Springer Tracts in Advanced Robotics

Volume 3

Editors: Bruno Siciliano - Oussama Khatib - Frans Groen



Springer

Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris

Tokyo

R . ONLINE LIBRARY
Engineering | ———

http://www.springer.de/engine/




Ciro Natale

Interaction Control of
Robot Manipulators

Six degrees-of-freedom tasks

With 36 Figures

“©: Springer



Professor Bruno Siciliano, Dipartimento di Informatica e Sistemistica, Universita degli Studi di Napoli
Federico 11, Via Claudio 21, 80125 Napoli, Italy, email: siciliano@unina.it

Professor Oussama Khatib, Robotics Laboratory, Department of Computer Science, Stanford University,
Stanford, CA 94305-9010, USA, email: khatib@cs.stanford.edu

Professor Frans Groen, Department of Computer Science, Universiteit van Amsterdam, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands, email: groen@science.uva.nl

STAR (Springer Tracts in Advanced Robotics) has been promoted under the auspices of EURON (European
Robotics Research Network)

Author

Dr. Ciro Natale

Seconda Universita degli Studi di Napoli
Dipartimento di Ingegneria dell’Informazione
Via Roma 29

81031 Aversa (CE), Italy

ISSN 1610-7438
ISBN 3-540-00159-X  Springer-Verlag Berlin Heidelberg New York

Cataloging-in-Publication Data applied for

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed biblio-
graphic data is available in the Internet at <http://dnb.ddb.de>.

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science + Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Digital data supplied by author. Data-conversion by PTP-Berlin e.k., Stefan Sossna
Cover-Design: design & production GmbH, Heidelberg
Printed on acid-free paper 62/3020Rw-543210



Editorial Advisory Board

EUROPE

Herman Bruyninckx, KU Leuven, Belgium

Raja Chatila, LAAS, France

Henrik Christensen, KTH, Sweden

Paolo Dario, Scuola Superiore Sant’ Anna Pisa, Italy
Riidiger Dillmann, Universitit Karlsruhe, Germany

AMERICA

Ken Goldberg, UC Berkeley, USA

John Hollerbach, University of Utah, USA

Lydia Kavraki, Rice University, USA

Tim Salcudean, University of British Columbia, Canada
Sebastian Thrun, Carnegie Mellon University, USA

ASTA/OCEANIA

Peter Corke, CSIRO, Australia

Makoto Kaneko, Hiroshima University, Japan

Sukhan Lee, Samsung Advanced Institute of Technology, Korea
Yangsheng Xu, Chinese University of Hong Kong, PRC
Shin’ichi Yuta, Tsukuba University, Japan



Foreword

The field of robotics continues to flourish and develop. In common with
general scientific investigation, new ideas and implementations emerge quite
spontaneously and these are discussed, used, discarded or subsumed at con-
ferences, in the reference journals, as well as through the Internet. After a
little more maturity has been acquired by the new concepts, then archival
publication as a scientific or engineering monograph may occur.

The goal of the Springer Tracts in Advanced Robotics is to publish new
developments and advances in the fields of robotics research — rapidly and
informally but with a high quality. It is hoped that prospective authors will
welcome the opportunity to publish a structured presentation of some of the
emerging robotics methodologies and technologies.

The monograph written by Ciro Natale is focused on a central problem in
robot control, namely that to manage the interaction between a robot manip-
ulator and the environment. Indeed, providing the control system with both
motion and force control capabilities becomes crucial for successful execution
of complex tasks. Its foreseen impact on the performance of the next genera-
tion of robots is starting to be recognized by major manufacturers world-wide.
To this regard, the unique feature of the work lies in its comprehensive treat-
ment of the problem from the theoretical development of the various schemes
down to the real-time implementation of interaction control algorithms on
industrial robots, with extensions even to a dual robot cooperative system.

Remarkably, the doctoral thesis at the basis of this monograph was a
finalist for the First EURON Georges Giralt PhD Award devoted to the best
PhD thesis in Robotics in Europe. A fine addition to the series!

Napoli, September 2002 Bruno Siciliano



Preface

My first contact with the ‘force’ dates back to 1977, when Obi-Wan Kenobi
amazed me with the famous motto “may the force be with you”... I looked
in astonishment at the screen and since then my future has been guided by
the power of force!

This monograph gathers all the research work carried out for my PhD
thesis, supervised by Prof. Bruno Siciliano, which was selected among the
finalists of the First FURON PhD Award last year. It is the result of three
fruitful years spent in collaboration with the robotics group of the PRISMA
Lab at the University of Naples Federico II.

The problem of robot force control has been investigated in depth by many
researchers for more than twenty years. However, very few monographs ex-
ist treating the problem of interaction tasks involving both contact forces
and contact moments unless some simplifying conditions are assumed. On
the other hand, controlling the interaction forces and moments during real
industrial applications, such as deburring, assembling, polishing, could en-
hance the result of the task in terms of accuracy and cycle time. But this
requires control algorithms efficient and effective in a broad variety of working
conditions.

Therefore, this book is aimed at developing a treatment of the interaction
control problem in the general case of a six degrees-of-freedom task foregoing
the hypothesis of small displacements. Moreover, a breakthrough of the work
lies on the steps towards the control of cooperative robots interacting with
each other and with the working environment. Many applications can draw
advantage from the coordination of multiple robots performing the same task,
e.g. carrying large or heavy loads, parts mating, assembling. Even though
this is still an emerging topic, this book can be considered a first attempt at
developing a methodology framed in the task space approach, as a strategy to
deal with the problem of interaction of both a single manipulator and multiple
robots with the environment. The problem of multiple robot coordination is
tackled both at task planning level and at feedback control level, by resorting
to a modular control architecture, very attractive from an industrial point of
view.

The contents of the monograph are organized as follows. Chapter 1
presents a classification of robotic interaction tasks and evidences the key



X Preface

points of the task space approach; a brief description of the laboratory setup
used to experiment all the proposed control algorithms is reported at the
end of the chapter. Chapter 2 is devoted to presenting some motion control
schemes in the task space, each one corresponding to a different representa-
tion of end-effector orientation; they are experimentally compared in terms
of performance and computational complexity and constitute the first stage
of an interaction controller. A strategy for indirect force control is presented
in Chapter 3, where the concept of six degrees-of-freedom impedance is in-
troduced on energy-based arguments and with reference to the particular
representation of end-effector orientation. The impedance control scheme is
then designed and experimental results are reported. The direct force con-
trol strategy is developed in Chapter 4, where a parallel approach is pursued
to handle the interaction with a scarcely structured environment. The last
Chapter is devoted to tackling the problem of controlling a dual-arm robotic
system interacting with a compliant environment, and different strategies are
presented to deal with the coordination problem. The first Appendix provides
the necessary background on rigid body orientation and reports the definition
and the main properties of the unit quaternion. The second Appendix reports
some notes about real-time implementation of interaction control algorithms
on industrial robots.

The book is mainly addressed to researchers and scholars who have their
first contact with robot force control. At the same time, it can be adopted as a
textbook for a graduate course on advanced robotics requiring, as background
knowledge the basics of kinematics and dynamics of robot manipulators, as
well as feedback control theory.

Aversa, September 2002 Cliro Natale
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1. Introduction

In this introductory chapter, the problem of controlling a robot manipulator
which performs six-degrees-of-freedom (six-DOF) tasks requiring interaction
with the environment is described. The difference between the well-assessed
operational space approach and the task space approach pursued here is ex-
plained. A detailed classification of different control problems in the task
space framework is carried out and, finally, a brief description of the exper-
imental setup adopted to validate all the algorithms presented through the
book is reported.

1.1 Six-DOF Interaction Tasks

Control of interaction between a robot manipulator and the environment
is crucial for successful execution of a number of practical tasks where the
robot end effector has to manipulate an object or perform some operation
on a surface. Typical examples include polishing, deburring, machining or
assembling. A complete classification of possible robot tasks is practically
infeasible in view of the large variety of cases that may occur, nor would such
a classification be really useful to find a general strategy to control interaction
with the environment.

On the other hand, a certain classification can be based on the number
of degrees of freedom involved. During interaction, the environment sets con-
straints on the geometric paths that can be followed by the end effector. This
situation is generally referred to as constrained motion. When only the trans-
lational degrees of freedom of the motion are constrained, the interaction task
can be classified as a three-DOF' task because only linear forces may arise
during its execution. On the other hand, if the motion is constrained along
both the translational and the rotational degrees of freedom, the interaction
task can be classified as a siz-DOF task, and both forces and torques may
arise during the task execution. In the remainder, the term torque will be
often referred to simply as moment, since a torque is the moment of linear
force with respect to a pole.

In order to describe and successfully perform six-DOF interaction tasks,
a suitable description of end-effector orientation should be adopted. Two

C. Natale: Interaction Control of Robot Manipulators, STAR 3, pp. 1-10, 2003
© Springer-Verlag Berlin Heidelberg 2003



2 1. Introduction

main different approaches can be distinguished, based on the chosen type of
representation.

1.1.1 Operational space approach

Since the number of variables necessary to describe a six-DOF interaction
task is six, the most widely used approach in literature to represent the
rotational degrees of freedom is to adopt a minimal representation of end-
effector orientation, i.e. a set of three Fuler angles. In fact, in this way a vector
of six components comprising the three Euler angles and the three position
variables is defined to describe the six-DOF pose of the end effector during
task execution. Such a technique is usually referred to as the operational space
approach [45].

Two main drawbacks can be ascribed to such a formulation, namely
the occurrence of representation singularities and inconsistency with the
task geometry. The former is due to a topological problem concerning the
parametrization of the set of rotations (see Appendix A). The latter can be
imputed to the fact that the set of three Euler angles does not represent a
vector in the Cartesian space, so that it is not possible to let an orientation
displacement correspond to a moment vector in a geometrically consistent
fashion. In other words, if a task requires a moment to be applied along a
certain axis in the Cartesian space, the corresponding orientation displace-
ment in terms of three Euler angles is not always aligned to the same axis,
apart from some special cases, e.g., when the principal axes of the end-effector
frame are aligned with the axes of the base frame and the actual orientation
is far from a representation singularity. On the other hand, the property ac-
cording to which a formulation allows the moment applied during the task
execution to be aligned with the induced orientation displacement is here
termed task geometric consistency.

1.1.2 Task space approach

In order to overcome the drawbacks of the approach described in the pre-
vious section it is worth resorting to a geometric meaningful representation
of end-effector orientation. The only descriptions for which the property of
task geometric consistency holds, are those adopting the so-called angle/axis
approach [16], and the corresponding formulation describing the interaction
task is here called task space approach.

The first characteristic of the above representations of orientation is that
they have a geometrically meaningful interpretation, and thus the property
of task geometric consistency holds. The second main feature is that special
non-minimal representations, like the wnit quaternion, belong to this class
of orientation descriptions; hence, the problem of representation singularities
does not exist (see Appendix A).
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The first step to be performed for executing a robotic manipulation task is
to assign a desired trajectory to be tracked by the robot end effector. For this
purpose, the properties of the task space approach will be usefully utilized to
perform motion control of the robot manipulator, so as to fully exploit the
geometric consistency property for the specification of the desired trajectory.

1.2 Task Space Motion Control

The techniques to perform motion control in the task space will be examined.
A comparison among the well-known control schemes will be carried out in
order to understand the main features of each approach and identify the
characteristics more relevant for the purpose of interaction control as will be
illustrated further.

1.2.1 Resolved acceleration control

The most widely adopted control technique in the literature to design a mo-
tion control for a generic mechanical system is based on the inverse dynamics
strategy, thanks to the peculiar properties of the dynamic model of a me-
chanical system [63]. The main consequence of such a technique is that the
control problem can be translated into the problem of designing a suitable
acceleration profile for the mechanical system —in this work the robot end
effector— so as to track the desired trajectory, while guaranteeing stability
and robustness properties.

In the operational space approach, the acceleration to be designed is
the second time derivative of the six-dimensional vector expressing the end-
effector pose, which does not have any physical meaning as regards the ro-
tational part. Instead, in the task space approach, the acceleration to be
designed is the acceleration vector constituted by the linear and the angu-
lar accelerations. This allows the user to specify a trajectory in terms of a
translation along and a rotation about the axes in the Cartesian space, with
a clear geometric meaning.

1.2.2 Representation singularities

Apart from the geometric meaning of the desired trajectory to be tracked,
another problem may arise by using operational space approaches based on
minimal representations of orientation, i.e., the occurrence of representation
singularities. This can be overcome by adopting non-minimal representations
such as the unit quaternion (see Appendix A). From a control point of view,
this means that the control laws can be always well-defined and the closed
loop system can be globally stable.
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1.3 Task Space Interaction Control

A purely motion control strategy for controlling interaction is a candidate
to fail executing robotic interaction tasks. In fact, successful execution of an
interaction task with the environment by using motion control could be only
obtained if the task were accurately planned. This would in turn require an
accurate model of both the robot manipulator (kinematics and dynamics)
and the environment (geometry and mechanical features). Manipulator mod-
elling can be known with enough precision, but a detailed description of the
environment is difficult to obtain.

To understand the importance of task planning accuracy, it is sufficient
to observe that to perform a mechanical parts mating with a positional ap-
proach, the relative positioning of the parts should be guaranteed with an
accuracy of an order of magnitude greater than part mechanical tolerance.
Once the absolute position of one part is exactly known, the manipulator
should guide the motion of the other with the same accuracy.

In practice, the planning errors may give rise to a contact force causing a
deviation of the end effector from the desired trajectory. On the other hand,
the control system reacts to reduce such deviation. This ultimately leads to a
build-up of the contact force until saturation of the joint actuators is reached
or breakage of the parts in contact occurs.

The higher the environment stiffness and position control accuracy are,
the easier a situation like the one just described can occur. This drawback
can be overcome if a compliant behaviour is ensured during the interaction.
This can be achieved either in a passive fashion by interposing a suitable
compliant mechanical device between the manipulator end effector and the
environment, or in an active fashion by devising a suitable interaction control
strategy.

The contact force is the quantity describing the state of interaction in the
most complete fashion. Therefore, it is expected that enhanced performance
can be achieved with an interaction control provided that force measurements
are available. To this purpose, a force/torque sensor can be mounted on a
robot manipulator, typically between the wrist and the end effector, and its
readings shall be passed to the robot control unit via a suitable interface.

Robot force control has attracted a wide number of researchers in the past
two decades. A state-of-the-art of the first decade is provided in [71], whereas
the progress of the last decade is surveyed in [68] and [29]. Very recently, a
monograph on force control [37] has appeared, but only a second one deals
with six-DOF tasks performed by a single robotic arm [65].

Interaction control strategies can be grouped in two categories; those per-
forming indirect force control and those performing direct force control. The
main difference between the two categories is that the former achieve force
control via motion control, without explicit closure of a force feedback loop;
the latter, instead, allows controlling the contact force to a desired value,
owing to the closure of a force feedback loop.
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1.3.1 Impedance control

Impedance control [39], belonging to the first category, is conceived so as to
relate the position error to the contact force through a mechanical impedance
of adjustable parameters. A robot manipulator under impedance control is
described by an equivalent mass-spring-damper system with the contact force
as input. The resulting impedance in the various task space directions is typ-
ically nonlinear and coupled. If a force/torque sensor is available, then force
measurements can be used in the control law so as to achieve a linear and de-
coupled impedance in the translational directions. Concerning the rotational
directions, the definition of the impedance equation depends on the chosen
formulation, namely, the operational space approach or the task space ap-
proach. In this work, it will be demonstrated how the former leads to task
geometric inconsistency, and thus the latter will be formalized and its perfor-
mance will be analysed from both a theoretical and an experimental point of
view. Interestingly enough, the proposed rotational impedance equation will
result nonlinear, however it will preserve task geometric consistency.

The main limitation of impedance control is that it is not possible to
regulate the contact force to a desired value; such a limit is overcome by
control techniques belonging to the second category, as described below.

1.3.2 Force control

If a detailed model of the environment is available, a widely adopted strategy
of force control is the hybrid position/force control which aims at controlling
position along the unconstrained task directions and force along the con-
strained task directions. A selection matrix acting on both desired and feed-
back quantities serves this purpose for typically planar contact surfaces [61],
whereas the explicit constraint equations have to be taken into account for
general curved contact surfaces [72, 52, 53].

In most practical situations, a detailed model of the environment is not
available. In such a case, an effective strategy still in the second category
is the inner/outer motion/force control where an outer force control loop is
closed around the inner motion control loop which is typically available in a
robot manipulator [30]. In order to embed the possibility of controlling motion
along the unconstrained task directions, the desired end-effector motion can
be input to the inner loop of an inner/outer motion/force control scheme. The
resulting parallel control is composed of a force control action and a motion
control action, where the former is designed so as to dominate the latter in
order to ensure force control along the constrained task directions [25].

It should be clear that the inner/outer approach can be pursued only
in case of contact with a more or less compliant environment. In fact, the
interaction with a rigid surface constrains the motion of the end effector by
reducing the number of its degrees of freedom, and thus the contact forces
are reactions of the constraint surface and they can be controlled only by



6 1. Introduction

directly acting on the torques of the actuators. On the other hand, in the
interaction with a compliant surface, the contact force can be related to
end-effector displacements, and thus it can be controlled by controlling end-
effector motion also along the constrained directions.

In this work, only interaction with compliant environments is of interest,
for two main reasons. First, torque control is effective only if a special robot
is available or the robot is equipped with torque sensors, as shown in the
literature [5], and this is not the case of the common industrial robots as
those available in the PRISMA Lab. Moreover, to manage the interaction
with rigid surfaces many solutions can be devised; one for all is the adoption
of a passive compliance, for example placed directly in the force/torque sen-
sor. The effectiveness of the approach has been demonstrated in some works
related to integration of force control into industrial robots, e.g., [56, 43].

In order to validate the theoretical findings, every interaction control
scheme presented throughout this book is tested in a number of experiments
for representative interaction tasks. Indeed, the force/torque sensor needed
for the execution of interaction control schemes is not typically available for
industrial robots, because of high cost and scarce reliability. Commercially
available industrial robots are purposefully utilized to demonstrate the credi-
bility of force control in the perspective of the next generation of robot control
units with enhanced sensory feedback capabilities. The problem of interfacing
the force/torque sensor has been solved thanks to the open architecture of
the control unit. This feature is crucial also for the implementation of con-
trol schemes requiring model-based compensation actions. Therefore, a more
detailed description of the architecture is developed in the following section.

1.4 PRISMA Lab Experimental Setup

The experimental setup available in the PRISMA Lab comprises two indus-
trial robots Comau SMART-3S (Fig. 1.1), with two control units C3G 9000,
equipped with two force/torque sensors ATT FT130/10.

1.4.1 Robot manipulators

Each robot manipulator has a six-revolute-joint anthropomorphic geometry
with nonnull shoulder and elbow offsets and non-spherical wrist. One manip-
ulator is mounted on a sliding track which provides an additional degree of
mobility. The joints are actuated by brushless motors via gear trains; shaft
absolute resolvers provide motor position measurements, and no tachometers
are available.

Each robot is controlled by the C3G 9000 control unit which has a VME-
based architecture with 2 processing boards (Robot CPU and Servo CPU)
both based on a Motorola 68020/68882, where the latter has an additional



1.4 PRISMA Lab Experimental Setup 7

Fig. 1.1. Experimental setup available in the PRISMA Lab

DSP and is in charge of trajectory generation, inverse kinematics and joint
position servo control. Independent joint control is adopted where the indi-
vidual servos are implemented as standard PID controllers. The native robot
programming language is PDL 2, a high-level Pascal-like language with typ-
ical motion planning instructions [66].

1.4.2 Open control architecture

An open control architecture is available which allows testing of advanced
model-based control algorithms on a conventional industrial robot [31]. Con-
nection of the VME bus of the C3G 9000 unit to the ISA bus of a standard PC
is made possible by a BIT 3 Computer bus adapter board, and the PC and
C3G controller communicate via the shared memory available in the Robot
CPU; the experiments reported in the present book have been carried out
by using a PC Pentium MMX/233. Time synchronization is implemented by
interrupt signals from the C3G to the PC with data exchange at a given sam-
pling rate. A set of C routines are available to drive the bus adapter boards.
These routines are collected in a library (PCC3Link) and are devoted to
performing communication tasks, e.g., reading shaft motor positions and/or
writing motor reference currents from/to the shared memory. Also, a set
of routines are devoted to performing safety checks and monitoring system
health, e.g., a watchdog function and/or maximum current checks.
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Seven different operating modes are available in the control unit, allowing
the PC to interact with the original controller both at trajectory generation
level and at joint control level. To implement model-based control schemes,
the operating mode number 4 is used in which the PC is in charge of com-
puting the control algorithm and passing the references to the current servos
through the communication link at 1ms sampling time. Joint velocities are
reconstructed through numerical differentiation of joint position readings. All
control algorithms are implemented in discrete time at 1ms sampling inter-
val, except when both robots are controlled in the open operating mode; in
this case, a 2ms sampling interval has to be set for synchronization reasons.

A schematic of the open control architecture is depicted in Fig. 1.2.

[ Bl
FORCE

‘ PENTIUM PARALLEL ‘ READINGS

\ 233 INTERFACE

\ \

\ \

| ISA BUS ‘

\ \

| @ |

\ \
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Fig. 1.2. Schematic of open control architecture

1.4.3 Force/torque sensor

A six-axis force/torque sensor ATTI FT130-10 with force range of £130N and
torque range of £10 Nm can be mounted at the wrist of either robot (Fig. 1.3).
The sensor is connected to the PC by a parallel interface board which provides
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readings of six components of generalized force at 1ms, citeatift. The main
technical data of the device are summarized in Tab. 1.1.

