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Preface

OpenGL, which has been bound in C, is a seasoned graphics library for scientists and 
engineers. As we know, Java is a rapidly growing language becoming the de facto 
standard of Computer Science learning and application development platform as 
many undergraduate computer science programs are adopting Java in place of C/C++. 
Released by Sun Microsystems in June 2003, the recent OpenGL binding with Java, 
JOGL, provides students, scientists, and engineers a new venue of graphics learning, 
research, and applications. 

Overview

This book aims to be a shortcut to graphics theory and programming in JOGL. 
Specifically, it covers OpenGL programming in Java, using JOGL, along with concise 
computer graphics theories. It covers all graphics basics and several advanced topics 
without including some implementation details that are not necessary in graphics 
applications. It also covers some basic concepts in Java programming for C/C++ 
programmers. It is designed as a textbook for students who know programming basics 
already. It is an excellent shortcut to learn 3D graphics for scientists and engineers 
who understand Java programming. It is also a good reference for C/C++ graphics 
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programmers to learn Java and JOGL. This book is a companion to Guide to Graphics 
Software Tools (Springer-Verlag, New York, ISBN 0-387-95049-4), which covers a 
smaller graphics area with similar examples in C but has a comprehensive list of 
graphics software tools.  

Organization and Features

This book concisely introduces graphics theory and programming in Java with JOGL. 
A top-down approach is used to lead the audience into programming and applications 
up front. The theory provides a high-level understanding of all basic graphics 
principles without some detailed low-level implementations. The emphasis is on 
understanding graphics and using JOGL instead of implementing a graphics system. 
The contents of the book are integrated with the sample programs, which are 
specifically designed for learning and accompany this book. To keep the book’s 
conciseness and clarity as a high priority, the sample programs are not production-
quality code in some perspectives. For example, error handling, GUI, controls, and 
exiting are mostly simplified or omitted. 

Chapter 1 introduces OpenGL, Java, JOGL, and basic graphics concepts including 
object, model, image, frame buffer, scan-conversion, clipping, and antialiasing. 
Chapter 2 discusses transformation theory, viewing theory, and OpenGL programming 
in detail. 3D models, hidden-surface removal, and collision detection are also covered. 
Chapter 3 overviews color in hardware, eye characteristics, gamma correction, 
interpolation, OpenGL lighting, and surface shading models. The emphasis is on 
OpenGL lighting. Chapter 4 surveys OpenGL blending, image rendering, and texture 
mapping. Chapter 5 introduces solid models, curves, and curved surfaces. Chapter 6 
discusses the recent advancement in GPUs and parallel programming. It covers basic 
programming in Cg as well. Chapter 7 provides some advanced effects in Cg 
programming, including vertex lighting, pixel lighting, pixel texture mapping, and 
bump mapping. Chapter 8 discusses scene graph and Java3D programming with 
concise examples. Chapter 9 wraps up basic computer graphics principles and 
programming with some advanced concepts and methods. In the appendix, we provide 
some basic graphics mathematical methods, including vector and matrix operations. 
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Web Resources

JOGL and Java3D sample programs (their sources and executables) are available 
online. The following Web address contains all the updates and additional 
information, including setting up the OpenGL programming environment and 
accompanying Microsoft PowerPoint course notes for learners and instructors:  

http://cs.gmu.edu/~jchen/graphics/jogl/

Audience

The book is intended for a very wide range of readers, including scientists in different 
disciplines, undergraduates in Computer Science, and Ph.D. students and advanced 
researchers who are interested in learning and using computer graphics on Java and 
JOGL platform. 

Chapters 1 through 4 are suitable for a one-semester graphics course or self-learning. 
These chapters should be covered in order. Prerequisites are preliminary programming 
skills and basic knowledge of linear algebra and trigonometry. Chapters 5 and 6 are 
independent introductions suitable for additional advanced graphics courses.  

Acknowledgments

As a class project in CS 652 at George Mason University, Danny Han initially coded 
some examples for this book. We acknowledge the anonymous reviewers and the 
whole production team at Springer. Their precious comments, editings, and help have 
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1 
Introduction

Chapter Objectives: 

• Introduce basic graphics concepts — object, model, image, graphics library, frame 
buffer, scan-conversion, clipping, and antialiasing

• Set up Java, JOGL programming environments

• Understand simple JOGL programs

1.1 Graphics Models and Libraries

A graphics display is a drawing area composed of an array of fine points called pixels. 
At the heart of a graphics system there is a magic pen, which can move at lightning 
speed to a specific pixel and draw the pixel with a specific color — a red, green, and 
blue (RGB) vector value. This pen can be controlled directly by hand through an input 
device (mouse or keyboard) like a simple paintbrush. In this case, we can draw 
whatever we imagine, but it takes a real artist to come up with a good painting. 
Computer graphics, however, is about using this pen automatically through 
programming. 

A real or imaginary object is represented in a computer as a model and is displayed as 
an image. A model is an abstract description of the object’s shape (vertices) and 
attributes (colors), which can be used to find all the points and their colors on the 
object corresponding to the pixels in the drawing area. Given a model, the application 
program will control the pen through a graphics library to generate the corresponding 
image. An image is simply a 2D array of pixels. 

A graphics library provides a set of graphics commands or functions. These 
commands can be bound in C, C++, Java, or other programming languages on 
different platforms. Graphics commands can specify primitive 2D and 3D geometric 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_1, © Springer-Verlag London Limited 2008 
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models to be digitized and displayed. Here primitive means that only certain simple 
shapes (such as points, lines, and polygons) can be accepted by a graphics library. To 
draw a complex shape, we need an application program to assemble or construct it by 
displaying pieces of simple shapes (primitives). We have the magic pen that draws a 
pixel. If we can draw a pixel, we can draw a line, a polygon, a curve, a block, a 
building, an airplane, and so forth. A general application program can be included into 
a graphics library as a command to draw a complex shape. Because our pen is 
magically fast, we can draw a complex object, clear the drawing area, draw the object 
at a slightly different location or shape, and repeat the above processes — the object is 
now animated. 

OpenGL is a graphics library that we will integrate with the Java programming 
language to introduce graphics theory, programming, and applications. When we 
introduce program examples, we will succinctly discuss Java-specific concepts and 
programming as well for C/C++ programmers. 

1.2 OpenGL Programming in Java: JOGL

OpenGL is the most widely used graphics library (GL) or application programming 
interface (API), and is supported across all popular desktop and workstation 
platforms, ensuring wide application deployment. JOGL implements Java bindings 
for OpenGL. It provides hardware-supported 3D graphics to applications written in 
Java. It is part of a suite of open-source technologies initiated by the Game 
Technology Group at Sun Microsystems. JOGL provides full access to OpenGL 
functions and integrates with the AWT and Swing widget sets.

First, let’s spend some time to set up our working environment, compile 
J1_0_Point.java, and run the program. The following file contains links to all the 
example programs in this book and detailed information for setting up working 
environments on different platforms for the most recent version: 

http://cs.gmu.edu/~jchen/graphics/setup.html 

Since JOGL has been changed significantly over time, it is better to download and 
update the sample programs from the web instead of typing in examples from the 
book. 
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1.2.1 Setting Up Working Environment 

JOGL provides full access to the APIs in the OpenGL specification as well as nearly 
all vendor extensions. To install and run JOGL, we need to install Java Development 
Kit. In addition, a Java IDE is also preferred to help coding. The following steps will 
guide you through installing Java, JOGL, and Eclipse or JBuilder IDE.

1. Installing Java Development Kit 

Java Development Kit (JDK) contains a compiler, interpreter, and debugger. If you 
have not installed JDK, it is freely available from Sun Microsystems. You can 
download the latest version from the download section at http://java.sun.com. 
Make sure you download the JDK Java SE (Standard Edition) not the JRE (runtime 
environment) that matches the platform you use. After downloading the JDK, you 
can run the installation executable file. During the installation, you will be asked 
the directory "Install to:". You need to know where it is installed. For example, you 
can put it under: "C:\myJDK\". In default, it is put under "C:\Program 
Files\Java\jdkxxx\".

2. Installing JOGL

We need to obtain the JOGL binaries in order to compile and run applications 
from: https://jogl.dev.java.net/. Download the current release build binaries that 
match the platform you use. After that, you can extract and put all these files (jar 
and dll files) in the same directory with the Java (JOGL) examples and compile all 
them on the command line in the current directory with:

"C:\myJDK\bin\javac" -classpath jogl.jar *.java

After that, you can run the sample program with (the command in one line):

"C:\myJDK\bin\java" -classpath .;jogl.jar;gluegen-rt.jar; 
-Djava.library.path=. J1_0_Point

That is, you need to place the "*.jar" files in the CLASSPATH of your build 
environment in order to be able to compile an application with JOGL and run, and 
place "*.dll" files in the directory listed in the "java.library.path" environment 
variable during execution. Java loads the native libraries (such as the dll files for 
Windows) from the directories listed in the "java.library.path" environment 
variable. For Windows, placing the dll files under "C:\WINDOWS\system32\" 
directory works. This approach gets you up running quickly without worrying 
about the "java.library.path" setting. 
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3. Installing a Java IDE (Eclipse, jGRASP, or JBuilder)

Installing a Java IDE (Integrated Development Environment) is strongly 
recommended. Without an IDE, you can edit Java program files using any text 
editor, compile and run Java programs using the commands we introduced above 
after downloading JOGL, but that would be very difficult and slow. Java IDEs such 
as JBuilder, Eclipes, and jGRASP are development environments that make Java 
programming much faster and easier.

If you like to use jGRASP, you can download it from http://www.jgrasp.org/. In the 
project under "Settings->PATH/CLASSPATH->Workspace", you can add the 
directory of the *.dll files to the system PATH window, and add "*.jar" files with 
full path to the CLASSPATH window.

If you like to use Eclipse, you can download from http://eclipse.org the latest 
version of Eclipse that matches the platform you use. Expand it into the folder 
where you would like Eclipse to run from, (e.g., "C:\eclipse\"). There is no 
installation to run. You can put "*.jar" files under "Project->Properties->Libraries". 
To remove Eclipse you simply delete the directory, because Eclipse does not alter 
the system registry.

As another alternative, you can download a free version of JBuilder from 
http://www.borland.com/jbuilder/. JBuilder comes with its own JDK. If you use 
JBuilder as the IDE and want to use your downloaded JDK, you need to start 
JBuilder, go to "Tools->Configue JDKs", and click "Change" to change the "JDK 
home path:" to where you install your JDK. For example, "C:\myJDK\". Also, 
under "Tools->Configue JDKs", you can click "Add" to add "*.jar" files from 
wherever you save it to the JBuilder environment. 

4. Creating a Sample Program in Eclipse 

As an example, here we introduce using Eclipse. After downloading it, you can run 
it to start programming. Now in Eclipse you click on “File->New->Project” to 
create a new Java Project at a name you prefer. Then, you click on 
“File->New->Class” to create a new class with name: “J1_0_Point”. After that, 
you can copy the following code into the space, and click on “Run->Run As->Java 
Application” to start compiling and running. You should see a window with a very 
tiny red pixel at the center. In the future, you can continue creating new classes, as 
we introduce each example as a new class. Alternatively, you can download all the 
examples from the web. 
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/* draw a point */
/* Java’s supplied classes are “imported”. Here the awt 
(Abstract Windowing Toolkit) is imported to provide “Frame” 
class, which includes windowing functions */
import java.awt.*;

// JOGL: OpenGL functions
import javax.media.opengl.*;

/* Java class definition: “extends” means “inherits”. So 
J1_0_Point is a subclass of Frame, and it inherits Frame’s 
variables and methods. “implements” means GLEventListener is 
an interface, which only defines methods (init(), reshape(), 
display(), and displaychanged()) without implementation.These 
methods are actually callback functions handling events. 
J1_0_Point will implement GLEventListener’s methods and use 
them for different events. */

public class J1_0_Point extends Frame implements
    GLEventListener {

  static int HEIGHT = 600, WIDTH = 600;
  static GL gl; //interface to OpenGL
  static GLCanvas canvas; // drawable in a frame
  static GLCapabilities capabilities;

  public J1_0_Point() {

    //1. specify a drawable: canvas
    capabilities = new GLCapabilities();
    canvas = new GLCanvas(); 

    //2. listen to the events related to canvas: reshape
    canvas.addGLEventListener(this);

    //3. add the canvas to fill the Frame container
    add(canvas, BorderLayout.CENTER);

/* In Java, a method belongs to a class object. 
Here the method “add” belongs to J1_0_Point’s 
instantiation, which is frame in “main” function. 
It is equivalent to use “this.add(canvas, ...)” */

    //4. interface to OpenGL functions
    gl = canvas.getGL();
  }
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  public static void main(String[] args) {
    J1_0_Point frame = new J1_0_Point();

    //5. set the size of the frame and make it visible
    frame.setSize(WIDTH, HEIGHT);
    frame.setVisible(true);
  }

  // called once for OpenGL initialization
  public void init(GLAutoDrawable drawable) {

    //6. specify a drawing color: red
    gl.glColor3f(1.0f, 0.0f, 0.0f);
  }

  // called for handling reshaped drawing area
  public void reshape(
      GLAutoDrawable drawable,
      int x,
      int y,
      int width,
      int height) {

      WIDTH = width; // new width and height saved
      HEIGHT = height;

    //7. specify the drawing area (frame) coordinates
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    gl.glOrtho(0, width, 0, height, -1.0, 1.0);
  }

  // called for OpenGL rendering every reshape
  public void display(GLAutoDrawable drawable) {

    //8. specify to draw a point
    //gl.glPointSize(10);
    gl.glBegin(GL.GL_POINTS);
    gl.glVertex2i(WIDTH/2, HEIGHT/2);
    gl.glEnd();
  }

  // called if display mode or device are changed
  public void displayChanged(
      GLAutoDrawable drawable,
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      boolean modeChanged,
      boolean deviceChanged) {
  }
}

1.2.2 Drawing a Point 

The above J1_0_Point.java is a Java application that draws a red point using JOGL. If 
you are a C/C++ programmer, you should read all the comments in the sample 
program carefully, because they include explanations about Java-specific 
terminologies and coding. Our future examples are built on top of this one. Here we 
explain in detail. The program is complex to us at this point of time. We only need to 
understand the following: 

1. Class GLCanvas is an Abstract Window Toolkit (AWT) component that provides 
OpenGL rendering support. Therefore, the GLCanvas object, canvas, corresponds 
to the drawing area that will appear in the Frame object frame, which corresponds 
to the display window. Here object means an instance of a class in object-oriented 
programming, not a 3D object. In the future, we omit using a class name and 
underline its object name in our discussion. In many cases, object names are 
lowercases of the corresponding class names to facilitate understanding. 

2. An event is a user input or a system state change, which is queued with other events 
to be handled. Event handling is to register an object to act as a listener for a 
particular type of event on a particular component. Here frame is a listener for the 
GL events on canvas. When a specific event happens, it sends canvas to the 
corresponding event handling method and invokes the method. GLEventListener 
has four event-handling methods: 

• init() is called immediately after the OpenGL context is initialized for the first 
time, which is a system event. It can be used to perform one-time OpenGL 
initialization; 

• reshape() is called if canvas has been resized, which happens when the user 
changes the size of the window. The listener also passes the drawable canvas and 
the display area’s lower-left corner (x, y) and size (width, height) to the method. At 
this time, (x, y) is always (0, 0), and the canvas’ size is the same as the display 
window’s frame. The client can update the coordinates of the display 
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corresponding to the resized window appropriately. reshape() is called at least 
once when program starts. Whenever reshape() is called, display() is called as 
well; 

• display() is called to initiate OpenGL rendering when program starts. It is called 
afterwards when reshape event happens; 

• displayChanged() is called when the display mode or the display device has been 
changed. Currently we do not use this event handler. 

3. canvas is added to frame to cover the whole display area. canvas will reshape with 
frame. 

4. gl is an interface handle to OpenGL methods. All OpenGL commands are prefixed 
with “gl” as well, so you will see OpenGL method like gl.glColor(). When we 
explain the OpenGL command, we often omit the interface handle. 

5. Here we set the physical size of frame and make its contents visible. Here the 
physical size corresponds to the number of pixels in x and y direction. The actual 
physical size also depends on the resolution of the display, which is measured in 
number of pixels per inch. At this point, the window frame appears. Depending on 
the JOGL version, the physical size may include the boarders, which is a little 
larger than the visible area that is returned as w and h in reshape(). 

6. The foreground drawing color is specified as a vector (red, green, blue). Here (1, 0, 
0) represents a red color. 

7. These methods specify the logical coordinates. For example, if we use the 
command glOrtho(0, width, 0, height, −1.0, 1.0), then the coordinates in frame (or 
canvas) will be 0 ≤ x ≤ width from the left side to the right side of the window, 0 ≤ 
y ≤ height from the bottom side to the top side of the window, and −1 ≤ z ≤ 1 in the 
direction perpendicular to the window. The z direction is ignored in 2D 
applications. It is a coincidence that the logical coordinates correspond to the 
physical (pixel) coordinates, because width and height are initially from frame’s 
WIDTH and HEIGHT. We can specify glOrtho(0, 100*WIDTH, 0, 100*HEIGHT, 
−1.0, 1.0) as well, then point (WIDTH/2, HEIGHT/2) will appear at the lower-left 
corner of the frame instead of the center of the frame. 
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8. These methods draw a point at (WIDTH/2, HEIGHT/2). The coordinates are logical 
coordinates not directly related to the canvas’ size. The width and height in 
glOrtho() are actual window size. It is the same as WIDTH and HEIGHT at the 
beginning, but if you reshape the window, they will be different, respectively. 
Therefore, if we reshape the window, the red point moves. 

In summary, when Frame is instantiated, constructor J1_0_Point() will create a 
drawable canvas, add event listener to it, attach the display to it, and get a handle to gl
methods from it. reshape() will set up the display’s logical coordinates in the window 
frame. display() will draw a point in the logical coordinates. When program starts, 
main() will be called, then frame instantiation, J1_0_Point(), setSize(), setVisible(), 
init(), reshape(), and dsplay(). reshape() and dsplay() will be called again and again if 
the user changes the display area. You may not find it, but a red point appears in the 
window. 

1.2.3 Drawing Randomly Generated Points

J1_1_Point extends J1_0_Point, so it inherits all the methods from J1_0_Point that 
are not private. We can reuse the constructor and some of the methods. 

/* draw randomly generated points */

import javax.media.opengl.*;
import com.sun.opengl.util.Animator;
import java.awt.event.*;

//built on J1_O_Point class
public class J1_1_Point extends J1_0_Point {
  static Animator animator; // drive display() in a loop
 

  public J1_1_Point() { 

    // use super's constructor to initialize drawing

    //1. specify using only a single buffer
    capabilities.setDoubleBuffered(false);
    
    //2. add a listener for window closing
    addWindowListener(new WindowAdapter() {
      public void windowClosing(WindowEvent e) {
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        animator.stop(); // stop animation
        System.exit(0);
      }
    });
  }

  // called one-time for OpenGL initialization
  public void init(GLAutoDrawable drawable) {

    // specify a drawing color: red
    gl.glColor3f(1.0f, 0.0f, 0.0f);

    //3. clear the background to black
    gl.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    //4. drive the display() in a loop
    animator = new Animator(canvas);
    animator.start(); // start animator thread
  }

  // called for OpenGL rendering every reshape
  public void display(GLAutoDrawable drawable) {
    //5. generate a random point
    double x = Math.random()*WIDTH;
    double y = Math.random()*HEIGHT;

    // specify to draw a point
    gl.glBegin(GL.GL_POINTS);
    gl.glVertex2d(x, y);
    gl.glEnd();
  }

  public static void main(String[] args) {
    J1_1_Point f = new J1_1_Point();

    //6. add a title on the frame
    f.setTitle("JOGL J1_1_Point");
    
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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1. J1_1_Point is built on (extends) the super (previous) class, so we can reuse its 
methods. The super class’s constructor is automatically called to initialize drawing 
and event handling. Here we specify using a single frame buffer. Frame buffer 
corresponds to the display, which will be discussed in the next section. 

2. The drawing area corresponding to the display is called the frame buffer, which is 
discussed in more detail in Section 1.3 on page 13. JOGL in default is using two 
buffers to represent the frame buffer, which is called double-buffering for 
animation, as discussed in detail in Section 1.5 on page 40. Here we just need a 
single buffer that corresponds to the frame buffer. 

3. In order to avoid window hanging, we add a listener for window closing and stop 
animation before exit. Animation (animator) will be discussed later. 

4. glClearColor() specifies the background color. OpenGL is a state machine, which 
means that if we specify the color, unless we change it, it will always be the same. 
Therefore, whenever we call glClear(), the background will be black unless we call 
glCearClor() to set it differently. 

5. Object animator is attached to canvas to drive its display() method in a loop. When 
animator is started, it will generate a thread to call display repetitively. A thread is 
a process or task that runs with current program concurrently. Java is a 
multi-threaded programming language that allows starting multiple threads. 
animator is stopped before window closing. 

6. A random point is generated. Because animator will run display() again and again 
in its thread, randomly generated points are displayed. 

In summary, the super class’ constructor, which is called implicitly, will create a 
drawable canvas, add event listener to it, and attach the display to it. reshape() will set 
up the display’s logical coordinates in the window frame. animator.start() will call 
display() multiple times in a thread. display() will draw a point in logical coordinates. 
When program starts, main() will be called, then red points appear in the window. 

1.2.4 Building an Executable JAR File

To facilitate sharing and deployment, we can generate an executable jar file for use 
with our JOGL applications as follows. 

1. Set up a working directory to build your jar file.
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2. Move all the necessary java class files into this directory, including all inheritance 
class files. For example, if you are to run program J1_1_Point, you should have 
your directory as follows: 

2008-01-07  08:31    <DIR>          .
2008-01-07  08:31    <DIR>          ..
2008-01-07  09:19             1,766 J1_1_Point.class
2008-01-06  18:10             2,190 J1_0_Point.class
2008-01-07  09:19               736 J1_1_Point$1.class
               3 File(s)          4,692 bytes

3. Create a text file “manifest-info.txt” in the same directory that contains the 
following information with a carriage return at the last line:

Class-Path: gluegen-rt.jar jogl.jar
Main-Class: J1_1_Point

The Class-Path entry should include any jar files needed to run this program (jogl.jar 
and gluegen-rt.jar). When you run your program, you must make sure that these jar 
files are in the same directory. The Main-Class entry tells Java system which file 
contains your main method. 

4. Execute the following in the same directory from the command line:

 > "C:\myJDK\bin\jar" -cfm myexe.jar manifest-info.txt *.class

This will create your jar file with the specified manifest information and all of the 
*.class files in this directory.  

5. Run your executable jar file: 

You should now have your executable jar file in this directory (myexe.jar). To run the 
file, you need to put the library jar files (jogl.jar and gluegen-rt.jar) in the same 
directory. You may want to put all the dll files in the same directory as well if they are 
not installed in the system. Your directory will contain the following files as in our 
example: 

2008-01-07  08:31    <DIR>          ..
2008-01-07  09:19             1,766 J1_1_Point.class
2008-01-06  18:10             2,190 J1_0_Point.class
2008-01-07  09:19               736 J1_1_Point$1.class
2008-01-07  09:46                61 manifest-info.txt
2008-01-07  09:46             3,419 myexe.jar
2007-04-22  02:00         1,065,888 jogl.jar
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2007-04-22  02:00            17,829 gluegen-rt.jar
2007-04-22  02:00            20,480 gluegen-rt.dll
2007-04-22  02:00           315,392 jogl.dll
2007-04-22  02:00            20,480 jogl_awt.dll
              10 File(s)      1,448,241 bytes

Now you can either double-click on the jar file in Windows interface environment or 
execute it on a command line with: 

> "C:\myJDK\bin\java" -jar myexe.jar

To get additional help or learn more on this topic you may visit the following place: 
http://java.sun.com/docs/books/tutorial/deployment/jar/index.html

1.3 Frame Buffer, Scan-conversion, and Clipping

The graphics system digitizes a specific model into a frame of discrete color points 
saved in a piece of memory called the frame buffer. This digitalization process is 
called scan-conversion. Sometimes drawing or rendering is used to mean 
scan-conversion. However, drawing and rendering are more general terms that do not 
focus on the digitalization process. The color points in the frame buffer will be sent to 
the corresponding pixels in the display device by a piece of hardware called the video 
controller. Therefore, whatever is in the frame buffer corresponds to the image on the 
screen. The application program accepts user input, manipulates the models (creates, 
stores, retrieves, and modifies the descriptions), and produces an image through the 
graphics system. The display is also a window for us to manipulate the model behind 
the image through the application program. A change on the display corresponds to a 
change in the model. A programmer’s tasks concern mostly creating the model, 
changing the model, and handling user interaction. OpenGL (JOGL) and Java 
functions are the interfaces between the application program and the graphics 
hardware (Fig. 1.1). 

Before using more JOGL primitive drawing functions directly, let’s look at how these 
functions are implemented. Graphics libraries may be implemented quite differently, 
and many functions can be implemented in both software and hardware. 
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 Fig. 1.1 A conceptual graphics system
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/* draw randomly generated lines with -1<m<1 */

import javax.media.opengl.*;

public class J1_2_Line extends J1_1_Point {

  // use super's constructor to initialize drawing

  // called for OpenGL rendering every reshape
  public void display(GLAutoDrawable drawable) {
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      x0 = (int)(Math.random()*WIDTH);
      y0 = (int)(Math.random()*HEIGHT);
      xn = (int)(Math.random()*WIDTH);
      yn = (int)(Math.random()*HEIGHT);
      dx = xn-x0;
      dy = yn-y0;

      if (x0>xn) {
        dx = -dx;
      }
      if (y0>yn) {
        dy = -dy;
      }
    } while (dy>dx);

    //2. draw a green line
    gl.glColor3f(0, 1, 0);
    line(x0, y0, xn, yn);
  }

  // scan-convert an integer line with slope -1<m<1
  void line(int x0, int y0, int xn, int yn) {
    int x;
    float m, y;

    m = (float)(yn-y0)/(xn-x0);

    x = x0;
    y = y0;

    while (x<xn+1) {
      //3. write a pixel into framebuffer
      drawPoint(x, y);
      x++;
      y += m; /* next pixel's position */
    }
  }

  public void drawPoint(double x, double y) {

  gl.glBegin(GL.GL_POINTS);
  gl.glVertex2d(x, y);
  gl.glEnd();
}

  public static void main(String[] args) {



16          1 Introduction

    J1_2_Line f = new J1_2_Line();

    f.setTitle("JOGL J1_2_Line");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Because this program is a subclass of J1_1_Point, it inherits all the methods of 
J1_1_Point. The constructor function, init(), reshape(), and some other methods are 
all inherited. In other words, although we don’t have these methods in this program, 
they are available from its superclass J1_1_Point, and can be called (executed) 
accordingly. For example, at initialization “J1_2_Line f = new J1_2_Line();”, 
J1_1_Point’s constructor will be called, then in turn J1_0_Point’s constructor will be 
called, which initializes canvas, gl handle, and so on. In any case, constructing an 
instance of a class invokes all the superclasses along the inheritance chain. For any 
other methods, there is no chaining. For example, after the above initialization, 
J1_1_Point’s init() will be called. That is, subclass J1_1_Point’s init() overrides its 
superclass J1_0_Point’s init(). 

Bresenham1 developed a line 
scan-conversion algorithm using only 
integer operations, which can be 
implemented very efficiently in 
hardware. Let’s assume pixel (xp, yp) is 
on the line and 0≤m≤1 (Fig. 1.2). Which 
pixel should we choose next: E or NE? 
The line equation is y = mx + B, i.e. F(x, 
y) = ax + by + c = 0, where a = dy = (yn
− y0), b = −dx = −(xn − x0)<0, and c = 
B*dx. Because b<0, if y increases, F(x, 
y) decreases, and vice versa. Therefore, 
if the midpoint M(xm, ym) between pixels NE and E is on the line, F(xm, ym) = 0; if 
M(xm, ym) is below the line, F(xm, ym)>0; and if M(xm, ym) is above the line, F(xm, 
ym)<0. 

1. Bresenham, J. E., “Algorithm for Computer Control of Digital Plotter,” IBM Systems Journal, 4 (1), 
1965, 25–30.

(xp, yp)
M (xm, ym)

Q

E

NE

 Fig. 1.2 Find the next pixel: E or NE
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If F(xm, ym)>0, Q is above M(xm, ym), we choose NE; otherwise we choose E. 
Therefore, F(xm, ym) is a decision factor: dold. From dold, we can derive the decision 
factor dnew for the next pixel. We can see that xm = xp+1 and ym = yp + 1/2. Therefore 
we have:

dold = F(xm, ym) = F(xp+1, yp+1/2) = F(xp, yp) + a+b/2 = a+b/2. (EQ 1)

If dold≤0, E is chosen, the next middle point is at (xp+2, yp+1/2):

dnew = F(xp+2, yp+1/2) = dold + a. (EQ 2)

If dold>0, NE is chosen, the next middle point is at (xp+2, yp+3/2):

dnew = F(xp+2, yp+3/2) = dold + a+b. (EQ 3)

We can see that only the initial dold is not an integer. If we multiply by 2 on both sides 
of Equations 1, 2, and 3, all decision factors are integers. Note that if a decision factor 
is greater/smaller than zero, multiplying it by 2 does not change the fact that it is still 
greater/smaller than zero. So the decision remains the same. Let dE = 2dy, dNE = 2(dy 
− dx), and dold = 2dy − dx: 

If E is chosen, dnew = dold + dE; (EQ 4)

If NE is chosen, dnew = dold + dNE. (EQ 5)

Therefore, in the line scan-conversion algorithm, the arithmetic needed to evaluate 
dnew for any step is a simple integer addition. 

// Bresenham's midpoint line algorithm for m<1
void line(int x0, int y0, int xn, int yn) { 

 int dx, dy, incrE, incrNE, d, x, y;

 x = x0; y = y0; d = 2 * dy - dx;
 incrE = 2 * dy; incrNE = 2 * (dy - dx);

 while (x < xn + 1) {
 writepixel(x, y); /* write frame buffer */
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 x++; /* consider next pixel */
 if (d <= 0) {

 d += incrE;
 } else {

 y++;
 d += incrNE;

 }
 }

}

We need to consider the cases in which the line’s slope is in an arbitrary orientation. 
Fortunately, an arbitrary line can be mapped into the case above through a mirror 
around x axis, y axis, or the diagonal line (m = 1). The following is an implementation 
of Bresenham’s algorithm that handles all these cases. 

/* use Bresenham's algorithm to draw lines */
import javax.media.opengl.*;
//import net.java.games.jogl.*;

public class J1_3_Line extends J1_2_Line {

  // called for OpenGL rendering every reshape
  public void display(GLAutoDrawable drawable) {

    //generate a random line;
    int x0 = (int)(Math.random()*WIDTH);
    int y0 = (int)(Math.random()*HEIGHT);
    int xn = (int)((Math.random()*WIDTH));
    int yn = (int)(Math.random()*HEIGHT);

    // draw a white line using Bresenham's algorithm
    gl.glColor3f(1, 1, 1);
    bresenhamLine(x0, y0, xn, yn);
  }

  // Bresenham's midpoint line algorithm
  void bresenhamLine(int x0, int y0, int xn, int yn) {
    int dx, dy, incrE, incrNE, d, x, y, flag = 0;

    if (xn<x0) {
      //swapd(&x0,&xn);
      int temp = x0;
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      x0 = xn;
      xn = temp;

      //swapd(&y0,&yn);
      temp = y0;
      y0 = yn;
      yn = temp;
    }
    if (yn<y0) {
      y0 = -y0;
      yn = -yn;
      flag = 10;
    }

    dy = yn-y0;
    dx = xn-x0;

    if (dx<dy) {
      //swapd(&x0,&y0);
      int temp = x0;
      x0 = y0;
      y0 = temp;

      //swapd(&xn,&yn);
      temp = xn;
      xn = yn;
      yn = temp;

      //swapd(&dy,&dx);
      temp = dy;
      dy = dx;
      dx = temp;

      flag++;
    }

    x = x0;
    y = y0;
    d = 2*dy-dx;
    incrE = 2*dy;
    incrNE = 2*(dy-dx);

    while (x<xn+1) {
      writepixel(x, y, flag); /* write framebuffer */

      x++; /* consider next pixel */
      if (d<=0) {
        d += incrE;
      } else {
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        y++;
        d += incrNE;
      }
    }
  }

  void writepixel(int x, int y, int flag) {
    double xf = x, yf = y;

    if (flag==1) {
      xf = y;
      yf = x;
    } else if (flag==10) {
      xf = x;
      yf = -y;
    } else if (flag==11) {
      xf = y;
      yf = -x;
    }
    drawPoint(xf, yf);
  }

  public static void main(String[] args) {
    J1_3_Line f = new J1_3_Line();

    f.setTitle("JOGL J1_3_Line");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

As we can see, a line can be scan-converted in many different ways. Researchers have 
invented more than 50 different ways of scan-converting a line with properties and 
advantages under certain conditions. The graphics library only adopts the winners. Of 
course, OpenGL has a line scan-conversion function. To draw a line, we can simply 
call 

gl.glBegin(GL.GL_LINES);
gl.glVertex2i(x0,y0);
gl.glVertex2i(xn,yn);

glEnd();
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1.3.2 Scan-converting Circles and Other Curves

Although the above example (J1_3_Line.java) is really a simulation, because the 
program does not directly manipulate the frame buffer, it does help us understand the 
scan-conversion process. Given a line equation, we can scan-convert the line by 
calculating and drawing all the pixels corresponding to the equation in the frame 
buffer. Similarly, given a circle equation, we can calculate and draw all the pixels of 
the circle into the frame buffer. This applies to all different types of curves. To speed 
up the scan-conversion process, we often use short lines to approximate short curve 
segments. Therefore, a curve can be approximated by a sequence of short lines. As 
line scan-conversion, there are many different ways of scan-conversion for curves and 
other primitives. 

As an example, a simple 2D circle equation with radius (r) and centered at (cx, cy) can 
be expressed in parametric function as: 

x = r*cos(θ)+cx; (EQ 6)

y = r*sin(θ)+cy; (EQ 7)

For θ changes from 0 to 2π, we can draw line segments to approximate a circle: 

/* draw a circle */
import javax.media.opengl.*;
//import net.java.games.jogl.*;

public class J1_3_CircleLine extends J1_3_Line {

  // called for OpenGL rendering every reshape
  public void display(GLAutoDrawable drawable) {

    // a blue circle 
gl.glColor3f(0, 0, 1);

    circle(WIDTH/2, HEIGHT/2, HEIGHT/4);
  }

  // Our circle algorithm: center (cx, cy); radius: r
  void circle(double cx, double cy, double r) {
    double xn, yn, theta = 0;   
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    double x0 = r*Math.cos(theta)+cx;
    double y0 = r*Math.sin(theta)+cy;

    while (theta<2*Math.PI) {
    theta = theta + 0.5; 
         xn = r*Math.cos(theta)+cx;
         yn = r*Math.sin(theta)+cy;
         bresenhamLine((int)x0, (int)y0, (int)xn, (int)yn);
        x0 = xn; 
        y0 = yn; 
    }
  }

  public static void main(String[] args) {
    J1_3_CircleLine f = new J1_3_CircleLine();

    f.setTitle("JOGL J1_3_CircleLine");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

As we can see, we use line segment to approximate a curve. If we draw a complete 
circle with pixels only, which will be accurate but slower, we need to find how many 
pixels we need to draw. Given a radius (r) in device coordinates, the perimeter is 2πr
in pixels. Therefore, we need a delta angle of 1/r to calculate new pixel locations: 

theta = theta + 1/r; 

1.3.3 Scan-converting Triangles and Polygons

A wireframe object is an object composed of only lines and curves without filled 
surfaces. Because a wireframe polygon is composed of line segments, we extend to 
discuss scan-converting filled triangles and polygons. Given three vertices 
corresponding to a triangle, we have three lines (edges). Because we can find all the 
pixels on the lines, we can scan-convert the triangle by drawing all pixels between the 
pixel pairs on different edges that have the same y coordinates. In other words, we can 
find the intersections of each horizontal line (called a scan-line) on the edges of the 
triangle and fill the pixels between the intersections that lie in the interior of the 
triangle. 
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The following is an implementation example of scan-converting a triangle. For 
scan-line yi, the next scan-line will be yi+1 = yi + 1. That is, the next horizontal 
scan-line will increase by one pixel from previous scan-line. We can derive how to 
calculate the corresponding x on an edge of the triangle. According to a line equation y 
= mx + b, where m is the slope of the line and b is a constant, we have: 

yi = mxi + b (EQ 8)

yi+1 = mxi+1 + b (EQ 9)

We know that

yi+1 = yi + 1 (EQ 10)

Putting Equation 8 and Equation 9 into Equation 10, we can arrive at: 

xi+1 = xi + 1/m (EQ 11)

That is, we can iteratively find end points of the horizontal scan-lines on the edges of 
the triangle along y to fill the triangle. 

/* draw a randomly generated filled triangle */

import javax.media.opengl.GL;
import javax.media.opengl.GLAutoDrawable;

public class J1_3_Triangle extends J1_3_Line {

public void display(GLAutoDrawable drawable) {
// generate a random triangle and display
int v[][] = new int[3][3];

for (int i = 0; i < 3; i++) { // three random vertices
v[i][0] = (int) (WIDTH * Math.random());
v[i][1] = (int) (HEIGHT * Math.random());
v[i][2] = 0;

}



24          1 Introduction

// scan-convert the triangle
drawtriangle(v);

// draw edges of the triangle
bresenhamLine(v[0][0], v[0][1], v[1][0], v[1][1]);
bresenhamLine(v[1][0], v[1][1], v[2][0], v[2][1]);
bresenhamLine(v[2][0], v[2][1], v[0][0], v[0][1]);

try {
Thread.sleep(100); // wait 100 ms for examination

} catch (Exception ignore) {
}

}

public void drawtriangle(int[][] v) {
int ymin = 0, ymid = 0, ymax = 0; 
// 3 vertices' y location

// 1. sort the vertices along y
if (v[0][1] < v[1][1]) { // 201; 021; 012

if (v[0][1] < v[2][1]) { // 021 or 012
ymin = 0;
if (v[1][1] < v[2][1]) { // 012
ymid = 1;
ymax = 2;
} else { // 021
ymid = 2;
ymax = 1;
}

} else {// 201
ymin = 2;
ymid = 0;
ymax = 1;

}
} else { // 210; 120; 102

if (v[1][1] < v[2][1]) { // 120; 102
ymin = 1;
if (v[0][1] < v[2][1]) { // 102
ymid = 0;
ymax = 2;
} else { // 120
ymid = 2;
ymax = 0;
}

} else {// 210
ymin = 2;
ymid = 1;
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ymax = 0;
}

}

// 2. Calculate 1/m for each edges
// Given y, when y = y + 1, x = x + 1/m on an edge
float m_nd = 0, m_nx = 0, m_dx = 0; 
// 1/m of min-mid; min-max; mid-max edges
float x1 = v[ymin][0], x2 = v[ymin][0];
int y = v[ymin][1], dy;

// calculate 1/m for min-max edge
if ((dy = v[ymax][1] - v[ymin][1]) > 0)

m_nx = (float) (v[ymax][0] - v[ymin][0]) / dy;
else

return; // trivial; triangle has no size

// calculate 1/m for min-mid edge
if ((dy = v[ymid][1] - v[ymin][1]) > 0) {

m_nd = (float) (v[ymid][0] - v[ymin][0]) / dy;

} else { // flat bottom
x1 = v[ymid][0];

}

// calculate 1/m for mid-max edge
if ((dy = v[ymax][1] - v[ymid][1]) > 0) {

m_dx = (float) (v[ymax][0] - v[ymid][0]) / dy;

} else { // flat top
}

//3. For each y, draw a horizontal line 
//between x1 and x2 on the two edges
for (y = v[ymin][1]; y < v[ymid][1]; y++) {

// for each scan-line

span((int) x2, (int) x1, y);
x1 = x1 + m_nd;
x2 = x2 + m_nx;

}

for (y = v[ymid][1]; y < v[ymax][1]; y++) {
// for each scan-line

span((int) x2, (int) x1, y);
x1 = x1 + m_dx;
x2 = x2 + m_nx;

}
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}

// draw a horizontal line
void span(int x2, int x1, int y) {

if (x1 > x2) {
int tmp = x2;
x2 = x1;
x1 = tmp;

}
for (int x = x1; x < x2; x++) {

gl.glColor3d(Math.random(), Math.random(), 
Math.random()); // randomly generated pixel colors

drawPoint(x, y);
}
gl.glColor3d(1, 1, 1);

}

public static void main(String[] args) {
J1_3_Triangle f = new J1_3_Triangle();

f.setTitle("J1_3_Triangle - draw triangle");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}

}

If we can scan-convert a triangle, we can scan-convert a polygon because a polygon 
can be divided into triangles. Also, we can develop a general polygon scan-conversion 
algorithm extending the triangle algorithm as follows. For each y from the bottom to 
the top of the display window, we can find all the points on the polygon edges that 
have the same y coordinates. Then we order the edge points from left to right 
according to their current x coordinates. If we draw a horizontal scan-line, the first 
(third, fifth, etc.) edge point is where we enter the polygon, the second (fourth, sixth, 
etc.) edge point is where we leave the polygon, and so on. We can scan-convert the 
polygon by drawing all pixels between the odd-even point pairs on different edges that 
have the same y coordinates. In other words, we can find the intersections of each 
scan-line with the edges of the polygon and fill the pixels between the intersections 
that lie in the interior of the polygon. 

The following is an algorithm example for general polygon scan-conversion. Given a 
list of vertices, we can build a data structure called an Edge Table as shown in Fig. 1.3. 
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An Edge Table has entries corresponding to each possible horizontal scan-line, but 
only some entries are stored with edge items. For a pair of vertices (x, ymin) and (x’, 
ymax), where ymin<ymax, the corresponding edge item is saved in the Edge Table as 
follows: 

 

 Fig. 1.3 General polygon scan-conversion algorithm: Edge Table

1. ymin is the index to the edge item structure in the edge table. In other words, if we 
search the Edge Table by going from y=0 and y = y+1 until the end, the current 
item we encounter in the Edge Table is always the lower end starting point of an 
edge in the polygon. Multiple edges with the same ymin are linked together in the 
same index slot. 

2. For each edge item in the data structure, the first slot is ymax, which is checked to 
decide the end of the edge or the end of scan-converting the edge if our current 
scan-line is ymax. 

3. The next two slots are the x coordinate of vertex (x, ymin) and the inverse of the 
edge’s slope. The information is used to find the next point on the edge for the next 
scan-line (Equation 11 on page 23). 

After constructing the Edge Table, we can start scan-conversion by going through 
each scan-line from y=0 until the end of Edge Table: 

1. For the current y, if there are items in the Edge Table, move them into a linked list 
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2. y = y+1. Remove those items in the Active Edge Table that ymax = y, and update x
by x = x + 1/m. As we know, 1/m is just next to x in the edge item. 

3. Repeat Step 1 and 2 until there is no item in the Edge Table and Active Edge Table. 

Fig. 1.4 is an example of polygon scan-conversion process steps according to Fig. 1.3. 
You may have noticed that when y=ymax and there is no entry at y in the Edge Table, 
we reach the end of the primitive. we need to draw an extra pixel or line before 
removing the pair of edges from the Active Edge Table. 

The general concept of polygon scan-conversion is important because many other 
functions are related to its operations. For example, when we talk about 
hidden-surface removal or lighting later in the book, we need to calculate each pixel’s 
depth or color information during scan-converting a pixel into the frame buffer. 

A graphics library provides basic primitive functions. For example, OpenGL draws a 
convex polygon with the following commands:

gl.glBegin(GL.GL_POLYGON);
// a list of vertices
...

gl.glEnd();

A convex polygon means that all the angles inside the polygon formed by the edges 
are smaller than 180 degrees. If a polygon is not convex, it is concave. Convex 
polygons can be scan-converted faster than concave polygons. 

In summary, different scan-conversion algorithms for a graphics primitive (line, 
polygon, etc.) have their own merits. If a primitive scan-conversion function is not 
provided in a graphics library, we know now that we can create one or implement an 
existing one.
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 Fig. 1.4 General polygon scan-conversion algorithm: Active Edge Table
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1.3.4 Scan-converting Characters

Characters are polygons. However, they are used so often that we prefer saving the 
polygon shapes in a library called the font library. The polygons in the font library are 
not represented by vertices. Instead, they are represented by bitmap font images — 
each character is saved in a rectangular binary array of pixels, called a bitmap. The 
shapes in small bitmaps do not scale well. Therefore, more than one bitmap must be 
defined for a given character for different sizes and type faces. Bitmap fonts are 
loaded into a font cache (fast memory) to allow quick retrieval. Displaying a character 
is simply copying its image from the font cache into the frame buffer at the desired 
position. During the copying process, colors may be used to draw into the frame buffer 
replacing the 1s and 0s in the bitmap font images.  

Another method of describing character shapes is using straight lines and curve 
sections. These fonts are called outline fonts. Outline fonts require less storage 
because each variation does not require a distinct font cache. However, the scaled 
shapes for different font sizes may not be pleasing to our eyes, and it takes more time 
to scan-convert the characters into the frame buffer. 

Although the idea is simple, accessing fonts is often platform-dependent. JOGL’s 
Class GLUT provides a simple platform-independent subset of bitmap and stroke font 
methods in 3D environment. glutBitmapCharacter() will draw a bitmap character at 
the current raster position. The current raster position is a point (x, y, z) in the viewing 
volume, which is specified by glRasterPos3f(x, y, z). glutBitmapString() will draw a 
string of bitmap characters at the current raster position. glutStrokeCharacter() will 
draw a stroke character at the current raster position. glutStrokeString() will draw a 
string of stroke characters at the current raster position. The stroke fonts are simple 
outline fonts, which are transformed like 3D objects. Transformation will be discussed 
in the next chapter. 

/*draw bitmap and stroke characters and strings */

import javax.media.opengl.*;
import com.sun.opengl.util.*;

public class J1_3_xFont extends J1_3_Triangle {
static GLUT glut = new GLUT();
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// called for OpenGL rendering every reshape
public void display(GLAutoDrawable drawable) {

//generate a random line;
int x0 = (int) (Math.random() * WIDTH);
int y0 = (int) (Math.random() * HEIGHT);
int xn = (int) ((Math.random() * WIDTH));
int yn = (int) (Math.random() * HEIGHT);

// draw a yellow line
gl.glColor3f(1, 1, 0);
bresenhamLine(x0, y0, xn, yn);

gl.glRasterPos3f(x0, y0, 0); // start position
glut.glutBitmapCharacter(GLUT.BITMAP_HELVETICA_12, 

's');
glut.glutBitmapString(GLUT.BITMAP_HELVETICA_12, 

"tart");

gl.glPushMatrix();
gl.glTranslatef(xn, yn, 0); // end position
gl.glScalef(0.2f, 0.2f, 0.2f);
glut.glutStrokeCharacter(GLUT.STROKE_ROMAN, 'e');
glut.glutStrokeString(GLUT.STROKE_ROMAN, "nd");
gl.glPopMatrix();

// display() sleeps 100 ms to slow down the rendering
try {

Thread.sleep(100);
} catch (Exception ignore) {
}

}

public static void main(String[] args) {
J1_3_xFont f = new J1_3_xFont();

f.setTitle("JOGL J1_3_xFont");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

1.3.5 Clipping: Points, Lines, and Polygons

When a graphics system scan-converts a model, the model may be much larger than 
the display area. The display is a window used to look at a portion of a large model. 
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Clipping algorithms are necessary to clip the model and display only the portion that 
fits the window. For a point, it is simple to decide if it is within a rectangular area. 

/* point clipping inside a window */
import javax.media.opengl.*;
import com.sun.opengl.util.*;

public class J1_3_windowClipping extends J1_3_Triangle {
static GLUT glut = new GLUT();

  double lLeft[] = {WIDTH/8, HEIGHT/4, 0};
  double uRight[] = {7*WIDTH/8, 3*HEIGHT/4, 0};

  public void display(GLAutoDrawable drawable) {

  super.display(drawable);

    // draw the clipping window
      gl.glBegin(GL.GL_LINE_LOOP);
      gl.glVertex2d(lLeft[0]-1, lLeft[1]-1);
      gl.glVertex2d(uRight[0]+1, lLeft[1]-1);
      gl.glVertex2d(uRight[0]+1, uRight[1]+1);
      gl.glVertex2d(lLeft[0]-1, uRight[1]+1);
      gl.glEnd();
  }

  public void drawPoint(double x, double y) {

      // clip against the window
      if (x<lLeft[0]||x>uRight[0])  {
       return;
      }
      if (y<lLeft[1]||y>uRight[1]) {
        return;
      }

      super.drawPoint(x, y);

  }

public static void main(String[] args) {
J1_3_windowClipping f = new J1_3_windowClipping();

f.setTitle("JOGL J1_3_windowClipping");
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f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

For line clipping, if a line’s two end points are inside the clipping window, then the 
clipping is trivially done. Otherwise, we can cut the line into sections at the 
boundaries of the clipping window, and keep only the section that lies inside the 
window. 

For polygon clipping, we can walk around the vertices of the polygon. If a polygon’s 
edge lies inside the clipping window, the vertices are accepted for the new polygon. 
Otherwise, we can throw out all vertices outside a window boundary, cut the two 
edges that go out of and into a window boundary, and generate two new vertices along 
a window boundary between the two edges to replace the vertices that are outside a 
window boundary. The clipped polygon has all vertices in the window after the four 
boundaries are processed. 

In OpenGL, we only need clipping against primitives (points, lines, and polygons), 
because all other objects are really reduced into the primitives before scan-conversion. 
There are clipping algorithms for the primitives against other shapes than a window 
area. In addition to primitive 2D rectangular clipping, clipping algorithms have also 
been developed to cut models in 3D volumes. 

1.4 Attributes and Antialiasing

In general, any parameter that affects the way a primitive is to be displayed is referred 
to as an attribute parameter. For example, a line’s attributes include color, intensity (or 
brightness), type (solid, dashed, dotted), width, cap (shape of the end points: butt, 
round, etc.), join (miter, round, etc.), and so forth.

The display and the corresponding frame buffer are discrete. Therefore, a line, curve, 
or an edge of a polygon is often like a zigzag staircase. This is called aliasing. We can 
display the pixels at different intensities to relieve the aliasing problem. Methods to 
relieve aliasing are called antialiasing methods, and we introduce several below. In 
order to simplify the discussion, we only consider line antialiasing. Polygon 
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antialiasing is similar to line antialiasing, except it deals with only one side of the lines 
(edges) of polygons. 

1.4.1 Area Sampling

A displayed line has a width. Here we simply consider a line as a rectangular area 
overlapping with the pixels (Fig. 1.5a). We may display the pixels with different 
intensities or colors to achieve the effect of antialiasing. For example, if we display 
those pixels that are partially inside the rectangular line area with colors between the 
line color and the background color, the line looks less jaggy. Fig. 1.5b shows parallel 
lines that are drawn with or without antialiasing. Area sampling determines a pixel 
intensity by calculating the overlap area of the pixel with the line. 

Unweighted area sampling determines the pixel intensity by the overlap area only. For 
unweighted area sampling, if a pixel is not completely inside or outside the line, it is 
cut into two or more areas by the boundaries of the rectangular line area. The portion 
inside the line determines the pixel intensity. 

Similarly, weighted area sampling allows equal areas within a pixel to contribute 
unequally: an area closer to the pixel’s center has greater influence on the pixel’s 
intensity than an equal area further away from the pixel’s center. Let’s assume the 
drawing area is a flat surface tiled with pixels. For weighted area sampling, we assume 
each pixel is sat by a 3D solid cone (called a cone filter) or a bun-shaped volume 
(Gaussian filter) with the flat bottom occupying the pixel. The bottom of the cone may 
even be bigger than the pixel itself, so the cones or bun-shaped volumes are 
overlapping one another. The boundaries of the rectangular line area cut through the 
cone in the direction perpendicular to the display, and the portion (volume) of the cone 
inside the line area determines the corresponding pixel’s intensity. The center area in 
the pixel is thicker (higher) than the boundary area of the pixel and thus has more 
influence on the pixel’s intensity. Also, you can see that if the bottom of the cone is 
bigger than the pixel, the pixel’s intensity is affected even though the line only passes 
by without touching the pixel.



1.4  Attributes and Antialiasing          35

 Fig. 1.5 Antialiasing: area sampling

1.4.2 Antialiasing a Line with Weighted Area Sampling

For weighted area sampling, calculating a pixel’s intensity according to the cone filter 
or Gaussian filter takes time. Instead, we can build up an intensity table and use the 
distance from the center of the pixel to the center of the line as an index to find the 
intensity for the pixel directly from the table. The intensities in the table are 
precalculated according to the filter we use and the width of the line. The following is 
an implementation of scan-converting an antialiased line. 

If we assume the distance from the current pixel to the line is D, then the distances 
from the E, S, N, and NE pixels can be calculated, respectively. The distances are 
shown in Fig. 1.6. (The distances from the pixels above the line are negatively labeled, 
which are useful for polygon edge antialiasing.) We can modify Bresenham’s 
algorithm to scan-convert an antialiased line. The distances from the pixels closest to 
the line are calculated iteratively. 

Given a point (x, y), the function IntensifyPixel() will look up the intensity level of the 
point according to the index D and draw the pixel (x, y) at its intensity into the frame 
buffer. In our example, instead of building up a filter table, we use a simple equation 
to calculate the intensity. Here we implement a three-pixel wide antialiased line 
algorithm as an example. 

