf bifurcation.

Theorem 2. The Kaldor–Kalecki model with continuously distributed lags having
an exponential kernel function is locally asymptotic stable for 0 � � < �� while it
loses the stability at � D �� via a Hopf bifurcation.
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Fig. 5 Existence of a limit cycle in the delay Kaldor–Kalecki model

It is uncertain whether the limit cycle is subcritical or supercritical. In Fig. 5,
simulation results are shown with � D 0:7 and parameter values c D 0:6; ˛ D 0:8;
ˇ D �0:4 and ı D 0:2 ; which are the same as in the simulation study presented in
Fig. 4. The critical value is �� ' 0:37: The delay Kaldor–Kalecki model generates
a supercritical limit cycle due to the destabilizing effect of the investment lag.

3.3 Delay Nonlinear Cournot Model

We will examine a dynamic Cournot duopoly game when a firm has an information
lag in the receipt of information about its competitor’s output. We assume that each
firm adaptively adjusts its output to the desired level of output:

8<
:
Px1.t/ D k1 fR1.x2.t � �1// � x1.t/g ;

Px2.t/ D k2 fR2.x1.t � �2// � x2.t/g ;
(17)

where xi ; ki ; �i and Ri .xj / are output, a positive adjustment coefficient, a time lag
and the best reply function of firm i for i; j D 1; 2 and i ¤ j: Special duopoly mod-
els such as the classical Cournot model with a linear price function and a nonlinear
Cournot model with a unit-elastic price function will be considered later to specify
the best reply functions.

To consider a linearization of the system, we suppose that the information lags
are sufficiently small and an advance �1 time in the first equation of (17) and an
advance �2 time in the second one:
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Px1.t C �1/ D k1 fR1.x2.t// � x1.t C �1/g ;

Px2.t C �2/ D k2 fR2.x1.t// � x2.t C �2/g :

Define the difference between the left-hand side and the right-hand side by

F1.�1/ D Px1.t C �1/ � k1 fR1.x2.t// � x1.t C �1/g

and

F2.�2/ D Px2.t C �2/� k2 fR2.x1.t// � x2.t C �2/g :

Differentiating each function with its lag at �i D 0 and arranging terms yield

�1 Rx1.t/ D �k1�1 Px1.t/ � Px1.t/C k1 fR1.x2.t// � x1.t/g

and

�2 Rx2.t/ D �k2�2 Px2.t/� Px2.t/C k2 fR2.x1.t// � x2.t/g :

Introducing the new variables y1.t/ D Px1.t/ and y2.t/ D Px2.t/; we can trans-
form the 2D delay differential equation system (17) into the following 4D system of
ordinary differential equations:

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
:

Px1.t/ D y1.t/;

Px2.t/ D y2.t/;

Py1.t/ D k1

�1

fR1.x2.t// � x1.t/g �
�
k1 C 1

�1

�
y1.t/;

Py2.t/ D k2

�2

fR2.x1.t// � x2.t/g �
�
k2 C 1

�2

�
y2.t/:

(18)

The Jacobian matrix is

JL D

0
BBBBBB@

0 0 1 0

0 0 0 1

�k1

�1

k1

�1

�1 �
�
k1 C 1

�1

�
0

k2

�2

�2 �k2

�2

0 �
�
k2 C 1

�2

�

1
CCCCCCA
;

where �i is the derivative of Ri .xj / evaluated at the stationary point. The charac-
teristic equation of JL can be written as
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a0�
4 C a1�

3 C a2�
2 C a3�C a4 D 0; (19)

where
a0 D �1�2;

a1 D �1 C �2 C .k1 C k2/�1�2;

a2 D 1C k1k2�1�2 C .k1 C k2/.�1 C �2/;

a3 D k1 C k2 C k1k2.�1 C �2/;

a4 D k1k2.1 � �1�2/:

(20)

The above procedure is suitable for a situation in which the information lag is
fixed and sufficiently small. If the lags are uncertain, we can model time lags in a
continuously distributed manner. If firm 1’s expectation of the competitor’s output
is denoted by xe

2.t/ and firm 2’s expectation of the competitor’s output is denoted by
xe

1.t/ and both expectations are based on the entire history of the outputs from zero
up to t with exponentially decreasing weights, then the delay differential equation
system (17) can be written as the 2D system of integro-differential equations:

8<
:
Px1.t/ D k1

˚
R1.x

e
2.t// � x1.t/

�
;

Px2.t/ D k2

˚
R2.x

e
1.t// � x2.t/

�
;

(21)

with

xe
1.t/ D

tZ
0

1

�1

e
� t�s

�1 x1.s/ds

xe
2.t/ D

tZ
0

1

�2

e
� t�s

�2 x2.s/ds:

This system is equivalent to the following 4D system of ordinary differential
equations: 8̂

ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

Px1.t/ D k1

˚
R1.x

e
2.t// � x1.t/

�
;

Px2.t/ D k2

˚
R2.x

e
1.t// � x2.t/

�
;

Pxe
1.t/ D

1

�1

.x1.t/ � xe
1.t//;

Pxe
2.t/ D

1

�2

.x2.t/ � xe
2.t//:



Delay Differential Nonlinear Economic Models 211

The Jacobian of this system can be written as

0
BBBBB@

�k1 0 0 k1�1

0 �k2 k2�2 0
1

�1

0 � 1
�1

0

0
1

�2

0 � 1
�2

1
CCCCCA
:

Simple calculation shows that the characteristic equation of this matrix can be
written as a quartic equation in �:

a0�
4 C a1�

3 C a2�
2 C a3�C a4 D 0

with the same coefficients as defined in (20). The identical characteristic equa-
tion means that (17) and (21) exhibit the same dynamics in a neighborhood of the
stationary point as Theorem 1 claims.

If �1�2 < 1; then all coefficients of the characteristic equation are positive, and
the Routh–Hurwitz theorem implies that the roots have negative real parts if and
only if ˇ̌̌

ˇa1 a0

a3 a2

ˇ̌̌
ˇ > 0 and

ˇ̌̌
ˇ̌
ˇ
a1 a0 0

a3 a2 a1

0 a4 a3

ˇ̌̌
ˇ̌
ˇ > 0:

The first condition is satisfied because the second-order determinant is always
positive,

.k1Ck2/.1Ck1�2/.1Ck2�2/�
2
1 C�2.1C.k1Ck2/�1/C�1.1C.k1Ck2/�2/ > 0:

The second condition depends on the value of �1�2: Expanding the third-order deter-
minant, and solving the inequality gives a lower bound for �1�2; and by combining
it with the upper bound �1�2 < 1; we get the following condition for the local
asymptotic stability of the stationary state:

1 > �1�2 > � .k1 C k2/.1C k1�1/.1C k2�1/.�1 C �2/.1C k1�2/.1C k2�2/

k1k2.�1 C �2 C �1�2.k1 C k2//2
:

(22)
In the case of the linear Cournot model, the price function is given by

p D a � b.x1 C x2/

and so the profit function of firm i is defined as


i D .a � b.x1 C x2// xi � cixi ;
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where ci is the constant marginal cost. The best reply function and its derivative are

Ri .xj / D a � ci � bxj

2b
and �i D �1

2
:

Since 1 > �1�2 D 1=4 > 0, (22) is satisfied. Hence the delay linear Cournot model
is always stable for any values of information lags, �i :

In the case of the unit-elastic demand, the price function is given by

p D 1

x1 C x2

and the profit function of firm i is defined as


i D xi

x1 C x2

� cixi :

Assuming an interior solution, the profit maximization yields a bell-shaped best
reply function,

Ri .xj / D
r
xj

ci

� xj :

Cournot outputs are determined by an intersection of the best reply curves,

xC
1 D

c2

.c1 C c2/2
and xC

2 D
c1

.c1 C c2/2
:

The derivatives of the best response functions evaluated at the Cournot point are
derived as

�1 D �c1 � c2

2c1

and �2 D c1 � c2

2c2

:

If there are no time lags, the dynamic system is represented by (17) with �i D 0: The
asymptotic properties of the trajectories x1.t/ and x2.t/ depend on the location of
the eigenvalues of the Jacobian matrix of the system. The eigenvalues are obtained
by solving the associated characteristic equation,

�2 C .k1 C k2/�C k1k2.1 � �1�2/ D 0:

Here k1 C k2 > 0 by the definition of the adjustment coefficient and �1�2 < 1;

since

�1�2 D � .1 � c/
2

4c
with c D c2

c1

:
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Fig. 6 The birth of a Cournot cycle

The roots of the characteristic equation have negative real parts. Hence the nonlinear
Cournot model with no information lags is always asymptotically stable.1

Now we examine the asymptotic behavior of the delay nonlinear Cournot model.
The value of �1�2 can be any negative number between �1 and zero by the appro-
priate choice of the cost ratio c: Notice that the stability condition (22) is violated
if �1�2 is negative with large absolute value. In particular, Fig. 6 illustrates the
dynamic behavior of the trajectories when the stability condition is violated, in
which the parameters are specified as k1 D k2 D 0:8; �1 D �2 D 2, c1 D 1

and c2 D 0:045: It can be seen that a trajectory starting at the dot point converges
to a limit cycle surrounding a locally unstable Cournot point.2

4 Concluding Remarks

Delay models with fixed lags and models with continuously distributed delays were
compared in this paper. By selecting exponential kernel function, we first proved
that with small delays the two types of dynamics generate identical local asymp-
totic properties. However with large delays this interesting equivalence was not true
anymore.

1 The discrete-time version of the nonlinear Cournot model has been extensively studied, and it
is demonstrated that simple nonlinear best reply functions can generate a very rich dynamics
involving chaos and multistability (Bischi et al., 2009; Puu, 2003; Puu and Sushko, 2002). The
delay differential Cournot model with product differentiation is considered in Matsumoto and
Szidarovszky (2007).
2 A trajectory seems to cross itself as dynamics generated in a 4D space is projected to a 2D space.
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Three particular economic models (Goodwin’s business cycle model, Kaldorian
business cycle model with Kaleckian investment lag and the Cournot oligopoly
model) illustrated the theoretical results, and computer simulations showed that
more complex dynamics emerged if a large value of time delay was selected.
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Imperfect Competition, Learning
and Fluctuations

Piero Ferri and Anna Maria Variato

1 Introduction

The strategic roles of imperfect competition and monopolistic competition have
undergone considerable changes since their inception in the thirties, when (Robinson
1933) and (Chamberlin 1933) first and independently formalized the two similar
concepts. For instance, their field of application has transcended microeconomics
to occupy an important place in macroeconomics, where they are supposed to be
superior with respect to perfect competition. This happened some time ago (see
Kalecki 1971; Minsky 1954, 2004), and it has been recently reformulated in the so
called “new” Keynesian literature (see Blanchard and Kiyotaki 1987).

This potential superiority, however, has been strongly limited by the presence
of two hypotheses, namely the symmetry hypothesis and the rational expecta-
tion assumption, which are instead untenable in a world of imperfect knowledge
economics (IKE, according to the definition of Frydman and Goldberg 2007).
Specifically, in such an environment, heterogeneity among agents rules out the sym-
metry hypothesis. Furthermore, the presence of imperfect knowledge suggests that
the interdependence processes characterizing heterogeneous agents must be dealt
with in a simplified macro approach. Finally, agents have to learn the dynamic
process from the data.

The aim of the present paper is to analyze the dynamic effects that arise from
the simultaneous presence of imperfect competition and uncertainty in a medium-
run perspective. One of the most important contributions of our approach lies in
the choice of this span of time. On the surface, the emphasis on medium-run pre-
vents our analysis taking into account cycles showing either too high or too low
frequencies. In other words, the fluctuations we deal with are not business cycles as
traditionally meant. More deeply, at a methodological level, the focus on medium-
run requires consideration of a model in which aggregate demand and aggregate
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supply are intertwined: neither aggregate demand nor aggregate supply can take the
lead, as conventionally assumed when studying short-run as opposed to long-run.

Further contributions appear in the mechanisms generating the dynamics of the
model. In particular, the simultaneous adoption of non-linear equations and a regime
switching mechanism, implies the use of simulations and gives rise to one of the
engines of fluctuations.

Given this theoretical framework, we focus on three specific issues. First of all we
try to assess whether fluctuations generated in the model are persistent. Secondly,
we try to evaluate the effects on dynamics of the presence of uncertainty and the
consequent need of agents to learn about the environment they face. Finally, we
check the robustness of the model to significant changes in the parameters involving
the strategic variables related to competition.

The structure of the paper is the following. Section 2 illustrates the methodolog-
ical aspects. Section 3 defines the role of imperfect competition in a world with
uncertainty. Sections 4 and 5 deal respectively with aggregate supply and aggre-
gate demand problems. Section 6 introduces the remaining equations of the model.
Section 7 explains the learning process. Section 8 shows the persistent fluctua-
tions generated by the model, while Sect. 9 illustrates its robustness. Section 10
concludes.

2 Medium-run Fluctuations and Regime Switching

When considering stylized facts in advanced industrialized countries there is a ten-
dency to concentrate on polar cases: either the short-run vibrations of the economy
are considered (as it happens in the short run forecast of the economy) or very long-
run spans of time are taken into account, as usually happens when dealing with
technical change. (Solow 2000) has insisted on the importance of a medium-run
approach (see also Blanchard 1997). In this perspective, the stylized facts featuring
fluctuations become particularly revealing (see Comin and Gertler 2006).

The oscillations between growth and stagnation can be studied by adopting the
hypothesis of multiple equilibria. In this perspective, the economy is characterized
either by a “bad” state (state 1), where debt is high and growth is low, or by a
“good” state (state 2), marked by the situation of sustained growth accompanied
by low debt. In order to obtain multiple equilibria, nonlinear relationships are usu-
ally introduced. Alternatively, one might refer to piecewise linear techniques, which
assume that certain functions change discontinuously when they reach a threshold.1

In order to implement this approach, one needs to move along three steps. First of
all, a threshold must be identified. In the present case, it is represented by a partic-
ular value of the rate of income growth (gth), supplemented by a stochastic term to

1 This is the strategy followed in this paper (see also Ferri et al. 2001).
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soften the determinism of the model:2

gth D g01 C g02

2
C "t

In other words, the threshold is given by the average of the two steady state values
of the rate of growth g0j (where the suffix 0 stands for a steady state value and
j D 1; 2 represents respectively regime 1 and 2); © t is a stochastic variable, normally
distributed with a zero mean and a constant variance.

Secondly, one has to identify the equations undergoing changes when the thresh-
old is reached.3 In the present paper, the supply equations undergo changes, i.e. the
price equation, the productivity function and income distribution. It is important to
stress that these changes may refer either to the values of the parameters or to the
steady state values.

The final step of a regime switching model consists in considering the dynamics.
It is important to stress that growth cycles depends on what happens: (a) within
each state, (b) between the two states and (c) the time spent in each regime. In other
words, history matters (see also Day and Walter 1989).

3 Imperfect Competition and Uncertainty

Any macro analysis that focuses attention on the role of imperfect competition is
bound to face a fundamental challenge: its presumed superiority to perfect com-
petition (see Solow 1998). The main difficulty associated with the choice of this
market structure lies in the openness of its definition, as opposed to the uniqueness
of features characterizing perfect competition. There is no way to define univo-
cally a macro model grounded on imperfect competition, as different markets may
be imperfect in different ways (or degrees). Such a limit does not apply to perfect
competition where, in addition, the properties of microeconomic equilibrium extend
to the macroeconomic one without variations. In contrast, the macro achievements
of imperfect competition depend on the overall hypothesis that have been put for-
ward. Symmetric equilibrium is one of these examples. The hypothesis of symmetric
equilibrium seems too strong for a macro analysis that intends to analyze short to
medium-run phenomena characterized by some degree of uncertainty. If one drops
this hypothesis by allowing agents heterogeneity, the analysis becomes extremely
challenging (see also Delli Gatti and Gallegati 2002; Aoki and Yoshikawa 2007).

The basic departure from perfect competition is represented by the violation
of the hypothesis related to the amount and distribution of information among

2 According to (Frydman and Goldberg 2007), the IKE environment is not sufficiently illustrated
by the above hypothesis.
3 Changes can be also smooth as happens in the so called STAR models. See (Tong 1990;
Ferri 2008). Furthermore, this is a macro threshold. For a micro interpretation, see, for instance,
(Yokoo and Ishida 2008).
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individuals. Broadly speaking, the presence of uncertainty tends, on one hand, to
favor heterogeneity, (except probably in those extreme situations such as the Key-
nesian liquidity trap that sometime happen in the economy) and to impose, on the
other, limitations on the study of the process of the interdependence between the
various agents.4 More specifically, in an imperfect knowledge economy, two tenets
are worth stressing. To begin with, differently from what is assumed by general
equilibrium, information is asymmetric as a result of agents (or sectors) heterogene-
ity and uncertainty. It follows that most interactions can only be dealt with by rough
approximations, which are typical in macro approaches. In the second place, in the
presence of uncertainty, which is a stronger version of the concept of risk as shown
by (Knight 1921), the hypothesis of rational expectations that underlies the so called
new neoclassical synthesis models faces increasing difficulties. The hypothesis of
bounded rationality, where agents acts as econometricians and learn, are becoming
more popular (see Evans and Honkapohja 2001).

Even though uncertainty implies individual heterogeneity, in the present paper
we shall abstract from this dimension in order to be able to emphasize the specific
impact of other aspects of imperfect competition. In particular, we focus on the
effects of introducing a unique learning mechanism, which represents a significant
departure from the rational expectation hypothesis.

One implication of these considerations is that the supply equation in the macro
model becomes less straightforward than is usually supposed (see Howitt 2006).
In particular, in the model at hand, an inflation equation of the following type is
considered:


t D 'Œ'1Et
t C .1 � '1/ 
t�1�C .1 � '/
mt � �1

�
ut � u0j

�
(1)

where  t and  mt represent inflation respectively referred to final products and the
raw materials, ut is the unemployment rate, while u0j is the NAIRU in the prevailing
regime. It is worth stressing that all the variables should be indexed by j D 1; 2.
However, in order to simplify the notations, the index j is only used for steady states
and for parameters that change from one regime to the other.

The presence of  mt is based on the assumption of separability in the production
function, stressed by (Rotemberg and Woodford 1996). This equation is compatible
with a so called new-Keynesian Phillips curve (see Woodford 2003). However, in
this case, expectations (E) are not rational. Finally, the dynamics of mt are supposed
to be the following:


mt D 
mt�1Œ1C �j .gt � g0j /� (2)

This equation epitomizes the difficulties of agents to have precise information on the
market for raw materials and hence the necessity of referring to some rule of thumb
in order to make forecasts.5 According to (De Grauwe 2008) this is just an example

4 There are at last four ways in which these processes can be analyzed: (a) the game approach;
(b) the statistical physics approach suggested by (Aoki and Yoshikawa 2007); (c) so called
agent- based computational approach (ACE) based upon the simulation of interacting agents (see
Tesfatsion 2006; Leijonhufvud 2006); (d) the macro approach followed in this paper.
5 According to IMF (2008) the future on the oil price ranges from 64$ to 145$ per barrel for 2009.
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of simple rule or heuristic that characterizes a world of imperfect information and
cognitive limitation of individuals. In this equation, œ2 > œ1, which implies that the
price of raw materials accelerates in regime 2, when the threshold rate of growth gth
is crossed.

4 The Supply Equations

In order to consider further aspects of the supply side of the model, a fundamen-
tal equation is represented by the dynamics of labour productivity, which can be
expressed in the following way:

�t D �1j C �2gk;t .j D 1; 2/ (3)

where £1j represents the exogenous component and where gk stands for the rate of
growth of capital. The hypothesis

£12 > £11

implies that the exogenous component of technical change increases when a thresh-
old rate of growth is reached.6 In order to introduce the link between gt and gk;t one
must introduce the capital-output ratio (v), which is given by the following equation:

vt D vt�1

1C gk;t

1C gt

(4)

The growth rate of capital is set by the following relation:

gk;t D it

vt�1

� ı (5)

where ı represents the exogenous depreciation rate, while it D It=Yt�1 is the
investment ratio to be determined by the aggregate demand side of the model.

In this context, labour demand is given by:

lt D lt�1

.1C gt /

.1C �t /
(6)

where lt represents the employment ratio, referred to a normalized labor supply. It
follows that unemployment (ut/ is given by:

ut D 1 � lt (7)

6 On the relationship with Kaldorian hypothesis, see (Ferri 2007).
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5 The Structure of Aggregate Demand

According to a review article by (Blanchard 2008, p.5): “One major fact is that
shifts in the aggregate demand for goods affect output substantially more than we
would expect in a perfectly competitive economy.” In the new neoclassical syn-
thesis models, the persistent role of aggregate demand in shaping the dynamics of
fluctuations have been mainly explained in terms of rigidities.7 Instead of assum-
ing the existence of such rigidities one can see them as the result of deeper causes.
Uncertainty and imperfect competition may be among them. From a methodologi-
cal point of view, this choice overcomes the common “ad-hoc assumption” critique
addressed to new neoclassical synthesis models. While imperfect competition deter-
mines directly rigidities operating on the supply side, uncertainty causes rigidities
on the demand side too. Furthermore uncertainty helps to enlighten how nominal
and real rigidities, if one insists on this terminology, are interdependent. Specif-
ically, this interdependence is shown by the relationship between consumption,
investment and nominal debt. Instead of emphasizing the impact of debt on cash
flow and investment (see Fazzari et al. 2008), the present paper stresses the rela-
tionship with consumer spending because of its relevance to the present economic
conditions.

In particular, consumption is a positive function of some target income and a
negative function of the interest rate on the accumulated debt (deflated by expected
inflation):

Ct D cY �
t � c3

RtDt
�
Et Pt

where Yt
� is the target income, while the remaining part represents the debt service

deflated by expected inflation. Rt, i.e. the nominal rate of interest, appears in nomi-
nal terms because is predetermined with respect to prices. In the present paper: (a) it
is assumed that the target income is a weighted average of expected and last year
income; (b) the equation is normalized by Yt�1 on both sides; (c) furthermore, since
the debt ratio is defined as:

dt D RtDt

Pt�1Yt�1

one obtains:

ct D c1.1CE tgt /C c2 � c3

Rtdt�
1CE t
t

� (8)

7 (Fazzari et al. 1998) have shown, in a static model, that the role of aggregate demand in a model
with imperfect competition can be more direct. On the essential role of aggregate demand in a
monetary economy of production, see also (Pasinetti 2007).
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Inserting the consumption function into the equilibrium condition that defines
aggregate demand equals supply in an open economy, one gets the following
expression:

gt D it C c1

�
1CE tgt

�C c2 � c3

Rtdt

1C E t
t

� 1 � .1C 
mt/

.1C 
t /
m0j (9)

where c1 and c2 represent the propensity to consume past and forecast income,
while c3 measures the impact of debt service. Two aspects are worth consider-
ing. First of all, in dynamic terms, this equality implies that 1 plus the rate of
growth of output (gt ) must be equal to the sum of the investment ratio (it D
It=Yt�1) and the consumption ratio, diminished by the share of imports. The last
term illustrates the impact of the import ratio (m), corrected by changes in the
terms of trade. In the second place, the consumption function (i.e. the second,
third and fourth components on the r.h.s. of (9)), stresses the relationship between
income distribution, financial aspects and institutional factors. More precisely, in
this formulation, debt increases from interest and consumption and diminishes
because of wages received. The debt ratio8 evolves according to the following
formula:

dt D dt�1 .1CRt�1/

.1C gt�1/ .1C 
t�1/
C ct�1

.1C gt�1/
� !0j (10)

where ¨0j stands for the labor income share indexed by the regime status. Since
debts contracts are predetermined in nominal terms, inflation can affect them. This
is why   appears in the denominator.9

The interdependence between real and financial aspects is mainly concentrated
in the consumption function. Consequently, the investment function has been rather
simplified; it depends on both the accelerator and the (simplified) cost of capital (r)
(see Fazzari et al. 2008)10:

it D �1 C �2Egt � �3

�
rt � r0j

�
(11)

6 Completing the Model

The model tries to integrate aggregate demand and supply aspects (see also Asada
et al. 2006) in a medium-run perspective, where labor supply has been normalized.
Other equations must be presented in order to close the model.

8 The equation for nominal debt at the beginning of the period is Dt D Dt�1 .1C Rt�1/

C Pt�1Ct�1 �Wt�1Nt�1. Dividing by Pt�1Yt�1, one obtains the formula in the text.
9 This formula is different when referred to debt of the firms.
10 On the attempt of microfounding this equation, see (Minsky 2004).
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In detail, monetary authorities fix the nominal rate of interest (R) according to a
Taylor rule of the type:

Rt D R�
0j C  1

�
E t
t � 
0j

�C  2

�
Etgt � g0j

�
(12)

The monetary authorities are supposed to try to reach the nominal rate target (R0j
�),

along with the inflation and growth objectives according to the prevailing regime j .
The real rate of interest is related to the nominal rate by the Fisher formula:

rt D .1CRt /�
1C Et
t

� � 1 (13)

Finally, income distribution equation is given by:

!t D !0j (14)

Income distribution is exogenous within each regime, but varies between regimes.
In other words, one can assume that the mark-up of imperfect competitive firms
varies according to the prevailing regime. This implies that the labour share (!) has
different steady state values in the two regimes:

!01 ¤ !02

For given expectations, each regime contains the following 14 unknowns in 14
equations:

ct ; dt ; it ; gt ; lt ; ut ; 
t ; 
mt; !t ; Rt ; rt ; gk ; vt ; �t

In economic terms, the steady state of the model is defined by the fulfilment of
expectations, and the constancy of the unknowns (rates of growth and ratios).11

7 Learning

Macro relationships simplify a complex world that is subject to change: it follows
that the values of the parameters, along with the equations themselves, are bound
to change. In this context, a sophisticated approach to expectations is needed. The
assumption is made that in forming expectations firms assume a simple recursive
least square device (see Branch and Evans 2006).12 In more detail, assume that the

11 The steady state of growth is given by g0j D �11C�2ı

1��2
, while the steady state value of inflation is

given by 
0j D BjC.1CR0j /
1Cg0j

� 1, where Bj is obtained by referring to (1), (10) and (13).
12 Others have assumed a Markov process as (Ferri 2007).
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economic law of motion takes the form of these two equations:

(
yj;t D bT

j;txt C "j;t j D 1; : : : :; n
bj;t D bj;t�1 C �j;t

where bj;k is the (Kx1) parameter vector and xi is the (Kx1) vector of explanatory
variables; ©j;t and ™j;t are assumed to zero mutually independent random sequences
with variances equal respectively to Rj2;t and Rj1;t. In a vector autoregression (VAR)
specification, conditional forecasts of yj;t are given by:

yj;t jt�1 D ObT
j;t�1xt

The forecasting problem consists in selecting an appropriate procedure for con-
structing the sequence of Obt . One such procedure is the Kalman filter recursion.
As shown by (Sargent 1999), the Kalman filter is equivalent to recursive least
squares (RLS) for particular restrictions of the variances R1 and R2. RLS is simply
a recursive formulation of ordinary least squares (see Evans and Honkapohja 2001).

In what follows, agents are supposed to form expectations according to a RLS
device. (Hommes and Sorger 1998) argue that expectations must be consistent
with data in the sense that agents do not make systematic errors. This criterion
implies that, at least, the forecasts and the data should have similar means and
autocorrelations.13

8 Persistent Fluctuations

The dynamics of the model are generated by a nonlinear system of equations sup-
plemented by the regime switching mechanisms just described. Technically, one
should presents two systems of equations, one for each state. However, in order to
economize space, only the meta system will be presented, indexed by j D 1; 2.
Furthermore, only parameters that switch, along with the steady states, will be
indexed, while the endogenous variable is only indexed by time.

The system of structural equations, along with the forecasting rules, is nonlinear
and can be solved only by means of simulations.

The results of the simulations (N D 200)14 are illustrated in Fig. 1, while the
values of the parameters are shown in Table 1.

13 The assumption that all the agents have the same learning process simplify both the aggregation
(underlined by De Grauwe 2008) and the coordination problem (stressed by Howitt 2006).
14 These simulations have been reiterated 20 times due to the presence of a stochastic components
in the threshold value. The variance has been put equal to 2.5.
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Fig. 1 The dynamics of the model

Table 1 Parameters of the
model

u0j D :075 ®1 D 0:8 ¢1 D 0:01

® D 0:7

£11 D 0:002 £2 D 0:03 ˜1 D 0:20

£12 D 0:01

˜2 D 0:40 ˜3 D 0:60 c1 D 0:40

c2 D 0:405 c3 D 0:10 §1 D 1:80

§2 D 0:45

œ1 D 0:95 ¨01 D 0:75 R01� D 0:005

œ2 D 1:30 ¨02 D 0:78 R02� D 0:08

m0 D 0:001

The dynamics are fuelled by two kinds of forces. The first is represented by
aggregate demand and supply interaction that takes place when the threshold is
randomly crossed. The second kind of forces refers to learning.

These forces generate fluctuations that do not explode but remain bounded for
a long period of time. In other words, the switching of the economy is a persis-
tent phenomenon. This result15 depends on many factors, some of which are worth
considering. At the outset, it depends on the presence and the nature of the two
regimes. In the present case, the values of the parameters guarantee the existence of
two steady states with the desired characteristics.

In the second place, the dynamics are a function of the value of the threshold. The
benchmark value of the threshold growth rate has been set equal to the average of the
two steady state values of growth rates. However, in order to soften the determinism

15 On the different asymptotic results in the case of nonlinear system, see (Kuznestov 2004)
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of the model, a random term has been added. Under this hypothesis, g spends almost
55% of the time in regime 2. If the threshold is changed, also the relative time spent
in the two regimes is different and this affect the average rate of growth. (And this
happens also when the standard deviation of the error term is modified).

In the third place, the dynamics are also a function of expectations.16 Since
expected values are very close to the actual, the learning mechanism is working
in a satisfactory way.17

9 The Robustness of the Model

At this stage of the analysis, one must test the robustness of the model. A first aspect
is the role of income distribution.18 In fact, in our model imperfect competition rules
income distribution that affects debt and hence consumption. The hypothesis of the
benchmark case is that

!01 < !02

This implies that markups are counter-cyclical. However, one can refer to the oppo-
site hypothesis (on both hypotheses, see (Blanchard 2008), and check whether the
model is robust enough in order to maintain fluctuations. The answer is positive.
The graphs are similar to Fig. 1, while the parameters used are shown in Table 2.

Two observations are worth making at this stage of the analysis. The first is that
the model is robust with respect to the different hypotheses concerning the behaviour
of the mark-ups and hence of income distribution in the two regimes. In the second
place, the range of variations of the different values is more limited with respect to
other parameters and this stimulates the search for an improved specification of the
model.

A particular attention must also be paid the parameter c3 that links debt to con-
sumption and that is playing an important role in the events that characterize the
evolution of the world economy in recent times. Three observations are worth mak-
ing. First of all, the system maintains its qualitative properties for changes in the
value of this parameter of 50%. In the second place, c3 affects the dynamics of
inflation in particular. This also happens when one modifies m0j, the weight of
raw material in GDP. In the third place, particularly high values can destabilize
the system. These results witness the interdependence that links aggregate demand
to aggregate supply in the present model.

16 Cellarier (2008) insists on the role of the information set, the memory length and the technique
used on the stability of the model. In the present model, the contemporaneous information is not
available for expectations, while the system fluctuates for different memory length.
17 The mean values of g and Eg are practically the same. The same holds true for 
 and E
 .
18 One might ask whether the presence of an exogenous income distribution is compatible with the
existence of an endogenous real rate of interest. The answer is affirmative because the latter is just
a cost of capital that, in a medium run perspective, can diverge from the profit rate. Furthermore,
in the long run the two still differs because of the risk premium.
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Table 2 Different
hypotheses about income
distribution

Benchmark Opposite

!01 D 0:75 !01 D 0:795

!02 D 0:78 !02 D 0:78

10 Concluding Remarks

The introduction of imperfect competition and uncertainty affects the structure
of the macro models both at methodological and analytical level. Uncertainty
stresses the importance of dealing with information in the double dimension of
agents heterogeneity and expectation formation. Imperfect competition underlines
the role of strategic interaction at micro level. Furthermore, it also leads to the issues
of price formation ad income distribution at macro level.

In the present paper, the complexities emerging by the simultaneous adoption of
uncertainty and imperfect competition have been simplified in a number of ways.
As a starting point, we set aside both agents heterogeneity and strategic interaction.
Analytically, the choice of non-linear specification leads to the need for further sim-
plifications in order to reach meaningful results. We adopted a stochastic regime
switching mechanism that allows the system to move between two states. We also
introduced a learning mechanism based upon recursive least squares.

Even provisional, the results of the analysis are interesting at least from two
points of view. On one hand, they show how the existence and persistence of fluctua-
tions are strictly related to the analytical specification of the dynamic structure of the
model, which includes both the choice of the regime switching mechanisms and the
expectation formation. On the other, they show how the macroeconomic dimension
is intrinsically integrated (a concept that opposes both to sequential adjustment and
to the independence of parts). Integration comes forward in different ways. First of
all, there is a strict interdependence between aggregate demand and aggregate sup-
ply. In the second place, uncertainty not only alters the structure of the macro model
on both supply and demand sides mainly through expectations, but it also creates the
foundation for a monetary production economy, which is a system where the finan-
cial dimension is not a mere veil for transactions. Such a condition is essential for
aggregate demand to have a lasting role in aggregate dynamics. Finally, there is the
relationship between growth and distribution where imperfect competition affects
directly distribution through the dynamics of mark-ups and therefore indirectly the
dynamics of nominal debts. In this way, it contributes to integrate nominal and real
aspects.

The analysis can be extended in various ways. One way consists in modifying
the model so that the steady state values can also be affected by aggregate demand
and not only the transient dynamics as in the present model. Another way is to
consider in an explicit way the dynamic relationship between imperfect competition
and uncertainty. Furthermore, one can increase the complexity of the expectational
process by allowing the presence of heterogeneity (see De Grauwe 2008). One can
also examine the impact of learning on the formulations of the equations themselves
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(see, for instance, Cellarier 2008). Last but not least, it is also possible to improve the
empirical results of the model. The aim of our simulations has been more in the spirit
of stress testing than to mimic real data. The reasons for this attitude depend on the
fact that the econometric parameters are mainly biased against turbulent periods. For
these periods, there are not enough data yet. And this is the reason why simulations
and scenarios are chosen.
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Persistent Disequilibrium Dynamics
and Economic Policy

Luca Colombo and Gerd Weinrich

1 Introduction

Disequilibrium phenomena seem to be common occurrences of many advanced
economies. Starting with the Great Depression, the high unemployment rates in
Europe spanning over a decade since the mid-1970s, or the high inflation over the
1980s are just prominent examples. The Japanese recession started in the mid-1990s
and not yet fully resolved has put the combination of unemployment and deflation
on the spotlight, making clear that a liquidity trap cannot be easily discarded as a
purely theoretical possibility. Most recently, the current global recession prompted
by the financial sector crisis seems to share similar features, and many observers
and policy makers are invoking Keynesian type remedies.

Nonetheless, many economists still consider the representative agent flexible
price model as the workhorse of macroeconomics, despite its conclusions are
irremediably at odds with all the evidence on the persistence of disequilibrium
phenomena (see, e.g., Blanchard, 2000).

For instance, a key result of the flexible price approach is that of money neutral-
ity, which goes against the observed long lasting effects on output and employment
of monetary shocks. The New Keynesian literature that developed over the 1990s
(see, e.g., Ball and Romer, 1990 and Blanchard, 1990) has emphasized the role of
nominal and real rigidities in the wage and price adjustment processes in determin-
ing large aggregate effects of monetary shocks. However, most economists maintain
that the price level eventually adjusts so that money neutrality is restored. We claim
instead that the result of money neutrality in the long run should not be taken
for granted, and that the economy may remain stuck in a quasi-stationary state of
permanent unemployment, in the absence of appropriate policy interventions.1

1 A state is stationary if all variables are constant; it is quasi-stationary if all real variables are
constant but the nominal variables may change.
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Building on previous work (e.g., Bignami et al., 2004; Colombo and Weinrich,
2003a), we develop a conceptual framework that endogenously allows for the
emergence of disequilibrium situations (such as unemployment or deflation), and
provides therefore for an ideal setup to investigate the effects and persistency of
shocks, and the effectiveness of different economic policies. In particular, we con-
sider an economy consisting of overlapping generations consumers, firms producing
by means of an atemporal production function, and a government financing public
expenditure through a tax on firms’ profits. Within each period prices are fixed, and
consistent allocations are obtained by means of temporary equilibrium with stochas-
tic rationing. Prices are then adjusted between successive periods according to the
strength of rationing on each market in the previous period.2

The gradual adjustment of prices and wages (and hence their inability to function
as instantaneous and perfect allocation devices and the need for quantity adjustments
to complement them in making trades feasible) is the primary mechanism to explain
the propagation and the persistent real effects of shocks. It is worth stressing that
we do not account endogenously for the reasons behind different degrees of wage
and price stickiness, but we rather rely on exogenously given rules. Although in
this perspective our approach is obviously ad hoc, it is on the other hand consis-
tent with several underlying conceptual models of price rigidities (be they in the
New Keynesian or in the Neoclassical tradition), and it allows us to effectively
parametrize the different degrees of wage and price stickiness that are observed
in reality.3

The role of price and wage rigidities is complemented by that of other fac-
tors amplifying the importance of the spillovers among markets and affecting the
reaction of consumers and firms to shocks and policy interventions. Following
Colombo and Weinrich (2006, 2008), we focus in particular on the role of con-
sumers’ expectations and firms’ inventories. Expectations are especially important
since they influence consumers’ choices and hence the response of the economy
to a shock. For instance, a restrictive shock may determine an aggregate demand
deficit and lead the economy into a state of (Keynesian) unemployment. Finding
ways to convince consumers to hold inflationary expectations – in this way increas-
ing their current consumption and hence aggregate demand – may prove a powerful

2 A natural idea is to relate the adjustment of prices to the size of the dissatisfaction of agents with
their (foregone) trades. A reliable measure of such a dissatisfaction requires stochastic rationing,
since – as opposed to deterministic rationing – it is compatible with manipulability of the rationing
mechanism and therefore provides an incentive for rationed agents to express demands that exceed
their expected trades, as argued by Green (1980), Svensson (1980), Gale (1979, 1981) and Weinrich
(1982, 1984, 1988). For a definition of manipulability see for example Böhm (1989) or Weinrich
(1988).
3 The New Keynesian literature, in particular, has investigated many possible causes for the real
rigidity of prices and wages ranging from efficiency wages (see, for example, Shapiro and Stiglitz,
1984) and countercyclical mark-ups (e.g., Rotemberg and Woodford, 1991), to coordination failure
(e.g., Ball and Romer, 1991) and credit markets imperfections (e.g., Bernake and Gertler, 1995
and Kiyotaki and Moore, 1997). Attention has been devoted as well to the sources of nominal
stickiness focusing, for instance, on menu cost (e.g., Mankiw, 1985), near rationality (e.g., Akerlof
and Yellen, 1985) and staggered contracts (Calvo, 1983).
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tool for recovering from the recession. At the same time, the explicit consideration
of firms’ inventories is important for fully assessing the impact of a shock on the
economy. Focusing again on a restrictive shock, inventories have in fact an obvi-
ous reinforcement effect: by increasing the reduction in labor demand following
the shock, inventories contribute to further depress the aggregate demand and to
favor the convergence of the economy to a quasi-stationary state with permanent
unemployment.

In the second part of the paper, we will discuss in details the direct effects and
the interplay of expectations and inventories in the propagation of shocks and in the
explanation of their persistence, as well as their influence on the outcomes of dif-
ferent economic policies aimed at resolving or mitigating the effects of deflationary
recessions.