The type of environment considered in the various case studies presented
in the following chapters consists of planar compliant surfaces of medium
stiffness, with an estimated contact stiffness of the order of 10* N/m for trans-
lational displacements. As for the rotational displacements, contact moments
are obtained by using special tools mounted to the end effector, like disks or
hollow parts for assembly tasks. The resulting rotational stiffness is of the
order of 10 Nm/rad. This choice is motivated by the desire of safely analysing
the performance of the various control schemes where the interaction with
the environment encompasses an unplanned transition from non-contact to
contact at nonnegligible end-effector speed and taking into account that the
sensor is highly stifl (see Tab. 1.1).

Fig. 1.3. Force/torque sensor mounted at robot wrist

More details about real-time implementation of the interaction control
algorithms, which will be presented in the following chapters, and force sensor
interfacing can be found in Appendix B.

The theoretical and experimental results presented in this work have been
published in some international journals as well as in proceedings of several
international conferences. The task space motion control problem has been
reviewed in [14]. The task space impedance control was originally proposed
in [13] and more generally formalized in [16]; the extension to redundant
manipulators has been proposed in [58]. The task space parallel position/force
control has been extended to six-DOF interaction tasks in [57]. The results
of applications on the dual-robot system have been published in [15, 17] as
concerns the loose cooperative control, and as regards the tight cooperative
control they have been presented in [18, 19].
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Table 1.1. Force/torque sensor technical data

Force range +130 N
Torque range +10 Nm
fe, fy resolution 0.1 N
f- resolution 0.2 N

Mz, My, pz resolution  0.005 Nm

kz, ky stiffness 8.8-10° N/m
k. stiffness 17-10° N/m
kta, key stiffness 10 - 10° Nm/rad
k. stiffness 16 - 10° Nm/rad
fz, fy max load 650 N

f. max load 1300 N

Wz, My, bz max load 50 Nm



2. Task Space Motion Control

The first step towards interaction control of a robot manipulator is setting up
a good dynamic model and design a robust and efficient motion controller.
The first issue is discussed in the first section, where the notations used in
the remainder of the book are also presented, while the problem of motion
control design is addressed in the second section. The task space approach for
motion control is based on the well-known resolved acceleration technique,
but different algorithms are critically compared from different point of views,
namely the adopted representation of end-effector orientation and the com-
putational complexity. Finally, an experimental verification of the theoretical
conclusions is carried out.

2.1 Modelling

In every control problem an accurate model of the system to be controlled
is very helpful to the purpose of controller design. In this work, the system
is constituted by one or two robot manipulators and a passive environment,
that is a mechanical system is of concern. This greatly simplifies the mod-
elling problem since the structure of the mathematical model is almost always
known and very effective procedures can be adopted to accurately identify
the parameters.

Two types of parameters can be distinguished in the model of a robot
manipulator, the kinematic parameters and the dynamic parameters. The
former are usually known quite accurately from the CAD model of the robot,
while the latter have to be identified. For this purpose, many well-established
techniques can be found in literature; the dynamic parameters of both robots
available in the PRISMA Lab have been successfully identified by using the
general systematic identification procedure proposed in [4].

A robot manipulator consists of a kinematic chain of n+ 1 links connected
by means of n joints. One end of the chain is connected to the base link,
whereas an end effector is connected to the other end.

Let g denote the (n x 1) vector of joint variables, Xy(Op—XYZp) and
Ye(0.~X.Y.Z.) be a frame attached to the base of the robot—the base
frame—and a frame attached to the end effector—the end-effector frame,
respectively.

C. Natale: Interaction Control of Robot Manipulators, STAR 3, pp. 11-28, 2003
© Springer-Verlag Berlin Heidelberg 2003
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The position of the end-effector frame with respect to the base frame is
the position of the origin O, represented by the 3 x 1 vector p,, while the
orientation of the end-effector frame with respect to the base frame can be
represented in many ways as described in Appendix A, e.g. a 3 x 3 rotation
matrix R, = [n. 8. a.]or aunit quaternion Q. = {., € }. Notice that
no superscript has been used; in fact, hereafter, a superscript will precede the
vector or the matrix quantity only if this will be referred to a frame other
than the base frame. Regarding the unit quaternions, a first subscript will
denote the frame whose orientation is represented by the quaternion itself and
a second subscript will denote the reference frame, hence it will be dropped
when referring to the base frame.

The kinematic model of the manipulator gives the relationship between ¢
and p,, i.e.

p. =p.(q) (2.1)
as well as between ¢ and R, or Q,, i.e.

R. = R.(q) (2.2a)

Qe = Qe(Q) . (2-2b)

Let ¢ denote the vector of joint velocities, p, the (3 x 1) vector of end-
effector linear velocity, and w. the (3 x 1) vector of end-eflector angular
velocity. The differential kinematics model gives the relationship between ¢
and

We

%:[%] (2.3)
in the form

Ve = J(q)q ) (24)

where J is the (6 x n) end-effector geometric Jacobian matrix [63]. The
Jacobian can be partitioned as

J= {JP] 2.5)

to separate the contributions of the joint velocities to the linear and the
angular velocity in (2.3). The joint configurations at which the matrix J is
not full-rank are termed kinematic singularities.

The dynamic model of the manipulator can be written in the Lagrangian
form as [63]

B(q)d+C(q,q9)g+Fig+g(q) =7—J (qh, (2.6)

where B(q) is the n x n symmetric and positive definite inertia matrix,
C(q,q)q is the n x 1 vector of the Coriolis and centrifugal torques, g(q)
is the n x 1 vector of the gravitational torques, F'q is the n x 1 vector of
the viscous friction torques, 7 is the n x 1 vector of joint driving torques
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and h = [f% u"]T is the 6 x 1 vector of force and torque exerted by
the manipulator’s end effector on the environment. Concerning the friction
torques, only viscous type of friction has been considered because an accurate
model of joint friction is difficult to be set up; however, complex statical
and dynamical models can be found in the literature to take into account
nonlinear phenomena such as Coulomb friction and Stribeck effects [5, 22].

2.2 Resolved Acceleration Control

As the present book is focused on the problem of interaction control and, as
explained in the introduction, the control problem formulation will be stated
at task level, in this chapter the problem of motion control will be expressed
in terms of task space variables and faced through direct task space feedback.

The motion control problem for a robot manipulator can be formulated as
finding the joint torques which ensure that the end effector attains a desired
position and orientation. In particular, the goal is to make the end effector
track a desired position and orientation trajectory .

Many strategies have been proposed in the literature to perform tracking
control of a robot manipulator, but most of them can be reconducted to a
classical technique, called inverse dynamics control, which is a particular case
of the feedback linearization technique devised for controlling a wide class of
nonlinear systems. The aim of the control law is to linearize and decouple
the mechanical system by simply adding the nonlinear terms such as Coriolis
and centrifugal torques, friction torques and gravity torques to the control
input and then weighting the control input itself by the inertia matrix. With
reference to the robot dynamic model in (2.6), it is easy to understand that
with such a philosophy the joint driving torques have to be taken as

T=B(q)¢+Clqg,q)a+ Fq+g(q), (2.7)

where it has been assumed h = 0, i.e. no interaction with the environment,
while ¢ constitutes a new control input to be properly designed.

Folding the control law (2.7) into the system model (2.6), and taking into
account that B(q) is always nonsingular [63], yields

q=9, (2.8)

which constitutes a linear and decoupled system corresponding to a double
integrator between the input ¢ and the output g. The quantity ¢ represents
a resolved acceleration in terms of joint variables.

Equation (2.8) has been obtained under the assumption of perfect com-
pensation of the terms in (2.6). In case of imperfect compensation, a mis-
matching occurs which causes the presence of a disturbance term in (2.8),
ie.

Gg=¢—-96. (2.9)
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In practice, the disturbance § is mainly due to unmodelled dynamics, such as
imperfect compensation of friction torques since they are difficult to model
accurately [9].

Since the output of our control system is the end-effector pose, while
the output of the linearized system in (2.8) is the joint acceleration, it is
necessary to compute the relationship between the joint accelerations and
the end-effector linear and angular accelerations

ve =J(@)d+ J(q,q)q . (2.10)

At this point, if a non-redundant manipulator, i.e., a n = 6 joint robot,
and a singularity-free region of the workspace are assumed, it is possible to
invert the geometric Jacobian getting the new control input ¢

¢=J""(a)(a-J(g.a)4a) (2.11)
which, in view of (2.10), leads to
b =a, (2.12)

where a attains the meaning of a resolved acceleration in terms of task space
variables. The redundant case (n > 6) will be tackled in the next chapter, and
many techniques exist to handle the problem of kinematic singularities, which
is not explicitly considered in this book. The interested reader is referred
to [24] and references therein.

In presence of a disturbance as in (2.9), Equation (2.12) shall be modified
into

ve=a—d, (2.13)

where d = J(q)d.
In view of the partition of v, in (2.3), it is appropriate to partition the
vector a into its linear and angular components, i.e.

a= {“f’] , (2.14)

where a, and a, are (3 x 1) vectors. Therefore, Equation (2.12) can be
rewritten as

P, = a, (2.15a)
We = @, , (2.15Db)

where a, and a, shall be designed so as to ensure tracking of the desired
end-effector position and orientation trajectory, respectively.

First, consider the problem of position tracking. The desired position tra-
jectory is specified in terms of the position vector p,(t) of the origin of a
desired frame Xy, linear velocity vector p,(t) and linear acceleration vec-
tor py(t).

A position error between the desired and the actual end-effector position
can be defined as
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Apy. = Pg — P (2.16)

where A is the operator of vector difference, and the double subscript de-
notes the corresponding frames. Then, the resolved linear acceleration can be
chosen as

ap = Iu)d + KDPApde =+ KPpApde s (217)

where K p, and K p, are suitable feedback matrix gains. Substituting (2.17)
into (2.15a) gives the closed-loop dynamic behaviour of the position error

Apye + KppApy, + KppApy, = 0. (2.18)

The system (2.18) is exponentially stable for any choice of positive definite
K p, and K p,, and thus tracking of p, and p, is ensured.

The main challenge, now, is to extend this result to the orientation track-
ing problem. Many approaches have been proposed in literature, but most
of them do not take into proper consideration the task geometry. In the fol-
lowing four subsections, different control laws will be described based on the
different representations of orientation and then compared with respect to
the task geometric consistency.

For this purpose, it is worth considering first the way how to express
the desired orientation trajectory. In order to save consistency with the task
geometry, the most natural way to express a desired rotation is to specify a
desired rotation axis 74 and a desired angle of rotation ¥4(t) about this axis.
Then, it is straightforward to compute the desired rotation matrix R,(t)
expressing the time-varying orientation of the desired frame Y. To fully
assign the orientation trajectory, an angular velocity wq(t) and acceleration
wq(t) are specified as vectors parallel to the rotation axis r 4, whose magnitude
are the time derivatives of the rotation angle 94(¢). It should be pointed out
that this method, for assigning a desired orientation trajectory for the robot
end effector, is the only one which posses a clear geometrical meaning, unless
the desired rotation happens about one of the principal axes of a Cartesian
frame, in that case Euler angles still retain a geometrical interpretation.

2.2.1 Euler angles

In the operational space approach [45], the orientation error is computed in a
form analytically analogous to (2.16), by simply describing desired and actual
end-effector orientation through the two sets of three Euler angles, i.e.

A‘Pde =Pq—Pe> (219)

where ¢, and ¢, are the set of Euler angles that can be extracted respec-
tively from the rotation matrices Rq and R, describing the orientation of Xy
and X..
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Since the resolved acceleration a, to be designed is related to the end-
effector angular acceleration through (2.15b), it is worth considering the re-
lationship between the time derivative of the Euler angles and the angular
velocity [63]

We = T(‘Pe)‘hbe > (220)

where T is a transformation matrix that depends on the particular set of
Euler angles considered; this matrix is singular for two values of ¢,, the so-
called representation singularities. Differentiating the previous equation with
respect to time yields

O:’e = T(‘Pe)@e + T(‘Pev ‘ibe)[Pe - (221)

In view of (2.21), the resolved angular acceleration based on the Euler
angles error can be chosen as

Ao = T(‘loe) (‘iod + KDOA(Pde + KPOA‘Pde) + T(‘Pev ‘lbe)[Pe 3 (222)

where K p, and K p, are suitable feedback matrix gains. Substituting (2.22)
into (2.15b) gives the closed-loop dynamic behaviour of the orientation error

A‘;bde + KDOA(;Ode + KPOA(pde =0, (223)

where (2.21) has been used assuming that the matrix T'(¢,) is nonsingular.
The system (2.23) is exponentially stable for any choice of positive definite
KDo and Kpo.

From (2.22), it is easy to recognize that to compute the new control input
a,, it is necessary to compute ¢,, ¢, and ¢, since the desired trajectory is
expressed in terms of Rg, wg and wy. If ¢, can be extracted from Ry via a
standard algorithm, to compute its time derivatives, it is necessary to invert
the relationships (2.20),(2.21), i.e.

¢q =T (pawa (2.24)
pa=T7(¢4) (94— T(04,9)?a) - (2.25)
where the matrix T'(¢,) has been assumed to be nonsingular.

From these equations it follows that if tracking of ¢, and ¢, is ensured,
then tracking of R4 and wy is achieved.

2.2.2 Alternative Euler angles

Still in the operational space framework, if an Euler angles-based represen-
tation of orientation is of interest, a way to overcome the drawback of rep-
resentation singularities affecting the previous control law is to resort to an
alternative Euler angles orientation error [14], which is based on the rotation
matrix describing the mutual orientation between X; and X, i.e.

‘R,s= R!'Ry (2.26)
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as in (A.19), while, as in (A.26), it is

‘Ry= S(A°wae)°Ra (2.27)
where

Awge = ‘wq — ‘we (2.28)

is the end-effector angular velocity error which has been referred to X..

Let ¢, denote the set of Euler angles that can be extracted from °R,.
Then, in view of (2.20), the angular velocity A°wg. in (2.27) is related to the
time derivative of ¢, as

Awge = T(‘pde)‘hbde : (229)

The time derivative of (2.29) gives the acceleration relationship in the form

d)e = wd - Te((pde)ébde - Te(QOde, ¢de)¢de ) (230)

where

Te(‘lode) = RET(QOde) - (231)

In view of (2.30), the resolved angular acceleration can be chosen as

o =Wi+Te(4.)(Kpopge + Krowy.) = Te(Pier Pac)Pae »  (2:32)

where K p, and K p, are suitable feedback matrix gains. Substituting (2.32)
into (2.15b) gives the closed-loop dynamic behaviour of the orientation error

¢de + KDO‘bde + KPO‘pde - 0 9 (233)

where (2.30) has been used assuming that the matrix T'.(¢,,) is nonsingular.
The system (2.33) is exponentially stable for any choice of positive definite
K p, and K p,; convergence to ¢, = 0 and ¢, = 0 is ensured, which in
turn implies tracking of R; and wy.

As concerns the generation of the desired trajectory, to compute the new
control input a, it is necessary to extract ¢, from R, to calculate ¢, ,
and ¢, by inverting (2.29),(2.30). This implies that once again a greater
computational burden is required to save task geometric consistency at task
planning level and, at the same time, use an Euler angles-based representa-
tion. More details about computational issues will be discussed later.

At this point it should be pointed out the clear advantage of the al-
ternative over the classical Euler angles error based on (2.19). Among
the twelve possible Euler angles representations, if a representation ¢, =
[Qde Bae Ve ]T, for which T'(0) is nonsingular, is adopted, representation
singularities occur only for large orientation errors, e.g. when 4, = £7/2 for
the XY7Z representation; in fact it can be shown that

1 0 sin IBde
T(pge)= |0 cosage —sinagecosfae | - (2.34)
0 sinage cosage cos fBye
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Notice that it is not advisable to choose the widely-adopted ZYZ represen-
tation which is singular right at ¢ 4, = 0 (see, e.g. [63]). In other words, the
ill-conditioning of matrix T is not influenced by the desired or actual end-
effector orientation but only by the orientation error; hence, as long as the
error parameter |[3q.| < m/2, the behaviour of system (2.15b) and (2.30) is not
affected by representation singularities, and the control law is well defined.

2.2.3 Angle/axis

For both the above solutions of the resolved acceleration control problem,
consistency with the task geometry of the control law does not hold in the
sense that it is always necessary to reformulate the references for the con-
trol system loosing that consistency. Further, the problem of representation
singularities has been only partially overcome thanks to the adoption of the
proposed alternative Euler angles representation.

To fully preserve geometric consistency of the desired trajectory in terms
of geometrically meaningful quantities, it is worth adopting a suitable repre-
sentation of end-effector orientation into the design of the resolved accelera-
tion a, itself.

A geometrically meaningful definition of orientation error can be obtained
using an angle/axis representation. In view of (2.26), the mutual orientation
between Y; and Y. is described by ¢ R;, and thus the orientation error can
be defined in terms of the general expression

eOde = f(ﬁde)erde s (2.35)

where ¥4, and °r4. are respectively the rotation and the unit vector corre-
sponding to R4, and f(-) is a smooth scalar function with f(0) = 0. Common
choices for f(1)) are summarized in Tab. 2.1.

Table 2.1. Common choices for f(19)

Representation f()
Classical angle/axis sin(¥)
Quaternion sin(¥/2)

Rodrigues’ parameters tan(¥/2)

Simple rotation 0

In the following, the classical angle/axis representation is analysed [50],
while the quaternion will be treated in the next subsection. Hence, the an-
gle/azis orientation error is

60216 = Sin(ﬁde)erde 5 (2.36)

which is usually referred to the base frame, i.e.
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o), = R0, . (2.37)

A computational expression of o, in terms of the rotation matrices repre-
senting orientation of ¥y and X, can be derived in the form [63]

1

5 (S(ne)ng + S(se)sa+ S(ac)aq) . (2.38)
The time derivative of the orientation error (2.38) can be related to the

angular velocities of X; and X, as

I
O4e =

O = L'wa — Lw. , (2.39)
where

L= ‘; (S(na)S(nc) + 5(s4)S(sc) + S(aq)S(ac)) - (2.40)
The second time derivative is

8, = L w4+ L"wy — Lis. — Lw, . (2.41)

In view of (2.15b),(2.41), the resolved angular acceleration can be chosen
as [47)

a, =L (Lde + L wy — Lw, + K poodly, + Kpooge) , (2.42)

where K p, and K p, are suitable feedback matrix gains, and L is nonsingular
provided that the angle ¥4, belongs to the interval (—m/2,7/2); it can be
shown that this restriction is equivalent to the conditions nln, > 0, sls; >
0, aeTad > 0.

Substituting (2.42) into (2.15b) gives the closed-loop dynamic behaviour
of the orientation error

biie + KDOOZie + KPOOIde = 0 bl (243)

which is a linear and decoupled system analogous to the position error sys-
tem (2.18) as well to the orientation error systems (2.23),(2.33). Exponential
stability is guaranteed for any choice of positive definite K p, and K p,; con-
vergence to o}, = 0 and o), = 0 is ensured, which in turn implies tracking
of Ry and wy.

Equation (2.42) reveals that the price to pay to obtain a linear and de-
coupled system is a large computational burden and the possible occurrence
of a singularity. On the other hand, a simpler angle/axis scheme based on the
error (2.38) can be devised where the resolved angular acceleration is chosen
as [50]

a, =wg+ Kp,Awge + Kpoolde . (2.44)

In this case, the closed-loop dynamic behaviour of the orientation error be-
comes

Awge + KpoAwge + KPoOlde =0. (245)
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Differently from all the previous cases (2.18), (2.23), (2.33) and (2.43), the
error system is nonlinear, and thus a Lyapunov argument is invoked below
to ascertain its stability. To this purpose, in view of (A.16a),(A.16b), the
orientation error (2.36) can be expressed in terms of a quaternion as

“0jje = 2nac €qe (2.46)

where {nge, €qe} can be extracted from (2.26). Furthermore, the feedback
gains are taken as scalar matrices, i.e. Kp, = kp,I and Kp, = kp,I, where
I denotes the (3 x 3) identity matrix. Let

1
VY = Qkpoeegeeéde + 2Aw§eAwde (247)

be a positive definite Lyapunov function candidate. The time derivative
of (2.47) along the trajectories of system (2.45) is

V =4kp,S€) €go + Awl A, (2.48)
= QkPoeegeE(ndea eeale)Ae"-’ale - kDkogeAwde - 2k;Ponde Aewgeeede
= _kDkogeAwde 3

where the propagation rule based on (A.28a),(A.28b) has been exploited,
ie.

1
ﬁde - _26633Aewde (249&)
1
eéde - 2E(nde;eede)Aewde (249b)

with E defined as in (A.29).

Since V is only negative semi-definite, in view of LaSalle theorem [44],
the system asymptotically converges to the invariant set described by the
following equilibria:

& ={nae =1, ‘€se =0, Awge =0} (2.50a)
Er = {nae = -1, “€se =0, Awg. =0} (2.50D)
E3 = {nae =0, “€qc:[|€acl| =1, Awge = 0}. (2.50¢)

The equilibria in the set &5 are all unstable. To see this, consider (2.47) which,
in view of (2.48), is a decreasing function. At any equilibrium in (2.50c), it is

Voo = 2kp, - (2.51)
Take a small perturbation 74, = o around such equilibrium; then, from (A.15)
it follows °€l.°€qe = 1 — 0. The perturbed Lyapunov function is

V, = 2kpo — 20%kpo < Voo (2.52)

and thus, since (2.47) is decreasing, V will never return to V., implying that
the equilibria in & are unstable. Therefore, the system asymptotically con-
verges to either £ or &; since both quaternions for those equilibria represent
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the same orientation (see Appendix A for more details), it can be concluded
that tracking of R4 and wy is achieved.

It is worth emphasizing that, compared to the previous angle/axis scheme
based on (2.42), the restriction on ¥4, does no longer hold. Nevertheless, for
large values of ¥4, the angle/axis scheme based on (2.44) may lead to align-
ment of ¥; and X, with ¥4, = £27 as in the equilibrium &£;; such occurrence
is of no practical interest since 94, is typically small for the tracking control
at issue. In any case, it should be pointed out that the computation of the ori-
entation error o4, and consequently of the resolved acceleration a, requires
the computation of the rotation matrix R, starting from the assigned orien-
tation axis rq and the assigned rotation angle ¥4(¢), with the the subsequent
computational load. On the other hand, it would be useful to compute the
orientation error only through the references, avoiding the occurrence of any
singularity. This will be the topic of the next section.

