
Apache HBase
Primer

—
Deepak Vohra

 Apache
HBase Primer

 Deepak Vohra

Apache HBase Primer

Deepak Vohra
White Rock, British Columbia
Canada

ISBN-13 (pbk): 978-1-4842-2423-6 ISBN-13 (electronic): 978-1-4842-2424-3
DOI 10.1007/978-1-4842-2424-3

Library of Congress Control Number: 2016959189

Copyright © 2016 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales–eBook Licensing web page at
 www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/mycopy

iii

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Introduction ... xvii

 ■Part I: Core Concepts .. 1

 ■Chapter 1: Fundamental Characteristics .. 3

 ■Chapter 2: Apache HBase and HDFS ... 9

 ■Chapter 3: Application Characteristics ... 45

 ■Part II: Data Model .. 49

 ■Chapter 4: Physical Storage ... 51

 ■Chapter 5: Column Family and Column Qualifi er 53

 ■Chapter 6: Row Versioning ... 59

 ■Chapter 7: Logical Storage ... 63

 ■Part III: Architecture ... 67

 ■Chapter 8: Major Components of a Cluster 69

 ■Chapter 9: Regions ... 75

 ■Chapter 10: Finding a Row in a Table ... 81

 ■Chapter 11: Compactions ... 87

 ■Chapter 12: Region Failover ... 99

 ■Chapter 13: Creating a Column Family 105

■ CONTENTS AT A GLANCE

iv

 ■Part IV: Schema Design .. 109

 ■Chapter 14: Region Splitting... 111

 ■Chapter 15: Defi ning the Row Keys .. 117

 ■Part V: Apache HBase Java API 121

 ■Chapter 16: The HBaseAdmin Class.. 123

 ■Chapter 17: Using the Get Class ... 129

 ■Chapter 18: Using the HTable Class .. 133

 ■Part VI: Administration ... 135

 ■Chapter 19: Using the HBase Shell ... 137

 ■Chapter 20: Bulk Loading Data ... 145

Index .. 149

v

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Introduction ... xvii

 ■Part I: Core Concepts .. 1

 ■Chapter 1: Fundamental Characteristics .. 3

Distributed ... 3

Big Data Store ... 3

Non-Relational ... 3

Flexible Data Model ... 4

Scalable ... 4

Roles in Hadoop Big Data Ecosystem .. 5

How Is Apache HBase Different from a Traditional RDBMS? 5

Summary ... 8

 ■Chapter 2: Apache HBase and HDFS ... 9

Overview ... 9

Storing Data .. 14

HFile Data fi les- HFile v1 ... 15

HBase Blocks .. 17

Key Value Format .. 18

HFile v2 ... 19

Encoding.. 20

■ CONTENTS

vi

Compaction ... 21

KeyValue Class .. 21

Data Locality .. 24

Table Format ... 25

HBase Ecosystem .. 25

HBase Services ... 26

Auto-sharding .. 27

The Write Path to Create a Table ... 27

The Write Path to Insert Data .. 28

The Write Path to Append-Only R/W .. 29

The Read Path for Reading Data ... 30

The Read Path Append-Only to Random R/W .. 30

HFile Format .. 30

Data Block Encoding ... 31

Compactions ... 32

Snapshots ... 32

The HFileSystem Class .. 33

Scaling .. 33

HBase Java Client API.. 35

Random Access ... 36

Data Files (HFile) ... 36

Reference Files/Links .. 37

Write-Ahead Logs .. 38

Data Locality .. 38

Checksums .. 40

Data Locality for HBase ... 42

■ CONTENTS

vii

MemStore .. 42

Summary ... 43

 ■Chapter 3: Application Characteristics ... 45

Summary ... 47

 ■Part II: Data Model .. 49

 ■Chapter 4: Physical Storage ... 51

Summary ... 52

 ■Chapter 5: Column Family and Column Qualifi er 53

Summary ... 57

 ■Chapter 6: Row Versioning ... 59

Versions Sorting .. 61

Summary ... 62

 ■Chapter 7: Logical Storage ... 63

Summary ... 65

 ■Part III: Architecture ... 67

 ■Chapter 8: Major Components of a Cluster 69

Master ... 70

RegionServers ... 70

ZooKeeper ... 71

Regions ... 72

Write-Ahead Log .. 72

Store .. 72

HDFS.. 73

Clients ... 73

Summary ... 73

■ CONTENTS

viii

 ■Chapter 9: Regions ... 75

How Many Regions? .. 76

Compactions ... 76

Region Assignment .. 76

Failover .. 77

Region Locality .. 77

Distributed Datastore .. 77

Partitioning .. 77

Auto Sharding and Scalability ... 78

Region Splitting ... 78

Manual Splitting .. 79

Pre-Splitting .. 79

Load Balancing .. 79

Preventing Hotspots .. 80

Summary ... 80

 ■Chapter 10: Finding a Row in a Table ... 81

Block Cache ... 82

The hbase:meta Table .. 83

Summary ... 85

 ■Chapter 11: Compactions ... 87

Minor Compactions ... 87

Major Compactions ... 88

Compaction Policy ... 88

Function and Purpose ... 89

Versions and Compactions .. 90

Delete Markers and Compactions ... 90

Expired Rows and Compactions .. 90

■ CONTENTS

ix

Region Splitting and Compactions .. 90

Number of Regions and Compactions ... 91

Data Locality and Compactions ... 91

Write Throughput and Compactions .. 91

Encryption and Compactions... 91

Confi guration Properties ... 92

Summary ... 97

 ■Chapter 12: Region Failover ... 99

The Role of the ZooKeeper .. 99

HBase Resilience ... 99

Phases of Failover ... 100

Failure Detection ... 102

Data Recovery ... 102

Regions Reassignment .. 103

Failover and Data Locality ... 103

Confi guration Properties ... 103

Summary ... 103

 ■Chapter 13: Creating a Column Family 105

Cardinality ... 105

Number of Column Families .. 106

Column Family Compression ... 106

Column Family Block Size ... 106

Bloom Filters ... 106

IN_MEMORY .. 107

MAX_LENGTH and MAX_VERSIONS ... 107

Summary ... 107

■ CONTENTS

x

 ■Part IV: Schema Design .. 109

 ■Chapter 14: Region Splitting... 111

Managed Splitting ... 112

Pre-Splitting .. 113

Confi guration Properties ... 113

Summary ... 116

 ■Chapter 15: Defi ning the Row Keys .. 117

Table Key Design ... 117

Filters .. 118

FirstKeyOnlyFilter Filter .. 118

KeyOnlyFilter Filter ... 118

Bloom Filters ... 118

Scan Time .. 118

Sequential Keys ... 118

Defi ning the Row Keys for Locality ... 119

Summary ... 119

 ■Part V: Apache HBase Java API 121

 ■Chapter 16: The HBaseAdmin Class.. 123

Summary ... 127

 ■Chapter 17: Using the Get Class ... 129

Summary ... 132

 ■Chapter 18: Using the HTable Class .. 133

Summary ... 134

■ CONTENTS

xi

 ■Part VI: Administration ... 135

 ■Chapter 19: Using the HBase Shell ... 137

Creating a Table ... 137

Altering a Table .. 138

Adding Table Data .. 139

Describing a Table ... 139

Finding If a Table Exists ... 139

Listing Tables ... 139

Scanning a Table ... 140

Enabling and Disabling a Table.. 141

Dropping a Table .. 141

Counting the Number of Rows in a Table .. 141

Getting Table Data ... 141

Truncating a Table ... 142

Deleting Table Data ... 142

Summary ... 143

 ■Chapter 20: Bulk Loading Data ... 145

Summary ... 147

Index .. 149

xiii

 About the Author

 Deepak Vohra is a consultant and a principal member of
the NuBean software company. Deepak is a Sun-certified
Java programmer and Web component developer. He has
worked in the fields of XML, Java programming, and Java
EE for over seven years. Deepak is the coauthor of Pro
XML Development with Java Technology (Apress, 2006).
Deepak is also the author of the JDBC 4.0 and Oracle
JDeveloper for J2EE Development, Processing XML
Documents with Oracle JDeveloper 11g, EJB 3.0 Database
Persistence with Oracle Fusion Middleware 11g , and Java
EE Development in Eclipse IDE (Packt Publishing). He
also served as the technical reviewer on WebLogic: The
Definitive Guide (O’Reilly Media, 2004) and Ruby
Programming for the Absolute Beginner (Cengage
Learning PTR, 2007).

xv

 About the Technical
Reviewer

 Massimo Nardone has more than 22 years of
experience in security, web/mobile development, and
cloud and IT architecture. His true IT passions are
security and Android. He has been programming and
teaching how to program with Android, Perl, PHP, Java,
VB, Python, C/C++, and MySQL for more than 20 years.
Technical skills include security, Android, cloud, Java,
MySQL, Drupal, Cobol, Perl, web and mobile
development, MongoDB, D3, Joomla, Couchbase,
C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,
Scratch, etc.

 He currently works as Chief Information
Security Office (CISO) for Cargotec Oyj. He holds four
international patents (PKI, SIP, SAML, and Proxy areas).
He worked as a visiting lecturer and supervisor for

exercises at the Networking Laboratory of the Helsinki University of Technology (Aalto
University). He has also worked as a Project Manager, Software Engineer, Research
Engineer, Chief Security Architect, Information Security Manager, PCI/SCADA Auditor,
and Senior Lead IT Security/Cloud/SCADA Architect for many years. He holds a Master
of Science degree in Computing Science from the University of Salerno, Italy.

 Massimo has reviewed more than 40 IT books for different publishing companies,
and he is the coauthor of Pro Android Games (Apress, 2015).

xvii

 Introduction

 Apache HBase is an open source NoSQL database based on the wide-column data store
model. HBase was initially released in 2008. While many NoSQL databases are available,
Apache HBase is the database for the Apache Hadoop ecosystem.

 HBase supports most of the commonly used programming languages such as C, C++,
PHP, and Java. The implementation language of HBase is Java. HBase provides access
support with Java API, RESTful HTTP API, and Thrift.

 Some of the other Apache HBase books have a practical orientation and do not
discuss HBase concepts in much detail. In this primer level book, I shall discuss Apache
HBase concepts. For practical use of Apache HBase, refer another Apress book: Practical
Hadoop Ecosystem .

 PART I

 Core Concepts

3© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_1

 CHAPTER 1

 Fundamental Characteristics

 Apache HBase is the Hadoop database. HBase is open source and its fundamental
characteristics are that it is a non-relational, column-oriented, distributed, scalable, big
data store. HBase provides schema flexibility. The fundamental characteristics of Apache
HBase are as follows.

 Distributed
 HBase provides two distributed modes. In the pseudo-distributed mode, all HBase
daemons run on a single node. In the fully-distributed mode , the daemons run on
multiple nodes across a cluster. Pseudo-distributed mode can run against a local file
system or an instance of the Hadoop Distributed File System (HDFS) . When run against
local file system, durability is not guaranteed. Edits are lost if files are not properly closed.
The fully-distributed mode can only run on HDFS. Pseudo-distributed mode is suitable
for small-scale testing while fully-distributed mode is suitable for production. Running
against HDFS preserves all writes.

 HBase supports auto-sharding, which implies that tables are dynamically split and
distributed by the database when they become too large.

 Big Data Store
 HBase is based on Hadoop and HDFS, and it provides low latency, random, real-time, read/
write access to big data. HBase supports hosting very large tables with billions of rows and
billions/millions of columns. HBase can handle petabytes of data. HBase is designed for
queries of massive data sets and is optimized for read performance. Random read access
is not a Apache Hadoop feature as with Hadoop the reader can only run batch processing,
which implies that the data is accessed only in a sequential way so that it has to search the
entire dataset for any jobs needed to perform.

 Non-Relational
 HBase is a NoSQL database. NoSQL databases are not based on the relational database
model. Relational databases such as Oracle database, MySQL database, and DB2
database store data in tables, which have relations between them and make use of

CHAPTER 1 ■ FUNDAMENTAL CHARACTERISTICS

4

SQL (Structured Query Language) to access and query the tables. NoSQL databases,
in contrast, make use of a storage-and-query mechanism that is predominantly based
on a non-relational, non-SQL data model. The data storage model used by NoSQL
databases is not some fixed data model; it is a flexible schema data model. The common
feature among the NoSQL databases is that the relational and tabular database model of
SQL-based databases is not used. Most NoSQL databases make use of no SQL at all, but
NoSQL does not imply absolutely no SQL is used, because of which NoSQL is also termed
as “not only SQL.”

 Flexible Data Model
 In 2006 the Google Labs team published a paper entitled “BigTable: A Distributed Storage
System for Structured Data" (http://static.googleusercontent.com/media/research.
google.com/en//archive/bigtable-osdi06.pdf). Apache HBase is a wide-column data
store based on Apache Hadoop and on BigTable concepts. The basic unit of storage in
HBase is a table . A table consists of one or more column families , which further consists
of columns . Columns are grouped into column families. Data is stored in rows . A row is a
collection of key/value pairs. Each row is uniquely identified by a row key. The row keys
are created when table data is added and the row keys are used to determine the sort
order and for data sharding , which is splitting a large table and distributing data across
the cluster.

 HBase provides a flexible schema model in which columns may be added to a table
column family as required without predefining the columns. Only the table and column
family/ies are required to be defined in advance. No two rows in a table are required to
have the same column/s. All columns in a column family are stored in close proximity.

 HBase does not support transactions. HBase is not eventually consistent but is a
 strongly consistent at the record level. Strong consistency implies that the latest data is
always served but at the cost of increased latency. In contrast, eventual consistency can
return out-of-date data.

 HBase does not have the notion of data types, but all data is stored as an array of bytes.
 Rows in a table are sorted lexicographically by row key, a design feature that makes

it feasible to store related rows (or rows that will be read together) together for optimized
scan.

 Scalable
 The basic unit of horizontal scalability in HBase is a region . Rows are shared by regions. A
region is a sorted set consisting of a range of adjacent rows stored together. A table’s data
can be stored in one or more regions. When a region becomes too large, it splits into two
at the middle row key into approximately two equal regions. For example, in Figure 1-1 ,
the region has 12 rows, and it splits into two regions with 6 rows each.

http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

CHAPTER 1 ■ FUNDAMENTAL CHARACTERISTICS

5

 For balancing, data associated with a region can be stored on different nodes in a
cluster.

 Roles in Hadoop Big Data Ecosystem
 HBase is run against HDFS in the fully-distributed mode; it also has the same option
available in the pseudo-distributed mode. HBase stores data in StoreFiles on HDFS.
HBase does not make use of the MapReduce framework of Hadoop but could serve as the
source and/or destination of MapReduce jobs.

 Just as Hadoop, HBase is designed to run on commodity hardware with tolerance
for individual node failure. HBase is designed for batch processing systems optimized for
streamed access to large data sets. While HBase supports random read access, HBase is
not designed to optimize random access. HBase incurs a random read latency which may
be reduced by enabling the Block Cache and increasing the Heap size.

 HBase can be used for real-time analytics in conjunction with MapReduce and other
frameworks in the Hadoop ecosystem, such as Apache Hive.

 How Is Apache HBase Different from a Traditional
RDBMS?
 HBase stores data in a table, which has rows and column just as a RDBMS does, but the
databases are mostly different, other than the similar terminology. Table 1-1 shows the
salient differences.

 Figure 1-1. Region split example

CHAPTER 1 ■ FUNDAMENTAL CHARACTERISTICS

6

 Table 1-1. Salient Differences Between HBase and RDBMS

 Feature RDBMS HBase

 Schema Fixed schema Flexible schema

 Data volume Small to medium (few
thousand or a million rows).
TB of data.

 Big Data (hundreds of
millions or billions rows). PB
of data.

 Primary query language SQL Get, Put, Scan shell
commands.

 Data types Typed columns No data types

 Relational integrity Supported Not supported

 Joins Supports joins, such as
equi-joins and outer-joins

 Does not provide built-in
support for joins. Joins using
MapReduce.

 Data structure Highly structured and
statically structured. Fixed
data model.

 Un-structured, semi-
structured, and structured.
Flexible data model.

 Transactions Supported Not supported

 Advanced query language Supported Not supported

 Indexes Primary, secondary, B-Tree,
Clustered

 Secondary indexes

 Consistency Strongly consistent. CAP
theorem consistency.

 Strongly consistent. ACID
consistency.

 Scalability Provides some level of
scalability with vertical
scaling in which additional
capacity may be added to a
server

 Highly scalable with
horizontal scalability in
which additional servers
may be added. Scales
linearly.

 Distributed Distributed to some extent Highly distributed

 Real-time queries Supported Supported

 Triggers Supported Provides RDBMS-
like triggers through
coprocessors

 Hardware Specialized hardware and
less hardware

 Commodity hardware and
more hardware

 Stored procedures Supported Provides stored procedures
through coprocessors

 Java Does not require Java Requires Java

 High Availability Supported Ultra-high availability

(continued)

CHAPTER 1 ■ FUNDAMENTAL CHARACTERISTICS

7

Table 1-1. (continued)

 Feature RDBMS HBase

 Fault tolerant Fault tolerant to some extent Highly fault tolerant

 Normalization Required for large data sets Not required

 Object-oriented
programming model

 Because of the complexity
of aggregating data, using
JOINS using an object-
oriented programming
model is not suitable.

 The key-value storage makes
HBase suitable for object-
oriented programming
model. Supported with
client APIs in object-
oriented languages such as
PHP, Ruby, and Java.

 Administration More administration Less administration with
auto-sharding, scaling, and
rebalancing

 Architecture Monolithic Distributed

 Sharding Limited support. Manual
server sharding. Table
partitioning.

 Auto-sharding

 Write performance Does not scale well Scales linearly

 Single point of failure With single point of failure Without single point of
failure

 Replication Asynchronous Asynchronous

 Storage model Tablespaces StoreFiles (HFiles) in HDFS

 Compression Built-in with some RDBMS
in storage engine/table/
index. Various methods
available to other RDBMS.

 Built-in Gzip compression

 Caching Standard data/metadata
cache with query cache

 In-memory caching

 Primary data object Table Table

 Read/write throughput 1000s of queries per second Millions of queries per
second

 Security Authentication/
Authorization

 Authentication/
Authorization

 Row-/Column- Oriented Row-oriented Column-oriented

 Sparse tables Suitable for sparse tables Not optimized for sparse
tables

 Wide/narrow tables Narrow tables Wide tables

 MapReduce integration Not designed for MR
integration

 Well integrated

CHAPTER 1 ■ FUNDAMENTAL CHARACTERISTICS

8

 Summary
 In this chapter, I discussed the fundamental characteristics of big data store Apache
HBase, which are its distributedness, scalability, non-relational, and flexible model. I
also discussed HBase's role in the Hadoop big data ecosystem and how is HBase different
from traditional RDBMS. In the next chapter, I will discuss how HBase stores its data in a
HDFS.

9© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_2

 CHAPTER 2

 Apache HBase and HDFS

 Apache HBase runs on HDFS as the underlying filesysystem and benefits from HDFS features
such as data reliability, scalability, and durability. HBase stores data as Store Files (HFiles)
on the HDFS Datanodes. HFile is the file format for HBase and org.apache.hadoop.hbase.
io.hfile.HFile is a Java class. HFile is an HBase-specific file format that is based on the
 TFile binary file format. A Store File is a lightweight wrapper around the HFile. In addition
to storing table data HBase also stores the write-ahead logs (WALs), which store data before
it is written to HFiles on HDFS. HBase provides a Java API for client access. HBase itself is a
HDFS client and makes use of the Java class DFSClient . References to DFSClient appear in
the HBase client log messages and HBase logs as HBase makes use of the class to connect to
NameNode to get block locations for Datanode blocks and add data to the Datanode blocks.
HBase leverages the fault tolerance provided by the Hadoop Distributed File System (HDFS) .
HBase requires some configuration at the client side (HBase) and the server side (HDFS).

 Overview
 HBase storage in HDFS has the following characteristics :

• Large files

• A lot of random seeks

• Latency sensitive

• Durability guarantees with sync

• Computation generates local data

• Large number of open files

 HBase makes use of three types of files:

• WALs or HLogs

• Data files (also known as store files or HFile s)

• 0 length files: References (symbolic or logical links)

 Each file is replicated three times. Data files are stored in the following format
in which "userTable" and "table1" are example tables, and "098345asde5t6u"
and "09jhk7y65" are regions, and "family" and "f1" are column families, and
"09ojki8dgf6" and "90oifgr56" are the data files:

CHAPTER 2 ■ APACHE HBASE AND HDFS

10

 hdfs://localhost:41020/hbase/userTable/098345asde5t6u/family/09ojki8dgf6
 hdfs://localhost:41020/hbase/userTable/09drf6745asde5t6u/family/09ojki8ddfre5
 hdfs://localhost:41020/hbase/table1/09jhk7y65/f1/90oifgr56

 Write-ahead logs are stored in the following format in which "server1" is the region server:

 hdfs://localhost:41020/hbase/.logs/server1,602045,123456090
 hdfs://localhost:41020/hbase/.logs/server1,602045,123456090/server1%2C134r5

 Links are stored in the following format in which "098eerf6" is a region, "family" is
a column family and "8uhy67" is the link:

 hdfs://localhost:41020/hbase/.hbase_snapshot/usertable_snapshot/098eerf6/
family/8uhy67

 Datanode failure is handled by HDFS using replication. HBase provides real-time,
random, read/write access to data in the HDFS. A data consumer reads data from HBase,
which reads data from HDFS, as shown in Figure 2-1 . A data producer writes data to
HBase, which writes data to HDFS. A data producer may also write data to HDFS directly.

 Figure 2-1. Apache HBase read/write path

 HBase is the most advanced user of HDFS and makes use of the HFileSystem
(an encapsulation of FileSystem) Java API. HFileSystem has the provision to use
separate filesystem objects for reading and writing WALs and HFiles. The HFileSystem.
create(Path path) method is used to create the HFile data files and HLog WALs .

 HBase communicates with both the NameNode and the Datanodes using HDFS
 Client classes such as DFSClient . HDFS pipelines communications, including data
writes, from one Datanode to another as shown in Figure 2-2 . HBase write errors,
including communication issues between Datanodes, are logged to the HDFS logs and
not the HBase logs. Whenever feasible HBase writes are local, which implies that the
writes are to a local Datanode. As a result, Region Servers should not get too many write
errors. Errors may be logged in both HDFS and HBase but if a Datanode is not able to
replicate data blocks, errors are written to HDFS logs and not the HBase logs.

CHAPTER 2 ■ APACHE HBASE AND HDFS

11

 The hdfs-site.xml configuration file contains information like the following:

• The value of replication factor

• NameNode path

• Datanode path of the local file systems where you want to store
the Hadoop infrastructure

 A HBase client communicates with the ZooKeeper and the HRegionServers . The
 HMaster coordinates the RegionServers. The RegionServers run on the Datanodes.
When HBase starts up, the HMaster assigns the regions to each RegionServer, including
the regions for the –ROOT- and .META. (hbase:meta catalog table in later version) tables.
The HBase table structure comprises of Column Families (or a single Column Family),
that group similar column data. The basic element of distribution for an HBase table is
a Region, which is further comprised of a Store per column family. A Region is a subset
of a table’s data. A set of regions is served by a RegionServer and each region is served by
only one RegionServer. A Store has an in-memory component called the MemStore and a
persistent storage component called an HFile or StoreFile. The DFSClient is used to store
and replicate the HFiles and HLogs in the HDFS datanodes. The storage architecture of
HBase is shown in Figure 2-3 .

