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Preface

Despite great advances in public health worldwide, insect vector-borne infectious
diseases remain a leading cause of morbidity and mortality. Diseases that are trans-
mitted by arthropods such as mosquitoes, sand flies, fleas, and ticks affect hundreds
of millions of people and account for nearly three million deaths per year globally.
Additionally, the impact of insect-transmitted diseases to agriculture exceeds $100
billion annually. Newly emerging patterns of certain vector-borne diseases such as
malaria, West Nile encephalitis, tick-borne diseases, and dengue fever underscore
the impact of arthropod-borne illnesses. Rapidly expanding patterns of global travel
and commerce, coupled with evolution of pathogen resistance, have fueled deadly
epidemics of vector-borne diseases in the past 5 years that have affected millions
around the world.

Currently, the best methods for control of many insect-borne diseases involve the
use of chemical pesticides. Such campaigns may, in the short term, yield spectacular
results. Malaria was nearly eliminated from the Indian subcontinent; Chagas dis-
ease is rapidly being vanquished in some sections of Central and South America.
However, insecticide campaigns are hampered in several ways. Environmental tox-
icity and adverse effects on human health limit the use of many chemical pesticides.
Emergence of insect resistance to a wide variety of insecticides has greatly under-
mined their efficacy. The cost of repeated applications of pesticides is often prohibi-
tive. Therefore, the wholesale elimination of insect pests is neither practical nor
probable. Control of these scourges requires integrated efforts directed at advanced
surveillance and epidemiology, vector control through novel genetic strategies, epi-
demic modeling, and greater understanding of human susceptibility to disease.

In almost all branches of science, research questions are answered from planned
repeated experiments. But for infectious diseases, conducting experiments in com-
munities is not ethical or possible. The retrospect epidemiological data may not help
predict the future trends of the disease. Realistic mathematical models of the trans-
mission of infectious diseases add a new dimension of information to assist in pub-
lic health policy for control of the disease. These models provide a dynamic picture
of disease transmission and are useful to predict the future trends of the disease. All
models require realistic details and realistic parameter values. For practitioners in
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this field to make a real-world difference and influence public health policy, medical
experts are to be involved to ensure the realism of model structure and estimation of
key parameters. Also, intelligent methods based on IT tools can help study various
disease patterns.

In Volume 1 of “Dynamic Models of Infectious Diseases,” we have assembled
eight chapters from highly acclaimed international scientists to address several of
the major insect vector-borne diseases. A diverse and interdisciplinary group of
authors has been selected with expertise in clinical infectious diseases, epidemiol-
ogy, molecular biology, human genetics, and mathematical modeling. Indeed, we
believe this collection of chapters is unique and should provide a valuable per-
spective to a wide audience. Though diverse in approach, all the authors address
critical elements of disease control. Myriad tools, whether in the realm of molecu-
lar engineering, genomic analysis, predictive modeling, or information technol-
ogy to improve surveillance, are presented in this collection to provide the reader
with a current understanding of research methods directed at control of vector-
borne diseases.

Dengue, a global vector-borne disease with propensity for explosive outbreaks,
is the subject of Chap. 1 by V. Sree Hari Rao and M. Naresh Kumar. This chapter
focuses on evolving tools of mathematical modeling as strategies for mitigation of
dengue epidemics. The authors present new predictive models aimed at better char-
acterization of human susceptibility and disease severity.

In Chap. 2, Maia Martcheva and Olivia Prosper have presented a detailed discus-
sion on the dynamic mathematical modeling activity of the vector-borne diseases.
This work demonstrates that models involving time delays are best suited for a more
realistic description of different types of dynamical behaviors associated with the
transmission of these diseases.

West Nile virus, an emerging vector-borne disease, is the focus of Chap. 3 by
Eleanor Deardorff and Gregory Ebel. The spread of West Nile virus by invading
species of Culex mosquitoes in the USA has brought much attention to the study of
vector-borne diseases, by illustrating the potential of these illnesses to impact highly
industrialized regions of the world. The authors discuss the current state of the epi-
demic in the USA and critical aspects of vector and host biology that determines
effectiveness of control measures.

Chapters 4 and 5, by Dr. Ravi Durvasula and colleagues, address leishmaniasis
and Chagas disease, two vector-borne disease complexes with global impact.
Current epidemiology of these diseases and the latest therapeutic approaches are
outlined. Evolving paratransgenic strategies from the Durvasula Laboratory aimed
at reducing competence of insect vectors to transmit pathogens are presented with a
perspective of identifying novel methods for control of disease transmission.

Information technology methodologies for monitoring and control of vector-
borne diseases in India provide fresh perspectives on two devastating diseases,
filariasis and Japanese encephalitis, in Chaps. 6 and 7 by U. Suryanarayana Murty
et al. Particular focus is given to the impact of these conditions on the Indian sub-
continent and novel modeling strategies that have resulted in IT-based tools for
surveillance and control of both vectors and disease transmission.
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Finally, in Chap. 8, the most devastating of insect vector-borne diseases, malaria,
is discussed by D.J. Perkins et al. The Perkins Laboratory is widely recognized as a
leader in the study of human genetic susceptibility to deadly complications of malaria
caused by Plasmodium falciparum. In this chapter, current research that dissects the
immunological and human genetic underpinnings of malarial infection, with particu-
lar emphasis on severe malarial anemia, is reviewed with the aim of better under-
standing and controlling the impact of this disease in sub-Saharan Africa.

