Object-Oriented
Software

Construction

SECOND EDITION

Bertrand Meyer

ISE Inc.

Santa Barbara(California)

Author’s address:

Bertrand Meyer

Interactive Software Engineering Inc. (ISE)
270 Storke Road, Suite 7

Santa Barbara, CA 93117

USA

805-685-1006, fax 805-685-6869
<meyer@toolicon>, http://www.tools.com

Preface

Born in the ice-blue waters of the festooned Norwegian coast; amplified (by an
aberration of world currents, for which marine geographers have yet to find a suitabls
explanation) along the much grayer range of the Californian Pacific; viewed by some as
typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave
hitting the shores of the computing world.

“Object-oriented” is the latest term, complementing and in many cases replacing
“structured” as the high-tech version of “good”. As is inevitable in such a case, the tern
is used by different people with different meanings; just as inevitable is the well-known
three-step sequence of reactions that meets the introduction of a new methodologic
principle: (1) “it's trivial”; (2) “it cannot work”; (3) “that’s how I did it all along anyway”.
(The order may vary.)

Let us have this clear right away, lest the reader think the author takes a half-hearte
approach to his topic: | do not see the object-oriented method as a mere fad; | think it
not trivial (although | shall strive to make it as limpid as | can); | know it works; and |
believe it is not only different from but even, to a certain extent, incompatible with the
techniques that most people still use today — including some of the principles taught i
many software engineering textbooks. | further believe that object technology holds th
potential for fundamental changes in the software industry, and that it is here to sta
Finally, | hope that as the reader progresses through these pages, he will share some of
excitement about this promising avenue to software analysis, design and implementatiot

“Avenue to software analysis, design and implementation”. To present the object
oriented method, this books resolutely takes the viewpoint of software engineering — o
the methods, tools and technigues for developing quality software in production
environments. This is not the only possible perspective, as there has also been interesit
applying object-oriented principles to such areas as exploratory programming an
artificial intelligence. Although the presentation does not exclude these applications, the
are not its main emphasis. Our principal goal in this discussion is to study how practicin
software developers, in industrial as well as academic environments, can use obje
technology to improve (in some cases dramatically) the quality of the software they
produce.

Vi PREFACE

Structure, reliability, epistemology and classification

Object technology is at its core the combination of four ideas: a structuring method, a
reliability discipline, an epistemological principle and a classification technique.

The structuring metho applies to software decomposition and reuse. Software
systems perform certain actions on objects of certain types; to obtain flexible and reusable
systems, it is better to base their structure on the object types than on the actions. The
resulting concept is a remarkably powerful and versatile mechanism calleclass2
which in object-oriented software construction serves as the basis for both the modular
structure and the type system.

Thereliability discipline is a radical approach to the problem of building software
that does what it is supposed to do. The idea is to treat any system as a collection of
components which collaborate the way successful businesses do: by adhcontracts
defining explicitly the obligations and benefits incumbent on each party.

Theepistemological principl addresses the question of how we should describeAbstract data types

classes. In object technology, the objects described by a class are only defined by ware discussed in
. . . chapter6, which

can do with them: operations (also knownfeature:) and formal properties of these_ . . iiresses some
operations (the contracts). This idea is formally expressed by the theabstract data ofthe related episte-
types, covered in detail in a chapter of this book. It has far-reaching implications, smological issues.
going beyond software, and explains why we must not stop at the naive conce
“object” borrowed from the ordinary meaning of that word. The tradition of information
systems modeling usually assumes an “external reality” that predates any program using
it; for the object-oriented developer, such a notion is meaningless, as the reality does not
exist independently of what you want to do with it. (More precisely whether it exists or
not is an irrelevant question, as we only know what we can use, and what we know of
something is defined entirely by how we can use it.)

The classification techniquefollows from the observation that systematic
intellectual work in general and scientific reasoning in particular require devising
taxonomies for the domains being studied. Software is no exception, and the object-
oriented method relies heavily on a classification discipline knovinheritance.

Simple but powerful

The four concepts of class, contract, abstract data type and inheritance immediately raise
a number of questions. How do we find and describe classes? How should our programs
manipulate classes and the corresponding objectsinstance of these classes)? What

are the possible relations between classes? How can we capitalize on the commonalities
that may exist between various classes? How do these ideas relate to such key software
engineering concerns as extendibility, ease of use and efficiency?

Answers to these questions rely on a small but powerful array of techniques for
producing reusable, extendible and reliable software: polymorphism and dynamic
binding; a new view of types and type checking; genericity, constrained and

PREFACE

vii

Chapterslto2.

Chapters3to 6.

Chapters7 to 18.

Chaptersl¢to29.

Chapters3C to 32.

unconstrained; information hiding; assertions; safe exception handling; automatic garb:
collection. Efficient implementation techniques have been developed which pern
applying these ideas successfully to both small and large projects under the ti
constraints of commercial software development. Object-oriented techniques have &
had a considerable impact on user interfaces and development environments, makir
possible to produce much better interactive systems than was possible before. All th
important ideas will be studied in detail, so as to equip the reader with tools that «
immediately applicable to a wide range of problems.

Organization of the text

In the pages that follow we will review the methods and techniques of object-orient
software construction. The presentation has been divided into six parts.

PartA is an introduction and overview. It starts by exploring the fundamental issu
of software quality and continues with a brief survey of the method’s main technic
characteristics. This part is almost a little book by itself, providing a first view of thi
object-oriented approach for hurried readers.

PartB is not hurried. Entitled “The road to object orientation”, it takes the time tc
describe the methodological concerns that lead to the central O-O concepts. Its focus i
modularity: what it takes to devise satisfactory structures for “in-the-large” systel
construction. It ends with a presentation of abstract data types, the mathematical basis
object technology. The mathematics involved is elementary, and less mathematice
inclined readers may content themselves with the basic ideas, but the presenta
provides the theoretical background that you will need for a full understanding of O-
principles and issues.

PartC is the technical core of the book. It presents, one by one, the central techni
components of the method: classes; objects and the associated run-time model; men
management issues; genericity and typing; design by contract, assertions, excepti
inheritance, the associated concepts of polymorphism and dynamic binding, and tt
many exciting applications.

Part D discusses methodology, with special emphasis on analysis and desi
Through several in-depth case studies, it presents some fundadesign patterr, and
covers such central questions as how to find the classes, how to use inheritance prop
and how to design reusable libraries. It starts with a meta-level discussion of t
intellectual requirements on methodologists and other advice-givers; it concludes witl
review of the software process (the lifecycle model) for O-O development and
discussion of how best to teach the method in both industry and universities.

Part E explores advanced topics: concurrency, distribution, client-serve
development and the Internet; persistence, schema evolution and object-orien
databases; the design of interactive systems with modern (“GUI”) graphical interfaces

viii PREFACE

PartF is a review of how the ideas can be implemented, or in some cases eMUChapters33 to 3.
in various languages and environments. This includes in particular a discussion of
object-oriented languages, focusing on Simula, Smalltalk, Objective-C, C++, Ada 95 and
Java, and an assessment of how to obtain some of the benefits of object orientation in such
non-0-0 languages as Fortran, Cobol, Pascal, C and Ada.

PartG (doing it righf) describes an environment which goes beyond these solutchapterss.
and provides an integrated set of tools to support the ideas of the book.

As complementary reference material, an appendix shows some important retappendixa.
library classes discussed in the text, providing a model for the design of reusable soft

A Book-Wide Web

It can be amusing to see authors taking pains to describe recommended paths through their
books, sometimes with the help of sophisticated traversal charts — as if readers ever paid
any attention, and were not smart enough to map their own course. An author is permitted,
however, to say in what spirit he has scheduled the different chapters, and what path he
had in mind for what Umberto Eco calls the Model Reader — not to be confused with the
real reader, also known as “you”, made of flesh, blood and tastes.

The answer here is the simplest possible one. This book tells a story, and assumes
that the Model Reader will follow that story from beginning to end, being however invited
to avoid the more specialized sections marked as “skippable on first reading” and, if not
mathematically inclined, to ignore a few mathematical developments also labeled
explicitly. The real reader, of course, may want to discover in advance some of the plot's
later developments, or to confine his attention to just a few subplots; every chapter has for
that reason been made as self-contained as possible, so that you should be able to intake
the material at the exact dosage which suits you best.

Because the story presents a coherent view of software development, its successive
topics are tightly intertwined. The margin notes offer a subtext of cross references, a
Book-Wide Web linking the various sections back and forth. My advice to the Model
Reader is to ignore them on first reading, except as a reassurance that questions which at
some stage are left partially open will be fully closed later on. The real reader, who may
not want any advice, might use the cross references as unofficial guides when he feels like
cheating on the prearranged order of topics.

Both the Model Reader and the real reader should find the cross references mostly
useful in subsequent readings, to make sure that they have mastered a certain object-
oriented concept in depth, and understood its connections with the method’s other
components. Like the hyperlinks of a WWW document, the cross references should make
it possible to follow such associations quickly and effectively.

The CD-ROM that accompanies this book and contains all of its text providsee:about the
convenient way to follow cross references: just click on them. All the cross refereaccompanying CD-
have been preserved. ROM?”, page xi\.

PREFACE

The notation

In software perhaps even more than elsewhere, thought and language are clo
connected. As we progress through these pages, we will carefully develop a notation
expressing object-oriented concepts at all levels: modeling, analysis, desic
implementation, maintenance.

Here and everywhere else in this book, the pronoun “we” does not mean “il
author”: as in ordinary language, “we” means you and | — the reader and the author.
other words | would like you to expect that, as we develop the notation, you will k
involved in the process.

This assumption is not really true, of course, since the notation existed before y
started reading these pages. But it is not completely preposterous either, because 1 |
that as we explore the object-oriented method and carefully examine its implications
supporting notation will dawn on you with a kind of inevitability, so that you will indeed
feel that you helped design it.

This explains why although the notation has been around for more than ten years:
is in fact supported by several commercial implementations, including one from n
company (ISE), | have downplayed it as a language. (Its name does appear in one pla
the text, and several times in the bibliography.) This book is about the object-orient
method for reusing, analyzing, designing, implementing and maintaining software; tl
language is an important and | hope natural consequence of that method, notan aiminit:

In addition, the language is straightforward and includes very little else than dire
support for the method. First-year students using it have commented that it was *
language at all’ — meaning that the notation is in one-to-one correspondence with
method: to learn one is to learn the other, and there is scant extra linguistic decoratior
top of the concepts. The notation indeed shows few of the peculiarities (often stemm
from historical circumstances, machine constraints or the requirement to be compati
with older formalisms) that characterize most of today’'s programming languages. |
course you may disagree with the choice of keywords (dc rather thanbegir or
perhapsfaire?), or would like to add semicolon terminators after each instruction. (Th
syntax has been designed so as to make semicolons optional.) But these are side is
What counts is the simplicity of the notation and how directly it maps to the concepts.
you understand object technology, you almost know it already.

Most software books take the language for granted, whether it is a programmi
language or a notation for analysis or design. Here the approach is different; involving
reader in the design means that one must not only explain the language but also justi
and discuss the alternatives. Most of the chapters of part C include a “discussion” sec
explaining the issues encountered during the design of the notation, and how they w
resolved. | often wished, when reading descriptions of well-known languages, that t
designers had told me not only what solutions they chose, but why they chose them,
what alternatives they rejected. The candid discussions included in this book shoule
hope, provide you with insights not only about language design but also about softw
construction, as the two tasks are so strikingly similar.

X PREFACE

Analysis, design and implementation

It is always risky to use a notation that externally looks like a programming language, as
this may suggest that it only covers the implementation phase. This impression, however
wrong, is hard to correct, so frequently have managers and developers been told that a gap
of metaphysical proportions exists between the ether of analysis-design and the
underworld of implementation.

Well-understood object technology reduces the gap considerably by empha«“SEAMLESSNESS
the essential unity of software development over the inevitable differences between AND REVERSIBIL-
of abstraction. Thisseamles approach to software construction is one of the import"TY"' 28.6, page 939
contributions of the method and is reflected by the language of this book, which is meant
for analysis and design as well as for implementation.

Unfortunately some of the recent evolution of the field goes against these principles,
through two equally regrettable phenomena:

* Object-oriented implementation languages which are unfit for analysis, for design and
in general for high-level reasoning.

» Object-oriented analysis or design methods which do not cover implementation (and
are advertized as “language-independent” as if this were a badge of honor rather than
an admission of failure).

Such approaches threaten to cancel much of the potential benefit of the approach. In
contrast, both the method and the notation developed in this book are meant to be
applicable throughout the software construction process. A number of chapters cover
high-level design issues; one is devoted to analysis; others explore implementation
techniques and the method’s implications on performance.

The environment

Software construction relies on a basic tetralogy: method, language, tools, libraries. The
method is at the center of this book; the language question has just been mentioned. Once
in a while we will need to see what support they may require from tools and libraries. For
obvious reasons of convenience, such discussions will occasionally refer to ISE’s object-
oriented environment, with its set of tools and associated libraries.

The environment is used only as an example of what can be done to makThe last chapter3€,
concepts practically usable by software developers. Be sure to note that there aresummarizes the
other object-oriented environments available, both for the notation of this book an®nvironment.
other O-O analysis, design and implementation methods and notations; and that the
descriptions given refer to the state of the environment at the time of writing, subject, as
anything else in our industry, to change quickly — for the better. Other environments, O-

O and non O-0, are also cited throughout the text.

PREFACE

xi

A few notes in the
margin or in chap-
ter-end biblio-
graphicsectionsgive
credit for some spe-
cific ideas, often
unpublished.

Acknowledgments (quasi-absence thereof)

The first edition of this book contained an already long list of thanks. For a while | ke
writing down the names of people who contributed comments or suggestions, and the
some stage | lost track. The roster of colleagues from whom | have had help or borrov
ideas has now grown so long that it would run over many pages, and would inevitably ol
some important people. Better then offend everyone a little than offend a few very mut

So these acknowledgments will for the most part remain collective, which does n
make my gratitude less deep. My colleagues at ISE and SOL have for years been a ¢
source of invaluable help. The users of our tools have generously provided us with tf
advice. The readers of the first edition provided thousands of suggestions f
improvement. In the preparation of this new edition (I should really say of this new boo
| have sent hundreds of e-mail messages asking for help of many different kinds:
clarification of a fine point, a bibliographical reference, a permission to quote, the deta
of an attribution, the origin of an idea, the specifics of a notation, the official address o
Web page; the answers have invariably been positive. As draft chapters were becon
ready they were circulated through various means, prompting many constructi
comments (and here | must cite by name the referees commissioned by Prentice Hall, |
Dubois, James McKim and Richard Wiener, who provided invaluable advice ar
corrections). In the past few years | have given countless seminars, lectures and cou
about the topics of this book, and in every case | learned something from the audienc
enjoyed the wit of fellow panelists at conferences and benefited from their wisdom. Shi
sabbaticals at the University of Technology, Sydney and the Universita degli Studi
Milano provided me with a influx of new ideas — and in the first case with three hundre
first-year students on whom to validate some of my ideas about how software engineel
should be taught.

The large bibliography shows clearly enough how the ideas and realizations
others have contributed to this book. Among the most important conscious influences
the Algol line of languages, with its emphasis on syntactic and semantic elegance;
seminal work on structured programming, in the serious (Dijkstra-Hoare-Parnas-Wirt
Mills-Gries) sense of the term, and systematic program construction; formal specificati
techniques, in particular the inexhaustible lessons of Jean-Raymond Abrial’s original (I
nineteen-seventies) version of the Z specification language, his more recent design o
and Cliff Jones’s work on VDM,; the languages of the modular generation (in particul:
Ichbiah’s Ada, Liskov’s CLU, Shaw’s Alphard, Bert's LPG and Wirth’'s Modula); and
Simula 67, which introduced most of the concepts many years ago and had most of tt
right, bringing to mind Tony Hoare’s comment about Algol 60: that it was such a
improvement over most of its successors.

Foreword to the second edition

M any events have happened in the object-oriented world since the first edition o
OO0S((as the book came to be known) was published in 1988. The explosion of interes
alluded to in the Preface to the first edition, reproduced in the preceding pages in a slight
expanded form, was nothing then as compared to what we have seen since. Many journ
and conferences now cover object technology; Prentice Hall has an entire book seri
devoted to the subject; breakthroughs have occurred in such areas as user interfac
concurrency and databases; entire new topics have emerged, such as O-O analysis :
formal specification; distributed computing, once a specialized topic, is becoming
relevant to more and more developments, thanks in part to the growth of the Internet; ar
the Web is affecting everyone’s daily work.

This is not the only exciting news. It is gratifying to see how much progress is
occurring in the software field — thanks in part to the incomplete but undeniable spreas
of object technology. Too many books and articles on software engineering still start witt
the obligatory lament about the “software crisis” and the pitiful state of our industry as
compared tdrue engineering disciplines (which, as we all know, never mess things up).
There is no reason for such doom. Oh, we still have a long, long way to go, as anyone wi
uses software products knows all too well. But given the challenges that we face we hay
no reason to be ashamed of ourselves as a profession; and we are getting better all the ti
Itis the ambition of this book, as it was of its predecessor, to help in this process.

This second edition is not an update but the result of a thorough reworking. Not ¢
paragraph of the original version has been left untouched. (Hardly a single line, actually
Countless new topics have been added, including a whole chapter on concurrenc
distribution, client-server computing and Internet programming; another on persistenci
and databases; one on user interfaces; one on the software lifecycle; many design patte
and implementation techniques; an in-depth exploration of a methodological issue o
which little is available in the literature, how to use inheritance well and avoid misusing
it; discussions of many other topics of object-oriented methodology; an extensive
presentation of the theory of abstract data types — the mathematical basis for our subje
indispensable to a complete understanding of object technology yet seldom covered
detail by textbooks and tutorials; a presentation of O-O analysis; hundreds of nev
bibliographic and Web site references; the description of a complete object-oriente
development environment (also included on the accompanying CD-ROM for the reader’
enjoyment) and of the underlying concepts; and scores of new ideas, principles, cavea
explanations, figures, examples, comparisons, citations, classes, routines.

The reactions tOOS(-1 have been so rewarding that | know readers have high
expectations. | hope they will firOOS(-2 challenging, useful, and up to their standards.

Santa Barbara B.M.
January 1997

Xiv

PREFACE

About the accompanying CD-ROM

The CD-ROM that comes with this book containsentire hyperlinked text in Adobe
Acrobat format. It also includes Adobe’s Acrobat Reader software, enabling you t
that format; the versions provided cover major industry platforms. If you do not al
have Acrobat Reader on your computer, you can install it by following the instrug
The author and the publisher make no representations as to any property of Acrg
associated tools; the Acrobat Reader is simply provided as a service to readers
book, and any Acrobat questions should be directed to Adobe. You may also che

Adobe about any versions of the Reader that may have appeared after the book.

To get started with the CD-ROM, open the Acrobat README.pdiin the OOSC-2
directory, which will direct you to the table of contents and the index. You can
open that file under Acrobat Reader; if the Reader has not been installed o
computer, examine instead the plain-text version in thereadme.tx in the top-level
directory.

The presence of an electronic version will be particularly useful to readers who v
take advantage of the thousands of cross-references present in this b¢‘A Book-
Wide Web”, page vi). Although for a first sequential reading you will probably pre
to follow the paper version, having the electronic form available on a computer 1
the book alllows you to follow a link once in a while without having to turn pages
and forth. The electronic form is particularly convenient for a later reading during
you may wish to explore links more systematically.

All links (cross-references) appear blue in the Acrobat form, as illustrated twi
above (but not visible in the printed version). To follow a link, just click on the blue
If the reference is to another chapter, the chapter will appear in a new windoy
Acrobat Reader command to come back to the previous position is normally C
minus-sign (that is, typ— while holding down the CONTROL key). Consult the on-I
Acrobat Reader documentation for other useful navigational commands.

Bibliographical references also appear as links, suKnuth 1968, in the Acrobat
form, so that you can click on any of them to see the corresponding entry
bibliography of appendiE.
The CD-ROM also contains:

e Library components providing extensive material for AppelA.ix

*A chapter from the manual for a graphical application builder, provi
mathematical complements to the material of che32.:2r

In addition, the CD-ROM includes a time-limited version of an advarobject-
oriented development environmenfor Windows 95 or Windows NT, as described
chaptei3€, providing an excellent hands-on opportunity to try out the ideas deve|
throughout the book. The “Readme” file directs you to the installation instruction
system requirements.

o read
ready
tions.
bat and
5 of this
ck with

only
n your

ant to

fer

ext to
back
which

Le
part.
v. The
bntrol-
ne

in the

ding

in
oped
s and

Acknowledgmen: The preparation of the hyperlinked text was made possible by the help of several people
at Adobe Inc., in particular Sandra Knox, Sarah Rosenbaum and the FrameMaker Customer Support Group.

PREFACE

XVii

The bibliography
starts on page
120¢%.

On the bibliography, Internet sources and
exercises

This book relies on earlier contributions by many authors. To facilitate reading, tt
discussion of sources appears in most cases not in the course of the discussion, but i
“Bibliographical notes” sections at chapter end. Make sure you read these sections, s
to understand the origin of many ideas and results and find out where to learn more.

References are of the foifName¢ 19xx], whereName is the name of the first author,
and refer to the bibliography in appenE. This convention is for readability only and is
not intended to underrate the role of authors other than the first. The letter M in lieu o
Namedenotes publications by the author of this book, listed separately in the second
of the bibliography.

Aside from the bibliography proper, some references appear in the margin, next
the paragraphs which cite them. The reason for this separate treatment is to make
bibliography usable by itself, as a collection of important references on object technolo
and related topics. Appearance as a margin reference rather than in the bibliography c
not imply any unfavorable judgment of value; the division is simply a pragmati
assessment of what belongs in a core list of object-oriented references.

k%

Although electronic references will undoubtedly be considered a matter of course a f
years from now, this must be one of the first technical books (other than books devote
Internet-related topics) to make extensive use of references to World-Wide-Web pag
Usenet newsgroups and other Internet resources.

Electronic addresses are notoriously volatile. | have tried to obtain from the authc
of the quoted sources some reassurance that the addresses given would remain vali
several years. Neither they nor I, of course, can provide an absolute guarantee. In cas
difficulty, note that on the Net more things move than disappear: keyword-based sea
tools can help.

*kk

Most chapters include exercises of various degrees of difficulty. |1 have refrained fro
providing solutions, although many exercises do contain fairly precise hints. Some reac
may regret the absence of full solutions; | hope, however, that they will appreciate t
three reasons that led to this decision: the fear of spoiling the reader’s enjoyment;
realization that many exercises are design problems, for which there is more than one g
answer; and the desire to provide a source of ready-made problems to instructors using
book as a text.

*k*k

XViii PREFACE

For brevity and simplicity, the text follows the imperfect but long-established tradition of
using words such as “he” and “his”, in reference to unspecified persons, as shortcuts for
“he or she” and “his or her”, with no intended connotation of gender.

A modest soul is shocked by objects of such kind

And all the nasty thoughts that they bring to one's mind.

Moliere, Tartuffe, Act Ill.

CD-ROM INSTRUCTIONS

CD-ROM contents

The CD-ROM contains eeadme.txt file (with the text of the present page) and three directories:

*« O0OSC-2 The complete hyperlinked version of the book "Object-Oriented Software Construction
second edition", plus supplementary material, in Adobe Acrobat format,

« Envir: A time-limited version of principal components of the object-oriented environment
described in chapter 36 of the book.

« Acrobat: the Acrobat Reader installation for many platforms, from Adobe Inc.
Using the CD-ROM version of the book

To work with the hyperlinked version of the book you may start from any of the following Adobe Acroba
files, all in the directoryDOSC-2

 The short table of contents (chapters only): ®@ SC-SHO.pdf

 The full table of contents (chapters only): ilEOSC-TAB.pdf.

» The index: fileOOSC-IND.pdf.
(From the fleREADME.PDF, click the chosen file name above to open it under Acrobat Reader.)

Installing the Adobe Acrobat Reader

To read the files you will need to have the Adobe Acrobat Reader. If you do not already have the Reade!
your computer, you may install it from the CD-ROM:

» Go to the directorcrobat, which contains the versions for different platforms (from Adobe Inc.).
* Read the filePlatform to find the instructions and files for your platform.

 Perform the installation instructions as indicated.

» Make sure to read the fildcense.pdfwhich states the license terms.

Installing and using the object-oriented development environment

To install the object-oriented development environment for Windows NT or Windows 95:

« Go to the director§nvir.
» Double-click onsetup.exe(from the Windows Explorer) to start the installation process.

Memory and system requirements
» For Adobe Acrobat: see the Adobe Acrobat documentation. On Windows 95 the executable takes
about3 MB, but more may be needed during installation.
« For the hyperlinked version of the book: ab8ttMB; Adobe Acrobat Reader installed.

 For the object-oriented environment: the recommended installation, including the WEL graphic:
library and the Base libraries of fundamental data structures and algorithms, takes ufOald&ut
A minimal default installation with no precompiled libraries (you can precompile libraries later
yourself) takes abo®0 MB. You need a 386 or higher Intel-compatible model, 16 MB memory (32
MB recommended).

The following page reproduces the text of the book’s back cover.

Bertrand Meyer’s

Object-Oriented Software Construction
SECOND EDITION

The definitive reference on the most important new technology in software

FROM THE REVIEWS OF THE FIRST EDITION:

“Tour de Force... Meyer succeeds admirably in leading the patient re... through a presentation of the
fundamental software development issues that is independent of any programming system, languag
application are... Well organized and highly reada... Meyer’s high standards for precision of expression
do not interfere with a literate style or preclude the occasional injection of humor.”

Ron Levin inSoftwart (IEEE)
“The author believes in OOP, has the experience to know that it works, and is willing and able to show us
and hov... The clear choictfor software people who want to dive straight into object-oriented programming
Walter Zintz inUnix World
“The book presents the concepts in an orderly manner and explains them very well. It is even more attra
because it presents a technigue of object-oriedesigr.”
Pierre America irScience of Computer Programming
A whole generation was introduced to object technology through the first edition of Bertrand NOOS(s
This long-awaited new edition retains the qualities of clarity, practicality and scholarship that made the first

instant best-seller. It has been thoroughly revised and considerably expanded. No other book on the m
provides such a breadth and depth of coverage on the most important technology in software development.

SOME OF THE NEW TOPICS COVERED IN DEPTH BY THIS SECOND EDITION:
» Concurrency, distribution, client-server and the Internet.
» Object-orientecdatabase, persistence, schema evolution.
» Design by contrac: how to build software that works the first time around.
* A study of fundamentedesign patterns.
* How to iind the classe and many others topics object-oriented methodology.
» How to use inheritance well and detect misuses.
« Abstract data types: the theory behind object technology.
» Typing: role, issues and solutions.

* More than 400reference: to books, articles, Web pages, newsgrouglossary of object
technology.

« And many new developments on the topics of the first edition: reusability, modularity, softwar
guality, O-O languages, inheritance techniques, genericity, memory management, etc.

About the author

Bertrand Meyer is one of the pioneers of modern software engineering, whose experience spans both industry and pcade!
He has led the development of successful O-O products and libraries totaling thousands of classes. His Prentice Hall bo
include Object Succe: (an introduction to object technology for managelntroduction to the Theory of Programming
Language, Eiffel: The Languag, Object-Oriented Applicatior, andReusable Softwa. He is a frequent keynote speaker
at international conferences and consultant for Fortune 500 companies, editor of the Object-Oriented Series, jassoci
member of the applications section of the French Academy of Sciences, chairman of the TOOLS conference segries, ¢
editor of the Object Technology departmen|EEE Compute.r

SHORT TABLE

OF CONTENTS

(The full table of contents starts on page xvii.)

Preface v | 23 Principles of class design 747
Foreword to the second edition xiifi 24 Using inheritance well 809
On the bibliography, Internet sources and exerciseg§ xv25 Useful techniques 871
Contents Xvii | 26 A sense of style 875
Part A: The issues 11 27 Object-oriented analysis 903
1 Software quality 3| 28 The software construction process 923
2 Criteria of object orientation 21 29 Teaching the method 935
Part B: The road to object orientation Jpart E: Advanced topics 949
3 Modularity 39 | 30 Concurrency, distribution, client-server
4 Approaches to reusability 61 and the Internet 951
5 Towards object technology 101 31 Object persistence and databases 1037
6 Abstract data types 121 32 Some O-O techniques for graphical
))) interactive applications 1063
Part C: Object-oriented techniques 1643
7 The static structure: classes 1¢®art F: Applying the method in various
8 The run-time structure: objects 21y7 languages ar.1d environments o7
9 Memory management 279 33 O-0 programming and Ada 1079
10 Genericity 317| 34 Emulating object technology in non-O-O
environments 1099
11 Design by Contract: building reliable software 381 .)
]) 35 Simula to Java and beyond: major O-O
12 When the contract is broken: exception languages and environments 1113
handling 411
13 Supporting mechanisms 43pPart G: Doing it right 1141
14 Introduction to inheritance 459 36 An object-oriented environment 1143
15 Multiple inheritance 519| Epilogue, In Full Frankness Exposing the
16 Inheritance techniques 56p Language 1161
17 Typing 611 | part H: Appendices 1163
18 Global objects and constants 643 A Extracts from the Base library 1165
Part D: Object-oriented methodology: applying B Genericity versus inheritance 1167
the method well 661
19 On methodology 663 C Principles, rules, precepts and definitions 1189
20 Design pattern: multi-panel interactive systems 679 A glossary of object technology 1193
21 Inheritance case study: “undo” in an .
interactive system 695 E Bibliography 1203
22 How to find the classes 719Index 1225

Contents

Preface

Foreword to the second edition

About the accompanying CD-ROM

On the bibliography, Internet sources and exercises
Contents

PART A: THE ISSUES

Chapter 1: Software quality
1.1 EXTERNAL AND INTERNAL FACTORS
1.2 AREVIEW OF EXTERNAL FACTORS
1.3 ABOUT SOFTWARE MAINTENANCE
1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
1.5 BIBLIOGRAPHICAL NOTES

Chapter 2: Criteria of object orientation
2.1 ON THE CRITERIA
2.2 METHOD AND LANGUAGE
2.3 IMPLEMENTATION AND ENVIRONMENT
2.4 LIBRARIES
2.5 FOR MORE SNEAK PREVIEW
2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

PART B: THE ROAD TO OBJECT ORIENTATION

Chapter 3: Modularity
3.1 FIVE CRITERIA
3.2 FIVE RULES
3.3 FIVE PRINCIPLES
3.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
3.5 BIBLIOGRAPHICAL NOTES
EXERCISES

Xiii
Xiv
XV
XVii

AW W

17

19

21
21
22
31
33
34
34

37

39
40
46

53
64

64

65

XViii

CONTENTS

Chapter 4: Approaches to reusability
4.1 THE GOALS OF REUSABILITY
4.2 WHAT SHOULD WE REUSE?
4.3 REPETITION IN SOFTWARE DEVELOPMENT
4.4 NON-TECHNICAL OBSTACLES
4.5 THE TECHNICAL PROBLEM
4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES
4.7 TRADITIONAL MODULAR STRUCTURES
4.8 OVERLOADING AND GENERICITY
4.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
4.10 BIBLIOGRAPHICAL NOTES

Chapter 5: Towards object technology
5.1 THE INGREDIENTS OF COMPUTATION
5.2 FUNCTIONAL DECOMPOSITION
5.3 OBJECT-BASED DECOMPOSITION
5.4 OBJECT-ORIENTED SOFTWARE CONSTRUCTION
5.5 ISSUES
5.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
5.7 BIBLIOGRAPHICAL NOTES

Chapter 6: Abstract data types
6.1 CRITERIA
6.2 IMPLEMENTATION VARIATIONS
6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS
6.4 FORMALIZING THE SPECIFICATION
6.5 FROM ABSTRACT DATA TYPES TO CLASSES
6.6 BEYOND SOFTWARE
6.7 SUPPLEMENTARY TOPICS
6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
6.9 BIBLIOGRAPHICAL NOTES
EXERCISES

PART C: OBJECT-ORIENTED TECHNIQUES

Chapter 7: The static structure: classes
7.1 OBJECTS ARE NOT THE SUBJECT
7.2 AVOIDING THE STANDARD CONFUSION
7.3 THE ROLE OF CLASSES
7.4 A UNIFORM TYPE SYSTEM
7.5 A SIMPLE CLASS
7.6 BASIC CONVENTIONS

67
68
70
74
74
81
83
89
93
98
99

101
101
103
114
116
117
119
119

121
122
122
126
129
142
147
148
159
160
161

163

165
165
166
169
171
172
177

CONTENTS

XiX

7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION
7.8 SELECTIVE EXPORTS AND INFORMATION HIDING

7.9 PUTTING EVERYTHING TOGETHER

7.10 DISCUSSION

7.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
7.12 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 8: The run-time structure: objects

8.1 OBJECTS

8.2 OBJECTS AS A MODELING TOOL

8.3 MANIPULATING OBJECTS AND REFERENCES
8.4 CREATION PROCEDURES

8.5 MORE ON REFERENCES

8.6 OPERATIONS ON REFERENCES

8.7 COMPOSITE OBJECTS AND EXPANDED TYPES

8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS
8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS

8.10 DISCUSSION

8.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
8.12 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 9: Memory management

9.1 WHAT HAPPENS TO OBJECTS

9.2 THE CASUAL APPROACH

9.3 RECLAIMING MEMORY: THE ISSUES

9.4 PROGRAMMER-CONTROLLED DEALLOCATION
9.5 THE COMPONENT-LEVEL APPROACH

9.6 AUTOMATIC MEMORY MANAGEMENT

9.7 REFERENCE COUNTING

9.8 GARBAGE COLLECTION

9.9 PRACTICAL ISSUES OF GARBAGE COLLECTION
9.10 AN ENVIRONMENT WITH MEMORY MANAGEMENT
9.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
9.12 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 10: Genericity
10.1 HORIZONTAL AND VERTICAL TYPE GENERALIZATION

10.2 THE NEED FOR TYPE PARAMETERIZATION
10.3 GENERIC CLASSES

181
191
194
203
213
215
216

217
218
228
231
236
240
242
254
261
265
270
276
277
277

279
279
291
293
294
297
301
302
304
309
312
315
315
316

317

317
318
320

XX

CONTENTS

10.4 ARRAYS

10.5 THE COST OF GENERICITY

10.6 DISCUSSION: NOT DONE YET

10.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
10.8 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 11: Design by Contract: building reliable software
11.1 BASIC RELIABILITY MECHANISMS
11.2 ABOUT SOFTWARE CORRECTNESS
11.3 EXPRESSING A SPECIFICATION
11.4 INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS
11.5 PRECONDITIONS AND POSTCONDITIONS
11.6 CONTRACTING FOR SOFTWARE RELIABILITY
11.7 WORKING WITH ASSERTIONS
11.8 CLASS INVARIANTS
11.9 WHEN IS A CLASS CORRECT?
11.10 THE ADT CONNECTION
11.11 AN ASSERTION INSTRUCTION
11.12 LOOP INVARIANTS AND VARIANTS
11.13 USING ASSERTIONS
11.14 DISCUSSION
11.15 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
11.16 BIBLIOGRAPHICAL NOTES

EXERCISES
POSTSCRIPT: THE ARIANE 5 FAILURE

325
328
329
329
330
330

331
332
333
334
337
338
341
348
363
369
373
378
380
389
398
406
407

408
410

Chapter 12: When the contract is broken: exception handling 411

12.1 BASIC CONCEPTS OF EXCEPTION HANDLING
12.2 HANDLING EXCEPTIONS

12.3 AN EXCEPTION MECHANISM

12.4 EXCEPTION HANDLING EXAMPLES

12.5 THE TASK OF A RESCUE CLAUSE

12.6 ADVANCED EXCEPTION HANDLING

12.7 DISCUSSION

12.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
12.9 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 13: Supporting mechanisms
13.1 INTERFACING WITH NON-O-O SOFTWARE
13.2 ARGUMENT PASSING

411
414
419
422
427
431
435
437
438
438

439

439
444

CONTENTS

XXi

13.3 INSTRUCTIONS

13.4 EXPRESSIONS

13.5 STRINGS

13.6 INPUT AND OUTPUT

13.7 LEXICAL CONVENTIONS

13.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
EXERCISES

Chapter 14: Introduction to inheritance

14.1 POLYGONS AND RECTANGLES

14.2 POLYMORPHISM

14.3 TYPING FOR INHERITANCE

14.4 DYNAMIC BINDING

145 DEFERRED FEATURES AND CLASSES
14.6 REDECLARATION TECHNIQUES

14.7 THE MEANING OF INHERITANCE

14.8 THE ROLE OF DEFERRED CLASSES
14.9 DISCUSSION

14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
14.11 BIBLIOGRAPHICAL NOTES
EXERCISES

Chapter 15: Multiple inheritance

15.1 EXAMPLES OF MULTIPLE INHERITANCE

15.2 FEATURE RENAMING

15.3 FLATTENING THE STRUCTURE

15.4 REPEATED INHERITANCE

15.5 DISCUSSION

15.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
15.7 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 16: Inheritance techniques

16.1 INHERITANCE AND ASSERTIONS

16.2 THE GLOBAL INHERITANCE STRUCTURE

16.3 FROZEN FEATURES

16.4 CONSTRAINED GENERICITY

16.5 ASSIGNMENT ATTEMPT

16.6 TYPING AND REDECLARATION

16.7 ANCHORED DECLARATION

16.8 INHERITANCE AND INFORMATION HIDING

16.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

447
452
456
457
457
458
458

459
460
467
472
480
482
491
494
500
507
516
517
517

519
519
535
541
543
563
566
567
567

569
569
580
583
585
591
595
598
605
609

XXii

CONTENTS

16.10 BIBLIOGRAPHICAL NOTE
EXERCISES

Chapter 17: Typing
17.1 THE TYPING PROBLEM
17.2 STATIC TYPING: WHY AND HOW
17.3 COVARIANCE AND DESCENDANT HIDING
17.4 FIRST APPROACHES TO SYSTEM VALIDITY
17.5 RELYING ON ANCHORED TYPES
17.6 GLOBAL ANALYSIS
17.7 BEWARE OF POLYMORPHIC CATCALLS!
17.8 AN ASSESSMENT
17.9 THE PERFECT FIT
17.10 KEY CONCEPTS STUDIED IN THIS CHAPTER
17.11 BIBLIOGRAPHICAL NOTES

Chapter 18: Global objects and constants
18.1 CONSTANTS OF BASIC TYPES
18.2 USE OF CONSTANTS
18.3 CONSTANTS OF CLASS TYPES
18.4 APPLICATIONS OF ONCE ROUTINES
18.5 CONSTANTS OF STRING TYPE
18.6 UNIQUE VALUES
18.7 DISCUSSION
18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
18.9 BIBLIOGRAPHICAL NOTES
EXERCISES

PART D: OBJECT-ORIENTED METHODOLOGY::
APPLYING THE METHOD WELL

Chapter 19: On methodology
19.1 SOFTWARE METHODOLOGY: WHY AND WHAT
19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS
19.3 ON USING METAPHORS
19.4 THE IMPORTANCE OF BEING HUMBLE
19.5 BIBLIOGRAPHICAL NOTES
EXERCISES

Chapter 20: Design pattern: multi-panel interactive systems
20.1 MULTI-PANEL SYSTEMS
20.2 A SIMPLE-MINDED ATTEMPT

610
610

611
611
615
621
628
630
633
636
639
640
641
641

643
643
645
646
648
653
654
656
659
660
660

661

663
663
664
671
673
674
674

675
675
677

CONTENTS

XXiii

20.3 A FUNCTIONAL, TOP-DOWN SOLUTION
20.4 A CRITIQUE OF THE SOLUTION

20.5 AN OBJECT-ORIENTED ARCHITECTURE
20.6 DISCUSSION

20.7 BIBLIOGRAPHICAL NOTE

Chapter 21: Inheritance case study: “undo” in an interactive
system

21.1 PERSEVERARE DIABOLICUM

21.2 FINDING THE ABSTRACTIONS

21.3 MULTI-LEVEL UNDO-REDO

21.4 IMPLEMENTATION ASPECTS

21.5 AUSER INTERFACE FOR UNDOING AND REDOING
21.6 DISCUSSION

21.7 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 22: How to find the classes
22.1 STUDYING A REQUIREMENTS DOCUMENT
22.2 DANGER SIGNALS
22.3 GENERAL HEURISTICS FOR FINDING CLASSES
22.4 OTHER SOURCES OF CLASSES
22.5 REUSE
22.6 THE METHOD FOR OBTAINING CLASSES
22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
22.8 BIBLIOGRAPHICAL NOTES

Chapter 23: Principles of class design
23.1 SIDE EFFECTS IN FUNCTIONS
23.2 HOW MANY ARGUMENTS FOR A FEATURE?
23.3 CLASS SIZE: THE SHOPPING LIST APPROACH
23.4 ACTIVE DATA STRUCTURES
23.5 SELECTIVE EXPORTS
23.6 DEALING WITH ABNORMAL CASES
23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE
23.8 DOCUMENTING A CLASS AND A SYSTEM
23.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
23.10 BIBLIOGRAPHICAL NOTES
EXERCISES

678
682
684
693
694

695
695
699
704
707
711
712
715
715

719
720
726
731
735
740
741
743
744

747
748
764
770
774
796
797
802
803
806
806
807

XXiV

CONTENTS

Chapter 24: Using inheritance well

241
24.2
243
24.4
24.5
24.6
24.7
24.8
249

HOW NOT TO USE INHERITANCE

WOULD YOU RATHER BUY OR INHERIT?

AN APPLICATION: THE HANDLE TECHNIQUE
TAXOMANIA

USING INHERITANCE: A TAXONOMY OF TAXONOMY
ONE MECHANISM, OR MORE?

SUBTYPE INHERITANCE AND DESCENDANT HIDING
IMPLEMENTATION INHERITANCE

FACILITY INHERITANCE

24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE
2411 HOW TO DEVELOP INHERITANCE STRUCTURES
24.12 A SUMMARY VIEW: USING INHERITANCE WELL
24.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
24.14 BIBLIOGRAPHICAL NOTES

24.15 APPENDIX: A HISTORY OF TAXONOMY
EXERCISES

Chapter 25: Useful techniques

25.1
25.2
253

DESIGN PHILOSOPHY
CLASSES
INHERITANCE TECHNIQUES

Chapter 26: A sense of style

26.1
26.2
26.3
26.4
26.5
26.6
26.7

COSMETICS MATTERS!

CHOOSING THE RIGHT NAMES

USING CONSTANTS

HEADER COMMENTS AND INDEXING CLAUSES
TEXT LAYOUT AND PRESENTATION

FONTS

BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 27: Object-oriented analysis

27.1
27.2
27.3
274
27.5
27.6
27.7
27.8

THE GOALS OF ANALYSIS

THE CHANGING NATURE OF ANALYSIS

THE CONTRIBUTION OF OBJECT TECHNOLOGY
PROGRAMMING A TV STATION

EXPRESSING THE ANALYSIS: MULTIPLE VIEWS
ANALYSIS METHODS

THE BUSINESS OBJECT NOTATION
BIBLIOGRAPHY

809
809
812
817
820
822
833
835
844
847
851
858
862
863
863
864
869

871
871
872
873

875
875
879
884
886
891
900
901
902

903
903
906
907
907
914
917
919
922

CONTENTS

XXV

Chapter 28: The software construction process

28.1
28.2
28.3
284
28.5
28.6
28.7
28.8
28.9

CLUSTERS

CONCURRENT ENGINEERING

STEPS AND TASKS

THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE
GENERALIZATION

SEAMLESSNESS AND REVERSIBILITY

WITH US, EVERYTHING IS THE FACE

KEY CONCEPTS COVERED IN THIS CHAPTER
BIBLIOGRAPHICAL NOTES

Chapter 29: Teaching the method

29.1
29.2
29.3
294
29.5
29.6
29.7

INDUSTRIAL TRAINING

INTRODUCTORY COURSES

OTHER COURSES

TOWARDS A NEW SOFTWARE PEDAGOGY
AN OBJECT-ORIENTED PLAN

KEY CONCEPTS STUDIED IN THIS CHAPTER
BIBLIOGRAPHICAL NOTES

PART E: ADVANCED TOPICS

Chapter 30: Concurrency, distribution, client-server and

30.1
30.2
30.3
304
30.5
30.6
30.7
30.8
30.9

the Internet
A SNEAK PREVIEW
THE RISE OF CONCURRENCY
FROM PROCESSES TO OBJECTS
INTRODUCING CONCURRENT EXECUTION
SYNCHRONIZATION ISSUES
ACCESSING SEPARATE OBJECTS
WAIT CONDITIONS
REQUESTING SPECIAL SERVICE
EXAMPLES

30.10 TOWARDS A PROOF RULE

30.11 A SUMMARY OF THE MECHANISM

30.12 DISCUSSION

30.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
30.14 BIBLIOGRAPHICAL NOTES

EXERCISES

923
923
924
926
926
928
930
933
934
934

935
935
937
941
942
946
948
948

949

951
951
953
956
964
977
982
990
998
1003
1022
1025
1028
1032
1033
1035

XXVi

CONTENTS

Chapter 31: Object persistence and databases

31.1
31.2
31.3
31.4
315
31.6
31.7
31.8
31.9

PERSISTENCE FROM THE LANGUAGE

BEYOND PERSISTENCE CLOSURE

SCHEMA EVOLUTION

FROM PERSISTENCE TO DATABASES
OBJECT-RELATIONAL INTEROPERABILITY
OBJECT-ORIENTED DATABASE FUNDAMENTALS
O-O DATABASE SYSTEMS: EXAMPLES
DISCUSSION: BEYOND O-O DATABASES

KEY CONCEPTS STUDIED IN THIS CHAPTER

31.10 BIBLIOGRAPHICAL NOTES
EXERCISES

Chapter 32: Some O-O techniques for graphical interactive

32.1
32.2
32.3
324
325
32.6
32.7

applications
NEEDED TOOLS
PORTABILITY AND PLATFORM ADAPTATION
GRAPHICAL ABSTRACTIONS
INTERACTION MECHANISMS
HANDLING THE EVENTS
A MATHEMATICAL MODEL
BIBLIOGRAPHICAL NOTES

PART F: APPLYING THE METHOD IN VARIOUS

LANGUAGES AND ENVIRONMENTS

Chapter 33: O-O programming and Ada

33.1
33.2
33.3
334
335
33.6
33.7
33.8
33.9

A BIT OF CONTEXT

PACKAGES

A STACK IMPLEMENTATION

HIDING THE REPRESENTATION: THE PRIVATE STORY
EXCEPTIONS

TASKS

FROM ADA TO ADA 95

KEY CONCEPTS INTRODUCED IN THIS CHAPTER
BIBLIOGRAPHICAL NOTES

EXERCISES

1037
1037
1039
1041
1047
1048
1050
1055
1058
1060
1061
1062

1063
1064
1066
1068
1071
1072
1076
1076

1077

1079
1079
1081
1081
1085
1088
1091
1092
1097
1097
1098

CONTENTS

XXVii

Chapter 34: Emulatina object technology in non-O-O
environments

34.1 LEVELS OF LANGUAGE SUPPORT

34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL?
34.3 FORTRAN

34.4 OBJECT-ORIENTED PROGRAMMING AND C

34.5 BIBLIOGRAPHICAL NOTES

EXERCISES

1099
1099
1100
1102
1106
1112
1112

Chapter 35: Simula to Java and beyond: major O-O languages

and environments
35.1 SIMULA
35.2 SMALLTALK
35.3 LISP EXTENSIONS
35.4 C EXTENSIONS
35.5 JAVA
35.6 OTHER O-O LANGUAGES
35.7 BIBLIOGRAPHICAL NOTES
EXERCISES

PART G: DOING IT RIGHT

Chapter 36: An object-oriented environment
36.1 COMPONENTS
36.2 THE LANGUAGE
36.3 THE COMPILATION TECHNOLOGY
36.4 TOOLS
36.5 LIBRARIES
36.6 INTERFACE MECHANISMS
36.7 BIBLIOGRAPHICAL NOTES

Epilogue, In Full Frankness Exposing the Language

1113
1113
1126
1130
1131
1136
1137
1138
1139

1141

1143
1143
1144
1144
1148
1150
1152
1160

1161

PART H: APPENDICES 1163

Appendix A: Extracts from the Base libraries 1165
Appendix B: Genericity versus inheritance 1167
B.1 GENERICITY 1168
B.2 INHERITANCE 1173
B.3 EMULATING INHERITANCE WITH GENERICITY 1175
B.4 EMULATING GENERICITY WITH INHERITANCE 1176
B.5 COMBINING GENERICITY AND INHERITANCE 1184
B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX 1187
B.7 BIBLIOGRAPHICAL NOTES 1188
EXERCISES 1188
Appendix C: Principles, rules, precepts and definitions 1189
Appendix D: A glossary of object technology 1193
Appendix E: Bibliography 1203
E.1 WORKS BY OTHER AUTHORS 1203
E.2 WORKS BY THE AUTHOR OF THE PRESENT BOOK 1221

Index 1225

Part A:

The Issues

Part A will define the goals of our search by taking a close look at the notion of software
quality, and, for readers who do not fear a spoiler, provide a capsule preview of the
highlights of object technology.