 Figure 2-2. Apache HBase communication with NameNode and Datanode

CHAPTER 2 ■ APACHE HBASE AND HDFS

12

 As shown in Figure 2-3 , the HFiles and HLogs are primarily handled by the HRegions
but sometimes even the HRegionServers have to perform low-level operations. The
following flow sequence is used when a new client contacts the ZooKeeper quorum to
find a row key:

 1. First, the client gets the server name that hosts the –ROOT-
region from the ZooKeeper. In later versions, the –ROOT-
region is not used and the hbase:meta table location is stored
directly on the ZooKeeper.

 2. Next, the client queries the server to get the server that hosts
the .META. tables. The –ROOT- and .META. server info is
cached and looked up once only.

 3. Subsequently, the client queries the .META. server to get the
server that has the row the client is trying to get.

 4. The client caches the information about the HRegion in which
the row is located.

 5. The client contacts the HRegionServer hosting the region
directly. The client does not need to contact the .META. server
again and again once it finds and caches information about
the location of the row/s.

 6. The HRegionServer opens the region and creates a HRegion
object. A store instance is created for each HColumnFamily
for each table. Each of the store instances can have StoreFile
instances, which are lightweight wrappers around the HFile
storage files. Each HRegion has a MemStore and a HLog
instance.

 Figure 2-3. Apache HBase storage architecture

CHAPTER 2 ■ APACHE HBASE AND HDFS

13

 HBase communicates with HDFS on two different ports:

 1. Port 50010 using the ipc.Client interface. It is configured in
HDFS using the dfs.datanode.ipc.address configuration
parameter.

 2. Port 50020 using the DataNode class. It is configured in HDFS
using the dfs.datanode.address configuration parameter.

 Being just another HDFS client, the configuration settings for HDFS also apply
to HBase. Table 2-1 shows how the HDFS configuration settings pertain to retries and
timeouts.

 Table 2-1. HDFS Configuration Settings

 Configuration setting Description Configuration file

 ipc.client.connect.max.
retries

 Number of tries a HBase client
will make to establish a server
connection. Default is 10. For
SASL connections, the setting is
hard coded at 15 and cannot be
reconfigured.

 core-default.xml

 ipc.client.connect.max.
retries.on.timeouts

 Number of tries an HBase client will
make on socket timeout to establish
a server connection. Default is 45.

 core-default.xml

 dfs.client.block.write.
retries

 Number of retries HBase makes to
write to a datanode before signaling
a failure. Default is 3. After hitting the
failure threshold, the HBase client
reconnects with the NameNode
to get block locations for another
datanode.

 hdfs-default.xml

 dfs.client.socket-
timeout

 The time before which an HBase
client trying to establish socket
connection or reading times out.
Default is 60 secs.

 hdfs-default.xml

 dfs.datanode.socket.
write.timeout

 The time before which a write
operation times out. Default is 8
minutes.

 hdfs-default.xml

CHAPTER 2 ■ APACHE HBASE AND HDFS

14

 Storing Data
 Data is written to the actual storage in the following sequence:

 1. The client sends an HTable.put(Put) request to the
HRegionServer. The org.apache.hadoop.hbase.client.
HTable class is used to communicate with a single HBase
table. The class provides the put(List<Put> puts) and the
 put(Put put) methods to put some data in a table. The org.
apache.hadoop.hbase.client.Put class is used to perform
 Put operations for a single row.

 2. The HRegionServer forwards the request to the matching
HRegion.

 3. Next, it is ascertained if data is to be written to the WAL, which
is represented with the HLog class. Each RegionServer has a
 HLog object. The Put class method setWriteToWAL(boolean
write) , which is deprecated in HBase 0.94, or the
 setDurability(Durability d) method is used to set if data
is to be written to WAL. Durability is an enum with values listed
in Table 2-2 ; Put implements the Mutation abstract class,
which is extended by classes implementing put, delete, and
append operations.

 Table 2-2. Durability Enums

 Durability Enum Description

 ASYNC_WAL Write the Mutation to the WAL asynchronously as soon as possible.

 FSYNC_WAL Write the Mutation to the WAL synchronously and force the entries
to disk.

 SKIP_WAL Do not write the Mutation to the WAL.

 SYNC_WAL Write the Mutation to the WAL synchronously.

 USE_DEFAULT Use the column family's default setting to determine durability.

 The WAL is a standard sequence file (SequenceFile) instance. If data is to be written
to WAL, it is written to the WAL.

 1. After the data is written (or not) to the WAL, it is put in the
 MemStore . If the MemStore is full, data is flushed to the disk.

 2. A separate thread in the HRegionServer writes the data to an
HFile in HDFS. A last written sequence number is also saved.

 The HFile and HLog files are written in subdirectories of the root directory in HDFS
for HBase, the /hbase directory. The HLog files are written to the /hbase/.logs directory.
A sub-directory for each HRegionServer is created within the .logs directory. Within the
 HLog file, a log is written for each HRegion.

CHAPTER 2 ■ APACHE HBASE AND HDFS

15

 For the data files (HFiles), a subdirectory for each HBase table is created in the
 /hbase directory. Within the directory (ies) corresponding to the tables, subdirectories
for regions are created. Each region name is encoded to create the subdirectory for the
region. Within the region’s subdirectories, further subdirectories are created for the
column families. Within the directories for the column family, the HFile files are stored.
As a result, the directory structure in HDFS for data files is as follows:

 /hbase/<tablename>/<encoded-regionname>/<column-family>/<filename>

 The root of the region directory has the .regioninfo file containing metadata for
the region. HBase regions split automatically if the HFile data file’s storage exceeds the
limit set by the hbase.hregion.max.filesize setting in the hbase-site.xml/hbase-
default.xml configuration file. The default setting for hbase.hregion.max.filesize is
10GB. When the default storage requirement for a region exceeds the hbase.hregion.
max.filesize parameter value, the region splits into two and reference files are created
in the new regions. The reference files contain information such as the key at which the
region was split. The reference files are used to read the original region data files. When
compaction is performed, new data files are created in a new region directory and the
reference files are removed. The original data files in the original region are also removed.

 Each /hbase/table directory also contains a compaction.dir directory, which is
used when splitting and compacting regions.

 HFile Data files- HFile v1
 Up to version 0.20, HBase used the MapFile format. In HBase 0.20, MapFile is replaced by the
HFile format. HFile is made of data blocks, which have the actual data, followed by metadata
blocks (optional), a fileinfo block, the data block index, the metadata block index, and a
fixed size trailer, which records the offsets at which the HFile changes content type.

 <data blocks><meta blocks><fileinfo><data index><meta index><trailer>

 Each block has a “magic” at the start. Blocks are in a key/value format. In data blocks,
both the key and the value are a byte array. In metadata blocks, the key is a String and the
value is a byte array. An empty file structure is as follows:

 <fileinfo><trailer>

 The HFile format is based on the TFile binary file format. The HFile format version 1
is shown in Figure 2-4 .

 Figure 2-4. HFile file format

CHAPTER 2 ■ APACHE HBASE AND HDFS

16

 The different sections of the HFile are discussed in Table 2-3 .

 Table 2-3. HFile Sections

 HFile Section Description

 Data The data blocks in which the HBase table data is stored. The actual data
is stored as key/value pairs. It’s optional, but most likely an HFile has
data.
 The list of records in a data block are stored in the following format:

 Key Length: int
 Value Length: int
 Key: byte[]
 Value: byte[]

 Meta The metadata blocks. The meta is the metadata for the data
stored in HFile. Optional. Meta blocks are writtern upon file close.
RegionServer’s StoreFile uses metadata blocks to store a bloom filter,
which is used to avoid reading a file if there is no chance that the key
is present. A bloom filter just indicates that maybe the key is in the file.
The file/s still need to be scanned to find if the key is in the file.

 FileInfo FileInfo is written upon file close. FileInfo is a simple Map with key/
value pairs that are both a byte array. RegionServer’s StoreFile uses
FileInfo to store Max SequenceId, the major compaction key, and
timerange info. Max SequenceId is used to avoid reading a file if the file
is too old. Timerange is used to avoid reading a file if the file is too new.
Meta information about the HFile such as MAJOR_COMPACTION_KEY ,
 MAX_SEQ_ID_KEY , hfile.AVG_KEY_LEN , hfile.AVG_VALUE_LEN , hfile.
COMPARATOR , hfile.LASTKEY
 The format of the FileInfo is as follows:

 Last Key: byte[]
 Avg Key Length: int
 Avg Value Length: int
 Comparator Class: byte[]

 Data Index Records the offset of the data blocks. The format of the data index is as
follows:

 Block Begin: long
 Block Size: int
 Block First Key: byte[]

 Meta Index Records the offset of the meta blocks. The format of the meta index is as
follows:

 Block Begin: long
 Block Size: int
 Block First Key: byte[]

(continued)

CHAPTER 2 ■ APACHE HBASE AND HDFS

17

 On load, the following sequence is followed:

 1. Read the trailer

 2. Seek Back to read file info

 3. Read the data index

 4. Read the meta index

 Each data block contains a “magic” header and KeyValue pairs of actual data in plain
or compressed form, as shown in Figure 2-5 .

Table 2-3. (continued)

 HFile Section Description

 Trailer Has pointers to the other blocks and is written last. The format of the
Trailer is as follows:

 FileInfo Offset: long
 Data/Meta Index Offset: long
 Data/Meta Index Count: long
 Total Bytes: long
 Entry Count: long
 Compression Codec: int
 Version: int

 Figure 2-5. A data block

 HBase Blocks
 The default block size for an HFile file is 64KB, which is several times less than the
minimum HDFS block size of 64MB. A minimum block size between 8KB and 1MB is
recommended for the HFile file. If sequential access is the primary objective, a larger
block size is preferred. A larger block size is inefficient for random access because more
data has to be decompressed. For random access, small block sizes are more efficient but
have the following disadvantages:

 1. They require more memory to hold the block index

 2. They may be slower to create

 3. The smallest feasible block size is limited to 20KB-30KB
because the compressor stream must be flushed at the end of
each data block

CHAPTER 2 ■ APACHE HBASE AND HDFS

18

 The default minimum block size for HFile may be configured in hbase-site.xml
with the hfile.min.blocksize.size parameter. Blocks are used for different purpose in
HDFS and HBase. In HDFS, blocks are the unit of storage on disk. In HBase, blocks are
the unit of storage for memory. Many HBase blocks fit into a single HBase file. HBase is
designed to maximize efficiency from the HDFS file system and fully utilize the HDFS
block size.

 Key Value Format
 The org.apache.hadoop.hbase.KeyValue class represents a HBase key/value. The
 KeyValue format is as follows:

 <keylength> <valuelength> <key> <value>

 A KeyValue is a low-level byte array structure made of the sections shown in Figure 2-6 .

 Figure 2-6. A KeyValue

 The key has the following format:

 <rowlength> <row> <columnfamilylength> <columnfamily> <columnqualifier>
<timestamp> <keytype>

 The different sections of a KeyValue are discussed in Table 2-4 .

CHAPTER 2 ■ APACHE HBASE AND HDFS

19

 HFile data files are immutable once written. HFiles are generated by flush or
compactions (sequential writes). HFiles are read randomly or sequentially. HFiles are
big in size with a flush size of tens of GB. Data blocks have a target size represented by
 BLOCKSIZE in the column family descriptor, which is 64KB by default. The target size is
an uncompressed and unencoded size. Index blocks (leaf, intermediate, root) also have
a target size configured with the hfile.index.block.max.size with a default value of
128KB.

 Bloom filters may be used to improve read efficiency. Bloom filters may be enabled
per column family. Bloom filter blocks have a target size configured with io.storefile.
bloom.block.size with a default value of 128KB.

 HFile v2
 To improve performance when large quantities of data are stored, the HFile format has
been modified. One of the issues with v1 is that the data and meta indexes and large
bloom filters need to be loaded in memory, which slows down the loading process and
also uses excessive memory and cache. Starting with HBase 0.92, the HFile v2 introduces
multi-level indexes and a block-level bloom filter for improved speed, memory, and
cache usage.

 HFile v2 introduces a block-level index as an inline-block. Instead of having a
monolithic index and a bloom filter in memory, the index and bloom filter are broken
per block, thus reducing the load on the memory. The block-level index is called a leaf
index . Block-level indexing creates a multi-level index, an index per block. The data block
structure is shown in Figure 2-7 . The meta and intermediate index blocks are optional.

 Table 2-4. KeyValue Sections

 KeyValue Section Description

 Key Length The key length. Using the key length and the value length
information, direct access to the value may be made without
using the key.

 Value Length The value length. Using the key length and the value length
information, direct access to the value may be made without
using the key.

 Row Length The row length

 Row The row

 Column Family Length The column family length

 Column Family The column family

 Column Qualifier The column qualifier

 Time Stamp The timestamp

 Key Type The key type

 Value The value

CHAPTER 2 ■ APACHE HBASE AND HDFS

20

 The last key in each block is kept to create an intermediate index to make the multi-
level index B-tree like.

 The block header consists of a block type instead of the “magic” in v1. The block type
is a description of the block content, such as the data, leaf index, bloom, meta, root index,
meta index, file info, bloom meta, and trailer. For fast forward and backward seeks, three
new fields have been added for compressed/uncompressed/offset previous block, as
shown in Figure 2-8 .

 Figure 2-8. Block header

 Figure 2-9. Different types of encodings

 Figure 2-7. Data block structure

 Encoding
 Data block encoding may be used to improve compression as sorting is used and keys
are very similar in the beginning of the keys. Data block encoding also helps by limiting
duplication of information in keys by taking advantage of some of the fundamental
designs and patterns of HBase: sorted row keys and/or the schema of a given table. The
general purpose compression algorithm does not use encoding and the key/value length
is stored completely even if a row has a key similar to the preceding key. In HBase 0.94,
the prefix and diff encodings may be chosen. In prefix encoding, a new column called
 Prefix Length is added for the common length bytes equal in the previous row. Just
the difference from the previous row is stored in each row. The first row has to be stored
completely because no previous row exists. The different types of encodings, including
the no encoding format, are shown in Figure 2-9 .

CHAPTER 2 ■ APACHE HBASE AND HDFS

21

 In diff encoding , the key is not considered as a sequence of bytes but the encoder
splits each key and compresses each section separately for improved compression. As
a result, the column family is stored once only. One byte describes the key layout. Key
length, value length, and type may be omitted if equal to the previous row. The timestamp
is signed and is stored as a difference from the previous row.

 The data block encoding feature is not enabled by default. To enable the feature,
 DATA_BLOCK_ENCODING = PREFIX | DIFF | FAST_DIFF has to be set in the table info.

 Compaction
 Compaction is the process of creating a larger file by merging smaller files. Compaction
can become necessary if HBase has scanned too many files to find a result but is not able
to find a result. After the number of files scanned exceeds the limit set in hbase.hstore.
compaction.max , parameter compaction is performed to merge files to create a larger
file. Instead of searching multiple files, only one file has to be searched. Two types of
compaction are performed: minor compaction and major compaction . Minor compaction
just merges two or more smaller files into one. Major compaction merges all of the files.
In a major compaction, deleted and duplicate key/values are removed. Compaction
provides better indexing of data, reducing the number of seeks required to reach a block
that could contain the key.

 KeyValue Class
 The main methods in the KeyValue class are discussed in Table 2-5 .

 Table 2-5. KeyValue Class Methods

 Method Description

 getRow() Returns the row of the KeyValue . To be used on the client side.

 getFamily() Returns the column family of the KeyValue . To be used on the
client side.

 getQualifier() Returns the column qualifier of the KeyValue . To be used on the
client side.

 getTimestamp() Returns the timestamp.

 getValue() Returns the value of the KeyValue as a byte[] .To be used on the
client side.

 getBuffer() Returns the byte[] for the KeyValue . To be used on the server side.

 getKey() Not to be used directly. Used internally for compacting and testing.

CHAPTER 2 ■ APACHE HBASE AND HDFS

22

 When data is added to HBase, the following sequence is used to store the data:

 1. The data is first written to a WAL called HLog .

 2. The data is written to an in-memory MemStore .

 3. When memory exceeds certain threshold, data is flushed to
disk as HFile (also called a StoreFile).

 4. HBase merges smaller HFiles into larger HFiles with a process
called compaction.

 The HBase architecture in relation to the HDFS is shown in Figure 2-10 .

 Figure 2-10. Apache HBase architecture in relation to HDFS

 HBase consists of the following components:

 1. Master

 2. RegionServers

 3. Regions within a RegionServer

 4. MemStores and HFiles within a Region

CHAPTER 2 ■ APACHE HBASE AND HDFS

23

 HBase is based on HDFS as the filesystem. The ZooKeeper coordinates the
different components of HBase. HBase may be accessed using Java Client APIs, external
APIs, and the Hadoop FileSystem API. The Master coordinates the RegionServers.
A Region is a subset of a table’s rows, such as a partition. A RegionServer serves the
region’s data for reads and writes. The ZooKeeper stores global information about the
cluster. The .META. tables list all of the regions and their locations. The –ROOT- table
lists all of the .META. tables.

 The HBase objects stored in the Datanodes may be browsed from the NameNode
web application running at port 50070. The HDFS directory structure for HBase data files
is as follows (also shown in Figure 2-11):

 /hbase/<Table>/<Region>/<ColumnFamily>/<StoreFile>
 <Table> is the HBase table.
 <Region> is the region.
 <ColumnFamily> is the column family.
 <StoreFile> is the store file or HFile.

 The HDFS directory structure for the WAL is as follows:

 /hbase/.logs/<RegionServer>/<HLog>

 A StoreFile (HFile) is created every time the MemStore flushes.

 Figure 2-11. HDFS directory structure for HBase data files

CHAPTER 2 ■ APACHE HBASE AND HDFS

24

 As a store corresponds to a column family (CF), the preceding diagram can be
redrawn as shown in Figure 2-12 .

 Figure 2-12. A store is the same as a column family

 Data Locality
 For efficient operation, HBase needs data to be available locally, for which it is a best
practice to run a HDFS node on each RegionServer. HDFS has to be running on the same
cluster as HBase for data locality. Region/RegionServer locality is achieved via HDFS
block replication. The following replica placement policy is used by DFSClient :

 1. The first replica is placed on a local node.

 2. The second replica is placed on a different node in the same
rack.

 3. The third replica is placed on a node in another rack.

 The replica placement policy is shown in Figure 2-13 .

CHAPTER 2 ■ APACHE HBASE AND HDFS

25

 HBase eventually achieves locality for a region after a flush or compaction. In a
RegionServer failover, data locality may be lost if a RegionServer is assigned regions with
non-local HFiles, resulting in none of the replicas being local. But as new data is written
in the region, or the table is compacted and HFiles are rewritten, they will become local to
the RegionServer.

 Table Format
 HBase provides tables with a Key:Column/Value interface with following properties:

• Dynamic columns (qualifiers), no schema required

• “Fixed” column groups (families)

• table[row:family:column]=value

 HBase Ecosystem
 The HBase ecosystem consists of Apache Hadoop HDFS for data durability and reliability
(write-ahead log) and Apache ZooKeeper for distributed coordination, and built-in
support for running Apache Hadoop MapReduce jobs, as shown in Figure 2-14 .

 Figure 2-13. Replica placement policy

CHAPTER 2 ■ APACHE HBASE AND HDFS

26

 HBase Services
 HBase architecture has two main services: HMaster and HRegionServer, as shown in
Figure 2-15 .

 Figure 2-15. HBase architecture services

 Figure 2-14. HBase ecosystem

 The RegionServer contains a set of Regions and is responsible for handling reads and
writes. The region is the basic unit of scalability and contains a subset of a table’s data as
a contiguous, sorted range of rows stored together. The Master coordinates the HBase
cluster, including assigning and balancing the regions. The Master handles all the admin
operations including create/delete/modify of a table. The ZooKeeper provides distributed
coordination.

CHAPTER 2 ■ APACHE HBASE AND HDFS

27

 Auto-sharding
 A region is a subset of a table’s data. When a region has too much data, the region splits
into two regions. The region ➤ RegionServer association is stored in a System Table
called hbase:meta . The .META. location is stored in the ZooKeeper. An example region
split is shown in Figure 2-16 .

 Figure 2-16. An example of a region split

 The Write Path to Create a Table
 The write path to create a table consists of the following sequence (and is shown in
Figure 2-17):

 1. The client requests the Master to create a new table with the
following HBase shell command, for example:

 hbase>create 'table1','cf1'

 2. The Master stores the table information, the schema.

 3. The Master creates regions based on key-splits if any are
provided. If no key-splits are provided, a single region is
created by default.

 4. The Master assigns the regions to the RegionServers. The
region ➤ Region Server assignment is written to a system
table called .META.

CHAPTER 2 ■ APACHE HBASE AND HDFS

28

 The Write Path to Insert Data
 The write path for inserting data is as follows (and is shown in Figure 2-18):

 1. Invoke table.put(row-key:family:column,value).

 2. The client gets the .META. location from the ZooKeeper.

 3. The client scans .META. for the RegionServer responsible for
handling the key.

 4. The client requests the RegionServer to insert/update/delete
the specified key/value.

 5. The RegionServer processes and dispatches the request to the
region responsible for handling the key. The insert/update/
delete operation is written to a WAL. The KeyVaues are added
to the store named MemStore. When the MemStore becomes
full, it is flushed to a StoreFile on the disk.

 Figure 2-17. The write path to create a table

CHAPTER 2 ■ APACHE HBASE AND HDFS

29

 The Write Path to Append-Only R/W
 HBase files in HDFS are append-only and immutable once closed. KeyValues are stored
in memory (MemStore) and written to disk (StoreFile/HFile) when memory is full. The
 RegionServer is able to recover from the WAL if a crash occurs. Data is sorted by key
before writing to disk. Deletes are inserts but with the “remove flag.” See Figure 2-19 .

 Figure 2-18. The write path to insert data

 Figure 2-19. The write path for append-only read/write

CHAPTER 2 ■ APACHE HBASE AND HDFS

30

 The Read Path for Reading Data
 The read path for reading data is as follows (and is shown in Figure 2-20):

 1. The client gets the .META. location from the ZooKeeper.

 2. The client scans .META. for the RegionServer responsible for
handling the key.

 3. The clients request the RegionServer to get the specified key/
value.

 4. The RegionServer processes and dispatches the request to
the region responsible for handling the key. MemStore and
store files are scanned to find the key. The key, when found, is
returned to the client.

 Figure 2-20. The read path

 The Read Path Append-Only to Random R/W
 Each flush of the MemStore creates a new store file. Each file has key/values sorted by a
key. Two or more files can contain the same key (updates/deletes). To find a key, scan all
of the files with some optimizations. To filter files, the startKey/endKey may be used. A
bloom filter may also be used to find the file with the key.

 HFile Format
 The HFile format is designed for sequential writes with append (k,v) and large sequential
reads. Records are grouped into blocks, as shown in Figure 2-21 , because they are easy
to split, easy to read, easy to cache, easy to index (if records are sorted), and suitable for
block compression (snappy, lz4, gz).

CHAPTER 2 ■ APACHE HBASE AND HDFS

31

 The Java class org.apache.hadoop.hbase.io.hfile.HFile represents the file format
for HBase. HFile essentially consists of sorted key/value pairs with both the keys and
values being a byte array.

 Data Block Encoding
 Block encoding (Figure 2-22) makes it feasible to compress the key. Keys are sorted
and a similar prefix can be added as a separate column with common key length bytes.
Timestamps are similar and only the diff can be stored. The type is “put” most of the time.
A file contains keys from one column family only.

 Figure 2-21. Records are split into blocks

CHAPTER 2 ■ APACHE HBASE AND HDFS

32

 Compactions
 Compactions reduce the number of files to search during a scan by merging smaller
files into one large file. Compactions remove the duplicated keys (updated values).
Compactions remove the deleted keys. Old files are removed after merging. Pluggable
compactions make use of different algorithms. Compactions are based on statistics
(which keys/files are commonly accessed and which are not).