The paper is organized as follows. In Sect. 2 we outline our base model, define a
temporary equilibrium, show its existence and uniqueness, and study the dynamics
of the economy. In Sect. 3 we investigate by means of numerical simulations the
dynamic behavior of the economy, focusing on the effects of the adjustment of prices
and wages, and showing the possibility of chaotic dynamic behavior as well as the
emergence of a Phillips curve as an attractor of our dynamic system. In Sect. 4 we
extend our base model to encompass the role of consumers’ expectations and firms’
inventories, and in Sect. 5 we study the dynamic behavior of the extended economy
by focusing especially on the possible policy remedies to deflationary recessions.
Section 6 summarizes and suggests avenues for future research.

2 The Base Model

Following Colombo and Weinrich (2003a) and Bignami et al. (2004), we focus on an
economy composed of n OLG-consumers offering labor inelastically when young
and consuming a composite consumption good in both periods of their life. The
consumption good is produced by n0 firms, using an atemporal production function
whose only input is labor. The public sector of the economy is represented by a
government that levies a proportional tax on firms’ profits to finance its expendi-
ture for goods. Budget deficits and surpluses may arise through money creation or
destruction.

The timing of the model is such that the aggregate profit…t�1 realized by firms in
period t�1 is distributed at the beginning of period t in part as tax to the government
(tax…t�1) and in part to young consumers (.1 � tax/…t�1), where 0 � tax � 1.
Also at the beginning of period t old consumers hold a total quantity of moneyMt –
consisting of savings generated in period t � 1 – that allows households to transfer
purchasing power between periods.

We denote with Xt the aggregate quantity of the good purchased by young con-
sumers in period t , pt its price, wt the nominal wage and Lt the aggregate quantity
of labor. Then we get MtC1 D .1 � tax/…t�1 C wtLt � ptXt :
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Letting G be the quantity of goods purchased by the government and taking into
account that old households want to consume all their money holdings in period
t , the aggregate consumption is Yt D Xt C Mt

pt
C G: Since …t D ptYt � wtLt ,

denoting with …t � …t�1 D 	MP
t and 	MC

t D MtC1 � Mt the variation in
the money stock held by producers before they distribute profits and by consumers,
respectively, we obtain	MC

t C	MP
t D ptG � tax…t�1 D budget deficit.

Young households first visit the labor market where they either can sell their
inelastic labor supply `s, or they are rationed to zero. Then on the goods market
they may be rationed according to the stochastic rule

xt D
�
xd

t with prob. ��d
t ;

ctx
d
t with prob. 1 � ��d

t ;

where xd
t is the quantity demanded, � 2 Œ0; 1� a fixed structural parameter of the

rationing mechanism, �d
t 2 Œ0; 1� a rationing coefficient which the household per-

ceives as given but which will be determined in equilibrium and ct D �d
t ���d

t

1���d
t

.

These settings are chosen such that the expected value of xt is �d
t x

d
t , that is,

Ext D �d
t x

d
t .

The effective demand xdi
t ; i D 0; 1; is obtained from solving

max
xt

��d
t u

�
xt ;

!i
t � xt

�e
t

�
C
�
1 � ��d

t

�
u

�
ctxt ;

!i
t � ctxt

�e
t

�
(1)

subject to the constraint 0 � xt � !i
t , where !0

t D 1�tax
pt

…t�1

n
and !1

t D !0
t C

wt

pt
`s are real income in case of rationing and no rationing on the labor market,

respectively, and �e
t D pe

tC1=pt is the expected relative price for period t .
The aggregate supply of labor is Ls D n`s . Denoting with Ld

t the aggregate

demand of labor and with �s
t D min

n
Ld

t

Ls ; 1
o

the fraction of young consumers that

will be employed, the aggregate demand of goods of young consumers is

Xd
t D �s

t nx
d1
t C

�
1 � �s

t

�
nxd0

t 	 Xd

�
�s

t I
wt

pt

;
.1� tax/…t�1

pt

�
;

where xd0
t and xd1

t are the effective quantities demanded in case of rationing and
no rationing, respectively, on the labor market.

Problem (1) can not be solved analytically for a generic utility function. In order
to derive analytic results, we assume that u .xt ; xtC1/ D xh

t x
1�h
tC1 and � D 1 (i.e.,

zero/one rationing). Therefore, problem (1) requires to maximize the expected util-

ity �d
t x

h
t

��
!i

t � xt

�
=�e

t

�1�h
, from which we obtain that the effective demand xdi

t

is equal to h!i
t , which is independent of �d

t and �e
t , although it depends on the real

income !i
t . The total aggregate demand of the consumption sector is then obtained

by adding old consumers’ aggregate demandMt=pt and government demandG:
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Y d
t D Xd

�
�s

t I˛t ; .1� tax/ 
t

�Cmt CGt ;

where ˛t D wt=pt ; 
t D …t�1=pt andmt D Mt=pt :

Each of the n0 identical firms uses an atemporal production function yt D f .`t / :

As with consumers, firms too may be rationed, by means of a rationing mechanism
analogue to that assumed for the consumption sector. Denoting the single firm’s
effective demand of labor by `d

t ; the quantity of labor effectively transacted is

`t D
�
`d

t with prob. �d
t ;

0 with prob. 1 � �d
t ;

where �d
t 2 Œ0; 1� : On the goods market the rationing rule is

yt D
�
ys

t with prob. �� s
t ;

dty
s
t with prob. 1 � �� s

t ;
(2)

where � 2 .0; 1/ ; � s
t 2 Œ0; 1� and dt D .�s

t ���s
t /

.1���s
t /
: � is a fixed parameter of the

mechanism whereas �d
t and � s

t are perceived rationing coefficients taken as given
by the firm the effective value of which will be determined in equilibrium. The
definition of dt ensures that Eyt D � s

t y
s
t : It is obvious that E`t D �d

t `
d
t :

The firm’s effective demand `d
t D `d

�
� s

t I˛t

�
is obtained from the expected

profit maximization problem
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�
`d

t

�
� ˛t`

d
t

subject to
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The aggregate labor demand is Ld
t D n0`d

t

�
� s

t I˛t

� 	 Ld
�
� s

t I˛t

�
and, because

only a fraction �d
t of firms can hire workers, the aggregate supply of goods is

Y s
t D �d

t n
0f
�
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�
� s

t I˛t

�� 	 Y s
�
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t ; �
s
t I˛t

�
:

2.1 Temporary Equilibrium Allocations

For any given period t a feasible allocation can be described as a temporary
equilibrium with rationing as follows.

Definition 1. Given a real wage ˛t ; a real profit level 
t , real money balancesmt ,
a level of public expenditure G and a tax rate tax, a list of rationing coefficients



234 L. Colombo and G. Weinrich

�
�d

t ; �
s
t ; �

d
t ; �

s
t ; ıt ; "t

� 2 Œ0; 1�6 and an aggregate allocation
�
Lt ; Y t

�
constitute a

temporary equilibrium with rationing if the following conditions are fulfilled:

(C1) Lt D �s
tL

s D �d
t L

d
�
� s

t I˛t

� I
(C2) Y t D � s

t Y
s
�
�d

t ; �
s
t I˛t

� D �d
t X

d
�
�s

t I˛t ; .1 � tax/ 
t

�C ıtmt C "tGI
(C3)

�
1 � �s

t

� �
1 � �d

t

� D 0I �1 � � s
t

� �
1 � �d

t

� D 0I
(C4) �d

t .1 � ıt / D 0I ıt .1 � "t / D 0:
Conditions (C1) and (C2) require that expected aggregate transactions balance.

This means that all agents have correct perceptions of the rationing coefficients.
Equations (C3) formalize the short-side rule according to which at most one side on
each market is rationed. The meaning of the coefficients ıt and "t is that also old
households and/or the government can be rationed. However, according to condition
(C4) this may occur only after young households have been rationed (to zero).

Depending on which market sides are rationed, we can characterize differ-
ent types of equilibrium. More precisely, we indicate with Keynesian Unem-
ployment [K] an equilibrium in which there is excess supply on both markets�
�s

t < 1; �
s
t < 1

�
; with Repressed Inflation [I ] one in which there is excess demand

on both markets .�d
t < 1; �d

t < 1/; with Classical Unemployment [C ] one where
there is excess supply on the labor market and excess demand on the goods mar-
ket .�s

t < 1; �
d
t < 1/; and finally with Underconsumption [U ] an equilibrium with

excess demand on the labor market and excess supply on the goods market .�d
t < 1;

� s
t < 1/ .

The existence and uniqueness of temporary equilibrium is shown in Colombo and
Weinrich (2003a, pp. 9–12). In particular it is shown that the notion of temporary
equilibrium with rationing defines a unique temporary equilibrium allocation given
by
�
Lt ; Y t

�
= .L .˛t ; 
t ; mt ; G; tax/ ;Y .˛t ; 
t ; mt ; G; tax//.

2.2 Dynamics

In order to investigate the dynamic behavior of the economy, we need to link suc-
cessive periods, which is done by the adjustment of prices and by the changes in the
stock of money and in profits. As for the latter, by definition of these variables one
immediately obtains

…t D ptY .˛t ; 
t ; mt ; G; tax/ � wtL .˛t ; 
t ; mt ; G; tax/

and

MtC1 D .1� tax/…t�1 C wtLt � ptX t

D .1� tax/…t�1 C wtLt � ptY t C ıtMt C "tptG

D .1� tax/…t�1 �…t C ıtMt C "tptG:



Persistent Disequilibrium Dynamics and Economic Policy 235

Regarding the adjustment of prices we make the standard assumption that when-
ever an excess of demand (supply) is observed, the price rises (falls). In terms of the
rationing coefficients observed in period t , this amounts to

ptC1 < pt , � s
t < 1I ptC1 > pt , �d

t < 1I

wtC1 < wt , �s
t < 1I wtC1 > wt , �d

t < 1:

More precisely, in our numerical analysis, these adjustments have been specified by
means of the non-linear rules:4

ptC1 D
�
� s

t

�	1 pt ; if � s
t < 1I ptC1 D
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3
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�
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�
1 wt , if �s
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�
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t

��
2

wt , if �d
t < 1;

where �1; �2; �1 and �2 are nonnegative parameters for the speeds of adjustment.
Then the adjustment equations for the real wage are
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�
�s

t

�
1

.� s
t /

	1
˛t if

�
Lt ; Y t

� 2 K [ U;
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whereas �t D ptC1=pt is given by
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Lt ; Y t

� 2 K [ U;

�t D
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3
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�
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� 2 I [ C:
The dynamics of the model in real terms is given by the sequence f.˛t ; mt ;


t /g1tD1, where ˛tC1 is as above and

4 The rules we consider here are the same used in Bignami et al. (2004). In Colombo and Weinrich
(2003a) we consider instead linear adjustment rules. The different formulations of the adjust-
ment mechanisms are without implications in terms of the qualitative results emerging from the
numerical analysis of the economy dynamics.
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tC1 D ŒY .:/ � ˛tL .:/�
�t

;

mtC1 D 1

�t

Œıtmt C "tG C .1 � tax/ 
t � � 
tC1:

3 Complex Dynamics and the Phillips Curve as an Attractor

The dynamic behavior of the economy outlined above is described by a non-linear
three-dimensional dynamical system with state variables ˛t ; mt and 
t that entails
three subsystems (corresponding to the three nondegenerate equilibrium regimes)
each of which may become effective through endogenous regime switching.5 In
order to investigate the model dynamics one needs therefore to use numerical sim-
ulations.6 We use the utility function u .xt ; xtC1/ D xh

t x
1�h
tC1 and the production

function f .`/ D a`b , and we specify the following parameter set, corresponding
to a stationary Walrasian equilibrium as a benchmark case:

a D 1; b D 0:85; h D 0:5; Ls D 100; n0 D 100; ˛0 D 0:85;
m0 D 46:25; 
0 D 15; G D 7:5; tax D 0:5: (3)

As shown by Bignami et al. (2004), the dynamic behavior of the system is very sen-
sitive to the choice of relevant parameters, such as the economic policy instruments.
The complexity of the economy dynamics is clearly illustrated by the bifurcation
diagram in Fig. 1, showing the periodic (cycles of different orders) and non-periodic
(chaotic) long-run characteristics of the system dynamics for different values of the
government public expenditure G.7 It is immediate to note that for G smaller than
7.5 (the Walrasian value) the economy converges to quasi-stationary states with
(Keynesian) unemployment, which illustrates the possibility of permanent unem-
ployment although prices and wages are flexible. It is also worth stressing that,
as expected from textbook theory, an expansionary fiscal policy can help driving
the economy towards full employment. However, a too expansionary fiscal policy
ends up being destabilizing, as it induces an highly cyclical and irregular dynamic
behavior, a feature that has to be added to the risk of inflation that is traditionally
associated with expansionary policy measures.

5 The underconsumption regime is degenerate in the sense that it can be seen as a limiting case of
both the Keynesian and the inflationary regime.
6 Our numerical simulations are based on the software MACRODYN that has been developed by
Volker Böhm at the University of Bielefeld.
7 The figure has been obtained by using the benchmark parameter set, except for G that is allowed
to change, and by letting the nominal wages to be rigid downwards, i.e., �1 D 0. All other
adjustment speeds are set equal to �1 D �2 D �2 D 0:4.
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Fig. 1 Bifurcation diagram for employment over government demand

The dynamic response of our economy to a shock also crucially depends on
the values of prices and wage adjustment speeds. For instance, Bignami et al.
(2004) have shown that following a restrictive monetary shock (e.g., a reduction
to m0 D 40) to allow for some wage flexibility downwards helps the system to
return to the Walrasian equilibrium, as expected from textbook theory. However,
further increasing the downward flexibility of wage over a certain threshold gives
rise to irregular (chaotic) behavior with frequently high unemployment rates.8 As
analyzed in detail by Colombo and Weinrich (2003a), a too high downwards adjust-
ment speed of the wage has striking implications in terms of the dynamic behavior
of employment and prices. This is evident from Fig. 2, showing an attractor in the
unemployment rate (ut =

�
Ls � Lt

�
=Ls) – inflation rate (vt = .wtC1 � wt / =wt )

plane. In an economic perspective, it is apparent that this attractor describes a
Phillips curve.

However, it is impossible to interpret this Phillips curve as a policy instrument
in terms of a trade-off between unemployment and inflation as is commonly done.
Any point on the curve is in fact but one element of a trajectory of pairs of rates of
unemployment and wage inflation, and successive points of this trajectory may lie
far away one from the other. Thus, even if the government tried to select a specific
point on the curve in one period, in the next period already the system may go to a
very different point on the curve.

8 The threshold level of �1 at which irregular behavior appears is about 0.14 (see Bignami et al.,
2004 for a more detailed analysis).
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4 A Model with Consumers’ Expectations
and Firms’ Inventories

The main contribution of the setup presented in Sect. 2 consists in developing (and
characterizing the dynamic behavior of) a framework in the Keynesian tradition able
to account for the emergence of endogenous business cycles, and for the possible
convergence of the economy to quasi-stationary states characterized by disequilib-
rium situations (e.g., long-run unemployment or capacity under-utilization), even
when prices and wages are allowed to adjust over time. Although providing use-
ful results both in a methodological and in an economic perspective, this basic
framework neglects several features that would be useful in using the above setup
to investigate real world situations, and evaluate the effects of different economic
policies. Improving over the modelling shortcomings of the basic setup becomes
especially important if one has the ambition to use the above approach as a lens to
interpret and investigate the effects of crises like the one we are experiencing these
days, for which Keynesian type remedies are invoked and being adopted.

In a series of recent papers, that in a policy perspective are motivated mainly by
the study of deflationary recessions (as the one that hit Japan over the 1990s), we
extend our framework to embed features allowing us to investigate the effects of
variables that provide important channels for the propagation and the persistency
of shocks, and play a prominent role in the current policy debate. In particular, in
Colombo and Weinrich (2006) we add to the basic model presented in Sect. 2 the
possibility of inventories holding by firms, and in Colombo and Weinrich (2008) we
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focus on the role played by consumers expectations. In the following, we outline a
model combining both these features.

We consider the same economy as in the basic setup introduced in Sect. 2. How-
ever, as we now explicitly consider the role of consumers’ expectations, whether old
consumers hold a total quantity of money Mt (consisting of the savings generated
in period t � 1) at the beginning of period t depends on their price expectations
for their second period of life. Since consumers may store the consumption good
bought in the first period, they will voluntarily hold money only if they expect the
good’s price to decrease. They may be forced, however, to do this in case they are
rationed in their consumption goods purchases in the first period. Firms too may
now transfer unsold units of the consumption good into the future, as we allow for
inventories holding by firms. Denoting with St the aggregate amount of inventories
carried over by firms to period t , with Y p

t the aggregate amount of goods produced
and with Yt the quantity sold in period t , there results StC1 D Y p

t C St � Yt .
Taking expectations into account, young consumers have to decide whether to

buy the quantities xt and xtC1 in periods t and t C 1, respectively, or buy the total
quantity xtCxtC1 in period t and transfer xtC1 to period tC1. This in turn depends
on the price expectation �e

t 	 pe
tC1=pt . If �e

t < 1, then the consumer expects a
decrease in the goods price and hence prefers to buy xtC1 in his second period of
life, while if �e

t > 1 he buys everything in his first period.
The case �e

t < 1 is identical to the consumer’s problem discussed in the base
model of Sect. 2. As for the case �e

t > 1, the consumer wants to buy the total
quantity xt C xtC1 	 bxt in his first period of life, and thus has to meet the budget
constraint

xt C xtC1 � !i
t ; i D 0; 1 .

Monotonicity of the utility function implies that his effective demand is bxdi
t D !i

t .
Hence, the aggregate demand of goods by young consumers in case of deflationary
expectations �e

t < 1 is

Xd
t D �s

tnx
d1
t C

�
1 � �s

t

�
nxd0

t

D h

	
.1 � tax/ …t�1

pt

C wt

pt

�s
tL

s



	 Xd

�
�s

t I
wt

pt

;
.1 � tax/…t�1

pt

; h

�
,(4)

whereas in case of inflationary expectations �e
t > 1 it is

bXd
t D �s

tnbxd1
t C

�
1 � �s

t

�
nbxd0

t

D .1� tax/ …t�1

pt

C wt

pt

�s
tL

s D Xd

�
�s

t I
wt

pt

;
.1 � tax/…t�1

pt

; 1

�
: (5)

From (4) and (5) it is evident that the only difference in the aggregate effective
demand by young consumers implied by different expectations �e

t < or > 1 lies in
the multiplicative factor � 2 fh; 1g. Therefore, we identify the value of � with the
corresponding expectation type.
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The total effective aggregate demand of the consumption sector is now obtained,
as in our base setup, by adding old consumers’ aggregate demandmt DMt=pt and
government demandG:

Y d
t D Xd

�
�s

t I˛t ; .1 � tax/ 
t ; �
�Cmt CG;

where ˛t 	 wt=pt and 
t 	 …t�1=pt .
Turning now to the production sector, we continue to assume that all firms

are identical and produce according to the production function yp
t D f .`t / D

a`b
t ; a; b > 0. Denoting with st the inventories held at the beginning of period t ,

the total amount supplied by a firm is ys
t D y

p
t C st . As for firms’ rationing, we

assume again 0–1 rationing in the labor market and thus, recalling that `d
t is the

single firm’s effective demand of labor and �d
t 2 Œ0; 1� is the probability that the

firm is not rationed on the labor market, it follows that E`t D �d
t `

d
t . On the goods

market the rationing rule is the same proposed in the base model (see (2)), where
the firm’s effective supply becomes now ys

t D f
�
`d

t

�C st .
From the maximization of expected profits, � s

t

�
f
�
`d

t

�C st 
�˛t`
d
t we get each

firm’s effective labor demand as

`d
t D `d

�
� s

t I˛t

� D
�
� s

t ab

˛t

� 1
1�b

; (6)

which is independent of st . The aggregate labor demand then is Ld
t D n0`d�

� s
t I˛t

� 	 Ld
�
� s

t I˛t

�
and, because only a fraction �d

t of firms can hire workers,
the aggregate supply of goods is

Y s
t D �d

t n
0f
�
`d
�
� s

t I˛t

��C St 	 Y s
�
�d

t ; �
s
t I˛t ; St

�
: (7)

4.1 Temporary Equilibrium Allocations

For any t , the definition of a temporary equilibrium with rationing is now described
by the following

Definition 2. Given a real wage ˛t ; a real profit level 
t , real money balances mt ,
inventories St , a level of public expenditure G; a tax rate tax and an expectation
type � 2 fh; 1g, a list of rationing coefficients

�
�d

t ; �
s
t ; �

d
t ; �

s
t ; ıt ; "t

� 2 Œ0; 1�6 and
an aggregate allocation

�
Lt ; Y t

�
constitute a temporary equilibrium with rationing

if the following conditions are fulfilled:

(C1) Lt D �s
tL

s D �d
t L

d
�
� s

t I˛t

� I
(C2) Y t D � s

t Y
s
�
�d

t ; �
s
t I˛t ; St

�
D �d

t X
d
�
�s

t I˛t ; .1 � tax/ 
t ; �
�C ıtmt C "tGI
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(C3)
�
1 � �s

t

� �
1 � �d

t

� D 0I �1 � � s
t

� �
1 � �d

t

� D 0I
(C4) �d

t .1 � ıt / D 0I ıt .1 � "t / D 0:
The four conditions in the above definition have exactly the same interpretation as

in the base model of Sect. 2, from which they differ just for the explicit consideration
of the role of expectations and inventories. Colombo and Weinrich (2008, Proposi-
tion 1) show the existence of a unique temporary equilibrium allocation given by�
Lt ; Y t

�
= .L .˛t ; 
t ; mt ; St ; G; tax; �/ ;Y .˛t ; 
t ; mt ; St ; G; tax; �//.

4.2 Dynamics

In this extended framework with expectations and inventories, the link between suc-
cessive periods is given by the adjustment of prices, by the changes in the stock of
money and in profits and by possible changes in the expectation type. For given � ,
the adjustment of prices and wages is again such that the price rises (falls) whenever
an excess of demand (supply) is observed. More precisely, our simulations are based
on the following adjustment mechanisms:9

ptC1 D

8̂<
:̂

�
1 � �1

�
1 � � s

t

�

pt if � s

t < 1;"
1C �2

 
1 � �

d
t C ıt C "t

3

!#
pt if �d

t < 1;
(8)

wtC1 D
� �
1 � �1

�
1 � �s

t

�

wt if �s

t < 1;�
1C �2

�
1 � �d

t

�

wt if �d

t < 1;
(9)

where �1, �2, �1, �2 2 Œ0; 1� can be interpreted as the degree of flexibility of
adjustment. The dynamics of the real wage is then described by the following
equations:

˛tC1 D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:̂

1 � �1

�
1 � �s

t

�
1 � �1

�
1 � �s

t

�˛t if
�
Lt ; Y t

� 2 K;
1 � �1

�
1 � �s

t

�

1C �2

 
1 � �

d
t C ıt C "t

3

!˛t if
�
Lt ; Y t

� 2 C;

1C �2

�
1 � �d

t

�

1C �2

 
1 � �

d
t C ıt C "t

3

!˛t if
�
Lt ; Y t

� 2 I;

1C �2

�
1 � �d

t

�
1 � �1

�
1 � �s

t

� ˛t if
�
Lt ; Y t

� 2 U;

(10)

9 Differently than in the base model of Sect. 2, we consider now linear adjustment rules, to
explicitly show that our results do not depend on the non-linearity of the adjustment mechanisms.
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whereas the inflation factor �t D ptC1=pt is given by

�t D
(
1 � �1

�
1 � � s

t

�
if
�
Lt ; Y t

� 2 K [ U;
1C �2

�
1 � �d

t Cıt C"t

3

�
if
�
Lt ; Y t

� 2 C [ I: (11)

The dynamics of profits, money and inventories follow from the definition of
these variables and (10)–(11), i.e.,


tC1 D Y t � ˛tLt

�t

;

mtC1 D MtC1

ptC1

D 1

ptC1

�
.1 � tax/…t�1 C wtLt � ptY t C ıtMt C "tptG




D 1

�t

�
.1 � tax/ 
t C ˛tLt � Y t C ıtmt C "tG




D 1

�t

Œıtmt C "tG C .1 � tax/ 
t � � 
tC1

and

StC1 D Y s
�
�d

t ; �
s
t I˛t ; St

�
� Y t D �d

t n
0a
�
� s

t ab

˛t

� b
1�b C St � Y t ,

where

Y t D Y .˛t ; 
t ; mt ; St ; G; tax; �/ and Lt D L .˛t ; 
t ; mt ; St ; G; tax; �/ :

It follows that the dynamics of the model is then given by the sequence
f.˛t ; mt ; 
t ; St /g1tD1.

We now need to consider the possibility of expectation switching, which should
occur whenever it is required in order to keep expectations correct along a trajec-
tory of the system. To illustrate the point, consider the case in which consumers
have deflationary expectations in period t .�e

t � 1 or, equivalently, � D h/ but the
equilibrium in period t is such that there is excess demand on the goods market
and thus ptC1 > pt . The assumption � D h in period t has then been incorrect
and we substitute it by � D 1, i.e., �e

t > 1. Obviously then a different equilibrium
arises in period t but we claim that the type of equilibrium is still such that there
is excess demand on the goods market. Thus, expectations have been adjusted so
as to become correct. Analogously we correct the expectations in case �e

t > 1 but
the equilibrium in period t involves excess supply on the goods market. The ratio-
nale for doing this is given by the following lemma, that is proven in Colombo and
Weinrich (2008).
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Lemma 1. Assume that for � D h in period t an equilibrium with �d
t < 1 occurs.

Then this inequality is preserved when switching in period t to � D 1: Conversely,
assume that for � D 1 in period t an equilibrium with � s

t < 1 occurs. Then this
inequality is preserved when switching in period t to � D h:

Taking expectations switching into account, a trajectory of the dynamic system
is given by a sequence f.˛t ; mt ; 
t ; St ; �t /g1tD1. It is important to stress that these
state variables are perfectly foreseen by economic agents in any period t , so that our
dynamic system is a truly forward looking one.10

5 Numerical Analysis: The Study of Deflationary Recessions

The non-linear dynamic system representing the economy outlined in the previous
section is substantially more complicated than the three-dimensional one investi-
gated in Sect. 2. In particular, we now have to deal with a five-dimensional system
– with state variables ˛t ; mt ; 
t ; St and �t – composed of four non-degenerate
subsystems each of which may become effective through endogenous regime switch-
ing. In analyzing the dynamics of the model, we therefore need to resort to numerical
simulations. For this purpose, we consider the same benchmark parameter set used
for the base model, that is (3), corresponding to the stationary Walrasian equilib-
rium, with the addition of S0 D 0 and �0 D h, with trading levels L� D Y � D
100.

Several factors are shown to complement the role of price and wage stickiness
(flexibility) – that we illustrated in Sect. 3 – in determining the dynamic effects of
a shock. The model outlined in Sect. 4, by considering explicitly firms’ inventories
and consumers’ expectations, adds further propagation mechanisms for shocks and
helps explaining their persistence.

Consumers’ expectations, in particular, have played an important role in the
policy debate. For instance, the 2008 Nobel Laureate Paul Krugman, in a series
of influential articles on the Japanese deflationary recession (see Krugman, 1998),
stressed the importance of creating inflationary expectations to overcome the liquid-
ity trap in which the country got stuck. Although our setup does not offer insights
on how to create inflationary expectations in the first place, it theoretically supports
this claim. To see why, let us start from our benchmark parameter set (3) and con-
sider a restrictive monetary shock determined by a reduction in the initial money
stock to m0 D 40, keeping all other parameters and initial values at their Walrasian
levels. Letting �1 D 0:025 and �2 D 0:1 be the downward and upward adjustment

10 In most cases of dynamic systems in economics, they are given by a system of implicit difference
equations, in which case an explicit solution in the sense of a (local) flow of mappings cannot be
computed analytically. On the other hand, models that avoid this problem – giving rise to truly
forward looking dynamic systems – typically are not compatible with perfect foresight outside the
stationary state. For a systematic discussion of this issue see, e.g., Böhm and Wenzelburger (1999).
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Fig. 3 Time series when �1 D 0:025 and m0 D 40

speeds of wages, respectively, and �1 D �2 D 0:1 the adjustment speeds of prices
out of the Walrasian equilibrium, Fig. 3 shows the convergence of the dynamic sys-
tem to a deflationary recessionary quasi-stationary state .˛;m; 
; S; �/ entailing a
permanent decrease in employment and output.11

Consider now a change in consumers’ expectations from � D h to � D 1; that
is .˛0; m0; 
0; S0; �0/ D .˛;m; 
; S; 1/. Expecting inflation for the next period,
young consumers demand all their planned life-time consumption in the first period,
which boosts aggregate demand and can potentially lead the economy out of the
recession. This is shown in Fig. 4 for �1 D 0:025 and �2 D 0:1, where the economy
returns immediately to full employment and the inflationary expectations are con-
firmed. More precisely, the percentage price inflation, �t D 100 .ptC1 � pt / =pt ,
remains positive over a prolonged period of time, meaning that the economy finds
itself each period in a state of repressed inflation, which confirms the validity of
Krugman’s policy suggestion.

It is also interesting to note that the degree of stickiness of the nominal wage
(and price) seems to affect the ability of inflationary expectations to restore full
employment. Figure 5 shows that, when a higher downward flexibility of the wage
rate is assumed (�1 D 0:06 in the figure), the increase in aggregate demand due to
anticipated purchases by consumers is not sufficient to overcome the recession, and
expectations return from inflationary to deflationary after one period. This confirms

11 The downward speed of the wage adjustment plays a crucial role. Until approximately �1 D
0:018 the economy is able to return to full employment after the monetary shock, whereas for
speeds of wage adjustment larger than this it gets trapped in the underemployment situation shown
in Fig. 3 (see Colombo and Weinrich, 2008 for a detailed bifurcation analysis).
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that inflationary expectations need to be sustained over time to help escaping a defla-
tionary recession; something in the spirit of the ‘irresponsible’ monetary policy
– i.e., a monetary policy remaining expansionary even when prices start rising –
advocated by Krugman (1998).

It is finally worth noting that, for intermediate values of downward nominal wage
flexibility, multiple equilibria with self-confirming expectations will emerge (see
Colombo and Weinrich, 2008), which suggests that imposing downward wage rigid-
ity may be a useful measure to overcome a recession when inflationary expectations
alone are not enough to do so.
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Further measures that can be efficiently analyzed in our framework and com-
plement the role of inflationary expectations are based on expansionary fiscal and
monetary policies. Specifically, one such measure that received considerable atten-
tion in the policy debate has been proposed in 2003 by Ben Bernanke for the
Japanese recession. It consists in a tax reduction accompanied by a transfer of funds
from the Central Bank to the government to compensate for the loss in tax revenue.
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In Colombo and Weinrich (2003b) we formally analyze this policy and show under
which conditions it can effectively help to overcome the crisis.

By focusing on consumers’ expectations, in the above analysis we left in the
background the effects of firms’ inventories. Although a full exploration of the role
of inventories is behind the scope of this paper (we refer the reader to Colombo
and Weinrich, 2006), it is easily seen that inventories amplify the importance of
the spillover effects among markets. More precisely, following a restrictive mone-
tary shock as the one considered above and provided wages are flexible downward,
the nominal wage diminishes, which (if the decrease in the nominal wage is large
enough) implies a reduction of the real wage as well. The presence of inventories,
by increasing the fall of labor demand that in turn depresses labor income and aggre-
gate demand, crucially reinforces this reduction. Eventually the economy converges
to a quasi-stationary state with permanent unemployment, a constant low real wage
and permanent deflation of the nominal variables.12

6 Concluding Remarks

In this paper, we outlined a truly forward looking dynamic framework that generates
a wide variety of dynamic behaviors, ranging from cycles of different orders and
complex/chaotic behavior to convergence towards quasi-stationary states where the
economy lies persistently far away from its Walrasian equilibrium.

Being capable to endogenously determine the emergence of disequilibrium situ-
ations, our setup provides an ideal framework to represent and explain the causes of
prolonged economic crises, such as the recent Japanese deflationary recession, and
to evaluate the impact of alternative economic policies aimed at resolving them. In
this sense, our modelling may also prove useful in the analysis of the effects and
consequences of the remedies that are being proposed to face the current global
recession determined by the breakdown of the financial system.

Several extensions are possible that would extend the reach of our analysis. Three
of them stand at the center of our current research agenda in this field. The first
deals with the formation of expectations. In the current framework, we focus on
the role of agents’ expectations without investigating the process from which they
arise. Accounting endogenously for the mechanism of expectations formation may

12 The dynamic behavior of the economy following a restrictive shock becomes completely differ-
ent whenever the nominal wage is rigid downward. In this case, the real wage and the real money
stock increase up to the point in which there start to be excess demand on the goods market and
excess supply on the labor market. At this point the goods price starts increasing again, which
implies a reduction of the real wage and of the real money stock until the economy converges
back to the Walrasian equilibrium. Therefore, unlike in the case where nominal wages are flexible
downward, imposing downward nominal wage rigidity may be a measure limiting the effects of
deflationary recessions.
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enrich the scope of our analysis, by further highlighting the transmission channels
of shocks and the effectiveness of alternative economic policies.

A second feature of the model that would benefit from an in-depth examination
deals with inventories. In this paper, we focus essentially on their role as a propa-
gation mechanism of shocks and as a source of spillovers between markets. At the
beginning of each period, the stock of inventories carried by a firm is simply what
remains unsold at the end of the previous period. In this capacity, inventories are
a passive element in the decision problem of firms, while it would be more satis-
factory to consider them as strategic choice variables as suggested in the literature
(see, e.g., Blinder and Fischer, 1981 and Blinder, 1982, where firms have a target
inventory level and want to keep a certain inventories-to-sale ratio).

Finally, a third aspect of our modelling that could be refined has to do with the
adjustment mechanism of prices and wages. As we discussed in the Introduction, the
mechanism by which prices and wages are adjusted between periods is exogenously
given in the current formulation of the model. On the one hand, this adds to the
flexibility of the approach, by making it consistent with a wide variety of possible
explanations for rigidities. On the other hand, in many circumstances it may be
interesting to focus on specific sources of stickiness, and endogenize them, to better
explore their implications in terms of the feedback and spillover effects arising in
the economy.

To explore the implications of these extensions and to generalize the scope of our
approach lies at the core of our current research.
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On the Transition Dynamics in Endogenous
Recombinant Growth Models

Fabio Privileggi

1 Introduction

Tsur and Zemel (2007) developed an endogenous growth model in which bal-
anced long-run growth is obtained by assuming that the stock of knowledge
evolves according to Weitzman’s (1998) recombinant expansion process and is used,
together with physical capital, as input factor by competitive firms in order to pro-
duce a unique physical good. At each instant new knowledge is produced by an
independent R&D sector directly controlled by a “regulator” who aims at maxi-
mizing the discounted utility of a representative consumer over an infinite horizon.
The optimal resources required for new knowledge production are obtained by the
regulator in the form of a tax levied on the consumers. The economy, thus, envis-
ages two sectors, a competitive one devoted to the production of the unique physical
good, and a regulated R&D sector in which the public good “knowledge” is being
directly financed by the regulator and produced according to Weitzman’s production
function.

In such framework Tsur and Zemel provide conditions under which the economy
performs sustained constant balanced growth in the long run; moreover, when bal-
anced growth occurs, they also characterize the asymptotic optimal tax rate and the
common growth rate of all variables. Hence, by endogenizing the optimal choice
for investing in knowledge production, their result generalizes Weitzman’s (1998)
endogenous growth model in which the investment in knowledge production was
assumed to be constant and exogenously determined.

In this paper we further extend the Tsur and Zemel results by studying more
accurately the transition dynamics along a characteristic turnpike curve in the
knowledge-capital state space already discussed in Tsur and Zemel (2007). For a
specific parametrization of the model and when the conditions allowing sustained
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long-run growth are met, we are able to (numerically) compute the optimal policy –
in terms of optimal consumption – and thus the optimal time-path trajectories of the
stock of knowledge, capital, output and consumption – as well as their transition
growth rates – while the economy is being headed along the turnpike curve toward
its long-run constant balanced growth behavior.

Our method is based on the standard technique of transforming the state and
control variables of the Hamiltonian describing the optimal dynamics of (a slightly
generalized version of) the Tsur and Zemel model – all diverging in the long-run –
into “detrended” state-like and control-like variables, both converging to a saddle-
path stable steady state in the appropriate space as time elapses. To study such
detrended system we apply the time-elimination method introduced by Mulligan
and Sala-i-Martin (1991) (see also Mulligan and Sala-i-Martin, 1993 and Barro and
Sala-i-Martin, 2004, pp. 593–596) so that the optimal detrended consumption pol-
icy can be calculated by means of numerical methods for ODEs; then, substituting
such policy in the ODE of the state-like variable and solving it – again numeri-
cally – with respect to time, the optimal time-path trajectories of both state-like
and control-like variables are obtained. Eventually, these trajectories are recon-
verted into time-path trajectories for the original model, thus allowing for a detailed
analysis of the transition dynamics of all relevant variables.

Two technical difficulties had to be overcome: (1) finding a proper probability
function for the Weitzman’s recombinant process suitable for the change of variables
in the construction of the detrended system of ODEs, and (2) the exploitation of a
singular point – other than the saddle-path steady state – which can be used as initial
condition for calculating specific solutions for the ODE describing the policy. Due
to the high instability of the system of ODEs characterizing the detrended variables,
we have been able to fully solve the model only for a set of values of the parameters;
more precisely, our approach works satisfactory only on a manifold of dimension
one in the parameters’ space (see Remark 2 at the end of Sect. 4).

Section 2 discusses the original contribution by Weitzman (1998) on the produc-
tion of new knowledge by combining existing ideas and its generalization to the
endogenous recombinant growth framework provided by Tsur and Zemel (2007).
The central contribution of this paper is contained in Sect. 3, where, under a suitable
choice for the functions of the model – in particular, for the probability of success
in matching pairs of ideas – we are able to transform the original diverging dynam-
ics into an equivalent system of two ODEs in two “detrended” variables converging
asymptotically to a steady state in the appropriate space. This allows for numeric
computation of the optimal policy of both the detrended system and the original
diverging dynamics, which is implemented in Sect. 4 for a specific set of parameters’
values. Finally, after using the optimal policy obtained so far to numerically trace
out the optimal time-path trajectories, Sect. 5 is dedicated to a qualitative discus-
sion of the transition dynamics thus obtained, while Sect. 6 reports some concluding
remarks and topics for future research.



On the Transition Dynamics in Endogenous Recombinant Growth Models 253

2 Endogenous Recombinant Growth

Weitzman’s (1998) knowledge production device postulates that originally unpro-
cessed (seed) ideas are blended with all other ideas available in order to generate
new hybrid seed ideas; a costly selection process permits in turn to extract from
those a subset of fertile seed ideas that are again recombined with all the existent
fertile ideas to produce yet new hybrids. This process occurs indefinitely, generat-
ing knowledge growth. The hybridization is based on matching m ideas together
and then checking whether the resulting new idea is fertile (i.e., successful). If
A.t/ is the stock of knowledge available at time t (measured as the total num-
ber of fertile ideas), let CmŒA.t/� denote the number of different combinations
of m elements (hybrids) of A.t/; i.e.: CmŒA.t/�DA.t/Š=fmŠŒA.t/ � m�Šg [e.g.,
C2.A/DA.A � 1/=2]. Therefore, at time t the number of hybrid seed ideas is
given by

H .t/ D Cm ŒA .t/� � Cm ŒA .t � 1/� : (1)

If 
 is the probability of obtaining a successful idea from each matching, the
number of new successful ideas at time t is given by (Weitzman, 1998, eqn. (2) on
p. 337):

	A.t/ D A .t C 1/� A .t/ D 
H .t/ D 
 fCm ŒA .t/� � Cm ŒA .t � 1/�g ; (2)

which, in a discrete time framework, defines a recombinant expansion process of
second order representing the potential knowledge production path. Therefore, the
stock of knowledge A has the potential of growing at an increasing rate of growth
(Weitzman, 1998, Lemma on p. 338). However, potentially explosive growth is actu-
ally precluded by scarcity of resources employed in the matching process; as a
matter of fact, Weitzman (1998) reconciles his theory with standard endogenous
growth models (see, e.g., Romer, 1996, Aghion and Howitt, 1999, or Barro and
Sala-i-Martin, 2004) by showing that knowledge growth – as well as the growth
rate of GNP in real economies – is actually bounded. Accordingly, the knowledge
generation mechanism envisaged by Weitzman uses two inputs: hybrid seed ideas,
H , and physical resources, J . The latter affects the probability 
 of producing suc-
cessful ideas by increasing it with larger J for each givenH , while J becomes less
productive for largerH . To summarize, 
 results to be increasing in the ratio J=H .