1

Software gquality

Engineering seeks quality; software engineering is the production of quality software
This book introduces a set of techniques which hold the potential for remarkable
improvements in the quality of software products.

Before studying these techniques, we must clarify their goals. Software quality is
best described as a combination of several factors. This chapter analyzes some of the
factors, shows where improvements are most sorely needed, and points to the directio
where we shall be looking for solutions in the rest of our journey.

1.1 EXTERNAL AND INTERNAL FACTORS

We all want our software systems to be fast, reliable, easy to use, readable, modulz
structured and so on. But these adjectives describe two different sorts of qualities.

On one side, we are considering such qualities as speed or ease of use, whc
presence or absence in a software product may be detected by its users. These propel
may be calleé@xternal quality factors.

Under “users” we should include not only the people who actually interact with the final
products, like an airline agent using a flight reservation system, but also those who
purchase the software or contract out its development, like an airline executive in charge
of acquiring or commissioning flight reservation systems. So a property such as the ease
with which the software may be adapted to changes of specifications — defined later in
this discussion asxtendibility —falls into the category of external factors even though

it may not be of immediate interest to such “end users” as the reservations agent.

Other qualities applicable to a software product, such as being modular, or readabl
areinternal factors, perceptible only to computer professionals who have access to thi
actual software text.

In the end, only external factors matter. If | use a Web browser or live near &
computer-controlled nuclear plant, little do | care whether the source program is readabl
or modular if graphics take ages to load, or if a wrong input blows up the plant. But the
key to achieving these external factors is in the internal ones: for the users to enjoy tt
visible qualities, the designers and implementers must have applied internal technique
that will ensure the hidden qualities.

4 SOFTWARE QUALITY 81.2

The following chapters present of a set of modern techniques for obtaining internal
quality. We should not, however, lose track of the global picture; the internal techniques
are not an end in themselves, but a means to reach external software qualities. So we must
start by looking at external factors. The rest of this chapter examines them.

1.2 A REVIEW OF EXTERNAL FACTORS

Here are the most important external quality factors, whose pursuit is the central task of
object-oriented software construction.

Correctness

Definition: correctness

Correctness is the ability of software products to perform their exact tasks,
as defined by their specification.

Correctness is the prime quality. If a system does not do what it is supposed to do,
everything else about it — whether it is fast, has a nice user int...l— matters little.

But this is easier said than done. Even the first step to correctness is already difficult:
we must be able to specify the system requirements in a precise form, by itself quite a
challenging task.

Methods for ensuring correctness will usuallyconditional. A serious software
system, even a small one by today’s standards, touches on so many areas that it would be
impossible to guarantee its correctness by dealing with all components and properties on
a single level. Instead, a layered approach is necessary, each layer relying on lower ones:

Layers in
software

Compilel
C development

Operating System

In the conditional approach to correctness, we only worry about guaranteeing that
each layer is correwon the assumptiothat the lower levels are correct. This is the only
realistic technique, as it achieves separation of concerns and lets us concentrate at each
stage on a limited set of problems. You cannot usefully check that a program in a high-
level language X is correct unless you are able to assume that the compiler on hand
implements X correctly. This does not necessarily mean that you trust the compiler blindly,
simply that you separate the two components of the problem: compiler correctness, and
correctness of your program relative to the language’s semantics.

In the method described in this book, even more layers intervene: software
development will rely on libraries of reusable components, which may be used in many
different applications.

8§1.2 A REVIEW OF EXTERNAL FACTORS 5

Layersin a
development
process that
includes reuse

Robustness
Versus
correctness

[

Application library
" ... More libraries.... |

Base library
Kernel library

Compiler
Operating System

The conditional approach will also apply here: we should ensure that the libraries
correct and, separately, that the application is correct assuming the libraries are.

Many practitioners, when presented with the issue of software correctness, thi
about testing and debugging. We can be more ambitious: in later chapters we will expl
a number of techniques, in particular typing and assertions, meant to help build softw
that is correct from the start — rather than debugging it into correctness. Debugging @
testing remain indispensable, of course, as a means of double-checking the result.

It is possible to go further and take a completely formal approach to softwa
construction. This book falls short of such a goal, as suggested by the somewhat ti
terms “check”, “guarantee” and “ensure” used above in preference to the word “prove
Yet many of the techniques described in later chapters come directly from the work
mathematical techniques for formal program specification and verification, and go a lo
way towards ensuring the correctnideal.

Robustness

Definition: robustness

Robustness is the ability of software systems to react appropriately to
abnormal conditions.

Robustness complements correctness. Correctness addresses the behavior of a syst
cases covered by its specification; robustness characterizes what happens outsid
that specification.

SPECIFICATION
Correctness

Robustness

6 SOFTWARE QUALITY 81.2

As reflected by the wording of its definition, robustness is by nature a more fuzzy
notion than correctness. Since we are concerned here with cases not covered by the
specification, it is not possible to say, as with correctness, that the system should “perform
its tasks” in such a case; were these tasks known, the abnormal case would become part
of the specification and we would be back in the province of correctness.

This definition of “abnormal case” will be useful again when we study exception On exception
handling. Itimplies that the notions of normal and abnormal case are always relative to ahandling see
certain specification; an abnormal case is simply a case that is not covered by thechapterl2.
specification. If you widen the specification, cases that used to be abnormal become

normal — even if they correspond to events such as erroneous user input that you woulc

prefer not to happen. “Normal” in this sense does not mean “desirable”, but simply

“planned for in the design of the software”. Although it may seem paradoxical at first that

erroneous input should be called a normal case, any other approach would have to rely on

subjective criteria, and so would be useless.

There will always be cases that the specification does not explicitly address. The role
of the robustness requirement is to make sure that if such cases do arise, the system does
not cause catastrophic events; it should produce appropriate error messages, terminate its
execution cleanly, or enter a so-called “graceful degradation” mode.

Extendibility

Definition: extendibility

Extendibility is the ease of adapting software products to changes of
specification.

Software is supposed to Isofi, and indeed is in principle; nothing can be easier than to
change a program if you have access to its source code. Just use your favorite text editor.

The problem of extendibility is one of scale. For small programs change is usually
not a difficult issue; but as software grows bigger, it becomes harder and harder to adapt.
A large software system often looks to its maintainers as a giant house of cards in which
pulling out any one element might cause the whole edifice to collapse.

We need extendibility &cause at the basis of all software lies some human
phenomenon and hence fickleness. The obvious case of business software (“Management
Information Systems”), where passage of a law or a company’s acquisition may suddenly
invalidate the assumptions on which a system rested, is not special; even in scientific
computation, where we may expect the laws of physics to stay in place from one month to
the next, our way of understanding and modeling physical systems will change.

Traditional approaches to software engineering did not take enough account of
change, relying instead on an ideal view of the software lifecycle where an initial analysis
stage freezes the requirements, the rest of the process being devoted to designing and
building a solution. This is understandable: the first task in the progress of the discipline
was to develop sound techniques for stating and solving fixed problems, before we could
worry about what to do if the problem changes while someone is busy solving it. But now

8§1.2 A REVIEW OF EXTERNAL FACTORS 7

Chapter4.

with the basic software engineering techniques in place it has become essentia
recognize and address this central issue. Change is pervasive in software developn
change of requirements, of our understanding of the requirements, of algorithms, of d
representation, of implementation techniques. Support for change is a basic goal of ob
technology and a running theme through this book.

Although many of the techniques that improve extendibility may be introduced o
small examples or in introductory courses, their relevance only becomes clear for lar
projects. Two principles are essential for improving extendibility:

» Design simplicit: a simple architecture will always be easier to adapt to change
than a complex one.

e Decentralizatior. the more autonomous the modules, the higher the likelihood the
a simple change will affect just one module, or a small number of modules, ratt
than triggering off a chain reaction of changes over the whole system.

The object-oriented method is, before anything else, a system architecture mett
which helps designers produce systems whose structure remains both simple (ever
large systems) and decentralized. Simplicity and decentralizatibmewecurring themes
in the discussions leading to object-oriented principles in the following chapters.

Reusability

Definition: reusability

Reusability is the ability of software elements to serve for the construction
of many different applications.

The need for reusability comes from the observation that software systems often foll
similar patterns; it should be possible to exploit this commonality and avoid reinventir
solutions to problems that have been encountered before. By capturing such a patter
reusable software element will be applicable to many different developments.

Reusability has an influence on all other aspects of software quality, for solving tl
reusability problem essentially means that less software must be written, and hence
more effort may be devoted (for the same total cost) to improving the other factors, st
as correctness and robustness.

Here again is an issue that the traditional view of the software lifecycle had n
properly recognized, and for the same historical reason: you must find ways to solve ¢
problem before you worry about applying the solution to other problems. But with tt
growth of software and its attempts to become a true industry the need for reusability |
become a pressing concern.

Reusability will play a central role in the discussions of the following chapters, on
of which is in fact devoted entirely to an in-depth examination of this quality factor, it
concrete benefits, and the issues it raises.

8 SOFTWARE QUALITY 81.2

Compatibility

Definition: compatibility

Compatibility is the ease of combining software elements with others.

Compatibility is important because we do not develop software elements in a vacuum:

they need to interact with each other. But they too often have trouble interacting because
they make conflicting assumptions about the rest of the world. An example is the wide

variety of incompatible file formats supported by many operating systems. A program can

directly use another’s result as input only if the file formats are compatible.

Lack of compatibility can yield disaster. Here is an extreme case:

DALLAS — Last we, AMR, the parent company of American Airli,, Inc., said it fell San Jos(Calif.)
on its sword trying to develop a state-of-the, industry-wide system that could also Mercury New, July
handle car and hotel reservatic.ns 20,1992, Quoted in

AMR cut off development of its new Confirm reservation system only weeks after it Wasthe comp risks
Usenet newsgrot, 3

supposed to start taking care of transactions for partners Budget Rent, Hilton 13.67, July 199:
Hotels Cor}. and Marriott Cory. Suspension of the $125 mill, 4-year-old project Sli.ght,ly abridg(;i

translated into a $165 million pre-tax charge against AMR’s earnings and fractured the
company'’s reputation as a pacesetter in travel technc [...]

As far back as Janug, the leaders of Confirm discovered that the labors of more than
200 programmel, systems analysts and engineers had apparently been for . Theht
main pieces of the massive project — requirin,000 pages to describe — had been
developed separate, by different metho. When put togeth, they did not work with
each othe. When the developers attempted to plug the parts tog, they could nct
Different “modules” could not pull the information needed from the other side of the
bridge.

AMR Information Services fired eight senior project men, including the team leader.
[...] In late Jun, Budget and Hilton said they were dropping.out

The key to compatibility lies in homogeneity of design, and in agreeing on
standardized conventions for inter-program communication. Approaches include:

» Standardized file formats, as in the Unix system, where every text file is simply a
sequence of characters.

» Standardized data structures, as in Lisp systems, where all data, and programs as
well, are represented by binary trees (called lists in Lisp).

» Standardized user interfaces, as on various versions of Windows, OS/2 and MacOS,
where all tools rely on a single paradigm for communication with the user, based on
standard components such as windows, icons, menus etc.

More general solutions are obtained by defining standardized access protocolsOn abstract data
important entities manipulated by the software. This is the idea behind abstract datatypes see chapt®.

and the object-oriented approach, as well as so-cmiddlewareprotocols such as
CORBA and Microsoft's OLE-COM (ActiveX).

8§1.2 A REVIEW OF EXTERNAL FACTORS 9

Efficiency

Definition: efficiency

Efficiency is the ability of a software system to place as few demangds as
possible on hardware resources, such as processor time, space occupied in
internal and external memories, bandwidth used in communication devjces.

Almost synonymous with efficiency is the word “performance”. The software communit
shows two typical attitudes towards efficiency:

* Some developers have an obsession with performance issues, leading them to de
a lot of efforts to presumed optimizations.

e But a general tendency also exists to downplay efficiency concerns, as evidencec
such industry lore as “make it right before you make it fast” and “next year’
computer model is going to be 50% faster anyway”.

Itis not uncommon to see the same person displaying these two attitudes at differ
times, as in a software case of split personality (Dr. Abstract and Mr. Microsecond).

Where is the truth? Clearly, developers have often shown an exaggerated concerr
micro-optimization. As already noted, efficiency does not matter much if the software
not correct (suggesting a new dicturdo not worry how fast it is unless it is also ri",1t
close to the previous one but not quite the same). More generally, the concern
efficiency must be balanced with other goals such as extendibility and reusability; extre
optimizations may make the software so specialized as to be unfit for change and ret
Furthermore, the ever growing power of computer hardware does allow us to have am
relaxed attitude about gaining the last byte or microsecond.

All this, however, does not diminish the importance of efficiency. No one likes t
wait for the responses of an interactive system, or to have to purchase more memory to
a program. So offhand attitudes to performance include much posturing; if the final syst
is so slow or bulky as to impede usage, those who used to declare that “speed is not
important” will not be the last to complain.

This issue reflects what | believe to be a major characteristic of software engineeri
not likely to move away soon: software construction is difficult precisely because
requires taking into account many different requirements, some of which, such
correctness, are abstract and conceptual, whereas others, such as efficiency, are cor
and bound to the properties of computer hardware.

For some scientists, software development is a branch of mathematics; for so
engineers, it is a branch of applied technology. In reality, it is both. The software develoj
must reconcile the abstract concepts with their concrete implementations, the matheme
of correct computation with the time and space constraints deriving from physical la
and from limitations of current hardware technology. This need to please the angels
well as the beasts may be the central challenge of software engineering.

10 SOFTWARE QUALITY 81.2

The constant improvement in computer power, impressive as it is, is not an excuse
for overlooking efficiency, for at least three reasons:

* Someone who purchases a bigger and faster computer wants to see some actual
benefit from the extra power — to handle new problems, process previous problems
faster, or process bigger versions of the previous problems in the same amount of
time. Using the new computer to process the previous problems in the same amount
of time will not do!

« One of the most visible effects of advances in computer power is actuincrease
the lead of good algorithms over bad ones. Assume that a new machine is twice as
fastas the previous one. In be the size of the problem to solve, iN the maximum
n that can be handled by a certain algorithm in a given time. Then if the algorithm is
in O (n), that is to say, runs in a time proportionan, the new machine will enable
you to handle problem sizes of ab2 [N for largeN. For an algorithm in Or¢) the
new machine will only yield a 41% increaseN. An algorithm in O 2"), similar to
certain combinatorial, exhaustive-search algorithms, would just add (N — not
much of an improvement for your money.

* In some cases efficiency may affect correctness. A specification may state that the
computer response to a certain event must occur no later than a specified time; for
example, an in-flight computer must be prepared to detect and process a message
from the throttle sensor fast enough to take corrective action. This connection
between efficiency and correctness is not restricted to applications commonly
thought of as “real time”; few people are interested in a weather forecasting model
that takes twenty-four hours to predict the next day’s weather.

Another example, although perhaps less critical, has been of frequent annoyance to me:
a window management system that | used for a while was sometimes too slow to detect
that the mouse cursor had moved from a window to another, so that characters typed at
the keyboard, meant for a certain window, would occasionally end up in another.

In this case a performance limitation causes a violation of the specification, that is to say
of correctness, which even in seemingly innocuous everyday applications can cause nasty
consequences: think of what can happen if the two windows are used to send electronic
mail messages to two different correspondents. For less than this marriages have been
broken, even wars started.

Because this book is focused on the concepts of object-oriented software engineering,
not on implementation issues, only a few sections deal explicitly with the associated
performance costs. But the concern for efficiency will be there throughout. Whenever the
discussion presents an object-oriented solution to some problem, it will make sure that the
solution is not just elegant but also efficient; whenever it introduces some new O-O
mechanism, be it garbage collection (and other approaches to memory management for
object-oriented computation), dynamic binding, genericity or repeated inheritance, it will do
so based on the knowledge that the mechanism may be implemented at a reasonable cost in
time and in space; and whenever appropriate it will mention the performance consequences
of the techniques studied.

8§1.2 A REVIEW OF EXTERNAL FACTORS 11

Efficiency is only one of the factors of quality; we should not (like some in the
profession) let it rule our engineering lives. But it is a factor, and must be taken in
consideration, whether in the construction of a software system or in the design o
programming language. If you dismiss performance, performance will dismiss you.

Portability

Definition: portability

Portability is the ease of transferring software products to various hargdware
and software environments.

Portability addresses variations not just of the physical hardware but more generally of
hardware-software machine, the one that we really program, which includes the
operating system, the window system if applicable, and other fundamental tools. In 1
rest of this book the word “platform” will be used to denote a type of hardware-softwa
machine; an example of platform is “Intel X86 with Windows NT” (known as “Wintel”).

Many of the existing platform incompatibilities are unjustified, and to a naive
observer the only explanation sometimes seems to be a conspiracy to victimize huma
in general and programmers in particular. Whatever its causes, however, this diver:
makes portability a major concern for both developers and users of software.

Ease of use

Definition: ease of use

Ease of use is the ease with which people of various backgrounds and
gualifications can learn to use software products and apply them to|solve
problems. It also covers the ease of installation, operation and monitoring.

The definition insists on the various levels of expertise of potential users. This requirem
poses one of the major challenges to software designers preoccupied with ease of use:
to provide detailed guidance and explanations to novice users, without bothering exy
users who just want to get right down to business.

As with many of the other qualities discussed in this chapter, one of the keys to e:
of use is structural simplicity. A well-designed system, built according to a clear, we
thought-out structure, will tend to be easier to learn and use than a messy one.
condition is not sufficient, of course (what is simple and clear to the designer may
difficult and obscure to users, especially if explained in designer’s rather than use
terms), but it helps considerably.

This is one of the areas where the object-oriented method is particularly productiy
many O-O techniques, which appear at first to address design and implementation,
yield powerful new interface ideas that help the end users. Later chapters will introdu
several examples.

12 SOFTWARE QUALITY 81.2

Software designers preoccupied with ease of use will also be well-adviseSee Wilfred .|
consider with some mistrust the precept most frequently quoted in the user inteHanser, “User
literature, from an early article by Hans&know the use. The argument is that a gooxElgg'?grel':]’t‘grzcrm‘Z'
designer must make an effort to understand the system’s intended user com munitygystems' Proceed-
view ignores one of the features of successful systems: they always outgrow their ings of FICC 3;!
audience. (Two old and famous examples are Fortran, conceived as a tool to SOIAFIPS Pres,;
problem of the small community of engineers and scientists programming the 1BM Montvale(N.),
and Unix, meant for internal use at Bell Laboratories.) A system designed for a splgn’ PP 523-53.

group will rely on assumptions that simply do not hold for a larger audience.

Good user interface designers follow a more prudent policy. They make as limited
assumptions about their users as they can. When you design an interactive system, you
may expect that users are members of the human race and that they can read, move a
mouse, click a button, and type (slowly); not much more. If the software addresses a
specialized application area, you may perhaps assume that your users are familiar with its
basic concepts. But even that is risky. To reverse-paraphrase Hansen’s advice:

User Interface Design principle

Do not pretend you know the user; you don't.

Functionality

Definition: functionality
Functionality is the extent of possibilities provided by a system.

One of the most difficult problems facing a project leader is to know how much
functionality is enough. The pressure for more facilities, known in industry parlance as
featurism(often “creeping featurisi’), is constantly there. Its consequences are bad for
internal projects, where the pressure comes from users within the same company, and
worse for commercial products, as the most prominent part of a journalist’'s comparative
review is often the table listing side by side the features offered by competing products.

Featurism is actually the combination of two problems, one more difficult than the
other. The easier problem is the loss of consistency that may result from the addition of
new features, affecting its ease of use. Users are indeed known to complain that all the
“bells and whistles” of a product’s new version make it horrendously complex. Such
comments should be taken with a grain of salt, however, since the new features do not
come out of nowhere: most of the time they have been requested by uother users.

What to me looks like a superfluous trinket may be an indispensable facility to you.

The solution here is to work again and again on the consistency of the overall
product, trying to make everything fit into a general mold. A good software product is
based on a small number of powerful ideas; even if it has many specialized features, they
should all be explainable as consequences of these basic concepts. The “grand plan” must
be visible, and everything should have its place in it.

8§1.2 A REVIEW OF EXTERNAL FACTORS 13

Osmond’s
curves; afte
[Osmond 1995]

The more difficult problem is to avoid being so focused on features as to forget t
other qualities. Projects commonly make such a mistake, a situation vividly pictured |
Roger Osmond in the form of two possible pathsproject’s completion:

Other qualities

Desirable

\Debugging

N
Envisaged
early
releases

Functionality

The bottom curve (black) is all too common: in the hectic race to add more featur:
the development loses track of the overall quality. The final phase, intended to get thir
right at last, can be long and stressful. If, under users’ or competitors’ pressure, you
forced to release the product early — at stages marked by black squares in the figure
the outcome may be damaging to your reputation.

What Osmond suggests (the color curve) is, aided by the quality-enhancii
techniques of O-O development, to maintain the quality level constant throughout t
project for all aspects but functionality. You just do not compromise on reliability
extendibility and the like: you refuse to proceed with new features until you are happy wi
the features you have.

This method is tougher to enforce on a day-to-day basis because of the press
mentioned, but yields a more effective software process and often a better product in
end. Even if the final result is the same, as assumed in the figure, it should be reac
sooner (although the figure does not show time). Following the suggested path also me
that the decision to release an early version — at one of the points marked by colo
squares in the figure — becomes, if not easier, at least simpler: it will be based on y
assessment of whether what you have so far covers a large enough share of the full fe:
set to attract prospective customers rather than drive them away. The question “is it g
enough?” (as in “will it not crash?”) should not be a factor.

As any reader who has led a software project will know, it is easier to approve su
advice than to apply it. But every project should strive to follow the approach represent
by the better one of the two Osmond curves. It goes well witcluster modeintroduced
in a later chapter as the general scheme for disciplined object-oriented development.

14 SOFTWARE QUALITY 81.2

Timeliness

Definition: timeliness

Timeliness is the ability of a software system to be released when or before
its users want it.

Timeliness is one of the great frustrations of our industry. A great software product that
appears too late might miss its target altogether. This is true in other industries too, but few
evolve as quickly as software.

Timeliness is still, for large projects, an uncommon phenomenon. When Micr¢NT 4.0 Beats
announced that the latest release of its principal operating system, several yearsClock’, Computer-
making, would be delivered one month early, the event was newsworthy enough to\é\(’)ogj 3’&; 31%'920'
(at the top of an article recalling the lengthy delays that affected earlier projects) the '
page headline cComputerWorl.

Other qualities

Other qualities beside the ones discussed so far affect users of software systems and the
people who purchase these systems or commission their development. In particular:

* Verifiability is the ease of preparing acceptance procedures, especially test data, and
procedures for detecting failures and tracing them to errors during the validation and
operation phases.

* Integrity is the ability of software systems to protect their various components
(programs, data) against unauthorized access and modification.

* Repairability is the ability to facilitate the repair of defects.

» Economy, the companion of timeliness, is the ability of a system to be completed on
or below its assigned budget.

About documentation

In a list of software quality factors, one might expect to find the presence of good
documentation as one of the requirements. But this is not a separate quality factor; instead,
the need for documentation is a consequence of the other quality factors seen above. We
may distinguish between three kinds of documentation:

* The need foexternaldocumentation, which enables users to understand the power
of a system and use it conveniently, is a consequence of the definition of ease of use.

e The need forinternal documentation, which enables software developers to
understand the structure and implementation of a system, is a consequence of the
extendibility requirement.

* The need formodule interfacedocumentation, enabling software developers to
understand the functions provided by a module without having to understand its
implementation, is a consequence of the reusability requirement. It also follows from
extendibility, as module interface documentation makes it possible to determine
whether a certain change need affect a certain module.

8§1.2 A REVIEW OF EXTERNAL FACTORS 15

Rather than treating documentation as a product separate from the software pro
it is preferable to make the software as self-documenting as possible. This applies tc
three kinds of documentation:

* By including on-line “help” facilities and adhering to clear and consistent use
interface conventions, you alleviate the task of the authors of user manuals and of
forms of external documentation.

« A good implementation language will remove much of the need for interne
documentation if it favors clarity and structure. This will be one of the majol
requirements on the object-oriented notation developed throughout this book.

e The notation will support information hiding and other techniques (such a
assertions) for separating the interface of modules from their implementation. It
then possible to use tools to produce module interface documentation automatice
from module texts. This too is one of the topics studied in detail in later chapters.

All these techniques lessen the role of traditional documentation, although of cour
we cannot expect them to remove it completely.

Tradeoffs

In this review of external software quality factors, we have encountered requirements t
may conflict with one another.

How can one geintegrity without introducing protections of various kinds, which
will inevitably hamperease of us? Economyoften seems to fight witlfunctionality.
Optimalefficiency would require perfect adaptation to a particular hardware and softwal
environment, which is the oppositeportability, and perfect adaptation to a specification,
wherereusability pushes towards solving problems more general than the one initial
given. Timelinesspressures might tempt us to use “Rapid Application Development
techniques whose results may not enjoy mextendibility.

Although it is in many cases possible to find a solution that reconciles apparen
conflicting factors, you will sometimes need to make tradeoffs. Too often, develope
make these tradeoffs implicitly, without taking the time to examine the issues involve
and the various choices available; efficiency tends to be the dominating factor in st
silent decisions. A true software engineering approach implies an effort to state the crite
clearly and make the choices consciously.

Necessary as tradeoffs between quality factors may be, one factor stands out fi
the rest: correctness. There is never any justification for compromising correctness for
sake of other concerns such as efficiency. If the software does not perform its function,
rest is useless.

Key concerns

All the qualities discussed above are important. But in the current state of the softw:
industry, four stand out:

16 SOFTWARE QUALITY 81.2

« Correctnes androbustnes: it is still too difficult to produce software without defects
(bugs), and too hard to correct the defects once they are there. Techniques for
improving correctness and robustness are of the same general flavors: more systematic
approaches to software construction; more formal specifications; built-in checks
throughout the software construction process (not just after-the-fact testing and
debugging); better language mechanisms such as static typing, assertions, automatic
memory management and disciplined exception handling, enabling developers to state
correctness and robustness requirements, and enabling tools to detect inconsistencies
before they lead to defects. Because of this closeness of correctness and robustness
issues, it is convenient to use a more general freliability , to cover both factors.

» Extendibility and reusability: software should be easier to change; the software
elements we produce should be more generally applicable, and there should exist a
larger inventory of general-purpose components that we can reuse when developing
a new system. Here again, similar ideas are useful for improving both qualities: any
idea that helps produce more decentralized architectures, in which the components
are self-contained and only communicate through restricted and clearly defined
channels, will help. The termodularity will cover reusability and extendibility.

As studied in detail in subsequent chapters, the object-oriented method can
significantly improve these four quality factors — which is why it is so attractive. It also
has significant contributions to make on other aspects, in particular:

* Compatibility: the method promotes a common design style and standardized
module and system interfaces, which help produce systems that will work together.

» Portability: with its emphasis on abstraction and information hiding, object
technology encourages designers to distinguish between specification and
implementation properties, facilitating porting efforts. The techniques of
polymorphism and dynamic binding will even make it possible to write systems that
automatically adapt to various components of the hardware-software machine, for
example different window systems or different database management systems.

* Ease of us: the contribution of O-O tools to modern interactive systems and
especially their user interfaces is well known, to the point that it sometimes obscures
other aspects (ad copy writers are not the only people who call “object-oriented” any
system that uses icons, windows and mouse-driven input).

« Efficiency: as noted above, although the extra power or object-oriented technigues at
first appears to carry a price, relying on professional-quality reusable components
can often yield considerable performance improvements.

* Timelines, econom andfunctionality;: O-O techniques enable those who master
them to produce software faster and at less cost; they facilitate addition of functions,
and may even of themselves suggest new functions to add.

In spite of all these advances, we should keep in mind that the object-oriented method
is not a panacea, and that many of the habitual issues of software engineering remain.
Helping to address a problem is not the same as solvirproblem.

§1.3 ABOUT SOFTWARE MAINTENANCE 17

Breakdown of
maintenance
cost:. Source:
[Lientz 1980]

1.3 ABOUT SOFTWARE MAINTENANCE

The list of factors did not include a frequently quoted quality: maintainability. Tc
understand why, we must take a closer look at the underlying notion, maintenance.

Maintenance is what happens after a software product has been deliver
Discussions of software methodology tend to focus on the development phase; so
introductory programming courses. But it is widely estimated that 70% of the cost |
software is devoted to maintenance. No study of software quality can be satisfactory i
neglects this aspect.

What does “maintenance” mean for software? A minute’s reflection shows this ter
to be a misnomer: a software product does not wear out from repeated usage, and thus
not be “maintained” the way a car or a TV set does. In fact, the word is used by softw;
people to describe some noble and some not so noble activities. The noble par
modification: as the specifications of computer systems change, reflecting changes in
external world, so must the systems themselves. The less noble part is late debugc
removing errors that should never have been there in the first place.

— - ~

_—

The above chart, drawn from a milestone study by Lientz and Swanson, sheds sc
light on what the catch-all term of maintenance really covers. The study surveyed 4
installations developing software of all kinds; although it is a bit old, more recer
publications confirm the same general results. It shows the percentage of maintena
costs going into each of a number of maintenance activities identified by the authors.

More than two-fifths of the cost is devoted to user-requested extensions a
modifications. This is what was called above the noble part of maintenance, which is a
the inevitable part. The unanswered question is how much of the overall effort the indus
could spare if it built its software from the start with more concern for extendibility. We ma
legitimately expect object technology to help.

18 SOFTWARE QUALITY 81.3

The second item in decreasing order of percentage cost is particularly intereFor another
effect of changes in data formats. When the physical structure of files and other dataexampl, see*How
change, programs must be adapted. For example, when the US Postal Service, a fe!0nd is amiddie .
ago, introduced the “5+4” postal code for large companies (using nine digits instegf‘ﬂ? - page 12+
five), numerous programs that dealt with addresses and “knew” that a postal code was
exactly five digits long had to be rewritten, an effort which press accounts estimated in the

hundreds of millions of dollars.

Many readers will have received the beautiful brochures for a set of conferences — not a
single event, but a sequence of sessions in many cities — devoted to the “millennium
problem” how to go about upgrading the myriads of date-sensitive programs whose

authors never for a moment thought that a date could exist beyond the twentieth century.
The zip code adaptation effort pales in comparison. Jorge Luis Borges would have liked
the idea: since presumably few people care about what will happen on 1 January 3000,
this must be the tiniest topic to which a conference series, or for that matter a conference,
has been or will ever be devoted in the history of humaa single decimal dig.it

The issue is not that some part of the program knows the physical structure of data:
this is inevitable since the data must eventually be accessed for internal handling. But with
traditional design techniques this knowledge is spread out over too many parts of the
system, causing unjustifiably large program changes if some of the physical structure
changes — as it inevitably will. In other words, if postal codes go from five to nine digits,
or dates require one more digit, it is reasonable to expect that a program manipulating the
codes or the dates will need to be adapted; what is not acceptable is to have the knowledge
of the exact length of the data plastered all across the program, so that changing thatlength
will cause program changes of a magnitude out of proportion with the conceptual size of
the specification change.

The theory of abstract data types will provide the key to this problem, by allovChapter6 covers
programs to access data by external properties rather than physical im plementatiorébztff\c_‘t data types
In aetal.
Another significant item in the distribution of activities is the low percentage (5.5%)
of documentation costs. Remember that these are costs of tasks done at maintenance time.
The observation here — at least the speculation, in the absence of more specific data — is
that a project will either take care of its documentation as part of development or not do it
at all. We will learn to use a design style in which much of the documentation is actually
embedded in the software, with special tools available to extract it.

The next items in Lientz and Swanson’s list are also interesting, if less directly
relevant to the topics of this book. Emergency bug fixes (done in haste when a user reports
that the program is not producing the expected results or behaves in some catastrophic
way) cost more than routine, scheduled corrections. This is not only because they must be
performed under heavy pressure, but also because they disrupt the orderly process of
delivering new releases, and may introduce new errors. The last two activities account for
small percentages:

§1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 19

* One is efficiency improvements; this seems to suggest that once a system wol
project managers and programmers are often reluctant to disrupt it in the hope
performance improvements, and prefer to leave good enough alone. (Wh
considering the “first make it right, then make it fast” precept, many projects al
probably happy enough to stop at the first of these steps.)

» Also accounting for a small percentage is “transfer to new environments”. A possik
interpretation (again a conjecture in the absence of more detailed data) is that th
are two kinds of program with respect to portability, with little in-between: somge
programs are designed with portability in mind, and cost relatively little to port
others are so closely tied to their original platform, and would be so difficult to por
that developers do not even try.

1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

* The purpose of software engineering is to find ways of building quality software.

* Rather than a single factor, quality in software is best viewed as a tradeoff betwe
a set of different goals.

« External factors, perceptible to users and clients, should be distinguished frc
internal factors, perceptible to designers and implementors.

* What matters is the external factors, but they can only be achieved through 1
internal factors.

» A list of basic external quality factors was presented. Those for which currel
software is most badly in need of better methods, and which the object-orient
method directly addresses, are the safety-related factors correctness and robustt
together known as reliability, and the factors requiring more decentralized softwa
architectures: reusability and extendibility, together known as modularity.

« Software maintenance, which consumes a large portion of software costs,
penalized by the difficulty of implementing changes in software products, and by t
over-dependence of programs on the physical structure of the data they manipule

1.5 BIBLIOGRAPHICAL NOTES

Several authors have proposed definitions of software quality. Among the first articles
subject, two in particular remain valuable tod[Hoare 1972, a guest editorial, and
[Boehm 197§, the result of one of the first systematic studies, by a group at TRW.

The distinction between external and internal factors was introduced in a 19
General Electric study commissioned by the US Air F(McCall 1977. McCall uses
the terms “factors” and “criteria” for what this chapter has called external factors ar
internal factors. Many (although not all) of the factors introduced in this chapte
correspond to some of McCall’'s; one of his factors, maintainability, was droppe:
because, as explained, it is adequately covered by extendibility and verifiability. McCall
study discusses not only external factors but also a number of internal factors (“criteris

20 SOFTWARE QUALITY 81.5

as well asmetrics, or quantitative techniques for assessing satisfaction of the internal
factors. With object technology, however, many of that study’s internal factors and
metrics, too closely linked with older software practices, are obsolete. Carrying over this
part of McCall's work to the techniques developed in this book would be a useful project;
see the hibliography and exercises to cha3.ter

The argument about the relative effect of machine improvements depending on the
complexity of the algorithms is derived frc[Aho 1974.

On ease of use, a standard referencgShneiderman 198, expanding on
[Shneiderman 198, which was devoted to the broader topic of software psychology. The
Web page of Shneiderman’s labhttp://www.cs.umd.edu/projects/h: contains many
bibliographic references on these topics.

The Osmond curves come from a tutorial given by Roger Osmond at TOOLS USA
[Osmond 199E. Note that the form given in this chapter does not show time, enabling a
more direct view of the tradeoff between functionality and other qualities in the two
alternative curves, but not reflecting the black curve’s potential for delaying a project.
Osmond’s original curves are plotted against time rather than functionality.

The chart of maintenance costs is derived from a study by Lientz and Swanson,
based on a maintenance questionnaire sent to 487 organiz[Lientz 1980. See also
[Boehm 197¢. Although some of their input data may be considered too specialized and
by now obsolete (the study was based on batch-type MIS applications of an average size
of 23,000 instructions, large then but not by today’s standards), the results generally seem
still applicable. The Software Management Association performs a yearly survey of
maintenance; se[Dekleva 1992 for a report about one of these surveys.

The expressionprogramming-in-the-largeand programming-in-the-smalwere
introduced by[DeRemer 197¢.]

For a general discussion of software engineering issues, see the textbook by Ghezzi,
Jazayeri and Mandrio[Ghezzi 1991. A text on programming languages by some of the
same author{Ghezzi 1997, provides complementary background for some of the issues
discussed in the present book.

2

Criteria of object orientation

In the previous chapter we explored the goals of the object-oriented method. As
preparation for part® andC, in which we will discover the technical details of the
method, it is useful to take a quick but wide glance at the key aspects of object-oriente
development. Such is the aim of this chapter.

One of the benefits will be to obtain a concise memento of what makes a syster
object-oriented. This expression has nowadays become so indiscriminately used that v
need a list of precise properties under which we can assess any method, language or t
that its proponents claim to be O-O.

This chapter limits its explanations to a bare minimum, so if this is your first reading
you cannot expect to understand in detail all the criteria listed; explaining them is the tas
of the rest of the book. Consider this discussion a preview — not the real movie, just a traile

Warning Actually a warning is in order because unlike any good trailer this chapter is alsc

SPOILER what film buffs call espoiler— it gives away some of the plot early. As such it breaks the
step-by-step progression of this book, especially part B, which patiently builds the cas
for object technology by looking at issue after issue before deducing and justifying the
solutions. If you like the idea of reading a broad overview before getting into more depth
this chapter is for you. But if you prefaptto spoil the pleasure of seeing the problems
unfold and of discovering the solutions one by one, then you should simply skip it. You
will not need to have read it to understand subsequent chapters.

2.1 ON THE CRITERIA

Let us first examine the choice of criteria for assessing objectness.

How dogmatic do we need to be?

The list presented below includes all the facilities which | believe to be essential for the
production of quality software using the object-oriented method. It is ambitious and may
appear uncompromising or even dogmatic. What conclusion does this imply for ar
environment which satisfies some but not all of these conditions? Should one just reje
such a half-hearted O-O environment as totally inadequate?

22 CRITERIA FOR OBJECT ORIENTATIONS2.2

Only you, the reader, can answer this question relative to your own context. Several
reasons suggest that some compromises may be necessary:

* “Object-oriented” is not a boolean condition: environment A, although not 100%
0-0, may be “more” O-0O than environment B; so if external constraints limit your
choice to A and B you will have to pick A as the least bad object-oriented choice.

* Not everyone will need all of the properties all the time.

< Object orientation may be just one of the factors guiding your search for a software
solution, so you may have to balance the criteria given here with other considerations.

All this does not change the obvious: to make informed choices, even if practical
constraints impose less-than-perfect solutions, you need to know the complete picture, as
provided by the list below.

Categories

The set of criteria which follows has been divided into three parts:

* Method and languac these two almost indistinguishable aspects cover the thought
processes and the notations used to analyze and produce software. Be sure to note
that (especially in object technology) the term “language” covers not just the
programming language in a strict sense, but also the notations, textual or graphical,
used for analysis and design.

* Implementation and environme¢ the criteria in this category describe the basic
properties of the tools which allow developers to apply object-oriented ideas.

* Libraries: object technology relies on the reuse of software components. Criteria in
this category cover both the availability of basic libraries and the mechanisms
needed to use libraries and produce new ones.

This division is convenient but not absolute, as some criteria straddle two or three of
the categories. For example the criterion labeled “memory management’” has been
classified under method and language because a language can support or prevent
automatic garbage collection, but it also belongs to the implementation and environment
category; the “assertion” criterion similarly includes a requirement for supporting tools.

2.2 METHOD AND LANGUAGE

The first set of criteria covers the method and the supporting notation.

Seamlessness

The object-oriented approach is ambitious: it encompasses the entire software lifecycle.
When examining object-oriented solutions, you should check that the method and
language, as well as the supporting tools, apply to analysis and design as well as
implementation and maintenance. The language, in particular, should be a vehicle for
thought which will help you through all stages of your work.

§2.2 METHOD AND LANGUAGE 23

The result is a seamless development process, where the generality of the conc
and notations helps reduce the magnitude of the transitions between successive ste|
the lifecycle.

These requirements exclude two cases, still frequently encountered but eque
unsatisfactory:

* The use of object-oriented concepts for analysis and design only, with a method ¢
notation that cannot be used to write executable software.

e The use of an object-oriented programming language which is not suitable f
analysis and design.

In summary:

An object-oriented language and environment, together with the suppprting
method, should apply to the entire lifecycle, in a way that minimizes the|gaps
between successive adties.

Classes

The object-oriented method is based on the notion of class. Informally, a class is
software element describing an abstract data type and its partial or total implementati
An abstract data type is a set of objects defined by the list of operatiofeature:;
applicable to these objects, and the properties of these operations.

The method and the language should have the notion of class as$ their
central concept.

Assertions

The features of an abstract data type have formally specified properties, which shoulc
reflected in the corresponding classes. Assertions — routine preconditions, routi
postconditions and class invariants — play this role. They describe the effect of featu
on objects, independently of how the features have been implemented.

Assertions have three major applications: they help produce reliable software; th
provide systematic documentation; and they are a central tool for testing and debugg
object-oriented software.

The language should make it possible to equip a class and its featthgs wit
assertions (preconditions, postconditions and invariants), relying on topls to
produce documentation out of these assertions and, optionally, monitor them
at run time.

In the society of software modules, with classes serving as the cities and instructic
(the actual executable code) serving as the executive branch of government, assert
provide the legislative branch. We shall see below who takes care of the judicial syste

24 CRITERIA FOR OBJECT ORIENTATIONS2.2

Classes as modules

Object orientation is primarily an architectural technique: its major effect is on the
modular structure of software systems.

The key role here is again played by classes. A class describes not just a type of
objects but also a modular unit. In a pure object-oriented approach:

Classes should be the only modules.

In particular, there is no notion of main program, and subprograms do not exist as
independent modular units. (They may only appear as part of classes.) There is also no
need for the “packages” of languages such as Ada, although we may find it convenient for
management purposes to group classes into administrative units,cluster

Classes as types

The notion of class is powerful enough to avoid the need for any other typing mechanism:

Every type should be based on a class.

Even basic types suchINTEGEFandREAL can be derived from classes; normally
such classes will be built-in rather than defined anew by each developer.

Feature-based computation

In object-oriented computation, there is only one basic computational mechanism: given a
certain object, which (because of the previous rule) is always an instance of some class,
call a feature of that class on that object. For example, to display a certain window on a
screen, you call the featudisplay on an object representing the window — an instance of
classWINDOW. Features may also have arguments: to increase the salary of an employee
ebyndollars, effective at daid, you call the featurraise one, withn andd as arguments.

Just as we treat basic types as predefined classes, we may view basic operations
(such as addition of numbers) as special, predefined cases of feature call, a very general
mechanism for describing computations:

Feature call should be the primary computational mechanism.

A class which contains a call to a feature of a cGts said to be iclient of C.
Feature call is also known imessage passir; in this terminology, a call such as the
above will be described as passine the message “raise your pay”, with amertsd ard
n.

§2.2 METHOD AND LANGUAGE 25

Information hiding

When writing a class, you will sometimes have to include a feature which the class ne«
for internal purposes only: a feature that is part of the implementation of the class, but
of its interface. Others features of the class — possibly available to clients — may call 1
feature for their own needs; but it should not be possible for a client to call it directly.

The mechanism which makes certain features unfit for clients’ calls is calle
information hiding. As explained in a later chapter, it is essential to the smooth evoluti
of software systems.

In practice, it is not enough for the information hiding mechanism to support export:
features (available to all clients) and secret features (available to no client); class desig
must also have the ability to export a feature selectively to a set of designated clients.

It should be possible for the author of a class to specify that a feature is
available to all clients, to no client, or to specified clients.

An immediate consequence of this rule is that communication between class
should be strictly limited. In particular, a good object-oriented language should not off
any notion of global variable; classes will exchange information exclusively throug
feature calls, and through the inheritance mechanism.

Exception handling

Abnormal events may occur during the execution of a software system. In object-orien
computation, they often correspond to calls that cannot be executed properly, as a re
of a hardware malfunction, of an unexpected impossibility (such as numerical overflow
an addition), or of a bug in the software.

To produce reliable software, it is necessary to have the ability to recover from su
situations. This is the purpose of an exception mechanism.

The language should provide a mechanism to recover from unexpected
abnormal situations.

In the society of software systems, as you may have guessed, the except
mechanism is the third branch of government, the judicial system (and the support
police force).

Static typing

When the execution of a software system causes the call of a certain feature on a ce
object, how do we know that this object will be able to handle the call? (In messa
terminology: how do we know that the object can process the message?)

To provide such a guarantee of correct execution, the language must be typed. T
means that it enforces a few compatibility rules; in particular:

26 CRITERIA FOR OBJECT ORIENTATIONS2.2

» Every entity (that is to say, every name used in the software text to refer to run-time
objects) is explicitly declared as being of a certain type, derived from a class.

« Every feature call on a certain entity uses a feature from the corresponding class (and
the feature is available, in the sense of information hiding, to the caller’s class).

e Assignment and argument passing are subjecconformance rules, based on
inheritance, which require the source’s type to be compatible with the target’s type.

In a language that imposes such a policy, it is possible to wstatic type checker
which will accept or reject software systems, guaranteeing that the systems it accepts will
not cause any “feature not available on object” error at run time.

A well-defined type system should, by enforcing a number of type
declaration and compatibility rules, guarantee the run-time type safety of the
systems it accepts.

Genericity

For typing to be practical, it must be possible to define type-parameterized classes, known
as generic. A generic claLIST[G] will describe lists of elements of an arbitrary type
represented b'G, the “formal generic parameter”; you may then declare specific lists
through such derivations LIST[INTEGEF] andLIST [WINDOW], using typeINTEGER
andWINDOW as “actual generic parameters”. All derivations share the same class text.

It should be possible to write classes with formal generic parameters
representing arbitrary types.

This form of type parameterization is calleunconstrained genericity. A
companion facility mentioned below, constrained genericity, involvesgitance.

Single inheritance

Software development involves a large number of classes; many are variants of others. To
control the resulting potential complexity, we need a classification mechanism, known as
inheritance. A class will be an heir of another if it incorporates the other’s features in
additionto its own. (/descendaris a direct or indirect heir; the reverse notioancesto.)

It should be possible to define a class as inheriting from another.

Inheritance is one of the central concepts of the object-oriented methods and has
profound consequences on the software development |s.oces

Multiple inheritance

We will often encounter the need to combine several abstractions. For example a class
might model the notion of “infant”, which we may view both as a “person”, with the

§2.2 METHOD AND LANGUAGE 27

Repeated
inheritance

associated features, and, more prosaically, as a “tax-deductible item”, which earns sc
deduction at tax time. Inheritance is justified in both caMultiple inheritance is the
guarantee that a class may inherit not just from one other but from as many as
conceptually justified.

Multiple inheritance raises a few technical problems, in particular the resolution
name clashe(cases in which different features, inherited from different classes, have tl
same name). Any notation offering multiple inheritance must provide an adeque
solution to these problems.

It should be possible for a class to inherit from as many others as necessary,
with an adequate mechanism for disambiguating name clashes.

The solution developed in this book is baserenamingthe conflicting features in
the heir class.

Repeated inheritance

Multiple inheritance raises the possibilityrepeatecinheritance, the case in which a class
inherits from another through two or more paths, as shown.

\ / ?Inherits from

In such a case the language must provide precise rules defining what happen
features inherited repeatedly from the common anceA in the figure. As the discussion
of repeated inheritance will show, it may be desirable for a featlA to yield just one
feature ofD in some casessharing), but in others it should yield twcreplicatior).
Developers must have the flexibility to prescribe either policy separately for each featu

Precise rules should govern the fate of features under repeated inhetitance,
allowing developers to choose, separately for each repeatedly inherited
feature, between sharing and replication.

Constrained genericity

The combination of genericity and inheritance brings about an important techniqt
constrained genericity, through which you can specify a class with a generic parame
that represents not an arbitrary type as with the earlier (unconstrained) form of generic
but a type that is a descendant of a given class.

28 CRITERIA FOR OBJECT ORIENTATIONS2.2

A generic classSORTABLE LIS, describing lists with esort feature that will
reorder them sequentially according to a certain order relation, needs a generic parameter
representing the list elements’ type. That type is not arbitrary: it must support an order
relation. To state that any actual generic parameter must be a descendant of the library
classCOMPARABLI, describing objects equipped with an order relation, use constrained
genericity to declare the classSORTABLE LIS|[G -> COMPAFABLE].

The genericity mechanism should support the constrained form of
genericity.

Redefinition

When a class is an heir of another, it may need to change the implementation or other
properties of some of the inherited features. A ¢cSESSIONescribing user sessions in

an operating system may have a featerminateto take care of cleanup operations at the
end of a session; an heir might REMOTE _SESSIC, handling sessions started from a
different computer on a network. If the termination of a remote session requires
supplementary actions (such as notifying the remote computer)REMOTE_SESSION

will redefine featureerminate.

Redefinition may affect the implementation of a feature, its signature (type of
arguments and result), and its cification.

It should be possible to redefine the specification, signature | and
implementation of an inherited feature.

Polymorphism

With inheritance brought into the picture, the static typing requirement listed earlier would
be too restrictive if it were taken to mean that every entity declared oC may only

refer to objects whose type is exacC. This would mean for example that an entity of
type C (in a navigation control system) could not be used to refer to an object of type
MERCHANT_SHI or SPORTS_BO/, both assumed to be classes inheriting from
BOAT.

As noted earlier, an “entity” is a name to which various values may become attached at
run time. This is a generalization of the traditional notion of variable.

