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Part I
Introduction



Chapter 1

Need for Optimal Design of Pharmaceutical
Programs and Portfolios in Modern Medical
Product Development

Zoran Antonijevic

Portfolio optimization is the process of managing its components such that the
output is maximized based on a selected criterion. In pharmaceutical industry
portfolio components are individual development programs. The selected criterion
is usually a financial measurement, such as expected net present value (ENPV).
There are numerous constrains in optimizing pharmaceutical portfolios; either at the
portfolio level (budgets), or at individual components level (regulatory, payors).

Very little has been published on optimization of pharmaceutical portfolios.
Moreover, most of published literature is coming from the commercial side, where
probability of technical success (PoS) is treated as fixed, and not as a consequence
of development strategy or design. In this book there is a strong focus on impact of
study design on PoS, and ultimately on the value of portfolio. Design options that
are discussed in different chapters are dose-selection strategies, adaptive design,
enrichment, and selection of sample size. Some development strategies that are
discussed are indication sequencing, optimal number of programs, and optimal
decision criteria.

This book includes chapters written by authors with very broad backgrounds
including financial, clinical, statistical, decision sciences, commercial, and regula-
tory. Many authors have long held executive positions and have been involved with
decision making at a product or at a portfolio level. As such, it is expected that this
book will attract a very broad audience, including decision makers in pharmaceutical
R & D, commercial, and financial departments. The intended audience also includes
portfolio planners and managers, statisticians, decision scientists, and clinicians.

Early chapters describe approaches to portfolio optimization from big Pharma
and Venture Capital standpoints. They have stronger focus on finances and pro-
cesses. Later chapters present selected statistical and decision analysis methods

Z. Antonijevic (IX)
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for optimizing drug development programs and portfolios. Some methodological
chapters are technical; however, with a few exceptions they require a relatively basic
knowledge of statistics by a reader.

Pharmaceutical Industry Challenges

The Pharmaceutical industry has come to an era with increased pressure on spon-
sors to improve the cost-effectiveness, productivity and quality of their product
development. Recently they have been facing increasing costs and diminishing
returns. There are many reasons for this, and we need to understand them before we
start proposing solutions.

First, the era of blockbuster drugs is coming to an end. With the blockbuster
model companies would target diseases that affect large populations; like heart dis-
ease, pain, or depression just to name a few. Often, companies would develop drugs
from the same class with already approved drugs, for example statins, cyclo-
oxygenase 2 (COX-2) inhibitors, or selective serotonin reuptake inhibitors (SSRIs).
Alternatively they would target a drug that is just marginally better than current
treatment. The market for above mentioned diseases was so large that even sharing
it would result in making billons annually. The development path would not have to
be very innovative, and development risks were relatively marginal. Additionally,
companies were able to slightly change their drugs, extending their patent time by
years and selling them as new treatments. It is easy to see why this model was very
successful for a long period time. There are many reasons why the above described
model is no longer prevalent, the Affordable Care Act being the most significant
one. First, it is now required from new drugs to significantly outperform already
available products so that they can be reimbursed by the insurance. Furthermore, it
is now much easier to get the approval for generic versions of drugs, and they are
becoming fierce competitors.

The emergence of safety issues with some blockbuster drugs, like Vioxx and
Avandia, has resulted in more stringent safety requirements for approval of drugs.
The best example of this is the FDA Guidance for evaluating cardiovascular risk for
new therapies for treatment of Type II Diabetes. This guidance essentially requires
the addition of a cardiovascular outcomes study with thousands of patients in order
to achieve its requirements. Needless to say, the impacts of such a guidance are
increased development costs and risks, and delayed approvals.

Finally, the primary focus of drug developers has for a long time been on the cost
and the speed of development. The most important parameter, the Probability of
Success (PoS) has largely been overlooked, and drugs were developed as if the suc-
cess was imminent. The PoS is the most important factor for a number of reasons.
First, without a successful submission there will be no revenues. With no revenues
failing drugs are adding to the average cost of development, and the later they fail the
more the cost. Interestingly, not only do companies assume that their drug will suc-
ceed, but they also develop strategies as if the competitor will succeed with certainty.
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This resulted in drug development becoming a chase of who will get to the end
faster, without paying much attention to how to improve PoS and benefit-risk profile
through study design and sound development strategy. An obvious, but rarely uti-
lized alternative to chase is differentiation. Under this alternative sponsors’ primary
focus would be on studying an optimal dose, regiment, or a subpopulation that would
experience greatest benefits from treatment. When pharmaceutical companies evalu-
ate PoS, it is typically evaluated in a subjective process by a committee of experts
making arbitrary guesses, with little use of the data generated in the program to that
point. Another variant is input of these guesses into programs which compute the
probability associated with a tree, but without requiring a basis for the inputs.

To sum up: pharmaceutical companies are facing many new challenges. From
the regulatory standpoint there are new safety and efficacy requirements that will
result in additional clinical trials, increase in cost of drug development, delay of
submissions, and increased difficulties to get regulatory approval. The new chal-
lenge for any newly approved drug is to get reimbursed. Therefore, differentiation
is another key element. Instead of targeting entire populations affected by a very
prevalent disease, companies will have to plan and invest a lot more in identifying
target populations that can benefit the most from their treatment. In so doing they
will have to select from a portfolio of putative predictive biomarkers and classifiers,
and this is also best done in a quantitative data driven fashion designed to maximize
expected utility [1]. Finally, new drugs are facing more competition, and less flexi-
bility for extending patent times.

Clearly the current process of decision making, which has for a long time been
siloed within individual departments, and based on executives’ “gut feeling” is no
longer sustainable. There has to be much more focus on quantitative decision mak-
ing based on measurable parameters. The ultimate goal for drug developers has to
be to maximize the expected value of their products, and portfolios.

Lack of Quantitative Decision Making in the Pharmaceutical
Industry

The pharmaceutical industry is far behind other major industries when it comes to
use of quantitative methods to support decision making. Examples of this are lack
of utilization of decisions analysis, inadequate use of statistical resources, and lack
of utilization of Modeling and Simulation to support decision making. These are
discussed in more detail later in this section.

One possible explanation for a lack of scientific approach in decision making is
that historically, and particularly during the blockbuster era, getting marketing approv-
als was less challenging while revenues for approved drugs were huge. As a result,
Pharmaceutical companies’ profits were large, and executives were not compelled to
change much in their decision-making style. Another commonly mentioned explana-
tion is that Pharmaceutical industry leaders are not quantitative people, and as
such are reluctant to base decisions on quantitative methods or simulation outputs.
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Finally, the intent of quantitative methods, and simulations in particular is to provide
solutions based on the totality of evidence. The pharmaceutical industry is very
compartmentalized and different groups tend to downplay the value of others.
Throughout this book we discuss the value of integrated quantitative approaches.

Decision Analysis Not Sufficiently Utilized

The use of decision analysis would allow pharmaceutical companies to maximize
the expected utility and value of their portfolio in a systematic, data-driven fashion.
Currently, most companies prioritize portfolios based on arbitrary criteria and judg-
ments, and typically draw a funding line. In some cases the funding is stratified such
that some projects are designated high priority and receive more funds to accelerate
development. PoS for these high priority assets is often inflated based on gut feel-
ings, so that the perceived value determines the PoS rather than the other way
around. Instead, pharmaceutical companies need to make use of available data to
estimate key parameters, and perform quantitative trade-off analysis between devel-
opment options and quantitative trade-off analysis across portfolios, with the aim of
maximizing expected value or utility.

Inadequate Use of Statistical Resource

The pharmaceutical industry employs a very large number of statisticians with
advanced degrees, yet their input is restricted to routine tasks that can be done by
people with much less quantitative background and sophistication. For example,
most common tasks for statisticians in the pharmaceutical industry are data manipu-
lation and production of routine tables. In other industries similar tasks are done by
people with much less training and education.

Consequentially, statisticians are insufficiently utilized as the strategic resource.
Yet they are uniquely equipped with skills that are critical for making strategic deci-
sions, such as: understanding and ability to quantify uncertainty, ability to quantify
risk and provide solutions to mitigate risk, or provide optimal solutions. They are
also equipped with skills and knowledge to assess how different development and
design options would impact the likelihood of a product approval.

Lack of Utilization of Modeling and Simulations (M & S)

Pharmaceutical development is a very complex process that involves considerable
uncertainty and very long periods until completion of programs. Because of this
mathematical solutions to problems are not always possible and different develop-
ment strategies and decision options can be compared only by utilization of
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M & S. Additionally, M & S provide a framework that can facilitate communication
between stakeholders. M & S also allow for preclinical and early clinical findings to
be incorporated in “prior distributions” for the assumed efficacy and safety profile of
the treatment. This prior knowledge can then be combined with the observed data into
the posterior information, using the Bayesian paradigm. M & S can be used to support
decision making at any stage of the development, and can accomplish the following:

1. Integration of information from multiple areas, from preclinical development
through the submission stage. Outputs from earlier stages can be used to define
assumptions for simulation parameters. Finally, simulations allow for incorpora-
tion of commercial outcomes through the incorporation of utility functions and
the optimization of the ENPYV, and as such accommodate the integrated develop-
ment approach.

2. Assessing multiple scenarios such as differing study designs and endpoints, or
even more diverse inputs such as cost of study start-up, accrual rates, and
per-subject costs.

3. M & S offer an approach to deal with the computational complexity of maximiz-
ing ENPV subject to various constraints, and can be used as a tool for drug
development optimization.

4. Accounting for uncertainty.

5. Distributional output.

As such, simulations are very well suited for planning and optimization of phar-
maceutical products or portfolios. Please see [2—4] for further discussion and/or
examples.

Assessing the Value of a Pharmaceutical Product

Components

There are three key components for assessing the value of a pharmaceutical product:

1. Cost
Factors that affect the overall cost include subject recruitment, investigator and
clinician costs, pharmaceutical product, monitoring costs, data analysis and report-
ing, interaction with regulatory authorities, administrative costs, and many others.
2. Expected revenues
Recently the most significant factor impacting the revenues is whether the
product will get reimbursed or not. Other factors include indication/affected
population size, class/asset share, expected treatment duration per patient,
remaining patent time, external market dynamics, and compliance.
3. Risk, or inversely, the PoS of a drug development program
The PoS represents a product of probabilities of progressing from one stage
to another over the course of drug development: early discovery, clinical devel-
opment phases, regulatory approval, product launch, and commercialization.
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Expected Net Present Value as a Metric for Valuation

In development of a drug, considerable resources are invested up front with the
expectation of recovering costs and accruing revenues during the later commercial-
ization phase if marketing authorization is granted. Net Present Value (NPV) is a
financial measurement tool that is widely used to evaluate future returns. It repre-
sents the difference between the present value of the future returns from an invest-
ment and the amount of investment, as described in standard textbooks on financial
management [5]. However, as the realization of returns depends on successful
development, NPV needs to be extended to apply to situations involving various
forms of risk (e.g., a product not being approved). A straightforward extension is the
expected value of NPV (ENPV) which represents the NPV weighted by develop-
ment risks, and as such incorporates all three components mentioned in the previous
section. The use of ENPV has long been recognized as a financial tool in portfolio
management and valuation of investments.

There are many advantages of using the ENPV as the outcome of interest for
valuation in drug development. One is that the ENPV naturally accommodates opti-
mization. As illustrated in Fig. 1.1a the function of PoS vs. sample size is a mono-
tonically increasing one. The function of ENVP vs. sample size (Fig. 1.1b) would
have an inflection point where the value is maximized. We can then think of the
corresponding sample size as being an optimal one. But merely maximizing the
ENPV without taking into account the uncertainties of inputs does not adequately
characterize the level of risk [6].

There are several other considerations for ENPV. For most indications the cost of
drug development is a small fraction of what would be the realized revenues.
Therefore the PoS and factors impacting the revenues, time of development in par-
ticular, would have much larger impact than costs. Cost is, however, a very impor-
tant factor to consider, given that in the real world budgets are limited. Consider
Fig. 1.1b again; it is very possible that improvements in the PoS could drive the
inflection point to the far right, where desired sample size would correspond to
investments that exceed available resources, or is in the region where the investment
would be so large that it would make the sponsor uncomfortable to invest. If a single
program takes a large fraction of the fixed, limited resources, there is an opportunity
costs in that other studies, which may have been productive cannot be funded. This
opportunity cost has been termed “Type III error” in analogy to the Type I and Type
II errors associated with false positives and negatives in the frequentist statistical
paradigm [1]. Consideration of Type III error is a critical component of portfolio
optimization, yet may be neglected in favor of pouring resources into a limited num-
ber of opportunities, especially near-term opportunities.

ENPYV has also being criticized as a very unreliable measurement. This is driven
by uncertainties in all three components of ENPV, but mostly expected revenues.
Naturally, uncertainties are larger during earlier stages of development, and several
chapters of this book address ways to deal with these uncertainties. We are by no
mean suggesting that ENPV should be the only outcome of interest in optimizing
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Fig. 1.1 PoS and expected NPV relationship to sample size. (a) Relationship between the size of
phase IIb and the probability of success in phase III. (b) Relationship between the size of phase IIb
and product’s expected NPV. Source: Reproduced with permission [8]

pharmaceutical portfolios, but have explained in the introduction as a mean of
avoiding repetition, since several chapters refer to ENPV. Other measures, such as
the benefit—cost ratio (BCR) are more robust to these uncertainties, at the sacrifice
of details [7]. Several chapters in this book are actually using the BCR as the
measurement of interest.



10 Z. Antonijevic
Value of Design in Decision Making

The current assessment of PoS is often based on high-level understanding of drug
development. Parameters that are considered are the indication, and the stage of
development. Based on this limited information estimated PoS’ are plotted against
expected revenues, and this is information is then used to support decision making.

This approach completely overlooks the value of design. Multiple development
options (e.g., doses, designs, endpoints, budget constraints) should be compared
based on the expected utility, as the expected value of a product clearly depends not
only on the quality of the product itself but also on the quality of the development
program. Therefore, study design and development strategy should always be con-
sidered when making decisions.

Let us illustrate this with one example of impact of design on the value of the
product, at the program level. Antonijevic et al. [4] studied the impact of Phase 2
design characteristics on the PoS in Phase 3 and on the ENPV of the product. The
following Phase 2 characteristics were studied: (1) the statistical approach to dose
selection, (2) the sample size used in Phase 2, (3) the number of doses studied in
Phase 2, and (4) the number of doses selected to advance into Phase 3.

There were seven different statistical approaches considered, and they are pre-
sented on the y-axis in Fig. 1.2. Two different sample sizes were considered in the

Expected NPV

= 1 dose = 2 doses, fast 2 doses, normal
: N=250 :
LOCFIT o -
BMA ° -
MTT ° -
MCPMod o -
GADA o -
Dopt ° -
ANOVA ° -
N =150
LOCFIT o -
BMA = -
MTT o -
MCPMod ° -
GADA =t -
Dopt o -
ANOVA ° -
6(I)0 8(I)O 10IOO

Average NPV (millions)

Fig. 1.2 Tllustration of value of design. Source: Reproduced with permission [4]
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Phase 2 (150 and 250), and three options for the Phase 3 (one dose, two doses, and
two doses with accelerated enrollment). This results in the total of 42 Phase 2b/III
strategy options to be compared. Results of this study are discussed in more detail in
the chapter on Adaptive Programs, and only the point regarding the value of design
is made here. The PoS for selected development options were estimated using simu-
lations. Costs and development times were calculated using the information from
real databases. The resulting ENPV for selected design options ranges from approxi-
mately $0.5B to $1.2B. This is the range of the value of design. Definitely something
that should not be overlooked in planning and decision making.

Uncertainty

As previously mentioned, optimization of ENPV requires addressing uncertainties of
the development process, while updating the incremental knowledge as one pro-
gresses down the drug development life cycles. Knowledge acquired in the process of
developing a drug may also alter PoS for other follow on drugs that work in the same
pathway [1]. In these settings, Bayesian statistical approaches are a natural tool for
combining various sources of prior information. If very little prior information is
available at a given stage of development, then one can consider a Bayesian approach
where industry averages and/or clinical opinion are used as priors. The updates can
then be made by using the observed data from ongoing trials. One approach to address-
ing uncertainty in development programs is to adopt a concept of assurance, or uncon-
ditional probability of a positive outcome [9]. Here “unconditional” dedifferentiates
from the traditional approach of calculating power, which is “conditional” on pre-
specified assumptions. The idea of computing the expected (or “average”) power with
respect to the prior distribution of the parameter of interest is not a new concept;
however, it has rarely been implemented when planning new studies. For detailed
discussion of a combined Bayesian and frequentist approach to study design as a
mean of incorporating unconditional PoS see Spiegelhalter et al. [10, 11].

Making Decisions in the Broader Context

Optimization at the Portfolio Level

So far we discussed the value of a product, and optimization at a development
program level. It is now time that we address our main topic: Portfolio Optimization.
A pharmaceutical portfolio will include multiple products, candidate predictive
biomarkers, and clinical trials. Assessing the value of a portfolio therefore includes
all the parameters described previously, but also requires additional considerations.
First, budget limits are set not at the product level, but at the portfolio level. This
makes any decisions interrelated and increases the complexity of decision-making.
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For example, reduction of costs in one program does not only mean immediate
savings but also enables increase in investment in other programs.

Further, given the budget constraints, not all planned programs and clinical trials
can be executed. One needs to focus on the programs expected to bring the greatest
returns, which raises the question of project selection. Burman et al. [12] proposed
a solution to this problem by a decision-tree approach. The resolution to the budget
constraints problem, however, should not only be in deciding which projects to
select but also how large they should be. It is standard practice in the industry to fix
the sample size of Phase 3 studies based on a predetermined level of power (usually
0.80 or 0.90). In this way, a study sample size is not explicitly linked to the com-
mercial value. We argue, on the other hand, that the optimal portfolio development
solution should be a combination of project and sample size selections, so that the
value of a portfolio as a whole is maximized.

Finally, portfolio optimization cannot be static. Sponsors of Phase 3 trials are most
often large or medium sized companies with pipelines of drugs at various stages of
development. Phase 3 portfolio development strategy will thus require planning over
a time horizon within which a number of viable candidates are expected to become
available at various times. Furthermore, many of the potential Phase 3 drugs will
have uncertainty surrounding their availability because they will be in earlier stages
of development and may fail to progress to Phase 3. Portfolio planning is also affected
by external dynamics. Events, such as approvals of new drugs, would have a major
impact on the expected revenues and as such affect the ENPV. Dynamic optimization
of the implementation schedules and reoptimization in the light of accumulating
information is therefore a key requirement for the Phase 3 portfolio optimization.
There is thus a challenge in keeping all the important variables up to date so that each
decision can be informed by the context of available portfolio information.

Project Prioritization vs. Portfolio Optimization

Project Prioritization often gets mistaken for Portfolio Optimization. Let us illustrate
the difference by looking at sample size in Phase 3 as the parameter of interest. Any
portfolio would include a number of products or development programs. For each prod-
uct the function of sample size vs. ENPV would be as illustrated in Fig. 1.1b; the only
difference being the slope of the curve, and the location of the inflection point. These
differences would be a result of different costs, expected revenues, and chances of suc-
cess. Then let us assume that we have a certain budget limit set at the portfolio level.

1. Strategy 1, Project Prioritization: Determine sample size for each trial and calcu-
late the ENPV. Then do a naive selection among trials with highest ENPV to fit
within budget limits.

2. Strategy 2, Portfolio Optimization: Start all trials with sample size=0. Compare
trials for the benefit gained from an increase in sample size in fixed increments,
say ten patients. In each iteration increase the sample size for trial with that has
the steepest slope on the ENPV curve. Repeat this procedure until the budget
limit is met.
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Clearly, the second strategy will always perform better than the first strategy.
The key difference between two approaches is that optimization considers study
design as a variable that can be manipulated such that the value of a portfolio is
maximized. Project prioritization assumes that study design is fixed, and as such
results in suboptimal outputs.

Need for an Integrated Input by R & D and Commercial Groups

In this section we briefly describe why the integrated approach is necessary in order
to maximize the value of Pharmaceutical Portfolios. We first address this from the
commercial point of view, then from that of R & D.

Commercial View

There is an increasing demand for differentiated product value. There is also a
growing recognition that the traditional, siloed organizational focus on product
development separate from launch and beyond will no longer meet post-launch
product needs. As a result, an integrated approach is needed that considers value
proposition earlier in the clinical development process by incorporating marketing,
commercial, and medical affairs perspectives. Further, the R & D teams cannot
provide meaningful solutions without understanding the external environment,
including status of any competing products. Finally, drug approval is of little
meaning if reimbursement from payors is not forthcoming.

R & D View

Commercial decisions are based on the top level understanding of drug development.
Itis the R & D team that has deep understanding of the data collected, regulatory and
clinical strategies, different development options and their impact on the approval
process. Commercial teams have limited understanding of drug development risks
and uncertainties.

Examples Where an Integrated Approach is Necessary

Dose Selection. A well selected dose with an optimal safety/efficacy/health out-
comes profile would impact many parameters that we discussed before. It would
improve chances of regulatory success and reimbursement, and would also poten-
tially increase the market share. In order to improve the chance of selecting such a
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dose, however, one needs to invest into a more robust Phase 2 that would increase
the cost, and lengthen the time of development. For antibody therapeutics, it may be
desirable to use labeled biodistribution studies in conjunction with Phase 1 work for
the purposes of dose determination [13]. Finding an optimal solution for this prob-
lem can be done only with joint input from R & D and commercial.

Program-level optimization. Another example, and a much broader one, is the opti-
mization. Calculating sample sizes has been one of the main tasks for statisticians.
Financial outcomes and optimization, however, have rarely been considered when
sample size assumptions are selected. During Phase 3 planning, power is usually
arbitrarily prespecified, without assessing the extent by which the ENPV would be
affected by changes in sample sizes, or what would be the “optimal” power.
Likewise, proof-of-concept (PoC) decisions and interim decision rules are rarely set
such that the expected revenues can be optimized. It should be noted that optimal
sample sizes would be classified by conventional statisticians as “underpowered” in
many cases [1, 7].

Portfolio-level optimization. The optimization of various decision parameters can
be done at the program level, but is better assessed in the context of a portfolio.
Consider a portfolio with several clinical trials addressing different indications for
which the expected costs and revenues largely differ. Should the power for Phase 3
trials be equal for these programs? Shouldn’t the decision criteria following interim
analyses be based on expected financial losses and gains, and ultimately be speci-
fied such that the expected value of the portfolio be maximized? For each drug
program, there may be a portfolio of candidate predictive biomarkers as well, lead-
ing to a larger an even larger variety of portfolio options [1]. Please see Patel and
Ankolekar [6] and Chen and Beckman [7] for an excellent discussion.

Summary

Numerous economic factors are important in the planning, design, and management
of pharmaceutical programs and portfolios. In drug development decisions regarding
various development options should be defined such that the expected value of a
product or a portfolio is maximized. This should be done through the process of quan-
titative optimization of development decisions. While this optimization could focus
on individual development programs, it is preferable that these decisions are made at
the portfolio level, as individual programs are interdependent. Integration of various
sources of information and input is essential in order to assure successful delivery.
Key concepts that are addressed in this book are as follows:

1. Drug development decisions should be made at the portfolio level. Budgets
are limited and are determined at the portfolio level; therefore decisions within
individual programs should be interrelated.
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2. The value of a product depends on quality of all of the following: product itself,
associated predictive biomarkers, and the development program. The value of a
portfolio will then depend on the expected value of individual products as well
as the strategy for portfolio optimization. Study design has a major impact on the
success of drug development at:

— Trial level by application of adaptive design. Examples are: early stopping for
efficacy or futility, de-risking development by increase in power or interim
analyses as needed, or adaptive population enrichment.

— Program level. More effective dose-finding leads to higher success rates in
Phase 3 and an improved efficacy/safety profile.

— Portfolio level. Improved allocation of a fixed budget into individual trials
leads to an improved value of the portfolio.

3. An integrated, R & D and commercial approach is necessary for optimizing
pharmaceutical portfolios.

Contents and Organization of this Book

In this book we first present organizational and financial aspects of portfolio optimi-
zation. First chapter highlights clinical and other important aspects of risks associ-
ated with pharmaceutical product portfolio management, including competitive
intelligence (CI), due diligence (to acquire assets and estimate the probability of
technical success), and patent protection and regulatory exclusivity. The following
two chapters discuss financial and business considerations when investments are
made in a portfolio of pharmaceutical products, including how introducing flexibil-
ity in study design can de-risk investments and maximize the value of pharmaceuti-
cal products and portfolios where outside investments were made. The last chapter
in this section describes challenges of portfolio management in “Big Pharma.” It
contrasts two commonly accepted approaches: a project-driven approach to a
portfolio-driven approach, and then describes a third, compromising alternative.

Second part of the book describes new methodologies for optimizing pharma-
ceutical development programs and portfolios. This part of the book begins with a
chapter that discusses optimization of drug development programs, which is a step
towards optimizing portfolios. This is followed by two chapters with application of
decision analysis: one to support the design of clinical trials at a program level, and
the other that compares three different approaches to indication sequencing. Then
follows is a work describing specific methods that maximize return on investment
at the PoC stage, both at the program and at the portfolio level. The fifth method-
ological chapter is on optimization of portfolios that include development of pre-
dictive diagnostic biomarkers. Finally, a mathematical approach to dynamic
portfolio optimization due to changes in the internal and external environment over
time is presented.
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Chapter 2
Clinical Aspects of Pharmaceutical
Portfolio Management

Frederic (Rick) Sax, Raymond A. Huml, and Judith Ng-Cashin

Introduction

This chapter examines the clinical aspects of pharmaceutical portfolio management
from the perspective of an Executive Committee reporting on portfolio strategy to a
Board of Directors.

Portfolio strategy decision-making is the single most important role of pharma-
ceutical executives interacting with the Board of Directors to drive shareholder
value. The broad categories driving shareholder value include a thorough evaluation
of manufacturing and clinical drug development costs (e.g., cost of goods [CoG]),
commercial (sales) expectations, and the clinical risk—benefit assessment for each
product within the portfolio.

This chapter highlights the clinical aspects of pharmaceutical portfolio manage-
ment. It also discusses other important aspects of the risks associated with pharma-
ceutical product portfolio management, including competitive intelligence (CI), due
diligence (to acquire assets and estimate the probability of technical success), patent
protection and regulatory exclusivity.

For the purpose of this discussion, an “Executive Committee” is a collection of
internal experts covering the disciplines of medicine and drug development sci-
ences, regulatory science, commercialization, and finance, as they relate to portfo-
lio development and asset prioritization. A “Board of Directors” is a body of elected
or appointed members who oversee the activities of a company or organization with
accountability for corporate governance, financial resources, including acquisition
and allocation, and stakeholder accountability. In addition, for purposes of this
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chapter, a typical pharmaceutical portfolio contains 10-15 assets, representing
some mix of small molecules and biologics, as well as pre-approval assets and
marketed products.

The portfolio strategy and management is examined in the context of clinical
discovery and development, acquisition of external assets, life cycle management of
marketed products, risk—reward tolerance, and clinical risk mitigation strategies.

While this chapter will be most applicable to portfolios of small molecules, bio-
logics, or medical devices, it could also apply to other diversification strategies for
biopharmaceuticals portfolios, including moving into other sectors such as wound
healing, consumer products, generics, and agricultural or veterinary products.
Smaller companies may benefit from the strategies elucidated in this chapter, but
may not have the infrastructure to diversify and balance risk in a similar manner due
to the more limited nature of their portfolios and available resources.

Portfolio Strategy Decision-Making

Portfolio strategy decision-making focuses on five key elements of the clinical
assessment which is divided into both strategic and tactical components.

The strategic clinical components include an understanding of the overall strategy
(e.g., perhaps a focus on one therapeutic area or multiple areas or types of products,
the ability to assess the probability of technical success and the value of the clinical
and technical assessment of the portfolio which is a combination of clinical risk and
NPV risk) to obtain alignment with the overall corporate strategy (“strategic fit”)
and priorities, and the value that is created from resources being appropriately
deployed to maintain revenue from marketed and future products (“value creation”).
Contained within this paradigm is the tension of maintaining a balance between cur-
rent and future revenues through investments in the development pipeline.

The tactical components include the methods in the pharmaceutical executive’s
armamentarium to assess risk. Clinical risk is assessed by known safety signals as
well as unanticipated safety signals which could be seen after a product is marketed.
Risk can be managed by due diligence, assessing the risk associated with in-licensed
compounds as well as ongoing due diligence on the compounds in the portfolio.
Other tactical components include employing methodologies to avoid bias with a
careful consideration of the trade-offs for each decision in order to optimize the
ever-changing portfolio.

The clinical contribution involves product development risk (but not patent risk)
and estimating the probability of technical success (PoTS), which includes an eval-
uation of safety risk, probability of regulatory success, and market access. To avoid
bias, due diligence must be conducted both for in-licensed assets and, on an ongoing
basis, for the existing portfolio.

Depending on the clinical mix of the portfolio, as determined by the therapeutic
areas, the value of the entire portfolio then becomes a combination of clinical risk
and net present value (NPV) risk.
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The strategic and tactical risks must be managed in a sustainable manner, meaning
that the goals must be achievable with the available resources, and the returns appro-
priate to the level of investment, all in alignment with the growth objective.

Portfolio management must strike an appropriate balance between all of these
factors.

Strategic Fit

The portfolio must be aligned with the overall corporate strategy and priorities. This
includes both current and future strategies. For instance, if the early phase pipeline
is weak and there is an aspiration to strengthen it in the near term, which strategy is
more consistent with the future strategy: hiring in more expertise within a key dis-
covery discipline or in-licensing early phase assets with the appropriate profile from
external organizations? In other words, build it or buy it? The tactic taken here will
certainly be determined by the infrastructure strategy, the importance of having
internal expertise/capability for the future portfolio, and the cost structure associ-
ated with either course of action.

Value Creation

It is the primary goal of portfolio management to maximize value and return. Several
considerations must come into play when addressing the composition of the portfo-
lio toward this goal. The short term revenue goals of the portfolio can take priority
over investment in the development pipeline. However, inattention to the future
marketed product strategy enabled by assets in discovery and development can
result in devaluation of long-term future revenue potential. Determining the optimal
resource allocation toward sales and marketing for current revenue maximization
versus investment in research and development of the less mature asset pipeline can
be difficult and must be aligned with the strategic goals of the company.

Balance

The composition of the portfolio must be balanced and commensurate with the
financial goals, corporate strategy, and risk tolerance of the company. The Executive
Committee must carefully consider many parameters, and then make thoughtful
and often difficult decisions about which product(s) to include in or exclude from
the portfolio.

For pipeline assets, often the risk of a project is proportional to the projected
return on investment. When thinking about pipeline opportunities, it is often the
high risk-high return projects that also require the most internal resource (see Fig. 2.1).
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New Product Types: Risk vs. Reward Relationship
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Fig. 2.1 Risk vs reward relationship for four different types of new products

Both risk tolerance and consideration of consequences of resource demand and
reallocation should be considered. For example, if a high risk-high return project
consumes the high performing talent, what low-medium risk but more certain reve-
nue return projects will fall behind? A portfolio dominated by early phase assets
might have a high potential value, but will also carry a high attrition rate, while a
portfolio containing mostly marketed products may encounter a revenue ‘“cliff”
without revitalization from the pipeline.

Tactics for Clinical Portfolio Management

Complete analyses of tactics and strategies for continued development or termina-
tion of an asset, or inclusion, exclusion or abandonment of a product—whether in
the preregistration or post registration phase of the drug cycle—is beyond the scope
of this chapter. However, in terms of clinical decision-making, the product or poten-
tial product must have an acceptable risk—benefit profile for the specific indication
in the appropriate patient population and must be adequately differentiated from the
existing available therapies. The risk—benefit profile will be informed by severity of
indication, magnitude of medical need, and local standard of care. A detailed clini-
cal evaluation must be performed and continually reassessed at key investment
milestones in order to ensure informed decision-making for portfolio inclusion.
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Clinical Considerations

The best person to evaluate the practicality and clinical use of a medicinal product
is a physician with clinical experience in the therapeutic area or indication for the
product. The physician can provide unique insights such as:

» Ease of use.

» Potential for common drug—drug or drug—disease interactions.
» Patient population.

* Metabolic effects.

* Adverse effects common to the class of drug.

e Competitive environment.

* Clinical need for a new product.

This clinical review may also have implications from a commercialization
standpoint.

The key clinical consideration is how the product addresses the unmet medical
need. Another major purpose of the clinical review is to determine the safety and
efficacy profile of the product—in terms of the product itself and the portfolio—as
defined within the confines of a risk—benefit assessment. This assessment is easier
for approved products or for a known class of products, and more difficult for new
chemical entities or those entities that lack clinical data (e.g., preclinical candi-
dates). Efficacy in animal models does not always translate to humans and thus care
must be exercised—and higher risk ascribed—in the evaluation of earlier stage
products. Other clinical considerations for asset/product assessment include, but are
not limited to:

* Is the product unique? If not, does it complement or compete with the existing
portfolio?

* How easy is the product to use?

e Can the product be sold using the existing sales force or will it require additional
resources such as a specialty sales force?

* Doe the product require extensive training of physicians (e.g., certain invasive
cardiovascular medical devices) or patients (e.g., self-administered hemophilia
product) or no training at all (e.g., OTC)?

Risk Management

Overall

Risk must be managed to protect a 10-year time horizon, which involves consider-
able uncertainty, in the context of current and anticipated investments within an
ever-changing competitive environment.
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Two key determinants for product risk management are patient risk, defined here
as an evaluation of safety, and product development risk, which includes a risk
assessment of clinical, regulatory and unknown product safety after approval but
prior to patent expiration. Other determinants that will be discussed further include
protecting existing compounds, in-licensing, mergers and acquisitions, due dili-
gence, competitive intelligence, and patent protection and regulatory exclusivity.

Protecting Existing Compounds

There are a variety of R & D strategies to maximize or protect the value and return
of a marketed product portfolio. For individual assets:

e Improving dosing schedule and patient convenience through formulation
development.
— Development of an extended release formulation from an existing immediate
release formulation.
— Improving patient palatability through improved dose presentation.
* Improvement of safety or tolerability through formulation/excipient modification.
— Liposomal formulation to mitigate renal toxicity.
* Supplemental application for new indications for a marketed product.
— Related indication within therapeutic area (such as a renal carcinoma applica-
tion following melanoma approval).
— New application in a dissimilar therapeutic area (e.g., an autoimmune disease
application following cancer approval).
— New application for an Orphan drug indication (this strategy also garners cer-
tain extra regulatory exclusivity that can act as patent protection).
* Approval in a new geography, region, or country.
— Including emerging markets.
* New patent, extension of existing patent, or additional protection in a certain
geography.
— Pediatric clinical studies in response to an FDA written request (pediatric
exclusivity).

In-Licensing, Mergers, and Acquisitions

If the R & D pipeline is limited, external sources of complementary (and also non-
competing) products—which must meet an unmet medical need or be differentiated
from the existing marketed products—should be examined to create value.
Sometimes, for specific needs, it may be necessary to in-license a late-phase
opportunity in a nonstrategic area, simply to maintain cash flow. If the need is con-
sidered great enough, and capital is available, an entire company can be purchased
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which might include a specific compound (or compounds) or perhaps a platform
technology that may either produce additional candidates or modify existing
compounds in the buyer’s pipeline.

One possible response may be to in-license a product similar to an existing, suc-
cessful marketed product with the goal of adding (or replacing) market share from
the existing product. However, the new product must be sufficiently differentiated
in order to achieve regulatory approval and payer reimbursement.

Below are two case studies which highlight the success of second generation,
follow-on prescription drug (Nexium®) and a patent dispute designed to ward off
generic competition (Alimta®).

Case Study: AstraZeneca’s Prilosec and Nexium

AstraZeneca had a dominant gastrointestinal franchise with Prilosec® (omeprazole),
which was the world’s best-selling drug, with global sales of $6.2 billion. To coun-
ter the potential downside of Prilosec’s patent expiry in October 2001, AZ CEO
Tom McKillop considered a range of options, according to a Harvard Business
Review Case Study titled “AstraZeneca, Prilosec®, and Nexium®: Marketing
Challenges in the Launch of a Second-Generation Drug,” by James G. Conley,
Robert C. Wolcott, and Eric Wong (January 1, 2006). These included several
“franchise-extending” strategies, such as the launch of a second generation, follow-
on prescription drug (with a new patent) branded as Nexium®, and the introduction
by AZ of generic omeprazole and/or an over-the-counter version of omeprazole.
The HBR case study notes that both the generic and OTC markets were uncharted
territory for AZ. “The path forward to sustain market dominance in its category,
especially with respect to the OTC opportunity, would require significant channel
know-how.” Clearly, AZ successfully tackled this challenge, successfully launching
Nexium®—with a differentiated product profile—to protect its income stream after
Prilosec’s patent expiry. Nexium® ranked second in sales in the US market in 2011,
with sales of $6.3 billion according to IMS Health [1]. In the second quarter of
2012, Nexium® reportedly led the US market with sales of $1.38 billion [2].

Case Study: Lilly’s Unusual Patent Dispute

In August 2013, Eli Lilly & Co. began defending a patent for its lung-cancer
treatment Alimta®, which recorded global 2012 sales of $2.6 billion, according to a
Wall Street Journal report [3]. The patent covers the method of administering
Alimta® to patients with certain vitamins designed to mitigate side effects. A differ-
ent patent covers the basic chemical composition of Alimta®. The newspaper writes
that the case highlights the pressure on drug makers to preserve market exclusivity
for top-selling products for as long as possible in the face of generic competition,
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pricing pressure and underproductive research labs. A victory for Lilly would block
several generic companies from selling low-cost copies of Alimta® in the US market
until at least 2,022, notes the WSJ. A loss could allow generics to be launched in
2017—when the patent expires for the basic compound—a development that would
rapidly erode sales of the original brand.

Due Diligence [4]

For purposes of this chapter, due diligence (DD) is used to assess the probability of
technical success (PoTS). Technical risk is defined as those factors that are inherent
in the product and will contribute to its full sales potential, given the right sponsor.
Due diligence is simply a process for managing risk. All companies perform DD
prior to making an investment. Proprietary information is first exchanged between
companies after a Confidential Disclosure Agreement (CDA) has been executed.
This is of critical importance to protect both parties and should be executed promptly,
usually under the direction of a company’s legal department/counsel.
Environments in which DD can be utilized range from simple, single-product
transactions between a buyer and a seller to more sophisticated global acquisitions of
multiple products. The simplest DD exercise may require only one person; more
sophisticated partnering opportunities or acquisitions may require a team of experts
with a range of disciplines. Due diligence proceeds with this team of experts to assess
corporate strategy, research and development, intellectual property, human resources,
and financial dealings, identifying the strong points and weak points of a company, a
product (or products), or even a potential deal in order to better manage risk.

Competitive Intelligence [5]

Competitive Intelligence (CI), for purposes of this chapter, is used to determine
market risk while identifying competitive threats so that they can be addressed as
early as possible.

Pharmaceutical CI entails defining, gathering, analyzing, and distributing
intelligence—both nonproprietary and proprietary—on pharmaceutical products,
customers, competitors and any aspect of a particular functional area needed to
support executives and managers in making strategic decisions for an organization
(e.g., an expected return on investment or strategies based on the loss of patent
protection).

Stakeholders are varied and include pharmaceutical companies, contract research
organizations (CROs), pharmaceutical manufacturers and those associated with the
supply chain, investors, patients, health payers, and government organizations.
Although typically thought of as being driven by other companies, competition may
also be affected by regulations (including product-based labeling), lack of regula-
tions (e.g., lack of Guidance from FDA’s Office of Prescription Drug Promotion
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(OPDP) regarding social media) or long-awaited draft FDA guidance for biosimi-
lars, finally issued in February 2012, politics (e.g., controversy around medical
cannabis-derived products), accounting principles (e.g., general accepted account-
ing practice (GAAP), geographies (International Conference on Harmonization
(ICH) vs. non-ICH), patent protection, and regulatory exclusivity). Patent protec-
tion and regulatory exclusivity is discussed separately.

Publically available information is obtained via the World Wide Web and may be
accessed for free, such as information contained on a competitor’s Web site, or
available for a cost (e.g., fee to print a full-text article or IMS Health data to track
pharmaceutical sales). It is typically limited by the savvy of the researcher, the
amount of time that the investigator has to compile the information, and by
the investigator’s access to company-wide databases. Large companies typically
have an advantage over smaller companies in gathering CI due to their scale and
resource availability.

A key caveat to this entire process is that the gathered information must be
converted into intelligence and then utilized for business decision-making when
assessing the market for a particular product or group of products. In essence, if the
CI gathered is not usable (or actionable) then it is not intelligence. Increasingly
important is the understanding of the landscape for the payer environment when
assessing the overall risk of any particular product.

Patent Protection and Regulatory Exclusivity

The available patent life or regulatory exclusivity of any product must be taken into
account when determining the return on investment. This is even more important for
portfolios of products, such as biosimilars, where the originator company is stand-
ing ready to battle potential future competitors. Therefore, it is imperative that the
pharmaceutical executive have a general understanding of the overall process for an
assessment of patent protection and regulatory exclusivity.

The strength of a patent, its remaining patent life, and the potential to obtain regu-
latory exclusivity all form the basis of protection for a branded product from com-
petition, including generics. Another key issue is freedom to sell a product without
interference from third parties that may own relevant patents. Because pharmaceutical
executives are increasingly being asked to participate on due diligence teams, they
need to be familiar with the IP investigational process and the key outputs of the IP
assessment. This enables their employers to better understand the risks associated
with the inevitable patent challenges that arise with financially successful branded
products and potential threats from third-party patent owners.

Although respected in major ICH countries (e.g., the USA, EU, and Japan), not
all countries honor patent protection equally and this reality must be factored into a
global marketing strategy. Moreover, the patent and regulatory exclusivity situation
for a given product often varies substantially in the various countries. For sponsors
of branded products, this may preclude marketing a product in a particular country.
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Key considerations for understanding the value of a product relative to patent
protection and regulatory exclusivity include:

» [P assessment is critical to the entire due diligence and product portfolio optimi-
zation process.

* [P protection includes both the classical IP assessment as well as the regulatory
exclusivity assessment. Together they form the basis of protection for a product
from competition.

e  When IP vulnerability is discovered, it is often possible to diminish or even elim-
inate a risk through contractual language.

Avoidance of Bias

Overall

There are multiple ways to reduce or avoid the biases inherent within product port-
folio management. This section provides an overview of the pitfalls associated with
potential biases in decision-making and discusses several successful approaches for
reducing risk.

Background

When new products come out of the discovery phase of drug development, they
typically look very promising and commercial hopes are high. Most candidates,
nonetheless, fail during Phase I or Phase II.

Development teams often work in “plan-to-succeed” mode, without necessarily
performing war-gaming exercises to predict what might go wrong, and without
adequately challenging the probability of scientific, regulatory, or commercial suc-
cess as anticipated by the due diligence or product marketing teams.

War-gaming can help determine whether a portfolio plan is truly robust,
using measures of the actual risk within the portfolio—clinical, regulatory and
commercial—to calculate an Expected Net Present Value (ENPV, which takes into
account estimated probability of success for each product under development). This
metric is more useful than an NPV (which assumes 100 % probability of success)
and can be risk adjusted to take into account the probability of success for
compounds in the pre-registration phase of drug development. While some risks
are known—for example, the probability of patent expiry is 100 %—others are
less certain, such as the:

* Probability that the animal data predicts clinical outcomes.
* Probability of the occurrence of unexpected safety findings.
* Probability that a product is adequately differentiated.
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» Probability and timing of competitive entries along with their level of differentiation.

* Clarity of the path to regulatory approval and market access.

» Likelihood of success for the proposed marketing and sales approach.

» Political landscape (which may favor bringing cheaper copies of products to
market, such as generics or biosimilars).

These factors and the assumptions around them can be used to collectively sum-
marize the positive and negative attributes of each product in the portfolio. This, in
turn, can be used to risk-adjust the overall probabilities of success for these prod-
ucts, thereby giving a more meaningful assessment of individual estimated NPV's
and the net value inherent in the overall portfolio.

Predictive Tools

Once the known data about the product (or the scientific class of the product) are
collected—and the scientific, regulatory and commercial assumptions about the
product are clearly defined and delineated—it becomes possible to model the impact
of this information on the probability of successful development and commercial-
ization of the product.

While commercial modeling is a standard process for most pharmaceutical com-
panies, modeling of potential scientific and operational development outcomes is
rarely performed. More recently, a number of companies have developed software
tools to better analyze and predict these development outcomes. Estimation of
enrollment, overall development time (based on critical path activities) and cost of
a program are examples of how tools can be used to estimate operational outcomes.
Other technology, such as Quintiles Infosario Design®, use large, patient de-
identified datasets (including electronic health records), to better understand popu-
lation dynamics (impact on inclusion/exclusion criteria, accessibility of patients,
standard of care, clinical event rates, etc.) and their impact on the design of clinical
trials and programs. Use of such data, combined with existing clinical trial data,
allows for the development of combined scientific and operational scenarios—
which can then inform programmatic decision-making.

Access to such data and the tools to “prototype” outcomes by developing design
scenarios, empower drug developers with the knowledge locked in such data and
improve decision-making. Ultimately, better design decisions by minimizing bias
and unchallenged assumptions, should help to improve the probability of success at
each step in a product’s life cycle.

Once drug development reaches trials in patients, these systems can be deployed
as technology-assisted consulting services designed to help pharmaceutical compa-
nies optimize their clinical planning and design process. This optimization is achieved
through two major steps: first, expanding the design space by generating new options
and new combinations of approaches to the problem; and then optimizing time, cost,
and risk parameters over the expanded space of design possibilities [6].
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Adaptive Design Principles

Adaptive design principles—which address the risk embraced by both R & D and
commercial factors—can be used to mitigate portfolio risk. Use of adaptive principles
is an extension of the “‘cone of uncertainty” concept: As uncertainty is reduced when
R & D milestones are achieved, or increased (e.g., due to lack of differentiation or
unexplained safety events), the overall portfolio probability of success is modified as
it “adapts” to the inclusion of this new information. Rather than iterative, isolated deci-
sions are being made at a single individual product event, the overall portfolio balance
is maintained, which minimizes bias, and accounts for the ever-evolving ENPV. This
approach contrasts with the timing of most overall portfolio reviews performed by
large biopharmaceutical companies that only may occur two or three times a year.
For a full portfolio analysis, the “cone of uncertainty” can be applied across all
10-15 molecules. Although potentially time consuming, each molecule has a risk
adjusted ENPYV, which changes at each R & D milestone. Adaptive statistics are applied
across all “cones of uncertainty,” taking into account variability in the confidence that
can be attributed to the ENPV. This process has the important benefits of being more
methodical and less subject to bias than traditional, infrequent portfolio reviews.