Thus, the production function for new knowledge	A is

	A D W .J;H/ D H
 .J=H/ ; (3)

corresponding to Weitzman (1998, (28) on p. 346). Note that W in (3) is homoge-
neous of degree 1. In the sequel we shall assume the following.
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Assumption 1. The function 
 W RC ! Œ0; 1� is independent of time and is
such that 
 0 >0, 
 00 <0, 
.0/D 0 and 
.1/ � 1; moreover,1 limx!0C 
 0.x/
< C1.

Provided that J is a constant fraction of the total output y, J D sy, Weitzman
(1998) establishes that in the long run the asymptotic growth rate is a positive
constant depending on the exogenously determined saving rate s.

2.1 The Framework

Tsur and Zemel (2007), made an important refinement of Weitzman’s analysis by
endogenizing the (optimal) resources J employed in the production of new knowl-
edge.2 Their model features a “regulator” who has the task of choosing the optimal
amount J to be employed in production of new knowledge – which, in turn, is
being assigned to all firms producing the amount y of a unique (physical) output
– in order to maximize the discounted utility of a representative consumer over an
infinite horizon. Output producing firms operate in a competitive environment, while
the regulator has the power to levy the exact amount J as a tax on the representative
consumer, through which, given all the H hybrid seed ideas freely available, new
useful knowledge is being directly generated according to (3), and is immediately
and freely passed to the output producing firms.

The difficulty in dealing with the second-order dynamic (2) is overcome by
switching from the Weitzman’s discrete time formulation into a continuous time
model. This allows the authors to rewrite (1) as

H .t/ D C 0
m ŒA .t/�

PA .t/ ; (4)

where PA.t/ is the derivative of the stock of knowledge with respect to time. By
replacing	A.t/ with PA.t/ in (3) we obtain the analogous of (3) in continuous time:

PA .t/ D H .t/ 
 ŒJ .t/ =H .t/� ; (5)

where the probability of generating a new fertile idea 
 still satisfies Assumption 1.
By combining (4) and (5) the law of motion for the stock of knowledgeA.t/ is

PA .t/ D J .t/ =' ŒA .t/� ; (6)

1 For simplicity, in the sequel limx!0C 
 0.x/ will be denoted by 
 0.0/.
2 Our analysis slightly departs from that of Tsur and Zemel by allowing J to be any amount of
physical capital available in the economy, while the authors constrain such resources to be only
a fraction 0 � s � 1 of the total output y. In other words, in our economy the regulator has the
power to extract resources also from existing physical capital, in addition to the whole total output
y.
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where
' .A/ D C 0

m .A/ 

�1
�
1=C 0

m .A/



(7)

is the expected unit cost of knowledge production. Note that '.�/ is decreasing and,
as knowledge keeps spreading, it converges to

lim
A!1' .A/ D 1=
 0 .0/ > 0; (8)

where 1=
 0.0/ is strictly positive by Assumption 1.
With no loss of generality, we shall assume that labour is constant and normalized

to one:3 L 	 1. The output producing firms use a neoclassical production function,

y .t/ D F Œk .t/ ; A .t/� ; (9)

depending on aggregate capital and knowledge-augmented labourA.t/L, forLD 1.

Assumption 2. F W R2C ! RC exhibits constant returns to scale and is such that
Fk >0, FA>0, Fkk <0, FAA<0, FkA>0, and satisfies limk!0C F.k;A/D C1
for all A>0.

Each firm i maximizes instantaneous profit by renting capital ki and hiring labour
Li � 1 from the households, taking as given the capital rental rate r , the labour
wage w and the stock of knowledgeA. Since all firms use the same technology and
operate in a competitive market, and all households are the same, the subscript i can
be dropped and (9) can be rewritten as yD Af .k=A/, where

f .x/ D F .x; 1/ : (10)

Since firms act competitively, in equilibrium their profit is zero, that is, house-
holds earn yD Af .k=A/D rkCw; moreover, the amount of capital demanded, k,
satisfies

f 0 .k=A/ D r: (11)

Given that, at each instant t , a fraction J.t/ of the whole endowment of the economy,
k.t/ C y.t/, is being employed to finance R&D firms, and a fraction c.t/ is being
consumed, capital evolves through time according to

Pk .t/ D y .t/ � J .t/� c .t/ ; (12)

where it is assumed that capital does not depreciate. Since the upper bound4 for J.t/
and c.t/ is jointly given by J.t/Cc.t/ � k.t/Cy.t/, Pk.t/ in (12) may be negative.

3 Tsur and Zemel (2007) assume that the amount of labour is L, constant through time even if not
necessarily equals to one. As stationarity with respect to time of L is the strong assumption here,
normalizing labour to L 	 1 has the advantage of simplifying notation at no cost.
4 See footnote 2.
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Assuming that all households enjoy an instantaneous utility uŒc.t/�, with u W
RC ! RC increasing and strictly concave, the “regulator” solves

max
fc.t/;J .t/g

Z 1

0

u Œc .t/� e��tdt (13)

subject to

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

PA .t/ D J .t/ =' ŒA .t/�
Pk .t/ D F Œk .t/ ; A .t/� � J .t/ � c .t/
J .t/C c .t/ � k .t/C F Œk .t/ ; A .t/�
k .t/ � 0; J .t/ � 0; c .t/ � 0
k .0/ D k0 > 0; A .0/ D A0 > 0;

where �>0 is the (constant) discount rate. Equation (13) may be interpreted as a
maximum welfare problem, where k andA are the state variables and c and J are the
controls. Suppressing the time argument, the current-value Hamiltonian associated
to (13) is

H .A; k; J; c; #1; #2/ D u .c/C #1 ŒF .k; A/ � J � c�C #2J=' .A/ ; (14)

where #1, #2 are the costates of k and A respectively. Necessary conditions are:

u0 .c/ D #1 (15)

J D
8<
:
0 if #2=' .A/ < #1

QJ if #2=' .A/ D #1

k C F .k;A/ � c if #2=' .A/ > #1

(16)

P#1 D �#1 � #1Fk .k; A/ (17)
P#2 D �#2 � #1FA .k; A/C #2J'

0 .A/ = Œ' .A/�2 (18)

lim
t!1H .t/ e��t D 0; (19)

where QJ in (16) will be defined in (22). The case J D k C F.k;A/ � c when
#2='.A/>#1 in (16) can be ruled out by the Inada condition of Assumption 2.

Taking time derivative of #1D#2='.A/ in (16) and using (17) and (18) gives

Fk .k; A/ � FA .k; A/ =' .A/ D 0; (20)

defining the locus on the space .A; k/ on which the marginal product of cap-
ital equals that of knowledge per unit cost. Equation (20) can be rewritten as
z.k=A/D'.A/, where z.x/D f .x/=f 0.x/�x, with f defined in (10), is increasing
in x; thus, (20) can be expressed as a function of the only variable A:

Qk .A/ D z�1 Œ' .A/� A; (21)

where z�1 is the inverse of z.x/.
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Differentiating Qk.A/ with respect to time and using (12) and (6) yields

QJ .t/ D Œ Qy .t/ � c .t/� ' ŒA .t/� =
n Qk0 ŒA .t/�C ' ŒA .t/�

o
; (22)

where Qy.t/D F f QkŒA.t/�; A.t/g, expressing the optimal investment in R&D, QJ .t/,
as a function of the optimal consumption c.t/, when the economy grows along the
curve Qk.A/ defined in (21); that is, when #2.t/='ŒA.t/�D #1.t/ in (16).

We consider the limit of (21) for large A, which becomes linear, by defining:

Qk1 .A/ D Q�AC q; (23)

where, by (8), Q�D z�1Œ1=
 0.0/� and q is a non-negative constant. Note that Qk.A/
lies above Qk1.A/ for all A<1, approaching Qk1.A/ as A increases. The intercept
q depends on the number of ideasm being matched at each instant t in (4).

Proposition 1. The intercept q in (23) is zero whenever m>2, while q > 0 for
mD 2.

Proof. Since Qk1.A/D Q�AC q is the asymptote of Qk.A/,

q D lim
A!C1

h Qk .A/ � Q�Ai D lim
A!C1

˚
z�1 Œ' .A/� � z�1

�
1=
 0 .0/


�
A: (24)

As '.A/ is decreasing and, under Assumption 1, bounded away from zero [specifi-
cally, 0< 1=
 0.0/ � '.A/ � '.A0/], by Assumption 2 z�1Œ'.A/� � z�1Œ1=
 0.0/�
in (24) is oŒ'.A/�. Thus, since, by (7), OŒ'.A/�D OŒC 0

m.A/�DO.Am�1/ [i.e.,
C 0

m.A/ 
 Am�1 for large A], ifm>2 the limit in (24) is zero, while, ifmD 2, such
limit must be nonzero; as z�1Œ'.A/� � z�1Œ1=
 0.0/�> 0 for all A< C 1, q >0
holds whenevermD 2. ut

Another locus will be considered, that on which the marginal product of capital
equals the individual discount rate, f 0.k=A/D�, which, by (11), implies rD �. As
f 0.�/ is decreasing, also such curve can be expressed as a function of A:

Ok .A/ D O�A; (25)

with O�D .f 0/�1.�/; that is, Ok.A/ is the linear function with slope O�> 0.
The curves Qk.A/, Qk1.A/ and Ok.A/ defined in (21), (23) and (25) will be labeled

turnpike, asymptotic turnpike and stagnation line respectively. The optimal invest-
ment in R&D along the turnpike Qk.A/ defined in (22), QJ .t/, will be referred as the
singular policy. We shall assume the following.

Assumption 3. The instantaneous utility is CIES: u.c/D .c1�� �1/=.1��/, with
� � 1.
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Proposition 2 (Tsur and Zemel, 2007).

(i) A necessary condition for the economy to sustain long-run growth is

O� > Q�I (26)

conversely, if O� � Q� the economy eventually reaches a steady (stagnation) point
on the line Ok.A/ corresponding to zero growth.

(ii) Under (26), for any given initial knowledge stock A0 there is a correspond-
ing threshold capital stock ksk.A0/ � 0 such that whenever k0 � ksk.A0/

the economy – possibly after an initial transition outside the turnpike – first
reaches the turnpike Qk.A/ in a finite time, and then continues to grow along it
as time elapses until the asymptotic turnpike Qk1.A/ is reached in the long-run.
Along Qk1.A/ the economy follows a balanced growth path characterized by a
common constant growth rate of output, knowledge, capital and consumption
given by

� D .r1 � �/ =� > 0; (27)

where r1D limA!1 f 0Œ Qk1.A/=A�D f 0. Q�/ defines the long-run capital
rental rate.5 Moreover, QJ .t/< Qy.t/ for large t , and the income shares devoted
to investments in knowledge and capital are constant and given respectively by

s1D �=
˚
r1

�
1C Q�
 0 .0/


�
and sk1D � Q�
 0 .0/ =

˚
r1

�
1C Q�
 0 .0/


�
:

(28)
If k0 < k

sk.A0/ the economy eventually stagnates.

Proposition 2, whose proof can be found in Tsur and Zemel (2007), establishes
that if (26) holds and k0 is sufficiently high with respect to initial knowledge stock
A0, the economy grows along a turnpike path which, in the long run, converges to a
balanced growth path with knowledge and capital growing at the same constant rate
and with constant saving rate, thus confirming Weitzman’s result in a more general
setting.

As the case #2='.A/>#1 in (16) is ruled out, two optimal regimes are possible:

1. Zero R&D, corresponding to J 	 0, which, if maintained forever, eventually
leads the economy to some steady state (stagnation point) on the line Ok.A/.

2. A path along the turnpike Qk.A/ – maybe started after a finite period of transi-
tion outside the turnpike – corresponding to the singular policy QJ in (22), which
envisages growth for all variables as time elapses and, if maintained forever,
eventually lead to a balanced growth path along the asymptotic turnpike Qk1.A/.

Under (26) and if k0 � ksk.A0/ it can be shown that the turnpike Qk.A/ is “trap-
ping”, i.e., the economy keeps growing along it after it is reached. Hence, there are
two types of transitions: one driving the system toward the turnpike starting from

5 Note that, under (26), r1 D f 0.e�/ > f 0.b�/D f 0Œ.f 0/�1.�/�D �.
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outside it, and another characterizing the optimal path along Qk.A/ after it has been
entered. We shall focus on the latter; specifically, we shall assume that (26) holds,
implying that the stagnation line Ok.A/ lies strictly above6 the turnpike Qk.A/ for A
sufficiently large, moreover, we shall restrict our attention to the case k0D Qk.A0/.
In this scenario k0 � ksk.A0/ is certainly satisfied, as the turnpike Qk.A/ is trapping.

2.2 Dynamics Along the Turnpike

We now adapt the optimal conditions (15)–(19) to the system’s behavior along the
turnpike Qk.A/. All variables on the turnpike will be labeled with a “
” symbol.

Suppressing the time argument and using (22), (6) becomes

PA D Œ Qy .A/ � Qc� =
h Qk0 .A/C ' .A/

i
; (29)

where Qy.A/D F Œ Qk.A/;A�D Af Œ Qk.A/=A�with f .�/ defined in (10). Equation (29)

is the unique dynamic constraint as PQkD Qk0.A/ PAD Qk0.A/Œ Qy.A/� Qc�=Œ Qk0.A/C'.A/�;
therefore, now the unique state variable is A, and, by (22), the unique control is Qc.

Thus, the “regulator” solves

max
fQc.t/g

Z 1

0

u Œ Qc .t/� e��tdt (30)

subject to

8̂<
:̂
PA.t/ D f Qy ŒA .t/� � Qc .t/g =

n Qk0 ŒA .t/�C ' ŒA .t/�
o

0 � Qc .t/ � Qk ŒA .t/�C Qy ŒA .t/�
A .0/ D A0 > 0:

The current-value Hamiltonian for problem (30) is

QH .A; Qc; #/ D u . Qc/C # Œ Qy .A/ � Qc� =
h Qk0 .A/C ' .A/

i
; (31)

where # is the costate variable associated with A. Necessary conditions are:

# D u0 . Qc/
h Qk0 .A/C ' .A/

i
(32)

P# D
n
� �

h
Qy0 .A/ �

� Qk00 .A/C ' 0 .A/
� PAi = h Qk0 .A/C ' .A/

io
# (33)

lim
t!1

QH .t/ e��t D 0; (34)

where PA in (33) is given by (29).

6 This holds for all A>0 when m>2, while for A large enough if mD 2.
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Since, by (20), FAŒ Qk.A/;A�D FkŒ Qk.A/;A�'.A/ along the turnpike and, by (11),
Qr.A/D Fk Œ Qk.A/;A�, where Qr.A/ is the capital rental rate on the turnpike, Qy0.A/D
Qr.A/Œ'.A/C Qk0.A/�. Hence, dividing by # , (33) can be rewritten as

P#=# D � � Qr .A/C PA
h Qk00 .A/C ' 0 .A/

i
=
h Qk0 .A/C ' .A/

i
: (35)

Taking time derivative of (32), dividing by # and coupling with (35), under
Assumption 3 we get

PQc= Qc D ŒQr .A/ � �� =� D
n
f 0 h Qk .A/ =Ai� �o =�; (36)

where in the second equality (11) and (10) have been used.
From (29) and (36) we obtain the following system of ODEs defining the optimal

dynamics for A.t/ and Qc.t/ along the turnpike under Assumption 3:

8<
:
PA D

n
f
h Qk .A/ =AiA� Qco = h Qk0 .A/C ' .A/

i
PQc D Qc

n
f 0
h Qk .A/ =Ai � �o =�: (37)

Proposition 2(ii) states that in the long run the ratios PA=A and PQc= Qc obtained from
(37) converge to the balanced growth rate � D .r1 � �/=� .

3 Model Specification and Analysis

We now suitably restrict the class of models under investigation.

Assumption 4. In addition to Assumption 3, the followings hold:

(i) Only pairs of ideas will be matched in the recombinant process: mD 2.
(ii) The probability function 
 W RC ! Œ0; 1� of the recombinant process is


 .x/ D ˇx= .ˇx C 1/ ; ˇ > 0: (38)

(iii) The production function has the Cobb–Douglas form: F.k;A/D �k˛A1�˛D
�A.k=A/˛, with � > 0 and 0<˛ <1.

Clearly, 
.�/ in (38) satisfies Assumption 1; parameter ˇ measures the degree of
efficiency of the Weitzman matching process, the larger ˇ the higher probability of
obtaining a new successful idea out of each (pairwise) matching of seed ideas.

Since, when mD 2, C 0
2.A/D .2A � 1/=2, and from (38) we get 
�1.y/D

y=Œˇ.1 � y/�, substituting both in (7) yields the following explicit form for '.A/:

' .A/ D .2A� 1/ = Œˇ .2A� 3/� D .1=ˇ/ Œ1C 2= .2A� 3/� : (39)
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As 
 0.0/Dˇ, Assumption 4(iii) and (39) yields:

Qk .A/ D Œ˛= .1 � ˛/� ' .A/A D f˛= Œˇ .1 � ˛/�g Œ1C 2= .2A� 3/� A (40)
Qk1 .A/ D f˛= Œˇ .1 � ˛/�g .AC 1/ .i.e.; Q� D q D ˛= Œˇ .1 � ˛/�/ (41)

Ok .A/ D .�˛=�/1=.1�˛/ A
�

i.e.; O� D .�˛=�/1=.1�˛/
�
; (42)

and the growth condition (26) becomes

� < �˛ Œˇ .1 � ˛/ =˛�1�˛ : (43)

It is seen from (40) that the initial condition A0 must be in the open interval
.3=2;C1/, and the graph of Qk.A/ is a U-shaped curve on it. Since the stock of
knowledge A cannot be depleted and the economy is bound to follow the opti-
mal investment in R&D policy QJ >0 defined in (22), along the turnpike A must
grow: PA.t/> 0 for all t � 0. Therefore, a U-shaped Qk.A/ means that capital Qk.t/
decreases [ PQk.t/ < 0] when t is small and increases [ PQk.t/ > 0] for larger t , envisag-
ing that in early times it is optimal to take away some physical capital from the
output-producing sector and invest it in R&D, so that the stock of knowledgeA can
take-off. Moreover, PA>0 in (29) – and thus in (37) – has important implications.

Proposition 3. Under Assumption 4, the optimal policy along the turnpike, Qc.A/,
satisfies 8<

:
Qc .A/ > Qy .A/ for 3=2 < A < As

Qc .As/ D Qy .As/

Qc .A/ < Qy .A/ for A > As ;

(44)

where
As D 1C .1=2/

�
˛ C

p
1C 4˛ C ˛2

�
: (45)

Moreover, Qc0.A/ � 0 in a neighborhood of As .

Proof. By differentiating Qk.A/ in (40) it is easily seen that the denominator of (29),
Qk0.A/C'.A/, vanishes on the unique pointAs defined in (45), which belongs to the
domain .3=2;C1/ as As >3=2 for all 0<˛ <1; moreover, Qk0.A/C '.A/<0 for
3=2<A<As and Qk0.A/C '.A/>0 for A>As . Therefore, PA.t/>0 for all t � 0
in (29) implies (44). Since it can be checked that As is also the unique (minimum)
stationary point for the optimal output Qy.A/ – i.e., Qy0.As/D 0 – and (44) states that
the graph of the optimal policy Qc.A/ must intersect the graph of the optimal output
Qy.A/ from above on ADAs, Qc0.A/ � 0 must hold in a neighborhood of As . ut

Proposition 3 will be useful in handling the point corresponding to .As ; Qc.As//

in the “detrended” system.
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3.1 State-Like and Control-Like Variables

When the economy performs sustained growth in the long run, there are no steady
states toward which the system eventually converges. Thus, we transform the state
variable A and the control Qc in a state-like variable, �, and a control-like variable,
�, respectively, so that �.t/ and �.t/ converge to some fixed points �� and �� in
the space .�; �/ as time elapses. We choose the following transformations:

� D Qk .A/ =A D Œ˛= .1 � ˛/� ' .A/ D f˛= Œˇ .1 � ˛/�g Œ1C 2= .2A� 3/� (46)

� D Qc=A; (47)

where in (46) we used (40) and (39). Hence, A is related to � as follows:

A D ˛= Œˇ .1 � ˛/� � ˛�C 3=2: (48)

Given the “detrended” optimal policy �.�/, the optimal policy of (30) is

Qc .A/ D � Œ.˛= .1 � ˛// ' .A/�A: (49)

Under Assumption 4(iii), from (37) we obtain the following ratios:

PA=A D
n
�
h Qk .A/ =Ai˛ � Qc=A

o
=
h Qk0 .A/C ' .A/

i
(50)

PQc= Qc D
�
�˛
h Qk .A/ =Ai˛�1 � �

�
=�: (51)

The growth rate of � in (46) is P�=�D Qk0.A/ PA= Qk.A/ � PA=A; therefore, P�D
Œ Qk0.A/ � �� PA=A, which, coupled with (50) and using (47), yields

P� D
h Qk0 .A/� �

i
.��˛ � �/ =

h Qk0 .A/C ' .A/
i
: (52)

As (39) equals to 2=.2A� 3/D ˇ'.A/ � 1 and ' 0.A/D �4=Œˇ.2A� 3/2�, ' 0 is a
function of ': ' 0.A/D � .1=ˇ/Œ2=.2A � 3/�2D � .1=ˇ/Œˇ'.A/ � 1�2; moreover,
(39) may also be rewritten as AD 1=Œˇ'.A/ � 1� C 3=2, while (46) is equiva-
lent to '.A/D Œ.1 � ˛/=˛��. Hence, By differentiating (40) and substituting these
expressions for ' 0.A/, A and '.A/, after a fair amount of algebra Qk0.A/ in (52)
becomes

Qk0 .A/ D f˛= Œ2ˇ .1 � ˛/�g
n
6ˇ Œ.1 � ˛/ =˛� � � 3ˇ2 Œ.1 � ˛/ =˛�2 �2 � 1

o
:

(53)
We can now rewrite (52) only in terms of variables � and �:

P� D
	
1 � 2ˇ .1 � ˛/ �

2ˇ .1 � ˛/ .1C 2˛/� � 3ˇ2 .1 � ˛/2 �2 � ˛2



.��˛ � �/ : (54)
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By (50), (51) and (46), the growth rate of � in (47) is P�=�D .�˛�˛�1 � �/=� �
.��˛ � �/=Œ Qk0.A/C '.A/�, which, by replacing Qk0.A/ as in (53) and '.A/D Œ.1�
˛/=˛��, yields the following ODE for the control-like variable �:

P� D
	
�˛�˛�1 � �

�
� 2˛ˇ .1 � ˛/ .��˛ � �/
2ˇ .1 � ˛/ .1C 2˛/� � 3ˇ2 .1 � ˛/2 �2 � ˛2



�: (55)

Hence, we must study the following system of ODEs:

(
P� D Œ1 � 2ˇ .1 � ˛/ �=Q .�/� .��˛ � �/
P� D ���˛�˛�1 � �� =� � 2˛ˇ .1 � ˛/ .��˛ � �/ =Q .�/
�; (56)

where
Q.�/ D �3ˇ2 .1 � ˛/2 �2 C 2ˇ .1� ˛/ .1C 2˛/� � ˛2: (57)

3.2 Fixed Points and Phase Diagram

Since A>3=2, from (46) one immediately obtains the range .��;C1/, with

�� D ˛= Œˇ .1 � ˛/� ; (58)

for the state-like variable �, with endpoints corresponding to A ! C1 and A !
.3=2/C respectively. In other words, �� in (58) is the steady value for variable �
corresponding to long-run behavior of the economy along the asymptotic turnpike
Qk1.A/ [�� is the slope of Qk1.A/, as seen in (41)]. The feasible set for the detrended
variables .�; �/ therefore is S D Œ��;C1/ �RCC, where we added the boundary
�� corresponding to the asymptotic dynamics (AD C1) of the original model.

From the first equation in (56), two loci on which P�D 0 are found in S : the curve

� D ��˛ (59)

and the vertical line � 	 ��, with �� as in (58). Equation (59) vanishes the second
factor in the RHS of the first equation in (56), while �� is the largest (and only
feasible) solution ofQ.�/�2ˇ.1�˛/�D 0, withQ.�/ defined in (57), vanishing
the first factor in the RHS of the same equation.

From the second equation in (56), the unique locus on which P�D 0 is given by

� D ��˛ �Q.�/
�
�˛�˛�1 � �� = Œ2˛ˇ� .1 � ˛/� : (60)

Q.�/ turns out to have a unique (admissible) root, call it �s , satisfying

Q.�/ D �3ˇ2 .1 � ˛/2 �2 C 2ˇ .1 � ˛/ .1C 2˛/ �� ˛2 D 0; (61)
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with Q.�/>0 for �� � �<�s andQ.�/<0 for �>�s . Thus, whether the locus
(60) lies above or below the locus (59) depends on whether �� � �<�s or �>�s ,
and on the sign of .�˛�˛�1��/. On �D�s , however, they intersect, and this yields
our first steady state: .�s ; �s/, with �s D �.�s/˛ , which happens to correspond to
the point .As ; Qc.As// discussed in Proposition 3 for the original dynamic (37). To
see this, recall that, from (44), Qc.As/D Qy.As/ must hold on the critical point As

defined in (45); by replacing As in (46) and (47), we get,

�s D
�
1C 2˛C

p
1C 4˛ C ˛2

�
= Œ3ˇ .1 � ˛/� ; �s D � .�s/

˛
; (62)

where �s coincides with the largest (and only admissible) solution of (61).
It is immediately seen that �� <�s for all feasible values of parameters ˛ and ˇ,

which means thatQ.��/ > 0 must hold; moreover, using (58), the necessary condi-
tion for growth (43) can be rewritten as Œ�˛.��/˛�1���> 0. Therefore, we conclude
that the locus (60) intersects the locus � 	 �� strictly below locus (59). Since
along such vertical line P�D 0, we have found the second steady state of system
(56): .��; ��/, where �� is (60) evaluated at �D��, specifically,

�� D � f˛= Œˇ .1 � ˛/�g˛ .1 � 1=�/C �= Œˇ� .1 � ˛/� : (63)

Clearly, under Assumption 4 ��>0. As ��˛ in (59) is increasing in � and
�� <�.��/˛, it follows that .��; ��/ lies south-west of .�s ; �s/. We shall see
in short that .��; ��/ is the saddle-path stable steady state to which system (56)
converges in the long-run. Hence, �� is the asymptotic slope of the optimal
consumption Qc.A/ steadily growing at the constant rate � in the original model.

As condition (43) states that �< �˛.��/˛�1 must hold and, as 0<˛<1,
�˛�˛�1 is a decreasing function of �, there must be a unique value O�>�� such
that Œ�˛. O�/˛�1 � ��D 0. It is clear from the last factor in the second term in the
RHS of (60) that the two loci (60) and (59) must intersect in �D O�; hence . O�; O�/,
with

O� D .�˛=�/ 1
1�˛ ; O� D � .�˛=�/ ˛

1�˛ ; (64)

is the third (and last) steady state associated to (56). From (42), O� in (64) cor-
responds to the value OA at which Qk.A/ intersects Ok.A/ in the original model. By
equating (40) and (42) [or by substituting O� as in (64) into (48)], OA turns out to be

OA D ˛=
h
ˇ .1 � ˛/ .�˛=�/ 1

1�˛ � ˛
i
C 3=2; (65)

which in turn, if replaced in (49) and using O� as in (64), yields the value of the
optimal policy at the intersection point OA, Qc. OA/D O� OA, of the original model.

The position of the last steady state, . O�; O�/, depends on how large the dis-
count factor � is with respect to the parameters ˛, � and ˇ. Since ��<�s implies
�˛.�s/˛�1 <�˛.��/˛�1, three scenarios may occur, all satisfying condition (43):

1. If �< �˛.�s/˛�1, �s < O� and . O�; O�/ lies north-east of .�s ; �s/.



On the Transition Dynamics in Endogenous Recombinant Growth Models 265

2. If �D �˛.�s/˛�1, �sD O� and the two steady states collapse: . O�; O�/D .�s ; �s/.
3. If �˛.�s/˛�1<�<�˛.��/˛�1, ��< O�< �s and . O�; O�/ lies north-east of
.��; ��/ and south-west of .�s ; �s/.

We shall focus on the third case, corresponding to a scenario in which As lies on
the left of OA, on which the turnpike Qk.A/ intersects the stagnation line Ok.A/.
Proposition 4. Under Assumption 4 and provided that �˛.�s/˛�1<�<�˛

.��/˛�1 holds, the two fixed points .��; ��/ and . O�; O�/ can be classified as follows:

1. .��; ��/, with coordinates defined in (58) and (63), is saddle-path stable, with
the stable arm converging to it from north-east whenever the initial values
.�.t0/; �.t0// are suitably chosen.

2. . O�; O�/, with coordinates defined in (64), is an unstable clockwise-rotating spiral.

Proof. Above the locus (59) the term .��˛��/ in the first equation of (56) is nega-
tive, while it is positive below.Q.�/ in (57) is such thatQ.�/>0 for ��<�<�s ,
while Q.�/<0 for �>�s ; therefore, Œ1 � 2ˇ.1 � ˛/�=Q.�/� is negative for
��<�<�s and positive for �>�s . Hence: if ��<�<�s , P�>0 above locus
(59) and P�<0 below; while, if �>�s , P�<0 above locus (59) and P�>0 below.

Since �>0, the sign of P� in the second equation of (56) depends on the sign of
the term in square brackets in the RHS. From the sign of Q.�/ we infer that for
��<�<�s such term is positive above locus (60) and it is negative below, while
the converse holds for�>�s . Thus, when��<�<�s , P�>0 above locus (60) and
P�<0 below; conversely, if �>�s , P�<0 above locus (60) and P�>0 below.

The analysis above is sufficient to trace out the phase diagram for the case
�˛.�s/˛�1 <�<�˛.��/˛�1, i.e., when ��< O�< �s , which is reported in Fig. 1.
Clearly, .��; ��/ is saddle-path stable; it can be guessed that its stable arm is
increasing and lying below locus (60) on the interval Œ��; �s/. To check its saddle-
path stability, consider the Jacobian of (56) evaluated at .��; ��/:

J
�
��; ��� D

2
4 ��ˇ�.1�˛/.	�/

˛

�
0

� .1�˛/
h
c1.	�/

2˛Cc2.	�/
˛C�2

i
˛�2

�Cˇ�.1�˛/.��1/.	�/
˛

�

3
5 ; (66)

where c1D .ˇ�/2˛�.1�˛/.� �1/, c2D ˇ��.˛C� �1/. By (43) the terms on the
diagonal have opposite signs; hence, detŒJ.��; ��/� < 0 and .��; ��/ is a saddle.

As .��; ��/ lies strictly below locus (59) and the unique intersection point
between the loci (60) and (59) on the interval Œ��; �s/ is the fixed point . O�; O�/,
it must be the case that (60) crosses (59) from below on . O�; O�/. Therefore, . O�; O�/ is
a clockwise rotating spiral and the eigenvalues of the Jacobian of (56) evaluated at
. O�; O�/ are complex. To establish instability we need to show that their real part is
positive, or, equivalently, that trŒJ. O�; O�/�> 0. The Jacobian is

J . O�; O�/ D 1

Q . O�/

"
ŒQ . O�/� 2ˇ .1 � ˛/ O�� � 2ˇ .1 � ˛/ O� �Q. O�/

� .1�˛/Œ�Q. O	/C2�˛2ˇ�. O	/
˛C�2��. O	/

˛�1

� 2˛ˇ .1 � ˛/ � . O�/˛
#
;
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Fig. 1 Phase diagram of
system (56) when
�˛.�s/˛�1 < �<�˛.��/˛�1
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χ

μ∗ μ̂ μs

χ∗

χ̂
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μ̇ = 0

χ̇ = 0

with Q. O�/> 0, as �� < O�< �s . Since Œ˛�. O�/˛�1 � ��D 0 on . O�; O�/, it is
immediately seen that trŒJ. O�; O�/�D �Q. O�/>0, and the proof is complete. ut
Remark 1. The critical point .�s ; �s/, with coordinates defined in (62), cannot be
classified analytically, as the Jacobian matrix of (56) evaluated at .�s ; �s/ has some
elements diverging either to �1 or to C1 as .�; �/ approaches .�s ; �s/, the sign
of infinity depending on the direction along which .�; �/! .�s ; �s/.

We have seen in Sect. 2.1 that Qk.A/> Qk1.A/ for all A (and thus for all t); this
is consistent with �.t/>�� for all t . Hence, the stable trajectory must approach
.��; ��/ from the right. We denote by �.�/ such trajectory, which is the opti-
mal policy expressed in terms of state-like and control-like variables. Its slope on
.��; ��/ is the slope of the eigenvector associated to the negative eigenvalue of (66)
(see Barro and Sala-i-Martin, 2004, p. 596), that is,

�0 ���� D ˇ�˛� .1 � ˛/ .� � 1/ .��/2˛ C � .˛ C � � 1/ .��/˛ C Œ�2=.ˇ�/�

˛�2 .��/˛
;

(67)
which is clearly positive. Hence, �.�/ approaches .��; ��/ from north-east in a
(right) neighborhood of ��; consequently, along the turnpike both ratios Qk.A/=A
and Qc=A must decline in time when they are approaching the asymptotic turnpike.

Under the assumption that �˛.�s/˛�1 <�<�˛.��/˛�1, �� < O�< �s ; by
translating O� into OA through (65), it follows that the intersection point between Qk.A/
and Ok.A/ lies on the right of the singular pointAs defined in (45). Therefore, by con-
dition (44) of Proposition 3, Qc. OA/< Qy. OA/, which is equivalent to �. O�/<�. O�/˛D O�.
Hence, the optimal trajectory �.�/ keeps well below the (unstable) steady state
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. O�; O�/, which thus happens to be harmless for our analysis, at least for the case7

�˛.�s/˛�1 < �< �˛.��/˛�1.
Conversely, the steady state .�s ; �s/ is the most problematic as on one hand

its stability cannot be checked analytically, while on the other hand the optimal
policy �.�/ must actually cross it.8 However, since in our scenario .As ; Qk.As// ¤
. OA; Qk. OA//, the system in the original model is not on the stagnation line when it hits
.As ; Qk.As// and thus cannot stop over it; accordingly, the detrended system cannot
stop over .�s ; �s/. All these “singularities” attached to .�s ; �s/ led us to opt for a
qualitative approach based on information gathered on a neighborhood of .�s ; �s/.
Condition (44) of Proposition 3 for A ¤ As translates into

�
� .�/ < � .�/˛ for �� < � < �s

� .�/ > � .�/˛ for � > �s ;
(68)

which, in turn, means that the optimal policy must lie below the locus (59) when
��<�<�s and above it when �>�s . A closer inspection of a neighborhood of
.�s ; �s/ in Fig. 1 shows that it is attractive on the area above the locus (59) (above
�D ��˛) and on the right of the vertical line � 	 �s , while it is repulsive below
�D ��˛ and on the left of � 	 �s . As ��˛ is increasing in �, this suggests that
the optimal policy �.�/ must be increasing on .�s ; �s/ and the optimal trajectory
.�.t/; �.t// must cross .�s ; �s/ from north-east to south-west as time elapses.

3.3 Time Elimination, Policy Function and Initial Conditions

In order to study the policy function �.�/ – which is the conjugate of Qc.A/ in the
original model – we apply the technique developed by Mulligan and Sala-i-Martin
(1991) and tackle the unique ODE given by the ratio between the equations in (56):

�0 .�/ D
��
˛��˛�1 � �� =�
Q.�/ � 2˛ˇ .1 � ˛/ Œ��˛ � � .�/�

ŒQ .�/ � 2ˇ .1 � ˛/�� Œ��˛ � � .�/� � .�/ ; (69)

where Q.�/ is defined in (57).
The natural choice for the initial condition of (69) is the saddle-path stable steady

state .��; ��/, while the value of �0.��/ in (67) will be used to select the stable
arm outside .��; ��/. The previous analysis, however, has endowed us with another

7 A similar situation occurs when �< �˛.�s/˛�1, in which case Qc. OA/> Qy. OA/, and thus
�. O�/>�. O�/˛ D O�. Only when �D �˛.�s/˛�1, and the two points OA and As collapse, the opti-
mal trajectory necessarily must cross the (unstable) steady state . O�; O�/; in this case, however, the
point . O�; O�/D .�s; �s/ inherits the peculiar singularity properties of .�s; �s/, thus becoming a
“supersingular” point to be handled with circumspection.
8 Condition (44) of Proposition 3 states that Qc.As/D Qy.As/, which implies �.�s/D �

.�s/˛ D �s .
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reference point, the singular point .�s ; �s/, which may be exploited as initial condi-
tion as well. Although the Jacobian of (56) evaluated on .�s ; �s/ is intractable, we
are able to compute the slope of the policy at �D�s by applying l’Hôpital rule to
the RHS of (69) evaluated at �D�s . Since Q.�s/D 0 and Œ�.�s/˛ � �.�s/�D 0,
we obtain the following quadratic equation in �0.�s/:

2ˇ� .1 � ˛/�s Œ�0 .�s/�
2 � 4˛ˇ� .1 � ˛/ �s�0 .�s/

�
nh
˛� .�s/˛�1 � �

i
Q0 .�s/ � 2˛2ˇ�� .1 � ˛/ .�s/˛�1

o
�s D 0: (70)

Substituting �s and �s as in (62) and Q0.�s/D �2ˇ.1 � ˛/ p1C 4˛ C ˛2

into (70) two positive real solutions appear, the largest being larger than
the slope of the locus (59) at �D�s . However, this happens only when
�˛.�s/˛�1 <�<�˛.��/˛�1; this is why we chose to confine our numerical
approach to such scenario.

4 Numeric Simulation of the Optimal Policy

By applying the Fehlberg fourth-fifth order Runge–Kutta method with degree four
interpolant method (see, e.g., Shampine and Corless, 2000) implemented through
Maple 12.02 to ODE (69), we were able to find satisfactory result only for single sets
of parameters values. We chose values for parameters ˛, �, � and � which are often
assumed in the macroeconomic literature (see, e.g., Mulligan and Sala-i-Martin,
1993): ˛D 0:5, �D 0:04 and � D � D 1. Note that � D 1 implies logarithmic
instantaneous utility. For such parameters’ values, ˇ must satisfy the necessary
growth condition (43), which turns out to be ˇ>0:0064.

We plan to exploit the steady state .��; ��/ and the singular point .�s ; �s/ [see
(58), (63) and (62)] as initial conditions in order to trace out two different curves
as numeric solutions of (69) through Maple 12.02. Both curves provide an approx-
imation for the same (unique) trajectory representing the optimal policy9 �.�/ for
� � ��. For the chosen parameters’ values, such two curves happen to be suffi-
ciently close to each other for a reasonably large range of � values only for a unique
admissible value of the technological parameter: ˇD 0:0124. Since, for ˛D 0:5,
�D 0:04, � D � D 1 and ˇD 0:0124, each curve provides a reliable approximation
of �.�/ around its own initial condition and both match on most of the open inter-
val .��; �s/, our idea is to approximate the whole �.�/ by using the first curve

9 Such trajectory is the unique true solution of (69) corresponding to the stable arm of the sad-
dle point .��; ��/ and, at the same time, crossing the singular point .�s; �s/. Other solutions of
(69) may cross at most one of the two points, like, for example, the trajectory corresponding to
the unstable arm of .��; ��/, or other unknown trajectories possibly crossing the singular point
.�s; �s/. We owe such clarification to an anonymous referee.
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Fig. 2 The turnpike Qk.A/,
the asymptotic turnpike
k1.A/ and the stagnation
line Ok.A/ for ˛D 0:5,
�D 0:04, � D � D 1 and
ˇD 0:0124
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for � close to �� and the second one for � close to (and larger than) �s , while
“joining”them together on some “intermediate” value on which they almost match.