Polymorphism is the ability for an entity to become attached to objects of various
possible types. In a statically typed environment, polymorphism will not be arbitrary, but
controlled by inheritance; for example, we should not allowBOAT entity to become

§2.2 METHOD AND LANGUAGE 29

attached to an object representing an object of BUOY, a class which does not inherit
from BOAT.

It should be possible to attach entities (names in the software |texts
representing run-time objects) to run-time objects of various possible types,
under the control of the inheritance-based type system.

Dynamic binding

The combination of the last two mechanisms mentioned, redefinition and polymorphis
immediately suggests the next one. Assume a call whose target is a polymorphic en
for example a call to the featuturn on an entity declared of tyfBOAT. The various
descendants (BOATmay have redefined the feature in various ways. Clearly, there mu:
be an automatic mechanism to guarantee that the versturn will always be the one
deduced from the actual object’s type, regardless of how the entity has been declared."
property is called dynamic binding.

Calling a feature on an entity should always trigger the feature correspgnding
to the type of the attached run-time object, which is not necessarily theg same
in different executions of the call.

Dynamic binding has a major influence on the structure of object-oriente
applications, as it enables developers to write simple calls (meaning, for example, “c
feature turn on entity my boa”) to denote what is actually several possible calls
depending on the corresponding run-time situations. This avoids the need for many of
repeated tests (“Is this a merchant ship? Is this a sports boat?”) which plague softw
written with more conventional approaches.

Run-time type interrogation

Object-oriented software developers soon develop a healthy hatred for any style
computation based on explicit choices between various types for an object. Polymorphi
and dynamic binding provide a much preferable alternative. In some cases, however
object comes from the outside, so that the software author has no way to predict its t
with certainty. This occurs in particular if the object is retrieved from external storag
received from a network transmission or passed by some other system.

The software then needs a mechanism to access the object in a safe way, witt
violating the constraints of static typing. Such a mechanism should be designed with c:
S0 as not to cancel the benefits of polymorphism and dynamic binding.

The assignment attemp operation described in this book satisfies these
requirements. An assignment attempt is a conditional operation: it tries to attach an ob]
to an entity; if in a given execution the object’s type conforms to the type declared for t
entity, the effect is that of a normal assignment; otherwise the entity gets a special “vo

30 CRITERIA FOR OBJECT ORIENTATIONS2.2

value. So you can handle objects whose type you do not know for sure, without violating
the safety of the type system.

It should be possible to determine at run time whether the type of an pbject
conforms to a statically given type.

Deferred features and classes

In some cases for which dynamic binding provides an elegant solution, obviating the need
for explicit tests, there is no initial version of a feature to be redefined. For example class
BOATmay be too general to provide a default implementaticturn. Yet we want to be

able to call featurturn to an entity declared of tyfBOATIf we have ensured that at run
time it will actually be attached to objects of such fully defined typeMERCHANT _

SHIP anc SPORTS_BOA. T

In such caseBOAT may be declared as a deferred class (one which is not fully
implemented), and with a deferred featiturn. Deferred features and classes may still
possess assertions describing their abstract properties, but their implementation is
postponed to descendant classes. A non-deferres is sair to beeffective.

It should be possible to write a class or a feature as deferred, that is|to say
specified but not fully implemented.

Deferred classes (also called abstract classes) are particularly important for object-
oriented analysis and high-level design, as they make it possible to capture the essential
aspects of a system while leaving details to a latge.ta

Memory management and garbage collection

The last point on our list of method and language criteria may at first appear to belong
more properly to the next category — implementation and environment. In fact it belongs
to both. But the crucial requirements apply to the language; the rest is a matter of good
engineering.

Object-oriented systems, even more than traditional programs (except in the Lisp
world), tend to create many objects with sometimes complex interdependencies. A policy
leaving developers in charge of managing the associated memory, especially when it
comes to reclaiming the space occupied by objects that are no longer needed, would harm
both the efficiency of the development process, as it would complicate the software and
occupy a considerable part of the developers’ time, and the safety of the resulting systems,
as it raises the risk of improper recycling of memory areas. In a good object-oriented
environment memory management will be automatic, under the control garbage
collectol, a component of the runtime system.

The reason this is a language issue as much as an implementation requirement is that
a language that has not been explicitly designed for automatic memory management will
often render it impossible. This is the case with languages where a pointer to an object of

§2.3 IMPLEMENTATION AND ENVIRONMENT 31

a certain type may disguise itself (through conversions known as “casts”) as a pointel
another type or even as an integer, making it impossible to write a rbage collector.

The language should make safe automatic memory management passible,
and the implementation should provide an automatic memory mapager
taking care of garbage collection.

2.3 IMPLEMENTATION AND ENVIRONMENT

We come now to the essential features of a development environment supporting obj
oriented software construction.

Automatic update

Software development is an incremental process. Developers do not commonly wi
thousands of lines at a time; they proceed by addition and modification, starting most
the time from a system that is already of substantial size.

When performing such an update, it is essential to have the guarantee that
resulting system will be consistent. For example, if you change a fef of classC, you
must be certain that every descendanC which does not redefinf will be updated to
have the new version f, and that every call tf in a client ofC or of a descendant
will trigger the new version.

Conventional approaches to this problem are manual, forcing the developers
record all dependencies, and track their changes, using special mechanisms know
“make files” and “include files”. This is unacceptable in modern software developmen
especially in the object-oriented world where the dependencies between classes, resu
from the client and inheritance relations, are often complex but may be deduced fron
systematic examination of the software text.

System updating after a change should be automatic, the analysis of inter-
class dependencies being performed by tools, not manually by developers.

It is possible to meet this requirement in a compiled environment (where tt
compiler will work together with a tool for dependency analysis), in an interprete
environment, or in one combining both of these language implementation techniques.

Fast update

In practice, the mechanism for updating the system after some changes should not onl
automatic, it should also be fast. More precisely, it should be proportional to the size

32 CRITERIA FOR OBJECT ORIENTATIONS2.3

the changed parts, not to the size of the system as a whole. Without this property, the
method and environment may be applicable to small systems, but not to large ones.

The time to process a set of changes to a system, enabling execution of the
updated version, should be a function of the size of the changed components,
independent of the size of the system as a whole.

Here too both interpreted and compiled environments may meet the criterion,
although in the latter case the compiler must be incremental. Along with an incremental
compiler, the environment may of course include a global optimizing compiler working
on an entire system, as long as that compiler only needs to be used for delivering a final
product; development will rely on the incremental compiler.

Persistence

Many applications, perhaps most, will need to conserve objects from one session to the
next. The environment should provide a mechanism to do this in a simple way.

An object will often contain references to other objects; since the same may be true
of these objects, this means that every object may have a large nurrdependent
objects, with a possibly complex dependency graph (which may involve cycles). It would
usually make no sense to store or retrieve the object without all its direct and indirect
dependents. A persistence mechanism which can automatically store an object's
dependents along with the object is said to sugpersistence closur.2

A persistent storage mechanism supporting persistence closure shguld be
available to store an object and all its dependents into external devices, and
to retrieve them in the same or another session.

For some applications, mere persistence support is not sufficient; such applications
will need full database suppor. The notion of object-oriented database is covered in a
later chapter, which also explores other persistent issues sischema evolutic, the
ability to retrieve objects safely even if the corresponding classes have changed.

Documentation

Developers of classes and systems must provide management, customers and other
developers with clear, high-level descriptions of the software they produce. They need
tools to assist them in this effort; as much as possible of the documentation should be
produced automatically from the software texts. Assertions, as already noted, help make
such software-extracted documents precise and informative.

Automatic tools should be available to produce documentation about classes
and systems.

§2.4 LIBRARIES

33

Sis a “supplier” of
CifCisacliento€.
“Client” was

defined on pag24.

Browsing

When looking at a class, you will often need to obtain information about other classes;
particular, the features used in a class may have been introduced not in the class itsel
in its various ancestors. This puts on the environment the burden of providing develop
with tools to examine a class text, find its dependencies on other classes, and sw
rapidly from one class text to another.

This task is called browsing. Typical facilities offered by good browsing tools
include: find the clients, suppliers, descendants, ancestors of a class; find all -
redefinitions of a feature; find the original declaration of a redefined feature.

Interactive browsing facilities should enable software developers to follgw up
quickly and conveniently the dependencies between classes and featurgs.

2.4 LIBRARIES

One of the characteristic aspects of developing software the object-oriented way is
ability to rely on libraries. An object-oriented environment should provide good libraries
and mechanisms to write more.

Basic libraries

The fundamental data structures of computing science — sets, lists, trees... — and

the associated algorithms — sorting, searching, traversing, pattern matching —
ubiquitous in software development. In conventional approaches, each develoj
implements and re-implements them independently all the time; this is not only waste
of efforts but detrimental to software quality, as it is unlikely that an individual develope
who implements a data structure not as a goal in itself but merely as a component of s
application will attain the optimum in reliability and efficiency.

An object-oriented development environment must provide reusable class
addressing these common needs of software systems.

Reusable classes should be available to cover the most frequently needed
data structures and algorithms.

Graphics and user interfaces

Many modern software systems are interactive, interacting with their users throu
graphics and other pleasant interface techniques. This is one of the areas where the ok
oriented model has proved most impressive and helpful. Developers should be able to
on graphical libraries to build interactive applications quickly and effectively.

Reusable classes should be available for developing applications which
provide their users with pleasant graphical user interface.

34 CRITERIA FOR OBJECT ORIENTATIONS2.5

Library evolution mechanisms

Developing high-quality libraries is a long and arduous task. It is impossible to guarantee
that the design of library will be perfect the first time around. An important problem, then,
is to enable library developers to update and modify their designs without wreaking havoc
in existing systems that depend on the library. This important criterion belongs to the
library category, but also to the method and language category.

Mechanisms should be available to facilitate library evolution with minjimal
disruption of client software.

Library indexing mechanisms

Another problem raised by libraries is the need for mechanisms to identify the classes
addressing a certain need. This criterion affects all three categories: libraries, language (as
there must be a way to enter indexing information within the text of each class) and tools
(to process queries for classes satisfying certain conditions).

Library classes should be equipped with indexing information allowing
property-based retrieval.

2.5 FOR MORE SNEAK PREVIEW

Although to understand the concepts in depth it is preferable to read this book
sequentially, readers who would like to complement the preceding theoretical overview
with an advance glimpse of the method at work on a practical example can at this point
read chapte¢ 20, a case study of a practical design problem, on which it compares an O-O
solution with one employing more traditional techniques.

That case study is mostly self-contained, so that you will understand the essentials
without having read the intermediate chapters. (But if you do go ahead for this quick peek,
you must promise to come back to the rest of the sequential presentation, starting with
chapter3, as soon as you are done.)

2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

This introduction to the criteria of object orientation is a good opportunity to list a
selection of books that offer quality introductions to object technology in general.

[Waldén 1995 [discusses the most important issues of object technology, focusing
on analysis and design, on which it is probably the best reference.

[Page-Jones 199 provides an excellent overview of the method.

[Cox 1990 (whose first edition was published in 1986) is based on a somewhat
different view of object technology and was instrumental in bringing O-O concepts to a
much larger audience than before.

§2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES 35

Chapte 28 dis-
cusses teaching
the technology.

[Henderson-Sellers 19¢ (a second edition is announceprovides a short overview
of O-0O ideas. Meant for people who are asked by their company to “go out and find c
what that object stuff is about”, it includes ready-to-be-photocopied transparency maste
precious on such occasions. Another overvie[Eliéns 1995

The Dictionary of Object Technolo j[Firesmith 1995 provides a comprehensive
reference on many aspects of the method.

All these books are to various degrees intended for technically-minded people. Thi
is also a need to educate manag[M 1995] grew out of a chapter originally planned for
the present book, which became a full-fledged discussion of object technology f
executives. It starts with a short technical presentation couched in business terms
continues with an analysis of management issues (lifecycle, project management, re
policies). Another management-oriented boo[Goldberg 1995 provides a
complementary perspective on many important toj[Baudoin 1996 stresses lifecycle
issues and the importance of standards.

Coming back to technical presentations, three influential books on object-orient
languages, written by the designers of these languages, contain general methodolog
discussions that make them of interest to readers who do not use the languages or n
even be critical of them. (The history of programming languages and books about th
shows that designers are not always the best to write about their own creations, but in tf
cases they were.) The books are:

e Simula BEGIN[Birtwistle 1973. (Here two other authors joined the language
designers Nygaard and Dahl.)

¢ Smalltalk-8(: The Language and its Implementai [Goldberg 198%]
e The C++ Programming Languay, second editio [Stroustrup 1991]

More recently, some introductory programming textbooks have started to use obje
oriented ideas right from the start, as there is no reason to let “ontogeny repeat phyloge!
that is to say, take the poor students through the history of the hesitatiomistakes
through which their predecessors arrived at the right ideas. The first such text (to 1
knowledge) waqRist 1995. Another good book covering similar needs[Wiener
1996. At the nextlevel — textbooks for a second course on programming, discussing d
structures and algorithms based on the notation of this book — you wi[Gore 1996]
and [Wiener 1997; [Jézéquel 199(presents the principles of object-oriented software
engineering.

The Usenet newsgrolcomp.obje¢, archived on several sites around the Web, is the
natural medium of discussion for many issues of object technology. As with all su
forums, be prepared for a mixture of the good, the bad and the ugly. The Obje
Technology department Computel(IEEE), which | have edited since it started in 1995,
has frequent invited columns by leading experts.

Magazines devoted to Object Technology include:

36 CRITERIA FOR OBJECT ORIENTATIONS2.6

e The Journal of Object-Oriented Programmi (the first journal in the field,
emphasizing technical discussions but for a large audieObject Magazin (of a
more general scope, with some articles for managObjekt Spektrun(German,
Object Currenty(on-line), all described ttp://www.sigs.coin

* Theory and Practice of Object Systt, an archival journal.
* L’OBJET (French), described http://www.tools.com/Iobj.:t

The major international O-O conferences are OOPSLA (yearly, USA or Canada, see
http://www.acm.or); Object Expo(variable frequency and locations, described at
http://www.sigs.col); and TOOLS (Technology of Object-Oriented Languages and
Systems), organized by ISE with three sessions a year (USA, Europe, Pacific), whose
home page http://www.tools.cor also serves as a general resource on object technology
and the topics of this book.

Part B:

The road to object orientation

See the comments on
this text on pagd3.

The secondiprecept | devised for mysg¢hvas to divide each of the difficulties
which | would examine into as many parcels as it would be possible and
required to solve it better.

The third was to drive my thoughts in due order, beginning with these objects
most simple and easiest to know, and climbing little by little, so to speak by
degrees, up to the knowledge of the most composite ones; and assuming sor
order even between those which do not naturally precede one another.

René Descartefiscourse on the Method 637)

Part B will examine the software engineering requirements that lead us, almost
inexorably, to object technology.

3

Modularity

From the goals of extendibility and reusability, two of the principal quality factors
introduced in chaptef, follows the need for flexible system architectures, made of
autonomous software components. This is why chaptatso introduced the term
modularityto cover the combination of these two quality factors.

Modular programming was once taken to mean the construction of programs a
assemblies of small pieces, usually subroutines. But such a technigque cannot bring re
extendibility and reusability benefits unless we have a better way of guaranteeing that tt
resulting pieces — themodules — are self-contained and organized in stable
architectures. Any comprehensive definition of modularity must ensure these properties

A software construction method is modular, then, if it helps designers produce
software systems made of autonomous elements connected by a coherent, simy
structure. The purpose of this chapter is to refine this informal definition by exploring
what precise properties such a method must possess to deserve the “modular” label. T
focus will be on design methods, but the ideas also apply to earlier stages of syste
construction (analysis, specification) and must of course be maintained at the
implementation and maintenance stages.

As it turns out, a single definition of modularity would be insufficient; as with
software quality, we must look at modularity from more than one viewpoint. This chapter
introduces a set of complementary properties: dinteria, five rulesand fiveprinciples
of modularity which, taken collectively, cover the most important requirements on a
modular design method.

For the practicing software developer, the principles and the rules are just a
important as the criteria. The difference is simply one of causality: the criteria are
mutually independent — and it is indeed possible for a method to satisfy one of them whil
violating some of the others — whereas the rules follow from the criteria and the
principles follow from the rules.

You might expect this chapter to begin with a precise description of what a module
looks like. This is not the case, and for a good reason: our goal for the exploration ¢
modularity issues, in this chapter and the next two, is precisely to analyze the propertie
which a satisfactory module structure must satisfy; so the form of modules will be &
conclusion of the discussion, not a premise. Until we reach that conclusion the wort

40 MODULARITY §3.1

“module” will denote the basic unit of decomposition of our systems, whatever it actually

is. If you are familiar with non-object-oriented methods you will probably think of the
subroutines present in most programming and design languages, or perhaps of packages
as present in Ada and (under a different name) in Modula. The discussion will lead in a
later chapter to the O-O form of module — the class — which supersedes these ideas. If
you have encountered classes and O-O techniques before, you should still read this chapter
to understand the requirements that classes address, a prerequisite if you want to use them
well.

3.1 FIVE CRITERIA

A design method worthy of being called “modular” should satisfy five fundamental
requirements, explored in the next few sections:

* Decomposability.
e Composability.
* Understandability.

« Continuity.

Protection.

Modular decomposability

A software construction method satisfies Modular Decomposability |if it
helps in the task of decomposing a software problem into a small numper of
less complex subproblems, connected by a simple structure, and independent
enough to allow further work to proceed separately on each of them

The process will often be self-repeating since each subproblem may still be complex
enough to require further decomposition.

Decomposabil-
ity

§3.1 FIVE CRITERIA 41

A corollary of the decomposability requiremendivision of labo: once you have
decomposed a system into subsystems you should be able to distribute work on tt
subsystems among different people or groups. This is a difficult goal since it limits tl
dependencies that may exist between the subsystems:

* You must keep such dependencies to the bare minimum; otherwise the developrr
of each subsystem would be limited by tlae of the work on the other subsystems.

e The dependencies must be known: if you fail to list all the relations betwee
subsystems, you may at the end of the project get a set of software elements
appear to work individually but cannot be put together to produce a complete syst:
satisfying the overall requirements of the original problem.

As discussed bel,w The most obviousexampleof a method meant to satisfy the decomposability
top-down designis criterion istop-down desigr. This method directs designers to start with a most abstrac
not as well suited to gagcription of the system’s function, and then to refine this view through successive ste
other modularity decomposing each subsystem at each step into a small number of simpler subsyst

criteria.
until all the remaining elements are of a sufficiently low level of abstraction to allow dire
implementation. The process may be modeled as a tree.

A top-down Topmost functional abstraction

hierarchy

Sequence

Loop Conditional

o

The term “temporal A typical counter-exampleis any method encouraging you to include, in each
cohesion” comes Software system that you produce, a global initialization module. Many modules in
from the method ~ system will need some kind of initialization — actions such as the opening of certain fil
known as structured or the initialization of certain variables, which the module must execute before it perforr
ﬁss'rg”s_eelthetb'b' its first directly useful tasks. It may seem a good idea to concentrate all such actions,
graphicaineies il modules of the system, in a module that initializes everything for everybody. Such
module will exhibit good “temporal cohesion” in that all its actions are executed at tf
same stage of the system’s execution. But to obtain this temporal cohesion the met
would endanger the autonomy of modules: you will have to grant the initialization modu
authorization to access many separate data structures, belonging to the various modul
the system and requiring specific initialization actions. This means that the author of |
initialization module will constantly have to peek into the internal data structures of ti
other modules, and interact with their authors. This is incompatible with th

decomposability criterion.

In the object-oriented method, every module will be responsible for the initialization of
its own data structures.

42 MODULARITY §3.1

Modular composability

A method satisfies Modular Composability if it favors the production of
software elements which may then be freely combined with each other to
produce new systems, possibly in an environment quite different from the
one in which they were initially developed.

Where decomposability was concerned with the derivation of subsystems from overall
systems, composability addresses the reverse process: extracting existing software
elements from the context for which they were originally designed, so as to use them again
in different contexts.

Q Q Composability
@ o —

@

A modular design method should facilitate this process by yielding software
elements that will be sufficiently autonomous — sufficiently independent from the
immediate goal that led to their existence — as to make the extraction possible.

Composability is directly connected with the goal of reusability: the aim is to find
ways to design software elements performing well-defined tasks and usable in widely
different contexts. This criterion reflects an old dream: transforming the software design
process into a construction box activity, so that we would build programs by combining
standard prefabricated elements.

» Example :: subprogram librarie. Subprogram libraries are designed as sets of
composable elements. One of the areas where they have been successful is numerical
computation, which commonly relies on carefully designed subroutine libraries to
solve problems of linear algebra, finite elements, differential equations etc.

* Example : Unix Shell conventior. Basic Unix commands operate on an input
viewed as a sequential character stream, and produce an output with the same
standard structure. This makes them potentially composable throu| operator
of the command language (“shellA | B represents a program which will taA’s
input, haveA process it, send the outputB as input, and have it processedB.y
This systematic convention favors the composability of software tools.

* Counter-examp!: preprocessol. A popular way to extend the facilities of
programming languages, and sometimes to correct some of their deficiencies, is to

§3.1 FIVE CRITERIA 43

The figure illustrat-
ing top-down design
was on pag41l.

See'ABOUT
SOFTWARE MAIN-
TENANCE”, 1.3,
page 17

Understan-
dability

use “preprocessors” that accept an extended syntax as input and map it into
standard form of the language. Typical preprocessors for Fortran and C supp
graphical primitives, extended control structures or database operations. Usua
however, such extensions are not compatible; then you cannot combine two of
preprocessors, leading to such dilemmas as whether to use graphics or database

Composability is independent of decomposability. In fact, these criteria are often
odds. Top-down design, for example, which we saw as a technique favorir
decomposability, tends to produce modules thainot easy to combine with modules
coming from other sources. This is because the method suggests developing each mc
to fulfill a specific requirement, corresponding to a subproblem obtained at some point
the refinement process. Such modules tend to be closely linked to the immediate con
that led to their development, and unfit for adaptation to other contexts. The meth
provides neither hints towards making modules more general than immediately requir
nor any incentives to do so; it helps neither avoid nor even just detect commonalities
redundancies between modules obtained in different parts of the hierarchy.

That composability and decomposability are both part of the requirements for
modular method reflects the inevitable mix of top-down and bottom-up reasoning —
complementarity that René Descartes had already noted almost four centuries ago
shown by the contrasting two paragraphs oDiscourseextract at the beginnin¢ partB.

Modular understandability

A method favors Modular Understandability if it helps produce software in
which a human reader can understand each module without having tg know
the others, or, at worst, by having to examine only a few of the others.

The importance of this criterion follows from its influence on the maintenance proces
Most maintenance activities, whether of the noble or not-so-noble category, invol
having to dig into existing software elements. A method can hardly be called modular i
reader of the software is unable to understand its elements separately.

44 MODULARITY §3.1

This criterion, like the others, applies to the modules of a system description at any
level: analysis, design, implementation.

* Counter-examplesequential dependencieAssume some modules have been so
designed that they will only function correctly if activated in a certain prescribed
order; for exampleR can only work properly if you execute it afterand beforeC,
perhaps because they are meant for use in “piped” form as in the Unix notation
encountered earlier:

AlB|C
Then it is probably hard to understadvithout understanding andC too.

In later chapters, the modular understandability criterion will help us addressSee alsglater in this
important questions: how to document reusable components; and how to index reichapter “Self-)
components so that software developers can retrieve them conveniently through q|E:gsrmeanon ’
The criterion suggests that information about a component, useful for documentati... _.
for retrieval, should whenever possible appear in the text of the component itself; tools for
documentation, indexing or retrieval can then process the component to extract the needed
pieces of information. Having the information includedeach component is preferable

to storing it elsewhere, for example in a database of informaboatcomponents.

Modular continuity

A method satisfies Modular Continuity if, in the software architectures| that
it yields, a small change in a problem specification will trigger a change of
just one module, or a small number of modules.

This criterion is directly connected to the general goal of extendibility. As emphasizisee‘Extendibility”,
an earlier chapter, change is an integral part of the software construction procesPagde 6
requirements will almost inevitably change as the project progresses. Continuity n

that small changes should affect individual modules in the structure of the system, rather

than the structure itself.

The term “continuity” is drawn from an analogy with the notion of a continuous
function in mathematical analysis. A mathematical function is continuous if (informally)
a small change in the argument will yield a proportionally small change in the result. Here
the function considered is the software construction method, which you can view as a
mechanism for obtaining systems from specifications:

software_construction_metho8pecification—» System

§3.1 FIVE CRITERIA 45

Continuity A

/\/V\/

This mathematical term only provides an analogy, since we lack formal notions
size for software. More precisely, it would be possible to define a generally acceptal
measure of what constitutes a “small” or “large” change to a program; but doing the sa
for the specifications is more of a challenge. If we make no pretense of full rigor, howev
the concepts should be intuitively clear and correspond to an essential requirement on
modular method.

This will be one of * Exampli1: symbolic constan. A sound style rule bars the instructions of a program
our principles of from using any numerical or textual constant directly; instead, they rely on symbol
style Symbolic names, and the actual values only appear in a constant deficonstaniin Pascal

Constant Principle or Ada, preprocessor macros inPARAMETEI! in Fortran 77, constant attributes in

age8s4.
bad the notation of this book). If the value changes, the only thing to update is tf
constant definition. This small but important rule is a wise precaution for continuit
since constants, in spite of their name, are remarkably prone to change.
See'Uniform * Example : the Uniform Access princip. :Another rule states that a single notation
Access”, page 55 should be available to obtain the features of an object, whether they are represer

as data fields or computed on demand. This property is sufficiently important |
warrant a separate discussion later in this chapter.

» Counter-example : using physical representatic.iA method in which program
designs are patterned after the physical implementation of data will yield desig
that are very sensitive to slight changes in the environment.

* Counter-example: static array. Languages such as Fortran or standard Pasca
which do not allow the declaration of arrays whose bounds will only be known at ru
time, make program evolution much harder.

Modular protection

A method satisfies Modular Protection if it yields architectures in which the
effect of an abnormal condition occurring at run time in a module will remain
confined to that module, or at worst will only propagate to a few neighboring
modules.

46 MODULARITY §3.2

The underlying issue, that of failures and errors, is central to software engineeringThe question of how
errors considered here are run-time errors, resulting from hardware failures, erroto handle abnormal
input or exhaustion of needed resources (for example memory storage). The criterio €@Ses is discussedin
not address the avoidance or correction of errors, but the aspect that is directly rele‘Oletall in chapterL2.
modularity: their propagation.

Protection
violation

« Example validating input at the sour.:A method requiring that you make everMore on thistopic in
“Assertions are not an

module that inputs data also responsible for checking their validity is goodinpm(:hecking mech-

modular protection. anism’, page 346

* Counter-exampl: undisciplined exceptio.Languages such as PL/lI, CLU, Ada _
. . . ~ ' ""On exception han-

C++ and Java support the notion of exception. An exception is a special SIgNEjing, see chaptet2.

may be “raised” by a certain instruction and “handled” in another, possibly rer

part of the system. When the exception is raised, control is transferred to the ha..u...

(Details of the mechanism vary between languages; Ada or CLU are more disciplined

in this respect than PL/1.) Such facilities make it possible to decouple the algorithms

for normal cases from the processing of erroneous cases. But they must be used

carefully to avoid hindering modular protection. The chapter on exceptions will

investigate how to design a disciplined exception mechanism satisfying the c.iterion

3.2 FIVE RULES

From the preceding criteria, five rules follow which we must observe to ensure
modularity:

» Direct Mapping.

* Few Interfaces.

Small interfaces (weak coupling).

Explicit Interfaces.
 Information Hiding.

The first rule addresses the connection between a software system and the external
systems with which it is connected; the next four all address a common issue — how
modules will communicate. Obtaining good modular architectures requires that
communication occur in a controlled and disciplined way.

83.2 FIVE RULES 47

Direct Mapping

Any software system attempts to address the needs of some problem domain. If you t
a good model for describing that domain, you will find it desirable to keep a cle:
correspondence (mapping) between the structure of the solution, as provided by
software, and the structure of the problem, as described by the model. Hence the first r

The modular structure devised in the process of building a software system
should remain compatible with any modular structure devised in the process
of modeling the problem domain.

This advice follows in particular from two of the modularity criteria:

e Continuity: keeping a trace of the problem’s modular structure in the solution’
structure will make it easier to assess and limit the impact of changes.

« Decomposability: if some work has already been done to analyze the modu
structure of the problem domain, it may provide a good starting point for the modul
decomposition of the software.

Few Interfaces

The Few Interfaces rule restricts the overall number of communication channels betwe
modules in a software architecture:

Every module should communicate with as few others as possiblg.

Communication may occur between modules in a variety of ways. Modules may c:
each other (if they are procedures), share data structures etc. The Few Interfaces rule i
the number of such connections.

Types of module
interconnection
structures

(A) (B) (©)

More precisely, if a system is composed n modules, then the number of
intermodule connections should remain much closer to the mini n—1, shown a«A)
in the figure, than to the maximuin (n — 1) /2, shown a¢{B).

This rule follows in particular from the criteria of continuity and protection: if there
are too many relations between modules, then the effect of a change or of an error r

48 MODULARITY §3.2

propagate to a large number of modules. It is also connected to composability (if you want
a module to be usable by itself in a new environment, then it should not depend on too
many others), understandability and decomposability.

Cas¢ (A) on the last figure shows a way to reach the minimum number of n <s,
1, through an extremely centralized structure: one master module; everybody else talks to
it and to it only. But there are also much more “egalitarian” structures, syC) which
has almost the same number of links. In this scheme, every module just talks to its two
immediate najhbors, but there is no central authority. Such a style of designtitea |
surprising at first since it does not conform to the traditional model of functional, top-down
design. But it can yield robust, extendible architectures; this is the kind of structure that
object-oriented techniques, properly applied, will tend to yield.

Small Interfaces

The Small Interfaces or “Weak Coupling” rule relates to the size of intermodule
connections rather than to their number:

If two modules communicate, they should exchange as little information as
possible

An electrical engineer would say that the channels of communication between
modules must be of limited bandwidth:

Communication

Xy . bandwidth
between
<+ 7 7 modules

The Small Interfaces requirement follows in particular from the criteria of continuity
and protection.

An extremecounter-examplis a Fortran practice which some readers will recognize:
the “garbagecommon block”. A common block in Fortran is a directive of the form

COMMON/common_nan/ variable;,... variable,

indicating that the variables listed are accessible not just to the enclosing module but also
to any other module which include:COMMON directive with the samcommon_nan.e

It is not infrequent to see Fortran systems whose every module includes an identical
gigantic COMMON directive, listing all significant variables and arrays so that every
module may directly use every piece of data.

83.2 FIVE RULES

49

TheBody of a block
is a sequence of
instruction:. The syn-

tax used here is com-

patible with the
notation used in sub-
sequent chapte, so

it is not exactly
Algol's. “ --" intro-
duces a comme. it

On clusters see
chapter2€. The
0-0 alternative to
nesting is studied in
“The architectural
role of selective
exports”, page 203

The problem, of course, is that every module may also misuse the common data,
hence that modules are tightly coupled to each other; the problems of modular contint
(propagation of changes) and protection (propagation of errors) are particularly nas
This time-honored technigque has nevertheless remained a favorite, no doubt accoun
for many a late-night debugging session.

Developers using languages with nested structures can suffer from similar troubl
With block structure as introduced by Algol and retained in a more restricted form t
Pascal, it is possible to include blocks, delimitedbegin ... end pairs, within other
blocks. In addition every block may introduce its own variables, which are onl
meaningful within the syntactic scope of the block. For example:

local-- Beginning of bloc B1
X, y: INTEGER
do

... Instructions oB1 ...

local -- Beginning of bloc B2
2 BOOLEAN
do
... Instructions 0'B2 ...
end --- of block B2

local -- Beginning of bloc B3
y, Z INTEGER
do
... Instructions 0B3 ...
end -- of block B3

... Instructions oB1 (continued....
end -- of block B1

Variablex is accessible to all instructions throughout this extract, whereas the tw
variables callez (oneBOOLEAN, the otheINTEGEF) have scopes limited B2 andB3
respectively. Likex, variabley is declared at the level B1, but its scope does not include
B3, where another variable of the same name (and also oINTEGEF) locally takes
precedence over the outermwy. In Pascal this form of block structure exists only for
blocks associated with routines (procedures and functions).

With block structure, the equivalent of the Fortran garbage common block is tt
practice of declaring all variables at the topmost level. (The equivalent in C-bas
languages is to introduce all variables as external.)

Block structure, although an ingenious idea, introduces many opportunities
violate the Small Interfaces rule. For that reason we will refrain from using it in the objec
oriented notation devised later in this book, especially since the experience of Simula,
object-oriented Algol derivative supporting block structure, shows that the ability to ne
classes is redundant with some of the facilities provided by inheritance. The architect

50 MODULARITY §3.2

of object-oriented software will involve three levels: a system is a set of clusters; a cluster

is a set of classes; a class is a set of features (attributes and routines). Clusters, an
organizational tool rather than a linguistic construct, can be nested to allow a project
leader to structure a large system in as many levels as necessary; but classes as well as
features have a flat structure, since nesting at either of those levels would cause
unnecessary complication.

Explicit Interfaces

With the fourth rule, we go one step further in enforcing a totalitarian regime upon the
society of modules: not only do we demand that any conversation be limited to few
participants and consist of just a few words; we also require that such conversations must
be held in public and loudly!

Whenever two moduleA andB communicate, this must be obvious from the
text of A or B or both.

Behind this rule stand the criteria of decomposability and composability (if you need
to decompose a module into several submodules or compose it with other modules, any
outside connection should be clearly visible), continuity (it should be easy to find out what
elements a potential change may affect) and understandability (how can you uncArstand
by itself if B can influence its behavior in some devious way?).

One of the problems in applying the Explicit Interfaces rule is that there is more to

intermodule coupling than procedure call; data sharing, in particular, is a source of
indirect coupling:

Data sharing

Module
B
accesses
Data
item
X

Assume that modulA modifies and modulB uses the same data itx. ThenA and
B are in fact strongly coupled throux even though there may be no apparent connection,
such as a procedure call, between them.

83.2 FIVE RULES

51

A moduleunder
Information
Hiding

Information Hiding

The rule of Information Hiding may be stated as follows:

The designer of every module must select a subset of the module’s properties
as the official information about the module, to be made available to authors
of client modules.

Application of this rule assumes that every module is known to the rest of tf
world (that is to say, to designers of other modules) through some official descriptic
or public properties.

Of course, the whole text of the module itself (program text, design text) could ser
as the description: it provides a correct view of the module siris the module! The
Information Hiding rule states that this should not in general be the case: the descript
should only includesome of the module’s properties. The rest should remain non-public
orsecre. Instead of public and secret properties, one may also talk of exported and priv
properties. The public properties of a module are also known ainterface of the
module (not to be confused with the user interface of a software system).

The fundamental reason behind the rule of Information Hiding is the continuit
criterion. Assume a module changes, but the changes apply only to its secret eleme
leaving the public ones untouched; then other modules who use it, calclients, will
not be affected. The smaller the public part, the higher the chances that changes to
module will indeed be in the secret part.

We may picture a module supporting Information Hiding as an iceberg; only the t
— the interface — is visible to the clients.

Public Part

Secret Part

52 MODULARITY §3.2

As a typical example, consider a procedure for retrieving the attributes associated
with a key in a certain table, such as a personnel file or the symbol table of a compiler. The
procedure will internally be very different depending on how the table is stored (sequential
array or file, hash table, binary or B-Tree etc.). Information hiding implies that uses of this
procedure should be independent of the particular implementation chosen. That way client
modules will not suffer from any change in implementation.

Information hiding emphasizes separation of function from implementation. Besides
continuity, this rule is also related to the criteria of decomposability, composability and
understandability. You cannot develop the modules of a system separately, combine
various existing modules, or understand individual modules, unless you know precisely
what each of them may and may not expect from the others.

Which properties of a module should be public, and which ones secret? As a general
guideline, the public part should include the specification of the module’s functionality;
anything that relates to the implementation of that functionality should be kept secret, so
as to preserve other modules from later reversals of implementation decisions.

This first answer is still fairly vague, however, as it does not tell us what issee chaptes, in par-
specification and what is the implementation; in fact, one might be tempted to reverdticular “Abstract
definition by stating that the specification consists of whatever public propertiesdata types and infor-
module has, and the implementation of its secrets! The object-oriented approach Wil[)naegfrll:"dmg ’
us a much more precise guideline thanks to the theory of abstract data types.

To understand information hiding and apply the rule properly, it is important to
avoid a common misunderstanding. In spite of its name, information hiding does not
imply protectionin the sense of security restrictions — physically prohibiting authors of
client modules from accessing the internal text of a supplier module. Client authors may
well be permitted to read all the details they want: preventing them from doing so may be
reasonable in some circumstances, but it is a project management decision which does not
necessarily follow from the information hiding rule. As a technical requirement,
information hiding means that client modules (whether or not their authors are permitted
to read the secret properties of suppliers) should only rely on the suppliers’ public
properties. More precisely, it should be impossible to write client modules whose correct
functioning depends on secret information.

In a completely formal approach to software construction, this definition would be stated See the comments on
as follows. To prove the correctness of a module, you will need to assume some conditional correct-
properties about its suppliers. Information hiding means that such proofs are only ness on pag4.
permitted to rely on public properties of the suppliers, never on their secret properties.
Consider again the example of a module providing a table searching mechaiuon..

Some client module, which might belong to a spreadsheet program, uses a table, and relies

on the table module to look for a certain element in the table. Assume further that the

algorithm uses a binary search tree implementation, but that this property is secret — not

part of the interface. Then you may or may not allow the author of the table searching

module to tell the author of the spreadsheet program what implementation he has used for

tables. This is a project management decision, or perhaps (for commercially released

software) a marketing decision; in either case it is irrelevant to the question of information

§3.3 FIVE PRINCIPLES 53

By default “Ada”

hiding. Information hiding means something else: teven if the author of the
spreadsheet program knoithat the implementation uses a binary search tree, he shou
be unable to write a client module which will only function correctly with this
implementation — and would not work any more if the table implementation was chang
to something else, such as hash coding.

One of the reasons for the misunderstanding mentioned above is the very te
“information hiding”, which tends to suggest physical protection. “Encapsulation”
sometimes used as a synonym for information hiding, is probably preferable in tf
respect, although this discussion will retain the more common term.

As a summary of this discussion: the key to information hiding is not manageme

alwaysmeansthe mostor marketing policies as to who may or may not access the source text of a module,
widespread formofthe gtrict language rule: to define what access rights a module has on properties of i

language (83), not the

more recent Ada 95.
Chapter32 presents
both versions.

suppliers. As explained in the next chapter, “encapsulation languages” such as Ada
Modula-2 made the first steps in the right direction. Object technology will bring a mor
complete solution.

3.3 FIVE PRINCIPLES

From the preceding rules, and indirectly from the criteria, five principles of softwar
construction follow:

e The Linguistic Modular Units principle.

L]

The Self-Documentation principle.

The Uniform Access principle.

e The Open-Closed principle.

The Single Choice principle.

Linguistic Modular Units

The Linguistic Modular Units principle expresses that the formalism used to descril
software at various levels (specifications, designs, implementations) must support
view of modularity retained:

Linguistic Modular Units principle

Modules must correspond to syntactic units in the language used|

The language mentioned may be a programming language, a design languag
specification language etc. In the case of programming languages, modules should
separately compilable.

54 MODULARITY §3.3

What this principle excludes at any level — analysis, design, implementation — is
combining a method that suggests a certain module concept and a language that does not
offer the corresponding modular construct, forcing software developers to perform manual
translation or restructuring. It is indeed not uncommon to see companies hoping to apply
certain methodological concepts (such as modules in the Ada sense, or object-oriented
principles) but then implement the result in a programming language such as Pascal or C
which does not support them. Such an approach defeats several of the modularity criteria:

« Continuity: if module boundaries in the final text do not correspond to the logical
decomposition of the specification or design, it will be difficult or impossible to
maintain consistency between the various levels when the system evolves. A change
of the specification may be considered small if it affects only a small number of
specification modules; to ensure continuity, there must be a direct correspondence
between specification, design and implementation modules.

» Direct Mapping: to maintain a clear correspondence between the structure of the
model and the structure of the solution, you must have a clear syntactical
identification of the conceptual units on both sides, reflecting the division suggested
by your development method.

« Decomposability: to divide system development into separate tasks, you need to
make sure that every task results in a well-delimited syntactic unit; at the
implementation stage, these units must be separately compilable.

e Composability: how could we combine anything other than modules with
unambiguous syntactic boundaries?

» Protection: you can only hope to control the scope of errors if modules are
syntactically delimited.

Self-Documentation

Like the rule of Information Hiding, the Self-Documentation principle governs how we
should document modules:

Self-Documentation principle

The designer of a module should strive to make all information about the
module part of the module itself.

What this precludes is the common situation in which information about the module
is kept in separate project documents.

The documentation under review hereénternal documentation about components of “About documen-
the software, nouser documentation about the resulting product, which may require tation”, page 1«
separate products, whether paper, CD-ROM or Web pages — although, as noted in the

discussion of software quality, one may see in the modern trend towards providing more

and more on-line help a consequence of the same general idea.

The most obvious justification for the Self-Documentation principle is the criterion
of modular understandability. Perhaps more important, however, is the role of this

§3.3 FIVE PRINCIPLES 55

“Using assertions

for documentation:
the short form of a
class”, page 39. See
also chapte2Z and
its last two exercises.

Also known as the
Uniform Reference
principle.

principle in helping to meet the continuity criterion. If the software and its documentatic
are treated as separate entities, it is difficult to guarantee that they will remain compati
— “in sync” — when things start changing. Keeping everything at the same plac
although not a guarantee, is a good way to help maintain this compatibility.

Innocuous as this principle may seem at first, it goes against much of what t
software engineering literature has usually suggested as good software developn
practices. The dominant view is that software developers, to deserve the title of softw
engineers, need to do what other engineers are supposed to: produce a kilogram of p
for every gram of actual deliverable. The encouragement to keep a record of the softw
construction process is good advice — but not the implication that software and
documentation are different products.

Such an approach ignores the specific property of software, which again and ag
comes back in this discussion: its changeability. If you treat the two products as separ
you risk finding yourself quickly in a situation where the documentation says one thir
and the software does something else. If there is any worse situation than having
documentation, it must be having wrong documentation.

A major advance of the past few years has been the appearequality standard for
software, such as ISO certification, the “2167” standard and its successors from the US
Department of Defense, and the Capability Maturity Model of the Software Engineering
Institute. Perhaps because they often sprang out of models from other disciplines, they
tend to specify a heavy paper trail. Several of these standards could have a stronger effect
on software quality (beyond providing a mechanism for managers to cover their bases in
case of later trouble) by enforcing the Self-Documentation principle.

This book will draw on the Self-Documentation principle to define a method fo
documenting classes — the modules of object-oriented software construction — tl
includes the documentation of every module in the module itself. Not that the nisxdule
its documentation: there is usually too much detail in the software text to make it suital
as documentation (this was the argument for information hiding). Instead, the modt
shouldcontainits documentation.

In this approach software becomes a single product that supports mviews.
One view, suitable for compilation and execution, is the full source code. Another is t
abstract interface documentation of each module, enabling software developers to w
client modules without having to learn the module’s own internals, in accordance with t
rule of Information Hiding. Other views are possible.

We will need to remember this rule when we examine the question of how |
document the classes of object-oriented software construction.

Uniform Access

Although it may at first appear just to address a notational issue, the Uniform Acce
principle is in fact a design rule which influences many aspects of object-oriented des|
and the supporting notation. It follows from the Continuity criterion; you may also viev
it as a special case of Information Hiding.

56 MODULARITY §3.3

Letx be a name used to access a certain data item (what will later be called an object)
andf the name of a feature applicablex. (A feature is an operation; this terminology will
also be defined more precisely.) For examx might be a variable representing a bank
account, ancf the feature that yields an account’s current balance. Uniform Access
addresses the question of how to express the result of apf to x, using a notation that
does not make any premature commitment as tof is implemented.

In most design and programming languages, the expression denoting the application
of f to x depends on what implementation the original software developer has chosen for
featuref: is the value stored along wix, or must it be computed whenever requested?
Both techniques are possible in the example of accounts and their balances:

Al -« You may represent the balance as one of the fields of the record describing each
account, as shown in the figure. With this technique, every operation that changes
the balance must take care of updatingbalancefield.

A2 « Oryou may define a function which computes the balance using other fields of the
record, for example fields representing the lists of withdrawals and deposits. With
this technique the balance of an account is not stored (therdbalancefield) but
computed on demand.

(A1)

deposits_list —

for a bank

f‘{ | account

Two
F_* F_* | representation
I

| |

withdrawals_list —

(A2) |

deposits_list

B o N
withdrawals_list —4| |_| |_| |_| |

A common notation, in languages such as Pascal, Ada, C, C++ and Jave,f ines
caseAl andf (x) in caseA2.

Choosing between representatioAl and A2 is a spacdime tradeoff: one
economizes on computation, the other on storage. The resolution of this tradeoff in favor
of one of the solutions is typical of representation decisions that developers often reverse
at least once during a project’s lifetime. So for continuity’s sake it is desirable to have a
feature access notation that does not distinguish between the two cases; then if you are in
charge ox’s implementation and change your mind at some stage, it will not be necessary
to change the modules that tf. This is an example of the Uniform Access principle.

§3.3 FIVE PRINCIPLES 57

In its general form the principle may be expressed as:

Uniform Access principle

All services offered by a module should be available through a uniform
notation, which does not betray whether they are implemented through
storage or through computation.

Few languages satisfy this principle. An older one that did was Algol W, where bo
the function call and the access to a field were wria (x). Object-oriented languages
should satisfy Uniform Access, as did the first of them, Simula 67, whose notaxicn is
in both cases. The notation developed in C will retain this convention.

The Open-Closed principle

Another requirement that any modular decomposition technique must satisfy is the Op
Closed principle:

Open-Closed principle

Modules should be both open and closed.

The contradiction between the two terms is only apparent as they correspond to gc
of a different nature:

* A module is said to be open ifitis still available for extension. For example, it shoul
be possible to expand its set of operations or add fields to its data structures.

* Amodule is said to be closed if it is available for use by other modules. This assun
that the module has been given a well-defined, stable description (its interface in
sense of information hiding). At the implementation level, closure for a module als
implies that you may compile it, perhaps store it in a library, and make it availab
for others (itsclients) to use. In the case of a design or specification module, closin
a module simply means having it approved by management, adding it to the projec
official repository of accepted software items (often called the prbaseling), and
publishing its interface for the benefit of other module authors.

The need for modules to be closed, and the need for them to remain open, arise
differentreasons. Openness is a natural concern for software developers, as they know
itis almost impossible to foresee all the elements — data, operations — that a module:
need in its lifetime; so they will wish to retain as much flexibility as possible for futur
changes and extensions. But it is just as necessary to close modules, especially fro
project manager’s viewpoint: in a system comprising many modules, most will depend
some others; a user interface module may depend on a parsing module (for par:
command texts) and on a graphics module, the parsing module itself may depend ¢

58 MODULARITY §3.3

lexical analysis module, and so on. If we never closed a module until we were sure it
includes all the needed features, no multi-module software would ever reach completion:
every developer would always be waiting for the completion of someone else’s job.

With traditional techniques, the two goals are incompatible. Either you keep a
module open, and others cannot use it yet; or you close it, and any change or extension can
trigger a painful chain reaction of changes in many other modules, which relied on the
original module directly or indirectly.

The two figures below illustrate a typical situation where the needs for open and
closed modules are hard to reconcile. In the first figure, moA is used by client
modulesB, C, D, which may themselves have their own clieg, F, ...).

A module and

@ Client of

Later on, however, the situation is disrupted by the arrival of new clierB' and
others — which need an extended or adapted versiA, which we may ca A"

D@D =
D

=3
- G0

With non-O-O methods, there seem to be only two solutions, equally unsatisfactory:

N1leYou may adapt moduleA so that it will offer the extended or modified
functionality (A') required by the new clients.

N2 ¢ You may also decide to leaw as it is, make a copy, change the module’'s name
to A'in the copy, and perform all the necessary adaptations on the new module.
With this techniqu A' retains no further connection A.

§3.3 FIVE PRINCIPLES 59

ExerciseE3.6, page
66, asks you to dis-

cuss how much need

will remain for con-
figuration manage-
ment in an O-0
contex.

The potential for disaster with solutiN1 is obvious A may have been around for

a long time and have many clients suclB, C andD. The adaptations needed to satisfy
the new clients’ requirements may invalidate the assumptions on the basis of which
old ones useA; if so the change tA may start a dramatic series of changes in clients,
clients of clients and so on. For the project manager, this is a nightmare come tr
suddenly, entire parts of the software that were supposed to have been finished and se
off ages ago get reopened, triggering a new cycle of development, testing, debugging
documentation. If many a software project manager has the impression of living t
Sisyphus syndrome — the impression of being sentenced forever to carry a rock to the
of the hill, only to see it roll back dowsach time — it is for a large part because of the
problems caused by this need to reopen previously closed modules.