Aspirational Drug Development

Other biases that can corrupt the portfolio include teams engaging in “aspirational”
drug development. In this case, the drug development team aspires to an outcome—
that may or may not be grounded in the scientific realities of the drug’s safety and
efficacy performance. For example, a marketing team may have the desire to have a
safer drug, but the clinical data may not demonstrate a difference in adverse events
(AEs) using descriptive statistics, or the drug may not have even been studied in such
a way that a superiority safety claim can be justified. Since the sales team is limited,
from legal and ethical standpoints, to discussing only those claims that are justified in
the approved label, this leads to a mismatch in the desired “target product profile” and
the “actual product profile” (as manifested in the approved label) and with correspond-
ing impact on the commercial forecast. On the flip side, if designs of clinical trials and
programs are based solely on the desired attributes of the drug rather than the manifest
scientific “actual” attributes of the drugs, there is a high probability that the trials will
fail to deliver against expectations, and thus generate little to no value for the product.

Increased or Decreased Chances of Success

Some situations may warrant optimism when determining the chances of product’s
success either in the clinic or the market. Well understood drugs, with a strong track
record of historic sales, for example, should be expected to sell well when positive
data is generated in the pediatric setting. An increase in the PoS for registration
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should also be expected for products with extended release formulations or 505(b)2
applications. The converse is also true. For example, some drugs that work in some
settings may not work well in adjunct but apparently similar indications (at least
from a therapeutic class standpoint), for example a schizophrenia drug moving into
manic depressive disease.

Sustainability

The portfolio must be able to deliver on its short term goals with appropriately allo-
cated resources and ensure a sustainable stream of revenue to continue to fuel prod-
uct development and sales and marketing support. For any asset, competitive strength
versus market attractiveness should be considered. Competitive strength is reflected
based on a composite of market share, size/scale, quality, technology, cost of goods,
brand strength, and customer loyalty to the class. Market attractiveness is a compos-
ite of size, growth, competitive rivalry, profit levels, and ability to differentiate.

While these parameters will be data-based for marketed products, modeling with
careful assessment of the underlying market assumptions will need to be employed
to assess this rubric for assets in earlier phases of development. Keen focus on the
optimal target product profile is critical to ensure differentiation and reimburse-
ment. To this end, the development plan must be designed such that robust data
informing clear “go/no go” decisions is available at appropriate stage gates. These
decisions, especially when the data support termination of development, can be dif-
ficult for organizations. However, rigor around this process is critical to make the
best use of limited resources.

Portfolio Growth

Here, the goal is not only to protect but to increase revenues. Revenues can be
obtained through strategic in-licensing (utilizing due diligence teams) or through
desperation in-licensing. The latter may be due in part to known confounders, such
as patent expiration. It may also be a response to unknown events such as an untow-
ard safety signal (e.g., immunogenicity) that arises in clinical development of a
company’s own product or a competitor’s, or a change in the regulatory climate
(lack of FDA guidance or additional restrictions in a therapeutic area [e.g., cardiac
outcome investigations with new compounds used to treat diabetes mellitus]). Some
franchises may prove to be a scientific dead-end, with no new mechanisms-of-action
coming out of R & D to create value. In that case, a company would need to create
a new franchise, most likely adjacent to an existing, successful franchise, where the
target market would be similar—for example, it might make sense for a company
that is strong in diabetes to move into antiobesity products. Serendipity can also
play a role in portfolio growth—for example, when scientists who are looking for
activity in one therapeutic area find it in another (see Viagra case study).
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Case Study: Viagra Discovery Based on Serendipity

“The surprising truth is drug design owes more to serendipity than careful design,
and their potential may only be discovered when we take them,” wrote BBC.co.uk
on January 20, 2010 [7]. Quoting Viagra as an example, BBC.co.uk reported that
this product, code named UK92480, stared life as a new treatment for angina. Trials
in people were disappointing, and Pfizer was “about to abandon further trials when
the trial volunteers started coming back and reporting an unusual side effect—lots
of erections.” Until Viagra’s 1998 launch “there was no oral treatment for erectile
dysfunction... Now, thanks to a failed angina treatment, men had another option.
Viagra is now one of the most prescribed drugs in the world.”

Summary

Portfolio strategy decision-making—taking into account development and manufac-
turing costs, commercial expectations, clinical risk—benefit assessments, competitive
intelligence, due diligence, and intellectual property protection—is a key element in
driving shareholder value.

Sustainable pharmaceutical portfolio management is guided by principles that
maximize the value of the portfolio, balance its components, and make sure that
additions and subtractions represent a strategic fit. Choices should be guided by an
acceptable level of risk, as determined by the risk—benefit assessment for each prod-
uct in the portfolio. The pharmaceutical physician is usually the best person to per-
form this review and make this assessment, although other persons with appropriate
clinical and medical training can also conduct these assessments.

The key clinical decisions that must be made are based on an understanding of
the pathophysiology of the compound, the safety and subject risk interpretation
and the use of the product in the appropriate clinical setting (surgery suite, private
practice, hospital, outpatient, etc.). Once the safety risks have been identified, they
need to be managed within the bounds of regulatory affairs mandates (annual
safety updates, annual reports, pharmacovigilance, etc.), ethical mandates, and
best clinical judgment.

The portfolio must be balanced and driven by corporate financial goals, strategy,
and risk tolerance. The portfolio must be able to deliver on its short term goals with
the appropriately allocated resources to ensure a sustainable stream of revenue to
continue to fuel product development and sales and marketing support. In addition
to product development, a company can leap-frog this process and in-license a prod-
uct or acquire a product or products via merger and acquisition.

When looking for products to acquire, it behooves the company to conduct due
diligence and determine the positive, negative and unknown attributes of each prod-
uct. The lynchpin of the due diligence process is the IP assessment which includes
a thorough investigation of both patent protection and potential for regulatory
exclusivity.
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War-gaming is a useful approach in helping marketing teams determine
whether the portfolio plan is truly robust, using measures of the actual risk within
the portfolio—clinical, regulatory, and commercial—to calculate an Expected Net
Present Value (ENPV).

Portfolio managers need to be aware of biases that can be inherent in portfolio
decision-making, balancing those factors that may artificially increase or decrease
the estimated probability of registration or commercial success. Complex tools,
such as including adaptive design principles, and large data software tools, such as
Infosario, can also be utilized to minimize and mitigate the risk and bias embraced
by both the R & D and commercial factors.
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Chapter 3

Drug Development and the Cost of Capital

Kraig F. Schulz, Sarah T. Bobulsky, Frank S. David,
Nitin R. Patel, and Zoran Antonijevic

The Situation: Pharma Industry is Struggling to Manage

the Value of Equation

Regardless of industry or geography, the ultimate goal of almost any company is to
create value. The definition and measurement of “value” may vary, but from a
purely financial perspective, we can calculate the value of a company, product, or
asset by present valuing the expected free cash flows using the relevant cost of capi-
tal. Failure to earn a return on invested capital in excess of the required cost of capi-
tal (and thus failure to create value) is, in fact, a failure of management, and often

directly reflected in the market value of the company over time.

In the pharmaceutical industry today, overall value creation by R & D is, by many
measures, essentially zero. The return on capital has been equivalent to (or some-

times less than) the cost of capital for most pharma companies. In fact, whatever

“value” exists in the pharmaceutical industry is generated by on-market products,
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with many companies’ pipelines contributing no value, or worse yet, negative value
to the valuation of the company. The cause of this is well-documented: products are
too expensive to discover and develop, take too long to get to market, have dismal
success rates in getting through development and face end-use markets that are
under tremendous pricing pressure and significant competitive pressures.

One manifestation of this value challenge for R & D programs is the significant
“bid/ask spread” between parties along the pharma R & D value chain. The differ-
ence between what an investor is willing to pay for the drug (i.e., the “bid”) and the
value of the drug as assessed by the developer (i.e., the “ask”) results from differing
perspectives on development costs, probabilities of success, time to market, and
peak revenue potential differ—sometimes by orders of magnitude—between buyers
(or financial sponsors like VC firms) and sellers. This discrepancy is reflected in a
significant decline in early-stage pharma deals in the past few years. Despite the
need for larger companies to bolster their pipelines via acquisitions of smaller bio-
techs or individual programs, the number of development-stage deals has declined.
This is happening, in part, because venture capital firms, which typically fund early-
stage R & D programs, are slowing their funding of biotech (Fig. 3.1). The same
phenomenon is observed in big pharma R & D, with funding for early-stage invest-
ments being reduced in favor of later-stage assets. For both strategic and financial
sponsors, the R & D process has failed to generate sufficient value for their invest-
ments. Put simply, the industry has not figured out a consistent way to manage the
value equation of its R & D programs and, therefore, is seeing significant downward
pressure on development-stage funding.

In light of this, there is a growing need for the pharma industry to more actively
and effectively manage the R & D value equation by increasing the return on their
capital, reducing their cost of capital, and/or generating revenues more rapidly as
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these are the key drivers of value. Given the historical risk—return profile of R & D in
the industry vs. other investment alternatives, the cost of capital flowing into the sec-
tor is unlikely to get much cheaper. So how can pharma R & D improve returns on its
invested capital? In theory, there are four “levers” that companies could use to
improve R & D value: they could reduce risk by improving the probabilities of suc-
cess (i.e., fewer trial failures), decrease trial costs (i.e., the amount of committed capi-
tal), shorten the trial and “decision-making” times (to reduce the duration of capital
commitment and accelerate the realization of cash flows by getting the drug to market
earlier), and/or seek to increase projected peak sales. Any of these adjustments could
increase the value of a given program or the entire R & D portfolio.

In interviews with R & D executives, we find that pharma companies often focus
on only one or two of these factors—decreasing risk or costs—in an attempt to
deliver R & D value. These are often seen as the most “manageable” levers, though
as we will see, pharma R & D executives’ attention to these at the expense of others
may be misplaced.

We begin by looking at risk. The inherent probability of success for any given
molecule is unknown (Fig. 3.2). Furthermore, even if the molecule is actually effec-
tive, clinical trials may not demonstrate it as such. The probability of success of a
molecule is therefore determined by its efficacy relative to the standard of care or
placebo, and the power of the trial relative to the efficacy observed in the trial’s
sample patient population. The product’s inherent efficacy is the ultimate unknown
in the R & D process so researchers design trials and sample patient populations
with the goal of demonstrating the product’s effectiveness and safety (Sidebar 1).
As we will see, there are many choices to be made in this process (patient charac-
teristics for the trial, sample size, duration of treatment, etc.), all of which force hard
choices on time-to-market, cost, risk, and ultimately value.
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Sidebar 1: GSK CEO on Cost of Failure

“If you stop failing so often you massively reduce the cost of drug develop-
ment... it’s why we are beginning to be able to price lower. It’s entirely achiev-
able that we can improve the efficiency of the industry and pass that forward in
terms of reduced prices.”—Andrew Witty, Chief Executive Officer, GSK (At
the Healthcare Innovation Expo in London, March 14th, 2013 in a speech enti-
tled: Innovation through Collaboration; Leveraging the Expertise of Industry)

Once allocated, R & D funds are tied up for, on average, 2-3 years' per phase with
little to no visibility into the productivity of the investments made and little to no ability
to reallocate these funds to more productive opportunities. Of the funds allocated
through this process, the chance that the company loses its entire investment (i.e., the
trial is a failure) ranges from approximately 30-55 %, depending on the phase of devel-
opment.? This is not, however, the end of costs to the organization. Typically, as a result
of failure, further expenditures are required simply to unwind research programs.

Because of the tremendous uncertainty associated with trying to demonstrate a
product’s safety and efficacy in real-world trials, companies typically seek to derive
value from R & D programs by designing increasingly larger, de-risking trials from
Phase 1 to Phase 2. This de-risking process, however, can destroy value in other
ways. To increase confidence in the asset before committing significant capital to a
long and costly trial, companies typically run multiple earlier studies which extends
the overall development timeline, increases costs and reduces the net value of the
program. Other decisions that can significantly impact a program’s overall value
include the fixed costs of trial initiation, per-patient costs, and internal R & D man-
agement costs as well as the significant time companies dedicate to analysis between
development phases—often 6—12 months or more—which can further reduce the
program’s value by delaying time-to-market (Table 3.1).

In addition to the inherent complexities and pitfalls of drug development, inflex-
ible corporate processes and infrastructure further hinder pharma companies’ abil-
ity to deliver value from their R & D pipelines. Rigid budgeting processes focused
on financial metrics like EPS lead to a situation in which the finance department
essentially dictates a budget to R & D based on strategic priorities and what the
organization believes it can afford. This is done without a real understanding of
what R & D budget or allocation across R & D programs will ultimately create the
most value for the company. The R & D team then takes that budget and distributes
it across various drug development programs, after first subtracting fixed costs

'Based on average length of development for Phase 2 and 3 trials; see Table 3.1 for additional detail.

2Based on average probability of success for compounds in clinical development; see Fig. 3.2 for
additional detail.
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T‘flble 3.1 Average 'clinical Phase Costs ($M)* Duration (years)®
;rlllzlszosts and duration by Phase 1 $4.211 s

Phase II $6,096 25

Phase I1I $17,392 2.5

Approval $4,033 1.5

Note: all figures include company-financed R & D only.
Total values may be affected by rounding

"Pharmaceutical Research and Manufacturers of America,
PhRMA annual membership survey, 2013

¢Paul et al., “How to improve R&D productivity: the phar-
maceutical industry’s grand challenge,” Nature Reviews
Drug Discovery, Volume 9, March 2010

(FTEs, etc.) and funding for ongoing trials. The new investments are then “fixed,”
without real visibility into their productivity and with very limited ability to reallo-
cate resources as the programs evolve—which further increases the overall risk to
the portfolio and reduces the company’s ability to derive value from it.

These factors all contribute to the challenge of delivering value from pharma R &
D. Because clinical development is risky, R & D teams seek to increase the odds of
success with large, expensive trials and costly oversight processes—which, para-
doxically, can actually leach value from the program instead of increasing it. At the
same time, finance teams see the low ability of R & D to deliver value and try to limit
their investment, rather than manage and optimize it. Left with limited resources, R
& D teams must then choose a smaller number of projects to fund, and then try to
increase these programs’ odds of success by spending even more on them to increase
their sample sizes—and thus the pharma value destruction cycle continues.

Why this Matters: Less Funding, Fewer Novel Drugs

As the pharmaceutical industry struggles to deliver value, investors have slowly
turned away from the industry leading to fewer novel drugs coming to market.
CFOs, investors, and lenders are becoming increasingly uneasy about investing in
this industry and have become more focused on understanding and managing the
return on their investments. One can see this in the funding patterns for early stage
projects (Fig. 3.3) and in C-suite and board-level discussions centered on R & D
productivity.

These funding challenges come on top of an increasingly difficult environment
for innovation. Much has been said about the challenges of identifying new drug
candidates, as the “low-hanging fruit” is largely considered to be gone. Furthermore,
the FDA has indicated its focus on safety issues, particularly in chronic indications
like diabetes and lipid control with large patient populations that would otherwise
make novel drugs serving these patients particularly valuable. These factors
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compound the costs and risks of developing novel drugs and, in many circum-
stances, decrease the revenue potential of end-markets, further pressuring the value
equation for innovator companies.

As a result of these trends, fewer truly novel therapies are coming to market.
While the number of FDA approvals of NMEs/NCE in 2012 outpaced that of other
years, the number of truly novel therapies is not keeping pace. In place of truly novel
science, many companies are pursuing “me too” therapies that are often less risky
development projects that can come to market more quickly. This strategy, however,
is also under significant pressure as payers begin to demand data that clearly dem-
onstrates the cost-benefit of the new drugs. This phenomenon has been observed in
Europe for years where one-payer systems are governed by pharmacoeconomic
bodies like NICE in the UK or IQWiG in Germany. With yet one more avenue to
value creation being closed off, it remains unclear as to how pharma companies can
change the value equation in their favor. Breakthrough science alone is unlikely to
be the answer and cost-cutting measures are only a short-term fix. The more likely
path is to reengineer the manner in which new science is pursued and demonstrated
in clinical trials—a path that can lower risk, speed products to market, lower costs
and help companies demonstrate the “value” of their products to payers.

What to Do About It: Maximize Value by Introducing
Flexibility/Optionality into Trial Design, Portfolio
Management, and Pipeline Funding

Clearly as this cycle of pressured valuations and shrinking funding continues, some-
thing must be done in order to ensure continued investment in much-needed innova-
tion to improve patient care. Given the complexity of these challenges, however,
pharma companies need to look critically at what they can do to achieve this. We
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Table 3.2 Potential adaptive trial designs

Trial adaptation Description

Phase 2/3 hybrid ¢ Phase 2 and 3 are run seamlessly as one continuous trial using a
combined analysis of all Phase 2 and Phase 3 patients

Interim analysis » Enables a trial to be stopped early based on futility or efficacy

Sample size » Sample size can be increased following interim analysis to achieve

reestimation predetermined conditional power

Patient enrichment * Following interim analysis, patient population may or may not be

enriched for a particular characteristic or feature

Dose finding e Multiple doses are tested and patients are switched to the most
promising doses over the course of the trial

believe the answer lies first in rethinking the way R & D teams pursue the science
and secondly in reassessing how these efforts are financed.

When developing a strategy to “pursue the science” (i.e., the design of a trial or
program of trials), companies need to more closely link the design to the value of
the asset—the discounted expected free cash flows. As indicated earlier, this can be
achieved by pursuing trials that focus on lowering risk, lowering costs, and shorten-
ing the development timeline. While designing around these imperatives will not be
new to R & D executives, a systematic approach that looks at how different designs
directly influence value—and what about each design improves or erodes value—is
likely to be new. Implementing this process requires detailed discussions between a
very diverse set of professionals across the organization: clinical trial managers,
bio-statisticians, finance, etc.

While multiple approaches can help companies achieve these “better, faster,
cheaper” designs, adaptive trial designs are particularly well-suited to the challenge.
Adaptive trials improve on traditional designs by using the information that emerges
from ongoing trials to help the management team make more real-time decisions
based on the data coming from the trial. A variety of different FDA-endorsed adap-
tations are already in use today that can increase the probability of success (i.e.,
sample size reestimation), create the possibility of earlier failure or success signals
(i.e., interim analyses), and shorten the overall development time (i.e., Phase 2/3
hybrid designs) (Table 3.2). What this can ultimately mean for companies is accel-
erated timing (e.g., earlier launch) and/or reduced trial costs (if the number of
patients enrolled is decreased). Each of these enhancements will have a direct
impact on the value of the trial.

Not all clinical trial programs, however, may be conducive to adaptive trials
depending on the natural history of the disease of interest, established endpoints and
organizational considerations. In these cases, there are also ways to try and improve
upon the financial value of the trial without leveraging adaptive designs. For exam-
ple, companies could instead focus on reducing the amount of time spent analyzing
the data between Phase 2 and 3 or doing sensitivity analyses around probability of
success, rather than an unknown effect size.



42 K.F. Schulz et al.

In addition to improving the financial value of trials, adaptive designs can also be
beneficial for patients. For example, take the case of a drug that has no actual thera-
peutic benefit being administered to patients with life-threatening morbidities (e.g.,
cancer, infections) in a clinical trial. Obviously, one would want to know this as
quickly as possible. Yet, on average 40 % of compounds in Phase 3 trials fail to
demonstrate the anticipated therapeutic benefit, putting thousands of patients at
risk.> An earlier read on a compound’s safety and effectiveness would benefit not
only drug companies but also the thousands of patients enrolled in trials every year.

Finally, rethinking the design of trials can help to isolate some of the many risks
in trials that currently are all grouped together. For example, an interim readout can
help to isolate failure risks early in the trial. When an interim analysis with hard
continue/stop parameters is incorporated in a trial, it creates a natural segmentation
of risk into early, more risky investments (i.e., the first part of the trial where no new
information is available to investors) and later, less risky investments (i.e., the sub-
sequent part of the trial once initial real-world data is observed and indicates that the
drug is on-track to demonstrate safety and effectiveness). These two different risk
profiles are likely to appeal to different kinds of investors. A venture capitalist, for
example, might be interested in funding the earlier part of the trial (high risk, high
reward), while a royalty investor might be interested in funding the second part of
the trial. Indeed, this has been seen in the case of Sunesis, whose drug vosaroxin
was funded by Drug Royalty Corp only after the interim analysis of the data had
de-risked the investment.*

Slicing up the risk in a development-stage program can help improve value by
enabling investors with a certain risk—reward appetite to invest only in risks that
appeal to them—and avoid risks that do not fit their knowledge or investment pro-
file. This allocation of risk to the most appropriate buyers can help to reduce the
overall cost of capital to companies as investors are likely to be willing to offer more
fair value for the risks they are investing in if they are not comingled with risks that
they do not want to invest in. This separation and allocation of risks to different
kinds of investors is seen in the life cycle of many emerging biotech companies that
tend to draw funding from increasingly risk-averse investors as the company matures
and de-risks its investments. Inside a large, integrated pharmaceutical company,
however, this is much more challenging. Redesigning trials to segment the risk is
one way to ensure full value is realized by more efficiently pricing the risks of a
given program or portfolio.

Companies can further manage and optimize the value equation by developing a
more real-time capital allocation program that regularly reassesses where the com-
pany’s capital will be most productive and generate the most value. In practice what
this would look life if fully implemented would be a “financially adaptive” pipeline
where the funding of each trial in the portfolio “adapts” in real-time to information
coming from ongoing trials. Adaptive trial designs enable this by bringing in more

*DiMasi et al., 2010.
4Sunesis company press release, “Sunesis Pharmaceuticals Announces Closing of $40 Million in
Previously Announced Royalty and Debt Financings,” September, 20, 2012.
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real-time information and allowing for flexible investment points. For example,
adjusting sample size in future trials based on information from ongoing or recently
concluded trials could de-risk future trials and make the portfolio more financially
adaptive. Looking at this at the portfolio level is particularly important since failure in
one trial increases the “risk” that the overall portfolio will not meet its required finan-
cial return objectives. Therefore, “de-risking” the remaining programs in the portfolio
is required in order to maintain the overall risk-reward objectives of the portfolio.
Successful implementation of value-based trial designs and real-time capital alloca-
tion should ultimately open the door for more funding and, potentially, cheaper fund-
ing of R & D.

The last and critical step to this process is communicating the enhanced financial
profile (i.e., value) of the pipeline to relevant internal and external investors (e.g.,
public investors, partners, creditors). By explicitly linking each trial’s design and
the flexible allocation of capital across the portfolio to value, management should be
able to articulate much more clearly exactly how they will bring products to market
faster, with fewer expensive failures; how the portfolio is being managed for value;
and how all of the changes to trial design are driving greater value. In an efficient
market, this communication would help to lower the overall cost of capital for the
company as investors begin to understand and price in the reduced risk and increased
liquidity of the company’s investments in its pipeline. We believe these changes are
a key element to helping bio-pharmaceutical companies reignite value generation
and break the cycle of low valuation and limited funding.

What this Would Look Like: Big Pharma Case Study

To explore a real-world opportunity to link trial design and valuation, we analyzed
a hypothetical new agent in acute myelogenous leukemia (AML). This example
embodies several key challenges in pharma R & D. First, recent advances in genet-
ics and preclinical biology have led to the identification of many new targets and
asset classes in previously under-studied diseases, such as AML, in which there are
often insufficient data to refine or de-risk the choice of indication or patient subset.
Second, pharma R & D groups increasingly struggle with how to develop assets
with huge unmet needs and scientifically attractive hypotheses but small commer-
cial opportunities, such as in AML. Third, in many indications (including AML)
there are no well-vetted alternatives to the registration endpoint (in this case, overall
survival (OS)), making it hard to de-risk the Phase 3 study with a shorter, cheaper
Phase 2 trial. Thus, like many current R & D opportunities, new agents in AML
appear on their face to be scientifically and clinically attractive, but high-risk with a
low projected ROL.

Our base case development plan in AML was, as we predicted, unattractive from
a value standpoint (Fig. 3.4). Because there is little evidence to support any other
endpoint besides OS, the Phase 2 trial is essentially a smaller version of the Phase 3
study. The average time (68 months), cost ($35.7 M), and estimated POS (59 %) of
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Average Trial Parameters for Base Case and Adaptive Scenarios*

K.F. Schulz et al.

Approach

. Scenario 2: 2 1As

PoS Months # Patients
459

. Base Case Scenario 1: 1 1A

75% 68
393

59% 60%
316

Monthly development costs
and sales are modeled for
each possible option within
each scenario
- E.g., succeed early,
fail early, succeed at
required # of events,
fail at required # of
events, etc.
Pre-market R&D costs
modeled on a monthly
basis

. Per patient costs are
representative numbers
and assumed to be
distributed over the course
of the treatment duration
with costs beginning to
accrue as each patient is
recruited

. Costs and sales estimates
are then probability
adjusted based on Cytel

X analysis

Phase 2 $60,000 Discount Rate 15% . These estimates are then

rolled up for each scenario

and feed into overall
program valuation

PoS Trial Length Sample Size

Pre-market R&D Costs (per patient) Valuation Assumptions

Phase 3 and Adaptive Trials $90,000 Tax Rate 35%
Additional Costs for Adaptive Trials
Valuation Date 12/31/2012
$275,000 / trial

*Note: Trial length and sample size for base case and scenarios based on average levels observed across >10,000 simulations
Base case design includes probability of having 9 month gap between Phase 2 and 3, if the former is successful
Source: Cytel analysis

Fig. 3.4 Representative metrics for base case and adaptive designs

the program are not unreasonable based on industry standards. But because AML is
a small indication with an established standard of care, this base case plan yields an
extremely modest eIRR (3.1 %), well below the observed industry average of ~8 %
(in the 2010-2013 timeframe).” Thus, the value of the program is limited by the
long, expensive, and risky development plan, despite its potential to be a valuable
new agent to advance clinical care.

Given the limitations imposed on this program by traditional trial design, we
explored how we could enhance the value of this program with different approaches
to trial design. To do this, we developed two scenarios with different objectives that
each incorporated several adaptations to decrease time, cost, and/or risk compared
with the base case. The primary objective of the first scenario, “Scenario 1,” was to
decrease the time to the first data readout relative to the base case. The second sce-
nario, “Scenario 2” was designed primarily to maximize the value of the program,
regardless of when the first data readout occurs (Fig. 3.5). Importantly, both of these
designs benefit from the fact that adaptive designs do not require waiting for data
maturation after the first stage. We review the approach and outcomes for each of
the scenarios in more detail.

3“Measuring the Return from Pharmaceutical Innovation: 2013,” Deloitte Centre for Health
Solutions and Thomson Reuters.
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Drug Development and the Cost of Capital: Draft

Quarter
“Base Case”
Recruitment > > Recruitment S >
(20 months) Maturation Period | | (35 months) Maturation Period |
1 I 1
Planned Ph3 Planned
Ph2 Start Phase 3
End End
Scenario 1: Group Sequential w/ 2 IAs, Ph 2 /3 hybrid Goal: Shorten Time to Data Readout
1 1 |
1 1 1
1A #1 1A #2 Up to
Required
Events

Scenario 2: Group Sequential w/ 1 Interim Analysis (I1A), Ph 2/3 hybrid  Goal: Maximize Value
1 ]
I 1
1A #1 Up to
Required
Events

Fig. 3.5 Trial designs (base case and adaptive scenarios)

Scenario 1

In Scenario 1, we used a combined Phase 2/3 trial and two interim analyses. With
the combined Phase 2/3 trial, we eliminated the duplicated effort in the sequential
design and reduced the overall clinical development duration. The two interim anal-
yses enabled better alignment of cost and risk throughout the program.

Scenario 1’s adaptive design leads to a significant increase in the program’s risk-
adjusted NPV, from $5.1 M to $34.9 M. This is primarily driven by the dramatic
55 % shortening of the total development time, which both accelerates the launch and
adds to the total time that peak revenues are realized before loss of exclusivity (LOE).
Notably, because the accelerated launch pulls forward all of the revenues (raising the
present value of on-market revenues), this factor alone contributes almost half of the
additional program value generated from the new design. Combining the two studies
into a single trial also increases NPV by reducing the total program cost (via decreased
sample size), even taking into account the additional administrative expense of exe-
cuting an adaptive trial. Although the new design does lead to somewhat higher “up-
front” costs, this is a minor increase ($10.5 M in the base case vs. $18.1 M for the
adaptive design in the first 2 years of the program). Overall pre-market R & D costs,
however, ultimately end up being lower for the adaptive design ($35.7 M for the base
case versus $26.3 M for the adaptive design).
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Scenario 2

In Scenario 2, we leveraged a combined Phase 2/3 trial and one interim analysis.
Similar to Scenario 1, the combined Phase 2/3 trial eliminated the duplicated effort
in traditional design and reduced the overall clinical development duration, though
to a lesser degree given the differing objective of this design, The use and timing of
the interim analysis drove not only a decrease in clinical development time (45 %
reduction) but also a significant increase in probability of success (25 % increase
from 59 to 75 %). The probability of success improves because the patients that
normally would have been studied in Phase 2 (and not counted in the sample size for
Phase 3) are now included in the final Phase 3 readout, effectively increasing the
power of the important, late-stage trial. Additionally, it was possible to decrease the
sample size by ~15 %. Ultimately, as a result of these changes, this design resulted
in an increase in NPV from $5.1 M to $42.3 M.

Besides enabling a feasible and attractive path forward in AML from a clinical and
financial standpoint, this analysis more generally demonstrates the powerful link
between R & D decisions and financial value. Although many R & D executives under-
stand the need for rapid R & D, this example shows the actual financial value of decreas-
ing development time—and therefore helps enable them to determine the right amount
of resources to spend in exchange for speed. From this standpoint, adaptive trials, which
are usually significantly faster than their non-adaptive counterparts, provide significant
benefits that have been incompletely leveraged by large pharma organizations.

This example further shows that independent of trial design considerations, R &
D cost containment may not be nearly as critical a driver of a program’s financial
value as increasing program speed. For example, reducing the time spent in review
and decision-making between program phases is likely of far greater value than
incrementally reducing per-patient costs. As demonstrated here, the largest determi-
nant of “R & D cost” is not cost at all, but time—and this is the aspect of clinical
development that deserves the most focused attention from R & D executives.

We also show here the need to focus R & D decisions on overall program value,
not just on acute budgetary concerns or statistical parameters. In this example, the
marginal increase in near-term cost of a Phase 2/3 study over a conventional Phase
2 trial is more than offset by the impact on eNPV and the program’s probability of
success. This analysis can help align R & D and financial decision makers on the
common goal of developing new drugs with both clinical and financial value.

From an R & D portfolio perspective, this analysis has two further implications
that could improve decision making, overall R & D productivity and financial
returns. First, across the industry there are abundant promising programs that are
equally risky without additional clinical data. Currently, R & D executives are often
forced to “pick the winners” in this information-poor setting based on a combina-
tion of clinical promise and near-term budget availability. This decision making
process limits the number of otherwise promising programs that get viable “shots
on goal,” and also can lead to continued funding even in the face of mediocre clini-
cal data due to the “endowment effect.” By linking trial design, investment and
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value, R & D organizations can test more agents in trials and either scale up the
investment or “kill the losers” based on bona fide clinical data.

Finally, transparently linking financial metrics to clinical development decisions
and building optionality into the portfolio allows managers to make more rapid,
fact-based decisions about where and how to deploy scarce R & D capital to opti-
mize returns: among therapeutic areas and asset classes, over time. Such a cross-
portfolio analysis could provide a more rational, data-driven basis for flexibly
allocating capital to the highest value opportunities, be they individual assets or
entire R & D divisions.



Chapter 4
Investment Considerations for Pharmaceutical
Product Portfolios

Raymond A. Huml

Background and Terminology

Pharmaceutical executives with varying backgrounds and expertise are increasingly
being asked to provide input on complex strategies related to portfolios of products
(which products to keep and which products to advance), including regulatory and
commercial competitive intelligence (e.g., is a product worth advancing given the
current or future market environment?). Given the appropriate expertise—preclini-
cal, clinical pharmacology, clinical, regulatory affairs professional, CMC/supply
chain, commercial, payer, patent law, etc.—they may even be asked to provide input
to help estimate the probabilities of success related to key milestones in clinical
drug development, such as the likelihood of the product being approved in a particu-
lar market of interest.

In an era where product partnering is becoming more common, pharmaceutical
executives are also being asked to comment on matters related to product develop-
ment even earlier in the drug development cycle. For example, it is becoming more
common to take account of key commercial insights, payer perspectives and even
quality-of-life (QoL) issues into the earliest phases of clinical drug development,
such as Phase II. This input can positively or negatively impact business decisions,
which in turn, impact the bottom line.

As in medicine, there is an art, as well as a science, to the due diligence activity
of estimating the probabilities of technical success for a particular compound or
portfolio of compounds. And it is usually not sufficient (from an upper management
perspective) to just use a published benchmark to estimate the probability of techni-
cal success—such as Tufts University’s metrics published in Parexel’s Statistical
Sourcebook. Therefore, it behooves each pharmaceutical executive to learn more
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about how regulatory and commercial outcomes impact business decisions. The
approval criteria for a recently registered compound in a similar class, for example,
provide insights into primary endpoints upon which registration will be based, as
well as the mechanism of action. If the product is marketed, sales data from sources
such as IMS Health—in conjunction with the right surrogate (e.g., a product ana-
logue used as a benchmark for the product under investigation, which may or may
not be in the same product class but should have similar attributes—can even be used
to estimate how well a product might fare in the market or within a portfolio).

There is a need to leverage both technical expertise (R & D and commercial) and
regulatory experience to improve decision-making by better understanding the
rationale behind making complex business decisions that can impact whether prod-
ucts will be advanced, sold, out-licensed, or abandoned.

This chapter discusses some of the fundamental investment decisions based on
the author’s experience in investing in portfolios of pharmaceutical products—such
as how much one can invest (and thus potentially lose) and the palatability of the
proposed return structure. The chapter breaks down many facets of this complex
process to give the reader insights into business decisions related to portfolios, with
the most common situations highlighted.

This chapter also provides several case examples of these principles in action
from the author’s experience while serving as a member of the due diligence group
at Quintiles Transnational Corp. The case studies were created using only publicly
available information.

This chapter explores definitions and boundaries of many factors influencing
investment success associated with product-based portfolios, whether the definition
entails the number of assets available for partnership (whether by choice, inheri-
tance, business model, or available cash) or investment appetite.

Next, there is a discussion of boundaries set up by the capital limit of a fund or
artificially created boundary (e.g., special purpose entity [SPE]), and whether the
portfolio is a group of assets or the goal is to partner on multiple single assets to
have a portfolio effect. The author then discusses the feasibility of capital syndica-
tion to garner financing for portfolios, and discusses the key differences in portfolio
strategy between big pharma and biotechnology companies.

Finally, the chapter concludes with a discussion of the key differences in portfolio
strategy between big pharma and biotechnology companies and covers portfolio man-
agement, innovative partnering solution strategies and commercial perspectives.

Because some business terms may be unfamiliar to pharmaceutical executives, a
list of terms and acronyms is provided in Table 4.1.

Introduction

Investing in the pharmaceutical industry is a risky business. It behooves each person
involved in the investment process to understand the proposed transaction well as
the processes used to mitigate any risks that are identified during due diligence.



Table 4.1 Business terms and acronyms

Term or acronym
NPV

Risk-adjusted
(RA) NPV

PoS

Third-party
capital investor

Return structure

Venture Capital
VO

Concentration
limit

Monetization

Private equity
firms

Buyer
Seller

Definition/explanation

Net present value is a standard method for estimating the present value of
an asset taking into account the (ever reducing) time value of money over
the life of a proposed deal (e.g., 5 years). NPV compares the present value
of money today to the predicted value of money in the future, taking
inflation and returns into account.

The risk-adjusted (RA) NPV is adjusted down based on the fact that it is not
100 % assured that any drug will get approved by any regulatory authority. In
its simplest form, RA NPV is a numerical value created from the NPV
multiplied by the probability that the product will be approved (e.g.,

$100 mx (PoS) 80 %=%$80 m). In reality, there might be multiple factors that
could drive down the PoS for a given product, including, for example, an
unfavorable safety characteristic, a CMC or supply chain uncertainty, or the
potential for a lawsuit against the product’s manufacturer.

Probability of success is the probability that a milestone will occur. Often
referred to as likelihood of regulatory registration, this can apply to any
commonly known or artificially created endpoint (end of Phase II, primary
efficacy endpoint, successful filing, last patient successfully enrolled in a
trial, a certain amount of weight loss (in pounds)/unit of time, etc.).

A third party capital investor, such as a venture capital investor, can
provide a source of capital in addition to the buyer or the seller in a
product-based transaction.

The return structure defines how the capital provider will be paid back. It
may involve milestones, royalties, equity, services or a combination of
different mechanisms.

Venture capital is financial capital provided to early-stage, high-potential,
high-risk, growth startup companies. The typical investment occurs after
the seed funding round and functions as a growth funding round (also
referred to as Series A round) in the interest of generating a return through
an eventual realization event, such as an Initial Public Offering (IPO) or
trade sale of the company. VC is a subset of private equity.

For many providers of capital that garner capital from multiple sources
(e.g., “funds”), there is a predefined limit to the maximum amount of
capital that can be employed for any one deal. This is related to the
magnitude of the fund, with higher limits for funds with greater amounts of
capital.

Monetization is the process of converting or establishing something into
legal tender (cash). For product based investing, it is way to obtain value in
the present for perceived returns that were originally contracted to occur
over a period of time in the future. For example, if a return of 20 % was
reasonably expected at the end of a 5-year period, the expected return
could be sold for a lump sum prior to the end of the 5 years, usually for a
lower price, such that the profit (and risk and potential upside) would be
transferred so that immediate cash could be secured.

In the past, private equity firms organized limited partnerships to hold
investments, in which the investment professionals served as general
partners and the investors, who were passive limited partners, put up the
capital. A compensation structure, still in use today, also emerged with
limited partners paying an annual management fee of 1.0-2.5 % and a
carried interest typically representing up to 20 % of the profits of the
partnership.

Refers to the entity providing services or cash.

Refers to the entity holding the intellectual property of the asset/product in
a particular geography.
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Initial investment terms are proposed in the first iteration of a “term sheet.” The term
sheet is usually a moving target and thus, subject to change and negotiation, until
terms are finalized in the contract.

Investments can take many forms, from purchasing stock (or entire companies)
through investing in individual products (in development or commercialized). This
chapter focuses on the latter investment option.

Investment groups employ a myriad of strategies to dilute risk. For example, to
mitigate the risk associated with a single product asset, an investor group may con-
sider accumulating a portfolio (a portfolio is defined as at least, but typically more
than, three products). A product, for purposes of this chapter, is defined as a single
small molecule, biologic or medical device.

While each individual product may have a high potential for technical failure, a
portfolio of at least three compounds will increase the chance for at least some suc-
cess. The logic is that, with a portfolio of products, there is a greater likelihood that
capital will be returned from the success of at least one predefined milestone, even
if others do not meet certain milestones, such as proof of concept (PoC), a primary
efficacy (or another predefined clinical) endpoint, progression to the next phase of
drug development, regulatory approval or a certain sales forecast. A commonly used
expression describing this mitigation strategy is “having more shots on goal.”

Most pharmaceutical companies acquire or develop products with the intent of
forming a portfolio. Decisions are based on the company’s business model, resources
and capabilities. For example, Genzyme, prior to its acquisition by Sanofi, focused
almost exclusively on niche, orphan drug products (that allowed for expedited regu-
latory review and exclusivity advantages) with very high costing models. For exam-
ple, although their orphan drug-designated products were used in only a small
number of patients, the cost/treatment was very high (e.g., >$100,000 USD per year).

This chapter will not discuss the many decisions regarding acquiring and advanc-
ing candidates in a portfolio (usually based on net present value [NPV] driven by
commercial considerations), but rather, on the processes used by third-party capital
providers to select investment candidates for a portfolio of products.

The two main drivers for consideration by any third party when investing capital in a
portfolio are: (1) the magnitude of risk that the investor (e.g., third party capital provider)
is asked to take; and (2) the palatability of the return structure to the seller. Most deals,
in the author’s experience, are abandoned or grow cold not because of a flaw in the
product or company but because of a factor related to the proposed return structure.

Controlling Risk

Risk for the investor is scaled, with the greatest exposure associated with earlier
stages of drug development (e.g., preclinical or Phase I). Because of the high clini-
cal uncertainty with products in preclinical development, the author has seen
some investment companies value these assets as being worth very little or even
nothing until a milestone, such as IND readiness or submission, has been achieved.
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With a few exceptions (e.g., accelerated approval in high-risk settings such as
oncology), risk lessens as the product is studied in greater numbers of patients and
in later stages of development (e.g., Phase III or even post approval, such as estimat-
ing the chance of line extensions for approved products).

Risk also declines due to the portfolio effect, where the riskiness of the total port-
folio decreases as more assets are added. In addition, some companies have used
other strategies that employ the portfolio effect; for example, creating a portfolio
with a sufficient number of assets based strictly on drug development averages (usu-
ally either calculated by a due diligence team or using published averages) as a way
to assess the likelihood of hitting a milestone with a basket of early-stage (e.g.,
Phase I) compounds. In this type of scenario, a portfolio is created by adding together
three or more compounds. As a theoretical example, if the average likelihood that
one compound (in a certain therapeutic area) will meet a predefined milestone is
10 %, then, by having at least ten compounds in the portfolio (without “cherry pick-
ing” or biasing asset selection criteria), it should be 1-0.9'° (about 65 %) assurance
that at least one of the ten compounds will meet the predefined criteria.

To further reduce the risk associated with portfolios, companies that provide
capital perform due diligence to better understand that risk, with the goal of protect-
ing themselves via contractual language. Due diligence includes a thorough investi-
gation of all available data—both proprietary (after a confidential disclosure
agreement [CDA] is signed/executed) and nonproprietary—by a team of experts
with the intention of predicting future events (such as the probability of success and
the sales forecast). This process aims to allow a deal team to manage risk and exe-
cute a favorable financial transaction. All venture capitalists and investment arms of
companies perform due diligence to a greater or lesser degree prior to investing
money in a deal or getting involved in a partnership arrangement.

The due diligence exercise, culminating with a report that articulates the team’s
findings, should inform capital providers of the positive, negative and unknown
attributes of each drug/biologic/device in a portfolio (or proposed portfolio) and the
probability of successful achievement of a predefined milestone. While this mile-
stone is typically regulatory approval, milestones can also be defined as meeting the
primary efficacy endpoint, advancing to the next stage of drug development or even
meeting an artificially created endpoint (e.g., decrease in HbAlc, % weight loss, %
decrease in BP, etc.). Due diligence also can provide an understanding of the sales
potential of the product for deals where returns are matched with royalties or where
arisk-adjusted NPV of an asset is required.

Return Structure

The due diligence exercise is aligned with the proposed return structure. Therefore,
only the findings that could potentially affect the return should be reviewed. It is not
important to conduct a full commercial due diligence exercise, for example, on a
portfolio of Phase II assets whose repayment is based entirely on milestones.
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Return structures can be aligned and negotiated based on the perceived risk.
For example, if the product is a “me-too” with a good chance of regulatory approval,
the buyer may stake the return to that milestone, whereas the seller may wish to
defer a return to a royalty component. This may be less certain (and more risky for
the capital provider), given the strong competition within a class of therapies where
there are alternative options for patients.

Another return structure could include a mechanism to decrease the cost of capi-
tal (CoC). For example, a common method is using a seller’s existing royalty strip
to offset the CoC. A royalty strip, for purposes of this chapter, refers to an ongoing
(usually monthly or quarterly) payment made to a seller from the sales of an
approved (and different) product in return for an investment made in an earlier
transaction. This existing and expected continued flow of capital can be transferred
to the buyer. Royalty strips are usually only a fraction (e.g., <10 %, thus the term
strip) of the total sales of a particular product and may be confined to a particular
geography (e.g., USA only, EU and USA, Canada only, etc.).

Number of Assets Available for Partnership

There is no ideal number of assets to be included in a portfolio. The number is lim-
ited by the amount of capital available for such a portfolio (via a single source or a
syndicate). The optimal choice of assets for a portfolio can be aided by estimating
the risk-adjusted net present value (RA NPV) of a set of possible asset choices. In
addition to historic data about the potential asset, the estimation of RA NPV usually
needs to include prior beliefs in the quantification of risk pertaining to the asset.
Bayesian statistics are appropriate and naturally incorporate prior beliefs, and may
be used here. Using such techniques, the optimum number of products in a portfolio
can be aligned with the risk associated with each asset, with the differing probabili-
ties of success (for predefined milestones) aligned such that given a range of prior
beliefs, the capital provider can minimize the chance of loss stemming from the
investment. In the author’s experience, the number of assets usually ranges from
four to eight, but could be higher or lower, and is also based on investment appetite
(discussed below). Additional discussion of Bayesian statistics is beyond the scope
of this chapter.

In the author’s experience, many larger companies, mainly through mergers and
acquisitions, are sitting on large portfolios of less-strategic clinical assets (e.g.,
assets that lack allocated budgets or have been de-prioritized for a variety of rea-
sons). They may wish to partner on these assets (to retain the value inherent in the
intellectual property should the compound be approved or to increase the invest-
ment value of each candidate in later stages of development) for the purpose of
outsourcing the asset or taking it to the next stage of development. In general, inves-
tor groups wish to partner with companies whose available assets are of high strate-
gic value. Lesser-value products may not get the capital or attention of the partner
needed to optimize their success.
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Some companies want the potential capital partner to take all of the risk for a
very large, but typically very unlikely, upside. This scenario, however, does not
generally align interests.