2.2.4 Quaternion

Since the geometrically consistent desired trajectory is assigned in terms of
an angle/axis representation and for all the representations seen in the pre-
vious section the computation of a, passed through a rotation matrix, it is
necessary to resort to a description of orientation, which could completely
substitute the rotation matrices and, at the same time, would have a geo-
metrical meaning.

The only way to achieve this characteristic is to analyse the properties
of the set of rotations, i.e., the group SO(3). In Appendix A, a detailed
discussion about this issue is carried out, and the main conclusion is that
only non-minimal representation of orientation can fully substitute rotation
matrices. In this class of descriptions of rotations, the unit quaternion is a very
compact one (only four parameters) and it has a clear geometrical meaning,
since it can be described as a special angle/axis representation. However, on
the group of unit quaternions it is possible to define a complete algebra [26]
and, owing to that, every operation with rotation matrices is possible as with
the corresponding unit quaternions. This kind of representation has been
successfully used for the attitude control problem of rigid bodies (spacecraft)
in [69, 33].

If Q. and Qg represent the unit quaternions describing the orientation of
Y. and X, with respect to the base frame, the mutual orientation of the two
frames is

Que = Q7' % Qq. (2.53)

By taking into account (A.16a),(A.16b), it can be recognized that the vector
part of this quaternion can be written as

Ve
‘€qe = sin ; “Tde (2.54)



22 2. Task Space Motion Control

and thus, it possible to define an orientation error belonging to the class of
angle/axis type, as

o), = “€qe - (2.55)

Notice that the computation of the rotation matrix Ry from r4 and ¢4 is not
needed to compute the orientation error o), because, in view of the quater-
nion interpretation as Euler parameters (see Appendix A), computation of
the unit quaternion Q4 from 74 and 6, is straightforward.

The relationship between the time derivative of the orientation error o/,
and the angular velocity error in (2.28) is established by (2.49Db).

The resolved angular acceleration based on the gquaternion orientation
error can be chosen as [73]

a,=wy+ KpoAwge + Kp,R. €4e s (256)

where K p, and K p, are suitable feedback matrix gains, and the orientation
error has been referred to the base frame. Substituting (2.56) into (2.15b)
gives the closed-loop dynamic behaviour of the orientation error

Awde + KDkode + KPoReeede =0. (257)

Similarly to the angle/axis case above, a Lyapunov argument is invoked
below to ascertain stability of system (2.57). Again, the feedback gains are
taken as scalar matrices, i.e. Kp, = kpoI and K p, = kp,I. Let

1
V =kp, ((nde — 1)2 + ee;lreeede) =+ 2Aw§eAwde (258)

be a positive definite Lyapunov function candidate. The time derivative
of (2.58) along the trajectories of system (2.57) is

V = 2kp, ((1de — 1)7de + €5, €de) + Aw gy AW ge (2.59)
= kpo (_(nde - l)eegeAewde + eeg‘eE(ndea eede)Aewde)
_ kDOAw:feAwde — kperwEeeede
= —kDOAw:iFeAwde
where (2.49a),(2.49b) have been exploited.

Since V is only negative semi-definite, in view of LaSalle theorem, the
system asymptotically converges to the invariant set described by the two
equilibria & and & in (2.50a),(2.50b).

The equilibrium &, is unstable. To see this, consider (2.58) which, in view
of (2.59), is a decreasing function. At the equilibrium in (2.50b), it is

Voo = 4kp, - (2.60)

Take a small perturbation 14, = —1 + ¢ around the equilibrium with o > 0;

then, it is eegeeede = 20 — 0. The perturbed Lyapunov function is

Vy = 4kpo — 20kpo < Voo (2.61)
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and thus, since (2.58) is decreasing, V will never return to V.., implying
that & is unstable. Therefore, the system must asymptotically converge to &,
which in turn implies that tracking of R4 and wy is achieved.

2.3 Comparison

In this section the main differences between the different resolved acceleration
control laws will be summarized to the purpose of getting more insight into
the problem of choice of the most suitable representation of orientation. The
comparison will be performed from the computational point of view, from
the point of view of range of applicability of the control law and, in the
experimental section, from the performance point of view.

2.3.1 Computational issues

Assume that the robot manipulator is controlled in a real-time fashion, and
thus the planning of the desired end-effector trajectory shall be updated on
the basis of sensory information about the surrounding environment where
the robot operates. Therefore, the two key elements in the analysis are the
trajectory generation and the computation of the resolved acceleration a,,
while the rest of the control algorithm is the same for each scheme.

As already discussed in a previous section, the way to specify a desired
orientation trajectory consistent with the geometry of the task is the an-
gle/axis method. Therefore, it is assumed that the trajectory is generated in
terms of r4 and ¥,4(t), where the time varying angle is generated according
to an interpolating polynomial of 5-th order.

Regarding the actual orientation of X, this is typically available from
the direct kinematics equation in terms of the rotation matrix R, which can
be computed from the joint position measurements via the direct kinematic
equation (2.2a); further, the actual end-effector angular velocity w. can be
computed from the joint velocity measurements via (2.4).

The computational burden of the schemes presented in the previous sub-
sections has been evaluated in terms of the number of floating-point opera-
tions and transcendental functions needed to compute the resolved angular
acceleration a,. The angle/axis scheme based on (2.42) has been ruled out
in view of its inherent computational complexity, and thus the scheme based
on (2.44) has been considered hereafter. The results are reported in Tab. 2.2,
where the additional computations needed for desired trajectory generation
by those schemes not using r4, ¥4, wg and wy are evidenced; the computa-
tions have been optimized whenever possible, e.g. by avoiding multiplications
by zero and carrying out partial factorizations.

It can be recognized that the extraction of Euler angles augments the over-
all load for both schemes in the operational space, compared to the quater-
nion and the angle/axis scheme. Moreover, for all the schemes except for the
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Table 2.2. Computational load of the angular part for the resolved acceleration
control schemes

Resolved acceleration Trajectory generation

Orientation error Flops Funcs Flops Funcs
Classical Euler angles 68 8 52 8
Alternative Euler angles 136 8 0
Angle/axis 55 0 0
Quaternion 60 1 21 1

quaternion-based one, the required computation of the rotation matrix Ry
from the desired angle and axis increases the computational load. However,
for the quaternion-based scheme it is necessary to extract the quaternion
corresponding to the rotation matrix describing the actual end-effector ori-
entation, which explains the difference between this algorithm and that based
on the angle/axis representation.

As a confirmation a test for the estimation of the total computational
time has been carried out on the available hardware; it amounts to: 0.235 ms
for the controller based on (2.22), 0.205 ms for the controller based on (2.32),
0.155 ms for the controller based on (2.44), and 0.170 ms for the controller
based on (2.56). Notice that, with reference to the data in Tab. 2.2, these
times are also inclusive of the inverse dynamics computation, the basic trajec-
tory generation and the manipulator kinematics computation, and of course
the computation of the resolved linear acceleration.

2.3.2 Experiments

The feedback gains of the above controllers have been set to
Ky, =751, Kp,=25001

for the translational part of the control law based on (2.17), to
Ky, =171, Kp,=25001

for the rotational part of the control law based on (2.22),(2.32),(2.44), while
Ky, =171, Kp,=50001

for the rotational part of the control law based on quaternions (2.56). In or-
der to carry out a fair comparison, the above values have been chosen so as
to assign the same dynamic behaviour to the various closed-loop error sys-
tems, where the nonlinear equations have been linearized for small orientation
€rrors.
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A case study has been developed to analyse the tracking performance of
the various schemes. The end-eflector desired position is required to make a
straight line displacement of (0.5, —0.6,0.5) m along the coordinate axes of
the base frame. The trajectory along the path is generated according to a
5-th order interpolating polynomial with null initial and final velocities and
accelerations, and a duration of 5s. The end-effector desired orientation is
required to make a rotation of 3rad about the axis (0.5639, 0.5840, —0.5840)
with respect to the base frame. The trajectory is generated according to
the equivalent angle/axis method, where the axis is fixed and the angle is
interpolated by a 5-th order polynomial with null initial and final velocities
and accelerations, and a duration of 5s. The initial end-effector pose has been
matched with the desired one.

determinant of T(phi_d) determinant of T(phi_de)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
00 2 4 6 0O 2 4 6

[s] [s]
Fig. 2.1. Time histories of determinant of T'(¢,) and determinant of T'(¢,, )

As shown on the left-hand side of Fig. 2.1, the desired end-effector orien-
tation trajectory passes in the neighbourhood of a representation singularity
for the matrix T'(¢p,); this is a very demanding task in the face of the typical
capability of a conventional industrial robot control unit.

The results are reported in Figs. 2.2 and 2.3 for the two Euler angles
feedback schemes, the classical one and the alternative one proposed in this
paper. The figures illustrate the time histories of the norm of the end-effector
position error Ap,,, the norm of an end-effector orientation error computed
as the largest singular value of the matrix (I — R{;), the norm of the linear
velocity error Ap,,, the norm of the angular velocity error Awg., and the
joint reference motor currents (expressed in DAC units). Note that the choice
of the above orientation error has been motivated by the desire to refer to
a single measure of tracking performance for the various schemes, no matter
what type of orientation feedback has been used.

It can be recognized that the performance in terms of the position and
orientation errors is good for both schemes. The steady-state errors are non-
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Fig. 2.2. Tracking performance of resolved acceleration control based on classical
Euler angles

null because of the unavoidable imperfect compensation of static friction.
A degradation of performance is observed in the linear and angular veloc-
ity errors for the scheme based on the classical Euler angles feedback; large
peaks occur which are reflected also at the level of the motor currents. This
phenomenon can be clearly ascribed to the closeness to the representation sin-
gularity for the end-effector orientation in correspondence of the time instant
when the determinant of T'(¢ ;) approaches zero. It should be remarked that
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its effect is visible not only on the angular velocity error but also on the linear
velocity error, through the typical kinematic coupling between position and
orientation in the non-spherical wrist manipulator. On the other hand, the
scheme based on the alternative Euler angles feedback does not suffer from
the occurrence of representation singularities, as confirmed on the right-hand
side of Fig. 2.1 illustrating the determinant of the matrix T'(¢,.) which is
nearly equal to one in view of the small orientation tracking error along the
trajectory.

The overall tracking performance obtained with the quaternion feedback
and the angle/axis feedback schemes is practically the same as that with the
alternative Euler angles feedback scheme, and thus the numerical results have
not been reported for brevity.

In conclusion, a critical discussion is in order concerning the pros and
cons of each scheme.

At first sight, the classical Fuler angles scheme might seem the simplest
one in view of its similarity with the position scheme. Nevertheless, the anal-
ysis has revealed that, besides the heavy computational load due to Fuler
angles extraction, there is no guarantee to avoid the occurrence of repre-
sentation singularities even when good end-effector orientation tracking is
achieved. On the other hand, the effort to plan a singularity-free orientation
trajectory is considerable especially when the angle/axis method is adopted
for meaningful task specification purposes; furthermore that is even impossi-
ble when the manipulator interacts with the environment, since the trajectory
is not known a priori, because it depends on the contact force and moment.

The alternative Euler angles scheme has the main merit to almost over-
come the above drawback of representation singularities, since it keenly op-
erates on the set of Euler angles which is extracted from a single rotation
matrix describing the mutual orientation between Xy and X.. It may suffer
only in the case of large orientation errors, but there is no practical worry
for a convergent algorithm with matched initial conditions between the de-
sired and the actual end-effector orientation. A weakness, however, is that
the computational burden is still considerable, especially due to the required
computation of the matrix T, and its time derivatives.

The breakthrough of the quaternion scheme stands in its applicability
for any magnitude of the orientation error, since it is inherently based on a
singularity-free representation of orientation. Its tracking performance is ap-
parently as good as the alternative Euler angles scheme, although the closed-
loop orientation error dynamics is nonlinear. A further advantage is repre-
sented by the contained computational burden, even though the orientation
error is not directly based on the desired and actual rotation matrices.

Finally, the angle/axis scheme has the least computational load among all
the schemes. Its performance is worse than that of the quaternion scheme in
the case of large orientation errors, whereas both schemes exhibit the same
good behaviour for small orientation errors.
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Fig. 2.3. Tracking performance of resolved acceleration control based on alternative
Euler angles



3. Task Space Impedance Control

In this chapter, a first control strategy to manage the interaction of a sin-
gle robot manipulator with the environment is examined, namely impedance
control. First, impedance equations in the operational space are presented
and then compared with the task space approach, both for translational and
rotational motions. The more general case of a redundant robot is also consid-
ered and experimental results are presented to illustrate the beneficial effects
of the impedance control during interaction with the environment.

3.1 Indirect Force Control

Impedance control belongs to the category of indirect force control because
it does not allow the user to specify a desired contact force. In detail, the
strategy conferring a compliant behaviour to the robotic system, in order to
manage the interaction of the manipulator with the environment is conceived
as follows.

By using an external force/torque sensor the contact force measurements
are suitably used in the control system to impose a dynamic behaviour to the
robotic arm which can be described by a mechanical impedance; namely, a
dynamic relationship between contact force and end-effector displacements,
characterized by a generalized mass matriz, a damping matriz and a stiffness
matriz. It is not difficult to understand that, when the robot interacts with
the environment, which is assumed to be a passive compliant environment,
the dynamics of the overall system is influenced also by the characteristics of
the contact surface and by the contact geometry. The idea is to design the
parameters of the assigned impedance so as to have a compliant and well-
damped dynamic behaviour during the entire execution of the interaction
task, i.e., during the approach phase and during the contact phase.

3.2 Impedance Equation in the Operational Space

Impedance control was first proposed in the seminal work [39] and further
developed by many researchers, but most of them did not place too much

C. Natale: Interaction Control of Robot Manipulators, STAR 3, pp. 29-56, 2003
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stress on the problem of the rotational part of the mechanical impedance;
in fact, most of the interaction tasks considered in the literature were only
three-DOF tasks, as defined in the introduction of this book.

To formally define a mechanical impedance, besides the actual end-effector
frame X, and the desired end-effector frame X4, it is worth introducing the
compliant frame X.. The last frame describes position and orientation of
the end effector when it is in contact with the environment, so that the
relationship between the end-effector displacements and the contact force and
moment is governed by the above mentioned specified impedance parameters.
In other words, during the task execution, when the end effector moves in free
space, it shall follow the desired trajectory whereas, when the end effector is
in contact with the environment, it shall follow the compliant trajectory.

The first work dealing with a general six-DOF impedance controller
was [45], but as in the simple motion control problem, the rotational part
of the impedance controller was obtained by a simple analytical extension
of the translational part, thanks to the use of Euler angles to represent the
end-effector orientation.

In order to comprehend the main characteristics of the operational space
approach and to identify its drawbacks and limits, a brief overview of the
formulation will be carried out in the following subsections.

3.2.1 Translational impedance

To define the impedance equation, an energy-based argument can be pursued
to give a physical interpretation of the equation. First, let

Apdc = Pq — DP. (31)
be the translational displacement between the origins of the two frames Xy
and X.; it is possible to define the following translational pseudo-kinetic en-
ergy
1
2

where M, is the symmetric and positive definite translational mass matriz
and Ap,,. is the time derivative of Ap,, in (3.1), i.e., the relative velocity
of the frame X; with respect to the frame Y., expressed in the base frame.
Notice that 7, is a true kinetic energy only if p, is constant and M, is a
scalar matrix.

Then consider the potential energy of a three-DOF spring with transla-
tional stiffness matriz K, [49] (symmetric and positive definite) and equi-
librium position p,, i.e.

7; = A.chp 7Apdc (32)

1
Uy = A, Ape (3.3)
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Now, it is possible to derive the various terms of the impedance equation
by considering the associated powers of the corresponding energy terms. In
detail, taking the time derivative of (3.2) yields

Tp = 1., (3.4)
where
fr= MpAf’dc (35)

is the inertial force.
With reference to (3.3), taking the time derivative of U, yields

U, = fpAp,. , (3.6)

where

fr=K,Ap, (3.7)

is the elastic force; in fact the product of the elastic force and the velocity
Ap,,. is the elastic power.
Finally, a dissipative contribution can be added as

fp=D,Ap, , (3.8)

where D,, is the symmetric and positive definite translational damping ma-
triz.

Thus, by adding the contributions (3.5),(3.7) and (3.8), the translational
impedance equation can be defined as

MPAi)dc + DPApdc + KPApdc = f ) (39)

where f is the force exerted by the end effector on the environment.

In order to ensure the end-effector compliant behaviour to be correct for
the execution of the interaction task, the selection of the stiffness matrix plays
a key role. Therefore, it is worth analysing the elastic term from a geometric
point of view.

The stiffness matrix K, can be decomposed as

K,=U,I',U;, (3.10)

where I'y, = diag{Vp1, Vp2, Yp3} and U, = [up1  up2  up3] are respectively
the eigenvalue matrix and the (orthogonal) eigenvector matrix. Then, con-
sidering a position displacement of length A along the i-th eigenvector leads
to an elastic force

fe=KpAp,. = vpidtupi , (3.11)

which represents an elastic force along the same wu,; axis. This implies that
the translational stiffness matrix can be expressed in terms of three param-
eters yp; representing the stiffness along three principal azes up; [35], and in
turn it establishes the property of task geometric consistency for the elastic
force in (3.11).
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3.2.2 Rotational impedance based on Euler angles

The above physical and geometrical interpretation of the different terms in
the translational impedance equation greatly simplifies the impedance param-
eters selection depending on the task geometry; this is the main motivation
of the geometric approach, which will be followed to define the rotational
impedance equation in the task space impedance control, presented in this
book and originally proposed in [16]. On the contrary, in the operational space
approach the rotational impedance equation is derived via a formal analogy
with the translational impedance equation, by resorting to the representation
of end-effector orientation based on Euler angles.

Therefore, with reference to (3.9), the rotational impedance equation can
be written in the form [45]

M APy, + DAy, + Ko Ay =T (0 )1 (3.12)

where M ,, D, and K, are symmetric and positive definite matrices describ-
ing the generalized inertia, rotational damping, rotational stiffness, respec-
tively, and

Apge =Pa— ¢ (3.13)

is the Fuler angles orientation displacement.

Notice the presence of the transformation matrix 7', necessary to trans-
form the physical moment p into a quantity consistent with the terms in the
first member of (3.12). More precisely, to fix the ideas, consider the elastic
contribution. Let pp be the elastic contribution to the physical moment, then
the physical elastic power is

U, = ,u%Awdc , (3.14)
while the elastic power associated to the elastic term K,A¢p,. is the scalar
product Apl K,Ap,.; hence, to save the physical meaning, it shall be

UEAW . = Apy K, Apy. . (3.15)

If the case of small rotational displacements is assumed, the relationship
between the time derivative of Euler angles and the angular velocity (2.20)—
see also (3.19) in the discussion below— leads to

pEAws. = Aps K, T ' (p.) Awqe , (3.16)
which, in the absence of representation singularities, yields

T (o )pp = KoApy, - (3.17)

As a consequence, differently from (3.9), the dynamic behaviour for the
rotational part is not uniquely determined by the choice of the impedance
parameters but it does also depend on the orientation of the compliant frame
with respect to the base frame through the matrix T (¢,). Moreover, Equa-
tion (3.12) becomes ill-defined in the neighbourhood of a representation sin-
gularity; in particular, at such a singularity, moment components in the null
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space of TT do not generate any contribution to the dynamics of the orien-
tation displacement, leading to a possible build-up of large values of contact
moment.

The effect of the rotational stiffness can be better understood by consider-
ing an infinitesimal orientation displacement between ¥; and X.. From (3.12)
or (3.17), in the absence of representation singularities, the elastic moment
is

pp =T (¢ )K,Apy, - (3.18)

In the case of an infinitesimal orientation displacement about ¢, from (2.20)
it follows
d(Ap,,) = (9, — ¢, dt 3.19
(Au) = @a=d | _ (3.19)
=T (p.)Awg.dt ,

where Awg. = wy—w. is the relative angular velocity between the two frames.
Folding (3.19) into (3.18) written for an infinitesimal displacement d(A¢p,.)
gives

= T () KT (p,) Awaedt . (3.20)

Equation (3.20) reveals that the relationship between the orientation dis-
placement and the elastic moment depends on the orientation of X.. It fol-
lows that the property of task geometric consistency of the elastic force (3.11)
is lost when considering the elastic moment (3.18), that is, the eigenvectors
of the matrix K, do not represent the three principal axes for the rotational
stiffness.

3.2.3 Rotational impedance based on alternative Euler angles

The drawbacks discussed above can be mitigated by adopting the alternative
Luler angles orientation displacement ¢, that can be extracted from the
rotation matrix

‘Rqs= R'Ry. (3.21)
Then, the rotational impedance equation at the end effector can be stated as
MOébdc + D0¢dc + K0¢dc = TT(Qodc)Cp’ ) (322)

where M,, D, and K, are defined in a similar way to (3.12) and “u is
referred to X.. This form of the rotational impedance equation was originally
proposed in [13].