 Snapshots
 A snapshot is a set of metadata information such as the table “schema” (column families
and attributes), the region’s information (startKey, endKey); the list of store files, and
the list of active WALs. A snapshot is not a copy of the table. Each RegionServer is
responsible for taking its snapshot. Each RegionServer sores the metadata information
needed for each region and the list of store files, WALs, region startKeys/endKeys. The
Master orchestrates the RSs and the communication is done via the ZooKeeper. A two-
phase commit like transaction (prepare/commit) is used. A table can be cloned from a
snapshot.

 hbase>clone_snapshot 'snpashotName', 'tableName'

 Cloning creates a new table with data contained in the snapshot. No data copies are
involved. HFiles are immutable and shared between tables and snapshots. Data may be
inserted/updated/removed from the new table without affecting the snapshot, original

 Figure 2-22. Data block encoding

CHAPTER 2 ■ APACHE HBASE AND HDFS

33

tables, and the cloned tabled. On compaction or table deletion, files are removed from
disk and if files are referenced by a snapshot or a cloned table, the file is moved to an
“archive” directory and deleted later when no references to the file exist.

 The HFileSystem Class
 The org.apache.hadoop.hbase.fs.HFileSystem class is an encapsulation for the org.
apache.hadoop.fs.FilterFileSystem object that HBase uses to access data. The class
adds the flexibility of using separate filesystem objects for reading and writing HFiles and
WALs.

 Scaling
 The auto-sharding feature of HBase dynamically redistributes the tables when they
become too large. The smallest data storage unit is a region, which has a subset of a
table’s data. A region contains a contiguous, sorted range of rows that are stored together.
Starting with one region, when the region becomes too large, it is split into two at the
middle key, creating approximately two equal halves, as shown in Figure 2-23 .

 Figure 2-23. Region splitting

 HBase has a master/slave architecture. The slaves are called RegionServers, with
each RegionServer being responsible for a set of regions, and with each region being
served by one RegionServer only. The HBase Master coordinates the HBase cluster’s
administrative operations. At startup, each region is assigned to a RegionServer and the
Master may move a region from one RegionServer to the other for load balancing.

CHAPTER 2 ■ APACHE HBASE AND HDFS

34

The Master also handles RegionServer failures by assigning the regions handled by the
failed RegionServer to another RegionServer. The Region ➤ RegionServer mapping is
kept in a system table called .META. . From the .META. table, it can be found which region
is responsible for which key. In read/write operations, the Master is not involved at all
and the client goes directly to the RegionServer responsible to serve the requested data.

 For Put and Get operations, clients don’t have to contact the Master and can directly
contact the RegionServer responsible for handling the specified row. For a client scan, the
client can directly contact the RegionServers responsible for handling the specified set
of keys. The client queries the .META. table to identify a RegionServer. The .META. table
is a system table used to track the regions. The . META. table contains the RegionServer
names, region identifiers (Ids), the table names, and startKey for each region, as shown
in Figure 2-24 . By finding the startKey and the next region’s startKey, clients are able to
identify the range of rows in a particular region. The client contacts the Master only for
creating a table and for modifications and deletions. The cluster can keep serving data
even if the Master goes down.

 To avoid having to get the region location again and again, the client keeps a cache
of region locations. The cache is refreshed when a region is split or moved to another
RegionServer due to balancing or assignment policies. The client receives an exception
when the cache is outdated and cache is refreshed by getting updated information from
the .META. table.

 The .META. table is also a table like the other tables and client has to find from
ZooKeeper on which RegionServer the .META. table is located. Prior to HBase 0.96, HBase
design was based on a table that contained the META locations, a table called -ROOT- .
With HBase 0.96, the -ROOT- table has been removed and the META locations are stored
in the ZooKeeper, as shown in Figure 2-25 .

 Figure 2-24. The .META. table

CHAPTER 2 ■ APACHE HBASE AND HDFS

35

 Figure 2-25. The .META. table locations are stored in the ZooKeeper

 Table 2-6. HBase Java Client API Interfaces

 Interface Description

 org.apache.hadoop.hbase.
client.HBaseAdmin

 The HBaseAdmin is used to manage HBase database table
metadata and for general administrative functions such as
create, drop, list, enable, and disable tables. HBaseAdmin
is also used to add and drop table column families.

 org.apache.hadoop.hbase.
client.HTable

 HTable is used to communicate with a single HBase
table. The class is not thread-safe for reads and writes.
In a multi-threaded environment, HTablePool should
be used. The interface communicates directly with the
RegionServers for handling the requested set of keys.
HTable is used by a client for get/put/delete and all other
data operations.

 HBase Java Client API
 The HBase Java client API is used mainly for the CRUD (Create/Retrieve/Update/Delete)
operations. The HBase Java Client API provides two main interfaces, as discussed in
Table 2-6 .

CHAPTER 2 ■ APACHE HBASE AND HDFS

36

 Random Access
 For random access on a table that is much larger than memory, HBase cache does not
provide any advantage. HBase does not need to retrieve the entire file block from HDFS
into memory for the data requested. Data is indexed by key and retrieved efficiently. To
maximize throughput, keys are designed such that data is distributed across the servers
in clusters equally. HBase blocks are the unit of indexing (also caching and compression)
designed for fast random access. HDFS blocks are the unit of filesystem distribution.
Tuning HDFS block size compared to HBase parameters has performance impacts.

 HBase stores data in large files with sizes in the order of magnitude of 100s of MB to
a GB. When HBase wants to read, it first checks the MemStore for data in memory from
a recent update or insertion. If it’s not in memory, HBase finds HFiles with a range of
keys that could contain the data. If compactions have been run only one HFile. An HFile
contains a large number of data blocks that are kept small for fast random access. At the
end of the HFile an index references these blocks and keeps the range of keys in each
block and offset of the block in the HFile. When an HFile is first read, the index is loaded
into memory and kept in memory for future accesses.

 1. HBase performs a binary search in the index, first in memory,
to locate the block that could potentially contain the key.

 2. When the block is located, a single disk seek is performed to
load the block that is to be subsequently checked for the key.

 3. The loaded 64k HBase block is searched for the key and, if
found, the key-value is returned.

 Small block sizes provide efficient disk usage when performing random accesses, but
this increases the index size and memory requirements.

 Data Files (HFile)
 Data files are immutable once written. Data files are generated by flush or compactions
(sequential writes). Data files are read randomly (preads) or sequentially. Big in size, the
flushsize could be tens of GBs. All data is in blocks. The target size of data blocks is 64KB
by default and is set in the BLOCKSIZE column family descriptor. The target size is the
uncompressed and unencoded size. Index blocks (leaf, intermediate, root) also have a
target size, which is set in hfile.index.block.max.size and is 128KB by default. Bloom
filter blocks have a target size set with io.storefile.bloom.block.size and is 128KB by
default.

 The data file format for HFile v2 is shown in Figure 2-26 .

CHAPTER 2 ■ APACHE HBASE AND HDFS

37

 I/O happens at block boundaries. A random read consists of disk seek plus reading
a whole block sequentially. Read blocks are put into block cache so that they do not have
to be read again. Leaf index blocks and bloom filter blocks also are cached. Smaller block
sizes are used for faster random access. Smaller block sizes provide smaller read and
faster in-block search. But smaller blocks lead to a larger block index and more memory
consumption. For faster scans, use larger block sizes. The number of key-value pairs that
fit an average block may also be determined. The block format is shown in Figure 2-27 .

 Figure 2-26. Data file format for HFile v2

 Figure 2-27. Block format

 Compression and data block encoding (PREFIX, DIFF, FAST_DIFF, PREFIX_TREE)
minimizes file sizes and on-disk block sizes.

 Reference Files/Links
 When a region is split at a splitkey reference, files are created referring to the top or
bottom section of the store file that is split. HBase archives data/WAL files but archives
them such as /hbase/.oldlogs and /hbase/.archive. HFileLink is a kind of application-
specific hard/soft link. HBase snapshots are logical links to files with backrefs.

CHAPTER 2 ■ APACHE HBASE AND HDFS

38

 Write-Ahead Logs
 One logical WAL is created per region. One physical WAL is created per RegionServer.
WALs are rolled frequently using the following settings:

• hbase.regionserver.logroll.multiplier with a default of 0.95

• hbase.regionserver.hlog.blocksize with the default the same
as file system block size

 WALs are chronologically ordered set of files and only the last one is open for
writing. If the hbase.regionserver.maxlogs with a default of 32 is exceeded, a force
flush is caused. Old log files are deleted as a whole. Every edit is appended. Sequential
writes from WAL that sync very frequently at the rate of hundreds of time per sec. Only
sequential reads from replication and crash recovery. One log file per RegionServer limits
the write throughput per RegionServer.

 Data Locality
 HDFS local reads are called short-circuit reads.

 HDFS local reads (Figure 2-28) bypass the datanode layer and directly go to the OS
files. Hadoop 1.x implementation is as follows:

CHAPTER 2 ■ APACHE HBASE AND HDFS

39

 Figure 2-28. Local reads

 DFSClient asks the local datanode for local paths for a block. Datanode verifies that
the user has permission. The client gets the path for the block and opens the file with
 FileInputStream .

 The hdfs-site.xml settings for a local read are as follows:

 dfs.block.local-path-access.user=hbase
 dfs.datanode.data.dir.perm = 750

 The hbase-site.xml settings for a local read are as follows:

 dfs.client.read.shortcircuit=true

CHAPTER 2 ■ APACHE HBASE AND HDFS

40

 The Hadoop 2-0 implementation of HDFS local reads includes the following settings:

• Keep the legacy implementation

• Use Unix Domain sockets to pass the File Descriptor (FD)

• The datanode opens the block file and passes FD to the
 BlockReaderLocal running in Regionserver process

• More secure than the 1.0 implementation

• Windows also supports domain sockets, needed to implement
native APIs

• Local buffer size is set with dfs.client.read.shortcircuit.
buffer.size

• BlockReaderLocal fills the whole buffer every time HBase tries to
read an HfileBlock

• dfs.client.read.shortcircuit.buffer.size = 1MB vs. 64KB
HFile block size

• SSR buffer is direct buffer in Hadoop 2, but not in Hadoop 1

• Local buffer size = Number of regions x Number of stores x
number of avg store files x number of avg blocks per file x SSR
buffer size

 For example, 10 regions x 2 x 4 x 1GB/64MB x 1MB = 1.28GB of non-heap memory
usage.

 Checksums
 HDFS checksums are not inlined. They are two files per block, one for data and one for
checksums, as shown in Figure 2-29 .

CHAPTER 2 ■ APACHE HBASE AND HDFS

41

 Figure 2-29. Two files per block

 Random positioned read causes two seeks. HBase checksums are included with
0.94. HFile v 2-1 writes checksums per HFile block. The HFile data block chunk and the
Checksum chunk are shown in Figure 2-30 . HDFS checksum verification is bypassed on
block read as checksum verification is done by HBase. If the HBase checksum fails, revert
to checksum verification from HDFS for some time. Use the following settings:

 hbase.regionserver.checksum.verify = true
 hbase.hstore.bytes.per.checksum =16384
 hbase.hstore.checksum.algorithm=CRC32C

 Do not set

 dfs.client.read.shortcircuit.skip.checksum = false

CHAPTER 2 ■ APACHE HBASE AND HDFS

42

 Data Locality for HBase
 Data locality is low when a region is moved as a result of load balancing or region server
crash and failover. Most of the data is not local unless the files are compacted. When
writing a data file, provide hints to the NameNode for locations for block replicas. The
load balancer should assign a region to one of the affiliated nodes upon server crash to
keep data locality and SSR. Data locality reduces data loss probability.

 MemStore
 When a RegionServer receives a write request, it directs the request to a specific region,
with each region storing a set of rows. Row data can be separated in multiple column
families. Data for a particular column family is stored in HStore, which is comprised of
MemStore and a set of HFiles. The MemStore is kept in the RegionServer’s main memory
and HFiles are written to HDFS. Initially, a write request is written to the MemStore and
when a certain memory threshold is exceeded, the MemStore data gets flushed to an
HFile. The MemStore is used because data is stored on HDFS by row key.

 As HDFS is designed for sequential reads/writes with no file modifications. HBase
is not able to efficiently write data to disk as it is received because the written data is not
sorted and not optimized for future retrieval. HBase buffers last received data in memory
(MemStore), sorts it before flushing, and writes to HDFS using sequential writes. Some of
the other benefits of MemStore are as follows:

 Figure 2-30. The HFile data block chunk and the Checksum chunk

CHAPTER 2 ■ APACHE HBASE AND HDFS

43

 1. MemStore is an in-memory cache for recently added data,
which is useful when last-written data is accessed more
frequently than older data

 2. Certain optimizations are done on rows/cells in memory
before writing to persistent storage

 Every MemStore flush creates one HFile per column family. When reading HBase,
first check if the requested data is in the MemStore and, if not found, go to the HFile to get
the requested data. Frequent MemStore flushes can affect reading performance and bring
additional load to the system. Every flush creates an HFile, so frequent flushes will create
several HFiles, which will affect the read performance because HBase must read several
HFiles. HFiles compaction alleviates the read performance issue by compacting multiple
smaller files into a larger file. But compaction is usually performed in parallel with other
requests and it could block writes on region server.

 Summary
 In this chapter, I discussed how HBase stores data in HDFS, including the read-write path
and how HBase communicates with the NameNode and the Datanode. I discussed the
HBase storage architecture and the HFile format used for storing data. Data encoding,
compactions, and replica placement policy were also discussed. In the next chapter, I will
discuss the characteristics that make an application suitable for Apache HBase.

45© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_3

 CHAPTER 3

 Application Characteristics

 Apache HBase is designed to be used for random, real-time, relatively low latency, read/
write access to big data. HBase’s goal is to store very large tables with billions/millions of
rows and billions/millions of columns on clusters installed on commodity hardware.

 The following characteristics make an application suitable for HBase:

• Large quantities of data in the scale of 100s of GBs to TBs and PBs.
Not suitable for small-scale data

• Fast, random access to data

• Variable, flexible schema. Each row is or could be different

• Key-based access to data when storing, loading, searching,
retrieving, serving, and querying

• Data stored in collections. For example, some metadata, message
data, or binary data is all keyed into the same value

• High throughput in the scale of 1000s of records per second

• Horizontally scalable cache capacity. Capacity may be increased
by just adding nodes

• The data layout is designed for key lookup with no overhead for
sparse columns

• Data-centric model rather than a relationship-centric model. Not
suitable for an ERD (entity relationship diagram) model

• Strong consistency and high availability are requirements.
Consistency is favored over availability

• Lots of insertion, lookup, and deletion of records

• Write-heavy applications

• Append-style writing (inserting and overwriting) rather than
heavy read-modify-write

CHAPTER 3 ■ APPLICATION CHARACTERISTICS

46

 Some use-cases for HBase are as follows:

• Audit logging systems

• Tracking user actions

• Answering queries such as

• What are the last 10 actions made by the user?

• Which users logged into the system on a particular day?

• Real-time analytics

• Real-time counters

• Interactive reports showing trends and breakdowns

• Time series databases

• Monitoring system

• Message-centered systems (Twitter-like messages and statuses)

• Content management systems serving content out of HBase

• Canonical use-cases such as storing web pages during crawling of
the Web

 HBase is not suitable/optimized for

• Classical transactional applications or relational analytics

• Batch MapReduce (not a substitute for HDFS)

• Cross-record transactions and joins

 HBase is not a replacement for RDBMS or HDFS. HBase is suitable for

• Large datasets

• Sparse datasets

• Loosely coupled (denormalized) records

• Several concurrent clients

 HBase is not suitable for

• Small datasets (unless many of them)

• Highly relational records

• Schema designs requiring transactions

CHAPTER 3 ■ APPLICATION CHARACTERISTICS

47

 Summary
 In this chapter, I discussed the characteristics that make an application suitable for
Apache HBase. The characteristics include fast, random access to large quantities of data
with high throughput. Application characteristics not suitable were also discussed. In the
next chapter, I will discuss the physical storage in HBase.

 PART II

 Data Model

51© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_4

 CHAPTER 4

 Physical Storage

 The filesystem used by Apache HBase is HDFS, as discussed in Chapter 2 . HDFS is an
abstract filesystem that stores data on the underlying disk filesystem. HBase indexes data
into HFiles and stores the data on the HDFS Datanodes. HDFS is not a general purpose
filesystem and does not provide fast record lookups in files . HBase is built on top of HDFS
and provides fast record lookups and updates for large tables . HBase stores table data as
key/value pairs in indexed HFiles for fast lookup. HFile, the file format for HBase, is based
on the TFile binary file format. HFile is made of blocks, with the block size configured
per column family. The block size is 64k. If the key/value exceeds 64k of data, it’s not split
across blocks but the key/value is read as a coherent block. The HFile is replicated three
times for durability, high availability, and data locality. Data files are stored in the format
discussed in Chapter 2 and the HFileSystem.create(Path path) method is used to
create the HFile data files.

 A HBase client communicates with the ZooKeeper and the HRegionServers. The
 HMaster coordinates the RegionServers. The RegionServers run on the datanodes. Each
RegionServer is collocated with a datanode, as shown in Figure 4-1 .

 Figure 4-1. RegionServer collocation with a datanode

 The storage architecture of HBase is discussed in more detail in Chapter 2 and
shown in Figure 2-3.

http://dx.doi.org/10.1007/978-1-4842-2424-3_2
http://dx.doi.org/10.1007/978-1-4842-2424-3_2
http://dx.doi.org/10.1007/978-1-4842-2424-3_2

CHAPTER 4 ■ PHYSICAL STORAGE

52

 Summary
 In this chapter, I discussed how HBase physically stores data in HDFS, with each
RegionServer being collocated with a datanode. In the next chapter, I will discuss the
column family and the column qualifier.

53© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_5

 CHAPTER 5

 Column Family and Column
Qualifier

 Column qualifiers are the column names, also known as column keys. For example, in
Figure 5-1 , Column A and Column B are the column qualifiers. A table value is stored at
the intersection of a column and a row. A row is identified by a row key. Row keys with
the same user ID are adjacent to each other. The row keys form the primary index and the
column qualifiers form the per row secondary index. Both the row keys and the column
keys are sorted in ascending lexicographical order.

 Figure 5-1. Column qualtifiers

 Each row can have different column qualifiers, as shown in Figure 5-2 . HBase stores
the column qualifier with a certain value which is part of the row key. Apache HBase
doesn’t limit the number of column qualifiers, which means that the creation of long
column qualifiers can require a lot of storage.

CHAPTER 5 ■ COLUMN FAMILY AND COLUMN QUALIFIER

54

 The HBase data model consists of a table, which consists of multiple rows. A row
consists of a row key and one or more columns, and the columns have values associated
with them. Rows are sorted lexicographically and stored. To store related rows adjacent
or near each other, a common row key pattern is usually used. A column, which stores a
value, consists of a column family name and a column qualifier delimited by a : (colon).
For example, column family cf1 could consist of column qualifiers (or column keys) c1 ,
 c2, and c3 . A column family consists of a collocated set of columns. Each column family
has a set of storage properties such as whether the column values are to be cached in
memory, how the row keys are encoded, or how data is compressed. A column’s family
is used for performance reasons. Each row in a table has the same column family/ies,
although a row does not have to store a value in each column family. A column qualifier
is the actual column name to provide an index for a column. A column qualifier is added
to a column family with the two separated by a : (colon) to make a column. Though
each row in a table has the same column families, the column qualifiers associated with
each column family can be different. Column qualifiers are the actual column names,
or column keys. For example, the HBase table in Figure 5-3 consists of column families
 cf1 , cf2, and cf3 . And column family cf1 consists of column qualifiers c1 , c2 , and c3
while column family cf2 consists of column qualifiers c2 , c4 , and c5 , and column family
 cf3 consists if column qualifiers c4 , c6 , and c7 . Column families are fixed when a table is
created; column qualifiers are not fixed when a table is created and are mutable and can
vary from row to row. For example, in Figure 5-3 , the table has three column families (cf1 ,
 cf2 , and cf3) and each row has different column qualifiers associated with each column
family and each column. Some rows do not store data in some of the column families
while other rows have data in each of the column families. For example, Row-1 has data
stored in each of the column families while Row-10 has only two of the column families
and Row-15 has only one column family.

 Figure 5-2. Different column qualifiers

CHAPTER 5 ■ COLUMN FAMILY AND COLUMN QUALIFIER

55

 Figure 5-3. Using column qualifiers

 Figure 5-4. Key and value

 What makes a HBase table sparse is that each row does not have to include all the
column families. Each column family is stored in its own data file. As a result, some data
files may not include data for some of the rows if the rows do not store data in those
column families.

 A KeyValue consists of the key and a value, with the key being comprised of the
row key plus the column family plus the column qualifier plus the timestamp, as shown
in Figure 5-4 . The value is the data identified by the key. The timestamp represents a
particular version.

 As another representation, a row is shown to have a row key and two column
families. Column Family 1 has three column qualifiers associated with it. ColQ1 column
qualifier has three versions , and each version is associated with a different value, as
shown in Figure 5-5 .

CHAPTER 5 ■ COLUMN FAMILY AND COLUMN QUALIFIER

56

 The essential differences between a column family and a column qualifier are listed
in Table 5-1 .

 Figure 5-5. Relationship between column qualifier, version, and value

 Table 5-1. Differences Between a Column Family and a Column Qualifier

 Column Family Column Qualifier

 Mutability Not mutable Mutable

 Schema Each row has same column
families.

 Each row can have different
column qualifiers within a
column family.

 Column notation Column family is the prefix, for
example cf1:col1 . All column
members of a column family
have the same prefix.

 Column qualifier is the suffix,
for example cf2:col2 .

 Empty A column family must not
be empty when identifying a
column.

 A column qualifier could be
empty; for example, cf1: is a
column in column family cf1
with an empty column qualifier.

 Number Any number, storage space
permitting.

 Any number, storage space
permitting.

 Storage unit Data stored per column family
in a separate data file called a
HFile.

 Data is not stored per column
qualifier. A HFile could have
several column qualifiers
associated with it.

CHAPTER 5 ■ COLUMN FAMILY AND COLUMN QUALIFIER

57

 It is recommended to use a few column families because each column family is
stored in its own data file and too many column families can cause many data files to be
open. Compactions may be required with several column families.

 The following is an example of a data file HFile for column family cf1 :

 123 cf1 col1 val1 @ ts1
 123 cf1 col2 val2 @ ts1
 235 cf1 col1 val3 @ ts1
 235 cf1 col2 val4 @ ts1
 235 cf1 col2 val5 @ ts2

 The HFile has two row keys, 123 and 235 . Row key 123 has two column qualifiers
associated with it: col1 and col2 . Each of the column qualifiers has a value associated
with it and a timestamp. Row key 235 has two column qualifiers, also col1 and col2 , but
 col2 has two versions or timestamps associated with it (ts1 and ts2).

 Summary
 In this chapter, I introduced the column family and the column qualifier and the
relationship between the two. In the next chapter, I will discuss row versioning.

59© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_6

 CHAPTER 6

 Row Versioning

 When data is stored in HBase, a version (also called a timestamp) is required for each
value stored in a cell. The timestamp is created automatically by the RegionServer or may
be supplied explicitly. By default, the timestamp is the time at the RegionServer when
the data was written. Alternatively, the timestamp may be set explicitly. Timestamps
are stored in descending order in an HFile, which implies the most recent timestamp is
stored first. The timestamp identifies a version and must be unique for each cell. A {row,
column, version} tuple specifies a cell in a table. A KeyValue consists of the key and a
value with the key being comprised of the row key + column Family + column qualifier
+ timestamp , as shown in Figure 5-4. The value is the data identified by the key. The
timestamp represents a particular version.