For our parameters’ values, (62) yields �s D 204:4503, which implies
�D 0:04> 0:035D �˛.�s/˛�1, corresponding to the third scenario of Sect. 3.2, in
which As < OA. Figure 2 portraits the turnpike Qk.A/, the asymptotic turnpike Qk1.A/
and the stagnation line Ok.A/ as in (40), (41) and (42); as expected, As D 2:1514<

2:567D OA.
In view of Proposition 2, the long-run capital rental rate is r1D f 0. Q�/D

0:0557, the long-run common constant growth rate is � D 0:0157, while the long-
run income shares invested in knowledge and capital are the same: s1D sk1D
0:1408.

The steady states are .��; ��/D .80:6452; 6:4516/, . O�; O�/D .156:25; 12:5/

and .�s ; �s/D .204:4503; 14:2986/. Figure 3 shows the loci P�D 0 and P�D 0 in
slim black, while the thick curves are the result of the numeric solution of (69) rep-
resenting the policy �.�/: the black one uses .��; ��/ as initial condition and (67),
�0.��/D 0:0687, for the selection of the stable arm; the grey one has .�s ; �s/

as initial condition and slope given by the largest solution of (70) on �D �s ,
�0.�s/D 0:0602. The two approximate trajectories will be labeled ��.�/ and
�s.�/ respectively.

Even for our choice of parameters’ values the Maple 12.02 algorithm is capable
of computing the trajectory ��.�/ only up to a point: it actually stops at N� ' 197<
204:4503D �s , falling short of the singular point, .�s ; �s/. On the other hand,
as it is clear from Fig. 3, trajectory �s.�/ heavily underestimates the policy for
values of� approaching�� (i.e., far away from�s). The two curves, however, seem
sufficiently close to each other on most of the interval .��; �s/, thus suggesting that
the numeric approach actually works satisfactorily for these values of parameters.

In order to estimate the whole policy �.�/, for all � � ��, we shall use ��.�/
for � values close to ��, and �s.�/ for � values closer to �s . Since from Fig. 3 it is
clear that ��. O�/ � �s. O�/, we shall define the approximated policy as a piecewise
function by joining the two trajectories at the point O�D 156:25 2 .��; �s/:

� .�/ D
�
�� .�/ for �� � � � O�
�s .�/ for � � O�: (71)
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Fig. 3 Loci P�D 0 and P�D 0 (slim black curves) and approximate trajectories ��.�/ and �s.�/
(black and grey thick curves respectively) for ˛D 0:5, �D 0:04, � D � D 1 and ˇD 0:0124

Surprisingly, already for ˇD 0:0123, or ˇD 0:0125, while keeping fixed all other
parameters, the curves ��.�/ and �s.�/ in Fig. 3 split apart, while the range of �
for which the numeric algorithm is able to perform starts to shrink dramatically; this
is why we take as reliable only the solution obtained for ˇD 0:0124.

Remark 2. We tried different values for the parameters ˛, �, � and � ; for all feasi-
ble set of values for such parameters we found a scenario similar to that described
above, at least under condition �˛.�s/˛�1<�<�˛.��/˛�1: only for one specific
value of parameter ˇ, related to the choice of ˛, �, � and � , the two numerical
solutions – ��.�/ with initial condition .��; ��/ and �s.�/ with initial condition
.�s ; �s/ – turned out to be sufficiently close to each other on a large part of the
interval .��; �s/. We conclude, thus, that the numeric approach works satisfactory
only on a manifold of dimension one in the parameters’ space.

5 Discussion

To get the approximated time-path trajectory of � we substitute the optimal policy
�.�/ as in (71) into the first equation of (56), yielding the following ODE in t ,

P� .t/ D f1 � 2ˇ .1 � ˛/� .t/ =Q Œ� .t/�g ˚� Œ� .t/�˛ � � Œ� .t/�� ; (72)

with Q.�/ defined in (57), which can be numerically solved. Since �.�/ in (71) is
defined piecewise, we need to choose an instant Ot > 0 on which the trajectory has
the (common) value O�D 156:25; then, the initial value �0D �.0/ will be given
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Fig. 4 (a) �.t/ and (b) �.t/ for ˛D 0:5, �D 0:04, � D � D 1 and ˇD 0:0124

by evaluating in t D 0 the solution of (72) with �.�/D�s.�/ and �.Ot/D O� as initial
condition. For different Ot we can consider any initial value �0D �.0/> O�.

In our example we assume Ot D 36, corresponding to �0D 251:977 in t D 0.
According to (71), we define �.t/ as the solution of (72) with �.�/D �s.�/ for
0 � t � Ot [corresponding to O� � �.t/ � �0], and as the solution of (72) with
�.�/D��.�/ for t � Ot [corresponding to �� � �.t/ � O�]. Figure 4a plots �.t/ for
0 � t � 400 by distinguishing the part (in grey) obtained through �s.�/ for 0 � t �
Ot D 36 from the part eventually converging to �� (in black) obtained by means of
��.�/ for t � 36.

The time-path trajectory �.t/ is then computed by letting �.t/D �Œ�.t/� in (71),
with �.t/ just obtained, for all 0 � t � 400. Figure 4b reports the result, again by
emphasizing in grey the part for 0 � t � Ot D 36. In t D 0, �.0/D �0D 17:1194,
corresponding to �0D 251:977, while in t D Ot D 36, �.36/D 11:3688; clearly,
�.Ot /D 11:3688< 12:5D O�, as expected.

With �.t/ and �.t/ at hand, we can compute the optimal consumption Qc.A/ and
output Qy.A/ along the turnpike Qk.A/ in the original model as functions of A. By
(48) we find the initial stock of knowledge A0D 1:9707 in t D 0, corresponding
to �0. To A0 corresponds an initial capital k0D Qk.A0/D 496:57 in t D 0. Qc.A/
is then obtained through (49), with �.�/ defined in (71): �s.�/ for A0 � A � OA
(corresponding to O� � � � �0), and ��.�/ for A � OA (corresponding to �� �
� � O�). Figure 5a reports Qk.A/, Qy.A/ and Qc.A/ just evaluated on a scale larger than
in Fig. 2. Figure 5b magnifies the intersection point between Qy.A/ and the Qc.A/
occurring on As, close to A0 and to the left of OA. Since on ŒA0; OA� Qc.A/ is being
built through �s.�/ in (72), this portion of its graph is emphasized in grey, as we did
in previous figures.

The time-path trajectory of the stock of knowledgeA.t/ is obtained by evaluating
(48) at �.t/ for all t , while time-path trajectories Qk.t/ and Qy.t/ follow by construc-
tion. The consumption time-path trajectory Qc.t/ is computed by evaluating (49) at
A.t/ for all t . These trajectories are drawn in Fig. 6a, while Fig. 6b reports the time
path-trajectory of the capital rental rate r ; once again, their dependence on the �s.�/
arm of the policy in (71) for 0 � t � Ot D 36 is emphasized in grey.

From Figs. 2, 5a and 6a, emerges that the dynamics along the turnpike are charac-
terized by a much larger amount of physical capital than any other variable. A large
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Fig. 5 (a) Qc, Qy and Qk as functions of A along the turnpike; (b) Qc and Qy close to A0 D 1:9707
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Fig. 6 (a) Time-path trajectories of A, Qk, Qy and Qc; (b) time-path trajectory for Qr

initial capital, k0D 496:57, compared to very few initial ideas, A0D 1:9707, is
required to let the recombinant process to take-off. Such amount, even if for a short
time, is partially being “eaten up” by both consumption [ Qc.A/> Qy.A/ for A0 �
A � As] and investment in R&D, thus envisaging an initial period of decline for
capital Qk. Figure 5b shows that output and consumption decrease for a short time as
well; specifically, output declines until Qc.A/ hits Qy.A/ at AD As , and consumption
decreases until the turnpike crosses the stagnation line on AD OA (see Fig. 2) at Ot D
36. For larger t all variables start to increase, with a much higher Qk with respect to
all others, especially to A. For example, when A ' 73, Qk ' 6000 in Fig. 5a.

In our example, thus, sustained growth requires a large exploitation of physi-
cal resources, at least relatively to knowledge, even under a “balanced” (˛D 0:5)
Cobb–Douglas technology. Such “asymmetry” is explained by the ratio between
the (low) price of capital – numéraire – and the relatively high unit cost of knowl-
edge production: for ˇD 0:0124 '.A/ turns out to be significantly larger than 1, as
'.A/> limA!1 '.A/D 1=
 0.0/D 1=ˇD 80:6452 (see also, Figs. 8a and 8b).

Figure 6a exhibits a system which actually takes some time to take-off. Provided
that our economy starts with very few ideas (A0D 1:9707) and sufficiently large
capital (k0D 496:57), the initial transient dynamics happen to last quite long; espe-
cially A.t/ takes no less than 200 periods before becoming significant [note that
in the meantime Qk.t/ already started to “blow up”]. For example, it takes around
282 periods to reach the stock A ' 73, corresponding to Qk ' 6; 000. Similarly, the
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Fig. 7 Growth rates �A, � Qk ,
� Qy and �Qc , of A, Qk, Qy and Qc as
functions of time
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Fig. 8 (a) Unit cost of knowledge production, ', as a function of A; (b) its time-path trajectory

constant ratio Qc.A/= Qy.A/ visible in Fig. 5a – due to almost linearity of Qc.A/ and
Qy.A/ and which can be checked to be close to the asymptotic ratio 0:07184, cor-
responding to the saving rate s1C sk1D 0:2816 – is actually not reached before
at least 300 periods. To conclude, Figs. 2 and 5a should be read carefully when one
introduces time: of course the economy grows along the turnpike Qk.A/, but at a very
slow pace in early times, while keeps accelerating until it “explodes” along Qk1.A/.

Figure 6b adds more information to the analysis: even if Qk is always (much)
larger than A, its productivity keeps rising in time, as confirmed by its increasing
rental rate, Qr , until it reaches its asymptotic value, r1D 0:0557.

Figure 7 confirms everything in terms of rates of growth. By construction, A.t/
is the only variable with rate of growth �AD PA=A always positive, while Qk.t/, Qy.t/
and Qc.t/, all experience negative growth at early times, where � QkD PQk= Qk, � Qy D PQy= Qy
and �QcD PQc= Qc are negative. Interestingly, it can be observed that Qc.t/ reaches its
absolute minimum in Ot D 36 [corresponding to Qc. OA/, as confirmed by Fig. 5b].

The striking feature of recombinant growth is evident in Fig. 7: all growth rates
are increasing in time while approaching their asymptotic common value � D
0:0157. This reflects the original Weitzman’s (1998) hypothesis: in early times ideas
are scarce and thus have the potential of growing at increasing rates, in the long-run
limited physical resources to be invested in R&D – with respect to the exploding
number of ideas – cools down growth to the more realistic case of constant rates.

Figure 8a shows the graph of the unit cost of knowledge production '.A/ as in
(39), which is sharply decreasing in A for A close to A0. Such jump, however, is
to be diluted when time is considered, as shown in Fig. 8b where ' is plotted as a
function of t , since A starts to grow significantly only after some time (see Fig. 6a).
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Fig. 9 (a) QJ .A/, (b) its detail for A close to A0; (c) PQk.A/, (d) its detail for A close to A0

Investment in R&D QJ and investment in capital PQk as functions of A are plotted
in Fig. 9; QJ is computed by using Qc.A/ and Qy.A/, '.A/ and Qk0.A/ – obtained by
differentiating (40) with respect to A – in (22). From Figs. 9a and 9c, where a large
range of A values is considered, we learn that both look linear in A and have the
same magnitude, implying that they become the same well before reaching their
asymptotic (common) constant share s1D J1=y1D sk1D Pk1=y1D 0:1408.
Only for A close to A0 their behavior differ, as magnified by Figs. 9a and 9d.

It is interesting to compare the magnitude of QJ .A/ and PQk.A/ in Figs. 9a and 9d
with that of Qc.A/ and Qy.A/ in Figs. 5a and 5b: for all A – also close to A0 – the
optimal dynamics postulate relatively small investment in both factors with respect
to consumption and output. Figures 10a and 10b confirm this in terms of investment

shares, QsD QJ= Qy and QskD PQk= Qy. Both are increasing inA and reach their asymptotic
value s1D sk1D 0:1408 quite rapidly, although Qsk <0 for small A. Such quick
jumps to their asymptotic value is consistent with the linearity exhibited by QJ .A/
and PQk.A/ in Figs. 9a and 9c.

Also the dynamics of QJ (or Qs) confirm Weitzman’s (1998) evolution of knowl-
edge: when A – and thus seed ideas H – is scarce function (5) exhibits low
productivity; accordingly, only few resources are employed in R&D, while they
increase as A – and H – become more abundant. In the long-run are the physical
resources that become scarce with respect to knowledge – they grow slower than
what (potentially) could do knowledge – and bound the rate of investment Qs to its
asymptotic value s1.
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Fig. 10 (a) QsD QJ= Qy as a function of A; (b) Qsk D PQk= Qy as a function of A

The graphs of new (successful) knowledge production, PA, and seed ideas, QH , as
functions of A are reported in Fig. 11; the former is given by (29), while the latter is
computed from (4) using PA andC

0

2.A/D A�1=2. Strict convexity of QH in Figs. 11c
and 11d, associated to linearity of PA (also for A close to A0) in Figs. 11a and 11b,
is consistent to formula (4), which implies quadratic growth for QH when PA grows
linearly. It is worth noting the difference in magnitudes between seed ideas QH and
the actual successful ideas PA produced out of QH : such low returns are justified by
the choice of a very small value for the efficiency parameter, ˇD 0:0124, in (38),
requiring abundant seed ideas to guarantee sustained growth of knowledge.

To conclude, Fig. 12 shows time-path trajectories of QJ , PQk, Qs, Qsk , PA and QH . Due

to slow growth of A.t/ in early times, linearity of investments QJ and PQk, and of
new knowledge PA, evident in Figs. 9a, 9c and 9a, correspond to convex time-path
trajectories, as shown in Figs. 12a, 12b and 12e. For the same reason, convexity of
QH in Fig. 11c becomes more accentuated in Fig. 12f; similarly, the sudden jumps

to their asymptotic value of Qs and Qsk in Figs. 10a and 10b is being smoothed in
Figs. 12c and 12d. Specifically, both need at least 200 periods before approaching
their long-run (common) constant value s1.

6 Conclusions

The exercise performed in this paper is a very preliminary attempt to tackle the tran-
sition dynamics in the recombinant growth model introduced by Tsur and Zemel
(2007). For CIES instantaneous utility and Cobb–Douglas production in the out-
put sector, we chose a suitable function for the Weitzman’s (1998) probability of
obtaining a successful idea from pairwise matchings of seed ideas, so that the orig-
inal optimal dynamics along the turnpike, which is diverging in the long-run, can
be “detrended” to an equivalent system converging to a steady state. In the space
of the detrended variables we exploit the asymptotic steady state plus a singular
point, across which the optimal policy must get through at some early instant, in
order to numerically compute two trajectories which, for a specific choice for the
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Fig. 11 (a) and (b) PA as a function of A; (c) and (d) QH as a function of A

parameters’ values, happen to be sufficiently close to each other on a large range
between such two points. By joining together these trajectories at an intermediate
point, we build an approximation of the optimal policy which must be reasonably
close to the true policy on all variables’ domain. By converting such trajectory into
the original state variable (stock of knowledge) and control variable (consumption)
trajectories, we obtain a good approximation of the optimal consumption, which in
turn, again by solving numerically an ODE, yields the transition optimal time-path
trajectories of the stock of knowledge, physical capital, output and consumption –
as well as their transition growth rates – along the turnpike.

We believe that our main technical contribution is the appropriate form chosen
for the Weitzman’s probability function defined in Assumption 4(ii), which allows
for “detrending” the original system (37) into the equivalent system (56).

If, on one hand the optimal policy obtained in Sect. 4, and used to build time-
path trajectories in Sect. 5, may clearly be of interest per se, on the other hand it is
insufficient for studying how the system’s transitional behavior is being affected by
changes in the technological parameter ˇ of the probability function 
 of Assump-
tion 4(ii), while keeping fixed all other parameters’ values. In order to further
investigate this topic one needs either to improve the numerical computation of sys-
tem (56) so that the matching of the two aforementioned trajectories in the detrended
space is maintained at least on a nontrivial interval of values for parameter ˇ, or try-
ing a completely different approach on either system (37) or system (56) by means
of analytical tools in order to explicitly find the true form of the optimal trajectories.
One may tackle the latter by looking for some special function that may prove use-
ful in solving one of (37) or (56); see, e.g., Boucekkine and Ruiz-Tamarit (2008) for
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Fig. 12 Time-path trajectories of (a) QJ , (b) PQk, (c) QsD QJ= Qy, (d) Qsk D PQk= Qy, (e) PA, (f) QH

a recent application of the Gaussian hypergeometric functions to the Lucas–Uzawa
model. Both approaches will be investigated in future research projects.
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Political Accountability: A Stochastic Control
Approach

Michele Longo and Alessandra Mainini

1 Introduction

In a democracy elections are the primary mechanism to discipline politicians.
Indeed, policy-makers care for being in office and this affects their policy choices;
for instance, they refrain from rent-extraction in order to be re-elected and benefit
from future rents. Hence, elections provide implicit incentives that allow voters to
align politicians’ preferences with their own ones. This role is crucial because con-
stitutions do not offer explicit incentive schemes (cf. Persson et al., 1997), that is,
forms of compensation based on some performance measure as may happen in a
relationship between employers and employees.

Early political agency models, such as Barro (1973) and Ferejohn (1986), desc-
ribe the disciplining effect of elections assuming that voters are backward-looking
(i.e., re-election is a reward for incumbent’s past performance) and that the incum-
bent and the challenger are identical. This implies that even a small change in voters’
preferences makes them leave their announced voting rule.

When heterogeneity is introduced in features that are beyond the control of the
politician like in the case of competence, elections remain a device for keeping
politicians accountable but in a different way. For example, in the so-called career
concerns models, based on Holmström (1982) seminal work about manager’s career,
voters are forward-looking, that is, they are interested in politician’s future perfor-
mance instead of her past achievements. Citizens have beliefs about politician’s
competence and vote for the candidate that makes them better off in the post-election
period. In these models, the incumbent’s current performance provides a signal
of her future competence: hence, politicians in office might opportunistically per-
form today by refraining from rent-extraction in order to improve their re-election
probability.
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In this paper, we study a career concerns model where politicians differ in their
competence, which is not observed by voters nor by politicians themselves.1 All
agents are rational, expected utility maximizers, and learn symmetrically2 about
politician’s ability by observing the economy wealth which is a noisy signal of
politician’s competence. Time is continuous and divided into two periods: a pre-
election period and a post-election period. Citizens are risk neutral, get utility
from each end-of-period economy wealth and, at the end of the first period, vote
for the politician in office or a challenger randomly chosen among the popula-
tion: elections are the sole means in voters’ hands to control their utility. On
the other hand, in each term in office, the incumbent chooses a rent seeking
behaviour, which is unobserved by voters and negatively affects economy wealth,
and the size of public sector. Politicians are risk averse and derive utility only from
the rent.

The model is set in a stochastic framework where the value of the public sector
is defined by an Itô diffusion process whose drift depends on politician’s ability,
which is modelled as a random variable with known prior distribution. Moreover,
we assume the presence of a private sector with constant value. Then the economy
wealth depends on politician’s ability and results from the extent of public inter-
vention and the amount of resources diverted by the incumbent.3 In this framework,
the incumbent politician maximizes her expected utility by choosing a rent-seeking
behaviour and a size of the public sector. The first period maximization takes into
account the end-of-period vote, whereas in the second and last one the problem is not
conditioned by elections. In any case, the only information available to the incum-
bent is the one generated by the economy wealth (competence is not observed) and
this makes the problem of incomplete information type.

The continuous-time choice has a threefold motivation: first, it enables the politi-
cian to build a reputation (i.e., beliefs about her future competence) through time
during the first period; second, in this setting it is possible to describe the politi-
cian’s optimal policies within the single period; third, continuous-time is amenable
to mathematical techniques such as stochastic control and filtering.

From a mathematical point of view, the analysis entails using filtering techniques
to re-formulate the problem within a complete information setting. Then, by using a
suitable change of measure and relying on the dynamic programming principle we

1 “One key issue is whether the politicians know their own types. In the case of competence, it
seems less plausible to suppose that politicians know their own capacities completely and may be
learning about this along with the voters” (Besley, 2006). “The assumption of symmetric learning
considerably simplifies the analysis, as there is no possibility of signaling. For many aspects of
politician quality, this is a reasonable assumption. For example, a new legislator is unlikely to
know how good she will be at negotiating with lobbyists and party leaders” (Ashworth, 2005).
2 Symmetric learning prevents from equilibria multiplicity typical of signaling models (cf. Rogoff,
1990).
3 Such a model specification has been widely used in mathematical finance to study consump-
tion/investment decisions in financial markets with unobservable returns (cf., inter alia, Lakner,
1995; Karatzas and Zhao, 2001; Rieder and Bäuerle, 2005; Björk et al. unpublished).
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write the Hamilton–Jacobi–Bellman equation for the value function and, at least for
the second period, we provide an explicit solution in stochastic form together with
the optimal controls. A feature of the first period problem is that part of the func-
tional to be maximized depends on a zero-one random variable (the vote outcome)
that makes the problem similar to the digital option framework.

Our analysis finds support for the traditional idea that elections lead a politician
to be opportunistically more aligned with voters’ preferences. The presence of a re-
election constraint modifies politicians’ optimal policies because they are interested
in being re-elected and not only in getting the rent. This is due to career concerns
motivations.

The structure of the paper is as follows. Section 2 describes the model. Section 3
deals with the analysis of both the first and second period. In Sect. 4 we study a
particular case. Section 5 concludes.

2 The Model

Time is continuous and divided into two periods of equal length T > 0: a pre-
election period Œ0; T � and a post-election period ŒT; 2T �. At the end of the first period
the incumbent politician runs for re-election against a challenger randomly chosen
among the population. We assume that the second period is the last: hence, the
politician in office in this period has no electoral concerns.

Uncertainty is described by a complete probability space .�;F ;P/ equipped
with a filtration F WD .Ft /, 0 � t � 2T , satisfying the usual conditions of P-null
sets augmentation and right-continuity. On .�;F ;P/ a standard one-dimensional
F-Brownian motion .Wt / and a random variable " independent of .Wt / are defined.
In this setting, we have a private sector with value constant and equal to one and a
public sector whose value evolves over time according to

dGt D Gt ."dt C �dWt /; (1)

where � is a positive constant and " 2 f0; 1g denotes competence in managing the
public sector. " is assumed unknown to all agents (politicians as well as citizens),
constant within each period, and with the following Bernoulli prior distribution:

P Œ" D 1� D p; P Œ" D 0� D 1 � p: (2)

Even though agents do not observe incumbent’s competence, they can continuously
observe the realizations of G and thus infer the true value of it. Let

F
G W D

�
FG

t

�
0�t�2T

(3)
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be the P-augmented filtration generated by G and,4 for each 0 � t � 2T ,

O"t WD E

h
" j FG

t

i
(4)

be the conditional expectation of the incumbent’s ability at time t relative to the
observable information FG

t . Notice that O"t is a FG
t -measurable random variable

with distribution .
t ; 1 � 
t /, where, for all 0 � t � 2T ,


t WD P

h
" D 1 j FG

t

i
: (5)

Within the previous framework, which is common knowledge, the state vari-
able X."/ denotes the economy wealth and the control variables u and k represent,
respectively, the proportion of the public sector with respect to the economy size
and the instantaneous rent the politician extracts during her office which is not
observed by citizens. Therefore, if at time t the initial wealth is x > 0 and the politi-
cian chooses a policy pair .us; ks/ then the economy wealth evolves according to
the SDE

dXs."/ D usXs ."/ ."dsC �dWs/ � ksds; Xt ."/ D x; (6)

where either 0 � t � s � T or T � t � s � 2T .

Definition 1. The policy .u; k/ WD .us; ks/, 0 � t � s � 2T , is called admissible
at time t with initial wealth x > 0 if:

� It is progressively measurable with respect to F
G .

� 0 � us � 1 and E

hR 2T

t u2
sds

i
<1.

� ks � 0 and E

hR 2T

t
ksds

i
<1.

� Xs."/ � 0.

We denote by At .x/ the set of all admissible policies at time t with initial wealth x
and by

X t;xIu;k
s ."/ (7)

the unique strong solution of (6) with control .u; k/ 2 At .x/.

Politicians have CRRA preferences and get utility from the rent they extract in
each instant t . In the second period, the re-elected politician maximizes

E

"Z 2T

T

k˛
s

˛
ds

#
; 0 < ˛ < 1; (8)

4 Notice that the observable filtration FG is strictly included in the “true” filtration F because of the
presence of the random variable " in the drift coefficient of (1).
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over all .u; k/ 2 AT .x/ and subject to

dXs .O"T / D usXs .O"T / .O"T ds C �dWs/� ksds; XT .O"T / D x; (9)

where O"T is defined by (4). A control pair .u� .O"T / ; k
� .O"T // 2 AT .x/ is called

optimal for the re-elected politician if E

hR 2T

T

h�
k�

s .O"T /
�˛
=˛
i
ds
i
D v2 .T; x/,

where

v2 .T; x/ WD sup
.u;k/2AT .x/

E

"Z 2T

T

k˛
s

˛
ds

#
(10)

is the second period politician’s value function (or indirect utility). On the other
hand, if in the second period a new politician is in office she maximizes (8) sub-
ject to (9) with " in place of O"T . The optimal policies .u�."/; k� ."// are defined
analogously.

We assume that the first period incumbent politician gets utility in the second
period only if re-elected, otherwise her utility is zero. If we denote by R W � !
f0; 1g the FG

T -measurable re-election function, that is R D 1 means voters re-elect
the politician in office whereas R D 0 indicates they vote for her opponent, then in
the first period the incumbent maximizes

E

"Z T

0

k˛
s

˛
ds CRv2

�
T;X

0;xIu;k
T ."/

�#
; (11)

where v2 is defined by (10), over all .u; k/ 2 A0 .x/ and subject to (6) with t D 0.
Voters are risk-neutral, get utility from the end-of-period wealth, and can affect

their utility only through elections. They re-elect the incumbent politician at time T
if and only if5

E

h
X

T;xIu�.O"T /;k�.O"T /
2T .O"T /

i
� E

h
X

T;xIu�."/;k�."/
2T ."/

i
; (12)

where x > 0 is the economy wealth at time T .

3 The Analysis

As the model description suggests, the analysis will proceed backwards. From now
on, we drop in the notation of the state variables the dependence on the control
variables, for example, we denote the unique solution of (6) associated to .u; k/ 2
At .x/ with X t;x

s ."/ instead of X t;xIu;k
s ."/.

5 Cf., inter alia, Rogoff (1990, p. 25).
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3.1 Post-election Period

After elections, the politician in office can be either the first period incumbent,
whose updated probability of being competent is pI , that is we assume


T D pI ; 0 � pI � 1; (13)

or a new politician, whose probability of being skilled is p [see (2)]. Whoever the
politician in office is, she solves the same stochastic control problem. Thus, we carry
out the analysis for the new politician; to obtain the value function and the optimal
feedback controls of the re-elected incumbent, it is sufficient to write pI instead
of p.

The time homogeneous structure of the model enables us to shift backwards the
second period analysis. Indeed, if we define W t WD WtCT � WT , F t WD FtCT ,
ut WD utCT , and so on, then we can formally describe the second period exactly as
before but with the time variable running from 0 to T . In this case t denotes the time
elapsed from the beginning of period. For the sake of simplicity, we keep the same
notation for both periods.

In order to use dynamic programming techniques, we define, for any given
.t; x/ 2 Œ0; T � � RC, the functional

J2 .t; xI u; k/ WD E

"Z T

t

k˛
s

˛
ds

#
; (14)

where .u; k/ 2 At .x/ and X t;x
s ."/ is the unique solution of (6), and the value

function
v2 .t; x/ WD sup

.u;k/2At .x/

J2 .t; xI u; k/ : (15)

Since the politician has access only to the information contained in F
G and not to the

full information in F, problem (15) is not Markovian and the dynamic programming
principle does not hold.6

Now, by means of a suitable change of measure,7 we transform the partial infor-
mation problem (15) into an equivalent complete information problem.8 To this end,
define the processes

Yt WD Wt C
� "
�

�
t; 0 � t � T; (16)

6 From a mathematical point of view, the issue is that the F-Brownian motion .Wt / needs not to be
a Brownian motion w.r.t. the “smaller” filtration FG .
7 By now this is a standard technique in filtering theory (cf. Lakner, 1995; Karatzas and Zhao,
2001; Pham, 2009).
8 In fact, under the new probability measure we can represent the processes G in (1) and X in (6)
as a martingale and a semimartingale, respectively, w.r.t. the observable filtration FG .
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with Y0 D 0, and

Zt ."/ WD exp

�
� "
�
Wt � 1

2

� "
�

�2

t

�
; 0 � t � T: (17)

Then Zt ."/ is a .P;F/-martingale with Z0 ."/ D 1 and, by Girsanov Theorem, .Yt /

is an F-Brownian motion under the probability measure QP defined by the Radon–
Nikodym derivative9

d QP
dP
D ZT ."/ : (18)

Observe that QP and P are equivalent and that QP Œ" D 1� D P Œ" D 1� D p. Moreover,
.Yt / is also an F

G-Brownian motion under QP (see Lakner, 1995, Proposition 4.1,
p. 255). Finally, since " is F0-measurable and independent of .Wt /, and .Yt / has
independent increments, .Yt / and " are independent under QP, so that

QP
h
" D 1 j FG

t

i
D QP Œ" D 1� D p: (19)

In the new filtered probability space
�
�;F ; QP;FG

�
we can represent the processes

(1) and (6) as Itô diffusions driven by the F
G-Brownian motion .Yt /. Indeed, we

have10

d QGs D � QGsdYs; QGt D g (20)

and
d QXs D �us

QXsdYs � ksds; QXt D x: (21)

Clearly, since we are working on the probability space
�
�;F ; QP

�
, we need to

represent also the functional (14) as an expected value w.r.t. QP. By observing that

E

"Z T

t

k˛
s

˛
ds

#
D QE

"Z T

t

Z�1
s ."/

k˛
s

˛
ds

#
; (22)

where Z�1
t ."/ is the

� QP;F�-martingale

Z�1
t ."/ D exp

�
"

�
Yt � 1

2

� "
�

�2

t

�
; 0 � t � T; (23)

9 QP is the probability of reference in filtering theory.
10 Observe that no learning occurs in

�
�;F ; QP; FG� [see (19)] since the representation of the

observable processes in this space with respect to .Yt / removes the unobservable parts of the
drifts.
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it can be proved that11

QE
"Z T

t

Z�1
s ."/

k˛
s

˛
ds

#
D QE

"Z T

t

.Qs C 1 � p/ k
˛
s

˛
ds

#
; (24)

where Qt WD pZ�1
t .1/ is driven by the Zakai equation

dQt D .1=�/QtdYt ; Q0 D p: (25)

Qt is called the unnormalized conditional probability that " D 1 given the infor-
mation available at time t , FG

t , and an application of the Bayes’ rule (see Karatzas
and Shreve, 1988, Lemma 3.5.3, p. 193) yields the following relation with the
conditional probability 
t in (5):


t D E

h
�f"D1g j FG

t

i
D
QE ��f"D1gZ�1

s ."/ j FG
t

�
QE �Z�1

t ."/ j FG
t

� D Qt

Qt C 1 � p ; (26)

where �A is the characteristic function of the set A � �. Therefore, in the

new filtered probability space
�
�;F ; QP;FG

�
, the equivalent complete information

problem is characterized by the two-dimensional Markov process

(
d QXs D us� QXsdYs � ksds; QXt D x;
dQs D .1=�/QsdYs ; Qt D q;

(27)

and the value function is

Qv2.t; x; q/ WD sup
.u;k/2At .x/

QE
"Z T

t

k˛
s

˛

�
Qt;x;q

s C 1 � p� ds
#
; (28)

for all .t; x; q/ 2 Œ0; T ��RC�RC. The Dynamic Programming Principle holds for
this problem (see Fleming and Rishel, 1975, Chap. VI) and, under appropriate reg-
ularity conditions, yields the following Hamilton–Jacobi–Bellman (HJB) equation
for Qv2:

0 D wt C sup
0�u�1;k
0

�
A

u;k Œw� .x; q/C k˛

˛
.q C 1 � p/

�
; (29)

for all .t; x; q/ 2 Œ0; T / � RC � RC, and boundary condition

w .T; x; q/ D 0; .x; q/ 2 RC � RC; (30)

where

A
u;k Œw� .x; q/ D 1

2
�2u2x2wxx C uxqwxq C 1

2

q2

�2
wqq � kwx (31)

11 See for example Décamps et al. (2005) and Borkar (2005).
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is the differential operator associated to the state dynamics (27). Assuming wxx <

0,12 the maximization in the RHS of (29) gives the following optimal values for u
and k:

u�
2.t; x; q/ D �

xqwxq

�2x2wxx

; k�
2 .t; x; q/ D

�
q C 1 � p

wx

�1=.1�˛/

: (32)

Direct substitution in (29) yields

0 D wt � 1
2

q2w2
xq

�2wxx

C 1

2

q2

�2
wqq C 1 � ˛

˛
.q C 1 � p/1=.1�˛/

.wx/
�˛=.1�˛/ : (33)

Standard homogeneity arguments and a power transformation (cf. Zariphopoulou,
2001) suggest a solution of the HJB equation (33) of the form

w.t; x; q/ D x˛

˛
Œh .t; q/�1�˛ ; (34)

where h solves

0 D ht C 1

2

q2

�2
hqq C .q C 1 � p/1=.1�˛/

; (35)

for all .t; q/ 2 Œ0; T / � RC, with boundary condition

h .T; q/ D 0; q 2 RC: (36)

Under appropriate regularity and growth conditions, this non-homogeneous lin-
ear parabolic equation admits, through the Feynman–Kac formula, the following
solution in stochastic form:

Qw2 .t; q/ WD QE
"Z T

t

�
ˆt;q

s C 1 � p
�1=.1�˛/

ds

#
; (37)

where the process ˆt;q
s , t � s � T , solves

dˆs D .1=�/ˆsdBs; ˆt D q;

with .Bs/ a standard Brownian motion on
�
�;F ; QP;FG

�
. Finally, a standard verifi-

cation argument (see Fleming and Rishel, 1975, Proposition 4.1, p. 159) will prove
that

Qv2.t; x; q/ D x˛

˛
Œ Qw2 .t; q/�

1�˛ ; (38)

12 This will be checked later.
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and

u�
2.t; x; q/ D

q . Qw2/q

�2 Qw2

; k�
2 .t; x; q/ D x

.q C 1 � p/1=.1�˛/

Qw2

; (39)

are the optimal feedback control functions, where . Qw2/q D @ Qw2=@q. Observe that

Qv2 is strictly concave w.r.t. x, k�
2 > 0, and the optimal state variable OX is positive

since its dynamics becomes geometric once we substitute u�
2 and k�

2 into (27).

3.2 A Re-election Rule

In order to better describe the voters’ strategy we shift forwards the optimal trajecto-
ries computed in the previous subsection. Hence, under the new probability measure
QP, voters’ expected utility in the second period is

QE
h OXT;x;�

2T

� OQT;x;�
2T C 1 � �

�i
; (40)

where � 2 ˚p; pI
�

[see (2) and (13)], and OXT;x;� and OQT;x;� are the second period

optimal state dynamics with initial condition OXT;x;�
T D x and OQT;x;�

T D �. Voters
are rational and choose whether to re-elect the incumbent or vote for a challenger by
comparing the expected utility they get under each choice. Define the set R � RC
(re-election set) as follows:

R WD
n
p0 2 RC j QE

h OXT;x;p0

2T

� OQT;x;p0

2T C 1 � p0�i

� QE
h OXT;x;p

2T

� OQT;x;p
2T C 1 � p

�io
: (41)

Observe that R is non empty (p 2 R) and does not depend on x. Indeed, once we
substitute the feedback controls (39) in (27), the dynamics for QX becomes geomet-
ric and, as a result, for any � 2 R, QX t;�x;q

2T D � QX t;x;q
2T . This means that voters’

election rule does not depend on the economic wealth at the time of elections but
only on the incumbent’s reputation of being competent. Hence, whenever R is an
FG

T -measurable set, the re-election function takes the form

R D �n
Q

0;x;p
T

2R
o: (42)

Therefore, in the complete information setting, the first period maximization prob-
lem (11) becomes

QE
"Z T

0

k˛
s

˛

�
Q0;x;p

s C 1 � p�ds C �n
Q

0;x;p
T

2R
o Qv2

�
T; QX0;x;p

T ;Q
0;x;p
T

�#
; (43)
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subject to (27) with t D 0 and p in place of q, where Qv2 is given by (28).

Remark 1. If voters’ expected utility (40) were increasing in �, then the re-election
rule (42) would be

R D �n
Q

0;x;p
T


p
o or, equivalently, R D �f�T 
pg:

In other words, voters re-appoint the incumbent politician if and only if the con-
ditional probability that she is competent is higher than the ex-ante probability p.
That is, citizens vote for the more competent between the incumbent politician and
the challenger.

3.3 Pre-election Period

In this section, we see how elections make politicians accountable. Indeed, we will
show the existence of an opportunistic behaviour on the incumbent side.

In the first period the incumbent politician deals with the same problem as in
period two, except that at time T she runs for re-election against an opponent ran-
domly chosen among the population. Then, under the assumption of rationality,
her policies must be optimal given the voters’ re-election rule. We suppose citizens
always believe they are on the equilibrium path, that is, they believe that the incum-
bent extracts the equilibrium rent: hence, incumbent’s beliefs coincide with voters’
beliefs. Consequently, for any given .t; x; q/ 2 Œ0; T � � RC � RC, the politician
maximizes

QJ1 .t; x; qI u; k/

WD QE
"Z T

t

k˛
s

˛
.Qt;x;q

s C 1 � p/ds C �fQ
t;x;q
T

2RgQv2.0; QX t;x;q
T ;Q

t;x;q
T /

#
(44)

over all admissible control pairs .u; k/ 2 At .x/ and subject to (27), where Qv2 and
R are respectively defined in (28) and (41). This means that the politician obtains
the second period value function if and only if she is re-appointed at t D T . The
first period value function is

Qv1.t; x; q/ WD sup
.u;k/2At .x/

QJ1 .t; x; qI u; k/ : (45)

Now, if Qv1 is smooth enough in Œ0; T / � RC � RC, we expect it satisfies the HJB
equation

0 D wt C sup
0�u�1;k
0

�
A

u;k Œw� .x; q/C k˛

˛
.q C 1 � p/

�
; (46)
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where A
u;k Œw� is as in (31), together with the boundary condition

w .T; x; q/ D
( Qv2 .0; x; q/ ; .x; q/ 2 RC � R;
0; .x; q/ 2 RC � .RCnR/ :

(47)

Observe that (46) and (29) have the same differential part but different boundary
conditions. Along the lines of the previous analysis we expect a solution of the
form

w.t; x; q/ D x˛

˛
Œh .t; q/�1�˛ ; (48)

where h solves

0 D ht C 1

2

q2

�2
hqq C .q C 1 � p/1=.1�˛/

; (49)

for all .t; q/ 2 Œ0; T / � RC, with boundary condition

h .T; q/ D
( Qw2 .0; q/ ; q 2 R;
0; q 2 RCnR;

(50)

where Qw2 is defined by (37). The optimal first period policies are

u�
1.t; x; q/ D

qhq

�2h
; k�

1 .t; x; q/ D x
.q C 1 � p/1=.1�˛/

h
: (51)

Proposition 1. Assume that the boundary value problem (49)–(50) admits a smooth
solution Qw1 .t; q/ on Œ0; T / � RC such that

Qv1.t; x; q/ D x˛

˛
Qw1 .t; q/ ; (52)

for all .t; x; q/ 2 Œ0; T � � RC � RC. Then,

k�
1 .t; x; q/ � k�

2 .t; x; q/ ; (53)

for all .t; x; q/ 2 Œ0; T � � RC � RC, where k�
1 and k�

2 are respectively defined by
(51) and (39).