To reduce the risk for each stakeholder (especially the third-party capital pro-
vider), it is advisable for the buyer and the seller to invest in a substantial portion
(e.g., as much as half) of a program/portfolio. While this may not be an option for
certain potential investment opportunities, it helps aligns partners and ensures that
each partner is doing all that it can to optimize the relationship. This investment
alignment paradigm is commonly referred to as “putting skin into the game.”

Larger portfolios (e.g., with more than three assets) are usually limited by the
amount of capital required and degree of risk. For example, a basket of Phase I assets
would carry very high risk but lower costs, as clinical drug development costs in this
phase are much less for each trial compared with those in the later stages of develop-
ment (e.g., Phase II or Phase III). A basket of Phase III trials, on the other hand,
given the clinical and efficacy data accumulated to date, would be considered much
less risky. However, the typical cost of these pivotal trials would probably make it
difficult to attract capital from a single source for more than say, three studies.

Risk may also depend upon whether the drug candidate is in a class of com-
pounds with proven efficacy in the disease area being tested or is based on an
unproven scientific theory. For example, many new compounds being tested in
oncology, Alzheimer’s disease and other areas of unmet need have inherently more
risks because the cause or the pathway of the disease is not yet fully understood. In
contrast, a compound with the same mode of action and therapeutic class as an
approved drug would be expected to have a much higher probability of success.

Investment Appetite

Investment appetite is correlated with the degree of capital loss that an investor
group is willing to risk. No investor group wishes to lose money, but due to the busi-
ness plan or magnitude of capital available for investment (and thus the ability to
diversify), some investors may be willing to take less upside in exchange for the
ability to do more deals, while others may want to take a larger upside to satisfy
their shareholders and investment committees. In general, the greater the risk the
capital provider is asked to take, the larger the expected return. This general para-
digm provides the basis for negotiations from the initial term sheet to the final
contracting stage of the partnership.

As noted earlier, many deals are not executed for reasons other than a flaw in the
product or the company. In addition to a variance in investment appetite, reasons may
include ongoing or perceived patent issues, inadequate (or unobtainable) contractual
protection, inability to obtain a warrant or representation (e.g., legal protection) or the
desired accounting treatment (Generally Accepted Accounting Principles or GAAP
in the USA vs. International Financial Reporting Standards or IFRS in Europe), an
unsuitable return structure (e.g., not enough return for the perceived risk associated
with the product), a future risk that is deemed unacceptable (e.g., a potential lawsuit),
or an unreasonable return structure (as deemed by the potential partner).
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Capital Boundaries

A special purpose entity (SPE), for purposes of this chapter, is defined as a legal
entity (usually a limited company of some type) created to fulfill narrow, specific or
temporary objectives. SPEs are typically used by companies to isolate the firm from
financial risk. It was noted earlier that portfolios can be limited by the capital limit
of the fund. Portfolios can also be limited by the boundaries created by syndication
in an artificial environment, such as the SPE.

Most investment groups, due to predefined investment criteria, have a limit to the
amount they can invest in a particular deal and this limit is typically based on a
percentage of the entire fund amount. For example, if a company has a $100 million
fund and the concentration (maximum) limit is 20 % per deal, it can invest in only
five deals that cost no more than $20 million each unless it invests in deals of smaller
magnitude or is part of a syndication process.

In the author’s experience, many companies realize that they cannot obtain all
the capital required for a large portfolio of products from one source because of
internally defined boundaries (which may be driven by P & L relief or some other
factor). In this case, the magnitude of the limit, for example $250 million, will dic-
tate how many candidates can be accommodated within the boundaries of this
limit—e.g., fewer Phase III candidates and more Phase II and Phase I candidates.

For companies that provide pharmaceutical services as a form of capital, such as
clinical research organizations (CROs), it is important to note that while the Phase
II stage of drug development presents greater risk, there is also more room for influ-
ence, in contrast to the Phase III or pivotal stage which offers less chance of influ-
ence (for a variety of reasons including regulatory interactions). In general, by the
time of Phase III clinical development, the optimum dose has already been identi-
fied and the pivotal trial designs have been agreed upon with the regulatory agency
(e.g., FDA’s End-of-Phase II Meeting).

Portfolio Effect

Some companies have a business plan that entails partnering on a number of single
product assets, usually at a later stage, such as Phase III, with the goal of obtaining
a greater number of assets to dilute risk and obtain a “virtual” portfolio effect. This
can be an effective strategy if it can be accomplished quickly, as the risk is not opti-
mal until the full portfolio effect is achieved.

However, in the author’s experience, many third-party capital providers are
reluctant to be first in an investment vehicle with single-product assets with the goal
of a portfolio effect—especially with portfolios of higher-risk, e.g., a basket of
Phase I or Phase II products.
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Phase I vs. Phase II vs. Phase 111

It has long been known in industry that, by combining a group of products, espe-
cially in one therapeutic area, the risk of total capital loss for the group is reduced.
In essence, risk is diluted. But there is an art to evaluating the risk vs. cost of groups
of products in different stages of clinical development. For example, when looking
at a basket of Phase I studies, there is usually insufficient evidence to draw a defini-
tive conclusion on either efficacy or safety. At the other end of the spectrum, for a
basket of Phase III products, the cost to run the trials makes such an experiment
prohibitive for any one company and it is unlikely, with current competition models,
that large pharma companies would be willing to place their key Phase III assets
into a separate entity. What about Phase I1? Perhaps this might be the place where a
balance could be found between cost (lower with Phase II development) and the
likelihood of being able to draw a definitive conclusion at the end of each trial.

Syndication

Theoretically, syndication (e.g., for larger portfolios) should be an easy, straightfor-
ward way to gain access to additional sources of capital. Syndication, for purposes
of this chapter, refers to having more than one capital provider providing capital
required for an executed portfolio deal.

In reality, however, syndication is very difficult and often impossible. Leaving
aside the financial climate, other reasons can include:

» Timing—the point at which a potential partner is brought to the table for a term
sheet (the earliest stage of negotiations between a buyer and a seller whereby the
return dynamics and risk assessment evolves as due diligence is undertaken) or
contracting (when due diligence concludes, the deal terms are finalized and law-
yers draw up a final contract which is signed by both the buyer and the seller
upon deal execution) discussions.

* The desire to have disproportionate influence on the deal (e.g., a $20 million
capital provider in a $100 million deal wanting undue influence on contractual
protections).

» Differences in desired investment returns (one party willing to take less vs. one
partner seeking greater returns).

* The novelty of the transaction.

* The ability of the potential partner to raise more funds.

» Perceived differences in the risks estimated by different due diligence teams.

Because of the large number of expert resources required to perform due dili-
gence (functional area experts in preclinical, clinical pharmacology, medical, CMC/
supply chain, regulatory affairs, commercial, sales analytics, patent law), plus deal
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term negotiators, some companies will “piggyback” their investment on top of a
credible, additional third-party capital provider with the primary goal of reducing
cost to invest. This can be helpful, but then that third-party capital provider may lack
control and be at the mercy of the conclusions reached by the other provider’s due
diligence team.

Key Differences Between Big Pharma and Biotechnology
Companies

Based on the author’s experience in partnering with biotechnology companies, this
section outlines several successful approaches that provide alternatives to classical
partnering with large pharma and venture capital entities. These solutions remain
beneficial and financially profitable to both parties over the long-term (i.e., 3-5 or
more years).

The Productivity Dilemma

Today, the research and development (R & D) pipelines once enjoyed by large phar-
maceutical companies are no longer producing a sufficient number of drug candi-
dates. As pipelines shrink, the pharmaceutical industry has tried to develop novel
solutions, such as creating “incubators” or “accelerators” where efficiencies in
smaller development companies can be leveraged to expand pipelines. Often these
smaller biotech and pharma companies are the innovation engines filling major
pharmaceutical companies’ R & D pipelines. The bigger players continue to invest
in the smaller companies in exchange for downstream milestone payments and roy-
alties, or even purchase options on one or several compounds.

Additionally, academic institutions can act as incubators (or sources of new drug
candidates): collaboration between pharmaceutical companies and academic
institutions provides a mutually beneficial arrangement, as academic centers are not
positioned to commercialize a product.

Investments by large pharma can provide the smaller biotechnology company
with the capital to build out its infrastructure and further develop its earlier stage
pipeline. This type of partnering relationship establishes credibility for the smaller
company and creates value for the larger pharmaceutical company without the need
to fund and direct its own internal development program. In addition, the ability of
smaller companies to adapt nimbly to changes in technology and overcome develop-
ment hurdles are key advantages that large pharma lacks. Generally, these smaller
firms take their compounds to the proof of concept (PoC) stage of drug development
and exit to pharma companies that are better positioned for costly late-stage devel-
opment and commercialization of the product. A key benchmark of this approach is
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the opportunity to change the accounting dynamics regarding research infrastructure
with smaller firms and outsource the burden of fixed cost inherent in development.
With this outsourced approach, the smaller company turns the fixed cost into a vari-
able cost to obtain more-desirable accounting treatment.

It should be noted that this risk-shifting approach often carries a high price for the
smaller company, as it frequently relinquishes control over the asset(s) and awards a
significant share of any potential upside to the large pharmaceutical partner.

However, it is possible to devise partnering alternatives to allow smaller compa-
nies to retain strategic and financial control over their assets. Two main goals of
such partnerships are to optimize the drug development process by addressing
resource constraints and to minimize the risk of innovation by sharing it.

Types of Biotechnology Companies

For purposes of this chapter, three main categories of biotechnology companies are
defined based on their corporate maturity. The first is discovery, the second is bridg-
ing, and the third is standalone. Each company type has different capital needs
related to the number of compounds in the clinic. No biotech firm, regardless of
category, is anxious to part with its intellectual property to partner with another
entity—especially if the upside is perceived to be significant.

The discovery biotechnology company frequently has a novel approach to iden-
tification of drug candidate leads, usually based on a new target or novel delivery
system, combination of existing products or novel technology platform, but does
not have sufficient infrastructure or cash to advance them all in the clinic. These
small entrepreneurial biotechnology entities often live hand-to-mouth existences,
working to obtain just enough capital to get to their next R & D milestone. These
less-mature enterprises face a shrinking runway and may seek to mitigate risk by
partnering with large pharma. Such deals tend to come at a high price. The biotech-
nology company is often forced into mortgaging a good portion of its future value
in exchange for a chance to continue development.

The bridging biotechnology company has advanced compounds into the clinic
and has more credibility within the pharmaceutical industry than the discovery com-
pany because of existing partnerships or early demonstration of clinical PoC. These
companies frequently have partnerships in place with large pharma and seek an
alternative and more-innovative financing strategy that will allow them to retain
more asset value than in previous partnerships with large pharma.

Standalone biotechnology companies are characterized by sufficient resources
from existing revenue streams to advance their own candidates to commercial suc-
cess. They act like large pharma in the way they deal with other, smaller, biotech-
nology companies and have their own marketing and sales groups. They tend to
either use less-innovative partnering solutions or more-complicated ones, such as
those highly correlated with internal accounting standards.
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Private vs. Public

Another interesting distinction between biotechnology companies is the different
ways in which public versus private companies finance their research and develop-
ment programs. In general, both private and public companies, especially those not
generating earnings, consider their valuations depressed. A brief overview of
selected funding option considerations for private and public companies is provided
in Table 4.2.

Key Event Drivers

Earnings-driven biotechnology companies are interested in partnerships that allow
them to retain control and gain future upside while deferring R & D expenses in the
near term. The key needs (or drivers for financing) for biotechnology companies fall
into three main categories:

 Financial reporting needs

* Cash needs

e Operational needs (include credible partnering with a company that can deliver
services, such as large CROs).

Financial reporting needs are best interpreted in light of acceptable accounting
standards (e.g., GAAP in the USA or IFRS in the EU) by qualified parties. In gen-
eral, earnings-driven companies are interested in mitigating the financial impact of
R & D expenses until a compound is marketed. Because accounting factors are
subject to expert interpretation, they are beyond the scope of this chapter.

Table 4.2 Selected funding Funding option Private company Public company
option considerations for -
. . . Venture capital X
private and public companies -
Public (at IPO) X X
Institutional X
Large pharma X X
Portfolio X X
Royalty X X
Monetization X X

Note: Both private and public companies will benefit from
achievement of milestones (successful clinical results, proof
of concept [PoC], regulatory filing, Investigational New Drug
Application [IND] submission, etc.) because the achievement
of milestones can produce additional boosts in equity. They
can both benefit from the announcement of a deal. This news
adds credibility to a particular technology or a company’s
approach to clinical drug development. Such announcements
may even boost the stock price for public companies
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Cash needs are usually acute. Discovery and bridging companies are often
focused on dilutive aspects of financing more than near-term earnings. In general,
they also seek to retain control of their assets (e.g., compounds).

Operational needs can only be addressed by credible partners that can provide
clinical trial infrastructure or intellectual drug development expertise; therefore,
these are limited to major players such as large pharma or global CROs.

Other key event drivers include large milestone payments triggered from rela-
tionships with large pharma and initial public offerings, but these events are beyond
the scope of this chapter.

Partnering Solutions

Driving demand for alternative partnering solutions is the biotechnology company’s
desire to retain strategic and financial control over its assets. Two goals for such
transactions are optimizing the drug development process by addressing resource
constraints and de-risking innovation by sharing risk in clinical and commercial
programs.

Portfolios (Phase I or Phase Il Funds)

To mitigate the investment risk associated with a single product or earlier stage
assets, as mentioned earlier, an investor group may consider accumulating a portfo-
lio of Phase I and/or Phase II products.

This approach can be attractive for companies with platform technologies where
many targets can be produced, and, due to cash constraints, only a few can progress
to the clinic. Key problems with Phase I portfolios include defining success (e.g.,
submission of an IND), how to advance the product to Phase II, and how to have
enough targets to make the expected risk palatable from a risk—return perspective
(e.g., using Tufts University’s Center for the Study of Drug Development’s pub-
lished probabilities of success).

Problems with partnering in a Phase II portfolio approach include: (1) Dilution
of value by large pharma deals already in place with the biotechnology company;
(2) Justifying an investment sufficient to move the product to an acceptable exit
strategy based on the risk profile; and (3) Cost of assessment of portfolio risk if not
confined to one therapeutic class. The third problem involves increased due dili-
gence costs associated with obtaining extra resources, including additional medical
expertise, in order to understand different therapeutic classes in a portfolio of
diverse therapeutic products.

For fully mature biotechnology companies, a structured finance deal may provide
the greatest flexibility and widen the number of options. Structured finance, as used
in this chapter, is defined as a risk-based commercialization and/or development
arrangement whereby funding and/or services is provided in exchange for fees and/
or product royalty rights.
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Alliance Management

Pharmaceutical and biotech companies are entering into alliances and joint ventures
at an ever-increasing pace to obtain financial and other resources to begin clinical
development programs while managing costs and optimizing earnings. Strategic
partnering—when done correctly—can offer significant advantages versus “going it
alone” in solving these major challenges. Identifying the risks and benefits associ-
ated with implementing and managing successful alliances begins with the due dili-
gence assessment by the potential alliance partner.

If they are to make the partnership work, each company must assign a dedicated
executive responsible for managing the operations of the product partnering arrange-
ment. This executive typically has the title of alliance manager (AM), and it is the
AM’s role to champion the success of the alliance and to ensure each partner obtains
expected financial returns. This role can also assist greatly in bridging any opera-
tional issues with partners that provide services as part of the deal.

In addition to assigning an AM, a governance committee may be formed. The
governance committee may sit above other committees, such as a joint operating
committee (JOC), and is comprised of upper management executives (with merited
voting and non-voting privileges) that meet on a regular basis (e.g., quarterly or semi-
annually) to assess progress and make course corrections as necessary. This team is
charged with strategy for the alliance/partnership and overall relationship dynamics.
Members should have decision-making authority and ultimate responsibility for the
success of the alliance, as well as serve as the executive sponsor for the alliance in
their respective organizations. The JOC should meet more frequently than the gover-
nance committee as members are charged with oversight and delivery of day-to-day
operations, operating plans and milestones. Members of this committee should have
the technical knowledge to lead the operations and decision-making authority at an
operational level to minimize elevation of disputes to the governance team.

If the deal environment changes substantially, such that mutual interests become
misaligned or issues in development change the scope of the original deal, both par-
ties may need to consider renegotiation of terms.

Biotech Summary

Large pharma and biotechnology companies have profited from mutual partnering
relationships in the past and large pharma is spending a significant amount of cash
to access early-stage biotechnology assets. Alternative business models are now
being employed to create partnering solutions whereby a biotechnology company
can share risk while retaining control of its assets. In summary:

* Biotechs have different needs for partnerships, depending on their level of
maturity.

* Direct equity investments can be a solution for some biotech companies seeking
to gain infrastructure and intellectual capital and retain intellectual property.
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Single product risk, associated with biotechnology companies, can be mitigated
by forming a portfolio.

Biotechnology companies gain intellectual property and clinical drug develop-
ment experience by choosing the right partner.

Innovative Partnering Strategies

A partnering solution for large pharma companies that is often discussed but is dif-
ficult to execute (in the author’s opinion) is the creation of a Special Purpose Entity
(SPE) to house a portfolio of products.

The key benefits of creating an SPE are:

Accounting treatment may be transferred from the partner’s parent company to
the SPE.

Larger sums of capital can be obtained from disparate capital sources.

Each capital provider agrees to the upfront requirements (e.g., returns are gener-
ally scaled to the magnitude of each capital provider’s investment in the SPE).
Larger numbers of products (or perhaps a mix of products) can be developed and
moved forward (to the next value inflection point, such as PoC).

The downsides to an SPE are:

It is difficult for potential partners to agree on the number and type of assets in
the portfolio (e.g., variables such as stage of development, therapeutic area, com-
mercialization potential).

Progress in creating the portfolio could be delayed if larger capital providers
wish to renegotiate the terms of the initial partnership started by a third-party
provider with insufficient capital to fund the entire transaction.

There may be lack of agreement on the amount of upside, what to do with failed
assets, how to replace failed assets, how to define (or redefine) success, etc.

In some countries, intellectual property may need to be transferred to the entity
so the sponsor can obtain desired accounting treatment (e.g., international finan-
cial reporting standards [IFRS]). Although this may allow for the desired
accounting treatment, the sponsor, in essence, loses control of its asset(s).

Commerecial Perspectives

When forming a portfolio, whether by choice or by merger and acquisition, there
are a number of critical decisions that are influenced by commercial considerations.
Common considerations can include, but are not limited to:

Size of the market

Number of patients with the disease

Number of treatments currently—and predicted to be—available over the time
span of the partnering arrangement, along with patent status of current products
Level or degree of satisfaction with the currently available treatments
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» Differentiation between the candidate product and another commercially avail-
able product with the same MoA

* Probable efficacy and risk profile of the potential asset

¢ Ease of use (oral vs. subcutaneous)

* The internal capacity of the potential partner to market a product

* Geographic reach

*  Whether the approval is conditional upon a FDA-mandated Risk Evaluation and
Mitigation Strategy (REMS) program

* Formulary status and reimbursement expectations for the USA, EU, Japan, and
the rest of the world, along with distribution of payer mix (e.g., if disease is pre-
dominantly seen in the elderly population, the Centers for Medicare and Medicaid
becomes more important in the USA than other third-party payers)

* Distribution channel (retail pharmacy, hospital, specialty distribution, physician
office)

“By choice” means that a third-party capital provider is given the opportunity to
partner with a number of unencumbered products. For companies that offer a large
number of product candidates for portfolio selection, the initial portfolio can be
pared down to a smaller number of candidates with the right risk that makes deal
palatable to the investor and the owner of the compounds.

“Merger and acquisition” means that the potential partner (e.g., owner of the assets)
may have inherited a number of compounds and these candidates are not necessarily
selected on a strategic, high-value basis. For example, in the oncology setting, it is
often advantageous to go after the largest markets (e.g., breast cancer and prostate
cancer) first, but this approach may not align with the MoA of the candidate, the com-
mercial resources of the potential partner (e.g., sales force), or the best exit strategy for
the business (sale after Phase II to large pharma). Therefore, although breast cancer
and prostate cancer, for example, may be potentially more lucrative markets, one of
the portfolio candidates may actually compete with an existing product in the portfo-
lio or may end up being a “me-too” in a highly competitive market and thus, actually
be less attractive from an investor standpoint (or a NPV perspective).

Common commercial questions include:

* Are the candidate assets in the same therapeutic area? If so, are they synergistic,
i.e., do they treat the patient at different points in the disease spectrum, or are
they competitive?

— If a third-party capital investor wishes to create a portfolio of products in
multiple therapeutic classes, in the author’s experience, this diversity will
require additional experts and thus add cost to the due diligence exercise.

* Are the candidates in different stages of drug development?

— Return or success criteria must be modified for each candidate.

— If so, it may make it more complicated to define a milestone for Phase I asset
success vs. Phase II (PoC) success.

— The range of probability of success (PoS) may make the cost of capital too
high for the potential partner.
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* Does the return structure include a commercial element? If the third-party capital
provider is paid on milestones (e.g., the entire amount based on regulatory
approval alone), it may not be important, from the investor’s standpoint, to
conduct commercial due diligence.

Direct Equity Investments

One solution that has proven successful for earlier stage biotechnology partnering
deals is a direct equity investment (DEI). These smaller investments usually require
a lead investor to validate due diligence and minimize due diligence time and cost
for co-investors.

The author has experience in performing due diligence in conjunction with, or on
top of, others’ due diligence activities (mostly for independent validation purposes)
for multiple, small cap, early stage companies, where the capital provider puts a
small amount down on a lead product with the hope that it will progress to the next
stage (and thus increase the value of the company) or sell it to a large pharma com-
pany as a viable exit strategy. For this goodwill (and demonstration of expertise),
many companies will partner with the capital provider such as a CRO, if it can
provide drug development services such as the conduct of a trial, particularly if
those services are offered at a preferred vendor rate.

This approach has two main drawbacks: (1) The company may not have enough
money to progress to the next stage; and (2) The drug may fail. One large upside
for a potential partner could be the valuation and exit reward for a biotechnology
company purchased by a large pharma company. An upside to partnering with a
CRO is the additional benefit of access to technical expertise and global clinical trial
contract services.

Some companies have enough DEIs in a portfolio that, in the event several com-
panies fail to progress their compounds, others will advance (and thus, increase in
value) or be purchased to make the initial investments palatable and obtain a reason-
able return on investment.

Summary

Investing in pharmaceutical products is a risky business. One way that single-
product risk can be mitigated is by forming a portfolio of products. Individually,
these products may have a high potential for technical failure, but grouping them
with other compounds can increase the chance for single or multiple successes.
Portfolios are generally limited with regard to the number of assets, the stage of
development of each candidate, and the amount of capital required to advance
each candidate to the next stage of development or sale (e.g., out-licensing as an
exit strategy).
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Due diligence, performed on behalf of the capital provider, should investigate the
strengths and weaknesses of each candidate in the portfolio to understand the likeli-
hood of loss of capital. If the results are unattractive, the deal should be modified or,
if that is not possible, the candidate should be discarded and a substitute identified.
In general, the greater the risk taken, the greater the expected return.

The optimal number of candidates can be defined using a variety of methods
ranging from the approximate probability of a return on investment (e.g., the Solvay
case study), based on certain milestones (e.g., the Eisai case study) to a full statisti-
cal model using a Bayesian approach.

Single sources of capital are easier to work with than syndications when funding
a portfolio. Deal complexity increases with a diversified portfolio in multiple thera-
peutic areas at different stages of drug development (and increases the variety of
due diligence experts needed to understand the technologies/candidates) and gener-
ally decreases when all products are in the same therapeutic area and stage of drug
development. Less risk is usually associated with later stage compounds, as more is
known about them from both safety and efficacy perspectives, and for this reason,
these are probably the most attractive and most difficult to find.

If set up correctly, the partnership should not end at execution. It is critical that after
the deal is executed, the portfolio partnering arrangement be optimally managed. Each
company must assign a dedicated executive to manage the day-to-day operations of
the product partnering arrangement, and may also form a governance committee.

If the deal environment changes substantially, such that mutual interests become
misaligned or issues in development change the scope of the original deal, both par-
ties may need to consider renegotiation of terms.

Due to the ongoing need for capital and drug development expertise, portfolios
will continue to offer an attractive partnership/investment option. Companies that
wish to partner on portfolios of products and have access to both capital and scien-
tific and clinical trial (e.g., operational) expertise will be at an advantage over those
lacking such resources.

Case Studies

Eisai Portfolio

In the final quarter of 2009, Tokyo-based Eisai Co. Ltd. announced it would partner
with US-based NovaQuest—then part of Quintiles—on the development of six can-
cer drug candidates from its R & D pipeline 2. The partnership between Quintiles
and Eisai is still ongoing today.

1Jiho (electronic newsletter), Quintiles to offer more risk-sharing models: Dr. Winstanly, Pharma
Japan, 4 January 2010; Factiva Inc., 2010

Drew J (2009) Quintiles teams with Eisai on cancer drugs. Triangle Bus J. http://www.bizjournals.
com/triangle/stories/2009/10/26/daily62.html. Accessed 3 June 2013


http://triangle.bizjournals.com/triangle/related_content.html?topic=Eisai
http://www.bizjournals.com/triangle/stories/2009/10/26/daily62.html
http://www.bizjournals.com/triangle/stories/2009/10/26/daily62.html
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The agreement called for NovaQuest to co-fund 11 PoC studies on the six cancer
drugs. Quintiles’ CRO business agreed to run 11 Phase II studies on the candidates
and provide capacity expansion through collaboration (e.g., expertise, infrastruc-
ture, and funding). In addition to the 11 trials that Quintiles would be conducting,
Eisai was to run 18 trials on the six drug compounds. The trials were designed to test
the effectiveness of the drugs on a number of different cancers. The deal offered an
opportunity to accelerate the development of the cancer drugs in Eisai’s pipeline.
The development plans were created through a robust governance structure aimed at
high levels of collaboration.

The development of anticancer agents is expensive because of the need to con-
duct a large number of clinical trials to develop multiple indications for a single
compound. R & D resource limitations make this process difficult. A risk-sharing
and reward model allows pharmaceutical companies to develop multiple anticancer
candidates at the same time by minimizing initial investments. Diversifying devel-
opment and funding via a partnership with a CRO enables companies to shorten
development and maximize sales.

The deal leveraged Quintiles’ strength in cancer-drug testing. Between 2000
and 2009, when the agreement with Eisai was announced, Quintiles conducted 640
oncology studies involving more than 131,000 patients at nearly 20,000 sites in 68
countries.

According to Mr. Hideki Hayashi, senior vice president and chief product officer
for Eisai, “We are maximizing the potential of Eisai’s oncology compounds. I am
pleased that Quintiles and Eisai share the same goals and our incentives are aligned
for speed, quality, and efficiency. We will explore multiple indications in parallel so
that we can deliver our compounds as fast, widely and appropriately as possible for
cancer patients’ benefit’.

This case study was created using only publicly available information as noted.

Solvay Portfolio

Solvay Pharmaceuticals had a robust pipeline of products in Phases II and III but
lacked both the global infrastructure and financial resources to develop these prod-
ucts in a timely fashion. NovaQuest—then part of Quintiles—and Solvay formed a
multiphase strategic and co-investment alliance.

Step one was a master services agreement giving Solvay access to state-of-the-
art clinical trial execution by Quintiles at competitive, volume-dependent prices.
The relationship simplified and accelerated study start-up, reducing the CRO’s
learning curve and the delays often caused by contract negotiations for each new
product. This streamlined operational relationship significantly enhanced Solvay’s
development capabilities.

3Quintiles Announces Strategic Alliance to Advance Eisai’s Oncology Pipeline (2009). Obesity,
Fitness and Wellness Week. http://www.newsrx.com/newsletters/Obesity,-Fitness-and-Wellness-
Week/2009-11-21/331121200930800W.html. Accessed 3 June 2013


http://www.newsrx.com/newsletters/Obesity,-Fitness-and-Wellness-Week/2009-11-21/33112120093080OW.html
http://www.newsrx.com/newsletters/Obesity,-Fitness-and-Wellness-Week/2009-11-21/33112120093080OW.html
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Step two was a services partnership to help fund Solvay’s Phase II portfolio.
Under the agreement, NovaQuest provided $25 million in professional fees for up
to 10 proof-of-principle studies over 3 years, making it possible for Solvay to pro-
cess more assets through its Phase II pipeline. Solvay, in exchange, made milestone
payments to NovaQuest for each compound that reached positive proof of concept
in Phase II and moved into further development. This helped to match Solvay’s out-
of-pocket costs with the increased value of its assets. Each partner bears about 50 %
of the normal costs and risks for outcomes.

With this customized operational and co-investment relationship in place, the part-
ners were firmly aligned to optimize the speed, cost, and quality of clinical develop-
ment programs across Solvay’s portfolio. From 2001, when the deal was inked,* 3
until 2007 (the date of the published report upon which this case study is referenced),
the alliance achieved the following results:

* The completion of three Phase III trials.

* The shift of two compounds from Phase II to Phase III testing 1 year earlier than
expected, which holds the potential for millions of dollars in additional patent-
protected sales if either product is approved.

e The quick production of conclusive Phase II data. (Solvay then stopped the
development of the two compounds, freeing resources to work on others).

* The receipt of a $298 million contract from the US Department of Health and
Human Services to develop cell-based influenza vaccines, with Quintiles to con-
duct nine clinical trials.

e The completion of the influenza “annual update” studies that secured yearly mar-
keting rights for Solvay’s traditional egg-derived vaccines.

Solvay Pharmaceuticals and Quintiles used the balance scorecard kit® to manage
their alliance and together reduced the total cycle time in clinical studies by 40 %.
This case study was created using only publicly available information as noted.

Hospira Portfolio

As increasing numbers of highly successful biologics come off patent, biosimilars
are a promising area for investment, offering growth potential that is lacking in
many other areas of the biopharma market. Since it is projected that biosimilars will

4Perkins T (2007). The New Deal. Inside Outsourcing Supplement, page 36. http://www.nxtbook.
com/nxtbooks/advanstar/insideoutsourcing/index.php?startid=36. Accessed 25 July 2014.

Svan Rossum B, de WittJ (2016) Multiplying development capacity: a new model. Appl Clin Trials
15(3):50-54. http://www.appliedclinicaltrialsonline.com/appliedclinicaltrials/fCRO%2FSponsor/
Multiplying-Development-Capacity-A-New-Model/ArticleStandard/Article/detail/310808.
Accessed 3 June 2013

®Kaplan RS, Norton DP, Rugelsjoen B (2010) Managing alliances with the balanced scorecard.
Harv Bus Rev 88(1):114-120
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retain more than two-thirds of the originator biologic’s price after patent expiration,
there remains an enormous opportunity for investment in biosimilar development
for the biopharmaceutical industry.

Pharmaceutical companies seek to partner to access incremental funding, find
complementary expertise (in manufacturing, legal, development, or commercializa-
tion) or share in the risk of biosimilar drug development.

The author led the Quintiles-centric due diligence team and was involved in the
investment opportunity between Hospira, a large pharmaceutical company focusing
on generic injectables, and NovaQuest, a private equity firm. The deal was publi-
cally announced April 2013 and is ongoing ’.

The risk for the partnership was diluted with a combination of three products,
including Epoetin, Filgrastim and Pegylated Filgrastim. Hospira is responsible for
development, regulatory approval, commercialization and distribution of the prod-
ucts. NovaQuest will contribute up to $150 million of development funding. Hospira
will fund the remaining development costs associated with the products. In exchange
for the development funding, Hospira will make milestone payments to NovaQuest
upon achieving the first commercial sale for each product.

Hospira will also be required to pay NovaQuest royalties based upon commercial
net sales of the products. In certain instances that result in the delay or failure of the
products to be marketed (other than the failure of the products to achieve regulatory
approval), Hospira will be obligated to make certain payments to NovaQuest as
compensation for such unanticipated events. In these circumstances, reimbursement
will be made in the form of royalties related to certain sales of Hospira’s on-market
products. Hospira’s total payments to NovaQuest inclusive of the milestones and
royalties are capped at a multiple of development funding.

This case study was created using only publicly available information as noted.
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Chapter 5
Challenges of Portfolio Management
in Pharmaceutical Development

Charles Persinger

Portfolio Management in Big Pharma

Pharmaceutical companies, especially “Big Pharma,” have always needed to man-
age their portfolio of assets in development and have leveraged traditional portfolio
management approaches for over 20 years. The need for and benefit from portfolio
management has increased over those 20 years as pharmaceutical development has
become substantially more expensive; the scientific, regulatory, and commercial
uncertainties have increased and cost pressures and resource constraints have placed
a premium on productivity. The industry has found many aspects of portfolio man-
agement approaches to be useful, including:

e Prioritizing and choosing investments when an abundance of opportunities
(potential investments) conflicts with resource constraints

¢ Identifying gaps between corporate goals and portfolio output, thus directing
internal development efforts and business development

¢ Helping balance investments between different trade-offs (e.g., risk vs return)
and different strategic categories of investments (e.g., near-term vs. long term
investments, across different therapeutic areas)

This chapter focuses on the first of those aspects—prioritizing and choosing
investments in a resource constrained environment. This chapter also focuses on
portfolio management (how investments are made) and not the portfolio strategy
(including goals and objectives), which should guide the purpose of and direction
for the portfolio.
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72 C. Persinger

Portfolio management approaches for choosing between alternatives in a
resources constrained environment have been used across many industries, with the
financial services industry often leading the way. Within the pharmaceutical indus-
try, these approaches were discussed in the 1998 Harvard Business Review article
outlining “How SmithKline Beecham Makes Better Resource-Allocation
Decisions” [1]. That article highlights many of the aspects of traditional portfolio
management:

e Choices of include (fund) or exclude (not fund) for individual development
projects

* Potentially choices within “fund” of different levels of funding

¢ Quantified value from each investment alternative

¢ Quantified cost (resource need) from each investment alternative

e A paradigm for ranking or prioritizing investment alternatives to deliver the
highest “portfolio value”

These approaches have been widely used, often leading to periodic (annual or
semiannual) portfolio reviews where the portfolio of projects to be funded are
reviewed and chosen for the next period. This has required companies to need to
develop approaches to consistently value projects, including forecasting revenue,
assessing technical, scientific and regulatory risk, developing timelines, and esti-
mating costs in a consistent manner so that projects can be directly compared against
each other.

Best practices have been developed to generate, collect, and analyze this portfo-
lio data. Standardized software is available and many companies have dedicated
individuals or a group within their company that is responsible for this activity.

An Example

This traditional approach might look something like the following:

The first step is to gather available investments (projects) and relevant informa-
tion. This could happen once or twice a year to facilitate these portfolio reviews and
decision making or this information can be collected on a relatively real-time basis
by having a constant approach to collecting and updating project-level information
when projects change or have new data.

Figure 5.1 represents a potential collection of this data. Projects A through F are
different molecules in development and D, represents an alternative development
plan for molecule “D.” For molecule D, either D or D, can be pursued, but not both.
“Value” is typically a Net Present Value (NPV) including the forecast revenue. This
may get “probabilized” with the probability that the molecule actually makes it
through various phases of development and ultimately to launch. “Cost” is the
development cost, potentially for that year or over some time horizon. Information
on other attributes are also collected to help with questions of portfolio balance and
to understand risks, including the probability of technical success, p(TS), which is
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Fig. 5.2 Types of portfolio analyses/views

an assessment that the molecule will actually make it to launch (and thus deliver
value to patients and revenue to the company).

After the information is collected, standard portfolio analyses are often gener-
ated to help provide insights to the decision maker(s) who are choosing between
projects (molecules). These analyses may include a view of marginal cost versus
marginal value, risk versus return trade-offs and balance or risk across Therapeutic
Areas (TA) or other categories. Figure 5.2 shows an example of some of these types
of analyses, where each dot represents one of the projects from Fig. 5.1.

Ultimately a decision is made as to which projects get funded and which do not
based on the analyses, the budget and other factors that may never get quantified.
This may involve creating a prioritized list of projects to receive funding (and those
that do not) by analyzing the marginal costs versus marginal return, portfolio bal-
ance (risk versus return, therapeutic area, short versus long term), milestones over
time (identifying any gaps), portfolio value, and other factors. This can include both
quantified elements like risk and value and non-quantified elements like strategic fit.
Another approach involves crafting different portfolio alternatives (i.e., different
potential choices for a portfolio that include different sets of projects) and then
evaluating those alternatives to see which of those portfolios looks the best on spe-
cific criteria like portfolio value. The portfolio that looks the best (or some minor
tweak to the portfolio) is then selected and the projects in that portfolio receive
funding and the other projects do not. Regardless of the approach, the intent is to
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Fig. 5.3 Traditional portfolio management approach

make investment decisions (which projects receive funding and which do not)
aligned with portfolio strategy, goals, and objectives and then move on to imple-
mentation and executing on those projects.

This traditional process follows a regular cadence in a company’s annual calendar
that defines when these decisions get made. Figure 5.3 depicts this approach where
projects are selected based on analyses and approaches described above and then
some time passes before the next chance to reassess and select the portfolio. At that
regular interval (often annually or semiannually) the portfolio is reassessed and a
new portfolio is selected. This could include stopping some projects, continuing
projects, and starting new projects.

This approach depends upon:

* Project alternatives (often in vs. out, but could be different levels of investment
or plans)

e Value criteria to evaluate alternatives (often NPV, cost, risk, and measures of
balance)

¢ Credible, reliable, and consistent information for all projects

An analogy would be a personal financial investment portfolio. Typically this
would start with developing a portfolio strategy, including identifying portfolio
goals and objectives (e.g., saving for retirement, children’s college fund, future
vacation). Information is gathered about general investment opportunities types
(stock, bonds, real estate, etc.). These general categories of investment would be
evaluated to determine the best mix of types of investment to meet the strategic
goals (e.g., if saving for retirement at the age of 25, it may involve a high percentage
of stocks, but at age 60 that investment mix will likely be different). These goals,
objectives, and strategic choices would define the portfolio strategy. The next step
would be to create and manage the portfolio. Information would be gathered on
individual investment choices (e.g., specific stocks) within the chosen general
investment categories. From this, specific investment choices would be selected and
the investments would be made. On a regular interval (e.g., yearly) the portfolio
would be reviewed to evaluate portfolio choices in light of any changes to portfolio
goals, current context (e.g., budget, age) and portfolio performance. This would
result in a new investment portfolio with some investments continuing and others
would being cashed out and moved to other investments. This aspect of choosing
specific investments (within the portfolio strategy) and making changes over time is
portfolio management and is the focus of this chapter.
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The Challenge/Reality

This approach to portfolio management is useful, but faces a key challenge in the
pharmaceutical industry. There are two key elements of pharmaceutical develop-
ment that make this a challenge:

1. The approach requires a choice between projects (which projects get funding and
which do not) at a given point in time (i.e., when the portfolio review and selec-
tion takes place). However, in a typical pharmaceutical development portfolio,
projects are at various stages and points in their development and thus, there is not
a chance to compare and choose between all projects (investing in the best and not
funding the rest) all at the same time. Most projects, at least in clinical develop-
ment, are ongoing at any point in time and cannot be stopped. For example, once
a Phase 3 trial has been started (or a trial in any phase involving patients), a com-
pany is very reluctant to stop a trial for anything other than safety reasons. It is
often unethical to do so and the company would not consider it, even if the port-
folio management process highlighted that the company would rather divert funds
from that project (i.e., stop it) to enable another project to move forward. Often,
at any given point in time, there are only a few projects are at a spot where go/
no-go or other investment decisions can be made on them. Certainly this is much
less than half of the portfolio at any given point. Many of these commitments are
2-4 year studies. Those projects that are ongoing and cannot/will not be stopped
are often called “committed” spend. Since this “committed” spend is often a large
part of the budget at any given point, the degrees of freedom are greatly reduced.
One approach to this might be to just hold or delay projects at a point in which
multiple projects can be considered together. This sometimes occurs, especially
when there are strategic considerations across those projects. However, in this
industry, time is literally money (delays impact the amount of time the company
can recoup its substantial expenses through revenues while under patent protec-
tion and can allow competitors to beat the product to market) and patients are
ultimately impacted by any delays in development. The value of projects decline
as they get delayed and thus companies are very reluctant to delay projects so that
they can make decisions across all/most/many projects at once.

2. The other implication of this approach is that budgets get allocated at one (or
two) times a year when projects receive funding. However, in a pharmaceutical
industry, attrition is a fact of life. If a project receives funding, it may very well
be terminated for technical reasons (study results etc.) sometime before the next
round of decisions get made. This may free up available funds for other projects,
but it makes budgeting difficult. If other projects have to wait until the next port-
folio review to receive the available funding, it is another time delay and it would
be preferable for those funds to be used immediately upon termination of the
failed project.

The elements of this challenge are not totally unique to the industry but are exac-
erbated by the long development timelines, the significant attrition rate, and other
major uncertainties that are inherent in the industry.
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Two Different Approaches

The industry often faces these challenges with two different approaches: a
portfolio-driven approach or a project-driven approach.
The portfolio-driven approach is what has been described above:

» Portfolio decisions are made that define what projects get investment
* Projects progress
» Portfolio is revisited (next budget cycle) and new decisions get made

The project-driven approach takes a different lens to this:

e Individual project decisions get made without much regard for portfolio
considerations

* Projects get funding if there are current available funds and on the merits of the
project

» Portfolio management is used just to report out on the aggregated view of the
project level decisions that have been made (i.e., what is the portfolio view of all
of the project decisions that have been made)

The portfolio-driven approach suffers from the challenges that have already been
discussed. With trials underway/ongoing, it is not possible to actually choose
between projects at any given time. Significant uncertainties and attrition also
impact the ability to effectively execute this strategy in its purest form.

The project-driven approach has issues and drawbacks as well. If the focus is
largely on project-level decisions, there is the potential to get “stuck” with an unde-
sired portfolio. Regular portfolio reporting can help provide context for these project
decisions, but without routinely taking the portfolio perspective into the project deci-
sions, the project-level decision focus can lead to the portfolio evolving in ways that
the company does not want and results in the projects driving the company strategy.

A not uncommon case is the following situation:

* Two projects in Phase 2 (Projects A and B)

» Phase 2 data is going to be available on both projects, but they read out 9 months
apart

e The company can only afford to take one of the two forward into Phase 3
development

* The projects both have a 0.40 chance of reporting positive data (i.e., data that
would lead to the ability to move the project to Phase 3 development)

* Project A will have data available first, but Project B is viewed as more “valu-
able” (although there is a lot of uncertainty about technical risks and value for
both projects)

* Project A ends up having positive data and a decision has to be made

The project-driven approach could likely take the following path. Project A has
the potential to move forward and is valuable, a portfolio lens is not considered
(and “project B only has a 0.40 chance anyway...”) and thus a decision is made to
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proceed forward with Project A into Phase 3. In a purely project-driven approach,
the potential implications on Project B may not even be known or acknowledged.
Ultimately if Project B is successful in Phase 2, the organization would prefer to
move forward with B but cannot. Project B might get sold (out-licensed) and thus
some value recouped.

The portfolio-driven approach would have likely had the decision on Project A
wait until Project B data was available. In this case, Project A might have some
planning work done to have it ready to go as quickly as possible after Project B data
is available but it still would cause a delay (and loss of some value) to Project A if
chosen. However, if Project B has positive data, the company is happy that it waited
to choose the “better” of the two assets.

A “Hybrid” Approach

As is probably apparent at this point, companies often try to marry the best of each
of the two approaches. The nature of the drug development requires that decisions
get made (most often) on a project-level when data is available (and a decision
needs to be made) on that particular project. However, unlike a purely project-
driven approach, these decisions are informed by regular (or real-time) portfolio
reviews and information, budget processes and portfolio-specific analyses. These
provide the appropriate portfolio context for the project-level decisions to be made.
In the Project A versus Project B case above, the portfolio and budget context would
have highlighted the potential implication on Project B if Project A’s Phase 3 devel-
opment was approved, would have highlighted the difference in value between the
projects and would have likely generated a conversation and decision on whether to
wait for Project B or how a decision could be made that included Project B’s infor-
mation with minimal delay to Project A’s timeline. To provide this portfolio and
budget context, companies can have regularly scheduled portfolio reviews and anal-
yses where projects get prioritized (in case decisions need to be made later), port-
folio strategies get developed and topics like portfolio balance get discussed. This
can (and should) be supplemented by real-time portfolio data and analyses that can
be made available to support any particular project decision at any time. Budget
cycles often also provide both short-term and long-term context and views of fund-
ing. This often is linked to financial reporting cycles, but also includes the compa-
ny’s business planning for near-term financials and long-range planning for more
strategic financial considerations. Companies would use these approaches to pro-
vide the portfolio context, but unlike the pure “portfolio-driven” approach, funding
decisions for the portfolio would not be made at this time unless the portfolio or
financial review dictates a change. Those funding decisions again would be made at
the time of an individual project decision. This interplay of these three consider-
ations is shown in Fig. 5.4.
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Fig. 5.4 An approach for Portfolio: (Provide context, potentially trigger decisions)
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These strategic, portfolio considerations can be very helpful and informative
when there is a clear interplay between this project’s decision and another project or
multiple other projects in the portfolio. These interactions can be driven by budget
constraints, one project being a backup for another (e.g., multiple projects on the
same target), two projects in the same disease state or many other factors. Given that
these interactions are magnified across assets within a similar disease state or thera-
peutic area, often companies work to define portfolio strategies with a particular
therapeutic area. An example would be a company pursuing multiple assets (a port-
folio) in lung cancer should work to understand how they should think about the
interplay, including synergies and overlaps, in projects as they make project-level
decisions. In these situations, it is nice to have a clearly defined strategy of which
assets get pursued and when. However, there is so much attrition and uncertainty
that a rigidly defined strategy is often invalid shortly after it is crafted.

In addition to these portfolio and budget reviews and activities providing context
to the project-level decisions, there are also times in which these reviews actually
trigger decisions. In these cases, the portfolio and budget reviews do more than just
provide context for future project decisions, they actually trigger decisions based on
these strategic considerations. Portfolio reviews might identify gaps or overlaps or
other strategic considerations that drive the organization to trigger specific project
or portfolio decisions (selling off sections of the portfolio, in-licensing activities,
etc.). Budget reviews certainly also have the potential to trigger decisions as short-
term budget constraints effect immediate changes to plans or long-term views direct
the company to take action.