We have immense pleasure in expressing our appreciation to all those who have
directly or indirectly influenced this work. Specifically, we thank all the chapter
contributors and the reviewers who untiringly responded to our request by provid-
ing useful and thought-provoking reviews. We are grateful to the editorial staff at
Springer, New York for their interest, initiative and enthusiasm in bringing out this
publication. In particular our special thanks go to Mrs. Melanie Tucker, Editor, and
Ms. Meredith Clinton, Assistant Editor, Springer Science +Business Media, New
York for their very efficient handling of this manuscript.

The first author (VSHR) gratefully acknowledges the research support received
from the Foundation for Scientific Research and Technological Innovation
(FSRTI)—a constituent division of Sri Vadrevu Seshagiri Rao Memorial Charitable
Trust, Hyderabad, India.

The second author (RVD) acknowledges the continued research support pro-
vided by the National Institutes of Health (USA) and the United States Department
of Agriculture. Additionally, the support provided by The University of New Mexico
School of Medicine and The Raymond G. Murphy Veterans Administration Hospital,
both located in Albuquerque, New Mexico, USA, is gratefully acknowledged.

Hyderabad, AP, India V. Sree Hari Rao
Albuquerque, NM, USA Ravi Durvasula
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Chapter 1

Predictive Dynamics: Modeling for Virological
Surveillance and Clinical Management

of Dengue

V. Sree Hari Rao and M. Naresh Kumar

1 Introduction

Dengue fever (DF) is a mosquito-borne infectious disease caused by the viruses of
the genus Togaviridae subgenus Flavirus. The disease has first appeared in the
Phillipines in 1953, and from then on it has become the most important anthropod-
borne viral disease due to its spread among humans (Monath 1994). The reemer-
gence of this disease worldwide is causing larger, more frequent epidemics especially
in cities and in the tropics. Dengue virus infection has been reported in more than
100 countries, with 2.5 billion people living in areas where dengue is endemic (CDC
2000; Guzman and Kouri 2002; PAHO 2007) (see Fig. 1.1). Dengue is one of the
major international public health concerns of World Health Organization (WHO)
because of the growing geographic distribution of virus and mosquito vectors,
co-circulation of multiple virus serotypes and higher frequency of the epidemics.
The disease is caused by four distinct, but closely related viruse serotypes DEN1,
DEN2, DEN3, and DEN4, which are transmitted to humans through the bites of
infective female Aedes mosquitoes (Gubler 1998). A person who recovers from the
infection due to one of the virus serotypes would have life long immunity against
that serotype but he is susceptible to subsequent infection by the other three serotypes.
There is strong evidence (De Paula and Fonseca 2004; Gubler 1998; Halstead 2007;
Harris et al. 2000; Monath 1994; Nimmannitya 1997; Ooi et al. 2007; Wilder-Smith
and Schwartz 2005) that subsequent infections would increase the risk of more acute
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Fig. 1.1 Worldwide spread of dengue from 2007 to 2010 (CDC 2011)

forms of the disease known as dengue hemorrhagic fever (DHF) and dengue shock
syndrome (DSS) which could be fatal and may even lead to death. The annual occur-
rence is estimated to be around 100 million cases of DF and 250,000 cases of DHF.
The mortality rate is around 25,000 per year (Gibbons 2002). The mortality rate is
most common in children. The main pathophysiology of DHF and DSS is the devel-
opment of plasma leakage from the capillaries, resulting in hemoconcentration,
ascites, and pleural effusion that may lead to shock (Halstead 1998).

The clinical symptoms of dengue illness overlap with other illnesses (George
and Lum 1997; Harris et al. 2000; Wilder-Smith and Schwartz 2005) causing a
confounding problem in disease surveillance and management (Ooi et al. 2007).
Definitive laboratory diagnosis requires isolation of the virus ribonucleic acid
(RNA) by polymerase chain reaction (PCR) test, immunofluorescence, or immuno-
histochemistry (De Paula and Fonseca 2004; Halstead 1998; Vaughn et al. 2000).
Further, the places where dengue is endemic may not have the necessary infrastruc-
ture to carry out these tests (Ooi et al. 2007). Thus, a scheme for a reliable clinical
diagnosis based on the data would be useful for early recognition of dengue fever.

WHO (2009) has evolved a scheme for classifying dengue infection based on the
symptoms of the disease (see Table 1.1). Halstead (Halstead 2007) reviewed the
clinical diagnosis and pathophysiology of vascular permeability and coagulopathy,
parenteral treatment of DHF/DSS, and suggested new laboratory tests.