An advantage with respect to (3.12) is that now the impedance behaviour
for the rotational part depends only on the relative orientation between X
and X, through the matrix TT(cp 4c)- Hence, if XYZ Euler angles are adopted,
representation singularities have a mitigated effect since they occur when
Bac = £7/2, i.e. for large end-eflector orientation displacements.
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From (3.22) the elastic moment is

‘pp =T " (pa) Kopye - (3.23)

The infinitesimal orientation displacement about ¢, = 0 is

dey, = @4 dt = T7'(0)A¢wg.dt . (3.24)

Pdc = 0
Folding (3.24) into (3.23) written for an infinitesimal displacement de . gives
‘pp =T T (de, ) K, T '(0)Awq.dt (3.25)

~T Y0 K, T (0)A°wg.dt ,

where the first-order approximation T~ *(dp,.)dt ~ T~ '(0)dt has been
made. Equation (3.25) reveals that the relationship between the orientation
displacement and the elastic moment is independent of the orientation of X..
Notice, however, that the choice of Euler angles affects the resulting stiffness
through the matrix 7'(0) which must be invertible; as already emphasized in
Subsection 2.2.2 of the previous chapter, the widely-adopted ZYZ representa-
tion of Euler angles cannot be used here, being singular right at ¢,. = 0. It is
convenient, instead, to adopt the XYZ representation which gives T'(0) = I
and thus, for an infinitesimal displacement,

‘up ~ K Awgedt . (3.26)

As regards the property of task geometric consistency for the elastic mo-
ment (3.23), when K, is a diagonal matrix and the XYZ representation of
Euler angles is adopted, the i-th eigenvector u,; of K, = diag{7o1, Vo2, o3}
is the i-th column of the identity matrix. Hence, the orientation displacement
of an angle 9,4, about u,; is described by

Pdc = DacWoi (327)

which, in view of the expression of T'(¢,.) for XYZ Euler angles in (2.34),
leads to

CP/E = ’Yoiﬂdcuoi 5 (328)

representing an elastic moment about the same wu,; axis; thus, the vectors
u,; have the meaning of rotational stiffness principal axes. It can be easily
recognized that the same property does not hold in general for a nondiago-
nal K,.

3.3 Impedance Equation in the Task Space

The analysis carried out in the previous section led to discover the major
drawbacks of the operational space approach.

First of all, the occurrence of representation singularities, due to the use
of minimal representation of orientation, in the interaction control is more
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critical than in the motion control. In fact, if in the latter it would be possible
to plan a desired trajectory avoiding representation singularities, in the for-
mer end-effector trajectory is not a priori known, because it depends on the
contact force and moment. By adopting the alternative Euler angles repre-
sentation, a mitigation of this drawback has been achieved, but the problem
can be completely overcome only by resorting to non-minimal representation
of orientation displacements.

Moreover, the analysis of the impedance equation based on the task ge-
ometry has revealed that the adoption of the operational space framework
does not allow, in general, the user to specify the impedance parameters in
a way which is consistent with the task geometry, except for some special
cases. As already discussed in the previous chapter about the desired trajec-
tory specification in a consistent way with the task geometry, the only way
to save the property of task geometric consistency is to adopt geometrical
meaningful representations of end-effector orientation.

Since, as shown in Section 3.2, for the translational part of the impedance
equation in the operational space approach, the property of task geometric
consistency holds, in the following, only the rotational part of the impedance
equation will be reformulated according to the task space framework [16].

3.3.1 Rotational impedance based on angle/axis

A class of geometrically meaningful representations of the mutual orienta-
tion between Xy and X, can be given in terms of the angle/axis orientation
displacement,

COdc = f('ﬁdc)crdc ) (329)

where 9,4, and “rg4. correspond to ‘R, and f(¥4.) is any of the functions
listed in Tab. 2.1. Those are strictly increasing smooth functions in an inter-
val (=9, 9ar) with 9 > 0. Hence, the derivative f'(d4.) of f with respect
to ¥4, is strictly positive in that interval.

From (A.34) the angular velocity of Xy relative to X, is given by

AWye = Wy — ‘W, = R;F(wd —We) - (3.30)
The relationship between the time derivative of the angle/axis parameters

and the relative angular velocity can be computed by taking into account the
Rodrigues’ formula (A.9) written for the rotation matrix ‘R,

19dc = CTECCAwdc (331&)
1 J
“Pige = 5 <(I — P g.°T).) cot 5~ S(Crdc)> “Awge - (3.31b)
Differentiating (3.29), and using (3.31a),(3.31b), gives
“0gc = Q(CrdCaﬁdc)Acwdc ) (332)

where
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R=02+02,, (3.33)
with
2 = f'(Dae)racry, (3.34a)
1
02, = 2f(19dc)(C0t(19dc/2)(I — P Ty) — S(Crdc)) . (3.34b)

The matrix §2) (£21) projects the relative angular velocity A°wg. in a direc-
tion parallel (orthogonal) to “04.. Also, notice that the following property of
£2 holds

2(°rac,0) = f(0)1, (3.35)

which will be useful in the following.

In order to derive the impedance equation for the rotational part, since all
the quantities now have a geometrical and physical meaning, it is possible to
pursue the same energy-based argument adopted to derive the translational
impedance equation. Let

1
T, = QACw}CMOAdeC (3.36)

express the rotational kinetic energy of a rigid body with inertia tensor M,
(symmetric and positive definite) and angular velocity Awg.. It is worth
pointing out that, from a rigourous physical viewpoint, 7, is representative
of a pseudo-kinetic energy since it is defined in terms of a relative velocity.
Nonetheless, it should be clear that, if the orientation of X; is constant, then
it would attain the meaning of a true kinetic energy.

Then, consider the potential energy

Uy = V04K 04 , (3.37)

where v is a positive constant depending on the particular choice of f(+), and
K, is a symmetric positive definite matrix.

Once the various energy contributions have been defined, the terms in the
rotational impedance equation can be derived by considering the associated
powers.

Computing the time derivative of (3.36) yields

To =u Awqe (3.38)
where
Cuy = MoA%Wg. (3.39)

is the inertial moment and A¢wg,. denotes the time derivative of A¢wgy.
in (3.30). Further, taking the time derivative of (3.37) and accounting
for (3.32) yields

U, = Cu%Acwdc , (3.40)

where
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‘pp =2002" (“r e, 94.) K .S 040 (3.41)

is the elastic moment.
Finally, a dissipative contribution can be added as

‘up = DoAwqc , (3.42)

where D, is a positive definite matrix characterizing a rotational damping
at the end effector.

Therefore, the rotational impedance equation in the task space can be
defined by adding the contributions (3.39),(3.42) and (3.41), i.e.

M Awy. + D, Awge + I{;COdC = C[,L s (343)
where the equality “p = “pu; + “pp + ‘pup has been imposed, and
K =2002" (°rge,94c) K, . (3.44)

A similar energy-based argument has been adopted in [34] to define the
so-called spatial impedance.

Notice that the rotational part of the impedance equation has been de-
rived in terms of quantities all referred to X.; this allows the impedance
behaviour to be effectively expressed in terms of the relative orientation be-
tween Y; and Y., no matter what the absolute orientation of the compliant
frame with respect to the base frame is.

It is worth remarking that, by adopting an angle/axis representation of
the orientation and pursuing an energy-based argument, the contributions
in the rotational impedance equation correspond to physically meaningful
energy terms; also, the velocity used is dual to the moment p exerted by the
end effector, i.e. with no need of a transformation matrix depending on the
actual end-effector orientation.

In the following, the analysis for small orientation displacements is carried
out and consistency with the task geometry is investigated.

Consider an infinitesimal orientation displacement expressed as

dog4. = ‘04, 9o =0 dt = 2(°rye,0) Awy.dt = fI(O)Adecdt , (3.45)
de —
where the property (3.35) has been exploited. Folding (3.45) into (3.41),
written for an infinitesimal displacement about ¥4, = 0, gives

“up = 20027 (“rae, dVa) K od 0ge ~ 20 (£(0))° KA waedt  (3.46)
= K,Awg.dt

where the first-order approximation £2(°r 4., d4.) ~ f'(0)I has been consid-
ered and the choice ¢ = 1/2(f'(0))? has been made. Equation (3.46) clearly
shows how the relationship between the orientation displacement and the
elastic moment is independent of the orientation of Y., and the problem of
representation singularities is not of concern since f'(0) is finite.

Concerning the property of task geometric consistency, the rotational
stiffness matrix in the task space in (3.41) can be decomposed as
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K,=U,I,U!, (3.47)

where I', = diag{Yo1, 702, Vo3 } and U, = [u,1 U2 U,z ] are the eigenvalue
matrix and the (orthogonal) eigenvector matrix, respectively. Then, consid-
ering an orientation displacement by an angle ¥4, about the i-th eigenvector

Ofic = f(ﬁdc)uoi s (3.48)

and taking into account the decomposition of §2 into the two terms (3.34a),
(3.34b) yields

C“E = anﬁ(uoia ﬁdc)'Yoif(ﬁdc)uoi = wal(ﬁdc)')/oif(ﬁdc)uoi . (3-49)

This represents an elastic moment about the same u,; axis which is in the
same direction of the orientation displacement since f'(d4.) > 0. Therefore,
the rotational stiffness matrix can be expressed in terms of three parame-
ters v,; representing the stiffness about three principal axes u,;, i.e. in a
consistent way with the task geometry. A generalization to the case of mu-
tual interaction between rotational and translational stiffness can be found
in [12].

3.3.2 Rotational impedance based on quaternion

With reference to the different angle/axis representations of orientation dis-
placement in Table 2.1, a special case is constituted by the quaternion
orientation displacement. Such a representation has the advantage over
other angle/axis representations to avoid representation singularities and it
can completely substitute the rotation matrices, in the sense already ex-
plained in Subsection 2.2.4. In fact, the orientation displacement “og4. with
f(W4) = sin(¥4./2) (the choice corresponding to the unit quaternion) is the
vector part of the quaternion

Que = {ndca Cedc} = Q;l * Qg . (350)

expressing the mutual orientation between Y, and X..
With this choice, in view of (3.37), the expression of the potential energy
becomes

U, =21 K ,°€qe (3.51)

where it has been set ¢y = 2. Even though the potential energy is expressed
in terms only of the vector part of the quaternion, it can be shown that U,
coincides with the rotational elastic energy associated with a torsional spring
with rotational stiffness matrix K, acting so as to align X, with Y.

In view of (3.43), the resulting impedance equation for the rotational part
becomes

M Awy. + D, Awge + Ki)cédc = C[,L s (352)

where
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K =2E" (40, %€4c) K, (3.53)

with E as in (A.29).

In the case of free motion, it is worth finding the equilibria of the rotational
impedance equation (3.52). These should occur whenever ¥y and X, are
aligned.

Consider the Hamiltonian contribution [60]

Ho =T, +U,, (3.54)

associated with the rotational motion, which is a positive definite function.
Taking the time derivative of (3.54) and accounting for (3.36),(3.37) along
with (3.52), (3.53) yields

Ho = —Awh. Dy A°wge + " Awy. . (3.55)

If ¢ = 0, H, in (3.55) vanishes if and only if A°wy. = 0; hence from (3.52)
it follows that “e4. asymptotically tends to the invariant set described by

‘bp =21 Ko €qc + S(‘€4c) K,€qc) =0, (3.56)

where (3.53) has been exploited.
By observing that the two terms in (3.56) are mutually orthogonal, the
following sets of equilibria are found:

& ={nic = £1, “€qc =0, A°wgq. =0} (3.57a)
& = {ndc =0, ‘€ic: K, €40 = ’Yoicedca ||C€dc|| =1, Awq, = 0} a(357b)

where 7,; > 0 denotes an eigenvalue of matrix K,.

The equilibria in & are unstable. To see this, consider the Hamiltonian
contribution (3.54) which, in view of (3.55), is a decreasing function. At any
of the equilibria in (3.57b), it is

Ho,oo = Q'Ym'cegccedc = 27, (358)

where (A.15) has been used. Consider a small perturbation around the equi-
librium with ng. = o, “€q4. such that Cegccedc =1-0?, A°yg. = 0 and

K ,°€4c = Yoi“€4c- The perturbed Hamiltonian contribution is
Moo = 2Y0i(1 — 02) < Ho.00 (3.59)

and thus, since (3.54) is decreasing, H, will never return to H,, oo, implying
that those equilibria are all unstable. Notice that, at such equilibria, Y is
anti-aligned with Y. with respect to the axis of the mutual rotation Ry
between the two frames.

It can be concluded that ‘ez, must converge to &;. Interestingly enough,
the two equilibria in & both give the same mutual orientation ‘Rz = I, thus
implying the alignment of X; with X., so as wished.
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3.4 Impedance Control Law

Once the impedance equation has been defined, a proper control law is de-
vised to ensure an end-effector behaviour realizing the programmed mechan-
ical impedance. It is a well-known concept that in industrial robots the prob-
lem of joint friction, and other different torque disturbances, greatly affect
the performance of the impedance controller when this is implemented by
designing the joint driving torques only on the basis of the impedance pa-
rameters [9]. A solution to this problem is to adopt an inner motion control
loop in combination with an outer force loop [30]. The strategy is schemati-
cally depicted in the block scheme of Fig. 3.1.

Hngd- mec; f,u >
D, Wq_ | IMPEDANCE | P_.w,._ | POS&ORIENT | @ | INVERSE T | wmaNrpuLATOR | g _
Py Wdy >
T CONTROL = CONTROL DYNAMICS & ENVIRONMENT | »

Py, wWdy, P, W q >
= >

\ W Y W)

Pe, fte DIRECT

L DPe:We| giNemaTICS

Fig. 3.1. Impedance control with inner motion control loop

In the impedance control, the compliant behaviour is imposed to the
end-effector as long as tracking of position and orientation of the compliant
frame X. is guaranteed. To do this, it is possible to resort to the various
motion control schemes described in Chapter 2, depending on the particular
representation chosen for orientation displacements.

Therefore, with reference to the dynamic model of the robot in contact
with a compliant environment in (2.6) and by adopting the inverse dynamics
control technique (2.7), the joint driving torques can be taken as

= B(g)J '(q) (a - J(q,Q))+C(q,Q)Q+F¢1+g(q)+J(q)Th ,(3.60)

where the contribution relative to the contact force and moment h =
[fT 1T T can be recognized. It is clear that to implement such a control
algorithm a force sensor is needed, not only to cancel the joint torques corre-
sponding to the end-effector contact force, but also to compute the resolved
acceleration @ = [a, a}]". In fact, the compliant trajectory p,(t), R.(t)
to be tracked is computed by forward integration of the impedance equation

with input the measured force and moment.
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Fig. 3.2. Translational impedance equation

3.4.1 Operational space control

First, the translational impedance equation (3.9) is integrated (see Fig. 3.2),
with input f and the reference trajectory p.(t),p.(t),D.(t) is input to the
inner motion control law (3.60), to compute the resolved linear acceleration

ap = I")c + KDpApce + KPpApce 9 (3.61)
where

Apce =DP. P (362)

is the position tracking error between X, and X, and K p,, K p, are positive
definite matrix gains. Notice that owing to the use of the inner motion control
loop, the tracking performance of the control system depends only on the
gains of the inner loop and not on the impedance parameters, and thus the
former can be chosen to reject torque disturbances, e.g., joint friction, and
obtain a good dynamic performance. On the other hand, the latter can be
chosen only on the basis of the interaction task, i.e., to ensure a proper
compliant behaviour of the robot end effector.

Concerning the rotational part of the impedance control, the resolved
angular acceleration a, can be computed in two different forms. The first is
obtained by adopting the classical Euler angles representation of end-effector
orientation displacements; then the rotational impedance equation (3.12) is
integrated in a way formally equal to that represented in Fig. 3.2, and the
reference trajectory @.(t), ¢.(t), $.(t) is input to the inner motion control
law (3.60) to compute

a, = T(Qoe) (‘PC + KDOA¢C€ + KPOA(pce) + T(Qoe; ¢e)¢e 3 (363)

where

A‘Pce =P Pe (364)

is the orientation tracking error between X, and Y.
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The second form can be adopted to partially overcome the drawbacks of
representation singularities and task geometric inconsistency. It is based on
the alternative Euler angles representation (3.22). By integrating this equa-
tion, it is possible to compute the reference trajectory ¢ ., @40, Y40 and thus
compute a, as

a, = wq — T€(¢dev ¢de)¢de (365)
- T€(¢de) (¢dc + KD0(¢dc - ¢de) + KPO(QOdc - ‘Pde)) ’

where the orientation control acts as to take ¢, to coincide with ¢, which
ultimately implies that X, is aligned with Y.

3.4.2 Task space control

As already seen for the motion control problem, in the task space frame-
work [16], the translational part of the controller can be equal to that of the
operational space approach, while differences arise for the rotational part.
Two characteristics distinguish the former framework from the latter, namely
the task geometric consistency, ensured by the use of the angle/axis repre-
sentation of orientation, and the absence of representation singularities when
the unit quaternion is adopted.

With reference to the class of angle/axis representations, the rotational
impedance equation (3.43) together with (3.32) can be integrated to obtain
the references for an inner motion loop, so that the resolved angular acceler-
ation can be computed, i.e.

a, = we+ KDkoce + K py0ce s (366)

where the expression of o.. depends on the particular choice of f(¥) made
among all the possible listed in Tab. 2.1.

If quaternion displacement is adopted, the previous equation takes the
form

a, = w.+ Kp,Awe + K py€ce (3.67)
€ce being the vector part, referred to the base frame, of the quaternion
Qee = Q. % Q. (3.68)

where 9., w.,w, can be computed via forward integration of the impedance
equation (3.52) together with the quaternion propagation (A.28a),(A.28b),
as illustrated in Fig. 3.3.

3.4.3 Experiments

The above impedance control schemes have been tested in a number of ex-
periments on the six-joint and the seven-joint industrial robots with open
control architecture and force/torque sensor described in Section 1.4.
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Fig. 3.3. Rotational impedance equation

An end effector has been built as a steel stick with a wooden disk of
5.5 cm radius at the tip (see Fig. 1.3). The end-effector frame has its origin
at the center of the disk and its approach axis normal to the disk surface and
pointing outwards.

The performance of the quaternion-based six-DOF task space impedance
control has been compared to that of the two six-DOF operational space
impedance control schemes based on Euler angles. An analysis of the compu-
tational burden for the three control schemes, based on (3.60),(2.11),(3.61)
and (3.9), has been carried out for the available hardware, leading to a total
time of: 0.264 ms for the impedance control using (3.63),(3.12), 0.230 ms for
the impedance control using (3.65),(3.22), and 0.195ms for the impedance
control using (3.67),(3.52). Details on the computational load in terms of
floating-point operations and transcendental functions number are given in
Table 3.1.

Table 3.1. Computational load for the three six-DOF impedance control schemes.

Orientation error Flops Funcs

Classical Euler angles 1420 30
Alternative Euler angles 1467 24
Quaternion 1429 15

First case study: Interaction with the environment. The first case
study has been developed to analyse the interaction with the environment.
This is constituted by a flat plexiglas surface. The translational stiffness at the
contact between the end effector and the surface is of the order of 10* N/m,
while the rotational stiffness for small angles is of the order of 20 Nm/rad.
The task consists in taking the disk in contact with the surface at an
angle of unknown magnitude (Fig. 3.4). The end-effector desired position
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is required to make a straight-line motion with a vertical displacement of
—0.24m along the Z,-axis of the base frame. The trajectory along the path
is generated according to a fifth-order interpolating polynomial with null
initial and final velocities and accelerations, and a duration of 7s. The end-
effector desired orientation is required to remain constant during the task.
The surface is placed (horizontally) in the X;,Yj-plane in such a way as to
obstruct the desired end-eflector motion, both for the translational part and
for the rotational part.

Fig. 3.4. End effector in contact with plexiglas surface

The parameters of the translational part of the six-DOF impedance equa-
tion (3.9) have been set to

M, =9I, D,=2000I, K,=700I,

while the parameters of the rotational part of the six-DOF impedance equa-
tion (3.52) have been set to

M,=04I, D,=5I, K,=2I.

Notice that the stiffness matrices have been chosen so as to ensure a compliant
behaviour at the end effector (limited values of contact force and moment)
along all the directions of the Cartesian space, even though this is not strictly
required by the task. This is the typical choice to be made when the geometry
of the contact is scarcely known or it can change during the constrained
motion. The damping matrices have been chosen so as to guarantee a well-
damped behaviour.

The gains of the inner motion control loop actions in (3.61),(3.67) have

been set to
Kp, =2025I, Kp, =651

for the translational part, and

Kp, =4500I, Kp, =65

for the rotational part.



3.4 Impedance Control Law 45

The results in Fig. 3.5 show the effectiveness of the quaternion-based six-
DOF impedance control. After the contact, the component of the position
error between Y4 and Y. Ap,, = p,; — p, along the Z;-axis significantly
deviates from zero, as expected, while small errors can be seen also for the
components along the X;- and the Yj-axis due to contact friction. As for
the orientation error, all the components of the orientation displacement be-
tween Y, and X, €4 significantly deviate from zero since the end-effector
frame has to rotate with respect to the base frame after the contact in order
to comply with the surface. Also, in view of the imposed task, a prevailing
component of the contact force can be observed along the Z,-axis after the
contact, while the small components along the X;- and the Y;-axis arise as a
consequence of the above end-effector deviation. As for the contact moment
referred to X,;, the component about the Z,-axis is small, as expected. It
can be recognized that all the above quantities reach constant steady-state
values after the desired motion is stopped. The oscillations on the force and
moment during the transient can be mainly ascribed to slipping of the disk
on the surface after the contact.

position error orientation error
0.03 0.4
0.02 z 0.2
E 001 0 z
AN
X
0 -0.2 .
y
-0.01 -0.4
0 5 10 0 5 10
[s] [s]
contact force contact moment
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40 z
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30 X
—=0.5
Z 20 g
=) z Z y
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X
-1.5
0 y
-10 -2
0 5 10 0 5 10
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Fig. 3.5. Experimental results under six-DOF impedance control based on quater-
nion in the first case study
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In sum, it can be asserted that a compliant behaviour is successfully
achieved. A similar performance has been obtained also with the six-DOF
impedance control schemes based on the Euler angles error, i.e. by using ei-
ther (3.12) or (3.22) in lieu of (3.52). This fact can be explained because
both the absolute end-effector orientation in (3.12) and the relative orienta-
tion in (3.22) keep far from representation singularities. The results are not
reported here for brevity.