(b) Parallel lines with or without antialiasing(a) A line is a rectangular area
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In Bresenham’s algorithm, the distance from the center of the pixel to the center of the 
line is . Therefore, the distance from N (the pixel above the current pixel) is 

, and the distance from S is . Given the current 
pixel’s color (r, g, b), we can modify the intensity by (r1, g1, b1), where r1 = r*(1 −
D/1.5), g1 = g*(1 − D/1.5), and b1 = b*(1 − D/1.5). When a pixel is exactly on the 
line (D = 0), the pixel’s intensity is not changed. When a pixel is far away from the 
center of the line (D = 1.5), the pixel’s intensity is modified to (0, 0, 0). Therefore, the 
pixels have different intensity levels depending on their distances from the center of 
the line. Here, we assume the background color to be black. If otherwise, we need to 
know the background color, and linearly blend the foreground with background: r = 
rf*(1 − D/1.5) + rb*D/1.5. Here r is the final red color component, rf is the foreground 
color component, and rb is the background color component. The equation is the same 
for green and blue color components. The background color can be read from the 
destination (frame buffer). 

 Fig. 1.6 Iteratively calculate the distances from the pixels to the line
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The following example (J1_4_Line.java) implements Bresenham’s algorithm with 
antialiasing. The program draws randomly generated lines of 3 pixel width, as shown 
in Fig. 1.7. 

/* scan-convert randomly generated lines with antialiasing */

import javax.media.opengl.*;

public class J1_4_Line extends J1_3_xFont {
private float r, g, b;

// called for OpenGL rendering every reshape
public void display(GLAutoDrawable drawable) {

// generate a random line;
int x0 = (int) (Math.random() * WIDTH);
int y0 = (int) (Math.random() * HEIGHT);
int xn = (int) ((Math.random() * WIDTH));
int yn = (int) (Math.random() * HEIGHT);

// generate a random color for this line
r = (float) ((Math.random() * 9)) / 8;
g = (float) ((Math.random() * 9)) / 8;
b = (float) ((Math.random() * 9)) / 8;

gl.glColor3f(r, g, b);
// draw a three pixel antialiased line
antialiasedLine(x0, y0, xn, yn);

// sleep to slow down the rendering
try {

Thread.sleep(200);
} catch (Exception ignore) {
}

}

public void reshape(GLAutoDrawable drawable, int x, int y, 
int width,int height) {

WIDTH = width; // new width and height saved
HEIGHT = height;
gl.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
gl.glClear(GL.GL_COLOR_BUFFER_BIT);
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// specify the drawing area (frame) coordinates
gl.glMatrixMode(GL.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrtho(0, width, 0, height, -1.0, 1.0);

}

// draw pixel with intensity by its distance to the line
void IntensifyPixel(int x, int y, float D, int flag) {

float d, r1, g1, b1;

if (D < 0) {
d = -D; // negative if the pixel is above the line

} else {
d = D;

}

// calculate intensity according to the distance d
r1 = (float) (r * (1 - d / 1.5));
g1 = (float) (g * (1 - d / 1.5));
b1 = (float) (b * (1 - d / 1.5));

gl.glColor3f(r1, g1, b1);
writepixel(x, y, flag);

}

// scan-convert a 3 pixel wide antialiased line
void antialiasedLine(int x0, int y0, int xn, int yn) {

int dx, dy, incrE, incrNE, d, x, y, flag = 0;
float D = 0, sin_a, cos_a, sin_cos_a, Denom;

if (xn < x0) {
// swapd(& x0, & xn);
int temp = x0;
x0 = xn;
xn = temp;
// swapd(& y0, & yn);
temp = y0;
y0 = yn;
yn = temp;

}

if (yn < y0) {
y0 = -y0;
yn = -yn;
flag = 10;

}
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dy = yn - y0;
dx = xn - x0;
if (dx < dy) {

// swapd(& x0, & y0);
int temp = x0;
x0 = y0;
y0 = temp;
// swapd(& xn, & yn);
temp = xn;
xn = yn;
yn = temp;
// swapd(& dy, & dx);
temp = dy;
dy = dx;
dx = temp;

flag++;
}

x = x0;
y = y0;
d = 2 * dy - dx; // decision factor
incrE = 2 * dy;
incrNE = 2 * (dy - dx);

Denom = (float) Math.sqrt((double) (dx * dx + dy * dy));
sin_a = dy / Denom;
cos_a = dx / Denom;
sin_cos_a = sin_a - cos_a;

while (x < xn + 1) {
IntensifyPixel(x, y, D, flag);
IntensifyPixel(x, y + 1, D - cos_a, flag); // N
IntensifyPixel(x, y - 1, D + cos_a, flag); // S

x++;
// consider the next pixel
if (d <= 0) {

D += sin_a; // distance to the line from E
d += incrE;

} else {
D += sin_cos_a; // distance to the line: NE
y++;
d += incrNE;

}
}

}
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public static void main(String[] args) {
J1_4_Line f = new J1_4_Line();

f.setTitle("JOGL J1_4_Line");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

 Fig. 1.7 Draw randomly generated lines with antialiasing [See Color Plate 1]

1.5 Double-buffering for Animation

A motion picture effect can be achieved by projecting images at 24 frames per second 
on a screen. Animation on a computer can be achieved by drawing or refreshing 
frames of different images. Here, the display refresh rate is the speed of reading from 
the frame buffer and sending the pixels to the display by the video controller. A 
refresh rate at 60 (frames per second) is smoother than one at 30, and 120 is 
marginally better than 60. Refresh rates faster than 120 frames per second are not 
necessary, because the human eye cannot tell the difference. Let’s assume that the 
refresh rate is 60 frames per second. We can then build an animation program as 
follows: 
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open_window_with_single_buffer_mode();

for (i = 0; i < 100; i++) {
clear_buffer();
draw_frame(i);
wait_until_1/60_of_a_second_is_over();

}

Items drawn first are visible for the full 1/60 second; items drawn toward the end are 
instantly cleared as the program starts on the next frame. This causes the display to 
present a blurred or jittered animation. 

To solve this problem, we can have two frame buffers instead of one, which is known 
as double-buffering. One frame buffer named the front buffer is being displayed while 
the other, named the back buffer, is being drawn for scan-converting models. When the 
drawing of a frame is complete, the two buffers are swapped. That is, the back buffer 
becomes the front buffer for display, and the front buffer becomes the back buffer for 
scan-conversion. The animation program looks as follows:

open_window_with_double_buffer_mode();

for (i = 0; i < 100; i++) {
clear_back_buffer();
draw_frame_into_back_buffer(i);
wait_until_1/60_of_a_second_is_over();
swap_buffers();

}

JOGL uses capabilities.setDoubleBuffered(true) to specify the display with double 
buffers. Animator drives the display() method in a loop. When it is running in double 
buffer mode, it swaps the front and back buffers automatically by default, displaying 
the results of the rendering. You can turn automatic swapping off by the following 
method: drawable.setAutoSwapBufferMode(false). Then, the programmer is 
responsible for calling drawable.swapBuffers() manually. 

What often happens is that a frame is too complicated to draw in 1/60 second. If this 
happens, each frame in the frame buffer is displayed more than once and the display 
refresh rate is still 1/60. However, the image frame rate is much lower, and the 
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animation could be jittering. The image frame rate depends on how fast frames of 
images are scan-converted, which corresponds to the rate of finishing drawing in the 
frame buffer. To achieve smooth animation, we need high-performance algorithms as 
well as graphics hardware to carry out many graphics functions efficiently.

J1_5_Circle.java is an example that 
demonstrates animation: drawing a 
circle with a radius that is changing 
every frame in double-buffer mode. It 
also helps us review vector operations. 
The circle is approximated by a set of 
triangles, as shown in Fig. 1.8. At the 
beginning, v1, v2, v3, v4, and the 
center of the coordinate v0 are 
provided. When the variable depth = 
0, we draw four triangles, and the 
circle is approximated by a square. 
When depth = 1, each triangle is subdivided into two and we draw eight triangles. 
Given v1 and v2, how do we find v12? Let’s consider v1, v2, and v12 as vectors. Then, 
v12 is in the direction of (v1 + v2) = (v1x+v2x, v1y+v2y, v1z+v2z) and the lengths of the 
vectors are equal: |v1| = |v2| = |v12|. If the radius of the circle is one, then v12 = 
normalize(v1 + v2). Normalizing a vector is equivalent to scaling the vector to a unit 
vector. In general, v12 = cRadius*normalize(v1 + v2), and for every frame the 
program changes the value of cRadius to achieve animation. We can find all other 
unknown vertices in Fig. 1.8b similarly through vector additions and normalizations. 
This subdivision process goes on depending on the value of the depth. Given a triangle 
with two vertices and the coordinate center, subdivideCircle() recursively subdivides 
the triangle depth times and draws 2depth triangles. A snapshot of running 
J1_5_Circle.java is shown in Fig. 1.9.  

x

y

x

y

v1

v2

v3

v4

v1

v2
v12

(a) depth = 0 (b) depth = 1

 Fig. 1.8 Draw a circle by subdivision
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The above method to draw a circle is 
quite cumbersome. We can draw a circle 
by just drawing a polygon that has many 
vertices around the circle. The reason 
we design and discuss the above method 
is that we will build other objects, such 
as cone and cylinder, on top of this 
method very easily. This will support 
easy learning and fast development. 

/* animate a circle */

import javax.media.opengl.*;

public class J1_5_Circle extends J1_4_Line {
static int depth = 0; // number of subdivisions
static int cRadius = 2, flip = 1;

// vertex data for the triangles
static float cVdata[][] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 

1.0f, 0.0f }, { -1.0f, 0.0f, 0.0f }, { 0.0f, -1.0f, 0.0f } };

public J1_5_Circle() {
// use super's constructor to initialize drawing

//1. specify using double buffers
capabilities.setDoubleBuffered(true);

}

public void reshape(GLAutoDrawable drawable, int x, int y, 
int w, int h) {

//2. the width and height of the new window
WIDTH = w;
HEIGHT = h;

//3. origin at the center of the drawing area
gl.glMatrixMode(GL.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrtho(-w / 2, w / 2, -h / 2, h / 2, -1, 1);

 Fig. 1.9 A circle in animation [See Color 
Plate 1]
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//4. interval to swap buffers to avoid too fast
gl.setSwapInterval(1);

// Called for OpenGL rendering every reshape
public void display(GLAutoDrawable drawable) {

// when the circle is too big or small, change
// the direction (growing or shrinking)
if (cRadius >= (HEIGHT / 2) || cRadius == 1) {

flip = -flip;
depth++; // number of subdivisions
depth = depth % 7;

}
cRadius += flip; // circle's radius change

//5. clear the framebuffer and draw a new circle
gl.glClear(GL.GL_COLOR_BUFFER_BIT);
drawCircle(cRadius, depth);

}

// draw a circle with center at the origin in xy plane
public void drawCircle(int cRadius, int depth) {

subdivideCircle(cRadius, cVdata[0], cVdata[1], depth);
subdivideCircle(cRadius, cVdata[1], cVdata[2], depth);
subdivideCircle(cRadius, cVdata[2], cVdata[3], depth);
subdivideCircle(cRadius, cVdata[3], cVdata[0], depth);

}

// subdivide a triangle recursively, and draw them
private void subdivideCircle(int radius, 

float[] v1, float[] v2, int depth) {
float v11[] = new float[3];
float v22[] = new float[3];
float v00[] = { 0, 0, 0 };
float v12[] = new float[3];

if (depth == 0) {

//6. specify a color related to triangle location
gl.glColor3f(v1[0] * v1[0], v1[1] * v1[1], 

v1[2] * v1[2]);

for (int i = 0; i < 3; i++) {
v11[i] = v1[i] * radius;
v22[i] = v2[i] * radius;
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}
drawtriangle(v11, v22, v00);
return;

}

v12[0] = v1[0] + v2[0];
v12[1] = v1[1] + v2[1];
v12[2] = v1[2] + v2[2];

normalize(v12);

// subdivide a triangle recursively, and draw them
subdivideCircle(radius, v1, v12, depth - 1);
subdivideCircle(radius, v12, v2, depth - 1);

}

// normalize a 3D vector
public void normalize(float vector[]) {

float d = (float) Math.sqrt(vector[0] * vector[0] 
+ vector[1]
* vector[1] + vector[2] * vector[2]);

if (d == 0) {
System.out.println("0 length vector:

normalize().");
return;

}
vector[0] /= d;
vector[1] /= d;
vector[2] /= d;

}

public void drawtriangle(float[] v1, 
float[] v2, float[] v3) {

gl.glBegin(GL.GL_TRIANGLES);
gl.glVertex3fv(v1, 0);
gl.glVertex3fv(v2, 0);
gl.glVertex3fv(v3, 0);
gl.glEnd();

}

public static void main(String[] args) {
J1_5_Circle f = new J1_5_Circle();

f.setTitle("JOGL J1_5_Circle");
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f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

The above program animates a circle by drawing a circle repetitively with growing or 
shrinking radius. There are a couple of things that need to be emphasized, as 
highlighted in the code: 

1. For animation, we turn on double-buffering mode. 

2. The new w and h of the returned Drawable in reshape() are saved in global WIDTH
and HEIGHT. They are used to assign new drawing area coordinates as well as
control the radius of the circle later.

3. The coordinates for the new drawing area are specified. Here the origin is at the 
center of the new drawing area. Therefore, if the drawing area is reshaped, the 
origin will change accordingly to the new center. 

4. The double buffers are confined to swap in certain intervals to avoid rendering too 
fast. 

5. The frame buffer is cleared every time we redraw the circle. 

6. A vertex of a triangle in the circle is different from other triangle’s vertices, so we 
specify each triangle’s color according to one of its vertex coordinates. Here 
because each vertex is a unit vector, and each color component is specified as a 
value between 0 and 1, we use square to avoid negative vector values. 
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1.6 Review Questions

1. A(a1,a2,a3) and B(b1,b2,b3) are two vectors; please calculate the following:  

 a.  b. c. d.  e. θ between A and B 

2. Please fill in the blanks between the two sides to connect the closest relations:
 a. frame buffer (       ) 1. animation
 b. double-buffering (       ) 2. pixmap for display
 c. event (       ) 3. user input
 d. graphics library (       ) 4. distance between pixels
 e. scan-conversion (       ) 5. description of an object
 f. resolution (       ) 6. basic graphics functions
 g. 3D model (       ) 7. drawing

3. What is provided by the Animator class in JOGL? 
 a. calling reshape() b. implementing interface functions
 c. calling display() repetitively d. transforming the objects

4. Which of the following is a graphics model? 
 a. a picture on the paper b. a pixmap in the frame buffer
 c. a data structure in the memory d. an image on the display

5. What’s the difference between bitmap fonts and outline fonts?
 a. Outline fonts are represented as 3D models b. They have different sizes
 c. Bitmap fonts are represented as 3D models d. They have different colors

6. What are provided by the JOGL’s GLUT class? 
 a. bitmap and stroke font methods b. antialiasing 
 c. calling reshape() or display() d. handling display area

7. The Cohen-Sutherland line-clipping algorithm works as follows: (a) At a clipping edge, if both 
end points are on the clipping window side, they are accepted. If both end points are not, they are 
rejected; (b) if not accepted or rejected, the line is divided into two segments at the clipping edge; 
(c) repeat (a) and (b) for the segment that is not rejected on the other three clipping edges. For an 
arbitrary line, what is the maximum number of comparisons and intersection calculations? 

 
 Comparisons                              ; Intersections                                    .

8. The Sutherland-Hodgman's polygon-clipping algorithm works as follows: we walk around the 
polygon boundary to generated a new clipped polygon represented by a list of vertices. For each 
boundary edge, (a) At a clipping edge, if both end points are on the clipping window side, they are 
accepted. If both end points are not, they are rejected. If accepted, the vertices are in the new poly-
gon. If rejected, they are discarded; (b) if non-trivial, the intersection on the clipping edge is a gen-
erated vertex in the new polygon replacing the vertex outside; (c) repeat (a) and (b) until all of the 
polygon’s edges are considered; (d) repeat (a), (b), and (c) for the other three clipping edges to have 

A A B– A B• A B×
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a final clipped polygon. For a triangle, what is the maximum number of comparisons and intersec-
tion calculations? 

 
 Comparisons                              ; Intersections                                    .

9. Supersampling is to achieve antialiasing by 
 a. increasing sampling rate b. decreasing the sampling rate
 c. using OpenGL antialiasing function d. calculating the areas of overlap

10. In the antialiased line 
algorithm, D is the distance 
from the center of the current 
pixel to the center of the line. 
Given D, please calculate the 
distances from NE and X pix-
els (DX and DNE). 

11. In the antialiased line algorithm, d is the decision factor for 
choosing East or Northeast, and D is the distance from the center 
of the current pixel to the center of the line. Given the line start-
ing (0,0) as in the figure, please calculate d and D for the dark 
pixel. 

 d  =                               D =                               

12. In drawing a filled circle in the book, we start with 4 trian-
gles. Please calculate if we subdivide n times, how many triangles we will have in the final circle. 

                               

1.7 Programming Assignments

1. Draw a point that moves slowly along a circle. You may 
want to draw a circle first, and a point that moves on the 
circle with a different color. 

2. Draw a point that bounces slowly in a square or circle.

3. Draw a star in a circle that rotates, as shown on the 
right. You can only use glBegin(GL_POINTS) to draw the 
star.  

4. Write down “Bitmap” using Glut bitmap font function 
and “Stroke” using Glut stroke font function in the center 
of the display.

α
E

N

S

NE

W

DNE = 

DX   = 

X



1.7  Programming Assignments          49

5.  With the star rotating in the circle, implement the clip-
ping of a window as shown on the right. 

6. Implement an antialiasing line algorithm that works 
with the background that has a texture. The method is to 
blend the background color with the foreground color. You 
can get the current pixel color in the frame buffer using 
glGet() with GL_CURRENT_RASTER_COLOR. 

7. Implement a triangle filling algorithm for 
J1_3_Triangle class that draws a randomly generated tri-
angle. Here you can only use glBegin(GL_POINTS) to 
draw the triangle. 

8. Draw (and animate) the star with antialiasing and clip-
ping. Add a filled circle inside the star using the subdivi-
sion method discussed in this chapter. You should use your 
own triangle filling algorithm. Also, clipping can be trick-
ily done by checking the point to be drawn against the clip-
ping window. 

Bitmap
 Stroke 

Bitmap
 Stroke 



2 
Transformation and Viewing

Chapter Objectives: 

• Understand basic transformation and viewing methods

• Understand 3D hidden-surface removal and collision detection

• Design and implement 3D models (cone, cylinder, and sphere) and their 
animations in OpenGL

2.1 Geometric Transformation

In Chapter 1, we discussed creating and scan-converting primitive models. After a 
computer-based model is generated, it can be moved around or even transformed into 
a completely different shape. To do this, we need to specify the rotation axis and 
angle, translation vector, scaling vector, or other manipulations to the model. The 
ordinary geometric transformation is a process of mathematical manipulations of all 
the vertices of the model through matrix multiplications, where the graphics system 
then displays the final transformed model. The transformation can be predefined, such 
as moving along a planned trajectory; or interactive, depending on the user input. The 
transformation can be permanent — the coordinates of the vertices are changed and 
we have a new model replacing the original one; or just temporary — the vertices 
return to their original coordinates. In many cases a model is transformed in order to 
be displayed at a different position or orientation, and the graphics system discards the 
transformed model after scan-conversion. Sometimes all the vertices of a model go 
through the same transformation, and the shape of the model is preserved; sometimes 
different vertices go through different transformations, and the shape is dynamic. 

A model can be displayed repetitively with each frame going through a small 
transformation step. This causes the model to be animated on display. 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_2, © Springer-Verlag London Limited 2008 
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2.2 2D Transformation

Translation, rotation, and scaling are the basic and essential transformations. They 
can be combined to achieve most transformations in many applications. To simplify 
the discussion, we will first introduce 2D transformation and then generalize it into 
3D. 

2.2.1 2D Translation

A point  is translated to  by a distance vector :

, (EQ 12)

. (EQ 13)

In the homogeneous coordinates, we represent a point  by a column vector 

. Similarly, . Then, translation can be achieved by matrix 

multiplication: 

. (EQ 14)

Let's assume . We can denote the translation matrix equation as: 

. (EQ 15)

x y,( ) x' y',( ) dx dy,( )

x' x dx+=

y' y dy+=

x y,( )

P
x

y

1

= P'
x'
y'
1

=

x'
y'
1

1 0 dx

0 1 dy

0 0 1

x

y

1

=

T dx dy,( )
1 0 dx

0 1 dy

0 0 1

=

P' T dx dy,( )P=
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 Fig. 2.1 Basic transformation: translation

If a model is a set of vertices, all vertices of the model can be translated as points by 
the same translation vector (Fig. 2.1). Note that translation moves a model through a 
distance without changing its orientation. 

2.2.2 2D Rotation

A point  is rotated counter-clockwise to  by an angle θ around the 
origin (0,0). Let us assume that the distance from the origin to point P is r = OP, and 
the angle between OP and x axis is α. If the rotation is clockwise, the rotation angle θ
is then negative. The rotation axis is perpendicular to the 2D plane at the origin:

, (EQ 16)

, (EQ 17)

, (EQ 18)

, (EQ 19)

, (EQ 20)

. (EQ 21)

In the homogeneous coordinates, rotation can be achieved by matrix multiplication: 

P’

Pdx
d y

y

x

P x y,( ) P'' x' y',( )

x' r α θ+( )cos=

y' r α θ+( )sin=

x' r α θcoscos αsin θsin–( )=

x' r αsin θcos αcos θsin+( )=

x' x θcos y θsin–=

y' x θsin y θcos+=
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. (EQ 22)

Let's assume . The simplified rotation matrix equation is 

. (EQ 23)

If a model is a set of vertices, all vertices 
of the model can be rotated as points by 
the same angle around the same rotation 
axis (Fig. 2.2). Rotation moves a model 
around the origin of the coordinates. The 
distance of each vertex to the origin is 
not changed during rotation. 

2.2.3 2D Scaling

A point  is scaled to  by 
a scaling vector : 

, (EQ 24)

. (EQ 25)

In the homogeneous coordinates, again, scaling can be achieved by matrix 
multiplication: 

x'
y'
1

θcos θsin– 0

θsin θcos 0

0 0 1

x

y

1

=

R θ( )
θcos θsin– 0

θsin θcos 0

0 0 1

=

P' R θ( )P=

P

 Fig. 2.2 Basic transformation: rotation

y

x
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α

O

P x y,( ) P' x' y',( )
sx sy,( )

x' sxx=

y' syy=
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. (EQ 26)

Let's assume . We can denote the scaling matrix equation as: 

. (EQ 27)

If a model is a set of vertices, all vertices of the model can be scaled as points by the 
same scaling vector (Fig. 2.3). Scaling amplifies or shrinks a model around the origin 
of the coordinates. Note that a scaled vertex will move unless it is at the origin.

2.2.4 Simulating OpenGL Implementation 

OpenGL actually implements 3D transformations, which we will discuss later. Here, 
we implement 2D transformations in our own code in J2_0_2DTransform.java, which 
corresponds to the OpenGL implementation in hardware. 

OpenGL has a MODELVIEW matrix stack that saves the current matrices for 
transformation. Let us define a matrix stack as follows:

 Fig. 2.3 Basic transformation: scaling
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/* 2D transformation OpenGL style implementation */

import net.java.games.jogl.*;

public class J2_0_2DTransform extends J1_5_Circle {
  private static float my2dMatStack[][][] =
      new float[24][3][3];
  private static int stackPtr = 0;

...
}

The identity matrix for 2D homogeneous coordinates is . Any matrix 

multiplied with identity matrix does not change. 

The stackPtr points to the current matrix on the matrix stack 
(my2dMatrixStack[stackPtr]) that is in use. Transformations are then achieved by the 
following methods: my2dLoadIdentity(), my2dMultMatrix(float mat[][]), 
my2dTranslatef(float x, float y), my2dRotatef(float angle), my2dScalef(float x, float y), 
and my2dTransformf(float vertex[], float vertex1[]) (or my2dTransVertex(float 
vertex[], float vertex1[]) for vertices already in homogeneous form).

1. my2dLoadIdentity() loads the current matrix on the matrix stack with the identity 
matrix: 

// initialize a 3*3 matrix to all zeros
  private void my2dClearMatrix(float mat[][]) {

    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        mat[i][j] = 0.0f;
      }
    }
  }

  // initialize a matrix to Identity matrix
  private void my2dIdentity(float mat[][]) {

I
1 0 0

0 1 0

0 0 1

=
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    my2dClearMatrix(mat);
    for (int i = 0; i<3; i++) {
      mat[i][i] = 1.0f;
    }
  }

  // initialize the current matrix to Identity matrix
  public void my2dLoadIdentity() {
    my2dIdentity(my2dMatStack[stackPtr]);
  }

2. my2dMultMatrix(float mat[][]) multiplies the current matrix on the matrix stack 
with the matrix mat: CurrentMatrix = currentMatrix*Mat.

// multiply the current matrix with mat
  public void my2dMultMatrix(float mat[][]) {
    float matTmp[][] = new float[3][3];

    my2dClearMatrix(matTmp);

    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        for (int k = 0; k<3; k++) {
          matTmp[i][j] +=
              my2dMatStack[stackPtr][i][k]*mat[k][j];
        }
      }
    }
    // save the result on the current matrix
    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        my2dMatStack[stackPtr][i][j] = matTmp[i][j];
      }
    }
  }

3. my2dTranslatef(float x, float y) multiplies the current matrix on the matrix stack 
with the translation matrix T(x, y): 

// multiply the current matrix with a translation matrix
  public void my2dTranslatef(float x, float y) {
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    float T[][] = new float[3][3];

    my2dIdentity(T);

    T[0][2] = x;
    T[1][2] = y;

    my2dMultMatrix(T);
  }

4. my2dRotatef(float angle) multiplies the current matrix on the matrix stack with the 
rotation matrix R(angle): 

// multiply the current matrix with a rotation matrix
  public void my2dRotatef(float angle) {
    float R[][] = new float[3][3];

    my2dIdentity(R);

    R[0][0] = (float)Math.cos(angle);
    R[0][1] = (float)-Math.sin(angle);
    R[1][0] = (float)Math.sin(angle);
    R[1][1] = (float)Math.cos(angle);

    my2dMultMatrix(R);
  }

5. my2dScalef(float x, float y) multiplies the current matrix on the matrix stack with 
the scaling matrix S(x, y): 

// multiply the current matrix with a scale matrix
  public void my2dScalef(float x, float y) {
    float S[][] = new float[3][3];

    my2dIdentity(S);

    S[0][0] = x;
    S[1][1] = y;

    my2dMultMatrix(S);
  }
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6. my2dTransformf(float vertex[]; vertex1[]) multiplies the current matrix on the 
matrix stack with vertex, and save the result in vertex1. Here vertex is first 
extended to homogeneous coordinates before matrix multiplication. 

  // v1 = (the current matrix) * v
  // here v and v1 are vertices in homogeneous coord. 
  public void my2dTransHomoVertex(float v[], float v1[]) {
    int i, j;

    for (i = 0; i<3; i++) {
      v1[i] = 0.0f;

    }
    for (i = 0; i<3; i++) {
      for (j = 0; j<3; j++) {
        v1[i] +=
            my2dMatStack[stackPtr][i][j]*v[j];
      }
    }
  }

  // vertex = (the current matrix) * vertex
  // here vertex is in homogeneous coord. 
  public void my2dTransHomoVertex(float vertex[]) {
      float vertex1[] = new float[3];

    my2dTransHomoVertex(vertex, vertex1);
    for (int i = 0; i<3; i++) {
      vertex[i] = vertex1[i];
    }
  }

  // transform v to v1 by the current matrix 
  // here v and v1 are not in homogeneous coordinates
  public void my2dTransformf(float v[], float v1[]) {
    float vertex[] = new float[3];

    // extend to homogenous coord
     vertex[0] = v[0];
    vertex[1] = v[1];
    vertex[2] = 1;

    // multiply the vertex by the current matrix
    my2dTransHomoVertex(vertex);
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    // return to 3D coord
    v1[0] = vertex[0]/vertex[2];
    v1[1] = vertex[1]/vertex[2];
  }

  // transform v by the current matrix 
   // here v is not in homogeneous coordinates
  public void my2dTransformf(float[] v) {
    float vertex[] = new float[3];

    // extend to homogenous coord
    vertex[0] = v[0];
    vertex[1] = v[1];
    vertex[2] = 1;

    // multiply the vertex by the current matrix
    my2dTransHomoVertex(vertex);

    // return to 3D coord
    v[0] = vertex[0]/vertex[2];
    v[1] = vertex[1]/vertex[2];
  }

7. In addition to the above methods, my2dPushMatrix() and my2dPopMatrix() are a 
powerful mechanism to change the current matrix on the matrix stack, which we 
will discuss in more detail later. PushMatrix will increase the stack pointer and 
make a copy of the previous matrix to the current matrix. Therefore, the matrix 
remains the same, but we are using a different set of memory locations on the 
matrix stack. PopMatrix will decrease the stack pointer, so we return to the 
previous matrix that was saved at PushMatrix. 

  // move the stack pointer up, and copy the previous 
  // matrix to the current matrix
  public void my2dPushMatrix() {
    int tmp = stackPtr+1;

    for (int i = 0; i<3; i++) {
      for (int j = 0; j<3; j++) {
        my2dMatStack[tmp][i][j] =
            my2dMatStack[stackPtr][i][j];
      }
    }
    stackPtr++;
  }
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  // move the stack pointer down
  public void my2dPopMatrix() {

    stackPtr--;
  }

With the above 2D transformation methods, the 
following example (J2_0_2DTransform.java) 
achieves different transformations using the 
implemented methods, as shown in Fig. 2.4. 

/* 2D transformation: OpenGL style 
implementation  */

import net.java.games.jogl.*;

public class J2_0_2DTransform 
extends J1_5_Circle {

....// the matrix stack

  static float vdata[][] = { {1.0f, 0.0f, 0.0f}
                           , {0.0f, 1.0f, 0.0f}
                           , {-1.0f, 0.0f, 0.0f}
                           , {0.0f, -1.0f, 0.0f}
  };
  static int cnt = 1;

  // called for OpenGL rendering every reshape
  public void display(GLDrawable drawable) {

    if (cnt<1||cnt>200) {
      flip = -flip;
    }
    cnt = cnt+flip;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    // white triangle is scaled
    gl.glColor3f(1, 1, 1);
    my2dLoadIdentity();

 Fig. 2.4 Transformations of  
triangles [See Color Plate 1]
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    my2dScalef(cnt, cnt);
    transDrawTriangle(vdata[0], vdata[1], vdata[2]);

    // red triangle is rotated and scaled
    gl.glColor3f(1, 0, 0);
    my2dRotatef((float)cnt/15);
    transDrawTriangle(vdata[0], vdata[1], vdata[2]);

    // green triangle is translated, rotated, and scaled
    gl.glColor3f(0, 1, 0);
    my2dTranslatef((float)cnt/100, 0.0f);
    transDrawTriangle(vdata[0], vdata[1], vdata[2]);

    try {
      Thread.sleep(20);
    } catch (InterruptedException e) {}
  }

  // the vertices are transformed first then drawn
  public void transDrawTriangle(float[] v1,
                                 float[] v2, float[] v3) {
    float v[][] = new float[3][3];

    my2dTransformf(v1, v[0]);
    my2dTransformf(v2, v[1]);
    my2dTransformf(v3, v[2]);

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glVertex3fv(v[0]);
    gl.glVertex3fv(v[1]);
    gl.glVertex3fv(v[2]);
    gl.glEnd();
  }

... // the transformation methods 

  public static void main(String[] args) {
    J2_0_2DTransform f = new J2_0_2DTransform();

    f.setTitle("JOGL J2_0_2DTransform");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}
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 Fig. 2.5 Moving the clock hand by matrix multiplications

2.2.5 Composition of 2D Transformations

A complex transformation is often achieved by a series of simple transformation steps. 
The result is a composition of translations, rotations, and scalings. We will study this 
through the following three examples. 

Example 1: Find the coordinates of a moving clock hand in 2D. Consider a single clock 
hand. The center of rotation is given at c(x0, y0), and the end rotation point is at h(x1, 
y1). If we know the rotation angle is θ, can we find the new end point h' after the 
rotation? As shown in Fig. 2.5, we can achieve this by a series of transformations.

1. Translate the hand so that the center of rotation is at the origin. Note that we only 
need to find the new coordinates of the end point h:

. (EQ 28)

That is, h1 = T(−x0, −y0)h. (EQ 29)

2. Rotate θ degrees around the origin. Note that the positive direction of rotation is 
counter-clockwise:
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h2 = R(−θ)h1. (EQ 30)

3. After the rotation. We translate again to move the clock back to its original 
position:

h' = T(x0, y0)h2. (EQ 31)

Therefore, putting Equations  29,  30, and  31 together, the combination of 
transformations to achieve the clock hand movement is

h' = T(x0 , y0)R(−θ)T(−x0, −y0)h. (EQ 32)

That is, . (EQ 33)

In the future, we will write matrix equations concisely using only symbol notations 
instead of full matrix expressions. However, we should always remember that the 
symbols represent the corresponding matrices. 

Let’s assume M=T(x0,y0)R(−θ)T(−x0, −y0). We can further simplify the equation:

h' = Mh. (EQ 34)

The order of the matrices in a matrix expression matters. The sequence represents the 
order of the transformations. For example, although matrix M in Equation 34 can be 
calculated by multiplying the first two matrices first [T(x0, y0)R(−θ)]T(−x0, −y0) or by 
multiplying the last two matrices first T(x0, y0)[R(−θ)T(−x0, −y0)], the order of the 
matrices cannot be changed. 

When we analyze a model’s transformations, we should remember that, logically 
speaking, the order of transformation steps are from right to left in the matrix 
expression. In this example, the first logical step is T(−x0, −y0)h; the second step is 
R(−θ)[T(−x0, −y0)h]; and the last step is T(x0, y0)[R(−θ)[T(−x0, −y0)]]. In the actual 
OpenGL style implementation, the matrix multiplication is from left to right, and there 
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is always a final matrix on the matrix stack. The following is a segment of 
J2_1_Clock2d.java that simulates a real-time clock. 

my2dLoadIdentity();
my2dTranslate(c[0], c[1]); // x0=c[0], y0=c[1]; 
my2dRotate(-a); 
my2dTranslate(-c[0], -c[1]); 
transDrawClock(c, h);

In the above code, first the current matrix on the matrix stack is loaded with the 
identity matrix I, then it is multiplied by a translation matrix T(x0, y0), after that it is 
multiplied by a rotation matrix R(−θ), and finally it is multiplied by a translation 
matrix T(−x0, −y0). Written in an expression, it is [[[I]T(x0, y0)]R(−θ)]T(−x0, −y0). In 
transDrawClock(), the clock center c and end h are both transformed by the current 
matrix, and then scan converted to display. In OpenGL, transformation is implied. In 
other words, the vertices are first transformed by the system before they are sent to the 
scan-conversion. The following is the complete program. 

/* 2D clock hand transformation */

public class J2_1_Clock2d extends J2_0_2DTransform {
  static final float PI = 3.1415926f;

  public void display(GLDrawable glDrawable) {
    // homogeneous coordinates
    float c[] = {0, 0, 1};
    float h[] = {0, WIDTH/6, 1};

    long curTime;
    float ang, second, minute, hour;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    curTime = System.currentTimeMillis()/1000;
    // returns the current time in milliseconds
    hsecond = curTime%60;
    curTime = curTime/60;
    hminute = curTime%60+hsecond/60;
    curTime = curTime/60;
    hhour = (curTime%12)+8+hminute/60;
    // Eastern Standard Time
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    ang = PI*second/30; // arc angle

    gl.glColor3f(1, 0, 0); // second hand in red
    my2dLoadIdentity();
    my2dTranslatef(c[0], c[1]);
    my2dRotatef(-ang);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(1);
    transDrawClock(c, h);

    gl.glColor3f(0, 1, 0); // minute hand in green
    my2dLoadIdentity();
    ang = PI*minute/30; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.8f, 0.8f); // minute hand shorter
    my2dRotatef(-ang);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(2);
    transDrawClock(c, h);

    gl.glColor3f(0, 0, 1); // hour hand in blue
    my2dLoadIdentity();
    ang = PI*hour/6; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.5f, 0.5f); // hour hand shortest
    my2dRotatef(-ang);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(3);
    transDrawClock(c, h);
  }

  public void transDrawClock(float C[], float H[]) {
    float End1[] = new float[3];
    float End2[] = new float[3];

    my2dTransHomoVertex(C, End1);
    // Transform the center by the current matrix 
    my2dTransHomoVertex(H, End2);
    // Transform the end by the current matrix 

    // assuming z = w = 1;
    gl.glBegin(GL.GL_LINES);
    gl.glVertex3fv(End1);
    gl.glVertex3fv(End2);
    gl.glEnd();
  }
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  public static void main(String[] args) {

    J2_1_Clock2d f = new J2_1_Clock2d();

    f.setTitle("JOGL J2_1_Clock2d");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}

Example 2: Reshaping a rectangular area. In OpenGL, we can use the mouse to 
reshape the display area. In the Reshape callback function, we can use glViewport() to 
adjust the size of the drawing area accordingly. The system makes corresponding 
adjustments to the models through the same transformation matrix. Viewport 
transformation will be discussed later in the section “Viewing”. 

Here, we discuss a similar problem: a transformation that allows reshaping a 
rectangular area. Let's assume the coordinate system of the screen is as in Fig. 2.6. 
After reshaping, the rectangular area and all the vertices of the model inside the 
rectangular area go through the following transformations: translate so that the 
lower-left corner of the area is at the origin, scale to the size of the new area, and then 
translate to the scaled area location. The corresponding matrix expression is 

T(P2)S(sx, sy)T(−P1). (EQ 35)

 Fig. 2.6 Scaling an arbitrary rectangular area

Before reshaping After reshaping

p1 p2

Translate Scale Translate

ht1 ht2

wd1 wd2

sx = ht2/ht1
sy = wd2/wd1
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P1 is the starting point for scaling, and P2 is the 
destination. We can use the mouse to 
interactively drag P1 to P2 in order to reshape 
the corresponding rectangular area. In the 
following example (J2_2_Reshape.java), we 
use the mouse to drag the lower-left vertex P1
of the rectangular area to a new location. The 
rectangle and the clock inside are reshaped 
accordingly. A snapshot is shown in Fig. 2.7. 

/* reshape the rectangular drawing area 
*/

import net.java.games.jogl.*;
import java.awt.event.*;

public class J2_2_Reshape extends J2_1_Clock2d implements
    MouseMotionListener {

  // the point to be dragged as the lower-left corner
  private static float P1[] = {-WIDTH/4, -HEIGHT/4};

  // reshape scale value
  private float sx = 1, sy = 1;

  // when mouse is dragged, a new lower-left point
  // and scale value for the rectangular area
  public void mouseDragged(MouseEvent e) {
    float wd1 = WIDTH/2;
    float ht1 = HEIGHT/2;

    // The mouse location, new lower-left corner
    P1[0] = e.getX()-WIDTH/2;
    P1[1] = HEIGHT/2-e.getY();
    float wd2 = WIDTH/4-P1[0];
    float ht2 = HEIGHT/4-P1[1];

 Fig. 2.7 Reshape a drawing 
area with a clock inside
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    // scale value of the current rectangular area
    sx = wd2/wd1;
    sy = ht2/ht1;
  }

  public void mouseMoved(MouseEvent e) {
  }

  public void init(GLDrawable drawable) {

    super.init(drawable);
    // listen to mouse motion
    drawable.addMouseMotionListener(this);
  }

  public void display(GLDrawable glDrawable) {
    // the rectangle lower-left and upper-right corners
    float v0[] = {-WIDTH/4, -HEIGHT/4};
    float v1[] = {WIDTH/4, HEIGHT/4};

    // reshape according to the current scale
    my2dLoadIdentity();
    my2dTranslatef(P1[0], P1[1]);
    my2dScalef(sx, sy);
    my2dTranslatef(-v0[0], -v0[1]);

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);
    gl.glColor3f(1, 1, 1); // the rectangle is white

    // rectangle area
    float v00[] = new float[2], v11[] = new float[2];
    my2dTransformf(v0, v00);
    my2dTransformf(v1, v11);
    gl.glBegin(GL.GL_LINE_LOOP);
    gl.glVertex3f(v00[0], v00[1], 0);
    gl.glVertex3f(v11[0], v00[1], 0);
    gl.glVertex3f(v11[0], v11[1], 0);
    gl.glVertex3f(v00[0], v11[1], 0);
    gl.glEnd();

    // the clock hands go through the same transformation
    curTime = System.currentTimeMillis()/1000;
    hsecond = curTime%60;
    curTime = curTime/60;
    hminute = curTime%60+hsecond/60;
    curTime = curTime/60;
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    hhour = (curTime%12)+8+hminute/60;
    // Eastern Standard Time

    hAngle = PI*hsecond/30; // arc angle

    gl.glColor3f(1, 0, 0); // second hand in red
    my2dTranslatef(c[0], c[1]);
    my2dRotatef(-hAngle);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(3);
    transDrawClock(c, h);

    gl.glColor3f(0, 1, 0); // minute hand in green
    my2dLoadIdentity();
    my2dTranslatef(P1[0], P1[1]);
    my2dScalef(sx, sy);
    my2dTranslatef(-v0[0], -v0[1]);
    hAngle = PI*hminute/30; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.8f, 0.8f); // minute hand shorter
    my2dRotatef(-hAngle);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(5);
    transDrawClock(c, h);

    gl.glColor3f(0, 0, 1); // hour hand in blue
    my2dLoadIdentity();
    my2dTranslatef(P1[0], P1[1]);
    my2dScalef(sx, sy);
    my2dTranslatef(-v0[0], -v0[1]);
    hAngle = PI*hhour/6; // arc angle
    my2dTranslatef(c[0], c[1]);
    my2dScalef(0.5f, 0.5f); // hour hand shortest
    my2dRotatef(-hAngle);
    my2dTranslatef(-c[0], -c[1]);
    gl.glLineWidth(7);
    transDrawClock(c, h);
  }

  public static void main(String[] args) {
    J2_2_Reshape f = new J2_2_Reshape();

    f.setTitle("JOGL J2_2_Reshape");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}
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Example 3: Drawing a 2D robot arm with three moving segments. A 2D robot arm has 3 
segments rotating at the joints in a 2D plane (Fig. 2.8). Given an arbitrary initial 
posture (A, B, C), let’s find the transformation matrix expressions for another posture 
(Af, Bf, Cf) with respective rotations (α, β, γ) around the joints. Here we specify (A, B, 
C) on the x axis, which is used to simplify the visualization. (A, B, C) can be initialized 
arbitrarily. There are many different methods to achieve the same goal. Here, we 
elaborate three methods for the same goal. 

Method I. 

1. Rotate oABC around the origin by α degrees: 

Af = R(α)A; B’ = R(α)B; C’ = R(α)C. (EQ 36)

 Fig. 2.8 A 2D robot arm rotates (α, β, γ) degrees at the 3 joints, respectively
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2. Consider AfB’C’ to be a clock hand like the example in Fig. 2.5. Rotate AfB’C’
around Af by β degrees. This is achieved by first translating the hand to the origin, 
rotating, then translating back: 

Bf = T(Af)R(β)T(−Af)B’; C’’ = T(Af)R(β)T(−Af)C’. (EQ 37)

3. Again, consider BfC’’ to be a clock hand. Rotate BfC’’ around Bf by γ degrees: 

Cf = T(Bf)R(γ)T(−Bf)C’’. (EQ 38)

The corresponding code is as follows. Here my2dTransHomoVertex(v1, v2) will 
multiply the current matrix on the matrix stack with v1, and save the results in v2. 
drawArm() is just drawing a line segment. 

  // Method I: 2D robot arm transformations
  public void transDrawArm1(float a, float b, float g) {
    float Af[] = new float[3];
    float B1[] = new float[3];
    float C1[] = new float[3];
    float Bf[] = new float[3];
    float C2[] = new float[3];
    float Cf[] = new float[3];

    my2dLoadIdentity();
    my2dRotatef(a);
    my2dTransHomoVertex(A, Af);
    my2dTransHomoVertex(B, B1);
    my2dTransHomoVertex(C, C1);

    drawArm(O, Af);

    my2dLoadIdentity();
    my2dTranslatef(Af[0], Af[1]);
    my2dRotatef(b);
    my2dTranslatef( -Af[0], -Af[1]);
    my2dTransHomoVertex(B1, Bf);
    my2dTransHomoVertex(C1, C2);
    drawArm(Af, Bf);

    my2dLoadIdentity();
    my2dTranslatef(Bf[0], Bf[1]);
    my2dRotatef(g);
    my2dTranslatef( -Bf[0], -Bf[1]);
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    my2dTransHomoVertex(C2, Cf);
    drawArm(Bf, Cf);
  }

Method II. 

1. Consider BC to be a clock hand. Rotate BC around B by γ degrees: 

C’ = T(B)R(γ)T(−B)C. (EQ 39)

2. Consider ABC’ to be a clock hand. Rotate ABC’ around A by β degrees: 

B’ = T(A)R(β)T(−A)B; C’’ = T(A)R(β)T(−A)C’. (EQ 40)

3. Again, consider oAB’C’’ to be a clock hand. Rotate oAB’C’’ around the origin by α
degrees: 

Af = R(α)A; (EQ 41)

Bf = R(α)B’ = R(α)T(A)R(β)T(−A)B; (EQ 42)

Cf= R(α)C’’ = R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B)C. (EQ 43)

The corresponding code is as follows. Here transDraw() will first transform the 
vertices, and then draw the transformed vertices as a line segment. 

  // Method II: 2D robot arm transformations
  public void transDrawArm2(float a, float b, float g) {

    my2dLoadIdentity();
    my2dRotatef(a);
    transDrawArm(O, A);
    my2dTranslatef(A[0], A[1]);
    my2dRotatef(b);
    my2dTranslatef( -A[0], -A[1]);
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    transDrawArm(A, B);
    my2dTranslatef(B[0], B[1]);
    my2dRotatef(g);
    my2dTranslatef( -B[0], -B[1]);
    transDrawArm(B, C);
  }

Method III. 

1. Consider oA, AB, and BC as clock hands with the rotation axes at o, A, and B, 
respectively. Rotate oA by α degrees, AB by (α+β) degrees, and BC by (α+β+γ)
degrees: 

Af = R(α)A; B’ = T(A)R(α+β)T(−A)B; C’ = T(B)R(α+β+γ)T(−B)C. (EQ 44)

2. Translate AB’ to AfBf: 

Bf = T(Af)T(−A)B’ =T(Af)R(α+β)T(−A)B. (EQ 45)

Note that T(−A)T(A) = I, which is the identity matrix: . Any matrix 

multiplied by the identity matrix does not change. The vertex is translated by 
vector A, and then reversed back to its original position by translation vector −A. 

3. Translate BC’ to BfCf: 

Cf = T(Bf)T(−B)C’ =T(Bf)R(α+β+γ)T(−B)C. (EQ 46)

The corresponding code is as follows. 

   // Method III: 2D robot arm transformations
   public void transDrawArm3(float a, float b, float g) {
    float Af[] = new float[3];
    float Bf[] = new float[3];
    float Cf[] = new float[3];

I
1 0 0

0 1 0

0 0 1

=
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    my2dLoadIdentity();
    my2dRotatef(a);
    my2dTransHomoVertex(A, Af);
    drawArm(O, Af);
    my2dLoadIdentity();
    my2dTranslatef(Af[0], Af[1]);
    my2dRotatef(a + b);
    my2dTranslatef( -A[0], -A[1]);
    my2dTransHomoVertex(B, Bf);
    drawArm(Af, Bf);
    my2dLoadIdentity();
    my2dTranslatef(Bf[0], Bf[1]);
    my2dRotatef(a + b + g);
    my2dTranslatef( -B[0], -B[1]);
    my2dTransHomoVertex(C, Cf);
    drawArm(Bf, Cf);
  }

In the above examples, we use Draw() and transDraw(), which are implemented 
ourselves. The difference between the two functions are that Draw() will draw the two 
vertices as a line directly, whereas transDraw() will first transform the two vertices by 
the current matrix on the matrix stack, and then draw a line according to the 
transformed vertices. In OpenGL implementation, as we will see, transDraw is 
implied. That is, whenever we draw a primitive, the vertices of the primitive are 
always transformed by the current matrix on the MODELVIEW matrix stack, even 
though the transformation matrix multiplication is unseen. We will discuss this in 
detail later. The three different transformation are demonstrated in the following 
sample program (J2_3_Robot2d.java). 

/* three different methods for 2D robot arm transformations */

import net.java.games.jogl.*;

public class J2_3_Robot2d extends J2_0_2DTransform {
  // homogeneous coordinates
  float O[] = {0, 0, 1};
  float A[] = {100, 0, 1};
  float B[] = {160, 0, 1};
  float C[] = {200, 0, 1};
  float a, b, g;
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  public void display(GLDrawable glDrawable) {

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    a = a + 0.01f;
    b = b - 0.02f;
    g = g + 0.03f;

    gl.glColor3f(0, 1, 1);
    transDrawArm1(a, b, g);

    gl.glColor3f(1, 1, 0);
    transDrawArm2(-b, -g, a);

    gl.glColor3f(1, 0, 1);
    transDrawArm3(g, -a, -b);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  ...; // Method I: 2D robot arm transformations
  ...; // Method II: 2D robot arm transformations
  ...; // Method III: 2D robot arm transformations

  // transform the coordinates and then draw
  private void transDrawArm(float C[], float H[]) {

    float End1[] = new float[3];
    float End2[] = new float[3];

    my2dTransHomoVertex(C, End1);
    // multiply the point with the matrix on the stack
    my2dTransHomoVertex(H, End2);

    // assuming z = w = 1;
    drawArm(End1, End2);
  }

  // draw the coordinates directly
  public void drawArm(float C[], float H[]) {

    gl.glLineWidth(5);

    // assuming z = w = 1;
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    gl.glBegin(GL.GL_LINES);
    gl.glVertex3fv(C);
    gl.glVertex3fv(H);
    gl.glEnd();
  }

  public static void main(String[] args) {
    J2_3_Robot2d f = new J2_3_Robot2d();

    f.setTitle("JOGL J2_3_Robot2d");
    f.setSize(500, 500);
    f.setVisible(true);
  }
}

2.3 3D Transformation and Hidden-Surface Removal

2D transformation is a special case of 3D 
transformation where z=0. For example, a 
2D point (x, y) is (x, y, 0) in 3D, and a 2D 
rotation around the origin R(θ) is a 3D 
rotation around the z axis Rz(θ) (Fig. 2.9). 
The z axis is perpendicular to the display 
with the arrow pointing toward the viewer. 
We can assume the display to be a view of a 
3D drawing box, which is projected along 
the z axis direction onto the 2D drawing 
area at z=0. 

2.3.1 3D Translation, Rotation, and Scaling

In 3D, for translation and scaling, we can translate or scale not only along the x and 
the y axis but also along the z axis. For rotation, in addition to rotating around the z
axis, we can also rotate around the x axis and the y axis. In the homogeneous 
coordinates, the 3D transformation matrices for translation, rotation, and scaling are as 
follows:

P

 Fig. 2.9 A 3D rotation around z axis

y

x

P’
θ

z
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Translation: ; (EQ 47)

Scaling: ; (EQ 48)

Rotation around x axis: ; (EQ 49)

Rotation around y axis: ; (EQ 50)

Rotation around z axis: . (EQ 51)

For example, the 2D transformation Equation 41 can be replaced by the corresponding 
3D matrices: 

Af = Rz(α)A, (EQ 52)

T dx dy dz, ,( )

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

=

S sx sy sz, ,( )

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

=

Rx θ( )

1 0 0 0

0 θcos θsin– 0

0 θsin θcos 0

0 0 0 1

=

Ry θ( )

θcos 0 θsin 0

0 1 0 0

θsin– 0 θcos 0

0 0 0 1

=

Rz θ( )

θcos θsin– 0 0

θsin θcos 0 0

0 0 1 0

0 0 0 1

=
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where , , and Az=0. We can show that Afz=0 as well. 

2.3.2 Transformation in OpenGL

As an example, we will again implement in OpenGL the robot arm transformation 
MODELVIEW matrix stack to achieve the transformation. We consider the 
transformation to be a special case of 3D at z=0. 

In OpenGL, all the vertices of a model are multiplied by the matrix on the top of the 
MODELVIEW matrix stack and then by the matrix on the top of the PROJECTION 
matrix stack before the model is scan-converted. Matrix multiplications are carried out 
on the top of the matrix stack automatically in the graphics system. The 
MODELVIEW matrix stack is used for geometric transformation. The PROJECTION 
matrix stack is used for viewing, which will be discussed later. Here, we explain how 
OpenGL handles the geometric transformations in the following example 
(J2_4_Robot.java, which implements Method II in Fig. 2.8.) 

1. Specify that current matrix multiplications are carried out on the top of the MOD-
ELVIEW matrix stack:

gl.glMatrixMode (GL.GL_MODELVIEW);

2. Load the current matrix on the matrix stack with the identity matrix:

gl.glLoadIdentity ();

The identity matrix for 3D homogeneous coordinates is .