Recent mathematical models both deterministic (Derouich et al. 2003; Esteva
and Vargas 1998, 1999; Pongsumpun and Tang 2001) and stochastic (Grassly and
Fraser 2008; Medeiros et al. 2011; Paula et al. 2003; Wearing and Rohani 2006)
provide an insight into the dynamics of the dengue disease. In most of the studies
the incidence rates and age structure play a vital role in understanding the transmis-
sion of the virus. The rate of spread of an infectious disease which is an important
aspect for disease management is estimated using a neural network technology
(Sree Hari Rao and Naresh Kumar 2010). Statistical analysis based on the jy? tests
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Table 1.1 WHO characteristics of dengue fever

Dengue fever: Headache; retro-orbital pain; myalgia; arthralgia; rashes; hemorrhagic manifesta-
tions; leukopenia and supportive dengue fever serology or occurrence at the same location
and time as other confirmed cases of dengue

Dengue hemorrhagic fever. (a) fever or history of acute fever, lasting 27 days, occasionally
biphasic; (b) bleeding (hemorrhagic tendencies), evidenced by at least one of the following;

a positive tourniquest test (TT); petechiae, ecchymosis, or purpura; bleeding from the
mucosa; gastrointestinal tract; injection sites or other locations; hemotemesis or melena;
thrombocytopenia (100,000 cells/mm? or less). (c) Evidence of plasma leakage due to
increased vascular permeability, manifested by at least one of the following: a rise in the
hematocrit equal or greater than 20% above average for age, sex and population; a drop in the
hemotocrit following volume-replacement treatment equal to or greater than 20% of baseline;
signs of plasma leakage such as pleural effusion; ascites, and hypoproteinemia

Dengue shock syndrome: Fever; hemorrhagic tendencies; thrombocytopenia, and plasma leakage
must all be present plus evidence of circulatory failure manifested as: rapid and weak pulse;
narrow pulse pressure (<20 mmHg) or hypotension for age (this is defined as systolic;
pressure <80 mmHg for those less than 5 years of age, or <90 mmHg for those 5 years of age
and older); cold clammy skin and restlessness

for discrete attributes, logistic regression and Mann—Whitney U test for continuous
attributes are applied on the clinical data sets for classifying issues related to the
diagnosis (Chadwick et al. 2006; Kalayanarooj et al. 1997; Ramos et al. 2009).
Decision tree-based algorithms such as C4.5 have been used to differentiate den-
gue from non-dengue illness and predict the outcome of the disease. We have
examined these issues critically and have established that our methodology yields
more positive predictions when compared with those obtained by using C4.5 deci-
sion tree approach (Tanner et al. 2008).

Strategies to identify individuals likely to be in the early phase of dengue infec-
tion based on clinical features alone using the evidences or rules generated from the
data would be of great help to the public health officials in prioritizing and directing
patient stratification for clinical investigations and management. The authors have
developed a new alternating decision tree (RNIADT for short) (Sree Hari Rao and
Naresh Kumar 2011c) methodology which generates more accurate decisions rules
as compared to the C4.5 decision tree (Tanner et al. 2008) and logistic regression
(Chadwick et al. 2006; Ramos et al. 2009) for identifying the early clinical features
that predict the diagnosis of dengue. Tanner et al. (2008) have applied C4.5 decision
tree algorithm on acute febrile illness affected individuals using simple clinical and
hematological parameters. Further, this study also requires laboratory features such
as platelet count, crossover threshold value of a real-time PCR (RT-PCR) for dengue
viral ribonucleic acid (RNA) and the presence of preexisting anti-dengue immuno-
globulin G (IgG) antibodies. It is known that administration of these laboratory tests
require 2—12 days (Sa-Ngasang et al. 2006; Vaughn et al. 1997) and in some cases
the condition of the patient may not allow such a long wait. However, the research
in Tanner et al. (2008) provides more insight into the scientific understanding of
the disease prevalence among the infected individuals. From the effective clinical
management point of view, it is desirable to have a methodology that helps one to
identify the suspected dengue individuals from simple clinical features. This helps
to reduce the spread of the disease in the community.
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The main emphasis in this chapter is to present methods other than those fol-
lowed conventionally by clinicians. The following are the principal objectives of the
present study:

(a) To define the early clinical features of suspected dengue in children and adults
which helps reduce the dengue virus transmission in a community

(b) To develop a new alternating decision tree methodology for predicting the diag-
nosis of dengue utilizing both clinical and laboratory features and to compare
with other approaches based on statistical methods, logistic regression, and
decision tree algorithms such as C4.5

(c) To examine the conformability of the WHO definitions of dengue fever on the
realistic clinical and laboratory data

(d) To develop an accurate model which can predict the diagnosis of dengue based
on clinical and laboratory features

In order to achieve this, we have used the data sets having 1,044 data records
of dengue affected populations consisting of both children and adults from cen-
tral and western States of India.

2 Dengue Virus Biology

The following details concerning the dengue virus and Dengue virus biology may
be found in Net DV (2011). For the sake of brevity we present the following details
(Net DV (2011)).