Proof. Observe that Qv2 � 0 [see (28)]. Hence, from the definitions of Qv1 and Qv2 [see
(45) and (28)] it follows

Qv1.t; x; q/ � Qv2 .t; x; q/ ;

for all .t; x; q/ 2 Œ0; T ��RC �RC. Then, the characterizations (38) and (52) imply

Qw1 .t; q/ � Qw2 .t; q/ ;
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for all .t; q/ 2 Œ0; T � � RC. Finally,

k�
1 .t; x; q/ D

x .q C 1 � p/1=.1�˛/

Qw1 .t; q/
� x .q C 1 � p/1=.1�˛/

Qw2 .t; q/
D k�

2 .t; x; q/ :

ut
According to traditional accountability literature, relation (53) shows that the

incumbent politician diverts less resources under electoral pressure, all other things
the same. That is, politicians interested in holding office refrain from rent-extraction
in the pre-election period in order to benefit from post-election rents. Rational vot-
ers, by maximizing their expected utility, give the politician implicit incentives
which make her more aligned with their preferences.

We conclude this section with a technical observation. The above argument relies
on the fact that the value function is smooth enough, at least in the interior of its
domain, and satisfy the HJB equation (46)–(47). These features are far from straight-
forward to establish due to the lack of continuity along the boundary at t D T , and
certainly deserve attention for future research.

4 Special Case

For ˛ D 1=2 we explicitly solve the boundary value problem (35)–(36), which
enables us to recover the second period value function Qv2 [see (38)] and study the
dependence of the optimal policies on the variables t , x, and q. The solution of
(35)–(36) takes the form (cf. Liu, 2007)

Qw2 .t; q/ D Qa .t/ q2 C Qb .t/ q C Qc .t/ ; (54)

where Qa .t/, Qb .t/, and Qc .t/ are the solution of the system of ODEs

8̂̂
<̂
ˆ̂̂:

a0 .t/C �1=�2
�
a .t/C 1 D 0

b0 .t/C 2 .1 � p/ D 0
c0 .t/C .1 � p/2 D 0

(55)

with endpoint conditions

a .T / D 0; b .T / D 0; c .T / D 0: (56)
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That is 8̂̂
<̂
ˆ̂̂:

Qa .t/ D �2
�
exp

�
.T � t/ =�2

� � 1� ;
Qb .t/ D 2 .1 � p/ .T � t/ ;
Qc .t/ D .1 � p/2 .T � t/ :

(57)

The following observations are in order:

1. k�
2 is increasing in t . That is, politician subtracts more resources in proximity of

her end of office (thus reducing the citizens’ expected utility), all other things
the same. Hence, we should observe a decreasing level of the economic wealth
caused by this egoistic behaviour.

2. k�
2 is decreasing in q. Hence, more competent politicians extract lower rents, all

other things the same.
3. u�

2, the proportion between private and public sector, is independent of the econ-
omy size. Hence, our model specification would suggest the existence of an
optimal level of public intervention into the economy.

4. u�
2 is increasing in q. A competent politician invests more in public sector than a

low ability one.

5 Conclusions

We analyze a career concerns political agency model in a two-period continuous
time stochastic framework where politician’s competence is unobserved. Standard
filtering techniques permit us to transform the politician’s partial information prob-
lem into a complete information one. Then, relying on the dynamic programming
principle we write the Hamilton–Jacobi–Bellman equation for the value function
and, at least for the second period, we provide a solution in stochastic form together
with the optimal policies. By comparing the optimal rent before and after elections,
we find support for the traditional idea that elections lead a politician to be oppor-
tunistically more aligned with voters’ preferences. The presence of a re-election
constraint modifies politician’s optimal policies because of career concerns motiva-
tions. Moreover, for certain parameter values we solve explicitly the second period
part of the model and study the optimal policies. In particular, in absence of an elec-
toral constraint the politician subtracts more resources in proximity of her end of
office.

We conclude the paper with some proposals for future work. First, we believe that
the assumption of an economy ending at a fixed time is very restrictive although
widely used in literature. One way to overcome this undesirable assumption is
to adopt an infinite-horizon economy with an overlapping generation structure of
short-lived politicians and long-lived voters. Second, it is not clear whether the cit-
izens vote for the candidate expected to be more competent or not (see Remark 1),
and this should become even more obscure in presence of risk-averse voters. We
think that a more detailed analysis of the re-election rule R and, in particular, the
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shape and parameters’ dependence of the set R [see (41)] in case of both risk-
neutral and risk-averse voters is worthy of attention. All these are subjects for future
research.

Acknowledgements We are very grateful to an anonymous referee for suggesting several improve-
ments. We also thank the seminar participants at the MDEF 2008. All errors are solely our
responsibility. Financial support from the Università Cattolica di Milano is gratefully acknowl-
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Behavioral Portfolio Choice and Disappointment
Aversion: An Analytical Solution with “Small”
Risks

Enrico Saltari and Giuseppe Travaglini

1 Introduction

The standard portfolio model based on expected utility (EU) theory predicts a large
equity position for most households. Empirical analysis demonstrates, however, that
the composition of household’s wealth is characterized by a small proportion of
risky assets. A consolidated empirical literature provides measures of these financial
phenomena (Brandolini et al., 2004; Faiella and Neri, 2004; Giannetti and Koski-
nen, 2009; Heaton and Lucas, 1996; Mankiw and Zeldes, 1991; Guiso and Zingales
unpublished). For instance, in Italy over the period 1965–2006 the percentage of
stocks held by households has been on average 9% of the total wealth. Similar pro-
portions can be found in the portfolio of families in United States, France, Germany
and Great Britain.

The puzzling aspect of these data is that the excess return on equities – a measure
of the risk premium – has been often positive and even large. Dimson et al. (2002)
illustrate that during the twentieth century it was around 6% in United States, Ger-
many and Great Britain. This return was even higher and close to 7% in Italy and
France. Similar rates of return are computed by Mehra and Prescott (1985, 2003)
and Campbell (2003) over the same period for the main industrialized countries.

Loosely speaking the puzzle is the following. Given that equities yield such a
high risk premium, why do households buy so few stocks? Almost all calibrated
version of dynamic portfolio choice models with standard preferences (even when
augmented with other important ingredients like transaction costs or borrowing con-
straints) fail in replicating the previous basic facts. Indeed, given plausible estimated
stochastic processes for stock market returns, an implausibly high risk aversion is
needed to keep the investors away from stocks.

Obviously, the evolution of the excess return is also characterized by its volatility.
Dimson et al. (2002) provide some interesting data also on this aspect. The standard
deviation of the risk premium is relatively high in Italy (32%) and Germany (35%),
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whereas it is smaller and approximately equal to 20% in United States, France and
Great Britain. Thus, there is evidence to suggest that the undersized proportion of
equities in the household’s portfolio depends on how a risk-averse agent perceives
the trade-off between expected returns and riskiness.

Behavioral finance is a new approach to financial markets that has emerged in
response to the difficulties of the traditional approach. The main innovation has
been to look more deeply into preferences. Bernartzi and Thaler (1995) managed to
reconcile theory and data, by assuming that agents exhibit “myopic loss aversion”
based on the prospect theory by Kanheman and Tversky (1979). More recently Ang
et al. (2005) adopted a different, theoretically more rigorous approach to the prob-
lem. They study portfolio allocation under preferences that show Disappointment
Aversion (DA) as in Gul (1997). By calibrating stochastic processes for stocks and
bonds returns to actual US data, they simulate their model to generate reasonable
portfolio allocations even for moderate values of the disappointment aversion.

The intuition for this result is simple. Under DA the agent gives higher weight
to losses and therefore she is less attracted by risky assets. However, in contrast to
the prospect theory, the DA utility is an axiomatic theory. Perhaps, its most inter-
esting difference with respect to the more traditional behavioral approach is that the
reference point is updated endogenously by the agent without having to make any
arbitrary exogenous assumption.

Just because of the endogeneity of the reference point in the value function, DA,
although promising, does not deliver closed form solution to the optimal portfolio
choice. Thus, numerical solutions are the standard tool for studying DA preferences.
The drawback to numerical solutions is, however, that it is often difficult to deter-
mine why results come out the way they do, and this disadvantage may tend to
obscure the underlying economics.

In this paper we argue that under DA preferences it is possible to obtain an analyt-
ical solution. Basically, we present a solution to the problem of the optimal share of
risky asset. We study the case of “small” risks in a static model, delivering explicit
values for portfolio weights. The fundamental economic principles of DA prefer-
ences are particularly clear in this setting. Under DA the percentage of risky assets
in the portfolio is proportional to the ratio between the mean and the variance of
the excess return, where the coefficient of proportionality is the reciprocal of the
risk aversion. However, the mean and the variance of the excess returns do not
depend on the original probability distribution. Rather, they depend critically on
a new probability distribution which is affected by the degree of disappointment
aversion.

What is the added value of this outcome in comparison with the traditional
portfolio model? In the standard model of portfolio choice the Arrow–Pratt approx-
imation implies that the risk yields a second-order effect on welfare compared to the
effect of the mean of the lottery. So, when the risk is “small” the optimal portfolio
choice for a risk averse agent is unaffected by risk. DA utility solves this paradox.
Employing our analytical solution, we show that the share of the risky asset is coher-
ent with the evidence. One of our interesting result is that when the risk is “small”
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the DA preferences provide a share of the risky asset which is an order of magnitude
less than the corresponding share under the EU theory.

The paper is organized as follows. The next section describes the second-order
risk aversion property in the context of the EU theory. Section 3 explores the poten-
tial of changing the utility function using the DA preferences. In this section we
develop the basic model and compare the optimal shares under DA with those of
the EU theory. Section 4 extends this result to continuous random returns. Section 5
concludes.

2 The Traditional Portfolio Choice

Consider an agent with initial wealth W: His endowment can be invested in a port-
folio with risky and risk-free assets. The return of the risky asset is the random
variable x0: The riskless interest rate is equal to r: The problem of the agent is
to determine the optimal composition .W � ˛; ˛/ of the portfolio where ˛ is the
amount of wealth invested in the risky asset. The end period value of the portfolio is

.W � ˛/ .1C r/C ˛ .1C x0/ D W .1C r/C ˛ .x0 � r/ D w0 C ˛x;

where Qx D Qx0 � r is the excess return and w0 D W .1C r/.
The aim of the agent is to choose ˛ so as to maximize expected utility U .˛/

maxU .˛/ D Eu .w0 C ˛x/ :

Let us assume that u .:/ is at least twice differentiable with u0 > 0 and u00 < 0. The
first-order condition is

U 0 �˛�� D E � Qxu0 �w0 C ˛�x
�
 D 0;

where ˛� is the optimal choice.
This standard model of the portfolio choice has an interesting but somewhat

counterintuitive property. To focus on what concerns us here, note that under risk
aversion the agent will purchase the risky asset if and only if E Qx > 0: To see this,
suppose indeed that ˛� D 0: In such a case the first-order condition (which is also
sufficient because of risk aversion) reduces to

U 0 .0/ D u0 .w0/E .x/ D 0:

Since u0 .w0/ is positive, U 0 .0/ D 0 if and only if E .x/ � 0: In other words, the
risk averse agent will prefer the risky asset if and only if the expected excess return
is positive. This is the well-known Local Risk Neutrality Theorem of Arrow (Arrow,
1965). To use the words of Arrow, if the expected excess return is positive; we are
in presence of a favorable gamble and “the risk averter [. . . ] always takes some part
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of a favorable gamble” (p. 155). If instead the excess return is a zero-mean risk, the
agent will not hold the risky security.

The upshot is that for a risk averse agent the portfolio choice depends only on
the expected excess return, but not on the volatility. This is because when the utility
function is differentiable the risk premium tends to zero as the square of the size of
the risk.1 This property was called second order risk aversion by Segal and Spivak
(1990): it implies that risk yields a second order effect on utility compared to the
effect of the mean of the corresponding lottery. Hence, when agent purchases a small
amount of risk, the expected return is of the first order, while the risk is of the second
order. This latter claim has an important role in the following discussion.

2.1 “Small” Risks and the Traditional Portfolio Choice

An analytical solution to the portfolio problem is not in general available. Suppose
we want to approximate the solution by using a first order Taylor expansion around
˛ D 0: The problem with this approach is that the size of the risk is endogenous. A
way-out of this difficulty is suggested by Gollier (2001) by studying the case of a
“small” risk. Following Gollier, define the excess return as

x .k/ D k�C y and E .y/ D 0; (1)

where � > 0: In (1) when k tends to zero the excess return becomes a zero-mean
risk y so that, because of Arrow Theorem seen above, ˛ too tends to zero. In this
sense we speak of small risks.

When k > 0; we obtain a solution for ˛� .k/ from the first-order condition

Ex .k/ u0 �w0 C ˛� .k/ x .k/
� D 0: (2)

Using a first-order expansion around the point k D 0 and the fact that x .0/ D y so
that ˛� .0/ D 0; we get (see Appendix 1 for the mathematical details)

�u0 .w0/CEy2u00 .w0/ ˛
�0 .0/ D 0: (3)

Using the approximation of ˛� .k/ around k D 0

˛� .k/ D ˛� .0/C k˛�0 .0/

1 To see this most simply, remember the Arrow–Pratt approximation by which the risk premium 


is proportional to the variance of the risk, �2 :


 ' 1

2
�2A .w0/ ;

where A is the coefficient of absolute risk aversion. If we reduce the size of the risk, this will affect
the risk premium as the square of the size of the risk because of the variance.
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we can write the first-order condition as

k�u0 .w0/C Ey2u00 .w0/ ˛
� .k/ D 0;

that is

˛� .k/ D � k�

Ey2

u0 .w0/

u00 .w0/
D E .x/

var .x/

1

A .w0/
; (4)

where A .w0/ is the Arrow–Pratt coefficient of absolute risk aversion. The optimal
amount invested in the risky asset is proportional to the ratio between the mean and
the variance and inversely related to the absolute risk aversion. This is the well-
known result obtained in a dynamic framework by Samuelson (1969) and Merton
(1990): the optimal portfolio choice is multiplicatively separable in risk aversion
and the market price of risk.

3 Disappointment Aversion Preferences and Portfolio Choice

In this section we propose a behavioral approach to portfolio choice by adopting the
axiomatic theory of disappointment aversion (DA) of preferences of Gul (1997). We
start employing a basic model with only two states with outcomes z1 and z2. The
reason why it is useful to use another name for the excess return will be clear in a
moment. Define the disappointment-averse expected utility V .˛/ as

V .˛/ D p1u .w0 C ˛z1/C p2u .w0 C ˛z2/ � ˇp2 ŒV .˛/ � u .w0 C ˛z2/� ; (5)

where z1 > 0 > z2. The last term in the expression (5) captures the effect of the
disappointment. When the “bad” outcome z2 occurs, the agent is disappointed, and
his expected utility is reduced by a term which is the product of the disappointment
aversion ˇ and the expected disappointment. Note that when ˇ D 0 this expression
reduces to the traditional expected utility.

Solving (5) for V .˛/ yields

V .˛/ D p1

1

1C p2ˇ
u .w0 C ˛z1/C p2

1C ˇ
1C p2ˇ

u .w0 C ˛z2/ : (6)

Notice that the DA implies that V .˛/ depends on the modified value of the original
probabilities p1 and p2: These probabilities, p1

1
1Cp2ˇ

and p2
1Cˇ

1Cp2ˇ
; give more

weight to the unfavorable event and less weight to the favorable one. It is convenient
to rewrite the expression (6) as

V .˛/ D q1u .w0 C ˛z1/C q2u .w0 C ˛z2/ ; (7)

where

q1 D p1

1

1C p2ˇ
and q2 D 1 � q1: (8)



300 E. Saltari and G. Travaglini

We shall call q1 and q2 disappointing probabilities. They coincide with the original
probabilities when ˇ D 0:

The first-order condition for portfolio choice with DA expected utility is

V 0 �˛�
D

� D q1z1u0 �w0 C ˛�
Dz1

�C q2z2u0 �w0 C ˛�
Dz2

� D 0; (9)

where ˛�
D is the optimal portfolio choice. As before, to get an analytical solution, it

is helpful to calculate the first-order condition when ˛�
D D 0

V 0 .0/ D q1z1u0 .w0/C q2z2u0 .w0/

D u0 .w0/ED .z/ D 0;

where ED .z/ is the expected value of z computed using the disappointing proba-
bilities. Since the marginal utility of wealth is positive, the first-order condition is
satisfied if the adjusted expected valueED .z/ ; is equal to zero. Using the definitions
in (8), this implies

ED .z/ 	 q1z1 C q2z2

D E .z/C p2z2ˇ

1C p2ˇ
D 0:

Thus, in order to have ˛�
D D 0, it must be

E .z/ D �p2z2ˇ or ED .z/ D 0:

In contrast to the traditional portfolio model, the amount of wealth invested in the
risky asset is now equal to zero if and only if the expected excess return is equal to
the expected disappointment �p2z2 > 0 times the disappointment aversion ˇ: So,
under DA it might be better not to invest in the risky asset even when the expected
return of the gamble is positive. As a final point, note that if disappointment aversion
is zero, then z reduces to x:

3.1 “Small” Risks and Disappointing Aversion

To find an analytical solution to the portfolio choice under DA preferences, we now
proceed as in the previous section. As before, we study the portfolio choice for small
risks. But now for “small risks” we mean that when k tends to zero the expected
excess return tends to �p2z2ˇ > 0, and not to zero as in the traditional portfolio
choice.

Thus, write the excess return as

z D k�C "; where ED ."/ D 0: (10)
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Note that the distribution of " depends on ˇ since the probabilities of the two states
(q1 and q2/ now reflect disappointment aversion. When disappointment aversion is
equal to zero, however, " coincides with y so that z D x:

As before, expanding the first-order condition (9) around k D 0 and using the
fact that zi .0/ D "i implies ˛�

D .0/ D 0; we get (see Appendix 2 for the details)

�u0 .w0/C u00 .w0/ ˛
�0
D .0/

�
q1"

2
1 C q2"

2
2

� D 0: (11)

Finally, using the approximation ˛�
D .k/ D ˛�

D .0/C k˛�0
D .0/ ; we get the optimal

portfolio choice2

˛�
D .k/ D

ED .z/

varD .z/

1

A .w0/
:

It is interesting to compare the two solutions of the optimal shares in the two
alternative frameworks:

˛� .k/ D E .x/

var .x/

1

A .w0/
and ˛�

D .k/ D
ED .z/

varD .z/

1

A .w0/
: (12)

Inspecting the two formulas makes clear that they are equal when ˇ D 0. Thus, the
DA preferences are one-parameter generalization of the preferences based on the
EU theory. From the previous conditions we can easily compute the share of wealth
invested in the risky asset

˛� .k/
w0

D E .x/

var .x/

1

R .w0/
,

˛�
D .k/

w0

D ED .z/

varD .z/

1

R .w0/
;

where R .w0/ is the coefficient of relative risk aversion.

3.2 An Example

To make clear the implication of our results for the portfolio choice, it can be of help
an example.

Assume that the utility function is CRRA, u .w/ D w1��

1��
with 0 < � < 1, so

that the coefficient of relative risk aversion is �: Since it is reasonable to assume that
relative risk aversion is somewhere between 1 and 4, we set � D 2: To simplify, we

2 Notice that

ED .z/ D k�C ED ."/ D k� and varD .z/ D q1"
2
1 C q2"

2
2

since
ED ."/ D q1"1 C q2"2 D 0

by the relationship (10).
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also normalize to one the final value of the wealth invested in the riskless asset, so
that w0 D 1: Finally, assume that the deterministic component of the excess return
is � D 0:08:

To begin with, suppose that the distribution of the excess return is generated by
the following binomial process

y1 D 0:1; y2 D �0:1; with p1 D p2 D 0:5:

Under EU and setting k D 0;we know that the optimal portfolio share of the risk
asset is zero, ˛� D 0; because the risk premium is zero.

We now introduce a disappointment aversion degree equal to ˇ D 1; a value con-
sistent with that of Tversky and Kahneman (1991). Then, under DA the probabilities
become

q1 D p1

1

1C p2ˇ
D 1

3
and q2 D p2

1C ˇ
1C p2ˇ

D 2

3
:

Clearly, to have an optimal share of the risky security equal to zero under DA,
i.e. ˛�

D D 0; we must change the outcomes in such a way that with these new
probabilities we have again a risk premium equal to zero. One way to do this is to
add the expected disappointment to the first outcome while leaving unchanged the
other:

"1 D y1 � ˇp2

p1

y2 D 0:2; "2 D y2;

where we named " the new random variable thus created. Note once again that with
ˇ D 0; the two random variables y and " coincide.

The excess return is now defined using " and thus z:

z D k�C ":

Making use of this definition and setting k D 0; we get the following mean returns
under the two alternative assumption of EU and DA preferences

E .z/ D E ."/ D 0:05; and ED .z/ D ED ."/ D 0;

whereas the variances are

var .z/ D 0:0225 and varD .z/ D 0:02:

Thus, for the two different preferences the optimal shares of the risky asset are

˛� D E .z/

var .z/

1

�
D 1:11 and ˛�

D D
ED .z/

varD .z/

1

�
D 0:
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Thus, if the mean of the excess return is equal to 0:05, the EU theory implies a
share greater than 110% of total wealth. On the contrary, we discover that under DA
preferences the share reduces to zero.

Assume now that k D 0:1: This small change affects expected returns

E .z/ D k�C E ."/ D 0:058

and
ED .z/ D k�C ED ."/ D 0:008

but does not affect the variances. In this case the shares are respectively

˛� D 1:29; ˛�
D D 0:2:

In short, the difference remains very large.3

4 Continuous Random Variables

Up to now we have assumed that agent faces a two-state random variable. This raises
the question whether the optimal decision found above also holds with continuous
random returns. We will now verify that this is true.

4.1 The Certainty Equivalent

Let’s assume that the uncertain return of the risky asset is a continuous random
variable. The disappointment-averse utility function (5) is now defined as

V .˛/ D E Œu .w/� � ˇ
Z zc

�1
Œu .wc/� u .w/� f .z/ d z; (13)

where for brevity we write w D w0 C ˛z and wc D w0 C ˛zc is the certainty
equivalent. There is no substantial difference between this definition and the one we
gave in the two state model. Here, as before, the negative events are scaled down by
the factor ˇ:What really changes is what we mean with “negative” or disappointing
events.

3 If we solve numerically the first-order condition, we have for k D 0

˛� D 1:21; ˛�
D D 0;

whereas for k D 0:1

˛� D 1:45; ˛�
D D 0:207:

Comparing these results with those obtained in the text, it follows that the approximation works
well.
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Here disappointing states are those whose realization are below the certainty
equivalent. In the two states world there was no problem in defining which is the
bad state: it was simply that with the smallest payoff. With continuous random vari-
able disappointment arises when the realization is below the certainty equivalent,
which as we will see in a moment is itself an endogenous variable.

By definition, the certainty equivalent wc is the amount of wealth that would
leave the agent indifferent between that payoff and the lottery, that is

u .wc/ D V .˛/ :

Substituting in (13), we have

u .wc/ D E Œu .w/� � ˇ
Z zc

�1
Œu .wc/� u .w/� f .z/ d z (14)

or

u .wc/ D
�
1C ˇ

Z zc

�1
f .z/ d z

��1 �
E Œu .w/�C ˇ

Z zc

�1
u .w/ f .z/ d z

�
: (15)

This utility function computes the value of the certainty equivalent when preferences
are characterized by DA. As before, when ˇ D 0 the previous definition reduces to
the traditional expected utility. When ˇ ¤ 0; the same equation implicitly defines
the new probability distribution under DA: Indeed, expression (15) is equivalent to

u .wc/ D
R1

zc
u .w/ f .z/ d z

1C ˇ R zc

�1 f .z/ d z
C .1C ˇ/ R zc

�1 u .w/ f .z/ d z

1C ˇ R zc

�1 f .z/ d z
: (16)

Comparing this last condition to the one of the binary model, i.e. (6), we can easily
check that the assumption of continuous random return does not affect the qualita-
tive results obtained earlier. In both models the DA assigns an higher weight ˇ to
the unfavorable events, i.e. those with payoffs smaller than the certainty equivalent
wc . The new probability distribution is given by

fD .z/ D

8̂̂
<
ˆ̂:

f .z/
1Cˇ

R zc
�1 f .z/d z

if z � zc ;

.1Cˇ/f .z/
1Cˇ

R zc
�1 f .z/d z

if z < zc :

(17)

4.2 The Portfolio Choice

Note that the definition of the certainty equivalent wc in (15) depends on ˛. This has
two implications. On the one hand, we cannot compute the certainty equivalent wc

without knowing the optimal portfolio choice ˛. On the other, the optimal ˛ depends
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on the certainty equivalent wc ;which is unknown at the outset. This means that with
continuous distributions the optimal portfolio choice under DA is characterized by
the presence of two endogenous variables.

If wc were known, (13) could be solved for in the same way as in the stan-
dard expected utility framework. The only difference would be that for states below
wc , the utility has to be scaled down by ˇ. However, wc is itself a function of the
outcome of optimization (that is, wc is a function of ˛). Hence, we must solve simul-
taneously two equations to compute the optimal values of ˛ and wc . One is given
by (14). The other by the first-order condition.

The DA investor’s problem can be solved by maximizing V.˛/ over ˛

max
˛
V .˛/ D max

˛
u .wc/

which from the definition of wc (15) implies4

E
�
zu0 .w/


C ˇ
Z zc

�1
�
zu0 .w/



f .z/ d z D 0 (18)

or by (17)
ED

�
zu0 .w/

� D 0:
Hence, to get the optimal values for wc and ˛ we must solve the system of equation
(15) and (18).

4.3 DA Preferences with Continuous Distributions and “Small”
Risks

As before, to find an analytical solution we assume that the excess return has the
form

z D k�C "
so that when k tends to zero the optimal portfolio choice is equal to zero as well.
From our previous discussion we know that ˛�

D D 0 implies that E ."/ > 0 in such
a way that ED ."/ D 0:

To determine this critical value in the case of continuous distributions, we focus
on the first-order condition for ˛�

D D 0: Since this condition is a function of the
certainty equivalent wc ;we have also to use (14): Setting to zero the portfolio choice,
we have

u .wc/j˛
D

D0 C ˇ
Z zc

�1

h
u .wc/j˛

D
D0

i
f .z/ d z D u .w0/C ˇ

Z zc

�1
u .w0/ f .z/ d z

4 The derivation of the first-order condition is not so simple as it might appear because the certainty
equivalent wc also depends on the portfolio choice ˛: See Appendix 3 for a formal derivation.



306 E. Saltari and G. Travaglini

which is obviously satisfied when wc D w0: That is, when ˛D D 0; the cer-
tainty equivalent coincides with w0; the final value of wealth invested in the risk-free
asset.

We now use this result in the first-order condition, (18). Taking into account that
wc � w D w0 C ˛z with wc D w0; implies zc � 0; we set to 0 the upper limit of
the integral.

With this in mind, the first-order condition becomes

u0 .w0/ E .z/C ˇu0 .w0/

Z 0

�1
zf .z/ d z D 0

or

E .z/C ˇ
Z 0

�1
zf .z/ d z D 0 (19)

or also

ED .z/ D
Z 1

0

z
f .z/

1C ˇ R 0

�1 f .z/ d z
d zC .1C ˇ/

Z 0

�1
z

f .z/

1C ˇ R 0

�1 f .z/ d z
d z

D
Z C1

�1
zfD .z/ d z D 0;

where the distribution fD .z/ is defined as before with zc D 0:
Assuming as above small risks and expanding the first-order condition around

k D 0; we get

0 D E
(
"u0 �w0C˛�

D .0/ "
�

C
	
�u0 �w0C˛�

D .0/ "
�C"u00 �w0 C ˛�

D .0/ "
�
˛�

D .0/�

C"2u00 �w0 C ˛�
D .0/ "

�
˛�0

D .0/



k

Cˇ
Z 0

�1
"u0 �w0 C ˛�

D .0/ "
�
f ."/ d"

Cˇ
	 Z 0

�1
�u0 �w0 C ˛�

D .0/ "
�
f ."/ d"

C
Z 0

�1
"u00 �w0 C ˛�

D .0/ "
�
˛�

D .0/�f ."/ d"

C
Z 0

�1
"2u00 �w0 C ˛�

D .0/ "
�
˛�0

D .0/ f ."/ d"



k

)
;

where use has been made of the fact that z .0/ D ":
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Since ˛�
D .0/ D 0; the previous condition can be rewritten as

0 D u0 .w0/

	
E ."/C ˇ

Z 0

�1
"f ."/ d"



C k�u0 .w0/

	
1C ˇ

Z 0

�1
"f ."/ d"




Cku00 .w0/ ˛
�0
D .0/

	
E
�
"2
�C ˇ

Z 0

�1
"2f ."/ d"



:

Notice that by (19) the first term on the right-hand side is zero. Thus, the first-order
condition simplifies to

0 D � �A .w0/ ˛
�0
D .0/

E
�
"2
�C ˇ R 0

�1 "2f ."/ d"

1C ˇ R 0

�1 "f ."/ d"

which, given the distribution (17), becomes

0 D �� A .w0/ ˛
�0
D .0/ varD ."/ ; (20)

where as before varD ."/ is the variance of "; given the distribution fD :

To obtain an analytical solution in this set up, we use the same approximation
used above, i.e. ˛�

D .k/ D ˛�
D .0/C k˛�0

D .0/ : Hence, the optimal portfolio choice
under DA and with continuous probability distributions is

˛�
D D

k�

varD ."/

1

A .w0/

D ED ."/

varD ."/

1

A .w0/
:

4.4 An Example

Let’s suppose the excess return follows a normal distribution. We will calibrate the
volatility of the distribution setting it equal to 15%: If as before ˇ D 1; the solution
of the equation

E ."/C ˇ
Z 0

�1
"f ."/ d" D 0

is E ."/ � 0:041: This means that " is characterized by the normal distribution
N ∼ .0:041; 0:0225/ : Assume now that the utility function is Bernoullian, u .w/ D
ln .w/ : When k D 0; we get two different expected values for the two alternative
distributions

E .z/ D E ."/ D 0:041; ED ."/ D 0;
whereas the two variances are equal.

Using the same normalization as before for w0 and the CRRA utility function
with a coefficient of relative risk aversion equal to 2, the optimal portfolio shares
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are respectively
˛� ' 0:92; ˛�

D D 0:
Suppose instead that k D 0:1 and � D 0:08; so that the new means are E .z/ D
k�C E ."/ D 0:049 and ED .x/ D k�C ED ."/ D 0:008. The optimal shares in
this case are5

˛� D 1:098; ˛�
D D 0:177:

5 Conclusions

In this paper we have proposed a behavioral approach to portfolio choice by adopt-
ing the theory of disappointment aversion of Gul (1997). We have shown how
disappointment aversion affects the optimal portfolio choice when risk is small.
The analytical solution we found has a functional form very similar to the tradi-
tional result of Samuelson (1969) and Merton (1990): the optimal percentage of
wealth invested in the risky asset is equal to the product of the market price of
risk and the reciprocal of risk aversion. However, under DA the probabilities are
appropriately modified by disappointment aversion. These probabilities capture the
effect of disappointment: the outcomes below the certainty equivalent are weighted
more heavily than the outcomes above. In this perspective, any risk averse agent
will prefer to reduce the amount of risky asset held in the portfolio over the amount
predicted by the expected utility theory. This result allows to accommodate the puz-
zling prediction of the standard portfolio model where the proportion of the risky
asset is a rather large proportion of the financial portfolio.

The model presented above may appear narrow. It captures something about the
belief of the agent in a static context, but do not provide a prediction in a dynamic
framework. Our future aim is to extend this basic model to a dynamic context.

Appendix 1

This appendix contains the mathematical details for the portfolio choice and “small
risks” under EU. We first rewrite the first-order condition using the definition of
x .k/ D k�C y

E
�
x .k/ u0 �w0 C ˛� .k/ x .k/

�
 D 0; (21)

where we write x .k/ to highlight that the excess return depends on k:

5 Solving numerically the first-order condition, we have for k D 0

˛� D 0:9; ˛�
D D 0;

whereas for k D 0:1

˛� D 1:066; ˛�
D D 0:18:

Comparing these results with those obtained in the text, it turns out again that the approximation
works very well.
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Using a Taylor expansion around the point k D 0, (21) can be written as

Efx .0/ u0 �w0 C ˛� .0/ x .0/
�C Œ�u0 �w0 C ˛� .0/ x .0/

�
Cx .0/ u00 �w0 C ˛� .0/ x .0/

�
˛� .0/�

C Œx .0/�2 u00 �w0 C ˛� .0/ x .0/
�
˛�0 .0/�kg D 0

Since x .0/ D y so that ˛� .0/ D 0 (because E .y/ D 0/; the first-order condition
becomes

�u0 .w0/C Ey2u00 .w0/ ˛
�0 .0/ D 0

which is (3) in the text.

Appendix 2

This appendix contains the mathematical details for the portfolio choice and “small
risks” under DA. Expanding the first-order condition (9) around k D 0; we get

q1fz1 .0/ u0
�
w0 C ˛�

D .0/ z1 .0/
�C Œ�u0

�
w0 C ˛�

D .0/ z1 .0/
�

Cz1 .0/ u00
�
w0 C ˛�

D .0/ z1 .0/
�
˛�
D .0/�C Œz1 .0/�

2 u00
�
w0 C ˛�

D .0/ z1 .0/
�
˛�0
D .0/�kg

Cq2fz2 .0/ u0
�
w0 C ˛�

D .0/ z2 .0/
�C Œ�u0

�
w0 C ˛�

D .0/ z2 .0/
�

Cz2 .0/ u00
�
w0 C ˛�

D .0/ z2 .0/
�
˛�
D .0/�C Œz2 .0/�

2 u00
�
w0 C ˛�

D .0/ z2 .0/
�
˛�0
D .0/�kg D 0:

Since ˛�
D .0/ D 0 and zi .0/ D "i ; this reduces to

q1

�
�u0 .w0/C "2

1u00 .w0/ ˛
�0
D .0/



Cq2

�
�u0 .w0/C "2

2u00 .w0/ ˛
�0
D .0/


 D 0:
Finally, remembering that q1 C q2 D 1, the first-order condition can be further
simplified by letting

�u0 .w0/C u00 .w0/ ˛
�0
D .0/

�
q1"

2
1 C q2"

2
2

� D 0
which is (11) in the text.

Appendix 3

This appendix contains the formal derivation of the first-order condition with DA.
The derivation is as follows. Start from the definition of V .˛/

V .˛/ D E Œu .w/�C ˇ R zc

�1 Œu .w/� f .z/ d z

1C ˇ R zc

�1 f .z/ d z
:
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Taking into account that w D w0 C ˛z; so that zc D wc�w0

˛
; we substitute in the

upper limit of the integrals and rewrite V .˛/ as

V .˛/ D E Œu .w/�C ˇ R wc �w0
˛�1 Œu .w/� f .z/ d z

1C ˇ R wc �w0
˛�1 f .z/ d z

:

The first-order condition is

dV .˛/

d˛
D
E Œzu0 .w/� � ˇwc � w0

˛2
u .wc/ f .zc/C ˇ

R wc �w0
˛�1 .zu0 .w// f .z/ d z

D

CE Œu .w/�C ˇ
R wc �w0

˛�1 Œu .w/� f .z/ d z

D2
ˇ

wc � w0

˛2
f .zc/ D 0; (22)

where D D 1C ˇ R wc �w0
˛�1 f .z/ d z:

Noting that

DV .˛/ D Du .wc/ D E Œu .w/�C ˇ
Z wc �w0

˛

�1
Œu .w/� f .z/ d z

we can rewrite the expression (22) as follows

dV .˛/

d˛
D
E Œzu0 .w/� � ˇwc � w0

˛2
u .wc/ f .zc/C ˇ

R wc �w0
˛�1 Œzu0 .w/� f .z/ d z

D
�

Cu .wc/

D
ˇ

wc � w0

˛2
f .zc/ D 0;

which further simplifies to

dV .˛/

d˛
D E �zu0 .w/


C ˇ
Z wc �w0

˛

�1
�
zu0 .w/



f .z/ d z D 0;

which is the first-order condition (18) in the main text.
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A Simple Agent-based Financial Market Model:
Direct Interactions and Comparisons
of Trading Profits

Frank Westerhoff

1 Introduction

In the recent past, a number of interesting agent-based financial market models have
been proposed. These models successfully explain some important stylized facts of
financial markets, such as bubbles and crashes, fat tails for the distribution of returns
and volatility clustering. These models, reviewed, for instance, in Chen, Chang,
and Du (in press); Hommes (2006); LeBaron (2006); Lux (in press); Westerhoff
(2009), are based on the observation that financial market participants use different
heuristic trading rules to determine their speculative investment positions. Note that
survey studies by Frankel and Froot (1986); Menkhoff (1997); Menkhoff and Taylor
(2007); Taylor and Allen (1992) in fact reveal that market participants use technical
and fundamental analysis to assess financial markets. Agent-based financial market
models obviously have a strong empirical microfoundation.

Recall that technical analysis is a trading philosophy built on the assumption
that prices tend to move in trends (Murphy, 1999). By extrapolating price trends,
technical trading rules usually add a positive feedback to the dynamics of financial
markets, and thus may be destabilizing. Fundamental analysis is grounded on the
belief that asset prices return to their fundamental values in the long run (Graham
and Dodd, 1951). Buying undervalued and selling overvalued assets, as suggested
by these rules, apparently has a stabilizing impact on market dynamics. In most
agent-based financial market models, the relative importance of these trading strate-
gies varies over time. It is not difficult to imagine that changes in the composition of
applied trading rules - such as a major shift from fundamental to technical trading
rules - may have a marked impact on the dynamics of financial markets.

One goal of our paper is to provide a novel view on how financial market par-
ticipants may select their trading rules. We do this by recombining a number of
building blocks from three prominent agent-based financial market models. Let us
briefly recapitulate these models:

F. Westerhoff
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� Brock and Hommes (1997, 1998) developed a framework in which (a continuum
of) financial market participants endogenously chooses between different trading
rules. The agents are boundedly rational in the sense that they tend to pick trad-
ing rules which have performed well in the recent past, thereby displaying some
kind of learning behavior. The performance of the trading rules may be measured
as a weighted average of past realized profits, and the relative importance of the
trading rules is derived via a discrete choice model. Contributions developed in
this manner are often analytically tractable. Moreover, numerical investigations
reveal that complex endogenous dynamics may emerge due to an ongoing evo-
lutionary competition between trading rules. Note that in such a setting, agents
interact only indirectly with each other: their orders have an impact on the price
formation which, in turn, affects the performance of the trading rules and thus
the agents selection of rules. Put differently, an agent is not directly affected by
the actions of others.