On the surface, solutioN2 seems better: it avoids the Sisyphus syndrome since |
does not require modifying any existing software (anything in the top half of the la
figure). But in fact this solution may be even more catastrophic since it only postpones:
day of reckoning. If you extrapolate its effects to many modules, many modificatio
requests and a long period, the consequences are appalling: an explosion of variants ¢
original modules, many of them very similar to each other although never quite identic

In many organizations, this abundance of modules, not matched by abundance
available functionality (many of the apparent variants being in fact quasi-clones), crea
a hugeconfiguration manageme problem, which people attempt to address through the
use of complex tools. Useful as these tools may be, they offer a cure in an area where
first concern should be prevention. Better avoid redundancy than manage it.

Configuration management will remain useful, of course, if only to find the modules
which must be reopened after a change, and to avoid unneeded module recompilations.

But how can we have modules that are both open and closed? How can vA: kee
and everything in the top part of the figure unchanged, while provA' to the bottom
clients, and avoiding duplication of software? The object-oriented method will offer
particularly elegant contribution thanks to inheritance.

The detailed study of inheritance appears in later chapters, but here is a preview
the basic idea. To get us out of ichange or reddilemma, inheritance will allow us to
define a new modulA' in terms of an existing moduA by stating the differences only.
We will write A" as

class A'inherit

redefinef, g, ... end

feature
fis ...

gis...

uis...

end

60 MODULARITY §3.3

where thefeature clause contains both the definition of the new features speciA', to
such acu, and the redefinition of those features (suclf, g, ...) whose form inA' is
different from the one they had A.

The pictorial representation for inheritance will use an arrow from the heir (the new
class, hereA') to the parent (hetA):

Adapting a
(D) D)e—(F) [lowma

clients
@ * Inherits from

- =D

Thanks to inheritance, O-O developers can adopt a much more incremental approach
to software development than used to be possible with earlier methods.

One way to describe the open-closed principle and the consequent object-oriented
techniques is to think of them asorganized hackin. “Hacking” is understood here as a
slipshod approach to building and modifying code (notin the more recent sense of breaking
into computer networks, which, organized or not, no one should condone). The hacker may
seem bad but often his heart is pure. He sees a useful piece of software, \almosts
able to address the needs of the moment, more general than the software’s original purpose.
Spurred by a laudable desire not to redo what can be reused, our hacker starts modifying
the original to add provisions for new cases. The impulse is good but the effect is often to
pollute the software with many clauses of the fdf that special cas then..., so that
after a few rounds of hacking, perhaps by a few different hackers, the software starts
resembling a chunk of Swiss cheese that has been left outside for too long in August (if the
tastelessness of this metaphor may be forgiven on the grounds that it does its best to convey
the presence in such software of both holes and growth).

The organized form of hacking will enable us to cater to the variants without
affecting the consistency of the original version.

A word of caution: nothing in this discussion suggedisorganized hacking.
In particular:

« If you have control over the original software and can rewrite it so that it will address
the needs of several kinds of client at no extra complication, you should do so.

§3.3 FIVE PRINCIPLES 61

* Neither the Open-Closed principle nor redefinition in inheritance is a way to addre
design flaws, let alone buclf there is something wrong with a mogc, you should
fix it — not leave the original as it is and try to correct the problem in a derive
module. (The only potential exception to this rule is the case of flawed softwa
which you are not at liberty to modify.) The Open-Closed principle and associate
techniques are intended for the adaptation of healthy modules: modules th
although they may not suffice for some new uses, meet their own well-define
requirements, to the satisfaction of their owients.

Single Choice

The last of the five modularity principles may be viewed as a consequence of both
Open-Closed and Information Hiding rules.

Before examining the Single Choice principle in its full generality, let us look at :
typical example. Assume you are building a system to manage a library (in the nc
software sense of the term: a collection of books and other publications, not softw:
modules). The system will manipulate data structures representing publications. You n
have declared the corresponding type as follows in Pascal-Ada syntax:

type PUBLICATION=
record
authol, title: STRING,
publication_yea: INTEGER
cas¢ pubtype (book, journal, conference_proceedin) of
boolk: (publishe: STRINC();
journal: (volumeg, issue: STRINCQ);
proceeding: (editor, place: STRIN(C) -- Conference proceedings
end

This particular form uses the Pascal-Ada notion of “record type with variants” t
describe sets of data structures with some fields (autho, title, publication_yea)
common to all instances, and others specific to individual variants.

The use of a particular syntax is not crucial here; Algol 68 and C provide an equivalent
mechanism through the notion of union type. A union type is aT.defined as the union

of pre-existing typeA, B, ...: a value of typ T is either a value of tygA, or a value of
typeB, ... Record types with variants have the advantage of clearly associating a tag, here
bool, journal, conference_proceedin, with each variant.

Let A be the module that contains the above declaration or its equivalent usi
another mechanism. As long A is considered open, you may add fields or introduce new
variants. To enab A to have clients, however, you must close the module; this means th
you implicitly consider that you have listed all the relevant fields and variantB be a
typical client ofA. B will manipulate publications through a variable such as

p: PUBLICATION

62 MODULARITY §3.3

and, to do just about anything useful wp, will need to discriminate explicitly between
the various cases, as in:

case p of
bool: ... Instructions which may access the f plqpublisher...
journal: ... Instructions which may access fie p.svolume, p.issue...
proceeding: ... Instructions which may access fie pseditor, p. place...
end

The case instruction of Pascal and Ada comes in handy here; it is of course on
purpose that its syntax mirrors the form of the declaration of a record type with variants.
Fortran and C will emulate the effect through multi-target goto instructswitch in C).

In these and other languages a multi-branch conditional instrudf ... then ... elseif
... elseitf ... else ... end) will also do the job.

Aside from syntactic variants, the principal observation is that to perform such a
discrimination every client must know the exact list of variants of the notion of publication
supported byA. The consequence is easy to foresee. Sooner or later, you will realize the
need for a new variant, such as technical reports of companies and universities. Then you
will have to extend the definition of tyjPUBLICATION in moduleA to support the new
case. Fair enough: you have modified the conceptual notion of publication, so you should
update the corresponding type declaration. This change is logical and inevitable. Far
harder to justify, however, is the other consequence: any clieA, such aB, will also
require updating if it used a structure such as the above, relying on an explicit list of cases
for p. This may, as we have seen, be the case for most clients.

What we observe here is a disastrous situation for software change and evolution:
a simple and natural addition may cause a chain reaction of changes across many client
modules.

The issue will arise whenever a certain notion admits a number of variants. Here the
notion was “publication” and its initial variants were book, journal article, conference
proceedings; other typical examples include:

* In a graphics system: the notion of figure, with such variants as polygon, circle,
ellipse, segment and other basic figure types.

« In a text editor: the notion of user command, with such variants as line insertion, line
deletion, character deletion, global replacement of a word by another.

< In a compiler for a programming language, the notion of language construct, with
such variants as instruction, expression, procedure.

In any such case, we must accept the possibility that the list of variants, although
fixed and known at some point of the software’s evolution, may later be changed by the
addition or removal of variants. To support our long-term, software engineering view of
the software construction process, we must find a wiprotect the software’s structure
against the effects of such changes. Hence the Single Choice principle:

§3.3 FIVE PRINCIPLES

63

Single Choice principle

Whenever a software system must support a set of alternatives, one and only
one module in the system should know their exhaustive list.

By requiring that knowledge of the list of choices be confined to just one module, v

prepare the scene for later changes: if variants are added, we will only have to update
module which has the information — the point of single choice. All others, in particule
its clients, will be able to continue their business as usual.

See'DYNAMIC

Once again, as the publications example shows, traditional methods do not prov

BINDING”, 14.4, a solution; once again, object technology will show the way, here thanks to two techniqt
page 48) connected with inheritance: polymorphism and dynamic binding. No sneak preview
this case, however; these techniques must be understood in the context of the full mett

See the second figure
on pagess.

The Single Choice principle prompts a few more comments:

The number of modules that know the list of choices should be, according to t
principle, exactly one. The modularity goals suggest that we ‘at most one
module to have this knowledge; but then it is also clealat least onemodule must
possess it. You cannot write an editor unless at least one component of the sys
has the list of all supported commands, or a graphics system unless at least
component has the list of all supported figure types, or a Pascal compiler unless
least one component “knows” the list of Pascal constructs.

Like many of the other rules and principles studied in this chapter, the principle
aboutdistribution of knowledge in a software system. This question is indeed
crucial to the search for extendible, reusable software. To obtain solid, durat
system architectures you must take stringent steps to limit the amount of informati
available to each module. By analogy with the methods employed by certain hum
organizations, we may call thisneed-to-know policy: barring every module from

accessing any information that is not strictly required for its proper functioning.

You may view the Single Choice principle as a direct consequence of the Ope
Closed principle. Consider the publications example in light of the figure the
illustrated the need for open-closed moduA is the module which includes the
original declaration of typPUBLICATION, the client B, C, ... are the modules that
relied on the initial list of variant<A' is the updated version Al offering an extra
variant (technical reports).

You may also understand the principle as a strong form of Information Hiding. Tt
designer of supplier modules suchA andA' seeks to hide information (regarding
the precise list of variants available for a certain notion) from the clients.

64 MODULARITY §3.4

3.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

e The choice of a proper module structure is the key to achieving the aims of
reusability and extendibility.

« Modules serve for both software decomposition (the top-down view) and software
composition (bottom-up).

« Modular concepts apply to specification and design as well as implementation.

< A comprehensive definition of modularity must combine several perspectives; the
various requirements may sometimes appear at odds with each other, as with
decomposability (which encourages top-down methods) and composability (which
favors a bottom-up approach).

e Controlling the amount and form of communication between modules is a
fundamental step in producing a good modular architecture.

e The long-term integrity of modular system structures requires information hiding,
which enforces a rigorous separation of interface and implementation.

< Uniform access frees clients from internal representation choices in their suppliers.
* A closed module is one that may be used, through its interface, by client modules.
* An open module is one that is still subject to extension.

« Effective project management requires support for modules that are both open and
closed. But traditional approaches to design and programming do not permit this.

* The principle of Single Choice directs us to limit the dissemination of exhaustive
knowledge about variants of a certain notion.

3.5 BIBLIOGRAPHICAL NOTES

The design method known as “structured desi[Yourdon 1979 emphasized the
importance of modular structures. It was based on an analysis of module “cohesion” and
“coupling”. But the view of modules implicit in structured design was influenced by the
traditional notion of subroutine, which limits the scope of the discussion.

The principle of uniform access comes originally (under the name “uniform
reference”) fror [Geschke 197 |

The discussion of uniform access cited the Algol W language, a successor to Algol
60 and forerunner to Pascal (but offering some interesting mechanisms not retained in
Pascal), designed by Wirth and Hoare and describ[Hoare 196¢€.

Information hiding was introduced in two milestone articles by C Parna{Parnas
1972 [Parnas 1972i]

8E3.1 EXERCISES 65

Configuration management tools that will recompile the modules affected b
modifications in other modules, based on an explicit list of module dependencies,
based on the ideas of the Make tool, originally for | [Feldman 197¢. Recent tools —
there are many on the market — have added considerable functionality to the basic id

Some of the exercises below ask you to develop metrics to evaluate quantitativ
the various informal measures of modularity developed in this chapter. For some resi
in O-O metrics, see the work of Christine Ming[Mingins 1993 [Mingins 1995 and
Brian Henderson-Selle[Henderson-Sellers 199¢.a]

EXERCISES

E3.1 Modularity in programming languages

Examine the modular structures of any programming language which you know well a
assess how they support the criteria and principles developed in this chapter.
E3.2 The Open-Closed principle (for Lisp programmers)

Many Lisp implementations associate functions with function names at run time ratf
than statically. Does this feature make Lisp more supportive of the Open-Closed princi
than more static languages?

E3.3 Limits to information hiding

Can you think of circumstances where information hiding shmnot be applied to
relations between modules?

E3.4 Metrics for modularity (term project)

The criteria, rules and principles of modularity of this chapter were all introduced throug
gualitative definitions. Some of them, however, may be amenable to quantitative analy:
The possible candidates include:

e Modular continuity.

* Few Interfaces.

Small Interfaces.

Explicit Interfaces.
* Information Hiding.
« Single Choice.

Explore the possibility of developing modularity metrics to evaluate how modular

software architecture is according to some of these viewpoints. The metrics should
size-independent: increasing the size of a system without changing its modular struct
should not change its complexity measures. (See also the next exercise.)

66 MODULARITY 8E3.5

E3.5 Modularity of existing systems

Apply the modularity criteria, rules and principles of this chapter to evaluate a system to
which you have access. If you have answered the previous exercise, apply any proposed
modularity metric.

Can you draw any correlations between the results of this analysis (qualitative,
guantitative or both) and assessments of structural complexity for the systems under study,
based either on informal analysis or, if available, on actual measurements of debugging
and maintenance costs?

E3.6 Configuration management and inheritance

(This exercise assumes knowledge of inheritance techniques described in the rest of this
book. It is not applicable if you have read this chapter as part of a first, sequential reading
of the book.)

The discussion of the open-closed principle indicated that in non-object-oriented
approaches the absence of inheritance places undue burden on configuration management
tools, since the desire to avoid reopening closed modules may lead to the creation of too
many module variants. Discuss what role remains for configuration management in an
object-oriented environment where inheritais present, and more generally how the use

of object technology affects the problem of configuration management.

If you are familiar with specific configuration management tools, discuss how they
interact with inheritance and other principles of O-O development.

A

Approaches to reusability

. Follow the lead of hardware desigrt is not right that every new
development should start from scratdihere should be catalogs of software
modules as there are catalogs of VLSI devicehen we build a new system

we should be ordering components from these catalogs and combining them
rather than reinventing the wheel every tirée would write less software

and perhaps do a better job at that which we do get to wh\teuldn’t then
some of the problems that everybody complains about — the high tbests
overrung the lack of reliability — just go aw&why is it not s&’

You have probably heard remarks of this kind; perhaps you have uttered them yourself. /
early as 1968, at the now famous NATO conference on software engineering, Dou
Mcllroy was advocatingrhass-produced software componé&nBeusability, as a dream,

is not new.

It would be absurd to deny that some reuse occurs in software development. In fa
one of the most impressive developments in the industry since the first edition of this boo
was published in 1988 has been the gradual emergence of reusable components, of
modest individually but regularly gaining ground; they range from small modules meant
to work with Microsoft's Visual Basic (VBX) and OLE 2 (OCX, now ActiveX) to full
libraries, also known as “frameworks”, for object-oriented environments.

Another exciting development is the growth of the Internet: the advent of a wired
society has eased or in some cases removed some of the logistic obstacles to reuse wh
only a few years ago, might have appeared almost insurmountable.

But this is only a beginning. We are far from Mcllroy's vision of turning software
development into a component-based industry. The techniques of object-oriente
software construction make it possible for the first time to envision a state of the
discipline, in the not too distant future, in which this vision will have become the reality,
for the greatest benefit not just of software developers but, more importantly, of those wh
need their products — quickly, and at a high level of quality.

In this chapter we will explore some of the issues that must be addressed fc
reusability to succeed on such a large scale. The resulting concepts will guide th
discussion of object-oriented techniques throughout the rest of this book.

68 APPROACHES TO REUSABILITY§4.1

4.1 THE GOALS OF REUSABILITY

We should first understand why it is so important to improve software reusability. No need

here for “motherhood and apple pie” arguments: as we will see, the most commonly touted
benefits are not necessarily the most significant; by going beyond the obvious we can
make sure that our quest for reuse will pursue the right targets, avoid mirages, and yield
the highest return on our investment.

Expected benefits

From more reusable software you may expect improvements on the following frontsThis section is
. based on the more
» Timeliness (in the sense defined in the discussion of software quality factors: Sfextensive discus-

of bringing projects to completion and products to market). By relying on existsion of manage-

components we havess software to develop and hence can build it faster. ment aspects of
reuse in the book

“Object Success”

» Decreased maintenance effo. If someone else is responsible for the software, tr[M 1995]

someone is also responsible for its future evolutions. This avoidcompetent
developer’'s paradc the more you work, the more work you create for yourself as
users of your products start asking you for new functionalities, ports to new
platforms etc. (Other than relying on someone else to do the job, or retiring, the only
solution to the competent software developer’s paradox is to becoincompetent
developer so that no one is interested in your products any more — not a solution
promoted by this book.)

* Reliability. By relying on components from a reputed source, you have the
guarantee, or at least the expectation, that their authors will have applied all the
required care, including extensive testing and other validation techniques; not to
mention the expectation, in most cases, that many other application developers will
have had the opportunity to try these components before you, and to come across any
remaining bugs. The assumption here is not necessarily that the component
developers are any smarter than you are; simply that the components they build —
be they graphics modules, database interfaces, sorting algol... — aretheir
official assignment, whereas for you they might just be a necessary but secondary
chore for the attainment «our official goal of building an application system in
your own area of development.

 Efficiency. The same factors that favor reusability incite the component developers
to use the best possible algorithms and data structures known in their field of
specialization, whereas in a large application project you can hardly expect to have
an expert on board fcevern field touched on by the development. (Most people,
when they think of the connection between reusability and efficiency, tend to see the
reverse effect: the loss of fine-tuned optimizations that results from using general
solutions. But this is a narrow view of efficiency: in a large project, you cannot
realistically perform such optimizations on every piece of the development. You can,
however, aim at the best possible solutions in your group’s areas of excellence, and
for the rest rely on someone else’s expertise.)

8§84.1 THE GOALS OF REUSABILITY 69

« Consistency. There is no good library without a strict emphasis on regular, coherer
design. If you start using such a library — in particular some of the best curre
object-oriented libraries — its style will start to influence, through a natural proces
of osmosis, the style of the software that you develop. This is a great boost to t
quality of the software produced by an application group.

* Investmeni. Making software reusable is a way to preserve the know-how an
inventions of the best developers; to turn a fragile resource into a permanent ass

Many people, when they accept reusability as desirable, think only of the fir:
argument on this list, improving productivity. But it is not necessarily the most importar
contribution of a reuse-based software process. The reliability benefit, for example, is jt
as significant. Itis extremely difficult to build guaranteeably reusable software if every ne
development must independently validate every single piece of a possibly hu
construction. By relying on components produced, in each area, by the best experts arot
we can at last hope to build systems that we trust, because instead of redoing w
thousands have done before us — and, most likely, running again into the mistakes
they made — we will concentrate on enforcing the reliability of our truly new contributions

This argument does not just apply to reliability. The comment on efficiency wa
based on the same reasoning. In this respect we can see reusability as standing apart
the other quality factors studied in chapl: by enhancing it you have the potential of
enhancincalmost all of the other qualities. The reason is economic: if, instead of beint
developed for just one project, a software element has the potential of serving again
again for many projects, it becomes economically attractive to submit it to the be
possible quality-enhancing technigues — such as formal verification, usually tc
demanding to be cost-effective for most projects but the most mission-critical ones,
extensive optimization, which in ordinary circumstances can often be dismissed as unt
perfectionism. For reusable components, the reasoning changes dramatically; impr
just one element, and thousands of developments may benefit.

This reasoning is of course not completely new; it is in part the transposition |
software of ideas that have fundamentally affected other disciplines when they turn
from individual craftsmanship to mass-production industry. A VLSI chip is more
expensive to build than a run-of-the-mill special-purpose circuit, but if well done it wil
show up in countless systems and benefit their quality because of all the design work t
went into it once and for all.

Reuse consumers, reuse producers

If you examined carefully the preceding list of arguments for reusability, you may hax
noted that it involves benefits of two kinds. The first four are benefits you will derive fron
basing your application developments on existing reusable components; the last one, fi
making yourown software reusable. The next-to-last (consistency) is a little of both.

This distinction reflects the two aspects of reusability:consumer viev, enjoyed
by application developers who can rely on components; arproducer view, available
to groups that build reusability into their own developments.

70 APPROACHES TO REUSABILITY 84.2

In discussing reusability and reusability policies you should always make sure which
one of these two views you have in mind. In particular, if your organization is new to
reuse, remember that it is essentially impossible to start as a reuse producer. One often
meets managers who think they can make development reusable overnight, and decree
that no development shall henceforth be specific. (Often the injunction is to start
developing “business objects” capturing the company’s application expertise, and ignore
general-purpose components — algorithms, data structures, graphics, windowing and the
like — since they are considered too “low-level” to yield the real benefits of reuse.) This
is absurd: developing reusable components is a challenging discipline; the only known
way to learn is to start by using, studying and imitating good existing components. Such
an approach will yield immediate benefits as your developments will take advantage of
these components, and it will start you, should you persist in your decision to become a
producer too, on the right learning path.

Reuse Path principle Here 100 "Object
uccess explores
Be areuse consumer before you try to be a reuse producer. ;Eehpollcy Issues
rther.

4.2 WHAT SHOULD WE REUSE?

Convincing ourselves that Reusability Is Good was the easy part (although we needed to
clarify whatis really good about it). Now for the real challenge: how in the world are we
going to get it?

The first question to ask is what exactly we should expect to reuse among the various
levels that have been proposed and applied: reuse of personnel, of specifications, of
designs, of “patterns”, of source code, of specified components, of abstracted modules.

Reuse of personnel

The most common source of reusability is the developers themselves. This form of reuse
is widely practiced in the industry: by transferring software engineers from project to
project, companies avoid losing know-how and ensure that previous experience benefits
new developments.

This non-technical approach to reusability is obviously limited in scope, if only
because of the high turnover in the software profession.

Reuse of designs and specifications

Occasionally you will encounter the argument that we should be reusing designs rather

than actual software. The idea is that an organization should accumulate a repository of

blueprints describing accepted design structures for the most common applications it

develops. For example, a company that produces aircraft guidance systems will have a set
of model designs summarizing its experience in this area; such documents describe

module templates rather than actual modules.

§4.2 WHAT SHOULD WE REUSE? 71

Chapter21 discuss-
es the undoing pat-
tern.

[Gamma 1995 see
also[Pree 1994]

This approach is essentially a more organized version of the previous one — rel
of know-how and experience. As the discussion of documentation has already sugges
the very notion of a design as an independent software product, having its own |
separate from that of the corresponding implementation, seems dubious, since itis har
guarantee that the design and the implementation will remain compatible throughout 1
evolution of a software system. So if you only reuse the design you run the risk of reusi
incorrect or obsolete elements.

These comments are also applicable to a related form of reuse: reuse of specificatic

To a certain extent, one can view the progress of reusability in recent years, aided
progress in the spread of object technology and aiding it in return, as resulting in part fr
the downfall of the old idea, long popular in software engineering circles, that the on
reuse worthy of interest is reuse of design and specification. A narrow form of that id
was the most effective obstacle to progress, since it meant that all attempts to build ac
components could be dismissed as only addressing trivial needs and not touching the t
difficult aspects. It used to be the dominant view; then a combination of theoretic
arguments (the arguments of object technology) and practical achievements (1
appearance of successful reusable components) essentially managed to defeat it.

“Defeat” is perhaps too strong a term because, as often happens in such disputes
result takes a little from both sides. The idea of reusing designs becomes much m
interesting with an approach (such as the view of object technology developed in tl
book) which removes much of the gap between design and implementation. Then |
difference between a module and a design for a module is one of degree, not of natur
module design is simply a module of which some parts are not fully implemented; anc
fully implemented module can also serve, thanks to abstraction tools, as a module des
With this approach the distinction between reusing modules (as discussed below) «
reusing designs tends to fade away.

Design patterns

In the mid-nineteen-nineties the ideadesign patterr started to attract considerable
attention in object-oriented circles. Design patterns are architectural ideas applical
across a broad range of application domains; each pattern makes it possible to buil
solution to a certain design issue.

Here is a typical example, discussed in detail in a later chapteiissue how to
provide an interactive system with a mechanism enabling its users to undo a previou
executed command if they decide it was not appropriate, and to reexecute an und
command if they change their mind again. "patterr: use a clasCOMMANL with a
precise structure (which we will study) and an associated “history list”. We will encounte
many other design patterns.

One of the reasons for the success of the design pattern idea is that it was more |
an idea: the book that introduced the concept, and others that have followed, came wi
catalog of directly applicable patterns which readers could learn and apply.

Design patterns have already made an important contribution to the development
object technology, and as new ones continue to be published they will help developer:

72 APPROACHES TO REUSABILITY 84.2

benefit from the experience of their elders and peers. How can the general idea contribute
to reuse? Design patterns should not encourage a throwback tall that counts is

design reus” attitude mentioned earlier. A pattern thailonly a book pattern, however
elegant and general, is a pedagogical tool, not a reuse tool; after all, computing science
students have for three decades been learning from their textbooks about relational query
optimization, Gouraud shading, AVL trees, Hoare’s Quicksort and Dijkstra’s shortest path
algorithm without anyone claiming that these techniques were breakthroughs in
reusability. In a sense, the patterns developed in the past few years are only incremental
additions to the software professional’s bag of standard tricks. In this view the new
contribution is the patterns themselves, not the idea of pattern.

As most people who have looked carefully at the pattern work have recognized,see"Programs
a view is too limited. There seems to be in the very notion of pattern a truly with holes”, page
contribution, even if it has not been fully understood yet. To go beyond their r°%
pedagogical value, patterns must go further. A successful pattern cannot just be a vouk
description: it must be software componen, or a set of components. This goal may
seem remote at first because many of the patterns are so general and abstract as to seem
impossible to capture in actual software modules; but here the object-oriented method
provides a radical contribution. Unlike earlier approaches, it will enable us to build
reusable modules that still have replaceable, not completely frozen elements: modules that
serve as general schempattern:is indeed the appropriate word) and can be adapted to
various specific situations. This is the notiorbehavior clas (a more picturesque term
is programs with hole); it is based on O-O techniques that we will study in later chapters,
in particular the notion of deferred class. Combine this with the idea of groups of
components intended to work together — often knowframework: or more simply as
libraries — and you get a remarkable way of reconciling reusability with adaptability.
These techniques hold, for the pattern movement, the promise of exerting, beyond the
new-bag-of-important-tricks effect, an in-depth influence on reusability practices.

Reusability through the source code

Personnel, design and specification forms of reuse, useful as they may be, ignore a key
goal of reusability. If we are to come up with the software equivalent of the reusable parts
of older engineering disciplines, what we need to reuse is the actual stuff of which our
products are made: executable software. None of the targets of reuse seen so far — people,
designs, specifications — can qualify as the off-the-shelf components ready to be included
in a new software product under development.

If what we need to reuse is software, in what form should we reuse it? The most
natural answer is to use the software in its original form: source text. This approach has
worked very well in some cases. Much of the Unix culture, for example, originally spread
in universities and laboratories thanks to the on-line availability of the source code,

enabling users to study, imitate and extend the system. This is also true of the Lisp world.
))])] ~ Seeals¢’Formats
The economic and psychological impediments to source code dissemination for reusable compo-

the effect that this form of reuse can have in more traditional industrial environmentsnent d;sgit?mion’l
a more serious limitation comes from two technical obstacles: page f-helow.

§4.2 WHAT SHOULD WE REUSE? 73

More on distribu-
tion formats below.

« Identifying reusable software with reusable source removes information hiding. Y
no large-scale reuse is possible without a systematic effort to protect reusers fr
having to know the myriad details of reused elements.

* Developers of software distributed in source form may be tempted to violat
modularity rules. Some parts may depend on others in a non-obvious way, violati
the careful limitations which the discussion of modularity in the previous chapte
imposed on inter-module communication. This often makes it difficult to reuse somn
elements of a complex system without having to reuse everything else.

A satisfactory form of reuse must remove these obstacles by supporting abstract
and providing a finer grain of reuse.

Reuse of abstracted modules

All the preceding approaches, although of limited applicability, highlight importan
aspects of the reusability problem:

< Personnel reusability is necessary if not sufficient. The best reusable components
useless without well-trained developers, who have acquired sufficient experience
recognize a situation in which existing components may provide help.

» Design reusability emphasizes the need for reusable components to be of sufficier
high conceptual level and generality — not just ready-made solutions to speci
problems. The classes which we will encounter in object technology may be view
as design modules as well as implementation modules.

» Source code reusability serves as a reminder that software is in the end defined
program texts. A successful reusability policy must produce reusable program elemer

The discussion of source code reusability also helps narrow down our search for
proper units of reuse. A basic reusable component should be a software element. (F
there we can of course go collection: of software elements.) That element should be a
moduleof reasonable size, satisfying the modularity requirements of the previous chapt
in particular, its relations to other software, if any, should be severely limited to facilita
independent reuse. The information describing the module’s capabilities, and serving
primary documentation for reusers or prospective reusers, shoabstrac: rather than
describing all the details of the module (as with source code), it should, in accordance w
the principle of Information Hiding, highlight the properties relevant to clients.

The termabstracted module will serve as a name for such units of reuse, consisting
of directly usable software, available to the outside world through a description whic
contains only a subset of each unit's properties.

The rest of parB of this book is devoted to devising the precise form of such
abstracted modules; peC will then explore their properties.

The emphasis on abstraction, and the rejection of source code as the vehicle for reuse, do
not necessarily prohibdistributingc modules in source form. The contradiction is only
apparent: what is at stake in the present discussion is not how we will deliver modules to
their reusers, but what they will use as the primary source of information about them. It
may be acceptable for a module to be distributed in source form but reused on the basis
of an abstract interface description.

74 APPROACHES TO REUSABILITY 84.3

4.3 REPETITION IN SOFTWARE DEVELOPMENT

To progress in our search for the ideal abstracted module, we should take a closer look at
the nature of software construction, to understand what in software is most subject to reuse.

Anyone who observes software development cannot but be impressed by its
repetitive nature. Over and again, programmers weave a number of basic patterns: sorting,
searching, reading, writing, comparing, traversing, allocating, synchro...zing
Experienced developers know this feelincdéja vi, so characteristic of their trade.

A good way to assess this situation (assuming you develop software, or direct people
who do) is to answer the following question:

How many times over the past six months di¢, or people working for yc,u
write some program fragment for table searctdng

Table searching is defined here as the problem of finding out whether a certain element
x appears in a tabt of similar elements. The problem has many variants, depending on
the element types, the data structure representatiort, the choice of searching
algorithm.

Chances are you or your colleagues will indeed have tackled this problem one or
more times. But what is truly remarkable is that — if you are like others in the profession
— the program fragment handling the search operation will have been written at the
lowest reasonable level of abstraction: by writing code in some programming language,
rather than calling existing routines.

To an observer from outside our field, however, table searching would seeisee bibliographic
obvious target for widely available reusable components. It is one of the most resecereferences on
areas of computing science, the subject of hundreds of articles, and many books sP29€9¢
with volume 3 of Knuth’s famous treatise. The undergraduate curriculum of all computing
science departments covers the most important algorithms and data structures. Certainly
not a mysterious topic. In addition:

It is hardly possible, as noted, to write a useful software system which does not
include one or (usually) several cases of table searching. The investment needed to
produce reusable modules is not hard to justify.

* As will be seen in more detail below, most searching algorithms follow a common
pattern, providing what would seem to be an ideal basis for a reusable solution.

4.4 NON-TECHNICAL OBSTACLES

Why then is reuse not more common?

Most of the serious impediments to reuse are technical; removing them will be the
subject of the following sections of this chapter (and of much of the rest of this book). But
of course there are also some organizational, economical and political obstacles.

8§4.4 NON-TECHNICAL OBSTACLES 75

See[M 1995].

The NIH syndrome

An often quoted psychological obstacle to reuse is the famous Not Invented Here (“NIH
syndrome. Software developers, it is said, are individualists, who prefer to redo everythi
by themselves rather than rely on someone else’s work.

This contention (commonly heard in managerial circles) is not borne out b
experience. Software developers do not like useless work more than anyone else. Wh
good, well-publicized and easily accessible reusable solution is available, it gets reuse

Consider the typical case of lexical and syntactic analysis. Using parser generat
such as the Lex-Yacc combination, it is much easier to produce a parser for a comm
language or a simple programming language than if you must program it from scratch. T
result is clear: where such tools are available, competent software developers routir
reuse them. Writing your own tailor-made parser still makes sense in some cases, Si
the tools mentioned have their limitations. But the developers’ reaction is usually to go
default to one of these tools; it is when you want to use a solution not based on the reus.
mechanisms that you have to argue for it. This may in fact cause a new syndrome,
reverse of NIH, which we may call HIN (Habit Inhibiting Novelty): a useful but limited
reusable solution, so entrenched that it narrows the developers’ outlook and stif
innovation, becomes counter-productive. Try to convince some Unix developers to us
parser generator other than Yacc, and you may encounter HIN first-hand.

Something which may externally look like NIH does exist, but often it is simply the
developers’ understandably cautious reaction to new and unknown components. Tl
may fear that bugs or other problems will be more difficult to correct than with a solutic
over which they have full control. Often such fears are justified by unfortunate earlie
attempts at reusing components, especially if they followed from a management mand
to reuse at all costs, not accompanied by proper quality checks. If the new components
of good quality and provide a real service, fears will soon disappear.

What this means for the producer of reusable components is that quality is even m
important here than for more ordinary forms of software. If the cost of a non-reusable, ot
of-a-kind solution isN, the cosR of a solution relying on reusable components is never
zero: there is a learning cost, at least the first time; developers may have to bend tt
software to accommodate the components; and they must write some interfacing softw:

however small, to call them. So even if the reusability savings

R
r = --

and other benefits of reuse are potentially great, you must also convince the candic
reusers that the reusable solution’s quality is good enough to justify relinquishing contr

This explains why it is a mistake to target a company’s reusability policy to the potential
reusers (thconsumer, that is to say the application developers). Instead you should put
the heat on thproducer, including people in charge of acquiring external components,
to ensure the quality and usefulness of their offering. Preaching reuse to application

76 APPROACHES TO REUSABILITY§4.4

developers, as some companies do by way of reusability policy, is futile: because
application developers are ultimately judged by how effectively they produce their
applications, they should and will reuse not because you tell them to but because you have
done a good enough job with the reusable components (developed or acquired) thatit will
beprofitable for their applications to rely on these components.

The economics of procurement

A potential obstacle to reuse comes from the procurement policy of many |“GENERALIZA-
corporations and government organizations, which tends to impede reusability efforTION", 28.5, page
focusing on short-term costs. US regulations, for example, make it hard for a govern

agency to pay a contractor for work that was not explicitly commissioned (nhormally as

part of a Request For Proposals). Such rules come from a legitimate concern to protect
taxpayers or shareholders, but can also discourage software builders from applying the

crucial effort ofgeneralizatior to transform good software into reusable components.

On closer examination this obstacle does not look so insurmountable. As the concern
for reusability spreads, there is nothing to prevent the commissioning agency from
including in the RFP itself the requirement that the solution must be general-purpose and
reusable, and the description of how candidate solutions will be evaluated against these
criteria. Then the software developers can devote the proper attention to the generalization
task and be paid for it.

Software companies and their strategies

Even if customers play their part in removing obstacles to reuse, a potential problem
remains on the side of the contractors themselves. For a software company, there is a
constant temptation to provide solutions that are purpcnoi reusable, for fear of not
getting the next job from the customer — because if the result of the current job is too
widely applicable the customer may not need a next job!

| once heard a remarkably candid exposé of this view after giving a talk on reuse and
object technology. A high-level executive from a major software house came to tell me
that, although intellectually he admired the ideas, he would never implement them in his
own company, because that would be killing the goose that laid the golden egg: more than
90% of the company’s business derived from renting manpower — providing analysts and
programmers on assignment to customers — and the management’s objective was to bring
the figure to 100%. With such an outlook on software engineering, one is not likely to
greet with enthusiasm the prospect of widely available libraries of reusable components.

The comment was notable for its frankness, but it triggered the obvious retort: if it is
at all possible to build reusable components to replace some of the expensive services of
a software house’s consultants, sooner or later someone will build them. At that time a
company that has refused to take this route, and is left with nothing to sell but its
consultants’ services, may feel sorry for having kept its head buried in the sand.

8§4.4 NON-TECHNICAL OBSTACLES 77

It is hard not to think here of the many engineering disciplines that used to be heav
labor-intensive but became industrialized, that is to say tool-based — with painfi
economic consequences for companies and countries that did not understand early enc
what was happening. To a certain extent, object technology is bringinglarshange
to the software trade. The choice between people and tools need not, however, be
exclusive one. The engineering part of software engineering is not identical to that
mass-production industries; humans will likely continue to play the key role in th
software construction process. The aim of reuse is not to replace humans by tools (wt
is often, in spite of all claims, what has happened in other disciplines) but to change
distribution of what we entrust to humans and to tools. So the news is not all bad fol
software company that has made its name through its consultants. In particular:

« In many cases developers using sophisticated reusable components may still ber
from the help of experts, who can advise them on how best to use the componel
This leaves a meaningful role for software houses and their consultants.

« As will be discussed below, reusability is inseparable from extendibility: gooc
reusable components will still be open for adaptation to specific cases. Consultal
from a company that developed a library are in an ideal position to perform su
tuning for individual customers. So selling components and selling services are r
necessarily exclusive activities; a components business can serve as a basis f
service business.

* More generally, a good reusable library can play a strategic role in the policy of
successful software company, even if the company sells specific solutions ratt
than the library itself, and uses the library for internal purposes only. If the librar
covers the most common needs and provides an extendible basis for the m
advanced cases, it can enable the company to gain a competitive edge in cer
application areas by developing tailored solutions to customers’ needs, faster anc
lower cost than competitors who cannot rely on such a ready-made basis.

Accessing components

Another argument used to justify skepticism about reuse is the difficulty of the compone
management task: progress in the production of reusable software, it is said, would re
in developers being swamped by so many components as to make their life worse tha
the components were not available.

Cast in a more positive style, this comment should be understood as a warning
developers of reusable software that the best reusable components in the world are ust
if nobody knows they exist, or if it takes too much time and effort to obtain them. Th
practical success of reusability techniques requires the development of adequate datak
of components, which interested developers may search by appropriate keywords to f
out quickly whether some existing component satisfies a particular need. Netwo
services must also be available, allowing electronic ordering and immediate downloadi
of selected components.

78 APPROACHES TO REUSABILITY§4.4

These goals do raise technical and organizational problems. But we must keep things
in proportion. Indexing, retrieving and delivering reusable components are engineering
issues, to which we can apply known tools, in particular database technology; there is no
reason why software components should be more difficult to manage than customer
records, flight information or library books.

Reusability discussions used to delve forever into the grave question “how in the
world are we going to make the components available to developers?”. After the advances
in networking of the past few years, such debates no longer appear so momentous. With
the World-Wide Web, in particular, have appeared powerful search tools (AltaVista,
Yahoc...) which have made it far easier to locate useful information, either on the Internet
or on a company’s Intranet. Even more advanced solutions (produced, one may expect,
with the help of object technology) will undoubtedly follow. All this makes it increasingly
clear that the really hard part of progress in reusability lies not in organizing reusable
components, but in building the wretched things in the first place.

A note about component indexing

On the matter of indexing and retrieving components, a question presents itself, at the
borderline between technical and organizational issues: how should we associate indexing
information, such as keywords, with software components?

The Self-Documentation principle suggests that, as much as possible, inform«self-Documenta-
about a module — indexing information as well as other forms of module documentdion”, page 5-.
— should appear in the module itself rather than externally. This leads to an impa
requirement on the notation that will be developed in C of this book to write software
components, called classes. Regardless of the exact form of these classes, we must equip
ourselves with a mechanism to attach indexing information to each component.

The syntax is straightforward. At the beginning of a module text, you will be invited
to write anindexing clauseof the form

indexing More details ir“In-
index_word: valug, value, value... dexing clauses”,
. - page 891
index_word: value, value, value...

... Normal module definition (see part ...

Eachindex_worc is an identifier; eaclvalue is a constant (integer, real etc.), an
identifier, or some other basic lexical element.

There is no particular constraint on index words and values, but an industry, a
standards group, an organization or a project may wish to define their own conventions.
Indexing and retrieval tools can then extract this information to help software developers
find components satisfying certain criteria.

As we saw in the discussion of Self-Documentation, storing such information in the
module itself — rather than in an outside document or database — decreases the
likelihood of including wrong information, and in particular of forgetting to update the

8§4.4 NON-TECHNICAL OBSTACLES 79

“Using assertions
for documentation:
the short form of a
class”, page 39)

T. B. Stee: “A First
Versionof UNCO”,
Joint Computer
Conf, vol. 1¢, Win-
ter 1967, pages
371-378

ISE’s compilers use
both C generation
and bytecode gen-
eratior.

information when updating the module (or conversely). Indexing clauses, modest as tt
may seem, play a major role in helping developers keep their software organized &
register its properties so that others can find out about it.

Formats for reusable component distribution

Another question straddling the technical-organizational line is the form under which w
should distribute reusable components: source or binary? This is a touchy issue, so we
limit ourselves to examining a few of the arguments on both sides.

For a professional, for-profit software developer, it often seems desirable to provi
buyers of reusable components with an interface descriptioishort forn discussed in
a later chapter) and the binary code for their platform of choice, but not the source for
This protects the developer’s investment and trade secrets.

Binary is indeed the preferred form of distribution for commercial application
programs, operating systems and other tools, including compilers, interpreters a
development environments for object-oriented languages. In spite of recurring attacks
the very idea, emanating in particular from an advocacy group called the League
Programming Freedom, this mode of commercial software distribution is unlikely t
recede much in the near future. But the present discussion is not about ordinary tool:
application programs: it is about libraries of reusable software components. In that c:
one can also find some arguments in favor of source distribution.

For the component producer, an advantage of source distribution is that it ea:
porting efforts. You stay away from the tedious and unrewarding task of adapting softwz
to the many incompatible platforms that exist in today’s computer world, relying instez
on the developers of object-oriented compilers and environments to do the job for yc¢
(For theconsume this is of course a counter-argument, as installation from source wil
require more work and may cause unforeseen errors.)

Some compilers for object-oriented languages may let you retain some of the portability
benefit without committing to full source availability: if the compiler uses C as
intermediate generated code, as is often the case today, you can usually substitute
portable C code for binary code. It is then not difficult to devise a tool that obscures the
C form, making it almost as difficult to reverse-engineer as a binary form.

Also note that at various stages in the history of software, dating back to UNCOL
(UNiversal COmputing Language) in the late fifties, people have been defining low-level
instruction formats that could be interpreted on any platform, and hence could provide a
portable target for compilers. The ACE consortium of hardware and software companies
was formed in 1988 for that purpose. Together with the Java language has come the
notion of Java bytecode, for which interpreters are being developed on a number of
platforms. But for the component producer such efforts at first represent more work, not
less: until you have the double guarantee that the new format is available on every
platform of interesanc that it executes target code as fast as platform-specific solutions,
you cannot forsake the old technology, and must simply add the new target code format
to those you already support. So a solution that is advertized as an end-all to all portability
problems actually creates, in the short term, more portability problems.

80 APPROACHES TO REUSABILITY§4.4

Perhaps more significant, as an argument for source code distribution, is the
observation that attempts to protect invention and trade secrets by removing the source
form of the implementation may be of limited benefit anyway. Much of the hard work in
the construction of a good reusable library lies not in the implementation but in the design
of the components’ interfaces; and that is the part that you are bound to release anyway.
This is particularly clear in the world of data structures and algorithms, where most of the
necessary techniques are available in the computing science literature. To design a
successful library, you must embed these techniques in modules whose interface will
make them useful to the developers of many different applications. This interface design
is part of what you must release to the world.

Also note that, in the case of object-oriented modules, there are two forms of
component reuse: as a client or, as studied in later chapters, through inheritance. The
second form combines reuse with adaptation. Interface descriptions (short forms) are
sufficient for client reuse, but not always for inheritance reuse.

Finally, the educational side: distributing the source of library modules is a goodThe chapter on
to provide models of the producer’s best engineering, useful to encourage consuni?ﬁzg‘lgg‘;bfec\}el_
develop their own software in a consistent style. We saw earlier that the resiyyg this point in
standardization is one of the benefits of reusability. Some of it will remain even if c“Apprenticeship”,

developers only have access to the interfaces; but nothing beats having the full texiPage 94}

Be sure to note that even if source is available it should not serve as the primary
documentation tool: for that role, we continue to use the module interface.

This discussion has touched on some delicate economic issues, which condition in
part the advent of an industry of software components and, more generally, the progress
of the software field. How do we provide developers with a fair reward for their efforts
and an acceptable degree of protection for their inventions, without hampering the
legitimate interests of users? Here are two opposite views:

* At one end of the spectrum you will find the positions of the League See the biblio-
Programming Freedom: all software should be free and available in source fordraphical notes

» At the other end you have the ideasuperdistributiol, advocated by Brad Cox in
several articles and a book. Superdistribution would allow users to duplicate
software freely, charging them not for the purchase but instead for each use. Imagine
a little counter attached to each software component, which rings up a few pennies
every time you make use of the component, and sends you a bill at the end of the
month. This seems to preclude distribution in source form, since it would be too easy
to remove the counting instructions. Although JEIDA, a Japanese consortium of
electronics companies, is said to be working on hardware and software mechanisms
to support the concept, and although Cox has recently been emphasizing
enforcement mechanisms built on regulations (like copyright) rather than
technological devices, superdistribution still raises many technical, logistic,
economic and psychological questions.

8§45 THE TECHNICAL PROBLEM 81

An assessment

Any comprehensive approach to reusability must, along with the technical aspects, d
with the organizational and economical issues: making reusability part of the softwa
development culture, finding the right cost structure and the right format for compone
distribution, providing the appropriate tools for indexing and retrieving components. N¢
surprisingly, these issues have been the focus of some of the main reusability initiatiy
from governments and large corporations\, such as the STARS program USthe
Department of DefenstSoftware Technology for Adapta, Reliable Syster) and the
“software factories” installed by some large Japanese companies.

Important as these questions are in the long term, they should not detract ¢
attention from the main roadblocks, which are still technicatc8sis in reuse requires the
right modular structures and the construction of quality libraries containing the tens
thousands of components that the industry needs.

The rest of this chapter concentrates on the first of these questions; it examines v
common notions of module are not appropriate for large-scale reusability, and defines
requirements that a better solution — developed in the following chapters — must satis

4.5 THE TECHNICAL PROBLEM

What should a reusable module look like?

Change and constancy

Software development, it was mentioned above, involves much repetition. To understz
the technical difficulties of reusability we must understand the nature of that repetition.

Such an analysis reveals that although programmers do tend to do the same kind
things time and time again, these areexactlythe same things. If they were, the solution
would be easy, at least on paper; but in practice so many details may change as to de
any simple-minded attempt at capturing the commonality.

Atelling analogy is provided by the works of the Norwegian painter Edvard Munch, the
majority of which may be seen in the museum dedicated to him in Oslo, the birthplace of
Simula. Munch was obsessed with a small number of profound, essential themes: love,
anguish, jealousy, dance, de.... He drew and painted them endlessly, using the same
pattern each time, but continually changing the technical medium, the colors, the
emphasis, the size, the light, the mood.

Such is the software engineer’s plight: time and again composing a new variati
that elaborates on the same basic themes.

Take the example mentioned at the beginning of this chetable searching. True,
the general form of a table searching algorithm is going to look sigalar time: start at
some position in the tabt; then begin exploring the table from that position, each time
checking whether the element found at the current position is the one being sought, &
if not, moving to another position. The process terminates when it has either found t

82 APPROACHES TO REUSABILITY84.5

element or probed all the candidate positions unsuccessfully. Such a general pattern is
applicable to many possible cases of data representation and algorithms for table
searching, including arrays (sorted or not), linked lists (sorted or not), sequential files,
binary trees, B-trees and hash tables of various kinds.

It is not difficult to turn this informal description into an incompletely refined
routine:

has(t: TABLE, x: ELEMENT): BOOLEANis
-- |Is there an occurrence xin t?

local
pos: POSITION
do
from
pos:= INITIAL_POSITION(x, t)
until
EXHAUSTEL(pos, t) or else FOUND (pos, x, t)
loop
pos:= NEXT(pos, X, t)
end
Result:= not EXHAUSTEL(pos, t)
end
(A few clarifications on the notatiorfrom ... until ... loop ... end describes a loop, or els¢ is explained

initialized in the from clause, executing thloop clause zero or more times, anin “Non-strictbool-
terminating as soon as the condition in until clause is satisfiecResul denotes the Sggé’zgrf‘tors '
value to be returned by the function. If you are not familiar wittor else operator, just

accept it as if it were a booleor.)

Although the above text describes (through its lower-case elements) a general
pattern of algorithmic behavior, it is not a directly executable routine since it contains (in
upper case) some incompletely refined parts, corresponding to aspects of the table
searching problem that depend on the implementation chosen: the type of table elements
(ELEMENT), what position to examine firsINITIAL_POSITION, how to go from a
candidate position to the nesNEXT), how to test for the presence of an element at a
certain position FOUND), how to determine that all interesting positions have been
examined EXHAUSTEL).

Rather than a routine, then, the above text is a routine pattern, which you can only
turn into an actual routine by supplying refinements for the upper-case parts.

The reuse-redo dilemma

All this variation highlights the problems raised by any attempt to come up with general-
purpose modules in a given application area: how can we take advantage of the common
pattern while accommodating the need for so much variation? This is not just an

§4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES 83

“The Open-Closed
principle”, page 57/

implementation problem: it is almost as harspecifthe module so that client modules
can rely on it without knowing its implementation.