The size of the dengue virus is around 50 nm and is enveloped with a lipid mem-
brane (Fig. 1.2). The total genome is approximately 10.6 kb in length. A short trans-
membrane segment attaches the viral membrane with 180 identical copies of the
envelope (E) protein. The genome of the virus has about 11,000 bases that encode a
single large polyprotein that is subsequently cleaved into several structural and non-
structural mature peptides. The polyprotein is divided into three structural proteins,
C, prM, E; seven nonstructural proteins, NS1, NS2a, NS2b, NS3, NS4a, NS4b, NSS;
and short noncoding regions on both the 5" and 3" ends (Fig. 1.3). The structural
proteins are the capsid (C) protein, the envelope (E) glycoprotein and the membrane
(M) protein, derived by furine-mediated cleavage from a prM precursor. The E gly-
coprotein is responsible for virion attachment to receptor and fusion of the virus
envelope with the target cell membrane and bears the virus neutralization epitopes.
In addition to the E glycoprotein, only one other viral protein, NS1, has been associ-
ated with a role in protective immunity. NS3 is a protease and a helicase, whereas
NS5 is the RNA polymerase in charge of viral RNA replication.

2.1 Life Cycle of Dengue Virus

The life cycle of dengue virus involves endocytosis via a cell surface receptor
(Fig. 1.4). The virus uncoats intracellularly via a specific process. In the infec-
tious form of the virus, the envelope protein lays flat on the surface of the virus,
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forming a smooth coat with icosahedral symmetry. However, when the virus is
carried into the cell and into lysozomes, an acidic environment causes the protein
to snap into a different shape, assembling into trimeric spike. Several hydropho-
bic amino acids at the tip of this spike inserts into the lysozomal membrane and
causes the virus membrane to fuse with lysozome. This releases the RNA into the
cell and infection starts.

The dengue virus (DENV) RNA genome in the infected cell is translated by the
host ribosomes. The resulting polyprotein is subsequently cleaved by cellular and
viral proteases at specific recognition sites. The viral nonstructural proteins use a
negative-sense intermediate to replicate the positive-sense RNA genome, which
then associates with the capsid protein and is packaged into individual virions.
Replication of all positive-stranded RNA viruses occurs in close association
with virus-induced intracellular membrane structures. DENV also induces such
extensive rearrangements of intracellular membranes, called replication complex
(RC). These RCs seem to contain viral proteins, viral RNA, and host cell factors.
The subsequently formed immature virions are assembled by budding of newly
formed nucleocapsids into the lumen of the endoplasmic reticulum (ER), thereby
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acquiring a lipid bilayer envelope with the structural proteins prM and E. The viri-
ons mature during transport through the acidic trans-golgi network, where the prif
proteins stabilize the E proteins to prevent conformational changes. Before release
of the virions from the host cell, the maturation process is completed when prM is
cleaved into a soluble pr peptides and virion-associated M by the cellular protease
furin. Outside the cell, the virus particles encounter a neutral pH, which promotes
dissociation of the pr peptides from the virus particles and generates mature, infec-
tious virions. At this point the cycle repeats itself (Net DV, (2011).

3 Transmission of Dengue Virus

The dengue virus is transmitted mainly by the mosquitoes belonging to
Aedes species. Among them the most prevalent species are Aedes aegypti and Aedes
albopictus. In some of the regions in Pacific Islands and New Guinea Aedes
polynesiensis, Aedes scutellaris and Aedes pseudoscutallaris transmit the disease.
The A. polynesiensis in Society Islands and Aedes niveus in the Philippines are the
other mosquitoes belonging to this species that transmit the virus (http://www.
nathnac.org/pro/factsheets/dengue.htm). These mosquitoes prefer to breed close to
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human habitation where water-filled receptacles, small pools that collect in dis-
carded human waste are found. They are active during the daylight hours and they
feed throughout the day indoors and during overcast weather.

The A. aegypti being a holometabolous insect undergoes a complete metamor-
phosis with an egg, larvae, pupae, and adult stage in its life cycle. The life cycle of
A. aegypti can be completed within one-and-a-half to 3 weeks. The environmental
conditions play a crucial role in deciding the adult lifespan which may range any-
where from 2 weeks to a month.

The bites of the infective female Aedes mosquitoes transmit the disease to
humans. The main source of virus for the uninfected mosquitoes is the infected
humans. The virus is acquired by the mosquitoes while probing and feeding on the
blood of an infected person. The infected mosquito is capable of spreading the
disease after 8—10 days of incubation. During the incubation period the virus repli-
cates within the mosquito’s salivary gland. Once the mosquito acquires the infec-
tion it is capable of spreading the disease to the end of its life. The mosquito’s eggs,
however, can survive for as long as 1 year and at temperatures as low as 10°C
(50°F). The mosquitoes transmit the disease to a susceptible human during probing
and blood feeding. There is no definitive theory to say whether a particular
mosquito carries the dengue virus or not. The infected female mosquitoes through
the transovarial process may also transmit the virus to their offsprings, but the role
of this in sustained transmission of the virus to humans has not yet been defined.

Clinical symptoms in humans indicate the circulation of the virus, and this
condition would prevail approximately around 2—7 days.

4 Clinical Epidemiology

The clinical symptoms such as malaise and headache, followed by sudden onset of
fever, intense backache and generalized pains, mainly in the orbital and periarticular
areas are manifested within 6 days of infection (http://www.histopathology-india.
net/Dengue.htm). There would be a recurrence of fever for a day or two (saddleback
fever) after a nonfebrile interval of 2448 h. During this time skin rashes and lymph-
adenopathy appear in the infected humans. There is a greater risk to persons who are
previously exposed to this virus as an enhanced uptake of the virus into the host
cells by the antiviral antibodies which may lead to disseminated intravascular coag-
ulation and death due to shock (hemorrhagic dengue).