Second case study: Representation singularity. The second case study
is aimed at testing the performance of the quaternion-based compared to
the Euler angles-based six-DOF impedance control, when the end-effector
orientation is close to a representation singularity of T'. The end effector and
the surface are the same as in the previous case study.

The end-effector desired position is required to make a straight-line mo-
tion with a horizontal displacement of 0.085 m along the Xj-axis of the base
frame. The trajectory along the path is generated according to a fifth-order
interpolating polynomial with null initial and final velocities and accelera-
tions, and a duration of 5 s. The end-effector desired orientation is required
to remain constant during the task. The surface is now placed vertically in
such a way as to obstruct the desired end-effector motion, only for the rota-
tional part though. Therefore, no impedance control has been accomplished
for the translational part, i.e. p, in (3.61) coincides with p,.

The parameters of the quaternion-based impedance equations (3.9),(3.52)
are set to

M,=10I D,=600I, K,=10001I,

for the translational part, and
M,=025I, D,=35I, K,=251I

for the rotational part. In order to carry out a comparison, the impedance
control based on the Euler angles has also been tested. The parameters of
the rotational impedance equation (3.12) have been set to the same values
as for the quaternion. As regards the gains of the inner motion control loop,
these have been chosen equal to those in the previous experiment for both
types of impedance control schemes.

The results in Figs. 3.6 and 3.7 show the significant differences occur-
ring in the performance of the two schemes. For the impedance control based
on (3.12), large values of contact force and moment are generated since the ro-
tational impedance equation suffers from ill-conditioning of the matrix T'(¢,);
this phenomenon is not present for the quaternion-based impedance control
based on (3.52) since representation singularities are not involved in the ro-
tational impedance equation. On the other hand, testing of the impedance
control based on the alternative Euler angles in (3.22) has revealed a perfor-
mance as good as the quaternion-based impedance control, since the orien-
tation displacement ¢, is kept far from a representation singularity. Hence,
the results are not reported here for brevity.
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Fig. 3.6. Experimental results under six-DOF impedance control based on quater-
nion in the second case study
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Fig. 3.7. Experimental results under six-DOF impedance control based on the
classical Euler angles in the second case study

To sum up, it can be concluded that both the impedance control based on
the alternative Euler angles and the quaternion-based impedance control per-
form better than the impedance control based on the classical Euler angles,
as far as interaction with the environment is concerned.

Third case study: Task geometric consistency. Another case study has
been developed to analyse the property of task geometric consistency when
an external moment is applied at the end effector. The quaternion-based
impedance control and the impedance control based on Euler angles have
been tested.

The stiffness matrices of the rotational part of the impedance equa-
tions (3.52),(3.12) have been taken as diagonal matrices; K, has been chosen
as in (3.47) with U, = I and I', = 2.5I for both schemes. The remaining
parameters of the rotational impedance have been set to M, = 0.25I and
D, = 1.51 for both schemes. No impedance control has been accomplished
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for the translational part. The gains of the inner motion control loop have
been chosen equal to those in the previous case study.

The position and orientation of the desired frame are required to remain
constant, and a torque is applied about the approach axis of Xy; the torque
is taken from zero to 2.5 Nm according to a linear interpolating polynomial
with 4th-order blends and a total duration of 1s.
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Fig. 3.8. Experimental results under six-DOF impedance control based on quater-
nion in the third case study
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Fig. 3.9. Experimental results under six-DOF impedance control based on classical
Euler angles in the third case study

The results in Figs. 3.8 and 3.9 show the different performance in terms
of the orientation misalignment ¢ defined as the norm of the vector product
between the orientation error and the unit vector u,3 of the approach axis
of Xy, i.e.
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6 = [|S(“€de)uol| -

For the impedance control based on (3.12) the instantaneous axis of rotation
of ¥, changes, while remarkably no misalignment occurs for the impedance
control based on (3.52). The impedance control based on (3.22) has also been
tested and its performance is as good as that of the quaternion-based control;
hence, the results are not reported for brevity.

Fourth case study: Non-diagonal rotational stiffness. In the fourth
case study, the quaternion-based impedance control and the impedance con-
trol based on the alternative Euler angles have been tested when the rota-
tional stiffness is chosen as a non-diagonal matrix. The impedance control
based on the classical Euler angles has been ruled out in view of the poor
results of the previous experiment.

The principal axis of the stiffness matrices of the rotational impedance
equations (3.52),(3.22) are rotated with respect to the coordinate axes of Xy;
K, has been chosen as in (3.47) with

0.8047 —0.3106 0.5059 4 0 0
| 1 e

U,=1] 05059 0.8047 —0.3106 Iry=10 1 0
L—0.3106 0.5059  0.8047 J [0 0 2.5J

for both schemes. The remaining parameters of the rotational impedance
have been set to M, = 0.25I and D, = 1.5I for both schemes. As above,
no impedance control has been accomplished for the translational part, and
the gains of the inner motion control loop have been chosen equal to those
in the previous case study. A torque has been applied about the axis whose
unit vector is u,3; the torque is taken from zero to —1.5 Nm according to a
linear interpolating polynomial with 4th-order blends and a total duration of
1s.
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Fig. 3.10. Experimental results under six-DOF impedance control based on quater-
nion in the fourth case study
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Fig. 3.11. Experimental results under six-DOF impedance control based on alter-
native Euler angles in the fourth case study

The results in Figs. 3.10 and 3.11 show the significant differences occurring
in terms of the orientation misalignment d. It can be seen that the instanta-
neous axis of rotation of X, does not appreciably rotate with the impedance
control based on (3.52), given the performance of the inner loop acting on
the end-effector orientation error. Instead, a significant misalignment occurs
with the impedance control based on (3.22).

To sum up, it can be concluded that the quaternion-based impedance
control performs better than both impedance control schemes based on the
Euler angles as far as task geometric consistency is concerned.

3.5 Redundant Manipulators

Up unto this point, the case of a non-redundant manipulator has been as-
sumed, but, in general, a robot manipulator can have more degrees-of-mobility
(its joints) than the task number of degrees-of-freedom. Since, in this work
six-DOF interaction tasks are of interest, a manipulator is kinematically re-
dundant if the number of its joints is greater than six.

In this case, there exists infinite joint motions that produce the same
end-effector motion. In particular, even when the end effector is at rest, it
is possible to generate an internal motion at the joints. As a minimal re-
quirement, such motion should be made stable. Moreover, since the robot
has to interact with the environment, a further requirement is necessary, i.e.,
joint acceleration in the null-space has to produce no end-effector force and
vice-versa. In other words, the end-effector force corresponding to a given
joint torque is required not to be affected by internal motions, as the contact
dynamics should be influenced only by the impedance control loop. On the
other hand, the internal motion could be keenly utilized to meet additional
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task requirements besides the execution of the end-effector trajectory, thus
providing a redundancy resolution.

Redundancy can be solved either at a kinematic level, which is in the
first stage of a kinematic control strategy, or at dynamic level by suitably
modifying the inverse dynamics control law [41, 28]. The latter approach is
pursued hereafter in order to meet all the above requirements.

Since the Jacobian matrix for a redundant manipulator has more columns
than rows (n > 6), a suitable right inverse of J is to be used in lieu of J .
Hence, in lieu of (2.11), the new control input in (2.7) can be chosen as

¢ =T (a=J(@)a) + ¢, (3.69)
where
Jt=w-1g"t (JW*JT)_1 (3.70)

denotes the right pseudo-inverse of J weighted by the positive definite (n xn)
matrix W. Also, in (3.69), ¢, denotes a joint acceleration vector lying in
the null space of J which is available for redundancy resolution. In fact,
plugging (3.69) in (2.8) gives

q=7'q) (a=J(@aq) + o, (3.71)

Then, premultiplying both sides of (3.71) by J, accounting for (2.10), and
observing that JJt = I, J¢,, = 0, yields the same end-effector resolved
acceleration as in (2.12); I denotes the (n x n) identity matrix.

The matrix projecting arbitrary joint accelerations into the null space of
J is given by (I — J'J), no matter what choice is made for the weighting
matrix W in (3.70). Therefore, it is significant to choose W so that the
redundancy resolution scheme for motion control should not be altered when
interaction with the environment occurs. To this purpose, from (2.6) the joint
accelerations induced by the external end-effector force and moment are given
by

i.=-B '(q)J" (q)h . (3.72)
Projecting these accelerations in the null space of the Jacobian gives
i, =~ (1-J"(@)J (@) B (@I " (@h. (3.73)

Choosing W = B in (3.70) and plugging the resulting J in (3.73) yields
4., = 0, meaning that the external force and moment produce null space
joint accelerations. Therefore, in view of this choice, in the design of the joint
resolved acceleration in (3.69) the vector ¢,, can be used to solve redundancy
independently of the occurrence of interaction with the environment. The
matrix

Jt=B"1J"T (JB_lJT)A (3.74)
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weighted by the inertia matrix is termed dynamically consistent pseudo-
inverse of the Jacobian matrix [36]. With this choice, and only with it,
as shown in [36], it is possible to meet the requirement on the dynamic sep-
aration between internal motions and end-effector forces.

3.5.1 Stabilization of internal motion

The next step consists of designing a redundancy resolution control in terms
of the null space joint accelerations ¢,, in (3.69). To this purpose, ¢,, shall
be chosen so as to ensure stabilization of the null space motion and possibly
optimization of an additional task function. As proposed in [58], let

en=(1-7'@)J(0) (B-4) (3.75)

denote the null space velocity error where 3 is a joint velocity vector which
is available for redundancy resolution. The goal is to make e,, asymptotically
converge to zero. Taking the time derivative of (3.75) and using (3.71) gives
the null space dynamics, i.e.

en=(1-T'@I(@) B -0, (3.76)
- (V@@ + T @I @) B-q) .

where J f is a shortcut notation for the time derivative of J1.
Consider the Lyapunov function candidate

1
V= 2e",{].ﬁz(q)en. (3.77)
Computing the time derivative of (3.77) along the trajectories of system (3.77)
yields

B . .

V= elBe,+elB(f-¢,-TIB-d) . (3.78)
where the dependence on g has been dropped off, and the identity

elBJ! = 0" (3.79)
has been exploited.

Choosing
o ot . B

b= -T'7) (B-T'T(B-q) + B (Kpen+Cen)) ,  (3.80)
where K, is a positive definite matrix, and folding it into (3.78) gives

.1 .

V= 2e”,{(B -2C)e, —e'K,e,=—e'K,e, <0 (3.81)

owing to (3.79) and the skew-symmetry of the matrix B — 2C. Therefore, it
can be concluded that the choice (3.80) gives a negative definite V, and thus
e, — 0 asymptotically.
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Fig. 3.12. Spatial impedance control with redundancy resolution

Regarding the redundancy resolution, a typical choice for 3 is [59]

1 (Ow(q)
B =kgB ( 9q ) , (3.82)
where kg is a signed scalar and w(q) is an additional task function that can
be locally optimized.

A block diagram summarizing the overall inverse dynamics control with
redundancy resolution is sketched in Fig. 3.12. The inverse dynamics control
law gives T as in (3.60) with ¢ as in (3.69). The position and orientation con-
trol gives the resolved acceleration @ as in (2.14) with a, as in (3.61) and a,
as any of (3.63),(3.65),(3.66), (3.67). The direct kinematics gives the actual
end-effector position and orientation as in (2.1),(2.2a), and the linear and
angular velocity as in (2.3),(2.4). Finally, the redundancy resolution scheme
gives ¢,, as in (3.80) with 8 as in (3.82). Obviously, if a non-redundant ma-
nipulator is of concern, then ¢,, = 0.

3.5.2 Experiments

In the case study carried out to test the effectiveness of the proposed task
space impedance controller with redundancy resolution, the seven-joint ma-
nipulator available in the PRISMA Lab is used to interact with an envi-
ronment constituted by a cardboard box. The translational stiffness at the
contact between the end effector and the surface is of the order of 5000 N/m,
while the rotational stiffness for small angles is of the order of 15 Nm/rad.
The task in the experiment consists of four phases; namely, reconfiguring
the manipulator, approaching the surface, staying in contact, and leaving the
surface. To begin, the additional task function in (3.82) has been chosen as

w(@) = (a5 — 650’
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Fig. 3.13. Disk in contact with surface

where ¢3 is the elbow joint and ¢34 is a desired trajectory from the initial
value of g3 to the final value of 1.1rad in a time of 4s with a fifth-order
interpolating polynomial, with null initial and final velocity and acceleration.
This function is aimed at reconfiguring the manipulator in a more dexterous
posture before contacting the surface.

After a lapse of 4s, the disk is taken in contact with the surface at an
angle § = 7 /36rad; see Fig. 3.13 where the orientation of the base and end-
effector frames is depicted. The desired end-effector position is required to
make a straight-line motion with a horizontal displacement of 0.08 m along
the Z, axis of the base frame. The trajectory along the path is generated
according to a fifth-order interpolating polynomial with null initial and final
velocities and accelerations, and a duration of 2s. The desired end-effector
orientation is required to remain constant during the task. The surface is
placed (vertically) in the X;Y;-plane of the base frame in such a way as to
obstruct the desired end-eflector motion, both for the translational part and
the rotational part. After a lapse of 13s in contact, the end-effector motion
is commanded back to the initial position with a duration of 4s.

The parameters of the translational impedance (3.9) have been set to

M, =161, D, = diag{800,800,250}, K, = diag{1300,1300,800},
while the parameters of the rotational impedance (3.52) have been set to
M, =071, D,=4I, K,=25I.

The gains of the inner motion control loop in (3.61),(3.67) have been
tuned to the values

Kp, =2250I, Kp,="T0I

for the rotational part, and to the values
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Kp, = 40001, Kp, =751

for the rotational part. The gains of the redundancy resolution control

in (3.80),(3.82) have been set to

K, =20I, ks=250.
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Fig. 3.14. Experimental results under six-DOF impedance control based on quater-
nion with redundancy resolution

The results in Fig. 3.14 show the effectiveness of the six-DOF impedance
control with redundancy resolution. During the reconfiguration (8 s), the com-
ponents of the position error Ap,, = p;, — p, between ¥y and ¥, and of
the orientation error “e4. between Y; and Y, are practically zero, meaning
that the dynamics of the null space motion does not disturb the end-effector
motion. Such error remains small during the approach (2s). During the con-
tact (13 s), the component of the position error along the Z-axis significantly
deviates from zero, as expected; as for the orientation error, the component
of the orientation error along the Y.-axis significantly deviates from zero
since X, has to rotate about Y, in order to comply with the surface. Also,
in view of the imposed task, a prevailing component of the contact force can
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Fig. 3.15. Additional task function in the fifth case study

be observed along the Z-axis after the contact, whereas the sole component
of the contact moment about the Y-axis is significant, as expected. During
takeoff (45), both the errors and contact force and moment return to zero.

The same task has been executed again for the impedance control without
redundancy resolution (kg = 0). The performance in terms of the contact
between the end effector and the surface is the same as above, since the
additional task does not interfere with the primary interaction task; hence,
the time history of the relevant quantities is omitted for brevity. Nevertheless,
a comparison between the two cases in Fig. 3.15 shows that the task function
is successfully optimized when redundancy is exploited (solid) other than
when redundancy is not exploited (dashed).



4. Task Space Force Control

In many applications, the task to be executed by the robot manipulator re-
quires the end effector to exert prescribed values of force and moment on the
environment, while following an assigned trajectory. Therefore, the problem
of devising a control strategy able to safely manage both interaction and mo-
tion in the Cartesian space arises. This is the main topic of the chapter, where
the hybrid paradigm is reviewed and compared with the parallel approach.
The latter is formulated for the six-DOF case, to achieve tracking of position
and orientation along unconstrained directions, as well as regulation of both
force and moment along constrained directions, during the interaction with
a compliant environment.

4.1 Direct Force Control

In the previous chapter, an indirect control of the contact force has been
achieved by suitably using force feedback to control the end-effector motion.
In this way, it is possible to ensure limited values of the contact force for a
rough given estimate of the environment stiffness. Certain interaction tasks,
however, do require the fulfillment of a precise value of the contact force. This
would be possible, in theory, by tuning the active compliance control action
and selecting a proper desired location for the end effector; such a strategy
would be effective only on the assumption that accurate estimates of contact
stiffness and of environment location are available.

A radically different approach consists in designing a direct force control
which operates on a force error between the desired and the measured values.
On the other hand, in the previous chapter it has been emphasized that
even impedance control, which does not aim at achieving a desired force,
needs contact force measurements in order to have a dynamically decoupled
end-effector behaviour and gain robustness against joint torque disturbances.
Therefore, contact force measurements are fully exploited hereafter to design
direct force control.

Since the early 80’s, direct force control attracted the interest of many
researchers, leading to a huge quantity of literature in the field. Throughout
the last decade two main approaches have been emerging from amongst the

C. Natale: Interaction Control of Robot Manipulators, STAR 3, pp. 57-68, 2003
© Springer-Verlag Berlin Heidelberg 2003
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others, namely the hybrid control and the parallel control. They have sub-
stantially different characteristics but also different areas of applicability—as
usual, a solution which works for every problem does not exist.

4.1.1 Hybrid approach

Two different formulations of hybrid control can be found in the literature,
i.e., the geometrical formulation and the analytical formulation.

The basic hybrid position/force control scheme classifiable as a geometri-
cal approach was proposed in [61] and it was based on the ideas of natural con-
straints and artificial constraints introduced in [51] to model an interaction
task from a geometrical point of view. The former are the degrees-of-freedom
of the task space along which the environment imposes either a position or
a force constraint on the robot’s end effector. The latter are the reference
values for the degrees-of-freedom of the task space not subject to natural
constraints. The approach is geometrical since the directions of the natural
constraints are orthogonal to the directions of the artificial constraints. It is
clear that only artificial variables can be controlled.

Among the artificial constraints, a distinction between the motion con-
trolled variables and the force controlled variables should to be introduced.
The control algorithm was based on the use of binary selection matrices, com-
plementary to each other, in order to avoid interaction between the motion
control loop and the force control loop.

Later, in [48], it was shown that the concept of task space decomposition
cannot be, in general, included in the hybrid control based on selection ma-
trices due to its non-invariant nature with respect to translating the reference
frame origin or changing the length unit. The authors solved the problem of
non-invariance by substituting the concept of orthogonality with the more
general concept of reciprocity, and selection matrices with kinetostatic filter-
ing.

More recent works showed, e.g. [1, 8], that selection matrices can still
be used for invariant hybrid position/force control if a suitable frame can
be defined, in which position and force controlled directions can be clearly
identified.

The analytical hybrid approach to constraint motion formulation has been
proposed in many papers, e.g. [72, 52], where the problem of separation be-
tween force controlled and motion controlled variables was solved by referring
to the equation of the constraint surface leading to a reduction of the dynamic
model of the system, by reducing its degrees-of-freedom, thanks to the use
of Lagrangian multipliers technique. On the other hand, such a formulation
often leads to loss of geometrical and physical meaning of the variables in-
volved.

Very recently, in [42] the authors showed there exist cases in which the
analytical and the geometrical approach are equivalent, e.g. in case of point
contact or when the constrained rotational axis intersect each other. They
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also recognize that the analytical approach is more general but at the same
time they suggest using the geometrical approach whenever possible because
of its intuitive nature.

4.1.2 Parallel approach

Whenever the hybrid, either geometrical or analytical, approach is used, an
accurate model of the environment is required; in fact, the controller structure
depends directly on the geometrical or analytical environment model.

This is a critical limitation for two main reasons. First, a model of un-
structured environments is very difficult to obtain, hence hybrid control can
be adopted only for interaction with structured environments. Then, in the
case of interaction with stiff environments, uncertainties on the model can
lead to very dangerous situations. For example, if the planned trajectory re-
quires a displacement along a direction which is actually constrained, high
contact forces can build up, causing robot or manipulated object breakage.

A technique proposed in [25] to overcome this limitation is the so-called
parallel control. The basic idea is to control both force and motion in all task
directions but in a suitable way to give a higher priority to force regulation. In
other words, if a planned motion direction is an actual constrained direction,
the force control action prevails over the motion control action, preventing the
undesirable effects described above for the case of hybrid control. The force
and motion control actions can be designed on the basis of a simplified model
of the environment while providing some sort of robustness to uncertainty;
it can be asserted that “parallel control is based on rules rather than on
models”.

To sum up, the main difference between the hybrid approach and the
parallel approach is that, in the former, the contact geometry directly influ-
ences the structure of the controller, while in the latter, it influences only the
references in terms of desired motion and desired force; furthermore, in the
control system the actual constrained and unconstrained directions are iden-
tified during task execution, by properly using force measurement, without
any filtering action.

This provides robustness to uncertainty. In fact, even if an unexpected
force along a planned unconstrained direction builds up, the force control
reacts to regulate the contact force to zero, which is the desired value along
all the planned unconstrained directions. On the other hand, if a desired force
is specified along a direction actually unconstrained, only a drift of the end
effector along that direction occurs, without any possible dangerous situation.

4.1.3 Force control with inner motion loop

In the previous chapter the advantages of an impedance control based on
the inner/outer loop technique have already been pointed out. The same
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convenience can be usefully exploited for position/force control design in
the case of interaction with a compliant environment, and only in this case.
In fact, if the manipulator interacts with a rigid surface, the end-effector
motion is constrained, in the sense that it looses some degrees-of-freedom
and the contact force is a reaction force, and thus it is not related to end-
effector displacements. This means that the contact force can be controlled
only by directly controlling joint driving torques, because changing the end-
effector position along constrained directions does not make sense, if the
surface is rigid. This causes many problems of implementation on industrial
robots due to the limits of commercially available control architecture. In
fact, on an industrial manipulator it is usually possible only to specify, or at
the most correct, a desired motion trajectory. Moreover, even for a control
architecture allowing the user to specify a desired joint torque, the torque
actually available at the motor shaft is different from the desired one, due
to the presence of torque disturbances, e.g. joint dry friction. The only way
to get a good performance with direct torque control is with the adoption of
shaft torque sensors or resorting to special and expensive mechanical joint
design [5].