These observations point to the central problem of software reusability, whic
dooms simplistic approaches. Because of the titgaf software — its very softness —
candidate reusable modules will not suffice if they are inflexible.

A frozen module forces you into ttreuse or redc dilemma: reuse the module
exactly as it is, or redo the job completely. This is often too limiting. In a typical situatior
you discover a module that may provide you with a solution for some part of your curre
job, but not necessarily the exact solution. Your specific needs may require sor
adaptation of the module’s original behavior. So what you will want to do in such a ca
is to reuseand redo: reuse some, redo some — or, you hope, reuse a lot and redo a lit
Without this ability to combine reuse and adaptation, reusability techniques cann
provide a solution that satisfies the realities of practical software development.

So it is not by accident that almost every discussion of reusability in this book al:
considers extendibility (leading to the definition of the term “modularity”, which covers
both notions and provided the topic of the previous chapter). Whenever you start looki
for answers to one of these quality requirements, you quickly encounter the other.

This duality between reuse and adaptation was also present in the earlier discus:
of the Open-Closed principle, which pointed out that a successful software compone
must be usable as it stands (closed) while still adaptable (open).

The search for the right notion of module, which occupies the rest of this chapter a
the next few, may be characterized as a constant attempt to reconcile reusability -
extendibility, closure and openness, constancy and change, satisfying today’s needs
trying to guess what tomorrow holds in store.

4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES

How do we find module structures that will yield directly reusable components whil
preserving the possibility of adaptation?

The table searching issue and hasroutine pattern obtained for it on the previous
page illustrate the stringent requirements that any solution will have to meet. We can |
this example to analyze what it takes to go from a relatively vague recognition
commonality between software variants to an actual set of reusable modules. Such a si
will reveal five general issues:

« Type Variation.
* Routine Grouping.
* Implementation Variation.

* Representation Independence.

Factoring Out Common Behaviors.

84 APPROACHES TO REUSABILITY 84.6

Type Variation

The hasroutine pattern assumes a table containing objects of aELEMENT. A
particular refinement might use a specific type, SUCINTEGEF or BANK_ACCOUN/
to apply the pattern to a table of integers or bank accounts.

But this is not satisfactory. A reusable searching module should be applicat‘Genericity”, page
many different types of element, without requiring reusers to perform manual chanc9¢
the software text. In other words, we need a facility for describing type-paramete
modules, also known more concisely generic modules. Genericity (the ability for
modules to be generic) will turn out to be an important part of the object-oriented method;
an overview of the idea appears later in this chapter.

Routine Grouping

Even if it had been completely refined and parameterized by typehasroutine pattern

would not be quite satisfactory as a reusable component. How you search a table depends
on how it was created, how elements are inserted, how they are deleted. So a searching
routine is not enough by itself as a unit or reuse. A self-sufficient reusable module would
need to include a set of routines, one for each of the operations cited — creation, insertion,
deletion, searching.

This idea forms the basis for a form of module, the “package”, found in what may be
called the encapsulation languages: Ada, Modula-2 and relatives. More on this below.

Implementation Variation

The haspattern is very general; there is in practice, as we have seen, a wide variety of
applicable data structures and algorithms. Such variety indeed that we cannot expect a
single module to take care of all possibilities; it would be enormous. We will need a family
of modules to cover all the different implementations.

A general technique for producing and using reusable modules will have to support
this notion of module family.

Representation Independence

A general form of reusable module should enable clients to specify an operation without
knowing how it is implemented. This requirement is called Representation Independence.

Assume that a client modulC from a certain application system — an asset
management program, a compiler, a geographical information s... — needs to
determine whether a certain elemix appears in a certain takt (of investments, of
language keywords, of cities). Representation independence means here the alClity for
to obtain this information through a call such as

present:= has(t, x)

§4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES 85

“Information Hid-

ing”, page 5..

“Single Choice”,
page 6...

“DYNAMIC BIND-

ING”, 14.4, page
48C.

without knowing what kind of tab t is at the time of the caC’s author should only need

to know thatt is a table of elements of a certain type, and x denotes an object of that
type. Whethet is a binary search tree, a hash table or a linked list is irrelevant for him; f
should be able to limit his concerns to asset management, compilation or geograp
Selecting the appropriate search algorithm baset's implementation is the business of
the table management module, and of no one else.

This requirement does not preclude letting clients choose a specific implementati
when they create a data structure. But only one client will have to make this initial choic
after that, none of the clients that perform searchet should ever have to ask what exact
kind of table it is. In particular, the clieC containing the above call may have received
t from one of its own clients (as an argument to a routine call); th¢«C the namet is just
an abstract handle on a data structure whose details it may not be able to access.

You may view Representation Independence as an extension of the rule
Information Hiding, essential for smooth development of large systems: implementatic
decisions will often change, and clients should be protected. But Representati
Independence goes further. Taken to its full consequences, it means protecting a modt
clients against changes not only during project lifecyclebut alsoduring executio —

a much smaller time frame! In the example, we whas to adapt itself automatically to
the run-time form of tablt, even if that form has changed since the last call.

Satisfying Representation Independence will also help us towards a related princij
encountered in the discussion of modularity: Single Choice, which directed us to st
away from multi-branch control structures that discriminate among many variants, as i

if “tis an array managed by open hash then
“Apply open hashing search algorithm”
elseil“t is a binary search trethen
“Apply binary search tree traversal”
elseif
(etc.)
end

It would be equally unpleasant to have such a decision structure in the module its
(we cannot reasonably expect a table management module to know about all present
future variants) as to replicate it in every client. The solution is to hide the multi-branc
choice completely from software developers, and have it performed automatically by t
underlying run-time system. This will be the roledynamic binding, a key component
of the object-oriented approach, to be studied in the discussion of inheritance.

Factoring Out Common Behaviors

If Representation Independence reflects the client’s view of reusability — the ability t
ignore internal implementation details and variants —, the last requirement, Factoring C
Common Behaviors, reflects the view of the supplier and, more generally, the view
developers of reusable classes. Their goal will be to take advantage of any commone
that may exist within a family or sub-family of implementations.

86 APPROACHES TO REUSABILITY 84.6

The variety of implementations available in certain problem areas will usually
demand, as noted, a solution based on a family of modules. Often the family is so large
that it is natural to look for sub-families. In the table searching case a first attempt at
classification might yield three broad sub-families:

e Tables managed by some form of hash-coding scheme.
e Tables organized as trees of some kind.
e Tables managed sequentially.

Each of these categories covers many variants, but it is usually possible to find
significant commonality between these variants. Consider for example the family of
sequential implementations — those in which items are kept and searched in the order of
their original insertion.

Some possible
table
implementations

LINKED \ "
TABLE

Possible representations for a sequential table include an array, a linked list “ACTIVE DATA
file. But regardless of these differences, clients should be able, for any sequerSTRUCTURES’,

managed table, to examine the elements in sequence by moving a (fictcursor giﬁc’)feaggt;r's‘”g;"the
indicating the position of the currently examined element. In this approach we may recyrsor technique

the searching routine for sequential tables as:

has(t: SEQUENTIAL_TABL; x: ELEMENT): BOOLEANMis
-- Is there an occurrence x in t?
do
from startuntil
afteror else found(x)
loop
forth
end
Result:= not after
end

§4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES 87

Sequential
structure with
cursor

The general routine
pattern was on
page82.

Array
representation
of sequential
table with
cursor

This form relies on four routines which any sequential table implementation will b
able to provide:

 start, a command to move the cursor to the first element if any.

 forth, a command to advance the cursor by one position. (Suppcforth is of
course one of the prime characteristics of a sequential table implementation.)

 after, a boolean-valued query to determine if the cursor has moved past the I
element; this will be true afterstart if the table was empty.

« found(x), a boolean-valued query to determine if the element at cursor position h

value x.
vl v2 v3 v4 v5
1 index count
_>
forth

At first sight, the routine text fchas at the bottom of the preceding page resembles
the general routine pattern used at the beginning of this discussion, which covel
searching in any table (not just sequential). But the new form is not a routine pattern &
more; it is a true routine, expressed in a directly executable notation (the notation use
illustrate object-oriented concepts in paC of this book). Given appropriate
implementations for the four operatiostart, forth, after andfounc which it calls, you can
compile and execute the latest formhas.

For each possible sequential table representation you will need a representation
the cursor. Three example representations are by an array, a linked list and a file.

The first uses an array icapacity items, the table occupying positions lcoun.
Then you may represent the cursor simply as an ininde» ranging from 1 tccount + 1.
(The last value is needed to represent a cursor that has rrafter” the last item.)

vl V2 v3 v4 v5

1 index=3 count capacity

The second representation uses a linked list, where the first cell is accessible thro
a referenciirst_celland each cell is linked to the next one through a referight. Then
you may represent the cursor as a refercursol.

88 APPROACHES TO REUSABILITY 84.6

vil| _Lright vyl |right_|ygl |right_[y4(|right_ fygl | Linked list
Void representation
of sequential
Tfirst_cell ﬁ cursor table with
cursor

The third representation uses a sequential file, in which the cursor simply represents
the current reading position.

Sequential file
vli |v2 | v3 | v4 | V5 \ representation
of a sequential

table with
cursor

File reading position

The implementation of the four low-level operatistar, forth, afterandfounc will
be different for each variant. The following table gives the implementation in each case.
(The notatio t @ | denotes thi-th element of arrat, which would be writtert [i] in
Pascal or CVoid denotes a void reference; the Pascal noti.1, for a filef, denotes the
element at the current file reading position.)

Inthis tablendexis

start forth after found(x) abbreviated as
Array =1 i=i+1 |i>count |t@ i=x andcursorasc.
Linked list c:=first_ c:=c.right | c=Void c.item=x
cell
File rewind read end_of file | f1 =x

The challenge of reusability here is to avoid unneeded duplication of software by
taking advantage of the commonality between variants. If identical or near-identical
fragments appear in different modules, it will be difficult to guarantee their integrity and
to ensure that changes or corrections get propagated to all the needed places; once again,
configuration management problems may follow.

All sequential table variants share tlhas function, differing only by their
implementation of the four lower-level operations. A satisfactory solution to the
reusability problem must include the texthas in only one place, somehow associated
with the general notion of sequential table independently of any choice of representation.
To describe a new variant, you should not have to worry ¢has any more; all you will
need to do is to provide the appropriae versiorstari, forth, after andfounc.

8§4.7 TRADITIONAL MODULAR STRUCTURES 89

4.7 TRADITIONAL MODULAR STRUCTURES

Together with the modularity requirements of the previous chapter, the five requiremer
of Type Variation, Routine Grouping, Implementation Variation, Representatior
Independence and Factoring Out Common Behaviors define what we may expect from
reusable components — abstracted modules.

Let us study the pre-O-O solutions to understand why they are not sufficient — b
also what we should learn and keep from them in the object-oriented world.

Routines

The classical approach to reusability is to build libraries of routines. Here throutine
denotes a software unit that other units may call to execute a certain algorithm, us
certain inputs, producing certain outputs and possibly modifying some other da
elements. A calling unit will pass its inputs (and sometimes outputs and modifie
elements) in the form cactual argument. A routine may also return output in the form
of aresul; in this case it is known asfunctior.

The termssubroutint, subprograr andprocedurt are also used instead routine. The

first two will not appear in this book except in the discussion of specific languages (the

Ada literature talks about subprograms, and the Fortran literature about subroutines.)
“Procedure” will be used in the sense of a routine which does not return a result, so that
we have two disjoint categories of routine: procedures and functions. (In discussions of
the C language the term “function” itself is sometimes used for the general notion of

routine, but here it will always denote a routine that returns a result.)

Routine libraries have been successful in several application domains, in particu
numerical computation, where excellent libraries have created some of the earliest suct
stories of reusability. Decomposition of systems into routines is also what one obtai
through the method of top-down, functional decomposition. The routine library approa
indeed seems to work well when you can identify a (possibly large) set of individu
problems, subject to the following limitations:

R1 e« Each problem admits a simple specification. More precisely, it is possible t
characterize every problem instance by a small set of input and output argument:

R2 « The problems are clearly distinct from each other, as the routine approach does
allow putting to good use any significant commonality that might exist — except b
reusing some of the design.

R3 ¢« No complex data structures are involved: you would have to distribute them amo!
the routines using them, losing the conceptual autonomy of each module.

The table searching problem provides a good example of the limitations
subroutines. We saw earlier that a searching routine by itself does not have enough con
to serve as a stand-alone reusable module. Even if we dismissed this objection, howe
we would be faced with two equally unpleasant solutions:

» A single searching routine, which would try to cover so many different cases that
would require a long argument list and would be very complex internally.

90 APPROACHES TO REUSABILITY 84.7

« A large number of searching routines, each covering a specific case and differing
from some others by only a few details in violation of the Factoring Out Common
Behaviors requirement; candidate reusers could easily lose their way in such a maze.

More generally, routines are not flexible enough to satisfy the needs of reuse. We
have seen the intimate connection between reusability and extendibility. A reusable
module should be open to adaptation, but with a routine the only means of adaptation is to
pass different arguments. This makes you a prisoner of the Reuse or Redo dilemma: either
you like the routine as it is, or you write your own.

Packages

In the nineteen-seventies, with the progress of ideas on information hiding and This approach is
abstraction, a need emerged for a form of module more advanced than the routinetudied in deta,
result may be found in several design and programming languages of the period; ththrough the Ada no-
known are CLU, Modula-2 and Ada. They all offer a similar form of module, knownﬂﬁgp?fe%a;ﬁgt’em
Ada as the package. (CLU calls its variant the cluster, and Modula the module. again that'byde-

discussion will retain the Ada term.) fault “Ada” means
Ada 83.(Ada 95 re-

Packages are units of software decomposition with the following properties: tains packages with
a few additiony).

P1 e+ In accordance with the Linguistic Modular Units principle, “package” is a constr
of the language, so that every package has a name and a clear syntactic scope.

P2« Each package definition contains a number of declarations of related elements, such
as routines and variables, hereafter callecfeatures of the package.

P3 e+ Every package can specify precise access rights governing the use of its features by
other packages. In other words, the package mechanism supports information hiding.

P4+ In a compilable language (one that can be used for implementation, not just
specification and design) it is possible to compile packages separately.

Thanks toPZ, packages deserve to be seen as abstracted modules. Their major
contribution isPz, answering the Routine Grouping requirement. A package may contain
any number of related operations, such as table creation, insertion, searching and deletion.
It is indeed not hard to see how a package solution would work for our example problem.
Here — in a notation adapted from the one used in the rest of this book for object-oriented
software — is the sketch of a packaNTEGER TABLE HANDLIN describing a
particular implementation of tables of integers, through binary trees:

packageINTEGER_TABLE_HANDLIN feature
type INTBINTREEis
record
-- Description of representation of a binary tree, for example:
info: INTEGER
left, right: INTBINTREE
end

8§4.7 TRADITIONAL MODULAR STRUCTURES 91

new: INTBINTREEis
-- Return a nevINTBINTREE, properly initialized.
do... end
has(t: INTBINTREE x: INTEGEF): BOOLEANIs
-- Doesx appear irt?
do ... Implementation of searching operati... end

put (t: INTBINTREE x: INTEGEF) is
-- Insertx intot.
do...end

remove(t: INTBINTREE x: INTEGEF) is
-- Removex fromt.
do... end

end -- packag INTEGER_TABLE_HANDLIN 3

This package includes the declaration of a tyiINTBINTREE), and a number of
routines representing operations on objects of that type. In this case there is no neec
variable declarations in the package (although the routines may have local variables).

Client packages will now be able to manipulate tables by using the various featur
of INTEGER_TABLE_HANDLIN. This assumes a syntactic convention allowing a client
to use featurf from packagP; letus borrow the CLU notatioP$f. Typical extracts from
a client ofINTEGER_TABLE_HANDLIN may be of the form:

-- Auxiliary declarations:
x: INTEGEF,; b: BOOLEAN

-- Declaration oft using a type defined INTEGER_TABLE_HANDLIN:3
t: INTEGER_TABLE_HANDLINSINTBINTREE

-- Initialize t as a new table, created by functnew of the package:
t: = INTEGER_TABLE_HANDLINSnew

-- Insert value ox into table, using proceduput from the package:
INTEGER_TABLE_HANDLINS$put (t, x)

-- AssignTrue or False to b, depending on whether or rx appears it
-- for the search, use functithas from the package:
b:= INTEGER_TABLE_HANDLINS$has(t, x)

Note the need to invent two related names: one for the moduleINTEGER _
TABLE_HANDLING and one for its main data type, hiINTBINTREL One of the key
steps towards object orientation will be to merge the two notions. But let us not anticipa

A less important problem is the tediousness of having to write the package name (here
INTEGER_TABLE_HANDLIN) repeatedly. Languages supporting packages solve this
problem by providing various syntactic shortcuts, such as the following Ada-like form:

with INTEGER_TABLE_HANDLINthen
... Here hasmean INTEGER_TABLE_HANDLIN$has, etc....
end

92 APPROACHES TO REUSABILITY 84.7

Another obvious limitation of packages of the above form is their failure to deal with
the Type Variation issue: the module as given is only useful for tables of integers. We will
shortly see, however, how to correct this deficiency by making packages generic.

The package mechanism provides information hiding by limiting clients’ rights*Supplier” is the in-
features. The client shown on the preceding page was able to declare one of it‘éegrs:tﬁ‘;ugﬂggl}éris
variables using the tygINTBINTREE from its supplier, and to call routines declared |\TecER
that supplier; but it has access neither to the internals of the type declaratirecord? TABLE_HAN-
structure defining the implementation of tables) nor to the routine bodies daeiPLNG.
clauses). In addition, you can hide some features of the package (variables,

routines) from clients, making them usable only within the text of the package.

Languages supporting the package notion differ somewhat in the details of their
information hiding mechanism. In Ada, for example, the internal properties of a type such
asINTBINTREE will be accessible to clients unless you declare the typrivate.

Often, to enforce information hiding, encapsulation languages will invite yoiSee*Using asser-
declare a package in two parts, interface and implementation, relegating such :'aot?osnfot:]gosch“o”;te”'
elements as the details of a type declaration or the body of a routine to the implemersom of a class”,
part. Such a policy, however, results in extra work for the authors of supplier modpage 39 and
forcing them to duplicate feature header declarations. With a better understandi Showing the inter-

. L : . face” 805
Information Hiding we do not need any of this. More in later chapters. ace’, page &>

Packages: an assessment

Compared to routines, the package mechanism brings a significant improvement to the
modularization of software systems into abstracted modules. The possibility of gathering
a number of features under one roof is useful for both supplier and client authors:

* The author of a supplier module can keep in one place and compile together all the
software elements relating to a given concept. This facilitates debugging and change.
In contrast, with separate subroutines there is always a risk of forgetting to update
some of the routines when you make a design or implementation change; you might
for example updatnew, put andhas but forgetremove.

e For client authors, it is obviously easier to find and use a set of related facilities if
they are all in one place.

The advantage of packages over routines is particularly clear in cases such as our table
example, where a package groups all the operations applying to a certain data structure.

But packages still do not provide a full solution to the issues of reusability. As noted,
they address the Routine Grouping requirement; but they leave the others unanswered. In
particular they offer no provision for factoring out commonality. You will have noted that
INTEGER_TABLE_HANDLIN, as sketched, relies on one specific choice of
implementation, binary search trees. True, clients do not need to be concerned with this
choice, thanks to information hiding. But a library of reusable components will need to
provide modules for many different implementations. The resulting situation is easy to
foresee: a typical package library will offer dozens of similar but never identical modules

§4.8 OVERLOADING AND GENERICITY 93

The notatio, compat-
ible withthe one in the
rest of this bog, is
Ada-like rather than
exact Ad. TheREAL
typeis calle(FLOAT
in Ada; semicolons
have been removed.

in a given area such as table management, with no way to take advantage of
commonality. To provide reusability to the clients, this technique sacrifices reusability c
the suppliers’ side.

Even on the clients’ side, the situation is not completely satisfactory. Every use of
table by a client requires a declaration such as the above:

t: INTEGER_TABLE_HANDLINSINTBINTREE

forcing the client to choose a specific implementation. This defeats the Representat
Independence requirement: client authors will have to know more about implementatic
of supplier notions than is conceptually necessary.

4.8 OVERLOADING AND GENERICITY

Two techniques, overloading and genericity, offer candidate solutions in the effort to bril
more flexibility to the mechanisms just described. Let us study what they can contribut

Syntactic overloading

Overloading is the ability to attach more than one meaning to a name appearing it
program.

The most common source of overloading is for variable names: in almost &
languages, different variables may have the same name if they belong to different modt
(or, in the Algol style of languages, different blocks within a module).

More relevant to this discussion routine overloading, also known as operator
overloading, which allows several routines to share the same name. This possibility
almost always available for arithmetic operators (hence the second name): the se
notation,a + b, denotes various forms of addition depending on the typ«a andb
(integer, single-precision real, double-precision real). But most languages do not treat
operation such ¢'+" as aroutine, and reserve it for predefined basic types — integer, re
and the like. Starting with Algol 68, which allowed overloading the basic operator:
several languages have extended the overloading facility beyond language built-ins
user-defined operations and ordinary routines.

In Ada, for example, a package may contain several routines with the same name
long as the signatures of these routines are different, where the signature of a routin
defined here by the number and types of its arguments. (The general notion of signat
also includes the type of the results, if any, but Ada resolves overloading on the basis
the arguments only.) For example, a package could contain several square functions:

square(x: INTEGEF): INTEGEFis do... end
square(x: REAL): REALisdo ... end

square(x: DOUBLE): DOUBLEisdo ... end
square(x: COMPLE)): COMPLE>is do... end

Then, in a particular call of the forsquare(y), the type oy will determine which
version of the routine you mean.

94 APPROACHES TO REUSABILITY §4.8

A package could similarly declare a number of search functions, all of the form
has(t: “SOME_TABLE_TYPE”; x: ELEMENT)is do... end

supporting various table implementations and differing by the actual type used in lieu of
“SOME_TABLE_TYPE'. The type of the first actual argument, in any client’s cehas,
suffices to determine which routine is intended.

These observations suggest a general characterization of routine overloading, which
will be useful when we later want to contrast this facility with genericity:

Role of overloading See the correspond-
. . . — - : : . ing definition of ge-
Routine overloading is a facility for clients. It makes it possible to writg the nericity on page97.

same client text when using different implementations of a certain concept.

What does routine overloading really bring to our quest for reusability? Not much. It
is a syntactic facility, relieving developers from having to invent different names for
various implementations of an operation and, in essence, placing that burden on the
compiler. But this does not solve any of the key issues of reusability. In particular,
overloading does nothing to address Representation Independence. When you write the calll

has(t, x)

you must have declaret and so (even if information hiding protects you from worrying
about the details of each variant of the search algorithm) you must know exactly what kind
of tablet is! The only contribution of overloading is that you can use the same name in all
cases. Without overloading each implementation would require a different name, as in

has_binary_tre(t, x)
has_haslk(t, x)
has_linkec(t, x)

Is the possibility of avoiding different names a benefit after all? Perhaps not. A basic
rule of software construction, object-oriented or not, isprinciple of non-deceptior:
differences in semantics should be reflected by differences in the text of the software. This
is essential to improve the understandability of software and minimize the risk of errors.
If the has routines are different, giving them the same name may mislead a reader of the
software into believing that they are the same. Better force a little more wordiness on the
client (as with the above specific names) and remove any danger of confusion.

The further one looks into this style of overloading, the more limited it appears. The
criterion used to disambiguate calls — the signature of argument lists — has no particular
merit. It works in the above examples, where the various overlossquareandhas are
all of different signatures, but it is not difficult to think of many cases where the signatures
would be the same. One of the simplest examples for overloading would seem to be, in a
graphics system, a set of functions used to create new points, for example under the form

pl:=new_poini(u, v)

§4.8 OVERLOADING AND GENERICITY

95

More on syntactic
overloading in
“Multiple creation
and overloading”,
page 23 and“O-O
development and
overloading”,
page 56.}

“DYNAMIC BIND-

ING”, 14.4, page
48C.

How remarkably
concise software
languages are in
comparisol!

There are two basic ways to specify a new point: through its cartesian coorxinate
andy (the projections on the horizontal axis), and through its polar coordip and6
(the distance to the origin, and the angle with the horizontal axis). But if we overloe
functionnew_poiniwe are in trouble, since both versions will have the signature

new_poini(p, g: REAL): POINT

This example and many similar ones show that type signature, the criterion f
disambiguating overloaded versions, is irrelevant. But no better one has been propose

The recent Java language regrettably includes the form of syntactic overloading just
described, in particular to provide alternative ways to create objects.

Semantic overloading (a preview)

The form of routine overloading described so far may be csyntactic overloadinc.

The object-oriented method will bring a much more interesting technique, dynam
binding, which addresses the goal of Representation Independence. Dynamic binding r
be calledsemantic overloadin¢. With this technique, you will be able to write the
equivalent othas(t, x), under a suitably adapted syntax, as a request to the machine tf
executes your software. The full meaning of the request is something like this:

Dear Hardware-Software Machiie

Please look at what is; | know that it must be a taf, but not what table
implementation its original creator chose — and to be honest about it I'd much
rather remain in the dai. After all, my job is not table management but
investment bankin[or compiling, or computer-aided-design €]. The chief
table manager here is someone . So find out for yourself about it a, once

you have the answlook up the proper algorithm fchas for that particular

kind of tablt. Then apply that algorithm to determine whe x appears irt,

and tell me the rest. | am eagerly waiting for your answ.er

| regret to inform you thi, beyond the information thit is a table of some kind
andx a potential eleme;, you will not get any more help from me

With my sincerest wish,2s

Your friendly application developar

Unlike syntactic overloading, such semantic overloading is a direct answer to tl
Representation Independence requirement. It still raises the specter of violating 1
principle of non-deception; the answer will be to assertions to characterize the
common semantics of a routine that has many different variants (for example, the comn
properties which characterihas under all possible table implementations).

Because semantic overloading, to work properly, requires the full baggage of obije
orientation, in particular inheritance, it is understandable that non-O-O languages suck
Ada offer syntactic overloading as a partial substitute in spite of the problems mention
above. In an object-oriented language, however, providing syntactic overloading on top

96 APPROACHES TO REUSABILITY §4.8

dynamic binding can be confusing, as is illustrated by the case of C++ and Java which both
allow a class to introduce several routines with the same name, leaving it to the compiler
and the human reader to disambiguate calls.

Genericity

Genericity is a mechanism for defining parameterized module patterns, whose parameters
represent types.

This facility is a direct answer to the Type Variation issue. It avoids the need for
many modules such as

INTEGER_TABLE_HANDLING
ELECTRON_TABLE_HANDLING
ACCOUNT_TABLE_HANDLING

by enabling you instead to write a single module pattern of the form
TABLE_HANDLINC[G]

whereG is a name meant to represent an arbitrary type and knowiformal generic
parameter. (We may later encounter the need for two or more generic parameters, but for
the present discussion we may limit ourselves to one.)

Such a parameterized module pattern is knowngeneric module, although it is
not really a module, only a blueprint for many possible modules. To obtain one of these
actual modules, you must provide a type, known aactual generic paramete, to
replaceG; the resulting (non-generic) modules are written for example

TABLE_HANDLING[INTEGEF]
TABLE_HANDLING[ELECTRON
TABLE_HANDLING[ACCOUNT]

using typesINTEGEF, ELECTRO! and ACCOUNT1 respectively as actual generic
parameters. This process of obtaining an actual module from a generic module (that is to
say, from a module pattern) by providing a type as actual generic parameter will be known
asgeneric derivation; the module itself will be said to be generically derived.

Two small points of terminology. First, generic derivation is sometimes called generic
instantiation, a generically derived module then being called a generic instance. This
terminology can cause confusion in an O-O context, since “instance” also denotes the
run-time creation of objectinstance) from the corresponding types. So for genericity
we will stick to the “derivation” terminology.

Another possible source of confusion is “parameter”. A routine may have formal
arguments, representing values which the routine’s clients will provide in each call. The
literature commonly uses the term parameter (formal, actual) as a synonym for argument
(formal, actual). There is nothing wrong in principle with either term, but if we have both
routines and genericity we need a clear convention to avoid any misunderstanding. The
convention will be to use “argument” for routines only, and “parameter” (usually in the
form “generic parameter” for further clarification) for generic modules only.

§4.8 OVERLOADING AND GENERICITY 97

To be compared
with INTEGER_

TABLE_HAN-

DLING, page90.

Chapterl0discuss-
es O-0O genericiy

See the correspond-

ing definition of
overloading on
page94.

Internally, the declaration of the generic modTABLE HANDLINCwill resemble
that ofINTEGER_TABLE HANDLIN above, except that it usG instead oINTEGER
wherever it refers to the type of table elements. For example:

packageTABLE_HANDLINC[G] feature
type BINARY_TRElis
record
info: G
left, right: BINARY_TREE
end
has(t: BINARY_TRE; x: G): BOOLEAN
-- Doesx appear irt?
do ... end
put(t: BINARY_TRE; x: G) is
-- Inser x into t.
do... end

(Etc.)
end --packag TABLE_HANDLING

It is somewhat disturbing to see the type being declareBINARY TRE, and
tempting to make it generic as well (something IBINARY_ TREE[G]). There is no
obvious way to achieve this in a package approach. Object technology, however, v
merge the notions of module and type, so the temptation will be automatically fulfillec
We will see this when we study how to integrate genericity into the object-oriented worlc

It is interesting to define genericity in direct contrast with the definition given earlie
for overloading:

Role of genericity
Genericity is a facility for the authors of supplier modules. It makes it
possible to write the same supplier text when using the same implementation
of a certain concept, applied to different kinds of object.

What help does genericity bring us towards realizing the goals of this chapte
Unlike syntactic overloading, genericity has a real contribution to make since as not
above it solves one of the main issues, Type Variation. The presentation of obije
technology in part C of this book will indeed devote a significant role to genericity.

Basic modularity techniques: an assessment

We have obtained two main results. One is the idea of providing a single syntactic hor
such as the package construct, for a set of routines that all manipulate similar objects.
other is genericity, which yields a more flexible form of module.

All this, however, only covers two of the reusability issues, Routine Grouping an
Type Variation, and provides little help for the other three — Implementation Variatior
Representation Independence and Factoring Out Common Behaviors. Genericity,
particular, does not suffice as a solution to the Factoring issue, since making a mod

98 APPROACHES TO REUSABILITY 84.9

generic defines two levels only: generic module patterns, parameterized and hence open
to variation, but not directly usable; and individual generic derivations, usable directly but
closed to further variation. This does not allow us to capture the fine differences that may
exist between competing representations of a given general concept.

On Representation Independence, we have made almost no progress. None of the
techniques seen so far — except for the short glimpse that we had of semantic overloading
— will allow a client to use various implementations of a general notion without knowing
which implementation each case will select.

To answer these concerns, we will have to turn to the full power of object-
oriented concepts.

4.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Software development is a highly repetitive activity, involving frequent use of
common patterns. But there is considerable variation in how these patterns are used
and combined, defeating simplistic attempts to work from off-the-shelf components.

 Putting reusability into practice raises economical, psychological and organizational
problems; the last category involves in particular building mechanisms to index,
store and retrieve large numbers of reusable components. Even more important,
however, are the underlying technical problems: commonly accepted notions of
module are not adequate to support serious reusability.

* The major difficulty of reuse is the need to combine reuse with adaptation. The
“reuse or redo” dilemma is not acceptable: a good solution must make it possible to
retain some aspects of a reused module and adapt others.

e Simple approaches, such as reuse of personnel, reuse of designs, source code reuse,
and subroutine libraries, have experienced some degree of success in specific
contexts, but all fall short of providing the full potential benefits of reusability.

e The appropriate unit of reuse is some form of abstracted module, providing an
encapsulation of a certain functionality through a well-defined interface.

» Packages provide a better encapsulation technique than routines, as they gather a
data structure and the associated operations.

* Two technigues extend the flexibility of packages: routine overloading, or the reuse
of the same name for more than one operation; genericity, or the availability of
modules parameterized by types.

* Routine overloading is a syntactic facility which does not solve the important issues
of reuse, and harms the readability of software texts.

« Genericity helps, but only deals with the issue of type variation.

* What we need: techniques for capturing commonalities within groups of related data
structure implementations; and techniques for isolating clients from having to know
the choice of supplier variants.

§4.10 BIBLIOGRAPHICAL NOTES 99

Adais covered in
chapter3g; seeits
“BIBLIOGRAPHI-
CALNOTES”,
33.9, page 10¢7

4.10 BIBLIOGRAPHICAL NOTES

The first published discussion of reusability in software appears to haveMcllroy’s
1968 Mass-Produced Software Compon¢, mentioned at the beginning of this chapter.
His paper[Mcllroy 1976] was presented in 1968 at the first conference on software
engineering, convened by the NATO Science Affairs Committee. (1976 is the date of t
proceedings[Buxton 1976, whose publication was delayed by several years.) Mcllroy
advocated the development of an industry of software components. Here is an extract

Software production today appears in the scale of industrialization somewhere
below the more backward construction indust. | think its proper place is
considerably highe, and would like to investigate the prospects for mass-
production techniques in softws.. .2

When we undertake to write a comp, we begin by saying “What table
mechanism shall we bui?’. Not “What mechanism shall we (7"1...

My thesis is that the software industry is weakly four[in part because f
the absence of a software components subinc...: Such a components
industry could be immensely succes.sful

One of the important points argued in the paper was the necessity of module famili
discussed above as one of the requirements on any comprehensive solution to reuse.

The most important characteristic of a software components industry is that
it will offer families offmodule] for a given job

Rather than the word “moduleMcllroy’s text used “routine”; in light of this chapter’s
discussion, this is — with the hindsight of thirty years of further software engineering
development — too restrictive.

A special issue of the IEE[Transactions on Software Engineer edited by
Biggerstaff and Perli[Biggerstaff 1984|was influential in bringing reusability to the
attenion of the software engineering community; see in particular, from that issue
[Jones 198¢ [Horowitz 1984, [Curry 1984, [Standish 198<.and[Goguen 1984 The
same editors included all these articles (except the first mentioned) in an expanc
two-volume collection[Biggerstaff 1989. Another collection of articles on reuse is
[Tracz 1988. More recently Tracz collected a number of IEEE Compute columns
into a useful bool[Tracz 1995 emphasizing the management aspects.

One approach to reuse, based on concepts from artificial intelligence, is embodiec
the MIT Programmer’'s Apprentice project; s{Waters 1984]and [Rich 1989,
reproduced in the first and second Biggerstaff-Perlis collections respectively. Rather tf
actual reusable modules, this system uses patterns (clichés andplans) representing
common program design strategies.

Three “encapsulation languages” were cited in the discussion of packages: A
Modula-2 and CLU. Ada is discussed in a later chapter, whose bibliography section gi\
references to Modula-2, CLU, as well as Mesa and Alphard, two other encapsulati
languages of the “modular generation” of the seventies and early eighties. The equival
of a package in Alphard was called a form.

100 APPROACHES TO REUSABILITY §4.10

An influential project of the nineteen-eighties, the US Department of Defense’s
STARS, emphasized reusability with a special concern for the organizational aspects of
the problem, and using Ada as the language for software components. A number of
contributions on this approach may be found in the proceedings of the 1985 STARS DoD-
Industry conferenc[NSIA 1985].

The two best-known books on “design patterns’{Gamma 199t and[Pree 1994

[Weiser 1987]is a plea for the distribution of software in source form. That article,
however, downplays the need for abstraction; as pointed out in this chapter, it is possible
to keep the source form available if needed but use a higher-level form as the default
documentation for the users of a module. For different reasons, Richard Stallman, the
creator of the League for Programming Freedom, has been arguing that the source form
should always be available; ¢[Stallman 199Z]

[Cox 1992 describes the idea of superdistribution.

A form of overloading was present in Algol [van Wijngaarden 197; Ada (which
extended it to routines), C++ and Java, all discussed in later chapters, make extensive use
of the mechanism.

Genericity appears in Ada and CLU and in an early version of the Z specification
language€Abrial 1980]; in that version the Z syntax is close to the one used for genericity
in this book. The LPG langua(Bert 1983 was explicitly designed to explore genericity.
(The initials stand for Language for Programming Generically.)

The work cited at the beginning of this chapter as the basic reference on table
searching iKnuth 1973. Among the many algorithms and data structures textbooks
which cover the question, <[Aho 1974, [Aho 1983 or[M 1978].

Two books by the author of the present one explore further the question of
reusability.Reusable Softwa[M 1994a, entirely devoted to the topic, provides design
and implementation principles for building quality libraries, and the complete
specification of a set of fundamental librari€Object Succes{M 1995] discusses
management aspects, especially the areas in which a company interested in reuse should
exert its efforts, and areas in which efforts will probably be wasted (such as preaching
reuse to application developers, or rewarding reuse). See also a shce on th topic,
[M 1996].

5

Towards object technology

The three
forces of
computation

Extendibility, reusability and reliability, our principal goals, require a set of conditions
defined in the preceding chapters. To achieve these conditions, we need a systema
method for decomposing systems into modules.

This chapter presents the basic elements of such a method, based on a simple but 1
reaching idea: build every module on the basis of some object type. It explains the ide
develops the rationale for it, and explores some of the immediate consequences.

A word of warning. Given today’s apparent prominence of object technology, some
readers might think that the battle has been won and that no further rationale is necessa
This would be a mistake: we need to understand the basis for the method, if only to avo
common misuses and pitfalls. Itis in fact frequent to see the word “object-oriented” (like
“structured” in an earlier era) used as mere veneer over the most conventional techniqu
Only by carefully building the case for object technology can we learn to detect imprope
uses of the buzzword, and stay away from common mistakes reviewed later in this chapte

5.1 THE INGREDIENTS OF COMPUTATION

The crucial question in our search for proper software architecturasdslarization
what criteria should we use to find the modules of our software?

To obtain the proper answer we must first examine the contending candidates.
The basic triangle

Three forces are at play when we use software to perform some computations:

Processor

102 TOWARDS OBJECT TECHNOLOGYS5.1

To execute a software system is to use ceprocessor to apply certairactions to
certainobjects

The processors are the computation devices, physical or virtual, that execute
instructions. A processor can be an actual processing unit (the CPU of a computer), a
process on a conventional operating system, or a “thread” if the OS is multi-threaded.

The actions are the operations making up the computation. The exact form of the
actions that we consider will depend on the level of granularity of our analysis: at the
hardware level, actions are machine language operations; at the level of the hardware-
software machine, they are instructions of the programming language; at the level of a
software system, we can treat each major step of a complex algorithm as a single action.

The objects are the data structures to which the actions apply. Some of these objects,
the data structures built by a computation for its own purposes, are internal and exist only
while the computation proceeds; others (contained in the files, databases and other
persistent repositories) are external and may outlive individual computations.

Processors will become important when we disciconcurrent forms of Concurrency is the
computation, in which several sub-computations can proceed in parallel; then wetopic of chapte3C.
need to consider two or more processors, physical or virtual. But that is the topic of ¢
chapter; for the moment we can limit our attention to non-concurrersequential
computations, relying on a single processor which will remain implicit.

This leaves us with actions and objects. The duality between actions and objects —
what a system doevs. what it does it to — is a pervasive theme in software engineering.

A note of terminology. Synonyms are available to denote each of the two aspects: the
word date will be used here as a synonym objects; for actior the discussion will often
follow common practice and talk about ffunction: of a system.

The term “function” is not without disadvantages, since software discussions also use it
in at least two other meanings: the mathematical sense, and the programming sense of
subprogram returning a result. But we can use it without ambiguity in the these
functions of a syste, which is what we need here.

The reason for using this word rather than “action” is the mere grammatical convenience
of having an associated adjective, used in the plunctional decompositic. “Action”

has no comparable derivation. Another term whose meaning is equivalent to that of
“action” for the purpose of this discussioroperatior.

Any discussion of software issues must account for both the object and function
aspects; so must the design of any software system. But there is one question for which
we must choose — the question of this chapter: what is the appropriate criterion for
finding the modules of a system? Here we must decide whether modules will be built as
units of functional decomposition, or around major types of objects.

From the answer will follow the difference between the object-oriented approach
and other methods. Traditional approaches build each module around some unit of
functional decomposition — a certain piece of the action. The object-oriented method,
instead, builds each module around some type of objects.

§5.2 FUNCTIONAL DECOMPOSITION 103

“Modular continu-

ity”, page 4¢

Top-down design
was sketched in
“Modular decom-

This book, predictably, develops the latter approach. But we should not just embre
0O-0 decomposition because the title of the book so implies, or because it is the “in” thi
to do. The next few sections will carefully examine the arguments that justify using obje
types as the basis for modularization — starting with an exploration of the merits al
limitations of traditional, non-O-O methods. Then we will try to get a clearel
understanding of what the word “object” really means for software development, althou
the full answer, requiring a little theoretical detour, will only emerge in the next chapte!

We will also have to wait until the next chapter for the final settlement of the
formidable and ancient fight that provides the theme for the rest of the present discussi
the War of the Objects and the Functions. As we prepare ourselves for a campaigr
slander against the functions as a basis for system decomposition, and of correspont
praise for the objects, we must not forget the observation made above: in the end,
solution to the software structuring problem must provide space for both functions al
objects — although not necessarily on an equal basis. To discover this new world orc
we will need to define the respective roles of its first-class and second-class citizens.

5.2 FUNCTIONAL DECOMPOSITION

We should first examine the merits and limitations of the traditional approach: usir
functions as a basis for the architecture of software systems. This will not only lead us
appreciate why we need something else — object technology — but also help us avc
when we do move into the object world, certain methodological pitfalls such as prematt
operation ordering, which have been known to fool even experienced O-O developers

Continuity

A key element in answering the question “should we structure systems around functic
or around data?” is the problem of extenliyp and more precisely the goal called
continuity in our earlier discussions. As you will recall, a design method satisfies thi
criterion if it yields stable architectures, keeping the amount of design chang
commensurate with the size of the specification change.

Continuity is a crucial concern if we consider the real lifecycle of software system:
including not just the production of an acceptable initial version, but a system’s long-ter
evolution. Most systems undergo numerous changes after their first delivery. Any moc
of software development that only considers the period leading to that delivery al
ignores the subsequent era of change and revision is as remote from real life as tr
novels which end when the hero marries the heroine — the time which, as everyc
knows, marks the beginning of the really interesting part.

To evaluate the quality of an architecture (and of the method that produced it), \
should not just consider how easy it was to obtain this architecture initially: it is just
important to ascertain how well the architecture will weather change.

The traditional answer to the question of modularization has been top-dow
functional decomposition, briefly introduced in an earlier chapter. How well does toy

posability”, page 4) down design respond to the requirements of modularity?

104 TOWARDS OBJECT TECHNOLOGYS§5.2

Top-down development

There was a most ingenious architect who had contrived a new method
for building house, by beginning at the ro, and working downwards
to the foundatio, which he justified to me by the like practice of those
two prudent insec, the bee and the spic. »r
Jonathan Swif Gulliver's Travel, Part Ill,A
Voyage to Lapui, etc., Chapter 5.

The top-down approach builds a system by stepwise refinement, starting with a definition
of its abstract function. You start the process by expressing a topmost statement of this
function, such as

[CO]
“Translate a C program to machine code”
or:
[PO]
“Process a user command”
and continue with a sequence of refinement steps. Each step must decrease the level of
abstraction of the elements obtained; it decomposes every operation into a combination of

one or more simpler operations. For example, the next step in the first example (the C
compiler) could produce the decomposition

[C1]

“Read program and produce sequence of tokens”
“Parse sequence of tokens into abstract syntax tree”
“Decorate tree with semantic information”
“Generate code from decorated tree”

or, using an alternative structure (and making the simplifying assumption that a C program
is a sequence of function definitions):

[C'1]
from
“Initialize data structures”
until
“All function definitions processed”
loop
“Read in next function definition”
“Generate partial code”
end

“Fill in cross references”

§5.2 FUNCTIONAL DECOMPOSITION 105

Top-down
desigr: tree
structure

(This figure first
appeared on
page41.)

In either case, the developer must at each step examine the remaining incomple
expanded elements (such‘Read progran...” and“All function definitions processe()”
and expand them, using the same refinement process, until everything is at a leve
abstraction low enough to allow direct implementation.

We may picture the process of top-down refinement as the development of a tre
Nodes represent elements of the decomposition; branches show the reé is part of
the refinement oA”.

The top-down approach has a number of advantages. It is a logical, well-organiz
thought discipline; it can be taught effectively; it encourages orderly development
systems; it helps the designer find a way through the apparent complexity that syste
often present at the initial stages of their design.

The top-down approach can indeed be useful for developing individual algorithm
But it also suffers from limitations that make it questionable as a tool for the design
entire systems:

* The very idea of characterizing a system by just one function is subject to doubt.

< By using as a basis for modular decomposition the properties that tend to change
most, the method fails to account for the evolutionary nature of software systems

Not just one function

In the evolution of a system, what may originally have been perceived as the syster
main function may become less important over time.

Consider a typical payroll system. When stating his initial requirement, the custom
may have envisioned just what the name suggests: a system to produce paychecks
the appropriate data. His view of the system, implicit or explicit, may have been a mo
ambitious version of this:

106 TOWARDS OBJECT TECHNOLOGYS§5.2

Structure of a

Employee ;

Info?mgtion simple payroll
Paychecks program

Hours

Worked

The system takes some inputs (such as record of hours worked and employee
information) and produces some outputs (paychecks and so on). This is a simple enough
functional specification, in the strict sense of the word functional: it defines the program
as a mechanism to perform one function — pay the employees. The top-down functional
method is meant precisely for such well-defined problems, where the task is to perform a
single function — the “top” of the system to be built.

Assume, however, that the development of our payroll program is a success: the
program does the requisite job. Most likely, the development will not stop there. Good
systems have the detestable habit of giving their users plenty of ideas about all the other
things they could do. As the system’s developer, you may initially have been told that all
you had to do was to generate paychecks and a few auxiliary outputs. But now the requests
for extensions start landing on your desk: Could the program gather some statistics on the
side? | did tell you that next quarter we are going to start paying some employees monthly
and others biweekly, did | not? And, by the way, | need a summary every month for
management, and one every quarter for the shareholders. The accountants want their own
output for tax preparation purposes. Also, you are keeping all this salary information,
right? It would be really nifty to let Personnel access it interactively. | cannot imagine why
that would be a difficult functionality to add.

This phenomenon of having to add unanticipated functions to successful systems
occurs in all application areas. A nuclear code that initially just applied some algorithm to
produce tables of numbers from batch input will be extended to handle graphical input and
output or to maintain a database of previous results. A compiler that just translated valid
source into object code will after a while double up as a syntax verifier, a static analyzer,
a pretty-printer, even a programming environment.

This change process is often incremental. The new requirements evolve from the
initial ones in a continuous way. The new system is still, in many respects, “the same
system” as the old one: still a payroll system, a nuclear code, a compiler. But the original
“main function”, which may have seemed so important at first, often becomes just one of
many functions; sometimes, it just vanishes, having outlived its usefulness.

If analysis and design have used a decomposition method based on the function, the
system structure will follow from the designers’ original understanding of the system’s main
function. As the system evolves, the designers may feel sorry (or its maintainers, if different
people, may feel angry) about that original assessment. Each addition of a new function,
however incremental it seems to the customer, risks invalidating the entire structure.

It is crucial to find, as a criterion for decomposition, properties less volatile than the
system’s main function.

§5.2 FUNCTIONAL DECOMPOSITION 107

Finding the top

Top-down methods assume that every system is characterized, at the most abstract I
by its main function. Although it is indeed easy to specify textbook examples c
algorithmic problems — the Tower of Hanoi, the Eight Queens and the like — throuc
their functional “tops”, a more useful description of practical software systems conside
each of them as offering a number of services. Defining such a system by a single funct
is usually possible, but yields a rather artificial view.

Take an operating system. It is best understood as a system that provides cer
services: allocating CPU time, managing memory, handling input and output device
decoding and carrying out users’ commands. The modules of a well-structured OS v
tend to organize themselves around these groups of functions. But this is not f
architecture that you will get from top-down functional decomposition; the method force
you, as the designer, to answer the artificial question “what is the topmost function?”, a
then to use the successive refinements of the answer as a basis for the structure. If
pressed you could probably come up with an initial answer of the form

“Process all user requests”
which you could then refine into something like

from
boot

until
haltec or crashed

loop
“Read in a user's request and put it into input queue”
“Get a requesr from input queue”
“Processr”
“Put result into output queue”
“Get a resulio from output queue”
“Outputo to its recipient”

end

Refinements can go on. From such premises, however, it is unlikely that anyone c
ever develop a reasonably structured operating system.

Even systems which may at first seem to belong to the “one input, one abstr:
function, one output’ category reveal, on closer examination, a more diverse pictul
Consider the earlier example of a compiler. Reduced to its bare essentials, or to the v
of older textbooks, a compiler is the implementation of one input-to-output functior
transforming source text in some programming language into machine code for a cert
platform. But that is not a sufficient view of a modern compiler. Among its many service
a compiler will perform error detection, program formating, some configuratior
management, logging, report generation.