4.1 Pathological Features

Biopsy studies of the rashes reveal that in the cases of nonfatal dengue, lymphocytic
vasculitis is found in the dermis whereas in the cases of fatal DHF the gross findings
are petechial hemorrhages in the skin, hemorrhagic effusions in the pleural, pericar-
dial, and abdominal cavities. In many organs hemorrhage and congestion are seen.
Histopathological examinations reveal hemorrhage, perivascular edema, and focal
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necrosis but no evidence of vasculitis or endothelial lesions. It is observed that most
of the morphologic abnormalities are due to disseminated intravascular coagulation
and shock.

4.2 Serotypes

The dengue infection may spread due to any of the four known serotypes of the
flavivirus. Based on the serotype of the virus spreading the infection, the dengue
fever is termed DEN-1, DEN-2, DEN-3, and DEN-4. Even though the viral subtypes
are closely related, they are antigenetically distinct. Therefore, a person already
infected by one specific dengue serotype has lifelong homotypic immunity against
a reinfection by the same serotype. In addition there will be a brief period of some
partial heterotypic immunity but it does not provide permanent immunity or protec-
tion against the potential infection by any of the other serotypes. There is a possibil-
ity of having several serotypes circulating concurrently within an exposed population
during epidemics. This is of vital importance in view of the fact that, dengue fever
that produces some minor nonspecific viral symptoms, may also progress towards
its more aggressive and often fatal form known as DHF.

Once a human being becomes infected by the bite of the Aedes mosquito, the
incubation period is anywhere between 3 and 14 days (with an average lag time of
4-7 days), during which the viral replication takes place. The virus primarily targets
the reticuloendothelial system, including dendritic cells, endothelial cells and hepa-
tocytes (http://www.medicinemd.com/Med_articles/Dengue_fever_en.html). After
5-7 days of acute febrile illness, recovery is usually complete within 1-2 weeks.

4.3 Symptoms

The initial dengue infection may be asymptomatic and results in a nonspecific
febrile illness, or it may produce complex manifestations of the classic dengue fever.
A characteristic presentation of the symptoms includes sudden onset of fever,
accompanied by severe frontal headaches, and joint (arthralgia), and muscle pains
(myalgia). Some patients also experience nausea or vomiting and develop rashes on
skin. The rashes would appear 35 days after the initial infection, and spreads from
the torso to the extremities and the face.

Some patients, who have previously been infected by one of the dengue serotypes,
may also develop bleeding and endothelial leakage upon infection with another
dengue serotype. This syndrome is termed DHF. Subsequently, some patients with
DHF may also develop shock (DSS), which is lethal and may lead to death of the
infected person.

The symptoms of DHF and/or DSS are much more severe than in dengue fever,
and usually occur within 3—7 days of the illness, coinciding with the time of decline
or interruption of the phase of fever. The primary symptoms of DHF and DSS
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consist of plasma leakage and bleeding. The plasma leakage is caused by an
increased capillary permeability, often resulting in hemoconcentration, pleural
effusions, and ascites. Bleeding is caused by capillary fragility and thrombocytope-
nia (a marked decrease of platelets) which may result in bleeding incidents into the
skin (petechial skin hemorrhages), or even life-threatening bleeding into the gastro-
intestinal tract.

The DHF or DSS symptoms appear only in patients who are earlier infected by
one or more of the dengue serotypes. Typically, the basic dengue fever lasts for
about 6-7 days, with a trailing end of the fever curve after a small peak (biphasic
fever pattern). The patient’s thrombocytes (platelets) keep dropping until the
patient’s temperature has returned to normal.

It is found that dengue clinical symptoms share a commonality with those of
others illnesses such as malaria, typhoid fever, leptospirosis, West Nile virus infec-
tion, measles, rubella, acute human immunodeficiency (AIDS) virus conversion
disease, viral hemorrhagic fevers, rickettsial diseases, early severe acute respiratory
syndrome (SARS), and any other disease that can manifest in the acute phase as an
undifferentiated febrile syndrome.

4.4 Diagnosis

A confirmed diagnosis is established by culture of the virus, PCR tests, or serologic
assays. The diagnosis of DHF is made on the basis of the following symptoms and
signs: hemorrhagic manifestations; a platelet count of less than 100,000 per mm?;
and an objective evidence of plasma leakage, shown either by fluctuation of packed
cell volume (greater than 20% during the course of the illness) or by clinical signs
of plasma leakage, such as pleural effusion, ascites, or hypoproteinemia.
Hemorrhagic manifestations without capillary leakage do not constitute DHF.
Additional laboratory criteria for a positive diagnosis include one or more of the
following:

e Demonstration of a fourfold or more increase in reciprocal IgG or immunoglob-
ulin M (IgM) antibody titers to one or more dengue virus serotype antigens

 Isolation of the dengue virus from serum, plasma, or leukocytes

e Demonstration of dengue virus antigens or viral genomic sequences, derived
from autopsy tissues