If a standard industrial control architecture is still preferred, the most
effective way to implement a force control is the inner/outer loop, and in
the case of contact with rigid environments, a simple but effective solution
is to use a compliant force sensor, as already experimented in, e.g., [56, 43].
For this reason, hereafter an interaction with a compliant environment is as-
sumed. Furthermore, since a geometrical approach has been utilized until this
point to describe six-DOF interaction tasks, a contact geometry is assumed,
so that constrained and unconstrained directions can be clearly identified.
More complicated cases can be treated only via the analytical formulation,
as discussed in the hybrid approach.

Therefore, the following equations will be used to model the compliant
environment,

.f = Kf(pe _pu) (413“)
‘u="°K,w.dt, (4.1b)

where Ky and K, are the environment symmetric positive semi-definite
translational and rotational stiffness, respectively; p,, is the position of the
undeformed environment and ‘w.dt denotes an infinitesimal rotational dis-
placement between X, and the frame Y, describing the orientation of the
undeformed environment. As usual, the frame X, to which the moment and
rotational displacement are referred, is the compliant frame, i.e., the frame
the end effector should follow during the interaction task. However, in the
case of direct force control, the end effector will follow the trajectory of the
compliant frame only along the constrained directions, namely the directions
along which a force or a moment can arise. On the other hand, it will follow
the desired trajectory along the unconstrained directions. These results will
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be achieved by defining suitable references for the inner motion loop via the
so-called parallel composition.

4.2 Task Space Parallel Control

When a six-DOF interaction task is of concern, the interaction control law
should preserve the property of task geometric consistency. To this purpose,
as for the task space impedance control, also for the task space parallel posi-
tion/force control the choice of the representation of end-eflector orientation
plays a key role. In order to save the above cited property a description in
the class of angle/axis representations should be adopted. In particular, unit
quaternions will be chosen thanks to their geometrical meaning and because
they can globally parameterize the group of rotations SO(3) (see Appendix A
for technical details), thus avoiding the occurrence of representation singu-
larities and completely replacing rotation matrices.

According to the inner/outer loop technique, an inner motion loop should
be designed and the references to be tracked should be suitably computed,
by an outer force loop, in order to ensure force and moment regulation along
the constrained directions and tracking of the desired trajectory along the
unconstrained directions. It is easy to recognize that the translational con-
strained directions are represented by a basis of R(K t), while the rotational
constrained directions are represented by a basis of R(°K ,)—notice how the
task space is decomposed in the base frame, for the translational degrees-of-
freedom and in the compliant frame, for the rotational degrees-of-freedom.

In detail, the six-DOF interaction task is specified as follows. The con-
stant desired force is assigned so that f; € R(K ) and the constant desired
moment is assigned so that ‘u,; € R(°K,). In a dual way, the desired po-
sition trajectory is assigned so that p,(t) € N(Ky) —and it is clear that
also the linear velocity and acceleration lies in the null space of K j— while
the desired orientation trajectory Qgc.(t), “wac(t), ‘wqc(t) is assigned so that
‘wqe € N(°K ). It is worth pointing out that the desired orientation trajec-
tory is specified as a relative orientation between the desired frame X, and
the compliant frame Y., in the sense that the quaternion Q. is a rotation
about an axis which has to be aligned to an unconstrained direction, which
has been defined in the compliant frame.

With reference to the robot dynamic model in (2.6) and the motion control

law (3.60), the resolved acceleration @ = [a; a}]' is designed as
ay = b, + Kppb,, + KryAp,, (42
a, = w, + KDkore + Kpo€re ) (43)

where the subscript r denotes the reference frame to be tracked and its po-
sition p, and orientation Q, = {n,, €,} are computed through the technique
of the parallel composition, explained in the following.
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Fig. 4.1. Parallel force and position control

As concerns the translational part, the parallel composition is defined as

P, = P+ Py (4.4)
pr :pc+pd (45)

being p,. in (4.4) the solution to the differential equation expressing the force
control law

KAfﬁc + vapc = Af (4.7)

with Af = f,— f, p.(0) =0, Kay = kayI and Ky = kysI. It is worth
pointing out that p, resulting from integration of (4.7) provides an integral
control action on the force error Af.

Pe

Pe

Af +

K ~ ~ [

Kyv; (a—

Fig. 4.2. Force controller

The resulting parallel controller for the translational part, originally pro-
posed in [10], is outlined in Fig. 4.1, while in Fig. 4.2 the explicit block scheme
of the force controller is depicted, to clearly show the integral action on force
error.
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As regards the rotational part, the parallel composition is defined as

Qr - Qc * Qdc (48)
‘W, = ‘We + “wye (4.9)
‘Wr = ‘We + ‘Wye (4.10)

where Q., w. and w,. characterize the rotational motion of the compliant
frame Y.

These quantities can be computed once the rotational motion of X, has
been computed according to the differential equation expressing the moment
controller

K am e+ Kym‘we = A | (4.11)

with Au =“p,—°p, Q.(0) = Qu, Kam = kan I and Ky, = kv, I. As for
the previous force and position control scheme, Q.. resulting from integration
of (4.11) together with the quaternion propagation (A.28a),(A.28b), provides
an integral control action on the moment error.

A block diagram of the resulting moment and orientation control scheme,
originally proposed in [57], is sketched in Fig. 4.3. This scheme is the counter-
part of the force and position control scheme in Fig. 4.1, where the moment
control generates the orientation, angular velocity and angular acceleration
of X, as in (4.11); these are combined with the desired orientation, angular
velocity and angular acceleration as in (4.8),(4.9) and (4.10) to generate the
corresponding reference quantities to be input to the orientation control.
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Fig. 4.3. Parallel moment and orientation control

In order to show that the above described interaction task is actually
fulfilled, it must be shown the actual force and moment asymptotically tend
to the desired values along constrained directions and the actual end-effector
translational and rotational trajectories track the desired trajectories along
unconstrained directions.
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Starting with the translational part, from (4.2),(2.15a) it follows that
the actual end-effector trajectory tracks the reference trajectory, and in the
hypothesis that the system starts with matched initial conditions, it is p, =
p, and p, = p,.. Taking into account the parallel composition rule (4.4),(4.5)
leads to

P =Dy + D, (412)
pe = pd +pc . (413)
Accounting for the assumption f; € R(K ) and looking at the equation
of the force controller (4.7), implies that p,,p, € N1 (K s); hence along the
unconstrained directions (basis of N (K f)) the end-effector trajectory tracks
the desired trajectory, because p., p, cannot provide any contribution.
Differentiating with respect to time the force controller equation (4.7)
and the environment model (4.1a), accounting for (4.13) and considering the
assumptions p,; € N (K ) and f, = const, yields

KAf'p'—i—vaf)c—i—Kpr:O. (4.14)

This equation implies that K;p, — 0 provided that K4y and Ky are
positive definite matrix gains. Since K is positive semi-definite and p, €
N*+(Ky), it can be concluded that

PP, — 0 (4.15)
as t goes to infinity, and thus, from the equation of the force controller (4.7),

F—=rq (4.16)

as t goes to infinity, i.e., regulation of the contact force to the desired value
is achieved.

As regards the rotational part of the parallel controller, a similar analysis
can be conducted. From (4.3),(2.15b) it follows that the actual end-effector
trajectory tracks the reference trajectory, and in the hypothesis that the
system starts with matched initial conditions, it is Q. = Q, and w. = w,.
Taking into account the parallel composition rule (4.8),(4.9) leads to

Qe = Qc * Qdc (417)
‘we = “we + “wye (4.18)

Accounting for the assumption ‘u, € R(°K,) and taking into account
the equation of the moment controller (4.11) implies that ‘w. € N+ (°K ).
Hence, along the unconstrained directions (basis of N'(° K ,)) the end-effector
trajectory tracks the desired trajectory, because ‘w. cannot provide any con-
tribution.

Differentiating with respect to time the moment controller equation (4.11)
and the environment model (4.1b), accounting for (4.18) and considering the
assumptions ‘wg. € N (°K ) and ‘u, = const, yields

Kum o+ Kym e+ K, ‘w.=0. (4.19)
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This equation implies that °K,°w. — 0 provided that K 4,, and Ky,
are positive definite matrix gains. Since K, is positive semi-definite and
‘w. € N+(°K ), it can be concluded that

. Cwy > 0 (4.20)

as t goes to infinity, and thus, from the equation of the moment con-
troller (4.11),

o g (4.21)

as t goes to infinity, i.e. regulation of the contact moment to the desired value
is achieved.

Notice that the convergence of the control scheme, both for the transla-
tional part and for the rotational part, does not require the exact knowledge
of the elements of the stiffness matrices, but only of their structure (null and
range subspaces). Moreover, if the desired trajectory has a constant non-null
component along a constrained direction (N (K ), N1 (°K,)), the paral-
lel control reacts to it as to disturbance, force or moment, and regulation
is still ensured, owing to the integral action. On the other hand, a non-null
component along an unconstrained direction (R (K ), R+ (°K)) of the de-
sired force, or moment, generates a velocity along that direction. However,
this cannot be considered a dangerous situation, since the robot end effec-
tor moves in free space along those directions. In this sense the robustness
characteristics of the parallel control approach should be seen.

Fig. 4.4. Geometry of contact

4.2.1 Experiments

The above force and motion control scheme has been tested in experiments
on the six-joint industrial robot described in Section 1.4 endowed with the
force/torque sensor.
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The end effector is that reported in Fig. 1.3. The disk is in contact with
a plexiglas planar surface such that the approach axis is aligned with the
normal to the surface. A schematic description of the contact geometry is
depicted in Fig. 4.4.
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Fig. 4.5. Experimental results under force and moment control

First case study: Force and moment control. The disk is placed in
contact with the surface through a rubber coat (to increase the contact fric-
tion) so that the rotation about the approach axis is constrained as well as
the rotations about the other two axes. In this way, the translational and
rotational stiffness are full-rank matrices, i.e.

K = diag{10°,10%,10"} N/m

and
‘K, = diag{20,20,40} Nm/rad .

The compliant frame is determined so that its Z.-axis is aligned with the
normal to the surface, hence, since the surface is placed horizontally, the Z-
axis is antialigned to the Zy-axis. The disk is initially placed in contact and
aligned with the surface.

The interaction task consists in keeping a constant position and orien-
tation, and at the same time applying a force normal to the surface and a
moment about the approach axis. At the time instant of 1s a force of 40 N
along the Z;, axis is commanded while the desired moment is zero, after a
lapse of 1.5 s the desired moment about the approach axis is taken to a value
of —0.7 Nm. Both force and moment are then taken back to zero. The vari-
ations in the force and moment references are generated according to a 5-th
order polynomial with null initial and final first and second time derivatives.

A full six-DOF inverse dynamics control is used, where the linear accel-
eration is taken as a pure position control with the gains in (4.2) as
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Kp, =651, Kp,=25001.

On the other hand, the angular acceleration is chosen as in (4.3) and the
gains have been set at

Kp,=65I, Kp,=45001I.
The gains in the force controller have been set at
K, p =8I, Kyjy=6501,
while the gains of the moment control action have been tuned to
Kom=1I Ky, =25I.

The results in Fig. 4.5, in terms of the time history of force and con-
tact moment, show that regulation of both force and moment is successfully
achieved. The peaks of moment components during the initial transient along
X, and Y, can be ascribed to the slight initial misalignment between the sur-
face and the disk, which is recovered by the moment controller; in fact the
desired moment is zero before rising to the desired non-null value.

Second case study: Moment and orientation control. In this case, no
material is placed between the disk and the surface, so that the disk can freely
rotate about the approach axis sliding on the surface. Thus, the contact is
characterized by a rotational stiffness matrix °K, = diag{30, 30,0} Nm/rad,
i.e., the unconstrained motion is described by any rotation about the ap-
proach axis. The compliant frame is the same as the first case study.

rotation about approach axis contact moment

[Nm]

0 5 10 15

Fig. 4.6. Experimental results under moment and orientation control

The interaction task is as follows. The position is kept constant; at ¢t =
25, the moment is taken to [0 1.5 0]' in Y., according to a 5-th order
polynomial with null initial and final first and second time derivatives, and
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a duration of 0.5s; the final value is kept constant for the remaining portion
of the task. The desired end-eflector position is kept constant. After a lapse
of 65, the desired end-effector orientation is required to make a rotation of
0.5rad about the approach axis; the trajectory is generated according to a
fifth-order interpolating polynomial with null initial and final velocities and
accelerations, and a duration of 4s. The geometry of the contact during the
task is depicted in Fig. 4.4 where the desired angular velocity and contact
moment are represented.

The same inner motion loop of the previous case study has been imple-
mented, and the force control loop has been opened, while the gains in the
moment control action (4.11) have been set at

Kan=1I Ky, =24I.

The results are presented in Fig. 4.6 in terms of the time history of the
rotation angle about the approach axis of X, and of the three components
of the desired (dashed) and the actual (solid) contact moment. It can be
recognized that satisfactory tracking of the desired end-effector orientation
trajectory is achieved, while the contact moment is successfully regulated
to the desired value. Notice that the moment components along X, and Z.
are affected by contact friction which causes a steady-state deviation on the
rotation angle from the desired value; this cannot be recovered since the
integral action operates on all the components of the moment error, causing
an orientation error also about the unconstrained motion axis.
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This chapter is devoted to presentation of two new approaches for controlling
a dual-arm robotic system, namely a loose cooperative strategy and a tight
cooperative strategy. The former is based on a modular control architecture
which usefully exploits the task interaction control schemes presented in the
last two chapters. The latter is aimed at controlling the interaction of an
object, commonly held by the two arms, with a compliant environment.

5.1 Cooperative Manipulation

The adoption of multi-arm systems in lieu of a single robot arm is crucial
for the execution of many robotic tasks, e.g., parts mating, transportation of
heavy or large objects. In fact, this is just the behaviour commonly adopted
by humans for the execution of complex manipulation tasks [17].

In a typical robotic workcell, more than a single arm is available, and
thus it is of concern to investigate the possibility of performing machining
tasks, e.g., assembly and forming tasks, by involving two robots. Therefore,
a cooperative manipulation strategy should be sought, in order to suitably
control each robot in the workcell for successful task execution. Basically,
two types of cooperation can be identified depending on the degree of mutual
interaction between the robots of the multi-arm system and on the way the
cooperation is realized.

If the common manipulation task is executed by controlling the robots
in an independent fashion, i.e., the cooperation is realized only at the task
planning level, the control strategy can be termed loose cooperative control. In
such a way, the robots move in a coordinate fashion without any interaction
or they interact each other but the controller does not explicitly take into
account the exchanged forces.

On the other hand, if the manipulation task is executed by controlling the
robots in a coordinated fashion, i.e., the cooperation is realized not only at
the task planning level, but also at the control level, the control strategy can
be called tight cooperative control. This is the typical case when the robots
tightly grasp a commonly held rigid object, thus creating a closed-kinematic
chain.

C. Natale: Interaction Control of Robot Manipulators, STAR 3, pp. 69-82, 2003
© Springer-Verlag Berlin Heidelberg 2003



70 5. Applications to a Dual-Robot System

In this chapter, the dual-arm system based on the industrial robots de-
scribed in the Section 1.4 is used as a testbed to perform different tasks
requiring loose and tight robot cooperation.

5.2 Loose Cooperative Control

A loose cooperative manipulation task is performed when the two robotic
arms play complementary roles during task execution. In detail, one robot is
operated in the standard mode so that the set of motion planning instructions
of native programming language can be exploited, although a pure positional
control strategy has to be adopted. The other robot is instead operated in
the open mode, in such a way as to achieve a programmable compliance via
force/torque feedback and thus mitigate the effects of task planning uncer-
tainties. As compliance strategies, the interaction controllers presented in the
two previous chapters will be used, namely, the task space impedance control
and the task space force control.

The solution above described exploits the intrinsic modular structure of
the controller. In fact, depending on the task requirements, the user has to
modify only specific modules, i.e., the task execution program for one robot
and the software module selecting the desired compliance strategy for the
other.

This approach for managing cooperative robotic tasks will be applied for
the execution of two typical workcell tasks involving the interaction between
two parts each of them carried by a robot arm.

5.2.1 Modular control structure

The software resources of the setup described in Section 1.4 are organized in
the modular multilayer structure of Fig. 5.1, where four layers are illustrated,
both for the standard and the open operating modes, representing the various
functions implemented in the controller.

The task planning function is implemented only in the standard operating
mode via a PDL 2 software module containing the motion instructions needed
to execute a specific task. It is worth pointing out that such a function could
be realized also in the open operating mode, if desired, by developing a library
of C functions dedicated to task planning.

The trajectory generation layer is in charge of computing the motion
trajectories corresponding to the planned task. In the standard operating
mode, the references for the joint servos are directly computed by the Servo
CPU via an inverse kinematics procedure with joint interpolation from the
specifications given in the PDL 2 program. In the open operating mode,
the position vector p, and rotation matrix R, representing the position and
orientation of a reference frame are computed from the force and moment
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STANDARD OPERATING MODE OPEN OPERATING MODE
(C3G 9000) (PO)
LAYER 1 PDL 2
Task Planning Program
LAYER 2 Inv. Kinematics Compliance
Trajectory Generation Interpolation Strategy
LAYER 3 PID Inverse
Servo Control Dynamics

LAYER 4 Motors Force/Torque
Sensors/Actuators Resolvers Sensor

Fig. 5.1. Modular multilayer control structure

measurements on the basis of the compliance strategy specified by the user,
and chosen among those described in the two previous chapters of this work.

The servo layer for the standard operating mode implements standard
decentralized PID joint position control. In the open operating mode, a task
space motion control loop, based on the unit quaternion, is implemented, as
described in Chapter 2.

The bottom layer includes joint motors, joint position resolvers and, for
the open operating mode, a six-axis force/torque sensor.

In order to program the system for the execution of a given task, the user
has to develop the PDL 2 module of the task planning layer and develop
the C module implementing the proper compliance strategy in the trajectory
generation layer.

5.2.2 Experiments

Two typical machining tasks have been performed to test the efficiency of
the modular control structure and the effectiveness of the compliance control
strategies of task space impedance and force control, for execution of inter-
action tasks where the geometry of the contact plays a crucial role. Both
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compliance control algorithms have been implemented by resorting to the in-
ner/outer loop strategy, hence they are characterized by the same inner loop
control law (3.60),(3.61) and (3.67), where the gains have been set at

Kpp, =701 Kpp, = 20251
for the position loop, and
Kp, =701 Kpo, = 50001

for the orientation loop. Notice that a quaternion-based resolved acceleration
has been chosen for all the advantages offered by such a representation of
orientation, already mentioned many times in this work.

Parts mating task. The archetype of parts mating tasks is the classical
peg-in-hole, which can be executed by a dual-arm system, if one robot carries
the peg and the other holds the hollow part. It should be clear that the task is
successfully executed provided that mating forces are suitably reduced during
the insertion to avoid undesirable jamming and wedging. This concept can
be brought to fruition by resorting to special mechanical devices such as the
Remote Center of Compliance in [70] or the compliant end effectors in [27, 40].

An alternative strategy is to control the robot holding the hollow part
to achieve a programmable impedance at the end effector, and the robot
carrying the peg to track a trajectory planned to insert the peg into the hole.
In this way, the active compliant behaviour imposed on the first robot is in
charge of mitigating the effects of imperfect knowledge of the task geometry
and unavoidable tracking errors of the second robot. In particular, the seven-
joint arm carries the peg while the six-joint arm holds the hollow part.

The task for the seven-joint arm is planned as follows. From a given
posture a joint space motion is commanded to reach a suitable intermediate
posture which facilitates the subsequent phases of the task; then, a Cartesian
space motion along a straight-line path is commanded to drive the tip of
the peg in the proximity of the mouth of the hole and align the approach
axis of the peg with the axis of the hole, as accurately as possible. Finally, a
straight-line motion along the approach axis —typically at a reduced speed
with respect to the previous phase— is commanded to realize the insertion.
The described task is specified in the following PDL 2 program:

PROGRAM insertion CONST spd=3
dpt=50
VAR  int: JOINTPOS
pro: POSITION
BEGIN
--move joints to intermediate posture
MOVE TO int
--move tip to proximate pose
MOVE LINEAR TO pro
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--set arm speed override at spd %
$ARM_OVR := spd
--move tip along approach axis by dpt mm
MOVE RELATIVE VEC(0,0,dpt) IN TOOL

END insertion

where the joint position int and the end-effector pose pro are taught before-
hand, while the constants spd and dpt are set according to task requirements.

The six-joint arm is controlled using the open operating mode so that the
end effector behaves as a mechanical impedance as explained in Chapter 3.
To this purpose, the force/torque sensor is mounted at the wrist.

For the task at issue, the position and orientation of the desired frame is
taken as a constant, i.e., the six-joint arm is controlled to stay still. Whenever
a contact force and/or moment is experienced at the end effector, this reacts
according to the programmed impedance where the origin of the desired frame
determines the location of the Remote Center of Compliance.

In order to exploit the modularity of the control structure described above,
the reference trajectory for the inner loop implemented in the servo layer
has to be set equal to the trajectory of the compliant frame, computed in
the trajectory generation module by integrating the impedance equations as
explained in Chapter 3, i.e., p, = p, and R, = R..

The peg is a wooden cylinder of 17 mm diameter and 80 mm height, while
the hollow part is a wooden block with a hole of 18 mm diameter and 70 mm
depth; that is, a 0.5 mm radial tolerance is present during the insertion.

In the first experiment, the six-joint arm is mechanically braked and its
end effector is at the position

p, =[885.4 278.0 265.6]" mm

and orientation

V3 _1 0

2 2
Ry=1| 0 0 1
1 V3

2 2

An insertion task is programmed in terms of a planned motion for the seven-
joint arm described by spd = 3 and dpt = 50. The proximate position pro
has been chosen very carefully so as to minimize the misalignment between
the peg and the hole axes.