A

Ax

Ay

Az

1

= Af

Afx

Afy

Afz

1

=

I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=
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3. Specify the rotation matrix Rz(α), which will be multiplied by whatever on the 
current matrix stack already. The result replaces the matrix currently on the top of 
the stack. If the identity matrix is on the stack, then IRz(α)=Rz(α): 

gl.glRotatef (alpha, 0.0, 0.0, 1.0);

4. Draw a robot arm — a line segment between point O and A. Before the model is 
scan-converted into the frame buffer, O and A will first be transformed by the 
matrix on the top of the MODELVIEW matrix stack, which is Rz(α). That is, 
Rz(α)O and Rz(α)A will be used to scan-convert the line (Equation 41):

drawArm (O, A);

5. In the following code section, we specify a series of transformation matrices, 
which in turn will be multiplied by whatever is already on the current matrix stack: 
I, [I]R(α), [[I]R(α)]T(A), [[[I]R(α)]T(A)]R(β), [[[[I]R(α)]T(A)]R(β)]T(−A). Before 
drawArm (A, B), we have M = R(α)T(A)R(β)T(−A) on the matrix stack, which 
corresponds to Equation 42:

gl.glPushMatrix();
gl.glLoadIdentity ();
gl.glRotatef (alpha, 0.0, 0.0, 1.0);
drawArm (O, A);

gl.glTranslatef (A[0], A[1], 0.0);
gl.glRotatef (beta, 0.0, 0.0, 1.0);
gl.glTranslatef (-A[0], -A[1], 0.0);
drawArm (A, B);

gl.glPopMatrix();

The matrix multiplication is always carried out on the top of the matrix stack. 
glPushMatrix() will move the stack pointer up one slot and duplicate the previous 
matrix so that the current matrix is the same as the matrix immediately below it on 
the stack. glPopMatrix() will move the stack pointer down one slot. The advantage 
of this mechanism is to separate the transformations of the current model between 
glPushMatrix() and glPopMatrix() from other transformations of models later. 
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 Fig. 2.10 Matrix stack operations with glPushMatrix() and glPopMatrix()

Let’s look at the function drawRobot() in J2_4_Robot.java below. Fig. 2.10 shows 
what is on the top of the matrix stack, when drawRobot() is called once and then 
again. At drawArm(B, C) right before glPopMatrix(), the matrix on top of the stack 
is M = R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B), which corresponds to Equation 43. 

6. Suppose we remove glPushMatrix() and glPopMatrix() from drawRobot(), if we 
call drawRobot() once, it appears fine. If we call it again, you will see that the 
matrix on the matrix stack is not an identity matrix. It is the previous matrix on the 
stack already (Fig. 2.11).

For beginners, it is a good idea to draw the state of the current matrix stack while you 
are reading the sample programs or writing your own programs. This will help you 
clearly understand what the transformation matrices are at different stages. 

 Fig. 2.11 Matrix stack operations without glPushMatrix() and glPopMatrix()

I I
I

I
M

I

(a) Before 
glPushMatrix()

(b) After
glPushMatrix()

(c) Before 
glPopMatrix()

(d) After 
glPopMatrix()

Status of the OpenGL MODELVIEW matrix stack

I
(a) Call DrawRobot()

the first time

M

(b) Call DrawRobot() the 2nd time
M=R(α)T(A)R(β)T(−A)T(B)R(γ)T(−B)

N

(c) Call DrawRobot() the 3rd time
N =MM

Status of the OpenGL MODELVIEW matrix stack
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Methods I and III (Fig. 2.8) cannot be achieved using OpenGL transformations 
directly, because OpenGL provides matrix multiplications, but not the vertex 
coordinates after a vertex is transformed by the matrix. This means that all vertices are 
always fixed at their original locations. This method avoids floating point 
accumulation errors. We can use glGetDoublev(GL.GL_MODELVIEW_MATRIX, 
M[]) to get the current 16 values of the matrix on the top of the MODELVIEW stack, 
and multiply the coordinates by the current matrix to achieve the transformations for 
Methods I and III. Of course, you may implement your own matrix multiplications to 
achieve all the different transformation methods as well. 

/* 2D robot transformation in OpenGL */

import net.java.games.jogl.*;

public class J2_4_Robot extends J2_3_Robot2d {

  public void display(GLDrawable glDrawable) {

    gl.glClear(GL.GL_COLOR_BUFFER_BIT);

    a = a+0.1f;
    b = b-0.2f;
    g = g+0.3f;

    gl.glLineWidth(7f); // draw a wide line for arm
    drawRobot(A, B, C, a, b, g);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  void drawRobot(
      float A[],
      float B[],
      float C[],
      float alpha,
      float beta,
      float gama) {

    gl.glPushMatrix();

    gl.glColor3f(1, 1, 0);
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    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f);
    // R_z(alpha) is on top of the matrix stack
    drawArm(O, A);

    gl.glColor3f(0, 1, 1);
    gl.glTranslatef(A[0], A[1], 0.0f);
    gl.glRotatef(beta, 0.0f, 0.0f, 1.0f);
    gl.glTranslatef(-A[0], -A[1], 0.0f);
    // R_z(alpha)T(A)R_z(beta)T(-A) is on top
    drawArm(A, B);

    gl.glColor3f(1, 0, 1);
    gl.glTranslatef(B[0], B[1], 0.0f);
    gl.glRotatef(gama, 0.0f, 0.0f, 1.0f);
    gl.glTranslatef(-B[0], -B[1], 0.0f);
    // R_z(alpha)T(A)R_z(beta)T(-A) is on top
    drawArm(B, C);

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_4_Robot f = new J2_4_Robot();

    f.setTitle("JOGL J2_4_Robot");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.3.3 Hidden-Surface Removal

Bounding volumes. We first introduce a simple method, called bounding volume or 
minmax testing, to determine visible 3D models without using a time-consuming 
hidden-surface removal algorithm. Here we assume that the viewpoint of our eye is at 
the origin and the models are in the negative z axis. If we render the models in the 
order of their distances to the viewpoint of the eye along z axis from the farthest to the 
closest, we will have correct overlapping of the models. We can build up a rectangular 
box (bounding volume) with the faces perpendicular to the x, y, or z axis to bound a 
3D model and compare the minimum and maximum bounds in the z direction between 
boxes to decide which model should be rendered first. Using bounding volumes to 
decide the priority of rendering is also known as minmax testing. In addition to 
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visible-model determination, bounding volumes are also used for collision detection, 
which will be discussed later in this chapter. 

The z-buffer (depth-buffer) algorithm. In OpenGL, to enable the hidden-surface 
removal (or visible-surface determination) mechanism, we need to enable the depth 
test once and then clear the depth buffer whenever we redraw a frame: 

// enable zbuffer (depthbuffer) once
gl.glEnable(GL.GL_DEPTH_TEST);

// clear both frame buffer and zbuffer
gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);

Corresponding to a frame buffer, the graphics system also has a z-buffer, or depth 
buffer, with the same number of entries. After glClear(), the z-buffer is initialized to 
the z value farthest from the viewpoint of our eye, and the frame buffer is initialized to 
the background color. When scan-converting a model (such as a polygon), before 
writing a pixel color into the frame buffer, the graphics system (the z-buffer 
algorithm) compares the pixel’s z value to the corresponding xy coordinates’ z value in 
the z-buffer. If the pixel is closer to the viewpoint, its z value is written into the 
z-buffer and its color is written into the frame buffer. Otherwise, the system moves on 
to considering the next pixel without writing into the buffers. The result is that, no 
matter what order the models are scan-converted, the image in the frame buffer only 
shows the pixels on the models that are not blocked by other pixels. In other words, 
the visible surfaces are saved in the frame buffer, and all the hidden surfaces are 
removed. 

A pixel’s z value is provided by the model at the corresponding xy coordinates. For 
example, given a polygon and the xy coordinates, we can calculate the z value 
according to the polygon’s plane equation z=f(x,y). Therefore, although 
scan-conversion is drawing in 2D, 3D calculations are needed to decide 
hidden-surface removal and others (as we will discuss in the future: lighting, texture 
mapping, etc.). 

A plane equation in its general form is ax + by + cz + 1 = 0, where (a, b, c)
corresponds to a vector perpendicular to the plane. A polygon is usually specified by a 
list of vertices. Given three vertices on the polygon, they all satisfy the plane equation 
and therefore we can find (a, b, c) and z=−(ax + by + 1)/c. By the way, because the 



2.3  3D Transformation and Hidden-Surface Removal          85

cross-product of two edges of the polygon is perpendicular to the plane, it is 
proportional to (a, b, c) as well. 

2.3.4 3D Models: Cone, Cylinder, and Sphere

Approximating a cone. In the example 
discussed at the end of last chapter 
(J1_5_Circle.java), we approximated a 
circle with subdividing triangles. If we raise 
the center of the circle along the z axis, we 
can approximate a cone, as shown in 
Fig. 2.12. Because the model is in 3D, we 
need to enable depth test to achieve 
hidden-surface removal. Also, we need to 
make sure that our model is contained within 
the defined coordinates (i.e., the viewing 
volume):

    gl.glOrtho(-w/2, w/2, 
-h/2, h/2, -w, w);

/* draw a cone by subdivision */

import net.java.games.jogl.*;

public class J2_5_Cone extends J1_5_Circle {

  public void reshape(GLDrawable glDrawable,
      int x, int y, int w, int h) {

    WIDTH = w; HEIGHT = h;

    // enable depth buffer for hidden-surface removal
    gl.glEnable(GL.GL_DEPTH_TEST);
 
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    
    // make sure the cone is within the viewing volume

 Fig. 2.12 A cone by subdivision 
[See Color Plate 1]
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    gl.glOrtho(-w/2, w/2, -h/2, h/2, -w, w);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void display(GLDrawable glDrawable) {

    if ((cRadius>(WIDTH/2))|| (cRadius==1)) {
      flip = -flip;
      depth++;
      depth = depth%5;
    }

    cRadius += flip;

    // clear both frame buffer and zbuffer
    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    gl.glRotatef(1, 1, 1, 1); // accumulated on matrix
    // rotate 1 degree alone vector (1, 1, 1)
    gl.glPushMatrix(); // not accumulated 
    gl.glScaled(cRadius, cRadius, cRadius);
    drawCone();
    gl.glPopMatrix();

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  private void subdivideCone(float v1[],
                             float v2[], int depth) {
    float v0[] = {0, 0, 0};
    float v12[] = new float[3];

    if (depth==0) {
      gl.glColor3f(v1[0]*v1[0], v1[1]*v1[1], v1[2]*v1[2]);

      drawtriangle(v1, v2, v0);
      // bottom cover of the cone

      v0[2] = 1; // height of the cone, the tip on z axis
      drawtriangle(v1, v2, v0); // side cover of the cone

      return;
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    }

    for (int i = 0; i<3; i++) {
      v12[i] = v1[i]+v2[i];
    }
    normalize(v12);

    subdivideCone(v1, v12, depth-1);
    subdivideCone(v12, v2, depth-1);
  }

  public void drawCone() {
    subdivideCone(cVdata[0], cVdata[1], depth);
    subdivideCone(cVdata[1], cVdata[2], depth);
    subdivideCone(cVdata[2], cVdata[3], depth);
    subdivideCone(cVdata[3], cVdata[0], depth);
  }

  public static void main(String[] args) {
    J2_5_Cone f = new J2_5_Cone();

    f.setTitle("JOGL J2_5_Cone");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Approximating a cylinder. If we can draw a 
circle at z=0, then draw another circle at z=1. 
If we connect the rectangles of the same 
vertices on the edges of the two circles, we 
have a cylinder, as shown in Fig. 2.13. 

/* draw a cylinder by subdivision */

import net.java.games.jogl.*;

public class J2_6_Cylinder 
extends J2_5_Cone {  Fig. 2.13 A cylinder by 

subdivision [See Color Plate 1]



88          2 Transformation and Viewing

  public void display(GLDrawable glDrawable) {

    if ((cRadius>(WIDTH/2))||(cRadius==1)) {
      flip = -flip;
      depth++;
      depth = depth%6;
    }
    cRadius += flip;

    // clear both frame buffer and zbuffer
    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    gl.glRotatef(1, 1, 1, 1);
    // rotate 1 degree alone vector (1, 1, 1)
    gl.glPushMatrix();
    gl.glScaled(cRadius, cRadius, cRadius);
    drawCylinder();
    gl.glPopMatrix();

    try {
      Thread.sleep(20);
    } catch (Exception ignore) {}
  }

  private void subdivideCylinder(float v1[],
                                 float v2[], int depth) {
    float v11[] = {0, 0, 0};
    float v22[] = {0, 0, 0};
    float v0[] = {0, 0, 0};
    float v12[] = new float[3];
    int i;

    if (depth==0) {
      gl.glColor3f(v1[0]*v1[0],
                   v1[1]*v1[1], v1[2]*v1[2]);

      for (i = 0; i<3; i++) {
        v22[i] = v2[i];
        v11[i] = v1[i];
      }

      drawtriangle(v1, v2, v0);
      // draw sphere at the cylinder's bottom

      v11[2] = v22[2] = v0[2] = 1.0f;
      drawtriangle(v11, v22, v0);
      // draw sphere at the cylinder's bottom



2.3  3D Transformation and Hidden-Surface Removal          89

      gl.glBegin(GL.GL_POLYGON);
      // draw the side rectangles of the cylinder
      gl.glVertex3fv(v11);
      gl.glVertex3fv(v22);
      gl.glVertex3fv(v2);
      gl.glVertex3fv(v1);
      gl.glEnd();

      return;
    }

    for (i = 0; i<3; i++) {
      v12[i] = v1[i]+v2[i];

    }
    normalize(v12);

    subdivideCylinder(v1, v12, depth-1);
    subdivideCylinder(v12, v2, depth-1);
  }

  public void drawCylinder() {
    subdivideCylinder(cVdata[0], cVdata[1], depth);
    subdivideCylinder(cVdata[1], cVdata[2], depth);
    subdivideCylinder(cVdata[2], cVdata[3], depth);
    subdivideCylinder(cVdata[3], cVdata[0], depth);
  }

  public static void main(String[] args) {
    J2_6_Cylinder f = new J2_6_Cylinder();

    f.setTitle("JOGL J2_6_Cylinder");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Approximating a sphere. Let’s assume that we have an equilateral triangle with its 
three vertices (v1, v2, v3) on a sphere and |v1|=|v2|=|v3|=1. That is, the three vertices are 
unit vectors from the origin. We can see that v12 = normalize(v1 + v2) is also on the 
sphere. We can further subdivide the triangle into four equilateral triangles, as shown 
in Fig. 2.14a. Example J2_7_Sphere.java uses this method to subdivide an octahedron 
(Fig. 2.14b) into a sphere, as shown in Fig. 2.14c.
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 Fig. 2.14 Drawing a sphere through subdivision [See Color Plate 1]

/* draw a sphere by subdivision */
 
import net.java.games.jogl.*;

public class J2_7_Sphere extends J2_6_Cylinder {
  static float sVdata[][] = { {1.0f, 0.0f, 0.0f}
                            , {0.0f, 1.0f, 0.0f}
                            , {0.0f, 0.0f, 1.0f}
                            , { -1.0f, 0.0f, 0.0f}
                            , {0.0f, -1.0f, 0.0f}
                            , {0.0f, 0.0f, -1.0f}
  };

  public void display(GLDrawable glDrawable) {

    if ((cRadius > (WIDTH / 2)) || (cRadius == 1)) {
      flip = -flip;

      depth++;
      depth = depth % 5;
    }

    cRadius += flip;

v2

v1

v3

v12

v23

v13
z

z

x

x

yy

(b) Front view of an octahedron(a) Subdivision (c) A sphere 
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    // clear both frame buffer and zbuffer
    gl.glClear(GL.GL_COLOR_BUFFER_BIT |
               GL.GL_DEPTH_BUFFER_BIT);

    gl.glRotatef(1, 1, 1, 1);
    // rotate 1 degree alone vector (1, 1, 1)
    gl.glPushMatrix();
    gl.glScalef(cRadius, cRadius, cRadius);
    drawSphere();
    gl.glPopMatrix();

    try {
      Thread.sleep(20);
    } catch (Exception ignore) {}
  }

  private void subdivideSphere(
      float v1[],
      float v2[],
      float v3[],
      long depth) {
    float v12[] = new float[3];
    float v23[] = new float[3];
    float v31[] = new float[3];
    int i;

    if (depth == 0) {
      gl.glColor3f(v1[0] * v1[0],
                   v2[1] * v2[1], v3[2] * v3[2]);
      drawtriangle(v1, v2, v3);

      return;
    }
    for (i = 0; i < 3; i++) {
      v12[i] = v1[i] + v2[i];
      v23[i] = v2[i] + v3[i];
      v31[i] = v3[i] + v1[i];
    }
    normalize(v12);
    normalize(v23);
    normalize(v31);
    subdivideSphere(v1, v12, v31, depth - 1);
    subdivideSphere(v2, v23, v12, depth - 1);
    subdivideSphere(v3, v31, v23, depth - 1);
    subdivideSphere(v12, v23, v31, depth - 1);
  }
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  public void drawSphere() {
    subdivideSphere(sVdata[0], sVdata[1], sVdata[2], depth);
    subdivideSphere(sVdata[0], sVdata[2], sVdata[4], depth);
    subdivideSphere(sVdata[0], sVdata[4], sVdata[5], depth);
    subdivideSphere(sVdata[0], sVdata[5], sVdata[1], depth);
    subdivideSphere(sVdata[3], sVdata[1], sVdata[5], depth);
    subdivideSphere(sVdata[3], sVdata[5], sVdata[4], depth);
    subdivideSphere(sVdata[3], sVdata[4], sVdata[2], depth);
    subdivideSphere(sVdata[3], sVdata[2], sVdata[1], depth);
  }

  public static void main(String[] args) {
    J2_7_Sphere f = new J2_7_Sphere();

    f.setTitle("JOGL J2_7_Sphere");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.3.5 Composition of 3D Transformations

Example J2_8_Robot3d.java implements the 
robot arm in Example J2_4_Robot.java with 
3D cylinders, as shown in Fig. 2.15. We also 
add one rotation around the y axis, so the robot 
arm moves in 3D.

/* 3D 3-segment arm transformation */

import net.java.games.jogl.*;

public class J2_8_Robot3d extends 
J2_7_Sphere {

  static float alpha = -30;
  static float beta = -30;
  static float gama = 60;
  static float aalpha = 1;
  static float abeta = 1;
  static float agama = -2;

 Fig. 2.15 A 3-segment robot 
arm [See Color Plate 2]



2.3  3D Transformation and Hidden-Surface Removal          93

  float O = 0;
  float A = (float) WIDTH / 4;
  float B = (float) 0.4 * WIDTH;
  float C = (float) 0.5 * WIDTH;

  public void display(GLDrawable glDrawable) {

    // for reshape purpose
    A = (float) WIDTH / 4;
    B = (float) 0.4 * WIDTH;
    C = (float) 0.5 * WIDTH;

    depth = 4;
    alpha += aalpha;
    beta += abeta;
    gama += agama;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT |
               GL.GL_DEPTH_BUFFER_BIT);
    drawRobot(O, A, B, C, alpha, beta, gama);

void drawArm(float End1, float End2) {

    float scale;
    scale = End2 - End1;

    gl.glPushMatrix();

    // the cylinder lies in the z axis;
    // rotate it to lie in the x axis
    gl.glRotatef(90.0f, 0.0f, 1.0f, 0.0f);
    gl.glScalef(scale / 5.0f, scale / 5.0f, scale);
    drawCylinder();

    gl.glPopMatrix();
  }

  void drawRobot(float O, float A, float B, float C, 
                 float alpha, float beta, float gama) {
    // the robot arm is rotating around y axis
    gl.glRotatef(1.0f, 0.0f, 1.0f, 0.0f);
    gl.glPushMatrix();

    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f);
    // R_z(alpha) is on top of the matrix stack
    drawArm(O, A);
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    gl.glTranslatef(A, 0.0f, 0.0f);
    gl.glRotatef(beta, 0.0f, 0.0f, 1.0f);
    // R_z(alpha)T_x(A)R_z(beta) is on top of the stack
    drawArm(A, B);

    gl.glTranslatef(B - A, 0.0f, 0.0f);
    gl.glRotatef(gama, 0.0f, 0.0f, 1.0f);
    // R_z(alpha)T_x(A)R_z(beta)T_x(B)R_z(gama) is on top
    drawArm(B, C);

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_8_Robot3d f = new J2_8_Robot3d();

    f.setTitle("JOGL J2_8_Robot3d");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Example J2_9_Solar.java is a simplified solar system. The earth rotates around the 
sun and the moon rotates around the earth in the xz plane. Given the center of the earth 
at E(xe, ye, ze) and the center of the moon at M(xm, ym, zm), let’s find the new centers 
after the earth rotates around the sun e degrees, and the moon rotates around the earth 
m degrees. The moon also revolves around the sun with the earth (Fig. 2.16).

 Fig. 2.16 Simplified solar system: a 2D problem in 3D
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e
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This problem is exactly like the clock problem in Fig. 2.5, except that the center of the 
clock is revolving around y axis as well. We can consider the moon rotating around the 
earth first, and then the moon and the earth as one object rotating around the sun.

In OpenGL, because we can draw a sphere at the center of the coordinates, the 
transformation would be simpler. 

/* draw a simplified solar system */

import net.java.games.jogl.*;
import net.java.games.jogl.util.*;

public class J2_9_Solar extends J2_8_Robot3d {

  public void display(GLDrawable glDrawable) {

    depth = (cnt/100)%6;
    cnt++; 

    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  public void drawColorCoord(float xlen, float ylen,
                             float zlen) {
    GLUT glut = new GLUT();

    gl.glBegin(GL.GL_LINES);

    gl.glColor3f(1, 0, 0);

    gl.glVertex3f(0, 0, 0);
    gl.glVertex3f(0, 0, zlen);

    gl.glColor3f(0, 1, 0);

    gl.glVertex3f(0, 0, 0);
    gl.glVertex3f(0, ylen, 0);
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    gl.glColor3f(0, 0, 1);

    gl.glVertex3f(0, 0, 0);
    gl.glVertex3f(xlen, 0, 0);

    gl.glEnd();

    // coordinate labels: X, Y, Z
    gl.glPushMatrix();
    gl.glTranslatef(xlen, 0, 0);
    gl.glScalef(xlen/WIDTH, xlen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'X');
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glColor3f(0, 1, 0);
    gl.glTranslatef(0, ylen, 0);
    gl.glScalef(ylen/WIDTH, ylen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Y');
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glColor3f(1, 0, 0);
    gl.glTranslatef(0, 0, zlen);
    gl.glScalef(zlen/WIDTH, zlen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Z');
    gl.glPopMatrix();

  }

  void drawSolar(float E, float e, float M, float m) {

    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix();

    gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle

    gl.glTranslatef(E, 0.0f, 0.0f);

    gl.glPushMatrix();
    gl.glScalef(WIDTH/20f, WIDTH/20f, WIDTH/20f);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(m, 0.0f, 1.0f, 0.0f);
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    // rotating around the "earth"
    gl.glTranslatef(M, 0.0f, 0.0f);
    drawColorCoord(WIDTH/8f, WIDTH/8f, WIDTH/8f);
    gl.glScalef(WIDTH/40f, WIDTH/40f, WIDTH/40f);
    drawSphere();

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_9_Solar f = new J2_9_Solar();

    f.setTitle("JOGL J2_9_Solar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Next, we change the above solar system into a more complex system, which we call 
the generalized solar system. Now the earth is elevated along the y axis, and the moon 
is elevated along the axis from the origin toward the center of the earth, and the moon 
rotates around this axis as in Fig. 2.17. In other words, the moon rotates around the 
vector E. Given E and M and their rotation angles e and m, respectively, can we find 
the new coordinates of Ef and Mf? 

We cannot come up with the rotation matrix for the moon, M, immediately. However, 
we can consider E and M as one object and create the rotation matrix by several steps. 
Note that for M’s rotation around E, we do not really need to rotate E itself, but we use 
it as a reference to explain the rotation. 

1. As shown in Fig. 2.17, the angle between the y axis and E is α = arc cos (y/r); the 
angle between the projection of E on the xz plane and the x axis is β = arc tg (z/x); 
r = sqrt(x2 + y2 + z2). 

2. Rotate M around the y axis by β degrees so that the new center of rotation E1 is in 
the xy plane: 

M1 = Ry(β)M; E1 = Ry(β)E. (EQ 53)
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 Fig. 2.17 Generalized solar system: a 3D problem

3. Rotate M1 around the z axis by α degrees so that the new center of rotation E2 is 
coincident with the y axis:

M2 = Rz(α)M1; E2 = Rz(α)E1. (EQ 54)

4. Rotate M2 around the y axis by m degree:

M3 = Ry(m)M2. (EQ 55)

5. Rotate M3 around the z axis by −α degree so that the center of rotation returns to 
the xz plane:

M4 = Rz(−α)M3; E1 = Rz(−α)E2. (EQ 56)

6. Rotate M4 around y axis by −β degree so that the center of rotation returns to its 
original orientation: 

M5 = Ry(−β)M4; E = Ry(−β)E1. (EQ 57)
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α

α = arc cos (y/r); β = arc tg (z/x);

M1 = Ry(β) M; // the center of rotation OE is in the xy plane

M2 = Rz(α) M1 // OE is along the y axis
M3 = Ry(m) M2; // the moon rotates along the y axis

M4 = Rz(−α) M3; //OE returns to the xy plane

M5 = Ry(−β) M4; // OE returns to its original orientation

Mf = Ry(e)Ry(−β) Rz(−α) Ry(m) Rz(α) Ry(β) M;

r
Mf = Ry(e) M5; // the moon proceeds with the earth

Ef = Ry(e) E; // the earth rotates around the y axis

O

r = sqrt(x2 + y2 + z2);
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7. Rotate M5 around y axis e degree so that the moon proceeds with the earth around 
the y axis:

Mf = Ry(e)M5; Ef = Ry(e)E. (EQ 58)

8. Putting the transformation matrices together, we have

Mf = Ry(e)Ry(−β) Rz(−α) Ry(m) Rz(α) Ry(β) M. (EQ 59)

Again, in OpenGL, we start with the sphere at 
the origin. The transformation is simpler. The 
following code demonstrates the generalized 
solar system. The result is shown in Fig. 2.18. 
Incidentally, glRotatef(m, x, y, z) specifies a 
single matrix that rotates a point along the 
vector (x, y, z) by m degrees. Now, we know 
that the matrix is equal to Ry(−β) Rz(−α) Ry(m) 
Rz(α) Ry(β). 

/* draw a generalized solar system */

import net.java.games.jogl.*;

public class J2_10_GenSolar extends J2_9_Solar {
  static float tiltAngle = 40;

  void drawSolar(float earthDistance,
                 float earthAngle,
                 float moonDistance,
                 float moonAngle) {

    // Global coordinates
    gl.glLineWidth(6);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix();

 Fig. 2.18 Generalized solar 
system [See Color Plate 2] 
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    gl.glRotatef(earthAngle, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(tiltAngle, 0.0f, 0.0f, 1.0f);
    // tilt angle, angle between the center line and y axis
    gl.glBegin(GL.GL_LINES);
    gl.glVertex3f(0.0f, 0.0f, 0.0f);
    gl.glVertex3f(0.0f, earthDistance, 0.0f);
    gl.glEnd();

    gl.glTranslatef(0.0f, earthDistance, 0.0f);
    gl.glLineWidth(2);

    gl.glPushMatrix();
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);
    gl.glScalef(WIDTH/20, WIDTH/20, WIDTH/20);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(moonAngle, 0.0f, 1.0f, 0.0f);
    // rotating around the "earth"
    gl.glTranslatef(moonDistance, 0.0f, 0.0f);
    gl.glLineWidth(3);
    drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
    gl.glScalef(WIDTH/40, WIDTH/40, WIDTH/40);
    drawSphere();

    gl.glPopMatrix();
  }

  public static void main(String[] args) {

    J2_10_GenSolar f = new J2_10_GenSolar();

    f.setTitle("JOGL J2_10_GenSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

The generalized solar system corresponds to a top that rotates and proceeds as shown 
in Fig. 2.19b. The rotating angle is m and the proceeding angle is e. The earth E is a 
point along the center of the top, and the moon M can be a point on the edge of the top. 
We learned to draw a cone in OpenGL. We can transform the cone to achieve the 
motion of a top. In the following example (J2_11_ConeSolar.java), we have a top that 
rotates and proceeds and a sphere that rotates around the top (Fig. 2.19c). 
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 Fig. 2.19 A top rotates and proceeds [See Color Plate 2]

/* draw a cone solar system */

public class J2_11_ConeSolar extends J2_10_GenSolar {

  void drawSolar(float E, float e, float M, float m) {

    // Global coordinates
    gl.glLineWidth(6);
    drawColorCoord(WIDTH / 4, WIDTH / 4, WIDTH / 4);

    gl.glPushMatrix();
    gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
    gl.glTranslatef(0.0f, E, 0.0f);
    gl.glPushMatrix();
    gl.glScalef(WIDTH / 20, WIDTH / 20, WIDTH / 20);
    drawSphere();
    gl.glPopMatrix();
    gl.glPushMatrix();
    gl.glScalef(E / 8, E, E / 8);
    gl.glRotatef(90, 1.0f, 0.0f, 0.0f); // orient the cone
    drawCone();
    gl.glPopMatrix();

    gl.glRotatef(m, 0.0f, 1.0f, 0.0f);

x

y

e

α

m

x

y

z z β

(c) A Top in generalized solar system(a) A top (b) Rotating and proceeding
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    // rotating around the "earth"
    gl.glTranslatef(M, 0.0f, 0.0f);
    gl.glLineWidth(4);
    drawColorCoord(WIDTH / 8, WIDTH / 8, WIDTH / 8);
    gl.glScalef(E / 8, E / 8, E / 8);
    drawSphere();
    gl.glPopMatrix();
  }

  public static void main(String[] args) {

    J2_11_ConeSolar f = new J2_11_ConeSolar();

    f.setTitle("JOGL J2_11_ConeSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.3.6 Collision Detection 

To avoid two models in an animation penetrating 
each other, we can use their bounding volumes to 
decide their physical distances and collision. Of 
course, the bounding volume can be in a different 
shape other than a box, such as a sphere. If the 
distance between the centers of the two spheres 
is bigger than the summation of the two radii of 
the spheres, we know that the two models do not 
collide with each other. We may use multiple 
spheres with different radii to more accurately 
bound a model, but the collision detection would 
be more complex. Of course, we may also detect 
collisions directly without using bounding 
volumes, which is likely much more complex 
and time consuming. 

We can modify the above example to have three moons (a cylinder, a sphere, and a 
cone) that rotate around the earth in different directions and collide with one another 
changing the directions of rotation (Fig. 2.20). If we use a sphere as a bounding 

 Fig. 2.20 Collision detection 
[See Color Plate 2]
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volume, the problem becomes how to find the centers of the bounding spheres. We 
know that each moon is transformed from the origin. If we know the current matrix on 
the matrix stack at the point we draw a moon, we can multiply the matrix with the 
origin (0, 0, 0, 1) to find the center of the moon. Because at the origin x, y, and z are 0s, 
we only need to retrieve the last column in the matrix, which is shown in the following 
example (J2_11_coneSolarCollision.java). Collision detection is then decided by the 
distances among the moons’ centers. If a distance is shorter than a predefined 
threshold, the two moons will change their directions of rotation around the earth. 

/* draw a cone solar system with collisions of the moons */

import java.lang.Math;
import net.java.games.jogl.*;

public class J2_11_ConeSolarCollision extends
    J2_11_ConeSolar {
  //direction and speed of rotation
  static float coneD = WIDTH/110;
  static float sphereD = -WIDTH/64;
  static float cylinderD = WIDTH/300f;
  static float spherem = 120, cylinderm = 240;
  static float tmpD = 0, conem = 0;

  // centers of the objects
  static float[] coneC = new float[3];
  static float[] sphereC = new float[3];
  static float[] cylinderC = new float[3];

  // current matrix on the matrix stack
  static float[] currM = new float[16];

  void drawSolar(float E, float e, float M, float m) {

    // Global coordinates
    gl.glLineWidth(8);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix(); {
      gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
      // rotating around the "sun"; proceed angle
      gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
      gl.glTranslatef(0.0f, E, 0.0f);
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      gl.glPushMatrix();
      gl.glScalef(WIDTH/20, WIDTH/20, WIDTH/20);
      drawSphere();
      gl.glPopMatrix();

      gl.glPushMatrix();
      gl.glScalef(E/8, E, E/8);
      gl.glRotatef(90, 1.0f, 0.0f, 0.0f);

      // orient the cone
      drawCone();
      gl.glPopMatrix();

      gl.glPushMatrix();
      cylinderm = cylinderm+cylinderD;
      gl.glRotatef(cylinderm, 0.0f, 1.0f, 0.0f);
      // rotating around the "earth"
      gl.glTranslatef(M*2, 0.0f, 0.0f);
      gl.glLineWidth(4);
      drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
      gl.glScalef(E/8, E/8, E/8);
      drawCylinder();
      // retrieve the center of the cylinder
      // the matrix is stored column major left to right
      gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
      cylinderC[0] = currM[12];
      cylinderC[1] = currM[13];
      cylinderC[2] = currM[14];
      gl.glPopMatrix();

      gl.glPushMatrix();
      spherem = spherem+sphereD;
      gl.glRotatef(spherem, 0.0f, 1.0f, 0.0f);
      // rotating around the "earth"
      gl.glTranslatef(M*2, 0.0f, 0.0f);
      drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
      gl.glScalef(E/8, E/8, E/8);
      drawSphere();
      // retrieve the center of the sphere
      gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
      sphereC[0] = currM[12];
      sphereC[1] = currM[13];
      sphereC[2] = currM[14];
      gl.glPopMatrix();

      gl.glPushMatrix();
      conem = conem+coneD;
      gl.glRotatef(conem, 0.0f, 1.0f, 0.0f);
      // rotating around the "earth"
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      gl.glTranslatef(M*2, 0.0f, 0.0f);
      drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
      gl.glScalef(E/8, E/8, E/8);
      drawCone();
      // retrieve the center of the cone
      gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM);
      coneC[0] = currM[12];
      coneC[1] = currM[13];
      coneC[2] = currM[14];
      gl.glPopMatrix();
    }
    gl.glPopMatrix();

    if (distance(coneC, sphereC)<E/5) {
      // collision detected, swap the rotation directions
      tmpD = coneD;
      coneD = sphereD;
      sphereD = tmpD;
    }

    if (distance(coneC, cylinderC)<E/5) {
      // collision detected, swap the rotation directions
      tmpD = coneD;
      coneD = cylinderD;
      cylinderD = tmpD;
    }

    if (distance(cylinderC, sphereC)<E/5) {
      // collision detected, swap the rotation directions
      tmpD = cylinderD;
      cylinderD = sphereD;
      sphereD = tmpD;
    }
  }

  // distance between two points
  float distance(float[] c1, float[] c2) {
    float tmp = (c2[0]-c1[0])*(c2[0]-c1[0])+
                (c2[1]-c1[1])*(c2[1]-c1[1])+
                (c2[2]-c1[2])*(c2[2]-c1[2]);

    return ((float)Math.sqrt(tmp));
  }

  public static void main(String[] args) {
    J2_11_ConeSolarCollision f =
        new J2_11_ConeSolarCollision();
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    f.setTitle("JOGL J2_11_ConeSolarCollision");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.4 Viewing

The display has its device coordinate system in pixels, and our model has its (virtual) 
modeling coordinate system in which we specify and transform our model. We need to 
consider the relationship between the modeling coordinates and the device 
coordinates so that our virtual model will appear as an image on the display. 
Therefore, we need a viewing transformation — the mapping of an area or volume in 
the modeling coordinates to an area in the display device coordinates. 

2.4.1 2D Viewing

In 2D viewing, we specify a rectangular area called the modeling window in the 
modeling coordinates and a display rectangular area called the viewport in the device 
coordinates (Fig. 2.21). The modeling window defines what is to be viewed; the 
viewport defines where the image appears. Instead of transforming a model in the 
modeling window to a model in the display viewport directly, we can first transform 
the modeling window into a square with the lower-left corner at (−1, −1) and the 
upper-right corner at (1, 1). The coordinates of the square are called the normalized
coordinates. Clipping of the model is then calculated in the normalized coordinates 
against the square. After that, the normalized coordinates are scaled and translated to 
the device coordinates. 

We should understand that the matrix that transforms the modeling window to the 
square will also transform the models in the modeling coordinates to the 
corresponding models in the normalized coordinates. Similarly, the matrix that 
transforms the square to the viewport will also transform the models accordingly. The 
process (or pipeline) in 2D viewing is shown in Fig. 2.21. Through normalization, the 
clipping algorithm avoids dealing with the changing sizes of the modeling window 
and the device viewport.
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 Fig. 2.21 2D viewing pipeline

2.4.2 3D Viewing

The display is a 2D viewport, and our model can be in 3D. In 3D viewing, we need to 
specify a viewing volume, which determines a projection method (parallel or 
perspective) — for how 3D models are projected into 2D. The projection lines go 
from the vertices in the 3D models to the projected vertices in the projection plane — 
a 2D view plane that corresponds to the viewport. A parallel projection has all the 
projection lines parallel. A perspective projection has all the projection lines 
converging to a point named the center of projection. The center of projection is also 
called the viewpoint. You may consider that your eye is at the viewpoint looking into 
the viewing volume. Viewing is analogous to taking a photograph with a camera. The 
object in the outside world has its own 3D coordinate system, the film in the camera 
has its own 2D coordinate system. We specify a viewing volume and a projection 
method by pointing and adjusting the zoom. 

As shown in Fig. 2.22, the viewing volume for the parallel projection is like a box. 
The result of the parallel projection is a less realistic view but can be used for exact 
measurements. The viewing volume for the perspective projection is like a truncated 
pyramid, and the result looks more realistic in many cases, but does not preserve sizes 
in the display — objects further away are smaller. 

Xmodeling

Ymodeling

Xnormalized

Ynormalized

Xdevice

Ydevice

in the modeling 
coordinates: 

Specify a window Transform the window 
and the models to the 

area to be displayed
normalized coordinates. 
Clip against the square

Transform the square 
and the models to the 
device coordinates in the 
display viewport. 

W

H
w

h

S(2/W, 2/H); 
T(-Center); //Window
Transform(models); 
// nomralized models

Clipping();
// clipped models

T(center); //viewport
S(w/2, h/2); 
Transform(models); 
// device models
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 Fig. 2.22 View volumes and projection methods

In the following, we use the OpenGL system as an example to demonstrate how 3D 
viewing is achieved. The OpenGL viewing pipeline includes normalization, clipping, 
perspective division, and viewport transformation (Fig. 2.23). Except for clipping, all 
other transformation steps can be achieved by matrix multiplications. Therefore, 
viewing is mostly achieved by geometric transformation. In the OpenGL system, 
these transformations are achieved by matrix multiplications on the PROJECTION 
matrix stack.

Specifying a viewing volume. A parallel projection is called an orthographic projection 
if the projection lines are all perpendicular to the view plane. glOrtho(left, right, 
bottom, top, near, far) specifies an orthographic projection as shown in Fig. 2.22a. 
glOrtho() also defines six plane equations that cover the orthographic viewing 
volume: x=left, x=right, y=bottom, y=top, z=−near, and z=−far. We can see that (left, 
bottom, −near) and (right, top, −near) specify the (x, y, z) coordinates of the lower-left 
and upper-right corners of the near clipping plane. Similarly, (left, bottom, −far) and 
(right, top, −far) specify the (x, y, z) coordinates of the lower-left and upper-right 
corners of the far clipping plane.

glFrustum(left, right, bottom, top, near, far) specifies a perspective projection as 
shown in Fig. 2.22b. glFrustum() also defines six planes that cover the perspective 
viewing volume. We can see that (left, bottom, −near) and (right, top, −near) specify 
the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping 
plane. The far clipping plane is a cross section at z=−far with the projection lines 
converging to the viewpoint, which is fixed at the origin looking down the negative z
axis. 

bottom

toptop

bottom

right

near 
far

left

view
point

near 
far

right
left

(a) Parallel projection (b) Perspective projection
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 Fig. 2.23 3D viewing pipeline

As we can see, both glOrtho() and glFrustum() specify viewing volumes oriented with 
left and right edges on the near clipping plane parallel to y axis. In general, we use a 
vector up to represent the orientation of the viewing volume, which when projected on 
to the near clipping plane is parallel to the left and right edges.  

Normalization. Normalization transformation is achieved by matrix multiplication on 
the PROJECTION matrix stack. In the following code section, we first load the 
identity matrix onto the top of the matrix stack. Then, we multiply the identity matrix 
by a matrix specified by glOrtho().

// hardware set to use projection matrix stack
gl.glMatrixMode (GL.GL_PROJECTION);

   gl.glLoadIdentity (); 
gl.glOrtho(-Width/2,Width/2,-Height/2,Height/2,-1.0, 1.0); 

In OpenGL, glOrtho() actually specifies a matrix that transforms the specified 
viewing volume into a normalized viewing volume, which is a cube with six clipping 
planes as shown in Fig. 2.24 (x=1, x=−1, y=1, y=−1, z=1, and z=−1). glOrtho(l, r, b, t, 
n, f) is equivalent to the following matrix expression: 

S(-2/(r-l), -2/(t-b), -2/(f-n))T(-(r+l)/2, -(t+b)/2, (f+n)/2); (EQ 60)

Clip against
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Divide by w
for perspective

Transform
into the 

viewing volume

Normalize the

viewport
viewing volume

projection

3D Modeling 
Coordinates

2D Display 
Device 
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glFrustum(); 
//glOrtho();
Transform(models); 
// nomralized models

Clipping();
// clipped models

glViewport(); 
Transform(models); 
// device models
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Therefore, instead of calculating the clipping and projection directly, the 
normalization transformation is carried out first to simplify the clipping and the 
projection. Similarly, glFrustum() also specifies a matrix that transforms the 
perspective viewing volume into a normalized viewing volume as in Fig. 2.24. Here a 
division is needed to map the homogeneous coordinates into 3D coordinates. In 
OpenGL, a 3D vertex is represented by (x, y, z, w) and transformation matrices are 

 matrices. When w=1, (x, y, z) represents the 3D coordinates of the vertex. If 
w=0, (x, y, z) represents a direction. Otherwise, (x/w, y/w, z/w) represents the 3D 
coordinates. A perspective division is needed simply because after the glFrustum()
matrix transformation, . In OpenGL, the perspective division is carried out after 
clipping. 

Clipping. Because glOrtho() and 
glFrustum() both transform their 
viewing volumes into a normalized 
viewing volume, we only need to 
develop one clipping algorithm. 
Clipping is carried out in homogeneous 
coordinates. Therefore, all vertices of 
the models are first transformed into the 
normalized viewing coordinates, clipped 
against the planes of the normalized 
viewing volume (x=−w, x=w, y=−w, y=w, 
z=−w, z=w), and then transformed and 
projected into the 2D viewport. 

Perspective division. The perspective normalization transformation glFrustum() results 
in homogenous coordinates with . Clipping is carried out in homogeneous 
coordinates. However, a division for all the coordinates of the model (x/w, y/w, z/w) is 
needed to transform homogeneous coordinates into 3D coordinates. 

Viewport transformation. All vertices are kept in 3D. We need the z values to calculate 
hidden-surface removal. From the normalized viewing volume after dividing by w, the 
viewport transformation calculates each vertex’s (x, y, z) corresponding to the pixels in 
the viewport and invokes scan-conversion algorithms to draw the model into the 
viewport. Projecting into 2D is nothing more than ignoring the z values when 

4 4×

w 1≠

x

y

z

 Fig. 2.24 Normalized viewing volume
— a cube with (−1 to 1) along each axis

w 1≠
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scan-converting the model’s pixels into the frame buffer. It is not necessary but we 
may consider that the projection plane is at z=0. In Fig. 2.22, the shaded projection 
planes are arbitrarily specified. 

Summary of the viewing pipeline. Before scan-conversion, an OpenGL model will go 
through the following transformation and viewing processing steps: 

• Modeling: Each vertex of the model will be transformed by the current matrix on 
the top of the MODELVIEW matrix stack.

• Normalization: After the above MODELVIEW transformation, each vertex will 
be transformed by the current matrix on the top of the PROJECTION matrix 
stack.

• Clipping: Each primitive (point, line, polygon, etc.) is clipped against the clipping 
planes in homogeneous coordinates.

• Perspective division: All primitives are transformed from homogeneous 
coordinates into Cartesian coordinates.

• Viewport transformation: The model is scaled and translated into the viewport for 
scan-conversion. 

2.4.3 3D Clipping Against a Cube

Clipping a 3D point against a cube can be done in six comparisons. If we represent a 
point by its six comparisons in six bits, we can easily decide a 3D line clipping.  

Bit 6 = 1 if x<left;
Bit 5 = 1 if x>right;
Bit 4 = 1 if y<bottom;
Bit 3 = 1 if y>top;
Bit 2 = 1 if z<near;
Bit 1 = 1 if z>far;

If the two end points of a line’s 6 bits are 000000 (the logic OR is equal to zero), then 
the end points of the line are inside the cube. If there is a same bit in the two end 
points is not equal to zero (the logic AND is not equal to zero), then the two end points 
are outside the viewing volume. Otherwise, we can find the lines intersections with 
the cube. Given two end points (x0, y0, z0) and (x1, y1, z1), the parametric line equation 
can be represented as: 
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(EQ 61)

(EQ 62)

(EQ 63)

Now if any bit is not equal to zero, say Bit 2 = 1, then z=near, and we can find t in 
Equation 63. and therefore find the intersection point (x, y, z) according to Equation 61
and Equation 62. 

For a polygon in 3D, we can extend the above line clipping algorithm to walk around 
the edges of the polygon against the cube. If a polygon’s edge lies inside the clipping 
volume, the vertices are accepted for the new polygon. Otherwise, we can throw out 
all vertices outside a volume boundary plane, cut the two edges that go out of and into 
a boundary plane, and generate new vertices along a boundary plane between the two 
edges to replace the vertices that are outside a boundary plane. The clipped polygon 
has all vertices in the viewing volume after the six boundary planes are processed. 

Clipping against the viewing volume is part of OpenGL view pipeline discussed 
earlier. Actually, clipping against an arbitrary plane can be calculated similarly as 
discussed below. 

2.4.4 Clipping Against an Arbitrary Plane

A plane equation in general form can be expressed as follows: 

(EQ 64)

We can clip a point against the plane equation. Given a point (x0, y0, z0), if 
, then the point is accepted. Otherwise it is clipped. For an 

edge, if the two end points are not accepted or clipped, we can find the intersection of 
the edge with the plane by putting Equation 61, Equation 62, and Equation 63 into 
Equation 64. Again, we can walk around the vertices of a polygon to clip against the 
plane. 

x x0 t x1 x0–( )+=

y y0 t y1 y0–( )+=

z z0 t z1 z0–( )+=

ax by cz d+ + + 0=

ax0 by0 cz0 d 0≥+ + +
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OpenGL has a function glClipPlane() that allows specifying and clipping plane. You 
can enable the corresponding clipping plane so that objects below the clipping plane 
will be clipped. 

/* clipping against an arbitrary plane.*/

import java.lang.Math; // import net.java.games.jogl.*;
import javax.media.opengl.*;

public class J2_12_Clipping extends J2_11_ConeSolarCollision {

static double[] eqn = new double[4]; 
// plane equation ax+by+cz+d = 0

public void display(GLAutoDrawable glDrawable) {
  

//1. specify plane equation x = 0;
eqn[0] = 1;
//2. tell OpenGL system eqn is a clipping plane
gl.glClipPlane(GL.GL_CLIP_PLANE0, eqn, 0);
//3. Enable clipping of the plane. 
gl.glEnable(GL.GL_CLIP_PLANE0);

super.display(glDrawable);  
  }

public static void main(String[] args) {
J2_12_Clipping f = new J2_12_Clipping();

f.setTitle("JOGL J2_12_Clipping");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

2.4.5 The Logical Orders of Transformation Steps 

Modeling and viewing transformations are carried out by the OpenGL system 
automatically. For programmers, it is more practical to understand how to specify a 
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viewing volume through glOrtho() or glFrustum() on the PROJECTION matrix stack 
and to make sure that the model is in the viewing volume after being transformed by 
the current matrix on the MODELVIEW matrix stack. The PROJECTION matrix is 
multiplied with the MODELVIEW matrix, and the result is used to transform 
(normalize) the original model’s vertices. The final matrix, if you view it from how it 
is constructed, represents an expression or queue of matrices from left-most where 
you specify normalization matrix to right-most where you specify a vertex in drawing. 

When we analyze a model’s transformation steps, logically speaking, the order of 
transformation steps is from right to left in the matrix expression. However, we can 
look at the matrix expression from left to right if our logical is transforming the 
projection (camera) instead of the model. We will discuss these two different logical 
reasoning orders here. 

The following demonstrates how to specify the 
modelview and projection matrices on the two 
stacks in the example J2_12_RobotSolar.java, as 
shown in Fig. 2.25. Here the logical reasoning is 
from where we specify the model to where we 
specify the projection matrix. 

1.  In display(), a robot arm is calculated at the 
origin of the modeling coordinates. 

2.  As we discussed before, although the matrices 
are multiplied from the top-down 
transformation commands, when we analyze a 
model’s transformations, logically speaking, 
the order of transformation steps are bottom-up 
from the closest transformation above the drawing command on the MODELVIEW 
matrix stack to where we specify the viewing volume on the PROJECTION matrix 
stack. 

3. OpenGL provides PROJECTION and MODELVIEW matrix stacks to facilitate 
viewing and transformation separately, which is a nice separation and logical 
structure. Theoretically, we do not have to require two pieces of hardware, because 
the matrix on top of the PROJECTION matrix stack and the matrix on top of the 
MODELVIEW matrix stack are multiplied together to transform the models into 

 Fig. 2.25 Viewing in 3D [See 
Color Plate 2]
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the canonical viewing volume. Therefore, we can view these two matrices as one 
matrix expression, and some of the transformations can be on either of the matrix 
stacks. The following transformation step is an example. 

4. In Reshape(), the robot arm is translated along z axis −(zNear + zFar)/2 in order to 
be put in the middle of the viewing volume. This translation here can be the first 
matrix in the MODELVIEW matrix expression or the last matrix in the 
PROJECTION matrix expression. 

5.  glOrtho() or glFrustum() specify the viewing volume. The models in the viewing 
volume will appear in the viewport area on the display. 

6. glViewport() in Reshape() specifies the rendering area within the display window. 
The viewing volume will be projected into the viewport area. When we reshape the 
drawing area, the viewport aspect ratio (w/h) changes accordingly. We may specify 
a different viewport using glViewport() and draw into that area. In other words, we 
may have multiple viewports with different renderings in each display, which will 
be discussed later. 

/* 3D transformation and viewing */

import net.java.games.jogl.*;

public class J2_12_RobotSolar extends
    J2_11_ConeSolarCollision {

  public void reshape(
      GLDrawable glDrawable,
      int x,
      int y,
      int w,
      int h) {

    WIDTH = w;
    HEIGHT = h;

    // enable zbuffer for hidden-surface removal
    gl.glEnable(GL.GL_DEPTH_TEST);

    // specify the drawing area within the frame window
    gl.glViewport(0, 0, w, h);
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    // projection is carried on the projection matrix
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    // specify perspective projection using glFrustum
    gl.glFrustum(-w/4, w/4, -h/4, h/4, w/2, 4*w);

    // put the models at the center of the viewing volume
    gl.glTranslatef(0, 0, -2*w);

    // transformations are on the modelview matrix
    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void display(GLDrawable glDrawable) {

    cnt++;
    depth = (cnt/100)%6;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    if (cnt%60==0) {
      aalpha = -aalpha;
      abeta = -abeta;
      agama = -agama;
    }
    alpha += aalpha;
    beta += abeta;
    gama += agama;

    drawRobot(O, A, B, C, alpha, beta, gama);

    try {
      Thread.sleep(15);
    } catch (Exception ignore) {}
  }

  void drawRobot (float O, float A, float B, float C,
      float alpha, float beta, float gama) {

    gl.glLineWidth(8);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

    gl.glPushMatrix();

    gl.glRotatef(cnt, 0, 1, 0);
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    gl.glRotatef(alpha, 0, 0, 1);
    // R_z(alpha) is on top of the matrix stack
    drawArm(O, A);

    gl.glTranslatef(A, 0, 0);
    gl.glRotatef(beta, 0, 0, 1);
    // R_z(alpha)T_x(A)R_z(beta) is on top of the stack
    drawArm(A, B);

    gl.glTranslatef(B-A, 0, 0);
    gl.glRotatef(gama, 0, 0, 1);
    // R_z(alpha)T_x(A)R_z(beta)T_x(B)R_z(gama) is on top
    drawArm(B, C);

    // put the solar system at the end of the robot arm
    gl.glTranslatef(C-B, 0, 0);
    drawSolar(WIDTH/4, 2.5f*cnt, WIDTH/6, 1.5f*cnt);

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J2_12_RobotSolar f = new J2_12_RobotSolar();

    f.setTitle("JOGL J2_12_RobotSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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Another way of looking at the modeling and 
viewing transformation is that the matrix 
expression transforms the viewing method 
instead of the model. Translating a model along 
the negative z axis is like moving the viewing 
volume (camera) along the positive z axis. 
Similarly, rotating a model along an axis by a 
positive angle is like rotating the viewing volume 
along the axis by a negative angle. When we 
analyze a model’s transformation by thinking 
about transforming its viewing, the order of 
transformation steps are top-down from where 
we specify the viewing volume to where we 
specify the drawing command. We should 
remember that the signs of the transformation are logically negated in this perspective. 
Example J2_12_RobotSolar.java, specifies transformation in myCamera() from the 
top-down point of view. The result is shown in Fig. 2.26.   