4.5 WHO Guidelines for Diagnosis of Dengue

WHO in 1975 established the following guidelines for the diagnosis of dengue
fever:

e Fever
* Hemorrhages positive tourniquet test, spontaneous bruising, mucosal bleeding,
vomiting blood or bloody diarrhea
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* Thrombocytopenia less than 100,000 platelets/mm

* Plasma leakage evident by a hematocrit level of more than 20% higher than
expected, or a drop of the hematocrit level by 20% or more, following IV fluid
therapy; hypoproteinemia, pleural effusion and ascites (collection of fluids in the
thoracic cavity and/or abdominal cavity)

In addition to the symptoms of dengue fever, DSS is defined as including the
following:

e Arapid and weak pulse

* A narrow pulse pressure (<20 mmHg)
e Hypotension

* An altered mental status

e Cool and clammy skin

Dengue fever being a viral disease, there is no direct therapy available. The treat-
ment is usually limited to supportive care. To maintain an adequate blood pressure
and to prevent dehydration oral and intravenous fluids are provided. Platelet transfu-
sions are indicated, if the platelet count falls below 20,000 per pl (normal level:
200,000—400,000 per pl), or if significant episodes of bleeding occur. Blood in the
stool (melena) may indicate gastrointestinal bleeding and requires platelet and/or
red blood cell transfusions. To manage the febrile episodes, acetaminophen contain-
ing drugs are preferred over aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs)
or corticosteroids. Patients with DHF or DSS require close observation, including
intravenous (IV) fluids, such as Ringer’s lactate solution, starch, dextran 40 or albu-
min 5%, all of which may be of value to the patient. Blood transfusions to replace
blood loss or fresh frozen plasma for patients with a coagulopathy may be necessary
in individual cases.

For more details we refer our readers to URL http://www.medicinemd.com/
Med_articles/Dengue_fever_en.html

5 Knowledge Extraction Methods

Our notations and terminology are fairly consistent and may be understood by refer-
ring to WHO (2009) and other earlier works. Standard definitions are used to com-
pute the specificity, sensitivity, predictive positive value, predictive negative value,
and area under the curve (AUC).

5.1 Missing Values: Concerns

The missing values in databases may arise due to various reasons such as value
being lost (erased or deleted) or not recorded, incorrect measurements, equipment
errors, or possibly due to an expert not attaching any importance to a particular
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procedure. The incomplete data can be identified by looking for null values in the
data set. However, this is not always true, since missing values can appear in the
form of outliers or even wrong data (i.e., out of boundaries) (Pearson 2005).
Especially in medical databases, most data are collected as a by-product of patient
care activities rather than from an organized research point of view (Cios and
Mooree 2002). There are three main strategies for handling missing data situations.
The first consists in eliminating incomplete observations, which has major limita-
tions namely loss of substantial information, if many of the attributes have missing
values in the data records (Kim and Curry 1977) and this renders introduction of
biases in the data (Little and Rubin 1987). The second strategy is to treat the missing
values during the data mining process of knowledge discovery and data mining
(KDD) as envisaged in C4.5. The third method of handling missing values is through
imputation, replacing each instance of the missing value with a probable or pre-
dicted value (Dixon 1979), which is most suitable for KDD applications, since the
completed data can be used for any data mining activity.

There are numerous methods for predicting or approximating missing values.
Single imputation strategies involve using the mean, median, or mode (Schafer
1997) or regression-based methods (Horton and Lipsitz 2001) to impute the missing
values. Traditional approaches of handling missing values like complete case analysis,
overall mean imputation and missing-indicator method (Heijden et al. 2006) can
lead to biased estimates and may either reduce or exaggerate the statistical power.
Each of these distortions can lead to invalid conclusions. Statistical methods of
handling missing values consist of using maximum likelihood and expectation max-
imization algorithms (Allison 2002; Roderick and Donald 2002; Schafer 1997).
Some of these methods would work only for certain types of attributes either nomi-
nal or numeric. Machine learning approaches like neural networks with genetic
algorithms (Mussa and Tshilidzi 2006), neural networks with particle swarm optimi-
zation (Qiao et al. 2005) have been used to approximate the missing values. The use
of neural networks comes with a greater cost in terms of computation and training.
Methods like radial basis function networks, support vector machines, and principal
component analysis have been utilized for estimating the missing values.

The wrapper algorithm (Sree Hari Rao and Naresh Kumar 2011c) presented in
Appendix A checks for the presence of missing values, imputes them if they are
present and then generates the decision tree. It follows from the above study that
using a complete data set rather than an incomplete one results in better decision
making in terms of identifying the right set of attributes that contribute to the
diagnosis of the disease.