 Each column consists of any number of versions, which implies that any number of
tuples in which the row and column are the same and only the version is different could
be created. Typically, the version is the timestamp. The version applies to the actual data
stored in a cell, the intersection of a row key with a column key. Coordinates for a cell are
row key ➤ column key ➤ version. As an example, a row is shown to have a row key and
two column families. Column Family 1 has three column qualifiers associated with it.
The ColQ1 column qualifier has three versions, and each version has a different value, as
shown in Figure 6-1 .

 Figure 6-1. An example of a column qualifier with three versions

CHAPTER 6 ■ ROW VERSIONING

60

 Physical coordinates for a cell are region directory ➤ column family directory ➤ row
key ➤ column family name ➤ column qualifier ➤ version.

 The row and column keys are stored as bytes and the versions as long integers. The
versions are stored in decreasing order so that when reading a StoreFile the most recent
version is found first.

 Doing a Put on a table always creates a new version of a cell identified by a
timestamp. By default, currentTimeMillis is used to create the timestamp. The version
may be specified explicitly on a per column basis. The long value of a version can be
a time in the past or the future or a non-time long value. An existing version may be
overwritten by doing a Put at exactly the same {row, column, version} with a different
or same value.

 The org.apache.hadoop.hbase.client.Put class is used to perform Put operations
for a single row. To perform a Put, first instantiate a Put object for which the constructors
listed in Table 6-1 are provided.

 Table 6-1. Put Class Constructors

 Put Constructor Description

 Put(byte[] row) Creates a Put object for the specified row byte array.

 Put(byte[] rowArray, int
rowOffset, int rowLength)

 Creates a Put object from the specified row array
using the given offset and row length.

 Put(byte[] rowArray, int
rowOffset, int rowLength,
long ts)

 Creates a Put object from the specified row array
using the given offset, row length, and timestamp.

 Put(byte[] row, long ts) Creates a Put object for the specified row byte array
and timesamp.

 Put(ByteBuffer row) Creates a Put object for the specified row byte
buffer.

 Put(ByteBuffer row, long ts) Creates a Put object for the specified row byte
buffer and timestamp.

 Put(Put putToCopy) Copies a Put object.

 After a Put object has been created, columns may be added to it using one of the
overloaded addColumn methods (shown in Table 6-2), each of which returns a Put object.

CHAPTER 6 ■ ROW VERSIONING

61

 The versions are configurable for a column family. In CDH 5 (>=0.96), the maximum
number of versions is 1 by default. In earlier CDH (<0.96), the maximum number of
versions defaults to 3. The default setting may be configured with hbase.column.max.
version in hbase-site.xml . The maximum number of versions may be altered using
the alter command with HColumnDescriptor.DEFAULT_VERSIONS . For example, the
following command sets the maximum number of versions to 5 for column family cf1 in
table table1 :

 alter ‘table1', NAME => ‘cf1', VERSIONS => 5

 Excess versions are removed during major compactions. The minimum number of
versions may also be set and defaults to 0, which implies the feature is disabled and no
minimum is configured. For example, the following alter command sets the minimum
number of versions to 1 in column family cf1 in table table1 :

 alter ‘table1', NAME => ‘cf1', MIN_VERSIONS => 1

 Versions Sorting
 Versions are sorted from newest to oldest by sorting the timestamps lexicographically.
When a version needs to be deleted because of reaching a threshold, for example, the
“oldest” version lexicographically is deleted even if the version is the most recent added.

 If multiple writes to a cell are made using the same timestamp, only one of those
versions is kept and it is undefined which one. If multiple writes to a cell are made with
out-of-order timestamps and the number of versions exceeds the maximum versions
setting, only the highest timestamps versions are kept. Existing versions may be updated.
And versions may be added out of order, implying that a more recent timestamp may be
added before an older timestamp. When doing a Get with no explicit version specified,
the most recent version is returned.

 Table 6-2. Overloaded addColumn Method

 Method Description

 addColumn(byte[] family,
byte[] qualifier, byte[]
value)

 Adds a column using the specified column family,
column qualifier, and value, each of type byte[] . The
version or timestamp is created implicitly.

 addColumn(byte[] family,
byte[] qualifier, long ts,
byte[] value)

 Adds a column using the specified column family,
column qualifier, timestamp, and value, each of type
 byte[] except the timestamp, which is of type long .
The version or timestamp is created explicitly.

 addColumn(byte[] family,
ByteBuffer qualifier, long
ts, ByteBuffer value)

 Adds a column using the specified column family
of type byte[] , column qualifier of type ByteBuffer,
timestamp of type long , and value of type
 ByteBuffer . The version or timestamp is created
explicitly.

CHAPTER 6 ■ ROW VERSIONING

62

 The following is an example of a data file HFile for column family cf2 :

 123 cf2 col1 val1 @ ts1
 123 cf2 col2 val2 @ ts1
 235 cf2 col1 val3 @ ts1
 235 cf2 col2 val4 @ ts1
 235 cf2 col2 val5 @ ts2

 The HFile has two keys: 123 and 235 . Row key 123 has two column qualifiers
associated with it: col1 and col2 . Each of the column qualifiers has a value associated
with it and a timestamp. Row key 235 has two column qualifiers, also col1 and col2 ,
but col2 has two versions or timestamps associated with it, ts1 and ts2 , as shown in
Figure 6-2 .

 Figure 6-2. Row key 234 ➤ column qualifier col2 is associated with two versions.

 Figure 6-3. Row key 234 ➤ column qualifier col2 is associated with two versions.

 The unit of storage in HBase consists of the following fields: row key, column family,
column qualifier, timestamp, type, MVCC (multiversion concurrency control) version,
and value, as shown in Figure 6-3 .

 Uniqueness is determined by row key, column family, column qualifier, timestamp,
and type. Cells with a lower timestamp are sorted first.

 Summary
 In this chapter, I discuss how a row key ➤ column qualifier (a cell) can be associated with
multiple versions indicated by timestamps. Each version or timestamp represents a value,
and when a value is requested, the latest value stored is returned. In the next chapter, I
will discuss logical storage.

63© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_7

 CHAPTER 7

 Logical Storage

 A cell is the logical storage unit for the Apache HBase data model. Cells are stored
individually, and empty cells are not stored at all, which makes HBase storage sparse.
Values are stored as an array of bytes. A {row, column, version} tuple specifies a cell in a
table. Cells store data as uninterpreted bytes. The timestamp identifies a version and must
be unique for each cell.

 Three coordinates define each cell. Coordinates for a cell are row key ➤ column key
➤ version. The column key includes the column family. At a fine-grained level, including
the table, a cell’s coordinates are table ➤ row key ➤ column family ➤ column key ➤
version. Cells are sorted lexicographically by their row key. Row keys form the primary
index. The coordinates are accompanied by a cell value as the cell value is transferred
through the system. Typically, the version is the timestamp , which implies that the
coordinates for a cell could be described as row key ➤ column key ➤ timestamp. The
timestamp applies to the actual data stored in a cell, the intersection of a row key with a
column key. Timestamps are stored in decreasing order with the most recent first. Cell
versions may be constrained by predicate deletions such as store-only values from the
previous day. The timestamp by default identifies the time at which a cell is created.
By default, currentTimeMillis is used to create the timestamp. Timestamps may be
specified explicitly on a per column basis.

 Multiple versions of the same cell are stored consecutively including the timestamp .
Cells are sorted in descending order of timestamp, newest value first. The entire cell
including all the structural information is a KeyValue object and includes {row key,
column key {column family:column qualifier}, timestamp, and value}. A KeyValue object
is sorted by row key first (primary index) and by column key next (secondary index). A
KeyValue could also be called a cell.

 All row keys with the same row key are collocated on the same RegionServer, which
makes ACID (Atomicity, Consistency, Isolation, Durability) guarantees for updates with
the same row key feasible without complex and slow two-phase commit or paxos.

 Data in a cell is not updated on a table update. Every update creates a new cell.
 Using the same example as introduced in Chapter 5 of a row having a row key and

two column families, column Family 1 has three column qualifiers associated with it.
The ColQ1 column qualifier has three versions and each version has a different value.
The value is stored in a cell. Physical coordinates for a cell are region directory ➤ column
family directory ➤ row key ➤ column family name ➤ column qualifier ➤ version.

 In Figure 7-1 , the intersection of row 10 and column A has three cells, not one. Each
cell is identified with a version. Each cell stores a value.

http://dx.doi.org/10.1007/978-1-4842-2424-3_5

CHAPTER 7 ■ LOGICAL STORAGE

64

 As discussed before, the unit of storage in HBase consists of the fields row key,
column family, column qualifier, timestamp, type, MVCC (multiversion concurrency
control) version. Value and uniqueness are determined by the row key, column family,
column qualifier, timestamp, and key type, as shown in Figure 7-2 . Cells with a lower
timestamp are sorted first.

 Figure 7-1. An example of a column qualifier with three versions

 Figure 7-2. Unit of storage

 The value in a cell is stored as a byte[] . HBase does not make use of any typing for
key or value. All key/values for the same column family are stored in the same HFile.
Using the same example of a data file , the HFile for column family cf1 , data for row key
 235 has two column qualifiers (col1 and col2) and {row key 235 , col2 } has two different
versions or timestamps associated with it.

CHAPTER 7 ■ LOGICAL STORAGE

65

 123 cf1 col1 val1 @ ts1
 123 cf1 col2 val2 @ ts1
 235 cf1 col1 val3 @ ts1
 235 cf1 col2 val4 @ ts1
 235 cf1 col2 val5 @ ts2

 Data stored in cells is distributed across hundreds or thousands of machines.

 Summary
 In this chapter, I discussed the logical storage of HBase as comprising of a {row, column,
version} tuple, which constitutes a table cell. I also discussed the unit of storage and
the data type associated with each field. In the next chapter, I will discuss the major
components of an HBase cluster.

 PART III

 Architecture

69© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_8

 CHAPTER 8

 Major Components of a
Cluster

 An HBase cluster can consist of one or more nodes with its components distributed
across the cluster. The major components of HBase cluster are as follows:

 1. Master

 2. RegionServers

 3. ZooKeeper

 HBase runs in two modes: standalone and distributed . On a distributed cluster, the
Master is typically on the same node as the HDFS NameNode, and the RegionServers are
on the same node as a HDFS Datanode, with each RegionServer being collocated with a
datanode. For a small cluster, a ZooKeeper may be collocated with the NameNode (not
the datanode), but for a large cluster, the ZooKeeper should run on a separate node. The
major components, including the subcomponents, are shown in Figure 8-1 .

CHAPTER 8 ■ MAJOR COMPONENTS OF A CLUSTER

70

 Master
 The Master manages the cluster. The Master assigns Regions to RegionServers on startup
and failover, and performs load balancing. The Master is not a component in the data
storage or retrieval path. HBase handles the DDL operations such as Create and Delete
table. The Master server monitors all RegionServers in the cluster, and all metadata
changes are made via the Master. The Master runs on the NameNode on HDFS while the
RegionServers are collocated with the HDFS Datanodes. A multi-Master environment
is supported, in which one Master is active and is registered with the ZooKeepers, and
if the active Master fails, another Master becomes the active Master. HMaster is the Java
interface for the Master server. The Master runs several background threads including the
load balancer. The load balancer balances a cluster's load by moving regions around.

 RegionServers
 RegionServers manage data. A table's row keys are distributed across the cluster stored
on different RegionServers. For example, if a table has row keys A, H, N, S, V, Y, Z, row
keys [D-G] and [V-G] could be on RegionServer 1, row keys [A-C] and [R-U] could be on
RegionServer 2, and row keys [H-M] and [N-Q] could be on RegionServer 3, as shown in
Figure 8-2 .

 Figure 8-1. Major components of Apache HBase

CHAPTER 8 ■ MAJOR COMPONENTS OF A CLUSTER

71

 A cluster can have one or more RegionServers. RegionServers serve and manage
Regions. The RegionServers handle read/write requests from clients. A RegionServer
runs on an HDFS datanode. HRegionServer is the Java interface for RegionServer. The
RegionServer is responsible for region operations such as region splitting and region
compaction. RegionServer also manages data-oriented operations such as Get , Put , and
 Delete . The RegionServer runs several background threads including those for minor/
major compactions, MemStore flush to StoreFile, and WAL. RegionServers are collocated
with the datanodes, providing data locality.

 ZooKeeper
 The ZooKeeper bootstraps and coordinates the cluster. The ZooKeeper provides shared
state information for components of the distributed system. ZooKeeper also provides
server failure notifications so that a Master can failover to another RegionServer. The
ZooKeeper can be a single node or an ensemble of nodes.

 The ZooKeeper is also used to store metadata for operations such as master address
and recovery state. The hbase:meta table (previously .META.) stores a list of all regions
in the system. The hbase:meta is stored in the ZooKeeper. The active Master has a lease
in the ZooKeeper. HBase manages a ZooKeeper ensemble by default, but the ZooKeeper
may also be run separately. An odd number (3, 5, 7) of nodes in a ZooKeeper ensemble
is recommended because it will tolerate more node failures. An ensemble of 2n+1 nodes

 Figure 8-2. An example of a table’s row keys being distributed across three region servers

CHAPTER 8 ■ MAJOR COMPONENTS OF A CLUSTER

72

tolerates n failures. For example, an ensemble of 7 nodes will tolerate 3 failures while an
ensemble of 6 nodes will tolerate 2 failures. To start an HBase cluster, a ZooKeeper should
be started first, followed by a Master, followed by RegionServers.

 Regions
 In HBase, data is stored in a table. A table is sorted by row key lexicographically. A table is
made up of one or more regions. A region is the unit of scalability in HBase. A region has a
startKey and a endKey and contains a sorted, contiguous range of rows. A complete table
is not necessarily stored on the same region or even the same RegionServer. Each region
can be on a different node and may consist of several HDFS files and blocks, each of
which is replicated. Regions are spread randomly across RegionServer/s. Regions can be
moved around for load balancing. Regions split automatically or manually with growing
data. Capacity is a factor only of cluster nodes vs. regions per node. Regions are the basic
units of data distribution and availability in tables. A region is made up of a store per
column family. The hierarchy of components including the region is table ➤ region ➤ store
➤ MemStore and store file ➤ block.

 When HBase starts, the Mas ter assigns regions to RegionServers. If required for load
balancing, the Master also reassigns regions across the RegionServers.

 Write-Ahead Log
 Inserts are done in the write-ahead log (WAL) first. The WAL records all data changes
(Puts and Deletes) to file-based storage. The WAL is a backup for when a RegionServer
crashes. Under normal operation, data stored in a WAL is not used because data is first
stored in MemStore and subsequently flushed to an HFile. But, if a RegionServer crashes,
the data changes are replayed from the WAL.

 The WAL is essential for a data change to complete successfully. If a write to a WAL
fails, the whole data write fails. Usually one instance of WAL runs on each RegionServer.
In older versions of HBase (<=0.94), HLog was used for a WAL. WAL stores data on HDFS
just as the HFile data files. WAL stores in the / hbase/WALs/ directory for HBase 0.94 and
later and in /hbase/.logs directory for HBase prior to 0.94. Subdirectories per region are
created in WAL.

 Store
 HBase is based on log-structured merge-trees (LSM trees). A store is created per column
family per region. A store stores data and is made up of a single MemStore and 0 or more
StoreFiles. A StoreFile is a façade on an HFile, which is stored in HDFS on disk. StoreFiles
are made of blocks. The block size is configured per column family. HBase supports
compression and encoding, which occur at the StoreFile block level. Data modifications
are first stored in memory (MemStore) and flushed to disk on regular intervals, or if a
memory threshold is exceeded, or explicitly with a shell command. Each flush generates
an HFile. Small flushes are merged in the background by a process called compaction to
keep the number of files small. Having a small number of files provides the advantage of

CHAPTER 8 ■ MAJOR COMPONENTS OF A CLUSTER

73

faster lookup. HBase has two in-memory structures: MemStore and block cache. While
MemStore is for the Write path, the block cache is for the Read path. Reads read block
cache first, and if the requested data is not found, the HFile on the disk is read. A block
cache is provided for frequently read data and reduces the read latency. Regardless of the
number of columns, atomicity is provided at row level.

 HDFS
 HDFS is the storage layer of HBase. Each RegionServer is collocated with an HDFS
Datanode, which is usually on the same node as the RegionServer.

 Clients
 Clients include native Java API, Gateway for REST, Thrift, and Avro.

 Summary
 In this chapter, I discussed the major components of an Apache HBase cluster, which are
Master, RegionServers, and ZooKeeper. In the next chapter, I will discuss regions.

75© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_9

 CHAPTER 9

 Regions

 In Apache HBase data is stored in a table but a table is not the fundamental unit. HBase
is designed for big data and a single table would be unwieldy to store big data. A table is
sorted by a row key lexicographically. To store data of scale a table is made up of one or
more regions; in fact, it’s typically several regions spread across several RegionServers. A
region is a subset of a table’s data. When a table is created, it consists of only one region
by default. The whole capacity of the cluster could be said to be underutilized when data
is first loaded into an empty table because the data is sent to a single RegionServer.

 A region is the unit of horizontal scalability in HBase. A region has a startKey and an
 endKey and contains a sorted, contiguous range of rows. Regions are non-overlapping;
the same row key is not stored on multiple regions. HBase guarantees strong consistency
within a single row by hosting a region on only a single RegionServer at a time. A complete
table is not necessarily stored on the same region or even the same RegionServer. Each
region can be on a different node and may consist of several HDFS files and blocks, each
of which is replicated. Regions are spread randomly across RegionServer/s. Regions are
made available to clients by RegionServers . Regions are the physical mechanism used
to distribute the write and query load across the RegionServers. Regions can be moved
around for load balancing and failover. Regions split automatically or manually with
growing data. Capacity is a factor only of cluster nodes vs. regions per node.

 Regions are the basic units of data distribution and availability in tables. A region
is made up of a store per column family. The data for each column family is stored and
accessed separately. The hierarchy of components including the region is table ➤ region
➤ store ➤ MemStore and store file ➤ block.

 When HBase starts, the Master assigns regions to RegionServers. If required for load
balancing, the Master also reassigns regions across the RegionServers.

 RegionServers manage data stored in regions. A table's row keys are distributed
across the cluster stored on different regions on different RegionServers, as shown in
Figure 8-2 in Chapter 8 . Figure 8-2 shows regions only for one table, but a RegionServer
typically holds regions from several tables.

http://dx.doi.org/10.1007/978-1-4842-2424-3_8

CHAPTER 9 ■ REGIONS

76

 How Many Regions?
 It is recommended to use a small number (20-200) of medium-large sized (5-20GB)
regions per region server. The optimal number of regions is 100. The following are some
of the factors to consider:

 1. The available heap space is a limiting factor in selecting
the number of regions. Approximately 2MB is required per
MemStore, a MemStore being per column family per region.
With 100 regions and 3 column families per region, the
MemStore heap space requirement is 600MB. Having fewer
regions reduces the MemStore heap requirement.

 2. A large number of regions generates a large number of tiny
flushes; with each flush generating a StoreFile, a large number
of StoreFiles are generated, which in turn require more
compactions. Also, the MemStore and the StoreFile index
require more heap space.

 3. A large number of regions put a load on the Master because
the Master has to assign/reassign regions to RegionServers.
Also, the Master has to move the regions around for load
balancing.

 Compactions
 When the number of StoreFiles in a store gets too large, the RegionServer performs a
compaction to merge the StoreFiles into a smaller number of StoreFiles.

 Region Assignment
 The regions are assigned on the HBase start by the Master as follows:

 1. The Master invokes the assignment manager

 2. The assignment manager refers to the existing assignment in
 hbase:meta metadata

 3. If the RegionServer is still available, the assignment is kept

 4. If the RegionServer is not online, the load balancer is invoked
to assign the region to another RegionServer

 5. The hbase:meta metadata is updated with the new
assignment

CHAPTER 9 ■ REGIONS

77

 Failover
 With multiple RegionServers serving data, a RegionServer could fail and the regions on
the RegionServer could become unavailable. The ZooKeeper detects the RegionServer
failure. But, because data is replicated across the cluster, the Master performs a failover to
another RegionServer hosting the same set of row keys in a region. Again, regions provide
a fundamental unit of the logical data model. Regions are assigned similarly as on startup.

 Region Locality
 Locality is the closeness of a region to a RegionServer. Region locality is achieved with
HDFS block replication across the cluster. A client contacts a RegionServer, and if a
region is closer to the RegionServer, less network transfer is required for client operations.
Region/RegionServer locality is achieved with block replication. The replica placement
policy is the replica placement policy of HDFS, which is as follows:

 1. The first replica is on the local node

 2. The second replica is on a random node on another rack

 3. The third replica is on the same rack as the second but on a
different node

 4. Subsequent replicas are on random nodes in the cluster

 On failover, region locality may be compromised temporarily as RegionServer/s
are reassigned regions with non-local StoreFiles, but as data is added to a region or on
compaction, the StoreFiles are rewritten and become local to the RegionServer.

 The benefits of regions are distributed datastores, partitioning, auto sharding and
scalability, and region splitting.

 Distributed Datastore
 The HBase design of using multiple regions for a table is inline with the design of a
distributed datastore. Instead of storing one large table (even if replicated) over one or
a few nodes, replicas of a table’s regions are distributed evenly across a cluster of nodes.
Replication of regions provides high availability.

 Partitioning
 Regions provide partitioning of data. Multiple clients accessing a table can use different
regions of the table and as a result won’t overload a partition (region) and RegionServer.
Having multiple regions reduces the number of disk seeks required to find a row, and
data is returned faster (low latency) to a client request.

CHAPTER 9 ■ REGIONS

78

 Auto Sharding and Scalability
 When the number of row keys in a region becomes too large, the region splits into
approximately two equal halves, a process called auto-sharding . The basic unit of
horizontal scalability in HBase is a region. Rows are shared by regions. A region is a sorted
set consisting of a range of adjacent rows stored together. A table’s data can be stored in
one or more regions. When a region becomes too large, it splits at the middle row key into
approximately two equal regions. For example, in Figure 9-1 , the Region has 12 rows and
it splits into two Regions with 6 rows each.

 Figure 9-1. A region split into two regions

 Region Splitting
 Regions split when a threshold is exceeded. Splits are handled by the RegionServer,
which splits a region and offlines the split region. Subsequently, the two split regions
are added to hbase:meta and opened on the RegionServer and reported to the Master.
Region splitting is automatic by default but may be run manually also. The HBase
region splitting policy is configured in hbase.regionserver.region.split.policy .
The default split policy before 0.94 is org.apache.hadoop.hbase.regionserver.
ConstantSizeRegionSplitPolicy , which is based on the maximum configurable size.
The maximum configurable size is set in hbase.hregion.max.filesize . When the sum
of the sizes of a Region’s StoreFiles exceeds the hbase.hregion.max.filesize setting,
the region is split. The default value of hbase.hregion.max.filesize is 10GB. Since
0.94, the default policy is IncreasingToUpperBoundRegionSplitPolicy , which is based
on the algorithm of “the split size is the number of regions that are on this server that all

CHAPTER 9 ■ REGIONS

79

are of the same table, cubed, times twice the region flush size OR the maximum region
split size, whichever is smaller.” The hbase.regionserver.regionSplitLimit setting
limits the number of regions splits, which is a guideline and not a hard limit. The default
is 1,000 regions.