� In Kirman (1991, 1993), an influential opinion formation model with interactions
between a fixed number of agents was introduced. In Kirman’s model, agents
may hold one of two views. In each time step, two agents may meet at random,
and there is a fixed probability that one agent may convince the other agent to fol-
low his opinion. In addition, there is also a small probability that an agent changes
his opinion independently. A key finding of this model is that direct interactions
between heterogeneous agents may lead to substantial opinion swings. Applied
to a financial market setting, one may therefore observe periods where either
destabilizing technical traders or stabilizing fundamental traders drive the mar-
ket dynamics. Note that agents may change rules due to direct interactions with
other agents but the switching probabilities are independent of the performance
of the rules.

� The models of Lux (1995, 1998) and Lux and Marchesi (1999, 2000) also focus
on the case of a limited number of agents. Within this approach, an agent may
either be an optimistic or a pessimistic technical trader or a fundamental trader.
The probability that agents switch from having an optimistic technical attitude
to a pessimistic one (and vice versa) depends on the majority opinion among
the technical traders and the current price trend. For instance, if the majority of
technical traders are optimistic and if prices are going up, the probability that pes-
simistic technical traders turn into optimistic technical traders is relatively high.
The probability that technical traders (either being optimistic or pessimistic)
switch to fundamental trading (and vice versa) depends on the relative profitabil-
ity of the rules. However, a comparison of the performance of the trading rules
is modelled in an asymmetric manner. While the attractiveness of technical anal-
ysis depends on realized profits, the popularity of fundamental analysis is given
by expected future profit opportunities. This class of models is quite good at
replicating several universal features of asset price dynamics.

Each of these approaches has been extended in various interesting directions. There
are also alternative strands of research in which the dynamics of financial mar-
kets is driven, for instance, by nonlinear trading rules or wealth effects. For related
models see Chiarella (1992); Chiarella, Dieci, and Gardini (2002); Day and Huang
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(1990); de Grauwe and Grimaldi (2006); de Grauwe, Dewachter, and Embrechts
(1993); Farmer and Joshi (2002); Li and Rosser (2001, 2004); Rosser et al. (2003);
Westerhoff (2008); Westerhoff and Dieci (2006), among many others.

In this paper, we seek to recombine key ingredients of the three aforementioned
approaches to come up with a simple model that is able to match the stylized facts
of financial markets and that offers a novel perspective on how agents may be influ-
enced in selecting their trading rules. In our model, we consider direct interactions
between a fixed number of agents, as in Kirman approach. However, the switching
probabilities are not constant over time but depend on the recent performance of the
rules. To avoid asymmetric profit measures, as in the models of Lux and Marchesi,
we define a fitness function along the lines of the models of Brock and Hommes,
i.e., we approximate the fitness (attractiveness) of a rule by a weighted average of
current and past myopic profits. Replication of the dynamics of agent-based mod-
els is often a challenging undertaking, which is why these models are sometimes
regarded with skepticism. A second goal of our paper is thus to come up with a set-
ting for which replication of our results is rather uncomplicated, even, as we hope,
for the (interested) layman.

Our paper is organized as follows. In Sect. 2, we present our approach. In Sect. 3,
we show that our model may mimic some stylized facts of financial markets. We
also explore how a change in the number of agents and in the frequency of their
interactions affects the dynamics. In Sect. 4, we check the robustness of our results.
The last section offers some conclusions.

2 A Basic Model

Let us first preview the structure of our model. We assume that prices adjust with
respect to the current excess demand. The excess demand, in turn, depends on the
orders submitted by technical and fundamental traders. While technical traders base
their orders on a trend-extrapolation of past prices, fundamental traders place their
bets on mean reversion. The relative impact of these two trader types evolves over
time. We assume that agents regularly meet each other and talk about their past trad-
ing performance. As a result, traders may change their opinion and switch to a new
trading strategy. In particular, the time-varying switching probabilities depend on
the relative success of the rules. Numerical simulations will reveal that the fractions
of technical and fundamental trading rules evolve over time, which is exactly what
gives rise to interesting asset price dynamics. Now we are ready to turn to the details
of the model.

As in Farmer and Joshi (2002), the price adjustment is due to a simple log-linear
price impact function. Such a function describes the relation between the quantity of
an asset bought or sold in a given time interval and the price change caused by these
orders. Accordingly, the log of the price of the asset in period t C 1 is quoted as

PtC1 D Pt C a.W C
t D

C
t CW F

t DF
t /C ˛t ; (1)
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where a is a positive price adjustment coefficient, DC and DF stand for orders
generated by technical and fundamental trading rules, and W C and W F denote
the fractions of agents using these rules. Excess buying (selling) thus drives prices
up (down). Since our model only provides a simple representation of real financial
markets, we add a random term to (1). We assume that ˛ is an IID normal random
variable with mean zero and constant standard deviation �˛.

The goal of technical analysis is to exploit price trends (see Murphy (1999) for a
practical introduction). Since technical analysis typically suggests buying the asset
when prices increase, orders triggered by technical trading rules may be written as

DC
t D b.Pt � Pt�1/C ˇt : (2)

The first term of the right-hand side of (2) stands for transactions triggered by an
extrapolation of the current price trend. The reaction parameter is positive and cap-
tures how strongly the agents react to this price signal. The second term reflects
additional random orders to account for the large variety of technical trading rules.
As in (1) we assume that shocks are normally distributed, i.e., ˇ is an IID normal
random variable with mean zero and constant standard deviation �ˇ .

Fundamental analysis (see Graham and Dodd (1951) for a classical contribution)
presumes that prices may disconnect from fundamental values in the short run. In the
long run, however, prices are expected to converge towards their fundamental val-
ues. Since fundamental analysis suggests buying (selling) the asset when the price is
below (above) its fundamental value, orders generated by fundamental trading rules
may be formalized as

DF
t D c.Ft � Pt /C �t ; (3)

where c is a positive reaction parameter and F is the log of the fundamental value.
Note that we assume that traders are able to compute the true fundamental value of
the asset. In order to allow for deviations from the strict application of this rule, we
include a random variable � in (3), where � is IID normally distributed with mean
zero and constant standard deviation �� .

For simplicity, the fundamental value is set constant, i.e.,

Ft D 0: (4)

Alternatively, the evolution of the fundamental value may be modelled as a random
walk and we will do this later on. However, in order to show that the dynamics of
a financial market may not depend on fundamental shocks, we abstain from this for
the moment.

We furthermore assume that there are N traders in total. Let K be the number of
technical traders. We are then able to define the weight of technical traders as

W C
t D

Kt

N
: (5)
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Similarly, the weight of fundamental traders is given as

W F
t D

N �Kt

N
: (6)

Obviously, (5) and (6) imply thatW F
t D 1 �W C

t .
The number of technical and fundamental trades is determined as follows. As

in Kirman (1991, 1993), we assume that two traders meet at random in each time
step, and that the first trader will adopt the opinion of the other trader with a certain
probability .1�ı/. In addition, there is a small probability � that a trader will change
his attitude independently. Contrary to Kirmans approach, however, the probability
that a trader converts another trader is asymmetric and depends on the current and
past myopic profitability of the rules (indicated by the fitness variablesAC and AF ,
which we define in the sequel). Suppose that technical trading rules have generated
higher myopic profits than fundamental trading rules in the recent past. Then it
is more likely that a technical trader will convince a fundamental trader than vice
versa. Similarly, when fundamental trading rules are regarded as more profitable
than technical trading rules, the chances are higher that a fundamental trader will
successfully challenge a technical trader. Thus, we express the transition probability
of K as

Kt D

8̂
<̂
ˆ̂:
Kt�1 C 1 with probability pC

t�1 D N �Kt�1

N

�
"C .1 � ı/F !C

t�1
Kt�1

N �1

�
Kt�1 � 1 with probability p�

t�1 D Kt�1

N

�
"C .1 � ı/C !F

t�1
N �Kt�1

N �1

�
;

Kt�1 with probability 1 � pC
t�1 � p�

t�1

(7)
where the probability that a fundamental trader is converted into an technical trader
is

.1� ı/F !C
t�1 D

(
0:5C � for AC

t > AF
t

0:5 � � otherwise
(8)

and the probability that a technical trader is converted into a fundamental trader is

.1 � ı/C !F
t�1 D

(
0:5 � � for AC

t > AF
t

0:5C � otherwise
; (9)

respectively.
Finally, we measure the fitness (attractiveness) of the trading rules as

AC
t D .exp ŒPt � � exp ŒPt�1�/D

C
t�2 C dAC

t�1; (10)

and
AF

t D .exp ŒPt � � exp ŒPt�1�/D
F
t�2 C dAF

t�1; (11)

respectively. Formulations (10) and (11) are as in Westerhoff and Dieci (2006)
which, in turn, were inspired by Brock and Hommes (1998). Note that the fitness
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of a trading rule depends on two components. First, the agents take into account the
most recent performance of the rules, indicated by the first terms of the right-hand
side. The timing we assume is as follows. Orders submitted in period t � 2 are exe-
cuted at the price stated in period t�1. Whether or not these orders produce myopic
profits then depends on the realized price in period t . Second, the agents have a
memory. The memory parameter 0 � d � 1 measures how quickly current myopic
profits are discounted. For d D 0, agents obviously have no memory, while for
d D 1 they compute the fitness of a rule as the sum of all observed myopic profits.

3 Some Simulation Results

The dynamics of international financial markets display certain stylized facts (Cont,
2001; Lux and Ausloos, 2002; Mantegna and Stanley, 2000). These universal fea-
tures include (1) a random walk-like behavior of prices, (2) the sporadic appearance
of bubbles and crashes, (3) excess volatility, (4) fat tails of the distribution of returns,
and (5) volatility clustering. To be able to replicate these properties, we have selected
the following parameter setting:1

a D 1, b D 0:05, c D 0:02, d D 0:95, � D 0:1, � D 0:45, �˛ D 0:0025,
�ˇ D 0:025, �� D 0:0025.

In the remaining part of the paper, we explore the dynamics of the model for differ-
ent values ofN . In particular, we increaseN from 25 to 100 and to 500. In addition,
for the case N D 500 we consider that there is more than one direct interaction
between agents per trading time step.

3.1 Setting 1: N D 25

In our first experiment, we assume that there are only N D 25 agents. Of course, in
real markets we usually observe a much larger number of traders. In the first step, it
can be assumed that these agents reflect the trading activities of larger trading insti-
tutions or of groups of agents who collectively behave in the same manner (think,
for instance, of group pressure). However, in the next subsections we increase the
number of agents.

The seven panels of Fig. 1 aim at illustrating what kind of dynamics our model
may produce for a limited number of speculators. In the top panel, we see the

1 Interested readers should note that calibrating agent-based financial market models may be a
time-consuming and pain-staking trial and error process. Some initial progress in estimating such
models has recently been reported by Alfarano, Lux, and Wagner (2005); Boswijk, Hommes, and
Manzan (2007); Manzan and Westerhoff (2007); Westerhoff and Reitz (2003); Winker, Gilli, and
Jeleskovic (2007).



A Simple Agent-based Financial Market Model 319

0 1250 2500 3750 5000

0.00

0.06

–0.06

time

re
tu

rn

1 25 50 75 100
0.00

0.20

0.40

lag

–3 0 3

0.00

0.05

0.10

return
0 5 10

5.00

2.00

8.00

largest observations

ta
il 

in
de

x

pr
ob

 d
en

si
ty

0 1250 2500 3750 5000

0.50

0.90

0.10

time

w
ei

gh
ts

0 1250 2500 3750 5000

0.0

0.5

–0.5

time
lo

g 
pr

ic
e

1 25 50 75 100

0.0

–0.2

0.2

lag

ac
f 

r
ac

f 
r

Fig. 1 The panels show the evolution of log prices, the returns, the weights of technical analy-
sis, the distribution of the returns (the dotted line gives the corresponding normal distribution),
estimates of the tail index, and the autocorrelation coefficients of raw and absolute returns, respec-
tively. The simulation is based on 5,000 time steps and N D 25 traders. The remaining parameters
are specified in Sect. 3

development of log prices. As can be seen, prices move erratically around their
fundamental values. There are periods where prices are close to the fundamental
value but occasionally larger bubbles set in. A prominent example is given around
time step 4,000, where the distance between log prices and log fundamental values
is about 0.5, implying a substantial overvaluation of about 65%.
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In the second panel, returns, defined as log price changes, are plotted. Note that
extreme price changes are often larger than five percent, although the fundamental
value is fixed. A constant fundamental value naturally implies that the entire volatil-
ity should be regarded as excess volatility. The third panel depicts the evolution of
the weights of technical and fundamental trading strategies. As can be seen, there
is a permanent evolutionary competition between the rules. Neither technical nor
fundamental trading rules die out over time. We will come back to this soon.

In the two panels below, we characterize the distribution of the returns. Let us
start with the left-hand panel. The solid line represents the distribution of the returns
of our model, whereas the dotted line visualizes a normal distribution with identical
mean and standard deviation. A closer inspection reveals that the distribution of
returns of our financial market model has more probability mass in the center, less
probability mass in the shoulder parts and more probability mass in the tails than
the normal distribution. Estimates of the kurtosis support this view. However, the
kurtosis is an unreliable indicator of fat-tailedness.

For this reason, we plot estimates of the tail index in the right-hand panel, varying
the number of the largest observations from 0% to 10%. For this particular simula-
tion run we obtain a tail index of about 3.7 (using the largest 5% of the observations).
We found for other simulation runs that the tail index hovers around the range from
3.5 to 4.5, which may be slightly too high on average. Most tail indices estimated
from real financial data seem to range between 3 and 4, and are almost always
captured by the interval 2–5 (e.g., Lux 2009).

In the last two panels, we plot the autocorrelation functions for raw returns and
for absolute returns, respectively. Absence of significant autocorrelation between
raw returns suggests that prices advance in a random walk-like manner. Despite
the sporadic development of bubbles and crashes, it is thus hard to predict prices
within our model. However, the autocorrelation coefficients for absolute returns are
clearly significant and decay slowly. The autocorrelation coefficients are even pos-
itive for more than 100 lags. This is also in agreement with the second panel, and
is a clear sign of volatility clustering, as observed in many real financial markets.
From Fig. 1 we can also understand what is driving the dynamics of our model.
Comparing the second and the third panel reveals that periods where technical
analysis is rather popular are associated with higher volatility. Also, bubbles may
be triggered in these periods. The trend-extrapolating (and highly noisy) nature
of technical analysis has obviously a destabilizing impact on the dynamics. Note
that technical analysis is quite profitable during the course of a bubble. As a result,
more traders learn about this due to their interactions with other traders. Since tech-
nical analysis consequently gains in popularity, bubbles may possess some kind
of momentum. A major shift from technical to fundamental analysis may be wit-
nessed when a bubble collapses. A dominance of fundamental analysis then leads
to a period where prices are closer towards fundamental values and where volatility
is less dramatic.2

2 What causes the everlasting competition between the trading strategies? Since prices fluctuate
randomly it is hard for traders to make systematic and consistent long-run profits, i.e., the difference
in the fitness of the two competing rules oscillates somehow around zero, which, in turn, causes
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3.2 Setting 2: N D 100

Now we turn to the case with N D 100 traders. Figure 2 may be directly compared
with Fig. 1, since it is based on the same simulation design. The only difference is
that the number of traders is quadrupled. As indicated by the third panel, the pop-
ularity of the trading strategies now varies only very slowly over time. Therefore,
there are extremely long periods where one or the other trading strategy dominates
the market, which has some obvious consequences for the dynamics. For instance,
between time steps 1,500 and 2,700 the majority of traders rely on fundamental
analysis, and hence we find a period where prices are more or less in line with fun-
damental values and where absolute returns are rather low. Afterwards, technical
analysis gains in strength and for the next 2,000 time steps volatility is elevated.
Since the model is calibrated to daily data, 2,000 time steps correspond to a time
span of about 8 years. Although some stylized facts may still be replicated for
N D 100 agents, the dynamics of our model appears less convincing than before.
Apparently, to generate realistic dynamics, the popularity of technical and funda-
mental trading rules has to vary more quickly, at least from a technical point of
view. If there are only 25 traders, it may – in an extreme scenario – only take 25
time steps to accomplish a regime change from pure technical to pure fundamental
analysis (or vice versa). An increase in the number of agents naturally increases the
duration of such a complete regime switch. As seen in Fig. 2, regime changes may
take a very long time if the number of agents is equal to 100 (of course, internal
and external factors delay regime changes). In the next section, we try to show that
this is not directly a problem of setting the number of agents too high. To achieve
a reasonable fit of actual market dynamics with our model, the relation between the
number of agents and the number of direct interactions between them per trading
time step has to be within a certain range.

3.3 Setting 3: N D 500

Let us increase the number of agents up to N D 500. In addition, let us assume
that there is not only one direct interaction between the agents per trading time step
but that there are 20 contacts. Clearly, we now always run the interaction part of
the model 20 times before we iterate the trading part of the model. As a result,
the whole system may then again complete a full regime turn from pure funda-
mental to pure technical analysis (or the other way around) within 25 trading time
steps.

Figure 3 presents the results. The qualitative similarities between Figs. 1 and 3
are striking. We recover bubbles and crashes, excess volatility, fat tails for the dis-

repeated swings in opinion. Put differently, if one of the rules outperformed the other one, it would
also dominate the market. In addition, traders may change their opinion independently of market
circumstances.
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Fig. 2 The same simulation design as in Fig. 1, except that we now consider N D 100 agents

tribution of the returns, absence of autocorrelation for raw returns, and volatility
clustering, i.e., our model again mimics key stylized facts of financial markets
quite well.

Two further comments are required. Note first that periods of high volatility may
or may not be associated with bubbles and crashes. It may thus happen that prices
fluctuate wildly around fundamental values. We consider it interesting that there is
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Fig. 3 The same simulation design as in Fig. 1, except that we now consider N D 500 agents
and 20 direct interactions per trading time step

not a strict one-to-one relation between high volatility and bubble periods.3 Finally,
although the model once again generates a distribution which deviates from the
normal distribution, in the sense that there is more probability mass in its tails, the

3 This implies that technical analysis may also outperform fundamental analysis in a non-bubble
period; otherwise its weight – which is mostly driven by the agent (imitative) learning behavior –
would not have increased.
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fat-tailedness could be stronger. For the underlying simulation run we compute a
tail index of 4.3. Other simulation runs generate indices between 3.5 and 4.5, as was
the case for N D 25 traders.

4 Robustness of the Dynamics

In this section, we test whether our results are robust. First, we explore the impact of
different random number sequences on the dynamics of our model. Next, we assume
that the fundamental value is not constant but follows a random walk. Finally,
we study the consequences of financial market crashes by introducing extreme
shocks both in fundamental values and in prices. However, instead of perform-
ing a larger and more sophisticated Monte Carlo study to check the robustness
of the dynamics of our model, we restrict ourselves to presenting and discussing
some additional simulation runs. The reason for doing this is that we strongly
believe in the strength of the human eye, which has a remarkable ability to iden-
tify both regularities and irregularities in time series. It is also instructive to inspect
single simulation runs. Phenomena such as bubbles and crashes or volatility out-
bursts are infrequent, irregular phenomena, and by measuring them with certain
statistics their true nature is at least partially lost. Nevertheless, we ascertained
that a more elaborate statistical analysis would also confirm the robustness of the
dynamics.4

4.1 Random Number Sequences

Let us start with the issue of different random number sequences. Figure 4 displays
four repetitions of the first three panels of Fig. 1. The only difference between Figs. 1
and 4 is that we have exchanged the seeds for the random variables. Note that all
simulation runs are characterized by an endogenous competition between the trading
rules. Volatility clustering is always visible, whereas bubbles and crashes may be
absent for longer time periods or may evolve on a smaller scale. However, and this is
one of the reasons why we should pay attention to these simulation runs, the panels
show us that even after a very long time period without significant mispricing the
next bubble may be just about to kick in. This warning may have a philosophical
attitude but, given the common sense of policy makers, it seems important to us to
note that even a stable period of, say, 10 years does not guarantee that the future will
also be stable. A major bull or bear market period may just be days away without
much forewarning.

4 Also modest changes in the parameter setting do not destroy the model ability to mimic actual
asset price dynamics reasonably well.
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Fig. 4 Four repetitions of Fig. 1 using different random number streams

Figure 5 extends the analysis for N D 100 traders. In all simulation runs we see
that the degree of volatility clustering is presumably exaggerated. The reason for
this is that swings in opinion take too much time. Finally, Fig. 6 demonstrates that
our model may generate realistic dynamics for a scenario with N D 500 agents and
20 direct interactions per trading time step.

4.2 Evolution of the Fundamental Value

So far, we have assumed that the fundamental value is constant. In the following, we
explore the dynamics of our model when the fundamental value follows a random
walk. To be precise, the log of the fundamental value now evolves as

Ft D Ft�1 C �t (12)
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Fig. 5 Four repetitions of Fig. 2 using different random number streams

The fundamental shocks � are normally distributed with mean zero and constant
standard deviation �� .

How do fundamental shocks change the dynamics of the model? It may be
surprising to see that the statistical properties of our dynamics are more or less inde-
pendent of (12), as is visible in the two scenarios depicted in Fig. 7. In the top three
panels, the standard deviation of the fundamental shocks is �� D 0:0065 while in
the bottom three panels it is �� D 0:013. Since the standard deviation of the returns
of Fig. 3 (with a constant fundamental value) is about 0.013, we thus assume in the
first (second) scenario that the fundamental shocks are half as volatile (as volatile)
as these returns. Apart from that, the simulation design remains as it was in Fig. 3,
i.e., there are 500 traders and 20 interactions per trading time step. We also rely on
the same random number sequences. Of course, due to the evolution of the funda-
mental value also the course of the price is affected, yet its statistical properties are
quite robust. Interestingly, the volatility is not amplified through the fundamental
shocks. For both scenarios we obtain volatility estimates which are close to 0.013.
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Fig. 6 Four repetitions of Fig. 3 using different random number streams

4.3 Financial Market Crashes

Finally, we investigate how the dynamics of our model reacts to extreme market
crashes. In the first three panels of Fig. 8, we assume that the log of the fundamental
value is 0 until time step 800 but then drops sharply to �0.5. Apparently, this cor-
responds to an extreme negative fundamental crash. Everything else is again as in
Fig. 3. The top panel reveals that also the price crashes, yet not as quickly. It takes
about 450 time steps (which corresponds to a time span of almost two years) before
prices have reached their fundamental value again. Afterward, prices fluctuate in a
similar way as in Fig. 3, expect that the price level is now shifted downwards. In
the bottom set of panels, we introduce a price crash, i.e., we hold the fundamental
value constant but set the price of period 800 equal to �0.5. After this (exogenous)
price crash, the market remains for some time strongly undervalued but then prices
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Fig. 7 The same simulation design as in Fig. 3, except that the fundamental value (given by the
gray line) now follows a random walk with a standard deviation of 0.0065 (top set of panels) and
0.013 (bottom set of panels)

recover and the dynamics become again comparable to the dynamics represented in
Fig. 3. To sum up, both crash scenarios have a temporary impact on the dynamics.
In the long run, however, the model dynamics apparently digests such crashes and
then behaves as usual.
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Fig. 8 The same simulation design as in Fig. 3, except that the log of the fundamental value (the
log of the price) is set to �0.5 in the top set of panels (bottom set of panels) in period 800

5 Conclusions

The goal of this paper is to develop a simple agent-based financial market model
with direct interactions between the market participants. When the traders meet each
other within our model, they compare the past success of their trading rules. Should
an agent discover that his opponent uses a more profitable strategy, it is quite likely
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that he/she will change his/her strategy. Simulations reveal that such a setting may
incorporate a permanent evolutionary competition between the trading rules. For
instance, there may be periods where fundamental analysis dominates the markets.
Prices then fluctuate in the vicinity of their fundamental values. However, at some
point in time a major shift towards technical analysis may set in and the market
becomes unstable. Besides an increase in volatility, spectacular bubbles and crashes
may materialize.

Moreover, we have demonstrated that our model may generate realistic dynam-
ics for a lower or higher number of traders. However, in the latter case we have
to increase the number of interactions per trading time step. Otherwise the relative
importance of the trading rules is not flexible enough due to the assumed tandem
recruitment process. Of course, one could also consider increasing the number of
agents further, say, to 5,000 traders. Realistic dynamics may still be recovered
as long as the number of contacts between the agents per trading time step is
appropriately adjusted.

One interesting extension of the current setup may be to consider that (also) the
probability that an agent changes his opinion independently from social interactions
is state dependent. One could, for instance, assume that the probability to switch
from a technical to a fundamental attitude is relatively high if fundamental analysis
outperforms technical analysis. In this sense, the agents would then (also) display
some kind of individual economic reasoning behavior. Another worthwhile investi-
gation may be to consider different technical trading strategies instead of the simple
trend-continuation rule we have assumed in the present paper. How do the dynamics
look like if technical traders apply moving average rules with longer time windows?
Moreover, we consider only random meetings between agents in our model. It would
be interesting to see a setup in which agents have a social network. Interactions and
the resulting dynamics may, for instance, be studied for a simple lattice or more
complex network structures.

Finally, we would like to point out that, with a bit of experience, it is quite simple
to program our model. It should therefore be possible, even for interested laymen, to
reproduce the dynamics of our model. From a scientific point of view, replication of
results is important. Everything required for such an exercise is given in our paper.
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Global Bifurcations in a Three-Dimensional
Financial Model of Bull and Bear Interactions

Fabio Tramontana, Laura Gardini, Roberto Dieci, and Frank Westerhoff

1 Introduction

In a previous paper Tramontana et al. (2009), we developed a three-dimensional
discrete-time dynamic model in which two stock markets of two countries, say
H(ome) and A(broad), are linked via and with the foreign exchange market. The
latter is modelled in the sense of Day and Huang (1990), i.e. it is characterized by a
nonlinear interplay between technical traders (or chartists) and fundamental traders
(or fundamentalists). In the absence of connections, the foreign exchange market
is driven by the iteration of a one-dimensional cubic map, which has the potential
to produce a regime of alternating and unpredictable bubbles and crashes for suffi-
ciently large values of a key parameter, which captures the speculative behavior of
chartists. Such a dynamic feature, first observed and explained by Day and Huang
(1990) in their stylized model of financial market dynamics, can be understood with
the help of bifurcation analysis: an initial situation of bi-stability (two coexisting,
attracting non-fundamental steady states around an unstable fundamental equilib-
rium) evolves into coexistence of cycles or chaotic intervals within two disjoint bull
and bear regions, which eventually merge via a homoclinic bifurcation. By intro-
ducing connections between markets (i.e. by allowing stock market traders to be
active abroad), the endogenous fluctuations originating in one of the markets spread
throughout the whole three-dimensional system. It therefore becomes interesting to
investigate how the coupling of the markets affects the bull and bear dynamics of
the model. With regard to this, in Tramontana et al. (2009) we already performed a
thorough analytical and numerical study of two simplified lower-dimensional cases,
where connections are either totally absent (each market evolves according to an
independent one-dimensional map) or occur in one direction (a two-dimensional
system evolves independently of the third dynamic equation). Also a short analysis
of the stability of the equilibria of the three-dimensional model was there started,
arguing that the global (homoclinic) bifurcations may still be a characteristic of the
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dynamics. This investigation is precisely the object of the present paper. We shall
analyze the dynamic behavior of the complete three-dimensional model, following
the approach adopted in Tramontana et al. (2009), based mainly on the numeri-
cal and graphical detection of the relevant global bifurcations. Although analytical
conditions for such global bifurcation, mainly homoclinic bifurcations, are difficult
to be formalized, their existence and occurrence can be numerically detected. As
it is standard in the qualitative study of dynamic behaviors, the transverse cross-
ing between stable and unstable sets of unstable cycles, leading to homoclinic
trajectories, give numerical tools which may be considered as proofs in a given
numerical example.

The structure of the paper is as follows. In Sect. 2 we briefly describe the three-
dimensional model of interacting stock and foreign exchange markets. The main
results regarding the lower-dimensional subcases explored in Tramontana et al.
(2009) are summarized in Sect. 3. Section 4 deals with the dynamics of the complete
three-dimensional model by discussing, in particular, the steady state properties
and the existence of multiple equilibria (Sect. 4.1), the homoclinic bifurcations of
the non-fundamental steady states (Sect. 4.2) and of the fundamental equilibrium
(Sect. 4.3), and the so-called final bifurcation (Sect. 4.4). Section 5 concludes the
paper.

2 The Dynamic Model

This model describes the joint evolution of two stock markets (denoted asH andA),
denominated in different currencies, and the related foreign exchange market. While
the two stock prices (PH

t and PA
t , respectively) adjust over time depending on the

excess demand for stock generated by national and foreign fundamental traders, the
exchange rate1(St ) depends on the excess demand of currencyH . The latter consists
of (i) demand for currency by heterogeneous speculators (technical and fundamen-
tal traders) who explicitly focus on the foreign exchange market and (ii) demand
for currency by stock market traders who invest abroad, who obviously buy/sell for-
eign currency to conduct stock market transactions. In the following, we denote as
FH , F A and F S the fundamental values of the two stock prices and the exchange
rate, respectively. Assuming, for the sake of simplicity, a linear price impact func-
tion, prices in the three markets jointly evolve according to the following laws of
motion:

PH
tC1 D PH

t C aH .DHH
F;t CDHA

F;t /; (1)

PA
tC1 D PA

t C aA.DAA
F;t CDAH

F;t /; (2)

1 Here we define the exchange rate as the price, expressed in currency A, of one unit of
currency H .
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StC1 D St C d.PH
t DHA

F;t �
PA

t

St

DAH
F;t CDS

C;t CDS
F;t /; (3)

where aH , aA and d are positive parameters, and where the demand terms appearing
on the right-hand sides of the above equations have the following definitions and
meaning:

� DHH
F;t D bH .FH �PH

t /, bH >0, is the demand2 for stockH by the fundamen-
tal traders (or fundamentalists) from countryH .

� DHA
F;t D cH Œ.FH �PH

t /C �H .F S �St /�, cH D 0, �H > 0, is the demand for
stock H by the fundamental traders from country A.

� DAA
F;t D bA.FA � PA

t /, b
A > 0, is the demand for stock A by the fundamental

traders from country A.
� DAH

F;t D cAŒ.FA � PA
t /C �A. 1

F S � 1
St
/�, cA D 0, �A > 0, is the demand for

stock A by the fundamental traders from countryH .
� DS

C;t D e.St � F S /, e > 0, and DS
F;t D f .F S � St /

3, f > 0, are the demands
of currency H by chartists and fundamentalists, respectively, who enter spec-
ulative positions in the foreign exchange market. In particular, chartist demand
coefficient, e, turns out to be an important bifurcation parameter in our analysis.

The following additional comments about agents’ demands are useful:

(1) Fundamentalists seek to profit from mean reversion, so that they submit buy-
ing orders (positive demand) when the market is undervalued (the price is
below fundamental) and selling orders (negative demand) when the market is
overvalued.

(2) In addition, foreign fundamentalists may also benefit from exchange rate move-
ments, and therefore their demand function also includes a term that is depen-
dent on the observed mispricing in the foreign exchange market; in particular,
traders from H to A take into account the reciprocal values of the exchange
rate and its fundamental.

(3) In the foreign exchange market, chartists believe in the persistence of bull
markets or bear markets and therefore optimistically buy (pessimistically sell)
currencyH as long as the exchange rate is high (low). Fundamentalists seek to
exploit misalignments using a nonlinear trading rule. As long as the exchange
rate is close to its fundamental value, fundamentalists are relatively cautious,
but the greater the mispricing, the more aggressive they become.

(4) Finally, PH
t DHA

F;t represents the demand for currency H generated by stock

market orders from A to H , and symmetrically PA
t D

AH
F;t is the demand for

currency A generated by stock market orders from H to A: the latter is

2 The demand for stock is given in real units.



336 F. Tramontana et al.

converted into an amount of currency H of opposite sign, via the reciprocal
exchange rate 1

St
.

By specifying all of the demand terms in (1)–(3), we obtain a three-dimensional
dynamical system with the following structure

8̂
ˆ̂<
ˆ̂̂:

PH
tC1 D GH .PH

t ; St /;

StC1 D GS .PH
t ; St ; P

A
t /;

PA
tC1 D GA.St ; P

A
t /:

(4)

In particular, for cH D cA D 0 the structure of the system (4) simplifies into
three independent dynamic equations,PH

tC1 D GH .PH
t /, StC1 D GS .St /,PA

tC1 D
GA.PA

t /, of which that for exchange rate S is nonlinear (of cubic type), whereas
the two stock prices PH and PA evolve linearly. More interestingly, for cA D 0 but
cH > 0 the system is of the type

8̂̂
<̂
ˆ̂̂:

PH
tC1 D GH .PH

t ; St /;

StC1 D GS .PH
t ; St /;

PA
tC1 D GA.PA

t /;

(5)

that is to say,PA decouples from the system, whereasPH and S co-evolve in a two-
dimensional nonlinear dynamical system. Both such lower-dimensional subcases
were analyzed in detail in Tramontana et al. (2009). The main findings of such an
analysis are summarized in the following section.

3 Summaries of the 1D and 2D Models

In this section, we recall the main results regarding the simplified, lower-dimensional
subcases analyzed in Tramontana et al. (2009).

3.1 One-Dimensional Case

In the absence of interactions, cHDcAD0, each market evolves as a one-dimensional
dynamical system. Stock markets are represented by simple linear equations and in
each of them the unique fundamental steady state is globally stable, at least for rea-
sonable values of the price and demand adjustment parameters. The law of motion
of the foreign exchange market is nonlinear, determined by iteration of a cubic map,
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with three fixed points: namely, two non-fundamental steady states, say P1 and P2,
relative to each of the two unimodal branches of the cubic map, surrounding an
unstable fundamental steady state (O). The map is symmetric with respect to the
fundamental value, which is why the bifurcations involving P1 and P2 are synchro-
nized. The bifurcation analysis with respect to parameter e highlighted the route to
chaotic bull and bear dynamics of the model. The (synchronized) period-doubling
bifurcations of P1 and P2, followed by the usual cascade of flip bifurcations and
the homoclinic bifurcations of the two steady states, lead to the coexistence of two
symmetric intervals (aroundP1 and P2, respectively), each characterized by chaotic
dynamics (in the sense of chaos of full measure on an interval). Due to the nonin-
vertibility of the map, within this range of values of parameter e the basins of the
two coexisting attractors have a disconnected structure, each being made up of an
infinite sequence of intervals which alternate on the real line with that of the com-
peting attractor. For higher values of parameter e, the two attractors and their basins
merge together via a homoclinic bifurcation of the fundamental steady state O .
After this point, the exchange rate dynamics, previously confined to below or above
the fundamental value, depending on the initial condition, wanders within a unique
chaotic interval around the fundamental steady state, alternating bull and bear mar-
ket episodes in an unpredictable manner. A final bifurcation then occurs when the
unique attractor touches the border between its basin and the basin of infinity, B1,
after which the generic trajectory is divergent.

A crucial tool for the bifurcation analysis, strictly associated with the nonin-
vertibility of the map, is represented by the critical points (local extrema and their
iterates), which are at the boundary of chaotic intervals, and their contacts with the
unstable steady states.

3.2 Two-Dimensional Case

By introducing a partial connection between stock markets A and H (namely, by
allowing investors from countryA to trade in countryH ), the latter turns out to coe-
volve with the foreign exchange market (whereas market A is still decoupled from
the system). As a result, we have a system of two coupled equations, one linear
and one nonlinear. In particular, in the nonlinear equation for the exchange rate we
also have a feedback from stock market H , which makes the dynamics even more
intricate. One difference with the one-dimensional case is that now a unique steady
state exists for small values of e. Another difference is that the symmetry property
is lost. Apart from this, in the two-dimensional case we still observe the same mul-
tiple steady state structure (when e is large enough) and a similar sequence of local
and global bifurcations. More precisely, we highlighted the homoclinic bifurcations
that involve the saddle equilibria P1 and P2 first (albeit now in an asynchronous
manner) and then the fundamental equilibrium O . Due to this sequence of bifurca-
tions (also called interior and exterior crises in Grebogi et al. (1983), the system
has a transition across different dynamic scenarios: from coexisting attracting bull
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and bear chaotic regions, to the disappearance of one of them, to the merging of
the two regions into a unique wider chaotic area. The resulting dynamic outcome is
a coupled bull and bear market behavior of stock price H and the exchange rate,
which may switch across different regions of the two-dimensional phase space with
apparently random behavior. In all cases, the bifurcation mechanisms are basically
due to contacts3 between invariant sets – such as stable manifolds of saddles – and
the boundary of chaotic attractors, the latter being made up of portions of critical
curves of the noninvertible two-dimensional map (see Mira et al., 1996). Finally,
also the bifurcation leading to the disappearance of the unique chaotic attractor is
similar to that of the one-dimensional case. Such a two-dimensional analysis has
been largely carried out with the help of numerical simulation and graphical visual-
ization. In particular, the tool of the critical curves has suggested how the basins of
attraction may acquire a disconnected structure.

4 Analysis of the 3D Model

In this section we deal with the complete three-dimensional model, mainly with
the help of numerical simulation. Our analysis will show that the dynamic phe-
nomena highlighted in Tramontana et al. (2009) also persist in the full model, and
can be detected and understood by extending the approach and techniques used in
the lower-dimensional cases to a three-dimensional setup. In particular, we are also
able in the full model to detect and explain the sequence of local and global bifur-
cations that determine the transition between different dynamic regimes: namely,
from a unique attracting fundamental equilibrium to coexistence of attracting non-
fundamental equilibria, to more complex coexisting attractors, up to the homoclinic
bifurcations which bring about a regime of bull and bear market fluctuations,
first established by Day and Huang (1990) in a one-dimensional setup, character-
ized by apparently random switches of prices across different regions of the phase
space.

In the full model, stock market traders from countries A and H are allowed
to trade in both markets, i.e. cH > 0 and cA > 0. In this case, the two stock
prices and the exchange rate are all interdependent, and the model has the complete
structure (4). The system (4), expressed in deviations4 from fundamental values,
x D .PH � FH /, y D .S � F S / and z D .PA � FA/, is represented by a map
T W R3 ! R

3 that takes the following form:

3 Following Mira et al. (1996) we call contact bifurcation any contact between two closed invariant
sets of different kinds. A contact bifurcation may have several different dynamic effects, depending
on the nature of the invariant sets.
4 Although we work with deviations, in all the following numerical experiments we have checked
that original prices never become negative.
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T W

8̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

xtC1 D xt � aH Œ.bH C cH /xt C cH �Hyt �;

ytC1 D yt � d
	
cH .xt C FH /.xt C �Hyt /

CcA
zt C FA

yt C F S

�
�A

yt

F S .yt C F S /
� zt

�
� eyt C fy3

t



;

ztC1 D zt � aA

	
.bA C cA/zt � cA�A

yt

F S .yt C F S /



:

(6)

The model is not tractable analytically. Apart from the fundamental fixed point,
say O D .0; 0; 0/, whose existence can be immediately checked, we cannot solve
explicitly for the coordinates of further possible non-fundamental equilibria, nor
can we obtain easily interpretable analytical conditions for their existence. A brief
discussion of the steady states is provided in the following subsection.