5.2 Statistical Procedures

The univariate statistical method such as jy? test is applied on the data sets to identify
the patients with abnormal clinical findings with respect to the diagnosis of the
disease. Logistic regression is used to develop a model for selecting the clinical
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attributes that influence the diagnosis. Those clinical attributes with p<0.2 in the
univariate statistic are included in the model with age and gender as potential
confounders. The specificity, sensitivity, predictive value of both positives and
negatives are computed using standard formulae to identify the clinical attributes
that can distinguish dengue from other illnesses in children and adults. In addition
to the above metrics a better measure known as area under the curve (AUC) score is
being used in place of accuracies and error rate as it can represent the overall per-
formance of a classifier (Huang and Ling 2005) in a robust manner. Based on the
values (see Table 1.5) of the AUC one can categorize the performance of the
classifier. The clinical attributes are selected either separately or in combination so
as to have at least 70% positive and negative predictive values (Ramos et al. 2009).
The statistical analysis is carried out using SPSS® software. The machine learning
algorithms are developed using MATLAB® and Weka® softwares (Sree Hari Rao
and Naresh Kumar 2011a, b, c, d).

5.3 What Are Decision Trees?

Decision trees are machine learning methods that can solve the problems of label-
ing or classifying data items out of a given finite set of classes using the features
in the data items. Decision trees such as C4.5 (Quinlan 1993), classification and
regression trees (CART), alternating decision trees (ADTree) (Freund and Mason
1999) have been used in computational biology, bioinformatics and clinical diag-
nosis (Middendorf 2004; Tanner et al. 2008; Wong et al. 2004). The C4.5 decision
tree handles the missing values during the model induction phase of generating
the tree.

Alternating decision trees are based on AdaBoost algorithm which generates
rules based on the majority votes over simple weak rules (Freund and Mason 1999;
Sree Hari Rao and Naresh Kumar 2011c). An alternating decision tree consists of
decision nodes (splitter node) and prediction nodes which can be either an interior
node or a leaf node. The tree generates a prediction node at the root and then alter-
nates between decision nodes and further prediction nodes. Decision nodes specify
a predicate condition and prediction nodes contain a single number denoting the
predictive value. An instance can be classified by following all paths for which
all decision nodes are true and summing the predictive value of the any prediction
nodes that are traversed. A positive sum implies membership of one class and nega-
tive sum corresponds to the membership of the opposite class.

5.4 How to Generate and Interpret an Alternating Decision
Tree?

To generate an alternating decision tree we apply the algorithm (see Appendix A)
on the data set given in Table 1.2 specifically chosen for the purpose of demonstra-
tion. The data set has three attributes: Attributel € {A, B, C}, Attribute2 € {True,
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Table 1.2 An example data set for generating
alternating decision tree

Attributel Attribute2 Decision
A True Classl
A True Class2
A False Class2
A False Class2
A False Class1
B True Classl
B False Classl
B True Classl
B False Classl
C True Class2
C True Class2
C False Classl
C False Classl
C False Class1

False}, and a decision attribute € {Class1, Class2}. There are 14 instances out of
which 9 belong to Class1 and 5 belong to Class2.

We designate Class1 as —1 and Class2 as +1. The initial sum of the weights with
a precondition of the decision attribute being true is W =5 and W_=9. The initial
prediction value at the root node is computed as a = +In3 = —0.2954. The weights
associated with these instances are then updated (see Appendix A item 3 (iv)) as
w,, =e"?* =0.745 for Class1 and w,, = ¢ *** =1.341 for Class2. We identify a
weak classifier having a rule Attributel =A. There are three instances in Class2 and
two instances in Classl with Attributel =A. Therefore, the prediction value
a= %In% =0.351and b= %ln% =—0.2617. The weights are readjusted
before the next boosting iteration. An alternating decision tree for the data set given
in Table 1.2 is shown in Fig. 1.5. The root node indicates a predictive value of the
decision tree before the splitting takes place. If the sum of all prediction values is
positive then the instance belongs to the labeled Class1, otherwise it is placed in
Class2. The prediction nodes are shown as ellipses and decision nodes as rectangles.
The number in the ellipse indicates the boosting iteration. The dotted line connects
the prediction nodes and the decision nodes, whereas a solid line connects the deci-
sion nodes with the prediction nodes. To classify an instance having attribute values
Attributel =A and Attribute2 =true we first consider the root prediction value and
based on the each instance value traverse the tree and add the prediction value of
the particular node traversed. We derive the following sum by going down the
appropriate path in the tree collecting all the prediction value encountered: —0.294 +
(=0.2617)+(0.373)=-0.1827 indicating that the instance belongs to Classl.

The above methodology has been followed in Sree Hari Rao and Naresh Kumar
(2011a, b, d) for identifying the early clinical features and assessment of laboratory
features for dengue diagnosis and their results are presented in Sect. 6 of this

chapter.
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Fig. 1.5 An example alternating decision tree

5.5 What are Influential Attributes?

Decision making in databases is based on the attributes or features that form the data
set. The set of attributes that contribute to better decision making are termed
influential attributes. The presence of features that do not contribute much to the
decision making degrades the performance accuracies of the supervised machine
learning algorithms. The severity of this problem can be felt if one needs to search
for patterns in large databases without considering the correlations between the
attributes and the influence of such attributes on the decision attribute. The selection
of influential features that maximizes the gain in the knowledge extracted from the
data set is an important question in the field of machine learning, knowledge discovery,
statistics and pattern recognition.

The machine learning algorithms including the top-down induction of decision
trees such as classification and regression trees (CART), and C4.5 suffer from
attributes that may not contribute much to decision making, thus affecting the
performance of classifiers. A good choice of features would help reduce the
dimensionality of the data set resulting in improved performance of the classifier
in terms of accuracies and the size of the models, resulting in better understanding
and interpretation.
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5.6 How to Extract the Influential Attributes?