The results are illustrated in Fig. 5.2 in terms of the time history of the
three components of mating force and moment. It is easy to recognize that,
even though a careful task planning has been accomplished and a complete
insertion has not been commanded, large values of force and moment arise,
confirming that a pure positional control strategy is always a candidate to
fail when performing assembly tasks.

The same task is planned in the second experiment, but this time the six-
joint arm is impedance-controlled so that the Remote Center of Compliance
is located at
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mating force mating moment
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Fig. 5.2. Force and moment in the first experiment of the peg-in-hole task

Pi=po—[0 165 0]' mm

since the insertion direction is along the Yj-axis of the base frame. Also, it
is Ry = Ry. The parameters of the impedance equation in (3.9),(3.52) have
been respectively set at

M, = diag{15,40,15}

D, = diag{300, 950,300}

K, = diag{400, 1300, 400}
for the translational part, and

M, = diag{9,9,9}

D, = diag{13.5,13.5,13.5}

K, = diag{1,1,1}

for the rotational part.

mating force mating moment
50 5

[Nm]

Fig. 5.3. Force and moment in the second experiment of the peg-in-hole task
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The results are illustrated in Fig. 5.3 in terms of the time history of the
three components of mating force and moment. Remarkably, in this case,
the values of force and moment are drastically reduced, indicating that an
impedance control strategy is capable to compensate for the errors unavoid-
ably induced by imperfect task planning.

The third and last experiment is aimed at testing the robustness of
the proposed strategy in the case of incorrect task planning. An additional
misalignment has been intentionally introduced by rotating the end-effector
frame of the seven-joint arm by 2deg about the Xj- and the Z,-axis of its
base frame. Further, the length of the path along the approach axis of the
peg has been set to dpt = 90, corresponding to a 20 mm overshoot beyond
the bottom of the hole. The same impedance parameters as above are chosen.

mating force mating moment

50 5
y —
z 0 z
X (=3

z
=50 =5
0 5 10 0 5 10

[s] [s]
Fig. 5.4. Force and moment in the third experiment of the peg-in-hole task

The results are illustrated in Fig. 5.4 in terms of the time history of
the three components of mating force and moment. Interestingly enough,
the values of force and moment keep limited despite of the incorrect task
planning; notice that they are anyhow smaller than those obtained in the
first experiment when an accurate task planning had been attempted, but
a position control strategy was adopted. At steady state, nonnull values of
force and moment can be observed which are obviously caused by the planned
misalignment and overshoot.

Pressure forming task. In the pressure forming task, the seven-joint arm
carries a forming tool, while the six-joint arm holds a flat surface to which
the tool has to align while exerting a preassigned force and moment.

The task for the seven-joint arm is planned as follows. From a given
posture a joint space motion is commanded to reach a suitable intermediate
posture which facilitates the subsequent phases of the task; then, a Cartesian
space motion along a straight-line path is commanded to drive the disk to the
proximity of the surface. Finally, a straight-line motion along the approach
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axis —typically at a reduced speed compared to the previous phase— is
commanded to achieve contact between the disk and the surface. A PDL 2
program similar to that developed for the peg-in-hole task has been employed
to execute the described motion.

The six-joint arm is controlled using the open operating mode. In this case
the trajectory generation module confers to the workpiece held by the arm
a compliance aimed at achieving a preassigned force and moment when in
contact with the disk, according to the task space force control law presented
in Chapter 4.

In order to realize this compliance strategy, the end-effector position and
orientation has to track as accurately as possible the position and orienta-
tion of the compliant frame. Hence, the reference trajectory p,, R, for the
motion control algorithm in the servo layer is computed by solving equa-
tions (4.7),(4.11) and then applying the parallel composition.

In the experiment the seven-joint arm carries a disk-shaped tool with a
55 mm diameter, while the six-joint arm holds a wooden surface to which the
disk has to align while exerting a desired normal force of 10 N; the alignment
of the surface to the disk is achieved by imposing a null desired contact
moment.

During the approach of the disk to the surface, the desired force set point
along the direction normal to the surface is taken from 0 to 10 N in 8 s accord-
ing to a 5-th order polynomial; then, after another 20s the desired force is
taken back to zero. This causes a drift motion of the surface along the direc-
tion of the desired force (exactly as predicted in Section 4.2), until alignment
is achieved (i.e., null contact moment) and the desired force is reached.

The parameters of the force/moment control law (4.7),(4.11) for the six-
joint arm have been set at

kag =20  kyyp =400

and

The results are illustrated in Fig. 5.5 in terms of the time history of the
three components of contact force and moment. It can be recognized that
after the contact transient, the force along the Z.-axis normal to the surface
reaches the desired value, while all the other components of the force and
moment are kept nearly zero. Hence, the surface is aligned with the disk and
the desired pressure is maintained. For completeness, in Fig. 5.6 is reported
the time history of the rotation executed by the surface to align with the
disk, in terms of the scalar and vector part of the quaternion representing the
orientation of the compliant frame relative to the initial end-effector frame.
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Fig. 5.5. Force and moment in the pressure forming task
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Fig. 5.6. Quaternion representing surface rotation in the pressure forming task

5.3 Tight Cooperative Control

A tight cooperative behaviour is achieved if the motion of the commonly held
object is related to the motions of the end effectors of the two robots. This
can be done by resorting to the task-oriented formulation for coordinated
motion of dual-robot systems developed in [23, 11] and briefly recalled in the
next subsection. Moreover, it is worth pointing out that to implement a tight
cooperative control strategy, a centralized controller must be used to control
both robots. Hence, the open operating mode shall be used to implement
the controller and a synchronization technique shall be adopted in order to
realize a full coordinated control of the two manipulators.

5.3.1 Task space formulation

Consider a system of two manipulators. For each manipulator (k = 1,2) let
Y. denote a frame attached to the end effector; its position and orientation
are characterized by the (3 x 1) position vector p; and the (3 x 3) rotation
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matrix Ry, respectively. Then, Qr = {n, €;} represents the unit quaternion
corresponding to Ry. Let also vy = [pj w] ]T be the (6 x 1) end-effector
(linear and angular) velocity vector. All the quantities are expressed in the
common base frame X.

The location of the commonly held rigid object can be identified by the
location of an attached frame X, called the object frame, whose position can
be defined as

1
P, = o (P1+p2), (5.1)
while the rotation matrix defining its orientation is given by
RO = RllR(1T21,'l921/2) 5 (52)

where 'r5; and ¥ are respectively the unit vector and the angle that realize
the rotation described by

'R, =R'R, (5.3)
and 'R(1r21,1921/2) is the rotation matrix corresponding to a rotation of
21 /2 about the axis Lyy1. Then the absolute orientation can be expressed as

b0 s
Q, =0 * {cos il ,sin Z“m} , (5.4)

where Q, is the unit quaternion corresponding to R, and “x” denotes the
quaternion product; the second factor on the right-hand side of (5.4) is the
unit quaternion extracted from ! R(1ray, 921 /2).

From (5.1),(5.2), the object linear velocity p, and angular velocity w, can
be expressed as

;(m o), (5.5)
where v, = [p.  w!]T.

Let f;, and p;, (k = 1,2) respectively denote the (3 x 1) end-effector force
and moment vectors for either manipulator. Then, according to the kineto-
statics duality concept [67] applied to (5.5), the object force and moment can
be expressed as

h, =hy + hs , (56)

where hy = [fi wF]" and h, =[fT wul]".

In order to fully describe a coordinated motion, the position and orienta-
tion of one manipulator relative to the other is also of concern. The mutual
position between the two end effectors is defined as the vector

Vo =

Apy; =Py — Py - (5.7)

The mutual orientation between the two end effectors is defined with reference
to X in terms of the rotation matrix ! R, and then in terms of the quaternion
product
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Qo = Ql_l * Qy (5.8)

where Q' = {11, —€;} is the unit quaternion corresponding to R;F.
From (5.7),(5.3), the mutual velocity can be expressed as

A’Ugl =V — V1 . (59)

5.3.2 Object-level impedance control

A control strategy for tight cooperative manipulation of an object interact-
ing with the environment can be devised as follows. Two individual motion
controllers are developed which guarantee tracking of a reference end-effector
position p, ; and orientation Q. , as well as of a reference end-effector ve-
locity v, (K =1,2). Such a reference is generated with a twofold objective;
namely, realizing an impedance behaviour at the object level, while assign-
ing a mutual position and orientation between the two end effectors that is
compatible with the object geometry.

The first objective can be fulfilled as follows. Let the desired object po-
sition p,; and orientation Q, (extracted from R,;) be assigned with the asso-
ciated linear and angular velocities and accelerations. Also, the object force
and moment can be computed from (5.6) with the end-effector forces and
moments available from the wrist force/torque sensors. Then, the transla-
tional and rotational impedance equations (3.9),(3.52) are integrated, with
input f, and p,, to compute the compliant trajectory, to be followed by the
object during the interaction with the environment, p, and w., p, and w.,
and then p, and Q. via the quaternion propagation (A.28a),(A.28b).

The second objective can be fulfilled by assigning a reference mutual po-
sition Apml and orientation @, »1. In particular, Apm21 and Q, 2 are taken
as constant and equal to the initial values of Ap,, in (5.7) and Qo extracted
from (5.3), respectively, that can be computed via the direct kinematics of
the two manipulators.

The two objectives are combined by choosing the reference position and
orientation for the two end effectors so as to satisfy (5.1),(5.7),(5.4) and (5.8),
ie.,

Dy1 =D — ;Apr,Ql (5.10)
P2 =D. T ;Apr,Ql (5.11)
Qr1 = Q. % {cos 192’121 , —sin 192’121 17“7“,21} (5.12)
Qr2=9Qr1%xQr21 . (5.13)
Further, the reference velocities for the two end effectors are chosen as
V1 = Ve — ;Avr,gl (5.14)
Vp2 = Ve + 1Avr,21 ; (5.15)

2
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where v, = [p, w] |T. Then, the reference accelerations can be computed

via an analogous relationship involving accelerations v., v, ; and Av, »;.

The above reference trajectories can be tracked by resorting to an inverse
dynamics strategy. The joint driving torques for the two robots can be chosen
as (k=1,2)

7k = Bilap)J; ar) (ar— T k(@ @) ay) +nr(ag, @)+ I ¢ (@) by ,(5.16)

where g, is the (6 x 1) vector of joint variables, By, is the (6 x 6) symmetric
positive definite inertia matrix, ny, is the (6 x 1) vector of Coriolis, centrifugal
and gravity torques, and Jy is the (6 x 6) (nonsingular) Jacobian matrix.
Further in (5.16), ay is a new control input which can be chosen as ay =
[a, ) al,]" where @, and @, are designed so as to ensure tracking of
Dy, and Q. , as well as of v, x, ie.,

apk = D +kppAp, g + kppAD, ik (5.17)
Aok = Wrp + kpoAw, ki + kpo R e (5.18)

where Ap, 1 = P, — Pp, "€rrk is the vector part of Q. px = Q' % Qi
and Aw, pp = wyp — wg. It is worth remarking that kp,, kpp in (5.17) and
kpo, kpo in (5.18) are suitable positive feedback gains.

5.3.3 Experiment

In the experiment devoted to testing the proposed tight cooperative control
strategy, the two robot end effectors tightly grasp the ends of a wooden bar
of 1m length. At the center of the bar a steel stick is fixed with a wooden
disk of 5.5 cm radius at its tip.

The environment is constituted of a cardboard box; the translational
stiffness at the contact between the disk and the surface is of the order of
5000 N/m, while the rotational stiffness for small angles is of the order of
15 Nm/rad.

The task in the experiment consists of taking the disk in contact with the
surface, which is placed at an unknown distance with an angle of an unknown
magnitude. The origin of ¥, is required to make a desired motion along a
straight line with a vertical displacement of —0.275 m along the Z;-axis of Y.
The trajectory along the path is generated according to a 5th-order interpo-
lating polynomial with null initial and final velocities and accelerations, and
a duration of 6s. The desired orientation of the object frame is required to
remain constant.

The parameters of the translational part of the impedance equation (3.9)
have been set at

M, = diag{30, 30,30}
D, = diag{555, 555, 555}
K, = diag{1300, 1300, 1300}
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Fig. 5.7. Experiment of tight cooperative control: a-Object position and orienta-
tion displacement between Xy and X,

while the parameters of the rotational part of the impedance equation (3.52)
have been set at

M, = diag{10,2, 10}

D, = diag{35,20,35}

K, = diag{20, 8,20}
Notice that the translational and rotational stiffness matrices have been cho-
sen to ensure a compliant behaviour (limited values of contact force and
moment) during the contact, while the damping matrices have been chosen

to guarantee a well-damped behaviour.
The feedback gains in (5.17),(5.18) have been set at

kpp =65, kpp =1800
for the position loop, and
kpo =635, kp, = 3600

for the orientation loop, respectively. Notice that these values differ from
those used for the experiments of loose cooperation, because the sampling
time had to be increased to 2 ms in order to synchronize the two robot control
units.
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Fig. 5.8. Experiment of tight cooperative control: Contact force and moment acting
on the object

From Fig. 5.7, after the contact, the component along the Z,-axis of the
position displacement between the desired frame X; and the object frame
X,, expressed in Xy, significantly deviates from zero, as expected; a smaller
displacement can also be seen for the component along the Xj-axis, due to
contact friction. As for the orientation displacement between X, and X,
expressed in Xy, only the component along the Yj-axis significantly deviates
from zero since the object frame has to rotate about the Yj-axis of Xy in
order to comply with the surface after the contact.

From Fig. 5.8, in view of the imposed task, a prevailing component of
the contact force can be observed along the Z,-axis after the contact, while
a significant component along the X,-axis arises, corresponding to the above
position displacement. As for the contact moment, the only nonnegligible
component is that along the Y;-axis of X;, which corresponds to the above
orientation displacement. It can be recognized that all the above quantities
reach constant steady-state values after the desired motion is stopped. The
oscillations on the force and moment can be ascribed to the effects of the
commonly held object on the measurements.



6. Conclusion and future research directions

In this work, the topic of control of the interaction between robot manipula-
tors and the external environment for tasks involving six degrees-of-freedom,
has been addressed.

The main motivation for this choice has been the evident lack of adequate
thoroughness in the related scientific literature about the problems concern-
ing the representation of end-effector orientation to describe the rotational
degrees-of-freedom. Most of the authors, in order to extend their results to six
dimensional cases, resorted to minimal representations neglecting the prob-
lem of representation singularities and more crucially the problem of relating
the task geometry to the control system design.

The first step towards the geometric approach has been done in this work,
through the analysis of several algorithms for motion control. This compar-
ison has lead to identify the drawbacks of the motion control laws based on
the analytical approach via minimal representations. The limits caused by
the use of Euler angles have been partially overcome by proposing a suitable
alternative analytical formulation of the control algorithm in the operational
space. It has been shown that it is possible to completely overcome such
drawbacks only by resorting to non-minimal representations of orientation
error, via, e.g., the unit quaternion. The properties of this mathematical en-
tity have been deeply analysed in order to understand whether this tool could
be used to the purpose of task specification in a way consistent with the task
geometry. All the work about motion control, done both from a theoretical
and experimental point of view, has provided a great insight into the topic,
helpful for the next step towards the design of interaction controllers in the
task space.

The two basic strategies for controlling the interaction of a robot manip-
ulator with the environment have been object of study, namely, impedance
control and force control.

A class of six-DOF impedance controllers has been proposed. By consider-
ing an angle/axis representation of the end-effector orientation displacement,
an energy-based argument has lead to deriving a rotational impedance equa-
tion at the end effector, which exhibits a physically meaningful behaviour
and geometric consistency properties. Among the different angle/axis repre-
sentations, the unit quaternion has been chosen which avoids the occurrence
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of representation singularities. The superior performance of the proposed
angle/axis-based impedance controllers over two different impedance con-
trollers based on the operational space formulation has been shown both in
theory and in practice. An inverse dynamics strategy with contact force and
moment measurements has been used in the design of the various controllers
which have been made robust thanks to the adoption of an inner loop acting
on the end-effector position and orientation error.

Concerning direct force control, motivations for the choice of parallel for-
ce/position control, among the various approaches known in the literature
for force control problem, have been provided. The parallel formulation has
been extended to the case of six-DOF interaction tasks owing to the adoption
of unit quaternion, which has allowed the controller to be consistent with the
task geometry, without any problem of representation singularities. As in
the case of impedance control, the proposed control law has been tested in
a number of experiments in order to validate the theoretical findings. The
successful implementation on the available industrial setup has been made
possible thanks to the adoption of the inner/outer loop strategy.

In order to show the feasibility of the proposed interaction control tech-
niques, the execution of a number of complex robotic tasks has been carried
out on the dual-arm system available in the PRISMA Lab. First, two tasks of
loose cooperation for the two robots have been conceived, i.e., a parts mating
task of peg-in-hole type, and a pressure forming task. The cooperation has
been solved at a task planning level, by resorting to a suitable compliance
strategy in order to counteract the effects of task planning errors as well as
of inaccuracies in the knowledge of the parts dimensions. The satisfactory
results have demonstrated the applicability of the proposed control strategy
at industrial level, also thanks to the characteristics of modularity inherent
in the inner/outer loop technique.

The problem of tight cooperation has also been addressed. The result
presented in the last chapter, namely, an impedance controller based on unit
quaternion to handle the interaction with an elastic environment of a rigid
object commonly held by two manipulators, should be considered only prelim-
inary. In fact, the proposed control law does not explicitly take into account
the control of internal forces acting on the object, which may arise during the
task execution, caused by tracking errors of inner position loops. The closure
of an internal force control loop should be the first step of future research
work in this direction, e.g., by adopting an impedance control strategy also
for indirect control of internal forces. Some results, have very recently been
obtained in this respect [20].

It should be pointed out that, even if all the presented results can be con-
sidered very satisfactory, this dissertation does not pretend to be exhaustive
about the topic of robot force control, because many other problems are still
to be solved and the characteristics of robustness of the proposed control laws
can be enhanced. In fact, some advanced techniques, e.g, adaptation with re-



6. Conclusion and future research directions 85

spect to the dynamical parameters and /or environment stiffness, exploitation
of passivity characteristics of the robotic system, could be adopted to increase
the performance of interaction control algorithms. Some advances of the sci-
entific community in this direction have been recently collected and presented
in the monograph [65], but only for 3-DOF interaction tasks. Moreover, in-
teraction tasks with a complex contact geometry may exist, which cannot be
addressed by resorting to the proposed task space formulation, hence further
work shall be done.

About still more complex tasks, the adoption of a force sensor is certainly
not enough to provide the robot with a significant degree of autonomy. In
fact, the integration in the robotic system of different heteroceptive sensors
is today a big challenge for researchers. Some advances have recently been
made in the integration of force and vision feedback for complex assembly
tasks, e.g. [43],[7]. Even if these kinds of results have been obtained in an
industrial context, they could also be used in the fields of advanced robotics,
service robotics, and biorobotics.
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A. Orientation of a Rigid Body

This appendix is aimed at providing the necessary background on the rep-
resentation of rigid body orientation in the Cartesian space. Minimal and
non-minimal representations are discussed and compared, and the principal
properties of the unit quaternion are summarized. Also, the problem of ori-
entation displacement is addressed as a key issue in the feedback control
framework.

A.1 Non-minimal Representations

Call Xy a reference frame (the base frame) and Xy a frame attached to
the rigid body (the body-fixed frame). Motions of the body are described
by parameters characterizing the relative position and orientation of the two
frames as a function of time. The motion is called a rotation when the relative
position of the two origins remains fixed. In the 18th century Euler showed
that every rotation is equivalent to a rotation about an axis (two parameters)
and an angle of rotation about the axis (one parameter), i.e., a rotation
is a three-DOF motion—hence the well-known representation of rigid body
orientation via the set of the three Euler angles [63].

Another relevant property of rotations is that the execution of two suc-
cessive rotations is not commutative, hence a general rotation cannot be
represented by a vector. However, it can be represented by a second order
tensor [62]. As a consequence the set of three Euler angles is not a vector.

To this characteristic can be imputed the fact that every three-parameter
parametrization of the set of rotations suffers from a singularity, called a
representation singularity; in fact one may lose smooth dependence of the
three parameters as a function of the represented rotation. Therefore, it is
worth referring to non-minimal representations, such as rotation matrices and
quaternions.

A.1.1 Rotation matrix

Let {@,y,z} be the three direction cosines of the base frame and let
{z',y’, 2’ } be the three direction cosines of the body-fixed frame. The rigid
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body orientation can be represented with the so called rotation matriz or
direction cosine matrix

‘R =[2' o 2']. (A1)

It can be shown [54] that, if the columns of a rotation matrix R form a
right-handed cartesian frame, the set

SO(3) = {R e R¥: RR" = I,detR = +1} (A.2)

is a group under the operation of matrix multiplication, called the special
orthogonal. As expected the set is not a vector space because of the non-
commutativity of the matrix product.