Additional Tactics

In addition to taking this hybrid approach, additional tactics are used to help with the
challenges that have been outlined. Providing more flexibility to projects through
interim reviews of data and intermediate decision points can provide a better oppor-
tunity to adjust within a project to the portfolio context. For example, instead of a
committing to a particular project for a 4-year study (with no chance of modifying
the approach), the study could include interim looks at data for futility to enable
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the company to stop the study earlier. There are often implications of injecting this
flexibility into a program (it may ultimately be longer, require more patients for the
same statistical power, etc.), but it is often worth it for the additional program and
portfolio flexibility it provides. Another approach is to offer more project-level alter-
natives. Teams/companies often look at only two alternatives—fund or not fund
(with the “fund” alternative likely only considering an expensive “all-in”” approach).
It can often be helpful to develop and offer various “funding” alternatives that enable
the project to move forward at lower costs or in different ways. These can include
reductions in scope (maybe having a negative impact on value for that particular
project) or alternate funding mechanisms (partnering, etc.). Having these options
available enables the decision maker to have more (and potentially better) ways to
pursue an individual project within the specific portfolio context. One final tactic is
portfolio and project modeling, especially modeling the downstream implications of
decisions. This enables the decision maker(s) to have a better view of the implica-
tions of a project-level decision within a portfolio context. This modeling and other
analyses can help identify the portfolio implications of a particular project decision.

Summary

Tools and approaches to portfolio management have been leveraged by biopharma-
ceutical companies for many years to help enable development of a portfolio of
projects that delivers the most value to patients and meets the company’s goals and
objectives. The nature of drug development however means that these approaches
cannot be used as flexibly as might be desired. Since projects (investments) cannot
typically be stopped mid-stream (i.e., in the middle of a clinical trial which may last
years), they are not as fungible as one would like to be able to employ a standard
portfolio management approach. The fact that attrition (an end to an investment) is
also a frequent and sometimes randomly timed part of drug development also com-
plicates things. This prevents a direct portfolio management approach where choices
between all investments at particular time points and puts a lot of focus on individ-
ual project/investment decisions. However, it is important to recognize that, if port-
folio management approaches cannot be used directly to make choices across the
breadth of projects, it still has an important role to play and should not be aban-
doned. Companies could choose to just concentrate on making these individual
project decisions in relative isolation, but that may result in decisions which harm
portfolio value. Instead, a better approach is ensuring that appropriate portfolio con-
text and implications are brought into these individual project decisions through
regular portfolio updates and real-time information. Additionally, analyses that
focus on the portfolio implications of particular project decisions is also helpful.
These updates, information, and analyses provide the appropriate portfolio context
to ensure that individual project decisions deliver both project value and advance
the portfolio goals and objectives.
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Chapter 6
Impact of Phase 2b Strategies on Optimization
of Drug Development Programs
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Introduction

Selecting the right dose is critical for the success of any drug development program,
and for maximizing the value of a product. The high attrition rate in Phase 3 is likely
due, in part, to faulty dose selection. In the new environment where payers are not
reimbursing every product that is granted a marketing authorization, dose selection
becomes even more important. A well-selected dose will have a better chance for a
desirable risk—benefit profile and thus increase the chance for the product to be
reimbursable, if it is also judged to be cost-effective. It will also result in improved
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patient care, and greater benefit to society. This makes dose selection the fundamen-
tal factor when it comes to the drug development program optimization.

The importance of dose selection has been recognized by the industry, and the
Adaptive-Dose Ranging Studies (ADRS) working group was formed under the
Pharmaceutical Research and Manufacturers of America (PhRMA) umbrella in
2005. This group published several papers in which they proposed novel dose selec-
tion methods, two of which [1, 2] provided very valuable information within the
context of Phase 2b itself. What followed was investigation of impacts that dose
selection strategies in Phase 2b have on the overall success of development pro-
grams [3] (from here on we refer to the latter as the “ADRS paper”). Since one’s
ultimate objective is to simultaneously optimize design aspects of both Phase 2b
and Phase 3 trials, as a continuation of ADRS, an Adaptive Program (AP) work
stream has been formed to address the issues around such optimization at a program
level. AP is part of the Adaptive Design Scientific Working Group (ADSWG), now
working under the auspices of the Drug Information Association (DIA) since 2010.
The objective of AP is to further develop theoretical approaches for drug develop-
ment optimization at the program level, and propose applications to selected thera-
peutic areas. Selected specific indications were Neuropathic Pain [4], Diabetes [5],
and Pancreatic Cancer [6]. The first two followed the ADRS setup more closely,
given that dose-ranging studies are more applicable to these indications. The appli-
cation to Oncology expanded beyond a single drug, and compared different devel-
opment programs that included two candidate compounds.

The same two measures have been used in all these studies: the PoS (Probability
of Success) and the ENPV (Expected Net Present Value). The PoS, defined as the
probability of a positive outcome, is often a key measure of the performance of dif-
ferent program design options. The ENPV has been selected as the primary mea-
sure, since it naturally accommodates optimization [7], providing an explicit
trade-off between PoS, time delays and trial costs. The PoS itself generally increases
as the sample size increases although the increase may be limited.

This article first presents a high-level overview of the ADRS paper and the three
case studies [3—6] and then discusses key optimization parameters in the context of
findings from these papers. In the interest of conciseness, this article does not pres-
ent all details related to calculations and simulations. For that, and for a detailed
discussion one should refer to the original papers.

Impact of Dose Selection Strategies Used in Phase 2b
on the Probability of Success in Phase 3 (ADRS Paper)

Objectives and Scenarios

The purpose of this study was to assess the impact of Phase 2b design characteristics on:

1. The PoS in Phase 3, being defined as the probability of two successful, pivotal
confirmatory trials, as usually required for regulatory approval, and
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2. The ENPV of the product.
The impacts of the following Phase 2b characteristics were studied:

1. The statistical approach to dose selection; seven approaches as described in
Bornkamp et al. [1]

2. The sample size used in Phase 2b (total of 150 and 250 patients);

. The number of doses studied in Phase 2b (5 and 9); and

4. The number of doses selected to advance into Phase 3 (one, two, or two with
expedited enrolment).

(O8]

Endpoints
Efficacy

The primary efficacy endpoint for both Phase 2b and Phase 3 was a change in pain
from baseline to Week 6, as measured by a Visual Analog Scale (VAS) on the scale
from 0 to 10. The minimum clinically meaningful difference was considered to be
an improvement over placebo of 1.3 units.

Safety

No safety limits were imposed onto Phase 2b simulations. In Phase 3 a toxicity
penalty function was imposed. This function expressed the probability of a
treatment-limiting toxicity being detected for a patient in a single phase III trial.

Drug Development Program

One Phase 2b study was followed by two identical Phase 3 studies. Two options
were considered for Phase 3 studies: with one or with two doses of the experimental
drug. All trials were placebo-controlled.

Simulations

The above objectives were studied under four different efficacy/toxicity dose—
response profiles to assure the robustness of findings. Each efficacy dose-response
profile had a corresponding safety penalty function. Comparisons of different sce-
narios were done by simulations of entire development programs. For the Phase 2
part, outputs and dose selection criteria from simulations performed for Bornkamp
et al. [1] were used.
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Dose Selection Criteria

For Phase 3 studies with one dose the dose selection criteria were targeting the dose
closest to the minimum clinically meaningful improvement over placebo. For Phase
3 studies with two doses the adjacent, higher dose was also added. Dose(s) selected
in the Phase 2b were subjected to predefined efficacy and safety profile, and the
Phase 3 design and assumptions.

Definition of Success

The following definition of Phase 3 success (PoS) was used in the evaluation: a
statistically significant improvement over placebo at the two sided a=0.05 level and
an acceptable increase in number of patients experiencing serious adverse events
compared to placebo in both trials and for the same dose. Probability of success for
any given those can be calculated analytically, as described in the ADRS paper [3].
This was a simple and rather rigid criterion, but close enough to “real world”
requirements to be useful for evaluation of different scenarios.

ENPYV Calculations

The calculation of the ENPV required additional assumptions on: patent life, reve-
nue stream, development costs, tax rate, and discount factor.

The ENPV was calculated as the product of the potential revenue times the PoS
(used as a surrogate of regulatory approval) minus the development costs.

Findings

Based on the specific scenarios studied the following conclusions could be drawn:

» Study design has a major impact on the PoS (ranging from approximately 35 % to
65 %) and ENPV (ranging from approximately $0.5B to $1.2B). (Figs. 6.1 and 6.2)

* Two features that bring the most significant improvements in both PoS and
ENPV were the application of an Adaptive Dose-Ranging Design, and selection
of two doses to proceed into Phase 3.

» Larger sample size in Phase 2b resulted in smaller, yet consistent improvement
in both PoS, and ENPV. An investigation over the broader range of Phase 2b
sample sizes is necessary for more conclusive findings.

* The PoS and the period of exclusivity have more impact on the ENPV than the
cost of the program. This is likely to be the case for any indication from which
large revenues are expected. The investment into a particular program, however,
usually comes from a limited source of money and it is important to analyze
investments affecting multiple programs at the portfolio level.
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» The prespecified dose selection criteria did not target doses that would maximize
the PoS or ENPYV, as resulting selected doses were consistently lower than opti-
mal doses.

* Simulations should play a key role in the development and evaluation of new
approaches, as well as in the selection of strategies for specific development
programs.

Designing Phase 2 Trials Based on Program-Level
Considerations: A Case Study for Neuropathic Pain

Objectives and Scenarios

The objective of this paper was to investigate how the following factors impact PoS
of the confirmatory stage and the ENPV:

1. The sample size in Phase 2b, (135, 225, 405, 540, 675, and 810 subjects total)
2. Decision rules to select one dose for Phase 3 trials, two methods were
considered:
(a) Select the dose estimated to provide efficacy closest to the target efficacy of
1 unit on the Numeric Rating Scale (NRS). The NRS has 11 categories rang-
ing from O to 10,
(b) Select the dose that will have the maximum utility expressed in Sth-year net
revenue based on efficacy and tolerability.
3. The sample size for Phase 3 trials defined such that the ICH E1 requirement that
1,500 patients are treated at the dose of interest, 500 patients treated for at least
6 months, and 100 patients treated for at least 1 year is satisfied.

Endpoints
Efficacy

The proposed primary measure of efficacy, in both Phase 2 and Phase 3 trials, was
change from baseline at week 12 in pain measured on the NRS. The minimum clini-
cally important difference in mean change from baseline between the investiga-
tional product and placebo is considered to be 1 unit. However, if safety data from
Phase 2b results suggest that the investigational product is likely to have a better
safety profile than competing marketed products, then the target efficacy response
could be lowered to 0.8 units.
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Tolerability

Tolerability is measured by the probability of experiencing nuisance adverse events
(AEs) commonly associated with products for neuropathic pain, which will not
cause stoppage of development or prevent drug approval, but will lower the benefit—
risk profile and negatively impact sales: A drug-related incidence rate of:

* Less than 0.2 is deemed better than marketed products,
e (.2-0.3 is assumed to be similar to marketed products,
* Greater than 0.3 is assumed to be worse than marketed products.

The placebo rate for this AE will be assumed to be 0.1.

Development Program

To investigate the strategy for late stage development of a neuropathic pain medi-
cine, it was assumed that one Phase 2 study is conducted and the results are used to
determine whether Phase 3 trials should be launched. If the answer is yes, two iden-
tical Phase 3 trials would be conducted. Dose was selected based on criteria speci-
fied in Objectives and Scenarios section. All trials were placebo-controlled.

Simulations

Seven different dose response profiles were considered for efficacy. One of the seven
profiles was the flat one, corresponding to a drug with 0O efficacy at all dose levels.
Three levels of maximum efficacy (0.55, 1.1, and 1.65 units) and three AE dose—
response profiles (low, moderate, and high) were considered. The base case was defined
by a SigmoidEmax dose—response curve for efficacy with a maximum efficacy of 1.1
unit and a moderate AE profile with a maximum AE rate of 0.35 at the highest dose.

Program Success

In this case study PoS is defined as the probability that both pivotal Phase 3 trials
demonstrate a statistically significant drug effect at the two sided a=0.05 level.

ENPYV Calculations

The expected return is measured by the expected NPV discounted by a factor
reflecting the declining monetary value over time. The expected return is affected
by effective patent life, trial costs, relationship of efficacy and the tolerability pro-
file of the new product (at the recommended dose), related products already on the
market place, and profits of these marketed products.
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Conclusions and Recommendations

PoS is a monotonically increasing function of the Phase 2 sample size. As such
the Phase 2 sample size that leads to the highest PoS for Phase 3 is 8§10 which is
the highest Phase 2 sample sizes considered.

For the base case, the highest ENPV under the target efficacy dose selection
method occurs at the sample size of 135. For the maximum utility dose selection
method, the optimal Phase 2 sample size is 270.

Phase 2 sample sizes that lead to the highest PoS (810), versus highest ENPV (135)
for the target efficacy dose selection method are on the two ends of the selected
dose range. For the maximum utility method these sample sizes are much closer: all
doses 405810 for the highest PoS, versus 270 for maximum ENPV (Table 6.1).
Since the “true” ENPV can be calculated, the “right” dose with largest “true”
ENPV is known.

Maximum utility is a superior dose selection method in all metrics considered
than the target efficacy. For any given sample size, it almost doubles the PoS, more
than doubles the ENPV, and approximately triples the probability of selecting the
right dose and selecting the right dose or adjacent dose (Tables 6.1 and 6.2).

The optimal sample size in Phase 2 is inversely related to maximum efficacy, and
is proportional to safety severity.

Table 6.1 Comparisons between two methods to select the dose for Phase 3 development (10,000
simulations per dose-selection method and sample size)

ProbF.’rc]);Sg;)?g to Phase 3 | Total | Prob. Ph 3 Success Expected NPV ($B) ENPV
Phase 2 |Phase 2 — sample | Dev. — —1 Improve-
Sample | Power | Target Max Utility | size (both | Time | Target |Max Utility[ Target |Max Utility A
Size Dose Dose trials) | (Yrs) | Dose Dose Dose Dose ment %
Selection | Selection Selection | Selection | Selection | Selection
135 0.81 0.59 0.81 2880 6.7 0.55 0.81 1.22 2.03 66%
225 0.95 0.59 0.95 2800 7.0 0.56 0.95 1.16 2.30 98%
270 0.97 0.60 0.97 2760 71 0.57 0.97 1.15 2.32 101%
405 1.00 0.59 1.00 2640 7.5 0.57 1.00 1.10 2.25 104%
540 1.00 0.58 1.00 2520 7.9 0.57 1.00 1.04 2.13 105%
675 1.00 0.58 1.00 2400 8.3 0.57 1.00 0.98 1.99 104%
810 1.00 0.58 1.00 2280 8.6 0.58 1.00 0.92 1.85 100%

Table 6.2 Comparing dose selection based on probability of selecting the correct dose (i.e., dose
6 under the SigmoidEmax curve)

Utility dose selection Target dose selection

Ph2 Probability Probability Probability Probability of
sample of selecting of selecting correct of selecting selecting correct
size correct dose or adjacent dose correct dose or adjacent dose
135 0.22 0.59 0.14 0.37

225 0.28 0.74 0.12 0.36

270 0.31 0.78 0.12 0.37

405 0.36 0.85 0.12 0.39

540 0.39 0.90 0.12 0.41

675 0.43 0.92 0.12 0.42

810 0.41 0.94 0.12 0.44
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Optimizing Drug Development Programs: Type II Diabetes
Case Study

Objectives and Scenarios

The objective of this study was to investigate the impact of selected Phase 2b and
Phase 3 design parameters and decision criteria on regulatory and commercial out-
comes for Diabetes drug development programs. Recommendations were made for
both drug development optimization in general and Diabetes product development
specifically. The impact of the following design parameters on the PoS, and the
ENPV was assessed:

1. Phase 2b design (fixed or adaptive with 5 dose levels);
2. Phase 2b sample size (total of 300 and 600 patients); and
3. Phase 3 sample size (200-600 per arm).

Endpoints
Efficacy

The primary regulatory efficacy endpoint for the program was the HbAlc change
from baseline which is a standard efficacy endpoint in Diabetes trials.

Safety

While not strictly a key regulatory endpoint, the incidence of hypoglycemic events
are of a great medical concern, and also have a significant impact on expected rev-
enues. Consequently they are an important component of the dose-selection criteria.
In Diabetes product development CV (cardiovascular) events are safety events of
the most concern. Since these events accrue at a very slow rate they cannot be
included in the decision criteria regarding the dose selection or progress into Phase
3 in the same way as hypoglycemic events. As a result of this, consideration of CV
events was out of scope for this paper.

Simulations

If the phase II results show that at least one dose is viable, then a single dose with
the highest estimated utility is carried forward to three parallel phase III studies
described below.
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Table 6.3 Description of Phase III studies

Study # | Type of study Target population | Treatment arms

1 Monotherapy study Treatment naive Experimental drug arm(s) versus
(placebo-control) placebo versus metformin

2 Add-on combination study | Add-on to Experimental drug arm(s) versus
(active-control and metformin placebo versus active
placebo-control) comparator 1 (AC1)

3 Add-on combination study | Add-on to SU Experimental drug arm(s) versus
(active-control) active comparator 2 (AC2)

SU sulfonylurea

Phase 3 Development Program

Phase 3 development program included three pivotal trials selected such that com-
parisons can be made against placebo and two already marketed products. It tar-
geted three indications: monotherapy, add-on to metformin, add-on to sulfonylurea.
Development program is summarized in Table 6.3.

Dose Selection Criteria

Component utility functions were created for both the primary efficacy endpoint of
HbA 1c and the incidence of hypoglycemia. For HbA Ic, the largest utility value was
3 and was achieved when the change from baseline to endpoint relative to placebo
was less than or equal to —1.3 %. The efficacy utility value gradually decreased to
0, for scenarios where placebo was better or equal to the experimental arm. The
largest safety component utility value was 1 for any instances where this occurred
or up to a 4 % worsening: this component utility value decreased to O linearly
between 4 % and 30 % for greater incidence of hypoglycemia in the experimental
arm. When the incidence of hypoglycemia for the experimental arm was greater
than 30 % more than the placebo arm, the utility value remained at 0. The utility
components for HbA 1c and hypoglycemia rates were multiplied together to give the
overall utility of an experimental dose.

Program Success

The following regulatory criteria has been applied:

* Atleast two trials have to demonstrate statistical significance for efficacy. One of
these studies has to be Study #1 showing superiority versus Placebo.

* Each indication: monotherapy, add-on to metformin, add-on to sulfonylurea is
approved if the above condition is met and statistically significant superiority
over placebo or non-inferiority versus active control is shown in the trial for that
indication.

* For HbAIc a non-inferiority margin of 0.3 was applied.
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Expected Revenues

Maximum revenues of $10 billion from demonstrating superiority compared to only
$1 billion from non-inferiority to active control 1, and an additional $3 billion from
superiority or $1 billion from non-inferiority to active control 2. They were scaled
down by penalty factors, depending on whether the drug achieves the separate effi-
cacy goals in the separate phase III studies.

Conclusions and Recommendations

Key conclusions of this simulation study are as follows:

» Larger sample sizes in Phase 2b and Phase 3 studies provide more precise dose
selection, and reduce the positive bias in the treatment effect estimate and uncer-
tainty in estimated ENPYV, within the range of sample sizes studied.

» Similar improvements are seen with implementation of an adaptive design over
a fixed design in Phase 2b.

e Larger adaptive trials have identified the dose with the maximum utility dose
most often, while smaller fixed designs identified this dose least often (Fig. 6.3).

* A larger number of the patients were assigned to the highest utility doses using an
adaptive design compared to a fixed design for three different scenarios (Fig. 6.4).
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Fig. 6.3 Proportion of times the maximum utility dose is correctly identified for successful trials
with the scenario where efficacy is better than expected and where the top two dose levels have
high hypoglycemic episode rates
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Fig. 6.4 Average number of patients: fixed versus adaptive (12 weeks with 600 patients) for three
different scenarios

Dose selection criteria have to be consistent with developers’ objectives. It is a
very common situation that dose selection criteria are defined by R & D teams,
while one of the key objectives is to maximize the expected revenues. In order to
avoid this problem we recommend closer collaboration of R & D clinical and
commercial groups earlier in development [5].

Some limitations of this simulation study are:

While some of the findings of this paper may be extrapolated to other therapeutic
areas, it is recommended that simulations are conducted to support optimization
of any drug development program.

This study did not address the impact of length of development, since that would
be driven primarily by a separate CV outcome study, which was out of the scope
of this paper. Of note is that addressing the CV requirement would have major
impact on the cost and timelines.

Another consideration when reviewing this simulation study is that only one
dose was selected to move to Phase 3 in order to limit the number of parameters
that were investigated. If more than one dose is used in Phase 3, then this could
have had an impact on ENPV [3].
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Improving Oncology Clinical Program by Use of Innovative
Designs and Comparing Them via Simulations: Pancreatic
Cancer Case Study

Objectives

In this paper, authors analyzed five oncology development scenarios in the setting
where a lead and a backup compound are ready for a Phase 2 trial which, if war-
ranted, will be followed by a single Phase 3 trial. The compound here is considered
in a general sense; two different drugs for the same indication or population, or two
different regimens of the same drug, or two drug combinations/adds-on therapies
provide an example of a potential application. Different scenarios with regard to
drugs’ performance were compared based on PoS and ENPV.

Scenarios

Program #1: between 2 candidate drugs (ND1 and ND2) that could be developed by
a sponsor for treating pancreatic cancer one drug (say ND1) will be selected
based on preclinical and phase 1 data to be examined in a Phase 2 study followed
by a Phase 3 study if warranted,;

Program #2: a separate Phase 2 for each of the 2 compounds, each identical to the
phase-2 trial in Clinical Program #1 will be conducted and the more efficacious
drug will be selected at the end of Phase 2 for the Phase 3 development if both
are efficacious;

Program #3 is similar to Program #2 except that in the Phase 2 development a single
3-arm Phase 2 study to investigate both compounds and compare them with a
shared control in one trial will be conducted and followed by a 2-arm Phase 3
study similar to the previous programs;

Program #4 is similar to Clinical Program #3, except that it includes a single interim
analysis at which either or both ND1 and ND2 can be dropped. Simulation was
used to optimize when the interim analysis was scheduled and what thresholds
were used for the decision to drop an arm. Simulation and evaluation of eNPV
were used to select the optimum sample size for Phase 3. Bayesian criteria were
used to determine whether to drop an arm and for the “go”/“no go” decision after
phase 2.

Clinical Program #5 is similar to Clinical Program #4, except that it uses more
interims and a greater degree of adaptation in Phase 2 (adaptive reallocation of
patients, possibility to drop an arm, early stop for futility or efficacy). Bayesian
criteria were used for deciding whether and at what sample size to conduct
Phase 3.
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Endpoint

The primary endpoint in both Phases of development was assumed to be Overall
Survival (OS), given the aggressive nature of pancreatic cancer and to simplify
assumptions for the decision making.

Simulations

Hypothetical Oncology drug development programs consisting of a single Phase 2b
and a single Phase 3 studies were simulated. The degree of efficacy of a new drug
was expressed in terms of its hazard ratio relative to the control arm. It was assumed
that the hazard ratio for each new drug ranged between 1 and 0.6 in discrete incre-
ments of 0.1. For each of the two new drugs three different settings (expressed as
Bayesian priors) were specified: optimistic, uniform, and pessimistic; in terms of
the probability of each discrete hazard ratio.

PoS

The success of in Phase 2 was assessed at the applicable level of significance, as
described in the paper. For programs # 2, 3, 4, and 5, if both compound tests were
significant, then the compound with a smaller p-value advanced. The success in the
Phase 3 trial was defined as statistically significant comparison of selected com-
pound with the control arm at the one-sided 0.025 level.

ENPV

The ENPV was calculated as a probability-weighted average of the associated costs
and revenues, taking into account the probability distribution of the underlying
degree of efficacy of the new drugs and taking into account the probabilities of
reaching each stage of clinical development and product approval (conditional on
the degree of efficacy). Detailed assumptions for cost and revenue parameters are
presented in the paper [6].

Conclusions and Recommendations

Under the assumptions that, on average, both compounds are somewhat efficacious,
four programs performed as following in terms of PoS as well as the ENPV:

e Program 1 was the worst, as expected, since it includes a single compound
selected based on limited clinical data, while other programs collect Phase 2 data
prior to making selection between two compounds.
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Table 6.4 Overall probability of clinical program success

Pessimistic Uniform Optimistic
1-Drug program (Program #1) 0.22 0.35 0.47
Parallel Ph2s (Program #2) 0.29 0.43 0.53
Combined Ph2 (Program #3) 0.34 0.50 0.61
Adaptive (Program #4) 0.34 0.50 0.62
Adaptive (Program #5) 0.40 0.57 0.69
Table 6.5 Overall eNPV
Pessimistic Uniform Optimistic
1-Drug program (Program #1) 181.41 324.83 434.78
Parallel Ph2s (Program #2) 247.20 417.80 495.85
Combined Ph2 (Program #3) 322.94 529.99 625.13
Adaptive (Program #4) 313.75 514.41 605.37
Adaptive (Program #5) 340.88 552.88 651.14

The NPV is in units of millions of USD

¢ Therefore, if there is no sufficient evidence to demonstrate that one candidate is
better than the other, one is better off to develop both as done in Program # 2.

* The most striking improvement was from Program 2 to Program #3. Even though
the increase in probability of success was modest, the impact on ENPV was
huge. This could be a result of time/resource savings using a shared control in a
single study compared to two studies.

e Program #3 is the second best program. Program #4 did not bring much improve-
ments compared to Program 3; in fact it performed worse in terms of the ENPV
perhaps due to add-on operational costs and duration.

* Program #5 is the best choice. It has important adaptive features that separate it
from other alternatives. Both the probability of success and ENPV are the high-
est for Program #5, justifying the use of adaptive design for Phase 2 in the setting
where there are multiple compounds to develop simultaneously. Added costs
associated with complex adaptive design were well offset by gain in efficiency
translating into greater ENPV for this program.

* Please refer to Tables 6.4 and 6.5 for comparisons of above programs based on
PoS and ENPV respectively.

e In Programs 4 and 5 the size of Phase 3 study depends on the outcome of the
Phase 2. A great outcome of Phase 2 is likely an indicator that a moderate sample
size is likely to produce adequate power or probability of success. On the other
hand, if the Phase 2 result is less impressive, there is a high chance a large Phase
3 is needed to ensure enough power. This approach is essential to optimization at
the program level, and it contributed to efficiency of Program 5.

e Only Phase 2 designs were varied in this research and Phase 3 was assumed to be
a simple fixed 2-arm design trial. The approach could be extended to varying
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Phase 3 designs as well; however, it introduces additional complexity and will
perhaps be addressed by authors in the next paper.

* No clinical program is optimal for all conceivable scenarios and there is no one
simple metric by which they can be compared. In practice, one should always
come up with a few alternatives and do detailed analysis under scenarios appli-
cable to their particular situation.

Discussion

Drug Development Scenario Comparisons

One of the most important messages resulting from these studies is that there is
not one solution for all possible development scenarios. Different programs are
studying different indications, sponsors have different objectives, are willing to
accept different levels of risk, or are using different options to finance their trials.
We recommend that every development program should specify a series of alter-
native program scenarios and compare them via trial simulation or analytical
analysis as applicable. While the analytical solutions should be a preferable
approach whenever possible, the reality is that optimization at the program level
is very complex, and may require simulations of entire programs as illustrated in
these studies.

Another consistent observation from these studies is a high correlation of con-
clusions based on PoS versus ENPV. Almost always programs that performed best
in terms of PoS also performed best in terms of the ENPV. One exception is
the Neuropathic Pain study [4] when target efficacy is used as the dose selection
criteria. It has, however, been demonstrated in that study that this method is nei-
ther a reliable one, nor a desirable one when it comes to optimizing drug develop-
ment programs. This high correlation between PoS and ENPV is partly due to all
indications studied having relatively large expected revenues. In case of indica-
tions with smaller expected revenues the correlation may not be that high.
Regardless, these results should send a strong message to developers that their
primary focus should be on the success of drug development programs, rather than
the race who will get to submission first. After all, their competition may be failing
as well, particularly if they also are giving the speed of development priority over
the sound drug development, as there is a trade-off between speed of development
and accuracy.

It has to be noted that these simulation studies were conducted at the time when
reimbursement was less of an issue. Therefore the regulatory approval was consid-
ered to be the last hurdle before one can start accruing revenues. While that is still
technically the case, in the current environment revenues will experience a major
hit if the drug is not reimbursed. We recommend that reimbursement is included
more specifically as a parameter in future simulations of drug development pro-
grams. This brings back the issue of speed of development. In the future, a better
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differentiated product will be more commercially successful, regardless of who gets
to the submission point first. There are a number of ways to assure differentiation,
one obviously being a careful dose selection. Another one is selection of a bio-
marker subpopulation that is more likely to differentiate with its benefit-risk profile
than the whole population. Discussion of such designs is beyond the scope of this
chapter, but is included elsewhere in this book.

Dose Selection Criteria

Selection of the optimal dose has two main components. The first component is the
criteria for selecting target dose(s), and the second component is the method that
best identifies target dose(s) in terms of maximum precision and minimum bias.
In this section we discuss the former. The accuracy of dose selection is regulated by
the study design and Phase 2b sample size and is discussed in the following
sections.

Two methodological papers mentioned [1, 2], focused only on the target dose,
and did not address the optimization. The ADRS paper [3] used the dose selection
criteria that was not in concordance with optimization criteria, and as a result of that
selected doses were consistently lower than the optimal dose.

The neuropathic pain paper [4] made very nice and thorough comparisons of two
dose selection methods, one based on the target efficacy and the other on the maxi-
mum utility. The maximum utility far outperformed the target efficacy as the dose
selection method in all parameters measured. This finding is a very clear demonstra-
tion that focusing on sequential, trial by trial based targets may not result in the most
efficient drug development even if the best methods are used for individual trials.
Rather, decision criteria should be defined in such a way that outcomes related to
desired output of the entire program are maximized.

The diabetes paper [5] did something slightly different. It attempted to mimic a
typical development process in which the utility function is specified by a clinical
team and expected revenues are projected by a commercial development team.
While two utility functions (clinical and ENPV-based) looked similar, there were
differences in which development options maximized clinical utility, versus which
development options maximized the ENPV. Since the clinical utility function was
applied to select the dose, the implication was that the best dose selection method
did not always maximize the ENPV. This example emphasizes one of the main mes-
sages of this book as a whole, that there has to be an integrated rather than siloed
approach to drug development.

Oncology development program is different from programs in other therapeutic
areas. While dose-ranging studies are conducted as Phase 2 studies in most thera-
peutic areas, dose-ranging or rather dose-escalation studies are Phase I studies in
Oncology with an objective to select the maximum tolerated dose or the optimal
biologic dose. In the Oncology paper [6] instead of dose selection, the drug selec-
tion was performed and the decision criteria were very simple, not much of the
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factor. In Program #1 there was no decision besides at the end of Phase 2 whether to
proceed to Phase 3 development. In other four programs decision was based on
comparison of two compounds, and one that performed better in terms of efficacy
even by the slightest margin would be selected. The main difference between five
programs was the amount of information available at the decision point. We can
conclude that a better informed criterion results in the better program success.

Study Design
Adaptive Design

With emergence of adaptive design, the selection of statistical methodology becomes
one of the most critical components of study design. The flexibility of adaptive
designs makes them particularly suitable for the exploratory stage of development.
Adaptive design allows for key design parameters to be changed during the trial
based on the data observed during that trial, and as such is a natural fit for the explor-
atory stage of development. For example, in Phase 2b trials ineffective doses can be
discontinued, new doses added or the randomization allocation ratio adjusted in
favor of doses that demonstrate better safety/efficacy during the trial. As a result,
over the course of a trial a larger and larger proportion of patients would be random-
ized to doses with better safety and efficacy characteristics. Findings of the previ-
ously mentioned papers was that adaptive design outperforms other Phase 2b
designs, whether by selecting the right dose [1, 2, 5], right development program [6],
maximizing the Phase 3 PoS [3, 6], or ENPV [3, 5, 6].

The utility of adaptive design does not stop in Phase 2b, but has its application in
Phase 3 as well. Phase 3 adaptive designs were not studied in these papers, and are
therefore beyond the scope of this chapter, but we describe several key features/
advantages of these designs. They can be very useful in situations where after the
exploratory stage development there is still:

* A residual uncertainty regarding the treatment effect. In this case there are two
options.

— One is the traditional group sequential design (GSD). With this design the
maximum sample size usually targets the minimum meaningful clinical
effect, but there are options for closing the study early at an interim analysis
for futility or to claim efficacy.

— The other is the unblinded sample size reassessment (SSR). This design ini-
tially targets a more optimistic treatment effect, but has an option to increase
the sample size based on the observed treatment effect at an interim analysis,
and as such “salvage” a trial that would have otherwise been borderline
negative.

e A residual uncertainty regarding the optimal dose. In this case the Phase 3 trial
can start with several doses, and use an interim to select dose(s) for the second
stage of the trial where the efficacy of selected dose(s) would be confirmed.
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* No sufficient evidence that a Biomarker-based subpopulation risk—benefit profile
is better than that of the full population. In this case one can select an adaptive
enrichment design which identifies predictive markers and confirms efficacy
within a single trial.

Phase 2 Sample Size

Two of the papers [3, 5] considered only two options for the sample size, and within
the range studied the larger sample size performed better judged on outcomes of
interest. The question of Phase 2b sample size was thoroughly addressed only in the
neuropathic pain paper [4]. Findings of this paper are quite interesting. The PoS as
a function of the Phase 2b sample size was monotonically increasing, while that is
not the case for the ENPV where there is an optimal Phase 2b sample size (270) that
maximizes it. These findings confirm previous speculations [7].

Let us use this information to further discuss sample size calculation for Phase
2b trials. It is a much more complex concept than calculating sample size required
for a confirmatory trial, where it is based on the power to reject the study hypothesis
assuming a treatment effect of interest. As previously explained, the Phase 2b sam-
ple size will impact the precision of dose selection, with larger sample sizes improv-
ing precision while increasing the cost and length of drug development. In the
context of program optimization the Phase 2b sample size should be selected such
that it maximizes the outcome of interest. The recommended procedure to calculate
the sample size would be as described in the neuropathic pain paper: consider a
wide range for Phase 2b sample size options, run simulations, and find what sample
size maximizes the measure of interest.

Calculating sample size based on pair-wise comparisons that has been tradition-
ally applied in drug development would not be recommended based on results of
these studies, since design based on pair-wise comparisons did not perform as well
as model-based adaptive designs [3].

Other Design Parameters

Number of doses to be included in the Phase 2b was studied in two papers [3, 4].
Findings of the ADRS [3] paper were that designs with smaller number of doses
(five) performed better for non-adaptive designs, while for adaptive designs the
number of doses in Phase 2b made very little difference. The findings of the
Neuropathic Pain paper were similar, with smaller number of doses (four) perform-
ing slightly better than the larger number of doses (nine) for non-adaptive designs.
These findings suggest that a larger number of doses should be considered selec-
tively, and only if an adaptive Phase 2 trial is planned. The “optimal” number of
doses would best be determined by running simulations.

Only one paper [3] studied the number of doses to proceed into Phase 3, but
improvements of Phase 3 with 2 active doses versus 1 active dose were striking.
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This finding is also quite intuitive, since addition of second dose would definitely
de-risk the trial avoiding situation where a single selected dose could be either too
low in terms of efficacy, or too high when it comes to safety.

Looking Beyond a Single Compound

The oncology paper [6] is taking Phase 2 considerations to another level as it
addresses the compound selection, while other papers are assuming that the com-
pound/indication of interest has already been selected. The decision criteria are also
somewhat different from other papers, among other reasons because the decision is
to be made to select one out of only two options. Results clearly illustrate various
possibilities for improvement over the basic design. The more options for adaptation
considered, the better the outcome. The best performing program design included
adaptive features such as adaptive randomization, early stopping for futility and
efficacy, and Phase 3 sample size which depends on the outcome of the Phase 2.

In drug development often a number of issues need to be addressed simultane-
ously, such as indication selection combined with biomarker and/or dose selection.
Heterogeneity of disease is a widely acknowledged problem in cancer, and very
difficult to address in the course of a clinical trial. It is the “next big problem” that
oncology trial design has to tackle; perhaps designs used in BATTLE, and I-SPY 2
trials (www.ispy2.org) that pair oncology therapies and biomarkers point the way.
This setup could be expanded into addressing several development questions simul-
taneously. Many companies have multiple assets at the same stage, or different
stages of development. These situations inevitably lead into optimization at the
portfolio level, which is the main topic of this book.

Conclusions

While four papers looked at the drug development from different angles, and con-
sidered different indications there are some common findings, based on which we
can conclude the following:

1. Selected design and decision criteria have a great impact on PoS and ENPV.

2. It is therefore recommended that multiple development options are quantified
and compared based on the outcome of the interest. Given the complexity of
drug development, simulations are the best way to enable comparisons.

3. Dose selection has two key components.

(a) The criteria for selecting target dose(s), and

4. Some dose-selection criteria, such as target efficacy value, are not optimal by
their nature. Doses with efficacy better than target efficacy and acceptable safety
perform much better than the target efficacy dose.

5. Optimal drug development can be accomplished only when dose selection
criteria are consistent with ultimate program objectives.
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(a) The method that best identifies target dose(s) in terms of maximum precision
and minimum bias.

6. Adaptive designs in Phase 2b far outperformed fixed designs.

7. Larger Phase 2b trials always outperform smaller trials in terms of the PoS. If the
ENPV is the selected outcome, then there would be a corresponding, optimal
Phase 2b sample size due to the trade-off between increased cost and longer
development.

8. The ENPV is a very well-suited measure for drug development optimization at
the Phase2b/Phase 3 stage:

(a) With increased investments it balances between gains in PoS and increases
in costs and development times. As such it provides an optimal solution for
parameters such as the sample size.

(b) At this stage of development the ENPV is a relatively stable measurement,
and it can be updated based on learning that are internal or external to the
given product development.

(c) Itis a well-established parameter for internal decision making.

9. Considerations need to be given to the optimization at the portfolio level, since
decisions at individual program levels are interrelated due to budgets usually
being imposed at a higher, portfolio level.
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Chapter 7
Using Decision Analysis to Support the Design
of Clinical Trials Within a Program

Richard Nixon and Blair Ireland

Introduction

Drug development involves complex, high-value decisions with lasting conse-
quences. These decisions are made in the context of uncertainty, with information of
many different types and from many different sources. A project team making a deci-
sion regarding the development of a drug needs to structure and synthesize this infor-
mation in this context and come to a consensus on the best course of action.

Team decision-making often suffers from two systemic problems. The first
relates to process, where a potential cycle of decision-making in drug development
is for the team to consider one preferred course of action, collect arguments and
information to support this choice, and take the arguments to a senior decision-
making board. This board then rejects the plan without providing an alternative, and
the team has to start the whole process again, resulting in team frustration, develop-
ment delays, and increased costs.

Richard Nixon and Blair Ireland are employees of Novartis. The views expressed in this chapter
are the views of the authors and do not necessarily reflect the views of Novartis.

R. Nixon ()
Novartis Pharma AG, Postfach, 4002 Basel, Switzerland
e-mail: richard.nixon @novartis.com

B. Ireland
One Health Plaza, East Hanover, NJ 07936-1080, USA
e-mail: blair.ireland @novartis.com

© Springer International Publishing Switzerland 2015 105
Z. Antonijevic (ed.), Optimization of Pharmaceutical R&D Programs and Portfolios:
Design and Investment Strategy, DOI 10.1007/978-3-319-09075-7_7


mailto:richard.nixon@novartis.com
mailto:blair.ireland@novartis.com

106 R. Nixon and B. Ireland

A second problem in team decision-making is one of cognitive bias. Decision-
makers develop sophisticated heuristic capabilities that enable them to make quick
decisions in the moment. Unfortunately, these heuristics often lead to poor decision-
making when faced with highly complex situations. For example, satisficing
involves a bias that leads us to choose a decision once it is considered good enough,
rather than optimal, and the decision is reinforced by feeling good about having
made the decision. Protection-of-mindset biases also can lead decision-makers to
solve the problem they can rather than the problem they should.

Decision Analysis (DA) comprises a set of tools for structuring and quantita-
tively analyzing complex decisions. The framing and structuring elements of DA
encourage decision-makers to consider a wide range of decision alternatives, and
they help to overcome cognitive biases. The quantitative aspects break down com-
plex problems into simpler problems, which can be thought through and then
recomposed mathematically.

In this chapter, DA methods are applied to a case study in drug development.
A drug for a chronic disease is in phase IIb of development. One of the regulatory
requirements from the Pharmaceuticals and Medical Devices Agency (PMDA) in
Japan is to demonstrate that the dose response in Japan is the same as that in the
general population. The phase IIb study has been designed with this requirement in
mind; however, recruitment in Japan has been slower than anticipated. As a result,
it is predicted that the number of Japanese patients recruited when the required total
sample size is attained will be insufficient to meet the PMDA’s requirement. The
project team needs to assess the situation and decide how to proceed with the
registration strategy for Japan and the rest of the world.

Overview of the Decision Analysis Process

The six-step DA framework given by Matheson and Matheson [2] is used to address
the case study. They describe the framework as a chain, because the quality of the
whole decision is only as good as its weakest link.

1. Focus on the right questions: A decision hierarchy is used to identify issues to be
decided now, issues that have already been decided, and issues that can be
deferred until later. This helps give the decision-making team clarity on what
they need to decide.

2. Create varied, doable alternatives: The set of alternatives usually comprises a
set of interdependent decisions. A strategy table is used to map out possible
options for each decision and link these to viable alternative strategies.

3. Define the criteria for evaluating alternatives: The team must decide how they
value a decision. Essentially, what it is they want more of. In the example, the
development program should be completed cheaply, quickly and with high prob-
ability of success. As is commonly the case, these values are in tension; for
example, a strategy with a high probability of success likely will be expensive
and take time.
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4. Assess information and uncertainty.: An influence diagram is used to assess what
the team needs to know to link the decision alternatives with the criteria for
evaluating alternatives. The information needed for each criterion is identified
until a path is traced back to the decision or decisions. This path shows what
information is needed, and the information then is gathered and used to populate
a decision model. Elicitation techniques and conditional probabilities are used to
gather information for which there is no direct data.

5. Evaluate alternatives using sound models: When the conceptual model is com-
plete, a computer model is built. In the example, the computer model links clini-
cal trial simulation with market models. The model allows the value of each
alternative to be calculated and compared. In addition, sensitivity analysis of the
underlying assumptions and uncertainty in the information can be performed.
This can assess how robust a decision is to changes in assumptions and show
what the main factors influencing the decision are.

6. Stakeholders commit to implementation: The outcome is a succinct set of recom-
mendations that are based on a set of transparent assumptions and the results of
quantitative analysis, backed up by a decision audit trail, and provide the founda-
tion of a consensus for action by the team.

Case Study

The main purpose of a phase IIb study is to determine the dose-response relation-
ship of a drug, and so to inform the decision about which dose and regimen is most
likely to have the greatest clinical value. This “learning” stage of drug development
selects a dose to be taken into phase III, which is a “confirming” stage [6].

The PMDA requires that dose response be evaluated separately in Japanese
patients [4]. The guidelines are focused on phase III studies, but for this phase IIb
dose—response study, the biological effect of the minimum effective dose (MED) in
Japan is required to be the same as that of all patients in order for one active dose to
be taken into phase III. The MEDs in Japan and in all patients are accepted as being
the same if the point estimate of the ratio of the treatment effect in Japanese patients
and all patients is greater than 0.5.

If at the end of phase IIb, it has not been demonstrated that the MED in Japanese
patients is the same as in all patients, an option would be to take two active doses
into phase III and use this to assess whether the dose response is the same in Japan
as in the whole population. However, such a study would cost more and take longer
compared to a phase III study with just one active arm. Furthermore, this violates
the principle that the phase III study should be a confirming study, and the dose—
response relationship should be learned in phase IIb.

In this example, multiple doses of a drug along with a placebo arm are included
in the phase IIb study. This study, with 900 patients, has 90 % power to detect a
dose-response signal in the randomized population. The study is also designed to
estimate the MED required to obtain a minimum clinically meaningful difference
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between the drug and placebo. Of the 900 patients expected to be enrolled in the
study, at least 120 are planned to be from Japan. This would allow sufficient power
to demonstrate that the MED in Japan is the same as in the overall population.

The complication is that recruitment in Japan is slower than expected. This
means that when 900 patients have been recruited, a smaller-than-expected propor-
tion of them will be from Japan. At the observed recruitment rate in Japan, only 50
Japanese patients are expected to be recruited, which reduces the probability of
demonstrating that the MED in Japan is the same as the MED in all patients to 20 %.
Recruitment could be continued in Japan, until 120 patients are randomized, but this
would delay the global submission. The core dilemma facing the team is whether to
continue recruitment or to protect the global submission and perform a stand-alone
Japanese program.

Focus on the Right Questions

The first stage of a DA is to understand clearly what the decision-makers want to
decide. Typically, an early “core framing” meeting is held with a small group of key
decision-makers, for example the medical director and project leader. Brainstorming
of the key issues is performed, and these issues are sorted into decisions and infor-
mation. The distinction between these is that a decision is something you have con-
trol over, whereas information is something that you could influence by a decision
but have no control over. For example, the treatment effect of a drug could be influ-
enced by the inclusion criteria of patients in the study, but it is fundamentally a state
of nature that you cannot control.

Burman and Wiklund [1] make the important point that quantitative modeling
should be to support decision-making; hence, without a clearly defined decision,
one should not start such modeling.