Feature selection is a popular technique to select the influential attributes as a subset
of the original features. Feature selection is often used as a preprocessing step in
the data mining activity. In situations presented by real world processes, influential
features are often unknown a priori, hence features that are redundant or those that
are weakly participating in decision making must be identified and appropriately
handled.

Feature selection can be subdivided into filter-based methods and wrapper
approaches. Wrapper subset evaluation models (Ron and George 1997) use the
method of classification itself to measure the importance of the feature set. Wrapper
methods generally result in better performance in terms of classification accuracies
than filter methods because the features selected are optimized for the classification
algorithm to be used. The wrapper approach (Kohavi and John 1998) defines a sub-
set of solutions to a chosen data set and a particular induction algorithm, taking into
account the inductive biases of the algorithm and its interaction with the training
data set. The influential attribute selection procedure using wrapper subset evalua-
tion is shown in Fig. 1.6. The point of concern with the wrapper method is its com-
putational complexity as each feature set considered must be evaluated with the
classification algorithm used (Dash and Liu 1997; Saeys et al. 2007).

Feature Selection Search » Induction

Algorith
Training Set Y gorithm
Feature Set ’ Performance ‘

. Evaluation

Feature Selection Evaluation

A

Feature Set l Hypothesis

Induction algorithm

Testing Set Final Evaluation

Area Under ROC
(AUC)

Fig. 1.6 Wrapper method of subset evaluation for selecting influencing attributes
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5.7 How to Identify Optimal Feature Subsets?

5.7.1 Genetic Search

Genetic algorithms (GA) are stochastic optimization methods, inspired by the
principle of natural selection. The search algorithms based on GA are capable of
effectively exploring large search spaces (Goldberg 1989). GAs performs a global
search as compared to many search algorithms, which perform a local or a greedy
search.

A genetic algorithm is mainly composed of three operators: reproduction, cross-
over, and mutation. Reproduction selects good string; crossover combines good
strings to try to generate better offsprings; mutation alters a string locally to attempt
to create a better string. In each generation, the population is evaluated and tested
for termination of the algorithm. If the termination criterion is not satisfied, the
population is operated upon by the above GA operators and then reevaluated. This
procedure is continued until the termination criterion is met. The default parameters
for GA search (Sree Hari Rao and Naresh Kumar 2011a; Witten and Frank 2005)
are given in Table 1.3. The results obtained by applying GA search (Sree Hari Rao
and Naresh Kumar 2011a) for extracting influential clinical and laboratory features
of dengue are discussed in Sect. 6.5 of this chapter.

5.7.2 Particle Swarm Optimization Search

The particle swarm optimization (PSO) is an evolutionary computation method
which emulates the movements of flock of birds. The standard PSO consists of a
randomly initialized population of size N known as particles. Each particle p, can be
viewed as a point in K dimensional space p,=(p,;, p,,, ---»P,)- The fitness values of
the best positions of the particles at a previous time is given by fi=(fi, fi,....fi,).
The index of the particle which has the best fitness value is designated as ‘g, ’. The
rate of change of position (velocity) for a particle i is represented by V,=(v,,

i

Vs --+5 V). The positions of the particles are updated using the following equations

Xy =X TV (LD

Table 1.3 Parameter values for genetic search

Attribute Value

Start set No attributes
Population size 20

Number of generations 20
Probability of crossover 0.6
Probability of mutation 0.033
Report frequency 20

Random number seed 1
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Table 1.4 PSO search parameters

Attribute Value
n, 2.0
n, 20
Max generations 50
Number of particles (N) 100

v, =wxv, +1, xrand1()x (f; — x;)+n, xrand2()x (f,; — x;)) (1.2)

where j=1,...,K, w is the inertia weight which is a positive linear function of time
that changes according to the generation iteration. The parameters 7, and 7, rep-
resent the acceleration terms that pulls the particles towards p,  and g, . The
rand1() and rand2() are random number generation functions.

The velocities of the particles are limited by a maximum velocity V. If Vs
too small then the particles may not explore beyond its locally good regions, i.e.
they could be trapped in local optima. For the cases where Vs too large the
particles would fly past the good solutions.

A standard PSO search parameters are given in Table 1.4. The PSO search for
extracting influential clinical and laboratory features of dengue has been utilized in
Sree Hari Rao and Naresh Kumar (2011b) and their results are discussed in Sect. 6.5.

5.8 Does Descretization of Numeric Attributes Improve
Decision Making?

Chadwick et al. (2006) have dichotomized all nominal laboratory features except
WBC which was trichotomized to generate a user-friendly and accurate model.

5.8.1 Discretization Methods

Data discretization is the process of transforming quantitative attributes to qualita-
tive attributes. Data attributes are either numeric or categorical. While categorical
attributes are discrete, numerical attributes are either discrete or continuous.
Discretization involves dividing an attribute values into a number of intervals
(min, ... max,) so that each interval can be treated as one value of a discrete attribute.
The choice of the intervals can be determined by a domain expert or