108 TOWARDS OBJECT TECHNOLOGYS§5.2

Another example is a typesetting program, taking input in some text processing
format — TgX, Microsoft Word, FrameMake... — and generating output in HTML,
Postscript or Adobe Acrobat format. Again we may view it at first as just an input-to-
output filter. But most likely it will perform a number of other services as well, so it seems
more interesting, when we are trying to characterize the system in the most general way,
to consider the various types of data it manipulates: documents, chapters, sections,
paragraphs, lines, words, characters, fonts, running heads, titles, figures and others.

The seemingly obvious starting point of top-down design — the view that each new
development fulfills a request for a specific function — is subject to doubt:

Real systems have no top.

Functions and evolution

Not only is the main function often not the best criterion to characterize a system initially:
it may also, as the system evolves, be among the first properties to change, forcing the
top-down designer into frequent redesign and defeating our attempts to satisfy the
continuity requirement.

Consider the example of a program that has two versions, a “batch” one which
handles every session as a single big run over the problem, and an interactive one in which
a session is a sequence of transactions, with a much finer grain of user-system
communication. This is typical of large scientific programs, which often have a “let it run
a big chunk of computation for the whole night” version and a “let me try out a few things
and see the results at once then continue with something else” version.

The top-down refinement of the batch version might begin as
[BO] -- Top-level abstraction

“Solve a complete instance of the problem”

[B1] -- First refinement

“Read input values”
“Compute results”

“Output results”

and so on. The top-down development of the interactive version, forits part, could proceed
in the following style:

§5.2 FUNCTIONAL DECOMPOSITION 109

[11]
“Process one transaction”
[12]

if “New information provided by the usethen
“Input information”
“Store it”
elseit “Request for information previously givetthen
“Retrieve requested information”
“Output it”
elseit “Request for resultthen
if “Necessary information availablthen
“Retrieve requested result”
“Output it”
else
“Ask for confirmation of the request”
if Yesthen
“Obtain required information”
“Compute requested result”
“Output result”
end
end
else
(Etc.)

Started this way, the development will yield an entirely different result. The top
down approach fails to account for the property that the final programs are but tv
different versions of the same software system — whether they are develop

concurrently or one has evolved from the other.

This example brings to light two of the most unpleasant consequences of the tc
down approach: its focus on the external interface (implying here an early choice betwe
batch and interactive) and its premature binding of temporal relations (the order in whi

actions will beexecuted).

Interfaces and software design

System architecture should be based on substance, not form. But top-down developn
tends to use the most superficial aspect of the system — its external interface — as a b

for its structure.

The focus on external interfaces is inevitable in a method that asks “What will tt
system do for the end user?” as the key question: the answer will tend to emphasize

most external aspects.

110 TOWARDS OBJECT TECHNOLOGYS§5.2

The user interface is only one of the components of a system. Often, it is also among
the most volatile, if only because of the difficulty of getting it right the first time; initial
versions may be of the mark, requiring experimentation and user feedback to obtain a
satisfactory solution. A healthy design method will try to separate the interface from the
rest of the system, using more stable properties as the basis for system structuring.

It is in fact often possible to build the interface separately from the rest of the sysccj‘sif’etseiiiﬁﬁ' les
using one of the many tools available nowadays to produce elegant and user-friynq tools for uqser
interfaces, often based on object-oriented technigues. The user interface then beinterface:

almost irrelevant to the overall system design.

Premature ordering

The preceding examples illustrate another drawback of top-down functional
decomposition: premature emphasis on temporal constraints. Each refinement expands a
piece of the abstract structure into a more detecontrol architecture, specifying the

order in which various functions (various pieces of the action) will be executed. Such
ordering constraints become essential properties of the system architecture; but they too
are subject to change.

Recall the two alternative candidate structures for the first refinement of a compiler:
[C1]

“Read program and produce sequence of tokens”

“Parse sequence of tokens into abstract syntax tree”

“Decorate tree with semantic information”
“Generate code from decorated tree”
[C1]
from
“Initialize data structures”
until
“All function definitions processed”
loop
“Read in next function definition”
“Generate partial code”
end

“Fill in cross references”

As in the preceding example we start with two completely different architectures.
Each is defined by a control structure (a sequence of instructions in the first case, a loop
followed by an instruction in the second), implying strict ordering constraints between the
elements of the structure. But freezing such ordering relations at the earliest stages of
design is not reasonable. Issues such as the number of passes in a compiler and the
sequencing of various activities (lexical analysis, parsing, semantic processing,
optimization) have many possible solutions, which the designers must devise by
considering space-time tradeoffs and other criteria which they do not necessarily master

§5.2 FUNCTIONAL DECOMPOSITION 111

See the bibliogra-
phical notes for
references on the
methods cited

Chapterll pre-
sents assertions.

at the beginning of a project. They can perform fruitful design and implementation wol
on the components long before freezing their temporal ordering, and will want to reta
this sequencing freedom for as long as possible. Top-down functional design does
provide such flexibility: you must specify the order of executing operations before yo
have had a chance to understand properly what these operations will do.

Some design methods that attempt to correct some of the deficiencies of functiol
top-down design also suffer from this premature binding of temporal relationships. Th
is the case, among others, with the dataflow-directed method known as structured anal
and with Merise (a method popular in some European countries).

Object-oriented development, for its part, stays away from premature ordering. Tl
designer studies the various operations applicable to a certain kind of data, and speci
the effect of each, but defers for as long as possible specifying the operations’ ordel
execution. This may be called tshopping listapproach: list needed operations — all the
operations that you may need; ignore their ordering constraints until as late as possibl
the software construction process. The result is much more extendible architectures.

Ordering and O-O development

The observations on the risks of premature ordering deserve a little more amplificati
because even object-oriented designers argnmotne. The shopping list approach is one
of the least understood parts of the method and it is not infrequent to see O-O projects
into the old trap, with damaging effects on quality. This can result in particular fror
misuse of thwuse cas idea, which we will encounter in the study of O-O methodology.

The problem is that the order of operations may seem so obvious a property o
system that it will weasel itself into the earliest stages of its design, with dire consequen
if it later turns out to be not so final after all. The alternative technique (under th
“shopping list” approach), perhaps less natural at first but much more flexible, uses logit
rather than temporal constraints. It relies on the assertion concept developed later in
book; we can get the basic idea now through a simple non-software example.

Consider the problem of buying a house, reduced (as a gross first approximation)
three operations: finding a house that suits you; getting a loan; signing the contract. W
a method focusing on ordering we will describe the design as a simple sequence of st

H]
find_house
get _loan
sign_contract
In the shopping list approach of O-O development we will initially refuse to attacl
too much importance to this ordering property. But of course constraints exist between:
operations: you cannot sign a contract unless (let us just avoid <until for the time

being!) you have a desired house and a loan. We can express these constraints in lof
rather than temporal form:

112 TOWARDS OBJECT TECHNOLOGYS§5.2

[H1]

find_property
ensure
property found

get_loan
ensure
loan_approved

sign_contract
require
property founcand loan_approved

The notation will only be introduced formally in chapll, but it should be clear
enough hererequire states a precondition, a logical property that an operation requires
for its execution; anensure states a postcondition, a logical property that will follow
from an operation’s execution. We have expressed that each of the first two operations
achieves a certain property, and that the last operation requires both of these properties.

Why is the logical form of stating the constraints, H'1, better than the temporal form,
H1? The answer is clear: H1 expresses the minimum requirements, avoiding the
overspecification of H1. And indeed H1 is too strong, as it rules out the scheme in which
you get the loan first and then worry about the property — not at all absurd for a particular
buyer whose main problem is financing. Another buyer might prefer the reverse order; we
should support both schemes as long as they observe the logical constraint.

Now imagine that we turn this example into a realistic model of the process witrexerciscE6.7, page
many tasks involved — title search, termite inspection, pre-qualifying for the loan, fin¢16z (in the next
a real estate agent, selling your previous house if applicable, inviting your friends t€haPten-
house-warming par... It may be possible to express the ordering constraints, but
result will be complicated and probably fragile (you may have to reconsider everythir
you later include another task). The logical constraint approach scales up much more
smoothly; each operation simply states what it needs and what it guarantees, all in terms
of abstract properties.

These observations are particularly important for the would-be object designer, who
may still be influenced by functional ideas, and might be tempted to rely on early
identification of system usage scenarios (“use cases”) as a basis for analysis. This is
incompatible with object-oriented principles, and often leads to top-down functional
decomposition of the purest form — even when the team members are convinced that they
are using an object-oriented method.
We will examine, in our study of O-O methodological principles, what role can be found *“Use cases”, page
for use cases in object-oriented software construction. 73¢.

Reusability

After this short advance incursion into the fringes of object territory, let us resume our
analysis of the top-down method, considering it this time in relation to one of our principal
goals, reusability.

§5.2 FUNCTIONAL DECOMPOSITION 113

The context of
a module in
top-down
design

On the project and
product culture see
[M 1995].

Working top-down means that you develop software elements in response
particular subspecifications encountered in the tree-like development of a system. A
given point of the development, corresponding to the refinement of a certain node, y
will detect the need for a specific function — such as analyzing an input command line
and write down its specification, which you or someone else will implement.

C2is written to satisfy a
sub-requirement cC.

The figure, which shows part of a top-down refinement tree, illustrates this propert
C2 is written to satisfy some sub-requirementC; but the characteristics (C2 are
entirely determined by its immediate context — the nee(C. For exampleC could be
a module in charge of analyzing some user input,C2 could be the module in charge
of analyzing one line (part of a longer input).

This approach is good at ensuring that the design will meet the initial specificatio
but it does not promote reusability. Modules are developed in response to spec
subproblems, and tend to be no more general than implied by their immediate conte
Here if C is meant for input texts of a specific kind, it is unlikely tC2, which analyzes
one line of those texts, will be applicable to any other kind of input.

One can in principle include the concern for extendibility and generality in a top
down design process, and encourage developers to write modules that transcend
immediate needs which led to their development. But nothing in the method encourag
generalization, and in practice it tends to produce modules with narrow specifications.

The very notion of top-down design suggests the reverse of reusability. Designing |
reusability means building components that are as general as possible, then combining t
into systems. This is a bottom-up process, at the opposite of the top-down idea of star
with the definition of “the problem” and deriving a solution through successive
refinements.

This discussion makes top-down design appear as a byproduct of what we can
the project culture in software engineering: the view that the unit of discourse is the
individual project, independently of earlier and later projects. The reality is less simpl
projectn in a company is usually a variation on projn — 1, and a preview of project
n + 1. By focusing on just one project, top-down design ignores this property of practic
software construction,

114 TOWARDS OBJECT TECHNOLOGYS5.3

Production and description

One of the reasons for the original attraction of top-down ideas is that a top-down style
may be convenient to explain a design once it is in place. But what is good to document
an existing design is not necessarily the best way to produce designs. This point was
eloguently argued by Michael JacksorSystem Developme: nt

Top-down is a reasonable way of describing things which are already fully Quotation from
understoo... But top-down is not a reasonable way of develc, designing [Ja‘:ks%%%%"l'
or discovering anythin. There is a close parallel with mathema. A pages Sro-at
mathematical textbook describes a branch of mathematics in a logical: order

each theorem stated and proved is used in the proofs of subsequent thieorems

But the theorems were not developed or discovered in thi, or in this

order...

When the developer of a sys, or of a progran, already has a clear idea of
the completed result in his mi, he can use top-down to describe on paper what
is in his hea. This is why people can believe that they are performing top-down
design or developme, and doing so successfl: they confuse the method of
description with the method of developn... When the top-down phase begins
the problem is already solv, and only details remain tce solve.l

Top-down design: an assessment

This discussion of top-down functional design shows the method to be poorly adapted to
the development of significant systems. It remains a useful paradigm for small programs
and individual algorithms; it is certainly a helpful techniqudescrib¢ well-understood
algorithms, especially in programming courses. But it does not scale up to large practical
software. By developing a system top-down you trade short-term convenience for long-
term inflexibility; you unduly privilege one function over the others; you may be led to
devoting your attention to interface characteristics at the expense of more fundamental
properties; you lose sight of the data aspect; and you risk sacrificing reusability.

5.3 OBJECT-BASED DECOMPOSITION

The case for using objects (or more precisely, as seen below, object types) as the key to
system modularization is based on the quality aims defined in chl, in particular
extendibility, reusability and compatibility.

The plea for using objects will be fairly short, since the case has already been made
at least in part: many of the arguments against top-down, function-based design reappear
naturally as evidence in favor of bottom-up, object-based design.

This evidence should not, however, lead us to dismiss the functions entirely. As
noted at the beginning of this chapter, no approach to software construction can be
complete unless it accounts for both the function and object parts. Sidweed to retain
a clear role for functions in the object-oriented method, even if they must submit to the

§5.3 OBJECT-BASED DECOMPOSITION 115

See“Factoring Out
Common Behav-
iors”, page 8%

objects in the resulting system architectures. The notion of abstract data type will provi
us with a definition of objects which reserves a proper place for the functions.

Extendibility

If the functions of a system, as discussed above, tend to change often over the syste
life, can we find a more stable characterization of its essential properties, so as to gt
our choice of modules and meet the goal of continuity?

The types of objects manipulated by the system are more promising candidat
Whatever happens to the payroll processing system used earlier as an example, it lil
will still manipulate objects representing employees, salary scales, company regulatio
hours worked, pay checks. Whatever happens to a compiler or other language proces
tool, it likely will still manipulate source texts, token sequences, parse trees, abstr:
syntax trees, target code. Whatever happens to a finite element system, it likely will s
manipulate matrices, finite elements and grids.

This argument is based on pragmatic observation, not on a proof that object types
more stable than functions. But experience seems to support it overwhelmingly.

The argument only holds if we take a high-level enough view of objects. If wi
understood objects in terms of their physical representations, we would not be much be
off than with functions — as a matter of fact probably worse, since a top-down function
decomposition at least encourages abstraction. So the question of finding a suita
abstract description of objects is crucial; it will occupy all of the next chapter.

Reusability

The discussion of reusability pointed out that a routine (a unit of functional decompositio
was usually not sufficient as a unit of reusability.

The presentation used a typical example: table searching. Starting with a seemin
natural candidate for reuse, a searching routine, it noted that we cannot easily reuse ¢
a routine separately from the other operations that apply to a table, such as creat
insertion and deletion; hence the idea that a satisfactory reusable module for suc
problem should be a collection of such operations. But if we try to understand tl
conceptual thread that unites all these operations, we find the type of objects to which tl
apply — tables.

Such examples suggest that object types, fully equipped with the associat
operations, will provide stable units euse.
Compatibility
Another software quality factor, compatibility, was defined as the ease with whic
software products (for this discussion, modules) can be combined with each other.

It is difficult to combine actions if the data structures they access are not design
for that purpose. Why not instead try to combine entire data structures?

116 TOWARDS OBJECT TECHNOLOGYS§5.4

5.4 OBJECT-ORIENTED SOFTWARE CONSTRUCTION

We have by now accumulated enough background to consider a tentative definitisee pag147for
object-oriented software construction. This will only be a first attempt; a more concthe final definition
definition will follow from the discussion of abstract data types in the next chapter.

Object-oriented software construction (definition 1)

Object-oriented software construction is the software development method
which bases the architecture of any software system on modules deduced
from the types of objects it manipulates (rather than the function or fungtions
that the system is intended to ensure).

An informal characterization of this approach may serve as a motto for the object-
oriented designer:

OBJECT MOTTO

Ask not first what the system dces
Ask what it does it th

To get a working implementation, you will of course, sooner or later, have to find
out what it does. Hence the wofirst. Better later than sooner, says object-oriented
wisdom. In this approach, the choice of main function is one of the very last steps to be
taken in the process of system construction.

The developers will stay away, as long as possible, from the need to describe and
implement the topmost function of the system. Instead, they will analyze the types of
objects of the system. System design will progress through the successive improvements
of their understanding of these object classes. It is a bottom-up process of building robust
and extendible solutions to parts of the problem, and combining them into more and more
powerful assemblies — until the final assembly which yields a solution of the original
problem but, everyone hopes, is not lonly possible one: the same components,
assembled differently and probably combined with others, should be general enough to
yield as a byproduct, if you have applied the method well and enjoyed your share of good
luck, solutions to future problems as well.

For many software people this change in viewpoint is as much of a shock as may
have been for others, in an earlier time, the idea of the earth orbiting around the sun rather
than the reverse. It is also contrary to much of the established software engineering
wisdom, which tends to present system construction as the fulfillment of a system’s
function as expressed in a narrow, binding requirements document. Yet this simple idea
— look at the data first, forget the immediate purpose of the system — may hold the key
to reusability and extendibility.

§5.5 ISSUES 117

5.5 ISSUES

The above definition provides a starting point to discuss the object-oriented method. E
besides providing components of the answer it also raises many new questions, such

* How to find the relevant object types.

* How to describe the object types.

« How to describe the relations and commonalities between object types.
* How to use object types to structure software.

The rest of this book will address these issues. Let us preview a few answers.

Finding the object types

See chapte22. The question “how shall we find the objects?” can seem formidable at first. A later chap
will examine it in some detail (in its more accurate version, which deals with ¢ypes
rather than individual objects) but it is useful here to dispel some of the possible fears.
guestion does not necessarily occupy much otithe of experienced O-O developers,
thanks in part to the availability of three sources of answers:

« Many objects are there just for the picking. They directly model objects of th
physical reality to which the software applies. One of the particular strengths «
object technology is indeed its power as a modeling tool, using software object typ
(classes) to model physical object types, and the method'’s inter-object-type relatic
(client, inheritance) to model the relations that exist between physical object type
such as aggregation and specialization. It does not take a treatise on object-orier
analysis to convince a software developer that a call monitoring system, in
telecommunications application, will have a cICALL and a clasLINE, or that a
document processing system will have a cDOCUMENT, a classPARAGRAPH
and a clasFONT.

« A source of object types is reuse: classes previously developed by others. T
technique, although not always prominent in the O-O analysis literature, is ofte
among the most useful in practice. We should resist the impulse to invent somethi
if the problem has already been solved satisfactorily by others.

» Finally, experience and imitation also play a role. As you become familiar witl
successful object-oriented designs and design patterns (such as some of th
described in this book and the rest of the O-O literature), even those which are 1
directly reusable in your particular application, you will be able to gain inspiratior
from these earlier efforts.

We will be in a much better position to understand these object-finding technigqu
and others once we have gained a better technical insight into the software notion of ob
— not to be confused with the everyday meaning of the word.

118 TOWARDS OBJECT TECHNOLOGYS85.5

Describing types and objects

A question of more immediate concern, assuming we know how to obtain the proper
object types to serve as a basis for modularizing our systems, is how to describe these
types and their objects.

Two criteria must guide us in answering this question:

* The need to provide representation-independent descriptions, for fear of losing (as
noted) the principal benefit of top-down functional design: abstraction.

* The need to re-insert the functions, giving them their proper place in software
architectures whose decomposition is primarily based on the analysis of object types
since (as also noted) we must in the end accommodate both aspects of the object-
function duality.

The next chapter develops an object description technique achieving these goals.

Describing the relations and structuring software

Another question is what kind of relation we should permit between object types; since
the modules will be based on object types, the answer also determines the structuring
techniques that will be available to make up software systems from components.

In the purest form of object technology, only two relations exist: client and
inheritance. They correspond to different kinds of possible dependency between two
object type<A andB:

* Bisaclient oA if every object of typB may contain information about one or more
objects of typ¢A.

* Bis an heir oA if B denotes a specialized versionA.f

Some widely used approaches to analysis, in particular information modeling
approaches such as entity-relationship modeling, have introduced rich sets of relations to
describe the many possible connections that may exist between the element of a system.
To people used to such approaches, having to do with just two kinds of relation often
seems restrictive at first. But this impression is not necessarily justified:

* The client relation is broad enough to cover many different forms of dependency.
Examples include what is often called aggregation (the presence in every object of
typeB of a subobject of tyf A), reference dependency, and generic dependency.

« The inheritance relation covers specialization in its many different forms.

« Many properties of dependencies will be expressed in a more general form through
other techniques. For example, to describe andependency (every object of type
B is connected to at least one and at nn objects of typ¢A) we will express theB
is a client olA, and include iclass invariani specifying the exact nature of the client
relation. The class invariant, being expressed in the language of logic, covers many
more cases than the finite set of primitive relations offered by entity-relationship
modeling or similar approaches.

§5.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 119

5.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

» Computation involves three kinds of ingredient: processors (or threads of contro
actions (or functions), and data (or objects).

< Asystem'’s architecture may be obtained from the functions or from the object type

« A description based on object types tends to provide better stability over time a
better reusability than one based on an analysis of the system’s functions.

« It is usually artificial to view a system as consisting of just one function. A realisti
system usually has more than one “top” and is better described as providing a
of services.

« It is preferable not to pay too much attention to ordering constraints during the eal
stages of system analysis and design. Many temporal constraints can be descri
more abstractly as logical constraints.

e Top-down functional design is not appropriate for the long-term view of softwar
systems, which involves change and reuse.

» Object-oriented software construction bases the structure of systems on the type:
objects they manipulate.

« In object-oriented design, the primary design issue is not what the system does,
what types of objects it does it to. The design process defers to the last steps
decision as to what is the topmost function, if any, of the system.

« To satisfy the requirements of extendibility and reusability, object-oriented softwar
construction needs to deduce the architecture from sufficiently abstract descriptic
of objects.

« Two kinds of relation may exist between object types: client and inheritance.

5.7 BIBLIOGRAPHICAL NOTES

The case for object-based decomposition is made, using various argtin [Cox 1990]
(original 1986),[Goldberg 1981, [Goldberg 198E, [Page-Jones 199fand [M 1978],
[M 1979], [M 1983], [M 1987], [M 1988].

The top-down method has been advocated in many books and ¢ [Wirth 1971]
developed the notion of stepwise refinement.

120 TOWARDS OBJECT TECHNOLOGYS85.7

Of other methods whose rationales start with some of the same arguments that have
led this discussion to object-oriented concepts, the closest is probably Jackson’'s JSD
[Jackson 198 a higher-level extension of J [Jackson 197! See also Warnier's data-
directed design meth [Orr 1977. For a look at the methods that object technology is
meant to replace, see books on: Constantine’s and Yourdon's structured design
[Yourdon 1979; structured analysis [DeMarco 1978 [Page-Jones 19€0]
[McMenamin 1984, [Yourdon 1989; Merise[Tardieu 1984, [Tabourier 1986

Entity-relationship modeling was introduced [Chen 197€|

6
Abstract data types

This opened my mindstarted to grasp what it means to use the tool known as algdbra
be damned if anyone had ever told me befover and again MrDupuy[the mathematics
teachel was making pompous sentences on the suylijatinot once would he say this
simple word it is adivision of labor which like any division of labor produces miragles
and allows the mind to concentrate all of its forces on just one side of glmjegtst one
of their qualities

What a difference it would have made for us if Blupuy had told usThis cheese is soft
or it is hard it is white it is blue it is old, it is young it is yours it is ming it is light or it
is heavyOf so many qualities let us consider only the welgfitatever that weight may ,be
let us call it A Now, without thinking of the weight any motet us apply to A everything
that we know of quantities

Such a simple thingret no one was saying it to us in that faraway province
StendhalThe Life of Henry Brulard1836.

For abstraction consists only in separating the perceptible qualities of hailieer from

other qualities or from the bodies to which they apgBrrors arise when this separation

is poorly done or wrongly applieghoorly done in philosophical questigrend wrongly
applied in physical and mathematical questiofis almost sure way to err in philosophy is

to fail to simplify enough the objects under stuhyd an infallible way to obtain defective
results in physics and mathematics is to view the objects as less composite than they are

Denis DiderotA Letter on the Blind for the Benefit of Those Who Can He.

I_ etting objects play the lead role in our software architectures requires that we descrit
them adequately. This chapter shows how.

You are perhaps impatient to dive into the depths of object technology and explor
the details of multiple inheritance, dynamic binding and other joys; then you may at first
look at this chapter as an undue delay since it is mostly devoted to the study of son
mathematical concepts (although all the mathematics involved is elementary).

But in the same way that even the most gifted musician will benefit from learning a
little music theory, knowing about abstract data types will help you understand and enjo
the practice of object-oriented analysis, design and programming, however attractive th
concepts might already appear without the help of the theory. Since abstract data typ

122 ABSTRACT DATA TYPES §6.1

establish the theoretical basis for the entire method, the consequences of the ideas
introduced in this chapter will be felt throughout the rest of this book.

There is more. As we will see at chapter end, these consequences actually extend
beyond the study of software proper, yielding a few principles of intellectual investigation
which one may perhaps apply to other disciplines.

6.1 CRITERIA

To obtain proper descriptions of objects, we need a method satisfying three conditions:
« The descriptions should be precise and unambiguous.

« They should be complete — or at least as complete as we want them in each case (we
may decide to leave some details out).

* They should not boverspecifyinc.

The last point is what makes the answer non-trivial. It is after all easy to be precise,
unambiguous and complete if we “spill the beans” by giving out all the details of the
objects’ representation. But this is usuatoo mucl information for the authors of
software elements that need to access the objects.

This observation is close to the comments that led to the notion of informe‘information Hid-
hiding. The concern there was that by providing a module’s source code (or, ing”, page 5.
generally, implementation-related elements) as the primary source of information fc
authors of software elements that rely on that module, we may drown them in a flood of
details, prevent them from concentrating on their own job, and hamper prospects of
smooth evolution. Here the danger is the same if we let modules use a certain data
structure on the basis of information that pertains to the structure’s representation rather
than to its essential properties.

6.2 IMPLEMENTATION VARIATIONS

To understand better why the need for abstract data descriptions is so crucial, let us
explore further the potential consequences of using physical representation as the basis for
describing objects.

A well-known and convenient example is the description of stack objects. A stack
object serves to pile up and retrieve other objects in a last-in, first-out (“LIFO”) manner,
the latest inserted element being the first one to be retrieved. The stack is a ubiquitous
structure in computing science and in many software systems; the typical compiler or
interpreter, for example, is peppered with stacks of many kinds.

Stacks, it must be said, are also ubiquitous in didactic presentations of abstract data types,
so much so that Edsger Dijkstra is said to have once quipped that “abstract data types are
a remarkable theory, whose purpose is to describe stacks”. Fair enough. But the notion of
abstract data type applies to so many more advanced cases in the rest of this book that |
do not feel ashamed of starting with this staple example. It is the simplest | know which
includes about every important idea about abstract data types.

§6.2 IMPLEMENTATION VARIATIONS 123

Three possible
representations
for a stack

Stack representations

Several possible physical representations exist for stacks:

capacity “Push” operation:
count:=count +1
count representatiorfcounf := x
(ARRAY_uP)
representatiof 1
capacity “Push” operation:
representatiorifreg] := x
(ARRAY_DOWN) free:=free — 1
free
representation 1

“Push” operation:
new(n)
previous n.item:= x

. n.previous:= last
previous

last:=n
D)

(LINKED) (— previous

The figure illustrates three of the most common representations. Each has been gi
a name for ease of reference:

* ARRAY_UF: represent a stack through an arrepresentatio and an integecount
whose value ranges from O (for an empty stackcapacity, the size of the array
representatio; stack elements are stored in the array at indices 1 coun.

* ARRAY_DOWN: like ARRAY_UP, but with elements stored from the end of the array
rather than from the beginning. Here the integer is cifree (it is the index of the
highest free array position, or O if all positions are occupied) and ranges fro
capacityfor an empty stack down to 0. The stack elements are stored in the array
indicescapacitydown tc free + 1.

* LINKED: a linked representation which stores each stack element in a cell with tv
fields: item representing the element, aprevious containing a pointer to the cell
containing the previously pushed element. The representation also lasi, &
pointer to the cell representing the top.

124 ABSTRACT DATA TYPES §6.2

Next to each representation, the figure shows a program extract (in Pascal-like
notation) giving the corresponding implementation for a basic stack operation: pushing an
elementx onto the top.

For the array representationsRrAY_UP and ARRAY_DOWN, the instructions
increase or decrease the top indicataruqtor free) and assigrnx to the corresponding
array element. Since these representations support stacks of atamastyelements,
robust implementations should include guards of the respective forms

if count< capacitythen ...
if free> Othen ...

which the figure omits for simplicity.

For LINKED, the linked representation, pushing an element requires four operations:
create a new celi (done here with Pascalisew procedure, which allocates space for a
new object); assigrnto the new cell’'stemfield; chain the new cell to the earlier stack top
by assigning to itpreviousfield the current value dfist; and updatéast so that it will
now be attached to the newly created cell.

Although these are the most frequently used stack representations, many others exist.
For example if you neetivo stacks of elements of the same type, and have only limited
space available, you may rely on a single array with two integer top markergas in
ARRAY_UP andfreeas inARRAY_DOWN; one of the stacks will grow up and the other will
grow down. The representation is full if and onlgdafunt= free.

capacity Head-to-head
Stack 2 representation
l for two stacks
free
T count
representation Stack 1
1

The advantage, of course, is to lessen the risk of running out of space: with two
arrays of capacity representing stacks underrAY_UP Or ARRAY_DOWN, you exhaust
the available space whenewsther stack reaches elements; with a single array of size
2n holding two head-to-head stacks, you run out whegdingbinedsize reache2n, a less
likely occurrence if the two stacks grow independently. (For any variable vakredg,
max(p + q) < max(p) + max(q).)

Each of these and other possible representations is useful in some cases. Choosing
one of them as “the” definition of stacks would be a typical case of overspecification. Why
should we considexrrRAY _UP, for example, more representative tharkep? The most
visible properties ohRRAY_UP — the array, the integerount the upper bound — are
irrelevant to an understanding of the underlying structure.

§6.2 IMPLEMENTATION VARIATIONS 125

The danger of overspecification

Why is it so bad to use a particular representation as specification?

“ABOUT SOFT- The results of the Lientz and Swanson maintenance study, which you may rec;
WARE MAINTE- give a hint. More than 17% of software costs was found to come from the need to take i
NANCE’, 1.3, page account changes of data formats. As was noted in the discussion, too many programs

17 closely tied to the physical structure of the data they manipulate. A method relying on
physical representation of data structures to guide analysis and design would not be lil
to yield flexible software.

So if we are to use objects or object types as the basis of our system architectu

we should find a better description criterion than the physical representation.
How long is a middle initial?
Lest stacks make us forget that, beyond the examples favored by computer scientists,
structures are ultimately connected with real-life objects, here is an amusing examy
taken from a posting on the Risks forucomp.risk Usenet newsgroup) of the dangers of
a view of data that is too closely dependent on concrete properties:

Risks forur, 10.74, My dear mother blesse(or perhaps curse) all of her children with two middle initig,ls

3 Jar. 199% Post- in my case “D” and “E”. This has caused me a good deal of tro.uble

ing by Darrell C.E.

Lonc: ““Dehuman- It seems that TRW sells certain parts of your credit inform, such as your name and

ization by old a demographic profil. | recently got a new credit card from Gottchalks and found to my
Cobol programs. chagrin that my name had been truncated to “Darre. Long”. | went to the credit
Abbreviatel manager and was assured that things would be . Well, two things happenc: | got a
new credit car, this time as “Darrell k. Long”, and TRW now has an annotation in my
See exercisE6.5, file to the effect “File variatio: middle initial is E". Soon after this | start getting mail
page 16.. for “Darrell E. Long” (along with the usual “Darrell Long” and “Darrell L. Long” and

the occasional Darrell D. E. Long”).

| called up the credit bureau and it seems that the programmer who coded up the TRW
database decided that all good Americans are entitled to only one middle. As the
woman on the phone patiently told me “They only allocated enough meg(sic) in

the system for one middle init, and it would probably be awfully hard to chant.je”

Aside from the typical example of technobabble justification (“megabytes”), th
lesson here is the need to avoid tying software to the exact physical properties of d
TRW's system seems similar to those programs, mentioned in an earlier discussion, wt
“knew” that postal codes consist of exactly five digits.

See pagilé. The author of the message reproduced above was mainly concerned about junk n
an unpleasant but not life-threatening event; the archives of the Risks forum are full
computer-originated name confusions with more serious consequences. The “milleni
problem”, mentioned in the discussion of software maintenance, is another example of
dangers of accessing data based on physical representation, this one with hundrec
millions of dollars’ worth of consequences.

126 ABSTRACT DATA TYPES §6.3

6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS

How do we retain completeness, precision and non-ambiguity without paying the price of
overspecification?

Using the operations

In the stack example, what unites the various representations in spite of all their
differences is that they describe a “container” structure (a structure used to contain other
objects), where certain operations are applicable and enjoy certain properties. By focusing
not on a particular choice of representation but on these operations and properties, we may
be able to obtain an abstract yet useful characterization of the notion of stack.

The operations typically available on a stack are the following:
* A command to push an element on top of a stack. Let us call that op¢ui. on

« A command to remove the stack’s top element, if the stack is not empty. Let us call
it removt.

< A query to find out whatthe top element is, if the stack is not empty. Let usitem.it

* A query to determine whether the stack is empty. (This will enable clients to
determine beforehand if they can removeanditerr.)

In addition we may need a creator operation giving us a stack, initially empty. Let us
call it make.

Two points may have caught your attention and will deserve more explanation later in
this chapter. First, the operation names may seem surprising; for the moment, just think
of pul as meaningust, remove as meanin¢pof, anditem as meaninctop. Details
shortly (on the facing page, actually). Second, the operations have been divided into
three categories: creators, which yield objects; queries, which return information about
objects; and commands, which can modify objects. This classification will also require
some more comments.

In a traditional view of data structures, we would consider that the notion of stack is
given by some data declaration corresponding to one of the above representations, for
example (representatiiarRrAY_UP, Pascal-like syntax):

coun: INTEGER
representatio: array [1 .. capacity] of STACK_ELEMENT_TYPE

wherecapacity, a constant integer, is the maximum number of elements on the stack. Then
pui, removs, item, empty and make would be routines (subprograms) that work on the
object structures defined by these declarations.

The key step towards data abstraction is to reverse the viewpoint: forget for the
moment about the representation; take the operations themselves as defining the data
structure. In other words, a steis any structure to which clients may apply the operations
listed above.

8§6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS 127

See'BEYOND
SOFTWARE”, 6.6,
page 147

A laissez-faire policy for the society of modules

The method just outlined for describing data structures shows a rather selfish approac
the world of data structures: like an economist of the most passionate supply-si
invisible-hand, let-the-free-market-decide school, we are interested in individual agel
not so much for what theare internally as for what thehave to offer to each other. The
world of objects (and hence of software architecture) will be a world of interacting agen
communicating on the basis of precisely defined protocols.

The economic analogy will indeed accompany us throughout this presentation; t
agents — the software modules — are casuppliers andclients; the protocols will be
called contracts, and much of object-oriented design is indDesign by Contray, the
title of a later chapter.

As always with analogies, we should not get too carried away: this work is not
textbook on economics, and contains no hint of its author’s views in that field. It wi
suffice for the moment to note the remarkable analogies of the abstract data type apprc
to some theories of how human agents should work together. Later in this chapter we
again explore what abstract data types can tell us beyond their original area of applicati

Name consistency

For the moment, let us get back to more immediate concerns, and make sure you
comfortable with the above example specification in all its details. If you hav
encountered stacks before, the operation names chosen for the discussion of stacks
have surprised or even shocked you. Any-ssdpecting computer scientist will know
stack operations under other names:

Common stack operation name Name used here
push put

pop remove

top item

new make

Why use anything else than the traditional terminology? The reason is a desire
take a high-level view of data structures — especially “containers”, those data structu
used to keep objects.

Stacks are just one brand of container; more precisely, they belong to a category
containers which we may cadispenser. A dispenser provides its clients with a
mechanism for storin¢pui), retrieving iten) and removingremove) objects, but without
giving them any control over the choice of object to be stored, retrieved or removed. F
example, the LIFO policy of stacks implies that you may only retrieve or remove tr
element that was stored last. Another brand of dispenser is the queue, which has a firs
first-out (FIFO) policy: you store at one end, retrieve and remove at the other; the elem

128 ABSTRACT DATA TYPES §6.3

that you retrieve or remove is the oldest one stored but not yet removed. An example of a
container which inot a dispenser is an array, where you choose, through integer indices,
the positions where you store and retrieve objects.

Because the similarities between various kinds of container (dispensers, arrays and
others) are more important than the differences between their individual storage, retrieval
and removal properties, this book constantly adheres to a standardized terminology which
downplays the differences between data structure variants and instead emphasizes the
commonality. So the basic operation to retrieve an element will always beitem, the
basic operation to remove an element will always be cremov¢ and so on.

These naming issues may appear superficial at first — “cosmetic”, as programmers
sometimes say. But do not forget that one of our eventual aims is to provide the basis for
powerful, professional libraries of reusable software components. Such libraries will
contain tens of thousands of available operations. Without a systematic and clear
nomenclature, both the developers and the users of these libraries would quickly be
swamped in a flood of specific and incompatible names, providing a strong (and
unjustifiable) obstacle to large-scale reuse.

Naming, then, inot cosmetic. Good reusable software is software that provides the
right functionality and provides it under the right names.

The names used here for stack operations are part of a systematic set of nchapter26, in par-

conventions used throughout this book. A later chapter will introduce them in more deicular “CHOOS-
ING THE RIGHT
NAMES”, 26.2,

How not to handle abstractions
page 872

In software engineering as in other scientific and technical disciplines, a seminal idea may
seem obvious once you have been exposed to it, even though it may have taken a long time
to emerge. The bad ideas and the complicated ones (they are often the same) often appear
first; it takes time for the simple and the elegant to take over.

This observation is true of abstract data types. Although good software developers
have always (as a result of education or mere instinct) made good use of abstraction, many
of the systems in existence today were designed without much consideration of this goal.

| once did a little involuntary experiment which provided a good illustration of this
state of affairs. While setting up the project part of a course which | was teaching, |
decided to provide students with a sort of anonymous marketplace, where they could place
mock “for sale” announcements of software modules, without saying who was the source
of the advertisement. (The idea, which may or may not have been a good one, was to favor
a selection process based only on a precise specification of the modules’ advertized
facilities.) The mail facility of a famous operating system commonly favored by
universities seemed to provide the right base mechanism (why write a new mail system
just for a course project?); but naturally that mail facility shows the sender’s name when
it delivers a message to its recipients. | had access to the source of the corresponding code
— a huge C program — and decided, perhaps foolishly, to take that code, remove all
references to the sender’'s name in delivered messages, and recompile.

8§6.4 FORMALIZING THE SPECIFICATION 129

Writing MAIL_
MESSAG is the
topic of exercise
E6.4, page 1€1

Aided by a teaching assistant, | thus embarked on a task which seemed obvi
enough although not commonly taught in software engineering courses: systeme
programdeconstruction. Sure enough, we quickly found the first place where the progra
accessed the sender’'s name, and we removed the corresponding code. This, we na
thought, would have done the job, so we recompiled and sent a test mail message; bu
sender’'s name was still there! Thus began a long and surreal process: time and ac
believing we had finally found the last reference to the sender’s name, we would remc
it, recompile, and mail a test message, only to find the name duly recorded once agai
its habitual field. Like the Hydra in its famous fight, the mailer kept growing a new heg
every time we thought we had cut the last neck.

Finally, repeating for the modern era the earlier feat of Hercules, we slew the be
for good; by then we had removed more than twenty code extracts which all accessec
some way or other, information about the message sender.

Although the previous sections have only got us barely started on our road to abstt
data types, it should be clear by now that any program written in accordance with even
most elementary concepts of data abstraction wouldMAIL MESSAG as a carefully
defined abstract notion, supporting a query operation, perhaps ende, which
returns information about the message sender. Any portion of the mail program that ne
this information would obtain it solely through tsende query. Had the mail program
been designed according to this seemingly obvious principle, it would have be
sufficient, for the purpose of my little exercise, to modify the code osende query.
Most likely, the software would also then have provided an associated command opera
set_sende to update sender information, making the job even easier.

What is the real moral of that little story (besides lowering the reader’s guard
preparation for the surprise mathematical offensive of the next section)? After all, the m
program in question is successful, at least judging by its widespread use. But it typifies
current quality standard in the industry. Until we move significantly beyond that standal
the phrase “software engineering” will remain a case of wishful thinking.

Oh yes, one more note. Some time after my brief encounter with the mail progra
| read that certain network hackers had intruded into the computer systems of higl
guarded government laboratories, using a security hole of that very mail program — a h
which was familiar, so the press reported, to all those in the know. | was not in the kna
but, when | learned the news, | was not surprised.

6.4 FORMALIZING THE SPECIFICATION

The glimpse of data abstraction presented so far is too informal to be of durable u
Consider again our staple example: a stack, as we now understand it, is defined in te
of the applicable operations; but then we need to define these operations!

Informal descriptions as abovpui pushes an element “on top of” the steremove
pops the element “last pushed” and so on) do not suffice. We need to know precisely f
these operations can be used by clients, and what they will do for them.

130 ABSTRACT DATA TYPES §6.4

An abstract data type specification will provide this information. It consists of four
paragraphs, explained in the next sections:

* TYPES.

* FUNCTIONS.

* AXIOMS.

« PRECONDITIONS.

These paragraphs will rely on a simple mathematical notation for specifying the
properties of an abstract data type (ADT for short).

The notation — a mathematical formalism, not to be confused with the software
notation of the rest of this book even though for consistency it uses a similar syntactic
style — has no name and is not a programming language; it could serve as the starting
point for a formalspecificatior language, but we shall not pursue this avenue here,
being content enough to use self-explanatory conventions for the unambiguous
specification of abstract data types.

Specifying types

The TYPES paragraph indicates the types being specified. In general, it may be
convenient to specify several ADTs together, although our example has onSTACE.

By the way, what is a type? The answer to this question will combine all the ideas
developed in the rest of this chapter; a type is a collection of objects characterized by
functions, axioms and preconditions. If for the moment you just view a type as a set of
objects, in the mathematical sense of the word “set” — STACK as the set of all
possible stacks, typINTEGEF as the set of all possible integer values and so on — you
are not guilty of any terrible misunderstanding. As you read this discussion you will be
able to refine this view. In the meantime the discussion will not be too fussy about using
“set” for “type” and conversely.

On one point, however, you should make sure to avoid any confusion: an abstract
data type such ¢STACK is not an object (one particular stack) but a collection of objects
(the set of all stacks). Remember what our real goal is: finding a good basis for the
modules of our software systems. As was noted in the previous chapter, basing a module
on one particular object — one stack, one airplane, one bank account — would not make
sense. O-O design will enable us to build modules covering the properties of all stacks, all
airplanes, all bank accounts — or at least of some stacks, airplanes or accounts.

An object belonging to the set of objects described by an ADT specification is called
aninstance of the ADT. For example, a specific stack which satisfies the properties of the
STACH abstract data type will be an instanc<STACE. The notion of instance will carry
over to object-oriented design and programming, where it will play an important role in
explaining the run-time behavior of programs.

8§6.4 FORMALIZING THE SPECIFICATION 131

See“Genericity”,
page 96

The TYPES paragraph simply lists the types introduced in the specification. Here

TYPES
« STACK[G]

Our specification is about a single abstract data STACI, describing stacks of
objects of an arbitrary tygG.

Genericity

In STACK[G], G denotes an arbitrary, unspecified ty|G is called aformal generic
parameter of the abstract data ty|STACK andSTACk itself is said to be a generic ADT.
The mechanism permitting such parameterized specifications is known as genericity;
already encountered a similar concept in our review of package constructs.

It is possible to write ADT specifications without genericity, but at the price of
unjustified repetition. Why have separate specifications for the types “stack of ba
accounts”, “stack of integers” and so on? These specifications would be identical exc
where they explicitly refer to the type of the stack elements — bank accounts or intege
Writing them, and then performing the type substitutions manually, would be tediou
Reusability is desirable for specifications too — not just programs! Thanks to generici
we can make the type parameterization explicit by choosing some arbitrary nar G, here

to represent the variable type of stack elements.

As aresult, an ADT such iSTACk is not quite a type, but rather a type pattern; to
obtain a directly usable stack type, you must obtain some element type, for exam
ACCOUNT, and provide it aactual generic paramete corresponding to the formal
parameteG. So althougtSTACEis by itself just a type pattern, the notation

STACK[ACCOUN]

is a fully defined type. Such a type, obtained by providing actual generic parameters t
generic type, is said to tgenerically derivec.

The notions just seen are applicable recursively: every type should, at least
principle, have an ADT specification, so you may vViACCOUNT as being itself an
abstract data type; also, a type that you use as actual generic paranSTACF (to
produce a generically derived type) may itself be generically derived, so it is perfectly
right to use

STACK[STACK[ACCOUNT]

specifying a certain abstract data type: the instances of that type are stacks, wh
elements are themselves stacks; the elements of these latter stacks are bank account

As this example shows, the preceding definition of “instance” needs sornr
qualification. Strictly speaking, a particular stack is an instance rSTACK (which, as
noted, is a type pattern rather than a type) but of some type generically derived fr
STACE, for exampleSTACK[ACCOUNT]. It is convenient, however, to continue talking

132 ABSTRACT DATA TYPES §6.4

about instances cSTACH and similar type patterns, with the understanding that this
actually means instances of their generic derivations.

Similarly, it is not quiteaccurate to talk abolSTACK being an ADT: the correct
term is “ADT pattern”. For simplicity, this discussion will continue omitting the word
“pattern” when there is no risk of confusion.

The distinction will carry over to object-oriented design and programming, but there we
will need to keep two separate terms:

*The basic notion will be thclass; a class may have generic parameters.

*Describing actual data requirtypes. A non-generic class is also a type, but a generic class
is only a type pattern. To obtain an actual type from a generic class, we will need to
provide actual generic parameters, exactly as we derive the STACK[ACCOUN]
from the ADT patterrSTACE.
Later chapters will explore the notion of genericity as applied to classes, and how to ChapterlQ and
combine it with the inheritanceechanism. appendixB.

Listing the functions

After the TYPES paragraph comes the FUNCTIONS paragraph, which lists the operations
applicable to instances of the ADT. As announced, these operations will be the prime
component of the type definition — describing its instances not by what they are but by
what they have to offer.

Below is the FUNCTIONS paragraph for tSTACk abstract data type. If you are a
software developer, you will find the style familiar: the lines of such a paragraph evoke
the declarations found in typed programming languages such as Pascal or Ada. The line
for new resembles a variable declaration; the others resemble routine headers.

FUNCTIONS
* put: STACK[G] x G - STACK[G]
e remove STACK[G] +» STACK[G]
e item: STACK[G] » G
* empt: STACK[G] -~ BOOLEAN
* new. STACK[G]

Each line introduces a mathematical function modeling one of the operations on
stacks. For example functiqput represents the operation that pushes an element onto the

top of a stack.

Why functions? Most software people will not naturally think of an operation such
asput as a function. When the execution of a software system appput operation to
a stack, it will usually modify that stack by adding an element to it. As a result, in the
above informal classification of commanpuiwas a “command” — an operation which
may modify objects. (The other two categories of operations were creators and queries).

8§6.4 FORMALIZING THE SPECIFICATION 133

See als¢“The im-

An ADT specification, however, is a mathematical model, and must rely on well

perative and the ap-understood mathematical techniques. In mathematics the notion of command, or m

plicative”, page
351

Applying the
pul function

generally of changing something, does not exist as such; computing the square root of
number 2 does not modify the value of that number. A mathematical expression sim|
defines certain mathematical objects in terms of certain other mathematical objects: unl
the execution of software on a computer, it never changes any mathematical object.

Yet we need a mathematical concept to model computer operations, and here
notion of function yields the closest approximation. A function is a mechanism fc
obtaining a certain result, belonging to a certain target set, from any possible inf
belonging to a certain source set. For exampIR denotes the set of real numbers, the
function definition

square_plus_orrR - R

square_plus_on(x) = x* + 1 (for anyx in R)
introduces a functiorsquare_plus_or having R as both source and target sets, and
yielding as result, for any input, the square of the input plus one.

The specification of abstract data types uses exactly the same notion. Ogpui,tion
for example, is specified as

put: STACK[G] x G — STACKIG]

which means theput will take two arguments, STACkof instances oG and an instance
of G, and yield as a result a neSTACK[G]. (More formally, the source set of function
puiis the seSTACK[G] x G, known as thicartesian productof STACK[G] andG; this

is the set of pair<s, x> whose first elemerdis in STACK[G] and whose second element
xis in G.) Here is an informal illustration:

JUN

(=)

(stach) (elemen): (stack)

With abstract data types, we only have functions in the mathematical sense of -
term; they will produce neither side effects nor in fact changes of any kind. This is tl
condition that we must observe to enjoy the benefits of mathematical reasoning.

When we leave the ethereal realm of specification for the rough-and-tumble
software design and implementation, wél weed to reintroduce the notion of change;
because of the performance overhead, few people would accept a software execu
environment where every “push” operation on a stack begins by duplicating the sta
Later we will examine the details of the transition from the change-free world of ADTs t
the change-full world of software development. For the moment, since we are studyi
how best to specify types, the mathematical view is the appropriate one.