4.1 Fixed Points and Multistability

By imposing the fixed point condition to (6), we obtain the following system of
equations �

bH C cH
�
x C cH �Hy D 0; (7)

cH
�
x C FH

� �
x C �H

�
C cA zC FA

y C F S

�
�A y

F S .y C F S /
� z

�
� eyCfy3 D 0;

(8)�
bA C cA

�
z � cA�A y

F S .y C F S /
D 0: (9)

We observe from (7) and (9) that any steady state must belong to both the plane
of equation:

y D � x

qH
(10)

and the surface of equation

z D qA y

.y C F S /
; (11)

where

qH WD cH�H

bH C cH
I qA WD cA�A

.bA C cA/F S
:

This implies that when the steady state exchange rate is above the fundamental
value (y > 0), steady state price A is then above the fundamental value (z > 0),
whereas steady state price H is below the fundamental value (x < 0), and vice
versa. From now on, we will label the region y > 0, z > 0, x < 0 as the bull region
and region y < 0, z < 0, x > 0 as the bear region. By substituting (10) and (11) into
(8), we are able to express condition (8) in terms of the steady state (deviation of)
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price H only, as follows:

x

	
f

.qH /3
x2 C bHx C

�
bHFH � e

qH

�
CM.x/



D 0; (12)

where

M.x/ WD bAqHqA q
HF SFA � x.qA C FA/

.qHF S � x/3 :

Therefore, besides the fundamental solution x D 0, further possible solutions
are the roots of the expression in square brackets in (12). Note that for cA D 0, and
therefore qA D 0 andM.x/ D 0, the x-coordinates of further possible steady states
are the solutions of a quadratic equation, and their existence was discussed in detail
in Tramontana et al. (2009).5

In contrast, if cA > 0, it becomes impossible to solve (12) analytically. When
cA is small enough, we may expect a steady state structure qualitatively similar to
that of the two-dimensional subcase cA D 0, with two further steady states initially
appearing simultaneously in the bull region, via saddle-node bifurcation.6

However, if cA is large enough, as is the case of the following numerical exper-
iments, as we shall see, it is difficult to detect the appearance of further equilibria
and their initial location with respect to the fundamental. We remark that the ana-
lytical investigation of the local stability properties of fundamental fixed point
O D .0; 0; 0/ is also a difficult task. The Jacobian matrix evaluated at O is
given by

J.O/ W

2
66664

1 � aH .bH C cH / �aHcH�H 0

�dcHFH 1 � d
	
cHFH�H C cAF A�A

.F S/3
� e



dcAF A

F S

0
aAcA�A

.F S/2
1 � aA.bA C cA/

3
77775

(13)

and its eigenvalues (which are roots of a third-order polynomial) cannot be solved
for explicitly. Nor can we write down tractable analytical conditions for the eigen-
values to be smaller than one in modulus. We shall now study the local and
global bifurcations via numerical investigation, supported by our knowledge of
the model behavior in the simplified, two-dimensional case. In fact, as we shall
see, the analysis performed in Tramontana et al. (2009) provides important guide-
lines for understanding the dynamic phenomena occurring in this more complex
three-dimensional model.

With the parameter setting used in following numerical simulations (as well as
with other similar constellations of parameters) we do not observe the appearance
of the non-fundamental equilibria via saddle-node bifurcation. Instead, a pitchfork

5 Moreover, in this case, in which market A decouples from the system, (11) reduces to z D 0.
6 This is also confirmed by numerical simulations.
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bifurcation of the fundamental steady state seems to occur, leading to the appearance
of two new stable equilibria, one in the bull region and one in the bear region, at
the same parameter value at which the fundamental becomes unstable.7 The situ-
ation resulting from the local bifurcation of the fundamental steady state is in any
case qualitatively the same as for the two-dimensional subcase. That is, the phase
space is shared amongst the basins of attraction of two non-fundamental equilib-
ria, separated by the stable set of the (saddle) fundamental steady state. From now
on, the bifurcation sequences involving the two coexisting equilibria (or, more gen-
erally, the two coexisting attractors) follow paths similar to those observed in the
two-dimensional model, albeit involving stable and unstable manifolds in higher
dimensions. In this paper we confirm and strengthen almost all of the results of
the two-dimensional case, albeit via numerical simulations only. We shall describe
various kinds of homoclinic bifurcations, following the same scheme of the study
carried out in Tramontana et al. (2009).

Our base parameter selection is the following:aH D 0:41, bH D 0:11, cH D 0:83,
FH D 4:279, �H D 0:3, d D 0:35, f D 0:7, F S D 6:07 (which are the same param-
eters used in the simulations in Tramontana et al. (2009), enabling a direct com-
parison), aAD 0:43, bAD 0:21, cAD 0:9, �AD 0:36 and F AD 1:1. In order to
sufficiently distinguish the model from the two-dimensional case studied in Tra-
montana et al. (2009) (where cA is zero), we have chosen a value of cA that is
much further away from zero, and even higher than cH . Bifurcations similar to
those described below are observed with several other parameter constellations.
The numerical analysis performed in the Appendix shows that O loses stability
when one eigenvalue becomes equal to 1 at e ' 0:125. We argue that this corre-
sponds to a pitchfork bifurcation, because we observe the simultaneous appearance
of two further equilibria, which we denote as P1 (in the bear region) and P2 (in
the bull region). Figure 1 shows the asymptotic dynamics in the three-dimensional
phase space for increasing values of e. We can see that the fundamental fixed point
is unstable and that two new stable fixed points exist. The stable fixed points are
located on opposite sides with respect to plane yD 0 (i.e. S DF S ), as shown in
Fig. 1a. Since only one eigenvalue of J.O/ becomes larger than 1, while two other
eigenvalues are real and still smaller than one in absolute value, the fundamental
equilibrium is a saddle with a one-dimensional unstable manifold (made up of two
branches, connecting O with P1 on one side and O with P2 on the opposite side),
while the stable set W s

O of the origin is a two-dimensional manifold, which sepa-
rates the two basins of attraction of the two coexisting fixed points. In other words,
the frontier of the basins of attraction of P1 and P2, say B1 and B2, respectively,
includes surfaceW s

O .
Moreover, it is easy to see that divergent behavior is also possible, so that the

basin of divergent trajectories, B1, also exists (and will be involved in the final
bifurcation, as we shall see below). The structure of the basins after the appearance

7 We remark that this is just numerical evidence, and we cannot exclude the existence of a sequence
similar to that described for the 2D model (i.e. a Saddle-Node bifurcation immediately followed
by a Transcritical), occurring in a very narrow range of parameter e.
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Fig. 1 Coexisting attractors for increasing values of parameter e and other parameters according to
our base selection. In (a), e D 0:89, the attractors are two stable fixed points P1 and P2. In (b), e D
2:43, there is coexistence of the stable fixed point P2 and a stable 2-cycle. In (c), e D 3:576,
one chaotic attractor (blue, in the bear region) consists of a unique piece (after the homoclinic
bifurcation of the fixed point P1) while the other chaotic attractor (red, in the bull region) is made
up of two disjoint pieces, on opposite sides with respect to the fixed point P2. In (d), e D 4:1841,
both have become one-piece attractors, and the light grey one approaches the stable set of the
fundamental fixed point in the origin. The boxes are centered in O and the range of all axes is
Œ�3;C3�

of the two new attractors is shown in Fig. 2, where a cross section of a plane through
the fundamental fixed pointO D .0; 0; 0/ is considered. The value of the parameter
is e D 0:89, as in Fig. 1a, and two attracting fixed points coexist. In the cross section,
the different grey tonalities belong to different basins of attractions. We denote in
grey the basin of the fixed point P1 (in the bear region). The basin of fixed point P2

(in the bull region) is light grey, while points generating divergent trajectories, and
thus belonging to the basin B1, are shown in dark grey.
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Fig. 2 Cross section along a plane through the fundamental fixed point O D .0; 0; 0/. The value
of parameter is e D 0:89, as in Fig. 1a. The box is centered inO and the range of axes is Œ�3;C3�
for all state variables. In the cross section, different colors denote different basins of attractions.
Basin B1 of the fixed point P1 is in grey, basin B2 of the fixed point P2 is in light grey, basin B1

is in dark gray

As already conducted in Tramontana et al. (2009) of our study, we analyze the
sequence of bifurcations occurring when parameter e is increased. We first show
a bifurcation diagram of the asymptotic behavior of state variable y as a func-
tion of parameter e. The diagram (Fig. 3) highlights how a sequence of bifurcations
very similar to those observed in the two-dimensional case also occurs in the three-
dimensional case and, as expected, in an asynchronous manner (because in the full
model, as well as in the two-dimensional subcase studied in Tramontana et al., 2009,
there is no symmetry with respect to the origin). In Fig. 3a, the initial condition is
taken close to the fixed point P1, while in Fig. 3b the starting point is close to the
other fixed point P2. The global bifurcations first involve the attractor associated
with equilibrium P1 (in blue) and then that associated with P2 (in red).

4.2 Homoclinic Bifurcation of Equilibria P1 and P2

As noted above, after their appearance, both locally stable fixed points undergo
a cascade of flip bifurcations (in an asynchronous manner), leading to chaos (see
Figs. 3 and 1). In particular, in Fig. 1c we can see that the attracting set in the bull
region (in red) is still made up of two disjoint pieces, located on opposite sides with
respect to the unstable fixed point P2, while the second attractor, located in the bear
region (in blue), is already a one-piece chaotic attractor. Although we do not have
the coordinates of the unstable fixed points P1 and P2, we can state that in this
case (Fig. 1c) fixed point P1 is already homoclinic, at least on one side, because
it belongs to the invariant chaotic area (and it is probably located on its bound-
ary, as it occurs in the 2D model), while the fixed point P2 is not yet homoclinic
(because it is not jet included in the chaotic area), although it will be involved later
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Fig. 3 Bifurcation diagrams of y vs. parameter e, ranging from 0 to 5:5. The range of e is sub-
divided into different intervals. In interval A the only attractor is the fundamental equilibrium O .
Its pitchfork bifurcation occurs at e ' 0:125, after which two new stable equilibria appear. In
(a) the initial condition is close to the fixed point P1, in (b) it is close to P2. In interval B we
observe a complete route to chaos for each fixed point. The homoclinic bifurcation of P1 occurs
at e1.BC/ ' 3:56, which results in the one-piece chaotic attractor in light grey. The homoclinic

bifurcation of P2 occurs at e1.BC/ ' 3:6, leading to the one-piece chaotic attractor in dark grey.
In interval C there is coexistence of two one-piece chaotic attractors. The upper bound of interval
C corresponds to a homoclinic bifurcation of the origin. In (a) the light grey chaotic attractor dis-
appears at the first homoclinic bifurcation of the origin, which occurs at e1.CD/ ' 4:185, so that

for any e in interval D (e1.CD/ < e < e2.DE/) the unique attractor is the dark grey one. The second

homoclinic bifurcation of the origin occurs at e2.DE/ ' 4:3 and leads to an explosion of the chaotic
attractor into a wider region (in grey). This unique chaotic attractor exists up to its final bifurcation
at ef ' 5:03
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(i.e. for larger e) in a homoclinic bifurcation, causing the reunion of the two pieces
of chaotic attractor around P2. Figure 1d indeed shows the situation existing after
both the first homoclinic bifurcations of equilibria P1 and P2 have occurred.

In the bifurcation diagram in Fig. 3 we plot the asymptotic behavior of the state
variable y, as e varies in the range Œ0; 5:5�. In the interval of values of e denoted by
A, the only attracting set is the fundamental equilibriumO . Its pitchfork bifurcation
occurs at e ' 0:125, after which we have the appearance of two further stable
equilibria. In (a) the initial condition is taken close to the fixed point P1, while in
(b) it is taken close to the fixed point P2. The fixed points are stable up to their flip
bifurcation, which occurs for P1 first, and then for P2. In the interval denoted by B
we observe the typical route to chaos for each fixed point, and the parameter values
e1

.BC /
and e2

.BC /
are the homoclinic bifurcation values of P1 and P2, respectively,

at which the reunion of two pieces into one single chaotic attractor takes place.
In the proposed example, we first observe this bifurcation in the bear region, at
e1

.BC /
' 3:56 (leading to the one-piece chaotic attractor in blue), and then in the

bull region, at e2
.BC /

' 3:6 (leading to the one-piece chaotic attractor in red).
The coexistence of two disjoint attractors in the bull and bear regions is coupled

with an increase of complexity in the structure of the related basins of attraction B1

and B2. An example is shown in Fig. 4: in (a) we show the two disjoint attractors
and in (b) a cross section through the origin shows the basins in different colors. B1,
in pink, is the locus of initial points converging to the chaotic attractor in blue, and
B2, in orange, is the locus of points converging to the chaotic attractor in red, while
the gray points belong to basin B1. Note that the basins are now disconnected:
within the region that approximately coincides with basin B1 of Fig. 2 there are now
also points belonging to basin B2 and to B1; at the same time, points belonging
to basin B1 and to B1 are now located in the region previously belonging to basin
B2 in Fig. 2. This phenomenon is again due to contact bifurcations of the basins of
attraction with critical sets (critical surfaces, in this three-dimensional case). That
is, denoting by J.x; y; z/ the Jacobian matrix of the map (6) and by SC�1 the locus

Fig. 4 Coexisting attractors at e D 4:1841. The boxes are centered in O and the range of axes
is Œ�3;C3�. In (b) a plane through the origin O is shown, along which different colors denote
different basins of attraction, as in Fig. 2
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of points defined by the equation det J.x; y; z/ D 0, this set plays the same role
of the critical points xm�1 and xM�1 in the one-dimensional map corresponding to the
subcase cH D cA D 0, and to the critical curve LC�1 in the two-dimensional map
corresponding to cA D 0, both analyzed in Tramontana et al. (2009). The image of
SC�1 under map T gives a surface, SC WD T .SC�1/, which is responsible for the
contact bifurcations of the basins of attraction. In the 3D phase space this critical
surface SC separates regions of points with a different number of rank-1 preimages.
When basin B1 (or basin B1) touches the critical surface SC and then crosses it, a
portion of the basin, say H 0, enters a region of the phase space whose points have a
higher number of preimages, thus leading to the appearance of new portions of the
basin. Such portions consist of the region (volume) T �1.H 0/, located around the
critical surface SC�1, and of its further preimages.

4.3 Homoclinic Bifurcation of the Fundamental Equilibrium O

The coexistence of two attractors located in two disjoint bull and bear regions ends
at the first homoclinic bifurcation of the origin. The section of the basins of attrac-
tions in Fig. 4b shows that the chaotic attractor in the bear region, colored blue, is
very close to the boundary of its basin B1. Moreover, we know that the frontier of
the two basins B1 and B2 includes the two-dimensional stable set W s

O of the funda-
mental fixed point O , which is now a set with a complex structure. Thus, from the
closeness of the chaotic area to the origin we can argue that in the parameter situa-
tion shown in Fig. 4b we are already very close to this first homoclinic bifurcation
of the origin (while the second one is due to the other chaotic attractor, which is still
far from the origin).

At the fixed point itself the stable set W s
O is a surface tangent to the plane gener-

ated by the eigenvectors associated with the two stable eigenvalues of the Jacobian
matrix J.O/. A portion of this plane (tangent at the origin to the surface W s

O ) is
shown in Fig. 5, at e D 4:1841 (same parameter value as in Fig. 4). At this value the

Fig. 5 Coexisting attractors
for e D 4:1841 (as in Fig. 4)
and a portion of the plane
through the origin O , tangent
to the stable set W s

O
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eigenvalues of the Jacobian matrix J.O/ are given by �1 D 2:1725, �2 D �0:5341
and �3 D 0:5216. The eigenvectors associated with eigenvalues �2 and �3 (less than
1 in modulus), say v2 and v3, respectively, are given by

v2 D
0
@�0:6066�0:769
�0:2017

1
A ; v3 D

0
@�0:2582�0:2836
�0:9235

1
A

and the tangent plane is generated by these two vectors. We can see that in Fig. 5
the tangent plane is already crossed by the chaotic attractor in blue. This means that
we are not far from the parameter value at which a contact with surfaceW s

O occurs.
Since one branch of the unstable set W u

O of the origin tends to the chaotic attractor,
the contact of the chaotic attractor with the stable set of the origin is also a contact
between the unstable set W u

O and the stable set W s
O , leading to the first homoclinic

bifurcation of the fixed pointO .
After the contact, the stable and unstable sets have infinitely many transverse

intersections. However, the chaotic set associated with the origin is not observ-
able in the asymptotic dynamics. In fact, as a result of this bifurcation we have
the disappearance of the chaotic attractor in the bear region. That is, the previ-
ous light grey chaotic attractor has now turned into a chaotic repeller, which also
includes homoclinic trajectories on one side of the origin. We recall that a contact
bifurcation causing the disappearance of a chaotic attractor always lives a chaotic
repeller in its place in the phase space. This chaotic repeller is formed by all the
unstable cycles previously existing in the chaotic set, and the related stable sets, or
insets (see Mira et al., 1996 for further details). Thus although in Fig. 6a we observe
only one attractor on one side of the stable set of the origin, we know that on the

Fig. 6 (a) Unique chaotic set in the bull region, at e D 4:208, after the first homoclinic bifurcation
of the fundamental equilibrium O . (b) Unique chaotic set covering both the bull and bear regions,
at e D 4:761, after the second homoclinic bifurcation of the fundamental equilibrium O . Boxes
are centered in O and the range of axes is Œ�3;C3�
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other side a chaotic repeller exists, and its existence may be put in evidence when
a contact between the existing chaotic attractor and the origin occurs (at another
homoclinic bifurcation of the origin). We may observe the chaotic repeller via the
long chaotic transient of trajectories starting from initial conditions in the old B1

area: they remain in the old region for several iterations before converging to the
chaotic set in the bull area.

For this reason, the interval labelled C in Fig. 3a (where two one-piece chaotic
attractors coexist) ends with the first homoclinic bifurcation of the origin, which
occurs at e1

.CD/
' 4:185, when the chaotic attractor in the bear region disappears

and the generic initial condition in that region then converges to the dark grey attrac-
tor, in the bull region. Similarly to the two-dimensional case, a range of values of
the parameter e exists such that the chaotic attractor located (approximately) in
the region S >F S (y > 0), colored dark grey, becomes the only attractor in the
phase space (see Fig. 6a). From the asymptotic behavior, shown in Fig. 6a, we can-
not observe the chaotic repeller, which we know exists. The chaotic repeller will
again be observable after the second homoclinic bifurcation of the origin, which
occurs at e2

.DE/
' 4:3, leading to an explosion of the chaotic attractor into a wide

region of the phase space, as shown in Fig. 6b.
From Fig. 6a we can see that the tongues of the dark grey chaotic set increasingly

approach the fundamental fixed point, and thus we are very close to the second
homoclinic bifurcation ofO . This bifurcation involves a contact between the branch
of W u

O that converges to the chaotic attractor in the bull region and the surface
representing the stable set W s

O . The result of this bifurcation is an explosion of
the chaotic set (which includes both the previous chaotic attractor and the previous
chaotic repeller), as shown in Fig. 6b.

This brings about a major change of the dynamics. Whatever the initial condi-
tion is (from either the bear or the bull region), the trajectory will wander in both
regions, jumping from one to the other after an unpredictable number of iterations.
An example of the resulting fluctuations of the state variables is given in Fig. 7.
The dynamics we obtain are much more intricate than those observed in Day and
Huang (1990). The reason for this is that there is a feedback process from the foreign
exchange markets on the stock markets and from the stock markets on the foreign
exchange market. The first feedback process generates endogenous dynamics in the
stock markets, where otherwise no dynamics would be observable.

The second feedback process may be interpreted as deterministic noise impacting
on the evolution of the exchange rate. Also, the three markets demonstrate excess
volatility and endogenous bubbles and crashes.

4.4 Final Bifurcation

After the above-described second homoclinic bifurcation of the origin, the region
of the phase space covered by the chaotic dynamics becomes wider as parameter e
increases. The oscillations of the trajectories increase in amplitude, and we approach
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Fig. 7 Trajectories of the state variable x (deviation of stock price PH from the fundamental price
FH ), y (deviation of the exchange rate S from the fundamental exchange rate F S ), z (deviation of
stock price PA from the fundamental price FA), obtained at e D 4:75

a catastrophic situation, after which trajectories will be mainly divergent. In Fig. 3
this bifurcation is revealed by the existence of a unique attractor, colored grey, which
covers both chaotic regions and exists up to its final bifurcation at ef ' 5:03. The
final bifurcation is again given (as in the one- and two-dimensional cases studied
in Tramontana et al., 2009) by a contact of the chaotic attractor with the frontier of
its basin of attraction. We recall (see Mira et al., 1996) that a contact between an
invariant set and the basin of divergent trajectories always leads to a final bifurca-
tion, because the invariant set will no longer exist after the contact, and almost all the
points whose trajectory was previously trapped into the invariant set will then have
divergent trajectories. In our example this is shown in Fig. 8 where, for a specific
value of e close to the final bifurcation, we represent the attractor in black and its
basin of attraction in light grey.8 Dark gray points, as usual, denote points belonging

8 For a better visualization, the region of the three-dimensional phase space represented in Fig. 8
also includes a set of points that are not economically meaningful (the bottom part of the cube and
of the related sections), but the attractor and the contacts that give rise to the final bifurcation all
belong to the economically relevant zone.
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Fig. 8 Chaotic attractor at e D 5:02 and four different sections of the three-dimensional phase
space through planes of equation y D k. The dark gray points belong to B1 and thus generate
divergent trajectories; the light grey points belong to the basin of attraction of the attracting set (in
black). The bottom part of each section corresponds to initial conditions that have no economic
relevance (z < �FA), included only for better visualization of the basins. The contacts occur in
the meaningful region

to basin B1. Figure 8 shows four different sections with planes of equation y D k.
In the first hyperplane (at y D 3:8), the boundary between the light and dark gray
points is a simple line, and this section is still far from the chaotic attractor. In the
second cross section (at y D 2:95), the boundary has become more complex, and
the attractor is crossed: the section of attractor belonging to the plane, still inside
the light grey area, is close to the frontier, in the points indicated by an arrow. In the
third section (at y D 1), the attractor again appears a long distance from the border
of the basin. Finally, the last section (at y D �1:4) again suggests that a portion of
the attractor is close to the frontier, in the points indicated by the arrow.

The contact between two invariant sets of different nature (the chaotic attractor
and the frontier of its basin) leads to the final bifurcation, which will leave a chaotic
repeller instead of the chaotic attractor. That is, after this final bifurcation the model
is no longer meaningful, as the generic trajectory in the phase space is a divergent
trajectory (maybe after a long chaotic transient). The chaotic repeller survives in a
set of zero measure, almost inaccessible, and includes all of the unstable fixed points
and cycles, as well as all of their stable sets.
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5 Conclusions

In this paper we have furthered the study of a dynamic model started in Tramontana
et al. (2009), where two stock markets are linked with each other due to the trad-
ing activity of foreign investors. Connections occur through the foreign exchange
market, where demand for currencies, and consequent exchange rate adjustments,
are generated partly by international stock market transactions and partly by the
trading activity of heterogeneous foreign exchange speculators. The model results
in a three-dimensional nonlinear dynamical system, which is able to generate the
typical bull and bear dynamic behavior already detected and discussed by Day
and Huang (1990) in a one-dimensional financial market model with fundamen-
talists and chartists. The previous study was mainly devoted to the derivation of
the model and a thorough analysis of its dynamic behavior in simplified one- and
two-dimensional cases, corresponding to situations in which the three markets are
at least partially disconnected, due to restrictions to the trading activity of foreign
investors.

This present paper is focused on the dynamic behavior of the complete three-
dimensional model. We have presented a study of the full model carried out mainly
by numerical simulation and graphical visualization, suitable to reveal contact bifur-
cations between invariant sets of different nature. Following the road map provided
by the analysis performed in Tramontana et al. (2009), and taking advantage of
the techniques employed in the 1D and 2D cases, we have seen that the homo-
clinic bifurcations also occur in this complete model. Thus, as expected, also in
the 3D case it turns out that the typical bull and bear dynamics – with seemingly
random switches of stock prices and exchange rates across different regions of the
phase space – result from a sequence of global bifurcations involving both the non-
fundamental steady states and the fundamental equilibrium of the model. Our results
thus extend such dynamic mechanisms, which provide a simplified yet intrigu-
ing explanation for the emergence of bubbles and crashes in financial markets, to
higher-dimensional setups.

Appendix

Given the parameters selection used in this work (i.e. aH D 0:41, bH D 0:11,
cH D 0:83, FH D 4:279, �H D 0:3, d D 0:35, f D 0:7, F S D 6:07, aA D 0:43,
bA D 0:21, cA D 0:9, �A D 0:36, FA D 1:1), from (13) the Jacobian matrix of the
three-dimensional map evaluated at the fixed point O D .0; 0; 0/ becomes

J.O/ W
2
4 0:6146 �0:10209 0

1:2430495 0:6265274C 0:35e 0:057084
0 0:003781256 0:05227

3
5
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so that we look for the necessary and sufficient conditions for O to have all the
eigenvalues less than one in modulus, roots of the characteristic polynomial

�3 C A1�
2 CA2�C A3 D 0;

where
A1 D �1:7638� 0:35e;
A2 D 0:9067C 0:398055e;
A3 D �0:1348� 0:1124e:

Following Farebrother (1973) the eigenvalues of the polynomial given above have
to satisfy the following conditions (equivalent conditions can be found in Gandolfo,
1980, Yury’s conditions in Elaydi, 1970 and Okuguchi and Irie, 1990):

.i/ 1CA1 C A2 C A3 > 0;

.i i/ 1 �A1 C A2 � A3 > 0;

.i i i/ 1 �A2 C A1A3 � .A3/
2 > 0;

.iv/ A2 < 3:

In our case condition .i/ is satisfied for e < 0:125 (approximate value). Condition
.i i/ becomes 3:8053C 0:8605e > 0 and is obviously satisfied for positive values
of e. Condition .i i i/ is satisfied for e < 3:3096 and e > 3:54, while condition .iv/
is satisfied for e < 5:258821. Starting from values of the parameter e positive and
close to 0 and increasing its value, the first condition which is violated is .i/, so that
e D 0:125 is the bifurcation value at which the fixed point loses stability.
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A Framework for CAPM with Heterogeneous
Beliefs

Carl Chiarella, Roberto Dieci, and Xue-Zhong He

1 Introduction

The Sharpe–Lintner–Mossin (Sharpe 1964; Lintner 1965; Mossin 1966) Capital
Asset Pricing Model (CAPM) plays a central role in modern finance theory. It
is founded on the paradigm of homogeneous beliefs and a rational representative
agent. However, from a theoretical perspective this paradigm has been criticized on a
number of grounds, in particular concerning its extreme assumptions about homoge-
neous beliefs, information about the economic environment, and the computational
ability on the part of the rational representative economic agent.

The impact of heterogeneous beliefs among investors on the market equilibrium
price has been an important focus in the CAPM literature. A number of models with
investors who have heterogeneous beliefs have been previously studied.1 A common
finding in this strand of research is that heterogeneous beliefs can affect aggregate
market returns. However, the question remains as to how exactly does heterogeneity
affect the market risk of risky assets? In much of this earlier work, the heterogeneous
beliefs reflect either differences of opinion among the investors2 or differences in
information upon which investors are trying to learn by using some Bayesian updat-
ing rule.3 Heterogeneity has been investigated in the context of either CAPM-like
mean-variance models (for instance, Lintner 1969; Miller 1977; Williams 1977; and
Mayshar 1982) or Arrow–Debreu contingent claims models (as in Varian 1985; Abel
1989; 2002; and Calvet et al. 2004).

1 See, for example, Lintner (1969), Williams (1977), Huang and Litzenberger (1988), Abel (1989),
Detemple and Murthy (1994), Zapatero (1998) and Basak (2000).
2 See, for example, Lintner (1969), Miller (1977), Mayshar (1982), Varian (1985), Abel (1989,
2002) and Cecchetti et al. (2000).
3 Typical studies include Williams (1977), Detemple and Murthy (1994) and Zapatero (1998).
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In most of the cited literature, the impact of heterogeneous beliefs is studied
for the case of a portfolio of one risky asset and one risk-free asset (for example,
Abel 1989; Detemple and Murthy 1994; Zapatero 1998; Basak 2000; and John-
son 2004). In those papers that consider a portfolio of many risky assets and one
risk-free asset, investors are assumed to be heterogeneous in their risk preferences
and expected payoffs or returns of the risky assets (such as Williams 1977 and
Varian 1985), but not in their estimates of variances and covariances. The only
exception seems to have been the early contribution of Lintner (1969) in which
heterogeneity in both means and variances/covariances is investigated in a mean-
variance portfolio context. As suggested by the empirical study of Chan et al.
(1999), while future variances and covariances are more easily predictable than
expected future returns, the difficulties in doing so should not be understated. These
authors argue that “while optimization (based on historical estimates of variances
and covariances) leads to a reduction in volatility, the problem of forecasting covari-
ance poses a challenge”. Therefore, a theoretical understanding of the impact of
heterogeneous beliefs in variances and covariances on equilibrium prices, volatil-
ity and asset betas is very important for a proper development of asset pricing
theory.

Different from the above literature, various heterogeneous agent models (HAMs)
have been developed to characterize the dynamics of financial asset prices result-
ing from the interaction of heterogeneous agents with different attitudes towards
risk and different expectations about the future evolution of asset prices. One of
the key elements of this literature is the expectations feedback mechanism, see
Brock and Hommes (1997, 1998). We refer the reader to Hommes (2006), LeBaron
(2006) and Chiarella et al. (2009) for surveys of recent literature on HAMs. This
framework has successfully explained various types of market behaviour, such as
the long-term swing of market prices from the fundamental price, asset bubbles
and market crashes. It also shows a potential to characterize and explain the styl-
ized facts (for example, Chiarella et al. 2006b; Gaunersdorfer and Hommes 2007;
and Farmer et al. 2004) and various kinds of power law behaviour (for instance,
Lux 2004; Alfarano et al. 2005; and He and Li 2007) observed in financial markets.
However, most of the HAMs analyzed in the literature involve a financial market
with only one risky asset4 and are not in the context of the CAPM. In markets
with many risky assets and heterogeneous investors, the impact of heterogeneity on
the market equilibrium and standard portfolio theory remains a largely unexplored
issue.

This paper is largely motivated by a re-reading of Lintner’s early work and recent
development in the HAMs literature, in particular, our recent work Chiarella et al.
(2006a). Although Lintner’s earlier contribution discusses how to aggregate het-
erogeneous beliefs, the impact of heterogeneity on the market equilibrium price,
risk premia and CAPM within the mean-variance framework has not been fully

4 Except for some recent contributions by Westerhoff (2004), Chiarella et al. (2005, 2007) and
Westerhoff and Dieci (2006) showing that complex price dynamics may also result within a multi-
asset market framework.
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explored. The main obstacle in dealing with heterogeneity is the complexity and
heavy notation involved when the number of assets and the dimension of the het-
erogeneity increase. It might be this notational obstacle that makes the paper of
Lintner hard to follow, and renders rather complicated the analysis of the impact
of heterogeneity on market equilibrium prices. In this paper, we reconsider the
derivation of the traditional CAPM in a discrete time setting for a portfolio of
one risk-free asset and many risky assets and provide a simple framework that
incorporates heterogeneous beliefs. In contrast to the standard setting we consider
heterogeneous agents whose expectations of asset returns are based on statisti-
cal properties of past returns and so induce expectations feedback. Different from
Chiarella et al. (2006a) where beliefs are formed in terms of the payoff, we
assume that agents form their demands based upon heterogeneous beliefs about
conditional means and covariances of the risky asset returns. The market clearing
prices are determined under a Walrasian auctioneer scenario. In this framework
we first construct a “consensus” belief (with respect to the means and covari-
ances of the risky asset returns) to represent the aggregate market belief and
derive a heterogeneous CAPM which relates aggregate excess return on risky
assets with aggregate excess return on the aggregate market wealth via an aggre-
gate beta coefficient for risky assets. We then extend the analysis to a repeated
one-period set up and establish a framework for a dynamic CAPM using a “mar-
ket fraction” model in which agents are grouped according to their beliefs. We
obtain an exact relation between heterogeneous beliefs and the market equilibrium
returns and the ex-ante beta-coefficients. The framework developed here could be
used for further study of the complicated impact of heterogeneity on the market
equilibrium.

The paper is organized as follows. Section 2 derives equilibrium CAPM-like
relationships for asset returns in the case of heterogeneous beliefs and relates a
“consensus” belief about the expected excess return on each risky asset to a “con-
sensus” belief about expected market return, via aggregate beta coefficients. There
follows a discussion about the wealth dynamics and the beta coefficients, and how
they relate to the heterogeneous beliefs about the returns on the risky assets. Finally
this section also considers explicitly the supply of the risky securities, and derives
equilibrium prices, and relates the aggregate beta coefficients to the market equi-
librium prices. Section 3 extends the analysis to a repeated one-period set up and
obtains a dynamic, “market fraction” multi-asset framework with heterogeneous
groups of agents, which generalizes earlier contributions by Brock and Hommes
(1998) and Chiarella and He (2001, 2002), and highlights how the aggregate ex-
ante beta coefficients may vary over time once agents’ beliefs are assumed to be
updated dynamically at each time step as a function of past realized returns. The
framework is different from that of Chiarella et al. (2007), which uses a mar-
ket maker mechanism to arrive at the market price, as here we use the Walrasian
auctioneer scenario. Section 4 concludes and suggests some directions for future
research.
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2 The CAPM with Heterogeneous Beliefs

The present section generalizes the derivation of the CAPM relationships, as car-
ried out for instance by Huang and Litzenberger (1988, Sect. 4.15), to the case of
investors with heterogeneous beliefs about asset returns. Some of the ideas con-
tained in the present section are adapted from Lintner (1969), where aggregation of
individual assessments about future payoffs is performed in a mean-variance frame-
work. However, different from Lintner (1969), the aggregation is explicitly given
by constructing a consensus belief, which greatly facilitates the establishment of the
CAPM with heterogeneous beliefs.

Consider an economy with many agents who invest in portfolios consisting of
a riskless asset and N risky assets with N � 1. Let rf be the risk free rate of
the riskless asset and Qrj be the rate of return of risky asset j , j D 1; 2; : : : ; N .
Following the standard CAPM setup, we assume that the returns of the risky assets
are multivariate (conditionally) normally distributed and the utility function ui .x/

of agent i is twice differentiable, concave and strictly increasing, i D 1; 2; : : : ; I .
Let W i

0 be the initial wealth of agent i and wij be the wealth proportion of agent i
invested in asset j . Then the end-of-period wealth, eWi , of agent i is given by

eWi D W i
0

0
@1C rf C

NX
j D1

wij .Qrj � rf /
1
A : (1)

Following Huang–Litzenberger (Sect. 4.15), the maximization of the expected util-
ity of the portfolio wealth of agent i is characterized by the first order condition:

Ei

�
u0

i .
eWi /


Ei

� Qrj � rf 
 D �Ei

�
u00

i .
eWi /


Covi .eWi ; Qrj / (2)

for any j D 1; 2; : : : ; N , where Ei .�/ is the conditional mean and Covi .�; �/ is the
conditional covariance of agent i , characterizing the heterogeneity of the agents in
their beliefs. By defining the global absolute risk aversion of agent i

�i WD �Ei

�
u00

i .
eWi /



Ei

�
u0

i .
eWi /

 ;

condition (2) becomes

��1
i Ei

� Qrj � rf 
 D Covi .eWi ; Qrj /; j D 1; 2; : : : ; N: (3)

Note that by its definition in (1)

Covi .eWi ; Qrj / D W i
0

NX
kD1

wikCovi

� Qrk; Qrj � :
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It follows that the conditions (3) can be rewritten with vector notation as

��1
i

�
Ei ŒQr� � rf 1

� D W i
0 �i wi ; (4)

where Qr D ŒQr1; Qr2; : : : ; QrN �>, 1 D Œ1; 1; : : : ; 1�> 2 R
N , wi D Œwi1;wi2; : : : ;wiN �

>,
�i D

�
�i;jk



N �N

, j; k D 1; 2; : : : ; N , and �i;jk WD Covi

� Qrj ; Qrk�, i D 1; : : : ; I .
We assume that the �i .i D 1; 2; : : : ; I / are positive definite and thus invertible. It
follows from (4) that the optimal portfolio wi of agent i is given by5

wi D 1

W i
0

��1
i ��1

i

�
Ei ŒQr� � rf 1

�
: (5)

Let Wm0 DPI
iD1W

i
0 be the total wealth in the economy and wa be the propor-

tions of the total wealth in the economy invested in the risky assets. The market is
in equilibrium when the condition

Wm0wa D
IX

iD1

W i
0 wi (6)

is satisfied.6 Let eWm represent the random end-of-period wealth in the economy.
Similarly to Huang and Litzenberger (1988, Sect. 4.15), we define the rate of return
Qrm on the aggregate market wealth as the one which satisfies

eWm D
IX

iD1

eWi D Wm0.1C Qrm/: (7)

Substituting (1) into the right hand side of the first equality of (7) and performing
some algebraic manipulations we find that Qrm can also be rewritten in terms of
aggregate wealth proportions as

Qrm D rf C w>
a

�Qr � rf 1
�
: (8)

Then we have the following result when the market is in equilibrium.

Proposition 1 Let‚ D .PI
iD1 �

�1
i /�1. Define a consensus belief in the covariance

matrix and the expected return vector, respectively, as

5 The optimal portfolio wi of agent i is only implicitly defined by (5), because in general �i D
�i .wi / will depend on wi . Nevertheless, at this stage we are interested in equilibrium relationships
involving aggregate beliefs, which do not require wi to be made explicit.
6 The condition (6) is in monetary units, it can also be expressed as aggregate demand (in quantity
terms) for risky assets equals aggregate supply (also quantity terms) on dividing throughout by the
equilibrium price.
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�a D
�
‚

IX
iD1

��1
i ��1

i

��1

; (9)

EaŒQr� D ‚�a

IX
iD1

��1
i ��1

i Ei ŒQr�: (10)

Then, when the market is in equilibrium:

(1) The vector of proportions wa of the total wealth in the economy invested in the
risky assets is given by

wa D 1

Wm0

‚�1��1
a

�
EaŒQr� � rf 1

�
: (11)

(2) The expected return on the aggregate market wealth

Ea.Qrm/ D rf C‚Wm0�
2
a;m; (12)

where
�2

a;m D wT
a �awa (13)

is the variance of the aggregate market wealth return.
(3) The expected returns of the risky assets satisfy

EaŒQr� � rf 1 D ˇa.Ea.erm/� rf /; (14)

where

ˇa D .ˇa;1; ˇa;2; : : : ; ˇa;N /
> D 1

�2
a;m

�awa; ˇa;j D �a;jm=�
2
a;m: (15)

Proof. See the appendix

Note that the existence of the consensus covariance matrix �a follows from
the fact that, in (9), ��1

a is a convex combination of positive definite matrices
��1

i , which implies that ��1
a is also positive definite, and therefore nonsingu-

lar. Note also that when the consensus belief is replaced with the objective and
homogeneous belief, Proposition 1 results in the standard CAPM. When agents
have heterogeneous beliefs, the consensus beliefs defined in Proposition 1 provides
an explicit way to aggregate the heterogeneous beliefs, under which the standard
CAPM-like relation (14) holds under the heterogeneous beliefs. Note that ‚Wm0

can be interpreted as the aggregate relative risk aversion of the economy in equi-
librium. In particular, when �i D �0 for i D 1; 2; : : : ; I , we have ‚ D �0=I and
‚Wm0 D �0.Wm0=I /, measuring the relative risk aversion of an agent at the aver-
age wealth level. The market equilibrium condition (6) allows a non-zero supply of
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the riskless asset in the economy. If a zero net supply of the riskless asset is assumed
when the market is in equilibrium, we then obtain the following corollary.

Corollary 1 In market equilibrium, if the riskless asset is in zero net supply in the
economy, then the risk-free rate rf is given by

rf D 1>��1
a EaŒ Qr � �‚Wm0

1>��1
a 1

: (16)

In this case the returnerm on the aggregate market wealth becomes the return on
the market portfolio of the risky assets, and the variance �2

a;m becomes the variance
of the market portfolio of the risky assets.

Proof. It follows from 1>wa D 1 and (11) in Proposition 1 that

‚Wm0 D 1T ��1
a .EaŒQr� � rf 1/: (17)

Solving for rf leads to the result.

Corollary 1 shows that the equilibrium risk-free rate rf is determined endoge-
nously when the riskless asset is in zero net supply in the economy. It in fact depends
on the aggregate relative risk aversion coefficient ‚Wm0 and the consensus beliefs
in the expected return and the variance-covariance matrix of the risky assets.