/* going backwards to the moon in generalized solar system */

import net.java.games.jogl.*;

public class J2_13_TravelSolar extends J2_12_RobotSolar {

  public void display(GLDrawable glDrawable) {

    cnt++;
    depth = (cnt/50)%6;

gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);

    if (cnt%60==0) {
      aalpha = -aalpha; abeta = -abeta; agama = -agama;
    }
    alpha += aalpha; beta += abeta; gama += agama;

    gl.glPushMatrix();
    if (cnt%1000<500) {
      // look at the solar system from the moon
      myCamera(A, B, C, alpha, beta, gama);
    }

 Fig. 2.26 Transform the viewing 
[See Color Plate 2]
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    drawRobot(O, A, B, C, alpha, beta, gama);
    gl.glPopMatrix();

  void myCamera(float A, float B, float C,
      float alpha, float beta, float gama) {

    float E = WIDTH/4; float e = 2.5f*cnt;
    float M = WIDTH/6; float m = 1.5f*cnt;

    //1. camera faces the negative x axis
    gl.glRotatef(-90, 0, 1, 0);

    //2. camera on positive x axis
    gl.glTranslatef(-M*2, 0, 0);

    //3. camera rotates with the cylinder
    gl.glRotatef(-cylinderm, 0, 1, 0);

    // and so on reversing the solar transformation
    gl.glTranslatef(0, -E, 0);
    gl.glRotatef(-alpha, 0, 0, 1); // tilt angle
    // rotating around the "sun"; proceed angle
    gl.glRotatef(-e, 0, 1, 0);

    // and reversing the robot transformation
    gl.glTranslatef(-C+B, 0, 0);
    gl.glRotatef(-gama, 0, 0, 1);
    gl.glTranslatef(-B+A, 0, 0);
    gl.glRotatef(-beta, 0, 0, 1);
    gl.glTranslatef(-A, 0, 0);
    gl.glRotatef(-alpha, 0, 0, 1);
    gl.glRotatef(-cnt, 0, 1, 0);
  }

  public static void main(String[] args) {
    J2_13_TravelSolar f = new J2_13_TravelSolar();

    f.setTitle("JOGL J2_13_TravelSolar");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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2.4.6 gluPerspective and  gluLookAt

The OpenGL Utility (GLU) library, which is considered part of OpenGL, contains 
several groups of convenience functions that are built on top of OpenGL functions and 
complement the OpenGL library. The prefix for OpenGL Utility library functions is 
"glu" rather than "gl." We have only focused on the OpenGL library. For further 
understanding viewing, here we discuss two GLU library functions: gluPerspective()
and gluLookAt(). More GLU library functions are discussed in Chapter 5. 

gluPerspective() sets up a perspective projection matrix as follows: 

void gluPerspective(
  double fovy, // the field of view angle in y-direction
  double aspect,  // width/height of the near clipping plane
  double zNear, // distance from the origin to the near 
  double zFar  // distance from the origin to far 
);

The parameters of gluPerspective() are explained in Fig. 2.27. Compared with 
glFrustum(), gluPerspective() is easier to use for some programmers, but it is less 
powerful. The fovy (field of view) angle is symmetric around z axis in y direction, and 
its near and far clipping planes are symmetric around z axis as well. Therefore, 
gluPerspective() can only specify a symmetric viewing frustum around z axis, 
whereas glFrustum() has no such restriction. The following example 
J2_14_Perspective.java shows an implementation of myPerspective(double fovy, 
double aspect, double near, double far): 
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 Fig. 2.27 gluPerspective specifies a viewing frustum symmetric around z axis

/* simulate gluPerspective */
import net.java.games.jogl.*;
import java.lang.Math;

public class J2_14_Perspective extends
    J2_13_TravelSolar {

  public void myPerspective(double fovy, double aspect,
                            double near, double far) {
    double left, right, bottom, top;

    fovy = fovy*Math.PI/180; // convert degree to arc

    top = near*Math.tan(fovy/2);
    bottom = -top;
    right = aspect*top;
    left = -right;

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    gl.glFrustum(left, right, bottom, top, near, far);
  }

  public void reshape(GLDrawable glDrawable,
      int x, int y, int width, int height) {

view
point

zNear 
zFar

z

width − in x axis direction

height − in y axis direction

fovy − angle along y axis

aspect = width / height;
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    WIDTH = width;
    HEIGHT = height;

    // enable zbuffer for hidden-surface removal
    gl.glEnable(GL.GL_DEPTH_TEST);
    gl.glViewport(0, 0, width, height);

    myPerspective(45, 1, width/2, 4*width);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
    gl.glTranslatef(0, 0, -2*width);
  }

  public static void main(String[] args) {
    J2_14_Perspective f = new J2_14_Perspective();

    f.setTitle("JOGL J2_14_Perspective");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

glOrtho(), glFrustum(), and gluPerspective all specify a viewing volume oriented with 
left and right edges on the near clipping plane parallel to y axis. As we mentioned 
earlier, we use an up vector to represent the orientation of the viewing volume. In 
other words, by default the projection of up onto the near clipping plane is always 
parallel to the y axis. Because we can transform a viewing volume (camera) now as 
discussed in the past section, if we specify an orientation vector (upX, upY, upZ), we 
can orient the viewing volume accordingly. Here the angle between y axis and up’s 
projection on the xy plane is atan(upX/upY), we just need to rotate the viewing volume 
−atan(upX/upY) to achieve this. This can go further. We do not necessarily have to 
look from the origin down to the negative z axis. Instead, we can specify the viewpoint 
as a point eye looking down to another point center, with up as the orientation of the 
viewing volume. This seems complex, but an equivalent transformation seems much 
simpler. Given a triangle in 3D (eye, center, up), can we build up a transformation 
matrix so that after the transformation eye will be at the origin, center will be in the 
negative z axis, and up in the yz plane? The answer is shown in the method 
myLookAt() in the example J2_15_LookAt.java in the next section. myLookAt() and 
myGluLookAt() in the example are equivalent simulations of gluLookAt(), which 
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defines a viewing transformation from viewpoint eye to another point center with up
as the viewing frustum’s orientation vector: 

void gluLookAt (double eyeX
              , double eyeY
              , double eyeZ
              , double centerX
              , double centerY
              , double centerZ
              , double upX
              , double upY
              , double upZ
              );

Here the eye and center are points, but up is a vector. This is slightly different from 
our triangle example, where up is a point as well. As we can see, the up vector cannot 
be parallel to the line (eye, center). 

2.4.7 Multiple Viewports

glViewport(int x, int y, int width, int height) specifies the rendering area within the 
frame of the display window. By default glViewport(0, 0, w, h) is implicitly called in 
the reshape(GLDrawable glDrawable, int x, int y, int w, int h) with the same area as 
the display window. The viewing volume will be projected into the viewport area 
accordingly. 

We may specify a different viewport using glViewport() with lower-left corner (x, y) 
goes from (0, 0) to (w, h) and the viewport region is an area of width to height in pixels 
confined in the display window. All drawing functions afterwards will draw into the 
current viewport region. That is, the projection goes to the viewport. Also, we may 
specify multiple viewports at different regions in a drawing area and draw different 
scenes into these viewports. For example, glViewport(0, 0, width/2, height/2) will be 
the lower-left quarter of the drawing area, and glViewport(width/2, height/2, width/2, 
height/2) will be the upper-right quarter of the drawing area. In our example 
J2_15_LookAt.java below, we also specified different projection methods to 
demonstrate myLookAt(), mygluLookat(), and myPerspective() functions. If we don’t 
specify different projection methods in different viewports, the same projection matrix 
will be used for different viewports. Fig. 2.28 is a snapshot of the multiple viewports 
rendering. 
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 Fig. 2.28 Multiple viewports with different LookAt projections [See Color Plate 3]

/* simulate gluLookAt and display in multiple viewports */
import net.java.games.jogl.*;
import java.lang.Math;
import net.java.games.jogl.util.GLUT;

public class J2_15_LookAt extends J2_14_Perspective {
  GLUT glut = new GLUT();

  public void display(GLDrawable glDrawable) {
    cnt++;
    depth = 4;
    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    viewPort1();
    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
    // the objects' centers are retrieved from above call
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    viewPort2();
    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
    viewPort3();
    drawSolar(WIDTH/4, cnt, WIDTH/12, cnt);
    viewPort4();
    drawRobot(O, A, B, C, alpha, beta, gama);

    try {
      Thread.sleep(10);
    } catch (Exception ignore) {}
  }

  public void viewPort1() {
    int w = WIDTH, h = HEIGHT;

    gl.glViewport(0, 0, w/2, h/2);

    // use a different projection
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    gl.glOrtho(-w/2, w/2, -h/2, h/2, -w, w);
    gl.glRasterPos3f(-w/3, -h/3, 0); // start position
    glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport1 - looking down -z.");

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void viewPort2() {
    int w = WIDTH, h = HEIGHT;
    gl.glViewport(w/2, 0, w/2, h/2);

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();

    // make sure the cone is within the viewing volume
    gl.glFrustum(-w/8, w/8, -h/8, h/8, w/2, 4*w);
    gl.glTranslatef(0, 0, -2*w);
    gl.glRasterPos3f(-w/3, -h/3, 0); // start position
    glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport2 - earth to origin.");

    // earthC retrieved in drawSolar() before viewPort2
    myLookAt(earthC[0], earthC[1], earthC[2],
             0, 0, 0, 0, 1, 0);
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    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();

  }

  public void viewPort3() {
    int w = WIDTH, h = HEIGHT;

    gl.glViewport(w/2, h/2, w/2, h/2);

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    // make sure the cone is within the viewing volume
    gl.glFrustum(-w/8, w/8, -h/8, h/8, w/2, 4*w);
    gl.glTranslatef(0, 0, -2*w);

    gl.glRasterPos3f(-w/3, -h/3, 0); // start position
    glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport3 - cylinder to earth.");

    // earthC retrieved in drawSolar() before viewPort3
    mygluLookAt(cylinderC[0], cylinderC[1], cylinderC[2],
                earthC[0], earthC[1], earthC[2],
                earthC[0], earthC[1], earthC[2]);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();
  }

  public void viewPort4() {
    int w = WIDTH, h = HEIGHT;

    gl.glViewport(0, h/2, w/2, h/2);

    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    // implemented in superclass J2_14_Perspective
    myPerspective(45, w/h, w/2, 4*w);
    gl.glTranslatef(0, 0, -1.5f*w);

    gl.glMatrixMode(GL.GL_MODELVIEW);
    gl.glLoadIdentity();

    gl.glRasterPos3f(-w/2.5f, -h/2.1f, 0); 
     glut.glutBitmapString(gl, GLUT.BITMAP_HELVETICA_18,
                          "Viewport4 - a different scene.");
  }
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  public void myLookAt(
      double eX, double eY, double eZ,
      double cX, double cY, double cZ,
      double upX, double upY, double upZ) {
    //eye and center are points, but up is a vector

    //1. change center into a vector:
    // glTranslated(-eX, -eY, -eZ);
    cX = cX-eX; cY = cY-eY; cZ = cZ-eZ;

    //2. The angle of center on xz plane and x axis
    // i.e. angle to rot so center in the neg. yz plane
    double a = Math.atan(cZ/cX);
    if (cX>=0) {
      a = a+Math.PI/2;
    } else {
      a = a-Math.PI/2;
    }

    //3. The angle between the center and y axis
    // i.e. angle to rot so center in the negative z axis
    double b = Math.acos(
        cY/Math.sqrt(cX*cX+cY*cY+cZ*cZ));
    b = b-Math.PI/2;

    //4. up rotate around y axis (a) radians
    double upx = upX*Math.cos(a)+upZ*Math.sin(a);
    double upz = -upX*Math.sin(a)+upZ*Math.cos(a);
    upX = upx; upZ = upz;

    //5. up rotate around x axis (b) radians
    double upy = upY*Math.cos(b)-upZ*Math.sin(b);
    upz = upY*Math.sin(b)+upZ*Math.cos(b);
    upY = upy; upZ = upz;

    double c = Math.atan(upX/upY);
    if (upY<0) {
      //6. the angle between up on xy plane and y axis
      c = c+Math.PI;
    }
    gl.glRotated(Math.toDegrees(c), 0, 0, 1);
    // up in yz plane
    gl.glRotated(Math.toDegrees(b), 1, 0, 0);
    // center in negative z axis
    gl.glRotated(Math.toDegrees(a), 0, 1, 0);
    //center in yz plane
    gl.glTranslated(-eX, -eY, -eZ);
    //eye at the origin
  }
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  public void mygluLookAt(
      double eX, double eY, double eZ,
      double cX, double cY, double cZ,
      double upX, double upY, double upZ) {
    //eye and center are points, but up is a vector

    double[] F = new double[3];
    double[] UP = new double[3];
    double[] s = new double[3];
    double[] u = new double[3];
    F[0] = cX-eX; F[1] = cY-eY; F[2] = cZ-eZ;
    UP[0] = upX; UP[1] = upY; UP[2] = upZ;
    normalize(F); normalize(UP);
    crossProd(F, UP, s); crossProd(s, F, u);

    double[] M = new double[16];
    M[0] = s[0]; M[1] = u[0]; M[2] = -F[0];
    M[3] = 0; M[4] = s[1]; M[5] = u[1];
    M[6] = -F[1]; M[7] = 0; M[8] = s[2];
    M[9] = u[2]; M[10] = -F[2]; M[11] = 0;
    M[12] = 0; M[13] = 0; M[14] = 0; M[15] = 1;

    gl.glMultMatrixd(M);
    gl.glTranslated(-eX, -eY, -eZ);
  }

  public void normalize(double v[]) {
    double d = Math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

    if (d==0) {
      System.out.println("0 length vector: normalize().");
      return;
    }
    v[0] /= d; v[1] /= d; v[2] /= d;
  }

  public void crossProd(double U[],
                        double V[], double W[]) {
    // W = U X V
    W[0] = U[1]*V[2]-U[2]*V[1];
    W[1] = U[2]*V[0]-U[0]*V[2];
    W[2] = U[0]*V[1]-U[1]*V[0];
  }
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  public static void main(String[] args) {
    J2_15_LookAt f = new J2_15_LookAt();

    f.setTitle("JOGL J2_15_LookAt");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

2.5 Review Questions

1. An octahedron has v1=(1,0,0), v2=(0,1,0), v3=(0,0,1), v4=(−1,0,0), v5=(0,−1,0), v6=(0,0,−1). Please 
choose the triangles that face the outside of the octahedron.

 a. (v1v2v3, v1v3v5, v1v5v6,v1v2v6)    b. (v2v3v1, v2v1v6, v2v6v4, v2v4v3) 
 c. (v3v2v1, v3v5v1, v3v4v2, v3v4v5) d. (v4v2v1, v4v5v1, v3v4v2, v3v4v5)

2. If we subdivide the above octahedron 8 times (depth=8), how many triangles we will have in the 
final sphere. 

 No. of triangles:                                                         

3. Choose the matrix expression that 
would transform square ABCD into 
square A’B’C’D’ in 3D as shown in the 
figure below.

 a. T(−1,−1, 0)Ry(−90) 
 b. Ry(−90) T(−1,−1, 0) 
 c. T(−2,−2, 0)Rz(−90)Ry(90) 
 d. Ry(90)Rz(−90)T(−2,−2, 0)

4. myDrawTop() will draw a top below on the 
left. Write a section of OpenGL code so that the 
top will appear as specified on the right with tip 
at A(x1, y1, z1), tilted α, and proceeded θ around 
an axis parallel to y axis.
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6. In the scan-line algorithm for filling polygons, if z-buffer is used, when should the program call 
the z-buffer algorithm function? 

 a. at the beginning of the program b. at the beginning of each scan-line
 c. at the beginning of each pixel d. at the beginning of each polygon

7. Collision detection avoids two models in an animation penetrating each other; which of the fol-
lowing is FALSE: 

 a. bounding boxes are used for efficiency purposes in collision detection
 b. both animated and stationary objects are covered by the bounding boxes 
 c. animated objects can move whatever distance between frames of calculations
 d. collision detection can be calculated in many different ways

8. After following transformations, what is on top of the matrix stack at drawObject2()? 
 glLoadIdentity(); glPushMatrix(); glMultMatrixf(S); glRotatef(a,1,0,0); glTranslatef(t,0,0); 
drawObject1(); glGetFloatv(GL_MODELVIEW_MATRIX, &tmp); glPopMatrix(); 
glPushMatrix();  glMultMatrixf(S); glMultMatrixf(&tmp);drawObject2(); glPopMatrix(); 
 
 a. SSRx(a)Tx(t) b. STx(t)Rx(a)S c. Tx(t)Rx(a)SS
 d. Rx(a)SSTx(t) e. SRx(a)Tx(t) 

9. Given glViewport (u, v, w, h) and gluOrtho2D(xmin, 
xmax, ymin, ymax), choose the 2D transformation 
matrix expression that maps a point in the modeling 
(modelview) coordinates to the device (viewport) coor-
dinates. 

 a. S(1/(xmax − xmin),1/(ymax − ymin)) 
T(−xmin,−ymin)T(u,v)S(w,h)

 b. S(1/(xmax − xmin),1/(ymax − ymin))S(w,h)T(−xmin,−ymin)T(u,v)
 c. T(u,v)S(w,h)S(1/(xmax − xmin),1/(ymax − ymin))T(−xmin,−ymin)
 d. T(−xmin,−ymin)T(u,v)S(1/(xmax − xmin),1/(ymax − ymin))S(w,h)
 

glLoadIdentity();
glRotatef (-90, 0.0, 1.0, 0.0); 
myDrawTop(); // left
glRotatef(-90, 0.0, 0.0, 1.0);  

glPushMatrix(); 
glTranslatef (0.0, 0.0, 1.0);  
myDrawTop(); //right
glPopMatrix(); 

5. myDrawTop() will draw an object in oblique pro-
jection as in the question above with height equals 1 
and radius equals 0.5. Please draw two displays in 
orthographic projection according to the program 
on the right (as they will appear on the screen where 
the z axis is perpendicular to the plane).
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10. Given a 2D model and a modeling window, please draw the object in normalized coordinates 
after clipping and in the device as it appears on a display. 

11. In the OpenGL graphics pipeline, please order the following according to their order of opera-
tions: 

 (        ) clipping (        ) viewport transformation 
 (        ) modelview transformation (        ) normalization
 (        ) perspective division (        ) scan conversion

12. Please implement the following viewing command: gmuPerspective(fx, fy, d, s), 
where the viewing direction is from the origin looking down the negative z axis. fx is the field of 
view angle in the x direction; fy is the field of view angle in the y direction; d is the distance from the 
viewpoint to the center of the viewing volume, which is a point on the negative z axis; s is the dis-
tance from d to the near or far clipping planes. 

 gmuPerspective(fx, fy, d, s) { 
 
 
 
 
 
 
 
 
 
 
 
 glFrustum(l, r, b, t, n, f); 
 }

2.6 Programming Assignments

1. Implement myLoadIdentity, myRotatef, myTranslatef, myScalef, myPushMatrix, and myPop-
Matrix just like their corresponding OpenGL commands. Then, in the rest of the programming 
assignments, you can interchange them with OpenGL commands. 

2. Check out online what is polarview transformation; implement your own polarview with a dem-
onstration of the function. 

Xmodeling

Ymodeling

Xnormalized

Ynormalized

Xdevice

Ydevice

d

f
n

s
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3. As shown in the figure on the right, use 2D transforma-
tion to rotate the stroke font and the star. 

4. The above problem can be extended into 3D: the outer 
circle rotates along y axis, the inner circle rotates around x 
axis, and the star rotates around z axis. 

5. Draw a cone, a cylinder, and a sphere that bounce back 
and forth along a circle, as shown in the figure. When the 
objects meet, they change their directions of movement. 
The program must be in double-buffer mode and have hid-
den surface removal.

6. Draw two circles with the same animation as above. At the same time, 
one circle rotates around x axis, and the other rotates around y axis. 

7. Implement a 3D robot arm animation as in the book, and put the 
above animation system on the palm of the robot arm. The system on the 
palm can change its size periodically, which is achieved through scaling. 

8. Draw a cone, a cylinder, and a sphere that move and 
collide in the moon’s trajectory in the generalized solar 
system. When the objects meet, they change their direc-
tions of movement. 

9. Put the above system on the palm of the robot arm. 

10. Implement myPerspective and myLookAt just like 
gluPerspective and gluLookAt. Then, use them to look 
from the cone to the earth or cylinder in the system above. 

11. Display different perspectives or direction of viewing 
in multiple viewports. 

Bitmap
 Stroke 
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3 
Color and Lighting 

Chapter Objectives: 

• Introduce RGB color in the hardware, eye characteristics, and gamma correction

• Understand color interpolation and smooth shading in OpenGL

• Set up OpenGL lighting: ambient, diffuse, specular, and multiple light sources

• Understand back-face culling and surface shading models

3.1 Color

In a display, a pixel color is specified as a red, green, and blue (RGB) vector. The 
RGB colors are also called the primaries, because our eye sees a different color in a 
vector of different primary values. The RGB colors are additive primaries — we 
construct a color on the black background by adding the primaries together. For 
example, with equal amounts of R, G, and B: G+B ⇒ cyan, R+B ⇒ magenta, R+G ⇒
yellow, and R+G+B ⇒ white. RGB colors are used in the graphics hardware, which 
we will discuss in more detail. 

Cyan, magenta, and yellow (CMY) colors are the complements of RGB colors, 
respectively. The CMY colors are subtractive primaries — we construct a color on a 
white background by removing the corresponding RGB primaries. Similarly, with 
equal amounts of R, G, and B: C = RGB - R, M = RGB - G, and Y = RGB - B. 

The CMY colors are used in color printers. Adding certain amounts of CMY inks to a 
point on a white paper is like removing certain amounts of RGB from the white color 
at that point. The resulting color at the point on the paper depends on the portions of 
individual inks. Black ink is used to generate different levels of grays replacing use of 
equal amounts of CMY inks. 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_3, © Springer-Verlag London Limited 2008 
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 Fig. 3.1 Color-index mode and colormap

3.1.1 RGB Mode and Index Mode

If each pixel value in the frame buffer is an RGB vector, the display is in RGB mode. 
Each pixel value can also be an index into a color look-up table called a colormap, as 
shown in Fig. 3.1. Then, the display is in index mode. The pixel color is specified in 
the colormap instead of the frame buffer. 

Let’s assume that we have 3 bits per entry in the frame buffer. That is, the frame buffer 
has 3 bitplanes. In RGB mode, we have access to 8 different colors: black, red, green, 
blue, cyan, magenta, yellow, and white. In index mode, we still have access to only 8 
different colors, but the colors can vary depending on how we load the colormap. If 
the graphics hardware has a limited number of bitplanes for the frame buffer, index 
mode allows more color choices, even though the number of colors is the same as that 
of RGB mode at the same time. For example, in the above example, if we have 12 
bitplanes per entry in the colormap, we can choose 8 colors from 212 = 4096 different 
colors. The colormap does not take much space in memory, which had been a 
significant advantage when fast memory chips were very expensive. In GLUT, we use 
glutInitDisplayMode(GLUT_INDEX) to choose the index mode. RGB mode is the 
default. Index mode can also be useful for doing various animation tricks. However, in 
general, because memory is no longer a limitation and RGB mode is easier and more 
flexible, we use it in the examples. Also, in OpenGL programming, each color 
component (R, G, or B) value is in the range of 0 to 1. The system will scale the value 
to the corresponding hardware bits during compilation transparent to the users. 
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3.1.2 Eye Characteristics and Gamma Correction

A pixel color on a display is the emission of light that reaches our eye. An RGB vector 
is a representation of the brightness level that our eye perceives. The intensity is the 
amount of physical energy used to generate the brightness. Our eye sees a different 
color for a different RGB vector. We may not have noticed, but certain colors cannot 
be produced by RGB mixes and hence cannot be shown on an RGB display device. 

The eye is more sensitive to yellow-green light. In general, the eye’s sensitivities to 
different colors generated by a constant intensity level are different. Also, for the same 
color, the eye’s perceived brightness levels are not linearly proportional to the 
intensity levels. To generate evenly spaced brightness levels, we need to use 
logarithmically-spaced intensity levels. For example, to generate n evenly-spaced 
brightness levels for a color component λ (which represents R, G, or B), we need 
corresponding intensity levels at 

 for i = 0, 1, ..., n-1, (EQ 65)

where I0λ is the lowest intensity available in the display hardware and r=(1/I0λ)1/(n-1). 

For a CRT display monitor, Iiλ depends on the energy in voltage that is applied to 
generate the electrons lighting the corresponding screen pixels (phosphor dots): 

. (EQ 66)

The value of γ is about 2.2 to 2.5 for most CRTs. Therefore, given an intensity Iiλ, we 
can find the corresponding voltage needed in the hardware:

. (EQ 67)

This is called gamma correction, because γ is used in the equation to find the voltage 
to generate the correct intensity. Without gamma correction, the brightness levels are 
not even, and high brightness pixels appear to be darker. Different CRTs have different 
K’s and γ’s. Instead of calculating the voltages, CRT manufacturers can build up a 
look-up table for a CRT (in the CRT monitor or in the corresponding graphics card 

Iiλ r
i
I0λ=

Iiλ KV
γ=

V Iiλ K⁄( )1 γ⁄=
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that refreshes the CRT) by measuring the corresponding brightness levels and 
voltages. In the look-up table, the indices are the brightness levels and the values are 
the corresponding voltages. 

Usually, the hardware gamma correction allows software modifications. That is, we 
can change the contents of the look-up table. Today, most color monitors have 
hardware gamma corrections. Due to different material properties (phosphor 
composites) and gamma corrections, the same RGB vector appears in different colors 
and brightness on individual monitors. Effort is needed to make two CRT monitors 
appear exactly the same. 

To simplify the matter, because the difference between the intensity and the brightness 
is solved in the hardware, we use the intensity to mean the brightness or the RGB 
value directly. Also, we use Iλ to represent the brightness level i of an RGB component 
directly. That is, Iλ represents a perceived brightness level instead of an energy level. 

3.2 Color Interpolation 

In OpenGL, we use glShadeModel(GL_FLAT) or glShadeModel(GL_SMOOTH) to 
choose between two different models (flat shading and smooth shading) of using 
colors for a primitive. With GL_FLAT, we use one color that is specified by 
glColor3f() for all the pixels in the primitive. For example, in J3_1_Shading.java, if 
we call glShadeModel(GL_FLAT), only one color will be used in drawtriangle(), even 
though we have specified different colors for different vertices. Depending on the 
OpenGL systems, the color may be the color specified for the last vertex in a 
primitive. 

For a line, with GL_SMOOTH, the vertex colors are linearly interpolated along the 
pixels between the two end vertices. For example, if a line has 5 pixels, and the end 
point colors are (0, 0, 0) and (0, 0, 1), then, after the interpolation, the 5 pixel colors 
will be (0, 0, 0), (0, 0, 1/4), (0, 0, 2/4), (0, 0, 3/4), and (0, 0, 1), respectively. The 
intensity of each RGB component is interpolated separately. In general, given the end 
point intensities (Iλ1 and Iλ2) and the number of pixels along the line (N), the intensity 
increment of the linear interpolation is
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. (EQ 68)

That is, for each pixel from the starting pixel to the end pixel, the color component 
changes ∆Iλ. 

For a polygon, OpenGL first interpolates along the 
edges, and then along the horizontal scan-lines 
during scan-conversion. All we need to do to carry 
out interpolation in OpenGL is to call 
glShadeModel(GL_SMOOTH) and set up different 
vertex colors, as shown in the following example 
(Fig. 3.2). 

/* OpenGL flat or smooth shading */

import net.java.games.jogl.*;

public class J3_1_Shading extends 
J2_13_TravelSolar {

  // static float vdata[3][3]
  static float vdata[][] = { {1.0f, 0, 0}
                           , {0, 1.0f, 0}
                           , {0, 0, 1.0f}
  };

  public void display(GLDrawable glDrawable) {

    cnt++;

    gl.glClear(GL.GL_COLOR_BUFFER_BIT|
               GL.GL_DEPTH_BUFFER_BIT);

    // alternate between flat and smooth
    if (cnt%50==0) {
      gl.glShadeModel(GL.GL_SMOOTH);
    }
    if (cnt%100==0) {
      gl.glShadeModel(GL.GL_FLAT);
    }

∆Iλ
Iλ2 Iλ1–
N 1–

-----------------------=

 Fig. 3.2 Smooth shading [See
Color Plate 5]
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    gl.glPushMatrix();
    gl.glRotatef(cnt, 1, 1, 1);
    gl.glScalef(WIDTH/2, WIDTH/2, WIDTH/2);
    drawColorCoord(1.0f, 1.0f, 1.0f);
    drawColorTriangle(vdata[0], vdata[1], vdata[2]);
    gl.glPopMatrix();

    try {
      Thread.sleep(20);
    } catch (Exception ignore) {}
  }

  private void drawColorTriangle(float[] v1,
                                 float[] v2,
                                 float[] v3) {

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glColor3f(1, 0, 0);
    gl.glVertex3fv(v1);
    gl.glColor3f(0, 1, 0);
    gl.glVertex3fv(v2);
    gl.glColor3f(0, 0, 1);
    gl.glVertex3fv(v3);
    gl.glEnd();
  }

  public static void main(String[] args) {
    J3_1_Shading f = new J3_1_Shading();

    f.setTitle("JOGL J3_1_Shading");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

3.3 Lighting

A pixel color is a reflection or emission of light from a point on a model to our eye. 
Therefore, instead of specifying a color for a point directly, we can specify light 
sources and material properties for the graphics system to calculate the color of the 
point according to a lighting model. The real-world lighting is very complex. In 
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graphics, we adopt simplified methods (i.e., lighting or illumination models) that work 
relatively fast and well. 

We use the OpenGL lighting system as an example to explain lighting. The OpenGL 
lighting model includes four major components: ambient, diffuse, specular, and 
emission. The final color is the summation of these components. The lighting model is 
developed to calculate the color of each individual pixel that corresponds to a point on 
a primitive. The method of calculating the lighting for all pixels in a primitive is called 
the shading model. As introduced in Section 3.2, OpenGL calculates vertex pixel 
colors and uses interpolation to find the colors of all pixels in a primitive when we call 
glShadeModel(GL_SMOOTH). If we use glShadeModel(GL_FLAT), only one vertex 
color is used for the primitive. However, the vertex colors are calculated by the 
lighting model instead of being specified by glColor(). 

3.3.1 Lighting Components

Emissive component. The emission intensity of a vertex pixel with an emissive 
material is calculated as follows: 

, (EQ 69)

where λ is an RGB component or A (alpha), and Mλemission is the material’s emission 
property. Each color component is calculated independently. Because the alpha value 
will be discussed in the next chapter, we can ignore it in our current examples. In 
OpenGL, emission is a material property that is neither dependent on any light source 
nor considered a light source. Emissive material does not emit light, it displays its own 
color. The vertex’s corresponding surface has two sides, the front and the back, which 
can be specified with different material properties. 

In Example J3_2_Emission.java, the material is emitting a white color and all objects 
will be white until we change the emission material component to something else. 
Here according to Equation 69, the calculated RGB color is (1., 1., 1.). If we only 
specify the emission component, the effect is the same as specifying glColor3f(1., 1., 
1.). 

Iλe Mλemission=
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/* emissive material component */

import net.java.games.jogl.*;

public class J3_2_Emission extends J2_13_TravelSolar {
float white[] = {1, 1, 1, 1};

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    gl.glEnable(GL.GL_LIGHTING);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, white);
  }

  public static void main(String[] args) {
    J3_2_Emission f = new J3_2_Emission();

    f.setTitle("JOGL J3_2_Emission");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

When lighting is enabled, glColor3f() is turned off. In other words, even though we 
may have glColor3f()s in the program, they are not used. Instead, the OpenGL system 
uses the current lighting model to calculate the vertex color automatically. We may 
use glColorMaterial() with glEnable(GL_COLOR_MATERIAL) to tie the color 
specified by glColor3f() to a material property. 

Ambient component. The ambient intensity of a vertex pixel is calculated as follows: 

, (EQ 70)

where Lλa represents the light source’s ambient intensity and Mλa is the material’s 
ambient property. Ambient color is the overall intensity of multiple reflections 
generated from a light source in an environment. We do not even care where the light 
source is as long as it exists. In Example J3_3_Ambient.java, according to 
Equation 70, the calculated RGB color is (1., 1., 0).

Iλa LλaMλa=
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/* ambient component */

import net.java.games.jogl.GL;
import net.java.games.jogl.GLDrawable;

public class J3_3_Ambient extends J3_2_Emission {

  float white[] = {1, 1, 1, 1};
  float black[] = {0, 0, 0, 1};
  float red[] = {1, 0, 0, 1};
  float green[] = {0, 1, 0, 1};
  float blue[] = {0, 0, 1, 1};
  float cyan[] = {0, 1, 1, 1};
  float magenta[] = {1, 0, 1, 1};
  float yellow[] = {1, 1, 0, 1};

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    gl.glEnable(GL.GL_LIGHTING);

    gl.glEnable(GL.GL_LIGHT0);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_AMBIENT, white);

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_AMBIENT, yellow);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
  }

  public static void main(String[] args) {

    J3_3_Ambient f = new J3_3_Ambient();

    f.setTitle("JOGL J3_3_Ambient");
    f.setSize(WIDTH, HEIGHT);

    f.setVisible(true);
  }
}
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 Fig. 3.3 The angle between L and n at the vertex

Diffuse component. The diffuse intensity of a vertex pixel is calculated as follows: 

, (EQ 71)

where Lλd is the light source’s diffuse intensity, Mλd is the material’s diffuse property, 
L is the light source direction, and n is the surface normal direction from the pixel, 
which is a vector perpendicular to the surface. Here the light source is a point 
generating equal intensity in all directions. Diffuse color is the reflection from a dull 
surface material that appears equally bright from all viewing directions. 

In OpenGL, L is a unit vector (or normalized vector) pointing from the current vertex 
to the light source position. The normal is specified by glNormal*() right before we 

specify the vertex. As shown in Fig. 3.3, , which is between 0 and 1

when θ is between 0o and 90o. When θ is greater than 90o, the diffuse intensity is set 
to zero.

The length of the normal is a factor in Equation 71. We can initially specify the normal 
to be a unit vector. However, normals are transformed similar to vertices so that the 
lengths of the normals may be scaled. (Actually, normals are transformed by the 
inverse transpose of the current matrix on the matrix stack.) If we are not sure about 
the length of the normals, we can call glEnable(GL_NORMALIZE), which enables the 
OpenGL system to normalize each normal before calculating the lighting. This, 
however, incurs the extra normalization calculations. Also, the light source position 

n

L
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θ

A 3D Model

θcos
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has four parameters: (x, y, z, w) as in homogeneous coordinates. If w is 1, (x, y, z) is the 
light source position. If w is 0, (x, y, z) represents the light source direction at infinity, 
in which case the light source is in the same direction for all pixels at different 
locations. If a point light source is far away from the object, it has essentially the same 
angle with all surfaces that have the same surface normal direction. Example 
J3_4_Diffuse.java shows how to specify the diffuse parameters in OpenGL. 

/* diffuse light & material components */

import net.java.games.jogl.*;

public class J3_4_Diffuse extends J3_3_Ambient {

  float whitish[] = {0.7f, 0.7f, 0.7f, 1};
  float position[] = {0, 0, 1, 0};

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    gl.glEnable(GL.GL_LIGHTING);
    gl.glEnable(GL.GL_NORMALIZE);

    gl.glEnable(GL.GL_LIGHT0);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, position);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_DIFFUSE, white);

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, whitish);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_AMBIENT, black);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
  }

  private void drawSphereTriangle(float v1[],
                                  float v2[], float v3[]) {

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glNormal3fv(v1);
    gl.glVertex3fv(v1);
    gl.glNormal3fv(v2);
    gl.glVertex3fv(v2);
    gl.glNormal3fv(v3);
    gl.glVertex3fv(v3);
    gl.glEnd();
  }
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  private void drawConeSide(float v1[], float v2[],
                            float v3[]) {

    float v11[] = new float[3];
    float v22[] = new float[3];
    float v33[] = new float[3];

    for (int i = 0; i<3; i++) {
      v11[i] = v1[i]+v3[i]; // normal for cone vertex 1
      v22[i] = v2[i]+v3[i]; // normal for vertex 2
      v33[i] = v11[i]+v22[i]; // normal for vertex 3
    }

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glNormal3fv(v11);
    gl.glVertex3fv(v1);
    gl.glNormal3fv(v22);
    gl.glVertex3fv(v2);
    gl.glNormal3fv(v33);
    gl.glVertex3fv(v3);
    gl.glEnd();
  }

  private void drawBottom(float v1[], float v2[], float v3[]) 
{
    float vb[] = {0, 0, 1};
    // normal to the cylinder bottom

    if (v3[2]<0.1) { //  bottom on the xy plane
      vb[2] = -1;
    }

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glNormal3fv(vb);
    gl.glVertex3fv(v3);
    gl.glVertex3fv(v2);
    gl.glVertex3fv(v1);
    gl.glEnd();
  }

  private void subdivideSphere( float v1[],
      float v2[], float v3[], long depth) {

    float v12[] = new float[3];
    float v23[] = new float[3];
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    float v31[] = new float[3];

    if (depth==0) {
      gl.glColor3f(v1[0]*v1[0], v2[1]*v2[1], v3[2]*v3[2]);
      drawSphereTriangle(v1, v2, v3);
      return;
    }
    for (int i = 0; i<3; i++) {
      v12[i] = v1[i]+v2[i];
      v23[i] = v2[i]+v3[i];
      v31[i] = v3[i]+v1[i];
    }
    normalize(v12);
    normalize(v23);
    normalize(v31);

    subdivideSphere(v1, v12, v31, depth-1);
    subdivideSphere(v2, v23, v12, depth-1);
    subdivideSphere(v3, v31, v23, depth-1);
    subdivideSphere(v12, v23, v31, depth-1);
  }

  public void drawSphere() {
    subdivideSphere(sVdata[0], sVdata[1], sVdata[2], depth);
    subdivideSphere(sVdata[0], sVdata[2], sVdata[4], depth);
    subdivideSphere(sVdata[0], sVdata[4], sVdata[5], depth);
    subdivideSphere(sVdata[0], sVdata[5], sVdata[1], depth);

    subdivideSphere(sVdata[3], sVdata[1], sVdata[5], depth);
    subdivideSphere(sVdata[3], sVdata[5], sVdata[4], depth);
    subdivideSphere(sVdata[3], sVdata[4], sVdata[2], depth);
    subdivideSphere(sVdata[3], sVdata[2], sVdata[1], depth);
  }

  void subdivideCone(float v1[], float v2[], int depth) {

    float v11[] = {0, 0, 0};
    float v22[] = {0, 0, 0};
    float v00[] = {0, 0, 0};
    float v12[] = {0, 0, 0};
 
    if (depth==0) {

      gl.glColor3f(v1[0]*v1[0], v1[1]*v1[1], v1[2]*v1[2]);

      for (int i = 0; i<3; i++) {
        v11[i] = v1[i];
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        v22[i] = v2[i];
      }
      drawBottom(v11, v22, v00);
      // bottom cover of the cone

      v00[2] = 1; // height of cone, the tip on z axis
      drawConeSide(v11, v22, v00);
      // side cover of the cone

      return;
    }

    for (int i = 0; i<3; i++) {
      v12[i] = v1[i]+v2[i];
    }
    normalize(v12);

    subdivideCone(v1, v12, depth-1);
    subdivideCone(v12, v2, depth-1);
  }

  public void drawCone() {
    
    subdivideCone(cVdata[0], cVdata[1], depth);
    subdivideCone(cVdata[1], cVdata[2], depth);
    subdivideCone(cVdata[2], cVdata[3], depth);
    subdivideCone(cVdata[3], cVdata[0], depth);
  }

  void subdivideCylinder(float v1[],
                         float v2[], int depth) {
    float v11[] = {0, 0, 0};
    float v22[] = {0, 0, 0};
    float v00[] = {0, 0, 0};
    float v12[] = {0, 0, 0};
    float v01[] = {0, 0, 0};
    float v02[] = {0, 0, 0};

    if (depth==0) {
      gl.glColor3f(v1[0]*v1[0], v1[1]*v1[1], v1[2]*v1[2]);

      for (int i = 0; i<3; i++) {
        v01[i] = v11[i] = v1[i];
        v02[i] = v22[i] = v2[i];
      }
      drawBottom(v11, v22, v00);
      // draw sphere at the cylinder's bottom
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      // the height of the cone along z axis
      v01[2] = v02[2] = v00[2] = 1;

      gl.glBegin(GL.GL_POLYGON);
      // draw the side rectangles of the cylinder
      gl.glNormal3fv(v11);
      gl.glVertex3fv(v11);
      gl.glNormal3fv(v22);
      gl.glVertex3fv(v22);
      gl.glNormal3fv(v22);
      gl.glVertex3fv(v02);
      gl.glNormal3fv(v11);
      gl.glVertex3fv(v01);
      gl.glEnd();

      drawBottom(v02, v01, v00);
      // draw sphere at the cylinder's bottom

      return;
    }
    v12[0] = v1[0]+v2[0];
    v12[1] = v1[1]+v2[1];
    v12[2] = v1[2]+v2[2];
    normalize(v12);

    subdivideCylinder(v1, v12, depth-1);
    subdivideCylinder(v12, v2, depth-1);
  }

  public void drawCylinder() {

    subdivideCylinder(cVdata[0], cVdata[1], depth);
    subdivideCylinder(cVdata[1], cVdata[2], depth);
    subdivideCylinder(cVdata[2], cVdata[3], depth);
    subdivideCylinder(cVdata[3], cVdata[0], depth);
  }

  public static void main(String[] args) {
    J3_4_Diffuse f = new J3_4_Diffuse();

    f.setTitle("JOGL J3_4_Diffuse");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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Object shading depends on how we specify 
the normals as well. For example (Fig. 3.4), 
if we want to display a pyramid, the 
normals for the triangle vertices v1, v2, and 
v3 should be the same and perpendicular to 
the triangle. If we want to approximate a 
cone, the normals should be perpendicular 
to the cone’s surface. If we assume that the 
radius of the cone’s base and the height of 
the cone have the same length, then the 
normals are n1 = v1 + v3, n2 = v2 + v3, and 
n3 = n1 + n2. Here, the additions are vector 
additions, as in the function drawConeSide() in Example J3_4_Diffuse.java above. 
The OpenGL system interpolates the pixel colors in the triangle. We can set all the 
vertex normals to n3 to display a pyramid. 

Specular component. The specular intensity of a vertex pixel is calculated as follows: 

(EQ 72)

where Lλs is the light source’s specular intensity, Mλs is the material’s specular 
property, V is the viewpoint direction from the pixel, and shininess is the material’s 
shininess property. Specular color is the highlight reflection from a smooth-surface 
material that depends on the reflection direction R (which is L reflected along the 

normal) and the viewing direction V. As shown in Fig. 3.5, , 

which is between 0 and 1 when α is between 0o and 90o. When θ or α is greater than 
90o, the specular intensity is set to zero. The viewer can see specularly reflected light 
from a mirror only when the angle α is close to zero. When the shininess is a very 

large number,  is attenuated toward zero unless (cosα) equals one.

The viewpoint, as we discussed in the viewing transformation, is at the origin (facing 
the negative z axis). We use glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 
GL_TRUE) to specify the viewpoint at (0, 0, 0). However, to simplify the lighting 
calculation, OpenGL allows us to specify the viewpoint at infinity in the (0, 0, 1)

x
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 Fig. 3.4 The radius and the height 
of the cone are the same (unit length)
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direction. This is the default in the same direction for all vertex pixels. Because this 
assumption is only used to simplify lighting calculations, the viewpoint is not changed 
for other graphics calculations, such as projection. Example J3_5_Specular.java
shows how to specify the specular parameters in OpenGL.

/* specular light & material components */

import net.java.games.jogl.*;

public class J3_5_Specular extends J3_4_Diffuse {

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    gl.glEnable(GL.GL_LIGHTING);

    gl.glEnable(GL.GL_NORMALIZE);

    gl.glEnable(GL.GL_LIGHT0);

    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, position);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPECULAR, white);

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_SPECULAR, white);
    gl.glMaterialf(GL.GL_FRONT, GL.GL_SHININESS, 50.0f);

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, black);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_AMBIENT, black);

n

L θ

(normal)
light source

R

V
viewpoint

α

θ

αcos
n L V+( )•
n L V+

--------------------------=

 Fig. 3.5 The angle between n and (L+V) at the vertex
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    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
  }

  public static void main(String[] args) {

    J3_5_Specular f = new J3_5_Specular();

     f.setTitle("JOGL J3_5_Specular");

    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

3.3.2 OpenGL Lighting Model

Both the light source and the material have multiple components: ambient, diffuse, 
and specular. The final vertex color is an integration of all these components: 

. (EQ 73)

We can simplify Equation 73 as: 

, (EQ 74)

where . Whereas ambient, diffuse, and specular intensities 
depend on the light source, emissive intensity does not. OpenGL scales and 
normalizes the final intensity to a value between 0 and 1. 

In previous examples, even though we didn’t specify all the components, OpenGL 
used the default values that are predefined. If necessary, we can specify all different 
lighting components (Example J3_6_Materials.java). Fig. 3.6 is a comparison among 
the different lighting component effects from the examples we have discussed. 

Iλ Iλe I+ λa Iλd Iλs+ +=

Iλ Iλe I+ λL=

IλL Iλa Iλd Iλs+ +=
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 Fig. 3.6 The OpenGL lighting components and their integration  [See Color Plate 4]

/* multiple light and material components */

import net.java.games.jogl.*;
import net.java.games.jogl.util.GLUT;

public class J3_6_Materials extends J3_5_Specular {

  float blackish[] = {0.3f, 0.3f, 0.3f, 0.3f};

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    gl.glEnable(GL.GL_LIGHTING);
    gl.glEnable(GL.GL_NORMALIZE);

    gl.glEnable(GL.GL_LIGHT0);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, position);

(d) Materials: integration (c) Specular

(b) Diffuse(a) Emission; Ambient
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    gl.glLightfv(GL.GL_LIGHT0, GL.GL_AMBIENT, whitish);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_DIFFUSE, white);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPECULAR, white);

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_AMBIENT, blackish);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, whitish);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_SPECULAR, white);
    gl.glMaterialf(GL.GL_FRONT, GL.GL_SHININESS, 100.0f);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
  }

  public void drawColorCoord(float xlen,
                             float ylen, float zlen) {

    GLUT glut = new GLUT();

    gl.glBegin(GL.GL_LINES);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, red);
    gl.glColor3f(1, 0, 0);
    gl.glVertex3f(0, 0, 0); gl.glVertex3f(0, 0, zlen);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, green);
    gl.glColor3f(0, 1, 0);
    gl.glVertex3f(0, 0, 0); gl.glVertex3f(0, ylen, 0);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, blue);
    gl.glColor3f(0, 0, 1);
    gl.glVertex3f(0, 0, 0); gl.glVertex3f(xlen, 0, 0);
    gl.glEnd();

    // coordinate labels: X, Y, Z
    gl.glPushMatrix();
    gl.glTranslatef(xlen, 0, 0);
    gl.glScalef(xlen/WIDTH, xlen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'X');
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, green);
    gl.glColor3f(0, 1, 0);
    gl.glTranslatef(0, ylen, 0);
    gl.glScalef(ylen/WIDTH, ylen/WIDTH, 1);
    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Y');
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, red);
    gl.glColor3f(1, 0, 0);
    gl.glTranslatef(0, 0, zlen);
    gl.glScalef(zlen/WIDTH, zlen/WIDTH, 1);
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    glut.glutStrokeCharacter(gl, GLUT.STROKE_ROMAN, 'Z');
    gl.glPopMatrix();

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
  }

  public static void main(String[] args) {
    J3_6_Materials f = new J3_6_Materials();

    f.setTitle("JOGL J3_6_Materials");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }

}

Movable light source. In OpenGL, a light source is invisible. The light source position 
is transformed as a geometric object by the current matrix when it is specified. In other 
words, if the matrix is modified at runtime, the light source can be moved around like 
an object. Lighting is calculated according to the transformed position. To simulate a 
visible light source, we can specify the light source and draw an object at the same 
position. As in Example J3_7_MoveLight.java, the light source and the sphere are 
transformed by the same matrix. We may specify the sphere’s emission property to 
correspond to the light source’s parameters, so that the sphere looks like the light 
source (Fig. 3.7). 

 Fig. 3.7 A moving light source
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/* movable light source */

import net.java.games.jogl.*;

public class J3_7_MoveLight extends J3_6_Materials {
  float origin[] = {0, 0, 0, 1};

  public void drawSolar(float E, float e, float M, float m) {

    // Global coordinates
    gl.glLineWidth(2);
    drawColorCoord(width/6, width/6, width/6);

    gl.glPushMatrix();

    gl.glRotatef(e, 0, 1, 0);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0, 0, 1); // tilt angle
    gl.glTranslatef(0, E, 0);

    gl.glPushMatrix();
    gl.glTranslatef(0, E, 0);
    gl.glScalef(E, E, E);
    drawSphere(); // the "earth"
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glScalef(E/4, E, E/4);
    gl.glRotatef(90, 1, 0, 0); // orient the cone
    drawCone();
    gl.glPopMatrix();

    gl.glTranslatef(0, E/2, 0);
    gl.glRotatef(4*m, 0, 1, 0); // rot around the "earth"

    gl.glPushMatrix();
    gl.glTranslatef(2*M, 0, 0);
    gl.glLineWidth(1);
    drawColorCoord(width/8, width/8, width/8);
    gl.glScalef(E/8, E/8, E/8);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, whitish);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, origin);
    drawSphere();
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
    gl.glPopMatrix();

    gl.glPopMatrix();
  }
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  public static void main(String[] args) {
    J3_7_MoveLight f = new J3_7_MoveLight();

    f.setTitle("JOGL J3_7_MoveLight");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Spotlight effect. A real light source may not generate equal intensity in all directions:

(EQ 75)

where fspot is called the spotlight effect factor. In OpenGL, it is calculated as follows: 

(EQ 76)

where (-L) is a unit vector pointing from the light source to the vertex pixel, Dspot is 
the direction of the light source, and spotExp is a specified constant. As shown in 

Fig. 3.8, . When the spotExp is a large number,  

is attenuated toward zero and the light is concentrated along the Dspot direction. 

 Fig. 3.8 The angle between (-L) and Dspot

Iλ Iλe fspotIλL+=

fspot L– Dspot•( )spotExp=

γcos
L–( ) Dspot•
Dspot

------------------------------= γcos( )spotExp

n

L
γ

normal
Dspotlight source

γcos
L–( ) Dspot•
Dspot

------------------------------=



156          3 Color and Lighting

The light source may have a cutoff angle as 
shown in Fig. 3.9, so that only the vertex 
pixels inside the cone area are lit. There is 
no light outside the cone area. To be exact, 
the cone area is infinite in the Dspot direction 
without a bottom. 

Example J3_8_SpotLight.java shows how 
to specify spotlight parameters. The effect 
is shown in Fig. 3.10. The opposite side of 
the sphere facing away from the light source appears only the ambient component, 
because the angles between the light source direction and the normals of the sphere 
triangle on that side are bigger than 90 degree. The Dspot direction vector is also 
transformed by the current MODELVIEW matrix, as the vertex normals. 

/* spotlight effect */

import net.java.games.jogl.*;

public class J3_8_SpotLight extends J3_7_MoveLight {
  float spot_direction[] = {-1, 0, 0, 1};

  public void drawSolar(float E, float e, float M, float m) {

    // Global coordinates
    gl.glLineWidth(2);
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);

    gl.glPushMatrix();

    gl.glRotatef(e, 0, 1, 0);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0, 0, 1); // tilt angle
    gl.glTranslatef(0, E, 0);

    gl.glPushMatrix();
    gl.glTranslatef(0, E, 0);
    gl.glScalef(E, E, E);
    drawSphere();
    gl.glPopMatrix();

    gl.glPushMatrix();

cutoff

 Fig. 3.9 The light source cutoff angle

Dspot
light source
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    gl.glScalef(E/4, E, E/4);
    gl.glRotatef(90, 1, 0, 0); // orient the cone
    drawCone();
    gl.glPopMatrix();
    gl.glTranslatef(0, E/2, 0);
    gl.glRotatef(m, 0, 1, 0);
    // 1st moon rotating around the "earth"

    gl.glPushMatrix();
    gl.glTranslatef(2.5f*M, 0, 0);
    gl.glLineWidth(1);
    drawColorCoord(WIDTH/8, WIDTH/8, WIDTH/8);
    gl.glScalef(E/8, E/8, E/8);
    gl.glLightf(GL.GL_LIGHT0, GL.GL_SPOT_CUTOFF, 15f);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPOT_DIRECTION,
                 spot_direction); // facing x axis initially
    gl.glLightf(GL.GL_LIGHT0, GL.GL_SPOT_EXPONENT, 2f);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, origin);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, whitish);
    drawSphere();
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
    gl.glPopMatrix();

    gl.glPopMatrix();
  }

  public static void main(String[] args) {
    J3_8_SpotLight f = new J3_8_SpotLight();

    f.setTitle("JOGL J3_8_SpotLight");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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 Fig. 3.10 Spotlight effect [See Color Plate 4]

 Fig. 3.11 Light source attenuation effect [See Color Plate 4]

Light source attenuation.  The intensity from a point light source to a vertex pixel can 
be attenuated by the distance the light travels: 

, (EQ 77)

where fatt is called the light source attenuation factor. In OpenGL, fatt is calculated as 
follows:

Iλ Iλe fattfspotIλL+=
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, (EQ 78)

where dL is the distance from the point light source to the lit vertex pixel, and Ac, Al, 
and Aq are constant, linear, and quadratic attenuation factors. Example 
J3_9_AttLight.java shows how to specify these factors. The effect is shown in 
Fig. 3.11. 