134 ABSTRACT DATA TYPES §6.4

The role of the operations modeled by each of the functions in the specification of
STACEF is clear from the previous discussion:

» Functionputyields a new stack with one extra element pushed on top. The figure on
the preceding page illustratput (s, x) for a stacks and an elemerx.

* Functionremove yields a new stack with the top element, if any, popped;puiz
this function should yield a command (an object-changing operation, typically
implemented as a procedure) at design and implementation time. We will see below
how to take into account the case of an empty stack, which has no top to be popped.

* Functioniterr yields the top element, if any.

* Functionempt indicates whether a stack is empty; its result is a boolean value (true
or false); the ADTBOOLEAN is assumed to have been defined separately.

* Functionnew yields an empty stack.

The FUNCTIONS paragraph does not fully define these functions; it only introduces
their signatures — the list of their argument and result types. The signatuput is

STACK[G] x G — STACK[G]

indicating thaput accepts as arguments pairs of the f<is, x> wheres is an instance of
STACK[G] andx is an instance G, and yields as a result an instanc«<STACK[G]. In
principle the target set of a function (the type that appears to the right of the arrow in
signature, herSTACK[G]) may itself be a cartesian product; this can be used to describe
operations that return two or more results. For simplicity, however, this book will only use
single-result functions.

The signature of functiorremove anditerr includes a crossed arro+ instead of
the standard arrow used putandempt. This notation expresses that the functions are
not applicable to all members of the source set; it will be explained in detail below.

The declaration for functionew appears as just

new. STACK
with no arrow in the signature. This is in fact an abbreviation for

new. - STACK

introducing a function with no arguments. There is no need for argumentnew must
always return the same result, an empty stack. So we just remove the arrow for simplicity.
The result of applying the function (that is to say, the empty stack) will also be written
new, an abbreviation fcnew(), meaning the result of applyinewto an empty argument

list.

Function categories

The operations on a type were classified informally at the beginning of this chapter into
creators, queries and commands. With an ADT specification for a newT, such as
STACK]JG] in the example, we can define the corresponding classification in a more

8§6.4 FORMALIZING THE SPECIFICATION 135

rigorous way. The classification simply examines wiT appears, relative to the arrow,
in the signature of each function:

¢ A function such anew for whichT appears only to the right of the arrow icreator
function. It models an operation which produces instanceT from instances of
other types — or, as in the case of a constant creator function snew, from no
argument at all. (Remember that the signaturnewis considered to contain an
implicit arrow.)

A function such aiterr andempt for whichT appears only on the left of the arrow
is aquery function. It models an operation which yields properties of instances o
T, expressed in terms of instances of other tyBOOLEAN and the generic
parameteG in the examples).

A function such aputorremov« for which T appears on both sides of the arrow is
acommand functior. It models an operation which yields new instanceT: from
existing instances (T (and possibly instances of other types).

LTI

An alternative terminology calls the three categories “constructor”, “accessor” and
“modifier”. The terms retained here are more directly related to the interpretation of ADT
functions as models of operations on software objects, and will carry over to class
features, the software coerparts of our matheatical functions.

The AXIOMS paragraph

We have seen how to describe a data type suSTACK through the list of functions
applicable to its instances. The functions are known only through their signatures.

To indicate that we have a stack, and not some other data structure, the Al
specification as given so far is not enough. Any “dispenser” structure, such as a first-
first-out queue, will also satisfy it. The choice of names for the operations makes tt
particularly clear: we do not even have stack-specific names swpust, pof or top to
fool ourselves into believing that we have defined stacks and only stacks.

This is not surprising, of course, since the FUNCTIONS paragraph declared t
functions (in the same way that a program unit may declare a variable) but did not fu
define them. In a mathematical definition such as the earlier example

square_plus_or:R - R
square_plus_on(x) = X2+ 1 (for anyx in R)

the first line plays the role of the signature declaration, but there is also a second line wt
defines the function’s value. How do we achieve the same for the functions of an ADT

Here we should not use an explicit definition in the style of the second line «
square_plus_or's definition, because it would force us to choose a representation — ar
this whole discussion is intended to protect us from representation choices.

Just to make sure we understand what an explicit definition would look like, let
write one for the stack representatiArRrRAY _UP as sketched above. In mathematical
terms, choosin(ARRAY_UP means that we consider any instanceSTACF as a pair

136 ABSTRACT DATA TYPES §6.4

<coun, representatio>, whererepresentatio is the array ancoun is the number of
pushed elements. Then an explicit definitiorput is (for any instancx of G):

put(<coun, representatio>, x) = <count + J, representatiorfcount+1: x]>

where the notatic a[n: v] denotes the array obtained fr@ by changing the value of the
element at inden so that it is now, and keeping all other elements, if any, as they are.

This definition of functiorput is just a mathematical version of the implementatiFigure pagel22.
of the put operation sketched in Pascal notation, next to represenAarRRAY_UP, in the
picture of possible stack representations at the beginning of this chapter.

But this is not what we want; “Free us from the yoke of representations!”, the nThe political branch

of the Object Liberation Front and its military branch (the ADT brigade), is also oursspecializes in class-
action suit:;

Because any explicit definition would force us to select a representation, we must
turn toimplicit definitions. We will refrain from giving the values of the functions of an
ADT specification; instead we will state properties of these values — all the properties
that matter, but those properties only.

The AXIOMS paragraph states these propertiesSTACE it will be:

AXIOMS
For anyx: G, s: STACK[G],
Al eitem(put(s, X)) = X
A2+ remove (put (s, X)) =s
A3+ empt (new)
A4 « not empty (put (s, X))

The first two axioms express the basic LIFO (last-in, first-out) property of stacks. To
understand them, assume we have a < and an instancx, and defin s'to beput(s, x),
that is to say the result of pushix ontos. Adapting an earlier figure:

Applying the
put function

:put(,

S X

OO

8§6.4 FORMALIZING THE SPECIFICATION 137

“More on implicit-
ness”, page 149

Here axiom Al tells us that the top s'is x, the last element that we pushed; and
axiom A2 tells us that if we remove the top element fs', we get back the stass that
we had before pushinx. These two axioms provide a concise description of the
fundamental property of stacks in pure mathematical terms, without any recourse
imperative reasoning or representation properties.

Axioms A3 and A4 tell us when a stack is empty and when it is not: a stack resultir
from the creator functionew is empty; any stack resulting from pushing an element or
an existing stack (empty or not) is non-empty.

These axioms, like the others, are predicates (in the sense of logic), expressing
a certain property is always true for every possible valis andx. Some people prefer
to read A3 and A4 in the equivalent form

For anyx: G, s: STACK[G]
A3'e empt(new) = true

A4’ empty(put (s, x)) = false

under which you may also view them, informally at least, as defining funempt by
induction on the size of stacks.

Two or three things we know about stacks

ADT specifications arimplicit . We have encountered two forms of implicitness:

e The ADT method defines a set of objects implicitly, through the applicabl
functions. This was described above as defining objects by what they have, not w
they are. More precisely, the definition never implies that the operations listed a
the only ones; when it comes to a representation, you will often add other operatiol

« The functions themselves are also defined implicitly: instead of explicit definition
(such as was used fsquare plus_or, and for the early attempt to defipul by
reference to a mathematical representation), we use axioms describing the functic
properties. Here too there is no claim of exhaustiveness: when you eventua
implement the functions, they will certainly acquire more properties.

This implicitness is a key aspect of abstract data types and, by implication, of th
future counterparts in object-oriented software construction — classes. When we def
an abstract data type or a class, we alwaysabou the type or class: we simply list the
properties we know, and take these as the definition. Never do we imply that these are
only applicable properties.

Implicitness implies openness: it should always be possible to add new properties
an ADT or a class. The basic mechanism for performing such extensions withc
damaging existing uses of the original form is inheritance.

The consequences of this implicit approach are far-reaching. The “supplement:
topics” section at the end of this chapter will include more comments about implicitnes

138 ABSTRACT DATA TYPES §6.4

Partial functions

The specification of any realistic example, even one as basic as stacks, is bound to
encounter the problems of undefined operations: some operations are not applicable to
every possible element of their source sets. Here this is the casremovetanditen: you

cannot pop an element from an empty stack; and an empty stack has no top.

The solution used in the preceding specification is to describe these functions as
partial. A function from a source sX to a target seY is partial if it is not defined for all
members oiX. A function which is not partial itotal. A simple example of partial
function in standard mathematicsnv, the inverse function on real numbers, whose value
for any appropriate real numbx is

1
inv(x) = -

Becauseinvis not defined fox = 0, we may specify it as a partial functionR, the
set of all real numbers:

inv:R + R
To indicate that a function may be partial, the notation uses the crossec+ ; the
normal arrow - will be reserved for functions which are guaranteed to be total.

The domain of a partial function inX » Y is the subset oX containing those
elements for which the function yields a value. Here the domzinvisR —{0}, the set
of real numbers other than zero.

The specification of thSTACH ADT applied these ideas to stacks by declapuy
anditerr as partial functions in the FUNCTIONS paragraph, as indicated by the crossed
arrow in their signatures. This raises a new problem, discussed in the next section: how to
specify the domains of these functions.

In some cases it may be desirable to descput as a partial function too; this isExerciseE6.9,
necessary to model implementations suclaRRAY_UP andARRAY_DOWN, which only page 162
support a finite number of consecutipul operations on any given stack. It is indeed a
good exercise to adapt the specificatiolSTACE so that it will describe bounded stacks
with a finite capacity, whereas the above form does not include any such capacity
restriction. This is a new use for partial functions: to reflect implementation constraints.

In contrast, the need to decldternr andremov« as partial functions reflected an abstract
property of the underlying operations, applicable to all representations.

Preconditions

Partial functions are an inescapable fact of software development life, merely reflecting
the observation that not every operation is applicable to every object. But they are also a
potential source of errors: f is a partial function fronX to Y, we are not sure any more

that the expressic f (€) makes sense even if the valuee is in X: we must be able to
guarantee that the value belongs to the domaf. of

For this to be possible, any ADT specification which includes partial functions must
specify the domain of each of them. This is the role of the PRECONDITIONS paragraph.

For STACK, the paragraph will appear as:

8§6.4 FORMALIZING THE SPECIFICATION 139

PRECONDITIONS
e remove(s: STACK[G]) require not empty(s)
» item(s: STACK[G]) require not empty(s)

where, for each function, threquire clause indicates what conditions the function’s
arguments must satisfy to belong to the function’s domain.

The boolean expression which defines the domain is calleprecondition of the
corresponding partial function. Here the precondition of removt anditem expresses
that the stack argument must be non-empty. Beforrequire clause comes the name of
the function with dummy names for argumers for the stack argument in the example),
so that the precondition can refer to them.

Mathematically, the precondition of a functif is thecharacteristic function of the
domain off. The characteristic function of a subA of a setX is the total function
ch: X = BOOLEAN such thach (x) is true ifx belongs tcA, false otherwise.

The complete specification

The PRECONDITIONS paragraph concludes this simple specification aSTACK
abstract data type. For ease of reference it is useful to piece together the vari
components of the specification, seen separately above. Here is the full specification:

ADT specification of stacks
TYPES

* STACK[G]
FUNCTIONS
* put: STACK[G] x G - STACK[G]
* remove STACK[G] » STACK[G]
« item: STACK[G] » G
e empt: STACK[G] -~ BOOLEAM
* new. STACK[G]
AXIOMS
For anyx: G, s: STACK[G]
Al eitem(put(s, X)) = x
A2 remove(put (s, X)) =s
A3+ empty (new)
A4« not empty (put (s, x))
PRECONDITIONS
» remove(s: STACK[G]) require not empty(s)
 item(s: STACK[G]) require not empty(s)

140 ABSTRACT DATA TYPES §6.4

Nothing but the truth

The power of abstract data type specifications comes from their ability to capture the
essential properties of data structures without overspecifying. The stack specification
collected on the preceding page expresses all there is to know about the notion of stack in
general, excluding anything that only applies to some particular representations of stacks.
All the truth about stacks; yet nothing but the truth.

This provides a general model of computation with data structures. We may describe
complex sequences of operations by mathematical expressions enjoying the usual
properties of algebra; and we may view the process of carrying out the computation
(executing the program) as a case of algebraic simplification.

In elementary mathematics we have been taught to take an expression such as
co (a—t) +sin?(a+b—2xh)

and apply the rules of algebra and trigonometry to simplify it. A rule of algebra tells us
that we may simplifya + b — 2x binto a — t for any a andb; and a rule of trigonometry
tells us that we can simplifco< (x) + sin? (x) into 1 for any x. Such rules may be
combined; for example the combination of the two preceding rules allow us to simplify
the above expression into jul.t

In a similar way, the functions defined in an abstract data type specification allow us
to construct possibly complex expressions; and the axioms of the ADT allow us to
simplify such expressions to yield a simpler result. A complex stack expression is the
mathematical equivalent of a program; the simplification process is the mathematical
equivalent of a computation, that is to say, of executing such a program.

Here is an example. With the specification of STACk abstract data type as given
above, we can write the expression

item (remove(put (remove(put (put (
remove(put (put (put(new, x1), x2), x3)),
item (remove(put (put (new, x4), x)))), x6)), X7)))

Let us call this expressiostackex for future reference. It is perhaps easier to
understanstackex if we define it in terms of a sequence of auxiliary expressions:

sl=new

s2=put(put (put (s1, x1), x2), X3)
s3=remove(s2)

S4= new

s5= put (put (s4, x4), x5)
s6=remove(s5)

y1=item(s€)

s7=put(ss, yl)

s8= put(s7, x€)

s9= remove(s8)

8§6.4 FORMALIZING THE SPECIFICATION 141

s10= put(s€, x7)

s11=remove(s1()

stackexf= item(s11)

Whichever variant of the definition you choose, it is not hard to follow the
computation of whiclstackexjis a mathematical model: create a new stack; push elemen

x1, x2, x3, in this order, on top of it; remove the last pushed elenx3), callings3 the
resulting stack; create another empty stack; and so on. Or you can think of it graphical

Stack 3

manipulations ‘ - x“ -

al 1 o« i [_]
3

sl [Y4
(empty) (also:s9, s17)
x5 -] s7=put(s3 yl)
x4 - x4
s5 H

You can easily find the value of such an ADT expression by drawing figures such
the above. (Here you would finx4.) But the theory enables you to obtain this result
formally, without any need for pictures: just apply the axioms repeatedly to simplify th
expression until you cannot simplify any further. For example:

e Applying A2 to simplify sg, that is to sayemove(put (put (put (s1, xJ), x2), x3)),
yieldsput (put (s1, x1), x2)). (With A2, any consecutiviemovepui pair cancels out.)

* The same axiom indicates tls6is put(s4, x4); then we can use axiom Al to deduce
thatyl, that is to saitem (put (s4, x4)), is in factx4, showing that (as illustrated by
the arrow on the above figurs7is obtained by pushinx4 on top ofsc.

And so on. A sequence of such simplifications, carried out as simply an
mechanically as the simplifications of elementary arithmetic, yields the value of tf
expressiorstackex, which (as you are invited to check for yourself by performing the
simplification process rigorously) is index4.

This example gives a glimpse of one of the main theoretical roles of abstract d:
types: providing a formal model for the notion of program and program execution. Th
model is purely mathematical: it has none of the imperative notions of program sta
variables whose values may change in time, or execution sequencing. It relies on
standard expression evaluation techniques of ordinary mathematics.

142 ABSTRACT DATA TYPES §6.5

6.5 FROM ABSTRACT DATA TYPES TO CLASSES

We have the starting point of an elegant mathematical theory for modeling data structures
and in fact, as we just saw, programs in general. But our subject is software architecture,
not mathematics or even theoretical computing science! Have we strayed from our path?

Not by much. In the search for a good modular structure based on object types,
abstract data types provide a high-level description mechanism, free of implementation
concerns. They will lead us to the fundamental structures of object technology.

Classes

ADTs will serve as the direct basis for the modules that we need in the search begun in
chapter3. More precisely, an object-oriented system will be built (at the level of analysis,
design or implementation) as a collection of interacting ADTs, partially or totally
implemented. The basic notion hereclass:

Definition: class

A class is an abstract data type equipped with a possibly partial
implementation.

So to obtain a class we must provide an ADT and decide on an implementation. The
ADT is a mathematical concept; the implementation is its computer-oriented version. The
definition, however, states that the implementation may be partial; the following
terminology separates this case from that of a fully implemented class:

Definition: deferred, effective class

A class which is fully implemented is said to effective. A class which is
implemented only partially, or not at all, is said todeferred. Any class is
either deferred or effective.

To obtain an effective class, you must provide all the implementation details. For a
deferred class, you may choose a certain style of implementation but leave some aspects
of the implementation open. In the most extreme case of “partial” implementation you
may refrain from making any implementation decision at all; the resulting class will be
fully deferred, and equivalent to an ADT.

8§6.5 FROM ABSTRACT DATA TYPES TO CLASSES 143

How to produce an effective class

Consider first the case of effective classes. What does it take to implement an ADT? Th
kinds of element will make up the resulting effective class:

El+ An ADT specification (a set of functions with the associated axioms and
preconditions, describing the functions’ properties).

E2« A choice of representation.

E3 ¢ A mapping from the function1) to the representatiote2) in the form of a set
of mechanisms, cfeatures, each implementing one of the functions in terms of
the representation, so as to satisfy the axioms and preconditions. Many of the:
features will be routines (subprograms) in the usual sense, although some m:
also appear as data fields, or “attributes”, as explained in the next chapters.

For example, if the ADT iSTACK, we may choose as representation (E2) the
solution callecarrAY_up above, which implements any stack by a pair

<representatio, coun>

whererepresentatio is an array ancoun an integer. For the function implementatioEs) (
we will have features correspondincput, removy, iterr, empt andnew, which achieve the
corresponding effects; for example we may implenput by a routine of the form
put(x: G)is
-- Pushx onto stack.

-- (No check for possible stack overflow.)
do
count:=count + 1

representatioffcoun] := x
end
The combination of elements obtained ungei, E2 and E2 will yield a class, the
modular structure of object technology.

The role of deferred classes

For an effective class, all of the implementation informatie2, E3 above) must be
present. If any of it is missing, the class is deferred.

The more deferred a class, the closer it is to an ADT, gussied up in the kind
syntactic dress that will help seduce software developers rather than mathematicic
Deferred classes are particularly useful for analysis and for design:

* In object-oriented analysis, no implementation details are needed or desired: -
method uses classes only for their descriptive power.

e In object-oriented design, many aspects of the implementation will be left ou
instead, a design should concentrate on high-level architectural properties of
system — what functionalities each module provides, not how it provides them.

* As you move your design gradually closer to a full implementation, you will adq
more and more implementation properties until you get effective classes.

144 ABSTRACT DATA TYPES §6.5

But the role of deferred classes does not stop there, and even in a fully implemented
system you will often find many of them. Some of that role follows from their previous
applications: if you started from deferred classes to obtain effective ones, you may be well
inspired to keep the former as ancestors (in the sense of inheritance) to the latter, to serve
as a living memory of the analysis and design process.

Too often, in software produced with non-object-oriented approaches, the final form
of a system contains no record of the considerable effort that led to it. For someone who
is asked to perform maintenance — extensions, ports, debugging — on the system, trying
to understand it without that record is as difficult as it would be, for a geologist, to
understand a landscape without having access to the sedimentary layers. Keeping the
deferred classes in the final system is one of the best ways to maintain the needed record.

Deferred classes also have purely implementation-related uses. They serve to
classify groups of related types of objects, provide some of the most important high-level
reusable modules, capture common behaviors among a set of variants, and play a key role
(in connection with polymorphism and dynamic binding) in guaranteeing that the software
architecture remains decentralized and extendible.

The next few chapters, which introduce the basic object-oriented techniques, will at
first concentrate on effective classes. But keep in mind the notion of deferred class, whose
importance will grow as we penetrate the full power of the object-oriented method.

Abstract data types and information hiding

A particularly interesting consequence of the object-oriented policy of basing all mo(See the mention of
on ADT implementations (classes) is that it provides a clear answer to a question thvagueness in the
left pending in the discussion of information hiding: how do we select the public Middle of pag52.
private features of a module — the visible and invisible parts of the iceberg?

The ADT view
Public part: of a module
ADT specification (E1) under
information
hiding

Secret part:
» Choice of representation (EE

* Implementation of functions
by features (E3)

8§6.5 FROM ABSTRACT DATA TYPES TO CLASSES 145

If the module is a class coming from an ADT as outlined above, the answer is cle
of the three parts involved in the transitie1, the ADT specification, is publicez and
EZ, the choice of representation and the implementation of the ADT functions in tern
of this representation, should be secret. (As we start building classes we will encour
a fourth part, also secret: auxiliary features needed only for the internal purposes
these routines.)

So the use of abstract data types as the source of our modules gives us a prac
unambiguous guideline for applying information hiding in our designs.

Introducing a more imperative view

The transition from abstract data types to classes involves an important stylis
difference: the introduction of change and imperative reasoning.

As you will remember, the specification of abstract data types is change-free, or,
use a term from theoretical computing scierapplicative. All features of an ADT are
modeled as mathematical functions; this applies to creators, queries and commands.
example the push operation on stacks is modeled by the command function

put: STACK[G] x G — STACK[G]
specifying an operation that returns a new stack, rather than changing an existing stac

Classes, which are closer to the world of design and implementation, abandon t
applicative-only view and reintroduce commands as operations that may change objet

For exampleput will appear as a routine which takes an argument of G (the
formal generic parameter), and modifies a stack by pushing a new element on top
instead of producing a new stack.

This change of style reflects the imperative style that prevails in softwar
construction. (The word “operational” is also used as synonym for “imperative”.) It wil
require the corresponding change in the axioms of ADTs. Axioms Al and A4 of stack
which appeared above as

Al eitem(put(s, X)) = x

A4« not empty (put (s, X))

will yield, in the imperative form, a clause known éroutine postcondition, introduced
by the keyworcensure in

146 ABSTRACT DATA TYPES §6.5

put(x: G) is
-- Pushx on top of stack
require
... The precondition, if an...
do
... The appropriate implementation, if kno...i
ensure
item= x
not empty
end

Here the postcondition expresses that on return from a call to rut, the value
of iter will be x (the element pushed) and the valuempt will be false.

Other axioms of the ADT specification will yield a clause known asclass “THE ADT CON-
invariant. Postconditions, class invariants and other non-applicative avatars cNECTION", 11.10,
ADT'’s preconditions and axioms will be studied as part of the discussion of asseP29€ 37-
and Design by Contract.

Back to square one?

If you followed carefully, starting with the chapter on modularity, the line of reasoning
that led to abstract data types and then classes, you may be a little puzzled here. We started
with the goal of obtaining the best possible modular structures; various arguments led to
the suggestion that objects, or more precisely object types, would provide a better basis
than their traditional competitors — functions. This raised the next question: how to
describe these object types. But when the answer came, in the form of abstract data types
(and their practical substitutes, classes), it meant that we must base the description of data
on... the applicable functions! Have we then come full circle?

No. Object types, as represented by ADTs and classes, remain the undisputed basis
for modularization.

It is not surprising that both the object and function aspects should appear in the final
system architecture: as noted in the previous chapter, no description of software issues can
be complete if it misses one of these two components. What fundamentally distinguishes
object-oriented methods from older approaches is the distribution of roles: object types are
the undisputed winners when it comes to selecting the criteria for building modules.
Functions remain their servants.

In object-oriented decomposition, no function ever exists just by itself: every
function is attached to some object type. This carries over to the design and
implementation levels: no feature ever exists just by itself; every feature is attached to
some class.

8§6.6 BEYOND SOFTWARE 147

See pagll€forthe
original definitior.

Object-oriented software construction

The study of abstract data types has given us the answer to the question asked a
beginning of this chapter: how to describe the object types that will serve as the backb
of our software architecture.

We already had a definition of object-oriented software construction: remaining at
high level of generality, it presented the method as “basing the architecture of a
software system on modules deduced from the types of objects it manipulates”. Keep
that first definition as the framework, we can now complement it with a more technic
one:

Object-oriented software construction (definition 2)

Object-oriented software construction is the building of software systems as
structured collections of possibly partial abstract data type implementations.

This will be our working definition. Its various components are all important:
* The basis is the notion abstract data typ.e

« For our software we need not the ADTs themselves, a mathematical notion, but Al
implementation, a software notion.

* These implementations, however, need not be complete;possibly partia”
gualification covers deferred classes — including the extreme case of a ful
deferred class, where none of the features is implemented.

* A system is &ollectior of classes, with no one particularly in charge — no top or
main program.

*« The collection isstructurec thanks to two inter-class relations: client and
inheritance.

6.6 BEYOND SOFTWARE

As we are completing our study of abstract data types itis worth taking a moment to refl
on the significance of this notion outside of its imnmediate intended application area.

What the ADT approach tells us is that a successful intellectual investigation shot
renounce as futile any attempt at knowing things from the inside, and concentrate inst
on their usable properties. Do not tell me what you are; tell me what you have — whe
can get out of you. If we need a name for this epistemological discipline, we should cal
theprinciple of selfishne:.s

If I am thirsty, an orange is something | can squeeze; if | am a painter, it is col
which might inspire my palette; if | am a farmer, it is produce that | can sell at the mark
if | am an architect, it is slices that tell me how to design my new opera house, overlooki
the harbor; but if | am none of these, and have no other use for the orange, then | sh
not talk about it, as the concept of orange does not for me even exist.

148 ABSTRACT DATA TYPES §6.7

The principle of selfishness — you are but what you have — is an extreme form of
an idea that has played a central role in the development of science: abstraction, or the
importance of separating concerns. The two quotations at the beginning of this chapter,
each in its own remarkable way, express the importance of this idea. Their authors,
Diderot and Stendhal, were writers rather than scientists, although both obviously had a
good understanding of the scientific method (Diderot was the living fire behind the Great
Encyclopedia, and Stendhal prepared for admission into the Ecole Polytechnique,
although in the end he decided that he could do better things with his life). It is striking to
see how both quotations are applicable to the use of abstraction in software development.

Yet there is more than abstraction to the principle of selfishness: the idea, almost
shocking at first, that a property is not worth talking about unless it is useful in some direct
way to the talker.

This suggests a more general observation as to the intellectual value of our field.

Over the years many articles and talks have claimed to examine how software
engineers could benefit from studying philosophy, general systems theory, “cognitive
science”, psychology. But to a practicing software developer the results are disappointing.
If we exclude from the discussion the generally applicable laws of rational investigation,
which enlightened minds have known for centuries (at least since Descartes) and which of
course apply to software science as to anything else, it sometimes seems that experts in the
disciplines mentioned may have more to learn from experts in software than the reverse.

Software builders have tackled — with various degrees of success — some of the
most challenging intellectual endeavors ever undertaken. Few engineering projects, for
example, match in complexity the multi-million line software projects commonly being
launched nowadays. Through its more ambitious efforts the software community has
gained precious insights on such issues and concepts as size, complexity, structure,
abstraction, taxonomy, concurrency, recursive reasoning, the difference between
description and prescription, language, change and invariants. All this is so recent and so
tentative that the profession itself has not fully realized the epistemological implications
of its own work.

Eventually someone will come and explain what lessons the experience of software
construction holds for the intellectual world at large. No doubt abstract data types will
figure prominently in the list.

6.7 SUPPLEMENTARY TOPICS

The view of abstract data types presented so far will suffice for the uses of ADTs in the
rest of this book. (To complement it, doing the exercises will help you sharpen your
understanding of the concept.)

If, as | hope, you have been conquered by the elegance, simplicity and power of
ADTs, you may want to explore a few more of their properties, even though the discussion
of object-oriented methods will not use them directly. These supplementary topics, which
may be skipped on first reading, are presented in the next few pages:

8§6.7 SUPPLEMENTARY TOPICS 149

Implicitness and its relationship to the software construction process.

The difference between specification and design.

The differences between classes and records.

Potential alternatives to the use of partial functions.
« Deciding whether a specification is complete or not.

The bibliographical references to this chapter point to more advanced literature
abstract data types.

More on implicitness

The implicit nature of abstract data types and classes, discussed above, reflects
important problem of software construction.

One may legitimately ask what difference there is between a simplified AD’
specification, using the function declarations

x: POINT - REAL
y: POINT - REAL

and the record type declaration which we may express in a traditional programmi
language such as Pascal under the form

type
POINT=
record
X, y: real
end

At first sight, the two definitions appear equivalent: both state that any instance
type POINT has two associated valux andy, of type REAL. But there is a crucial if
subtle difference:

e The Pascal form is closed and explicit: it indicates thPOINT object is made of
the two given fields, and no other.

e The ADT function declarations carry no such connotation. They indicate that or
may query a point about ix and itsy, but do not preclude other queries — such as
a point's mass and velocity in a kinematics application.

From a simplified mathematical perspective, you may consider that the above Pas
declaration is a definition of the mathematicalPOINT as a cartesian product:

POINT 2 REALx REAL

where £ means “is defined as” this define®OINT fully. In contrast, the ADT
specification does not explicitly defirPOINT through a mathematical model such as the
cartesian product; it just characterizPOINT implicitly by listing two of the queries
applicable to objects of this type.

150 ABSTRACT DATA TYPES §6.7

If at some stage you think you are done with the specification of a certain notion, you
may want to move it from the implicit world to the explicit world by identifying it with
the cartesian product of the applicable simple queries; for example you will identify points
with <x, y> pairs. We may view this identification process as the very definition of the
transition from analysis and specification to design and implementation.

Specification versus design

The last observation helps clarify a central issue in the study of software: the difference
between the initial activities of software development — specification, also called analysis
— and later stages such as design and implementation.

The software engineering literature usually defines this as the difference bet'see*The clouds
“defining the problem” and “building a solution”. Although correct in principle, thand the precipice”,
definition is not always directly useful in practice, and it is sometimes hard to deterP29¢ 99°
where specification stops and design begins. Even in the research community, people
routinely criticize each other on the theme “you advertize notix as a specification
language, but what it really expresses is designs”. The supreme insult is to accuse the
notation of catering timplementatio; more on this in a later chapter.

The above definition yields a more precise criterion: to cross the Rubicon between
specification and design is to move from the implicit to the explicit; in other words:

Definition: transition from analysis (specification) to design

To go from specification to design is to identify each abstraction with the
cartesian product of its simple queries.

The subsequent transition — from design to implementation — is simply the move
from one explicit form to another: the design form is more abstract and closer to
mathematical concepts, the implementation form is more concrete and computer-oriented,
but they are both explicit. This transition is less dramatic than the preceding one; indeed,
it will become increasingly clear in the pages that follow that object technology all but
removes the distinction between design and implementation. With good object-oriented
notations, what our computers directly execute (with the help of our compilers) is what to
the non-0O-0O world would often appear as designs.

Classes versus records

Another remarkable property of object technology, also a result of the focus on implicit
definition, is that you can keep your descriptions implicit for a much longer period than
with any other approach. The following chapters will introduce a notation enabling us to
define a class under the form

class POINT feature
X, y: REAL
end

8§6.7 SUPPLEMENTARY TOPICS 151

Se€‘The Open-
Closed principle”,
page 57

This looks suspiciously close to the above Pascal record type definition. But in sp
of appearances the class definition is different: it is implicit! The implicitness comes fro
inheritance; the author of the class or (even more interestingly) someone else may at
time define a new class such as

classMOVING_POIN" inherit
POINT
feature
mas: REAL
velocity: VECTOR[REAL]
end
which extends the original class in ways totally unplanned for by the initial design. The
a variable (or entity, to use the terminology introduced later) of POINT, declared as

pl: POINT

may become attached to objects which are not just of POINT but also of any
descendant type such aMOVING POIN". This occurs in particular through
“polymorphic assignments” of the form

pl:=mpl
wherempilis of typeMOVING POIN".

These possibilities illustrate the implicitness and openness of the class definition: 1
corresponding entities represent not just points in the narrow sense of direct instance
classPOINT as initially defined, but, more generally, instances of any eventual class th
describes a concept derived from the original.

The ability to define software elements (classes) that are directly usable whi
remaining implicit (through inheritance) is one of the major innovations of objec
technology, directly answering the Open-Closed requirement. Its full implications wi
unfold progressively in the following chapters.

Not surprisingly for such a revolutionary concept, the realm of new possibilities th:
it opens still scares many people, and in fact many object-oriented languages restrict
openness in some way. Later chapters will mention examples.

Alternatives to partial functions

Among the techniques of this chapter that may have caused you to raise your eyebrow
its use of partial functions. The problem that it addresses is inescapable: any specifica
needs to deal with operations that are not always defined; for example, it is impossible
pop an empty stack. But is the use of partial functions the best solution?

It is certainly not the only possible one. Another technique that comes to mind, a
is indeed used by some of the ADT literature, is to make the function total but introdu
special error values to denote the results of operations applied to impossible cases.

For every typeT, this method introduces a special “error’ value; let us wriu.t
Then for any functiorf of signature

f: ... Inputtypes... - T

152 ABSTRACT DATA TYPES §6.7

it specifies that any application to an object for which the corresponding computer
operation may not be executed will produce the vw;.

Although usable, this method leads to mathematical and practical unpleasantness.
The problem is that the special values are rather bizarre animals, which may unduly
disturb the lives of innocent mathematical creatures.

Assume for example that we consider stacks of integers — instances of the generic
derivationSTACK[INTEGEF], whereINTEGEF is the ADT whose instances are integers.
Although we do not need to write the specificationINTEGEF completely for this
discussion, it is clear that the functions defining this ADT should model the basic
operations (addition, subtraction, “less than” and the like) defined on the mathematical set
of integers. The axioms of the ADT should be consistent with ordinary properties of
integers; typical among these properties is that, for any inn: yer

[21]
n+1#n

Now letn be the result of requesting the top of an empty stack, thatis to say, the value
of item(new), wherenew is an empty stack of integers. With the “special error element”
approachn must be the special valiwjtecge- What then is the value of the expression
n + 1? If the only values at our disposal are normal integer«wi\tecer then we ought
to choosew \tegEr as the answer:

winTEGER.T 1 = WINTEGER

This is the only acceptable choice: any other valuwijieggr + 1, that is to say,
any “normal” integelg, would mean in practical terms that after we attempt to access the
top of an empty stack, and get an error value as a result, we can miraculously remove any
trace of the error, simply by adding one to the result! This might have passed when all it
took to erase the memory of a crime was a pilgrimage to Santiago de Compostela and the
purchase of a few indulgences; modern mores and computers are not so lenient.

But choosingwyteger as the value cn + 1 whenn is wteggr Violates the above
Z1 property. More generallyw,reger + P Will be w,rece for anyp. This means we
must develop a new axiom system for the updated abstract datiNTEGEF enriched
with an error element), to specify that every integer operation yuw,jtecer Whenever
any one of its arguments wytecgr. Similar changes will be needed for every type.

The resulting complication seems unjustifiable. We cannot change the specification
of integers just for the purpose of modeling a specific data structure such as the stack.

With partial functions, the situation is simpler. You must of course verify, for every
expression involving partial functions, that the arguments satisfy the corresponding
preconditions. This amounts to performing a sanity check — reassuring yourself that the
result of the computation will be meaningful. Having completed this check, you may
apply the axioms without further ado. You need not change any existing axiom systems.

8§6.7 SUPPLEMENTARY TOPICS 153

Is my specification complete?

Another question may have crossed your mind as you were reading the above exampl
abstract data type specification: is there is any way to be sure that such a specifica
describes all the relevant properties of the objects it is intended to cover? Students whc
asked to write their first specifications (for example when doing the exercises at the ¢
of this chapter) often come back with the same question: when do | know that | ha
specified enough and that | can stop?

In more general terms: does a method exist to find out whether an ADT specificati
is complete?

If the question is asked in this simple form, the answer is a plain no. This is true
formal specifications in general: to say that a specification is complete is to claim tha
covers all the needed properties; but this is only meaningful with respect to sor
document listing these properties and used as a reference. Then we face one of two eq
disappointing situations:

« If the reference document is informal (a natural-language “requirements documel
for a project, or perhaps just the text of an exercise), this lack of formality preclud
any attempt to check systematically that the specification meets all the requireme
described in that document.

« If the reference document is itself formal, and we are able to check the completen
of our specification against it, this merely pushes the problem further: how do w
ascertain the completeness of the reference document itself?

In its trivial form, then, the completeness question is uninteresting. But there is
more useful notion of completeness, derived from the meaning of this word |
mathematical logic. For a mathematician, a theory is complete if its axioms and rules
inference are powerful enough to prove the truth or falsity of any formula that can |
expressed in the language of the theory. This meaning of completeness, although
limited, is intellectually satisfying, since it indicates that whenever the theory lets
express a property it also enables us to determine whether the property holds.

How do we transpose this idea to an ADT specification? Here the “language of t
theory” is the set of all thwell-formed expression, those expressions which we may
build using the ADT's functions, applied to arguments of the appropriate types. F
example, using the specification STACK and assuming a valid expressx of typeG,
the following expressions are well-formed:

new
put (new, x)
item(new) -- If this seems strange, see comments on the next page.
empty(put (new, x))

stackexp -- The complex expression defined on page 140.

154 ABSTRACT DATA TYPES §6.7

The expressior put (x) andput(x, new), however, are not well-formed, since they
do not abide by the rulepui always requires two arguments, the first of ' STACK|[G]
and the second of tyfG; soput(x) is missing an argument, aput(x, new) has the wrong
argument types.

The third example in the preceding bitem (new), does not describe a meaningful
computation sincenew does not satisfy the precondition iterr. Such an expression,
although well-formed, is nc«correct. Here is the precise definition of this notion:

Definition: correct ADT expression

Letf(xq, ..., x,) be a well-formed expression involving one or more functions
on a certain ADT. This expression is correct if and only if all x; are
(recursively) correct, and their values satisfy the preconditid, if any.

Do not confuse “correct” with “well-formed”. Well-formedness is a structural
property, indicating whether all the functions in an expression have the right number and
types of arguments; correctness, which is only defined for a well-formed expression,
indicates whether the expression defines a meaningful computation. As we have seen, the
expressiorput (x) is not well-formed (and so it is pointless to ask whether it is correct),
whereas the expressiitem (new) is well-formed but not correct.

An expression well-formed but not correct, suchitem (new), is similar to a
program that compiles (because it is built according to the proper syntax and satisfies all
typing constraints of the programming language) but will crash at run time by performing
an impossible operation such as division by zero or popping an empty stack.

Of particular interest for completeness, among well-formed expressiorquery? The “queries” in

expression, those whose outermost function is a query. Examples are: our example, return-
ing a result of type
empty(put (put (new, x1), x2)) other tharSTACH,
item (put (put (new, x1), x2)) areitemandempt.

See‘Function cate-
stackexp -- See pag 140 gories”, page 134
A query expression denotes a value which (if defined) belongs not to the ADT u

definition, but to another, previously defined type. So the first query expression above has

a value of typeBOOLEAN, the second and third have values of tG, the formal generic

parameter — for exampINTEGEF if we use the generic derivatiSTACK[INTEGEF].

Query expressions represent external observations that we may make about the
results of a certain computation involving instances of the new ADT. If the ADT
specification is useful, it should always enable us to find out whether such results are
defined and, if so, what they are. The stack specification appears to satisfy this property,
at least for the three example expressions above, since it enables us to determine that the
three expressions are defined and, by applying the axioms, to determine their values:

empty(put (put (new, x1), x2)) = False
item (put (put (new, x1), x2)) = x2
stackex[= x4

8§6.7 SUPPLEMENTARY TOPICS 155

Transposed to the case of arbitrary ADT specifications, these observations sugge
pragmatic notion of completeness, knowisufficien completeness, which expresses that
the specification contains axioms powerful enough to enable us to find the result of &
query expression, in the form of a simple value.

Here is the precise definition of sufficient completeness. (Non-mathematicall
inclined readers should skip the rest of this section.)

Definition: sufficient completeness

An ADT specification for a typT is sufficiently complete if and only if the
axioms of the theory make it possible to solve the following problems for any
well-formed expressioe:

S1 « Determine whetht € is correct.

S2 « If eis a query expression and has been shown to be correctsider
expresse’s value under a form not involving any value of tyT.

In sz, expressiore is of the formf (x4, ..., x,) wheref is a query function, such as

empt anditem for stackssaitells us thae has a value, but this is not enough; in this case
we also want to know what the value is, expressed only in terms of values of other types
the STACF example, values of typeBOOLEAN andG). If the axioms are strong enough

to answer this question in all possible cases, then the specification is sufficiently comple

Sufficient completeness is a useful practical guideline to check that no importa
property has been left out of a specification, answering the question raised above: w
do | know | can stop looking for new properties to describe in the specification? It is got
practice to apply this check, at least informally, to any ADT specification that you writ
— starting with your answers to the exercises of this chapter. Often, a formal proof
sufficient correctness is possible; the proof given below forSTACH specification
defines a model which can be followed in many cases.

As you may have notes: is optimistic in talking about “the” value €: what if the
axioms yield two or more? This would make the specification useless. To avoid sucl
situation we need a further condition, known from matheral logic as consistency:

Definition: ADT consistency

An ADT specification is consistent if and only if, for any well-formed guery
expressiore, the axioms make it possible to infer at most one value. for

The two properties are complementary. For any query expression we want to
able to deduce exactly one value: at least one (sufficient completeness), but no m
than one (consistency).

156 ABSTRACT DATA TYPES §6.7

Proving sufficient completeness

(This section and the rest of this chapter are supplementary material and its results Non-mathematically

needed in the rest of the book.) inclined readers may
skip to*KEY CON-

- L CEPTS INTRO-
The sufficient completeness of an abstract data type specification is, in geneis i o N THIS

undecidable problem. In other words, no general proof method exists which, givicpyapTER" 6.8
arbitrary ADT specification, would tell us in finite time whether or not the specificatiopage 159
sufficiently complete. Consistency, too, is undecidable in the general case.

It is often possible, however, to prove the sufficient completeness and the
consistency of a particular specification. To satisfy the curiosity of mathematically
inclined readers, it is interesting to prove, as a conclusion to this chapter, that the
specification 0ISTACL is indeed sufficiently complete. The proof of consistency will be
left as an exercise.

Proving the sufficient completeness of the stack specification means devising a valid
rule addressing problensi ands: above; in other words the rule must enable us, for an
arbitrary stack expressice:

S1 «To determine whethee is correct.

S2«If eis correct undesiand its outermost function item or empt (one of the two
guery functions), to express its value in termBOOLEADN andG values only,
without any reference to values of ty|STACK[G] or to the functions of
STACKs specification.

It is convenient for a start to consider only well-formed expressions which do not
involve any of the two query functioiite m andempty— so that we only have to deal with
expressions built out of the functionew, put andremovt. This means that only problem
s1(determining whether an expression is defined) is relevant at this stage. Query functions
ands:z will be brought in later.

The following property, which we must prove, yields a rule addressing

Weight Consistency rule

A well-formed stack expressioe, involving neitheritem nor empt, is
correct if and only if its weight is non-negative, and any subexpressien of
is (recursively) correct.

Here the “weight” of an expression represents the number of elements in the
corresponding stack; it is also the difference between the number of nested occurrences of
puiandremove. Here is the precise definition of this notion:

8§6.7 SUPPLEMENTARY TOPICS 157

Definition: weight
The weight of a well-formed stack expression not invohiterr orempt is
defined inductively as follows:
W1 « The weight of the expressimew is 0.

W2 « The weight of the expressi put(s, x) isws + 1, wherews is the
weight ofs.

W3« The weight of the expressi remove(s) isws — ., wherews is the
weight ofs.

Informally, the Weight Consistency rule tells us that a stack expression is correct
and only if the expression and every one of its subexpressions, direct or indirect, ha
least as manypul operations (pushing an element on top) as itremov« operations
(removing the top element); if we view the expression as representing a stack computat
this means that we never try to pop more than we have pushed. Remember that at this
we are only concentrating (oui andremovs, ignoring the querieitenr andempt.

This intuitively seems right but of course we must prove that the Weight Consisten
rule indeed holds. It will be convenient to introduce a companion rule and prove the t
rules simultaneously:

Zero Weight rule

Let e be a well-formed and correct stack expression not involiterr or
empt. Thenempty(e) is true if and only ie has weight O.

The proof uses induction on the nesting level (maximum number of neste
parentheses pairs) of the expression. Here again, for ease of reference, are the e
axioms applying to functioempt::

STACK AXIOMS
For anyx: G, s: STACK[G]
A3+ empty (new)
A4« not empty (put (s, x))

An expressiore with nesting level 0 (no parentheses) may only be of the new;
so its weight is 0, and it is correct sirnewhas no precondition. Axiom A3 indicates that
empty(e) is true. This takes care of the base step for both the Weight Consistency rule
the Zero Weight rule.

For the induction step, assume that the two rules are applicable to all expression:
nesting leven or smaller. We must prove that they apply to an arbitrary expree obn
nesting leven + 1. Since for the time being we have excluded the query functions fror
our expressions, one of the following two forms must appe: to

158 ABSTRACT DATA TYPES §6.7

Elee
E2e.e

pui (s, X)

remov (s)

wherex is of typeG, ands has nesting leven. Letws be the weight os.

In caseE1, sinceputi is a total functione is correct if and only isis correct, that is
to say (by the induction hypothesis) if and onls and all its subexpressions have non-
negative weights. This is the same as sayinge and all its subexpressions have non-
negative weights, and so proves that the Weight Consistency rule holds in this case. In
addition, e has the positive weiglws + 1, and (by axiom A4) is not empty, proving that
the Zero Weight rule also holds.

In caseE2, expressioleis correct if and only if both of the following conditions hold:
EB1-sand all its subexpressions are correct.
EB2 «not empty(s) (this is the precondition cremovy).

Because of the induction hypothesis, condieBz means thews, the weight o, is
positive, or, equivalently, thawvs — 7, the weight ole, is non-negative. ¢ e satisfies the
Weight Consistency rule. To prove that it also satisfies the Zero Weight rule, we must
prove thate is empty if and only if its weight is zero. Since the weighs is positive,s
must contain at least one occurrencepui, which also appears ie. Consider the
outermost occurrence put in e; this occurrence is enclosed irremove (sincee has a
removt at the outermost level). This means that a subexpresse, ore itself, is of the
form

remove(put (stack_expressi(, g_expressia))

which axiom A2 indicates may be reduced to jstack_expressic. Performing this
replacement reduces the weighte by 2; the resulting expression, which has the same
value ace, satisfies the Zero Weight rule by the induction hypothesis. This proves the
induction hypothesis for ca€g2.

The proof has shown in passing that in any well-formed and correct expression
which does not involve the query functioitem and empt' we may “remove every
remov(’, that is to say, obtain a canonical form that involves cput and new, by
applying axiom A2 wherever possible. For example, the expression

put (remove(remove(put (put (remove(put (put (new, x1), x2)), x3), x4))), x5)
has the same value as the canonical form
put(put (new, x1), x5)

For the record, let us give this mechanism a name and a definition:

Canonical Reduction rule

Any well-formed and correct stack expression involving neiiterr nor
emptyhas an equivalent “canonical” form that does not inviremove(that
is to say, may fsonly involvnew andpuf). The canonical form is obtained
by applying the stack axiom A2 as many times as possible.

8§6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 159

This takes care of the proof of sufficient completeness but only for expressions tt
do not involve any of the query functions, and consequently for prasionly (checking
the correctness of an expression). To finish the proof, we must now take into acco
expressions that involve the query functions, and deal with prcs: (finding the values
of these query expressions). This means we need a rule to determine the correctnes:
value of any well-formed expression of the fcf (s), wheres is a well-formed expression
andf is eitherempt oriterr.

The rule and the proof of its validity use induction on the nesting level, as define
above. Lein be the nesting level cs. If nis 0,s can only benew since all the other
functions require arguments, and so would have at least one parenthesis pair. Then
situation is clear for both of the query functions:

e empty(new) is correct and has value true (axiom A3).
« item(new) is incorrect since the preconditionitenis not empty(s).

For the induction step, assume tis has a nesting depn of one or more. If any
subexpressiou of s hasitenr or empt as its outermost function, thu has a depth of at
mostn — 1, so the induction hypothesis indicates that we can determine wlu iser
correct and, if it is, obtain the value u by applying the axioms. By performing all such
possible subexpression replacements, we obtairs a form which involves no stack
function other thaiput, removeandnew.

Next we may apply the idea of canonical form introduced above to get rid of a
occurrences cremovs, so that the resulting form s may only involveput andnew. The
case in whicts is justnewhas already been dealt with; it remains the case for ws ish
of the formput (s', x). Then for the two expressions under consideration:

e empty(s) is correct, and axiom A3 indicates that the value of this expressfalse.:

 item(s) is correct, since the preconditionitern is preciselynot empty(s); axiom
Al indicates that the value of this expressiox. is

This concludes the proof of sufficient completeness since we have now proved |
validity of a set of rules — the Weight Consistency rule and the Canonical Reduction rt
— enabling us to ascertain whether an arbitrary stack expression is correct and, fc
correct query expression, to determine its value in terrBOOLEAIN andG values only.

6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

e The theory of abstract data types (ADT) reconciles the need for precision al
completeness in specifications with the desire to avoid overspecification.

* An abstract data type specification is a formal, mathematical description rather th
a software text. It iapplicative, that is to say change-free.