 Manual Splitting
 By default, automatic splitting is configured and recommended but manual splitting may
be used by first disabling automatic splitting by setting hbase.hregion.max.filesize to
a very large value such as 100GB, which is unlikely to be reached. Manual splitting may
be performed with pre-splitting or later. The following are some of the reasons to perform
manual splitting:

 1. Data is sorted such that new data is sorted at the end of a table
as in a timeseries, which makes one of the RegionServers
disproportionately overloaded

 2. One of the regions has developed a hotspot due to an unusual
or unexpected load

 3. New RegionServers are added and manual splitting is
required to balance the load quickly

 4. A bulk load that could cause the uneven load across regions

 All of these issues would also be handled by automatic load balancing when found
but even the best of row key designs may not get the same result as manual splitting, and
load distribution is fixed faster with manual splitting. The RegionSplitter may be used for
manual splitting.

 Pre-Splitting
 In a new table, the row key range is not known and the row key to split a region is
undeterminable. As a result, only a single region is created by default in a new table. But
a table can be pre-split into a specified number of regions using pre-splitting. An optimal
number of pre-split regions is 10. The org.apache.hadoop.hbase.util.RegionSplitter
utility is used to create a table with a specific number of pre-splits. Note that pre-splitting
could cause heterogeneous load distribution, which degrades performance.

 Load Balancing
 As regions are located on RegionServers, the data could become unevenly distributed
across the cluster, with some RegionServers hosting more regions and data than other
RegionServers. The Master performs load balancing by moving regions across the cluster.
Regions serve as the fundamental unit of data for transfer. It is easier to move a smaller
unit of data than the complete table. The load balancer runs periodically as configured in
 hbase.balancer.period with a default of 30,000 (5 minutes).

CHAPTER 9 ■ REGIONS

80

 Preventing Hotspots
 Disproportional traffic to a single region ➤ RegionServer can cause hotspots. Manual
region splitting can be used to alleviate hot spots.

 Summary
 In this chapter, I discussed regions. In the next chapter, I will discuss how a client finds a
row in an HBase table.

81© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_10

 CHAPTER 10

 Finding a Row in a Table

 In this chapter I discuss how a row in a Apache HBase table is found. The sequence used
to find a row/s is as follows:

 1. HBase identifies the file/s (HFiles) that store/s the row/s
requested using the metadata

 2. Each HFile keeps a block index that identifies the block in the
HFile where a row is found

 3. After finding the block that could contain a row, HBase scans
the block to retrieve all key/value pairs requested, and copy of
the key/value pairs is stored in the block cache in memory

 4. The requested row is returned to the client

 5. Subsequent requests for the same row/s get served from the
block cache. Data in the block cache gets dropped using the
LRU algorithm when the cache is filled

 In subsequent sections, the details of each of these steps will be discussed,
answering questions such as how the metadata is stored and how the metadata file is
found. Finding a row is a DML operation because it does not involve creating a table.
Regions are made available to clients by RegionServers. Clients contact a RegionServer
directly for DML operations such as reading and writing data. The RegionServers handle
read/write requests from clients. The Master is not involved in finding a row in an HBase
table. But, how does a client find which RegionServer stores the row/s of data? The
Region ➤ Region Server mapping is stored in the hbase:meta catalog table (also known
as the META table). As hbase:meta is also a table, just like any other HBase table, it is stored
on a RegionServer. The location of hbase:meta is kept in the ZooKeeper on assignment by
the Master. When HBase starts up, the Master assigns the regions to each RegionServer,
including the regions for the hbase:meta table.

 A HBase client communicates with the ZooKeeper and the HRegionServers. The
HMaster coordinates the RegionServers. The RegionServers run on the datanodes.
The read path for reading data and the write path for inserting data were discussed in
Chapter 2 .

http://dx.doi.org/10.1007/978-1-4842-2424-3_2

CHAPTER 10 ■ FINDING A ROW IN A TABLE

82

 Block Cache
 As hbase:meta is required to access RegionServers, it is kept in the block cache for as
long as is feasible. The following flow sequence is used when a new client contacts the
ZooKeeper quorum to find a row key:

 1. First, the client gets the RegionServer name that hosts the
 hbase:meta table region from the ZooKeeper.

 2. The hbase:meta RegionServer info is cached and looked up
once only.

 3. Subsequently, the client queries the hbase:meta RegionServer
to get the RegionServer that contains the row the client needs.

 4. The client caches the information about the region in which
the row is located.

 5. The client contacts the RegionServer hosting the region
directly. The client does not need to contact the hbase:meta
region server again and again once it finds and caches
information about the location of the row/s.

 6. The HRegionServer class opens the region and creates a
 HRegion object. HRegionServer makes a set of HRegion s
available to clients, and a single HBase deployment has
several HRegionServers, each of which checks in with the
 HMaster . A store instance is created for each HColumnFamily
for each table and each of the store instances can have
 StoreFile instances, which are lightweight wrappers around
the HFile storage files. Each HRegion has a MemStore and a
WAL instance.

 The block cache caches the following information, which is used in finding a row
of data:

• Row data : Each Get or Scan that yields data that is not already in
the block cache is added to the block cache.

• Row keys : When a value (key/value) is loaded into block cache,
its key is also cached. It is advantageous to make the keys small so
that they occupy less space in the cache.

• The hbase:meta table, which keeps track of the RegionServer
➤ region mappings, is given in-memory priority and is kept
in memory for as long as feasible. The hbase:meta table could
consume several MB of cache if a large number of regions are
defined.

• Block indexes of HFiles are stored in the block cache. Using an
index, a client is able to find a row of data without having to open
the entire HFile. Index size is a factor of the size of the row keys,
block size, and amount of data stored in an HFile.

CHAPTER 10 ■ FINDING A ROW IN A TABLE

83

 The hbase:meta Table
 The hbase:meta table list all the regions and their locations. The region ➤ Region
Server association is stored in hbase:meta . For example, the hbase:meta table shown in
Figure 10-1 lists the region ➤ Region Server mappings for Table1 and Table2. Table1
startKey Key-00 row is stored in a region with a Region Id of 1, which is mapped to
RegionServer machine01host. Table1 startKey Key-30 row is stored in a region with
a Region Id of 2, which is mapped to RegionServer machine02host . Similarly, Table2
startKey Key-00 row is stored in a region with a Region Id of 1, which is mapped to
RegionServer machine01host. Table2 startKey Key-41 row is stored in a region with a
Region Id of 2, which is mapped to RegionServer machine02host . The table ➤ startKey ➤
RegionId ➤ RegionServer mappings are shown in Figure 10-1 .

 Figure 10-1. Row startKey ➤ Region Id ➤ RegionServer host mappings

 It can be found which region is responsible for which key. In read/write operations,
the Master is not involved at all and the client goes directly to the RegionServer
responsible for serving the requested data.

 For Put and Get operations, clients don't have to contact the Master and can directly
contact the RegionServer responsible for handling the specified row. For a client scan, the
client can directly contact the RegionServers responsible for handling the specified set
of keys. The client queries the hbase:meta table to identify a RegionServer, hbase:meta
being a system table used for tracking the regions. The hbase:meta table contains the
RegionServer names, region identifiers (Ids), table names, and startKey for each region.
For the hbase:meta table shown in Figure 10-1 , the RegionServer ➤ Region mappings are
shown in Figure 10-2 . RegionServer machine01.host is mapped to regions 1 and 20, and
Region Server machine02.host is mapped to regions 2 and 21. By finding the startKey and
the next region’s startKey, clients can identify the range of rows in a particular region. The
client contacts the Master only for creating a table and for modifications and deletions.
The cluster can keep serving data even if the Master goes down.

CHAPTER 10 ■ FINDING A ROW IN A TABLE

84

 To avoid having to get the region location again and again, the client keeps a cache
of region locations. The cache is refreshed when a region is split or moved to another
RegionServer due to balancing or assignment policies. The client receives an exception
when the cache is outdated and cache is refreshed by getting updated information from
the hbase:meta table.

 The hbase:meta is also a table like the other HBase tables and the client has to
find from the ZooKeeper on which RegionServer the hbase:meta itself is located. Prior
to HBase 0.96, the META locations were stored in a table called -ROOT- . With HBase
0.96, -ROOT- has been removed and the meta locations are stored in ZooKeeper, as shown
in Figure 10-3 .

 Figure 10-2. RegionServer ➤ region mappings

CHAPTER 10 ■ FINDING A ROW IN A TABLE

85

 The HBase Java Client API provides the two main interfaces discussed in Table 2-6 in
Chapter 2 .

 Summary
 In this chapter, I discussed how a client finds a row in a table. In the next chapter, I will
discuss compactions.

 Figure 10-3. The hbase:meta location is in the ZooKeeper

http://dx.doi.org/10.1007/978-1-4842-2424-3_2

87© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_11

 CHAPTER 11

 Compactions

 Compactions were introduced in Chapter 2 . In this chapter, I will discuss compactions
in more detail. Each flush of the MemStore generates a StoreFile , which is façade on
an HFile . The MemStore size at which a flush is performed is set in hbase.hregion.
memstore.flush.size , which is 128MB by default. The MemStore size is checked at a
frequency set in hbase.server.thread.wakefrequency , which has a default of 10,000
ms. If the number of StoreFiles in a store exceed some limits/thresholds, the files are
compacted into larger StoreFiles. Compaction is the process of creating a larger StoreFile
(HFile) file by merging smaller StoreFile files. Compaction asynchronously reads the
smaller StoreFiles and rewrites the StoreFiles into a single StoreFile. Compactions do
not merge regions. Old files are removed after merging. Compaction is performed on a
per-region basis. Compactions are performed to improve read performance. Compaction
could become necessary if HBase has scanned too many StoreFile files to find a result but
is not able to find a result. After the number of files scanned exceeds the limit set in the
 hbase.hstore.compaction.max parameter, compaction is performed to merge files to
create a larger StoreFile file. Instead of searching multiple files, only one StoreFile file has
to be searched.

 Two types of compactions are performed: minor compaction and major compaction .
Major compaction merges all the files. In a major compaction, deleted and duplicate key/
values are removed. When the schema updates to tables or column families are made,
such as changes to region size or block size, the updates take effect on the next major
compaction when the StoreFile gets rewritten.

 Minor Compactions
 Minor compaction just merges two or more smaller StoreFile files into one larger
StoreFile file. As a result, a store has a fewer number of StoreFiles. Minor compactions
select a small number of adjacent StoreFiles for compactions. Configuration properties
(discussed in Table 11-1) hbase.hstore.compaction.min , hbase.hstore.compaction.
max , hbase.hstore.compaction.min.size , hbase.hstore.compaction.ratio effect minor
compactions. Minor compactions do not drop deletes or excess or expired versions.

http://dx.doi.org/10.1007/978-1-4842-2424-3_2

CHAPTER 11 ■ COMPACTIONS

88

 Major Compactions
 Major compaction merges all the StoreFile files in a store into a single StoreFile. In a
major compaction, deleted and duplicate key/values are removed. Major compactions
run automatically at a frequency set in a configuration property called hbase.hregion.
majorcompaction , which has a default value of 7 days (>=0.96). Before 0.96, frequency for
major compactions was once a day. Setting hbase.hregion.majorcompaction to 0 disables
major compactions. It is not recommended to disable major compactions. An explicit major
compaction may also be performed by a user with Admin permissions. Major compactions
may be requested through the HBase shell and with the Admin.majorCompact API.

 A major compaction could degrade the read performance temporarily during the
major compaction because the underlying filesystem is in flux. As a result, a client may
experience high latency and even request timeouts.

 Compaction Policy
 How is it determined whether a compaction is to be a minor compaction or a major
compaction and which StoreFiles to select for compaction? It is determined by a
 compaction policy . Prior to HBase 0.96, the RatioBasedCompactionPolicy was used,
in which the first set of StoreFiles for the selection criteria are compacted. Since 0.96,
the default compaction policy is the ExploringCompactionPolicy , which tries to select
the best possible set of StoreFiles with the least amount of work. For example, the
 ExploringCompactionPolicy may determine that a minor compaction is more beneficial
than a major compaction. The StoreFile selection is based on several configuration
parameters.

 The objective of the ExploringCompactionPolicy is to find the best compaction set.
The ExploringCompactionPolicy algorithm is as follows:

 1. A list of all existing StoreFiles in a store is made

 2. For a user-requested compaction, an attempt is made to
perform the compaction. But it may not be feasible to perform
the requested compaction. Not all the StoreFiles may be
available to compact or a store could have too many StoreFiles

 3. The number of StoreFiles is reduced. StoreFiles selected
for exclusion include those larger than hbase.hstore.
compaction.max.size and StoreFiles created with bulk load
and excluded with hbase.mapreduce.hfileoutputformat.
compaction.exclude

 4. After excluding some StoreFiles, restart from step 1 and make
a list of potential sets of StoreFiles to compact. A potential
set is made from hbase.hstore.compaction.min number
of contiguous StoreFiles in the list. A set with number of
StoreFiles fewer than hbase.hstore.compaction.min or more
than hbase.hstore.compaction.max would not be a potential
set for compaction

CHAPTER 11 ■ COMPACTIONS

89

 5. Determine if the size of a set of StoreFiles is the smallest
feasible compaction size and, if so, store the set as a "fall-
back" set that could be used for compaction if the compaction
algorithm gets set and can’t find any other set suitable for
compaction

 6. If not selected as a fall-back, perform some more validation to
find if the StoreFiles in the set are suitable for compaction. If a
StoreFile is larger than hbase.hstore.compaction.max.size
or hbase.hstore.compaction.min.size x hbase.hstore.
compaction.ratio , exclude the StoreFile from the set

 7. A set is still in contention for being selected the best
compaction set if it has only one StoreFile or if its size
x hbase.hstore.compaction.ratio (or hbase.hstore.
compaction.ratio.offpeak for offpeak compaction) is less
than the sum of all the other StoreFiles in the set. Compare the
best compaction with the previously selected best compaction
and select the new best compaction set. After the entire
list of potential compactions has been processed, perform
compaction on the best compaction set. If none is found,
perform compaction on the fall-back set

 Function and Purpose
 The function of compactions is to reduce the number of StoreFiles in a store. Compaction
has the following purposes or benefits:

 1. Compaction provides better indexing of data, reducing the
number of seeks required to reach a block that could contain
the key

 2. Compactions reduce the number of files to search during a
scan by merging smaller files into one large file

 3. Read latency is reduced as fewer StoreFiles have to be
searched. HBase is designed for fast random access

 4. Compactions remove the duplicated keys (updated values)

 5. Compactions remove the deleted keys

 6. Excess versions are removed on a major compaction

 7. StoreFiles with only expired rows are removed on a minor
compaction

 8. Encryption of HFiles

 9. Rotation of the data key

CHAPTER 11 ■ COMPACTIONS

90

 Compactions do have some disadvantages :

 1. HFiles compaction alleviates the read performance issue
by compacting multiple smaller files into a larger file. But
compaction is usually performed in parallel with other
requests and it could block writes on a RegionServer. The read
performance gain is at a loss of write performance, which
could be a factor in a write-intensive workload.

 2. The index size and as a result the memory required to store
the index increases. The index size is proportional to the size
of a StoreFile.

 Versions and Compactions
 The maximum number of cell versions may be configured on a column family, with a
default of three. When the number of versions exceeds the maximum setting, the excess
versions are not included when the StoreFiles are rewritten on a major compaction. The
excess version/s could affect query results until a major compaction is run to remove the
excess version/s. For example, the number of versions is 3: v1, v2, and v3, with v3 being
the latest and the maximum number of versions is two. Before a major compaction has
been run, one of the latter versions is deleted; for example, v3 or v2 is deleted. With two
versions, version v1 gets returned in a query.

 Delete Markers and Compactions
 All delete markers including those for future timestamps are purged on a major compaction
unless KEEP_DELETED_CELLS is set to true. If the hbase.hstore.time.to.purge.deletes
(ms) configuration property is set to a non-default value, other than 0, the delete markers
are kept until their timestamp and the hbase.hstore.time.to.purge.deletes .

 Expired Rows and Compactions
 A StoreFile could contain only expired rows . Expired rows get deleted on a minor
compaction. Setting hbase.store.delete.expired.storefile to false or setting
minimum or versions to other than 0 disables the feature of deleting StoreFiles with only
expired rows.

 Region Splitting and Compactions
 HBase regions split automatically if the HFile data files storage exceeds the limit set by
the hbase.hregion.max.filesize setting in the hbase-site.xml / hbase-default.xml
configuration file. The default setting for hbase.hregion.max.filesize is 10GB. When
the default storage requirement for a region exceeds the hbase.hregion.max.filesize
parameter value, the region splits into two and reference files are created in the new

CHAPTER 11 ■ COMPACTIONS

91

regions. The reference files contain information such as the key where the region was
split. The reference files are used to read the original region data files. When compaction
is performed, the new data files are created in a new region directory and the reference
files are removed. The original data files in the original region are also removed. The
 HConstants.MAJOR_COMPACTION_PERIOD setting determines how often a region performs
major compaction with a default value of 7 days. If regions are split into too many large
regions, increase the value of HConstants.MAJOR_COMPACTION_PERIOD . Each /hbase/table
directory also contains a compaction.dir directory, which is used when splitting and
compacting regions.

 Number of Regions and Compactions
 Region count should be kept low (20-200 of 5-20GB). Too many regions cause tiny
flushes, generating a large number of StoreFiles, causing compactions.

 Data Locality and Compactions
 HBase eventually achieves locality for a region after a flush or compaction. In a RegionServer
failover, data locality may be lost if a RegionServer is assigned regions with non-local HFiles,
resulting in none of the replicas being local. But as new data is written in the region or a table
is compacted and HFiles are rewritten, they will become local to the RegionServer.

 Write Throughput and Compactions
 Frequent compactions could affect the write throughput and therefore for write-intensive
workloads less-frequent compactions are recommended. Less-frequent compactions
would result in more store files per region. Setting hbase.hstore.compaction.min to
a higher value would reduce compaction frequency by making store files eligible for
compaction at a greater size and resulting in more store files. So that updates are not
blocked when the number of store files becomes too large, increase the size of the hbase.
hstore.blockingStoreFiles setting and reduce the hbase.hstore.blockingStoreFiles
setting.

 Encryption and Compactions
 HBase supports encryption of HFiles and WALs using the AES encryption algorithm, and
encryption may be configured in the schema per column family. Any HFile written after
configuring encryption is encrypted. To encrypt all HFiles, perform an explicit major
compaction after configuring column family/ies for encryption. A major compaction
causes rewriting of HFiles, and the rewritten HFiles are in an encrypted form. Similarly,
a data key may be rotated by configuring the column family with a new data key and
subsequently causing a major compaction, which causes HFiles to be written with the
new data key.

http://hbase.apache.org/book.html#hbase.hstore.blockingstorefiles
http://hbase.apache.org/book.html#hbase.hstore.blockingstorefiles

CHAPTER 11 ■ COMPACTIONS

92

 Configuration Properties
 Optimal compaction settings are based on latency requirements and read/write volumes.
Most of the compaction configuration properties are discussed in Table 11-1 .

 Table 11-1. Compaction Configuration Properties

 Configuration Property Description Default

 hbase.hregion.memstore.
flush.size

 The MemStore size above which
it is flushed to disk as a StoreFile.
Default is 128 MB.

 134217728 bytes

 hbase.hregion.
majorcompaction

 Time between major
compactions in ms. Setting to
0 disables time-based major
compactions. User-requested and
size-based major compactions
are not affected if set to 0. Value
is multiplied by hbase.hregion.
majorcompaction.jitter to
cause the compaction to start
within a window of time.

 604800000 (7 days)

 hbase.hregion.
majorcompaction.jitter

 Multiplier factor to affect
the hbase.hregion.
majorcompaction setting. Creates
a window of time in which the
compaction runs.

 0.50

 hbase.hstore.
compactionThreshold

 The number of StoreFiles in a
store after which a compaction is
run to combine all StoreFiles into
one StoreFile.

 3

 hbase.hstore.flusher.
count

 Number of flush threads run
simultaneously. More threads
cause more StoreFiles, which
could start a compaction sooner.

 2

(continued)

CHAPTER 11 ■ COMPACTIONS

93

Table 11-1. (continued)

 Configuration Property Description Default

 hbase.hstore.
blockingStoreFiles

 Number of StoreFiles in a store
after which updates to the store
are blocked until a compaction
is performed or until hbase.
hstore.blockingWaitTime is
exceeded. A blocked situation
could arise in which the hbase.
hstore.blockingStoreFiles
does not permit an update
because the number of StoreFiles
exceeds the setting and
compaction must be performed
and the hbase.hregion.
memstore.flush.size has also
been exceeded in MemStore,
requiring a flush. Such a block
is alleviated by the compaction
policy.

 10

 hbase.hstore.
blockingWaitTime

 The time (ms) for which
updates to a store are blocked
on reaching the hbase.
hstore.blockingStoreFiles
limit of StoreFiles even if the
compaction started due to
reaching the hbase.hstore.
blockingStoreFiles limit has
not completed.

 90000

 hbase.hstore.compaction.
min

 The minimum number of
StoreFiles that must be eligible
for minor compaction before
a compaction is run. The
objective of tuning the setting
is to avoid causing several tiny
StoreFiles to be generated before
a compaction is run and avoid
running a minor compaction
every two files. Default setting
should suffice.

 3

(continued)

CHAPTER 11 ■ COMPACTIONS

94

Table 11-1. (continued)

 Configuration Property Description Default

 hbase.hstore.compaction.
max

 The maximum number of
StoreFiles selected for a single
minor compaction regardless of
the number of StoreFiles eligible
for compaction. Indirectly it
controls how long a minor
compaction runs.

 10

 hbase.hstore.compaction.
min.size

 The minimum size for a StoreFile,
below which it is always eligible
for minor compaction. For
StoreFiles of the size exactly
or larger, the hbase.hstore.
compaction.ratio is used to
determine if they are eligible. If
too many relatively small (1-2MB)
StoreFiles are being generated in
a write-heavy environment, the
default setting may be too large
as multiple compactions would
be required to bring a StoreFile
size above the minimum size.
Reducing the setting would make
the minimum size close to the size
of StoreFiles being generated and
multiple compactions would not
be required for a StoreFile. Mostly
the default setting should be fine.

 134217728 bytes
(128 MB)

 hbase.hstore.compaction.
max.size

 The maximum StoreFile size
for a file to be eligible for
compaction, and StoreFiles larger
than the setting are excluded
from compaction. StoreFiles
could be getting excluded from
compaction at a relatively
lower size and the benefit of
compactions might not be being
realized. If compactions are
occurring too often without much
benefit, consider raising the value
as it would exclude StoreFiles
from compaction at a larger
size, resulting in a few, large
sized StoreFiles that do not get
compacted often.

 LONG.MAX_VALUE
 9223 Petabyte

(continued)

CHAPTER 11 ■ COMPACTIONS

95

Table 11-1. (continued)

 Configuration Property Description Default

 hbase.hstore.compaction.
ratio

 For StoreFiles of the size exactly
or larger than the hbase.hstore.
compaction.min.size setting,
the hbase.hstore.compaction.
ratio is used to determine if
they are eligible for a minor
compaction. Setting the value
too large, such as 10, causes large
StoreFiles that were generated
using minor compactions
because the StoreFiles of size
about 10 times the hbase.
hstore.compaction.min.size
value were still eligible for minor
compaction. Setting the value
too low would exclude StoreFiles
from minor compaction at a
relatively small size, producing
more relatively small StoreFiles.
Raising the value causes
compaction of large StoreFiles,
which increases the write cost as
more data has to be compacted
but reduces the read cost as
fewer StoreFiles have to be read.
Default value of 1.2 should be fine
for most purposes.

 1.2

 hbase.hstore.compaction.
ratio.offpeak

 Same as hbase.hstore.
compaction.ratio , but applies
only to off-peak hours.