/* light source attenuation effect */

import net.java.games.jogl.*;

public class J3_9_AttLight extends J3_8_SpotLight {
  float dist = 0;

  public void drawSolar(float E, float e, float M, float m) {

    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);

    gl.glPushMatrix();

    gl.glRotatef(e, 0.0f, 1.0f, 0.0f);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0.0f, 0.0f, 1.0f); // tilt angle
    gl.glTranslatef(0.0f, E, 0.0f);

    gl.glPushMatrix();
    gl.glTranslatef(0, E, 0);
    gl.glScalef(E, E, E);
    drawSphere();
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glScalef(E/4, E, E/4);
    gl.glRotatef(90f, 1.0f, 0.0f, 0.0f); // orient the cone
    drawCone();
    gl.glPopMatrix();

    gl.glTranslatef(0, E/2, 0);
    gl.glRotatef(m, 0.0f, 1.0f, 0.0f);
    // 1st moon rotating around the "earth"

fatt
1

Ac AldL AqdL
2+ +

-----------------------------------------=
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    gl.glPushMatrix();
    if (dist>5*M) {
      flip = -1;
    } else if (dist<M) {
      flip = 1;
    }
    if (dist==0) {
      dist = 1.5f*M;
    }
    dist = dist+flip;

    gl.glTranslatef(-dist, 0, 0);
    gl.glScalef(E/8, E/8, E/8);

    gl.glLightf(GL.GL_LIGHT0, GL.GL_CONSTANT_ATTENUATION, 1);
    gl.glLightf(GL.GL_LIGHT0, GL.GL_LINEAR_ATTENUATION,
                0.001f);
    gl.glLightf(GL.GL_LIGHT0, GL.GL_QUADRATIC_ATTENUATION,
                0.0001f);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, origin);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, whitish);
    drawSphere();
    gl.glPopMatrix();

    gl.glPopMatrix();
  }

  public static void main(String[] args) {

    J3_9_AttLight f = new J3_9_AttLight();

    f.setTitle("JOGL J3_9_AttLight");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

Multiple light sources. We can also specify multiple light sources: 

, (EQ 79)Iλ Iλe fattifspotiIλLi
i 0=

k 1–

∑+=
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where k is the number of different light sources. Each light source’s parameters and 
position can be specified differently. There may be fixed as well as moving light 
sources with different properties. The emission component, which is a material 
property, does not depend on any light source. We can also use glLightModel() to 
specify a global ambient light that does not depend on any light source. Fig. 3.12 is a 
comparison among the different lighting component effects: fixed global light, local 
movable lights, and light sources with cutoff angles.

/* fixed and multiple moving light sources */

import net.java.games.jogl.*;

public class J3_10_Lights extends J3_9_AttLight {
  float redish[] = {.3f, 0, 0, 1};
  float greenish[] = {0, .3f, 0, 1};
  float blueish[] = {0, 0, .3f, 1};
  float yellish[] = {.7f, .7f, 0.0f, 1};

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    gl.glEnable(GL.GL_LIGHTING);
    gl.glEnable(GL.GL_NORMALIZE);
    gl.glEnable(GL.GL_CULL_FACE);
    gl.glCullFace(GL.GL_BACK);

    gl.glEnable(GL.GL_LIGHT1);
    gl.glEnable(GL.GL_LIGHT2);
    gl.glEnable(GL.GL_LIGHT3);

    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, position);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_AMBIENT, blackish);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_DIFFUSE, whitish);
    gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPECULAR, white);

    gl.glLightfv(GL.GL_LIGHT1, GL.GL_AMBIENT, redish);
    gl.glLightfv(GL.GL_LIGHT1, GL.GL_DIFFUSE, red);
    gl.glLightfv(GL.GL_LIGHT1, GL.GL_SPECULAR, red);

    gl.glLightfv(GL.GL_LIGHT2, GL.GL_AMBIENT, greenish);
    gl.glLightfv(GL.GL_LIGHT2, GL.GL_DIFFUSE, green);
    gl.glLightfv(GL.GL_LIGHT2, GL.GL_SPECULAR, green);
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    gl.glLightfv(GL.GL_LIGHT3, GL.GL_AMBIENT, blueish);
    gl.glLightfv(GL.GL_LIGHT3, GL.GL_DIFFUSE, blue);
    gl.glLightfv(GL.GL_LIGHT3, GL.GL_SPECULAR, blue);

    myMaterialColor(blackish, whitish, white, black);
  }

  public void myMaterialColor(
      float myA[],
      float myD[],
      float myS[],
      float myE[]) {

    gl.glMaterialfv(GL.GL_FRONT, GL.GL_AMBIENT, myA);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, myD);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_SPECULAR, myS);
    gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, myE);
  }

  public void drawSolar(float E, float e,
                        float M, float m) {

    // Global coordinates
    gl.glLineWidth(2);
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);

    myMaterialColor(blackish, whitish, white, black);

    gl.glPushMatrix();

    gl.glRotatef(e, 0, 1, 0);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0, 0, 1); // tilt angle
    gl.glTranslatef(0, 1.5f*E, 0);

    gl.glPushMatrix();
    gl.glTranslatef(0, E, 0);
    gl.glScalef(E, E, E);
    drawSphere();
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glScalef(E/2, 1.5f*E, E/2);
    gl.glRotatef(90, 1, 0, 0); // orient the cone
    drawCone();
    gl.glPopMatrix();
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    gl.glTranslatef(0, E/2, 0);
    gl.glRotatef(m, 0, 1, 0); // 1st moon

    gl.glPushMatrix();
    gl.glTranslatef(2*M, 0, 0);
    gl.glLineWidth(1);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
    gl.glScalef(E/4, E/4, E/4);
    myMaterialColor(redish, redish, red, redish);
    gl.glLightfv(GL.GL_LIGHT1, GL.GL_POSITION, origin);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(120, 0, 1, 0); // 2nd moon

    gl.glPushMatrix();
    gl.glTranslatef(2*M, 0, 0);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
    gl.glLightfv(GL.GL_LIGHT2, GL.GL_POSITION, origin);
    gl.glScalef(E/4, E/4, E/4);
    myMaterialColor(greenish, greenish, green, greenish);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(120, 0f, 1f, 0f); // 3rd moon 
    gl.glTranslatef(2*M, 0, 0);
    gl.glLightfv(GL.GL_LIGHT3, GL.GL_POSITION, origin);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
    gl.glScalef(E/4, E/4, E/4);
    myMaterialColor(blueish, blueish, blue, blueish);
    drawSphere();

    gl.glPopMatrix();

    myMaterialColor(blackish, whitish, white, black);
 }

  public static void main(String[] args) {
    J3_10_Lights f = new J3_10_Lights();

    f.setTitle("JOGL J3_10_Lights");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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 Fig. 3.12 Light sources: fixed, movable, and directional [See Color Plate 5]

3.4 Visible-Surface Shading

Shading models are methods for calculating the lighting of a surface instead of just 
one vertex or point pixel. As we discussed, OpenGL provides flat shading and smooth 
shading for polygonal surfaces. A polygon on a surface is also called a face. We will 
discuss some issues related to improving the efficiency and quality of face shading. 

3.4.1 Back-Face Culling

We can speed up drawing by eliminating some of the hidden surfaces before 
rendering. Given a solid object such as a polygonal sphere, we can see only half of the 
faces. The visible faces are called front-facing polygons or front faces, and the 
invisible faces are called back-facing polygons or back faces. The invisible back faces 
should be eliminated from processing as early as possible, even before the z-buffer 
algorithm is called. The z-buffer algorithm, as discussed in Section 2.3.3 on page 83, 
needs significant hardware calculations. Eliminating back-facing polygons before 
rendering is called back-face culling. 

(a) A global fixed light (b) Only movable lights (c) Lights with cutoff angle
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In OpenGL, if the order of the polygon 
vertices is counter-clockwise from the 
viewpoint, the polygon is front-facing 
(Fig. 3.13). Otherwise, it is back-facing. We 
use glEnable(GL_CULL_FACE) to turn on 
culling and call glCullFace(GL_BACK) to 
achieve back-face culling. Therefore, if we 
use back-face culling, we should make sure 
that the order of the vertices are correct when 
we specify a face by a list of vertices. 
Otherwise, we will see some holes (missing 
faces) on the surface displayed. Also, as in 
the following function (Example J3_10_Lights.java), we often use the cross-product 
of two edge vectors of a face to find its normal n. An edge vector is calculated by the 
difference of two neighbor vertices. The correctness of the surface normal depends on 
the correct order and direction of the edge vectors in the cross-product, which in turn 
depend on the correct order of the vertices as well. The faces that have normals facing 
the wrong direction will not be shaded correctly. 

void drawBottom(float *v1, float *v2, float *v3){
// normal to the cone or cylinder bottom
float v12[3], v23[3], vb[3];
int i;

for (i=0; i<3; i++) { // two edge vectors
v12[i] = v2[i] - v1[i]; 
v23[i] = v3[i] - v2[i];

}

// vb = normalized cross prod. of v12 X v23
ncrossprod(v12, v23, vb); 
gl.glBegin(GL.GL_TRIANGLES);

gl.glNormal3fv(vb);
gl.glVertex3fv(v1); 
gl.glVertex3fv(v2); 
gl.glVertex3fv(v3);

gl.glEnd();
}

 Fig. 3.13 A front face and its norm

v2

v3

v1

n

n v2 v1–( ) v3 v2–( )×=



166          3 Color and Lighting

Given a hollow box or cylinder without a cover, we will see both front and back faces. 
In this case, we cannot use back-face culling. We may turn on lighting for both front 
and back faces: glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, TRUE). If we turn 
on two-side lighting, each polygon has two sides with opposite normals and OpenGL 
will decide to shade the side that the normal is facing the viewpoint. We may also 
supply different material properties for both the front-facing polygons and the 
back-facing polygons: glMaterialfv(GL_FRONT, GL_AMBIENT, red); 
glMaterialfv(GL_BACK, GL_AMBIENT, green). 

3.4.2 Polygon Shading Models

The appearances of a surface under different shading models differ greatly. Flat 
shading, which is the simplest and fastest, is used to display a flat-face object instead 
of a curved-face object. In approximating a curved surface, using flat shading with a 
finer polygon mesh turns out to be ineffective and slow. Smooth shading (also called 
Gouraud shading), which calculates the colors of the vertex pixels and interpolates the 
colors of every other pixel in a polygon, is often used to approximate the shading of a 
curved face. In OpenGL, we can use glShadeModel(GL_FLAT) or 
glShadeModel(GL_SMOOTH) to choose between the two different shading models 
(flat shading and smooth shading), and the shadings are calculated by the OpenGL 
system. In OpenGL, the vertex normals are specified at the programmer’s 
discernment. To eliminate intensity discontinuities, the normal of a vertex is often 
calculated by averaging the normals of the faces sharing the vertex on the surface. In 
general, we try to specify a vertex normal that is perpendicular to the curved surface 
instead of the polygon. Also, we may specify normals in the directions we prefer in 
order to achieve special effects. 

Here we present an example to demonstrate 
how Gouraud shading is achieved. As shown 
in Fig. 3.14, the light source and the viewpoint 
are both at P, the normal NA is parallel to CP 
that is perpendicular to AE, NE is pointing 
toward P, ABCDEP is in a plane, and 
AP=EP=2CP. We can calculate the colors at A 
and E using a given lighting model, such as 
Equation 74 on page 150. Then, as discussed 
in Section 3.2 on page 136, we can interpolate 
and find the colors for all pixels on the line. For example, let’s calculate an intensity 

A C E

PNA NE

DB

light source 
& viewpoint

 Fig. 3.14 Shading calculations
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according to the following lighting model (which includes only diffuse and specular 
components): 

. (EQ 80)

Then, 

, (EQ 81)

, (EQ 82)

and 

. (EQ 83)

According to the Gouraud shading method discussed in Section 3.2 on page 136, with 
the intensities at A and B, the intensities at B, C, and D can be calculated, 
respectively: 

, (EQ 84)

, (EQ 85)
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. (EQ 86)

Another popular shading model, the normal-vector interpolation shading (called 
Phong shading), calculates the normals of the vertex pixels and interpolates the 
normals of all other pixels in a polygon. Then, the color of every pixel is calculated 
using a lighting model and the interpolated normals. Phong shading is much slower 
than Gouraud shading and therefore is not implemented in the OpenGL system.

For example, we use the same example and lighting model as shown in Fig. 3.14 to 
demonstrate Phong shading. First we calculate the normals through interpolations: 

(EQ 87)

Therefore, 

, (EQ 88)

, (EQ 89)

. (EQ 90)

Then, all the pixel intensities are calculated by the lighting model: 

(EQ 91)
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(EQ 92)

(EQ 93)

Phong shading allows specular highlights to be located in a polygon, whereas 
Gouraud shading does not. In contrast, if a highlight is within a polygon, smooth 
shading will fail to show it, because the intensity interpolation makes it such that the 
highest intensity is only possible at a vertex. Also, if we have a spotlight source and 
the vertices fall outside the cutoff angle, smooth shading will not calculate the vertex 
colors and thus the polygon will not be shaded. You may have noticed that when the 
sphere subdivisions are not enough, lighting toward the sphere with a small cutoff 
angle may not show up. 

All of the above shading models are approximations. Using polygons to approximate 
curved faces is much faster than handling curved surfaces directly. The efficiency of 
polygon rendering is still the benchmark of graphics systems. In order to achieve 
better realism, we may calculate each surface pixel’s color directly without using 
interpolations. However, calculating the lighting of every pixel on a surface is in 
general very time consuming. 

3.4.3 Ray Tracing and Radiosity

Ray tracing and radiosity are advanced global lighting and rendering models that 
achieve better realism, which are not provided in OpenGL. They are time-consuming 
methods so that no practical real-time animation is possible with the current graphics 
hardware. Here we only introduce the general concepts. 

Ray tracing is an extension to the lighting model we learned. The light rays travel 
from the light sources to the viewpoint. The simplest ray tracing method is to follow 
the rays in reverse from the viewpoint to the light sources. A ray is sent from the 
viewpoint through a pixel on the projection plane to the scene to calculate the lighting 
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of that pixel. If we simply use the lighting model (Equation 79) once, we would 
produce a similar image as if we use the OpenGL lighting directly without ray tracing. 
Instead, ray tracing accounts for the global specular reflections among objects and 
calculates the ray’s recursive intersections that include reflective bounces and 
refractive transmissions. Lighting is calculated at each point of intersection. The final 
pixel color is an accumulation of all fractions of intensity values from the bottom up. 
At any point of intersection, three lighting components are calculated and added 
together: current intensity, reflection, and transmission. 

The current intensity of a point is calculated using the lighting method we learned 
already, except that we may take shadows into consideration. Rays (named feeler rays 
or shadow rays) are fired from the point under consideration to the light sources to 
decide the point’s current intensity using Equation 79. If an object is between the point 
and a light source, the point under consideration will not be affected by the blocked 
light source directly, so the corresponding shadows will be generated. 

The reflection and transmission components at the point are calculated by recursive 
calls following the reflected ray and transmitted ray (Fig. 3.15). For example, we can 
modify Equation 79: 

, (EQ 94)

where Iλr accounts for the reflected light component, and Iλt accounts for the 
transmitted light component, as shown in Fig. 3.15.

The reflection component Iλr is a specular component, which is calculated recursively 
by applying Equation 94. Here, we assume that the “viewpoint” is the starting point of 
the reflected ray R and the point under consideration is the end point of R: 

, (EQ 95)

where Mλs is the “viewpoint” material’s specular property. The transmission 
component Iλt is calculated similarly: 

Iλ Iλe fattifspotiIλLi
i 0=
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, (EQ 96)

where Mλt is the “viewpoint” material’s transmission coefficient. 

The recursion terminates when a user-defined depth is achieved where further 
reflections and transmissions are omitted, or when the reflected and transmitted rays 
don’t hit objects. Computing the intersections of the ray with the objects and the 
normals at the intersections is the major part of a ray tracing program, which may take 
hidden-surface removal, refractive transparency, and shadows into its implementation 
considerations.

 Fig. 3.15 Recursive ray tracing

As an example, we discuss details of implementing a recursive raytracing, which is 
the simplest case. 

1. First we initial light sources, spheres, and two planes; 

2. We specify a view point on z axis: viewpt(0, 0, z0); 

3. For each pixel on the screen raypt(x, y, 0), we fire a ray from viewpt to raypt, 
which is a vector in the direction from viewpt to raypt; 

4. rayTracing(color, viewpt, raypt, depth) is a recursive function that bounces “depth” 
times along viewpt to raypt, returning a final color, which is the result of the ray 
tracing; 

Iλt MλtIλ=

light source

Lviewpoint

N

T

R

N surface normal
L feeler ray (light source direction)
R reflected ray
T transmitted ray
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5. intersect(vpt, rpt, p, n) will find the closest intersection of the ray (vpt, rpt) with an 
object. If there is no intersection, a null normal will return. Otherwise, the 
intersection point p and the normal will return, so that the point and normal are 
used to calculate lighting according to a lighting model. We can calculate the 
intersection of the ray with the spheres and the planes as follows. Given the 
parametric line equation represented as (Equation 61 on page 112): 

(EQ 97)

and plane equation as (Equation 64 on page 112): 

(EQ 98)

We can solve Equation 97 and Equation 98 to find the parameter t at which the ray 
intersects with the plane. When t=0, the ray starts at vpt. When t>0, the ray fires 
from vpt in the direction of rpt. Therefore, t>0 if there is an intersection. 

Similarly, for a sphere as follows: 

(EQ 99)

We can put Equation 97 (with x and z similar equations) into Equation 99 to find t
at which the ray intersects with the sphere. In this case, Quadratic Formula will be 
used to find the roots. For a quarterback equation: 

, (EQ 100)

if ( ), there are likely two roots in the solutions:

. (EQ 101)

We should use the smaller t>0, which is the closer intersection with the ray. 
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6. After finding the intersection point, the point and the normal of the point’s 
corresponding object at the point are returned. We then use phong(color, p, vD, n) 
to find the lighting of the point according to the light sources and the point normal 
using the shading model as we discussed earlier in Equation 79. 

7. The reflected ray is used as one step further recursive ray tracing. The process is 
the same as from Step 2 to Step 6, except that vpt is now the current intersection 
point, rpt is now a reflection point from the vpt along the normal. Given a ray A
and a normalized normal n, the reflected ray B = 2n(n•A) - A. The final color is the 
current color added with the accumulated reflected color. 

/* a ray tracing example */
/* 1/10/2008: a ray tracing example */
import javax.media.opengl.*;

public class J3_11_rayTracing extends J3_10_Lights {

double[][] sphere = new double[4][4]; 
// at most 4 spheres with radius and center
static int ns = 3; // number of spheres

double[][] lightSrc = new double[3][3]; // 3 light sources
static int nl = 3; // number of light sources

static int depth = 5; // depth of ray tracing recursion
static int yplane = -HEIGHT / 8; // a reflective plane

public void reshape(GLAutoDrawable glDrawable, int x, int 
y, int w, int h) {

gl.glMatrixMode(GL.GL_PROJECTION);
gl.glLoadIdentity();

gl.glOrtho(-WIDTH/2, WIDTH/2, -HEIGHT/2, HEIGHT/2, 
-4 * HEIGHT, 4 * HEIGHT);

gl.glDisable(GL.GL_LIGHTING); // calculate color by ray 
tracing

}

public void display(GLAutoDrawable glDrawable) {
double[] viewpt = new double[3], raypt = new double[3];
// initial ray: viewpt -> raypt
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double[] color = new double[3]; // traced color

// initialize 'ns' number of spheres
for (int i = 0; i < ns; i++) {

sphere[i][0] = 10 + WIDTH * Math.random() / 10; // 
radius

for (int j = 1; j < 4; j++) { // center
sphere[i][j] = -WIDTH / 4 + WIDTH * 

Math.random() / 2; 
}

}

// initialize 'nl' light source locations
for (int i = 0; i < nl; i++) {

for (int j = 0; j < 3; j++) { // light source 
positions

lightSrc[i][j] = -4 * WIDTH + 8 * WIDTH * 
Math.random();

}
}

// starting viewpoint on positive z axis
viewpt[0] = 0;
viewpt[1] = 0;
viewpt[2] = 1.5*HEIGHT;

// trace rays against the spheres and a plane
for (double y = -HEIGHT / 2; y < HEIGHT / 2; y++) {

for (double x = -WIDTH / 2; x < WIDTH / 2; x++) {

// ray from viewpoint to a pixel on the screen
raypt[0] = x;
raypt[1] = y;
raypt[2] = 0;

// tracing the ray for depth bounces
rayTracing(color, viewpt, raypt, depth);
gl.glColor3dv(color, 0);
drawPoint(x, y);

}
}

}

// recursive rayTracing from vpt to rpt for depth bounces, 
finding final color

public void rayTracing(double[] color, double[] vpt, 
double[] rpt, int depth) {
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double[] reflectClr = new double[3], transmitClr = new 
double[3];

double[] rpoint = new double[3]; // a point on ray 
direction

double[] rD = new double[3]; // ray direction
double[] vD = new double[3]; // view direction
double[] n = new double[3]; // normal
double[] p = new double[3]; // intersection point

for (int i = 0; i < 3; i++) {
color[i] = 0;

}

if (depth != 0) {// calculate color

// find intersection of ray from vpt to rpt
// with the closest object or the background
intersect(vpt, rpt, p, n); 
// intersect at p with normal n

// calculate lighting of the intersection point
if (n[0] * n[0] + n[1] * n[1] + n[2] * n[2] > 0.001) 

{

// view direction vector for lighting 
for (int i = 0; i < 3; i++) {
vD[i] = vpt[i] - rpt[i];
}

normalize(n);
normalize(vD);

// calculate color using Phong shading
phong(color, p, vD, n);

// reflected ray
reflect(vD, n, rD);

for (int i = 0; i < 3; i++) {
// a point on the reflected ray starting from p
rpoint[i] = rD[i] + p[i];
}

// recursion to find a bounce at lower level
rayTracing(reflectClr, p, rpoint, depth - 1);
//rayTracing(transmitClr, p, rpoint, depth - 

1);
for (int i = 0; i < 3; i++) {
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// reflected color are accumulated
color[i] = (color[i] + 0.9 * reflectClr[i]);
if (color[i] > 1) 
//color values are not normalized. 
color[i] = 1; 
}

}
}

}

public void phong(double[] color, double[] point, double[] 
vD, double[] n) {

double[] s = new double[3]; // light source direction + 
view direction

double[] lgtsd = new double[3]; // light source 
direction

double[] inormal = new double[3]; // for shadow
double[] ipoint = new double[3]; // for shadow

for (int i = 0; i < nl; i++) {

// if intersect objects between light source
// point in shadow
intersect(point, lightSrc[i], ipoint, inormal);

if (inormal[0] * inormal[0] + inormal[1] * 
inormal[1] + inormal[2]

* inormal[2] < 0.001) { // point not in shadow

for (int j = 0; j < 3; j++) {
lgtsd[j] = lightSrc[i][j] - point[j];
// light source direction
}
normalize(lgtsd);
for (int j = 0; j < 3; j++) {
s[j] = lgtsd[j] + vD[j]; // for specular term
}
normalize(s);

double diffuse = dotprod(lgtsd, n);
double specular = Math.pow(dotprod(s, n), 100);

if (diffuse < 0)
diffuse = 0;
if (specular < 0 || diffuse == 0)
specular = 0;
// 3 color channels correspond to 3 light 

sources 
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color[i] = color[i]  + 0.5 * diffuse + 0.7 * 
specular;

}
// color[1] = color[2] = color[0]; 
}

}

public void intersect(double[] vpt, double[] rpt, double[] 
point,

double[] normal) {

// calculate intersection of ray with the closest sphere
// Ray equation:
// x/y/z = vpt + t*(rpt - vpt);
// Sphere equation:
// (x-cx)^2 + (y-cy)^2 + (z-cz)^2 = r^2;
// We can solve quadratic formula for t and find the 

intersection
// t has to be > 0 to intersect with an object
double t = 0;
double a, b, c, d, e, f; // temp for solving the 

intersection

normal[0] = 0;
normal[1] = 0;
normal[2] = 0;

for (int i = 0; i < ns; i++) {
a = vpt[0] - sphere[i][1];
b = rpt[0] - vpt[0];
c = vpt[1] - sphere[i][2];
d = rpt[1] - vpt[1];
e = vpt[2] - sphere[i][3];
f = rpt[2] - vpt[2];

double A = b * b + d * d + f * f;
double B = 2 * (a * b + c * d + e * f);
double C = a * a + c * c + e * e - sphere[i][0] * 

sphere[i][0];

double answers[] = new double[2];

if (quadraticFormula(A,B,C,answers)) {// 
intersection

if (answers[0] < answers[1])
t = answers[0];
else t = answers[1]; 
if (t < 0.001) {
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t = 0; 
break;
}
else {
// return point and normal
point[0] = vpt[0] + t * (rpt[0] - vpt[0]);
point[1] = vpt[1] + t * (rpt[1] - vpt[1]);
point[2] = vpt[2] + t * (rpt[2] - vpt[2]);
normal[0] = point[0] - sphere[i][1];
normal[1] = point[1] - sphere[i][2];
normal[2] = point[2] - sphere[i][3];
}

}
}
// calculate ray intersect with plane y = yplane
// y = vpt + t(rpt - vpt) = yplane; => t = (yplane - 

vpt)/(rpt -vpt);

double tmp = (yplane - vpt[1]) / (rpt[1] - vpt[1]);
double[] ipoint = new double[3]; // for shadow
if ((tmp > 0.001) && (tmp < t || t == 0)) {

t = tmp;
ipoint[0] = vpt[0] + t * (rpt[0] - vpt[0]);
ipoint[1] = yplane;
ipoint[2] = vpt[2] + t * (rpt[2] - vpt[2]);
// if x&z in the rectangle, intersect with plane
if ((ipoint[0] > -HEIGHT / 2) && (ipoint[0] < 

HEIGHT / 2)
&& (ipoint[2] > -HEIGHT / 2) && (ipoint[2] < 

HEIGHT / 2)
&& t > 0) {
// plane normal
point[0] = ipoint[0];
point[1] = ipoint[1];
point[2] = ipoint[2];
normal[0] = 0;
normal[1] = 1;
normal[2] = 0;

}
}

// calculate ray intersect with zplane = yplane*8
// z = vpt + t(rpt - vpt) = zplane; => t = (zplane - 

vpt)/(rpt -vpt);
tmp = (yplane*8 - vpt[2]) / (rpt[2] - vpt[2]);
if ((tmp > 0.001) && (tmp < t || t == 0)) {

t = tmp;
ipoint[0] = vpt[0] + t * (rpt[0] - vpt[0]);
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ipoint[2] = yplane*8;
ipoint[1] = vpt[1] + t * (rpt[1] - vpt[1]);
// if x&z in the rectangle, intersect with plane
if ((ipoint[0] > -HEIGHT / 2) && (ipoint[0] < 

HEIGHT / 2)
&& (ipoint[1] > -HEIGHT / 2) && (ipoint[1] < 

HEIGHT / 2)
&& t > 0) {
// plane normal
point[0] = ipoint[0];
point[1] = ipoint[1];
point[2] = ipoint[2];
normal[0] = 0;
normal[1] = 0;
normal[2] = 1;

}
}

}

public static void main(String[] args) {
J3_11_rayTracing f = new J3_11_rayTracing();

f.setTitle("JOGL J3_11_rayTracing");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

A snapshot of rendering results is shown in Fig. 3.16. Here only reflected ray and 
feeler ray are considered. There is no transmitted ray calculation. 

As we can see, the edges of the spheres are not smooth because the intersections are 
based on discrete pixel locations. The aliasing artifacts in ray tracing can be alleviated 
by tracing multiple rays around the center of a pixel, which is known as 
supersampling. Here we generate random rays around the center of a pixel, which is 
called stochastic sampling. The final pixel color is the average of the results of 
supersampling. A snapshot of rendering results is shown in Fig. 3.17. 
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 Fig. 3.16 Recursive ray tracing with aliasing problems  [See Color Plate 6]

 Fig. 3.17 Ray tracing with stochastic sampling  [See Color Plate 6]
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Adaptive sampling is one of the supersampling methods. For example, we can trace 
four rays from the pixel square corners. If the intensity of one of the rays is 
significantly different from the other three, then the pixel is split into four rectangular 
portions for further sampling. This process repeats until a threshold is satisfied. 
Stochastic sampling is another antialiasing method used in ray tracing. Instead of 
firing rays with regular patterns, a stochastic distribution of rays within a pixel are 
fired to generate multiple samples, which are then put together to generate the final 
pixel color. In general, supersampling is a time consuming approximate method, but 
the method alleviates aliasing problems. 

Radiosity assumes that each small area or patch is an emissive as well as reflective 
light source. The method is based on thermal energy radiosity. We need to break up 
the environment into small discrete patches that emit and reflect light uniformly in the 
entire area. Also, we need to calculate the fraction of the energy that leaves from a 
patch and arrives at another, taking into account the shape and orientation of both 
patches. The shading of a patch is a summation of its own emission and all the 
emissions from other patches that reach the patch. The finer the patches, the better the 
results are at the expense of longer calculations. 

Although both ray tracing and radiosity can be designed to account for all lighting 
components, ray tracing is viewpoint dependent, which is better for specular 
appearance, and radiosity is viewpoint independent, which is better for diffuse 
appearance. Currently, raytracing and radiosity are mostly used to achieve stunning 
visual appearance for entertainment. 
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3.5 Review Questions

1. Which of the following statements is correct: 
 a. RGB are subtractive primaries. b. CMY are additive primaries. 
 c. CMY are the complements of RGB. d. RGB are color inks in printers.

2. An RGB mode 512*512 frame buffer has 24 bits per pixel. 
 What is the total memory size needed in bits? ( )
 How many distinct color choices are available? ( )
 How many different colors can be displayed in a frame? ( )

3. An index mode 1280*1024 frame buffer has 8 bits per entry. The color look-up table (CLT) has 
24 bits per entry.

 What is the total memory size (frame buffer+CLT) in bits?  ( )
 How many distinct color choices are available? ( )
 How many different colors can be displayed in a frame? ( )

4. An index display has 2 bits per 
pixel and a look-up table with 6 
bits per entry (2 bits for R, G, and 
B, respectively). We scan-con-
verted an object as shown in the 
frame buffer: a 5-pixel blue hori-
zontal line, a 3-pixel green verti-
cal line, and two red pixels. The 
rest are black. Please provide the 
pixel values in the frame buffer. 

5. An index raster display has 3 bits per pixel and a color 
look-up table (color map) with 9 bits per entry (3 bits 
each for R, G, and B, respectively). We want to load the 
color map for scan-converting a grayscale object. 
Assuming the index in the frame buffer corresponds to 
the intensity, please load the complete color map. 

6. Which of the following statements is WRONG? 
 a. Our eyes are sensitive to ratios of intensity.
 b. Our eyes average fine detail of the overall intensity.
 c. Our eyes have constant sensitivity to all colors.
 d. Some colors cannot be generated on an RGB display device. 

7. Given the vertex (pixel) colors of the triangle as specified, please use interpolation to find the 
pixel color in the middle (specified as bold).

Frame buffer Color look-up table

R G B

0 0 0 0 0 0

0 0 0 0 1 1

0 0 1 1 0 0

1 1 0 0 0 0

0
1

2

3

Color map

R G B

000
001
010
011
100
101
110
111
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 Color = (_________, ___________,  __________)
 
 

8. About a movable light source, which of the following 
is correct about its location?  

 a. It should be specified at its physical location.
 b. It should be visible once it is specified. 
 c. It should be specified at infinity in the direction of its physical location.
 d. It is used for lighting calculation at its specified location.

9. The vertex normals (N = NA = NB = NC) are perpen-
dicular to the triangle. The light source L is making 30o 
angle with NA, NB, and NC. The viewpoint V is at infi-
nite in the direction of N, the normal of the triangle.   
Please use Gouraud shading and Phong shading to find 
the pixel color in the middle (specified as bold). 
Reminder: Iλ = [1 + (N.L) + (R.V)3]/3, where λ is R, G, or 
B; N, L, R, and V are all normalized.

 
 
 
 
 Gouraud shading = (_______, ________,  ________)
 
 
 
 Phong shading = (_________, ________,  ________)

10. The light source (P) & the viewpoint (V) are at the 
same position as in the figure, which is right in the nor-
mal of vertex C. The vertex normals of triangle ABC are 
in the same direction perpendicular to the triangle. 
Angle VAC = 30 degree. Angle VBC = 45 degree. Please 
use the following equation to calculate the intensities of 
the vertices, and use interpolation to find the pixel 
intensity in the middle (specified as bold).  
Reminder: I = [1 + (N.L) + (R.V)2]/3, where N is the normal 
direction, L is the light source direction, R is the reflection 
direction, and V is the viewpoint direction from the vertex 
in consideration. All vectors are normalized vectors.  

 
 a. NA

.LA = ___________; RA
.VA = ____________; 

 

1,1,1

0,0,0

0,1,0

A

B C

NB NC

NA

V,P

30

45

BA

C
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 b. Intensity A = ___________; B = _____________; C = _______________ 

 
 c. Intensity at the bold pixel = ______________________________

11. In an OpenGL program, we have a local light source with a small cutoff angle facing the center 
of a triangle. However, we cannot see any light on the triangle. Which of the following is least likely 
the problem? 

 a. The light source is too close to the triangle. b. The cutoff angle is too small. 
 c. The triangle is too small. d. The normals of the vertices are facing the wrong direction.

12. Light source attenuation is calculated according to the distance?
 a. from the viewpoint to the pixel b. from the pixel to the light source
 c. from the light to the origin d. from the origin to the viewpoint
 e. from the pixel to the origin f. from the origin to the pixel
 

14. In OpenGL, normals are transformed with the associated vertices. Prove that normals are 
transformed by the inverse transpose of the matrix that transforms the corresponding vertices. 

 void drawtriangle(float *v1, float *v2, float *v3) 
 { 
 glBegin(GL_TRIANGLES); 
 glNormal3fv(v1); 
 glVertex3fv(v1); 
 glNormal3fv(v2); 
 glVertex3fv(v2); 
 glNormal3fv(v3); 
 glVertex3fv(v3); 
 glEnd(); 
 } 

13. drawtriangle() on the right draws a piece on 
the side of the cone. The normals are specified 
wrong. If the radius equals the height of the cone, 
which of the following is correct for the normal of 
v1?

 a. glNormal3fv(normalize(v1+v2));
 b. glNormal3fv(normalize(v1+v3));
 c. glNormal3fv(normalize(v2+v3));
 d. glNormal3fv(normalize(v1));
 (here “+” is a vector operator)

v3

v1 v2
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3.6 Programming Assignments

1. Make the cone, cylinder, and sphere three different 
movable light sources pointing toward the center of the 
earth in the previous problem in the past chapter. The 
light sources are bouncing back and forth with collision 
detection. Design your own light source and material 
properties. 

2. Modify the above program with multiple viewports. 
Each viewport demonstrates one lighting property of your 
choice. For example, we can demonstrate light source 
attenuation interactively as follows: turn on just one light 
source and gradually move it away from the earth. When 
the lighting is dim, move it toward the earth. 

3. Implement a OpenGL smooth-shading environment 
that has a sphere, box, and cone on a plane. You can specify the light source and materials of your 
own. 

4. Implement a Phong-shading and a corresponding ray-tracing environment that has a sphere, 
box, cylinder, and cone on a plane with adaptive sampling. You can specify the light source and 
materials of your own. 

x

y

α

θ

z

L



4 
Blending and Texture Mapping

Chapter Objectives: 

• Understand OpenGL blending to achieve transparency, antialiasing, and fog

• Use images for rendering directly or for texture mapping 

• Understand OpenGL texture mapping programs

4.1 Blending

Given two color components Iλ1 and Iλ2, the blending of the two values is a linear 
interpolation between the two: 

(EQ 102)

where α is called the alpha blending factor, and λ is R, G, B, or A. Transparency is 
achieved by blending. Given two transparent polygons, every pixel color is a blending 
of the corresponding points on the two polygons along the projection line. 

In OpenGL, without blending, each pixel will overwrite the corresponding value in 
the frame buffer during scan-conversion. In contrast, when blending is enabled, the 
current pixel color component (namely the source Iλ1) is blended with the 
corresponding pixel color component already in the frame buffer (namely the 
destination Iλ2). The blending function is an extension of Equation 102: 

(EQ 103)

Iλ αIλ1 1 α–( )Iλ2+=

Iλ B1Iλ1 B2Iλ2+=

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_4, © Springer-Verlag London Limited 2008 
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where B1 and B2 are the source and destination blending factors, respectively. 

The blending factors are decided by the function
glBlendFunc(B1, B2), where B1 and B2 are 
predefined constants to indicate how to compute 
B1 and B2, respectively. As shown in Example 
J 4 _ 1 _ B l e n d i n g . j a v a  ( F i g .  4 . 1 ) ,  B 1  =  
GL_SRC_ALPHA indicates that the source 
blending factor is the source color’s alpha value, 
which is the A in the source pixel’s RGBA, where 
A stands for alpha. That is, B1 = A, and B2 = 
GL_ONE_MINUS_SRC_ALPHA indicates that 
B2 = 1-A. When we specify a color directly, or 
specify a material property in lighting, we now 
specify and use the alpha value as well. In 
Example J4_1_Blending.java, when we specify 
the material properties, we choose A=0.3 to represent the material’s transparency 
property. Here, if we choose A=0.0, the material is completely transparent. If A=1.0, 
the material is opaque. 

/* transparent spheres */

import net.java.games.jogl.*;

public class J4_1_Blending extends J3_10_Lights {

  // alpha 4 transparency
  float tred[] = {1, 0, 0, 0.3f};
  float tgreen[] = {0, 1, 0, 0.3f};
  float tblue[] = {0, 0, 1, 0.3f};

  public void drawSolar(float E, float e,
                        float M, float m) {

gl.glLineWidth(2);
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);

    myMaterialColor(blackish, whitish, white, black);

    gl.glPushMatrix();

 Fig. 4.1 Transparent spheres 
[See Color Plate 7]
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    gl.glRotatef(e, 0, 1, 0);
    // rotating around the "sun"; proceed angle
    gl.glRotatef(alpha, 0, 0, 1); // tilt angle
    gl.glTranslatef(0, 1.5f*E, 0);

    gl.glPushMatrix();
    gl.glTranslatef(0, E, 0);
    gl.glScalef(E, E, E);
    drawSphere();
    gl.glPopMatrix();

    gl.glPushMatrix();
    gl.glScalef(E/2, 1.5f*E, E/2);
    gl.glRotatef(90, 1, 0, 0); // orient the cone
    drawCone();
    gl.glPopMatrix();

    // enable blending for moons
    gl.glEnable(GL.GL_BLEND);
    gl.glBlendFunc(GL.GL_SRC_ALPHA,
                   GL.GL_ONE_MINUS_SRC_ALPHA);

    gl.glTranslatef(0, E/2, 0);
    gl.glRotatef(m, 0, 1, 0); // 1st moon
    gl.glPushMatrix();
    gl.glTranslatef(2*M, 0, 0);
    gl.glLineWidth(1);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
    gl.glScalef(E/2, E/2, E/2);
    myMaterialColor(tred, tred, tred, tred); // transparent
    gl.glLightfv(GL.GL_LIGHT1, GL.GL_POSITION, origin);
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(120, 0, 1, 0); // 2nd moon
    gl.glPushMatrix();
    gl.glTranslatef(2*M, 0, 0);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
    gl.glLightfv(GL.GL_LIGHT2, GL.GL_POSITION, origin);
    gl.glScalef(E/2, E/2, E/2);
    myMaterialColor(tgreen, tgreen, tgreen, tgreen); // trans.
    drawSphere();
    gl.glPopMatrix();

    gl.glRotatef(120, 0f, 1f, 0f); // 3rd moon
    gl.glTranslatef(2*M, 0, 0);
    gl.glLightfv(GL.GL_LIGHT3, GL.GL_POSITION, origin);
    drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
    gl.glScalef(E/2, E/2, E/2);
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    myMaterialColor(tblue, tblue, tblue, tblue);
    drawSphere();

    gl.glPopMatrix();
    myMaterialColor(blackish, whitish, white, black);
  }

  public static void main(String[] args) {
    J4_1_Blending f = new J4_1_Blending();

    f.setTitle("JOGL J4_1_Blending");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

4.1.1 OpenGL Blending Factors

Example J4_1_Blending.java chooses the alpha blending factor as in Equation 102, 
which is a special case. OpenGL provides more constants to indicate how to compute 
the source or destination blending factors through glBlendFunc(). 

If the source and destination colors are (Rs, Gs, Bs, As) and (Rd, Gd, Bd, Ad) and the 
source (src) and destination (dst) blending factors are (Sr, Sg, Sb, Sa) and (Dr, Dg, Db, 
Da), then the final RGBA value in the frame buffer is (RsSr + RdDr, GsSg + GdDg, BsSb
+ BdDb, AsSa + AdDa). Each component is eventually clamped to [0, 1]. The 
predefined constants to indicate how to compute (Sr, Sg, Sb, Sa) and (Dr, Dg, Db, Da) 
are as follows:

Constant Relevant Factor Computed Blend Factor
GL_ZERO src or dst (0, 0, 0, 0)
GL_ONE src or dst (1, 1, 1, 1)
GL_DST_COLOR src (Rd,Gd,Bd,Ad)
GL_SRC_COLOR dst (Rs,Gs,Bs,As)
GL_ONE_MINUS_DST_COLOR src (1,1,1,1)-(Rd,Gd,Bd,Ad)
GL_ONE_MINUS_SRC_COLOR dst (1,1,1,1)-(Rs,Gs,Bs,As)
GL_SRC_ALPHA src or dst (As,As,As,As)
GL_ONE_MINUS_SRC_ALPHA src or dst (1,1,1,1)-(As,As,As,As)
GL_DST_ALPHA src or dst (Ad,Ad,Ad,Ad)
GL_ONE_MINUS_DST_ALPHA src or dst (1,1,1,1)-(Ad,Ad,Ad,Ad)
GL_SRC_ALPHA_SATURATE src (f,f,f,1); f=min(As,1-Ad)
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Depending on how we choose the blending factors and other parameters, we can 
achieve different effects of transparency, antialiasing, and fog, which will be discussed 
later. 

OpenGL blending achieves nonrefractive transparency. The blended points are along 
the projection line. In other words, the light ray passing through the transparent 
surfaces is not bent. Refractive transparency, which needs to take the geometrical and 
optical properties into consideration, is significantly more time consuming. Refractive 
transparency is often integrated with ray tracing. 

4.1.2 Transparency and Hidden-Surface Removal

It is fairly complex to achieve the correct transparency through blending if we have 
multiple transparent layers, because the order of blending of these layers matters. As 
in Equation 103, the source and the destination parameters are changed if we switch 
the order of drawing two polygons. We would like to blend the corresponding 
transparent points on the surfaces in the order of their distances to the viewpoint.
However, this requires keeping track of the distances for all points on the different 
surfaces, which we avoid doing because of time and memory requirements. 

If we enabled the depth-buffer (z-buffer) in 
OpenGL, obscured polygons may not be used 
for blending. To avoid this problem, while 
drawing transparent polygons, we may make 
the depth buffer read-only. Also, we should 
draw opaque objects first, and then enable 
blending to draw transparent objects. This 
causes the transparent polygons’ depth values 
to be compared with the values established by 
the opaque polygons, and blending factors to 
be specified by the transparent polygons. As in 
J4_2.Opaque.java, glDepthMask(GL_FALSE)
makes the depth-buffer become read-only, 
whereas glDepthMask(GL_TRUE) restores the 
normal depth-buffer operation (Fig. 4.2). 

 Fig. 4.2 Depth-buffer read only 
[See Color Plate 7]
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/* transparency / hidden-surface removal */

import net.java.games.jogl.*;

public class J4_2_Opaque extends J4_1_Blending {
  float PI = (float)Math.PI;

  public void drawSolar(float E, float e,
                        float M, float m) {

    // Global coordinates
    gl.glLineWidth(2);
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);

    gl.glPushMatrix();
    {
      gl.glRotatef(e, 0, 1, 0);
      // rotating around the "sun"; proceed angle
      gl.glRotatef(tiltAngle, 0, 0, 1); // tilt angle
      gl.glTranslatef(0, 1.5f*E, 0);

      gl.glPushMatrix();
      gl.glTranslatef(0, E, 0);
      gl.glScalef(E, E, E);
      drawSphere(); // the earth
      gl.glPopMatrix();

      gl.glPushMatrix();
      gl.glScalef(E/2, 1.5f*E, E/2);
      gl.glRotatef(90, 1, 0, 0); // orient the top
      drawCone(); // the top
      gl.glPopMatrix();

      // moons moved up a little
      gl.glTranslatef(0, E/2, 0);
      gl.glRotatef(m, 0, 1, 0); // initial rotation

      // blend for transparency
      gl.glEnable(GL.GL_BLEND);
      gl.glBlendFunc(GL.GL_SRC_ALPHA,
                     GL.GL_ONE_MINUS_SRC_ALPHA);
      gl.glDepthMask(false); // no writting into zbuffer

      gl.glPushMatrix();
      {
        gl.glTranslatef(2.5f*M, 0, 0);
        gl.glLineWidth(1);
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        drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
        gl.glLightfv(GL.GL_LIGHT1,
                     GL.GL_SPOT_DIRECTION, spot_direction);
        gl.glLightf(GL.GL_LIGHT1, GL.GL_SPOT_CUTOFF, 5);
        gl.glLightfv(GL.GL_LIGHT1, GL.GL_POSITION, origin);

        gl.glPushMatrix();
        myMaterialColor(red, red, red, red); // red lit source
        gl.glScalef(E/8, E/8, E/8);
        drawSphere();
        gl.glPopMatrix();

        gl.glScaled(2.5*M, 2.5*M*Math.tan(PI*5/180),
                    2.5*M*Math.tan(PI*5/180)); // cutoff angle
        gl.glTranslatef(-1, 0, 0);
        gl.glRotatef(90, 0, 1, 0); // orient the cone
        myMaterialColor(tred, tred, tred, tred);
        drawCone(); // corresponds to the light source
      }
      gl.glPopMatrix();

      gl.glRotatef(120, 0, 1, 0); // 2nd moon
      gl.glPushMatrix();
      {
        gl.glTranslatef(2.5f*M, 0, 0);

        drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
        gl.glLightfv(GL.GL_LIGHT2, GL.GL_POSITION, origin);
        gl.glLightfv(GL.GL_LIGHT2,
                     GL.GL_SPOT_DIRECTION, spot_direction);
        gl.glLightf(GL.GL_LIGHT2, GL.GL_SPOT_CUTOFF, 10f);
        myMaterialColor(green, green, green, green);
        gl.glPushMatrix();
        gl.glScalef(E/8, E/8, E/8);
        drawSphere(); // green light source
        gl.glPopMatrix();

        gl.glScaled(2.5*M, 2.5f*M*Math.tan(PI*1/18),
                    2.5f*M*Math.tan(PI*1/18));
        gl.glTranslatef(-1, 0, 0);
        gl.glRotatef(90, 0, 1, 0); // orient the cone
        myMaterialColor(tgreen, tgreen, tgreen, tgreen);
        drawCone();
      }
      gl.glPopMatrix();

      gl.glRotatef(120, 0f, 1f, 0f); // 3rd moon

      gl.glTranslatef(2.5f*M, 0, 0);
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      gl.glLightfv(GL.GL_LIGHT3, GL.GL_POSITION, origin);
      gl.glLightfv(GL.GL_LIGHT3,
                   GL.GL_SPOT_DIRECTION, spot_direction);
      gl.glLightf(GL.GL_LIGHT3, GL.GL_SPOT_CUTOFF, 15f);
      drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
      myMaterialColor(blue, blue, blue, blue);
      gl.glPushMatrix();
      gl.glScalef(E/8, E/8, E/8);
      drawSphere();
      gl.glPopMatrix();

      gl.glScaled(2.5*M, 2.5*M*Math.tan(PI*15/180),
                  2.5*M*Math.tan(PI*15/180));
      gl.glTranslatef(-1, 0, 0);
      gl.glRotatef(90, 0, 1, 0); // orient the cone
      myMaterialColor(tblue, tblue, tblue, tblue);
      drawCone();
      gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);

    }

    gl.glPopMatrix();

    gl.glDepthMask(true); // allow writing into zbuffer
    gl.glDisable(GL.GL_BLEND); // no blending afterwards
    myMaterialColor(blackish, whitish, white, black);
  }

  public static void main(String[] args) {

    J4_2_Opaque f = new J4_2_Opaque();

    f.setTitle("JOGL J4_2_Opaque");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);

  }
}

Example J4_3_TransLight.java uses transparent cones to simulate the lighting 
volumes of the moving and rotating spotlight sources. Here the transparent cones are 
scaled corresponding to the lighting areas with defined cutoff angles. The light 
sources and cones are synchronized in their rotations. 
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/* cones to simulate moving spotlights */

import net.java.games.jogl.*;

public class J4_3_TransLight extends J4_2_Opaque {

  float lightAngle = 0;

  public void drawSolar(float E, float e, float M, float m) {

    gl.glLineWidth(2);
    drawColorCoord(WIDTH/6, WIDTH/6, WIDTH/6);

    gl.glPushMatrix();
    {
      gl.glRotatef(e, 0, 1, 0);
      // rotating around the "sun"; proceed angle
      gl.glRotatef(tiltAngle, 0, 0, 1); // tilt angle
      gl.glTranslated(0, 2*E, 0);

      gl.glPushMatrix();
      gl.glTranslatef(0, 1.5f*E, 0);
      gl.glScalef(E*2, E*1.5f, E*2);
      drawSphere();
      gl.glPopMatrix();

      gl.glPushMatrix();
      gl.glScalef(E, 2*E, E);
      gl.glRotatef(90, 1, 0, 0); // orient the cone
      drawCone();
      gl.glPopMatrix();

      gl.glEnable(GL.GL_BLEND);
      gl.glBlendFunc(GL.GL_SRC_ALPHA,
                     GL.GL_ONE_MINUS_SRC_ALPHA);

      if (lightAngle==10) {
        flip = -1;
      }
      if (lightAngle==-85) {
        flip = 1;
      }
      lightAngle += flip;

      gl.glRotatef(m, 0, 1, 0); // 1st moon
      gl.glDepthMask(false);
      gl.glPushMatrix();
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      {
        gl.glTranslated(2.5*M, 0, 0);
        gl.glLineWidth(1);
        drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);

        // light source rot up and down on earth center line
        gl.glRotatef(lightAngle, 0, 0, 1);

        gl.glLightfv(GL.GL_LIGHT1, GL.GL_POSITION, origin);
        gl.glLightfv(GL.GL_LIGHT1,
                     GL.GL_SPOT_DIRECTION, spot_direction);
        gl.glLightf(GL.GL_LIGHT1, GL.GL_SPOT_CUTOFF, 15);
        gl.glPushMatrix();
        myMaterialColor(red, red, red, red);
        gl.glScalef(E/8, E/8, E/8);
        drawSphere(); // light source with cutoff=15
        gl.glPopMatrix();

        // lighting cone corresponds to the light source
        gl.glScaled(2.5*M, 2.5*M*Math.tan(PI*15/180),
                    2.5*M*Math.tan(PI*15/180));
        gl.glTranslatef(-1, 0, 0);
        gl.glRotatef(90, 0, 1, 0); // orient the cone
        myMaterialColor(tred, tred, tred, tred); // trans.
        drawCone();
      }
      gl.glPopMatrix();

      gl.glRotatef(120, 0, 1, 0); // 2nd moon
      gl.glPushMatrix();
      {
        gl.glTranslated(2.5*M, 0, 0);
        drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
        gl.glRotatef(lightAngle, 0, 0, 1);
        gl.glLightfv(GL.GL_LIGHT2, GL.GL_POSITION, origin);
        gl.glLightfv(GL.GL_LIGHT2,
                     GL.GL_SPOT_DIRECTION, spot_direction);
        gl.glLightf(GL.GL_LIGHT2, GL.GL_SPOT_CUTOFF, 15f);
        myMaterialColor(green, green, green, green);
        gl.glPushMatrix();
        gl.glScalef(E/8, E/8, E/8);
        drawSphere();
        gl.glPopMatrix();

        gl.glScaled(2.5*M, 2.5*M*Math.tan(PI*15/180),
                    2.5*M*Math.tan(PI*15/180));
        gl.glTranslatef(-1, 0, 0);
        gl.glRotatef(90, 0, 1, 0); // orient the cone
        myMaterialColor(tgreen, tgreen, tgreen, tgreen);
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        drawCone();
      }

      gl.glPopMatrix();

      gl.glRotatef(120, 0, 1, 0); // 3rd moon
      gl.glTranslated(2.5*M, 0, 0);
      gl.glRotatef(lightAngle, 0, 0, 1);
      gl.glLightfv(GL.GL_LIGHT3, GL.GL_POSITION, origin);
      gl.glLightfv(GL.GL_LIGHT3,
                   GL.GL_SPOT_DIRECTION, spot_direction);
      gl.glLightf(GL.GL_LIGHT3, GL.GL_SPOT_CUTOFF, 20f);
      drawColorCoord(WIDTH/4, WIDTH/4, WIDTH/4);
      myMaterialColor(blue, blue, blue, blue);
      gl.glPushMatrix();
      gl.glScalef(E/8, E/8, E/8);
      drawSphere();
      gl.glPopMatrix();

      gl.glScaled(2.5*M, 2.5*M*Math.tan(PI*20/180),
                  2.5*M*Math.tan(PI*20/180));
      gl.glTranslatef(-1f, 0f, 0f);
      gl.glRotatef(90, 0f, 1f, 0f); // orient the cone
      myMaterialColor(tblue, tblue, tblue, tblue);
      drawCone();
      gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, black);
    }
    gl.glPopMatrix();

    gl.glDepthMask(true); // allow hidden-surface removal
    gl.glDisable(GL.GL_BLEND); // turn off emission 
    myMaterialColor(blackish, whitish, white, black);

  }

  public static void main(String[] args) {

    J4_3_TransLight f = new J4_3_TransLight();

    f.setTitle("JOGL J4_3_TransLight");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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4.1.3 Antialiasing 

In OpenGL, antialiasing can be achieved by blending. If you call glEnable() with 
GL_POINT_SMOOTH , GL_LINE_SMOOTH, or GL_POLYGON_SMOOTH, 
OpenGL will calculate a coverage value based on the fraction of the pixel square that 
covers the point, line, or polygon edge with specified point size or line width and 
multiply the pixel’s alpha value by the calculated coverage value. You can achieve 
antialiasing by using the resulting alpha value to blend the pixel color with the 
corresponding pixel color already in the frame buffer. The method is the same as the 
unweighted area sampling method discussed in Section 1.4.1 on page 34. You can 
even use glHint() to choose a faster or slower but better resulting quality sampling 
algorithm in the system. Example J4_3_Antialiasing.java achieves line antialiasing 
for all coordinates lines. 