A helpful tool to use for this step is a decision hierarchy. This categorizes deci-
sions into “givens,” “decisions for now” and “decisions for later.” Givens can be
decisions that are already made or restrictions due to policy or the environment.
For example, drug development is performed in a highly regulated environment,
and aspects of the program design that are required by the regulators fall into this
category. Decisions for now are the focus of the DA. These include near or long-
term strategic decisions, or near-term decisions that require significant resource
commitments. Decisions for later include (1) those that involve later significant
resource commitments, (2) decisions for specialists, and (3) operational or tactical
decisions.

In this example the decisions that are givens are shown in Table 7.1.

The following are decisions for now:

—_—

. Should the recruitment be extended in Japan until 120 patients are randomized?
2. If a stand-alone program is needed in Japan, what designs should be used for the
dose-finding study and the pivotal registration study?
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Table 7.1 Decisions that have already been made

Aspect Decisions made

Doses Any adaptation of the phase IIb study will keep all doses in the study. This is due
to the environmental constraint that the repackaging needed to add or remove a dose
would take several months and would require a substantial protocol amendment.
If the phase IIb study does not give sufficient information for the PDMA to decide
whether the biological effect of that of MED in Japan is the same as that of all
patients, then a separate dose finding study will be performed in Japan.
The global pivotal phase III study will have the same dose in all regions. If the dose
needed in Japan is not the same as in the rest of the world, then a stand-alone
pivotal study for Japan will be conducted.

Global If a Japan-only extension of recruitment is performed (to enable a sufficient number
phase III | of Japanese patients to be recruited), then Japanese patients can join the phase I11
study pivotal study if the MED in Japanese patients is the same as the global population.

The phase III program will not be put on hold for Japan dose selection.

Create Varied, Doable Alternatives
Strategy Table

There are three decisions to make. (1) Will the Japan recruitment be extended in the
phase IIb study to recruit the desired 120 patients in Japan? (2) If stand-alone studies
in Japan are required, how will (a) the dose-finding study and (b) the phase III pivotal
Japanese submission study be designed? The next stage of the process is to define a
range of options for each decision. There are two criteria for good options. Firstly,
they must be doable. Whilst creativity and out-of-the-box thinking is encouraged at
this stage, these must be tempered by pragmatism. Creativity can be encouraged by an
outside facilitator challenging established team dogma. This is balanced by pragma-
tism by performing this exercise with people who understand the practical limitations
of what can be done. Secondly, the options should span the full range of alternatives.
They should not be variations on the same theme; rather, they should cover the range
of feasible possibilities among which the decision-maker could consider choosing.
The set of options does not need to be exhaustive, and it is often suitable for the num-
ber of options for each decision to be between two and five. Options do not need to be
completely defined. At this stage it is enough to know only their salient features.

A strategy table is used to structure the decision options. For this example, Table 7.2
shows a strategy table in and details of the possible study designs are given in Table 7.3

The strategy table maps out the possible options for each decision. For this
example they are as follows:

1. Phase II: Should the recruitment be extended in Japan until 120 patients are
randomized?
* Recruit 50 JP patients: Recruit until the study has 900 patients, at which point
the number of patients from Japan is expected to be 50.
* Recruit until there are 120 JP patients: Once the study has 900 patients in
total, including 50 from Japan, continue recruiting a further in 70 patients in
Japan until 120 Japanese patients have been randomized.
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Table 7.2 Strategy table

If need stand-alone Japan studies
(1) Phase II (2a) Dose finding (2b) Phase III
Recruit 50 JP patients None None
JP stand-alone
Recruit to 120 JP patients in extension | Phase IIb two active arms Join global phase III at
Phase IIb three active arms | Tisk
Phase IIb/III two active arms

This maps out the possible options for each decision. The rows in a strategy table have no meaning.
Strategies are created by choosing one decision option from each column

Table 7.3 Details of the types of possible studies in the development program

Study Description

Global phase IIb Recruit until the study has 900 patients, at which point the
number of patients from Japan is expected to be 50.

Global phase IIb with Once the study has 900 patients in total, including 50 from

extended recruitment period Japan, continue recruiting in Japan until 120 Japanese patients

in Japan have been randomized

Japanese phase IIb with two A stand-alone Japanese dose-finding study with two active

active arms arms.

Japanese phase IIb with three | A stand-alone Japanese dose-finding study with three active
active arms arms.

Japanese phase IIb/III with An adaptive phase IIb/III study, which starts with two active
two active arms arms, and later drops one arm.
Global phase I1I Pivotal global phase III study with one active arm, including

patients from Japan.

Global phase III without Japan | Pivotal global phase III study with one active arm, but not
recruiting patients from Japan.

Japanese phase I1I Pivotal phase III study with one active arm, recruiting only
in Japan.

If the PMDA does not accept that the MED in Japan is the same as the MED in
all patients, based on the phase IIb study data, then stand-alone studies in Japan will
be needed. There are two decisions to make in this case.

2a. Dose finding: What should be the design of the stand-alone Japan dose finding
study?
* None: No study is performed.
* Phase IIb with two active arms.
* Phase IIb with three active arms.
» Adaptive phase IIb/III with two active arms.
2b. Phase III: What study should be done for registration in Japan?
* None: No study is performed.
» Japanese stand-alone phase III study.
* Join global phase III at risk, while any stand-alone Japan dose finding study
is still ongoing.
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Table 7.4 Table of alternative strategies

If need stand-alone Japan

studies
Phase 11 Dose finding | Phase III Pros Cons
Recruit 125 JP | None Join global | “Straw man.” In reality this option cannot
patients in core phase III happen as only 50 patients will be recruited in the
study core study. We also assume that JP is included in
global phase I1I for an ideal base case.
Recruit 50 JP Phase I1b Join global | Saves time and Likely needs stand-
patients three active phase Il at | money with JP in alone study. Risk JP
arms risk global phase III. dose not same as RoW.
Phase IIb/I11 None Saves time and Complex study design.
two active money.
arms
Phase IIb two | JP Does not affect Needs many JP
active arms stand-alone | global submission. | patients.
Recruit to 120 | Phase IIb Join global | Less likely to need | Could delay the global
JP patients in three active phase Il at | stand-alone JP submission.
extension arms risk program.
Phase ITb/111 None Less likely to need | Complex study design.
two active stand-alone JP
arms program. Cheap
and quick back-up
plan.
Phase IIb JP Less likely to need | Needs many JP
two active stand-alone | stand-alone JP patients.
arms program. Separate
back up plan.

The rows in a strategy table have no meaning. To create varied, doable alterna-
tives, strategies are created by choosing one decision option from each column. In
this case six different strategies are selected for consideration. In addition, as a
“straw man” the ideal case is also considered, i.e., where the initial plan to recruit
120 Japanese patients is successful. The motivation for the straw man case is to get
a set of baseline costs and times to compare with the other strategies and to make
differential comparisons of the other strategies to this ideal case. The ideal case, and
six different alternative strategies, along with some high level pros and cons for
each strategy, are shown in Table 7.4.

Decision Tree

A decision tree is a visual display of the different decision alternatives and possible
consequences. Each node in the tree can be one of three types: A decision node, rep-
resented by a square; an uncertainty node, represented by a circle, describing a pos-
sible consequence, which may or may not be influenced by a decision; and an end
node, represented by a triangle, at the point where the final consequences from the set
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Fig. 7.1 Decision tree

of decisions are assessed. These three elements of the decision taken together are the
decision basis; they describe what can be done, what is known, and what is wanted.

The decision tree for the case study is shown in Fig. 7.1. Not every decision
option is displayed explicitly as this would result in an unmanageably large decision
tree. Instead, the decision tree is collapsed but gives all the consequences that are
possible following each decision. The actual decisions made will influence the
probabilities of each possible consequence occurring.

The first decision is whether to extend recruitment. Following this there are three
possible outcomes.

* Firstly, the study team claims that the MED in Japan is the same as the MED in
all patients and the PMDA accepts this claim. If this occurs then Japanese patients
will join the global phase III study. Japanese patients will only join this study
when the PMDA accepts the claim.

e Secondly, the study team claims that the MED in Japan is different from the
MED in all patients and the PMDA accepts this claim. If this occurs then Japanese
patients will be recruited into a stand-alone phase III study in Japan.

* Thirdly, the PMDA rejects the claim made by the study team. If this occurs, it is
possible that the PMDA may stop the program in Japan and no approval from
Japan would be possible. However, if the program continues in Japan, a decision
has to be made regarding the design of the stand-alone Japanese dose-finding
study and whether Japanese patients should enter the global phase III study at risk.

In the case of the third outcome, the stand-alone Japanese dose-finding study will
be powered so that the claim made from it should be accepted. There are two pos-
sible claims:

* The MED in Japan is the same as the MED in all patients.
e The MED in Japan is different from the MED in all patients.
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In either of these cases, the decision about the design of the stand-alone Japan
phase III submission study needs to be made.

For each strategy, there are five possible paths through the decision tree that can occur.

It could be that the framing steps of focusing on the right questions and creating
varied doable alternatives are sufficient to bring clarity to the project team and the
DA can stop at this point. Albert Einstein captures this principle elegantly when he
quips, “The mere formulation of a problem is often far more essential than its solu-
tion, which may be merely a matter of mathematical or experimental skill.” Once
the problem has been framed, its quantification is a matter of obtaining data and
performing the appropriate calculations. Subsequent steps pertain to this.

Define the Criteria for Evaluating Alternatives

To quantify a decision, measurable criteria for evaluating the decision alternatives
must be defined. Crucially, each decision alternative should be measured against the
same criteria, and these criteria should measure what is ultimately of interest to the
decision-maker.

In drug development the key criteria are commonly cost, time, and probability of
the drug gaining marketing approval and reimbursement. In this example, these
criteria are used. “Cost” is defined as the total development costs from the phase IIb
study onwards (sunk costs are not included, as these can no longer be influenced by
future decisions). “Time” is the number of months until the last patient last visit
(LPLV) of the phase III study, which could be a different time in Japan from the rest
of the world if a stand-alone Japanese phase III study is performed. Probability of
marketing approval and reimbursement is assessed separately for Japan and the rest
of the world.

It is generally unlikely that any one alternative will be best according to all three
decision criteria. For example, an alternative that is more likely to succeed almost
certainly will cost more and take longer. Cost, time and probability are also such
disparate concepts that they may be hard to trade off in the mind of the decision-
maker. To help decision-makers understand the trade-offs among these three crite-
ria, a decision model that includes both development and market components is
used to combine cost, time and probability of success into an overall measure of
expected (i.e., probability-weighted) net present value (eNPV). The market model
for the drug predicts the market size (number of patients) and share (percent of
patients) over time in each region of the world. The longer it takes for the drug to be
marketed the smaller the predicted revenue, and this revenue is discounted by both
the probability of success and the rate of time preference for money. The cost of
development is then subtracted from this discounted revenue to determine the eNPV.

A weakness of this approach is that it uses the market model for a purpose for
which is it not intended. Such models are used primarily for making high-level
portfolio decisions and cash flow predictions. They are typically based on historical
analogues for similar drugs and order of market entry. In the market model used in
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this example, the predicted market share does not depend on drug efficacy, safety,
price or strength of evidence, so is unlikely to be reliable for making absolute preda-
tions of eNPV. Despite this, a market model is used to distinguish between the alter-
natives as the relative differences between the alternatives are likely to be robust.
Ultimately choosing the alternative with the highest eNPV is of interest, and errors
in its prediction likely affect all alternatives in a similar way.

Assess Information and Uncertainty

Having defined the alternatives and established how we will choose between them,
it is necessary to assess what information is needed to link the alternatives to the
criteria. Some of this information could be assumed to be known exactly, for exam-
ple the sample size of a study (which is actually a decision already made). But in
general this information is uncertain, and it needs to be quantified and incorporated
into the decision model.

Using Influence Diagrams

A useful tool to assess what information is needed is an influence diagram. This is
a directed acyclic graph (DAG) comprising three types of nodes: decision, uncer-
tainty, and value. These are conceptually the same as the decision, uncertainty and
end nodes of the decision tree. A DAG is a formal mathematical description of a
model and is used as a tool to structure the links between the nodes. The influence
diagram for the case study is shown in Fig. 7.2.

KEY: D Decision to be made O Uncertainty . Value —»  depend

JP = Japan, RoW = Rest of world, LPLV = last patient last visit, eNPV = expected Net present value, DR = dose-response

Fig. 7.2 Influence diagram
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Firstly, we denote value nodes by hexagons. These are the criteria that are used
to evaluate the alternatives, and they should ideally be placed at the right side of the
graph. The children of these nodes define what is needed to calculate the parent
node, and the directed edges linking the two denote the dependence between them,
which could be probabilistic or deterministic. In this case in order to find the eNPV,
it is necessary to know the expected cost of the program, the expected times to sub-
mission in Japan and the rest of the world, and the expected revenue from the mar-
ket model.

Secondly, the uncertainty nodes are denoted by ellipses. Knowledge of drug
development is used to assess what is needed to calculate each of the children nodes
from the children nodes produced by the previous step. The market model node is
known, so this is seen as a basic piece of information and needs no further children.
To find the expected cost of a development program, the cost of each possible path
through the decision tree and the probability of each path need to be known. Similarly,
the expected submission times are derived from the LPLV of the final study in a path
and the probability of that path. The path probabilities are found from the product of
all the probabilities on the path. To simplify the DAG we group these together in a
node. The total costs comprise the costs of each study. LPLVs are found from the
timelines of the studies. These uncertainty nodes, with no further uncertainty node
children, define the basic information that is needed to populate the decision model;
they include the cost and time to LPLV for each study, the probabilities of the PMDA
accepting claims, and the probability that a Japanese stand-alone phase IIb study
leads to the claim that there is a global MED. Sub-influence diagrams are drawn for
the cost and time to LPLV of a study, which depend on the sample sizes, number of
sites, recruitment rates, costs per patient, and time between studies. A list of the stud-
ies needed in the different alternative strategies is given in Table 7.3.

Finally, the decision nodes are denoted by rectangles, and they are linked to the
uncertainties which they influence.

All the information that is needed to populate the decision model is described in
Table 7.5. Some of this information is known exactly, e.g., the sample sizes and
other design features of the studies, but most of it is uncertain. The costs for the stud-
ies have already been estimated for budget calculations. Similarly the market model
for the drug has already been constructed, and outputs from this can be used. The
recruitment rates can be estimated from looking at historical rates, by region, from
studies in the same indication from an internal database. Uncertainty is expressed as
a plausible range of values, defined by the 10th and 90th percentiles of a probability
distribution over possible values. These ranges are elicited from expert opinion.

Using Conditional Probability
The probabilities of the PMDA accepting the claims are hard to elicit directly. These

are broken down into probabilities that are easier to elicit, and the required proba-
bilities are assembled using the rules of conditional probability.
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Table 7.5 List of information needed for the decision model. Study information (design,
recruitment, and costs) will be different for each study, and probabilities will differ depending on
the choice of studies
Information type | Details of information needed
Study design Total sample size
Sample size needed in Japan
Exposure time (weeks)

Number of sites in the study by region (North America, Europe, Japan, and
others)

Recruitment Proportion of sites active (start recruiting patients) at the start of the study
(by region)
Time in weeks for all sites to become active (by region)
Recruitment rate (number of patients per site per month)

Costs Cost per patient by region

Probabilities Probability that PMDA accepts the claim that the MED is the same in Japan
and the rest of the world

Probability that PMDA accepts the claim that the MED is different in Japan
and the rest of the world

Probability that the PMDA rejects claim

Probability claim that MED from the Japan stand-alone study is the Global
MED from phase IIb

Probability claim that the MED in Japan is the same as the MED in all
patients from a stand-alone Japanese dose range finding study

Probability of technical and regulatory success given a drug is in phase IIb
Market model Market size over time by region (number of patients)

Patient share over time by region (proportion of patients)

Price of drug per patient per day by region (adjusted for compliance)

Time preference discount rate

For example, the probability that PMDA accepts the claim that the MED is the
same in Japan and rest of world is the product of:

1. Probability that PMDA accepts the claim, given that this is claimed.

2. Probability that the phase IIb study claims MED is the same in Japan and the rest
of the world, given this is truly the case.

3. Probability that MED truly is the same in Japan and the rest of the world.

A key principle of elicitation is to elicit quantities that the expert has an opinion
on, and then use mathematical manipulations to map to the quantity that is needed
for the decision model [3]. These three probabilities are easier to understand than
their product, and different people have different expertise on each of these proba-
bilities. Probability (3) above is elected from an expert with knowledge of the phar-
macokinetics and pharmacodynamics of the drug. Probability (2) is a property of
the power of the study. Probability (1) is elicited from an expert with experience of
the PMDA.
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Evaluate Alternatives Using Sound Models
Decision Model Computation

The decision model was coded using the statistical programming language R-2.15.1
[5] on a Linux computing cluster. The computations are intensive and involve simu-
lating individual patients from several clinical studies under many different sets of
assumptions and hence were run in parallel. The influence diagram helps to struc-
ture the code. Figure 7.3 gives a high level flowchart of the computer code and has
a similar structure to the influence diagram.

Firstly, start with a decision alternative and a path though the decision tree. Read
off the study design details on this path, along with the recruitment rates and costs.
These are the inputs to the “study simulation” function, which returns the costs and
LPLV in Japan and the rest of the world for each study on that path. The object-
oriented nature of R is exploited when performing the study simulations. There is
only one study simulation function. Its input parameters can describe any of the
studies in the decision alternatives, and it returns the same data structure class for all
of these studies. This simplifies the task of simulating the different sets of studies
that make up each development program. Individual patient simulation is required,
as it may happen that a global phase III study which includes Japanese patients is
competing for patients with a Japanese stand-alone phase IIb study. To account for
this, it is necessary to keep track of when each site in Japan is recruiting in both
studies and adjust the recruitment rates accordingly.

Secondly, once the costs and times for each study in each path have been simu-
lated, they and the market model data are taken as inputs to the “program simula-
tion” function. This calculates, for each path, the total costs of all the studies in a
development program, the LPLV time of the last study to finish, and the NPV.

For each study

Cost
Study
sombaton }—4 LeLY i P

2
E
S

For each path

p cost
and LPLV in JP
& Row
eNPV

JP = Japan, RoW = Rest of world. LPLV = last patient last visit. NPV = Net present value

Fig. 7.3 Computer program flowchart
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Thirdly, the probabilities of each path through the decision tree are calculated,
and these, along with the outputs from the “program simulation,” are used as inputs
to the “program expectation” function, which returns the expected costs, times to
LPLV in Japan and the RoW, and the eNPV over the decision tree paths.

Fourthly, this process is repeated for each set of decision alternatives.

Results

Table 7.6 shows the results of the decision model. For each of the six decision alter-
natives, the expected incremental costs, times, and NPV, relative to the ideal case,
are shown. One wants an option with low extra costs, low extra time to LPLV, and
the least loss to eNPV. The results show that the choice to extend the recruitment of
the global phase IIb study in Japan is better than stopping the study when there are
enough patients for the overall study analysis. This option costs less, is quicker in
Japan and the rest of the world, and has the lowest eNPV loss. It is unusual for a
decision alternative to dominate on all value measures. As this is the case here, no
value trade-offs are needed.

For either choice of global phase IIb design, the choice of stand-alone Japanese
studies makes very little difference in terms of cost or time to LPLV in the RoW, but
an adaptive phase IIb/III stand-alone Japanese study leads to the shortest time to
LPLV in Japan, so it is preferred.

DA is not a “black box,” and performing it gives insights into why different deci-
sions affect desired values. Not extending Japan recruitment for the phase IIb study
will likely lead to stand-alone studies being needed, as the PMDA would most likely
not accept that the MED in Japan is the same as in the rest of the world. These stand-
alone studies are expensive and take a long time. Furthermore, not having Japanese
patients in the global program will cause delays for the global submission studies,
as recruitment will be slower without any sites in Japan. Conversely, having Japanese
patients in the global program slows down recruitment for the Japanese stand-alone
studies, as sites will be competing for the same patients. If the recruitment extension
is done for the phase IIb study, it is likely that the stand-alone Japanese studies will
not be needed, and the extra costs of this option are mostly due to the recruitment
extension itself. The expected value of the delay is due primarily to the probability
that a stand-alone program is needed.

The concept of expected (i.e., probability-weighted) costs, times, and NPVs can
be difficult to communicate, as it is not necessarily a result that might ever be
observed, but it is rather the probability-weighted average over all possible futures.
It is easier to understand the costs, times, and NPVs for one path through the deci-
sion tree, as this relates to something that could happen. To aid the communication
of the analysis, the costs, times, and NPVs for the likeliest path through the decision
tree for each decision alternative were derived. These results are not shown, but they
lead to the same decision as above.



119

7 Using Decision Analysis to Support the Design of Clinical Trials Within a Program

€ L
0C— €
1c— L
101- (43
IL= 81
8- 8y

(123p1 'SA QSN TMAD | (TB3PI "SA ‘SYIUOIA)
AdN uedey ATdT oWy

SN AN O | —|—

(3P 'SA ‘SYIUOIA))
MOY ATdTAWIL

L'L
8L
8L
0'sT
09¢
1'9C
(Teapt "sa ‘@sn 1A
180D
soInseaw anjea pejoadxyg

¢d Quofe-puels pue q7d df Wie g
€/47d SUO[B-pUR]S PAUIQUIO)

YsH Je £4-D utof pue qzd df we ¢
¢d Quofe-puels pue q7d Jf Wie g
€/47d SUO[B-pUBIS PAUIQUIOD)

S Je £4-D utof pue qzd df wie ¢
POpaau T SAIpMIS J[ SUO[B-PULIS

syuaned (z1 01
JINIOQI—UOISUIXF

syuaned (g
je doys—uarn)

qI1 9seud

A391eng

QAT)BUId)[E UOISIOAP [OBA J0J Sow0oIno pajoadxyg 9°/ dqey,



120 R. Nixon and B. Ireland

Prob of technical and regulatory success 0.2 T 0.4
Prob PMDA accepts claim JP-MED = G-MED in phase llb with 120 patients 0.8 U.Q__ 1
Recruitment rate in Japanize phase IIb/lll {pat/site/month) 0.72 _0.8 0.48
MNumber of sites in Japanize phase |Ib/Il a0 —?5 80
Cost per patient in Japanize phase lIb/lll (K USD) 53.4 YR 80.2
Peak share in JP (% patients) 7.2 g 1038
Attractivness of a phase |ll study compared to phase |l in Japan 1.6 2— 2.4
Prob PMDA accepts claim JP-MED = G-MED in phase llb with 50 patients 0.2 T 1]

Prob claim JP-MED = G-MED in phase |lb with 120 patients (assuming same) 0.7 R 09

Prob PMDA accepts claim JP-MED <> G-MED in phase |lb with 50 patients 0.2 o 0
Number of Japan sites in global phase IlI 72 o 108

Prob truly JP-MED = G-MED 08 o 1

Total number of sites in global phase IlI 540 750 360
Recruitment rate in phase Il in JP (pat/site/month) 0.6 O.E 0.9

Peak share in US (% patients) 4.8 o 7.2

Time for all sites to become active in phase 3, not in Japan (weeks) 48 60_ 72

Prob PMDA accepts claim JP-MED <> G-MED in phase |lb with 120 patients 0.8 X 1

Cost per patient in US/JP in phase IIl (K USD) 37.2 T 248

Cost per patient in EW/RoW in phase Il (K USD) 216 2?— 324
Recruitment rate in phase |ll in NA (pat/site/month) 1.2 ] 0.8
Recruitment rate in phase Il in EU {pat/site/month) 1.2 —1 0.8

Cost per patient in US/JP in phase |Ib extension (K USD) 51.6 za 34.4
Recruitment rate in phase Il in RoW (pat/site/month) 1.2 B 08

Peak share in EUS (% patients) 3. 13,3-84'?

35 40 45 50 55 60 65

eNPV (Million USD
Low ( )

W High

Fig. 7.4 Tornado plot of a one way deterministic sensitivity analysis, looking at the difference
between the alternatives of (a) recruit 50 Japanese patients and (b) recruit to 120 Japanese patients
in extension, both with a combined stand-alone P2b/3 study performed in Japan if needed

A key feature of a decision model is that it allows for uncertainty in the underlying
assumptions to be represented and for the implications of that uncertainty to be
assessed. A one-way deterministic sensitivity analysis on the model is performed,
where each uncertain parameter in the model is changed, one at a time, to its upper
and lower limits (10th and 90th percentile values), and the value (criteria) measures
recalculated. For each possible parameter value, we calculate the incremental eNPV
for (a) extending the recruitment of the global phase IIb study compared to (b) not
extending the recruitment (with an adaptive phase IIb/III stand-alone Japanese
study if needed). If this difference is positive then the recruitment extension is the
preferred option, given the particular value of the uncertain parameter. The results
of this sensitivity analysis are displayed in the fornado diagram in Fig. 7.4. The names
of the uncertain parameters are shown down the left side, and each bar represents
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the effect on differential eNPV when that parameter is varied. The base case value
for each parameter is shown under the bar, and the limits are given at each end of the
bars. The bars are centered on the base case eNPYV, and the ends of the bars are the
eNPVs found at the parameter value limits. This shows us two important things.
Firstly, the decision is most sensitive to parameters at the top of the plot, as these are
the ones whose uncertainty has the most effect on the eNPV, and where it is most
valuable to use resources to find more information. In this case the probability of
technical and regulatory success is the most important uncertainty. Conversely,
uncertainties such as the phase III recruitment rate have very little effect on the dif-
ferential eNPV. Secondly, it is seen that in every case the differential eNPV is posi-
tive, so it is always best to extend the phase IIb study. This is stress-testing the
robustness of the decision, and it can be used to identify situations that would lead
to a different decision being preferred. A key principle of the value of information
is that information only has value if it changes your decision. In this case, as reduc-
ing the uncertainty on any parameter would not change the decision, there is no
value in collecting further information.

Stakeholders Commit to Implementation

A decision is not made until resources have been irreversibly committed. The final
step is to gain the approval of the decision-maker to implement the recommenda-
tions from the DA. It is therefore vital that the decision-maker trusts the analysis.
Two key ways to build this trust are to closely involve the decision-maker during
each stage of the DA and to ensure clear communication of the analysis and final
recommendations. A further way to build this trust is to repeatedly exposure the
decision-maker to the DA paradigm over time.
In this case study the key recommendations were to:

* Extend the recruitment in Japan for the phase IIb study to ensure the recruitment
of 120 patients in Japan.

Amongst the possible decision alternatives, this leads to the quickest time to
submission in all markets. Even though Japan would join the global phase III study
after it has started, this delays LPLV less than not joining at all. It is also the cheap-
est option because it reduces the probability of needing a Japanese stand-alone pro-
gram. This means it has the highest eNPV (because it is quicker and cheaper).

* Plan for a phase IIb/III Japanese stand-alone study in case it is needed.

If the PMDA rejects the MED claim from the global phase IIb study, this adap-
tive design leads to the quickest time to submission in Japan and costs about the
same as the other options, hence it has the highest eNPV.

The team accepted and acted on these recommendations.
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Chapter 8

Indication Sequencing for a New Molecular
Entity with Multiple Potential Oncology
Indications
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BC Metastatic breast cancer
DPL Decision programming language by syncopation

eNPV  Expected NPV, a probability weighted average of all possible NPV

outcomes, including technical risk

G-BA Gemeinsamer Bundesausschuss (Federal Joint Committee, the supreme

decision-making body of the healthcare system in Germany)
1P Intellectual property

IQWiG Institut fiir Qualitdt und Wirtschaftlichkeit im Gesundheitswesen (scien-
tific unit that assess effectiveness, quality, and efficiency of diagnostic

and therapeutic methods and pharmaceuticals in Germany)
MM Multiple myeloma
MODA  Multiple objective decision analysis

NPV Net present value, a sum of discounted cash flows over a defined time

horizon using an agreed upon discount rate
NSCLC Non-small-cell lung cancer
PC Prostate cancer
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PD Pharmacodynamics
PK Pharmacokinetics
POS Probability of success (technical success for a phase)

PTD Patient treatment day
PTRS Probability of technical and regulatory success (combined POS for all

phases)
PV Present value
RA Rheumatoid arthritis

R & D  Research and development

Assess and manage risk.
Make better decisions.
Create value.

In this chapter, we address portfolio optimization at a sub-portfolio level. Even a
“mini” portfolio—such as a single molecule with numerous indication opportuni-
ties—can pose a significant challenge to an organization; there are many interde-
pendencies, correlations, and synergies to consider, weigh, and trade off. Here we
present a case study that considers the challenge of optimizing this sub-portfolio by
determining the best sequence of three potential indications. The same methods can
be applied to a molecule with even more indication opportunities, a group of related
molecules, or an entire portfolio.

Introduction

Every pharmaceutical or biotechnology company aims to maximize the value of a
new molecule. One common strategy involves securing, early on, the intellectual
property (IP) rights for a variety of potential indications in which there is a hint of
effectiveness. But once a company has been granted a patent for multiple
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indications, what is the best development strategy for the molecule? Here are three
interesting and real conundrums related to indication sequencing.

Situation 1: Avastin® is approved for use in Metastatic Colorectal Cancer (US: 2004;
EU: 2005), Advanced Non-Small-Cell Lung Cancer (NSCLC; US: 2006; EU:
2007), Metastatic Kidney Cancer (US: 2009; EU: 2007), Glioblastoma (US: 2009),
Metastatic Breast Cancer (US: 2008—Revoked in 2011; EU: 2007), and Advanced
Ovarian Cancer (EU: 2011); tested in Unresectable Gastric Cancer, Nonmetastatic
Colon Cancer, Pancreatic Cancer, Pediatric Osteosarcoma, Leiomyosarcoma, Age
Related Macular Degeneration, and potentially others. A very successful product;
however, were there opportunities for an even more efficient sequence? Were there
hints earlier on in development that Metastatic Breast Cancer was a high-risk indi-
cation that should have been deprioritized?

Situation 2: Topamax® (topiramate) was approved to treat Epilepsy in adults and
children (US: 1996), then Migraine (US: 2004) but eight years after the first indica-
tion and only two years prior to patent expiry; additionally, in 2010, Ortho-McNeil
was fined $6.14 million by the FDA for promoting Topamax to treat Psychiatric
Disorders without applying for any Federal government approval. In 2012, as a
generic, topiramate in combination with phentermine received approval for Weight
Loss. Was there an opportunity for another indication(s) that was not appropriately
considered early on in development?

Situation 3: Remicade®, Humira®, Enbrel®, Orencia®, Stelara®, and Simponi® have
all been approved as biologics for use in various inflammatory conditions (among
other products). Remicade® was first approved in Crohn’s Disease (followed by five
other indications), Humira® was first approved in Rheumatoid Arthritis (RA; fol-
lowed by six other indications), Enbrel® was first approved in RA (followed by four
other indications), Orencia® was first approved in RA (studied in various other indi-
cations), Stelara® was first approved in Moderate to Severe Plaque Psoriasis (fol-
lowed by Psoriatic Arthritis), and Simponi® was first approved in RA (followed by
two other indications). Four of these six were initially approved in RA. Enbrel® was
the first to receive approval in RA, but was that indication the right launch strategy
for the other three? Was not launching first in RA the right strategy for Remicade®
and Stelara®?

Whether the decision is about which indication should be (a) the focus in assess-
ing efficacy and safety in the first exploratory Phase Ila study, (b) the first submitted
for regulatory approval, or (c) the focus of initial negotiations regarding reimburse-
ment and market access, each pharmaceutical company decides on the sequence for
evaluating and launching into the potential indications. Additionally, many New
Product Development Teams struggle with the following questions:

* How should we optimize the sequence of developing follow-on indications?

* Should we consider each indication as a separate project, independent of the
other indications?

* What should we assume about launch date, wholesale price, effect on the sales
force, probability of success?
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e Is the complete value of the molecule simply the sum of the individual
indications?

Using an Oncology case study, we illustrate and compare three different
approaches for choosing the sequence of indications to pursue for a molecule’s
development program:

1. Simple (Indication) Ranking Method
2. Decision Tree Method (analysis at the molecule level)
3. Multiple Objective Decision Analysis (MODA)

Case Study Background

A potent new Oncology drug candidate (BRT104) has shown tremendous promise
in preclinical studies and is currently being assessed within a Phase I first-in-human
trial. The company has a significant amount of experience in oncology drug devel-
opment, a strong field force, and an existing portfolio of products in Oncology.
Based on a multidisciplinary team analysis, three Oncology indications are judged
to be scientifically, medically, and commercially most promising: Multiple Myeloma
(MM), Metastatic Breast Cancer (Stage IIIc/IV; BC), and Prostate Cancer (PC).

Management has made a policy decision (a decision that is not to be questioned)
that only one indication will be developed at a time for BRT 104, in order to mitigate
the R & D cost impact in any one year and reduce the risk associated with investi-
gating a new mechanism of action (i.e., only one Phase II trial will start in any given
year). Therefore, the second indication would launch 1 year later, and the third
indication would launch two years later.

Simple Ranking Method

The most common decision making method involves a product development team
selecting the initial indication by simply ranking each indication on selected key
measures; these measures should be aligned with the company’s objectives. This
method can be quite simple, relying on as little as one measure (e.g., Net Present
Value; NPV) or slightly more complex. For this case, as shown in Fig. 8.1, seven
distinct measures were developed, each of which supports one of the top level com-
pany objectives of Strategic Fit, Technical Risk, Commercial Potential, or Financial
Health. The New Product Development Team assessed these measures for each of
the three indications being considered.

Figure 8.1 reflects an example of how the Simple Ranking Method can be
applied. To conduct an indication sequencing analysis, using any of the three meth-
ods, requires a significant amount of research, market understanding, and clinical
foresight. A wide variety of sources, both internal and external, should be utilized to
collect data relevant to each indication with respect to the desired metrics. For our



8 Indication Sequencing for a New Molecular Entity with Multiple Potential Oncology... 127

- Strategic Fit Technical Risk Commercial Potential Financial Health

ficicaton Degree of Unmet Risk Remaining Market Size Peak Sales NPV ($M) A dBJ::(e d
Medical Need * (PTRS) R&D Cost (M)  (Patients, US) ($M) NP]V (M)
LIS 5 25% ~ $200M ~ 22,500 ~$540M  ~$600M  ~$130M
Myeloma ’
Metastatic
Breast 8 15% ~ $150M ~ 45,000 ~ $1,000M ~ $1,400M ~ $190M

Cancer

Prostate o
2 7.5% ~ $250M ~ 195,000 ~$1,700M & ~$2,500M ~ $175M

Fig. 8.1 Simple ranking method. List of measures and the assessment/data for the three indica-
tions: green indicates highest scoring, yellow is second highest, and red is lowest; *scale of 1 (low)
to 10 (high). Degree of Unmet Medical Need was based on 5-Year Survival Rates and other inter-
nal expert assessments. Remaining R & D Cost assumes Phase II/I1I studies for registration, addi-
tional preclinical studies, and cost of regulatory filing, but no additional Phase IIIb/IV studies for
Market Access (shown as NPV in $M); discounted value shown. Data was collected through a
variety of internal and external sources including leading cancer Web sites [1-4]

case study, the National Cancer Institute and American Cancer Society Web sites,
among others, were leveraged to determine the Degree of Unmet Medical Need
(based on 5-Year Survival Rates) and Market Size (Patients, US). While data driven
measures are desirable, subjective assessment by approved experts may be needed.
There is significant value in assessing these key measures, but the correct choice for
the team is not at all clear.

Should the company choose to develop BRT104 for Multiple Myeloma because
the molecule has the best chance of launching in that particular indication (i.e.,
highest assessed PTRS—Probability of Technical and Regulatory Success), for
Metastatic Breast Cancer because it offers BRT104 the greatest opportunity to align
with the company’s objective of addressing high unmet medical need (while seren-
dipitously requiring the lowest upfront investment for R & D), or for Prostate Cancer
because it is the indication that provides by far the highest peak sales, potential
NPV, and even risk-adjusted NPV? Clearly, the use of a Simple Ranking Method
presents a lot of information and insight, but does not effectively support the deci-
sion and presents the team with certain limitations (see below).

Simple Ranking Method: Open Questions

» Is the company’s objective (a) to select the best indication, or (b) to maximize the
value of the compound through an optimized sequencing of indications?

o If the “Best” indication is selected, what assumptions should be made regarding
the sequencing of follow-on indications and the overall value of the molecule?

*  When one indication scores highly on some measures and other indications score
highly on other measures, which measure(s) is most appropriate to utilize for
selecting an indication?
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» If point estimates are used, how valuable are the estimates, given the early stage
of the molecule (e.g., how confident are we in an NPV estimate when BRT104
has completed only Phase I)?

Decision Tree Method

A second, more holistic decision making approach, addresses some of the questions
raised in the Simple Ranking Method; it leverages decision analysis principles to
improve decision quality and structure the problem using a Strategy Table, and an
Influence Diagram/Decision Tree.

The focus shifts from evaluating the development strategy for an initial indica-
tion (the limited focus of the Simple Ranking Method) to the three-indication launch
and lifecycle management strategy. Such a method generates much greater insights
and helps the team develop a coherent long-term product strategy. However, it also
adds complexity to the decision. In this example, the assessment and decision are
made purely on the basis of expected NPV of the molecule, although other objec-
tives and associated measures could be leveraged.

For our Case Study, a Strategy Table was developed (Table 8.1) to outline three
coherent indication sequencing strategies (i.e., molecule development strategies) for
BRT104: Cheapest First (Metastatic Breast Cancer first), Easiest First (Multiple
Myeloma first), and Biggest First (Prostate Cancer first). The strategies were devel-
oped by the project team to be differentiated, and simple names were used to
describe the major drivers of the strategies.

Using the Strategy Table, the team could include interdependencies between the
three indications and make some molecule level assumptions for BRT104:

» Pricing of the first indication sets pricing for all subsequent indications (note: in
a more advanced version of the analysis, a fourth strategy could also include
additional health economic studies to justify a higher price for a second or third
indication, even if a lower price was given initially for the first indication).

Table 8.1 Decision tree method: strategy table

Elements of strategy Strategy level data

First Second Third Year of PTRS of first | Pricing
Strategy indication |indication |indication |first launch |indication (%) |($/PTD)
Cheapest first BC MM PC 2018 15 350
(low cost)
Easiest first MM BC PC 2019 25 450
(best chance)
Biggest first PC BC MM 2018 7.5 250
(go for the gusto)

Three strategies are shown (each strategy =indication sequence), along with examples of key data
for assessing the strategies; MM =multiple myeloma, BC=metastatic breast cancer, PC =prostate
cancer, PTD =patient treatment day



8 Indication Sequencing for a New Molecular Entity with Multiple Potential Oncology... 129

* Development of the other indications would continue regardless of success or
failure of the first indication (note: in a more advanced version of the analysis,
the PTRS of subsequent indications could be modified based on the success or
failure of the first indication if the team feels that there is some interdependencys;
for example, there might be a common safety risk, PK or PD properties that are
inadequate for any of the indications).

* Regardless of sequencing, the patent for BRT104 would expire in 2028; there-
fore, pursuing the Easiest First strategy, with a 2019 Launch Date, would result
in one less year on the market.

What’s important to recognize is that the Decision Tree Method combined with
generation of a Strategy Table already helped the team think about BRT104 objec-
tives at a molecule level, something that was missing during the utilization of the
Simple Ranking Method. In this example, we chose to maximize the overall NPV of
the molecule. Following the creation of an aligned Strategy Table, the team moved
to develop an Influence Diagram (Fig. 8.2). The Influence Diagram shows a high-
level relationship of the three strategies and the associated values and uncertainties.
It also forms a straightforward schematic for the development of a more powerful
decision analysis model.

The base values and associated level of uncertainty for each of the key variables
were then determined. Uncertainty was incorporated using the 10th (low), 50th
(base), and 90th (high) percentile values. For this Case Study, the key variables
included the Probability of Success (POS) of the Phase Ila trial, the Pivotal Trials,
and the Regulatory submission, giving an overall Probability of Technical and
Regulatory Success (PTRS). This also allowed for the consideration of scenarios
where investment in R & D is made without any return (e.g., indication fails in Pivotal

Phase lla Pivotal Trials Regulatory Market
— = —— Success

Timing

Indication Sequence 7
Strategy {

PC 2> MM 2 BC

MM 2 BC 2 PC

BC 2 MM 2 PC

Total Expected
NPV

Fig. 8.2 Decision tree method: influence diagram. The key variables (technical risk, market suc-
cess, price) and their relationship to the three strategies to be evaluated; alternatively, what influ-
ences Total Expected NPV, what influences those factors, and how selecting one of the three
strategies influences Total Expected NPV. Green ovals represent outcomes with an associated
uncertainty (e.g., the uncertainty of a positive outcome of a Phase Ila Trial in MM), while the blue
boxes represent numerical values or calculations (e.g., Price); MM =multiple myeloma, BC =met-
astatic breast cancer, PC=prostate cancer. DPL 7.0 (Decision Programming Language 7.0,
Syncopation Software, Concord, MA) was used to model the Influence Diagram
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Probability of Success
Total

PGS Launch 1 Yr Launch 2 Yr Launch

Now Delay Delay

Multiple o o Multiple
50% 55% 0.8-1.2-1.6 0.6-0.9-1.2 0.5-0.8-1.1

Metastatic Metastatic
Breast 35% 50% 85% 15% Breast 2.2-2.8-3.4 1.6-2.1-2.6 1.5-1.8-2.2
Cancer Cancer

Prostate o Prostate
25% 40% 75% 7.5% 4.6-6.8-9.0 3.5-5.1-6.8 3.0-4.5-6.0

Fig. 8.3 Decision tree method: technical risk and commercial uncertainty. (a) (Left) Probabilities
of Success (POS) shown for each stage of the development pathway, for each indication, along
with Total PTRS (Probability of Technical and Regulatory Success). Success in any one stage is
assumed to mean achieving endpoints which would support the Target Product Profile; (b) (Right).
Values at the 10th, 50th, and 90th percentile for each Indication shown for Market Success (Total
Volume). Values are shown for Base Case launch timing, one year delay, and two year delay, which
depend upon the sequencing. Select variables are shown for illustration

Phase Pivotal
lla Trials

Regulatory

Market Success (PeakVolume, M PTD)
10"- 50""- 90" Percentiles

90%

100% 1
90% 1
80% 1
70% 1
60% 1
50% 1
40% 1
30% 1
20% A
10% 1

O% T T T T T 1
$1,000 $0 $1.000 $2,000 $3,000 $4,000 $5,000

Net Present Value ($M)

$364M

— Cheapest First

— Easiest First
eNPV

- Biggest First

Fig. 8.4 Decision tree method: analysis. Cumulative distribution of the eNPV values of the three
strategies

Trials and never reaches Regulatory Filing). In addition, commercial variables
included an overall measure of Market Success (Peak Volume) and associated Price.
Figure 8.3a, b shows examples of data used to assess the variables in this Case Study.

Once all of the values and associated uncertainties were assessed, we incorpo-
rated them into the decision tree model. In this particular Case, the Indication
Sequence Strategy with the greatest (eNPV) would give an expected NPV of $387M
(eNPV of $387M for BC-MM-PC (Cheapest First), eNPV of $382M for MM-BC-PC
(Easiest First), and eNPV of $364M for PC-BC-MM (Biggest First)).

Launching BRT104 first in Metastatic Breast Cancer followed by Multiple
Myeloma and, Prostate Cancer, yields the highest expected NPV for BRT104. While
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these figures represent the eNPV of each strategy, the distributions around these aver-
ages represent the hundreds or thousands of possible scenarios that may surface from
the sequencing decision and the associated uncertainties following that decision.

For example, Fig. 8.4 shows that no one strategy is completely dominant over
the other two strategies. The Cheapest First strategy does have the slightly high-
est expected NPV and it has the highest chance of generating a $2B return
(16 % compared to 8 % for the other two strategies. However, the Biggest First
strategy has about a 7 % chance of generating more than $3B in NPV, while the
other two strategies have a less than 1 % chance of doing so. Hence, the “Go for
the Gusto” motto was presented for this strategy. Therefore there is no dominating
strategy of the three being analyzed.

Decision Tree Method: Limitations

The Decision Tree method addresses many of the shortcomings of the Simple
Ranking Method, but still leaves several unresolved issues:

* Commercial value of indications at significantly early prior to proof of concept
and more than 5 years out are difficult to estimate and involve a high degree of
uncertainty. In our opinion, a $5M difference in eNPV is immaterial, and, in this
case, should not drive an important decision.

* A Decision is being made based solely on one financial objective (in this case
Long Term Value) ignoring other nonfinancial objectives such as strategic fit,
unmet medical need, or other financial objectives such as long term revenue
growth (CAGR). The decision maker is forced to “guess” about a strategy’s
alignment with these non-assessed objectives.

Multiple Objective Decision Analysis (MODA) Method

The most comprehensive approach available to pharmaceutical companies today is
Multiple Objective Decision Analysis (MODA) [5, 6]. MODA integrates multiple,
often competing objectives, when assessing the value of a compound and different
strategies for that compound. These objectives can be financial in nature, as dis-
cussed above (e.g., eNPV or top-line revenue); in a growing number of earlier stage
pharmaceutical situations, they are largely nonfinancial (e.g., align with corporate
strategy, maximize patient centricity, address the greatest unmet medical need). The
MODA Method involves seven key steps, which allow for the multi-objective
assessment and comparison of different strategies:

1. Identifying the desired objectives
2. Structuring objectives into a hierarchy
3. Developing a measure and value function for each objective
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Assigning weights or relative importance to objectives

Developing creative molecule strategies

Assessing each strategy on each objective

Including technical risk and investment

Conducting an analysis to identify the best strategy (or produce a better hybrid
strategy)

XN

Often, teams responsible for molecule development are multidisciplinary and
global in nature, adding to the inherent complexity of decision making. A well-
facilitated workshop(s) focused on elicitation of corporate and disease area objec-
tives helps stimulate discussion and align the organization and key stakeholders on
achievable and measurable objectives that are relevant to the compound.