 5.0

 hbase.hstore.time.
to.purge.deletes

 Applies to delete markers with
future timestamps. The delete
markers are kept through a major
compaction that is at a timestamp
less than a delete marker’s
timestamp and get deleted
on major compaction that
occurs after the delete marker’s
timestamp plus hbase.hstore.
time.to.purge.deletes .

 0

(continued)

CHAPTER 11 ■ COMPACTIONS

96

 Configuration Property Description Default

 hbase.regionserver.
thread.compaction.
throttle

 Two thread pools are created
for compactions: one for small
compactions and another for
large compactions. Separate
thread pools are created so that
compactions of small tables such
as the hbase:meta is not slowed
due to larger compactions taking
up most of the threads. The value
of the setting is the threshold for
a compaction to be considered a
large compaction.

 2684354560 (2.5 GB)

 hbase.hstore.compaction.
kv.max

 The maximum number of key/
value pairs read and write in a
batch in a compaction. Lower
the value if KeyValues are big,
causing OutOfMemoryExceptions .
Increase the value if rows are
wide and small.

 10

 hbase.server.
compactchecker.interval.
multiplier

 By default, events such as
MemStore flush determine
when a scan is made to check if
a compaction is necessary. But,
due to infrequent writes it may
be necessary to perform a check
if a compaction is required at a
specified interval. The hbase.
server.thread.wakefrequency
setting multiplied by hbase.
server.thread.wakefrequency
determines the frequency at
which a check is performed for
compaction.

 1000

Table 11-1. (continued)

CHAPTER 11 ■ COMPACTIONS

97

 Pluggable compactions, which make use of different algorithms, may also be used,
such as compactions based on statistics (which keys/files are commonly accessed and
which are not).

 Summary
 In this chapter, I discussed compactions. The topics covered including the different kinds
of compactions (minor compactions and major compactions), compaction policy, the
function of compactions, and versions, delete markers, expired rows, and region splitting
in relation to compactions. I also discussed regions, data locality, write throughput, and
encryption in relation to compactions. Configuration properties for compactions were
also discussed. In the next chapter, I will discuss RegionServer failover.

99© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_12

 CHAPTER 12

 Region Failover

 Apache HBase provides automatic failover on RegionServer crashes. When a RegionServer
crashes, the HBase cluster and the data remain available. When a RegionServer crashes,
all the regions on the RegionServer migrate to another RegionServer. The Master handles
RegionServer failures by assigning the regions handled by the failed RegionServer to
another RegionServer.

 A RegionServer crash is different from an administrator stopping a RegionServer,
which allows for the RegionServer to close the regions and shut down properly and for
the Master to reassign the closed regions.

 MTTR (Mean Time to Recover) is the average time required to recover from a failed
RegionServer. The objective of MTTR for HBase regions metric is to detect failure of a
RegionServer and restore access to the failed regions as soon as possible.

 The Role of the ZooKeeper
 The ZooKeeper has the all-important role of detecting RegionServer crashes and
notifying the Master so that the Master may perform the failover to another RegionServer.
If no RegionServers are failing, there is no actual value to track in the logs of the
ZooKeeper. However, since RegionServers do fail, the ZooKeeper is highly available and it
is useful for managing the transfer of the queues in the event of a failure. The ZooKeeper
coordinates, communicates, and shares state between the Master/s and the RegionServer.
The ZooKeeper is a client/server system for distributed coordination and it provides an
interface similar to a filesystem, consisting of nodes called znodes, which may contain
transient data. When a RegionServer starts, it creates a sub-znode for describing its online
state. For example, a sub-znode could be /hbase/rs/host1 . The active Master registers
in the /hbase/master znode. A sub-znode used in region assignment/reassignment is the
znode for unassigned regions, /hbase/unassigned/<region name> .

 HBase Resilience
 HBase is resilient to failures while being consistent. HBase implements consistency by
having a single RegionServer responsible for a region, which is a subset of data. The
resilience to failure is implemented in the HDFS, a distributed filesystem.

CHAPTER 12 ■ REGION FAILOVER

100

 1. HBase puts table data in HFiles, which are stored in HDFS.
HDFS replicates the blocks of the HFiles, three times by
default.

 2. HBase keeps a commit log called a write-ahead log (WAL),
also stored in the HDFS and also replicated three times by
default.

 Rebuilding a certain RegionServer can take approximatively 10-15 minutes or even
more, so even the latest improvements of HBase can only provide timeline-consistent
read access using standby RegionServers. This can be a serious problem for sensitive or
critical apps.

 Phases of Failover
 Before I discuss region server failover, I will discuss the write path to HBase, also shown
in Figure 12-1 . The client contacts the RegionServer directly for a write. The RegionServer
is collocated with a datanode. The HBase table data is written to the local datanode and
subsequently replicated to other datanodes with three replicas by default. The ZooKeeper
keeps a watch on all of the RegionServers.

 Figure 12-1. The write path to HBase

CHAPTER 12 ■ REGION FAILOVER

101

 The phases in failover involve failure detection and the recovery process, as follows:

 1. Failure Detection: Detect the RegionServer crash.

 2. Data Recovery: Recover the writes in progress, which involves
reading the WAL and recovering the edits that were not
flushed.

 3. Regions Reassignment: Reassign/reallocate the regions
offlined due to failure to other RegionServer/s.

 The three phases (crash detection, data recovery, and region reassignment) are
shown in Figure 12-2 . The ZooKeeper is shown detecting the RegionServer crash. The
ZooKeeper notifies the Master about the RegionServer crash. The Master performs
data recovery using the WAL logs. The Master also performs the region reassignment to
other RegionServers. The Master notifies the client about the RegionServer failure and
the client disconnects from the failed RegionServer. The failover process is shown in
Figure 12-2 .

 Figure 12-2. Failover process

 Next, I will discuss these phases in slightly more detail.

CHAPTER 12 ■ REGION FAILOVER

102

 Failure Detection
 Detecting RegionServer failure due to a crash is performed by the ZooKeeper. Each
RegionServer is connected to the ZooKeeper and the Master monitors these connections.
When a ZooKeeper detects that a RegionServer has crashed, the ZooKeeper ends the
RegionServer’s session and notifies the Master about the RegionServer. The Master
declares the RegionServer as unavailable by notifying the client. The Master starts the
data recovery process and subsequent region reassignment.

 The MTTR is influenced by the zookeeper.session.timeout setting (default is
90000 ms) in hbase-default.xml / hbase-site.xml . If the RegionServer crashes, it could
be 90 secs before the ZooKeeper finds out about the crash and times-out the session.
But, the ZooKeeper can find out sooner than the configured timeout. The Master finds
about the crash from the ZooKeeper and starts the failover to another RegionServer. The
Master performs data recovery using the edits stored in the WAL and performs region
reassignment. The zookeeper.session.timeout may be lowered to reduce the MTTR. A
smaller timeout could lead to false positives.

 Data Recovery
 Data recovery makes use of the edits stored in the WALs. A single WAL consisting of
multiple files for all the user regions in a RegionServer is kept. One logical WAL is created
per region. One physical WAL is created per RegionServer. WALs are chronologically
ordered sets of files and only the last one is open for writing. Every edit is appended to a
WAL and sequential writes that sync very well are made to a WAL. Sequential reads for
replication and crash recovery are performed.

 The Master is able to recover writes in progress from the WAL if a RegionServer
crash occurs. The Master reads the edits from the WAL and replays (rewrites) them on
another region server, to which region/s have been reassigned. When a RegionServer
crashes, the recovery of WAL is started. The recovery is performed in parallel and random
RegionServers pick up the WAL logs and split them by edits-per-region into separate files
on the HDFS. Subsequently, the regions are reassigned to random RegionServers (not
necessarily the same that picked up the WALs) and each RegionServer reads the edits
from the respective edits-per-region log split files to recover the correct region state. New
data may be written to HBase during WAL replay.

 The recovery process is slowed down if it is not just a RegionServer crash, but also
the node (machine) on which the RegionServer is running has crashed. As WAL logs are
replicated three times, with one of the replicas being on HDFS datanode on the same
node (machine) as the RegionServer, 1/3 (33%) of replicas have become unavailable.
During data recovery, 33% of reads go the failed datanode first and are redirected to a
non-failed datanode. The recovery process has access to only two of the three replicas,
which could slow down the recovery process. Having more than the default replicas could
alleviate the slow recovery due to machine crash. Also, HBase writes are also written to
the crashed datanode and the NameNode has to re-replicate the lost data to bring the
replica count to the configured.

CHAPTER 12 ■ REGION FAILOVER

103

 Regions Reassignment
 The objective is to reassign the regions as fast as possible. The ZooKeeper has an important
role in the reassignment. Reassignment is performed by the ZooKeeper and requires
synchronization between the Master and the RegionServers through the ZooKeeper.

 From these phases, the failure detection takes about 30-90 seconds. Data recovery is
about 10 secs and region reassignment is 10 seconds.

 After the RegionServer failover is complete, the client connects on a RegionServer to
which the data has been recovered and the regions reallocated.

 Failover and Data Locality
 HBase eventually achieves locality for a region after a flush or compaction. In a
RegionServer failover, data locality may be lost if a RegionServer is assigned regions with
non-local HFiles, resulting in none of the replicas being local. But as new data written in
the region or table is compacted and HFiles are rewritten, they will become local to the
RegionServer.

 Data locality is low when a region is moved as a result of load balancing or a
RegionServer crash and failover. Most of the data is not local unless the files are
compacted. When writing a data file, provide hints to the NameNode for locations for
block replicas. The load balancer should assign a region to one of the affiliated nodes on a
server crash to keep data locality and SSR. Data locality reduces data loss probability.

 Configuration Properties
 The configuration properties affecting region failover are shown in Table 12-1 .

 Table 12-1. Properties Affecting Region Failover

 Configuration Property Description Default Value

 zookeeper.session.
timeout

 ZooKeeper Session timeout. Increasing
the zookeeper session timeout can be
a fast first fix, for instance, for garbage
collection pauses.

 90000

 hbase.regionserver.
msginterval

 Interval between messages from
RegionServer to Master

 3000

 Summary
 In this chapter, I discussed region failover including the role of the ZooKeeper. HBase is
designed to be resilient to failures while being consistent at the same time. The phases of
failover, which include failure detection and recovery process, are discussed. In the next
chapter, I will discuss creating column families.

105© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_13

 CHAPTER 13

 Creating a Column Family

 Columns, including the column values, are grouped into column families for
performance reasons. A column family is both the logical and physical grouping of
columns. A column consists of a column family and a column qualifier. A fully qualified
column name consists of a prefix, which is the column family name, followed by a :
(colon) and the column qualifier. For example, if a table has a single column family cf1 ,
which has column qualifiers col1 , col2, and col3 , the columns in the table would be
 cf1:col1 , cf1:col2 , and cf1:col3 . The column family name must be composed of
printable characters while the column qualifier can be any bytes. Column families must
be declared when a table is created, but the column qualifiers may be created on an
as-needed basis dynamically. Each row in a table has the same column families even
though a column family may not store any data. A table can be defined as a sparse set of
rows stored in column families. The maximum number of row versions is configured per
column family. All column family members are stored together on disk. Empty cells in a
table are not stored at all, not even as null values. As a store is defined per column family,
each StoreFile (HFile) stored on disk is per column family, which implies that the data
for a column family is stored separately on disk. The storage characteristics of a column
family include the following:

 1. Are the values cached in memory?

 2. How is the data compressed?

 3. Are the row keys encoded?

 All columns within a column family share the same characteristics such as
versioning and compression.

 Cardinality
 The cardinality of a column family is the number of rows in the column family. If a
column family’s data is spread across several regions and region servers, the mass scans
of the column family become less efficient.

CHAPTER 13 ■ CREATING A COLUMN FAMILY

106

 Number of Column Families
 The number of column families should be kept low, 2 or 3. HBase presently doesn’t
perform well on column families above 2 or 3. In general, selecting fewer column families
reduces the amount of data to be scanned. Presently, compactions and flushing are
performed on a per-region basis, which needlessly flushes and compacts column families
that do not need it and introduces unnecessary I/O network load. It is recommended to
have one column family; if the second or third column family is added, the query should
run on one column family at a time. Having more than a few column families causes
several files to be open per region. Several column families also incur class overhead
per column family. Several column families could cause compaction storms because
StoreFiles are created per column family. Several column families would generate several
column families.

 Column Family Compression
 Column family compression is a best practice and deflates data on disk. But in memory
(MemStore), or while being transferred between RegionServer and client, the data is
inflated. Therefore, compression does not eliminate the effect of oversized column family,
oversized keys, or oversized column names, which are recommended to be kept short.
The compression could be BLOCK or RECORD . The type of compression to use depends on
the data used. For example, if table has a single column that stores a blob of text data and
only one version is required to be kept, BLOCK compression is recommended because
it spans multiple rows for the best compression ratio. If a table has variable number
of rows containing text data and multiple versions are used, RECORD compression is
recommended because the compression is applied per record or row. Compression ratios
are generally better for BLOCK compression, therefore it’s recommended for use with
blobs of text data. Access times are better for RECORD compression because a single row is
fetched at a time.

 Column Family Block Size
 The block size is configurable per column family and is 64k by default. If the cell values
are expected to be large, make the block size large. The StoreFile index size is reduced if
the block size is large; as a result, a StoreFile index requires less memory.

 Bloom Filters
 A bloom filter is used to ascertain if a given column exists in a given row. A bloom
filter adds an extra index, which incurs a storage overhead in memory and an updata
overhead in time. The purpose of a bloom filter is to reduce the lookup time, which
makes them especially suitable if a column family has a large number of variably named
columns with each cell having a small amount of data. Inserting new items and checking
for existing items is speeded up with a bloom filter. Deletion is slowed as it requires
rebuilding the index.

CHAPTER 13 ■ CREATING A COLUMN FAMILY

107

 IN_MEMORY
 The IN_MEMORY characteristic of a column family makes cell values to be kept in memory
more preferably than normal. IN_MEMORY speeds up certain kinds of read/write patterns.
The disadvantage is that it consumes more RAM and may interfere with HDFS backups
because data is or might be written to disk less frequently. An example of a blocksize
command when describing table is as follows:

 BLOCKSIZE => '12345', IN_MEMORY => 'false', BLOCKCACHE => 'true'}]}

 MAX_LENGTH and MAX_VERSIONS
 MAX_LENGHT and MAX_VERSIONS affect the function of a column family. MAX_LENGTH
is how many bytes can be stored in each cell, with a default of max size of a 32-bit signed
integer. If the data to be stored per cell is large, use a higher value. MAX_VERSIONS is the
maximum number of supported versions with a default of 3.

 The main factors to be considered when creating column families are as follows:

 1. The access pattern and size characteristics of all members of
a column family should be the same because they are stored
together.

 2. The number of column families should be kept low, preferable
1 and at the most 2 or 3.

 3. The column family name must be printable because it is used
as directory name in the filesystem; the column qualifier can
be any arbitrary bytes.

 4. The maximum number of row versions should be set to a very
high level, such as hundreds or more.

 5. Sorting per column family can be used to convey application
logic or access pattern.

 6. The column family name and column qualifier name must be
kept short because cell coordinates, which are {rowkey, col
umnfamily:columnqualifier,timestamp} , accompany a cell
value through the system. The column family and column
qualifier names should be in the range of 1-3 characters each.

 Summary
 In this chapter, I discussed how to create a column family. In the next chapter, I will
discuss RegionServer splits.

 PART IV

 Schema Design

111© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_14

 CHAPTER 14

 Region Splitting

 A table’s data is stored in regions. A single table’s data can be stored in one or more
regions. A region is a sorted set consisting of a range of adjacent rows stored together. A
table’s data can be stored in one or more regions depending on how many rows are stored
in a region. RegionServers manage data stored in regions. When HBase starts, the Master
assigns regions to RegionServers. If required for load balancing, the Master also reassigns
regions across the RegionServers. As discussed in Chapter 9 , when the number of row keys
in a region becomes too large, the region splits into approximately two equal halves, and
this is called auto-sharding . Regions split automatically or manually with growing data
as a region becomes too large. A RegionServer does not compact and splits in parallel.
For example, a table’s row keys are not stored in the same region; a table's row keys are
distributed across the cluster stored on different regions on different RegionServers.

 The basic unit of horizontal scalability in HBase is a region. Rows are shared
by regions. When a region becomes too large, it splits at the middle row key into
approximately two equal regions. For example, in Figure 14-1 , the region has 12 rows and
it splits into two regions with 6 rows each.

 Figure 14-1. A region splits into two regions at the middle row key

http://dx.doi.org/10.1007/978-1-4842-2424-3_9

CHAPTER 14 ■ REGION SPLITTING

112

 Region splitting was discussed in detail in Chapter 9 . Compactions and region splits
was discussed in Chapter 11 .

 Managed Splitting
 Managed or manual splitting was also introduced in Chapter 9 . Managed splitting is
recommended only for workloads. By default, automatic splitting is configured and
recommended. To use managed splitting, first disable automatic splitting by setting
 hbase.hregion.max.filesize to a very large value that is unlikely to be reached, such
as 100GB. Managed splitting may be performed with pre-splitting or later as a rolling
split of all regions in an existing table, both with the org.apache.hadoop.hbase.util.
RegionSplitter utility. Certain workload characteristics benefit from manual splitting.

 1. Data (~ 1k) that would grow instead of being replaced.

 2. Data growth is roughly uniform across all regions.

 3. OLTP workload in which data loss cannot be tolerated.

 The following are some of the reasons to perform managed splitting , in addition to
the ones discussed in Chapter 9 :

 1. Data splits are needed with growing amounts of data
debugging and profiling, and this is easier with manual
splitting. Issues such as data offlining bugs, unknown number
of regions, automatically named and constantly renamed
regions are some of the issues with automatic regions.

 2. The compaction algorithm may be finely tuned. Staggered
time-based major compactions can be used to spread out the
network I/O load and prevent split/compaction storms when
regions reach the same data size at the same time.

 3. Region boundaries are known and invariant.

 4. Mitigates region creation and movement under load.

 5. All of these issues would also be handled by automatic load
balancing when found but even the best of row key designs
may not get the same result as manual splitting, and load
distribution is fixed and faster with manual splitting.

http://dx.doi.org/10.1007/978-1-4842-2424-3_9
http://dx.doi.org/10.1007/978-1-4842-2424-3_11
http://dx.doi.org/10.1007/978-1-4842-2424-3_9
http://dx.doi.org/10.1007/978-1-4842-2424-3_9

CHAPTER 14 ■ REGION SPLITTING

113

 Pre-Splitting
 Pre-splitting , introduced in Chapter 9 , is the process of creating a table with the specified
number of pre-split regions. Ordinarily, in a new table, the row key range is not known
and the row key to split a region is undeterminable. As a result, only a single region
is created by default in a new table. But a table could be created with a pre-specified
number of splits. To prevent compaction storms that occur due to the uniform data
growth in a large series of regions resulting in same-sized regions, the optimal number of
pre-splits depends on the largest StoreFile in a region. The largest region should be just
big enough so that it is compacted only during timed major compaction and an optimal
number of pre-split regions is 10. When selecting the number of pre-splits, it is better to
select fewer and perform rolling splits later.

 Configuration Properties
 The configuration properties for region splitting are discussed in Table 14-1 .

http://dx.doi.org/10.1007/978-1-4842-2424-3_9

CHAPTER 14 ■ REGION SPLITTING

114

 Ta
bl

e
14

-1
.

 C
on

fi
gu

ra
ti

on
 P

ro
pe

rt
ie

s
fo

r
R

eg
io

n
 S

pl
it

ti
n

g

 C
on

fig
ur

at
io

n
Pr

op
er

ty

 D
es

cr
ip

tio
n

 D
ef

au
lt

 hb
as
e.
hr
eg
io
n.
ma
x.
fi
le
si
ze

 Sp

ec
if

ie
s

th
e

m
ax

im
u

m
 c

u
m

u
la

ti
ve

 H
Fi

le
 s

iz
e.

If

 th
e

su
m

 o
f t

h
e

si
ze

s
of

 th
e

H
Fi

le
s

in
 a

 r
eg

io
n

ex

ce
ed

s
th

e
va

lu
e,

 th
e

re
gi

on
 is

 s
p

lit
 in

to
 tw

o.

 10
73

74
18

24
0

(1
0G

B
)

 hb
as
e.
re
gi
on
se
rv
er
.r
eg
io
n.

sp
li
t.
po
li
cy

 Sp

ec
if

ie
s

a
sp

lit
 p

ol
ic

y
th

at
 d

et
er

m
in

es
 w

h
en

a

re
gi

on
 is

 s
p

lit
. S

om
e

of
 th

e
su

p
p

or
te

d
 s

p
lit

p

ol
ic

ie
s

in
cl

u
d

e
C

on
st

an
tS

iz
eR

eg
io

n
Sp

lit
P

ol
ic

y,

 D
is

ab
le

d
R

eg
io

n
Sp

lit
P

ol
ic

y,

 D
el

im
it

ed
K

ey
P

re
fi

xR
eg

io
n

Sp
lit

P
ol

ic
y,

 a
n

d

 K
ey

P
re

fi
xR

eg
io

n
Sp

lit
P

ol
ic

y.

 or
g.
ap
ac
he
.h
ad
oo
p.
hb
as
e.
re

gi
on
se
rv
er
.

In
cr
ea
si
ng
To
Up
pe
rB
ou
nd
Re
gi

on
Sp
li
tP
ol
ic
y

 hb
as
e.
re
gi
on
se
rv
er
.

re
gi
on
Sp
li
tL
im
it

 A

 g
u

id
el

in
e

an
d

 n
ot

 a
 h

ar
d

 li
m

it
 to

 li
m

it
 th

e
n

u
m

b
er

 o
f r

eg
io

n
s

af
te

r
w

h
ic

h
 r

eg
io

n
s

ar
e

n
ot

sp

lit
 fu

rt
h

er
.

 10
00

 hb
as
e.
cl
ie
nt
.k
ey
va
lu
e.

ma
xs
iz
e

 Sp
ec

if
ie

s
th

e
m

ax
im

u
m

 a
llo

w
ab

le
 s

iz
e

of
 a

K

ey
V

al
u

e
in

st
an

ce
. A

n
 u

p
p

er
 s

iz
e

lim
it

 fo
r

a
si

n
gl

e
en

tr
y

in
 a

 H
Fi

le
. A

s
a

si
n

gl
e

K
ey

V
al

u
e

en
tr

y
ca

n
n

ot
 b

e
sp

lit
, t

h
e

re
gi

on
 c

an
n

ot
 b

e
sp

lit
 fu

rt
h

er
 b

ec
au

se
 th

e
d

at
a

is
 to

o
la

rg
e

fo
r

a
sp

lit
. R

ec
om

m
en

d
ed

 to
 s

et
 to

 a
 fr

ac
ti

on
 o

f t
h

e
m

ax
im

u
m

 r
eg

io
n

 s
iz

e.
 S

et
ti

n
g

to
 0

 d
is

ab
le

s
th

e
ch

ec
k.

 10
48

57
60

 (
10

M
B

)

CHAPTER 14 ■ REGION SPLITTING

115

 The sequence used in region splitting is as follows:

 1. The client sends write requests to the RegionServer.

 2. The write requests accumulate in memory.

 3. When the MemStore is filled and reaches a threshold, the data
stored in memory is written to HFiles on disk with a process
called memstore flush.

 4. As store files accumulate, the region server compacts them to
fewer, larger files using a compaction policy.

 5. The amount of data in a region grows.

 6. The RegionServer consults a region split policy to determine if
the region should be split.

 7. A region split request is added to a queue.

 But how is a region actually split? Is it split at a certain row key? What happens to the
split regions? What happens to the region split? The following sequence is used by the
 RegionServer in a split:

 1. When the RegionServer decides to split a region, it starts a
split transaction. The RegionServer acquires a shared lock on
the table to prevent schema modifications during the split.
Next, it creates a znode in ZooKeeper in /hbase/region-
in-transition/region-name and sets the znode state to
SPLITTING. The Master finds about the split process having
started as it monitors the /hbase/region-in-transition
znode.