/* antialiasing through blending */
import net.java.games.jogl.GL;

public class J4_3_Antialiasing extends J4_3_TransLight {

  public void drawColorCoord(float xlen, float ylen,
                             float zlen) {
    boolean enabled = false;

    gl.glBlendFunc(GL.GL_SRC_ALPHA,
                   GL.GL_ONE_MINUS_SRC_ALPHA);
    gl.glHint(GL.GL_LINE_SMOOTH, GL.GL_NICEST);

    if (gl.glIsEnabled(GL.GL_BLEND)) {

      enabled = true;
    } else {

      gl.glEnable(GL.GL_BLEND);
    }

    gl.glEnable(GL.GL_LINE_SMOOTH);
    super.drawColorCoord(xlen, ylen, zlen);
    gl.glDisable(GL.GL_LINE_SMOOTH);

    // blending is only enabled for coordinates
    if (!enabled) {

      gl.glDisable(GL.GL_BLEND);
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    }
  }

  public static void main(String[] args) {

    J4_3_Antialiasing f = new J4_3_Antialiasing();

    f.setTitle("JOGL J4_3_Antialiasing");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }

}

4.1.4 Fog

Fog is the effect of the atmosphere between the rendered pixel and the eye, which is 
called the depth cuing or atmosphere attenuation effect. Fog is also achieved by 
blending:

(EQ 104)

where f is the fog factor, Iλ1 is the incoming pixel component, and Iλf is the fog color. 
In OpenGL, as in Example J4_4_Fog.java (Fig. 4.3), the fog factor and the fog color 
are specified by glFog*(). The fog color can be the same as, or different from, the 
background color. The fog factor f depends on the distance (z) from the viewpoint to 
the pixel on the object. We can choose different equations if we specify the fog mode 
to GL_EXP  (Equation 105),  GL_EXP2  (Equation 106),  or  GL_LINEAR
(Equation 107): 

(EQ 105)

(EQ 106)

(EQ 107)

Iλ fIλ1 1 f–( )Iλf+=

f e
density z⋅( )–=

f e
density z⋅( )– 2
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f
end z–
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--------------------------------=



200          4 Blending and Texture Mapping

In Equation 107, when z changes from start to 
end ,  f  changes from 1 to  0.  According to 
Equation 104, the final pixel color will change 
from the incoming object pixel color to the fog 
color. Also, the distance z is from the viewpoint to 
the pixel under consideration. The viewpoint is at 
the origin, and the pixel’s location is its initial 
location transformed by the MODELVIEW 
matrix at the drawing. It has nothing to do with 
PROJECTION transformation. 

We may supply GL_FOG_HINT with glHint() to 
specify whether fog calculations are per pixel 
(GL_NICEST) or per vertex (GL_FASTEST) or 
whatever the system has (GL_DONT_CARE). 

/* fog and background colors */

import net.java.games.jogl.*;

public class J4_4_Fog extends J4_3_TransLight {

  public void init(GLDrawable glDrawable) {

    float fogColor[] = {0.3f, 0.3f, 0.0f, 1f};

    super.init(glDrawable);

    gl.glClearColor(0.3f, 0.3f, 0.1f, 1.0f);

    // lighting is calculated with viewpoint at origin
    // and models are transformed by MODELVIEW matrix
    // in our example, models are moved into -z by PROJECTION

    gl.glEnable(GL.GL_BLEND);
    gl.glEnable(GL.GL_FOG);

    // gl.glFogi (GL.GL_FOG_MODE, GL.GL_EXP);
    // gl.glFogi (GL.GL_FOG_MODE, GL.GL_EXP2);
    gl.glFogi(GL.GL_FOG_MODE, GL.GL_LINEAR);
    gl.glFogfv(GL.GL_FOG_COLOR, fogColor);

 Fig. 4.3 Fog in OpenGL [See 
Color Plate 7]
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    // gl.glFogf (GL.GL_FOG_DENSITY, (float)(0.5/width));
    gl.glHint(GL.GL_FOG_HINT, GL.GL_NICEST);
    gl.glFogf(GL.GL_FOG_START, 0.1f*WIDTH);
    gl.glFogf(GL.GL_FOG_END, 0.5f*WIDTH);
  }

  public static void main(String[] args) {

    J4_4_Fog f = new J4_4_Fog();

    f.setTitle("JOGL J4_4_Fog");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

4.2 Images

We have discussed rendering and scan-converting 3D models. The result is an image, 
or an array of RGBAs stored in the frame buffer. Instead of going through 
transformation, viewing, hidden-surface removal, lighting, and other graphics 
manipulations, OpenGL provides some basic functions that manipulate image data in 
the frame buffer directly: glReadPixels() reads a rectangular array of pixels from the 
frame buffer into the (computer main) memory, glDrawPixels() writes a rectangular 
array of pixels into the frame buffer from the memory, glBitmap() writes a single 
bitmap (a binary image) into the frame buffer from the main memory, etc. The 
function glRasterPos3f(x, y, z) specifies the current raster position (x, y, z) where the 
system starts reading or writing. The position (x, y, z), however, goes through the 
transformation pipeline as a vertex in a 3D model. For example, if you want an image 
to be attached to a vertex (x, y, z) of a model, glRasterPos3f(x, y, z) will help decide 
where to display the image. 

As an example, in Section 1.3.4 on page 30 we discussed bitmap fonts and outline 
(stroke) fonts. Bitmap fonts are images, which go into the frame buffer directly. 
Outline (stroke) fonts are 3D models, which go through transformation and viewing 
pipeline before scan-converted into the frame buffer. 
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The image data stored in the memory might 
consist of just the overall intensity of each pixel 
( R + G + B ) ,  o r  t h e  R G B A  c o m p o n e n t s ,  
respectively. As image data is transferred from 
memory into the frame buffer, or from the frame 
buffer into memory, OpenGL can perform 
several operations on it, such as magnifying or 
reducing the data if necessary. Also, there are 
certain formats for storing data in the memory 
that are required or are more efficient on certain 
kinds of hardware. We use glPixelStore*() to set 
the pixel-storage mode of how data is unpacked 
from the memory into the frame buffer or from 
the frame buffer into the memory. For example, 
gl.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, 1) specifies that the pixels are 
aligned in memory one byte after another to be unpacked into the frame buffer 
accordingly. Example J4_5_Image.java (Fig. 4.4) uses Java’s BufferedImage Class to 
instantiate and read a jpeg image from a file into an array in the memory, and then uses 
OpenGL imaging functions to draw the image array into the frame buffer directly as 
the background of the 3D rendering. 

/* write an image into the frame buffer */
import java.awt.image.*;
import net.java.games.jogl.*;
import java.io.*;
import javax.imageio.*;

public class J4_5_Image extends J4_3_TransLight {
  static byte[] img;
  static int imgW, imgH, imgType;

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable);

    readImage("STARS.JPG"); // read the image to img[]
    gl.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, 1);
  }

 Fig. 4.4 Image background [See 
Color Plate 7]
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  public void display(GLDrawable drawable) {

    gl.glClear(GL.GL_COLOR_BUFFER_BIT
               |GL.GL_DEPTH_BUFFER_BIT);

    drawImage(-1.95f*WIDTH, -1.95f*HEIGHT, -1.99f*WIDTH);
    // remember : gl.glFrustum(-w/4,w/4,-h/4,h/4,w/2,4*w);
    //gl.glTranslatef(0, 0, -2*w);

    displayView();
  }

  public void readImage(String fileName) {
    File f = new File(fileName);
    BufferedImage bufimg;

    try {
      // read the image into BufferredImage structure
      bufimg = ImageIO.read(f);
      imgW = bufimg.getWidth();
      imgH = bufimg.getHeight();
      imgType = bufimg.getType();
      System.out.println("BufferedImage type: "+imgType);
      //TYPE_BYTE_GRAY  10
      //TYPE_3BYTE_BGR 5

      // retrieve the pixel array in raster's databuffer
      Raster raster = bufimg.getData();

      DataBufferByte dataBufByte = (DataBufferByte)raster.
                                   getDataBuffer();
      img = dataBufByte.getData();
      System.out.println("Image data's type: "+
                         dataBufByte.getDataType());
      // TYPE_BYTE 0

    } catch (IOException ex) {
      System.exit(1);
    }
  }

  protected void drawImage(float x, float y, float z) {

    gl.glRasterPos3f(x, y, z);
    gl.glDrawPixels(imgW, imgH, GL.GL_LUMINANCE,
                    GL.GL_UNSIGNED_BYTE, img);
  }
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  public void displayView() {
    cnt++;
    depth = (cnt/100)%5;

    if (cnt%60==0) {
      dalpha = -dalpha;
      dbeta = -dbeta;
      dgama = -dgama;
    }
    alpha += dalpha;
    beta += dbeta;
    gama += dgama;

    gl.glPushMatrix();
    if (cnt%500>300) {
      // look at the solar system from the moon
      myCamera(A, B, C, alpha, beta, gama);
    }

    drawRobot(O, A, B, C, alpha, beta, gama);
    gl.glPopMatrix();

    try {
      Thread.sleep(15);
    } catch (Exception ignore) {}
  }

  public static void main(String[] args) {
    J4_5_Image f = new J4_5_Image();

    f.setTitle("JOGL J4_5_Image");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

4.3 Texture Mapping

In graphics rendering, an image can be mapped onto the surface of a model. That is, 
when writing the color of a pixel into the frame buffer, the graphics system can use a 
color retrieved from an image. To do this we need to provide a piece of image called 
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texture. Texture mapping is a process of using the texture pixels (namely texels) to 
modify or replace the model’s corresponding pixels during scan-conversion. Texture 
mapping allows many choices. Here we introduce some basics with a couple of 
examples in texture mapping. 

4.3.1 Pixel and Texel Relations

Let’s consider mapping a square texture onto a rectangular polygon (Example 
J4_6_Texture.java). 

First, we need to specify the corresponding vertices of the texture and the polygon. In 
OpenGL, this is done by associating each vertex in the texture with a vertex in the 
polygon, which is similar to the way of specifying each vertex normal. Given a point 
(s, t) in the 2D texture, the s and t are in the range of [0, 1]. glTexCoord2f(s, t) 
corresponds to a point in the texture. In our example, the points are the vertices of the 
texture, and the OpenGL system stretches or shrinks the texture to map exactly onto 
the polygon. 

Second, in OpenGL, when the texture is 
smaller than the polygon, the system 
stretches the texture to match the polygon 
(magnification). Otherwise, the system 
shrinks the texture (minification). Either 
way the pixels corresponding to the texels 
after stretching or shrinking need to be 
calculated. The algorithms to calculate the 
mapping are called the magnification filter 
o r  m i n i f i c a t i o n  f i l t e r  
( G L _ T E X T U R E _ M A G _ F I LT E R  o r  
GL_TEXTURE_MIN_FILTER), which are 
discussed below. 

Given a pixel location in the polygon, we can find its corresponding point in the 
texture. This point may be on a texel, on the line between two texels, or in the square 
with four texels at the corners as shown in Fig. 4.5. The resulting color of the point 
needs to be calculated. The simplest method OpenGL uses is to choose the texel that is 
neares t  to  the  point  as  the  mapping of  the  p ixel  (GL_NEAREST,  as  in  
gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, 

Iλ(0, 0)

Iλ(0, 1) Iλ(1, 1)

Iλ(1, 0)

Iλ(x, y)

Iλ(x, 1)

Iλ(x, 0)

 Fig. 4.5 Interpolation (GL_LINEAR)
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GL.GL_NEAREST)), which in this case is Iλ(x,y) = Iλ(1,0). We can also bi-linearly 
interpolate the four texels according to their distances to the point to find the mapping 
of the pixel (GL_LINEAR), which is smoother but slower than GL_NEAREST method.
That is, first-pass linear interpolations are along x axis direction for two intermediate 
values: 

(EQ 108)

(EQ 109)

and second-pass linear interpolation is along y axis direction for the final result: 

(EQ 110)

Third, at each pixel, the calculated texel color components (texel RGBA represented 
by Ct and At) can be used to either replace or change (modulate, decal, or blend) 
incoming pixel color components (which is also called a fragment and is represented 
by Cf  and Af).  A texture environment color (Cc) ,  which is  specif ied by 
gl.glTexEnvf(GL.GL_TEXTURE_ENV, GL.GL_TEXTURE_ENV_COLOR, 
parameter), can also be used to modify the final color components (represented as Cv
and Av). 

A texel can have up to four components. Lt indicates a one-component texture. A 
two-component texture has Lt and At. A three-component texture has Ct. A 
four-component texture has both Ct and At.

If the texels replace the pixels, lighting will not affect the appearance of the polygon 
(gl.glTexEnvf(GL.GL_TEXTURE_ENV, GL.GL_TEXTURE_ENV_MODE, 
GL.GL_REPLACE)). If the texel components are used to modulate the pixel 
components, each texture color component is multiplied by the corresponding pixel 
color component, and the original color and shading of the polygon are partially 
preserved. The following table lists all the corresponding functions for different mode:

Iλ x 0,( ) xIλ 1 0,( ) 1 x–( )Iλ 0 0,( )+=

Iλ x 1,( ) xIλ 1 1,( ) 1 x–( )Iλ 0 1,( )+=

Iλ x y,( ) yIλ x 1,( ) 1 y–( )Iλ x 0,( )+=
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Example J4_6_Texture.java maps an image to a polygon. Although Example 
J4_5_Image.java and Example J4_6_Texture.java executions look the same, the 
approaches are totally different. 

/* simple texture mapping */

import net.java.games.jogl.*;

public class J4_6_Texture extends J4_5_Image {

  public void init(GLDrawable glDrawable) {
    super.init(glDrawable); // stars_image[] available
    initTexture(); // texture parameters initiated
  }

  public void display(GLDrawable drawable) {
    gl.glClear(GL.GL_COLOR_BUFFER_BIT
               |GL.GL_DEPTH_BUFFER_BIT);

    // texture on a quad covering most of the drawing area
    drawTexture(-2.5f*WIDTH, -2.5f*HEIGHT, -2.0f*WIDTH);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_VNV_MODE, Parameter). 

Internal 
Formats 

GL_ 
MODULATE GL_ DECAL GL_ BLEND

GL_ 
REPLACE GL_ ADD

1 or GL_ 
LUMINANCE 

Cv=LtCf 

Av=Af 

Undefined Cv=(1-Lt)Cf 
+LtCc; Av=Af 

Cv=Lt

Av=Af 

Cv=Cf +Lt

Av=Af

2 or GL_ 
LUMINANCE
_ ALPHA 

Cv=LtCf

Av=AtAf 

Undefined Cv=(1-Lt)Cf 
+LtCc; Av=AtAf 

Cv=Lt

Av=At 

Cv=Cf +Lt

Av=AfAt

3 or GL_  
RGB

Cv=CtCf

Av=Af 

Cv=Ct

Av=Af 

Cv=(1-Ct)Cf 
+CtCc; Av=Af 

Cv=Ct 

Av=Af

Cv=Cf 
+Ct Av=Af

4 or GL_ 
RGBA 

Cv=CtCf

Av=AtAf 

Cv=(1-At)Cf 
+AtCt; Av=Af

Cv=(1-Ct)Cf 
+CtCc; Av=AtAf 

Cv=Ct 

Av=At 

Cv=Cf +Ct 
Av=AfAt
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    displayView();
  }

  void initTexture() {
    gl.glTexParameteri(GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MIN_FILTER, GL.GL_NEAREST);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MAG_FILTER, GL.GL_NEAREST);
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_LUMINANCE,
                    imgW, imgH, 0, GL.GL_LUMINANCE,
                    GL.GL_UNSIGNED_BYTE, img);
  }

  public void drawTexture(float x, float y, float z) {

    gl.glTexEnvf(GL.GL_TEXTURE_ENV, GL.GL_TEXTURE_ENV_MODE,
                 GL.GL_REPLACE);

    gl.glEnable(GL.GL_TEXTURE_2D);
    {
      gl.glBegin(GL.GL_QUADS);
      gl.glTexCoord2f(0.0f, 1.0f);
      gl.glVertex3f(x, y, z);
      gl.glTexCoord2f(1.0f, 1.0f);
      gl.glVertex3f(-x, y, z);
      gl.glTexCoord2f(1.0f, 0.0f);
      gl.glVertex3f(-x, -y, z);
      gl.glTexCoord2f(0.0f, 0.0f);
      gl.glVertex3f(x, -y, z);
      gl.glEnd();
    }
    gl.glDisable(GL.GL_TEXTURE_2D);
  }

  public static void main(String[] args) {
    J4_6_Texture f = new J4_6_Texture();

    f.setTitle("JOGL J4_6_Texture");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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4.3.2 Texture Objects

If we use several textures in the same program 
(Fig. 4.6), we may load them into texture 
memory and associate individual texture 
parameters with their texture names before 
rendering. This way we do not need to load 
textures and their parameters from the disk 
files during rendering, which would otherwise 
be very slow. In OpenGL, this is done by 
calling glGenTextures() and glBindTexture(). 
When we call  glGenTextures() ,  we can 
generate the texture names or texture objects. 
When we call glBindTexture() with a texture 
name, all subsequent glTex*() commands that 
spec i fy  the  tex ture  and  i t s  a ssocia ted 
p a r a m e t e r s  a r e  s a v e d  i n  t h e  m e m o r y  
corresponding to the named texture. After that, in the program, whenever we call 
glBindTexture() with a specific texture name, all drawing will employ the current 
bound texture. The example is shown in the next section. 

4.3.3 Texture Coordinates

In OpenGL, glTexCoord2f(s, t) corresponds to a point in the texture, and s and t are in 
the range of [0, 1]. If the points are on the boundaries of the texture, then we stretch or 
shrink the entire texture to fit exactly onto the polygon. Otherwise, only a portion of 
the texture is used to map onto the polygon. For example, if we have a polygonal 
cylinder with four polygons and we want to wrap the texture around the cylinder 
(Example J4_7_TexObjects.java), we can divide the texture into four pieces with s in 
the range of [0, 0.25], [0.25, 0.5], [0.5, 0.75], and [0.75, 1.0]. When mapping a 
rectangular texture onto a sphere around the axis, texture geodesic distortion happens,
especially toward the poles. 

If we specify glTexCoord2f(2, t), we mean to repeat the texture twice in the s direction. 
That is, we will squeeze two pieces of the texture in s direction into the polygon. If we 
specify glTexCoord2f(1.5, t), we mean to repeat the texture 1.5 times in the s direction. 
In order to achieve texture repeating in s direction, we need to specify the following: 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT). In 

 Fig. 4.6 Multiple texture objects 
[See Color Plate 8]
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OpenGL, the texture should have width and height in the form of 2m number of pixels, 
where the width and height can be different. 

/* Example 4.7.texobjects.c: texture objects and coordinates */

import net.java.games.jogl.*;

public class J4_7_TexObjects extends J4_6_Texture {
  // name for texture objects
  static final int[] IRIS_TEX = new int[1];
  static final int[] EARTH_TEX = new int[1];
  static final int[] STARS_TEX = new int[1];

  void initTexture() {

// initialize IRIS1 texture obj
    gl.glGenTextures(1, IRIS_TEX);
    gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MIN_FILTER,
                       GL.GL_LINEAR);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MAG_FILTER,
                       GL.GL_LINEAR);
    readImage("IRIS1.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    // initialize EARTH texture obj
    gl.glGenTextures(1, EARTH_TEX);
    gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR);
    readImage("EARTH2.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    // initialize STARS texture obj
    gl.glGenTextures(1, STARS_TEX);
    gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_WRAP_S, GL.GL_REPEAT);
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    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_WRAP_T, GL.GL_REPEAT);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MIN_FILTER,
                       GL.GL_NEAREST);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MAG_FILTER,
                       GL.GL_NEAREST);
    readImage("STARS.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_LUMINANCE,
                    imgW, imgH, 0, GL.GL_LUMINANCE,
                    GL.GL_UNSIGNED_BYTE, img);
  }

  public void drawSphere() {

    if ((cnt%1000)<500) {
      gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
    } else {
      gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    }
    gl.glTexEnvf(GL.GL_TEXTURE_ENV, GL.GL_TEXTURE_ENV_MODE,
                 GL.GL_MODULATE);

    if (cnt%1111<900) { // could turn texture off
      gl.glEnable(GL.GL_TEXTURE_2D);
    }

    subdivideSphere(sVdata[0], sVdata[1], sVdata[2], depth);
    subdivideSphere(sVdata[0], sVdata[2], sVdata[4], depth);
    subdivideSphere(sVdata[0], sVdata[4], sVdata[5], depth);
    subdivideSphere(sVdata[0], sVdata[5], sVdata[1], depth);

    subdivideSphere(sVdata[3], sVdata[1], sVdata[5], depth);
    subdivideSphere(sVdata[3], sVdata[5], sVdata[4], depth);
    subdivideSphere(sVdata[3], sVdata[4], sVdata[2], depth);
    subdivideSphere(sVdata[3], sVdata[2], sVdata[1], depth);

    gl.glDisable(GL.GL_TEXTURE_2D);

    if (cnt%800<400) { // for the background texture
      gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);
    } else {
      gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    }
  }
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  public void drawSphereTriangle(float v1[],
                                 float v2[], float v3[]) {
    float[] s1 = new float[1], t1 = new float[1];
    float[] s2 = new float[1], t2 = new float[1];
    float[] s3 = new float[1], t3 = new float[1];

    texCoord(v1, s1, t1);
    texCoord(v2, s2, t2);
    texCoord(v3, s3, t3);

    // for coord at z=0
    if (s1[0]==-1.0f) {
      s1[0] = (s2[0]+s3[0])/2;
    } else if (s2[0]==-1.0f) {
      s2[0] = (s1[0]+s3[0])/2;
    } else if (s3[0]==-1.0f) {
      s3[0] = (s2[0]+s1[0])/2;
    }

    gl.glBegin(GL.GL_TRIANGLES);

    gl.glTexCoord2f(s1[0], t1[0]);
    gl.glNormal3fv(v1);
    gl.glVertex3fv(v1);
    gl.glTexCoord2f(s2[0], t2[0]);
    gl.glNormal3fv(v2);
    gl.glVertex3fv(v2);
    gl.glTexCoord2f(s3[0], t3[0]);
    gl.glNormal3fv(v3);
    gl.glVertex3fv(v3);

    gl.glEnd();
  }

  public void texCoord(float v[], float s[], float t[]) {
    // given the vertex on a sphere, find its texture (s,t)
    float x, y, z, PI = 3.14159f, PI2 = 6.283f;

    x = v[0];
    y = v[1];
    z = v[2];

    if (x>0) {
      if (z>0) {
        s[0] = (float)Math.atan(z/x)/PI2;
      } else {
        s[0] = 1f+(float)Math.atan(z/x)/PI2;
      }
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    } else if (x<0) {
      s[0] = 0.5f+(float)Math.atan(z/x)/PI2;
    } else {
      if (z>0) {
        s[0] = 0.25f;
      }
      if (z<0) {
        s[0] = 0.75f;
      }
      if (z==0) {
        s[0] = -1.0f;
      }
    }
    t[0] = (float)Math.acos(y)/PI;
  }

  public void subdivideCyl(float v1[], float v2[],
                           int depth, float t1, float t2) {
    float v11[] = {0, 0, 0};
    float v22[] = {0, 0, 0};
    float v00[] = {0, 0, 0};
    float v12[] = {0, 0, 0};
    float v01[] = {0, 0, 0};
    float v02[] = {0, 0, 0};
    int i;

    if (depth==0) {
      drawBottom(v00, v1, v2);
      for (i = 0; i<3; i++) {
        v01[i] = v11[i] = v1[i];
        v02[i] = v22[i] = v2[i];
      }
      // the height of the cone along z axis
      v11[2] = v22[2] = 1;

      gl.glBegin(GL.GL_POLYGON);
      // draw the rectangles around the cylinder
      gl.glNormal3fv(v2);
      gl.glTexCoord2f(t1, 0.0f);
      gl.glVertex3fv(v1);
      gl.glTexCoord2f(t2, 0.0f);
      gl.glVertex3fv(v2);
      gl.glNormal3fv(v1);
      gl.glTexCoord2f(t2, 1.0f);
      gl.glVertex3fv(v22);
      gl.glTexCoord2f(t1, 1.0f);
      gl.glVertex3fv(v11);
      gl.glEnd();
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      v00[2] = 1;
      drawBottom(v22, v11, v00); // draw the other bottom

      return;
    }
    v12[0] = v1[0]+v2[0];
    v12[1] = v1[1]+v2[1];
    v12[2] = v1[2]+v2[2];

    normalize(v12);

    subdivideCyl(v1, v12, depth-1, t1, (t2+t1)/2);
    subdivideCyl(v12, v2, depth-1, (t2+t1)/2, t2);
  }

  public void drawCylinder() {
    if ((cnt%1000)<500) {
      gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    } else {
      gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
    }

    if (cnt%1100<980) { // turn off texture sometimes
      gl.glEnable(GL.GL_TEXTURE_2D);
    }

    subdivideCyl(cVdata[0], cVdata[1], depth, 0f, 0.25f);
    subdivideCyl(cVdata[1], cVdata[2], depth, 0.25f, 0.5f);
    subdivideCyl(cVdata[2], cVdata[3], depth, 0.5f, 0.75f);
    subdivideCyl(cVdata[3], cVdata[0], depth, 0.75f, 1.0f);
    gl.glDisable(GL.GL_TEXTURE_2D);
  }

  public static void main(String[] args) {
    J4_7_TexObjects f = new J4_7_TexObjects();

    f.setTitle("JOGL J4_7_TexObjects");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}



4.3  Texture Mapping          215

4.3.4 Levels of Detail in Texture Mapping

In perspective projection, models further away from the viewpoint will appear 
smaller, and we cannot see that much detail. At the same time, for texture mapping, a 
large texture will need to be filtered by the minification filter to a much smaller size of 
the projected primitive (image). If the texture is significantly smaller than the original 
image, the filtering process takes time and the result may appear flashing or 
shimmering, as the texture on the cylinders in Example J_4_7_TexObjects.java. 

OpenGL allows specifying multiple levels of detail (LOD) images at different 
resolutions for texture mapping. OpenGL will choose the appropriate texture image(s) 
according to the corresponding projected image size automatically. The different LOD 
images are called mipmaps, which must be at the dimension of power of 2. If you use 
LOD in OpenGL, you have to specify all mipmaps from the largest image down to the 
size of 1×1. For example, for a size 512×512 size image, you have to specify 512×512, 
256×256, 128×128, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, and 1×1 texture images. 
The second parameter in glTexImage2D() when specifying a texture image is the level
(of detail) of the current image, from 0 the largest image up to the 1×1 image. As 
shown in Example J_4_8_Mipmap.java, the levels are 0, 1, ..., 9 for the image sizes of 
512×512, 256×256, ..., 1×1. Also, the minification filter has to be specified to choose 
the nearest mipmap image for texture mapping (glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST)) or linear for 
interpolation between the two closest textures in size to the projected primitive: 
(g lTe xP a ra m e te r i (G L_ T E X T U R E _2 D ,  G L _ T E X T U R E _M IN _ F ILT E R ,  
G L _ N E A R E S T _ M I P M A P _ L I N E A R ) ) .  T h e  a n i ma t i o n  d i s p l a y e d  i n  
J_4_8_Mipmap.java does not have the shimmering effect. 

/* Multiple LOD in OpenGL - mipmaps */

import net.java.games.jogl.*;

public class J4_8_Mipmap extends J4_7_TexObjects {

  public void init(GLDrawable glDrawable) {

    super.init(glDrawable); // texture objects available

    // Redifine LOD mipmap for IRIS
    gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
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    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MIN_FILTER,
                       GL.GL_LINEAR_MIPMAP_LINEAR);

    readImage("IRIS1.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_256_256.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 1, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_128_128.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 2, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_64_64.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 3, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_32_32.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 4, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_16_16.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 5, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_8_8.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 6, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_4_4.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 7, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);

    readImage("IRIS1_2_2.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 8, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);



4.4  Advanced Texture Mapping          217

    readImage("IRIS1_1_1.JPG");
    gl.glTexImage2D(GL.GL_TEXTURE_2D, 9, GL.GL_RGB8,
                    imgW, imgH, 0, GL.GL_BGR,
                    GL.GL_UNSIGNED_BYTE, img);
  }
  
  
  public static void main(String[] args) {
    J4_8_Mipmap f = new J4_8_Mipmap();

    f.setTitle("JOGL J4_8_Mipmap");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

4.4 Advanced Texture Mapping

Using texture to tape on 3D objects is the original texture mapping idea. The texture 
memory and the OpenGL mechanism are also used for some other ways beyond the 
conventional way of texture mapping. In the following sections we introduce some 
advanced methods in using textures. The methods are studied over the years by very 
few researchers, but they become very popular due to the advancement on pixel 
(fragment) shading operations. We will revisit some of these methods when we 
discuss GPU, vertex shader, and pixel shader. 

4.4.1 Bump Mapping

Bump mapping was originally designed to display a flat surface with vertex or pixel 
normals perturbed or modified to simulate a bumped surface. It depends on the 
perturbation method to decide the surface bumps and appearances. 

Today, the common method is to save the surface’s bumps (height field) in a texture as 
a height map or save the surface bump’s normals in a texture as a normal map. The 
surface heights or normals are precalculated and provided as an array of data stored in 
a texture memory. They are called bump maps as part of the texture mapping. 

Bump mapping doesn’t necessarily map to a flat surface. We can consider it is a layer 
of bump normals added on top of the current surface to modify or replace the current 
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vertex or pixel normals. The bump mapping’s surface geometry stays the same in 
general. There are many different ways to design bump map and to achieve the 
mapping for a final result. As an example, let’s consider using a predefined texture as 
a normal map for bump mapping. Because texture only saves positive RGB values 
from zero to one, we have to shift the normals from negative to positive values, and 
restore them while calculate lighting. For a normalized normal n, its x, y, z values are 
negative one to positive one. So we can add one and then divide the result by two to 
store the values (RGB = (n+1)/2) in a normal map and multiply by two and subtract 
one when we retrieve it (n = RGB*2 -1). 

As shown in Fig. 4.7, when we consider a vertex or pixel with normal N, the light 
source direction L and N are all represented in the global coordinates x, y, z. However, 
the bump map normal n is in its local coordinates, which is called tangent space or 
texture space, because we are attaching the texture tangent to the surface at the point 
of lighting calculation. 

 Fig. 4.7 Global space and tangent space 

The tangent space coordinates can be aligned with the texture mapping or any 
orientation at user’s preference as long as they are perpendicular to the vertex or pixel 
normal N, and they do not rotate around N from point to point. This can be done by 
specifying a T that is perpendicular to N, and use the cross product to find B: 

(EQ 111)
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If necessary, T can be calculated by a cross product of N and S, where S is a texture 
direction not parallel or perpendicular to N. The bump map normals are represented in 
the TNB coordinates in tangent space. Now we can either transform the light source 
direction into tangent space or transform n into global space for final lighting 
calculation. Transforming n into global space involves more calculations. 
Transforming the light source direction into tangent space can be done by the 
following coordinates transformation: 

. (EQ 112)

Bump mapping requires fine meshes or pixel operations, which used to be a slow 
process without real-time possibilities. The recent advancement in GPU has made 
bump mapping a very powerful tool in achieving surface effect in real time. We will 
talk more about this later in Cg programming. 

4.4.2 Light Mapping

As we know, high resolution lighting calculations such as ray tracing or radiosity are 
very time-consuming, which therefore hinder achieving real-time calculation in 
interactive applications. If we have fix light sources shining on a flat surface, a simple 
light mapping is to precalculate or generate lighting as an intensity field for each light 
source saved in a texture called light map, and blend or modulate the rendered image 
texture with the light maps at runtime. This will allow us to turn on and off lights with 
different combinations quite efficiently without runtime lighting calculations. If there 
is no interaction on lighting, light map can be integrated with texture map before 
runtime, therefore there is only a texture map at runtime that includes lighting 
information. 

If we consider moving objects, light sources, or viewpoint, then light mapping is fairly 
complex. In general, light mapping is efficient for static environment without 
considering moving objects or viewpoint. Most of the time, light sources are at 
infinity. For viewpoint independent lighting with static objects, light mapping is just 
align the light map with the texture. For polygonal objects, we may use polygon 
orientations to decide which light map to apply. Therefore, a light map can include 
patches for different lighting. 

Light maps usually can be at a lower resolution than the texture map because lighting 
changes over neighboring pixels less than surface texture. Light mapping is a 

L' T L N L B L•,•,•( )=
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technique for improving efficiency. With the recent advancement on GPU parallel 
processing, lighting and texture mapping can be integrated more efficiently, therefore 
reducing the importance of light mapping in practical applications. 

4.4.3 Environment Mapping

When we put a reflective object in an environment, the image of the environment, 
which may be distorted, appears on the object as a reflection. Environment mapping is 
a simplified raytracing technique. In a raytracing algorithm, we trace the ray from 
viewpoint into bounces among objects. In the environment mapping, we trace the ray 
into a texture, called an environment map as shown in Fig. 4.8. Here, the purpose of 
raytracing is to find the corresponding environment map’s texel instead of lighting. 
Most environment mapping algorithms are ray casting algorithms, which means that 
we trace the ray once without calculate bounces. Also, the starting point of the ray and 
the ending point of the ray in the environment map can be designed quite differently. 

 Fig. 4.8 Environment mapping

There are several different environment mapping methods. One of them is named 
cubic mapping, which employs a box with six faces covering the object model. The 
first problem is how do we construct the environment map. One simple solution is to 
take six pictures in six directions surrounding the object (left, right, bottom, top, front, 
back) and tape them onto six walls to form a unit cube (x=-1, x=1, y=-1, y=1, z=-1, 
z=1), as shown in Fig. 4.9. Cubic mapping is then an index scheme to find the 
corresponding texels in the cube maps. If we store the six cube maps separately, then 
the index from the intersection of the ray with the cube to a cube map’s texel 

light source

Lviewpoint

N

R

Environment map (texture) 
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coordinates is a simple linear transformation. For example, if we intersect with y=1, 
then we have (x, z) as the intersection point for indexing into the texture coordinates: 

(EQ 113)

(EQ 114)

The other cube map coordinates can be indexed similarly, as shown in Fig. 4.9.b as 
long the cube maps are saved accordingly. . 

 Fig. 4.9 Cubic mapping: how to save and index the cube maps

The second problem is how to find the reflection rays that intersect with the cube 
maps. Obviously, we can use a ray tracing method to find the intersection of rays from 
viewpoint to the object in the cube, and then find the reflection rays from the object in 
the cube to the cube faces. As we have discussed when we introduced ray tracing, 
given a ray A and a normalized normal n, the reflected ray B = 2n(n•A) - A. For 
example, if we have a sphere at the center, then the reflection is calculated by the ray 
from the viewpoint intersecting the sphere, as shown in Fig. 4.10. This method has 
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two severe flaws. First, it takes time to calculate ray tracing. Second, if the normal is 
getting perpendicular to the viewpoint ray, the reflection samples a large area, which 
creates an uneven sampling (aliasing) problem. We may generate a different 
environment map by taking a picture from a reflecting sphere, which is called a sphere 
map. The result will be better for a sphere, but the method is quite rigid. Sphere 
mapping of this kind only works for a specific viewpoint, sphere size, and sphere 
location. 

 Fig. 4.10 Sphere mapping: how to generate and index the maps

4.4.4 Automatic Texture Coordinates

Environment mapping can be integrated with ray tracing to have reflections and 
transparencies. However, for texture mapping purposes, we may not consider 
viewpoint dependent ray tracing. Instead, a simplified method is to use the surface 
normal as an index or ray for the corresponding texel on the cube surface, as shown in 
Fig. 4.11, which will map textures onto a complex object accordingly. 

n

vpt
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This method can be further simplified by firing a ray from the center of the sphere 
through the point under consideration, and the resulting texel is the intersection on a 
cube surface. In other words, the texture coordinates are generated automatically in 
3D space instead of an exact tapping in 2D space. In addition to cube boxes, a cylinder 
texture coordinates around a cylindrical object would work well for wrapping the 
texture around the object, as shown in Fig. 4.11b. The problem with cylindrical 
texture coordinates generation is that the top and bottom of the objects are omitted. It 
is better for generating contours or bands around the objects. 

 Fig. 4.11 Automatic texture coordinates: texture mapping on to a complex object

4.4.5 Displacement Mapping

In bump mapping, a height field may be used as distortion to the surface normals. We 
still render the surface as a flat surface. One modification to bump mapping is called 
parallax mapping (also named offset mapping or virtual displacement mapping). In 
parallax mapping, texture coordinates are shifted according to the height field and 
view direction. In other words, when we find the intersection of the view direction ray 
with the polygon, the intersection point is shifted according to the height field. The 
resulting point is then used as an index to the texture map. This method only shifts 

a) Cube texture mapping b) Cylinder texture mapping
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texture coordinates. The polygon surface remains flat. An alternative of the parallax 
mapping is called relief mapping, which calculates surface detail, self-occlusion, 
self-shadow, and other effects without actually changing the pixel’s physical 
coordinates. The polygon surface remains flat. These methods are developed on 
today’s GPU pixel shader. The surface detail is like a relief map on top of a flat surface 
in lighting environment. As we will see, the pixel shader receives a pixel location for 
lighting and other calculations in eye space, but not for pixel rendering in clip space or 
device coordinates. 

In displacement mapping, the surface is raised according to the height field. In recent 
years, due to the advancement of graphics hardware, some GPUs allow vertex shaders 
to have access to textures. We can send a height map to a Vertex Shader and change 
the vertex position by the height map. We can consider that the surface is changed 
according to the height field (bump map). Therefore, an object’s surface is represented 
in two different representations. First, it is specified as a 3D objects with vertices and 
polygons. Then, the surface detail is specified as height field in a bump map. 
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4.5 Review Questions

1. Alpha blending is used for transparency, antialiasing, and so on. Please list all the applications 
we have learned in this chapter. 

2. Please list the order of operation for the following: 
 (     ). drawTransparentObject(); (     ). glDepthMask(GL_FALSE)
 (     ). drawOpaqueObject(); (     ). glDepthMask(GL_TRUE)

3. Fog is calculated according to which of the following distances?
 a. from the light source to the viewpoint b. from the viewpoint to the pixel
 c. from the pixel to the light source d. from the light source to the origin
 e. from the origin to the viewpoint f. from the pixel to the origin

4.  glutBitmapString() will draw a string of bitmap characters at the current raster position. glut-
StrokeString() will draw a string of stroke characters at the current raster position. Please explain 
the differences between glutBitmapString() and glutStrokeString() in detail. 

5. We have a rectangular image, and we’ll wrap it around a cylinder, a sphere, and a cone as 
described earlier in the book. Please develop your methods of calculating your texture coordinates, 
and explain the distortions if any. 

6. In OpenGL texture mapping, what is a texture object?
 a. A 3D model on display b. A name with associated data saved in the memory 
 c. A texture file     d. A blending of texture and material
 

8. Given a 3D cube with end points values A(0, 0 , 0) = a, B(0, 0, 1) = b, C(1, 0, 1) = c, D(1, 0, 0) = d, 
E(0, 1, 0) = e, F(0, 1, 1) = f, G(1, 1, 1) = g, and H(1, 1, 0) = h, please use tri-linear interpolation to cal-
culate a point’s value inside the cube at an arbitrary position P(x,y,z). 

9. Calculate the intersection of an arbitrary line from the center of a cube and the cube’s face. 

 ...
 glEnable (GL_BLEND);
 glDepthMask (GL_FALSE);
 glBlendFunc (GL_SRC_ALPHA, GL_ONE);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, red);
 glPushMatrix();
 glRotatef(m, 0.0, 1.0, 0.);
 glLightfv(GL_LIGHT1, GL_POSITION, pos);
 drawSphere();
 glPopMatrix();
 glDisable (GL_BLEND); glDepthMask 

(GL_TRUE);
 ... 

7. Judging from the code on the right, which of 
the following is likely false about the complete 
program? 

 a. It has translucent objects
 b. It has hidden surface removal
 c. It has a moving light source
 d. It has fogs in the environment
 e. It has a sphere moving with a light source
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4.6 Programming Assignments

1. Draw randomly generated lines with antialiasing at changeable width using OpenGL functions. 

2. Please implement two functions myBitmapString() and myStrokeString() that simulate their glut 
counterparts. Here you cannot call any font drawing functions to achieve the goal. 

3. Draw a generalized solar system on a robot arm with the earth transparent and the moons 
opaque. The center of the earth is a light source. 

4. Extend J4_8_MipMap.java so that the cones are covered by an image of your choice. The image 
on the cone should be distorted. 

5. Take 6 pictures in an environment so that you can form a cube with 
the 6 pictures. Then, consider our earth is a silver sphere in the center 
of the cube. Each sphere triangle’s vertex is a ray penetrating the 
cube. In other words, each triangle has three intersections on the 
cube. Now, if we consider the 6 pictures as 6 texture objects, we can 
use the intersection to set up corresponding texture mapping. For a 
triangle penetrating more than one texture object, you can choose just 
one texture object and do something at your preference. Please imple-
ment such a texture mapping, and display a solid sphere in a trans-
parent cube with texture mapping. 

6. Draw multiple spheres bouncing in a cube or sphere. Take six pic-
tures as cube maps. Achieve texture mapping and cubic mapping on the spheres. 



5 
Curved Models

Chapter Objectives: 

• Introduce existing 3D model functions in GLUT and GLU libraries

• Introduce theories and programming of basic cubic curves and bi-cubic curved 
surfaces 

5.1 Introduction

Just as that there are numerous scan-conversion methods for a primitive, there exists 
different ways to create a 3D model as well. For example, we can create a sphere 
model through subdivision as discussed in Chapter 2. We can also use a sphere 
equation to find all the points on the sphere and render it accordingly. Further, we can 
find a set of points on a circle in the xy plane and rotate the points along x or y axis to 
find all the points on the corresponding sphere. Although generating 3D models is not 
exactly basic graphics drawing capabilities, it is part of the graphics theory. In this 
chapter, we introduce some existing 3D models and the corresponding function calls 
in GLUT and GLU libraries. Also, we provide the math foundations for some curved 
3D models, including quadratic surfaces, cubic curves, and bi-cubic surfaces. 

The degree of an equation with one variable in each term is the exponent of the 
highest power to which that variable is raised in the equation. For example, (ax2 + bx 
+ c = 0) is a second-degree equation, as x is raised to the power of 2. When more than 
one variable appears in a term, as in (axy2 + bx + cy +d = 0), it is necessary to add the 
exponents of the variables within a term to get the degree of the equation, which is 3 in 
this example. Quadratic curves and surfaces are represented by second-degree 
equations. Cubic curves are third-degree equations. 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_5, © Springer-Verlag London Limited 2008 
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5.2 Quadratic Surfaces

Quadratic surfaces, or simply quadrics, are defined by the following general form 
second-degree (quadratic) equation: 

. (EQ 115)

There are numerous models that can be generated by the above equation, including 
spheres, ellipsoids, cones, and cylinders. 

5.2.1 Sphere

In Cartesian coordinates, a sphere at the origin with radius r is 

. (EQ 116)

In parametric equation form, a sphere is

, (EQ 117)

, (EQ 118)

and . (EQ 119)

So we can find all the points on a sphere through a double for-loop: 

for (int i=0; i<nLongitudes; i++)
for (j=0; j<nLatitudes; i++) 

drawSherePoint (
r*cos(i*PI/nLongitudes)*cos(j*2*PI/nLatitudes), 
r*cos(i*PI/nLongitudes)*sin(j*2*PI/nLatitudes), 
r*sin(i*PI/nLongitudes)); 
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Both GLUT and GLU provide wireframe or solid sphere drawing functions, which are 
demonstrated in Example J5_1_Quadrics.java. In C binding: 

// Using GLUT to draw a sphere 
glutWireSphere(r, nLongitudes, nLatitudes); 
glutSolidSphere(r, nLongitudes, nLatitudes); 

// USING GLU to draw a sphere 
GLUquadric *sphere = gluNewQuadric(); 
gluQuadricDrawStyle(shpere, GLU_LINE); //GLU_FILL
glusphere(sphere, r, nLongitudes, nLatitudes); 

5.2.2 Ellipsoid

In Cartesian coordinates, an ellipsoid at the origin is 

. (EQ 120)

In parametric equation form: 

, (EQ 121)

, (EQ 122)

and . (EQ 123)

Similarly, we can find all points on an ellipsoid through a double for-loop. Because 
ellipsoids can be achieved by scaling a sphere in graphics programming, neither 
GLUT nor GLU provides drawing them. 

x
rx
-----⎝ ⎠
⎛ ⎞ 2 y

ry
-----⎝ ⎠
⎛ ⎞ 2 z

rz
-----⎝ ⎠
⎛ ⎞ 2+ + 1=

x rx φ θ,  0 φ π≤ ≤coscos=

y ry φ θ,  0 θ 2π≤ ≤sincos=

z rz φsin=



230          5 Curved Models

5.2.3 Cone

A cone with its height h on the z axis, bottom radius r in xy plane, and tip at the origin 
is 

. (EQ 124)

In parametric equation form: 

, (EQ 125)

, (EQ 126)

and . (EQ 127)

GLUT provides wireframe or solid cone drawing functions, which are demonstrated 
in Example J5_1_Quadrics.java. The function call is as follows: 

// USING GLUT to draw a cone 
glut.glutSolidCone(glu, r, h, nLongitudes, nLatitudes);

5.2.4 Cylinder

In parametric equation form, a cylinder is

, (EQ 128)

, (EQ 129)

and . (EQ 130)

z
2

x
2

y
2+( ) h

r
---⎝ ⎠
⎛ ⎞ 2=

x r
h u–
h

------------⎝ ⎠
⎛ ⎞ θ,    0 u h≤ ≤cos=

y r
h u–
h

------------⎝ ⎠
⎛ ⎞ θ,  0 θ 2π≤ ≤sin=

z u=

x r θcos=

y r θ,  0 θ 2π≤ ≤sin=

z z=



5.2  Quadratic Surfaces          231

 Fig. 5.1 GLUT and GLU models: wireframe or filled surfaces [See Color Plate 8]

Both GLUT and GLU provide wireframe or solid cylinder drawing functions, which 
are demonstrated in Example J5_1_Quadrics.java. 

5.2.5 Texture Mapping on GLU Models

GLU provides automatic specifying texture coordinates in rendering its models, which 
is specified by gluQuadricTexture(). Therefore, texture mapping is made simple. We 
can just specify texture parameters and data as before, and we do not worry how the 
texture coordinates are specified on the primitives. GLUT only provides automatic 
texture coordinates specifications in rendering its teapot, which will be discussed later. 

Figure 5.1 is a snapshot demonstrating GLUT and GLU library functions that are 
employed to draw spheres, cones, and cylinders in J5_1_Quadrics.java. The ellipsoid 
is achieved through scaling a sphere instead of direct rendering from ellipsoid 
parametric equations. 

/* GLUT and GLU quadrics */
import net.java.games.jogl.GLU;
import net.java.games.jogl.*;

public class J5_1_Quadrics extends J4_8_Mipmap {



232          5 Curved Models

  GLU glu = canvas.getGLU(); // glut int. is inherited
  GLUquadric cylinder = glu.gluNewQuadric();
  GLUquadric sphere = glu.gluNewQuadric();

  public void drawSphere() {
    double r = 1;

    // number of points along longitudes and latitudes
    int nLongitudes = 20, nLatitudes = 20;

    // switch between two textures -- effect
    if ((cnt%1000)<500) {
      gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
    } else {
      gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    }

    gl.glTexEnvf(GL.GL_TEXTURE_ENV,
                 GL.GL_TEXTURE_ENV_MODE, GL.GL_MODULATE);

    if (cnt%950<400) { // draw solid sphere with GLU

      // automatic generate texture coords
      glu.gluQuadricTexture(sphere, true);
      gl.glEnable(GL.GL_TEXTURE_2D);

      // draw a filled sphere with GLU
      glu.gluQuadricDrawStyle(sphere, GLU.GLU_FILL);
      glu.gluSphere(sphere, r, nLongitudes, nLatitudes);
    } else {

      // draw wireframe sphere with GLUT.
      glut.glutWireSphere(glu, r, nLongitudes, nLatitudes);
    }

    gl.glDisable(GL.GL_TEXTURE_2D);

    if (cnt%800<400) { // for the background texture
      gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);
    } else {
      gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    }
  }

  public void drawCone() {
    double r = 1, h = 1;
    int nLongitudes = 20, nLatitudes = 20;
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    if (cnt%950>400) { // draw wireframe cone with GLUT
      glut.glutWireCone(glu, r, h, nLongitudes, nLatitudes);
    } else { //draw solid cone with GLUT
      glut.glutSolidCone(glu, r, h, nLongitudes, nLatitudes);
    }
  }

  public void drawCylinder() {
    double r = 1, h = 1;
    int nLongitudes = 20, nLatitudes = 20;

    // switching between two texture images
    if ((cnt%1000)<5000) {
      gl.glBindTexture(GL.GL_TEXTURE_2D, IRIS_TEX[0]);
    } else {
      gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
    }

    // automatic generate texture coords
    glu.gluQuadricTexture(cylinder, true);
    gl.glEnable(GL.GL_TEXTURE_2D);

    if (cnt%950<400) { // draw solid cylinder with GLU
      glu.gluQuadricDrawStyle(cylinder, GLU.GLU_FILL);
    } else { // draw point cylinder with GLU.
      glu.gluQuadricDrawStyle(cylinder, GLU.GLU_POINT);
    }

    // actually draw the cylinder
    glu.gluCylinder(cylinder, r, r, h, nLongitudes,
                    nLatitudes);

    gl.glDisable(GL.GL_TEXTURE_2D);
  }

  public static void main(String[] args) {

    J5_1_Quadrics f = new J5_1_Quadrics();

    f.setTitle("JOGL J5_1_Quadrics");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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5.3 Tori, Polyhedra, and Teapots in GLUT

In addition to drawing cone and sphere, GLUT provides a set of functions for 
rendering 3D models, including a torus, cube, tetrahedron, octahedron, dodecahedron, 
icosahedron, and teapot, in both solid shapes and wireframes. They are easy to use for 
applications, as demonstrated in J5_2_Solids.java, where we replace drawing sphere 
in our previous program (J5_1_Quadrics.java) with different 3D models in GLUT. 

5.3.1 Tori

A torus looks the same as a doughnut, as shown in Fig. 5.2. It can be generated by 
rotating a circle around a line outside the circle. Therefore, a torus has two radii: rin of 
the inner circle which is a cross section inside the doughnut, and rout of the outer circle 
which is the doughnut as a circle. Then, the equation in Cartesian coordinates for a 
torus azimuthally symmetric about the z-axis is 

, (EQ 131)

and the parametric equations are 

, (EQ 132)

, (EQ 133)

. (EQ 134)

5.3.2 Polyhedra

A polyhedron is an arbitrary 3D shape whose surface is a collection of flat polygons. 
A regular polyhedron is one whose faces and vertices all look the same. There are 
only five regular polyhedra: the tetrahedron — 4 faces with three equilateral triangles 
at a vertex; the cube — 6 faces with three squares at a vertex; the octahedron — 8 
faces with four equilateral triangles at a vertex; the dodecahedron — 12 faces with 
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three pentagons at a vertex; and the icosahedron — 20 faces with five equilateral 
triangles at a vertex. The regular polyhedron models can be found in many books and 
graphics packages. However, the complex polyhedron model requires effort to be 
constructed. 