The first interpretation of a rotation matrix is as describing the way a
single vector transforms when represented with respect to two different vector
bases; if v are the coordinates of a vector v in the body-fixed frame, the
coordinates %v in the base frame are computed as

‘v ="Ri'w . (A.3)

On the other hand, from a strictly mechanical viewpoint, rotation matri-
ces can be interpreted as coordinates of a rotation tensor, the only intrinsic
entity representing a rotation [62]. Thus, as a rotation applied to a vector a
transforms the vector to a new vector b, in the same way the corresponding
rotation matrix ° R; multiplied by the coordinates of a gives the coordinates
of b, where b can be obtained by rotating a about a special vector 7, which
is the eigenvector of the rotation matrix. In fact, @ and b become parallel
when b = r and a = Ar, hence the coordinates of r in the base frame are
the solution of the eigenproblem

'R = \0r . (A4)
The solutions of the characteristic equation

det ("Ry — AI) =0 (A.5)
are the eigenvalues of the rotation matrix, i.e., A = 1,e?,e " are found,

where i is the imaginary unit. To show that the real eigenvector °r corre-
sponding to the real eigenvalue 1 represents the geometric axis about which
a must be rotated to match b, it must be verified that it has the same coor-
dinates in the frames 0 and 1. This is obvious from the first interpretation of
the rotation matrix (A.3), since it is

‘Ril'r =%, (A.6)

but, at the same time, since %7 is the eigenvector corresponding to A = 1, it
is

'R = | (A.7)

and from the non-singularity of °R; it follows that
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Op =1p . (A.8)

This proves the invariance of the real eigenvector of a rotation matrix and
thus its geometric meaning in the sense explained before. Also the variable
¥ has a geometric meaning, in fact it is the amount of the rotation about
the axis r represented by the rotation matrix ° R;. The superscript of 7 can
be dropped, since it has the same coordinates in either the body fixed frame
and the base frame.

By assuming that the eigenvector r is a unit vector and by exploiting
its geometric meaning, it is possible to find a relationship with the rotation
matrix, called the Rodrigues’ formula

‘Ri=rr" + (I —rrT)cosd + S(r)sind , (A.9)

where S(-) is the skew-symmetric matrix performing the vector product,
defined as

S(r)= {_7‘03 _53 —El} . (A.10)

Some useful properties of the skew-symmetric operator are summarized
in [55].

A.1.2 Unit quaternion

The term quaternion was introduced by Hamilton in 1840, about 70 years
after Euler proposed a four-parameter representation of rigid body orienta-
tion. From a strictly mathematical viewpoint, quaternions can be seen as a
generalization of complex numbers and they allow a global parameterization
of the group SO(3); an element of the quaternions’ set is defined as

Q=n+eit+ejtek ¢ €eR, n=1,.,3, (A.11)

where the symbols i, j, k are the generalized imaginary units. A more compact
and useful notation is Q = {n, €}, where 7 is the scalar part and € is the vector
part of the quaternion. Under the following quaternion product operation

Q1 % Qo = (MmM2 — €] €2, M€ + 7261 + S(€1)€2) (A12)

it is possible to show that the set of quaternions is a group. In this group,
the identity element is Z = {1, 0}, in fact it is

IxQ=Q9x71=Q, VQ. (A.13)
Moreover, the inverse of a quaternion is Q' = {n, —€}/||Q|*, where
QI =7’ + el + &+ (A.14)

The subset of all the quaternions with unitary norm is called the group of
unit quaternions, i.e.
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772 + 6T6 -1. (A15)
In order to relate unit quaternions and rotations, given a rotation matrix
(with its real unit eigenvector r) it is possible to choose

1 = cos (A.16a)

2

€ =rsin g, (A.16D)

in fact it is straightforward to verify that this is a unit quaternion. The main
feature of this choice is its geometric interpretation, since the vector part of
the quaternion is parallel to the eigenvector of the rotation matrix, hence it
is parallel to the axis of the rotation represented by the rotation matrix. It is
worth pointing out that the definition of such four parameters was made by
Euler 70 years before Hamilton would have introduced the notion of quater-
nion; for this reason unit quaternions are often called Fuler parameters. By
taking into account the definition of Euler parameters (A.16a),(A.16b), the
Rodrigues’ formula (A.9) can be rewritten as

ORl = 26106}‘0 + (277%0 - ].)I + 2"’}105(610) . (Al?)

From (A.17), it is easy to notice that for each rotation matrix, there exist
two distinct unit quaternions representing the rotation, in fact quaternions
{10, €10} and {—n10, —€10} give the same rotation matrix, i.e., the set of unit
quaternion is a two-to-one covering of SO(3). But, if the rotation angle ¥ is
restricted to the interval [—m, 7], namely n > 0, the covering is a one-to-one.
In any case, unit quaternions represent a global parametrization of SO(3),
differently from FEuler angles, hence it is a singularity-free representation.
Notice that, in view of (A.8), the reference frame (the superscript) of the
vector part of a unit quaternion can be one of the two frames at the subscripts,
and it will be hereafter omitted.

Compared to the Fuler angles representation, the unit quaternion can be
used exactly in the same way of rotation matrix, because it is possible to
define a quaternion algebra [26]. In this way, successive rotations or reference
frame change are meaningful, as summarized in Table A.1.

Table A.1. Rotation matrix and unit quaternion corresponding operations

Rotation matriz Unit quaternion

“Ry, Qva = {Nba, €va}

‘v =*R,%v =ty + 2nbaS(eba)bv + 2S(eba)S(eba)bv

‘R. = aRbbRc Qea = {nbancb - €bTa€cb7 Nba€ch + Neb€ba + S(eba)ecb}

‘R,'="R} ="Ra Q' = {Nba, —€va}
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Algorithm to extract the unit quaternion from a rotation matrix.
The quaternion corresponding to a given rotation matrix R = {R;;, i =
1,.,3,j=1,..,3} is [64]

1
0= VB + R+ Ras + 1 (A.18a)
sgn(Rsy — Raz)v/Ri1 — Rag — Ragz + 1
1
€ = 9 SgH(ng — Rgl)\/RQQ — R33 — R11 +1 s (A18b)
sgn(Ry — Ri2)v/Rsz — Rip — Raa +1
where the choice 7 > 0 has been made, and conventionally, sgn(xz) = —1 for

z < 0 and sgn(z) = 1 for z > 0. It can be recognized that the extraction of
the quaternion is always well-defined.

A.2 Mutual Orientation

In every feedback control algorithm the ‘difference’ between two quantities is
usually computed, as it is useful to quantify how much a quantity is different
from another. Therefore, the orientation displacement between two frames
Y, and X, with respect to a reference frame ¥y has to be defined. Let °R,,
and °R; be the rotation matrices of the two frames.

The first possible choice to quantify the mutual orientation (or the ori-
entation displacement) of the two frames is defined as the rotation matrix
describing the relative rotation between the two frames

‘R, =°R!°R, = “R,°R;, . (A.19)

According to the (A.12), this mutual orientation can be equivalently ex-
pressed in terms of a unit quaternion as

Qpa = {nbaa 6ba} = Q;()l * Qpo (AQO)
= {Na0m0 + Ggoébo, 1a0€60 — Mb0€a0 — S(€a0)€p0} -

The second possible choice to compute the mutual orientation between
two frames is

Ry, =°R,°R! =°R,"R, , (A.21)

which is still a rotation matrix but it does not describe the relative rotation
of the two frames, hence, it has been denoted with two subscripts and no
superscript.

Equivalently, the corresponding unit quaternion is given by

Qbo * Qi = {Na0Mb0 + €0 €005 Na0€b0 — M0€a0 + S(€a0)€so} - (A.22)

It is possible to show [26] that the vector part of this quaternion is the vector
part of the quaternion in (A.20) expressed in the base frame 0, while in (A.20)
it was expressed in frame X, or frame Y.
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A.3 Angular Velocity

Let R, (t) denote a generic time-varying rotation matrix, if wy, is the angular
velocity vector of the frame X, respect to the frame XY,, it can be shown
that [54]

“Ry = S(“wpa) Ry = “RpS(‘wia) (A.23)

where %w;, and Ywy, are two different expressions of the same vector (Wha),
one in the frame ¥, and the other in the frame X}. If the roles of the two
frames are inverted then it can be shown that wp, = —wgp [62], and thus

“Ry = —S(“waus)* Ry = —"RypS("wap) - (A.24)

It is worth noticing that the sequence of subscripts in the angular velocity
vector ends with the reference frame. In (A.23) the second subscript refers
to the superscript of the rotation matrix, while, in (A.24) it refers to the
subscript of the rotation matrix.

Let now X,, Y, Y. be three rotating frames. Then, with reference to
(A.23), the property of angular velocity composition holds [62]

CRa = CRbbRa = Wae = Whe + Wap (A25)

from which it can be derived the relative angular velocity between the two
frames X and X,

C-Rb = CRaaRb = Whe = Wae — Wep - (A26)

With reference to the rigid body orientation represented via a unit quater-
nion, it can be found the relationship between the angular velocity and the
time derivative of the quaternion.

By taking the time derivative of (A.17) and accounting for (A.23), it can
be shown that the angular velocity of the body-fixed frame with respect to
the base frame is given by [32, 3]

w19 = 2 ((m1oI + S(€10))é10 — Mo€io) - (A.27)

From (A.27) and the time derivative of the normalization condition of unit
quaternion, it is not hard to find the so called equation of unit quaternion
propagation

. 1

o = —2€1T00w10 (A.28a)

. 1

€10 = 2E(7710,€10)00J10 ; (A.28Db)
with

FE= 7]101 — S(Glo) . (A29)

By looking at this equation it can be recognized that, given a time-varying
rotation of a rigid body, i.e., its angular velocity, the time derivative of unit
quaternion representing the rigid body rotation is always well-defined.
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It is worth noticing that even though the vector part of the quaternion
can be expressed indifferently in the base frame or in the body-fixed frame,
the angular velocity is necessarily expressed in the base frame. It’s possible to
show [62] that, if the angular velocity of the body respect to the base frame
is expressed in the body-fixed frame, equation (A.27) becomes

Ywig = 2 ((moI — S(€10))é10 — M0€10) (A.30)

while the propagation equation is written as

. 1

Mo = —2€1T01w10 (A.31a)

. 1

€10 = 2E1 (M0, €10) w10 (A.31b)
with

E1 = 7]10_[ + S(Glo) . (A32)

Notice that {10, €10} is the quaternion corresponding to the rotation matrix
R;.

If a relative rotation between two generic frames Y. and Y, is consid-
ered, it is necessary to take into account the property of angular velocity
composition (A.26)

dRc = dROORc = Wi T Wio—Weo = Wed = Weo—Wdo (A33)
Then, it can be shown that
iR, = S(A%.q) R, with Aw.q =% — wao, (A.34)

thus, the Aw.q = %w.q is the relative angular velocity between the frame X,
and the frame Y;. This means that to compute the ‘difference’ between two
orientations, the mutual orientation has to be used (via rotation matrix com-
position or quaternion product), while at velocity level the simple algebraic
difference of angular velocities can be adopted. For the purpose of precision,
it can be stressed that if {1.q4,€.q4} is the quaternion extracted from the ro-
tation matrix ?R., the correct quaternion propagation that relates the time
derivative of such a quaternion with the relative angular velocity is given by
the (A.28a),(A.28b), in which €.q4 and %w.q must be used.



B. Real-Time Implementation Notes

This appendix contains some notes about the real-time implementation on
the COMAU C3G-9000 (open version) control unit of the interaction control
algorithms described in this book. Even though some specific details can
depend on the specific architecture, most of the concepts are general and
of crucial importance when a novel, and thus “not well-assessed”, control
algorithm has to be implemented on an industrial robot.

B.1 The main control loop

The C3G-9000 open version [31] is a PC-based open control architecture, in
the sense that a standard PC is “linked” to the industrial controller through
a bus-to-bus adapter and it can exchange information with the industrial
control unit according to several operating modes, as already explained in
Chapter 1. Only the more “open” operating mode will be considered here,
i.e. when the PC has direct access to the robot motors’ driving unit and it
can specify a desired current for each motor every millisecond.

B.1.1 C3G and PC interfacing

When a single system is controlled by two different units, a coordination
mechanism has to be conceived. In the available architecture, the C3G unit
and the PC can exchange information by means of a shared memory where
every millisecond (which is therefore, the sampling time of the digital control
loop) the C3G executes the following operations

e set the flag IntActive
e write the values of the motor shaft angular positions (in DAC units)
e read the desired values for the motor current set-points (in DAC units)

and the PC has to

reset, the flag IntActive

read the values of the motor shaft angular positions (in DAC units)
compute the current set-points for the next time interval

write the desired values for the motor current set-points (in DAC units)

C. Natale: Interaction Control of Robot Manipulators, STAR 3, pp. 99-105, 2003
© Springer-Verlag Berlin Heidelberg 2003
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e set the watchdog flag

To fulfill the real-time constraint, the PC must execute the above steps within
700 us. Otherwise, due to the watchdog mechanism, the system reaches an
alarm state and the robot drives are switched off and brakes are activated.
The watchdog timer, as in every real-time system, is aimed at preventing
harmful consequences of unpredictable events, which can occur during the
normal operation, e.g. when the PC crashes, and thus is no longer able to
write a correct current set-point to be actuated. The sequence outlined above
is depicted in Fig. B.1.

! 1 ms ’:
0.7 ms ;
clock
ticks
t
1
IntActive

O ! !
read motor positions  read force data  end computation

start computation write current set-points
start force data acquisition set watchdog flag

Fig. B.1. Timing diagram of the real-time control loop

A particular discussion is in order when the robotic task requires the co-
operation of both robots and the cooperative control strategies proposed in
Chapter 5 have to be implemented. The main problem is the synchroniza-
tion of the two industrial control units with the PC, in fact they have two
separate clocks. Since the two clock frequencies are slightly different a time
drift between the two trains of clock ticks is experienced. This requires a
preliminary phase aimed at waiting until the two clocks are almost aligned,
then the control loop can start. Of course, such a solution can guarantee a
limited time interval useful for the experiment, in fact the experiment can
continue until the time difference between the two clocks is less than 500 us,
otherwise one of the watchdog timers would be triggered. Notice how this
solution imposes a minimum sampling time for the control algorithm of 2 ms
(twice the time between two clock ticks from the same control unit). A more
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detailed description of the synchronization issue in cooperative setups can be
found in [21].

B.1.2 Force sensor interfacing

The simple operations listed above suffice only if a motion control loop has
to be implemented. But, if an interaction control algorithm is being con-
sidered, the necessity of interfacing with a force sensor comes up. The ATI
force/torque sensor available at the PRISMA Lab can provide the user with
a full six components force measurement every millisecond, but special care
has to be adopted to optimize the time usage.

In detail, the force sensor is interfaced via a parallel link to the ISA bus of
the PC. To obtain the force measurement, the PC has to send a data acquisi-
tion request, which starts the data A /D conversion on the sensor conditioning
electronics; after a time lapse of about 250 us, the six components of the force
are available in a memory buffer. Since the conversion is executed on remote
hardware, during the conversion time interval, the PC can continue its elab-
oration; hence, to avoid simply waiting the end of conversion, it is convenient
to ask for the start of conversion at the beginning of the control cycle, per-
form all the computations not requiring force measurements, e.g. kinematics,
dynamic model compensation, then read the force data and, finally, complete
the control algorithm. The timing of these operations is outlined in Fig. B.1.

B.1.3 Safety checks

Even though the use of a watchdog timer is a good solution for a safe oper-
ation of a real-time system, it cannot be considered enough to prevent every
dangerous situation. In every research lab, where a lot of effort (and money!)
has been spent to setup the experimental test bed, the first rule is to avoid any
type of damage to the instrumentation (and, possibly, to the researchers...).
Therefore, the safety issue is as important as the performance of the new
control algorithm to be tested. In the C3G open control architecture a lot
of safety checks can be carried out to monitor the system functioning and
to prevent damage. The following safety checks are available within the C3G
open control architecture:

set and check joint limits

set and check maximum joint velocities

set and check maximum instantaneous currents
set and check maximum sustained currents

set and check maximum forces and torques

The first type of safety check is particularly useful when an interaction
task is tested, in fact limiting the robot workspace allows to prevent damage
to the environment, to the robot and especially to the force sensor. Of course,
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monitoring also contact forces and moments allows a safer contact phase.
Typically, interaction tasks evolve with limited velocities, hence monitoring
joint velocities is also useful to detect undesirable situations during the task
execution.

For the purpose of preventing damage of robot motors and motor drives,
it is opportune to monitor the motor currents, whose instantaneous values
should not exceed maximum fixed levels. Sometimes, it is also useful to limit
the maximum sustained value of the currents, to prevent overheating of robot
servo motors and their driving electronics.

Two different decisions can be taken in case one of the above checks fails,
namely immediately stop the robot by invoking a special emergency routine,
or set an error flag to exit from the main control loop and switch off the
drives (see also the C-code listing in the next section). The former approach
is faster and thus safer, but requires a complete reboot of the system. The
latter approach implies a delay of one sampling period, but leads the system to
a less critical state, which does not require a complete reboot. The best policy
is probably to decide on the particular safety check which failed, e.g., if one
of the motor currents exceeded the maximum sustained value, an immediate
stop is not necessary, on the contrary if the force is over the maximum allowed
value, an immediate stop is advisable.

B.2 Writing the C-code

To clarify all the details described above, it is useful to analyse a sample
C-code listing for a single robot experiment.

After the initialization of the force sensor and of the communication with
the C3G control unit, it is necessary to allocate the memory buffers where
the measured data will be saved during the execution of the experiment. Of
course, it is not possible to record these data directly on disk, since every
I/O operation takes a long time, thus, during a real-time operation no I/0
function is allowed inside the main control loop and only accesses to RAM
memory should be made.

After the drives have been switched on, the first cycle is devoted to con-
trol algorithm initialization, then, before starting the main control loop, the
watchdog timer can be enabled, and then the watchdog flag must be set every
millisecond.

As explained in the previous section, it is advisable to immediately ask
for force data acquisition; on the other hand, once the IntActive flag is
high, motor position measurements are already available, so they can be read
immediately, and the PC can start computation of the part of the control
algorithm not requiring force information.

Before starting execution of the planned motion/force trajectory, it is
necessary to keep the initial position for a while, to let the mechanical joint
brakes be completely released.
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Based on the motor shaft positions and on the desired trajectory, it is
possible to start control algorithm computation, but it can be completed
only after force measurement acquisition. The reading of six components of
contact force and moment is performed inside the routine CalcCurrSP. Notice
that also the safety routines are called inside the CalcCurrSP function, which
returns an error flag.

Once the current set-point have been computed, they can be written in
the shared memory, and they will be actuated within the sampling interval.
The control loop proceeds with storing of measured data in the allocated
memory buffers and ends with setting of the watchdog flag.

The main control loop can be broken if one of the following conditions
is verified: the counter exceeds the maximum value fixed for the experiment,
the user press a key, an error condition is detected.

When the loop ends, before switching off the drives, which takes more than
one millisecond, the watchdog timer must be disabled. Finally, the commu-
nication with the C3G unit is terminated and the content of all the memory
buffers is recorded on files. An error detection routine is devoted to decode
the error flag Err and provides the user with a message.

void main(void) {

/* Declarations/definitions of all the necessary variables */
[omitted]

/* Force/Torque sensor initialization */
InitStatus = FTInit();

/* C3G Initialization */
SetRobotType (SMART_3_S) ;
SetJointLimits (Qmin,Qmax) ;
B3Init();

/* Initialize memory buffers for data recording */
InitRecordMotorPositions (NumRecMotPos) ;
InitRecordCurrents (NumRecCurrSP) ;
FTInitRecordData(nFTSamples) ;

/* DRIVE ON */
DriveOn_0K = (DriveOn(TIME_QUT) == 0);

if (DriveOn_0K) {
/* Initialize control algorithm */
IntActive = 0; /* reset interrupt flag */
while(IntActive == 0)/* synchronize with interrupt signal */

ReadMotorPositions (MotorPositions);
InitCalcCurrSP (MotorPositions,q0,x0,J0);

/* Enable watchdog timer */
EnableWatchdog() ;
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}

/* Set watchdog flag */
SetWatchdog() ;

/* MAIN CONTROL LOQOP */
IntActive = 0;
do {
if (IntActive) {
IntActive = 0;

/* Ask for force semsor data */
AskStatus = FTAskData();

/* Read motor shaft positions from shared memory */
ReadMotorPositions (MotorPositions);

/* Initialize desired force/motion trajectory */
InitTrajh(hd_c,timef,counter) ;
InitTrajQu(xd,xpd,time, counter) ;

/* Keep initial position until brakes are released */
Pausel (&time,Tass) ;

/* Generate desired motion trajectory */

GenerateSegmQuatVG(1x1l,1ly1l,1z1,thdl,rx1,ryl,rz1,
&time,durl,xd,&thl);

Derivate(xd,xpd,xppd,thl,rx,ry,rz);

/* Generate desired force trajectory */
Pausel (&timef,2000.0) ;
GenerateHd (fxd,fyd,fzd,mxd,myd,mzd,&timef,2500.0,hd_c) ;

/* Compute current set-points */
Err=CalcCurrSP (MotorPositions,q0,x0,J0,xd,xpd,xppd,hd_c,
Currents,AskStatus) ;

/* Send current set-points to shared memory */
WriteCurrents (Currents) ;

/* Save measured data in memory buffers */
FTSaveData() ;

SaveMotorPositions (MotorPositions);
SaveCurrents (Currents) ;

counter++;

/* Set the watchdog flag */
SetWatchdog() ;

} while((counter<MaxCount) && ('kbhit()) && ('Err));

/*
/*

END OF MAIN CONTROL LOOP */

Disable watchdog timer */

DisableWatchdog() ;
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/* DRIVE OFF #*/
DriveOff (TIME_QUT) ;

/* Terminate communication with C3G unit */
B3Terminate();

/* Record data on disk */
RecordMotorPositions (namepos) ;
RecordCurrents (namecurr) ;
FTRecordData(nameft) ;

/* Display any error message */
ErrorDetection(Err);

}

The last issue of this appendix consists of a few notes about code opti-
mization. In a real-time application, speed up code execution is the first rule,
even if this means duplicating code. In fact, it is well known that modularity
is an important feature of software, but jumping to a subroutine takes time.
Thus, when the time constraint is very demanding, it can be necessary to
renounce the modularity and repeat the code as many times as necessary.
A same consideration can be made in respect to loops. Even if a series of
repeating instructions can be coded with a loop, by repeating the code of
the instruction saves a lot of time, so loop unrolling can be necessary, and
it is certainly convenient when a processor using instruction-level parallelism
with pipelines is adopted. For a deep discussion about code optimization, see
e.g. [38] and [2] for Pentium processor programming.
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