 2. The RegionServer creates a subdirectory called .splits in
the region directory in HDFS. The splitting region is taken
offline. Any request a client sends to a splitting region gets the
 NotServingRegionException .

 3. The RegionServer creates subdirectories in the .splits
directory for the regions to be generated and also creates the
data structures.

 4. The RegionServer splits the store files to create two reference
files per store file in the region to be split. The reference files
point to the region-to-be-split's files.

 5. The RegionServer creates the region directories in HDFS and
transfers the reference files to the region directories.

CHAPTER 14 ■ REGION SPLITTING

116

 6. The RegionServer sends a Put request to the hbase:meta table
to set the region-to-be-split offline and information about the
new regions to be created. Individual entries for the regions to
be created are not yet added to the hbase:meta table. Clients
that scan the hbase:meta table find the region-to-be-split as
split but won't find the regions created yet. The znode state of
the new regions in ZooKeeper is SPLITTING_NEW . If the Put to
 hbase:meta succeeds, the region has been effectively split. If
the RegionServer fails before the RPC completes successfully,
the Master and the next RegionServer opening the region
clean the dirty state about the region split. If the hbase:meta
update completes successfully, the region split is rolled
forward by the Master. If the split fails, the splitting region
state is made OPEN from SPLITTING and the two new regions’
state are made OFFLINE from SPLITTING_NEW .

 7. The RegionServer opens the two new regions created in
parallel.

 8. The RegionServer adds the new regions to hbase:meta and
the new regions are online.

 9. Subsequently, clients are able to find the new regions and
send requests to them. Client caches are cleared. Clients get
information about new regions from hbase:meta .

 10. The RegionServer updates znode /hbase/region-in-
transition/region-name in ZooKeeper to the SPLIT state.
The new regions’ states are made OPEN from SPLITTING_NEW .
The Master finds about the states from the znode. The load
balancer may reassign the new regions to other region
servers if required. The region split process is complete. The
references to the old region in hbase:meta and HDFS are
removed on compactions in the new regions. The Master
periodically checks if the new regions still refer to the old
region. If not, the old region is removed.

 When creating splits with Admin.createTable(byte[] startKey, byte[] endKey,
numRegions) , the split strategy used is Bytes.split .

 Summary
 In this chapter, I discussed region splitting, including the two kinds of splitting: automatic
and managed splitting. I also discussed when managed splitting is a suitable option and
on what workloads. Pre-splitting, which creates pre-split regions, was also discussed.
Some configuration properties used for region splitting are listed and the procedure used
for region splitting was discussed. In the next chapter, I will discuss defining the row keys
for optimal read performance and locality.

117© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_15

 CHAPTER 15

 Defining the Row Keys

 The primary data access pattern is by row key. No design-time way to specify row keys
exists because to HBase they are simply byte arrays. When designing for optimal read
performance , it is important to first understand the read path.

 1. The read request is made by a client.

 2. HBase identifies the files that store the rows.

 3. The block index in each file identifies the block in which the
row is found.

 4. HBase performs a scan to fetch all the key/value pairs for the
request.

 5. A copy is stored in the block cache in memory before a row is
returned to the client. Block cache stores the data in memory
for subsequent reads. The data in the cache gets dropped with
a LRU algorithm when the cache gets filled.

 When scanning a file block, the following scenarios are possible:

 1. No data that satisfies the read request is available.

 2. HBase scans multiple blocks if a row spans multiple blocks.

 Table Key Design
 Table keys should prevent data skew; keys should distribute data storage and processing
to all RegionServers for the design to scale well and perform well, making use of all the
resources of a cluster. Avoid using monotonically increasing values of time series data as
row keys. Such a design could cause a single region to be a hot spot because all the key
values are next to each other and belong to the same region. The row key length should
be as short as is reasonable, still keeping the key suitable for data access. A tradeoff has
to be made between the better Get / Scan properties of a longer key and keeping the key
short.

CHAPTER 15 ■ DEFINING THE ROW KEYS

118

 Filters
 In a table scan in which only the row keys are needed (no column families or column
qualifiers, or values or timestamps), add a FilterList with the MUST_PASS_ALL
operator to the scanner using the setFilter . The filter list should include both the
 FirstKeyOnlyFilter and a KeyOnlyFilter .

 FirstKeyOnlyFilter Filter
 The FirstKeyOnlyFilter only returns the first KV from each row. The
 FirstKeyOnlyFilter filter can be used more efficiently to perform row count operations.

 KeyOnlyFilter Filter
 The KeyOnlyFilter only returns the key component of each KV (the value is rewritten as
empty). The KeyOnlyFilter filter can be used to fetch all of the keys without having to
also fetch all of the values. Using the FirstKeyOnlyFilter/KeyOnlyFilter combination
results in minimal network traffic to the client for a single row. The combination results in
a worst-case scenario of a RegionServer reading a single value from a disk.

 Bloom Filters
 Enabling bloom filters on tables reduces the number of block reads. Some storage
overhead is involved but the read performance benefit outweighs it. Bloom filters are
generated when an HFile is stored. Bloom filters are stored at the end of each HFile.
Bloom filters are loaded into memory. Bloom filters provide a check on row and column
levels. Bloom filters can filter entire store files from reads, which is useful when data is
grouped. Bloom filters are also useful when many misses (missing keys) are expected
during reads.

 Scan Time
 Blocks storing data required for a query are identified quickly in the order of ~O(3), but
scanning the block to fetch the data takes more time, O(n), in which n is the number of key
values stored in a block. Therefore, it is important to create tables with an optimal block
size, which also utilizes cache optimally. Partial key scans should be used when feasible.

 Sequential Keys
 HBase stores row keys lexciographically, which provides fast, random lookup given a
 startKey and a stopKey . Sequential keys are suitable for read performance. Sequential
keys make use of block cache. Sequential keys provide locality. Sequential keys can cause
RegionServer hotspotting, which may be alleviated by using one of the following:

• Random keys: Random keys do compromise the ability to fetch
given a startKey and a stopKey.

CHAPTER 15 ■ DEFINING THE ROW KEYS

119

• Salting row keys with a prefix and bucketing row keys across
regions: Prefixing row keys provides spread. Numbered prefixes
are recommended. Row keys are sorted by prefix first. Row keys of
bucketed records are not in one sequence as before but records in
each sequence preserve their original sequence. Multiple scans
based on the original startKey and stopKey running in parallel
scan multiple buckets and merge data. Salted keys provide the
best compromise between read and write performance.

• Key field swap/promotion

 Based on the access pattern, either use random keys or sequential keys. Random
keys are best for random access patterns. Sequential keys are best when the access pattern
involves a range of keys. Hashing provides spread but is not suitable for range scans.

 Defining the Row Keys for Locality
 Locality may be implemented using schema design. HBase stores data lexicographically
by row key, which implies that rows with row keys close to each other are stored together.
Sequential reads of range of rows is efficient and requires access of fewer regions and
region servers. Sequential keys are the most suitable for locality because they fetch data
from a single or fewer regions/RegionServers. Sequential keys make use of block cache.
Sequential keys can cause RegionServer hotspotting but the issue is alleviated by using
salting or splitting regions while keeping them small.

 The new key after salting is defined as follows:

 new_row_key = (++index % BUCKETS_NUMBER) + original_key

 where

• index is the numeric/sequential component of the row ID.

• BUCKETS_NUMBER is the number of buckets the new row key is to be
spread across. As records are spread, each bucket preserves the
sequential notion of original record IDs.

• original_key is the original key.

 Use bulk import for sequential keys and reads.
 In a Webtable, pages in the same domain are grouped together into contiguous rows

by reversing the hostname component of the URLs.

 Summary
 In this chapter, I discussed defining the row keys for optimal performance and locality. In
the next chapter, I will discuss the HBaseAmin class.

 PART V

 Apache HBase Java API

123© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_16

 CHAPTER 16

 The HBaseAdmin Class

 The org.apache.hadoop.hbase.client.HBaseAdmin is a Java interface for managing the
HBase database table metadata and also for general administrative functions. HBase is
used to create, drop, list, enable, and disable tables. HBase is also used to add and drop
column families. A HBaseAdmin instance may be created using one of the constructors
 HBaseAdmin(org.apache.hadoop.conf.Configuration c) or HBaseAdmin(HConnection
connection) .

 HBaseConfiguration conf = new HBaseConfiguration();
 conf.set("hbase.master","localhost:60000");
 HBaseAdmin admin=new HBaseAdmin(conf);

 An HConnection may be obtained from HConnectionManager as follows:

 HBaseConfiguration conf = new HBaseConfiguration();
 conf.set("hbase.master","localhost:60000");
 HConnection connection = HConnectionManager.createConnection(conf);
 HBaseAdmin admin=new HBaseAdmin(connection);

 Subsequently, HBaseAdmin method/s may be invoked. For example,

 TableName tableName=TableName.valueOf('test');
 HTableDescriptor hTableDescriptor=new HTableDescriptor(tableName);
 HColumnDescriptor cf1 = new HColumnDescriptor("cf1".getBytes());
 HColumnDescriptor cf2 = new HColumnDescriptor("cf2".getBytes());
 hTableDescriptor.addFamily(cf1);
 hTableDescriptor.addFamily(cf2);
 admin.createTable(hTableDescriptor);

 HBaseAdmin instances do not override a Master restart. The methods for the different
functions of the HBaseAdmin class are discussed in Table 16-1 .

CHAPTER 16 ■ THE HBASEADMIN CLASS

124

 Table 16-1. Methods for Different Functions of HBaseAdmin Class

 Function Methods

 Add column addColumn(byte[] tableName, HColumnDescriptor column)
 addColumn(String tableName, HColumnDescriptor column)
 addColumn(TableName tableName, HColumnDescriptor
column)

 Create table createTable(HTableDescriptor desc)
 createTable(HTableDescriptor desc, byte[][]
splitKeys)
 createTable(HTableDescriptor desc, byte[] startKey,
byte[] endKey, int numRegions)
 createTableAsync(HTableDescriptor desc, byte[][]
splitKeys)

 Delete column deleteColumn(byte[] tableName, String columnName)
 deleteColumn(String tableName, String columnName)
 deleteColumn(TableName tableName, byte[] columnName)

 Compact a table or a
column family

 compact(byte[] tableNameOrRegionName)
 compact(byte[] tableNameOrRegionName, byte[]
columnFamily)
 compact(String tableNameOrRegionName)
 compact(String tableOrRegionName, String columnFamily)

 Delete table/s deleteTable(byte[] tableName)
 deleteTable(String tableName)
 deleteTable(TableName tableName)
 deleteTables(Pattern pattern)
 deleteTables(String regex)

 Disable table/s disableTable(byte[] tableName)
 disableTable(String tableName)
 disableTable(TableName tableName)
 disableTableAsync(byte[] tableName)
 disableTableAsync(String tableName)
 disableTableAsync(TableName tableName)
 disableTables(Pattern pattern)
 disableTables(String regex)

 Enable table enableTable(byte[] tableName)
 enableTable(String tableName)
 enableTable(TableName tableName)
 enableTableAsync(byte[] tableName)
 enableTableAsync(String tableName)
 enableTableAsync(TableName tableName)
 enableTables(Pattern pattern)
 enableTables(String regex)

(continued)

CHAPTER 16 ■ THE HBASEADMIN CLASS

125

Table 16-1. (continued)

 Function Methods

 Find if HBase is
running

 checkHBaseAvailable(org.apache.hadoop.conf.
Configuration conf). Static method

 Assign and unassign
a region to a region
server

 assign(byte[] regionName)
 unassign(byte[] regionName,
 boolean force)

 Run balancer balancer()

 Close region closeRegion(byte[] regionname, String serverName)
 closeRegion(ServerName sn, HRegionInfo hri)
 closeRegion(String regionname, String serverName)

 Flush table flush(byte[] tableNameOrRegionName)
 flush(String tableNameOrRegionName)

 Get online regions getOnlineRegions(ServerName sn)

 Get table names getTableNames()
 getTableNames(Pattern pattern)
 getTableNames(String regex)

 Get table regions getTableRegions(byte[] tableName)
 getTableRegions(TableName tableName)

 Find if the Master is
running

 isMasterRunning()

 Find if a table is
available

 isTableAvailable(byte[] tableName)
 isTableAvailable(byte[] tableName, byte[][]
splitKeys)
 isTableAvailable(String tableName)
 isTableAvailable(String tableName, byte[][]
splitKeys)
 isTableAvailable(TableName tableName)
 isTableAvailable(TableName tableName, byte[][]
splitKeys)

 Find if a table is
enabled or disabled

 isTableDisabled(byte[] tableName)
 isTableDisabled(String tableName)
 isTableDisabled(TableName tableName)
 isTableEnabled(byte[] tableName)
 isTableEnabled(String tableName)
 isTableEnabled(TableName tableName)

 List tables and table
names

 listTableNames()
 listTables()
 listTables(Pattern pattern)
 listTables(String regex)

(continued)

CHAPTER 16 ■ THE HBASEADMIN CLASS

126

Table 16-1. (continued)

 Function Methods

 Run a major
compaction

 majorCompact(byte[] tableNameOrRegionName)
 majorCompact(byte[] tableNameOrRegionName, byte[]
columnFamily)
 majorCompact(String tableNameOrRegionName)
 majorCompact(String tableNameOrRegionName, String
columnFamily)

 Merge regions mergeRegions(byte[] encodedNameOfRegionA, byte[]
encodedNameOfRegionB, boolean forcible)

 Modify column modifyColumn(byte[] tableName, HColumnDescriptor
descriptor)
 modifyColumn(String tableName, HColumnDescriptor
descriptor)
 modifyColumn(TableName tableName, HColumnDescriptor
descriptor)

 Modify table modifyTable(byte[] tableName, HTableDescriptor htd)
 modifyTable(String tableName, HTableDescriptor htd)
 modifyTable(TableName tableName, HTableDescriptor
htd)

 Move a region move(byte[] encodedRegionName, byte[] destServerName)

 Offline a region offline(byte[] regionName)

 Shutdown HBase
cluster

 shutdown()

 Split a table or a region split(byte[] tableNameOrRegionName)
 split(byte[] tableNameOrRegionName, byte[]
splitPoint)
 split(String tableNameOrRegionName)
 split(String tableNameOrRegionName, String
splitPoint)

 Shutdown the Master stopMaster()

 Stop a RegionServer stopRegionServer(String hostnamePort)

 Find if table exists tableExists(byte[] tableName)
 tableExists(String tableName)
 tableExists(TableName tableName)

CHAPTER 16 ■ THE HBASEADMIN CLASS

127

 From HBase 0.99.0 onward the HBaseAdmin class is not a client API and is replaced
with the org.apache.hadoop.hbase.client.Admin interface. An instance of Admin may
be created from a Connection with Connection.getAdmin() . Connection should be
unmanged obtained with the org.apache.hadoop.hbase.client.ConnectionFactory.
createConnection(org.apache.hadoop.conf.Configuration conf) instance method.
The Admin interface has similar methods as HBaseAdmin . The HBaseAdmin class is an
internal class from 1.0.

 Connection connection = ConnectionFactory.createConnection(config);
 Admin admin=connection.getAdmin();

 Summary
 In this chapter, I discussed the HBaseAdmin class. In the next chapter, I will discuss the Get
Java class.

129© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_17

 CHAPTER 17

 Using the Get Class

 Given a table and row key, you can use the get() operation to return specific versions
of that row. The org.apache.hadoop.hbase.client.Get class is used to perform Get
operations on a single row. Given a row with row key of row1 in a table named table1 , the
column value for a column with column family cf1 and column qualifier col1 is obtained
as follows.

 The org.apache.hadoop.hbase.TableName class represents a table name. Create a
 TableName instance:

 TableName tableName=TableName.valueOf('table1');

 The HBase configuration is represented with the org.apache.hadoop.hbase.
HBaseConfiguration class. Create an HBaseConfiguration instance:

 HBaseConfiguration conf = new HBaseConfiguration();
 conf.set("hbase.master","localhost:60000");

 The org.apache.hadoop.hbase.client.HConnection interface represents a client
connection to an HBase cluster. Create an instance of HConnection using the static
method createConnection(org.apache.hadoop.conf.Configuration conf) in org.
apache.hadoop.hbase.client.HConnectionManager . Supply the HBaseConfiguration
instance as the arg.

 HConnection connection = HConnectionManager.createConnection(conf);

 The org.apache.hadoop.hbase.client.HTable class is used to communicate with
a table. Create an HTable instance using the TableName instance and the HConnection
instance.

 HTable hTable= new HTable(tableName, connection);

 Alternatively, an HTable instance may be created using the HTable constructor
 HTable(org.apache.hadoop.conf.Configuration conf, String tableName) .

 HTable hTable= new HTable(conf,"table1");

CHAPTER 17 ■ USING THE GET CLASS

130

 Create a Get instance using the Get(byte[] row) constructor .

 Get get = new Get(Bytes.toBytes("row1"));

 The Get class provides several methods to set attributes of the Get operation such as
maximum number of versions, the timestamps, column families, and columns. The Get
class methods are discussed in Table 17-1 .

 Table 17-1. Get Class Methods

 Method Description Return Type

 addColumn(byte[] family,
byte[] qualifier)

 Adds column family and column
qualifier. Multiple column families
and column qualifiers may be set by
invoking the method multiple times
in succession.

 Get

 addFamily(byte[] family) Adds a column family Get

 setCacheBlocks(boolean
cacheBlocks)

 Sets whether blocks should be
cached

 void

 setMaxResultsPerColumnFamily
(int limit)

 Sets maximum results per column
family

 Get

 setMaxVersions() Sets all versions to be fetched Get

 setMaxVersions(int
maxVersions)

 Sets the maximum number of
versions

 Get

 setRowOffsetPerColumnFamily
(int offset)

 Sets a row offset per column family Get

 setTimeRange(long minStamp,
long maxStamp)

 Sets a time range Get

 setTimeStamp(long timestamp) Sets a timestamp for a specific
version

 Get

 The setTimeStamp(long timestamp) method in Get is used to get versions of
columns with a specific timestamp. Set the timestamp on the Get as follows:

 long explicitTimeInMs = 555;
 get=get.setTimeStamp(explicitTimeInMs);

 Multiple timestamps may be set as follows:

 long explicitTimeInMs1 = 555;
 long explicitTimeInMs2 = 123;
 long explicitTimeInMs3 = 456;
 get=get.setTimeStamp(explicitTimeInMs1).setTimeStamp(explicitTimeInMs2).setT
imeStamp(explicitTimeInMs3);

CHAPTER 17 ■ USING THE GET CLASS

131

 Get the data from a specified row as follows using the get(Get get) method in
HTable. A Result object, which represents a single row result, is returned. To test if a row
has columns, use the exists(Get get) method.

 if(hTable.exists(get))
 Result r = hTable.get(get);

 The key/value pairs in the Result r may be output as follows using the raw() method,
which returns a KeyValue[] :

 for(KeyValue kv : r.raw()){
 System.out.print(new String(kv.getRow()) + " ");
 System.out.print(new String(kv.getFamily()) + ":");
 System.out.print(new String(kv.getQualifier()) + " ");
 System.out.print(kv.getTimestamp() + " ");
 System.out.println(new String(kv.getValue()));
 }

 The HTable class provides the get(List<Get> gets) method to get multiple rows
and the exists(List<Get> gets) method to test if columns exist in the rows to be
fetched. The return value of exists(List<Get> gets) is an array of Boolean.

 Get the latest version of a specified column value using the getValue(byte[]
family,byte[] qualifier) method in Result. The cf1:col1 column value is fetched as
follows:

 byte[] b = r.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("col1"));

 The byte[] may be output as a String .

 String valueStr = Bytes.toString(b);
 System.out.println("GET: " + valueStr);

 Get all versions of a specified column, like cf1:col1 , as follows using the
 getColumn(byte[] family, byte[] qualifier) method:

 List<KeyValue> listKV = r.getColumn(Bytes.toBytes("cf1"), Bytes.
toBytes("col1"));

 The key/value pairs in List<KeyValue> may be output as follows:

 for(KeyValue kv : listKV){
 System.out.print(new String(kv.getRow()) + " ");
 System.out.print(new String(kv.getFamily()) + ":");
 System.out.print(new String(kv.getQualifier()) + " ");
 System.out.print(kv.getTimestamp() + " ");
 System.out.println(new String(kv.getValue()));
 }

CHAPTER 17 ■ USING THE GET CLASS

132

 Summary
 In this chapter, I discussed the Get class. In the next chapter, I will discuss the HTable Java
class.

 The method getColumn(byte[] family, byte[] qualifier) and raw() are
deprecated in 0.98.6. In later versions, the getColumnLatestCell(byte[] family,
byte[] qualifier) method, which returns a Cell, and the rawCells() method, which
returns Cell[] , may be used.

 The Result class also provides other methods for other purposes or functions, some
which are discussed in Table 17-2 . Some of these methods, such as getColumnLatestCell
and tk, are available in later versions of HBase only.

 Table 17-2. Result Class Methods

 Function Description Return Value

 Find if a column has
a value or is empty.

 containsColumn(byte[] family, byte[] qualifier)
 containsColumn(byte[] family, int foffset,
int flength, byte[] qualifier, int qoffset,
int qlength)
 containsEmptyColumn(byte[] family, byte[]
qualifier)
 containsEmptyColumn(byte[] family, int
foffset, int flength, byte[] qualifier, int
qoffset, int qlength)
 containsNonEmptyColumn(byte[] family,
byte[] qualifier)
 containsNonEmptyColumn(byte[] family, int
foffset, int flength, byte[] qualifier, int
qoffset, int qlength)

 boolean

 Get all cells for a
specific column.

 getColumnCells(byte[] family, byte[] qualifier) List<Cell>

 Get a specific cell
version for a column.

 getColumnLatestCell(byte[] family, byte[]
qualifier)

 Cell

 Get the row key. getRow() byte[]

 Get the latest
version of a specified
column.

 getValue(byte[] family, byte[] qualifier) byte[]

 Get the latest version
of a specified column
as ByteBuffer .

 getValueAsByteBuffer(byte[] family, byte[]
qualifier)

 ByteBuffer

 Find if cell is empty. isEmpty() boolean

 Get the value of the
first column.

 value() byte[]

 Get the array of cells. rawCells() Cell[]

133© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_18

 CHAPTER 18

 Using the HTable Class

 The checkAndPut() method in the HTable class is used to put data in a table if a row/
column family/column qualifier ➤ value matches an expected value. If it does, a new
value specified with a Put is put in the table. If not, the new value is not put. The method
returns true if the new value is put and returns false if the new value is not put. Before
discussing the checkAndPut() method, however, let’s discuss the put(Put put) method,
which puts data without first performing a check.

 Configuration conf = HBaseConfiguration.create();
 HTable table = new HTable(conf, "table1");
 Put put = new Put(Bytes.toBytes("row1"));
 put.add(Bytes.toBytes("cf1"), Bytes.toBytes("col1"),
 Bytes.toBytes("val1"));
 put.add(Bytes.toBytes("cf2"), Bytes.toBytes("col2"),
 Bytes.toBytes("val2"));
 table.put(put);

 Now let’s discuss the checkAndPut(byte[] row, byte[] family, byte[]
qualifier, byte[] value, Put put) method. For example, let’s put a new value called
 val2 in row1 , column family cf1 , column col1 using a Put instance if the row1 , column
family cf1 , column col1 has value val1 :

 Configuration conf = HBaseConfiguration.create();
 HTable table = new HTable(conf, "table1");
 Put put = new Put(Bytes.toBytes("row1"));
 put.add(Bytes.toBytes("cf1"), Bytes.toBytes("col1"),
 Bytes.toBytes("val2"));
 boolean bool= table.checkAndPut(Bytes.toBytes("row1"), Bytes.toBytes("cf1"),
Bytes.toBytes("col1"), Bytes.toBytes("val1"), put);
 System.out.println(“New value put: ”+bool);

 If the value in the “ value” arg is null, the check is for the lack (non-existence) of a
column, implying that you put the new value if a value does not already exist.