GLUT provides functions to draw the regular polyhedra, as shown in Fig. 5.2. 
Polyhedra are flat-surface models, therefore they are not really curved surface models. 
Their counterpart is a sphere. The difference between the sphere and the polyhedra is 
really how the normals are specified.

5.3.3 Teapots

glutSolidTeapot() and glutWireTeapot() render a solid and wireframe teapot, 
respectively. Both surface normals and texture coordinates for the teapot are generated 
by the program, so texture mapping is available, as shown in Fig. 5.2 Actually, the 
teapot is the only model in GLUT that comes with texture coordinates. The teapot is 
generated with OpenGL evaluators, which will be discussed later. 

The teapot’s surface primitives are all back-facing. That is, the polygon vertices are all 
ordered clockwise. For the back-face culling purpose, we need to specify the front 
face as glFrontFace(GL_CW) before drawing the teapot to conform to the back-face 
culling employed in the programs, and return to normal situation using 
glFrontFace(GL_CCW) after drawing it. The teapot is very finely tessellated, so it is 
very slow to be rendered. 

 Fig. 5.2 3D models that GLUT renders [See Color Plate 9]
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/* display GLUT solids: tori, polyhedra, and teapots */

import net.java.games.jogl.GL;

public class J5_2_Solids extends J5_1_Quadrics {

// replace the spheres with GLUT solids 
  public void drawSphere() { 

    gl.glPushMatrix();
    gl.glScaled(0.5, 0.5, 0.5);

    if (cnt%2000<100) {
      glut.glutSolidCone(glu, 1, 1, 20, 20);
    } else
    if (cnt%2000<200) {
      glut.glutWireCone(glu, 1, 1, 20, 20);
    } else
    if (cnt%2000<300) {
      glut.glutSolidCube(gl, 1);
    } else
    if (cnt%2000<400) {
      glut.glutWireCube(gl, 1);
    } else
    if (cnt%2000<500) {
      glut.glutSolidDodecahedron(gl);
    } else
    if (cnt%2000<600) {
      glut.glutWireDodecahedron(gl);
    } else
    if (cnt%2000<700) {
      glut.glutSolidIcosahedron(gl);
    } else
    if (cnt%2000<800) {
      glut.glutWireIcosahedron(gl);
    } else
    if (cnt%2000<900) {
      glut.glutSolidOctahedron(gl);
    } else
    if (cnt%2000<1000) {
      glut.glutWireOctahedron(gl);
    } else
    if (cnt%2000<1100) {
      glut.glutSolidSphere(glu, 1, 20, 20);
    } else
    if (cnt%2000<1200) {
      glut.glutWireSphere(glu, 1, 20, 20);
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    } else
    if (cnt%2000<1300) {
      gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
      gl.glTexEnvf(GL.GL_TEXTURE_ENV,
                   GL.GL_TEXTURE_ENV_MODE, GL.GL_MODULATE);
      gl.glEnable(GL.GL_TEXTURE_2D);

      gl.glFrontFace(GL.GL_CW);
      // the faces are clockwise
      glut.glutSolidTeapot(gl, 1);

      gl.glFrontFace(GL.GL_CCW);
      // return to normal

      gl.glDisable(GL.GL_TEXTURE_2D);
    } else
    if (cnt%2000<1400) {
      glut.glutWireTeapot(gl, 1);
    } else
    if (cnt%2000<1500) {
      glut.glutSolidTetrahedron(gl);
    } else
    if (cnt%2000<1600) {
      glut.glutWireTetrahedron(gl);
    } else
    if (cnt%2000<1700) {
      glut.glutSolidTorus(gl, 0.5, 1, 20, 20);
    } else if (cnt%2000<1800) {
      glut.glutWireTorus(gl, 0.5, 1, 20, 20);
    }
    gl.glPopMatrix();

    // for the background texture
    gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);
  }

  public static void main(String[] args) {

    J5_2_Solids f = new J5_2_Solids();

    f.setTitle("JOGL J5_2_Solids");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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5.4 Cubic Curves 

Conic sections are quadratic curves, which includes circle, ellipse, parabola, and 
hyperbola. Their equations are in second-degree and they represent 2D curves that 
always fit into planes. Cubic curves, or simply cubics, are the lowest-degree curves 
that are non-planar in 3D. If we consider a curve like a worm wiggles in 2D changing 
direction along the curve, quadratic curves have at most one wiggle, and cubic curves 
have at most two wiggles. As you can see, higher degree curves will have more 
wiggles, but they are complex and time consuming. Instead, we can connect multiple 
cubic curves (segments) to form a curve with the number of wiggles and shape we 
want. 

We study curves in parametric polynomial form. In general, a parametric polynomial 
is expressed as: 

, (EQ 135)

and a curve in 3D is 

, (EQ 136)

where for a cubic curve segment, 

0 ≤ t ≤ 1 (EQ 137)

and: 

, (EQ 138)

, (EQ 139)

. (EQ 140)
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Because x(t), y(t), and z(t) are in the same form but independent of each other except 
at drawing, where they are used together to specify a point, we discuss p(t) in place of 
x(t), y(t), or z(t). Therefore, we simplify the cubic parametric equations above into a 
representative equation as follows: 

, where . (EQ 141)

In matrix form, we have 

(EQ 142)

5.4.1 Continuity Conditions

The first derivative at a point on a curve, , is 

the tangent vector at a specific t. For easier understanding, we may assume that t is the 
time, then from time t = 0 to t = 1 a point moves from Q(0) to Q(1) and the tangent 
vector is the velocity (direction and speed) of the point tracing out the curve. 

As we discussed, a cubic curve is a segment where 0 ≤ t ≤ 1 (Equation 136, 
Equation 137 on page 238). We can connect multiple cubic curves to form a longer 
curve. The smoothness condition of the connection is determined by the continuity 
conditions as discussed below for two curves. 

Parametric continuity.  Zero-order parametric continuity, C0, means that the 
ending-point of the first curve meets the starting-point of the second curve: 

. (EQ 143)

First-order parametric continuity, C1, means that the first derivatives of the two 
successive curves are equal at their connection:
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. (EQ 144)

Second-order parametric continuity, C2, means that both the first and second 
parametric derivatives of the two curves are the same at the intersection: 

. (EQ 145)

Higher-order continuity conditions are defined similarly, which are meaningful for 
higher degree curves. 

Geometric continuity.  Zero-order geometric continuity, G0, means that the end point 
of the first curve meets the starting-point of the second curve: 

. (EQ 146)

First-order geometric continuity, G1, means that the first derivatives of the two 
successive curves are proportional at their connection:

. (EQ 147)

where k is a constant. In other words, the two tangent vector’s directions are still the 
same, but their lengths may not be the same. 

Similarly, second-order geometric continuity, G2, means that both the first and second 
parametric derivatives of the two curves are proportional at the intersection: 

. (EQ 148)

Compared to parametric continuity conditions, geometric continuity conditions are 
more flexible. 
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5.4.2 Hermite Curves

Hermite curves are specified by two end points p(0) and p(1) and two tangent vectors 
at the two ends p’(0) and p’(1). The end points and tangent vectors are called the 
boundary constraints of a Hermite curve. According to Equation 141 on page 239:

, (EQ 149)

, (EQ 150)

, and (EQ 151)

. (EQ 152)

Therefore, from Equation 149 to Equation 152, we have: 

, (EQ 153)

, (EQ 154)

, (EQ 155)

and . (EQ 156)

Then, the equation for a Hermite curve is 

. (EQ 157)

That is, 

, (EQ 158)
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where H0(t), H1(t), H2(t), and H3(t) are called 
the blending functions of a Hermite curve, 
because they blend the four boundary constraint 
values to obtain each position along the curve at 
a specific t. 

As shown in Fig. 5.3, when t = 0, only H0(0) is 
nonzero, and therefore only P(0) has an 
influence on the curve. When t=1, only H1(1) is 
nonzero, and therefore only P(1) has an 
influence on the curve. For all 0 < t < 1, all 
boundary constraints have influences on the 
curve. Because the tangent vectors at the end 
points are specified as constants, if we connect 
multiple Hermite curves, we can specify C1 or 
G1 continuity conditions, but we cannot specify C2 or G2 because the second 
derivatives do not exist. 

We often express Hermite equation in matrix form as follows: 

(EQ 159)

That is, 

(EQ 160)

where Mh is called the Hermite matrix, and P includes, as we said earlier, the 
boundary constraints. The following program draws Hermite curves in place of 
spheres in the previous example: 

 Fig. 5.3 Hermite blending 
functions 
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/* draw a hermite curve */

import net.java.games.jogl.GL;
import net.java.games.jogl.GLU;
import net.java.games.jogl.GLDrawable; /**

public class J5_3_Hermite extends J5_2_Solids {

  double ctrlp[][] = { {-0.5, -0.5, -0.5}, {-1.0, 1.0, 1.0},
                     {1.0, -1.0, 1.0}, {0.5, 0.5, 1.0}
  }; // control points: two end points, two tangent vectors

  public void myEvalCoordHermite(double t) {
    // evaluate the coordinates and specify the points
    double x, y, z, t_1, t2, t_2, t3, t_3;

    t_1 = 1-t;
    t2 = t*t;
    t_2 = t_1*t_1;
    t3 = t2*t;
    t_3 = t_2*t_1;

    x = t_3*ctrlp[0][0]+3*t*t_2*ctrlp[1][0]
        +3*t2*t_1*ctrlp[2][0]+t3*ctrlp[3][0];
    
    y = t_3*ctrlp[0][1]+3*t*t_2*ctrlp[1][1]
        +3*t2*t_1*ctrlp[2][1]+t3*ctrlp[3][1];
    
    z = t_3*ctrlp[0][2]+3*t*t_2*ctrlp[1][2]
        +3*t2*t_1*ctrlp[2][2]+t3*ctrlp[3][2];

    gl.glVertex3d(x, y, z);
  }

 

  public void drawSphere() {
    int i; 
    
    myCameraView = true; 
    
    gl.glLineWidth(4);
    gl.glBegin(GL.GL_LINE_STRIP);
    for (i = 0; i<=30; i++) {
      myEvalCoordHermite(i/30.0);
    }
    gl.glEnd();
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    /* The following code displays the control points 
     as dots. */
    gl.glPointSize(6.0f);
    gl.glBegin(GL.GL_POINTS);
    gl.glVertex3dv(ctrlp[0]);    
    gl.glVertex3dv(ctrlp[3]);
    gl.glEnd();

    // for the background texture
    gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);
  }

  public void drawCone() {
  }

  public static void main(String[] args) {
    J5_3_Hermite f = new J5_3_Hermite();

    f.setTitle("JOGL J5_3_Hermite");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

5.4.3 Bezier Curves

Bezier curves are specified by two end points: p(0) and p(1) and two control points C1
and C2 such that the tangent vectors at the two ends are p’(0) = 3(C1 -p(0)) and p’(1)
= 3(p(1) - C2). Similar to Hermite curve equation, according to Equation 141 on 
page 239 we have:

, (EQ 161)

, (EQ 162)

, and (EQ 163)

. (EQ 164)

p 0( ) d=

p 1( ) a b c d+ + +=

p' 0( ) 3 C1 p 0( )–( ) c= =

p' 1( ) 3 p 1( ) C2–( ) 3a 2b c+ += =
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Therefore, from Equation 161 to Equation 164, we have: 

, (EQ 165)

, (EQ 166)

, (EQ 167)

and . (EQ 168)

Then, the equation for Hermite curves is 

. (EQ 169)

That is, 

, (EQ 170)

where B0(t), B1(t), B2(t), and B3(t) are Bezier 
curves’ blending functions, because they blend 
the four boundary constraint points to obtain 
each position along the curve. 

As shown in Fig. 5.4, when t=0, only B0(0) is 
nonzero, and therefore only P(0) has an 
influence on the curve. When t=1, only B3(1) 
is nonzero, and therefore only P(1) has an 
influence on the curve. For all 0<t<1, all 
boundary constraints have influences on the 
curve. Because the tangent vectors at the end 
points are specified by the 4 constraints as 
constants, if we connect multiple Bezier 
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 Fig. 5.4 Bezier blending functions
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curves, we can specify C1 or G1 continuity conditions, but we cannot specify C2 or G2

because the second derivatives do not exist.

Bezier curve has some important properties. If we use the four constraint points to 
form a convex hull in 3D (or convex polygon in 2D), the curve is cotangent to the two 
opposite edges defined by the p(0)C1 and C2p(1) pairs. A convex hull, simply put, is a 
polyhedron with all of its vertices on only one side of each surface of the polyhedron. 
A cubic Bezier curve is just a weighted average of the four constraint points, and it is 
completely contained in the convex hull of the 4 control points. The sum of the four 
blending functions is equal to 1 for any t, and each polynomial is everywhere positive 
except at the two ends. As you can see, if we specify the constraint points on a line, 
according to the convex-hull property, the cubic Bezier curve is reduced to a line. 

We often express Bezier curve equation in matrix form: 

(EQ 171)

That is, 

, (EQ 172)

where Mb is called the Bezier matrix, and C includes the boundary constraints such 
that C0 = p(0) and C3 = p(1). 

Bezier curves of general degree. Bezier curves can be easily extended into higher 
degrees. Given n+1 control point positions, we can blend them to produce the 
following: 

, (EQ 173)
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where the blending functions are called the Bernstein polynomials: 

, (EQ 174)

and . (EQ 175)

OpenGL evaluators. OpenGL provides 
basic functions for calculating Bezier 
curves. Specifically, it uses glMap1f()
to set up the interval (e.g., 0 ≤ t ≤ 1), 
number of values (e.g., 3 for xyz or 4
for xyzw) to go from one control point 
to the next, degree of the equation 
(e.g., 4 for cubics), and control points 
(an array of points). Then, instead of 
calculating curve points and using 
glVertex() to specify the coordinates, 
we use glEvaluCoord1() to specify the 
coordinates at specified t’s, and the 
Bezier curve is calculated by the 
OpenGL system, as shown in Example J5_4_Bezier.java. A snapshot is in Fig. 5.5. 

/* use OpenGL evaluators for Bezier curve */

import net.java.games.jogl.GL;
import net.java.games.jogl.GLDrawable; 

public class J5_4_Bezier extends J5_3_Hermite {

  double ctrlpts[] = 
{0.0, -1.0, -0.5, -1.0, 1.0, -1.0,

                     -1.0, -1.0, 1.0, 1.0, 0.05, 1.0};

  public void drawSphere() {

    int i;

Bk n, t( ) C n k,( )tk 1 t–( )n k–=

C n k,( ) n!
k! n k–( )!
------------------------=

 Fig. 5.5 Bezier curve 
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     // specify Bezier curve vertex with: 
    //     0<=t<=1, 3 values (x,y,z), and 4-1 degrees
    gl.glMap1d(GL.GL_MAP1_VERTEX_3, 0, 1, 3, 4, ctrlpts);
    gl.glEnable(GL.GL_MAP1_VERTEX_3);

    gl.glDisable(GL.GL_LIGHTING);

    gl.glLineWidth(3);
    gl.glColor4f(1f, 1f, 1f, 1f);

    gl.glBegin(GL.GL_LINE_STRIP);

    for (i = 0; i<=30; i++) {
      gl.glEvalCoord1d(i/30.0); // use OpenGL evaluator
    }

    gl.glEnd();

    // Highlight the control points
    gl.glPointSize(4);
    gl.glBegin(GL.GL_POINTS);
    gl.glColor4f(1f, 1f, 0f, 1f);
     gl.glVertex3d(ctrlpts[0], ctrlpts[1], ctrlpts[2]);
    gl.glVertex3d(ctrlpts[3], ctrlpts[4], ctrlpts[5]);
    gl.glVertex3d(ctrlpts[6], ctrlpts[7], ctrlpts[8]);
    gl.glVertex3d(ctrlpts[9], ctrlpts[10], ctrlpts[11]);
    gl.glEnd();

    // draw the convex hull as transparent 
    gl.glEnable(GL.GL_BLEND);
    gl.glDepthMask(true);
    gl.glBlendFunc(GL.GL_SRC_ALPHA,
                   GL.GL_ONE_MINUS_SRC_ALPHA);   

    gl.glBegin(GL.GL_TRIANGLES);
    gl.glColor4f(0.9f, 0.9f, 0.9f, 0.3f);
    gl.glVertex3d(ctrlpts[0], ctrlpts[1], ctrlpts[2]);
    gl.glVertex3d(ctrlpts[3], ctrlpts[4], ctrlpts[5]);
    gl.glVertex3d(ctrlpts[9], ctrlpts[10], ctrlpts[11]);

    gl.glColor4f(0.9f, 0.0f, 0.0f, 0.3f);
   gl.glVertex3d(ctrlpts[0], ctrlpts[1], ctrlpts[2]);
    gl.glVertex3d(ctrlpts[9], ctrlpts[10], ctrlpts[11]);
    gl.glVertex3d(ctrlpts[6], ctrlpts[7], ctrlpts[8]);

    gl.glColor4f(0.0f, 0.9f, 0.0f, 0.3f);
    gl.glVertex3d(ctrlpts[0], ctrlpts[1], ctrlpts[2]);
    gl.glVertex3d(ctrlpts[6], ctrlpts[7], ctrlpts[8]);
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    gl.glVertex3d(ctrlpts[3], ctrlpts[4], ctrlpts[5]);

    gl.glColor4f(0.0f, 0.0f, 0.9f, 0.3f);
    gl.glVertex3d(ctrlpts[3], ctrlpts[4], ctrlpts[5]);
    gl.glVertex3d(ctrlpts[6], ctrlpts[7], ctrlpts[8]);
    gl.glVertex3d(ctrlpts[9], ctrlpts[10], ctrlpts[11]);

    gl.glEnd();

    gl.glDepthMask(false);

    // for the background texture
    gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);

  }

  public static void main(String[] args) {
    J5_4_Bezier f = new J5_4_Bezier();

    f.setTitle("JOGL J5_4_Bezier");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

5.4.4 Natural Splines

A spline is constructed from cubic curves with C2 continuity. A natural cubic spline 
goes through all its control points. For n+1 control points, there are n cubic curves 
(segments). As in Equation 141 on page 239, a cubic curve equation has four 
parameters that define the curve. Therefore we need 4 constraints to decide the four 
parameters. For n cubic curves, we need 4n constraints. 

How many constraints we have already for a natural cubic spline? Well, for all cubic 
curves (segments) in a natural cubic spline, the two end points are known. There are n
curves, therefore 2n end points. Because the curves are connected with C2 continuity, 
the first and second derivatives at the joints are equal. There are n-1 joints, so there are 
2n-2 constraint equations for the first derivatives and the second derivatives. 
Altogether we have 4n-2 constraints, but we need 4n constraints in order to specify all 
curve segments of the natural cubic spline. We can add two assumptions such as the 
tangent vectors of the two end points of the spline. 
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Natural spline curves are calculated by solving a set of 4n equations, which is time 
consuming. Also, changing one constraint (such as moving a control point) will result 
in changing the shape of all different segments, so all of the curve segments need to be 
calculated again. We call this global control. We would prefer a curve with local 
control, so changing a constraint only affects the curve locally. Hermite and Bezier 
curves are local control curves, but they only support C1 continuity. In the next 
section, we introduce B-spline, which satisfies local control as well as C2 continuity. 

5.4.5 B-splines

A B-spline curve is a set of connected cubic curves based on control points that lie 
outside each of the curves. For n+1 control points, there are n-2 cubic curves 
(segments) on a B-spline:

Q3(t) is defined by C0C1C2C3,
Q4(t) is defined by C1C2C3C4,
...,
Qn(t) is defined by Cn-3Cn-2Cn-1Cn.

The cubic B-spline equation for Qi(t) is as follows: 

(EQ 176)

where the blending functions, which are also called the basis functions because the B 
in B-spline stands for “basis”, are 

, (EQ 177)

, (EQ 178)

, (EQ 179)
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and . (EQ 180)

As Bezier curves, the sum of the B-spline’s blending functions is everywhere unity 
and each function is everywhere nonnegative, as shown in Fig. 5.6. That is, a B-spline 
curve segment is just a weighted average of the four control points and is contained in 
the convex hull of the four control points.

For two consecutive curve segments on a 
B-spline, their connection point is called a knot, 
which has corresponding knot value t=1 on the 
first segment and t=0 on the second segment. 
This type of B-spline is called Uniform B-spline, 
whose knot values are in equal unit value. We 
have pi(1) and pi+1(0): 

, (EQ 181)

. (EQ 182)

So the two end points meet at the knot: 

. (EQ 183)

That is, the knot is constrained by three control points as in Equation 183, while a 
B-spline curve segment is constrained by four control points wherever not on the 
knots. This is also obvious from Fig. 5.6. 
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We can calculate the first derivatives at the knots, 

(EQ 184)

(EQ 185)

So the two end points’ tangent vectors are equal. We can further calculate the second 
derivatives and see that B-splines are C2 continuity at their knots, which is the same as 
natural cubic splines. Unlike natural cubic splines, B-splines do not go through the 
control points, and moving one control point to a different position affects only four 
curve segments at most. That is, B-spline curves are local-control, while natural cubic 
spline curves are global-control. If we use a control point twice in the equations (e.g., 
Ci = Ci+1), then the curves are pulled closer to this point. Using a control point three 
times will result in a line segment. 

We can write B-spline equation in matrix form: 

(EQ 186)

That is, 

(EQ 187)

where MBs is called the B-spline matrix, and C represents the corresponding boundary 
constraints. Each curve is defined on its own domain (0≤ t ≤1). We can adjust the 
parameters so that the parameter domains for the various curve segments are 
sequential: , , and . Here the knots are spaced 
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at unit intervals of parameter t, and the B-splines are called Uniform B-splines. If t is 
not spaced evenly, we have Non-uniform B-splines, which is discussed in the next 
section. 

B-splines of general degree. B-splines can be easily extended into higher degrees. 
Given n+1 control point positions, we can blend them to produce the following: 

, (EQ 188)

where the blending functions are (d-1) degree polynomials where 2 ≤ d ≤ n+1: 

, (EQ 189)

and . (EQ 190)

For an arbitrary n and d, we need knot value t = 0 up to t = n + d to calculate the 
blending functions. In other words, we need a knot vector of n + d values. For a cubic 
Uniform B-spline with 4 control points, n = 4 and d = 4, so we need to provide a 
uniform knot vector of 8 values: [0 1 2 3 4 5 6 7]. So the cubic Uniform B-spline we 
discussed above is just a special case here. 

5.4.6 Non-uniform B-splines

If the parameter interval between successive knot values are not uniform, we have a 
knot vector, for example, [0 0 1 3 4 7 7]. The number of repeating knot values is the 
multiplicity of the curve. With such a knot vector, the blending function will be 
calculated resulting in different equations by Equation 189 and Equation 190. The 
multiplicity also reduces the continuity of the curve at the repeating knots by the 
number of repeating knot values, and the curve segments are shrunk into a point for 
the repeating knots. This is the primary advantage of Non-uniform B-splines. 
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If the continuity is reduced to C0 with multiplicity 3, the curve interpolates a control 
point. For example, for a cubic B-spline with 4 control points, if the knot vector is [0 0 
0 0 1 1 1 1], the curve goes through the first and the last control points, which is a 
Bezier curve. So a Bezier curve is a special case of a B-spline. For multiple curve 
segments with multiplicity 4, the curve segments can be dissected into pieces. 

5.4.7 NURBS

3D models are transformed by MODELVIEW and PROJECTION matrices in 
homogeneous coordinates. If we apply perspective projection to the control points and 
then generate the curve using the above (non-rational) Hermite, Bezier, or B-spline 
equations, the generated curves change their shapes. In other words, they are variant 
under perspective projection. This problem can be solved by using rational curve 
equations, which can be considered as curves in homogeneous coordinates projected 
into 3D coordinates. We extend a curve in homogeneous coordinates as: 

. (EQ 191)

Then, a rational curve in 3D coordinates is as: 

. (EQ 192)

If the rational equations are Non-uniform B-splines, they are called NURBS
(Non-uniform Rational B-splines): 

. (EQ 193)
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where ωk are user-specified weight factors for the control points. When all the weight 
factors are set to 1, the rational form is reduced to non-rational form, so non-rational 
equations are special cases of rational equations. 

In addition to being invariant under perspective transformation, NURBS can be used 
to obtain various conics by choosing specific weight factors and control points. The 
GLU library provides NURBS functions built on top of the OpenGL evaluator 
commands for both NURBS curves and surfaces. 

5.5 Bi-cubic Surfaces

As discussed before, cubic Hermite, Bezier, and B-spline curve equations are 

, (EQ 194)

, (EQ 195)

and  for one segment. (EQ 196)

Their differences here are really their matrices and constraint parameters. For a curve, 
if its constraints are themselves variables, the curve can be considered moving in 3D 
and changing its shape according to the variations of the constraints, and sweeping out 
a curved surface. If the constraints are themselves cubic curves, we have bi-cubic 
surfaces. 

5.5.1 Hermite Surfaces

Let us assume that s and t are independent parameters, and our original Hermite curve 
equation with variable s has its constraints of variable t. We have bi-cubic Hermite 
surface equation as follows: 
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Because matrix expression can be reversed under transposition: MN = NTMT, we have 
the following 

(EQ 198)

That is, 

(EQ 199)

Therefore, for a Hermite bi-cubic surface, we need to specify 16 constraints for an x, y, 
or z parametric equation, respectively. There are 4 end points on the surface patch, 8 
tangent vectors in s or t directions at the 4 end points, and 4 “twists” at the 4 end 
points, which you can think to be the rate of a tangent vector in s direction twists 
(changes) along the t direction, or vice versa. Just like Hermite curves, Hermite 
surface patches can be connected with C1 or G1 continuity. We just need to specify the 
connecting end points’ tangent vectors and twists equal or proportional. 

For lighting or other purposes, the normal at any point (s, t) on the surface can be 
calculated by the cross-product of the s and t tangent vectors: 

(EQ 200)

5.5.2 Bezier Surfaces

Bi-cubic Bezier surfaces can be derived the same way as above: 
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, (EQ 201)

where the control points (as shown in Fig. 5.7) are 

. (EQ 202)

As their corresponding curves, 
Bezier surfaces are C1 or G1

continuity. Also, Bezier 
surfaces can be easily extended 
into higher degrees, and 
OpenGL implements 
two-dimensional evaluators for 
Bezier surfaces of general 
degree, as discussed below. 

Bezier surfaces of general 
degree. Given (n + 1)(m + 1) 
control point positions Cij, 
where 0 ≤ i ≤ n and 0 ≤ j ≤ m, 
we can blend them to produce the following: 

, (EQ 203)

where the blending functions are the Bernstein polynomials discussed in Equation 174
and Equation 175 on page 247. 
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 Fig. 5.7 Bi-cubic Bezier surface control points
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OpenGL two-dimensional evaluators. OpenGL 
provides basic functions for calculating Bezier 
surfaces of general degree. Specifically, it uses 
glMap2f() to set up the interval (e.g., 0 ≤ s,t ≤ 
1), number of values in s or t directions to skip 
to the next value (e.g., 3 for xyz or 4 for xyzw in 
s direction, and 12 for xyz or 16 or xyzw in t
direction), degree of the equation (e.g., 4 for 
cubics), and control points (an array of points). 
Then, instead of calculating curve points and 
using glVertex() to specify the coordinates, we 
use glEvaluCoord2(s, t) to specify the 
coordinates at specified position, and the Bezier 
surface is calculated by the OpenGL system, as shown in Example 
J5_5_BezierSurface.java. A snapshot is in Fig. 5.8. 

In OpenGL, glMap*() is also used to interpolate colors, normals, and texture 
coordinates. 

/* draw a Bezier surface using 2D evaluators */

import net.java.games.jogl.GL; 

public class J5_5_BezierSurface extends J5_4_Bezier {
  double ctrlpts[] = { // C00, C01, C02, C03
                     -1.0, -1.0, 1, -1.0, -0.75, -1.0,
                     -1.0, 0.75, 1.0, -1.0, 1, -1.0,
                     // C10, C11, C12, C13
                     -0.75, -1.0, -1, -0.75, -0.75, 0,
                     -0.75, 0.75, -5.0, -0.75, 1, 1.0,
                     // C20, C21, C22, C23
                     0.75, -1.0, 1, 0.75, -0.75, 0,
                     0.75, 0.75, 1.0, 0.75, 1, -1.0,
                     // C30, C31, C32, C33
                     1, -1.0, -1, 1, -0.75, 1.0,
                     1, 0.75, -1.0, 1, 1, 1.0,
  };

  public void drawSphere() {
    int i, j;

 Fig. 5.8 Bezier surfaces 
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    // define and invoke 2D evaluator 
    gl.glMap2d(GL.GL_MAP2_VERTEX_3, 0, 1, 3, 4,
               0, 1, 12, 4, ctrlpts);
    gl.glEnable(GL.GL_MAP2_VERTEX_3);

    gl.glDisable(GL.GL_LIGHTING);
    for (j = 0; j<=10; j++) {
      gl.glBegin(GL.GL_LINE_STRIP);
      for (i = 0; i<=10; i++) {
        gl.glColor3f(i/10f, j/10f, 1f);
        // use OpenGL evaluator
        gl.glEvalCoord2d(i/10.0, j/10.0);
      }
      gl.glEnd();
      gl.glBegin(GL.GL_LINE_STRIP);
      for (i = 0; i<=10; i++) {
        gl.glColor3f(i/10f, j/10f, 1f);
      // use OpenGL evaluator
       gl.glEvalCoord2d(j/10.0, i/10.0);
      }
      gl.glEnd();
    }

    // Highlight the knots: white
    gl.glColor3f(1, 1, 1);
    gl.glBegin(GL.GL_POINTS);
    for (j = 0; j<=10; j++) {
      for (i = 0; i<=10; i++) {
        gl.glEvalCoord2d(i/10.0, j/10.0);
      }
    }
    gl.glEnd();

    // for the background texture
    gl.glBindTexture(GL.GL_TEXTURE_2D, STARS_TEX[0]);
  }

  public static void main(String[] args) {
    J5_5_BezierSurface f = new J5_5_BezierSurface();

    f.setTitle("JOGL J5_5_BezierSurface");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}
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5.5.3 B-spline Surfaces

Bi-cubic B-spline surfaces can be derived the same way as above, respectively: 

. (EQ 204)

As their corresponding curves, Bezier surfaces are C1 or G1 continuity, and B-spline 
surfaces are C2 or G2 continuity. 

The GLU library provides a set of NURBS functions built on OpenGL evaluator 
commands that includes lighting and texture mapping functions, which is convenient 
for applications involving NURBS curves and surfaces. 

5.6 Review Questions

1. Check out glPolygonMode() and draw models in points, lines, and surfaces in 
J5_1_Quadrics.java. 

2. Please specify the names of the 3D models that are available in GLUT and GLU. 

3. What are the models available for texture mapping in GLUT and GLU? 

4. Prove that the sum of the Bezier blending functions is everywhere unity and each function is 
everywhere nonnegative. 

5. Prove that the sum of the B-spline blending functions is everywhere unity and each function is 
everywhere nonnegative. 

6. Compare Bezier and B-spline curves. Please list their properties separately. Then, discuss their 
similarities and differences. 

7. Which of the following is wrong: 

 a. Bezier curves are C2 continuity b. A natural cubic spline is C1 continuity
 c. B-splines are C2 continuity d. Hermite curves are C1 continuity

8. Compared with B-spline, which of the following is true: 
 a. Natural spline is simpler to calculate b. Bezier curves are global control
 c. Hermite curve interpolates its end points d. They are all C2 curves with segments

p s t,( ) SMBsCBsMBs
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9. Which of the following is true about B-spline: 
 a. Using the same control points multiple times is the same as increasing multiplicity
 b. All B-splines are invariant under perspective transformation
 c. Conics can be generated using certain B-splines
 d. Increasing multiplicity will reduce the curve into line segments

10. How many constraints are there for a bi-cubic Hermite surface patch? How many control 
points are there for a bi-cubic B-spline surface patch? 

5.7 Programming Assignments

1. Check out glPolygonMode() and draw models in points, lines, and surfaces in 
J5_1_Quadrics.java.

2. As mentioned in the text, we can create a sphere on a display through subdivision, through a 
sphere’s equation, or through a rotation of a circle. There are many ways to store a 3D model and 
display it. Explain in detail what are exactly saved in the computer for a sphere model and the algo-
rithms used to display the model. Implement the algorithms accordingly. 

3. A superellipsoid is represented as follows. Please draw the 3D model at (a = 0, 1, 2, 3) and (b = 0, 
1, 2, 3) with different combinations: 

, (EQ 205)

, (EQ 206)

and . (EQ 207)

4. Draw two Hermite curves with C1 continuity. Build an interactive system so that the constraints 
are interactively specified. 

5. Draw a uniform non-rational B-spline with multiple control points. Again, the control points are 
interactively specified. 

6. Draw a non-uniform non-rational B-spline, and demonstrate its difference and advantage over 
Uniform Non-rational B-spline. 

7. Draw a B-spline curve surface with 4 patches. Allow the control points to be interactively speci-
fied. Learn GLU NURBS functions and use them to draw a surface. 

x rx φcos( )a θcos( )b,  0 φ π≤ ≤=

y ry φcos( )a θsin( )b,  0 θ 2π≤ ≤=

z rz φsin( )a=



6 
Vertex Shading, Pixel Shading, 
and Parallel Processing

Chapter Objectives: 

• Briefly introduce GPUs, vertex shaders, pixel shaders, and parallel programming

6.1 Introduction

Graphics hardware has evolved significantly in recent years. Today, every computer 
has a graphics processing unit (GPU) or a graphics card that includes new parallel 
processing capabilities with programmable functions. Some GPUs are much more 
powerful than CPUs not only on graphics functions, but also on computing 
capabilities. The general-purpose GPU (GPGPU) is towards employing GPU for 
parallel computing applications other than graphics applications. Here our focus is on 
introducing basic GPU transformation, shading, and texture mapping capabilities. 

In the past 10 years, GPUs have improved their performance more than 100 times. 
This evolution has been gradually replacing individual pipeline stages with 
increasingly programmable units. A vertex shader is a graphics processing function 
operating on vertex data for position (transformation), color (lighting), and texture. 
Therefore, vertex shading is the process carried out on a vertex shader, a 
programmable unit replacing the fixed graphics transformation and viewing pipeline 
unit. The vertices computed by vertex shaders are typically passed to geometry 
shaders, which can generate new graphics primitives from the original primitive 
assembled after vertex shading. Geometry shaders can be used to add and remove 
vertices or volumetric detail to existing meshes. A pixel shader is a programmable unit 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_6, © Springer-Verlag London Limited 2008 



264          6 Vertex Shading, Pixel Shading, and Parallel Processing

that operates on pixel data, usually for additional level of complexity on bump 
mapping, shadows, and other effects. Here our focus is on vertex and pixel shaders. 

Historically, GPUs have had dedicated units for different types of operations in the 
rendering pipeline, such as vertex transformation and shading and pixel texture 
mapping. With the unified architecture, a single floating point shader core with 
multiple independent processors are designed to handle any type of shading 
operations, including vertex shading and pixel shading. Today, they are flexible 
general-purpose computational engines instead of fixed-function 3D graphics 
pipeline. The processing methods and power has been changing and improving all the 
time. Along with the GPU improvements, graphics libraries (OpenGL and Direct3D) 
have been extended to include GPUs functions through OpenGL’s Shading Language 
(GLSL) and DirectX’s High Level Shading Language (HLSL). A new shading 
language Cg has been developed from nVidia for programming their GPU functions, 
and a latest programming language CUDA (Compute Unified Device Architecture) is 
a new hardware and software programming system for issuing and managing 
computations on the GPUs as a data-parallel computing device without the need of 
mapping them to a graphics API. 

6.2 Programmable Pipelines

GPU hardware is complex and evolving, but we can conceptually describe it as in 
Figure 6.1. Traditional graphics pipeline’s transformation, viewing, and lighting fixed 
hardware components are replaced by the vertex shader, a programmable component 
that deal with vertex position, normal, color, texture coordinates, and others. At the 
fragment level, pixel shader is an addition to address advanced lighting and texture 
mapping, so true Phong shading, bump mapping, and many other functions can be 
implemented in real-time. Pixel shader programs are small programs that are executed 
on individual pixels in parallel.

GPU’s are specialized hardware faster for graphics functions. They are programming 
units by assembly languages or special shading languages, like Cg, GLSL, or HLSL. 
The main programs still run on CPU. The shading languages are called at runtime for 
GPUs to work accordingly. Although the shading languages are designed to be similar 
to C programming language, they are limited in their capabilities to current available 
functions, which will be discussed in more detail. GPUs and their corresponding 
programming software system are evolving. 
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 Fig. 6.1 A GPU programmable pipeline

As shown in Figure 6.1, first, the vertex data are transformed into device coordinates 
through transformation and viewing, lighting colors are calculated on the vertices, and 
texture coordinates are generated on the vertices. These used-to-be fixed operations 
are now replaced by the programmable vertex shader operations. 

Then, the Primitive Assembly stage will integrate transformed vertices into primitives 
(points, lines, triangles, or polygons) for clipping and then scan-conversion, or 
rasterization. 

After that, Rasterization Interpolation will break a primitive into pixel values through 
interpolations, including vertex position and color values. The term “fragment” is 
used for each pixel’s associated values because a primitive is broken into fragments 
during scan-conversion. 

3D App.

GPU pipeline

Programmable

Dreict3D/
OpenGL

C
PU

 d
at

a 
&

 

co
m

m
an

ds

Vertex 
Shader

Pixel 
Shader

Primitive 
Assembly 

GPU Front
Vertex Data

Rasterization
Interpolation

Fragment 
Operations Framebuffer



266          6 Vertex Shading, Pixel Shading, and Parallel Processing

Finally, at the fragment level, Pixel Shader will be able to integrate color and texture 
values into a final color for each pixel, which is then stored in the corresponding 
location in the frame buffer. 

6.3 OpenGLSL, Cg, and Microsoft HLSL

Corresponding to the graphics hardware, there are three major graphics shading 
programming languages that are popular today. OpenGL’s shading language (GLSL), 
nVida’s Cg, and Direct X’s High Level Shading Language (HLSL). These shading 
languages reduce the difficulties of programming graphics hardware in low-level 
assembly languages. 

GLSL, also called GLslang, is OpenGL’s shading language based on C programming 
language. It is an OpenGL standard to give developers more direct control of the 
graphics pipeline without having to use hardware-dependent languages. It allows 
cross-platform hardware compatibility on different operating systems and graphics 
cards. A graphics card supports GLSL if the vendor includes the GLSL compiler in 
the card’s driver. Most graphics cards support GLSL. 

Cg is a high-level shading language developed by NVIDIA for programming vertex 
and pixel shaders. It is very similar to Microsoft's HLSL because they are developed 
in parallel. The main program is in C or Java, and the GPU is programmed in Cg. The 
Cg compiler outputs DirectX or OpenGL shader programs. HLSL is developed by 
Microsoft for use with the Microsoft Direct3D (DirectX) API. 

The shading languages are closely related to GPU hardware. Therefore, they are 
limited to the hardware capabilities. We cannot consider them as general purpose 
programming languages. Instead, we have to rely on the special hardware 
configuration and availability. 

6.3.1 Cg Basics

In this section, we introduce some basics in Cg programming through a few simple 
examples. Please refer to nVidia company’s Cg Homepage 
http://developer.nvidia.com/page/cg_main.html and The Cg Tutorial by Randima 
Fernando and Mark J. Kilgard for more detail. For easier explanation purpose, we 
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name the CPU and traditional fixed graphics pipeline program to be JOGL program, 
and the corresponding shader programs to be vertex programs or pixel programs. 

6.3.2 A Vertex Program 

In the following program J6_1_Cg.java in JOGL, we extend example 
J1_5_Circle to invoke a vertex program J6_1_VP.cg. A vertex program is a 
coding on a vertex shader we discussed above. 

/*Cg Example: set up vertex program */

import com.sun.opengl.cg.*;
import javax.media.opengl.*;

public class J6_1_Cg extends J1_5_Circle {

   CGcontext cgcontext;
   CGprogram vertexprog;
  
  // 1. Vertex profile: hardware specification/support
   static final int VERTEXPROFILE=CgGL.CG_PROFILE_ARBVP1;

  
  public void init(GLAutoDrawable glDrawable) {

    super.init(glDrawable); 
    
    if(!CgGL.cgGLIsProfileSupported(VERTEXPROFILE))
    {
      System.out.println("Profile not supported");
      System.exit(1);
    }

    // 2. Create Cg context for setting up the environment
    cgcontext=CgGL.cgCreateContext();
    
    
    // 3. Create vertex program from file with the profile 
    CgGL.cgGLSetOptimalOptions(VERTEXPROFILE);
    vertexprog=CgGL.cgCreateProgramFromFile(cgcontext, 
CgGL.CG_SOURCE, "J6_1_VP.cg", VERTEXPROFILE, null, null);
    CgGL.cgGLLoadProgram(vertexprog);
  }
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  public void display(GLAutoDrawable drawable) {

  // 4. Enable the profile and binding the vertex program
  CgGL.cgGLEnableProfile(VERTEXPROFILE);
  CgGL.cgGLBindProgram(vertexprog);    

  drawCircle(drawable); 
 
  // 5. Disable the profile 
  CgGL.cgGLDisableProfile(VERTEXPROFILE);

}

  
  public void drawCircle(GLAutoDrawable drawable) {

    super.display(drawable); 
}

  
  public static void main(String[] args) {

  J6_1_Cg f = new J6_1_Cg();

    f.setTitle("JOGL J6_1_Cg");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

The above JOGL program is a simplest that invokes a Cg vertex program. The added 
Cg functions are explained as follows. 

1. There are different vertex profiles for compiling the program. Each profile 
corresponds to the GPU hardware and version. We choose a profile “ARBVP1”, 
which has basic multivendor vertex programmability on OpenGL platform. The 
examples here can be compiled on a broad range of hardware. Other profiles are 
more capable depending on the graphics hardware. 

2. We need to create a Cg context in order to serve as a “container” for the Cg 
programs. 
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3. We specify and link the corresponding vertex program J6_1_VP.cg with the 
JOGL program. cgGLSetOptimalOptions is to specify optimal compilation of 
Cg into assembly code. cgCreateProgramFromFile links the vertex program 
with the JOGL program. It causes the vertex program to be compiled at runtime. 

4. Enabling the profile activates the GPU for the specified profile. The vertex 
program Binding the vertex program is to link the GPU with the vertex program, so 
that the corresponding parameters will be sent to the vertex program for execution 
at runtime. 

5. Disabling the profile will return the control to the JOGL program. In the hardware, 
the control and function will return to traditional fixed graphics pipeline. 

In summary, we choose a vertex profile so that specific GPU hardware and Cg vertex 
functions are defined. To initialize Cg, we need to set up a Cg context. After that, we 
link and specify to compile a specific vertex program. After that, we enable the profile 
and bind the vertex program to start GPU vertex program at runtime. The vertex 
program and GPU hardware are disengaged after disabling the profile. 

The vertex program, which trivially scale the 2D coordinates, is as follows. We should 
know that a vertex position is not transformed by the current MODELVIEW or 
PROJECTION matrices by default. Therefore, we have to scale the vertices in order 
for the circle to appear in the display window. 

// Vertex Program: J6_1_VP.cg: update position and color

void main(
in  float4 iPosition : POSITION, 
in  float4 iColor : COLOR, 
out float4 oPosition : POSITION, 
out float4 oColor : COLOR 
) {
   oPosition.xyz = iPosition.xyz/100; 

// division operator on vector
oColor=iColor;

}

There are new concepts in the vertex program. First, “float4” represents a vector type 
of 4 components for color, position, and so on. Then, the semantics of upper case 
POSITION and COLOR after the colon symbols represent actual hardware registers 
and connections. The “in” symbols, which are optional, represent input values (vertex 
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position and color) from fixed graphics pipeline to the vertex shader (through 
registers). The “out” symbols represent output values (vertex position and color) from 
the vertex shader to the graphics pipeline through registers for primitive assembly. 
“oPosition.xyz” represents the first 3 components of “oPosition”. The 4th component 
is “oPosition.w”. In Cg, this is part of the swizzling operation. For example, 
vector1.xyz = vector2.yxz represents assignments of vector1.x = vector2.y, vector1.y 
= vector2.x, and vector1.z = vector2.z. Also, “iPosition.xyz/100” is a division operator 
on the vector. Cg comes with many standard library functions. 

In the vertex shader, the vertex program can manipulate the vertex position and color. 
In our example, we scale the 2D vertex position and return the original vertex color. 

6.3.3 Transformation and Viewing 

Transformation, viewing, and projection on the vertices are now performed in the 
vertex shader. In other words, the MODELVIEW and PROJECTION matrices need to 
be manually used to transform a vertex in the vertex shader. Cg allows retrieving the 
matrix, which is the product of MODEVIEW and PROJECTION matrices. In the 
JOGL program, we specify modelViewProjection to be the parameter name in the 
vertex program and set its value to the current MODELVIEW and PROJECTION 
matrix at runtime for the vertex program. 

/* Cg Example: ModelviewProjection matrix */

import com.sun.opengl.cg.*;
import javax.media.opengl.*;

public class J6_2_Cg extends J6_1_Cg {

static CGparameter modelviewprojection;
  

  public void init(GLAutoDrawable glDrawable) {

    super.init(glDrawable); 
    
    vertexprog=CgGL.cgCreateProgramFromFile(cgcontext, 
CgGL.CG_SOURCE, "J6_2_VP.cg", VERTEXPROFILE, null, null);
    CgGL.cgGLLoadProgram(vertexprog);
    
    // modelview and projection matrix
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    modelviewprojection=CgGL.cgGetNamedParameter(vertexprog, 
"modelViewProjection");
 }
  

  public void display(GLAutoDrawable drawable) {

    CgGL.cgGLEnableProfile(VERTEXPROFILE);
    CgGL.cgGLBindProgram(vertexprog);    
    // retrieve the current modelview and projection matrix 
    CgGL.cgGLSetStateMatrixParameter(modelviewprojection, 

CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX, 
CgGL.CG_GL_MATRIX_IDENTITY);

    drawCircle(drawable); 
     
    CgGL.cgGLDisableProfile(VERTEXPROFILE);
  }

  public static void main(String[] args) {
  J6_2_Cg f = new J6_2_Cg();

    f.setTitle("JOGL J6_2_Cg");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

cgGLSetStateMatrixParameter will retrieve the current MODELVIEW and 
PROJECTION matrix and send it to the vertex program, which transform the vertices 
into normalized coordinates in clip space as in the fixed transformation and viewing 
graphics pipeline, as shown below. 

// J6_2_VP.cg Vertex Program: transformation and viewing 

void main(
float4 iPosition : POSITION, 
float4 iColor : COLOR, 

out float4 position : POSITION, 
out float4 color : COLOR, 
uniform float4x4 modelViewProjection
) {
   position = mul(modelViewProjection, iPosition);
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   color=iColor;
}

In J6_2_VP.cg, “uniform” stands for an allocated value by the JOGL program for the 
vertex program. The value can be changed by the JOGL program, but stays the same 
in the vertex program. “float4x4” represents a 4 by 4 matrix. “mul” will multiply the 
matrices together, which is one of the many built-in standard library functions. 

6.3.4 A Fragment Program 

Similarly, we can set up a pixel shader program (fragment program) as follows. 
Setting up the fragment program environment is similar to setting up the vertex 
program environment. 

/* J6_3_Cg: Setting up Fragment Program */

import com.sun.opengl.cg.*;
import javax.media.opengl.*;

public class J6_3_Cg extends J6_2_Cg {

    CGprogram fragmentprog;
    static final int FRAGMENTPROFILE=CgGL.CG_PROFILE_ARBFP1;

  

  public void init(GLAutoDrawable glDrawable) {

    super.init(glDrawable); 
    
    if(!CgGL.cgGLIsProfileSupported(FRAGMENTPROFILE))
    {
      System.out.println("Fragment profile not supported");
      System.exit(1);
    }
    
    CgGL.cgGLSetOptimalOptions(FRAGMENTPROFILE);
    fragmentprog=CgGL.cgCreateProgramFromFile(cgcontext, 
CgGL.CG_SOURCE, "J6_3_FP.cg", FRAGMENTPROFILE, null, null);
    CgGL.cgGLLoadProgram(fragmentprog);  
     
  }
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  public void display(GLAutoDrawable drawable) {
    CgGL.cgGLEnableProfile(VERTEXPROFILE);
    CgGL.cgGLBindProgram(vertexprog);    
    CgGL.cgGLSetStateMatrixParameter(modelviewprojection, 

CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX, 
CgGL.CG_GL_MATRIX_IDENTITY);

    CgGL.cgGLEnableProfile(FRAGMENTPROFILE);
    CgGL.cgGLBindProgram(fragmentprog);

    drawCircle(drawable); 
    

    CgGL.cgGLDisableProfile(VERTEXPROFILE);
CgGL.cgGLDisableProfile(FRAGMENTPROFILE);

     
  }

  public static void main(String[] args) {
  J6_3_Cg f = new J6_3_Cg();

    f.setTitle("JOGL J6_3_Cg");
    f.setSize(WIDTH, HEIGHT);
    f.setVisible(true);
  }
}

In the fragment program, we modify the color for immediate output. The vertex colors 
of a primitive are interpolated along edges and then horizontal scan-lines for the 
pixels, so each fragment has an input color, which may be different from other 
fragments’ colors. 

// J6_3_FP.cg Fragment Program: color manipulation 
void main(

float4 iColor : COLOR, 
out float4 color : COLOR 
) {
   color.rgb =iColor.rgb/2;
}
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We can use “uniform” variables to pass information from the JOGL program to a Cg 
program. The following program generates random triangle colors in the JOGL 
program. The color is sent to the vertex program through a “uniform” variable. 

/* Cg Example: uniform random colors */

import com.sun.opengl.cg.*;
import javax.media.opengl.*;

public class J6_4_Cg extends J6_3_Cg {

static CGparameter vertexColor;

public void init(GLAutoDrawable glDrawable) {

super.init(glDrawable);

vertexprog = CgGL.cgCreateProgramFromFile(cgcontext, 
CgGL.CG_SOURCE,

"J6_4_VP.cg", VERTEXPROFILE, null, null);
CgGL.cgGLLoadProgram(vertexprog);

modelviewprojection = 
CgGL.cgGetNamedParameter(vertexprog,

"modelViewProjection");
vertexColor = CgGL.cgGetNamedParameter(vertexprog, 

"vColor");

}

public void drawtriangle(float[] v1, float[] v2, float[] 
v3) {

float color[] = new float[4];

// generate a random color and set it to vertexColor
color[0] = (float) Math.random();
color[1] = (float) Math.random();
color[2] = (float) Math.random();
color[3] = 0; 
CgGL.cgSetParameter4fv(vertexColor, color, 0);

gl.glBegin(GL.GL_TRIANGLES);
gl.glVertex3fv(v1, 0);
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gl.glVertex3fv(v2, 0);
gl.glVertex3fv(v3, 0);
gl.glEnd();

}

public static void main(String[] args) {
J6_4_Cg f = new J6_4_Cg();

f.setTitle("JOGL J6_4_Cg");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

// J6_4_VP.cg Vertex Program: uniform vertex color 

void main(
float4 iPosition : POSITION, 
float4 iColor : COLOR, 

out float4 position : POSITION, 
out float4 color : COLOR, 
uniform float4x4 modelViewProjection,
uniform float4 vColor
) {
   position = mul(modelViewProjection, iPosition);
   color=vColor;
}

If “uniform” is not used, then a variable is either a semantic from the system or is 
defined explicitly through assignment as: float4 white = float4(1, 1, 1, 1). For 
example, the following fragment program assigns a constant color: 

// J6_5_FP.cg Fragment Program: white color 

void main(
float4 iColor : COLOR, 

out float4 color : COLOR,
uniform float4 fColor
) {

float4 white = float4(1,1,1,1);
   color =white;



276          6 Vertex Shading, Pixel Shading, and Parallel Processing

}

6.4 Parallel Processing and Cuda

Nvidia’s CUDA (Compute Unified Device Architecture) is a programming language 
for developing multi-core and parallel processing applications on GPUs, specifically 
Nvidia's 8-series GPUs (and their successors in the future). The general architecture is 
shown in Figure 6.2. Before CUDA, accessing the computational power in GPU for 
non-graphics applications is tricky. The GPU could only be programmed through a 
graphics API, so all users have to learn graphics before using it for parallel computing. 
GPU programs can only read (gather) data from DRAM instead of write (scatter) data 
to the DRAM, limiting the application flexibility. CUDA is built to avoid the 
limitations. 

 Fig. 6.2 CUDA software stack
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When programming with CUDA, the GPU is viewed as a compute device capable of 
executing a very high number of threads in parallel. We can copy data between fast 
DRAM memories through optimized API calls and high-performance Direct Memory 
Access (DMA) engines. The details of CUDA is described in nVidia’s CUDA 
Programming Guide. (http://www.nvidia.com/object/cuda_develop.html)

The new GPUs are designed with more transistors devoted to data processing rather 
than data caching and flow control, as schematically shown in Figure 6.3. 