In this Case Study, a multidisciplinary team identified objectives for BRT104
through focused facilitated workshops (Step 1). While Commercial Success was cer-
tainly the main objective, there were others of significant importance. The company
intended to grow its presence in Europe, and also to ensure Strategic Fit with the cur-
rent product portfolio and corporate vision. A team of functional experts (e.g., phar-
macologists, clinicians, marketing experts) assisted in developing suitable measures
aligned with each overarching objective, using molecule level information (as opposed
to only indication level information). For example, the team determined that Strategic
Fit of BRT104 could be measured by assessing how much each development strategy
Emphasized Primary Care and Maximized Leadership in Oncology. Objectives, sup-
porting objectives, and measures were then organized using an Objective Hierarchy
(Step 2) to facilitate visual clarity of objectives. In some cases, multiple but nonover-
lapping measures of a particular overarching objective were needed due to the breadth
of the objective. Figure 8.5 shows the final set of objectives and measures.

A critical and often difficult part of this phase is identifying an adequate measure
of a qualitative objective. A Value Function shows the relative value of achieving one
level of a particular objective/measure (here, European Presence). For example,
Fig. 8.5 shows how achieving Market Access in 60 % of Europe (measured as the %
of total PTDs in Europe) would provide a value of 7.5 (scale from 0 to 10), while
achieving 30 % might only provide a value of 2. In this fashion, the value function
reflects the objectives of the company. It also provides insight about the key inflec-
tion points in the development or commercialization of the product; for example, this
value function shown below suggests that a 30 % drop in EU Market Access—which
is approximately the equivalent of losing Germany or the UK—would have a much
more detrimental impact on the value to the company if that drop occurs from 60 to
30 % (a decrease of 6 on the value scale) than a drop from 90 to 60 % (a decrease of
2 on the value scale). Such insight generates additional multidisciplinary discussion
and brings forth alternate strategies to be further evaluated. For example, one might
foresee a strategy that incorporates one or two additional Phase II studies to satisfy
the requirements of G-BA/IQWiG and secure German market access—especially if
it appears that without the study, the access would only be at the 30 % level.

Some value functions were less complicated than that for % Europe with Market
Access by 2020. Figure 8.6 shows two additional examples of Value Functions in
addition to the one shown in Fig. 8.5; this includes a linear function and a stepwise
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Fig. 8.5 MODA method: objective measurement and weighting. Management agreed-upon objectives,
along with the associated weights for each objective (in parentheses). The breakout shows a Value
Function for one of the objectives and measures—Percent of Europe with Market Access by 2020

or ladder function with only three levels for scoring. In all cases, the measure must
be very well defined to avoid subjective scoring and to improve the communications
achieved through these measures. For example, the measure Improvement and
Innovation over Standard of Care has three categories. Each category must be quite
well described so that the team members and management agree on what Moderately
Increase means and how it differs from Significantly Increase. The category discus-
sions also help drive the value assessment for achieving each of the categories.
Next, the Management team considered the relative importance of one objective
over the other, assigning weights (Step 4; the relative contribution of each objective
to the overall value). Figure 8.5 also shows the result of a second workshop which
was focused on Steps 3 and 4 of the MODA Method. It is important to delay the
weighting conversation with management until the measures have been completely
agreed upon. The discussion of measures provides a definition of what is meant by
each objective. Without such definition, stakeholders can easily talk past each other
regarding what they think is meant by each objective. In some cases, having the
measures in front of them dramatically changes their views of relative importance.
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Fig. 8.6 MODA method: objective measurement and weighting. Three types of Value Functions
are shown for three of the objectives and measures described in Fig. 8.5. Maximize Market Access
in European Markets: Curve, Maximize Total $ Sales by 2025: Linear, Maximize Leadership in
Oncology: Ladder

Table 8.2 MODA method: strategy assessment

Commercial Unmet European
Objective— success medical need | presence Strategic fit
Measure— Total $ sales Disease % Market Primary care | Leadership
(present value) | impact access in EU | emphasis in oncology
by 2025°
Cheapest first | ~$5,700M 13.5/30 20 None Significantly
increase
Easiest first ~$6,600M 13/30 60 Medium Moderately
increase
Biggest first ~$5,700M 11/30 40 High Maintain

Three strategies are shown (Strategy =Indication Sequence), along with the assessment of each
strategy along the six objective measures for four objectives
*Assumes that all three indications succeed; is not risk adjusted

In our example, Management determined that the most important objective for
BRT104 was Commercial Success (40 % weighting), followed by European
Presence (25 %). This discussion had to include a comparison of the range of PV of
Total Success by 2025 vs. the range of % European Presence.

By incorporating this functionality, the MODA Method is considerably more
comprehensive than the example Decision Tree Method, which is completely based
on Long Term Financial Value (eNPV). Here, a strategy could provide the slightly
lower NPV and still become the “Best” due to its alignment with other objectives.
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Strategy Value

Biggest First 0.45 I

Easiest First 0.62 I

Cheapest First 0.45 I

Commercial Unmet European Strategic
. Success . Medical Need . Presence [ Fit

Fig. 8.7 MODA method: valuation. Three strategies are shown with the cumulative value according to
the sum of the values of each objective (see Table 8.2 for values of each measure). The length of the bar
shows the level of value contribution from each objective (standardized to a value between 0 and 1)

Each strategy was assessed on its ability to achieve each objective by objectively
comparing the strategy characteristic to the measures (Step 5). Table 8.2 shows the data
for each measure. Note that some of these strategy characteristics are arrived through

1. Simple summing of indication level characteristics

2. Assessing the lowest, highest, or average of all indication performances, depend-
ing upon the measure, or

3. Calculating a complex combination of indication characteristics (such as the
decision tree analysis)

Experts in the Therapeutic Area are needed to ensure the competition aspect,
future market demand, and other TA specific assumptions are part of the assessment.
Once the Strategy-level characteristics are known, estimated, or calculated, appropri-
ate values were easily determined using value functions shown in Figs. 8.5 and 8.6.

Before including technical risk into the assessment and analysis, we calculated
the overall non-risk-adjusted MODA value for each strategy. This value is a combi-
nation of several financial and nonfinancial measures. Figure 8.7 shows the cumula-
tive valuation of the three strategies under consideration. Interestingly, the inclusion
of nonfinancial objectives and their associated measures resulted in the recommen-
dation of a different strategy compared to the Decision Tree Method, as well as a
richer and more insightful discussion.

The desire to address European Presence clearly drove the differentiation of the
Easiest First strategy (starting with Multiple Myeloma). The team felt that BRT104
had a very strong case for high market access in Multiple Myeloma, but less so in
the other two indications. At this point, it would be appropriate to discuss this impact
of European Presence with the Project Team, possibly conducting a sensitivity anal-
ysis of the weight assigned this Objective.

As with all R & D assessment and decision making, omitting the impact of tech-
nical risk is unrealistic and misleading. To accomplish Step 7, the MODA assess-
ment was automated to allow for immediate assessment of all potential outcomes
for each strategy. In other words, each strategy could have the following outcomes.

Outcome Type 1: All indications succeed (in the order shown for each strategy).

Outcome Type 2: All indications fail.
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Strategy Value

Biggest First 0.49 I
Easiest First 0.66 NN
Cheapest First 0.51

Commercial Unmet European Strategic
- Success L Medical Need . Presence = Fit

Fig. 8.8 Risk-adjusted MODA method: valuation. Three strategies are shown with the cumulative
expected value according to the sum of the expected values of each objective (see Table 8.2 for
values of each measure). The length of the bar shows the level of value contribution from each
objective (standardized to a value between 0 and 1)

Outcome Type 3: Two indications succeed, one indication fails (this could occur
three different ways since we have three different indications).

Outcome Type 4: Only one indication succeeds, the other two fail (this could
also occur three different ways for each strategy).

Therefore, each strategy could have eight technical outcomes, assuming Success
or Fail are the only outcomes for each strategy. The probabilities for each outcome
were calculated and applied to the MODA values. MODA values have to be recal-
culated—e.g., if one indication fails while the other two succeed for a strategy, the
MODA value should be lower since only two indications reach the patients and
MODA values for each objective may change.

After applying all probabilities to all outcomes, and recalculating the many
MODA values (automatically), we then calculated the overall expected MODA for
each strategy giving us the chart shown below in Fig. 8.8.

This result is in contrast to a recommendation of the Cheapest First strategy
when using a risk-adjusted financial measure alone (i.e., Decision Tree Method),
which, although drives the highest risk-adjusted NPV, sacrifices Market Access in
Europe. We see in this chart a simple comparison of three strategies with quite com-
plicated underlying calculations. While the computations may be complex, the
focus is always the same; use agreed upon measures and preferences to assess
molecule-level characteristics of the strategies, and find the highest expected value
strategy.

Step 7 also requires taking the development cost into account. Of course devel-
opment cost for an indication depends upon the development success of each indi-
cation. For instance, if an indication is successful through Phase II, but fails in
Phase III, the development cost must include Phase I, Phase II, as well as Phase I1I
costs. Another strategy which fails in Phase II, has development costs of Phase I and
Phase II. Taking this costing assumption into account, we calculated the expected
cost for each strategy. The following chart, Fig. 8.9, compares each strategy’s
expected development cost vs. its expected MODA value. The decision makers can
now decide on which strategy they should place their bets. Note that the three
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expected costs are quite close. This is because the company’s policy was to continue
with all three indications, regardless of the outcome of each individual indication. If
the policy changed to one that we have seen in action, there could be quite a differ-
ent set of expected costs. An example of a simple policy is: If the first two indica-
tions fail, do not continue development for a third indication. A more sophisticated
policy would base continuation of the following indications on whether this issue
was safety or efficacy, and further, whether the issue appears to be a class, molecule,
or disease related reason.

In Fig. 8.9, it should be clear that the Easiest First strategy point produces the
steepest slope and thus produces the most expected value per development dollar.

Value of the MODA Method

In this Case Study, the MODA Method addressed several shortcomings of the
Decision Tree Method. The consistency in value assessments and its transparency
led to better and more open discussions about tradeoffs between strategies.
Management particularly appreciated this facet of MODA, which led to better align-
ment around objectives and selecting a strategy that addressed a combination of
objectives. Note the importance of Step 7 in accounting for risk and cost appropri-
ately. As a general rule, costs should not be part of the Objectives Hierarchy and
Risk, whenever possible, should be quantified and used appropriately in assessing
the overall value.
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Table 8.3 Assessment of three analytical approaches

Issue Simple ranking | Decision tree MODA
Indication sequence X
Incorporation of uncertainties X
Most appropriate measures

Indication dependencies

Molecule level analysis

PR R R R K

Uncertainty of commercial value (early stage)
Incorporation of nonfinancial metrics

Comparison of the three approaches and the issues that each can successfully deal with as per the
case study

Summary

In this Case Study, three different analytical approaches were evaluated for their
value in helping to find the best indication sequencing strategy for a novel cancer
therapeutic, BRT104. All of this modeling and interaction with a multidisciplinary
team of experts and Management enabled the company to look at BRT104 in a new
light. Clarity for the decision makers increased significantly and confidence that
launching BRt104 first in Multiple Myeloma was the best way to meet multiple
objectives was achieved for many stakeholders. Management gained trust in the
working team and became confident that advancing BRT104 first in a Multiple
Myeloma study captured the key objectives and main areas of uncertainty/risk.

This Case Study illustrates the particularly strong value of MODA, which
addresses several more issues than does either a Simple Ranking Method or a finan-
cially driven Decision Tree Method (Table 8.3). MODA can be leveraged for other
issues as well, including decisions regarding which projects to fund and other port-
folio level decisions [7-9].

About KROMITE

KROMITE is a leading strategic advisory firm that specializes in the application of
decision science to help clients make strategic decisions, manage risk, and create
value. KROMITE was founded in 2003 to provide independent and unbiased sup-
port for tough decisions in the life science industry.

Our team, headquartered in New Jersey and located throughout North America
and Europe, possesses unparalleled expertise in decision analysis and decision mak-
ing. From years of working for pharmaceutical, biotech, medical device, and agri-
cultural companies, our team commands intimate knowledge of tools, terminologies,
organizational roles and responsibilities, R & D processes, common deal term struc-



8 Indication Sequencing for a New Molecular Entity with Multiple Potential Oncology... 139

tures, and organizational decision making processes, which allows our clients to
rely on us as a partner and external expert.

For more information about KROMITE, please call us at +1 (267) 983 6305,
email us at info@KROMITE.com, or visit our Web site at www.KROMITE.com.

References

1. National Cancer Institute (2013) http://www.cancer.gov/cancertopics

2. American Cancer Society (2013) Breast cancer facts & figures 2013-2014. American Cancer
Society, Inc., Atlanta

3. Wikipedia (2013) http://www.wikipedia.org

4. Centers for Disease Control and Prevention (2013) National Program of Cancer Registries
(NPCR). http://apps.nccd.cdc.gov/uscs

5. Keeney R (1992) Value focused thinking: a path to creative decision-making. Harvard
University Press, Cambridge

6. Keeney R, Raiffa H (1993) Decisions with multiple objectives. Cambridge University Press,
Cambridge

7. Kloeber J (2010) Deciding which projects to fund: using value focused thinking in pharmaceu-
tical decision making. KROMITE LLC, Lambertville, White Paper

8. Kloeber J (2011) Current and cutting edge methods of portfolio decision analysis in pharma-
ceutical R&D. In: Portfolio Decision Analysis, international series in operations research &
management science, part 3. Springer, New York, 162: 283-331

9. Kloeber J, Kim CK (2012) Horses for courses: portfolio management methods for different
stages of drug development. KROMITE, LLC, Lambertville, White Paper


http://www.kromite.com/
http://www.cancer.gov/cancertopics
http://www.wikipedia.org
http://apps.nccd.cdc.gov/uscs

Chapter 9
Maximizing Return on Investment in Phase II
Proof-of-Concept Trials

Cong Chen, Robert A. Beckman, and Linda Z. Sun

Introduction

The phenomenal expansion of our knowledge in molecular biology has led to an
unprecedented number of new drug targets. However, the success rate for investiga-
tional drug candidates remains low while the cost for conducting Phase III confir-
matory trials has risen rapidly. This makes Phase II POC trials more important than
ever in late-stage drug development. In this chapter, we will investigate optimal
cost-effective design strategies for randomized placebo-controlled POC trials. POC
trials can also be non-randomized or use historical data as the control. However, the
true type I/II error rates are hard to quantify. Although the methodology developed
in this chapter is equally applicable to such trials, we do not support their routine
application for POC purposes.

In the literature, there are two quantitative approaches to finding the optimal bal-
ance between benefit and cost. The first approach is to find optimal design parame-
ters that minimize patient exposure at fixed type I/II error rates, e.g., under null as in
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Simon [14] or under any prior distribution for treatment effect as in Anderson [1].
This approach (hereafter referred to as sample size minimization approach) is appeal-
ing to statisticians because it is parsimonious and avoids assumptions such as the
overall benefit of the study drug that could be controversial. As a result, numerous
publications have been generated in the statistical literature. However, this approach
has limitations when the choice of type I/II error rates itself is an issue and when the
benefit of the study drug has to be taken into account. The second approach applies
Bayesian decision analysis techniques to find the optimal design parameters by
directly maximizing the net return (i.e., benefit—cost). It is used for determination of
optimal sample size for Phase III trials subject to budget constraints [12] as well as
for determination of Phase II sample sizes ([16] and [17]). Relevant work can also be
found in Halpern et al. [9], Stallard et al. [18], and O’Hagan and Stevens [11]. This
approach is appropriate when benefit can be quantified upfront and the parameter
space for decision-making is very well defined. When benefit is overestimated, which
occurs often in practice, such analyses tend to recommend a low bar for a Go deci-
sion to next stage of development, making it hardly acceptable to stakeholders [10].

We have proposed a new approach [4—6]. The idea is to find optimal cost-effective
parameters by maximizing a benefit—cost ratio function. The numerator of the func-
tion is the expected number of truly active drugs correctly identified for Phase III
development, each multiplied by the benefit per drug if applicable, and the denomi-
nator is the expected total Phase II/III development cost, including that resulting
from Type I error. From a high-level perspective, the sample size minimization
approach is equivalent to the use of our denominator as a utility function while
assuming a constant numerator. The Bayesian decision-theoretic approach is equiv-
alent to the use of the difference between our numerator and denominator as a utility
function. One major difference among the three approaches resides on the way the
intrinsic benefit of a study drug is handled. Our approach acknowledges the fact that
variations in benefit may be important, and therefore incorporates them into the util-
ity function in contrast to the sample size minimization approach which simply
attempts to minimize cost. As compared to the decision-theoretic approach, our
approach is less sensitive to small errors in estimation of benefit (and cost), which
is notoriously difficult to estimate at the planning stage of POC trials. When only
one trial is considered, the optimal design is independent of the benefit; when more
than one trial are considered, the optimal designs depend only on the relative benefit
which is considerably easier to assess than the absolute benefits that the decision-
theoretic approach relies on.

The chapter is organized as follows. We describe the key design parameters in POC
trial designs in section “Key Design Parameters”. Section “Optimal General Strategy
for Single POC Trials” introduces the basic form of benefit—cost ratio and applies it to
derive the high-level strategy for managing a large number of POC trial candidates of
comparable interest. It is found that, to be cost-effective, the best strategy is to conduct
a number of small trials and set the bar high for continuing the development program.
Section “Optimal Program and Portfolio-level Strategy” discusses the best program-
level and portfolio strategy for managing a small group of POC trial candidates (for
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one or more drugs) under a fixed budget. Uncertainty about the relationship between
a Phase II endpoint and a Phase III endpoint is incorporated into the discussion.
Section “Optimal Strategy for a Single Seamless Phase II/III Trial” discusses optimal
design of a single trial wherein a seamless Phase II/III design is used for illustration to
further incorporate various other considerations. Section “Summary” concludes with
a summary. Additional applications and extensions including development of person-
alized medicines and optimization of Phase III futility analyses can be found in
Beckman et al. [2], Chen and Beckman [4], and Song and Chen [15].

Key Design Parameters

Consider a typical randomized Phase I POC trial of two arms with a 1:1 ratio (study
drug versus placebo, or standard of care plus study drug versus standard of care plus
placebo). Denote by 6 the standardized effect size (treatment effect divided by stan-
dard deviation) of clinical interest with respect to a Phase Il endpoint (an early efficacy
endpoint or loosely a surrogate endpoint relative to clinical endpoint in Phase III).
Denote by (a, ) the doublet of one-sided Type I error rate and Type II error rate
(i.e., I-power) of the trial. The total sample size for the trial is approximately

N=4(z,+2,) 15 9.1)

where Z, denotes the respective quantile of the standard normal distribution. When
a time-to-event variable is the primary endpoint of interest, & refers to the logarithm
of hazard ratio, and N refers to the number of events. While the totality of data will
be looked at closely, a Go decision to a Phase III confirmatory trial is generally made
if the one-sided p-value from the POC trial is less than a favoring the study drug.

Notice that the standard error for estimate of the treatment difference is 2//N
which is equal to the absolute value of 6/(Z,+Z) from the sample size formula, the
cutoff point for the minimum empirical treatment difference (empirical bar) relative
to ¢ in a Go decision (i.e., corresponding to one-sided p-value<a) is Z,/(Z,+Z).
Clearly, the empirical bar increases when Type I error rate decreases or when Type II
error rate increases.

In practice, 6 is often chosen to make sure that the projected effect size in the
Phase III endpoint, denoted by 4, is clinically meaningful. We assume that ? is an
unbiased estimate of the relative effect size between the two endpoints (A/5) based
on historical data. The estimate has an asymptotic normal density distribution with
mean ¢ and variance v (i.e., ¢(([) | (p,uz) ). In order for an early efficacy endpoint to
be usable, the value of ¢ should be less than 1. Otherwise, it would take larger
sample size or larger number of events to conduct a Phase II than a Phase III trial.
This forfeits the purpose of using early efficacy endpoints in Phase II trials to make
a Go—No Go (GNG) decision for drug development. Clearly, from formula (9.1), we
can see that the relative sample size (a surrogate of relative cost) of the POC trial to
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the Phase III confirmatory trial is approximately proportional to ¢? and the smaller
the value of ¢ the more sensitive the early efficacy endpoint. The variance v? implies
the uncertainty of the predicted treatment effect in Phase III, and the larger the vari-
ance the greater the uncertainty. The value of »? is not accounted for in section
“Optimal General Strategy for Single POC Trials” for ease of development of a
general portfolio-level strategy, but is accounted for in sections “Optimal Program
and Portfolio-level Strategy” and “Optimal Strategy for a Single Seamless Phase II/
III Trial”. Estimation of ¢ and »? is not the focus of this chapter. Interested readers
in oncology may find good examples in Sargent et al. [13] and Tang et al. [20]. As
a general guidance, they should be estimated from proper meta-analysis of multiple
large randomized and controlled trials in similar disease settings. Each trial is con-
sidered as a unit in the meta-analysis. If data from only one large trial is available,
each center in the trial may be considered as a unit and the bootstrap technique may
be applied as appropriate for estimation. Interested readers may refer to Burzykowski
et al. [3] and Whitehead [21] for more details.

Unless otherwise specified in section “Optimal Strategy for a Single Seamless
Phase II/III Trial”, we assume that the investigational arm has a prior probability p of
being active with effect size 6 and probability 1 —p of being inactive. Prior information
on drug activity, be it subjective or objective, is frequently cited by relevant decision
makers in a drug development program. However, the information is rarely fully
accounted for in the actual (mostly qualitative) decision process. It is not our focus to
estimate p (or more generally the distribution of true effect size) although an estimate
of 10-30 % for an investigational new drug seems reasonable (or possibly generous).
Instead, our focus is on how to derive a quantifiable decision process under the same
assumption as used by decision makers. We have found that the high level conclusions
of this decision process are relatively insensitive to the estimation of p.

Optimal General Strategy for Single POC Trials

With the above setup, we will introduce the benefit—cost ratio in its basic form and
derive a high-level strategy for portfolio management of a large number of POC trial
candidates of comparable interest without clear distinction among each other.
Without loss of generality, we assume that a Phase III confirmatory trial with 2.5 %
one-sided type I error and 90 % power ($=0.1) will be initiated, seamlessly or
sequentially, once a Go decision is made after the POC trial is completed. The rela-
tive sample size of the POC trial (denoted by SS2) to the Phase III confirmatory trial
(denoted by SS3) is assumed to be 1 (i.e., A=SS2/SS3) when both are conducted at
same type I/II error rates, where A may slightly differ from ¢* When the POC trial
is conducted at (a, ), the sample size of the trial is then

2

$S2(e.B) = AxSS3x(Z, +Z, ) /(Zyons + Zy.) 9.2)
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Table 9.1 Optimal design of Phase II POC trials under various scenarios when SS3=1,000

Conventional

design (a, )=

(0.025,0.2) Optimal design

Empirical

p (%) A (%) SS2 1/BCR (a, ) SS2 Go bar (6) 1/BCR
10 10 59 2,215 (0.02, 0.40) 51 0.88 2,144
10 20 118 3,149 (0.04, 0.44) 71 0.92 2,871
10 30 177 4,082 (0.05, 0.47) 83 0.95 3,442
30 10 59 1,384 (0.03,0.41) 45 0.90 1,356
30 20 118 1,695 (0.05, 0.46) 61 0.94 1,573
30 30 177 2,007 (0.07, 0.49) 68 0.98 1,739
50 10 59 1,218 (0.03, 0.43) 38 0.91 1,193
50 20 118 1,405 (0.06, 0.48) 48 0.97 1,304
50 30 177 1,591 (0.08, 0.52) 52 1.03 1,385

Consider the following benefit—cost ratio with SS2(a, ) provided in Eq. (9.2).

p(1-B)
$S2(a.B)+[ p(1-B)+(1- p)a |xSS3

BCR (,8) = 9.3)

The numerator of Eq. (9.3) is the probability of a true positive outcome from the
trial. The two terms in front of SS3 represents the probability of a true positive out-
come and of a false positive outcome, respectively. Therefore, the denominator
overall represents the expected total sample size for the Phase II/III program. The
benefit—cost ratio measures how much a patient contributes to development of an
active drug, and its inverse measures how many patients it takes to develop an active
drug. Because the final cost of a trial is generally tied to sample size, maximization
of the benefit—cost ratio with respect to (a, ) is approximately equivalent to finding
the optimal design parameters that maximize the return on investment. Notice that
the development expense prior to Phase II is not included in the denominator for a
rational decision (the fact that humans are prone to loss aversion is called sunk cost
fallacy in behavior science).

Table 9.1 provides the optimal design of Phase II POC trials under various
assumptions on p and A covering a wide range of parameter space of practical inter-
est. The sample size for Phase III (SS3) is fixed at 1,000 for illustration; the optimal
design parameters are independent of the actual value of SS3. A conventional design
for Phase II POC with (a, ) fixed at (0.025, 0.2) is provided for comparison. Under
the conventional design, the empirical bar for a Go decision is 0.705; the sample
size increases proportionally with A. Under the optimal design, the type I error rate
is low at around 5 % but the optimal type II error rate is high at around 45 %. The
empirical bar for a Go decision is generally close to J; the sample size increases
when p decreases or when A increases but is not as sensitive to p and 4 as one might
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have expected. Not surprisingly, the expected number of patients it takes to develop
an active drug (i.e., 1/BCR) is smaller under the optimal design than under the con-
ventional design (especially so when 4 is large). Reduced Phase II sample size is a
main driver of improved efficiency. As a matter of fact, the analysis indicates that a
Phase II POC trial should only cost 4-8 % that of a Phase III confirmatory trial to
be cost-effective.

Some drug developers may have come to the same strategy as the above (i.e.,
more smaller POC trials with higher Go bars) purely based on intuition and
experience. To our best knowledge, benefit—cost ratio analysis is the first quantita-
tive analysis that provides theoretical support of this strategy. It is no secret to sea-
soned executive decision makers in large pharmaceutical companies that the
empirical bars for Go decisions have to be high to reduce Phase III failure rate. The
benefit—cost ratio analysis demonstrates, perhaps to statisticians’ dismay, that the
bar should be set as high as the target effect size, which on the other hand actually
helps make statisticians’ job a little easier because it is often confusing to team
members without statistical background why 0.706 is good enough for a Go deci-
sion when the real interest is in . (Actually, in order to raise the Go bar to 6 under
the conventional type I/II error rates of (0.05, 0.2) for a POC trial, the target effect
size should be set at approximately 1.56.)

While a low type II error rate is always desirable, it results in fewer larger POC
trials due to fiscal constraint and some worthy hypotheses will fall below the funding
line as a consequence. The opportunity cost of missing POC trials that might have
identified a true positive, due to running a small number of large POC trials under a
fixed budget, has been termed type III error. While conventional statistics focuses on
type [ and type Il errors only, a consideration of type III error is critical to identifying
an optimal POC strategy [2]. Although some active indications will be missed due to
the higher type II error, this is more than compensated for by the reduction in type
III error inherent in having more shots on goal in the total program.

In some cases, a larger POC trial may be suggested by other considerations.
A Phase II POC trial may have multiple primary endpoints, or address more than
one hypothesis [2]. It may also have a safety objective that needs a certain number
of patients to address, irrespective of the efficacy objective. Futility analyses will
reduce the expected Phase III sample size, increasing 4 and the corresponding opti-
mal POC sample size. Despite all these and various other practical considerations,
the general strategy of conducting more and smaller POC trials remains essential for
drug development to be cost-effective.

Optimal Program and Portfolio-level Strategy

A drug development team often encounters the problem as how to appropriately
allocate resources when there are more POC trials of interest than the budget can
afford. These POC trials may be for the same drug (program level strategy) or for
different drugs (portfolio level strategy). To best address this issue, we take
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additional considerations into account starting with uncertainty on relative effect
size (¢) between a Phase III endpoint and a Phase II endpoint.

For a POC trial with treatment effect 6 based on an early efficacy endpoint, the
corresponding best estimate of treatment effect in the Phase III endpoint is ¢S at
the planning stage of the POC trial. Let a; be the one-sided type I error rate and f;
be the one-sided type II error rate for the Phase III trial powered for detecting treat-
ment effect A. Based on Eq. (9.1), the actual type II error rate for the Phase III trial
is estimated to be

Bi=f{#5(2,+2,)/8-2,] (9.4)

where ®(-) denotes the cumulative distribution function of a standard normal vari-
able. The expected type II error rate for the Phase III trial is estimated to be

E{}=[11#6(2,+2,)/8-2,16(¢]0.07)d¢ 9.5)

where q,’)(([) | (p,uz) is the estimated density function of ¢.

Suppose there are k candidate POC trials. Let (ap, fn, 8, pi B, Cu Csi,
&, (gbl |(p[,ul.2)) be the design parameters associated with the ith one (i=1,...,k)
whereas (a,», ;) are the type I/II error rates, §; is the target effect size, p; is the
estimated probability of drug being truly active, B; is the benefit (commercial value
or any other metric), C; is the cost for Phase II, Cj; is the corresponding cost for
Phase III, and ¢, (([)[ |(p,.,vl.2) is the estimated density function of ¢. Consider the
following general version of the benefit—cost ratio function (Eq. 9.3), wherein the
numerator is adjusted with expected Phase III power (1- E { ﬁg ):

ZkllBipl. (1 -B., )(1 _E{B; })

BCR(aiz,ﬂiz,iZI,...,k)z - = 9.6)
{Cz,' +|:Pi (l_ﬂi2)+(1_pi)ai2:|xc3i}

i

The goal is to find the optimal (a;,, £, i=1,...,k) that maximizes (Eq. 9.6) subject
to a constraint Z f‘ -1C=C, where C, is the total budget for POC.

We use the same oncology example as in Chen et al. [8] for illustration. There are
three candidate POC trials in the example. For simplicity, we will ignore the benefit
terms. We also assume that the cost for a POC trial or a Phase III trial is totally
driven by the sample size, and further the cost for Phase Il is the same (i.e., C3;=Cs3,
i=1,...,3). In terms of relative effect sizes for endpoints, (¢;,v,2)=(0.6,0.25),
(¢2,0,)=(0.6,0.5) and (3,032 =(0.5, 1) so that the first two endpoints are equally
sensitive but there is less uncertainty in first one, and the third endpoint is the most
sensitive but also has the greatest uncertainty. The first two studies are believed to
have higher chance of success (p,; =p,=0.3) than the third one (p;=0.2).

Each of the Phase III trials targets a 25 % hazard reduction (i.e., A =log(1—-0.25))
in overall survival (OS), which translates into §;=—0.48 (i=1, 2) for the endpoints
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Fig. 9.1 Optimal resource allocation (left panel) and optimal empirical bars for a Go decision
(right panel) for the three POC trials based on different endpoints

in first two trials (logarithm of hazard ratio in progression-free-survival or PFS) and
6;=-0.58 the endpoint in the third trial (standardized tumor size change at Cycle 2).
In comparison to a phase III trial with type I/Il error rates (0.025, 0.1) which
typically require 800-1,000 patients, a POC trial with same type I/II error rates
would require about 238 patients to target 6=-0.48 using PFS and 126 patients to
target 5=-0.58 using standardized tumor size change at Cycle 2.

With this setup, we try to find the optimal (ap, fn, i=1,...,3) that maximizes
(Eq. 9.6) subject to the constraint ?_1C,=220, the overall budget for POC. Once
optimal (a;, fin, i=1,...,3) are obtained for each trial, optimal sample size and
empirical bar for a Go decision follow. Notice that, because the total sample size for
the three POC trials is constrained at 220, the effective number of unknown param-
eters is reduced from 6 to 5 (R code available upon request).

Figure 9.1 shows optimal resource allocation (left panel) in terms of percentage of
total sample size (out of 220 patients) and optimal empirical bars for a Go decision to
Phase III (right panel) as a function of the ratio of overall Phase II budget (C,=220
patients) to the sample size for an individual Phase III (C;). The POC trial that uses
PFS as the primary endpoint and has the greatest certainty in relative effect size
always has the highest priority. Indeed, this is the only trial that should be conducted
if the C,/C; ratio is less than 0.06 (i.e., if a Phase III trial takes approximately 3,500
patients). When the ratio is between 0.06 and 0.13, the second POC trial based on PFS
should also be considered. When the ratio is greater than 0.13, all three POC trials
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should be conducted. In particular, if the sample size for one Phase III trial is around
800 (typical sample size in first line lung cancer for targeting a 25 % hazard reduction
in OS) or C,/C; is around 0.275, approximately 40, 35 and 25 % of the resources
should be allocated to the three respective trials. In this case, instead of somewhat
arbitrarily choosing two from the three POC candidates and conducting each at
greater sample size, the benefit—cost ratio analysis suggests a more opportunistic
approach by conducting all three at smaller sample size. The two POC trials based on
PFS would have approximately 88 and 77 patients (62 and 54 PES events), and the
one based on tumor size change would have approximately 55 patients. The respec-
tive empirical bars are 0.77, 0.85, and 0.91 relative to target effect size. As might be
expected, in general, the empirical bar generally increases with sample size for Phase
III (or decreases with C,/C3), and the larger the POC trial (or more upfront commit-
ment) the lower the empirical bar. These results are sensible and consistent with intu-
ition. However, intuition alone will not be able to pinpoint the optimal decision points.

Optimal Strategy for a Single Seamless Phase II/I1I Trial

Seamless Phase II/III designs are often considered to accelerate a development pro-
gram. The GNG decision for the transition has to be made with limited Phase II data.
It is a fine line to walk between benefit and cost. We use a real example from the
development of a drug candidate for platinum resistant ovarian cancer patients to
illustrate how benefit—cost ratio analysis helps with the decision making process [19].

Description of Study Design

The primary hypothesis of the Phase II/III confirmatory trial is as follows: the test
drug is non-inferior to the comparator (a standard of care chemotherapy) in terms of
OS at the 1.1 hazard ratio margin and superior to the comparator in terms of safety
profile, OR the test drug is superior to the comparator in terms of OS.

The trial is operationally seamless. Enrollment is potentially seamless between
Phase II and Phase III but only Phase III data is used in the final analysis. The design
of the motivating example is shown schematically in Fig. 9.2 with the GNG bars
derived in next sections. In the Phase II portion, patients will be randomized to three
treatment groups with equal allocation: test drug at high dose, test drug at low dose,
and control. The primary endpoint for Phase II is PFS. Phase II enrolls about 210
patients and completes after 135 PFS events have been observed to have sufficient
power for each dose of the test drug to demonstrate superiority to the control in
terms of PFS. The primary endpoint of Phase III is OS. Phase III enrolls about 720
patients and completes after 508 deaths have been observed to have sufficient power
to demonstrate that the test drug is non-inferior to the control drug. This sample size
also provides sufficient power (>95 %) to demonstrate that the test drug is superior
to the control in terms of the event rate for a safety endpoint.
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Fig. 9.2 Flowchart of the seamless Phase II/III study in platinum resistant ovarian cancer patients

In order to realize seamless transition, an interim analysis will be conducted in
Phase II. The enrollment of Phase II will close when it is predicted that approxi-
mately 4 months after this time point there will be 135 PFS events. The interim
analysis will take place approximately 1 month before the accrual completion. The
purpose of this interim analysis is to determine whether Phase III enrollment can be
initiated before final data of Phase Il is available. If a Go decision is made, one arm
of the test drug along with the control arm will be carried to Phase III. If a Go deci-
sion cannot be made at the interim analysis, Phase III will be on hold and a final
decision will be made at end of Phase II. The Go criterion at this interim analysis is
to have at least 80 % conditional power to meet the GNG bar at the final analysis of
Phase II. Since it will take about 1 month to conduct the interim analysis and make
a decision, the timing of this interim analysis is chosen so that Phase III accrual will
potentially start seamlessly when Phase II accrual completes.

Weighted Estimate of OS Effect in Phase 11

A common practice in drug development is to make GNG decision only based on a
Phase II endpoint. However this approach often causes heated debate as what role
the clinical endpoint data plays. In oncology, this often leads to a vague conditional
requirement of a “positive OS trend” before a Go decision can be made. In Chen and
Sun [7], it is proposed to combine the PFS data and OS data for decision making so
that no information is wasted and a decision rule can be prespecified without ambi-
guity. The same approach can be used to combine data across multiple endpoints,
not only in oncology but also in any other therapeutic areas.

In our motivating example, the relative effective size (¢) between OS and PFS (in
log-hazard-ratio scale) is estimated to be 0.6. It implies that the treatment effect in
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0OS is 60 % of that in PFS, which represents a reasonable estimate based on published
data of a variety of solid tumors in recent years. The relative effect size suggests a
hazard ratio of 0.69 in PFS correspond to a hazard ratio of 0.8 in OS. To adequately
account for the uncertainty in relative effect size, we assume that it has a standard
deviation of 0.2. This assumption covers a wide range of effect size ratios seen in
the literature. With this variability, a hazard ratio of 0.69 in PFS translates into an
OS effect with 95 % confidence interval (0.69, 0.93).

A weighted method is used to estimate the OS effect. It combines the predicted
OS effect from the observed PFS effect (90, ) and the observed OS effect OS
(Aos), both in log-hazard-ratio scale (see below), as follows:

S :_(Wﬁos-r(l—w)(ﬁgmj 9.7)

With minus sign on the right-hand side, S is an approximate measure of hazard
reduction, a parameter clinical researchers are more familiar with. Since the number
of OS events in Phase II is relatively small compared to the number of PFS events a
weight of 0.15 (i.e., w=0.15) is given to the observed OS effect in Phase II, and a
weight of 0.85 is given to the predicted OS effect. This weight approximately mini-
mizes the variance of S when the true treatment effect is in the parameter space of
interest while the actual numbers of PFS and OS events are in the expected range.
The correlation between SPFS and A, and the variance of ¢ are all incorporated into
the variance estimate of S. (See Chen and Sun [7] and Sun and Chen [19] for techni-
cal details on characteristics of the test statistics.)

In the next section, we discuss what value of S will constitute a GNG criterion
between Phase II and Phase III using the same technique as developed in the previ-
ous sections.

A Benefit—Cost Effective GNG Criteria from Phase 11
to Phase II1

The test drug is assumed to have equal probability of being superior to control
(hazard ratio=0.8), equivalent to control (hazard ratio=1) and inferior to control
(hazard ratio=1.1). Let the Go criterion from Phase II to Phase III at end of Phase
II be S>C, where S is defined in Eq. (9.7). The probability of making a Go decision
under each hazard ratio assumption easily follows. In this example, the Phase III is
successful in two scenarios: (1) Superiority in efficacy is demonstrated; (2) Only
non-inferiority in efficacy and superiority in safety are demonstrated. The chance of
regulatory approval and commercial value are different in these two scenarios.
In our example, stakeholders and experts believe the relative chance of approval
from health authorities is 2:1 for scenario 1 vs. scenario 2, and the corresponding
relative commercial value is 5:1. Therefore the relative regulatory risk adjusted ben-
efit of the two scenarios is 10. Further, it is estimated that at the time the GNG
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decision is made for seamless transition the cost of Phase II plus Phase III prepara-
tion is approximately 40 % that of the remaining cost for Phase III.

Now, consider the following benefit—cost ratio function, whereas Pr(S > C| Super),
Pr(S>C|Equiv), and Pr(S>C|Inf) are the probability of Go under the superiority,
equivalence, and inferiority assumptions respectively, Q(Super) and Q(Equiv) are
the power and regulatory risk adjusted benefits under the superiority and equiva-
lence assumptions. The adjusted benefit under a hazard ratio assumption is the sum
of the power of superiority multiplied by 10 and the power of non-inferiority.
An inferior drug does not have any benefit. Notice that sum of the three terms in
bracket of the denominator is the probability of going to Phase III, and the denomi-
nator represents the multiples of the remaining cost for Phase III.

%Pr(S >C| Super)Q(Super)+%Pr(S > C | Equiv)Q(Equiv)
(9.3)

BCR(C)= . . .
0.4+[3Pr(s >C| Super)+§Pr(S >C| Equiv)+§Pr(S >C| Inf)}

The optimal GNG bar C is obtained by maximizing the above benefit—cost ratio, and
it turns out to be C=0.09. Roughly speaking, this corresponds to a 9 % hazard
reduction based on the joint estimate of the OS effect by using both PFS data and
OS data from Phase II as well as the estimate of relative effect size based on histori-
cal data. Figure 9.3 illustrates how the benefit—cost ratio changes with C, which
decreases when it moves farther away from the optimal value. This is typical in a
benefit—cost ratio analysis; the optimal design is unique and optimality is mathemat-
ically global. With the optimal GNG bar for the end of Phase II data obtained, we
can back-calculate the GNG bar at the interim analysis of Phase II for a seamless
transition to Phase III. It turns out that the bar is approximately a 16 % hazard
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reduction (i.e., 80 % chance that the hazard reduction is at least 9 % at the end of
Phase I if its 16 % at the interim analysis). To mitigate the risk of using a wrong
assumption on relative effect size, AOS and (pSPFS are compared for consistency
before a final decision is made [19].

Summary

In this chapter, we have defined a benefit—cost ratio function for measuring effi-
ciency of Phase II POC trials. The idea is applied to derive optimal trial-level,
program-level, and portfolio-level design strategies so that readers with different
statistical background and perspective ranging from project statisticians, develop-
ment team leaders, to executive decision makers can appreciate the underlying con-
cepts and immediately apply them to contemporary late-stage drug development.

In general, conducting more and smaller POC trials and setting the GNG bars
higher is more cost effective than conducting a few larger POC trials with lower
GNG bars. When determining resource allocation in portfolio management, trials
with lower perceived probability of success or an imperfect early endpoint may still
be considered unless Phase III cost is prohibitively high. However, less resource
should be allocated to these trials and the GNG bars should be set higher. The
paradigm allows one to calculate an optimal resource allocation for POC trials of
varying value, including determining whether a trial should not be funded.

Seamless Phase II/III designs have great promise in accelerating a development
program. A detailed example is presented utilizing the benefit—cost ratio analysis
and a weighted estimate of treatment effect based on several endpoints to specify an
objective, optimal GNG decision rule.

Objective specification of study designs and GNG decision rules determined
using a benefit—cost ratio analysis is the key to maximizing return on investment in
Phase II POC trials.
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Chapter 10
Portfolio Optimization of Therapies
and Their Predictive Biomarkers

Robert A. Beckman and Cong Chen

Introduction: Predictive Biomarkers, Value and Risks

Predictive biomarkers, or “response identification biomarkers,” are molecular or other
characteristics of patients or of their tumors which may predict whether or not they
will benefit from therapy. Predictive classifiers may be constructed from one or more
predictive biomarkers. With increasing understanding of cancer and its therapies, the
number and importance of predictive biomarkers and classifiers is increasing.
Cancer therapy development currently carries significant risk, a major portion of
which is due to heterogeneity between patient’s tumors. As a result of molecular
heterogeneity between patients with similar tumor histology, a given therapy may
benefit only a minority of the patients. The signal from this minority of patients may
be diluted by noise from the other patients in a trial in an unselected population,
resulting in a negative study. For example, trastuzumab was studied in metastatic
breast cancer patients whose tumors overexpressed its target, the Her2-neu protein
[16, 35]. This therapy has been very successful in benefiting approximately 20 % of
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metastatic breast cancer patients, but if the clinical trial had been done in an unselected
metastatic breast cancer population it almost certainly would have been negative.

The small average benefit seen in cancer clinical trials may be due to this dilution
of the signal that is really present only in a subset of the patients. Detecting such
small clinical effect sizes requires large, expensive clinical trials. The high risk and
high cost of therapy development raises the cost of therapies. The high cost and
small average benefit leads to very low relative value of many oncology medicines,
when judged by the cost of a Quality Adjusted Life Year (QALY). National health
authorities and payors are increasingly demanding value for medicines. For exam-
ple, the UK National Institute for Clinical Excellence (NICE) requires therapies to
provide a QALY for less than or equal to 30,000 British pounds, a threshold achieved
by few oncology therapeutics.

Predictive biomarkers have the potential to increase the benefit to patients by
matching each patient subset to its optimal therapy, and to reduce the risk and the cost
of cancer therapy development. Examples of successful applications of predictive
biomarkers include her2neu expression for trastuzumab therapy of breast cancer [16,
35], sensitizing mutations in the epidermal growth factor receptor (EGFR) gene for
gefitinib and erlotinib therapy of non-small-cell lung cancer [26, 27], ras wild type
status for therapy of colorectal cancer with anti-EGFR therapy using cetuximab or
panitumumab [1, 8, 24, 37], alk translocations for crizotinib therapy of lung cancer
[32], and V60OE mutations for vemurafenib therapy of melanoma [10]. There can be
little doubt that predictive biomarkers are essential for further progress in oncology.

However, predictive biomarkers do not always work, and when they do not, they
simply add cost, complexity, and time to drug development. A particularly instructive
example is the discovery that the anti-EGFR therapy cetuximab benefits patients who
do not express the EGFR receptor as judged by immunohistochemistry. This may
have been due to insufficient assay sensitivity, loss of antigen upon storage, chance
sampling in a negative region of a heterogeneous tumor, or evolution of the tumor
between the time when the sample was taken and the time when the patient was
treated [29, 38]. These pitfalls and others are common to all predictive biomarkers in
real clinical situations. Predictive biomarker performance must be robust to these
issues, and this can only be tested clinically.

In general, predictive biomarkers are developed from preclinical models which
have been designed to emphasize certain features of a biological mechanism,
whereas in the clinical situation greater biological complexity is in play. The ability
of a preclinical result to translate to the clinic is often unknown.

The drug development team may include members who developed the predictive
biomarker hypotheses, and they may have difficulty objectively assessing the clini-
cal applicability of their findings, leading to overemphasis on the hypotheses in
subsequent development. Publication bias, resulting in more prominent publication
of biomarker successes than failures, further clouds objective assessment of the
value of predictive biomarkers.

The use of predictive biomarkers involves various costs and challenges.
Significant resources must be invested in order to discover biomarkers, develop
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assays for biomarkers, and formally develop a “companion diagnostic assay”” which
meets regulatory requirements for co-approval with the therapy as a means of select-
ing patients [23]. Patient selection requires the availability of suitable diagnostic
tissue, and patients who have insufficient diagnostic tissue will be ineligible for the
trial, leading to recruitment difficulties.

The enormous potential and significant costs and risks of predictive biomarker-
driven development have led to a range of attitudes ranging from high enthusiasm to
significant skepticism [17, 30]. The latter publication expresses the point of view of
skeptics well: “Whereas ‘wins’ have occurred here, ... most attempts to identify such
biomarkers have been nothing more than expensive fishing expeditions. Drug response
is multifactorial; patient populations are heterogeneous; potential markers are
innumerable; and scientific underpinnings to marker development are imperfect.”