« An abstract data type may be generic and is defined by functions, axioms a
preconditions. The axioms and preconditions express the semantics of a type and
essential to a full, unambiguous description.

e To describe operations which are not always defined, partial functions provide
convenient mathematical model. Every patrtial function has a precondition, statir
the condition under which it will yield a result for any particular candidate argument

160 ABSTRACT DATA TYPES §6.9

* An object-oriented system is a collection of classes. Every class is based on an
abstract data type and provides a partial or full implementation for that ADT.

» A class is effective if it is fully implemented, deferred otherwise.

« Classes should be designed to be as general and reusable as possible; the process of
combining them into systems is often bottom-up.

« Abstract data types are implicit rather than explicit descriptions. This implicitness,
which also means openness, carries over to the entire object-oriented method.

« No formal definition exists for the intuitively clear concept of an abstract data type
specification being “complete”. A rigorously defined notiorsufficient
completeness, usually provides the answer. Although no method is possible to
ascertain the sufficient completeness of an arbitrary specification, proofs are often
possible for specific cases; the proof given in this chapter for the stack specification
may serve as a guide for other examples.

6.9 BIBLIOGRAPHICAL NOTES

A few articles published in the early nineteen-seventies made the discovery of abstract
data types possible. Notable among these are Hoare’s paper on the “proof of correctness
of data representationgHoare 1972¢ which introduced the concept of abstraction
function, and Parnas’s work on information hiding mentioned in the bibliographical notes
to chaptess.

Abstract data types, of course, go beyond information hiding, although many
elementary presentations of the concept stop there. ADTs proper were introduced by
Liskov and Zilles[Liskov 1974; more algebraic presentations were givel[M 1976]
and[Guttag 1977. The so-called ADJ group (Goguen, Thatcher, Wagner) explored the
algebraic basis of abstract data types, using category theory. See in particular their
influential article[Goguen 197¢, published as a chapter in a collective book.

Several specification languages have been based on abstract data types. Two resulting
from the work of the ADJ group are CLEA[Burstall 1977 [Burstall 1981 and OBJ-2
[Futatsugi 198E. See also Larch by Guttag, Horning and WGuttag 1985. ADT ideas
have influenced formal specification languages such as Z in its successive incarnations
[Abrial 1980] [Abrial 1980a [Spivey 1988|[Spivey 1992 and VDM [Jones 198¢. The
notion of abstraction function plays a central role in VDM. Recent extensions to Z have
established a closer link to object-oriented ideas; see in particular Ot[Duke 1991]
and further references in chapi1.

The phrase “separation of concerns” is central in the work of Dijkstra; see in
particular his “Discipline of Programmin(Dijkstra 1976.

The notion of sufficient completeness was first published by Guttag and Horning
(based on Guttag’s 1975 thesis)[Guttag 197¢&.

The idea that going from specification to design means switching from the implicit
to the explicit by identifying an ADT with the cartesian product of its simple queries was
suggested i[M 1982] as part of a theory for describing data structures at three separate
levels (physical, structural, implicit).

8E6.1 EXERCISES 161

See*How longis a
middle initial?”,
page 125

EXERCISES

E6.1 Points

Write a specification describing the abstract data POINT, modeling points in plane
geometry. The specification should cover the following aspects: cartesian and po
coordinates; rotation; translation; distance of a point to the center; distance to another po

E6.2 Boxers

Members of the Association Dijonnaise des Tapeventres, a boxing league, regule
compete in games to ascertain their comparative strength. A game involves two boxer
either results in a winner and a loser or is declared a tie. If not a tie, the outcome of a g«
is used to update the ranking of players in the league: the winner is declared better t
the loser and than any boxhk such that the loser was previously better tb. Other
comparative rankings are left unchanged.

Specify this problem as a set of abstract data tyADT_LEAGUE, BOXEF, GAME.
(Hint: do not introduce the notion of “ranking” explicitly, but model it by a funcbetter
expressing whether a player is better than another in the league.)

E6.3 Bank accounts

Write an ADT specification for a “bank account” type with operations such as “deposit

“withdraw”, “current balance”, “holder”, “change holder”.

How would you add functions representing the opening and closing of an accHint:? (
these are actually functions on another ADT.)

E6.4 Messages

Consider an electronic mail system with which you are familiar. In light of this chapter’
discussion, definMAIL_MESSAG as an abstract data type. Be sure to include not jus
query functions but also commands and creators.

E6.5 Names

Devise aNAME abstract data type taking into account the different components of
person’s name.

E6.6 Text

Consider the notion of text, as handled by a text editor. Specify this notion as an absti
data type. (This statement of the exercise leaves much freedom to the specifier; make
to include an informal description of the properties of text that you have chosen to mo«
in the ADT.)

162 ABSTRACT DATA TYPES 8§E6.7

E6.7 Buying a house

Write an abstract data type specification for the problem of buying a house, sketched “Ordering and O-
preceding chapter. Pay particular attention to the definition of logical constraints, expreO development”,
as preconditions and axioms in the ADT specification. page 111

E6.8 More stack operations

Modify the ADT specification of stacks to account for operaticoun (returning the
number of elements on a stacchange_to (replacing the top of the stack by a given
element) ancwipe_ou (remove all elements). Make sure to include new axioms and
preconditions as needed.

E6.9 Bounded stacks

Adapt the specification of the stack ADT presented in this chapter so that it will describe
stacks of bounded capacity. (Hint: introduce the capacity as an explicit query function;
makepui partial.)

E6.10 Queues

Describe queues (first-in, first-out) as an abstract data type, in the style uSTACE.
Examine closely the similarities and differenceHint : the axioms foiten andremove
must distinguish, to deal wilput (s, »), the cases in whics is empty and non-empty.)

E6.11 Dispensers
(This exercise assumes that you have answered the previous one.)

Specify a general ADDISPENSEI covering both stack and queue structures.

Discuss a mechanism for expressing more specialized ADT specifications such as those
of stacks and queues by reference to more general specifications, such as the specification
of dispensersHint: look at the inheritance mechanism studied in later chapters.)

E6.12 Booleans

Define BOOLEAN as an abstract data type in a way that supports its use in the ADT
definitions of this chapter. You may assume that equality and inequality operations
(= and#) are automatically defined on every ADT.

E6.13 Suffcient completeness

(This exercise assumes that you have answered one or more of the preceding ones.)
Examine an ADT specification written in response to one of the preceding exercises, and
try to prove that it is sufficiently complete. If it is not sufficiently complete, explain why,
and show how to correct or extend the specification to satisfy sufficient completeness.

E6.14 Consistency

Prove that the specification of stacks given in this chapter is consistent.

Part C:

Object-oriented techniques

See the comments on “But”, | said “when you discovered the marks on the snow and on the
thistex(} on pages branches you did not yet knovithe horse]Brownie In a certain way these
168and169

marks were telling us about all horses at least about all horses of that kind
Should we not say then that the book of nature talks to us only in terms o
essencesas taught by some very distinguished theolodtans

“Not at all, my Dear Adso; replied the masteq...] “The imprint in that place

and at that time of day told me that at least one among all possible horses ha
passed thereSo that | found myself half-way between the study of the concept
of horse and the knowledge of one individual hofged in any case what | knew

of the universal horse was given to me by the mahich was singularYou
could say that at that time | was held prisoner between the singularity of that
mark and my ignorancevhich took the very hazy form of a universal idéa

you see something afaand do not understand what it,igou will satisfy
yourself by defining it as a large bad®nce you have come closer you will
define it as being an animadven if you do not yet know whether it is a horse
or an assAnd finally when it is closeryou will be able to say that it is a horse
even if you do not know yet whether it is Brownie or Fa#my only when you

are at the right distance will you see that it is Browfieother words that horse

and not anotherhowever you decide to call)itAnd that will be the full
knowledgethe intuition of the singulat [...]

“Thus the ideaswhich | had used before to imagine a horse which | had not
seen yetwere pure signsas were pure signs of the horse idea the imprint on
the snowand we use signand signs of signonly when we lack the things

Umberto Eco,The Name of the RosPay One, Terce.

Part C will cover in detail the set of concepts and techniques that form the basis of
object technolocy

v

The static structure: classes

Examining the software engineering background of our discussion, you have seen tt
reasons for demanding a better approach to modular design: reusability and extendibilit
You have realized the limitations of traditional approaches: centralized architecture:
limiting flexibility. You have discovered the theory behind the object-oriented approach:
abstract data types. You have heard enough about the problems. On to the solution!

This chapter and the others in parnt C introduce the fundamental techniques of objec
oriented analysis, design and programming. As we go along, we will develop the

necessary notation.

Ouir first task is to examine the basic building blocks: classes.

7.1 OBJECTS ARE NOT THE SUBJECT

What is the central concept of object technology?

Think twice before you answer “object”. Objects are useful, but they are not new.
Ever since Cobol has had structures; ever since Pascal has had records; ever since the
C programmer wrote the first C structure definition, humanity has had objects.

Objects are stud- Objects remain important to describe the execution of an O-O system. But the basi
ied in detail in the notion, from which everything in object technology derives;lass previewed in the

next chapter

preceding chapter. Here again is the d&bn:

implementation.

Definition: class

A class is an abstract data type equipped with a possibly p

artial

Abstract data types are a mathematical notion, suitable for the specification stag
(also called analysis). Because it introduces implementations, partial or total, the notio
of class establishes the necessary link with software construction — design an
implementation. Remember that a class is said to be effective if the implementation i

total, deferred otherwise.

166 THE STATIC STRUCTURE: CLASSES§7.2

Like an ADT, a class is a type: it describes a set of possible data structures, called
theinstance: of the class. Abstract data types too have instances; the difference is that an
instance of an ADT is a purely mathematical element (a member of some mathematical
set), whereas an instance of a class is a data structure that may be represented in the
memory of a computer and manipulated by a software system.

For example if we have defined a cSTACF by taking the ADT specification of
the previous chapter and adding adequate representation information, the instances of that
class will be data structures representing individual stacks. Another example, developed
in the rest of this chapter, is a clePOINT modeling the notion of point in a two-
dimensional space, under some appropriate representation; an instance of that class is a
data structure representing a point. Under one of the representations studied below, the
cartesian representation, each instancPOINT is a record with two fields representing
the horizontal and vertical coordinatx andy, of a point.

The definition of “class” yields as a byproduct a definition of “object”. An object is
simply an instance of some class. For example an instance ofSTACk — a data
structure representing a particular stack — is an object; so is an instance POINT;
representing a particular point in two-dimensional space.

The software texts that serve to produce systems are classes. Objects are a run-time
notion only: they are created and manipulated by the software during its execution.

The present chapter is devoted to the basic mechanisms for writing software
elements and combining them into systems; as a consequence, its focus is on classes. In
the next chapter, we will explore the run-time structures generated by an object-oriented
system; this will require us to study some implementation issues and to take a closer look
at the nature of objects.

7.2 AVOIDING THE STANDARD CONFUSION

A class is a model, and an objectis an instance of such a model. This property is S0 0The next sectic, for
that it would normally deserve no comments beyond the preceding definitions; but iréaders who do not
been the victim of so much confusion in the more careless segment of the Iiteratur'(')'f‘?htgig\fi'g‘mg‘”g
we must take some tin_we to clarify the obvious. (If you fegl that you are immune to SkTHE ROLE OF
danger, and have avoided exposure to sloppy object-oriented teaching, you may VCLASSES”, 7.3,

skip this section altogether as it essentially belabors the obvious.) page 16

What would you think of this?

Among the countries in Europe we may identify the Iti. The Italian ha

a mountain chain running through him North-South and he likes good
cooking, often using olive c¢. His climate is of the Mediterranean ty, and

he speaks a beautifully musical language

§7.2 AVOIDING THE STANDARD CONFUSION 167

See .g. Oliver
Sack; "The Man
Who Mistook His
Wife for a Hat and
Other Clinical
Tales', Harper
Perennial, 1991

[Coad 1990, 3.3.3,
page 67

ExerciseE7.1, page
21€, asks you to
clarify each use of
“Object”in thistex.

If someone in a sober state talked or wrote to you in this fashion, you might suspect a r
neurological disease, the inability to distinguish between categories (such as the Ital
nation) and individuals members of these categories (such as individual Italians), rea
enough to give to the ambulance driver the address of Dr. Sacks’s New York clinic.

Yet in the object-oriented software literature similar confusions are commot
Consider the following extract from a popular book on O-O analysis, which uses tl
example of an interactive system to discuss how to identify abstractions:

[W]e might identify a “User” Object in a problem space where the system
does not need to keep any information about the. In this cas, the system
does not need the usual identification nun, name, access privilec, and
the like. Howeve, the system does need to monitor the, responding tq
requests and providing timely informat. And s, because of required
Services on behalf of the real world thi(in this cas, Usel), we need to add
a corresponding Object to the model of the problem <pace

In the same breath this text uses the wobjects, userandthing in two meanings
belonging to entirely different levels of abstraction:

« A typical user of the interactive system under discussion.
* Theconcep of user in general.

Although this is probably a slip of terminology (a peccadillo which few people cal
claim never to have committed) rather than a true confusion on the authors’ part, it
unfortunately representative of how some of the literature deals with the model-instar
distinction. If you start the study of a new method with this kind of elementary mix-uf
real or apparent, you are not likely to obtain a rational approach to software constructic

The mold and the instance

Take this book — the copy which you are currently reading. Consider it as an objectin
common sense of the term. It has its own individual features: the copy may be brand n
or already thumbed by previous readers; perhaps you wrote your hame on the first pe
or it belongs to a library and has a local identification code impressed on its spine.

The basic properties of the book, however, such as its title, publisher, author a
contents, are determined by a general description which applies to every individual co
the book is entitle(Object-Oriented Software Construct, it is published by Prentice
Hall, it talks about the object-oriented method, and so on. This set of properties defir
not an object but a class of objects (also called, in this castype of these objects; for
the time being the notions of type and class may be considered synonymous).

Call the clastOOSC. It defines a certain mold. Objects built from this mold, such as
your copy of the book, are callinstance: of the class. Another example of mold would
be the plaster cast that a sculptor makes to obtain an inverted version of the design f
set of identical statues; any statue derived from the cast is an instance of the mold.

168 THE STATIC STRUCTURE: CLASSES§7.2

In the quotation fronThe Name of the Rc which opens paC, the Master is explaining Pagel63.
how he was able to determine, from traces of the snow, that Brownie, the Abbot's horse,

earlier walked here. Brownie is an instance of the class of all horses. The sign on the

snow, although imprinted by one particular instance, includes only enough information

to determine the class (horse), not its identity (Brownie). Since the class, like the sign,
identifies all horses rather than a particular horse, the extract calls it a sign too.

Exactly the same concepts apply to software objects. What you will write in your
software systems is the description of classes, such as LINKED_STACkdescribing
properties of stacks in a certain representation. Any particular execution of your system
may use the classes to create objects (data structures); each such object is derived from a
class, and is called cinstance of that class. For example the execution may create a
linked stack object, derived from the description given in (LINKED_STACE such an
object is an instance of claLINKED_STACL

The class is a software text. It is static; in other words, it exists independently of any
execution. In contrast, an object derived from that class is a dynamically created data
structure, existing only in the memory of a computer during the execution of a system.

This, of course, is in line with the earlier discussion of abstract data types: when
specifyingSTACk as an ADT, we did not describe any particular stack, but the general
notion of stack, a mold from which one can derive individual instances ad libitum.

The statementsx is an instance oT” and “x is an object of typeT” will be
considered synonymous for this discussion.

With the introduction of inheritance we will need to distinguish betweenrdirect See“Instances”,
instance of a class (built from the exact pattern defined by the class) einstance in page 47
the more general sense (direct instances of the class or any of its specializations).

Metaclasses

Why would so many books and articles confuse two so clearly different notions as class
and object? One reason — although not an excuse — is the appeal of the word “object”, a
simple term from everyday language. But it is misleading. As we already saw in the
discussion of seamlessness, although some of the objects (class instances) which O-O
systems manipulate are the computer representations of objects in the usual sense of the
term, such as documents, bank accounts or airplanes, many others have no existence
outside of the software; they include in particular the objects introduced for design and
implementation purposes — instances of classes sSLSTATEor LINKED_LIST.

Another possible source of confusion between objects and classes is that in some
cases we may need to treat classes themselves as objects. This need arises only in special
contexts, and is mainly relevant to developers of object-oriented development
environments. For example a compiler or interpreter for an O-O language will manipulate
data structures representing classes written in that language. The same would hold of other
tools such as a browser (a tool used to locate classes and find out about their properties)
or a configuration management system. If you produce such tools, you will create objects
that represent classes.

§7.3 THE ROLE OF CLASSES 169

“Universal classes”,

page 58.

Se€“The creation
instruction”, page
232

Pursuing an analogy used earlier, we may compare this situation to that of a Prentice Hall
employee who is in charge of preparing the catalog of software engineering titles. For the
catalog writer, OOSC, the concept behind this book, is an object — an instance of a class
“catalog entry”. In contrast, for the reader of the book, that concept is a class, of which
the reader’s particular copy is an instance.

Some object-oriented languages, notably Smalltalk, have introduced a notion
metaclas: to handle this kind of situation. A metaclass is a class whose instances
themselves classes — what Name of the Ro extract called “signs of signs”.

We will avoid metaclasses in this presentation, however, since they bring mo
problems than benefits. In particular, the addition of metaclasses makes it difficult to he
static type checking, a required condition of the production of reliable software. The me
applications of metaclasses are better obtained through other mechanisms anyway:

* You can use metaclasses to make a set of features available to many or all clas
We will achieve the same result by arranging the inheritance structure so that
classes are descendants of a general-purpose, customizablANY, containing
the declarations of universal features.

* A few operations may be viewed as characterizing a class rather than its instanc
justifying their inclusion as features of a metaclass. But these operations are few ¢
known; the most obvious one is object creation — sufficiently important to desen
a special language construct, the creation instruction. (Other such operations, s
as object duplication, will be covered by features of CANY.)

* There remains the use of metaclasses to obtain information about a class, such
browser may need: name of the class, list of features, list of parents, list of suppli
etc. But we do not need metaclasses for that. It will suffice to devise a library clas
E CLAS, so that each instance E_CLAS! represents a class and its properties.
When we create such an instance, we pass to the creation instruction an argun
representing a certain claC; then by applying the various featuresE CLAS!to
that instance, we can learn all abC. t

In practice, then, we can do without a separate concept of metaclass. But even
method, language or environment that would support this notion, the presence
metaclasses is no excuse for confusing molds and their instances — classes and obje

7.3 THE ROLE OF CLASSES

Having taken the time to remove an absurd but common and damaging confusion, we r
now come back to the central properties of classes, and in particular study why they ar
important to object technology.

To understand the object-oriented approach, it is essential to realize that classes |
two roles which pre-O-O approaches had always treated as separate: module and typ

170 THE STATIC STRUCTURE: CLASSES§7.3

Modules and types

Programming languages and other notations used in software development (design
languages, specification languages, graphical notations for analysis) always include both
some module facility and some type system.

A module is a unit of software decomposition. Various forms of module, sucSee chapte3.
routines and packages, were studied in an earlier chapter. Regardless of the exact
of module structure, we may call the notion of modulsyntactic concept, since the
decomposition into modules only affects the form of software texts, not what the software
can do; it is indeed possible in principle to write any Ada program as a single package, or
any Pascal program as a single main program. Such an approach is not recommended, of
course, and any competent software developer will use the module facilities of the
language at hand to decompose his software into manageable pieces. But if we take an
existing program, for example in Pascal, we can always merge all the modules into a single
one, and still get a working system with equivalent semantics. (The presence of recursive
routines makes the conversion process less trivial, but does not fundamentally affect this
discussion.) So the practice of decomposing into modules is dictated by sound engineering
and project management principles rather than intrinsic necessity.

Types, at first sight, are a quite different concept. A type is the static description of
certain dynamic objects: the various data elements that will be processed during the
execution of a software system. The set of types usually includes predefined types such as
INTEGEF and CHARACTEL!I as well as developer-defined types: record types (also
known as structure types), pointer types, set types (as in Pascal), array types and others.
The notion of type is &emantic concept, since every type directly influences the
execution of a software system by defining the form of the objects that the system will
create and manipulate at run time.

The class as module and type

In non-O-O approaches, the module and type concepts remain distinct. The most
remarkable property of the notion of class is that it subsumes these two concepts, merging
them into a single linguistic construct. A class is a module, or unit of software
decomposition; but it is also a type (or, in cases involving genericity, a type pattern).

Much of the power of the object-oriented method derives from this identification.
Inheritance, in particular, can only be understood fully if we look at it as providing both
module extension and type specialization.

What is not clear yet ihow it is possible in practice to unify two concepts which
appear at first so distant. The discussion and examples in the rest of this chapter will
answer this question.

§7.4 A UNIFORM TYPE SYSTEM 171

The mathematical
axioms defining
integers are known
as Peano’s axionis

7.4 A UNIFORM TYPE SYSTEM

An important aspect of the O-O approach as we will develop it is the simplicity an
uniformity of the type system, deriving from a fundamental property:

Object rule

Every object is an instance of some class.

The Object rule will apply not just to composite, developer-defined objects (such
data structures with several fields) but also to basic objects such as integers, real numt
boolean values and characters, which will all be considered to be instances of predefi
library classesINTEGEF, REAL, DOUBLE, BOOLEAN CHARACTEI).

This zeal to make every possible value, however simple, an instance of some cl
may at first appear exaggerated or even extravagant. After all, mathematicians ¢
engineers have used integers and reals successfully for a long time, without knowing t
were manipulating class instances. But insisting on uniformity pays off for several reasor

* It is always desirable to have a simple and uniform framework rather than mai
special cases. Here the type system will be entirely based on the notion of class.

» Describing basic types as ADTs and hence as classes is simple and natural. It is
hard, for example, to see how to define the cINTEGEF with features covering
arithmetic operations such {'+", comparison operations such "<=", and the
associated properties, derived from the corresponding mathematical axioms.

« By defining the basic types as classes, we allow them to take part in all the O
games, especially inheritance and genericity. If we did not treat the basic types
classes, we would have to introduce severe limitations and many special cases.

As an example of inheritance, clasINTEGEF, REAL andDOUBLE will be heirs to more
general classeNUMERIC, introducing the basic arithmetic operations suc"+:", "-"

and "[1", and COMPARABLI, introducing comparison operations such"<". As an
example of genericity, we can define a generic c(MATRI* whose generic parameter
represents the type of matrix elements, so that instanMATRIX[INTEGEF| represent
matrices of integers, instancesMATRIX[REAL| represent matrices of reals and so on. As
an example of combining genericity with inheritance, the preceding definitions also allow
us to use the typMATRIX[NUMERIC], whose instances represent matrices containing
objects of type NTEGEF as well as objects of tyfREAL and objects of any new ty|T2
defined by a software developer so as to inherit NUMERIC.

With a good implementation, we do not need to fear any negative consequence fr
the decision to define all types from classes. Nothing prevents a compiler from havi
special knowledge about the basic classes; the code it generates for operations on v
of types such aINTEGERanc BOOLEAL can then be just as efficient as if these were
built-in types in the language.

172 THE STATIC STRUCTURE: CLASSES§7.5

Reaching the goal of a fully consistent and uniform type system requires the
combination of several important O-O techniques, to be seen only later: expanded classes,
to ensure proper representation of simple values; infix and prefix operators, to enable
usual arithmetic syntax (such a < b or —a rather than the more cumbersc auless
than(b) or a.negater); constrained genericity, needed to define classes which may be
adapted to various types with specific operations, for example aMATRIXthat can
represent matrices of integers as well as matrices of elements of other numeric types.

7.5 A SIMPLE CLASS

Let us now see what classes look like by studying a simple but typical example, which
shows some of the fundamental properties applicable to almost all classes.

The features
The example is the notion of point, as it could appear in a two-dimensional graphics system.

A A point and its
coordinates

R g
e LI _

To characterize typPOINT as an abstract data type, we would need the four query
functionsx, vy, p, 6. (The names of the last two will be spelled oufrho andthete in
software texts.) Functiox gives the abscissa of a point (horizontal coordinay its
ordinate (vertical coordinatep its distance to the origii the angle to the horizontal axis.
The values ox andy for a point are called its cartesian coordinates, thoy: and® its
polar coordinates. Another useful query functiodistance, which will yield the distance
between two points.

Then the ADT specification would list commands suctranslate (fto move a point The nameranslate
by a given horizontal and vertical displacemerotate (to rotate the point by a certain{e;'?fsnto the ;‘Ffa”;'
angle, aro_und the origin) arscale (to bring the point closer to or further from the origilgae':r?]e?rffra on
by a certain factor).

It is not difficult to write the full ADT specification including these functions and
some of the associated axioms. For example, two of the function signatures will be

x: POINT -~ REAL
translate: POINT x REAL x REAL — POINT

and one of the axioms will be (for any pop and any reala, b):
X (translate(pl, a, b)) = x(pl) + a

expressing that translating a point<a, b> increases its abscissa a.y

§7.5 A SIMPLE CLASS 173

ExerciseE7.2, page
21€.

“Function catego-
ries”, page 13:

Representing a
point in
cartesian
coordinates

Representing a
point in polar
coordinates

You may wish to complete this ADT specification by yourself. The rest of this
discussion will assume that you have understood the ADT, whether or not you ha
written it formally in full, so that we can focus on its implementation — the class.

Attributes and routines

Any abstract data type suchPOINT is characterized by a set of functions, describing the
operations applicable to instances of the ADT. In classes (ADT implementations
functions will yield features — the operations applicable to instances of the class.

We have seen that ADT functions are of three kinds: queries, commands a
creators. For features, we need a complementary classification, based on how each fe:
is implemented: by space or bgne.

The example of point coordinates shows the difference clearly. Two commc
representations are available for points: cartesian and polar. If we choose carte:
representation, each instance of the class will contain two fields representx andy:
of the corresponding point:

y

(CARTESIAN_POINJT

If plis the point shown, getting itx or itsy simply requires looking up the
corresponding field in this structure. Gettip or 6, however, requires a computation: for
p we must computéd +y’, and foré we must computarctg (y/x) with non-zercx.

If we use polar representation, the situation is reveip and6 are now accessible
by simple field lookupx andy require small computations (p cos6 andp sin8).

rho

theta

(POLAR_POINY

This example shows the need for two kinds of feature:

* Some features will be represented by space, that is to say by associating a cel
piece of information with every instance of the class. They will be cattributes.
For points,x andy are attributes in cartesian representatirho and thete are
attributes in polar representation.

174 THE STATIC STRUCTURE: CLASSES§7.5

* Some features will be represented by time, that is to say by defining a certain
computation (an algorithm) applicable to all instances of the class. They will be
calledroutines. For pointsrho andthete are routines in cartesian representaton;
andy are routines in polar representation.

A further distinction affects routines (the second of these categories). Some routines
will return a result; they are calldunctions. Herex andy in polar representation, as well
asrho andthete in cartesian representation, are functions since they return a result, of type
REAL. Routines which do not return a result correspond to the commands of an ADT
specification and are calleprocedures. For example the clasPOINT will include
proceduretranslate, rotate andscale.

Be sure not to confuse the use of “function” to denote result-returning routines in classes
with the earlier use of this word to denote the mathematical specifications of operations
in abstract data types. This conflict is unfortunate, but follows from well-established
usage of the word in both the mathematics and software fields.

The following tree helps visualize this classification of features:

Feature Feature

classificatior,
by role

No result:Command Returns resultQuery

No argument

Procedure

Computatio Memory

Function

i Attribute
ROUTINE Function

This is an external classification, in which the principal question is how a feature will
look to its clients (its users).

We can also take a more internal view, using as primary criterion how each feature
is implemented in the class, and leading to a different classification:

§7.5 A SIMPLE CLASS 175

Feature
classification

by

implementation

See‘Uniform
Access”, page 55

Feature

Routine Attribute

No result Returns result

Procedure Function

Uniform access

One aspect of the preceding classifications may at first appear disturbing and has pert
caught your attention. In many cases, we should be able to manipulate objects,
example a poinpl, without having to worry about whether the internal representation o
plis cartesian, polar or other. Is it appropriate, then, to distinguish explicitly betwee
attributes and functions?

The answer depends on whose view we consider: the supplier’s view (as seen by
author of the class itself, hePOINT) or the client’s view (as seen by the author of a class
that usesPOINT). For the supplier, the distinction between attributes and functions i
meaningful and necessary, since in some cases you will want to implement a feature
storage and in others by computation, and the decision must be reflected somewh
What would be wrong, however, would be to force clients to be aware of the
difference. If | am accessirpl, | want to be able to find out ix or itsp without having
to know how such queries are implemented.

The Uniform Access principle, introduced in the discussion of modularity, answel
this concern. The principle states that a client should be able to access a property o
object using a single notation, whether the property is implemented by memory or
computation (space or time, attribute or routine). We shall follow this important principl
in devising a notation for feature call below: the expression denoting the value xf the
feature forp1 will always be

pl.x
whether its effect is to access a field of an object or to execute a routine.

As you will have noted, the uncertainty can only exist for queries without arguments,
which may be implemented as functions or as attributes. A command mustbe a procedure;
a query with arguments must be a function, since attributes cannot have arguments.

176 THE STATIC STRUCTURE: CLASSES§7.5

The Uniform Access principle is essential to guarantee the autonomy of the
components of a system. It preserves the class designer’'s freedom to experiment with
various implementation techniques without disturbing the clients.

Pascal, C and Ada violate the principle by providing a different notation for a function
call and for an attribute access. For such non-object-oriented languages this is
understandable (although we have seen that Algol W, a 1966 predecessor to Pascal,
satisfied uniform access). More recent languages such as C++ and Java also do not
enforce the principle. Departing from Uniform Access may cause any internal
representation change (such as the switch from polar to cartesian or some other
representation) to cause upheaval in many client classes. This is a primary source of
instability in software development.

The Uniform Access principle also yields a requirement on documentaUsing assertions
techniques. If we are to apply the principle consistently, we must ensure that it ifor documentation:

possible to determine, from the official documentation on a class, whether a query Wtct?gsssr’}o;;fgérgg a

arguments is a function or an attribute. This will be one of the properties of the stai.uc.«
mechanism for documenting a class, known as the short form.

The class

Here is a version of the class text POINT. (Any occurrence of consecutive dasl--2s
introduces a comment, which extends to the end of the line; comments are explanations
intended for the reader of the class text and do not affect the semantics of the class.)

indexing
descriptior: "Two-dimensional poin"s
clas: POINTfeature

X, y: REAL
-- Abscissa and ordinate

rho: REALIs
-- Distance to origin (0, 0)
do
Result=sqrt(x * 2 +y "))
end

thete: REALIs
-- Angle tc horizonta axis
do
...Left to reader (exercise E7.3, page 216) °©
end

§7.6 BASIC CONVENTIONS 177

distance(p: POINT): REALIs
-- Distance tcp
do
Result=sqrt(x —px)*"2+(y—py) " 2
end

translate(a, b: REAL) is
-- Move bya horizontally,b vertically.
do
X=X +a
y=y+b
end

scale(factor: REAL) is
-- Scale byfactor.
do
x = factord x
y :=factorOy
end

rotate(p: POINT; angle REAL) is
-- Rotate arounip by angle.
do
...Left to reader (exercise E7.3, page 2...))
end

end

The next few sections explain in detail the non-obvious aspects of this class text.

The class mainly consists of a clause listing the various features and introduced

the keywordfeature. There is also arindexing clause giving generadescription

information, useful to readers of the class but with no effect on its execution semanti

Later on we will learn three optional clausinherit for inheritancecreation for non-

default creation aninvariant for introducing class invariants; we will also see how to

include two or mordeature clauses in one class.

7.6 BASIC CONVENTIONS

ClassPOINT shows a number of techniques which will be used throughout later example

Let us first look at the basic conventions.
Recognizing feature kinds

Featurex andy are just declared as being of tyREAL, with no associated algorithm; so
they can only be attributes. All other features have a clause of the form

178 THE STATIC STRUCTURE: CLASSES87.6

do
. Instruction....
end

which defines an algorithm; this indicates the feature is a routine. Rorho, thete and
distance are declared as returning a result, of tREAL in all cases, as indicated by
declarations of the form

rho: REALIs ...

This defines them as functions. The other ttranslate andscale, do not return a
result (since they do not have a result declaration of the :T. for some typeT), and so
they are procedures.

Sincex andy are attributes, whilrho andthetz are functions, the representation
chosen in this particular class for points is cartesian.

Routine bodies and header comments

The body of a routine (thdo clause) is a sequence of instructions. You can IFor details sefThe
semicolons, in the Algol-Pascal tradition, to separate successive |nstruct|onsW<’=1f0fthe Semico-
declarations, but the semicolons are optional. We will omit them for simplicity betw©"S" Page 897
elements on separate lines, but will always include them to delimit instructions or
declarations appearing on the same line.

All the instructions in the routines of claPOINT are assignments; for assignment,
the notation uses tl:= symbol (again borrowed from the Algol-Pascal conventions). This
symbol should of course not be confused with the equality syr=, used, as in
mathematics, as a comparison operator.

Another convention of the notation is the use of header comments. As already noted,
comments are introduced by two consecutive da--. They may appear at any place in
a class text where the class author feels that readers will benefit from an explanation. A
special role is played by theader commenwhich, as a general style rule, should appear
at the beginning of every routine, after the keywis, indented as shown by the examples
in classPOINT. Such a header comment should tersely express the purpose of the routine.

Attributes should also have a header comment immediately following their
declaration, aligned with routine’s header comments, as illustrated herx andy.

The indexing clause

At the beginning of the class comes a clause starting with the keyindexing. It See“A note about
contains a single entry, labeldescriptior. The indexing clause has no effect on softwgcomponent index-
execution, but serves to associate information with the class. In its general form it co™9" P39¢ 7¢
zero or more entries of the form

index_worc index_valu, index_valu, ...

where theindex_worc is an arbitrary identifier, and eadndex_valu is an arbitrary
language element (identifier, integer, st...).

§7.6 BASIC CONVENTIONS 179

Chapte 36

describes a general

0O-0 browsing
mechanism.

“Self-Documenta-
tion”, page 5¢

An “entity” is a
name denoting a
value. Full defini-
tion on page212.

Initialization rules
will be given ir‘The
creation instruc-
tion”, page 23..

The benefit is twofold:
* Readers of the class geta summary of its properties, without having to see the det

« In a software development environment supporting reuse, query tools (often kno
asbrowser) can use the indexing information to help potential users find out abot
available classes; the tools can let the users enter various search words and m
them with the index words and values.

The example has a single indexing entry, vdescriptionas index word and, as
index value, a string describing the purpose of the class. All classes in this book, save
short examples, will include descriptionentry. You are strongly encouraged to follow
this example and begin every class text withindexing clause providing a concise
overview of the class, in the same way that every routine begins with a header comme

Both indexing clauses and header comments are faithful applications of the Se
Documentation principle: as much as possible of a module’s documentation should apg
in the text of the module itself.

Denoting a function’s result

We need another convention to understand the texts of the functions iPOINT: rho,
thete anddistanct.

Any language that supports functions (value-returning routines) must offer
notation allowing the body of a function to set the value which will be returned by an
particular call. The convention used here is simple: it relies on a predefined entity nar
Resul, denoting the value that the call will return. For example, the borho contains
an assignment tResul:

Result=sqrt(x "2+ y "))

Resul is a reserved word, and may only appear in functions. In a function declar:
as having a result of ty[T, Resul is treated in the same way as other entities, and may b
assigned values through assignment instructions such as the above.

Any call to the function will return, as its result, the final value assigniResult
during the call’'s execution. That value always exists since language rules (to be see!
detail later) require every execution of the routine, when it starts, to initResul to a
preset value. For REALthe initialization value is zero; so a function of the form

non_negative_valu(x: REAL): REALIs
-- The value ox if positive; zero otherwise.
do
if x> 0.0then
Result:= x
end
end
will always return a well-defined value (as described by the header comment) even thot
the conditional instruction has lelse part.

180 THE STATIC STRUCTURE: CLASSES87.6

The discussion section of this chapter examines the rationale behitResubt See‘Denoting the
convention and compares it with other techniques such as return instructions. Alttresultofafunction”,
this convention addresses an issue that arises in all design and programming languP29¢ 2"
blends particularly well with the rest of the object-oriented approach.

Style rules

The class texts in this book follow precise style conventions regarding indentation, fonts
(for typeset output), choice of names for features and classes, use of lower and upper case.

The discussion will point out these conventions, under the heading “style rules”, as
we go along. They should not be dismissed as mere cosmetics: quality software requires
consistency and attention to all details, of form as well as of content. The reusability goal
makes these observations even more important, since it implies that software texts will
have a long life, during which many people will need to understand and improve them.

You should apply the style rules right from the time you start writing a class. For
example you should never write a routine without immediately including its header
comment. This does not take long, and is not wasted time; in fact it is time saved for all
future work on the class, whether by you or by others, whether after half an hour or after
half a decade. Using regular indentation, proper spelling for comments and identifiers,
adequate lexical conventions — a space before each opening parenthesis but not after, and
so on — does not make your task any longer than ignoring these rules, but compounded
over months of work and heaps of software produces a tremendous difference. Attention
to such details, although not sufficient, is a necessary condition for quality software (and
quality, the general theme of this book, is what defines software engineering).

The elementary style rules are clear from the preceding class example. Sincéhz;biérze is
immediate goal is to explore the basic mechanisms of object technology, their pidevoted to style
description will only appear in a later chapter. rules.

Inheriting general-purpose facilities

Another aspect of clasPOINT which requires clarification is the presence of calls to the
sqri function (inrho anddistanci). This function should clearly return the square root of
a real number, but where does it come from?

Since it does not seem appropriate to encumber a general-purpose language with
specialized arithmetic operations, the best technique is to define such operations as
features of some specialized class — ARITHMETIC — and then simply require any
class that needs these facilities to inherit from the specialized class. As will be seen in
detail in a later chapter, it suffices then to wPOINT as

class POINTIinherit
ARITHMETIC
feature
... The rest as befou...
end

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 181

See'FACILITY
INHERITANCE",
24.9, page 84.7

This technique of inheriting general-purpose facilities is somewhat controversial; one can
argue that O-O principles suggest making a function susqrta feature of the class
representing the object to which it applies, for exanREAL. But there are many
operations on real numbers, not all of which can be included in the class. Square root may
be sufficiently fundamental to justify making it a feature of cREAL; then we would

write a. sqri rather tha sqrt(x). We will return, in the discussion of design principles, to

the question of whether “facilities” classes suclARITHMETIC are desirable.

7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION

Let us now move to the fundamental properties of (POINT by trying to understand a
typical routine body and its instructions, then studying how the class and its features n
be used by other classes — clients.

The current instance

Here again is the text of one of our example routines, proctranslate:

translate(a, b: REAL) is
-- Move bya horizontally,b vertically
do
X=X+ a
y:=y+b
end

At first sight this text appears clear enough: to translate a poia horizontally,b
vertically, we adca to itsx andb to itsy. But if you look at it more carefully, it may not
be so obvious anymore! Nowhere in the text have we stated what point we were talk
about. To whosx and whosey are we addina andb? In the answer to this question will
lie one of the most distinctive aspects of the object-oriented development style. Before
are ready to discover that answer we must understand a few intermediate topics.

A class text describes the properties and behavior of objects of a certain type, poi
in this example. It does so by describing the properties and behavior of a typical instal
of that type — what we could call the “point in the street” in the way newspapers repc
the opinion of the “man or woman in the street”. We will settle for a more formal nam
thecurrent instance of the class.

Once in a while, we may need to refer to the current instance explicitly. Th
reserved word

Current

will serve that purpose. In a class teCurrenidenotes the current instance of the enclosing
class. As an example of whCurren is needed, assume we rewidistance so that it
checks first whether the argumep is the same point as the current instance, in which cas
the result is 0 with no need for further computation. Tdistance will appear as

182 THE STATIC STRUCTURE: CLASSES87.7

distance (p: POINT): REAIs

-- Distance tp
do
if p/= Currentthen
Result:=sqrt(x — px) * 2 +(y — py) " 2)
end
end

(/= is the inequality operator. Because of the initialization rule mentioned above, the
conditional instruction does not needelse part: if p = Currentthe result is zero.)

In most circumstances, however, the current instance is implicit and we will not need
to refer toCurrent by its name. For example, referencex in the body ottranslate and
the other routines simply mean, if not further qualified: ‘x of the current instance”.

This only pushes back the mystery, of course: “who” realCurreni? The answer
will come with the study of routine calls below. As long as we only look at the routine text,
it will suffice to know that all operations are relative, by default, to an implicitly defined
object, the current instance.

Clients and suppliers

Ignoring for a few moments the enigmaCurrenfs identity, we know how to define
simple classes. We must now study how to use their definitions. Such uses will be in other
classes — since in a pure object-oriented approach every software element is part of some
class text.

There are only two ways to use a class sucPOINT. One is to inherit from it; this Chapters14 to 16
is studied in detail in later chapters. The other one is to becclient of POINT. study inheritanc.:

The simplest and most common way to become a client of a class is to declare an
entity of the corresponding type:

Definition: client, supplier

Let € be a class. A clasC which contains a declaration of the foa: S is
said to be a client <. Sis then said to be a supplierC.

In this definition,a may be an attribute or function C, or a local entity or argument
of aroutine oiC.

For example, the declarationsx, y, rho, thete anddistanctabove make claPOINT
a client ofREAL. Other classes may in turn become clientPOINT. Here is an example:

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 183

class GRAPHICSfeature
pl: POINT

some_routineds
-- Perform some actions wipl.
do
... Create an instance POINTand attach it tp1l ...
pl.translate(4.0, —1.5) --00

end

end

Before the instruction marke--[1[] gets executed, the attribip1 will have a value
denoting a certain instance of clePOINT. Assume that this instance represents the
origin, of coordinatex =0,y = 0:

The origin y 0.0
y 0.0
(POINT)

Entity p1 is said to beattached to this object. We do not worry at this point about
how the object has been created (by the unexplained line thatCreate objer...”)
and initialized; such topics will be discussed as part of the object model in the next chap
Let us just assume that the object exists andpl is attached to it.

Feature call

The starred instruction,
pl.translate(4.0, —1.5)

deserves careful examination since it is our first complete example of what may be cal
the basic mechanism of object-oriented computatic: feature call. In the execution of
an object-oriented software system, all computation is achieved by calling certain featu
on certain objects.

This particular feature call means: applyp1 the featuretranslate of classPOINT,
with argument4.0 and-1.5, corresponding ta andb in the declaration ctranslate as it
appears in the class. More generally, a feature call appears in its basic form as one of

x.f
x.f(u,v,...)

184 THE STATIC STRUCTURE: CLASSES87.7

In such a callx, called thetarget of the call, is an entity or expression (which at run
time will be attached to a certain object). As any other entity or exprex has a certain
type, given by a clasC; thenf must be one of the featuresC. More precisely, in the first
form, f must be an attribute or a routine without arguments; in the secondf must be
a routine with arguments, auw, v, ..., called theactual arguments for the call, must be
expressions matching in type and number the formal arguments declaf in C.r

In addition,f must be available (exported) to the client containing this call. Thi"SELECTIVE EX-
the default; a later section will show how to restrict export rights. For the momenPORTS AND INFOR-

. . MATION HIDING”,
features are available to all clients. 7.8, page 161

The effect of the above call when executed at run time is defined as follows:

Effect of calling a featuref on a targetx

Apply featuref to the object attached x, after having initialized each formgl
argument of (if any) to the value of the corresponding actual argument.

The Single Target principle

What is so special about feature call? After all, every software developer knows how to
write a proceduriranslate which moves a point by a certain displacement, and is called
in the traditional form (available, with minor variants, in all programming languages):

translate(pl, 4.0, —1.5)

Unlike the object-oriented style of feature call, however, this call treats all arguments
on an equal basis. The O-O form has no such symmetry: we choose a certain object (here
the pointpl) as target, relegating the other arguments, here the real nu4.0 and-1.5,
to the role of supporting cast. This way of making every call relative to a single target
object is a central part of the object-oriented style of computing:

Single Target principle

Every operation of object-oriented computation is relative to a certain object,
the current instance at the time of the operation’s execution.

To novices, this is often the most disconcerting aspect of the method. In object-
oriented software construction, we never really ask: “Apply this operation to these objects”.
Instead we say: “Apply this operation this object here.” And perhaps (in the second
form): “Oh, by the way, | almost forgot, you will need those values there as arguments”.

What we have seen so far does not really suffice to justify this convention; in fact its
negative consequences will, for a while, overshadow its advantages. An example of
counter-intuitive effect appears with the functdistance of classPOINT, declared above
asdistance(p: POINT): REAL, implying that a typical call will be written

pl.distance(p2)

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 185

“The class as mod-
ule and type”, page
17C.

which runs against the perceptiondistanctas a symmetric operation on two arguments.
Only with the introduction of inheritance will the Single Target fiple be fully
vindicated.

The module-type identification

The Single Target principle is a direct consequence of the module-type merge, preser
earlier as the starting point of object-oriented decomposition: if every module is a tyf
then every operation in the module is relative to a certain instance of that type (the curt
instance). Up to now, however, the details of that merge remained a little mysterious.
class, it was said above, is both a module and a type; but how can we reconcile
syntactic notion of module (a grouping of related facilities, forming a part of a softwat
system) with the semantic notion of type (the static description of certain possible ru
time objects)? The example POINT makes the answer clear:

How the module-type merge works

The facilities provided by cla:POINT, viewed as a module, are precise
the operations available on instances of cPOINT, viewed as a type.

y

This identification between the operations on instances of a type and the servi
provided by a module lies at the heart of the structuring discipline enforced by the obje
oriented method.

The role of Curren

With the help of the same example, we are now also in a position to clear the remain
mystery: what does the current instance really represent?

The form of calls indicates why the text of a routine (suctranslate in POINT)
does not need to specify “whCurrent is: since every call to the routine will be relative
to a certain target, specified explicitly in the call, the execution will treat every featul
name appearing in the text of the routine (for exarx in the text otranslate) as applying
to that particular target. So for the execution of the call

pl.translate(4.0, —1.5)

every occurrence « in the body ofrranslate, such as those in the instruction
X =Xx+a

means: “thex of p1”.

The exact meaning («Currenifollows from these observatiorCurreni means: “the
target of the current call”. For example, for the duration of the aboveCurren: will
denote the object attachedpl. In a subsequent caCurreniwill denote the target of that
new call. That this all makes sense follows from the extreme simplicity of the objec
oriented computation model, based on feature calls and on the Single Target principle

186 THE STATIC STRUCTURE: CLASSES87.7

Feature Call principle

F1 « No software element ever gets executed except as part of a routing call.

F2 « Every call has a target.

Qualified and unqualified calls

It was said above that all object-oriented computation relies on feature calls. A
consequence of this rule is that software texts actually contain more calls than meet the
eye at first. The calls seen so far were of one of the two forms introduced above:

x.f
x.f(u v, ...)

Such calls use so-called dot notation (with th” symbol) and are said to be
gualified because the target of the call is expljcdentified: it is the entity or expression
(x in both cases above) that appears before the dot.

Other calls, however, will be unqualified because their targets are implicit. As an
example, assume that we want to add to (POINT a proceduritransforn that will both
translate and scale a point. The procedure’s text may retranslate andscale:

transform(a, b, factor: REAL) is
-- Move bya horizontally,b vertically, then scale bfactor.
do
translate(a, b)
scale(factor)
end

The routine body contains callstranslate andscale. Unlike the earlier examples,
these calls do not show an explicit target, and do not use dot notation. Such calls are said
to beunqualified.

Unqualified calls do not violate the property calF2 in the Feature Call principle:
like qualified calls, they have a target. As you have certainly guessed, the target in this case
is the current instance. When procediransforn is called on a certain target, its body
callstranslate andscale on the same target. It could in fact have been written

do
Current.translate(a, b)
Current. scale(factor)

More generally, you may rewrite any unqualified call as a qualified callCurrent Strictly speaking, the

as its target. The unqualified form is of course simpler and just as clear. equivalence only
applies if the feature

The unqualified calls that we have just examined were calls to routines. The s exported.
discussion applies to attributes, although the presence of calls is perhaps less obvious in
this case. It was noted above that, in the bodtranslate, the occurrence cx in the
expressioix + a denotes thix field of the current instance. Another way of expressing this

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 187

The Object rule was

given on pag«l71.

property is thax is actually a feature call, so that the expression as a whole could ha
been written aCurrent x + a.

More generally, any instruction or expression of one of the forms

f
f(u v ...)

is in fact an unqualified call, and you may also write it in qualified form as (respectively

Current.f
Current.f (u, v, ...)

although the unqualified forms are more convenient. If you use such a notation as
instruction,f must be a procedure (with no argument in the first form, and with th
appropriate number and types of arguments in the second). If it is an exprf may be

an attribute (in the first form only, since attributes have no arguments) or a function.

Be sure to note that this syntactical equivalence only applies to a feature used a
instruction or an expression. So in the following assignment from proctranslate

X=X+a

only the occurrence c¢x on the right-hand side is an unqualified cia is a formal
argument, not a feature; and the occurrencx on the left is not an expression (one cannot
assign a value to an expression), so it would be meaningless t