CHAPTER 18 ■ USING THE HTABLE CLASS

134

 Summary
 In this chapter, I discussed the salient methods in the HTable class. In the next chapter, I
will discuss using the HBase shell.

 PART VI

 Administration

137© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_19

 CHAPTER 19

 Using the HBase Shell

 All names in the Apache HBase shell should be quoted, such as the table name, row key,
and column name. Constants don’t need to be quoted. Successful HBase commands
return an exit code of 0. But a non-0 exit status does not necessarily indicate failure and
could indicate other issues, such as loss of connectivity.

 The HBase shell is started with the following command if the HBase bin directory is
in the PATH environment variable:

 hbase shell

 HBase shell commands may also be run from a .txt script file. For example, if the
commands are stored in the file shell_commands.txt , use the following command to run
the commands in the script:

 hbase shell shell_commands.txt

 Creating a Table
 A table is created using the create command. The syntax of the create command is as
follows:

 create '/path/tablename', {NAME =>'cfname'}, {NAME =>'cfname'}

 As args to the command the first arg is the table name, followed by a dictionary
of specifications per column family, followed optionally by a dictionary of a table
configuration.

 The following command creates a table called t1 with column families of f1 , f2 , and f3 :

 create 't1', {NAME => 'f1'}, {NAME => 'f2'}, {NAME => 'f3'}

 The short form of the preceding command is as follows:

 create 't1', 'f1', 'f2', 'f3'

CHAPTER 19 ■ USING THE HBASE SHELL

138

 The following command creates a table called t1 with column families of f1 , f2 , and
 f3 . The maximum number of versions for each column family is also specified.

 create 't1', {NAME => 'f1', VERSIONS => 1}, {NAME => 'f2', VERSIONS => 3},
{NAME => 'f3', VERSIONS => 5}

 The following command includes whether to use block cache option BLOCKCACHE set
to true for the f1 column family:

 create 't1', {NAME => 'f1', VERSIONS => 3, BLOCKCACHE => true}

 Altering a Table
 The alter command is used to alter the column family schema. Args provide the table
name and the new column family specification. The following command alters column
families f1 and f2 . The number of versions in f1 is set to 2 and the number of versions in
f2 is set to 3.

 alter 't1', {NAME => 'f1', VERSIONS => 2}, {NAME => 'f2', VERSIONS => 3}

 The following command deletes the column families f1 and f2 from table t1 :

 alter 't1', {NAME => 'f1', METHOD => 'delete'}, {NAME => 'f2', METHOD =>
'delete'}

 Table scope attributes such as those in Table 19-1 may also be set.

 Table 19-1. Table Scope Attributes

 Attribute Description

 MAX_FILESIZE Maximum size of the store file after which the region
split occurs

 DEFERRED_LOG_FLUSH Indicates if the deferred log flush option is enabled

 MEMSTORE_FLUSHSIZE Maximum size of the MemStore after which the
MemStore is flushed to disk

 READONLY Table is read-only

 The following command sets the maximum file size to 256MB:

 alter 't1', {METHOD => 'table_att', MAX_FILESIZE => '268435456'}

CHAPTER 19 ■ USING THE HBASE SHELL

139

 Adding Table Data
 The put command is used to add data . The syntax of the put command is as follows:

 put '/path/tablename', 'rowkey', 'cfname:colname', 'value', 'timestamp'

 The timestamp is optional. The following command puts a value at coordinates
 {t1,r1,c1} , table t1 and row r1 and column c1 with timestamp ts1 :

 put 't1', 'r1', 'c1', 'value', 'ts1'

 The column may be specified using a column family name and column qualifier. For
example, the following command puts value val into column cf1:c1 in row with row key
 r1 in table t1 with timestamp ts1 :

 put 't1', 'r1', 'cf1:c1', 'val', 'ts1'

 Describing a Table
 The syntax of the describe command is as follows:

 describe '/path/table'

 To describe a table t1 , run the following command:

 describe 't1'

 Finding If a Table Exists
 To find if table t1 exists, run the exists command .

 exists 't1'

 Listing Tables
 The list command lists all the tables.

 list

CHAPTER 19 ■ USING THE HBASE SHELL

140

 Scanning a Table
 The scan command is used to scan a table. The syntax of the scan command is as follows:

 scan '/path/tablename'

 By default, the complete table is scanned. The following command scans the
complete table t1 :

 scan 't1'

 The output of the scan command has the following format:

 ROW COLUMN+CELL
 row1 column=cf1:c1, timestamp=12345, value=val1
 row1 column=cf1:c2, timestamp=34567, value=val2
 row1 column=cf1:c3, timestamp=678910, value=val3

 The following command scans table t1 . The COLUMNS option specifies that only
columns c2 and c5 are scanned. The LIMIT option limits only five rows to be scanned
and the STARTROW option sets the start row from which the table is to be scanned. The
 STOPTROW sets the last row after which table is not scanned. An HBase table is sorted
lexicographically and the STARTROW and STOPTROW may not even be in the table. The table
is scanned lexicographically from the first row after the STARTROW if the STARTROW does
not exist. Similarly, if the STOPTROW does not exist, the table is scanned up to the last row
before the STOPTROW .

 scan 't1', {COLUMNS => ['c2', 'c5'], LIMIT => 5, STARTROW => 'row1234',
STOPTROW => 'row78910'}

 The following command scans table t1 starting with row key c and stopping with row
key n :

 scan 't1', { STARTROW => 'c', STOPROW => 'n'}

 The following command scans a table based on a time range:

 scan 't1', {TIMERANGE => [123456, 124567]}

 A filter such as the ColumnPagination filter may be set using the FILTER option. The
 ColumnPagination filter takes two options, limit and offset , both of type int .

 scan 't1', {FILTER => org.apache.hadoop.hbase.filter.ColumnPaginationFilter.
new(5, 1)}

CHAPTER 19 ■ USING THE HBASE SHELL

141

 Block caching, which is enabled by default, may be disabled using the CACHE_BLOCKS
option.

 scan 't1', {COLUMNS => ['c2', 'c3'], CACHE_BLOCKS => false}

 Enabling and Disabling a Table
 The enable command enables a table and the disable command disables a table.

 enable 't1'
 disable 't1'

 Dropping a Table
 The drop command drops a table. Before a table is dropped, the table must be disabled.

 disable 't1'
 drop 't1'

 Counting the Number of Rows in a Table
 To count the number of rows in table t1, run the following command. By default, the row
count is shown every 1,000 rows.

 count 't1'

 The row count interval may be set to a non-default value as follows:

 count 't1', 10000

 Getting Table Data
 The get command is used to get table row data. The syntax of the get command is as
follows:

 get '/path/tablename', 'rowkey'

 A row of data may be accessed or a cell data may be accessed. A row with row key r1
from table t1 is accessed as follows:

 get 't1', 'r1'

CHAPTER 19 ■ USING THE HBASE SHELL

142

 The output has the following format:

 COLUMN CELL
 cf1:c1 timestamp=123, value=val1
 cf1:c2 timestamp=234, value=val2
 cf1:c3 timestamp=123, value=val3

 Cell data for a single column c1 is accessed as follows:

 get 't1', 'r1', {COLUMN => 'c1'}

 The COLUMN specification may include the column family and the column qualifier.

 get 't1', 'r1', {COLUMN => 'cf1:c1'}

 Or just the column family may be specified.

 get 't1', 'r1', {COLUMN => 'cf1'}

 Cell data for a single column like c1 with a particular timestamp is accessed as
follows:

 get 't1', 'r1', {COLUMN => 'c1', TIMESTAMP => ts1}

 Cell data for multiple columns c1 , c3, and c5 from column family cf1 are accessed
as follows:

 get 't1', 'r1', {COLUMN => ['cf1:c1', 'cf1:c3', 'cf1:c5']}

 A get is essentially a scan limited to one row.

 Truncating a Table
 The truncate command disables, drops, and recreates a table.

 truncate 't1'

 Deleting Table Data
 The delete command may be used to delete a row, a column family, or specific cell in a
row in a table. The syntax for the delete command is as follows:

 delete 'tablename', 'rowkey', 'columnfamily:columnqualifier'

CHAPTER 19 ■ USING THE HBASE SHELL

143

 The following command deletes row r1 from table t1 :

 delete 't1', 'r1'

 The following command deletes column family cf1 from row r1 from table t1 :

 delete 't1', 'r1', 'cf1'

 The following command deletes column cell c1 in column family cf1 in row r1 in
table t1 :

 delete 't1', 'r1', 'cf1:c1'

 The deleteall command deletes all rows in a given row. For example, the following
command deletes row r1 in table t1 :

 deleteall 't1' 'r1'

 Optionally, a column and a timestamp may be specified. The following command
deletes column c1 in column family cf1 from row key r1 in table t1 with timestamp ts1 :

 deleteall 't1', 'r1', 'cf1:c1' ' ts1'

 Summary
 In this chapter, I discussed the salient HBase shell commands. In the next chapter, I will
discuss bulk loading data into HBase.

145© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3_20

 CHAPTER 20

 Bulk Loading Data

 The org.apache.hadoop.hbase.mapreduce.ImportTsv utility and the completebulkload
tool are used to bulk load data into HBase. The procedure to upload is as follows:

 1. Put the data file, which is a TSV file, to be uploaded into HDFS

 2. Run the ImportTsv utility to generate multiple HFiles from
the TSV file

 3. Run the completebulkload tool to bulk load the HFiles into
HBase

 Let’s discuss an example. You can use the following sample data file input.tsv in
HDFS:

 r1 c1 c2 c3
 r2 c1 c2 c3
 r3 c1 c2 c3
 r4 c1 c2 c3
 r5 c1 c2 c3
 r6 c1 c2 c3
 r7 c1 c2 c3
 r8 c1 c2 c3
 r9 c1 c2 c3
 r10 c1 c2 c3

 Run the following importtsv command to generate HFiles from input file input.tsv :

 HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath` ${HADOOP_HOME}/
bin/hadoop jar ${HBASE_HOME}/hbase-VERSION.jar importtsv -Dimporttsv.
columns=HBASE_ROW_KEY,cf1:c1,cf1:c2,cf1:c3 -Dimporttsv.bulk.output=hdfs://
output t1 hdfs://input.tsv

CHAPTER 20 ■ BULK LOADING DATA

146

 The command without the classpath settings is as follows:

 hadoop jar hbase-VERSION.jar importtsv -Dimporttsv.columns=HBASE_ROW_
KEY,cf1:c1,cf1:c2,cf1:c3 -Dimporttsv.bulk.output=hdfs://output t1 hdfs://
input.tsv

 The -Dimporttsv.columns option specifies the column names of the TSV data.
Comma-separated column names are to be provided with each column name as either
a column family or a column family: column qualifier . A column name must be included
for each column data in the input TSV file. The HBASE_ROW_KEY column is for specifying
the row key and only one must be specified. The -Dimporttsv.bulk.output=/path/for/
output specifies HFiles are to be generated at the specified output path, which should
either be a relative path on the HDFS or the absolute HDFS path, as in the example as
 hdfs://output . The target table specified is t1; if a target table is not specified, a table
is created with the default column family descriptors. The input file on the HDFS is
specified as hdfs://input.tsv .

 The -Dimporttsv.bulk.output option must be specified to generate HFiles for bulk
upload because without it the input data is uploaded directly into an HBase table. The
other options that may be specified are in Table 20-1 .

 Table 20-1. The importtsv Command Options

 Option Description

 -Dimporttsv.skip.bad.lines Whether to skip invalid data line.
 Default is false.

 -Dimporttsv.separator Input data separator.
 Default is tab.

 -Dimporttsv.timestamp The timestamp to use.
 Default is currentTimeAsLong .

 -Dimporttsv.mapper.class User-defined mapper to use
 instead of the default, which is
 org.apache.hadoop.hbase.mapreduce.
TsvImporterMapper.

 When importtsv is run, HFiles get generated.
 Next, use the completebulkload utility to bulk upload the HFiles into an HBase table.

The completebulkload may be run in one of two modes : as an explicit class name or via
the driver. Using the class name, the syntax is as follows:

 bin/hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles <hdfs://
output> <tablename>

CHAPTER 20 ■ BULK LOADING DATA

147

 With the driver, the syntax is as follows:

 hadoop jar hbase-VERSION.jar completebulkload [-c /path/to/hbase/config/
hbase-site.xml] <hdfs://output> <tablename>

 To load the HFile generated in hdfs://output from importtsv, run the following
command:

 hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles hdfs://output t1

 Bulk load bypasses the write path completely and does not use the WAL and does
not cause a split storm. A custom MR job may also be used for bulk uploading.

 Summary
 In this chapter, I discussed bulk loading data into HBase. This chapter concludes the
book. The book is a primer on the core concepts of Apache HBase, the HBase data model,
schema design and architecture, the HBase API, and administration. For usage of HBase,
including installation, configuration, and creating an HBase table, please refer another
book from Apress: Practical Hadoop Ecosystem .

149© Deepak Vohra 2016
D. Vohra, Apache HBase Primer, DOI 10.1007/978-1-4842-2424-3

 A
 Apache HBase

 architecture , 11
 characteristics , 9
 NameNode and datanode , 11
 WALs , 10

 Apache HBase storage architecture , 12
 Atomicity, consistency, isolation,

durability , 63
 Audit logging systems , 46
 Auto-sharding , 27, 78, 111

 B
 Block cache , 82
 Block format , 37
 Block header , 20
 Block indexes , 82
 Bloom fi lters , 19, 118
 Bulk loading data

 column qualifi er , 146
 -Dimporttsv.bulk.output option , 146
 -Dimporttsv.columns option , 146
 HBASE_ROW_KEY column , 146
 importtsv Command Options , 146
 modes , 146
 upload procedure , 145

 C
 checkAndPut() method , 133
 Classical transactional applications , 46
 Cluster, HBase

 clients , 73
 components , 69
 data-oriented operations , 71
 HDFS , 73

 Master , 70
 regions , 72
 RegionServer , 69, 70
 write-ahead log , 72
 ZooKeeper , 71

 Column family
 block size , 106
 bloom fi lter , 106
 cardinality , 105
 compression , 106
 IN_MEMORY characteristic , 107
 MAX_LENGHT and

MAX_VERSIONS , 107
 number of , 106
 storage characteristics , 105

 Column qualifi ers
 column family , 56
 HBase data model , 54
 HBase stores , 53
 KeyValue , 55
 Row-1 , 54
 versions , 55

 Compactions , 21, 32, 72
 confi guration properties , 92–96
 data locality , 91
 delete markers , 90
 disadvantages , 90
 encryption , 91
 expired rows , 90
 function and purpose , 89
 major , 88
 minor , 87
 policy , 88–89
 region count , 91
 region splitting , 90
 versions , 90
 write throughput , 91

 Content management systems , 46

 Index

■ INDEX

150

 D, E
 Data block encoding , 20, 31
 Data block structure , 20
 Data-centric model , 45
 Data fi les , 9, 36
 Data layout , 45
 Data locality , 24, 38, 42
 Datanode failure , 10
 Data sharding , 4
 DFSClient , 11, 39
 diff encoding , 21
 DML operation , 81
 Durability enums , 14

 F
 FirstKeyOnlyFilter fi lter , 118
 Flexible data model , 4
 Fully-distributed mode , 3

 G
 Get class

 Get(byte[] row) constructor , 130
 HBase confi guration , 129
 methods , 130
 org.apache.hadoop.hbase.client.Get

class , 129
 result class methods , 132
 setTimeStamp(long timestamp)

method , 130

 H, I, J
 Hadoop HBase , 5
 HBase

 architecture , 26, 51
 auto-sharding , 3
 blocks size , 17
 data model , 54
 ecosystem , 25
 Hadoop and HDFS , 3
 indexes data , 51
 Java client API , 35
 NoSQL , 3
 RDBMS , 5–7

 HBaseAdmin class
 Connection.getAdmin() , 127
 functions methods , 124–127

 hbase\:meta location , 85

 hbase\:meta Table , 83
 HColumnFamily , 12
 Hadoop distributed fi le system

(HDFS) , 3, 9, 70
 checksums , 40
 confi guration settings , 13
 directory structure , 23

 HFile
 data fi les , 19
 format , 30
 and HLog fi les , 14, 62
 sections , 16

 HFileSystem class , 33
 HFile v2 , 19
 HMaster , 11, 51
 HTable class , 133–134

 K
 KeyOnlyFilter fi lter , 118
 KeyValue class , 21
 Key value format , 18–19

 L
 Load balancing , 33, 42, 79
 Local reads , 39
 Logical storage

 data fi le , 64
 timestamp , 63
 unit of storage , 64

 M, N
 Major compaction , 21, 87, 88, 90, 91
 Managed splitting , 112
 Manual splitting , 79, 112
 MapFile , 15
 MemStore , 11, 42–43
 Message-centered systems , 46
 META locations , 84
 .META. table , 34
 Minor compaction , 87, 88
 Monitoring system , 46

 O
 org.apache.hadoop.hbase.client.HTable

class , 129
 Overloaded addColumn

method , 60, 61

■ INDEX

151

 P, Q
 Pluggable compactions , 32, 97
 Port 50010 , 13
 Port 50020 , 13
 Prefi x length , 20
 Pre-splitting , 79, 113
 Preventing hotspots , 80
 Put class constructors , 60

 R
 Random access , 36
 RDBMS , 5
 Read path , 30
 Real-time analytics , 46
 Reference fi les/links , 37
 Region failover

 confi guration properties , 103
 data locality , 103
 data recovery , 102
 failure detection , 102
 HBase resilience , 99
 phases , 100–101
 regions reassignment , 103
 ZooKeeper , 99

 Regions
 assignment , 76
 auto-sharding , 78
 cluster , 75
 compactions , 76
 distributed datastore , 77
 failover , 77
 locality , 77
 partitioning , 77
 RegionServers , 75
 startKey and endKey , 75

 RegionServers , 29, 75, 81, 84
 collocation , 51
 crash , 99

 Region splitting , 5, 33, 78
 confi guration properties , 113–114
 managed splitting , 112
 middle row key , 111
 RegionServer , 115–116
 sequence , 115

 Relational databases , 3
 Replica placement policy , 25, 77
 Row data , 82
 Row keys , 57, 82, 123

 bloom fi lters , 118
 fi lters , 118
 locality , 119
 optimal read performance , 117
 scan time , 118
 sequential keys , 118
 table key design , 117

 Row versioning
 Put class constructors , 60
 row and column keys , 60
 timestamp , 59

 S
 Scalability , 4–5, 33
 Shell command, HBase

 add table data , 139
 alter table , 138
 count, number of rows , 141
 deleting table data , 142–143
 describe command , 139
 drop command , 141
 enable and disable command , 141
 exists command , 139
 getting table data , 141–142
 listing tables , 139
 scan command , 140
 table creation , 137
 table scope attributes , 138
 truncate command , 142

 Snapshots , 32–33
 Strongly consistent , 4

 T, U
 Table Format , 25
 Timestamp , 59, 63

 V
 Versions sorting , 61

 W, X, Y
 Write-ahead logs (WALs) , 9, 38, 72
 Write path , 27–28

 Z
 ZooKeeper , 71, 99

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Core Concepts
	Chapter 1: Fundamental Characteristics
	Distributed
	Big Data Store
	Non-Relational
	Flexible Data Model
	Scalable
	Roles in Hadoop Big Data Ecosystem
	How Is Apache HBase Different from a Traditional RDBMS?
	Summary

	Chapter 2: Apache HBase and HDFS
	Overview
	Storing Data
	HFile Data files- HFile v1
	HBase Blocks
	Key Value Format
	HFile v2
	Encoding
	Compaction
	KeyValue Class
	Data Locality
	Table Format
	HBase Ecosystem
	HBase Services
	Auto-sharding
	The Write Path to Create a Table
	The Write Path to Insert Data
	The Write Path to Append-Only R/W
	The Read Path for Reading Data
	The Read Path Append-Only to Random R/W
	HFile Format
	Data Block Encoding
	Compactions
	Snapshots
	The HFileSystem Class
	Scaling
	HBase Java Client API
	Random Access
	Data Files (HFile)
	Reference Files/Links
	Write-Ahead Logs
	Data Locality
	Checksums
	Data Locality for HBase
	MemStore
	Summary

	Chapter 3: Application Characteristics
	Summary

	Part II: Data Model
	Chapter 4: Physical Storage
	Summary

	Chapter 5: Column Family and Column Qualifier
	Summary

	Chapter 6: Row Versioning
	Versions Sorting
	Summary

	Chapter 7: Logical Storage
	Summary

	Part III: Architecture
	Chapter 8: Major Components of a Cluster
	Master
	RegionServers
	ZooKeeper
	Regions
	Write-Ahead Log
	Store
	HDFS
	Clients
	Summary

	Chapter 9: Regions
	How Many Regions?
	Compactions
	Region Assignment
	Failover
	Region Locality
	Distributed Datastore
	Partitioning
	Auto Sharding and Scalability
	Region Splitting
	Manual Splitting
	Pre-Splitting
	Load Balancing
	Preventing Hotspots
	Summary

	Chapter 10: Finding a Row in a Table
	Block Cache
	The hbase:meta Table
	Summary

	Chapter 11: Compactions
	Minor Compactions
	Major Compactions
	Compaction Policy
	Function and Purpose
	Versions and Compactions
	Delete Markers and Compactions
	Expired Rows and Compactions
	Region Splitting and Compactions
	Number of Regions and Compactions
	Data Locality and Compactions
	Write Throughput and Compactions
	Encryption and Compactions
	Configuration Properties
	Summary

	Chapter 12: Region Failover
	The Role of the ZooKeeper
	HBase Resilience
	Phases of Failover
	Failure Detection
	Data Recovery
	Regions Reassignment
	Failover and Data Locality
	Configuration Properties
	Summary

	Chapter 13: Creating a Column Family
	Cardinality
	Number of Column Families
	Column Family Compression
	Column Family Block Size
	Bloom Filters
	IN_MEMORY
	MAX_LENGTH and MAX_VERSIONS
	Summary

	Part IV: Schema Design
	Chapter 14: Region Splitting
	Managed Splitting
	Pre-Splitting
	Configuration Properties
	Summary

	Chapter 15: Defining the Row Keys
	Table Key Design
	Filters
	FirstKeyOnlyFilter Filter
	KeyOnlyFilter Filter

	Bloom Filters
	Scan Time
	Sequential Keys
	Defining the Row Keys for Locality
	Summary

	Part V: Apache HBase Java API
	Chapter 16: The HBaseAdmin Class
	Summary

	Chapter 17: Using the Get Class
	Summary

	Chapter 18: Using the HTable Class
	Summary

	Part VI: Administration
	Chapter 19: Using the HBase Shell
	Creating a Table
	Altering a Table
	Adding Table Data
	Describing a Table
	Finding If a Table Exists
	Listing Tables
	Scanning a Table
	Enabling and Disabling a Table
	Dropping a Table
	Counting the Number of Rows in a Table
	Getting Table Data
	Truncating a Table
	Deleting Table Data
	Summary

	Chapter 20: Bulk Loading Data
	Summary

	Index