These legitimate issues and concerns may threaten the progress in a field whose
value and promise is increasing daily with increased knowledge of molecular oncol-
ogy. Beckman, Clark, and Chen [5] presented an adaptive, data-driven approach to
integration of predictive biomarkers in oncology development, based on several
years of discussion with experts from discovery, preclinical, clinical, statistical,
regulatory, and commercial functions at several pharmaceutical and biotechnology
companies. The approach steers a middle course between uncritical enthusiasm and
harsh skepticism. This chapter reviews this approach within the context of a single
indication, including original clinical trial designs.

However, when considering the portfolio view we must consider not only one
predictive biomarker and its integration within the development of a single indica-
tion. Rather the oncology portfolio should be viewed as a collection of assets in two
primary classes: potential therapies and potential predictive biomarkers, both of
which are characterized by uncertainty. Given a finite budget, the value and risks of
each of these assets must be considered in the portfolio optimization problem, as the
budget will generally be insufficient for full investment in all. The chapter con-
cludes with a consideration of this portfolio level problem, including relevant inter-
dependencies between therapeutic and predictive asset classes.

The chapter is designed for readers with all levels of mathematical background;
mathematical details can be found in the primary references.

Core Principles of Predictive Biomarker Evaluation

Two core principles underlie this chapter. The first is clinical validation of predictive
biomarkers. This first principle is essential for determining the value of predictive
biomarkers. The second central principle is optimization of development efficiency,
where efficiency is defined as throughput of successful product/indications launches
per late development patient utilized or dollar spent. This second principle leads
directly to maximizing the value of a portfolio of putative therapies and putative
predictive biomarkers.
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Core Principle 1: Clinical Validation of Predictive Biomarkers

The principle of clinical validation has two corollaries: (1) Biomarker negative
patients must be included in early exploratory efficacy testing, and in some cases in
later confirmatory pivotal testing. (2) A single primary predictive biomarker hypoth-
esis must be chosen for formal statistical testing against clinical benefit in Phase 2.

Testing of biomarker negative patients presents an ethical dilemma, if we believe
that the therapy may not benefit them. The ethical standard for including them is equi-
poise, defined as a state of uncertainty regarding which arm of the randomized clinical
trial is optimal for the biomarker negative patients. As discussed above, equipoise
tends to be underestimated on drug development teams for a number of reasons includ-
ing the presence of people on those teams responsible for preclinical development of
the biomarker hypothesis; the fact that the hypothesis has probably been illustrated in
a homogeneous, controlled experimental setting specifically designed for such an
illustration; and publication bias leading to overestimation of probability of success of
predictive biomarker hypotheses. In the setting of equipoise, there may be an ethical
issue with denying a biomarker negative patient the opportunity to benefit from an
experimental therapy when he/she has few other options. Anti-EGFR therapies illus-
trate the issues. Erlotinib and gefitinib offer benefit to unselected populations, although
it is less than for those who have sensitizing mutations of EGFR [26, 27, 33]. As dis-
cussed above, cetuximab even provides a degree of benefit to patients who are “EGFR
negative” by immunohistochemistry. Fridlyand et al [21] list four factors which may
increase or decrease equipoise with respect to a predictive biomarker:

1. A clear cutoff defining mutually exclusive groups as is seen in association with
mutations or gene amplifications leads to greater certainty than an uncertain cut-
off, as would be true for a continuous biomarker (gene expression) or a categori-
cal biomarker (1+,2+,3,4+ as in immunohistochemistry).

2. A definite, single, and specific mechanism of action leads to more certainty than
an unknown or a pleiotropic mechanism of action.

3. Preclinical data indicating that the predictive biomarker has high specificity and
sensitivity, as opposed to just one or the other, leads to more certainty.

4. Certainty can be enhanced by a “class effect,” i.e., prior knowledge of therapies
with a similar mechanism of action.

Nonetheless we do not generally favor enrolling biomarker negative patients
onto single agent trials of targeted therapy versus placebo. Rather, we favor
randomized add-on designs in which all patients receive a backbone therapy.
Thus the control arm is backbone therapy plus placebo and the experimental arm is
backbone therapy plus experimental therapy. Ordinarily, backbone therapy is the
standard of care (SOC) for that condition, but in cases where there is no SOC
another therapy may be substituted as backbone. In some cases, the SOC therapy
may be antagonistic to the experimental agent. This should be carefully ruled out
to the extent feasible by preclinical in vitro and in vivo experiments. If SOC is
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antagonistic to the experimental agent, another indication should be chosen to test
the biomarker hypothesis in which combination with SOC is feasible, that is in
which another background therapy that is not antagonistic to the experimental
therapy can be logically selected.

The second corollary of the need for clinical validation is prospective selection
of a single primary predictive biomarker hypothesis for formal statistical testing in
the randomized phase 2 study. As discussed in section “Efficiency Optimized
Biomarker Stratified Randomized Phase 2 Study,” the single primary predictive bio-
marker hypothesis is tested with equal priority as the drug itself. In too many cases,
we see either a large number of biomarker subsets prospectively chosen for investi-
gation in Phase 2, or still worse a large number of biomarkers are applied retrospec-
tively after the clinical data are available, looking for a “win.” And it is highly likely
that a “win” can be found if a very large number of biomarker subsets are investi-
gated (especially retrospectively), but such a win is usually a false positive. The
chance of a false positive goes up in nearly direct proportion to the number of sub-
sets investigated, a phenomenon which is termed the multiple comparisons prob-
lem. Such false positives result in negative phase 3 studies at great expense, as well
as disillusionment with predictive biomarkers and personalized medicine.

The primary predictive biomarker hypothesis is selected based on in vitro pre-
clinical data in cell lines; fundamental biochemical studies of mechanism of action;
preclinical in vivo studies including xenograft models and syngeneic models includ-
ing genetically engineered mouse models; molecular epidemiology research on bio-
marker prevalence in human tumor tissues; efficacy and pharmacodynamic data
from Phase 1 studies in patients and in healthy normal volunteers, and Phase 2a
signal seeking studies that look for tumor shrinkage and other signs in unrandom-
ized single agent and combination cohorts. The prevalence of the biomarker in
human tumor tissues is a critical piece of information. If the biomarker negative
group is very small, eliminating these patients from the treated group may not be
cost effective when the cost and error rate of the predictive test are considered. If the
biomarker positive group is very small, it may be difficult to enroll the required
clinical trials unless the benefit is dramatic, and pharmaceutical and biotechnology
firms will also have to decide if the small subgroup is worth their investment.

The process of choosing the primary predictive biomarker hypothesis is far from
foolproof. There may be several predictive biomarker hypotheses supported by
nearly equivalent levels of evidence. These alternative biomarker hypotheses may
also be explored in Phase 2, but as exploratory endpoints. If the primary predictive
biomarker hypothesis proves to be false, but one of the exploratory alternative
predictive hypotheses proves to be true, this is a lower level of evidence. It will be
necessary to repeat Phase 2 and prospectively test the former alternative hypothesis
as a new primary predictive biomarker hypothesis.

From a portfolio perspective, the primary predictive biomarker hypothesis is
analogous to the lead compound, and the alternative biomarker hypotheses are anal-
ogous to backups. The uncertainty in choosing the primary predictive biomarker
hypothesis is mirrored by the uncertainty in choosing the lead.
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The need to occasionally iterate more than once through Phase 2 should not be
seen as failure if what was learned the first time through enables a higher probability
of success in subsequent iterations. We term such iterations productive iterations in
recognition of the fact that they represent progress, and are a necessary consequence
of the complexity of oncology.

Core Principle 2: Optimizing Development Efficiency

The concept of optimizing development efficiency is treated in detail in the chapter
by [39], but as it is central to the material in this chapter, we also discuss it briefly
here.

Chen and Beckman [11-13] investigated the optimal sizing of Phase 2 proof of
concept (POC) trials and the optimal Go—No Go criteria for proceeding from Phase
2 to Phase 3 as judged by development efficiency, which they defined using a ben-
efit—cost ratio (BCR) for late development (Phase 2 and 3 randomized trials). Benefit
was defined as the risk adjusted number of therapies correctly identified for Phase 3
development (i.e., true positives only, not false positives). Cost was defined as the
number of risk adjusted patients utilized in Phase 2 and Phase 3 studies. “Risk
adjustment” means that the results were adjusted for the false positive and false
negative rates of the Phase 2 POC study (Type I and Type II error rates, respectively)
and the false negative rate of the Phase 3 study. False negative POC results lead to a
missed opportunity: a therapy that would have worked is rejected for Phase 3 devel-
opment. False positive POC results lead to an unwise expenditure: patients and
financial resources are spent for Phase 3 on a therapy that is destined to fail. False
negative Phase 3 results lead to missed opportunity even after correct identification
of a true positive therapy by the POC trial (Fig. 10.1).

>
>

Fig. 10.1 (continued) cost of Phase 3. The chance of reaching any of the rectangles is the product
of all the arrows on the path to that rectangle. The risk adjusted benefit is the sum of the benefits in
each rectangle, each multiplied by the chance of reaching that rectangle. The risk adjusted cost is
the sum of the costs (in patients) in each rectangle, each multiplied by the chance of reaching that
rectangle. The efficiency is the risk adjusted benefit divided by the risk adjusted cost. (a) A single
traditional POC trial with 80 % power for the minimum clinically significant effect size § is per-
formed, at a cost of 160 patients. The risk adjusted benefit is 0.24 true positives developed through
phase 3. The risk adjusted cost is 346 patients. The efficiency is 6.94 x 10~*. (b) Two small POC trials
(in different indications of equal merit), each with approximately 60 % power for the minimum
effect size 9, are performed at a cost of 80 patients each (only one is shown), using the same fixed
POC budget as in a. The risk adjusted benefit is 0.18 true positives developed through phase 3 for
each POC trial, for a total of 0.36 true positives developed through phase 3. The risk adjusted cost,
including both small POC trials and all the Phase 3 trials resulting from them, is 460 patients. The
efficiency is 7.83x 107, 13 % higher than that of the program with a single traditional POC trial (a).
The second indication would not have been explored in a due to the fixed POC budget. This type III
error reduces the efficiency of a, which is less efficient despite its lower type II error per POC trial
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Benefit = 0; Cost = 160 = Cost of

False negative traditional POC trial

Large
POC Trial
Outcome Benefit = 1; Cost = 760 = Cost of
traditional POC trial plus cost of Phase
11l trial

True positive
(0.8)

Yes (0.3)

Drug
Active

Benefit = 0; Cost = 760 = Cost of
traditional POC trial plus cost of Phase
11l trial

False positive
0.1)

No (0.7)

Large
POC Trial
Outcome

Benefit = 0; Cost = 160 = Cost of
traditional POC trial

True negative
(0.9)

One large POC trial will be executed

b

Benefit = 0; Cost = 80 = Cost of
small POC trial

Small
POC Trial
Outcome Benefit = 1; Cost = 680 = Cost of
small POC trial plus cost of Phase Ill
trial

True positive
(0.6)

False positive Benefit = 0; Cost =680 = Cost of
0.1) small POC ftrial plus cost of Phase lll
trial

No (0.7)

Small
POC Trial
Outcome

True negative Benefit = 0; Cost = 80 = Cost of
(0.9) small POC trial

Two small POC trials will be executed

Fig. 10.1 Diagrams show the logic of a POC program for a drug with a probability of being active
of 30 % and a minimally clinically significant PFS hazard ratio of 0.6. We compare one large POC
trial to two small ones. All possible development outcomes are shown. Each arrow is labeled with its
associated outcome and probability of occurrence. We assume the drug requires a 600 patient phase
3 study. On the left is a decision diamond reflecting the unknown effectiveness of the drug. In the
upper branch, the drug is truly active; in the lower branch, it is truly inactive. An active drug pro-
ceeds to the upper middle diamond. The POC trial either produces a false negative (probability
equal to the type II error rate ) or a true positive (probability equal to the study power (1—f)). An
inactive drug proceeds to the lower middle diamond. The POC trial either produces a false positive
(probability equal to the type I error rate ) or a true negative (probability equal to (1 —-a)). The
benefits and costs of the associated outcomes are shown in the rectangles on the right. Only true posi-
tives produce a benefit. Both true positives and false positives are associated with the additional
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The studies of POC trial optimization assumed a fixed, finite POC budget, and a
large portfolio of POC trial opportunities that greatly exceeds the available budget.
This is in agreement with the authors’ experience at several pharmaceutical and
biotechnology firms, and is not surprising given the large number of oncology
indications and possible standard and experimental drug combinations. It is assumed
that if a POC trial is positive, resources for the subsequent Phase 3 trial will be made
available, also generally in agreement with experience.

Defining optimal POC trial size and Go—No Go criteria for various therapy trials
in the face of a limiting budget is an important portfolio optimization problem. Smaller
POC trials have higher Type I and Type II error rates. However, smaller POC trials
also allow more therapeutic hypotheses to be tested within the fixed POC budget.

Surprisingly, it was found that the optimal POC trial is smaller than what is tra-
ditionally used, and a lower power (higher Type II error rate) than the traditional
power should be accepted in order to allow more hypotheses to be tested. When the
higher traditional power is chosen, the Type II error rate is lower, but there is an
opportunity cost in that fewer POC studies can be funded within the fixed budget.
There is a chance that a POC study that would have led to a true positive would be
among those not funded. Such an event was termed a “Type III error” [5]. Notably,
the Type III error rate plays a significant role in determining the optimal POC
design. In a typical example, it was shown that two POC studies at 60 % power,
were 10-30 % more efficient than a single POC study at 80 % power, depending on
the conditions (Fig. 10.1). The optimal power, lower than that traditionally recom-
mended, is termed “Chen—Beckman power.”

The above results assume that all therapeutic hypotheses are of equal merit, with
equal probabilities of success (POS) prior to Phase 2 as judged by preclinical and
Phase 1 data, as well as equal clinical and economic value if the true positive is
discovered and validated. However, the same analysis can be easily extended to
therapeutic hypotheses of unequal merit as judged by POS or as weighted by clini-
cal or economic value. When applied to two competing hypotheses, the hypothesis
with the greater merit will get the larger POC trial, and in the limit of highly unequal
merit, all of the resources are devoted to a larger POC trial for the more meritorious
hypothesis, mirroring the traditional paradigm. When there are more than two com-
peting trials of unequal merit, the same mathematics can be used to optimize
resource allocation across a portfolio of potential POC trials under a fixed budget
[12, 13, 39].

The benefit—cost ratio function was designed to require a minimum number of
inputs or estimates from the team. For a single program, it requires only estimates of
the minimum effect size of clinical interest for the POC endpoint, the minimum
effect size of clinical interest for the pivotal endpoint, and the probability that the
therapy is actually capable of delivering the latter. If multiple programs are com-
pared, the relative value of each of these indication/therapy combinations needs to be
estimated, either in the form of net present value (NPV) or quality adjusted life years
(QALY) multiplied by the number of patients who will benefit, or any alternative
relative measure of interest to the team. The simplicity of the benefit—cost ratio func-
tion allows frequent rapid analyses of complex portfolios and intuitive interpretation
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of the results. More complex analyses may be difficult to implement in the time
before the information becomes out of date, may produce results that are more dif-
ficult to intuitively understand, and may not offer enhanced precision due to the dif-
ficulty of obtaining accurate values of the many required inputs.

As developed in current references, the benefit—cost ratio is optimized across a
portfolio of therapy/indication combinations, each represented by a POC trial.
However, this concept can potentially be broadened to a portfolio of therapy—indica-
tion combinations and their corresponding primary predictive biomarker hypothe-
ses. This is the core concept for portfolio optimization of an integrated portfolio
consisting of both therapeutic and predictive biomarker assets. It is applied in sec-
tion “Predictive Biomarker Hypotheses: A Global Portfolio View” in this chapter.

The benefit—cost ratio or related utility measures can also be applied within a
single indication for optimization of the trial or program design. In the tactics
described in section “Tactics” of this chapter, such optimization based on utility
functions is applied to the sizing of the Phase 2 trial cohorts, to the decisions regard-
ing further drug and/or biomarker development in Phase 3, and to the optimal design
of an adaptive Phase 3 study in the case in which the truth or falsity of the predictive
biomarker hypothesis is still uncertain after Phase 2.

Other Fundamental Principles

Two additional principles are fundamental to the approach discussed in Beckman,
Clark, and Chen [5]: repeated adaptation throughout the program, and continuous
integration of biomarker and clinical information. These principles are illustrated in
the tactics described in section “Tactics” below.

Tactics

In this section, we describe four tactics for clinical validation of predictive biomark-
ers with optimal efficiency. We begin with the efficiency optimized biomarker strat-
ified randomized Phase 2 study, which provides the initial validation test. In this
section, we discuss several other tactical considerations relative to therapy-
diagnostic co-development in Phase 2. After this Phase 2 study is completed, we
face a Go—No Go decision for both the therapy and the predictive biomarker, which
is addressed by a decision analysis-guided randomized Phase 2-3 predictive bio-
marker transition. If the truth or falsity of the predictive biomarker hypothesis is still
uncertain after Phase 2, the question of whether to focus on the full population or
the predictive biomarker defined subpopulation will have to be further investigated
in Phase 3, and in this case we will recommend adaptive-predictive performance
based hypothesis prioritization in Phase 3. Finally, this adaptive prioritization is
further augmented by maturing Phase 2 data, utilizing the Phase 2+ method.
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Efficiency Optimized Biomarker Stratified Randomized
Phase 2 Study

There are three options for phase 2 POC studies involving predictive biomarker sub-
groups. Enrichment designs enroll predominantly or exclusively “biomarker positive”
patients. They may be an efficient way to get POC for the therapy, but they do not test
the predictive biomarker hypothesis. They are recommended only in the absence of
equipoise concerning the biomarker hypothesis. The biomarker strategy design ran-
domizes between two methods of patient allocation between therapies: truly random
allocation, or biomarker directed allocation. Finally, the biomarker stratified design
stratifies patients into biomarker positive and biomarker negative subgroups, and ran-
domizes to experimental or control therapy within each subgroup, generally in an
add-on design, as discussed in section “Core Principles of Predictive Biomarker
Evaluation.” Thus, there are four groups: biomarker positive experimental, biomarker
positive control, biomarker negative experimental, and biomarker negative control.
Freidlin, McShane, and Korn [19] have shown that the biomarker stratified design is
the most efficient when there is equipoise, since the biomarker strategy design dilutes
its power by potentially making the same patient assignment on either arm.

In the biomarker stratified design, two POC hypotheses are being tested at once:
one hypothesis concerning the effectiveness of the therapy, and the other hypothesis
concerning the relevance of the predictive biomarker classifier. Alternately, this may
be formulated as one hypothesis being testing the therapy in the full population and
the second hypothesis testing the therapy in the biomarker positive subgroup.
A third formulation involves one hypothesis being testing the therapy in the bio-
marker positive subgroup and the second testing the therapy in the biomarker nega-
tive subgroup. As the study is powered for two hypotheses, it will be at least twice
the size of the normal Phase 2 study. However, if each subgroup is powered at the
Chen—Beckman power, the development efficiency is optimized and the overall
study size becomes manageable [5]. The study is considered positive if a therapeutic
effect can be demonstrated in either the full population or in the biomarker positive
subset. Whether investment in a larger Phase 2 study testing a predictive biomarker
hypothesis is warranted is a portfolio level optimization question, and is discussed
in section “Predictive Biomarker Hypotheses: A Global Portfolio View.”

The optimal statistical power occurs when the biomarker positive and negative
subgroups are approximately equal in size, and this may require some enrichment.
Molecular epidemiology studies should have been undertaken prior to Phase 2 on
purchased tissues to determine the prevalence in the population as an aid to study
design. In previous work, we have recommended not requiring a biomarker result at
enrollment, rather just requiring the availability of tissue for testing [5]. This allows
enrollment of patients without waiting for the turnaround time of the predictive
biomarker assay. For some patients who are acutely ill with their malignancy and
cannot wait to initiate therapy, this makes study participation feasible. This then
requires an interim check of the size of biomarker positive and negative groups to
determine if prospective enrichment is required later in the study.
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However, recent experience indicates that it is important to ensure not only that
patients have available tissue but that this tissue is adequate for determining a bio-
marker result. Depending on the tumor type, inadequate tissue samples can be com-
mon. Given the aggressive Chen—Beckman powering, we require near complete
ascertainment of biomarker status, and cannot afford to have patients whose tissue
proves to be inadequate. This then requires rapid turnaround of the biomarker assay
results. If the therapy has multiple indications in which POC can be sought, we
recommend testing the biomarker hypothesis in an indication in which the patients
can wait for the biomarker result before initiating therapy. Alternatively, if the ther-
apy is intended only for an indication in which immediate treatment is required,
patients without an available biomarker result will not be counted in the primary
analysis and will need to be replaced. A secondary control analysis will be needed
to determine if there is a significant difference in outcome between those with and
without available biomarker data. If such a difference is present, it confounds con-
clusions from the study.

For biomarkers that have a continuous readout, such as gene or protein expression,
the definition of the categories “biomarker positive” and “biomarker negative” may
not be final until an optimal cutoff value is defined using clinical data. Nonetheless, a
provisional cutoff must be set prospectively before clinical data are available to allow
prospective testing in the clinical study. In some cases, work with human tissues prior
to the study may have defined a bimodal distribution of expression values, and these
may have even been associated with distinct biological or pharmacodynamic behav-
ior in preclinical or early clinical work. In such cases, a fundamental cutoff at the
intersection point of the two separate modes of the distribution can be chosen [31]. If
such information is absent, it may be necessary to set an initial cutoff arbitrarily. In
this case, we would suggest setting it at the median value obtained in the Phase 2
study patients, prior to the availability of clinical data. This guarantees equal sub-
groups for the primary analysis. If the primary analysis is positive, post-hoc refine-
ment of the cutoff against the clinical data would then need to be undertaken. In cases
where the cutoff is set at study end using biomarker data (blinded to clinical data),
one cannot stratify enrollment by biomarker subgroup, and one must be alert to other
confounding factors in the subgroups. Optimization of the cutoff for a continuous
biomarker is an iterative process of refinement between biomarker and clinical data.
Fridlyand et al. [21] describe further adjustment of the cutoff after a successful Phase
3 based on the original prospective Phase 3 cutoff, a forward-looking approach which
does not yet have clear acceptance from health authorities.

In some cases, it may not be possible to choose a primary predictive biomarker
hypothesis before the start of phase 2, as fundamental understanding of mechanism
of action and relevant biomarkers may lag behind clinical development. In such
cases, the primary predictive biomarker hypothesis may be chosen at any time
before unblinding of the clinical database, the “prospective-retrospective approach”
[34]. The intention to choose a primary predictive biomarker hypothesis before data
unblinding should be specified in the protocol. When the primary predictive
biomarker hypothesis is chosen, the statistical analysis plan, and possibly the proto-
col, should be amended to give the study hypothesis in the biomarker subset equal
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status with the full population as a primary endpoint. Amending the protocol to
make this clear, despite its administrative burden, is the most effective approach for
making the validity of the analysis plan clear to external stakeholders. When the
prospective-retrospective approach is used, stratification of biomarker positive and
negative subgroups is not possible, and again one must be alert to other imbalances
confounding the subgroup results.

Another reason to use the prospective-retrospective approach is if the predictive
biomarker assay is not ready at the start of Phase 2. Minimally, one should have a
research use only (RUQO) assay available, at the start, but this is not always possible.
In that case, again, the samples can be assayed just before the clinical study results
are available, with the same disadvantages as in the scenario when the hypothesis is
not known.

Full analytical validation of the RUO will result in an in vitro diagnostic (IVD)
candidate, which requires only final validation against the clinical phase 3 data to be
approved together with the therapy. It is desirable to have the IVD candidate ready
before phase 3 to allow submission of an investigational device exemption (IDE)
application in that the assay can then be used to select patients in Phase 3 and there
is no need for a separate concordance study between RUO and IVD candidate on the
Phase 3 samples. Such a concordance study can delay approval and also carries a
risk of non-concordance, invalidating the Phase 3 results. Moreover, FDA pre-
approval of the Phase 3 study design by Special Protocol Assessment (SPA) is not
possible unless an IDE is submitted. However, full validation of the RUO to make
an IVD candidate can take 1-2 years, and therefore an important portfolio decision
is whether to invest in IVD candidate development prior to POC for the therapy and
biomarker to be certain the IVD candidate is ready and does not delay Phase 3 start.
Depending on the assay, this investment can range as high as $10-20 M.

Another important consideration is the sample preparation procedure for which
the predictive biomarker assay is optimized. Currently, the majority of available
patient samples are from the past (archival samples) and are formalin fixed and
paraffin-embedded (FFPE). Thus we currently recommend developing assays for
use in FFPE to the extent feasible so that the technique is generalizable to the great-
est number of patients. However, archival FFPE samples have several disadvan-
tages, including instability of some analytes under these conditions, as well as
evolution of the tumor molecular status between tissue acquisition and when the
therapeutic is actually applied [38]. In the future, we look forward to increasing
practicality of noninvasive methods that allow real time sampling that will monitor
the current molecular status of the tumor, not suffer from degradation of analytes
over time, and possibly not require fixation [6]. In the future, new fixatives that
preserve labile analytes may also enter into widespread use [25].

Finally, we generally recommend a continuous endpoint like progression-free
survival (PFS) instead of a discrete endpoint like response rate (tumor shrinkage)
which may be uninformative for targeted therapies that have low response rates.
With the exception of the neoadjuvant setting, where pathologic complete response
is highly correlated with OS in breast cancer [18], PFS is also a better predictor of
overall survival (OS) than response rate [15, 36].
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Decision Analysis-Guided Phase 2-3 Predictive Biomarker
Transition

At the end of the biomarker stratified efficiency optimized randomized Phase 2
study, there are four possible outcomes and decisions, which can be represented on
a two dimensional graph with the p values for therapeutic efficacy in biomarker
positive and negative patients on the x and y axes respectively (Fig. 10.2).

¢ Region 1: The therapy is ineffective in both subgroups, resulting in a No-Go
decision for further development.

¢ Region 2: The therapy is effective in the biomarker positive subgroup only. This
is a POC for both the therapy and the predictive biomarker hypothesis, and results
in a decision to proceed with Phase 3 in the biomarker positive subgroup only.

* Region 3: The therapy is equally effective in both biomarker positive and nega-
tive subgroups. This is a POC for the therapy, and a rejection of the predictive
biomarker hypothesis. It results in a decision to proceed to Phase 3 in an
unselected population.

¢ Region 4: The therapy is effective in the biomarker positive population and there
is a trend towards effectiveness, although less, in the biomarker negative popula-
tion. There is a POC for the therapy, but the status of the biomarker hypothesis is
uncertain. In this case we recommend proceeding to further adaptation in Phase
3, using adaptive predictive performance based hypothesis prioritization (section
“Adaptive, Predictive Performance-Based Hypothesis Prioritization in Phase 3”)
in conjunction with the Phase 2+ method (section “The Phase 2+ Method for
Allowing Phase 2 Data to Influence Adaptation Within Phase 3”).

In order to optimally draw the borders between the regions of the graph, a deci-
sion analysis is undertaken [5]. Each possible choice of phase 3 development path
will result in several possible outcomes, with the probability of each determined by
the Phase 2 data. For example, if a choice is made to do an enriched Phase 3 study
in the biomarker positive population only and the predictive biomarker hypothesis
is true, the outcome will be an approval in an optimal population, possibly with a
lower cost trial if there is a large effect size in the biomarker positive group (see
section “Predictive Biomarker Hypotheses: A Global Portfolio View”). But if the
same choice is made and the predictive biomarker hypothesis is false, there will be
an opportunity cost in that the approval population will have been unnecessarily
narrowed. Similarly, if Phase 3 proceeds in the full population and the predictive
biomarker hypothesis is false, there will be an approval in the optimal population.
But if the same choice is made and the biomarker hypothesis is true, there may be a
falsely negative Phase 3 due to dilution of the effect by biomarker negative patients.
Once utility values are assigned to each of these possible outcomes, the optimal
borders, which optimize utility subject to a predetermined maximum phase 2 false
positive rate, can be drawn.

We have previously advocated that the utility values be set by discussion within
the expert team that is managing the development of the therapy. However, it would
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Fig. 10.2 Two dimensional decision graph for decision analysis guided Phase 2- Phase 3 predic-
tive biomarker transition. The Y-axis shows the one-sided p value for clinical benefit for “bio-
marker negative” (BM-) patients in the PoC study, the X-axis shows the one-sided p value for
clinical benefit for “biomarker positive” (BM+) patients in the PoC study. Clinical benefit is greater
the closer the point is to the origin. The graph has four regions corresponding to the four possible
decisions: (R1) upper-right (white): No Go; (R2) upper-left (dark grey): go to biomarker positive
only Phase 3; (R3) lower-left (medium grey): Go to traditional Phase 3 in full population; (R4)
middle-left (light grey): go to biomarker adaptive Phase 3 in full population (adaptive predictive
performance-based hypothesis prioritization);. The graph is calculated using a Bayesian decision
theoretic model [7] using three possible assumed scenarios and estimates of their probabilities:
(HO) a “null” hypothesis where the experimental drug regimen provides no benefit over standard
of care; (H1) an “all comers” hypothesis where the drug is effective but the biomarker does not
define a difference in patient benefit for the experimental regimen over control; and, (H2) a “bio-
marker only” hypothesis where the biomarker clearly defines if patients benefit from the experi-
mental regimen. Based on the outcome of a randomized Phase 2 trial with stratification for patients
according to the biomarker of interest, the initial team-estimated probabilities assigned to the three
scenarios (prior probability estimates) are updated using Bayes’ theorem to create posterior prob-
ability estimates. Using these posterior probability estimates and team estimates of relative utilities
of different consequences which may result from the choices in the three scenarios, the resulting
regions are selected to maximize the expected utility. This optimization is performed under the
constraint that the chance of falsely going to Phase 3 when the drug is ineffective (the null hypoth-
esis HO) will be equal to or less than the one-sided false positive rate a. The graph shows a case
assuming equal numbers of biomarker positive and negative patients. The boundaries of the regions
would differ depending on the ratio of these two populations and other factors. Thus, the graph is
only an example, and the exact boundaries need to be calculated for each specific case. Adapted
from Beckman, Clark, and Chen [5]

also be of interest to study how these utility values would be set by patients, insurers,
or developers of diagnostic assays, and how this may affect the optimal borders
between regions of the graph.
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For continuous biomarkers, it will be useful to draw one of these graphs for the
initial arbitrary cutoff value between biomarker positive and negative, and another
for the refined cutoff determined at the end of the study using clinical data. If the
decision differs between the two graphs, it may be helpful to look at a sensitivity
analysis of the optimal decision as a function of the cutoff.

Adaptive, Predictive Performance-Based Hypothesis
Prioritization in Phase 3

If the Phase 2 data are in region 4 of the graph in Fig. 10.2, ambiguity remains about
the truth of the predictive biomarker hypothesis. Based on the underlying principles
of adaptation and continuous integration of biomarker and clinical results, we con-
tinue the investigation of the biomarker hypothesis in an adaptive Phase 3 design
[14]. This design allows simultaneous testing of two hypotheses:

1. Hypothesis 1: The therapy works in the full population.
2. Hypothesis 2: The therapy works in the subpopulation defined by the predictive
biomarker hypothesis.

In order to test both hypotheses, we need to enroll the full population and test
hypothesis 1 in the full population while simultaneously testing hypothesis 2 in the
subset. We note that other designs are available which involve sequential testing,
where one of the hypotheses is tested first, and the second tested only if the first test
is positive. Sequential testing approaches are efficient if it is more likely that the first
hypothesis tested will be positive as compared to the second one. But in this case the
truth of the full population hypothesis and the truth of the predictive biomarker
hypothesis are both uncertain, so the proper order for sequential testing is unknown.

We will thus test both hypotheses simultaneously, and the trial will be defined as
a positive trial if either of the hypothesis tests is successful. Because there are two
ways for the trial to be judged positive, care must be exercised to keep the false posi-
tive rate (alpha) at 5 % or less, as stipulated by national health authorities. This is
done by “splitting” the 5 % positive rate, into lower rates for each of the two hypoth-
eses. The total false positive rate can then be computed and set to 5 %. Because
hypothesis 2 involves a subset of the sample from hypothesis 1, there is some degree
of correlation between the hypotheses, such that the total false positive rate will be
less than the sum of the two individual false positive rates; but in any event the total
false positive rate can be fixed at 5 %.

In keeping with our fundamental principles, we would like to optimize the
efficiency of this trial in a data-driven manner. The solution is to split alpha in a way
which optimizes the expected power of the study based on clinical data. The better
the predictive biomarker hypothesis has been doing in predicting the clinical data,
the larger fraction of the alpha is devoted to testing Hypothesis 2. In effect, in the
setting where we do not know enough to place a full bet on either Hypothesis 1 or
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Hypothesis 2, the methodology computes the optimal way to hedge our bets [14].
Net study power will be superior to methods where a fixed alpha split is applied to
test two hypotheses [20]. Methods that preserve alpha using the combination test
have also been developed [9, 22].

The adaptation in which alpha split is chosen will be at an interim analysis point in
Phase 3. The clinical data used can either be from Phase 3 to that point (which involves
a statistical penalty for using data from within the study for a within study adaptation)
or external to the study (i.e., from Phase 2; see section “The Phase 2+ Method for
Allowing Phase 2 Data to Influence Adaptation Within Phase 3”). The rules for deter-
mining the alpha split can be determined prospectively and given to an independent
Data Monitoring Committee (DMC) for automatic application prior to the availability
of final study results. In addition to the prospective rule setting and independent appli-
cation, the procedure does not affect patient selection or management, and strictly
controls the false-positive rate alpha. As such, there should be no concerns about this
methodology from national health authorities or local ethics review boards.

The Phase 2+ Method for Allowing Phase 2 Data to Influence
Adaptation Within Phase 3

In keeping with the core principles stated in section “Core Principles of Predictive
Biomarker Evaluation,” we would like to continuously adapt as we proceed through
development. However, real time adaptation in oncology is hampered by the fact
that the clinical endpoint of greatest interest, OS, is often measured only with a
significant delay. Thus, we frequently adapt based on short term endpoints that have
imperfect correlation with OS, such as PFS.

Typically Go—No Go decisions are made based on Phase 2 PFS data because it is
undesirable to slow development while waiting for mature OS data. Yet the primary
endpoint of Phase 3 will be OS.

If there is an adaptation within Phase 3, it will be performed at interim analysis,
typically based on interim Phase 3 data. At this time, the OS data will largely be
immature, so again the adaptation will be based on PFS, despite its imperfect cor-
relation with the primary endpoint OS. In addition to the imperfect correlation with
the primary endpoint, this paradigm suffers from the possible inflation of the Phase
3 false positive rate, which requires statistical penalties to be applied to assure com-
pliance with maximum allowable false positive rates for Phase 3 pivotal studies.

An alternative approach, the Phase 2+ method, has been proposed ([5, 14];
Fig. 10.3) in which maturing Phase 2 data can be used to direct a Phase 3 adaptation.
Typically, there will be a point during the Phase 3 study, before Phase 3 results are
unblinded, at which Phase 2 OS data are mature. By using Phase 2 OS data which
is external to the Phase 3 study, there is no issue of inflation of the false positive rate
of Phase 3 due to the interim adjustment of the alpha split. (Nonetheless, one may
optionally choose to use OS data from Phase 3 at interim with appropriate penalties,
as illustrated in Fig. 10.3). Most significantly, the adaption is on OS data, the same
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Fig. 10.3 Traditional confirmatory phase development compared to the Phase 2+ method. Phase
2 PoC studies (blue) are shown on the left, Phase 3 approval studies (red) on the right. Primary
endpoints are progression free survival (PFS) for Phase 2, overall survival (OS) for Phase 3. In the
traditional paradigm with one adaptation (a), the Phase 2 PoC study is completed, and a Go—No
Go decision based on PFS (with or without some consideration of immature OS data, in parenthe-
ses) determines whether a Phase 3 approval study is done. The Phase 3 study has an interim analy-
sis (olive), based again primarily on PFS (with or without consideration of immature OS data from
Phase 3, in parentheses), and an adaptation occurs based on this interim analysis (represented by
two different Phase 3 bars). In the Phase 2+ paradigm with one adaptation (b), multiple analyses
of the Phase 2 study occur, and the Phase 2 and 3 studies functionally overlap. The first analysis of
the Phase 2 PoC trial results in a Go—No Go decision for Phase 3, as in (a). But unlike (a), Phase
2 data are utilized for decision making up to and including the Phase 3 interim analysis. The Phase
3 interim analysis includes maturing OS data from Phase 2, possibly PFS data up to the first Phase
2 analysis, and possibly immature OS and PFS data from Phase 3. These multiple data sources,
particularly the maturing Phase 2 OS data, contribute to a more robust adaptation at the Phase 3
interim analysis. An alternative option, using the Phase 2 OS data only, provides a very straightfor-
ward approach without the need for statistical penalties for using the Phase 3 data for adaptation,
and without needing to adjust for the imperfect correlation between PFS and OS. Adapted from
Beckman, Clark, and Chen [5]
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endpoint that will be pivotal for Phase 3. Previous development paradigms have not
harvested the full value of this maturing Phase 2 OS data. In the Phase 2+ method,
additional value results from considering the program as an integrated whole rather
than as a collection of isolated individual studies.
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In order to maximize the value of this approach, Phase 2 OS must correlate well
with Phase 3 OS, and therefore the Phase 2 POC study must be as closely identical
to the Phase 3 pivotal study as possible. In particular study populations, inclusion/
exclusion criteria, and experimental and control arms should ideally be identical
between the Phase 2 and 3 studies. The investigative sites for Phase 2 should be used
again in Phase 3, with other similar sites added due to the larger size of Phase 3.

In anticipation of the use of this technique, the Phase 2 study should prespecify
several analysis timepoints:

1. Phase 2 primary analysis for PFS and Go—No Go decision. Conducted when PFS
data are mature.

2. Final Phase 2 OS analysis conducted when OS data are mature.

3. Phase 2+ OS analysis to support adaptation in Phase 3. Conducted during Phase
3 sometime before data unblinding, as close to the maturity of Phase 2 OS data
as possible.

Predictive Biomarker Hypotheses: A Global Portfolio View

Predictive biomarker hypotheses, like candidate therapies, are uncertain assets with
associated value and risk. Moreover, just as with candidate therapies, investment is
required to even assess the value of a predictive biomarker hypothesis. Finally, just
as each candidate therapy is represented by a lead compound and backups, we have
defined a primary predictive biomarker hypothesis which has a role analogous to a
lead compound. Just as a backup compound may be substituted in some instances in
the event of failure of a lead, an exploratory biomarker hypothesis may become
primary in the event of failure of the primary predictive biomarker hypothesis.
Investigation of either a backup candidate therapy or of a backup predictive bio-
marker hypothesis will require an additional iteration through development.

Thus the generalized portfolio problem should not be limited to prioritization
and resource allocation of candidate therapies, but rather should encompass priori-
tization and resource allocation among the integrated portfolio of candidate thera-
pies and predictive biomarker hypotheses. For example, one might have a portfolio
of ten lead candidate therapies, each with its associated backups, primary predictive
biomarker hypothesis, and exploratory biomarker hypotheses. After portfolio
optimization in the face of budgetary constraints, resources may be focused on
seven of these candidate therapies, with further investment in associated predictive
biomarkers for only 5. As another example, a given candidate therapeutic may have
sufficient funds for POC testing in five indications of interest without testing its
associated predictive biomarker hypothesis. But, if additional moneys are invested
for testing the predictive biomarker hypothesis in each indication, the total available
funds may be only enough to test three indications. Which plan is more efficient?

We have discussed a core principle of optimizing development efficiency by max-
imizing a risk adjusted benefit—cost ratio (BCR) across an individual POC program,
a collection of POC programs of equal value, or a portfolio of POC programs of
unequal value (section “Core Principle 2: Optimizing Development Efficiency,” this
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chapter; [39]). In order to develop the BCR for therapies, we defined the benefits and
costs associated with late development of therapies, and risks and probabilities that
these benefits and costs would be realized.

In the sections below, we will define the benefit, costs, risks, and probabilities of
success for predictive biomarkers, within the context of the paradigm for integration
of predictive biomarker hypotheses into individual development programs outlined in
sections “Core Principles of Predictive Biomarker Evaluation” and “Tactics.” This
will provide a qualitative foundation for understanding the integrated portfolio opti-
mization problem. Although explicit mathematical formulations are beyond the scope
of this chapter, they can in principle be readily developed based on these concepts.

The Risk-Adjusted Value of a Predictive Biomarker Hypothesis

A predictive biomarker hypothesis lacks inherent value in the absence of a candi-
date therapy. It derives its value from its effect in decreasing the risk and/or increas-
ing the value associated with a candidate therapy or therapies in one or more
indications. For example, a predictive biomarker may decrease the risk of a candi-
date therapy by increasing the probability that the therapy will successfully deliver
a minimally clinically significant result compatible with registration, without actu-
ally increasing the effect size substantially beyond that level. A higher value would
not be realized for that individual therapy, but a portfolio with lower average risk of
failure could be delivered at a lower cost. In contrast, some predictive biomarkers
may lead to increased clinical effect sizes beyond those minimally required for reg-
istration. Such biomarkers would both lower the risk of development, and increase
the value of candidate therapies. This latter class of biomarkers is potentially more
valuable when available, but given the very high genetic complexity and instability
of cancer [3] caution should be exercised in assuming that the majority of predictive
biomarkers will in fact deliver very large clinical effect sizes.

As with the BCR for candidate therapies, we desire to define a simple function
with a small number of intuitively understandable inputs that will encompass the
value of a predictive biomarker hypothesis.

We propose the following criteria as determinants of the value of a predictive
biomarker hypothesis:

1. Level of evidence within the indication: what is the probability the predictive
biomarker hypothesis is true in the indication in which it is being tested? Prior to
a phase 2 study, evidence pertinent to this question will come from the various
preclinical, mechanism of action, and early clinical studies outlined in section
“Core Principle 1: Clinical Validation of Predictive Biomarkers.”

2. Impact on therapeutic development risk: if the predictive biomarker hypothesis
is true, to what degree will it increase the probability that the therapy can achieve
minimally clinically significant effects in the new subpopulation defined by the
hypothesis? This amounts to reduction of development risk, and is perhaps the
key benefit of successful predictive biomarker hypotheses. The same sources of
pertinent evidence as in 1 above must be considered when estimating this.
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3. Impact on therapeutic value: if we define therapeutic value as the number of
patients benefitting times the benefit (the latter measured in QALY for example),
the predictive biomarker hypothesis, if true, will result in a decrease in the num-
ber of patients benefiting but often (not always) an increase in the average benefit
per patient. The total therapeutic value is the product of the number of patients
and the average benefit per patient, and may increase or decrease. The change in
average therapeutic benefit in the biomarker defined subpopulations may again
be estimated from preclinical and early clinical studies, and the change in popu-
lation size may be estimated from molecular epidemiology studies estimating
biomarker prevalence in human tissues.

(a) Probability of a true positive test of the biomarker hypothesis: Based on the
Phase 2-3 development paradigm described in sections “Core Principles of
Predictive Biomarker Evaluation” and “Tactics,” and the estimated average
change in patient benefit in the predictive biomarker defined subpopulation,
it should be possible by simulation to determine the probability that a true
predictive biomarker hypothesis will actually be detected as such by the
development program (as opposed to resulting in a false negative). In order
for a predictive biomarker hypothesis to benefit a program, it must be true
and its truth must be detected by the development program (that is the test of
the predictive biomarker hypothesis must lead to a true positive).

(b) Probability of a false positive test of the predictive biomarker hypothesis:
Based on the Phase 2-3 program design and the probability that the predictive
biomarker hypothesis is actually true or false, it should be possible to simulate
the overall probability that a false positive test of the biomarker hypothesis
occurs. A false positive test of a biomarker hypothesis decreases the value of a
candidate therapy in that the population benefitting is unnecessarily narrowed.

(c) Probability of a true or false negative test of the predictive biomarker hypoth-
esis: These events do not change the value of a therapeutic candidate and its
indication relative to the value without a biomarker hypothesis. Therefore,
these individual probabilities need not be estimated.

4. Generalizability: what is the probability that the predictive biomarker hypothesis
will benefit multiple indications? The strategic value of a predictive biomarker
hypothesis is greater if it can be generalized to other indications. The value could
be immense if the predictive biomarker hypothesis benefits multiple indications.
In such a case, testing the predictive biomarker hypothesis may be a higher prior-
ity than testing any single therapeutic hypothesis. However, examples exist
where a predictive biomarker hypothesis did not generalize across indications.
For example, the BRAF V600E mutation predicts efficacy in melanoma therapy
[10] but did not generalize to colorectal cancer [28]. Often failure to generalize
is associated with tissue specific feedback loops which generate resistance to
targeted therapies. Preclinical pharmacology data on molecularly characterized
models, as well as mechanism of action studies, may help in projecting the
degree to which a predictive biomarker hypothesis will generalize.

(a) Information borrowing: what is the likelihood that the predictive biomarker
hypothesis, once assessed as true in one or two indications, can be generalized
to others without further testing? If the predictive biomarker hypothesis is
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shown to be true in both lung cancer and head and neck cancer, is there a need
to test it in other indications such as breast and colorectal cancers? This factor
affects the cost (not the value) of biomarker development, but is mentioned
here because of its relationship to generalizability.

The value of any individual indication for a candidate therapy in the absence of
a predictive biomarker hypothesis is the product of three numbers: the probability
that the therapy is actually effective in the indication, the probability that the devel-
opment plan will detect this effectiveness, and the value of the registered indication
in the event of a true positive outcome (measured either in total patient benefit or net
present value). The value of a portfolio of indications for therapies is the sum of
each of these products.

When the decision is made to evaluate a predictive biomarker hypothesis, each
relevant indication has an incremental value added, which may be positive or nega-
tive. A cost is also added, and this may decrease the number of indications that can
be tested within the budget.