In order to understand the impact of the market wealth on the risk premia and
beta coefficients of the risky assets, we provide the following result.

Corollary 2 In market equilibrium, the expected return of the economy is given by

Ea.Qrm/ D rf C 1

‚Wm0

.EaŒQr� � rf 1/>��1
a .EaŒQr� � rf 1/; (18)

the variance is given by

�2
a;m D

1

.‚Wm0/2
.EaŒQr� � rf 1/>��1

a .EaŒQr� � rf 1/; (19)

and the beta coefficients can be rewritten as

ˇa D
‚Wm0

.EaŒQr� � rf 1/>��1
a .EaŒQr� � rf 1/

.EaŒQr� � rf 1/: (20)

Proof. In market equilibrium, (18) follows from (11) and the resultEa.erm/ D rf C
w>

a .EaŒQr� � rf 1/ [see (37) of the appendix]; (19) follows from and (11) and (13);
and (20) follows from (11), (15) and (19).

Corollary 2 expresses the equilibrium relationships where the riskless asset is
not necessarily in zero net supply. If the riskless asset is in zero net supply the
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equilibrium relationships turn out to be explicitly independent of the total wealth in
the economy.

Corollary 3 If the riskless asset is in zero net supply in the economy, then the
expected return of the market portfolio of the risky assets is given by

Ea.Qrm/ D rf C .EaŒQr� � rf 1/>��1
a .EaŒQr� � rf 1/

1>��1
a .EaŒ Qr � � rf 1/

; (21)

the variance of the market portfolio of the risky assets is given by

�2
a;m D

.EaŒQr� � rf 1/>��1
a .EaŒQr� � rf 1/

.1>��1
a .EaŒ Qr � � rf 1//2

; (22)

and the beta coefficients can be rewritten as

ˇa D
1>��1

a .EaŒ Qr � � rf 1/

.EaŒQr� � rf 1/>��1
a .EaŒQr� � rf 1/

.EaŒQr� � rf 1/: (23)

Proof. When the riskless asset in the economy is in zero net supply, we have that
(17) holds. Using this to replace‚Wm0 with 1>��1

a .EaŒQr�� rf 1/ in (18), (19) and
(20), we obtain (21), (22) and (23), respectively.

It is interesting to note that, when the risk-free rate rf is given exogenously and
the riskless asset is not in zero net supply, the expected return and variance of the
economy and the beta coefficients of the risky assets with the economy7 depend on
the total wealth in the economy. However, when the riskless asset in the economy
is in zero net supply, the return of the economy is given by the return of the mar-
ket portfolio of the risky assets. Consequently, the expected return and variance of
the market portfolio and the beta coefficients of the risky assets with the market
portfolio do not depend explicitly on the wealth. This difference, generated from
the restriction that the riskless asset in the economy be in zero net supply, has the
potential to explain the impact of heterogeneous beliefs on the risk-free rate and
risk premium puzzles. We refer the reader to He and Shi (2009) for further discus-
sion of this issue. To obtain the equilibrium prices of the risky assets, we assume
that agents have CARA exponential utility of wealth functions, so that the global
absolute risk aversion of agent i , �i D �Ei

�
u00

i .
eWi /


=Ei

�
u0

i .
eWi /


, and hence the

aggregate risk aversion ‚, are constants. Let z W D Œz1; z2; : : : ; zN �
> be the positive

supply vector (number of shares) of the risky assets in the economy and denote by
Z WD diagŒz1; z2; : : : ; zN � the .N � N/ diagonal matrix whose entries are the ele-
ments of z. Then the market equilibrium prices of the risky assets can be determined
according to the following corollary.

7 Note we distinguish between beta of the economy when the riskfree asset is not in zero net supply
and the beta of the market (obtained when the riskfree asset is in zero net supply).
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Corollary 4 Let p0 D Œp01; p02; : : : ; p0N �
> be the vector of the prices of the risky

assets when the market is in equilibrium. Then

p0D Z�1‚�1��1
a

�
EaŒQr� � rf 1

� D Z�1

IX
iD1

��1
i ��1

i

�
Ei ŒQr� � rf 1

�
(24)

and the beta coefficients can be written as

ˇa D
Wm0

p>
0 Z�aZp0

�aZp0: (25)

In particular, when the riskless asset is in zero net supply in the economy,

ˇa D
p>

0 z

p>
0 Z�aZp0

�aZp0: (26)

Proof. Given the positive supply of the risky assets in the economy, the prices of the
risky assets when the market is in equilibrium satisfy the conditionWm0wa D Zp0.
Substituting wa from (11) into the last condition, we obtain the first equality in (24),
the second follows by use of (10). Replacing EaŒQr� � rf 1 with ‚�aZp0 in (20)
and (23) we then obtain the expressions (25) and (26) for ˇa, respectively.

One of the advantages of the expressions for the beta coefficients in Corollary 4 is
that we can use the market information about the observed beta coefficients and mar-
ket prices to estimate the market consensus covariance matrix �a, which may not be
observed or difficult to estimate in a heterogeneous beliefs market. The implications
of this observation for empirical studies is left for future research.

3 A Dynamic Market Fraction CAPM

The present section first sets up a framework for a market fraction model with het-
erogeneous beliefs, which extends contributions developed by Brock and Hommes
(1998), Chiarell and He (2001, 2002) and He and Li (2008) in the simple case of a
single risky security to a multi-asset framework. We then extend the framework to
a repeated one period dynamic CAPM model. Related, but different, studies of the
CAPM with heterogeneous beliefs can be found in Böhm and Chiarella (2005) and
Böhm and Wenzelburger (2005).

Assume that the I investors can be grouped into a finite number of agent-types,
indexed by h 2 H , where the agents within the same group are homogeneous in
their beliefsEhŒQr� and �h, as well as risk aversion coefficient �h. Denote Ih, h 2 H ,
the number of investors in group h and nh WD Ih=I the market fraction of agents of
type h. We then denote by s WD .1=I /z the supply of shares per investor. Note that,
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instead of using the aggregate risk aversion coefficient ‚ WD
�PI

iD1 �
�1
i

��1

it is

convenient to define the “average” risk aversion �a as

�a WD
 X

h2H

nh�
�1
h

!�1

;

where obviously �a D I‚. It follows from Proposition 1 that the aggregate beliefs
about variances/covariances and expected returns can be rewritten, respectively, as

�a D ��1
a

 X
h2H

nh�
�1
h ��1

h

!�1

; EaŒQr� D �a�a

X
h2H

nh�
�1
h ��1

h EhŒQr�:

Finally, by defining S D diag.s1; s2; : : : ; sN /, the equilibrium prices in (21) can be
rewritten as

p0 D S�1��1
a ��1

a

�
EaŒQr� � rf 1

� D S �1
X
h2H

nh�
�1
h ��1

h .EhŒQr� � rf 1/:

We now turn to the process of formation of heterogeneous beliefs and equilib-
rium prices in a dynamic setting, from time t to time t C 1. In doing so, we take
the view that agents’ beliefs about the returns QrtC1 in the time interval .t; t C 1/,
which are formed before dividends at time t are realized and prices at time t are
revealed by the market, determine the aggregate demand for each risky asset at
time t , which in turns produces the equilibrium prices at time t , pt , via the mar-
ket clearing conditions. Of course, once prices and dividends at time t are realized,
the returns rt become known. More precisely, we assume that agents’ assessments
of the end-of-period joint distribution of the returns QrtC1 are formed at time t before
the equilibrium prices at time t are determined. These beliefs remain fixed while the
market finds its equilibrium vector of current prices, pt . In particular, the heteroge-
neous beliefs (or assessments) of agents about the mean and covariance structure
of QrtC1 are functions of the information up to time t � 1, which can be expressed
as functions of the realized returns rt�1, rt�2, . . . , for any group, or belief-type
h 2 H ,8

�h;t WD ŒCovh;t.Qrj;tC1; Qrk;tC1/� D �h.rt�1; rt�2; : : :/; (27)

Eh;t ŒQrtC1� D fh.rt�1; rt�2; : : :/; (28)

where obviously similar representations hold also for the aggregate beliefs �a;t

WD ŒCova;t .Qrj;tC1; Qrk;tC1/� and Ea;t ŒQrtC1�. The market clearing prices at time t

8 We use Eh;t .QrtC1/ to denote the expectation of QrtC1 formed at time t by the agents of group h.
Similarly for the notation Covh;t .Qrj;tC1; Qrk;tC1/.
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become
pt D S�1

X
h2H

nh�
�1
h ��1

h;t .Eh;t ŒQrtC1� � rf;t 1/; (29)

or in terms of the consensus beliefs,

pt D S�1��1
a ��1

a;t .Ea;t ŒQrtC1� � rf;t 1/; (30)

where rf;t is the riskfree rate over the time period from t to t C 1.
Next, note that the return rj;t on asset j , realized over the time interval .t � 1; t/

is given by

rj;t D pj;t C dj;t

pj;t�1

� 1;

where dj;t denotes the realized dividend per share of asset j , j D 1; 2; : : : ; N . We
can rewrite realized returns in vector notation as

rt D P�1
t�1.pt C dt / � 1; (31)

where dt W D Œd1;t ; d2;t ; : : : ; dN;t �
>, and Pt WD diag.p1;t ; p2;t ; : : : ; pN;t /. Equa-

tion (31), via the market equilibrium prices (29) and the beliefs updating (27) and
(28), gives the return rt as a function of rt�1, rt�2; : : : and of the realized dividends
dt , which are assumed to follow an exogenous random process in general. Thus the
dynamics of prices and returns are determined by both the endogenous dependence
of returns on past returns in (31) and the exogenous stochastic dividend process.

We summarize below the dynamical system that describes the market fraction
multi-asset model in terms of returns, where the market clearing prices are used as
auxiliary variables

Proposition 2 For the market fraction model, the equilibrium return vector of the
risky assets is given by

rt D F.rt�1; rt�2; : : : I Qdt / D P�1
t�1.pt C Qdt / � 1;

where
pt D S�1

X
h2H

nh�
�1
h ��1

h;t .Eh;t ŒQrtC1� � rf;t 1/;

Pt WD diag.p1;t ; p2;t ; : : : ; pN;t /, �h;t D �h.rt�1; rt�2; : : :/, and Eh;t.QrtC1/ D
fh.rt�1; rt�2; : : :/. Moreover, at the beginning of each time interval .t; t C 1/ the
expected returns under the aggregate beliefs (based on information up to time t �1)
satisfy a CAPM-like equation of the type

Ea;t ŒQrtC1� � rf;t 1 D ˇa;t .Ea;t .Qrm;tC1/� rf;t /;

where Qrm;tC1 is the rate of the return of the aggregate market wealth over the time
period from t to t C 1 defined by eWm;tC1 D eWm;t .1 C Qrm;tC1/, and eWm;t is the
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aggregate wealth in the economy at time t . Under the dynamical consensus belief,
the rate of return on the aggregate market wealth is given by

Qrm;tC1 D rf;t C 1

‚Wm;t

.Ea;t ŒQrtC1� � rf;t 1/>��1
a;t .QrtC1 � rf;t 1/

and the “aggregate” beta coefficients are given by

ˇa;t D
‚Wm;t

.Ea;t ŒQrtC1� � rf;t 1/>��1
a;t .Ea;t ŒQrtC1� � rf;t 1/

.Ea;t ŒQrtC1� � rf;t 1/:

As in the discussion of the static framework in Sect. 2, in the case of zero net
supply of the riskless asset the relationships in Proposition 2 do not depend explicitly
on the wealth in the economy. Thus we can state

Proposition 3 If the riskless asset is in zero net supply over the time period in the
economy, then the equilibrium risk-free rate is given by

rf;t D
1>��1

a;tEa;t Œ Qr tC1� �‚Wm;t

1>��1
a;t 1

:

Consequently,

Qrm;tC1 D
.Ea;t ŒQrtC1� � rf;t 1/>��1

a;t QrtC1

.Ea;t ŒQrtC1� � rf;t 1/>��1
a;t 1

and

ˇa;t D
.Ea;t ŒQrtC1�� rf;t 1/>��1

a;t 1

.Ea;t ŒQrtC1� � rf;t 1/>��1
a;t .Ea;t ŒQrtC1� � rf;t 1/

.Ea;t ŒQrtC1� � rf;t 1/:

Note that the “aggregate” betas are time varying due to time varying beliefs about
both the first and second moments of the returns distribution.

4 Discussion

Unlike the traditional paradigm of the representative agent and rational expecta-
tions, recent literature has directed a great deal of attention to a new paradigm of
heterogeneity and bounded rationality. The new paradigm provides a platform for
analysing the complicated market behaviour that comes from the interaction of het-
erogeneous, boundedly rational and adaptive agents and for explaining empirical
anomalies which are a challenge for the traditional paradigm. It becomes clear that
heterogeneity and bounded rationality play very important roles in our understand-
ing of economic behaviour, in particular, their impact on the financial market. It is
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widely recognized that heterogeneity can have a significant impact on asset pric-
ing. As one of the fundamental asset pricing equilibrium models, the CAPM plays
a very important role in modern finance and economics. However, the framework of
the traditional paradigm makes it difficult to examine the impact of heterogeneity
and bounded rationality on asset pricing. This paper provides a framework for the
analysis of CAPM within the new paradigm.

The main obstacle in dealing with heterogeneity is the complexity and heavy
notation involved when the number of assets and the dimension of the hetero-
geneity increase. Within the mean-variance framework with heterogeneous beliefs,
this paper overcomes this obstacle by constructing a consensus belief explicitly in
order to characterize the market aggregation of the heterogeneous beliefs. Based
on the consensus belief, we are able to set up a general framework for the CAPM
to incorporate heterogeneous beliefs. We also extend the framework to a repeated
one-period dynamical market fraction model. Within this framework, we are able
to characterize exactly the relationships between market belief in equilibrium and
heterogeneous beliefs, between the market risk premium of each risky asset and its
beta coefficient, and derive the dynamics of beta coefficients and market equilibrium
prices.

The framework provided in this paper can be used to examine the impact of var-
ious types of heterogeneity and bounded rationality on market prices and risk. For
example, we may use the framework to explore the following questions: how do
the optimistic or pessimistic views of agents and their confidence about their views
influence the risk-free rate, equity premium and market price of the risk? which
belief or investment strategy will have significant impact on the market equilib-
rium price? Recent HAMs literature that considers portfolios of one riskless asset
and one risky asset demonstrates that bounded rational behaviour of heterogeneous
agents can cause the market to be more complicated and less efficient than the stan-
dard paradigm allows for, generating many of the stylized facts and observed market
anomalies. Within the framework of the dynamic CAPM with multiple risky assets,
we can examine if the traditional diversification effect still holds. We can also study
how learning and adaptive behaviour of heterogeneous agents contribute to the sur-
vivability of agents and market volatility. In particular, it would be interesting to
know if the framework for the dynamic CAPM can be used to explain empirical
evidence on the time variation of beta, which measures the time varying risk of
risky assets. We believe that the framework established in this paper can be used to
tackle such questions and issues, all of which we leave to future research.

Appendix

Proof of Proposition 1. With the optimal portfolio wi defined by (5), we sum (5)
across i and obtain

IX
iD1

W i
0 wi D

IX
iD1

��1
i ��1

i

�
Ei ŒQr� � rf 1

�
: (32)
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In market equilibrium, it follows from (32) that the proportions of the market wealth
invested in the risky assets are given by

wa D 1

Wm0

IX
iD1

W i
0 wi D 1

Wm0

IX
iD1

��1
i ��1

i

�
Ei ŒQr� � rf 1

�
: (33)

Using the “consensus” belief about the variance and covariance matrix of returns,
�a, defined in (9) of Proposition 1, we have

��1
a D ‚

IX
iD1

��1
i ��1

i ; (34)

where we recall that ‚ WD
�PI

iD1 �
�1
i

��1

. Then it follows from (33), (34) and

the “consensus” belief about the market aggregate return, EaŒQr�, defined in (10) of
Proposition 1 that

wa D 1

Wm0

 
IX

iD1

��1
i ��1

i Ei ŒQr� �‚�1��1
a rf 1

!

D 1

‚Wm0

��1
a

 
‚�a

IX
iD1

��1
i ��1

i Ei ŒQr� � rf 1

!

D 1

‚Wm0

��1
a

�
EaŒQr� � rf 1

�
;

from which

�awa D 1

‚Wm0

�
EaŒQr� � rf 1

�
: (35)

Then, with the consensus belief, the variance of the market return �2
a;m D w>

a �awa

is given by

�2
a;m D

1

‚Wm0

w>
a

�
EaŒQr� � rf 1

�
; (36)

and from (8) the expected market return is given by

Ea.Qrm/ D rf C w>
a

�
Ea ŒQr� � rf 1

�
: (37)

Both (37) and (36) imply that

Ea.Qrm/� rf D ‚Wm0�
2
a;m > 0; (38)

that is, the aggregate expected market risk premium is proportional to the aggregate
relative risk aversion of the economy and the market risk.
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It follows from (35) and (38) that

Ea ŒQr� � rf 1 D Ea.Qrm/� rf
�2

a;m

�awa: (39)

The entries of �awa represent the aggregate covariances between the return on each
risky asset and the return on the aggregate market wealth,

�awa D Œ�a;jm�; �a;jm WD Cova.Qrj ; Qrm/; j D 1; 2; : : : ; N

so that (39) can be rewritten componentwise as

Ea.Qrj / � rf D �a;jm

�2
a;m

ŒEa.Qrm/� rf �; j D 1; 2; : : : ; N; (40)

where �a;jm=�
2
a;m D ˇa;j represents the aggregate beta coefficient of the j -th risky

asset. Equation (40) is the traditional CAPM relation generalized to the case of
heterogeneous beliefs. The vector ˇa WD Œˇa;1; ˇa;2; : : : ; ˇa;N �

> of the aggregate
beta coefficients in (39) is thus given by

ˇa D
1

�2
a;m

�awa: (41)
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Optimal Monetary Policy for Commercial Banks
Involving Lending Rate Settings and Default
Rates�

Simone Casellina and Mariacristina Uberti

1 Introduction

In the modern industrial economies, the interest rates dynamics are influenced by
the decisions of the Money Authority. With these decisions the Central Bank of
a country wields a direct control on the trend of short-term interest rates and,
through this way, it is in a position to influence indirectly the long-term interest
rates. Typically the Money Authority resorts to this possibility with the aim to limit
the fluctuations of the main economic variables. So that an immediate connection is
established between the trend of the interest rates and the macro-economic variables
with respect to the Central Bank, that is institutionally to have an influence.

Within this framework, for example, the monetary policy rule introduced by
Taylor (1993) provides the short-term interest rate as a function of the inflation
rate and a measure of the business cycle. This approach is supported by the assump-
tions that the main objectives of the Central Bank are the control of the raise in
prices as well as the real economy fluctuations. The efficaciousness of this relation
– that explains in a simple way the behaviour of the short-term rates – has fostered
empirical as well as theoretical studies.

One of the more interesting aspects is the analysis of the links between the short-
term and the long-term rates. In fact, the Central Bank can influence the behaviour
of the short-term rate but the decisions involving investments or financing in durable
goods (for example, the purchase of a house) depend on the long-term rates. There-
fore, it is important to study how the monetary policy decisions influence the whole
term structure of interest rates.
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Recently, Casellina and Uberti (2008) have taken into account a model involved
by Svensson (1997) to show that the Taylor rule is the optimal policy rule of a
dynamic programming problem where the preferences of the Central Bank are
represented by a suitable quadratic intertemporal loss function. In particular, they
extend Svensson’s model (Svensson, 1997) including the long-term rates through
a relation introduced by Campbell and Shiller (1991). From an economic view-
point, thanks to this extension, it is possible to describe the case where the Central
Bank’s control variable does not influence straight on the real economy. In Casel-
lina and Uberti’s model (Casellina and Uberti, 2008), the observed output gap1 yt is
assumed to depend on the dynamics of long-term interest rate It and this last vari-
able depends on the observed short-term interest rate rt as well as the expectations
of the future short-term interest rateEtrtC1. For the proposed dynamic optimization
program, the optimal policy function for the Central Bank turns out to be

rt D r C 
 C �1.
t�1 � 
/C �2yt�1 C �3et�1 C �4 .It�1 � 
t�1/

C$1"1;t C$2"2;t C$3"3;t C$4"4;t ; (1)

that is a generalization of Taylor’s rule where 
 is the inflation target that for the
Central Bank guarantees the best development of the economic system; r is the
equilibrium real interest rate; 
t and yt denote inflation and output gap at date t ,
respectively; It denotes the long-term nominal interest rate and et is the exchange
rate;2 "j;t , j D 1; : : : ; 4, are the deviations of the corresponding variables from the
equilibrium values where, since

"4;t D It � 1
2
.rt C Et rtC1/:

$4 represents the optimal response with respect to a shock acting on long-term
interest rate.

Through this relation (1), it is possible to point out how the Central Bank can
wield an effect on the economic system. Moreover, this model suitably allows us to
study the role of expectations on the inflation rate and the spread between short-term
rate and long-term rate.

On the other hand, from an empirical viewpoint, there are many studies where
the effects of the long-term interest rates on the policy rule are investigated.

In particular, Christensen and Nielsen (2005) estimate a VECM with one cointe-
grating relation including Federal funds rate, long-term interest rate, unemployment
and inflation and they find a positive, highly significative, relation between short
and long-term interest rates. Gerlach-Kristen (2003) points out that the traditional
Taylor Rule is unstable when estimated on euro area data and forecast poorly out of
sample. They present an alternative reaction function finding a significant role for

1 The output gap is the difference between the observed output and the potential output at date t .
2 It is the amount of domestic currency for one unit of foreign currency.
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the long rate and they argue this can be explained by seeing long-term interest rate
as a proxy for the public’s perception of long run inflation.

Casellina and Uberti (2008) stress that the proposed model gives a suitable
description of the links among short-term interest rate – the control variable of the
Central Bank – and all, except one, of the other variables of the economic system
considered. In fact, the long-term interest rate enters in the policy function with
a negative sign and this result contrasts with commonly used assumptions, as in
McCallum (2005), or with empirical findings, as in Gerlach-Kristen (2003).

In this paper, starting from the above results, the linkages between the dynam-
ics of short-term and long-term interest rates are analyzed from a new perspective:
through the determination of the lending interest rates, the Commercial Bank reac-
tions to the business cycle perturbation are examined closely, according to the
monetary policy decisions of Central Bank where the short-term rates are fixed
through Taylor type rules.

Concerning this, it is significant to look at the observed data series relating to
Italy. In particular, as a reference rate we consider the EurIRS (Euro Interest Rate
Swap) rate, daily estimated by the European Banking Federation as a mean rate to
which the main European banking-houses draw up swap as coverage of interest risk;
moreover, the EurIRS rate is frequently used as basic rate to calculate fixed-rates,
for example, those of loans: for the validity period of the loan, a fixed-rate can be
offered as the EurIRS added to a variable spread depending on the bank, from 0.5%
to 3%. In Fig. 1, the charged mean rate for the mortgage loans is compared with the
EurIRS up to 25 years. It can generally be noted that the dynamic of the banking
lending interest rate follows that of the reference EurIRS rate; the correlation of the
changes between the two data series is equal to 0.75. Nevertheless, the observed
spread is not a constant (see Fig. 2).
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As Stiglitz and Greenwald (2003) notice, a monetary policy theory that doesn’t
take into account the rule of the banking-houses is destined to fail. In particular,

a central function of banks is to determine who is likely to default and, in doing so, banks
determine the supply of loans. In recent years, the increasing interest in financial stability
as an autonomous policy target has encouraged the analyses of the linkages between the
macroeconomic conditions and the banks behaviour. The goal is to assess to what extent
macroeconomy affects banks’ performance (cyclicality) and whether, in turn, banks actions
affects the macroeconomy, reinforcing cyclical fluctuations (procyclicality).

However, the change in the behaviour of the banks, through the business cycle,
is not explicitly modelled. Few studies assess the role that macroeconomy uncer-
tainty plays in determining the behaviour of the banks. Therefore, as Marcucci and
Quagliariello (2008) notice, the current state of the art is unsatisfactory for two
main reasons: (1) no attempt is made in order to model how the banks management
varies in changing macroeconomic environments; (2) the effect of the uncertainty
regarding future macroeconomic conditions is typically neglected.

Moreover, as regards the areas of recent research in chaotic economic dynam-
ics, we refer to Rosser (1999, 2000) for a wide review of different approaches also
involving Policy and Institutions where the motivation of his researches “is the
hope that not only deeper understanding of the nature of dynamic processes will
be achieved, but that improvements in forecasting in actual markets and economies
will be achieved”.

In the model proposed in this paper, we refer to a Commercial Bank that fixes
the level of rates on investments applying a spread on short-term rate where this
last rate is determined by the policy rule of Central Bank. Besides, the long-term
interest rate dynamics are determined including also the business cycle effect on the
investment portfolio risk of the Commercial Bank.
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The advantage of this approach is to include into the monetary policy model
the default rate3 that is not usually involved in the studies traceable in literature,
though it has a remarkable significance for the Commercial Banks (as a reference,
see Stiglitz and Greenwald, 2003 and the references quoted therein).

The aim is to give a theoretical support to the empirically observed relation
between the control variable of the Commercial Bank and the long-term interest
rates given by the market (Christensen and Nielsen, 2005; Gerlach-Kristen, 2003).
In fact the optimal behaviour of the Commercial Bank is derived as the optimal
solution of an original proposed quadratic stochastic dynamic optimization program
which represents the minimization of an intertemporal loss function of the Commer-
cial Bank. Moreover, this optimal solution can be looked at as an extension of Taylor
type rules.

The proposed model is calibrated by the VAR approach with respect to the Italian
quarterly data series from 1990 to 2007. This data base is remarkable because the
Bank of Italy collected the data in a systematic way and a very long period of time
is covered. The equilibrium as well as the optimal paths of the control variable are
numerically studied (Dennis, 2004). The analysis of these dynamics with respect to
temporary shocks on the variables of the proposed program gives significant results,
in particular, as regards an explanation of the observed changes in the yield curve
slope during the cyclical phase of the economy. The variations of the spread between
long-term and short-term interest rates are explained through the behaviour of an
institution (the Commercial Bank) that, in taking its decisions, takes into account
the level of the default rate.

The paper is organized as follows. The perspective of the Commercial Bank
is outlined in Sect. 2: the notation and the basic assumptions are introduced in
Sect. 2.1; the demand of firms and the decisions of the Commercial Bank are
developed in Sects. 2.2 and 2.3, respectively; the proposed intertemporal model is
outlined in Sect. 3 and the optimal solution is attained in Sect. 3.1; in Sect. 4, the
data used in the implementation of the model are described as well as the simula-
tions based on the model and the comparative results are gathered; Sect. 5 presents
the conclusions.

2 The Perspective of the Commercial Bank

2.1 Notation and Assumptions

Let Lt be the total amount of the investments of the bank towards one client at
time t (loans, financing, . . . ). We assume that the Commercial Bank4 re-finances
at any date to pay the short-term interest rate rt that is directly controlled by the

3 In this paper the default rate is the ratio between doubtful loan and total loan.
4 From now on, we refer to Bank for Commercial Bank.
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Central Bank, where r is the equilibrium value, and the Bank lends funds at the
lending interest rate (i.e. long-term interest rate) it D rt C dt .

In the absence of default, the total profit Pt D .it�rt /Lt of the Bank depends on
the applied spread and the total amount of the investments. We can assume that the
Bank wishes to maintain the applied spread dt at a fixed level d and this assump-
tion is motivated by two reasons. First, with the underlying hypothesis of imperfect
competition or monopoly, a variation in the spread generates two conflicting effects:
on the mean yield of every investment and on the numbers of clients of the Bank.
Then the level d can be considered as the level that maximizes the total yield before
doubtful loans. On the other hand, if the default rate is introduced in the analysis and
it is assumed that it also depends on the interest rates, we note that the Bank cannot
indefinitely increase the spread because this rises the default risk (see Stiglitz and
Weiss, 1981 for a well known analysis on this adverse selection process). As we will
see in the following, if a constant target is fixed for the applied spread, the equilib-
rium level of the default risk can be determined by suitable links among doubtful
loans, investments and interest rate. Then, the target d for the spread can be con-
sidered as the value that maximizes the preferences of the Bank with respect to the
yield and the risk.

As regards the default rate, if Dt is the financing total amount that at any time
goes to default (i.e. the doubtful loan) it expresses a loss for the Bank5 and therefore
the default rate can be so defined

DRt D Dt

Lt

: (2)

The relation (2) can be regarded as a risk measure of the Bank’s credit portfolio
and moreover, since the relation among the default rate, the doubtful loans and the
investments is non-linear, also the quantity

logDRt D logDt � logLt (3)

can be considered as an alternative risk measure.
In this paper, we assume that the investment and the financing depend on some

macroeconomic variables at any date t , in particular, on the interest rate it , the
inflation 
t and the output gap yt as a measure of the business cycle.

2.2 Firms: The Demand Side

The investments depend on the decisions of firms and such decisions take into
account the evolution of the macroeconomic conditions. LetExtC1 D E .xtC1j�t /

5 We assume a Loss Given Default of 100%.
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be the expectation of xtC1 that a rational decision maker estimates, given the
information�t available at date t .

We assume that the investments depend on the expected values of the output gap
EytC1 as well as of the real interest rate EitC1 �E
tC1

lnLt D eLt D b0t C b1EytC1 C b2 .EitC1 � E
tC1/ ;

b0, b1 > 0I b2 < 0;

where b0 is the equilibrium growth rate of the investments.
For the doubtful loans, we assume that they are functions of the output gap6 yt

and of the real interest rate it � 
t so that the following relation holds

lnDt D fDt D a0t C a1yt�1 C a2 .it�1 � 
t�1/ ;

a0, a2 > 0I a1 < 0:

The quantity a1yt�1 C a2 .it�1 � 
t�1/ describes the deviation from the trend
a0t . A cyclical phase of slowdown (yt < 0) will induce an increase in doubtful
loans. There will be the same effect as a consequence of an increase in the interest
rate.

In equilibrium we have yt D 0 and it � 
t D r C d � 
 and then eDt D a0t C
a2 .r C d � 
/. As regards the growth rate we get that, in equilibrium conditions,
�Dt

Dt�1
' a0 and since @eDt

@yt
D @Dt

@yt

1
Dt
D a0 this last parameter is the percentage

variation of Dt induced by a variation of yt .
With regard to the default rate, we assume that the Bank is not in a position to

distinguish the clients that will pay off the debts from the ones that will not pay them
(if it would be the case, the bank never should work at a loss and the default rate
would be null); moreover, the Bank knows that a share of the given credits will not
be refunded and that this share is influenced by the behaviour of the real economy
and by the level of interest rates therefore, according to (3), the following relation
holds

lnDRt DgDRt D a1yt�1 C a2 .it�1 � 
t�1/� b1EytC1 � b2 .EitC1 � E
tC1/ :

(4)
In order that the default rate doesn’t burst (or it turns negative), we have to assume
a0 D b0. The equilibrium level is gDR D .a2 � b2/ .r C d/.

Relation (4) points out the trade-off between a bigger profit that the Bank can
obtain increasing the spread and the higher risk that this implies. In fact, if the Bank
increases the interest rate (by means of an increase of the spread) then also the
default rate raises

@gDRt

@dt

D a2 � b2 > 0I

6 The output gap is the deviation of the real economy from a situation of full employment of the
production resources.
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for example, if a2 D 0:001 and b2 D �0:001 a rise of 10 basis points in the spread
implies an increase of the default rate of 2%.

Therefore, we can assume that an adverse risk institution wishes to maintain the
default rate at a fixed level that will be equal to the equilibrium value (D DgDR).

3 Commercial Bank

In the following we assume the Bank’s preferences depend on the deviations from
the spread target d and from the equilibrium value D of the default rate so that the
objective function of the Bank can be described as

Ut D � .dt � d/2 C .1 � �/ .logDRt �D/2 ; (5)

where �, 0 � � � 1, is a weight that expresses the relative importance of the
two components that characterize the Bank’s utility function. Referring to the above
assumptions, the first component of (5) can be guessed as a relative to profit while
the second one relative to risk. So, for increasing values of � the Bank is less risk
adverse.

The control variable dt of the Bank must act along two directions: (1) the spread
of the Bank must be maintained around to a fixed level d such that the net yield is
preserved to a desired level and (2) the risk (i.e. the default rate) must be closed to
the given value D consistent with the target on yield.

4 The Model

Following the above outlines, the model for the Bank can be formalized into this
quadratic dynamic optimization program

min
dt

C1X
tD0

ˇt
h
� .dt � d/2 C .1 � �/ .logDRt �D/2

i
; (6)

gDRt D a1yt�1 C a2 .it�1 � 
t�1/ � b1EytC1 � b2 .EitC1 � E
tC1/ ;

yt D a21yt�1 C a22 .it�1 � 
t�1 � r � d/ ;

t D 
 C a31yt�1 C a32 .E
tC1 � 
/ ;
rt D r C
C a41EytC1C a42 .E
tC1 � 
/ C a43 .EitC1�E
tC1� r � d/;
it D rt C dt ;

a22 < 0I a21; a31; a32; a41; a42; a43 > 0;

where 0 < ˇ < 1 is the intertemporal discount factor.
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The constraints for the output gap yt and 
t depict a closed economy (IS-LM
curve and augmented Philips curve). The fourth constraint involves the dynamic of
the short-term interest rate rt as the optimal monetary policy rule (1) that minimize
the Central Bank loss function of a dynamic optimization intertemporal program on
infinite horizon (Casellina and Uberti, 2008); it has a similar structure to Taylor rule
types, where the spreads from the equilibrium values are pointed out.

The deviation of the business cycle from the equilibrium level depend on the
variations, in real terms, of the interest rate on investments. The rate of inflation
strays from equilibrium 
 as a response of the trend of the real economy and of the
expected inflation.

The level of the short rates rt is determined from the Central Bank on the basis of
a monetary policy rule: the short rates are increased as a response to an overheating
of the economy or to the expectations of an increase of the inflation rate. In a full
employment situation and in the absence of deviation from the inflation rate with
respect to the target 
; fixed to the Central Bank, the equilibrium level of the short
rate is rC
 , i.e. the inflation rate plus a spread. When rt > rC
 this indicates that
the Central Bank is reacting to an overheating of the real economy (yt > 0) or to an
inflationary shock (
t > 
). As suggested by Gerlach-Kristen (2003), the response
function of the Central Bank depends also on the changes of the long-term rates.

4.1 Optimal Solution

The proposed model (6) is a quadratic intertemporal dynamic program and it is well
known that this type of program is relatively tractable and that the corresponding
value function is a quadratic form while the optimal policy function is linear (see,
e.g. Montrucchio and Uberti, 2001 for a theoretical perspective). As regards the
aim of this paper, the numerical approaches for the program (6) is suitable because
it enables us to study the optimal paths for the control variable also with respect
to temporary shocks on the variables of the economic system. Therefore, Dennis’s
algorithms (Dennis, 2004) are adapted to solve the program since they allow the
constraints to be written in a structural form rather than in a state-space form (see
also Casellina and Uberti, 2008).

The optimal behaviour for the Bank with the quadratic intertemporal utility
function (5) as in the proposed program (6) turns out to be

dt D d C �1yt�1 C �2 .it�1 � 
t�1 � r � d/ ;
�1 > 0I �2 < 0:

It is noteworthy that also for the Bank and not only for the Central Bank, the
optimal solution can be looked at as an extension of Taylor type rules.
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5 Data and Comparative Results

The proposed model is calibrated on the basis of the vector auto-regressive (VAR)
approach with respect to the Italian quarterly data series from 1990 to 2007. Data
regarding the macroeconomic variables comes from the national accounting system,
data on loans and doubtful loans comes from the Base Informativa Pubblica (BIP)
of the Bank of Italy. The Bank of Italy keeps a data base containing data on the bank
loans over 75,000 euro and on all the doubtful loans.

The results we attain from the comparison between the dynamics obtained with
the proposed model and the ones empirically observed are particularly interesting
thanks to the peculiarity and the wealth of the data base of the Bank of Italy, since
the data are collected in a systematic way and covering a very long period of time.

As regards the equilibrium, this is achieved with both a43 < 0 or a43 > 0 and
there is an univocal effect on the optimal behaviour of the Bank: if a43 < 0 the
parameters have absolute values less than the ones of the case a43 > 0.

Throughout a recession phase (negative output gap) the demand of funds
decreases while it increases the quote of loans that go into the state of default
(Fig. 3). Consequently, the default rate rises. Following the policy rule, the Mone-
tary Authority reduces the short-term interest rate with the aim to whet the economy.
Also the lending interest rate reduces but in a more considerable way (the spread
decreases) trying to limit the default rate (Fig. 4).

It is also significant to analyze how the optimal paths of the spread (the control
variable) can vary with respect to a temporary shock on the economy.

In Fig. 5 the Central Bank, following the policy rule, rises the short-term interest
rate after a positive shock on real economy. Since the default rate decreases, the
Bank increases the spread so the lending interest rate increases more than the short-
term interest rate. This implies an increase of the slope of the yield curve. Figure 6

output gap default rate
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0

–0.2
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–0.6

–0.8

–1

–1.2

Fig. 3 Reactions of default rate and output gap
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Fig. 4 Reactions of real short and lending interest rates

5.5 5
Y positive shock

2.5

2

1.5

1

0.5

0

4.5

3.5

2.5

1.5

0.5

–0.5

spread short term long term

Fig. 5 Estimated optimal impulse response to a positive shock on yt

shows the opposite situation: a negative shock on real economy leads up to become
flat the yield curve, this appends because the Bank reduces the spread trying to
reduce the default rate.

Figures 7 and 8 show the dynamic effect of a shock on the inflation rate. This
kind of shock influences real economy through two ways: the first one modifies the
real interest rate while the second one induces a variation of the short-term nominal
interest rate through the policy rule of the Central Bank. A positive shock on the
inflation rate reduces the real interest rate and this produces an incentive on real then,
because the default rate decreases, the Bank increases the spread. In the opposite
situation, a negative shock on the inflation rate induces a reduction of the spread
through the increase in the default rate.
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6 Conclusions

In this paper the behaviour of the Commercial Bank is analyzed regarding the
granting of a credit with respect to the changes of macroeconomic conditions.

Since the Central Bank does not directly control the credit market but can only
try to influence it indirectly by controlling the short-term interest rates, this research
focus attention on the transmission mechanism between the control variable of the
Central Bank, i.e. the short-term interest rate, and the interest rate charges from
Commercial Banks.

If it is assumed that at any time the Commercial Bank re-finances itself paying
the short-term interest rate – the one controlled by the Central Bank – and it lends
money at a higher interest rate, then the control variable of the Commercial Bank is
the spread between the lending interest rate and the re-financing interest rate.

The aim of the Commercial Bank is to hold this spread close to a fixed target d
that guarantees the maximization of Bank preferences with respect to the yield and
the risk. An increase of the rates implies also an increase of the default probability,
and for the Commercial Bank this produces a trade-off between the yield and the
insolvency risk.

A shock in the real economy (slowing of economic growth) directly influences
the variables involved into the objective function of the Commercial Bank: the
demand of money and the default probability. A price shock has an indirect influence
given by the variation of the re-financing rate.

In the model developed and analyzed in this paper, the Commercial Bank – which
knows the adjustment mechanism of the system – must react to these shocks by
changing the spread reconciling the objectives to maintain the profit at a given
level and to control the risk. To study the dynamics of the involved variables, the
problem is modelled as one of intertemporal dynamic programming whose optimal
path solution is the optimal behaviour rule of the Commercial Bank.

The main result of this paper is that the proposed model offers an explanation
of the observed changes in the yield curve slope during the cyclical phase of the
economy. The variations of the spread between long-term and short-term interest
rates are explained through the behaviour of an institution (the Commercial Bank)
that, in taking its decisions, takes into account the level of the default rate.
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