In the event of a true positive test of the predictive biomarker hypothesis, the new
value of the indication will reflect an increased probability that the drug actually works
in the indication (in the new subpopulation defined by the predictive biomarker), a
possibly increased probability that this effectiveness will be detected by the clinical
studies (if a larger clinical effect size is anticipated), a reduced number of patients
benefitting, and possibly an increased average benefit per patient. The incremental
value of a true positive predictive biomarker hypothesis with respect to a given therapy
and indication is the new indication value in the presence of the predictive biomarker
minus the value in the unselected population without a predictive biomarker.

In the event of a false positive biomarker test, the new value of the indication will
reflect only decreased population size. The incremental value, negative under these
circumstances, is again the new indication value in the presence of a false positive
biomarker hypothesis minus the indication value in the unselected population with-
out a predictive biomarker.

The total risk adjusted value of a predictive biomarker hypothesis in a given
indication is the sum of its incremental values in the presence of a true positive or
false positive outcome of the test of the predictive biomarker hypothesis, weighted
by the probability of occurrence of a true or false positive predictive biomarker
hypothesis respectively.

The total risk adjusted value of a predictive biomarker hypothesis is the sum of
its risk adjusted value across all indications over which it is expected to generalize.

The Risk-Adjusted Cost of Testing a Predictive
Biomarker Hypothesis

In this section, we will first discuss the risk-adjusted cost of testing a predictive
biomarker hypothesis in a single indication, and then consider the risk-adjusted cost
of developing a predictive biomarker across multiple applicable indications.
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The following criteria determine the risk-adjusted cost of testing a predictive
biomarker hypothesis in a single indication:

1. The increased cost of doing a stratified randomized Phase 2 study with two bio-
marker subgroups as opposed to a Phase 2 study in the unselected population,
consisting of:

(a) The cost of increasing the sample size.

(b) The cost of increased screening required for enrichment of the less prevalent
subgroup. This can be estimated based on the known prevalence of the bio-
marker from studies in human tissues.

(c) The cost of increased screening due to patients with inadequate tissue. This
can be estimated based on the tissue requirements of the primary biomarker
assay and historical data on tissue availability in the indication. The primary
biomarker assay should be the first priority for available tissue after the pri-
mary diagnosis.

(d) The cost of tissue management and conducting biomarker assays.

(e) Increased costs associated with a likely longer duration of study.

2. The cost of developing a companion diagnostic assay at risk.

3. The risk adjusted savings from a smaller Phase 3 study if the following condi-
tions are met:

(a) A phase 2 result in region 1 of Fig. 10.2, resulting in a Phase 3 study in bio-
marker positive patients only.

(b) An increased clinical benefit effect size in biomarker positive patients in
Phase 2 that results in the possibility of designing a smaller Phase 3 study
because a larger clinical benefit can be assumed. Before taking the risk of
reducing the sample size in Phase 3, the development team will need to con-
sider not just the point estimate of the clinical benefit effect size, but also its
uncertainty.

The risk adjusted savings from this mechanism can be estimated by simulations
given the Phase 2 study design, the decision criteria determining region 1 in
Fig. 10.2, the estimated probability that the predictive biomarker hypothesis is true,
and the estimated clinical benefit effect size in the biomarker positive population in
the event of a true predictive hypothesis.

The cost of developing and utilizing a predictive biomarker hypothesis fully
across all relevant indications involves the sum of the costs of developing the bio-
marker in each relevant indication unless there is a plan to assume generalizability
of the predictive biomarker hypothesis across indications. We believe it is reason-
able in most cases to assume generalizability despite the risk involved. For example,
if the predictive biomarker hypothesis fails in the first indication, one might not test
it in further indications. If the predictive biomarker succeeds in the first two indica-
tions, one might assume its truth for future relevant indications and develop the
therapy in predictive biomarker defined subpopulations only in future indications.
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Such plans seem intuitively sensible and will reduce costs, but in estimating their
efficiency one must bear in mind that any assumption of generalizability increases
the risk of false positives and negatives with respect to the biomarker hypothesis. It
is unclear what data can be used to quantify the risk of false positives and negatives
under these circumstances.

Another cost of developing a predictive biomarker hypothesis in multiple indica-
tions may be adapting the companion diagnostic assay to the different indications.
While some assays may be readily adaptable, others will require tissue specific ver-
sions at a reduced but non-zero cost. For example, gene expression assays must be
normalized to “housekeeping genes” with constant expression. The choice of
housekeeping genes may be tissue specific.

Portfolio Analysis Involving Predictive Biomarker
and Candidate Therapy Assets

From the above, the complexity of portfolio analysis involving both predictive bio-
marker hypotheses and therapeutic candidates is apparent. Calculating false positive
and negative rates for testing the predictive biomarker hypothesis from the complex
adaptive Phase 2-3 development paradigm likely requires simulations. Predicting
whether a successful predictive biomarker hypothesis will only increase the proba-
bility of achieving a minimally significant clinical benefit effect size or will also
increase the clinical benefit effect size may be challenging. Estimating the degree of
generalizability of the predictive biomarker hypothesis across indications may also
be difficult. Multiple possible biomarker development plans result from different
assumptions about generalizability of results. Individual biomarker assay character-
istics will determine the incremental cost of developing a companion diagnostic
across multiple indications.

We recommend that each therapeutic program and associated predictive bio-
marker hypothesis be considered in three scenarios. Within each scenario, the opti-
mal allocation of investment between indications can be determined using previously
published methods [12, 13, 39].

1. With the predictive biomarker hypothesis developed in each relevant indication.

2. With a predictive biomarker hypothesis developed in a small subset of indica-
tions and assuming generalizability of the results to other indications.

3. Without a predictive biomarker hypothesis.

A comparison of the benefit—cost ratio in these three scenarios should give guid-
ance as to which plan is optimal for a given therapy candidate. This can be followed
by a ranking across therapeutic programs of the optimal development scenarios by
the benefit—cost ratio and hence overall prioritization within a fixed budget for POC
studies and biomarker development. Additional “what if”” scenarios can be addressed
ad hoc by computing benefit—cost ratios for alternative portfolio strategies.
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Summary and Future Directions in Personalized
Therapy of Cancer

This chapter has begun by outlining an approach to integration of predictive
biomarker hypotheses into individual oncology clinical development programs. The
core principles include clinical validation of predictive biomarker hypotheses, and
optimization of programs based on maximizing a benefit—cost ratio. Corollaries of
these principles include the need to include biomarker negative patients in late
development, and prioritization of a single primary predictive hypothesis for formal
statistical testing in phase 2. The resulting program is adaptive and data-driven, and
demands value from predictive biomarkers. This may result in the rejection of some
putative predictive biomarker hypotheses, but ultimately will result in greater value.

The benefit—cost ratio has been previously developed not only for individual pro-
gram optimization but also for optimization of resource allocation across a portfolio
of candidate therapies and their indications. The chapter begins to extend that work
by considering optimal management of an integrated portfolio involving two asset
classes: candidate therapeutics and putative predictive biomarker hypotheses. This
again involves maximizing a benefit—cost ratio that is designed to be as simple and
intuitive as possible. However, the complexity of optimizing a portfolio with two
mutually interacting asset classes is unavoidably greater than optimization across
therapeutic candidates alone. Nonetheless, portfolio analysis is valuable to opti-
mally manage risk given that both putative biomarker hypotheses and candidate
therapies are uncertain.

How will personalized cancer therapy change in the future? The current approach
to personalized medicine involves matching patients to optimal therapies by their
tumors’ molecular characteristics. This is done based on average molecular proper-
ties of bulk samples at diagnosis and (when possible) relapse.

However, tumors are genetically unstable, because this is the most efficient way
for them to evolve [2—4]. As a result, there will be subclones whose molecular prop-
erties are not detected in bulk samples. These subclones can lead to preexisting
resistance to targeted therapy. Rapid evolution of acquired resistance due to genetic
instability is another source of resistance.

Current personalized medicine does not fully consider this intra-tumoral hetero-
geneity and evolutionary dynamics. More complex nonstandard personalized strate-
gies that explicitly consider subclonal structure (including the risk of rare cells
below the detection limit) and evolutionary dynamics (including the risk of pre-
dicted future states) have the potential to dramatically improve patient outcomes, as
determined by extensive simulation studies [6]. Clinical translation of these ideas
will require improved noninvasive access to tumors and single-cell analysis tech-
niques as well as deeper understanding of molecular mechanisms of tumor evolu-
tion and resistance.

Nonstandard personalized medicine strategies will in the future think several
moves ahead, like a chess master, as opposed to the current approach which matches
patients to therapies one therapeutic maneuver at a time. However, to play chess one
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must first know the pieces and how they move. The elucidation and validation of
predictive biomarker hypotheses for available therapies continues to define the very
large number of pieces and moves in the vitally important game of personalized
cancer therapy.
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Chapter 11

Dynamically Optimizing Budget Allocation
for Phase 3 Drug Development Portfolios
Incorporating Uncertainty in the Pipeline

Nitin R. Patel and Suresh Ankolekar

Introduction

In this chapter we describe a model for optimizing allocation of a budget that has
been earmarked for Phase 3 (Ph3) development of drugs in a pipeline over a plan-
ning horizon. We consider drugs that are ready to enter Ph3 trials as well as drugs
that are at earlier stages of testing but are scheduled to require funding for Ph3 trials
over the planning horizon. We focus on Ph 3 trials as they are very expensive and
because in most large pharmaceutical companies Ph3 budget allocation follows a
process that is separate from funding of earlier stages of drug development. (In sec-
tion “Summary” we indicate how our model can be modified to include both Phase2
(Ph2) and Ph3 budget allocation.)

In chapter “Challenges of Portfolio Management in Pharmaceutical Development”
Charles Persinger describes the challenge of applying the traditional portfolio
management approach in the “Big Pharma” setting of drug development. He identi-
fies two key elements that constitute the challenge. The first is the fact that at any
point in time when we are considering budget allocation to drugs that are ready for
Ph3 trials, several compounds in the clinical research pipeline are typically at earlier
stages of ongoing development and it is uncertain which ones will progress to Ph3
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trials. Thus budget commitments to drugs that are ready for Ph3 trials have to be
made with the recognition of the opportunity cost of reducing these amounts from
the budget available to drugs that will enter Ph3 development later in the planning
period. The second is the converse problem: if we set aside budget allocations for
drugs that we expect to enter Ph3 trials in the future they may fail to progress to Ph3
due to inadequate performance in earlier studies. This frees up funds for deploy-
ment but, since budgets are allocated one or two times in a year, there will be delays
in deployment of released funds to drugs entering Ph3 development. This can sig-
nificantly reduce the financial return of the portfolio. To meet the challenge Persinger
proposes an approach that considers downstream portfolio level implications of
decisions made at the project level along with more frequent portfolio reviews. In
this chapter we develop a mathematical formulation that embodies the approach he
proposes by modeling the entire stream of allocation decisions made over the plan-
ning horizon to optimize financial returns and assess risk at the portfolio level. We
also show how this model can be used to re-optimize budget allocations to projects
when estimates are updated and assumptions are revised. Using the model for re-
optimization provides a structured and consistent process that facilitates rapid and
more frequent adjustments to budget allocations over the planning horizon. The
models we describe in this chapter build on work described in Patel et al. [1]. This
reference also provides a summary of previous work in mathematical modeling of
portfolio decision-making in biopharmaceutical companies.

Approach and Mathematical Models

Extending the Traditional Portfolio Approach
to Budget allocation

The traditional portfolio approach as outlined in chapter “Challenges of Portfolio
Management in Pharmaceutical Development” uses the following inputs to allocate
a given budget to projects in the drug development pipeline over a planning horizon
(see Sharpe and Keelin [2]). We focus on the budget earmarked for Ph3 development.
For each drug in the Ph 3 pipeline (indexed by i) we consider a number of possible
design alternatives (indexed by j). For design alternative (j) of each drug (i) the tradi-
tional portfolio approach uses the following inputs to determine budget allocation.

1. Budget requirement for Ph 3 development (b;).

2. Estimated probability of technical and regulatory success (POSTR;) in a Ph3 trial.

3. Estimated Expected Net Present Value (ENPV;) calculated by combining
POSTR;; with revenue and cost models.

A ranking algorithm is used to select drugs to develop and to allocate funds to
them to maximize ENPV given the available budget. The algorithm computes the
return for each drug-design combination as ENPV ;/b; and for each drug chooses the
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design that gives the highest return, r;=Max; (ENPV,/b;). It then ranks the drugs
from highest to lowest r; and allocates budget by this rank order until the available
budget is allocated.

The above ranking algorithm can be improved by formulating budget allocation
optimization as a Knapsack Problem (Martello and Toth [3]) with side constraints.
The side constraints are needed to ensure that at most one design can be selected for
each drug. Denote the decision variables by Z;, where Z;=1 if drug i is allocated
budget required by design j and Z;=0, otherwise. The Knapsack Problem formula-
tion is given below.

/]

Maximize ZZENPV..Z .
i
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where B is the total budget available over the planning horizon.

Optimization Model

To address the challenge described in the introduction to this chapter we develop an
optimization model that extends the traditional portfolio model to provide, not just
an optimum solution at a given time, but an optimum policy that recognizes the
downstream consequences in terms of future availability of drugs and the possibility
that funds may be freed up by failure of drugs in the development pipeline to prog-
ress to Ph3 trials. The extension is based on:

1. Bayesian priors

Prior distributions for the effect size in Ph3 trials are estimated for each drug
that is ready at the present time for Ph3 trials, as well as for drugs that are at
earlier stages of development in the pipeline that would need to be funded over
the planning horizon. These distributions are based on expert opinions or data
and simulations from Ph2 or earlier studies. (See, for example, Chuang-Stein [4],
O’Hagan et al. [5], Spiegelhalter and Friedman [6].)

For simplicity we will assume that the prior distributions are two point
distributions. This has been found to be adequate in several settings. (See, for
example, Cong and Beckman [7] and Patel and Ankolekar [8].) This assumption
can be extended to more complex situations where there are multiple levels of
success such as when the revenue from launching a drug that has regulatory
approval depends on efficacy estimates due to the comparative effectiveness
relative to current drugs on the market. See, for example, Patel et al. [9].

Let Wi be the prior probability that the effect size of drug i meets the targeted
difference from placebo, &;, for market launch and @; be the power of design j
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for drug i. We assume that design j involves running two concurrent, identical
trials that will both need to show significance at level a for regulatory approval.

For the two point prior Pr(H; is true)="¥i and Pr(H, is true)=1-¥i, so that
the Ph3 posterior POSTR for drug i and design j can be calculated as:

PoSTR, = @, Wi+a’ (1-Wi).
We can now compute:

ENPV, = {CD[/,Z‘PH o’ (1- ‘Pi)} {NPVij of cash flow if drugiislaunched} (112)
- {1 -0 Yi-a®(1- ‘I—’z)} {NPVI.j of Ph3development cost for drug i} .

This is an important computation as it explicitly recognizes the uncertainty
that we have regarding the efficacy of a drug before beginning Ph3 trials. The
traditional portfolio approach assumes a value for PoOSTR without explicitly
modeling the uncertain knowledge of effect size.

2. A simulation model

We describe a simulation model to assess technical, regulatory, and commer-
cial risk in the section “Assessing the Risk Associated with the ENPV-Maximizing
Portfolio”.

We use the Bayesian priors to develop a mathematical programming model that
optimizes the drug development program by determining the optimal design options
for trials in a portfolio of drugs in the pipeline for Ph 3 development over a planning
period. We show how Bayesian decision analysis can be effectively implemented as
a Stochastic Integer Programming (SIP) model (Birge [10]). Using SIP, one can
optimize decisions that are discrete in nature by modeling budgeting constraints,
fixed costs, sequencing and scheduling requirements, and many other aspects that
arise in the context of optimizing development of a portfolio of drugs.

The SIP formulation is given below.

Assume, without loss of generality, that the drugs are indexed in the order in
which they are scheduled to become available for Ph3 development. So that if ¢ is
the time when drug i become available for Ph3 development, then #,<t,<f;... <t
We will assume ¢, =0 and will discount all cash flows to this point in time.

Leta, = 1if Drugibecomes available for Ph3 development
= 0if Drugiis not available  fails to progress to Ph3 development )

Letp, =Pr(a,=1).

Here we will assume independent Bernoulli distributions for a,. (The independence
assumption is easily relaxed by modeling the Bernoulli probability of availability of
drug i as dependent on the availability of drugs 1, 2, ...i—1 and replacing p; by
pilaya, . .ai,=Pr(a;=1la,a,. a;.)
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We assume drug 1 is available, so that p;=1.0
Decision variables will be denoted as:

Z, =lif Drugi trials use design j,
= O otherwise, for i =1,2

Z |aza3 = lif Drugiuses design j when it has an availability

historyof a,a, ...q,
= Ootherwise, fori =3,4,...1.

Data for the SIP model are:

ENPV;: ENPV from drug i if it becomes available for Ph3 trials
b;: Budget allocation required by Design j for Drug i
B: Total budget available over the planning horizon

The Objective Function to be maximized is given by

SENPV, Z, + p, S ENPY,, 2]+Zp Y. Z {H'ml,pm p) " HENPY,Z, L (11.3)
i J

a, a, a,

The first term is the contribution to the portfolio ENPV by Drug 1. The second
term is for Drug 2 and is similar to the first term except for the multiplication by p,
that is needed to compute the expectation over the random variable a,. The last term
is the sum of (/—-2) terms reflecting the contributions of the drugs 3...7 respectively.
The expression in curly brackets is the probability of availability history a,,
as...a;— 1, the expression following the curly brackets is the ENPV contribution of
Drug i for that availability history.

The following design constraints ensure that only one of the designs can be
selected for any drug under each availability history.

>z,<1i=1.2

i
ZZ”|a2a3...aHS1 i=3,4,.,] a =01 m=23,...,i-1
- y
J

The budget constraints are

Zb,jz”+a,2szzzj+a32b3/z3ﬂu +a4Zb4jz (5 .

+aZb,j 2,aa;...a,, <Ba, =01Lm=23. .11

Notice that a solution to SIP gives the optimum values of Za,as,_a, for all i.
These values specify design choices for each drug under all possible future avail-
ability outcomes that will maximize ENPV for the portfolio. The solution, there-
fore, constitutes an optimum policy.
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Assessing the Risk Associated with the ENPV-Maximizing Portfolio

The optimization model of the preceding section maximizes ENPV of a portfolio sub-
ject to budget and availability constraints. While ENPV is a commonly used criterion
in practice for optimizing the return on our portfolio, it does not account for the down-
side risk of obtaining low and negative returns. The distribution of NPV for a portfolio
enables assessment of its technical and regulatory risk. Obtaining this distribution
involves convolution of the distributions of NPV;; for {(i,/)lZ;=1}. Denoting G as the
event that drug i with design j has technical and regulatory success and NG as its
complementary event, each NPV; has a two point distribution F; with values NPV,IG
and NPV,;ING with corresponding probabilities of PoSTR; and 1-PoSTR;;. The con-
ditional NPV distribution for a given availability scenario given by (a,, as, ...a;) is the
convolution of F; over {(ij)lZ;=1}. The unconditional distributi[on of NPV is a
mixture of these distributions with mixing probabilities given by [ [ (1- p, )(H‘).
i=2

A simple way to obtain this distribution is using Monte Carlo simulation.

Risk associated with uncertainty in revenue is often referred to as commercial
(or market) risk. The revenue profile over the life cycle of a drug in the market
is generally modeled as a function of a few parameters. We can incorporate
commercial risk into the Monte Carlo simulation model for technical and regulatory
risk described above by treating these parameters as random variables with distribu-
tions that are estimated by market studies and expert opinions.

Illustrative Example

We will illustrate our model using an example of a portfolio with seven drugs await-
ing Ph3 development. Our emphasis in creating this example has been to keep it as
simple as possible while highlighting the key advantages of the general model
described in section “Approach and Mathematical Models”.

The planning horizon is 3 years. Trials for each drug can start at the beginning of
any month within the horizon. Suppose that Drugs 1 and 2 are available for Ph 3 trials
at the present time (¢,=1,=0). Drugs 3 through 7 are expected to enter Ph3 develop-
ment at later times as shown in Table 11.1. While Drugs 1 and 2 are ready to begin
Ph3 trials, Drugs 3, 4, and 5 are in Ph2 development and Drugs 6 and 7 are in earlier
stages. Target differences in efficacy from placebo and standard deviations of patient
responses for each drug in the Ph 3 trials are given in Table 11.1. The prior probabili-
ties that drugs will have the target effect (y;) are assumed to be 0.5 for all the drugs
reflecting historical failure rates in Ph3 trials. The Probability of Success to enter the
Ph 3 development stage (estimated from past development experience, simulation
and meta-analysis studies, and published information) is 0.1 for all the drugs. Drug 6,
in which we are very confident, is the exception. Its probability of entering Ph 3 is 0.9.
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Table 11.1 Clinical and financial data

Parameters Drugl Drug2 |Drug3 |Drug4 |Drug5 |Drug6 |Drug7
Mean response (5;) 0.5 0.4 0.5 0.4 0.4 0.3 0.25
SD of response (o;) 2 1.8 2 2 1.5 1.5 1
Trial fixed cost (f;, $K) 2,805 15 525 2,125 240 125 500
Per patient cost (c;, $K) 11 17 25 24 26 15 14
Fixed setup cost (F;, $M) 50 500 400 300 500 300 1,000
Contribution 175 85 400 200 45 250 500
(R;, $M/month)

Exclusivity period 108 120 135 180 155 180 145
(T;, months)

Month when drug becomes 1 1 3 6 13 18 25
available for Ph3 trials (7;)

Enrollment rate 20 30 90 45 60 90 45
(4, patients/month)

Treatment period per 0.3 1 12 12 24 6 12

patient (tp;, months)

Table 11.1 shows the financial parameters for the drugs. We will assume that the
time for regulatory approval and setup for manufacturing, sales, preparation for
launch, etc. is 6 months for each drug.

Trial Designs

Although multiple arms and more complex designs can be incorporated in our
model, we focus on trial designs with fixed sample sizes that have two arms: the
drug under investigation and placebo. For simplicity we assume a balanced design,
although imbalanced designs with fixed sample sizes could be easily included. We
assume a regulatory setting that requires two identical trials to demonstrate signifi-
cant difference from placebo to obtain approval.

We consider six sample size options for each drug in the portfolio. These corre-
spond to a sample size of zero to reflect the option to not include the drug in the
optimum development portfolio (i.e., to out-license or co-develop it with expenses
for doing so not having to be met by the Ph3 development budget) and the following
five power options ¢;=0.8, 0.85, 0.9, 0.95, 0.99 for sample size if it is included.

The total sample size n,; for a clinical trial with balanced design (n;/2 patients on
each arm) for a continuous efficacy endpoint with a normal distribution is given by

2 22
n, =407 (Z,,+2,) 1,
where, o; is the known common standard deviation of response for drug and

matching placebo. Z, is the upper y-quantile of the standard normal distribution with
a as the two-sided significance level (typically 0.05) and (1 - ;) is the power.
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Calculation of ENPV

We calculate ENPV on the basis of economic factors determined by the choice of
sample sizes and scheduling of the clinical trials in the portfolio.

Cash Flow Model

The cash outflows associated with conduct of a clinical trial in our model consist of
a fixed cost fincurred to set up a trial at the start of the trial at time k, and a variable
cost component related to n patients enrolled at a rate of 4 per month. Assuming a
per-patient treatment period of tp months and a per-patient cost ¢ spread uniformly
over that period, the total patient cost amounts to ¢xA per month during a trial
period of n/A+b months. At the end of the clinical trial at time T,=k+n/A+tp, a
fixed setup cost of F is assumed to be incurred, if the trial is successful.

In our setting, cash inflows result from sales of the drug when trials are success-
ful. We will consider net cash inflows that result from the difference between the
revenue and the variable costs that are incurred to produce and sell the drug. This
contribution, R, from sales of a drug will vary over the life cycle of the drug.
A typical time profile of contribution would involve an early growth phase followed
by a period it is approximately flat, after which the sales decline as newer more
effective drugs enter the market, or as the patent on the drug expires, or as competi-
tion introduces similar drugs into the market. We will assume that there is a period,
the exclusivity period (7), typically the remaining life of the patent, during which
the drug is the sole drug in its target market. We will also assume that after a fixed
setup time delay, s, at the conclusion of the trial for regulatory submission work and
gearing up for production, distribution, and sales, the contribution jumps to its peak
value at time period Ty=T,+s and remains at that value for a period #,=max[7T—T,,
0] until the end of the exclusivity period. Since the bulk of the profits for new drugs
come during the exclusivity period, we will assume that the contribution drops to
zero when it ends. We will not model growth and decay periods or model the effects
of competition on revenue. If a cash flow model that incorporates these and other
factors is available it can be used in place of our simple models. While more elabo-
rate models may be necessary in a specific application, they distract from illustra-
tion of the key ideas behind our models.

ENPV

We designate the time point to which all cash flows are discounted as time=0 and
assume that it will take 1 month from that time to start our first trials.
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Let NPV;; denote the NPV resulting from choosing n; as the sample size with
continuous discounting at monthly rate p. NPV;; is a random variable that takes one
of two values depending on whether the trials result in regulatory approval or not.
Let NPV,G and NPV,ING, respectively denote the value of the random variable
NPV;; given a regulatory approval outcome of “Go” (denoted by G) or “No Go”
(denoted by NG).

Extending the notation for cash flows developed earlier by adding subscripts i, j,
k as required to reflect dependency on the drug, sample size and trial starting time
for Drug i respectively, we have

Tk *+iji Tk
NPV, [G=R [ ePdi-Fe ™ —(2¢,x4) [erdt=2fec? (11.4)
T k

where the integrals involving e’ over respective ranges of time refer to continuous
discounting (Bodie et al. [11]) at a rate of p per month of periodic revenue contribution
at a rate of R; per month and trial cost at a rate of ¢;x/; per month. The continuous
discounting of fixed costs f; and F; involve multiplier e where 7 is the time associated
with incurring those fixed costs. The last two terms in (11.4) constitute the present
value of the trial cost incurred for both Phase 3 trials, irrespective of the approval
outcome G and NG. If the trial outcome is NG, these terms will become NPV;ING,

T

NPV, ING =—(2¢,x4) [ePdt-2fe™ (11.5)

k

Combining (11.4) and (11.5) we have for the Phase 3 program as a whole,

ENPV, = PoSTR, xNPV, |G +(1-PoSTR, ) NPV,[NG.  (11.6)

Return on Investment

Let us begin by computing the maximum ENPV we can achieve for each drug.
For Drug i this is Max;{ENPV;}. The maximum ENPV that can be achieved for

7
the portfolio is ZMax ; {ENPVU.}. For our example, this is $11,197M and the

i=l1
corresponding budget required is $293M. This gives us a ROI (defined as ENPV/
Budget used) of 38.3 (=11,197/293).

We can use the SIP model to compute the maximum ENPV that can be achieved
for different budget levels over a range below $293. This shows us how the maxi-
mum ENPYV for the portfolio varies with the size of the budget (B). For our example
we display a plot of this relationship in Fig. 11.1. The slope of the line joining the
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Fig. 11.1 Portfolio ENPV as a function of budget

origin to a point on this curve for a given budget gives us the best ROI we can
achieve at that budget.

Note that we need an efficient algorithm to find the best dynamic allocation for a
given budget (one point on the curve). This is because with seven drugs and five
designs, there are more than 800,000 possible allocations.

Notice that if we reduce the budget by about 50 % to $150M the maximum
ENPV goes down by only 1 %. We can increase ROI from 38.3 to 73.8 (=11,077/150)
by using an optimal dynamic strategy to allocate Ph3 budget instead of a static
strategy that maximizes portfolio ENPV by maximizing ENPV for each drug indi-
vidually. The ROI is almost doubled!

In fact we can increase ROI even more by reducing the budget further to $100M
which results in an ROI of 100 but we will now have a lower maximum ENPV of
$10,295M, a reduction of 8 % from the Maximum ENPV for a $293 budget.
Figure 11.2 shows the trade-off between ROI and Maximum ENPV in deciding on
the level of budget to deploy for Ph3 trials. If one has a target ROI we want to
achieve we can determine the budget required to maximize ENPV while meeting
the target by using the budget where the target ROI intersects the ROI curve. If, for
instance, we have a target ROI of 90 we need a budget of $120 to obtain the
maximum possible ENPV of $10,784M.

The best budget allocation strategies for B=293M and B=150M are shown in
Tables 11.2 and 11.3 below.
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Fig. 11.2 Trade-off between ROI and maximum ENPV

It is interesting to see that with a budget limited to $150M, the optimal policy is
to out-license Drugs 4 and 5 if Drug 3 is available; and also to out-license Drug 5 if
Drug 4 becomes available. We have not considered the potential profit from out-
licensing in calculating ENPV in Table 11.3. The chance of an out-licensing situa-
tion occurring is small here (about 1 %) so it is unlikely to make a significant
difference to the optimal dynamic policy. Out-licensing as well as in-licensing
opportunities can be readily incorporated into the SIM model as we show in section
“What-if-Analysis.”

The dynamic adjustment of budget allocations based on the availability history
of drugs for Ph3 development can be seen clearly in the case of Drugs 6 and 7 for
which the budget allocations that maximize ENPV individually for each drug are
$55M and $24M which power the trials at 0.99 and 0.95 respectively (Table 11.2).
If Drug 3 is available the optimal dynamic strategy scales back power of Drug 6 to
0.95 with a budget allocation that is reduced to $39M. In that case Drug 7 trials are
also scaled back to a power of 0.85 with an allocation of $17M. If Drug 3 is avail-
able but Drug 6 is not, Drug 7 trials are powered at 0.95, so the budget allocated is
$24M, the same as in the static policy of Table 11.1. The SIP considers all such
contingencies to determine the dynamic strategy that maximizes ENPV.

To gain further insight into how optimal dynamic budget allocation leads to a
major reduction in budget with very little impact on the overall ENPV, let us con-
sider the scenario where all drugs except Drug 6 are available. In this case we see
from Table 11.2 that we need a budget of $238M to ensure that each available drug
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Table 11.2 Optimum allocation for budget=$293M
Drug | Contribution to ENPV ($M)

1
2
3
4
5
6
7

Table 11.3 Optimum allocation for budget=$150M

2,628
1,364
839
383
42
5,292
649

Drug | Availability scenario

1

2
3
4

D3 is not available
D3 is available
D3 and D4 are not available

Otherwise

D3, D4, and D5 are
not available

Otherwise
D3 and D6 are available

D4, D6 are available,
D3 is not

Otherwise

Maximum budget ($M)

21
28
61
66
38
55
24

Scenario
probability
1

1

0.1

0.09

0.01

0.081

0.019
0.6561

0.2439
0.009
0.0081

0.0829

1
1

1

Contribution
to ENPV ($M)

2,628
1,364
822
311

N.R. Patel and S. Ankolekar

Optimum sample size (power)

674 (0.90)
852 (0.90)

,176 (0.99)
,300 (0.95)

732 (0.95)

,838 (0.99)

832 (0.95)

Maximum | Optimum

Out-license/partner

33

Out-license/partner

3,858
1,428
52
43

538

budget sample size
($M) (power)

21 674 (0.90)
28 852 (0.90)
43 832 (0.95)
47 898 (0.85)
31 592 (0.90)
55 1,838 (0.99)
39 1,300 (0.95)
17 576 (0.85)
15 504 (0.80)
24 832 (0.95)

has the Ph3 sample size that maximizes ENPV individually for each drug resulting
in an ENPV of $23,127M. Dynamic allocation with a maximum budget of $150M as
given in Table 11.3, results in an ENPV for this scenario of $18,706M. The differ-
ence of $4,421M seems large. However, the chance of this scenario is very small
(0.00001), so the reduction in ENPV over all scenarios due to this difference is only
$0.04M. On the other hand, if we consider the much more likely scenario where
Drugs 1,2, and 6 are the only ones available, the optimal dynamic policy in Table 11.3
results in the same ENPV of $9,872M for this scenario as the allocation in Table 11.2.
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Technical and Regulatory Risk

We have shown that in our example we can increase ROI from 38.2 to 73.8 by using
an optimal dynamic strategy to allocate Ph3 budget instead of a static strategy that
maximizes portfolio ENPV by maximizing ENPV for each drug individually. In this
section we compare these strategies from the point of view of technical and regula-
tory risk by comparing the NPV distributions using Monte Carlo simulation as out-
lined in section “Assessing the Risk Associated with the ENPV-Maximizing
Portfolio.” We ran 50,000 simulations to obtain the probability density functions
(pdfs) shown in Fig. 11.3 below. The x-axis employs different scales for negative
NPV values (scaled in $M) and positive values (scaled in $B) since negative NPV
values range in magnitude from 0 to $200M while positive NPV values go up to
$80B. A common scale would simply show a single spike near origin.

We can see that for positive NPV values the pdfs for budgets of $150M and
$293M are very similar. Although it is not visible in the figure, the right tail for the
$293M budget stretches further out than that for the $150M budget. The probability
of making a loss (NPV <0) is about the same for both budgets (0.16 and 0.17 for
budgets of $293M and $150M respectively). However, from a downside risk per-
spective, we can see that the probability of a loss exceeding $120M is much smaller
for the lower budget. Since the NPV distribution is multi-modal and far from
Normal, it is clear that standard deviation is not a reasonable measure of risk. The

Budget=5300M
----- Budget=5150M

| i u S et e S s e s S S S s S B S S S S S B S S B S S R

-160 -140 -120 -100 -8 -60 -40 -20 0 20 40 60 80
<«4Negative NPV ($M) Positive NPV ($B)»

]

Fig. 11.3 Probability density function for NPV with technical and regulatory risk



194 N.R. Patel and S. Ankolekar

Value at Risk (VaR) measure of risk used in portfolio analysis (Bodie et al. [11]) is
more appropriate here. VaR is the lower a-percentile of the distribution with a typical
value for a being 1 %. Using this measure the VaR for a budget of $293M is $144M
compared to $117M for a budget of $150M, i.e., about 23 % higher.

Commercial Risk

As we showed in section “Assessing the Risk Associated with the ENPV-
Maximizing Portfolio,” in addition to technical and regulatory risk we can also
model commercial risk. For our example we do so by treating peak revenue as a
random variable instead of a fixed numerical value. Let us suppose that the revenue
contribution, R; given in Table 11.1 is the mean of a Normal random variable trun-
cated at zero. The coefficient of variation (ratio of deviation to mean) of the un-
truncated Normal distribution is taken to be 1.0, reflecting a fairly large uncertainty
in the revenue. In this case 50,000 Monte Carlo simulations of the optimum alloca-
tion policy for a budget of $150M shows that the probability of loss has increased
to 0.22 from 0.17. Figure 11.4 below compares the probability density functions
for NPV with and without commercial risk and Fig. 11.5 shows the corresponding
cumulative distribution functions. We notice that the mode of the positive NPV
values drops from $20M to $10 when we include commercial risk. Also, with
inclusion of commercial risk, the distribution is more skewed to the right. This is
because higher revenues become possible when revenues exceed their mean values.
For example, the probability of exceeding $28B in NPV has more than doubled
from 0.04 to 0.10.

Technical & Regulatory Risk

----- With Commercial Risk

| LI E S B S B S S B S B R B B R S B R B B B S R B B S B B B B S SR S R s |

-120 -100 -80 -60 -40  -20 0 20 40 60 80
<«Negative NPV in $M Positive NPV in $B>

Fig. 11.4 Probability density function for NPV
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Fig. 11.5 Cumulative distribution function for NPV

What-if-Analysis

A major advantage of the SIP formulation is that it can readily provide answers for a
number of important what-if questions. We will illustrate this capability by discussing
out-licensing and in-licensing decisions and negotiations in the following sections.

Out-Licensing a Drug

Since Drugs 4 and 5 are to be out licensed in the optimal dynamic policy under
certain histories of drug availability when budget is $150M, let us consider out-
licensing them outright. From Table 11.3 we see that contributions of Drugs 4 and
5 to the overall maximum ENPV of $11,077M are $311M and $33M respectively.
This seems to suggest that we should out-license them only if we get a net ENPV of
$344M from the agreement. When we run the SIP without these drugs with a budget
of $150M, we obtain a maximum ENPV of $10,747M so the decrease in maximum
ENPV is $330M. This is mainly because the new optimal dynamic policy makes up
$14M from the budget released to increase the power of Drug 7 trials from 0.8 to
0.95 when Drug 6 is available but Drug 3 is not. This means that if we did succeed
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in out-licensing them for $344M we would actually earn $11,091M. In fact we
could consider out-licensing them for net ENPV less than $344M down to a mini-
mum of $330M.

In-Licensing a Drug

Now consider in-licensing a drug that is under development at another company. We
expect the drug to progress to Ph3 testing in month 16 with a probability of 0.2. Our
prior estimate of the drug meeting its target efficacy is 0.5. If we develop an ENPV
model for the drug as we have done for company drugs and select a set of candidate
sample sizes for the in-licensed drug, we can add it as Drug 8 to the SIP model. Let us
suppose that the data on Drug 8 is As=50/mo, tps=0.25 months, cs=$23K/patient,
Jfs=$1390K, Fy=3100M, Ry=$300M/mo, Ts=165 mo, 53=0.25, oy=1.8 This addi-
tion will yield an optimal ENPV for the portfolio of $12,086M an increase of $1,009M
over the case when we did not have Drug 8 in the portfolio. The optimum allocation of
the budget of $150M is shown below in Table 11.4 with the changes made to accom-
modate addition to the portfolio without increasing the budget shown in bold letters.

Table 11.4 Optimum budget allocation for in-licensing scenario

Optimum
Scenario Contribution Maximum sample size
Drug | Availability scenario probability |to ENPV ($M) |budget ($M) | (power)
1 - 1 2,628 21 674 (0.90)
2 - 1 1,364 28 852 (0.90)
3 - 0.1 822 43 832 (0.95)
4 D3 is not available 0.09 311 47 898 (0.85)
D3 is available 0.01 Out-license/partner
5 D3 and D4 are not available | 0.081 30 27 506 (0.85)
Otherwise 0.019 Out-license/partner
8 D3, D4 are not available 0.162 886 34 674 (0.95)
D4 is available, D3 isnot | 0.018 84 24 486 (0.85)
Otherwise 0.02 103 28 546 (0.90)
6 D3, D4, DS, and D8 0.52488 3,086 55 1,838 (0.99)
are not available
D8 and either D3 0.0324 161 27 898 (0.85)
or D4 are available
Otherwise 0.34272 2,006 39 1,300 (0.95)
7 D3, D6 available, D8 is not | 0.0072 42 17 576 (0.85)
D6, DS, and at least one 0.004878 | Out-license/partner
of D3, D4, D5 is available
D4, D6 available, D3, 0.00648 34 15 504 (0.80)

D8 are not
Otherwise 0.081442 | 529 24 832 (0.95)
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Notice that the contribution to the maximum ENPV of the additional drug, Drug 8, is
$1073M (=$886M + $84M +$103M). However, the overall increase in ENPV is less
than this amount. This is because we include Drug 8 in the optimal policy by pruning
back power for trials of Drug 5 trials from 0.9 to 0.85, and of Drug 6 from 0.95 to 0.85
if Drug 8 and either Drug 3 or Drug 4 become available. In addition Drug 7 is to be
outsourced if Drugs 6, 8, and at least one of Drugs 3, 4, 5 are available.

Mergers, Acquisitions, and Partnering

Mergers, acquisitions and partnering arrangements are often made in today’s envi-
ronment. These involve evaluation of complex agreements for in-licensing, out-
licensing, and cross-licensing of several potential drugs. The SIP model provides a
valuable tool for comparing and devising offers and supporting negotiations by
extending the approaches described in the previous two sections.

Re-optimizing Budget allocations as Time Progresses
and Information is Updated

Now suppose we are at month 7 and Drug 3 has failed to qualify for Phase 3 trials
but Drug 4 did make the cut in month 6. Following our strategy we would have
started Drug 4 Ph3 trials with the optimal sample size of 898 as shown in Table 11.3.
Further, we now have more information on Drugs 6 and 7 from experience at earlier
development stages. The Drug 6 development program is delayed by 5 months, so
that it will become available is month 23 instead of month 18. Also it is not as likely
as we expected to progress to Ph3, the chance of doing so are now estimated to be
0.6 instead of 0.9. Drug 7 on the other hand looks much more promising than it did
earlier: its chance of progressing to Ph3 has gone up from 0.1 to 0.5. Let us suppose
that, because of having Drug 4 in Phase 3, management decides that the budget can
be increased by $60M, so the budget over the 3 year horizon has increased from
$150M to $210M. Rerunning the SIP with these changes in input data, we find that
the maximum ENPV that can be achieved is $14,041M which is 27 % higher than
the maximum ENPV of $11,077M that we had expected earlier. The increased
budget and availability of Drug 4 for Phase 3 trials along with the increased prob-
ability of entering Phase 3 for Drug 7 have caused this increase despite the reduced
outlook for Drug 6. (If there was no increase in the budget, the maximum ENPV
that can be achieved is $13,686M). The optimum budget allocation is given in
Table 11.5 below.

Using Monte Carlo simulation of the updated optimal policy we find that the
technical, regulatory, and commercial risk of making a loss of 0.22 at month 1 has
dropped to 0.16 at month 7. The probability of the portfolio NPV exceeding $20B
has increased by 50 % from 0.20 at month 1 to 0.30 at month 7.
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Table 11.5 Optimum budget allocation for re-optimization in month 7

Availability Scenario Contribution Maximum Optimum sample
Drug | scenario probability | to ENPV ($M) | budget ($M) | size (power)
1 - 1 2,628 21 674 (0.90)
2 - 1 1,364 28 852 (0.90)
4 - 1 3,457 47 898 (0.85)
5 - 0.1 42 38 732(0.95)
6 D5 is not available | 0.54 2,974 55 1,838 (0.99)
D5 is available 0.06 330 39 1,300 (0.95)
7 - 0.5 3,246 24 832 (0.95)
Summary

We have developed a Stochastic Integer Programming (SIP) model that maximizes
the value of a portfolio over a planning horizon by determining the optimal designs
of Phase 3 (Ph3) trials for a given budget using Expected Net Present Value (ENPV)
as criterion. The SIP model incorporates uncertainty regarding availability of drugs
in the pipeline. The SIP provides an optimal policy that specifies the optimal design
for each drug for every possible scenario of availability of future drugs for Ph3 tri-
als. It optimizes the trade-off between committing budget allocations to drugs avail-
able for Ph3 funding at a point in time and preserving budget for drugs in the
development pipeline that will need to be funded in the future but whose availability
is uncertain. This important trade-off is not handled in a consistent, quantitative way
in portfolio budgeting models that are used today.

We have also developed a simulation model to assess the technical, regulatory,
and commercial risk of the optimal budget allocation policy.

We have shown how our models can be used for dynamic re-optimization of the
portfolio when changes in the internal and external environment occur and as new
information becomes available. This capability will enable rapid, frequent and con-
sistent realignment of the strategy to optimize future use of the budget available for
reallocation.

We have illustrated our approach by a detailed study of an example that shows
how our models can be used to decide on the best budget level to meet a target
Return on Investment (ROI) and to evaluate the downside risk of the allocation
strategy associated with this budget level. We have shown how these models can be
used to answer important what-if questions such as those that arise when in-licensing
or out-licensing drug development.

Extensions

Given its flexibility, our models can be extended to handle several important aspects
of portfolio optimization. We list some of these below.
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. We can include budget allocations and design choices made in Phase 2 (Ph 2) in

the SIP by defining decision variables for Ph 2 similar to those in Ph3 and linking
them through constraints to corresponding Ph3 decision variables. This model
can be run with a common budget constraint for both Ph2 and Ph3 development
or with separate budget constraints for Ph2 and Ph3 to provide an insight into
apportioning funds between these phases (see for example Antonijevic et al. [12]).
We can perform valuable sensitivity analysis easily by running a series of SIP
models. Similarly, modifications of parameters in our models can be used to
perform what-if computations to support decisions. We have described such
what-if computations for in-licensing and out-licensing decisions in section
“What-if-Analysis”. Another example would be to vary the impact of market
uncertainty for a drug by varying the value of the net revenue parameter, R;.

We have modeled R; as dependent solely on regulatory approval. However, payer
coverage decisions may suggest that R; will also depend on the magnitude of the
effect size, 6,. This can be incorporated into our framework by modeling R; as a
function of §;. Thereafter, we replace R; by the expectation of Ri(§;) in the first
term of (11.4) with the expectation being taken over the conditional posterior
distribution of §/G computed by updating the prior of 6,. Using this value of
NPV;;in (11.6) will reflect the influence of effect size on ENPV; . Thereafter, the
SIP model can be used to optimize the portfolio.

We can incorporate the impact of safety concerns and adverse side effects on
Probability of Technical and Regulatory Success by using a discrete bivariate
model for safety and efficacy with an appropriate prior. We can reflect the impact
on R; by modeling it as a function of both §; and the safety endpoint (see, for
example, Patel et al. [9]). The expressions (11.2) and (11.3) will then involve
bivariate calculations. However, these calculations will need to be done only
once outside of the SIP computations.

If there are other limiting resources besides funds such as scientific, clinical, or
project management capacities the SIP formulation can be readily extended to
include constraints on these resources.

We can also use constraints to take into account strategic considerations such as
balancing budget allocation to different therapeutic areas or prioritization (e.g.,
requiring that a particular drug get funding before another drug is funded for Ph
3 testing).

. We can reflect the impact of competition if we can model when a competing drug

is likely to come to market and the extent to which it would reduce market share
for a drug in our development plan. We would modify ENPV;; for the affected
drug using this model.

If we wish to treat recruitment time for trials as a random variable, we can calcu-
late ENPV;; by averaging over the distribution of the recruitment time. Using
these values in our SIP model will provide optimum budget allocations that
account for uncertainty in recruitment times.

The formulation we have used for SIP may not be computationally adequate
for problems with more than 14 drugs. We have made limited experiments using
SIP formulations which use “independent scenario formulations” coupled with
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“non-anticipatory” constraints because there are powerful algorithms available
for computing or approximating optimal solutions for SIPs with this formulation
[10]. We have also developed dynamic programming and branch-and-bound for-
mulations that are promising for larger problems. We are studying heuristic algo-
rithms which can provide solutions close to the optimal relatively quickly.
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