 Fig. 6.3 GPU has more transistors for data processing

CUDA provides general DRAM memory gather and scatter operations, which 
correspond to memory read and write at any location in DRAM similar to be 
on a CPU. CUDA also provides a parallel data cache or on-chip shared mem-
ory that threads can share data, as shown in Figure 6.4. 
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 Fig. 6.4 GPU shared cache memory

Here we only give a short introduction to CUDA. To learn the technical details, 
please refer to http://www.nvidia.com/object/cuda_develop.html. 
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6.5 Review Questions

1. What are the possible default values sent from the JOGL program to the vertex shader? 

2. What are the possible default values sent from the JOGL program to the pixel shader? 

3. What are the values that are calculated in parallel in the vertex shader? 

4. What are the values that are calculated in parallel in the pixel shader? 

5. If we calculate lighting on a vertex shader, what parameters and when these parameters are 
needed to be send to the vertex shader? 

6. What is the main difference between Cg and CUDA? 

6.6 Programming Assignments

1. Please design a fixed point light source and calculate the lighting in the vertex shader for each 
vertex. 

2. Please design a fixed point light source and calculate the lighting in the pixel shader. 



7 
Cg Programming 

Chapter Objectives: 

• Briefly introduce Cg vertex lighting, fragment lighting, texture mapping, and bump 
mapping

7.1 Introduction 

Cg provides parallelism and flexibility in transformation, lighting, and texture 
mapping on vertex and pixel shaders. Specifically, lighting in the traditional fixed 
pipeline is completely replaced by vertex or pixel shader programs, which are more 
flexible and fragment shading can be achieved in real-time with parallel processing. In 
texture mapping, it is now possible to achieve bump mapping and other effects on the 
pixel shader in real time. In this chapter, we discuss some basics in using vertex and 
pixel shaders for lighting and texture mapping in Cg. 

7.2 Per-Vertex Lighting

Lighting in OpenGL is calculated after MODELVIEW transformation automatically. 
However, in GPU programming, all transformation calculations have to be carried out 
manually. Therefore, for fixed lighting, it is simpler to calculate lighting in the world 
space. That is, we calculate lighting before MODELVIEW transformation. This 
requires using the vertex positions before transformation as well. In some existing 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_7, © Springer-Verlag London Limited 2008 
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applications, we cannot assume world space light source positions, because light 
sources can be transformed by the MODELVIEW matrix in the applications. 

If we port an existing program with movable light source transformed by the 
MODELVIEW matrix, we have to transform the light source by the MODELVIEW 
matrix before sending its coordinates to the vertex shader. As an alternative, we can 
send the matrix that transforms the light source to the vertex shader to transform the 
light source in the vertex shader. At the same time, we have to transform the vertices 
and the vertices’ normals in the vertex shader as well. Therefore, we have to send 
three matrices to the vertex shader: the MODELVIEW and PROJECTION matrix that 
transforms the vertex position for primitive assembly, the MODELVIEW matrix that 
transforms the vertex position, and the inverse transpose of the MODELVIEW matrix 
that transforms the vertex normal for lighting calculations: 

static CGparameter 
modelviewprojection, // modelviewProjection matrix
modelview, // modelview matrix
inversetranspose, 
//inverse transpose of the modelview matrix

Finally, we have to implement a lighting model for calculating the final lighting result 
on a vertex. We will explain some technical details below. 

7.2.1 Vertex and Light Source Transformation

After MODELVIEW transformation, a vertex or light source is said to be transformed 
from the object space to the eye space. There are limited number of light sources, so it 
is better to calculate the transformation in the JOGL program. There are many vertices 
with different current matrices. Therefore, it is better to calculate this transformation 
in the vertex shader: 

float4 vPosition = mul(modelView, iPosition); 

We should retrieve the current MODELVIEW matrix in the JOGL program for the 
corresponding objects and send it to the vertex shader at where we specify the 
vertices. That is, before an object is drawn after the last transformation command, we 
should retrieve the current matrix. 
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There are limited number of light sources. Therefore, for a light source we can retrieve 
its transformed position in JOGL program and send the transformed light source 
position to the vertex shader. For example, if the light source is transformed from the 
origin, we can retrieve its transformed position as follows: 

gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM, 0);
sphereC[0] = currM[12];
sphereC[1] = currM[13];
sphereC[2] = currM[14];
CgGL.cgSetParameter3fv(myLightPosition, sphereC, 0);

7.2.2 Vertex Normal Transformation

A vertex normal is transformed by the transpose of the inverse of the current matrix 
that transforms the vertex. It is also named the inverse transpose of the MODELVIEW 
matrix. This can be derived as follows. A plane equation in general form is as follows: 

ax + by + cz + d = 0 (EQ 208)

Given a vertex point P(x, y, z, 1) and a normal N(a, b, c, d) in homogeneous 
coordinates, the plane equation can be represented in matrix multiplication: 

(EQ 209)

where PT is the transpose of P so it is a vertical column. For a MODELVIEW matrix 
M that transforms the point, we have the following equivalent plane equation: 

(EQ 210)

where 

(EQ 211)
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That is, for the transformed vertex point MPT, we have a corresponding transformed 
normal NM-1. Expressing in standard matrix multiplication form, we need to have the 
transpose of N on the right hand side: 

. (EQ 212)

That is, for a MODELVIEW matrix M that transforms the point, the inverse transpose 
of M transforms the corresponding normal. Therefore, whenever we retrieve the 
current matrix for vertex transformation, we should retrieve the inverse transpose of 
the current matrix as well for normal transformation: 

CgGL.cgGLSetStateMatrixParameter(modelview,
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);

CgGL.cgGLSetStateMatrixParameter(inversetranspose,
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_INVERSE_TRANSPOSE);

CgGL.cgGLSetStateMatrixParameter(modelviewprojection,
CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);

7.2.3 OpenGL Lighting Model

Here we discuss a simplified single light source situation. As we have discussed in 
Chapter 3, for a single light source the final vertex color is an integration of all the 
lighting components: 

. (EQ 213)

where

, (EQ 214)

, (EQ 215)
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, (EQ 216)

(EQ 217)

Therefore, we need to send the following parameters to the vertex shader: 

static CGparameter 
myLa, //light source ambient
myLd, //light source diffuse
myLs, //light source specular
myLightPosition, // light source position
myEyePosition, 
myMe, // material emission
myMa, // material ambient
myMd, // material diffuse
myMs, // material specular
myShininess; // material shininess

In the OpenGL lighting model, the vertex position is transformed to the eye space by 
the MODELVIEW matrix: 

float4 vPosition = mul(modelView, iPosition); 
  float3 P = vPosition.xyz;

The light source direction is from the current vertex to the light source position: 

float3 L = normalize(lightPosition - P);

The emission and ambient components are straight forward: 

float3 Ie = Me; 
  float3 Ia = La*Ma; 

The diffuse component is set to zero if the angle between the light source and vertex 
normal is bigger than 90 degree. Again, “max” and “dot” are Cg standard library 
functions: 

float cosNL = max(dot(N, L), 0); 
float3 Id = Md * Ld * cosNL;

Iλd LλdMλd n L•( )=

Iλs LλsMλs
n L V+( )•

L V+
--------------------------⎝ ⎠
⎛ ⎞ shininess=
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For the specular component, the viewpoint direction is from the viewpoint 
(eyePosition) to the vertex position: 

float3 V = normalize(eyePosition - P);
  float3 H = normalize(L + V);

Also, if there is no diffuse component, there should have no specular component as 
well. Otherwise, it may have a trail of specular reflection on certain vertices where 
there is no diffuse reflection already, creating an obvious wrong lighting situation: 

float cosNH = max(dot(N, H), 0); 
  if (cosNL==0) cosNH = 0; // condition in Cg
  float3 Is = Ms * Ls * pow(cosNH, shininess); 

Finally, we have the single lighting model in the vertex shader: 

  oColor.xyz = Ie + Ia + Id + Is;
  oPosition = mul(modelViewProjection, iPosition);

Putting all above together, we have the following JOGL program and its 
corresponding vertex program for vertex lighting. A snapshot of the result is shown in 
Figure 7.1. 
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/*Cg Example: Vertex Program -- vertex lighting */

import com.sun.opengl.cg.*;
import com.sun.opengl.util.GLUT;
import javax.media.opengl.*;

public class J7_1_Cg extends J3_10_Lights {
CGcontext cgcontext;
CGprogram vertexprog;
static CGparameter 
modelviewprojection, // modelviewProjection matrix
modelview, // modelview matrix
inversetranspose, 
//inverse transpose of the modelview matrix
myLa, //light source ambient
myLd, //light source diffuse
myLs, //light source specular
myLightPosition, // light source position
myEyePosition, 
myMe, // material emission
myMa, // material ambient
myMd, // material diffuse
myMs, // material specular

 Fig. 7.1 A vertex shader lighting with a movable light source [See Color Plate 10] 
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myShininess; // material shininess

static final int VERTEXPROFILE = CgGL.CG_PROFILE_ARBVP1;

public void init(GLAutoDrawable glDrawable) {

super.init(glDrawable);

if (!CgGL.cgGLIsProfileSupported(VERTEXPROFILE)) {
System.out.println("Profile not supported");
System.exit(1);

}

cgcontext = CgGL.cgCreateContext();

CgGL.cgGLSetOptimalOptions(VERTEXPROFILE);
vertexprog = CgGL.cgCreateProgramFromFile(cgcontext, 

CgGL.CG_SOURCE,
"J7_1_VP.cg", VERTEXPROFILE, null, null);

CgGL.cgGLLoadProgram(vertexprog);

// matrices: 
modelview = CgGL.cgGetNamedParameter(vertexprog, 

"modelView");
modelviewprojection = 

CgGL.cgGetNamedParameter(vertexprog,
"modelViewProjection");

inversetranspose = CgGL.cgGetNamedParameter(vertexprog, 
"inverseTranspose");

//Light source properties 
myLa = CgGL.cgGetNamedParameter(vertexprog, "La");
myLd = CgGL.cgGetNamedParameter(vertexprog, "Ld");
myLs = CgGL.cgGetNamedParameter(vertexprog, "Ls");
myLightPosition = CgGL.cgGetNamedParameter(vertexprog,

"lightPosition");
myEyePosition = CgGL.cgGetNamedParameter(vertexprog,

"eyePosition");

//Material properties 
myMe = CgGL.cgGetNamedParameter(vertexprog, "Me");
myMa = CgGL.cgGetNamedParameter(vertexprog, "Ma");
myMd = CgGL.cgGetNamedParameter(vertexprog, "Md");
myMs = CgGL.cgGetNamedParameter(vertexprog, "Ms");
myShininess = CgGL.cgGetNamedParameter(vertexprog,

"shininess");

gl.glEnable(GL.GL_LIGHTING);
gl.glEnable(GL.GL_NORMALIZE);



7.2  Per-Vertex Lighting          289

gl.glEnable(GL.GL_LIGHT0);

// set up light source properties
gl.glLightfv(GL.GL_LIGHT0, GL.GL_AMBIENT, blackish, 0);
CgGL.cgSetParameter4fv(myLa, blackish, 0);

gl.glLightfv(GL.GL_LIGHT0, GL.GL_DIFFUSE, white, 0);
CgGL.cgSetParameter4fv(myLd, white, 0);

gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPECULAR, white, 0);
CgGL.cgSetParameter4fv(myLs, white, 0);

}

public void display(GLAutoDrawable drawable) {

CgGL.cgGLEnableProfile(VERTEXPROFILE);
CgGL.cgGLBindProgram(vertexprog);

displayRobot(drawable);

CgGL.cgGLDisableProfile(VERTEXPROFILE);
}

public void displayRobot(GLAutoDrawable drawable) {
myMaterialColor(blackish, yellish, white, black);
super.display(drawable); 

}

public void drawSolar(float E, float e, float M, float m) {

myMaterialColor(blackish, whitish, white, black);

gl.glPushMatrix();
gl.glRotatef(e, 0, 1, 0);
// rotating around the "sun"; proceed angle
gl.glRotatef(tiltAngle, 0, 0, 1); // tilt angle
gl.glTranslatef(0, 1.5f * E, 0);

gl.glPushMatrix();
gl.glTranslatef(0, E, 0);
gl.glScalef(E, E, E);

myMaterialColor(blackish, white, white, black);
drawSphere();
gl.glPopMatrix();

gl.glPushMatrix();
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gl.glScalef(E / 2, 1.5f * E, E / 2);
gl.glRotatef(90, 1, 0, 0); // orient the cone

myMaterialColor(blackish, red, white, black);
drawCone();
gl.glPopMatrix();

gl.glTranslatef(0, E / 2, 0);
gl.glRotatef(m, 0, 1, 0); // 1st moon
gl.glPushMatrix();
gl.glTranslatef(2 * M, 0, 0);
gl.glLineWidth(1);
gl.glScalef(E / 4, E / 4, E / 4);

gl.glLightfv(GL.GL_LIGHT1, GL.GL_POSITION, origin, 0);

// retrieve transformed light source position
gl.glGetFloatv(GL.GL_MODELVIEW_MATRIX, currM, 0);
sphereC[0] = currM[12];
sphereC[1] = currM[13];
sphereC[2] = currM[14];
CgGL.cgSetParameter3fv(myLightPosition, sphereC, 0);

// set up a fixed viewpoint
sphereC[0] = 0;
sphereC[1] = 0;
sphereC[2] = 100;
CgGL.cgSetParameter3fv(myEyePosition, sphereC, 0);

myMaterialColor(whitish, white, white, whitish);
drawSphere();
gl.glPopMatrix();
gl.glPopMatrix();

}

public void myMaterialColor(float myA[], float myD[], float 
myS[],

float myE[]) {

gl.glMaterialfv(GL.GL_FRONT, GL.GL_AMBIENT, myA, 0);
gl.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, myD, 0);
gl.glMaterialfv(GL.GL_FRONT, GL.GL_SPECULAR, myS, 0);
gl.glMaterialfv(GL.GL_FRONT, GL.GL_EMISSION, myE, 0);

// set up material properties
CgGL.cgSetParameter4fv(myMe, myE, 0);
CgGL.cgSetParameter4fv(myMa, myA, 0);
CgGL.cgSetParameter4fv(myMd, myD, 0);
CgGL.cgSetParameter4fv(myMs, myS, 0);
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CgGL.cgSetParameter1f(myShininess, 50);
}

public void drawSphere() {

// retrieve matrices at where vertices are transformed
CgGL.cgGLSetStateMatrixParameter(modelview,

CgGL.CG_GL_MODELVIEW_MATRIX, 
CgGL.CG_GL_MATRIX_IDENTITY);

CgGL.cgGLSetStateMatrixParameter(inversetranspose,
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_INVERSE_TRANSPOSE);

CgGL.cgGLSetStateMatrixParameter(modelviewprojection,
CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);

super.drawSphere();
}

public void drawCylinder() {

// retrieve matrices at where vertices are transformed
CgGL.cgGLSetStateMatrixParameter(modelview,

CgGL.CG_GL_MODELVIEW_MATRIX, 
CgGL.CG_GL_MATRIX_IDENTITY);

CgGL.cgGLSetStateMatrixParameter(inversetranspose,
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_INVERSE_TRANSPOSE);

CgGL.cgGLSetStateMatrixParameter(modelviewprojection,
CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);

super.drawSphere();
}

public void drawCone() {

// retrieve matrices at where vertices are transformed
CgGL.cgGLSetStateMatrixParameter(modelview,

CgGL.CG_GL_MODELVIEW_MATRIX, 
CgGL.CG_GL_MATRIX_IDENTITY);

CgGL.cgGLSetStateMatrixParameter(inversetranspose,
CgGL.CG_GL_MODELVIEW_MATRIX,
CgGL.CG_GL_MATRIX_INVERSE_TRANSPOSE);

CgGL.cgGLSetStateMatrixParameter(modelviewprojection,
CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,
CgGL.CG_GL_MATRIX_IDENTITY);

super.drawCone();
}
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public static void main(String[] args) {
J7_1_Cg f = new J7_1_Cg();

f.setTitle("JOGL J7_1_Cg");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

The corresponding vertex shaderprogram is as follows: 

// J7_1_VP.cg Vertex Program: vertex lighting 

void main(
float4 iPosition: POSITION, 
float4 iNormal    : NORMAL,

out float4 oPosition : POSITION, 
out float4 oColor : COLOR, 
uniform float4x4 modelView,
uniform float4x4 modelViewProjection,
uniform float4x4 inverseTranspose,
uniform float3 La,
uniform float3 Ld,
uniform float3 Ls,
uniform float3 lightPosition,
uniform float3 eyePosition,
uniform float3 Me,
uniform float3 Ma,
uniform float3 Md,
uniform float3 Ms,
uniform float  shininess
) {
  //calculate light source direction
  float4 vPosition = mul(modelView, iPosition); 
  float3 P = vPosition.xyz;
  float3 L = normalize(lightPosition - P);
  
  //calculate vertex normal
  float4 hN = mul(inverseTranspose, iNormal);
  float3 N = normalize(hN.xyz);   
   
  //calculate emission and ambient components
  float3 Ie = Me; 
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  float3 Ia = La*Ma; 
  
  // calculate diffuse component
  float cosNL = max(dot(N, L), 0); 
  float3 Id = Md * Ld * cosNL;
  
  // calculate specular component
  float3 V = normalize(eyePosition - P);
  float3 H = normalize(L + V);
  float cosNH = max(dot(N, H), 0); 
  if (cosNL==0) cosNH = 0; 
  float3 Is = Ms * Ls * pow(cosNH, shininess); 

  // final color assembly and vertex position in clip space
  oColor.xyz = Ie + Ia + Id + Is;
  oPosition = mul(modelViewProjection, iPosition);
}

On top of that, we can see that it is easy to have light source attenuation effect, spot 
light effect, multiple light sources, and other lighting calculations. 

The advantage of GPU lighting is mainly on fragment lighting, which we will 
introduce below. 

7.3 Per-Fragment Lighting 

As we know, the vertex positions and colors calculated in the vertex shader are 
interpolated across a primitive after the primitive assembly. Therefore, the pixel 
shader receives the interpolated values for each pixel. For fragment lighting, we need 
to have the vertex position and normal in the eye space interpolated across a primitive 
as well. This can be achieved by two new semantics TEXCOORD0 and 
TEXCOORD1. The output in the vertex shader to TEXCOORD0 and TEXCOORD1 
are values on the corresponding vertex, which are then interpolated across the 
primitive after primitive assembly and passed on to the pixel shader as input 
TEXCOORD0 and TEXCOORD1, respectively. Therefore, we still calculate vertex 
position and normal transformations into the eye space in the vertex shader, but we 
send them to the pixel shader through TEXCOORD0 and TEXCOOD1 for actual 
lighting calculation: 
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// J7_2_VP.cg Vertex Program: fragment lighting 

void main(
float4 iPosition : POSITION, 
float4 iNormal    : NORMAL,

out float4 oPosition : POSITION, 
out float4 vPosition : TEXCOORD0,
out float4 vNormal : TEXCOORD1,

uniform float4x4 modelView,
uniform float4x4 modelViewProjection,
uniform float4x4 inverseTranspose
) {
  vPosition = mul(modelView, iPosition); 
  vNormal = mul(inverseTranspose, iNormal);
  vNormal.xyz = normalize(vNormal.xyz); 
  oPosition = mul(modelViewProjection, iPosition);
}

Since the lighting is calculated in the pixel shader, we should send all the lighting 
parameters to it: 

myLa = CgGL.cgGetNamedParameter(fragmentprog, "La");
myLd = CgGL.cgGetNamedParameter(fragmentprog, "Ld");
myLs = CgGL.cgGetNamedParameter(fragmentprog, "Ls");
myLightPosition = 

CgGL.cgGetNamedParameter(fragmentprog, "lightPosition");
myEyePosition = CgGL.cgGetNamedParameter(fragmentprog,

"eyePosition");
myMe = CgGL.cgGetNamedParameter(fragmentprog, "Me");
myMa = CgGL.cgGetNamedParameter(fragmentprog, "Ma");
myMd = CgGL.cgGetNamedParameter(fragmentprog, "Md");
myMs = CgGL.cgGetNamedParameter(fragmentprog, "Ms");
myShininess = CgGL.cgGetNamedParameter(fragmentprog,

"shininess");

Lighting calculation in the pixel shader is the same as the calculation in the vertex 
shader in the previous example, except that the position and normal are provided 
already, which are interpolated from the vertex transformation results. 
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// J7_2_VP.cg Fragment Program: fragment lighting 

void main(
float4 iPosition : TEXCOORD0, 
float4 iNormal    : TEXCOORD1,

out float4 oColor : COLOR, 
              uniform float3 La,
              uniform float3 Ld,
              uniform float3 Ls,
              uniform float3 lightPosition,
              uniform float3 eyePosition,
              uniform float3 Me,
              uniform float3 Ma,
              uniform float3 Md,
              uniform float3 Ms,
              uniform float  shininess
) { 

//interpolated position and normal values
  float3 P = iPosition.xyz;
  float3 N = normalize(iNormal.xyz);
  float3 L = normalize(lightPosition - P);

  //calculate emission and ambient components
  float3 Ie = Me; 
  float3 Ia = La*Ma; 
  
  // calculate diffuse component
  float cosNL = max(dot(N, L), 0); 
  float3 Id = Md * Ld * cosNL;
  
  // calculate specular component
  float3 V = normalize(eyePosition - P);
  float3 H = normalize(L + V);
  float cosNH = max(dot(N, H), 0); 
  if (cosNL==0) cosNH = 0; 
  float3 Is = Ms * Ls * pow(cosNH, shininess); 

  oColor.xyz = Ie + Ia + Id + Is;
}

The complete JOGL program is as follows. A snapshot of the result is shown in 
Figure 7.2. You may notice the detailed pixel-level lighting in this example, 
compared to the corresponding vertex-level lighting in Figure 7.1. 
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/*Cg Example: fragment lighting */

import com.sun.opengl.cg.*;
import javax.media.opengl.*;

public class J7_2_Cg extends J7_1_Cg {
    CGprogram fragmentprog;
    static final int FRAGMENTPROFILE=CgGL.CG_PROFILE_ARBFP1;

public void init(GLAutoDrawable glDrawable) {

super.init(glDrawable);

if (!CgGL.cgGLIsProfileSupported(FRAGMENTPROFILE)) {
System.out.println("Fragment profile not 

supported");
System.exit(1);

}

CgGL.cgGLSetOptimalOptions(VERTEXPROFILE);
vertexprog = CgGL.cgCreateProgramFromFile(cgcontext, 

CgGL.CG_SOURCE,
"J7_2_VP.cg", VERTEXPROFILE, null, null);

 Fig. 7.2 A pixel shader lighting with a movable light source [See Color Plate 10]
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CgGL.cgGLLoadProgram(vertexprog);

// matrix transformation in Vertex Shader
modelview = CgGL.cgGetNamedParameter(vertexprog, 

"modelView");
modelviewprojection = 

CgGL.cgGetNamedParameter(vertexprog,
"modelViewProjection");

inversetranspose = CgGL.cgGetNamedParameter(vertexprog, 
"inverseTranspose");

CgGL.cgGLSetOptimalOptions(FRAGMENTPROFILE);
fragmentprog = CgGL.cgCreateProgramFromFile(cgcontext, 

CgGL.CG_SOURCE,
"J7_2_FP.cg", FRAGMENTPROFILE, null, null);

CgGL.cgGLLoadProgram(fragmentprog);

// lighting calculation in Pixel Shader
myLa = CgGL.cgGetNamedParameter(fragmentprog, "La");
myLd = CgGL.cgGetNamedParameter(fragmentprog, "Ld");
myLs = CgGL.cgGetNamedParameter(fragmentprog, "Ls");
myLightPosition = 

CgGL.cgGetNamedParameter(fragmentprog,
"lightPosition");

myEyePosition = CgGL.cgGetNamedParameter(fragmentprog,
"eyePosition");

myMe = CgGL.cgGetNamedParameter(fragmentprog, "Me");
myMa = CgGL.cgGetNamedParameter(fragmentprog, "Ma");
myMd = CgGL.cgGetNamedParameter(fragmentprog, "Md");
myMs = CgGL.cgGetNamedParameter(fragmentprog, "Ms");
myShininess = CgGL.cgGetNamedParameter(fragmentprog,

"shininess");

gl.glEnable(GL.GL_LIGHTING);
gl.glEnable(GL.GL_NORMALIZE);

gl.glEnable(GL.GL_LIGHT0);

gl.glLightfv(GL.GL_LIGHT0, GL.GL_AMBIENT, blackish, 0);
CgGL.cgSetParameter4fv(myLa, blackish,0);

gl.glLightfv(GL.GL_LIGHT0, GL.GL_DIFFUSE, white, 0);
CgGL.cgSetParameter4fv(myLd, white, 0);

gl.glLightfv(GL.GL_LIGHT0, GL.GL_SPECULAR, white, 0);
CgGL.cgSetParameter4fv(myLs, white, 0);

}

public void display(GLAutoDrawable drawable) {
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CgGL.cgGLEnableProfile(VERTEXPROFILE);
CgGL.cgGLBindProgram(vertexprog);
CgGL.cgGLEnableProfile(FRAGMENTPROFILE);
CgGL.cgGLBindProgram(fragmentprog);

displayRobot(drawable);

CgGL.cgGLDisableProfile(VERTEXPROFILE);
CgGL.cgGLDisableProfile(FRAGMENTPROFILE);

}

public static void main(String[] args) {
J7_2_Cg f = new J7_2_Cg();

f.setTitle("JOGL J7_2_Cg");
f.setSize(WIDTH, HEIGHT);
f.setVisible(true);

}
}

7.4 Per-Fragment Texture Mapping

7.4.1 Texture Coordinates

A vertex’s texture coordinates are specified at each vertex, which are sent to the vertex 
shader through semantics TEXCOORD0. This is default similar to the vertex position 
and color. Unlike vertex position, which needs to be transformed by the current 
matrices, texture coordinates are fixed values at the vertices. 

We can then pass the texture coordinates to the pixel shader as the vertex position and 
normal through a TEXCOORD semantics. For example, we can send it through 
TEXCOORD2, which will interpolate the texture coordinates for the pixels 
(fragments) across the corresponding primitive at the primitive assembly stage. 

// J7_3_VP.cg Vertex Program: fragment texture mapping  

void main(
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float4 iPosition : POSITION, 
float4 iNormal    : NORMAL,
float2 iTexCoord : TEXCOORD0,// input texture coord. 

out float4 oPosition : POSITION, 
out float4 vPosition : TEXCOORD0,
out float4 vNormal : TEXCOORD1,
out float2 oTexCoord : TEXCOORD2,// output to pixel shader

uniform float4x4 modelView,
uniform float4x4 modelViewProjection,
uniform float4x4 inverseTranspose
) {
  vPosition = mul(modelView, iPosition); 
  vNormal = mul(inverseTranspose, iNormal);
  vNormal.xyz = normalize(vNormal.xyz); 
  oTexCoord = iTexCoord; 
  oPosition = mul(modelViewProjection, iPosition);
}

7.4.2 Texture Objects

In the JOGL program, the current texture object (through glBindTexture) needs to be 
sent to the Pixel Shader for texel retrieval. The command to do so is: 

gl.glBindTexture(GL.GL_TEXTURE_2D, EARTH_TEX[0]);
CgGL.cgGLSetTextureParameter(imgtexure, EARTH_TEX[0]);
CgGL.cgGLEnableTextureParameter(imgtexure);

where “imgtexture” is a CGparameter: 

static CGparameter imgtexure; // texture object name

// texture object name for Pixel Shader
imgtexure = CgGL.cgGetNamedParameter(fragmentprog,

"imgTexure");

In the Fragment program, texture is retrieved from library function tex2D: 

// retrieve texture from imgTexture at iTexCoord
  float4 texColor = tex2D(imgTexure, iTexCoord); 
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Here “imgTexture” needs to be a “uniform sampler2D” type with semantics TEX0: 

uniform sampler2D imgTexure: TEX0, 

which means that it is a 2D texture for texel retrieval. There are 1D, 3D, CUBE, and 
other type of built-in sampling application types.

7.4.3 Texture and Lighting Blending

Cg library function has a linear interpolation function “lerp”, which interpolates two 
values according to the specified blending factor. For example, 

oColor = lerp(texColor, oColor, α); 

is equivalent to: 

oColor = (1 - α)*texColor + α*oColor; 

Therefore, we can calculate a fragment lighting color and blend it with the fragment 
texel color. The complete Pixel Shader program that calculates lighting and texture 
blending is as follows. A snapshot of the result is shown in Figure 7.3. 
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// J7_3_VP.cg Fragment Program: fragment texture mapping with lighting 

void main(
float4 iPosition: TEXCOORD0, 
float4 iNormal    : TEXCOORD1,
float2 iTexCoord: TEXCOORD2, 

out float4 oColor : COLOR, 
uniform sampler2D imgTexure: TEX0, //2D texture object 
              uniform float3 La,
              uniform float3 Ld,
              uniform float3 Ls,
              uniform float3 lightPosition,
              uniform float3 eyePosition,
              uniform float3 Me,
              uniform float3 Ma,
              uniform float3 Md,
              uniform float3 Ms,
              uniform float  shininess
) {  
  float3 P = iPosition.xyz;

 Fig. 7.3 A pixel shader texture mapping and lighting [See Color Plate 10]
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  float3 N = normalize(iNormal.xyz);
  float3 L = normalize(lightPosition - P);

  //calculate emission and ambient components
  float3 Ie = Me; 
  float3 Ia = La*Ma; 
  
  // calculate diffuse component
  float cosNL = max(dot(N, L), 0); 
  float3 Id = Md * Ld * cosNL;
  
  // calculate specular component
  float3 V = normalize(eyePosition - P);
  float3 H = normalize(L + V);
  float cosNH = max(dot(N, H), 0); 
  if (cosNL==0) cosNH = 0; 
  float3 Is = Ms * Ls * pow(cosNH, shininess); 

  oColor.xyz = Ie + Ia + Id + Is;
  
  // retrieve texture from imgTexture at iTexCoord
  float4 texColor = tex2D(imgTexure, iTexCoord); 
  
  // blending of texColor with oColor
  oColor = lerp(texColor, oColor, 0.6); 
}

7.5 Per-Fragment Bump Mapping

In bump mapping, we can send the bump map, which is an array of normal vectors, as 
texture to the pixel shader. The bump map is also called a normal map. If we want to 
have texture mapping as well, we need to send the bump map object and the texture 
object to the pixel shader as well. 

7.5.1 Bump Map Texture Coordinates

The bump map’s coordinates correspond to the texture coordinates. As we have 
discussed already in texture mapping, a vertex’s texture coordinates are sent to the 
vertex shader through semantics TEXCOORD0. We can then pass the texture 
coordinates to the pixel shader through a TEXCOORD semantics, which will 
interpolate the texture coordinates for the fragments across the corresponding 
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primitive after the primitive assembly stage. That is, the texture coordinates will serve 
as indices to both of the bump map and the texture map. 

7.5.2 Bump Map Object

In the JOGL program, the current bump map object (through glBindTexture) needs to 
be sent to the pixel shader for normal retrieval. First, we need to initialize the bump 
map as a texture: 

void initTexture() {

// initialize bumpmap texture obj
    gl.glGenTextures(1, IntBuffer.wrap(NORMAL_TEX));
    gl.glBindTexture(GL.GL_TEXTURE_2D, NORMAL_TEX[0]);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MIN_FILTER,
                       GL.GL_LINEAR);
    gl.glTexParameteri(GL.GL_TEXTURE_2D,
                       GL.GL_TEXTURE_MAG_FILTER,
                       GL.GL_LINEAR);
    readImage("NORMAL.jpg");

    gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGB8,
 imgW, imgH, 0, GL.GL_BGR, GL.GL_UNSIGNED_BYTE, 

ByteBuffer.wrap(img));
super.initTexture(); 

}

Then, we need to bind the bump map texture name: 

CgGL.cgGLSetTextureParameter(normalmap, NORMAL_TEX[0]);
  CgGL.cgGLEnableTextureParameter(normalmap);

where “normalmap” is a CGparameter: 

static CGparameter normalmap; // bump map object name

// texture object name for Pixel Shader
normalmap = CgGL.cgGetNamedParameter(fragmentprog,

"normalMap");

In the fragment program, bump map is retrieved from library function tex2D: 
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// retrieve bump map vector from normalMap at iTexCoord
  float4 texColor = tex2D(normalMap, iTexCoord); 

For a normalized normal n, its x, y, z values are negative one to positive one. So we 
can add one and then divide the result by two to store the values (RGB = (n+1)/2) in 
bump map and multiply by two and subtract one when we retrieve it (n = RGB*2 -1): 

float4 texColor1 = tex2D(normalMap, iTexCoord); 
float3  N = texColor1.xzy*2 - 1; 

7.5.3 Normal Calculations

We need to transform the normals from the world space (global coordinates) into the 
texture space (tangent space), because we are attaching the normal map tangent to the 
surface at the point of lighting calculation. First, we define an arbitrary vector T. T can 
be aligned with the texture coordinates across the vertices as follows: 

float4 T = float4(iTexCoord.x, iTexCoord.y, 0, 0); 

Because the normal is transformed to eye space, we need to transform T into eye space 
as well: 

float4 N = mul(inverseTranspose, iNormal);
float4 tN = mul(inverseTranspose, T);

Therefore, by two cross products we can find TNB as follows: 

nNormal = N.xyz; 
tNormal = tN.xyz;  
bNormal = cross(tNormal, nNormal); 
tNormal = cross(nNormal, bNormal); 
tNormal = normalize(tNormal); 
nNormal = normalize(nNormal); 
bNormal = normalize(bNormal); 

The vertex program in the vertex shader includes calculating vertex position, normal, 
and TNB vectors and transforming them into eye space. Also, the texture coordinates 
are passed along as well. These values will be interpolated in the primitive and send to 
the pixel shader. The complete vertex program is as follows: 
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// J7_4_VP.cg Vertex Program: bump mapping  

void main(
float4 iPosition : POSITION, 
float4 iNormal    : NORMAL,
float2 iTexCoord : TEXCOORD0,

out float4 oPosition : POSITION, 
out float2 oTexCoord : TEXCOORD0,
out float4 vPosition : TEXCOORD1,
out float3 nNormal      : TEXCOORD2,
out float3 tNormal      : TEXCOORD3,
out float3 bNormal      : TEXCOORD4,

uniform float4x4 modelView,
uniform float4x4 modelViewProjection,
uniform float4x4 inverseTranspose
) {
  vPosition = mul(modelView, iPosition); 
  float4 T = float4(iTexCoord.x, iTexCoord.y, 0, 0); 
  float4 tN = mul(inverseTranspose, T);
  float4 N = mul(inverseTranspose, iNormal);
 
 nNormal = N.xyz; 
 tNormal = tN.xyz;  
 bNormal = cross(tNormal, nNormal); 
 tNormal = cross(nNormal, bNormal); 
 tNormal = normalize(tNormal); 
 nNormal = normalize(nNormal);  
 bNormal = normalize(bNormal); 
 
  oTexCoord = iTexCoord; 
  oPosition = mul(modelViewProjection, iPosition);
}

7.5.4 Fragment Lighting Calculations

In the Pixel Shader, we need to retrieve pixel position and normal. At the same time, 
we need to transform the light source direction to the tangent space. Transforming the 
light source direction into tangent space can be done by the following coordinates 
transformation: 

float3 Lg = normalize(lightPosition - P);
  float3 L = float3(dot(tNormal, Lg), 

dot(nNormal, Lg),dot(bNormal, Lg)) ; 
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The complete fragment program is as follows. A snapshot of the result is shown in 
Figure 7.4. 

// J7_4_FP.cg Fragment Program: fragment bump mapping 

void main(
float2 iTexCoord : TEXCOORD0, 
float4 iPosition : TEXCOORD1, 
float3 nNormal    : TEXCOORD2,
float3 tNormal  : TEXCOORD3,
float3 bNormal    : TEXCOORD4,

out float4 oColor : COLOR, 
uniform sampler2D imgTexture : TEX0, 
uniform sampler2D normalMap : TEX0, 
              uniform float3 La,
              uniform float3 Ld,
              uniform float3 Ls,
              uniform float3 lightPosition,

 Fig. 7.4 A pixel shader bump mapping, texture mapping, and lighting [See Color 
Plate 10]
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              uniform float3 eyePosition,
              uniform float3 Me,
              uniform float3 Ma,
              uniform float3 Md,
              uniform float3 Ms,
              uniform float  shininess
) {  
   // retrieve bump map vector at iTexCoord
   float4 texColor1 = tex2D(normalMap, iTexCoord); 
   float4 texColor2 = tex2D(imgTexture, iTexCoord); 
 
   // retrieve pixel position and normal
   float3 N = texColor1.xzy*2 - 1; 
   float3 P = iPosition.xyz;

  // transform light source direction to tangent space 
  float3 Lg = normalize(lightPosition - P);
  float3 L = float3(dot(tNormal, Lg),

dot(nNormal, Lg),dot(bNormal, Lg)) ; 
 
  // calculate emission and ambient components
  float3 Ie = Me; 
  float3 Ia = La*Ma; 
  
  // calculate diffuse component
  float cosNL = max(dot(N, L), 0); 
  float3 Id = Md * Ld * cosNL;
  
  // calculate specular component
  float3 V = normalize(eyePosition - P);
  float3 H = normalize(L + V);
  float cosNH = max(dot(N, H), 0); 
  if (cosNL==0) cosNH = 0; 
  float3 Is = Ms * Ls * pow(cosNH, shininess); 

  oColor.xyz = Ie + Ia + Id + Is;
  oColor = lerp(oColor, texColor2, 0.5); 
}
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7.6 Review Questions

1. If we can read texture in the vertex shader, we can achieve displacement mapping by providing a 
height map as a texture. Please describe how to achieve displacement mapping and find if there are 
graphics cards that allow texture access on the vertex shader. 

2. In the pixel shader, we can have displacement of pixel positions for lighting calculation. This will 
allow self-shadow and other surface details, including texture coordinates retrieval. Please consider 
what can be used for pixel position displacement and what can be changed due to the pixel position 
displacement. 

7.7 Programming Assignments

1. Please implement a displacement mapping in the vertex shader. 

2. Please implement a cubic mapping in the pixel shader. 

3. Please implement parallax or relief mapping in the fragment shader. 



8 
Programming in Java3D

Chapter Objectives: 

• Briefly introduce scene graph structure and Java3D programming

8.1 Introduction

Java3D is another API by Sun Microsystems that provides 3D graphics capabilities to 
Java applications. It is built on OpenGL and therefore has higher level of abstractions 
and architectures than OpenGL/JOGL. Java3D programmers work with high-level 
constructs, called scene graphs, for creating and manipulating 3D geometric objects. 
The details of rendering are handled automatically. Java3D programs can be 
stand-alone applications as well as applets in browsers that have been extended to 
support Java3D. A comprehensive tutorial, advanced books, and other information are 
available at http://java.sun.com/products/java-media/3D/collateral/

In this chapter, we provide a shortcut to scene graph structure and Java3D 
programming. 

8.2 Scene Graph

A 3D virtual environment, or universe, is constructed by graphics models and their 
relations. A group of graphics models and their relations can be represented by an 
abstract tree structure, called scene graph, where nodes are models and link arcs 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_8, © Springer-Verlag London Limited 2008 
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represent relations. A Java3D virtual universe is created from a scene graph, as shown 
in Fig. 8.1. 

The nodes in the scene graph are the objects or the instances of Java3D classes. The 
arcs represent the two kinds of relationships between nodes: parent-child or reference. 
A Group node can have any number of children but only one parent. A Leaf node has 
no children. A Reference associates a NodeComponent with a Leaf node. A 
NodeComponent specifies the geometry, appearance, texture, or material properties of 

Virtual Universe

Locale

Group node

Leaf node

NodeComponent

Other objects

Parent-child link

Reference

BGBG

TGS

BranchGroup

TransformGroupShape3D

View Canvas3D Screen3D

physical body physical environment

 Fig. 8.1 Scene graph and its notations

Appearance Geometry
ViewPlatform
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a Leaf node (Shape3D object). A NodeComponent is not part of the scene graph tree 
and may be referenced by several Leaf nodes. All other objects following reference 
links are not part of the scene graph tree either. All nodes in the scene graph are 
accessible following solid arcs from the Locale object, which is the root. The arcs of a 
tree have no cycles, therefore there is only one path from the root to a leaf, which is 
called a scene graph path. Each scene graph path completely specifies the state 
information of its leaf. That is, the transformations and visual attributes of a leaf 
object depend only on its scene graph path. The scene graph, NodeComponents, 
references, and other objects all together form a virtual universe. 

In Fig. 8.1, there are two scene graph branches. The branch on the right is for setting 
up viewing transformations, which is mostly the same for many different applications 
and is called a view branch. The branch on the left is for building up 3D objects and 
their attributes and relations in the virtual universe. Sometimes we call the object 
branch the scene graph and ignore the view branch, because the object branch is the 
major part in building and manipulating a virtual universe. 

8.2.1 Setting Up Working Environment 

To install and run Java3D, we need to install Java Development Kit first. In addition, a 
Java IDE is also preferred to speed up coding. At the beginning of this book, we have 
installed Java, JOGL, and Eclipse or JBuilder IDE. Now, we need to download and 
install Java3D SDK from:  
http://java.sun.com/products/java-media/3D/download.html

For Windows platform, we should download the Java3D for Windows (OpenGL 
Version) SDK for the JDK (includes Runtime). We should install Java3D in the JDK 
that our IDE uses. If necessary, we can install multiple times into different version of 
JDKs that we use for different IDEs, such as JBuilder, which comes with its own JDK. 
Once we install the downloaded software, we are ready to edit and execute our sample 
programs. 

After downloading Java3D SDK, you may download Java3D API specification as 
well, which includes online references to all Java3D objects as well as basic concepts 
and example programs. After going through this introduction, you may extend your 
knowledge on Java3D and use the online material to implement many more 
applications quickly. 
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Example Java3D_0.java in the following constructs a 
simple virtual universe as in Fig. 8.1 except that, for 
simplicity purposes, it uses a ColorCube object to 
replace the Shape3D leaf object and its appearance 
and geometry NodeComponents. ColorCube is 
designed to make a testbed easy. The result is as 
shown in Fig. 8.2. Here we only see the front face of 
the ColorCube object. 

/* draw a cube in Java3D topdown approach */

import java.awt.*;
import java.awt.event.*;
import javax.media.j3d.*;
import com.sun.j3d.utils.geometry.ColorCube;
import javax.vecmath.Vector3f;
import com.sun.j3d.utils.universe.*; 

public class Java3D_0 extends Frame {

  Java3D_0() {

//1. Create a drawing area canvas3D 
setLayout(new BorderLayout());
GraphicsConfiguration gc =
   SimpleUniverse.getPreferredConfiguration();
Canvas3D canvas3D = new Canvas3D(gc);
add(canvas3D);

// Quite window with disposal
addWindowListener(new WindowAdapter() 
  {public void windowClosing(WindowEvent e) 

 {dispose(); System.exit(0);}  
  }
);

//2. Construct ViewBranch topdown 
BranchGroup viewBG = createVB(canvas3D);

 Fig. 8.2 Draw a color cube 
[See Color Plate 11]
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//3. Construct sceneGraph: a color cube
BranchGroup objBG = new BranchGroup();
objBG.addChild(new ColorCube(0.2));

//4. Go live under locale in the virtualUniverse
VirtualUniverse universe = new VirtualUniverse();
Locale locale = new Locale(universe); 
locale.addBranchGraph(viewBG);
locale.addBranchGraph(objBG);

  }

  BranchGroup createVB(Canvas3D canvas3D) {

//5. Initialize view branch 
BranchGroup viewBG = new BranchGroup();
TransformGroup viewTG = new TransformGroup();
ViewPlatform myViewPlatform = new ViewPlatform();
viewBG.addChild(viewTG);
viewTG.addChild(myViewPlatform);

//6. Move the view branch to view object at origin
Vector3f transV = new Vector3f(0f, 0f, 2.4f);
Transform3D translate = new Transform3D();
translate.setTranslation(transV);
viewTG.setTransform(translate);

//7. Construct view for myViewPlatform
View view = new View();
view.addCanvas3D(canvas3D);
view.setPhysicalBody(new PhysicalBody());
view.setPhysicalEnvironment(new PhysicalEnvironment());
view.attachViewPlatform(myViewPlatform);

return (viewBG);
  }

  
  public static void main(String args[]) {

Java3D_0 frame = new Java3D_0();

frame.setSize(500,500); 
frame.setVisible(true);

  }
}
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8.2.2 Drawing a ColorCube Object

The above Example Java3D_0.java is a Java application that draws a colored cube 
using Java3D. Our future examples are built on top of this first example. Here we 
explain the exmaple in detail. We only need to understand the following: 

1. We create canvas3D that corresponds to the default display device with a Screen3D 
object implied. 

2. With canvas3D, we construct the view branch under the BranchGroup node, 
viewBG, which will be a child under locale. The detail of creating the view branch 
will be discussed later in this section. 

3. We create the object branch under objBG, which is a ColorCube object under the 
group node. 

4. We create universe and its associated locale, and add the view branch and the 
object branch to form the virtual universe completely. Whenever a branch is 
attached to the Locale object, all the branch’s nodes are considered to be live. 
When an object is live, it’s parameters cannot be changed unless through special 
means that we will discuss later. 

5. Here in the subroutine we initialize the view branch. Under the BranchGroup 
viewBG, we have TransformGroup viewTG. Under viewTG, we have 
myViewPlatform, which a View object (view) corresponding to canvas3D will be 
attached to. 

6. The purpose of viewTG is to move the viewpoint along positive z axis to look at 
the origin in perspective projection. Here we translate myViewPlatform along 
positive z axis, which sets the viewpoint to be centered at (0, 0, 2.41) looking in the 
negative z direction toward the origin, and the view plane at the origin is a square 
from (-1, -1, 0) to (1, 1, 0).

7. We construct the View object view and attach it with myViewPlatform. The View 
object contains all default parameters needed in rendering a 3D scene from one 
viewpoint as specified above. The technical details are ignored in this introduction. 
The PhysicalBody object contains a specification of the user's head. The 
PhysicalEnvironment object is used to set up input devices (sensors) for 
head-tracking and other uses in immersive virtual environment.
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In summary, we construct a virtual universe as shown in Fig. 8.1. The object branch 
specifies a ColorCube object from (-0.2, -0.2, -0.2) to (0.2, 0.2, 0.2). The view branch 
specifies a perspective projection with a viewpoint at (0, 0, 2.41) and view plane cross 
section at the origin from (-1, -1, 0) to (1, 1, 0). Each scene graph path, as we can see 
now, is like a series of OpenGL commands for setting up viewing or drawing a
hierachical scene. The details of rendering are handled automatically by the Java3D 
runtime system. The Java3D renderer is capable of optimizing and rendering in 
parallel. Therefore, in Java3D, we build a virtual universe with hierachical structure, 
which is composed of nodes or instances of Java3D classes, in a scene graph tree 
structure. 

8.3 The SimpleUniverse

Because the view branch is mostly the same for many different applications, Java3D 
provides a SimpleUniverse class that can be used to construct the view branch 
automatically, as shown in Fig. 8.3. This way we can simplify the code dramatically 
and focus on generating object scene graph. However, we lost the flexibility of 
modifying and controlling View, ViewPlatform, PhysicalBody, and 
PhysicalEnvironment directly, which are useful under special applications. Here we 
ignore them for simplicity purposes, because we can use SimpleUniverse to construct 
a testbed with all default components in a virtual universe. We focus our attention on 
generating a scene graph with more contents and controls here. 

Example Java3D_1_Hello.java generates the same result as Java3D_0.java, as shown 
in Fig. 8.2 below. The difference is that here it uses the SimpleUniverse object 
simpleU to construct a virtual universe, including the Locale object and the view 
branch, which simplifies the code significantly. 

/*draw a cube in Java3D topdown approach */

import java.awt.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import java.awt.event.*;
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// renders a single cube.
public class Java3D_1_Hello extends Frame {

  Java3D_1_Hello() {

    //1. Create a drawing area canvas3D
    setLayout(new BorderLayout());

    GraphicsConfiguration gc =
        SimpleUniverse.getPreferredConfiguration();

    Canvas3D canvas3D = new Canvas3D(gc);
    add(canvas3D);

    //2. Create a simple universe with standard view branch
    SimpleUniverse simpleU = new SimpleUniverse(canvas3D);

    //3. Move the ViewPlatform back to view object at origin
simpleU.getViewingPlatform().setNominalViewingTransform();

    //4. Construct sceneGraph: object branch group
    BranchGroup objBG = createSG();

    //5. Go live under simpleUniverse
    simpleU.addBranchGraph(objBG);

    // exit windows with proper disposal
    addWindowListener(new WindowAdapter() {
      public void windowClosing(WindowEvent e) {
        dispose();
        System.exit(0);
      }
    }
    );
  }

  BranchGroup createSG() {
    BranchGroup objBG = new BranchGroup();

    objBG.addChild(new ColorCube(0.2));
    return (objBG);
  }

  public static void main(String[] args) {

    Java3D_1_Hello frame = new Java3D_1_Hello();
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    frame.setSize(500, 500);
    frame.setVisible(true);
  }
}

 Fig. 8.3 A SimpleUniverse generates a view branch automatically

In the above, the method setNominalViewingTransform() sets the viewpoint at 2.41 
meters. The default viewing volume and projection are the same as the previous 
example. 
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8.4 Transformation

In the following, we add a
TransformGroup node as shown 
in Fig. 8.4a, which is named 
objTransform in the program.
Here the transformation includes 
a rotation around y axis, and then 
a translation along x axis. The 
result is shown in Fig. 8.4b. As 
we mentioned earlier, a scene 
graph path determines the leaf 
object’s state completely. Here, 
the ColorCube object will be 
transformed by the matrix built in 
objTransform and then sent to the 
display. 

BranchGroup objects can be 
compiled, as the method calls 
objRoot.compile() in Example Java3D_2_Transform.java below. Compiling a 
BranchGroup object converts the object and its descendants to a more efficient form 
for the Java3D renderer. Compiling is recommended as the last step before making it 
live at the highest level of a BranchGroup object, which is right under the Locale 
object. 

/* draw a cube with transformation */

import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import javax.vecmath.Vector3f;

public class Java3D_2_Transform extends Java3D_1_Hello {

  // Construct sceneGraph: object branch group
  BranchGroup createSG() {

    // translate object has composite transformation matrix
    Transform3D rotate = new Transform3D();

 Fig. 8.4 A transformation group node [See 
Color Plate 11]
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    Transform3D translate = new Transform3D();
    rotate.rotY(Math.PI/8);

    // translate object actually saves a matrix expression
    Vector3f transV = new Vector3f(0.4f, 0f, 0f);
    translate.setTranslation(transV);

    translate.mul(rotate); // final matrix: T*R

    TransformGroup objTransform = new TransformGroup(
        translate);
    objTransform.addChild(new ColorCube(0.2));

    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objTransform);

    // Let Java3D perform optimizations on this scene graph.
    objRoot.compile();

    return objRoot;
  } // end of CreateSceneGraph method

  public static void main(String[] args) {

    Java3D_2_Transform frame = new Java3D_2_Transform();

    frame.setSize(999, 999);
    frame.setVisible(true);
  }
}

8.5 Multiple Scene Graph Branches

In the following, we add another BranchGroup, as shown in Fig. 8.5a. The result is 
shown in Fig. 8.5b. Here a ColorCube object is rotated around y axis, and then 
translated along positive x axis, while another ColorCube object is rotated around x
axis, and then translated along negative x axis. The code is shown in Example 
Java3D_3_Multiple.java. 
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 Fig. 8.5 Multiple scene graph branches [See Color Plate 11]

As we mentioned before, a valid scene graph does not form a cycle, and each scene 
graph path determines the state of its leaf object completely. To draw two ColorCube 
objects exactly as in Fig. 8.5, we can form many different structures. For example, we 
can have the two TransformGroup nodes go directly under the root BranchGroup 
node; we can have the two BranchGroup nodes go directly under the Locale object, so 
each node is an independent root. A good hierachical structure design will be easier 
for understanding and implementation. 

/* draw two cubes with transformations */

import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import javax.vecmath.Vector3f;

public class Java3D_3_Multiple extends Java3D_2_Transform {

  BranchGroup createSG() {
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    //1. construct two scene graphs
    BranchGroup objRoot1 = createSG1();
    BranchGroup objRoot2 = createSG2();

    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objRoot1);
    objRoot.addChild(objRoot2);

    return objRoot;
  }

  BranchGroup createSG2() {

    Transform3D rotate = new Transform3D();
    Transform3D translate = new Transform3D();
    rotate.rotY(Math.PI/8);

    //2. translate and rotate matrices are mult. together
    Vector3f transV = new Vector3f(0.4f, 0f, 0f);
    translate.setTranslation(transV);
    translate.mul(rotate);

    TransformGroup objTransform = new TransformGroup(
        translate);
    objTransform.addChild(new ColorCube(0.2));

    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objTransform);
    return objRoot;
  }

  BranchGroup createSG1() {

    Transform3D rotate = new Transform3D();
    Transform3D translate = new Transform3D();
    rotate.rotX(Math.PI/8);

    Vector3f transV = new Vector3f(-0.4f, 0f, 0f);
    translate.setTranslation(transV);
    translate.mul(rotate);

    TransformGroup objTransform = new TransformGroup(
        translate);
    objTransform.addChild(new ColorCube(0.2));

    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objTransform);
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    return objRoot;
  }

  public static void main(String[] args) {
    Java3D_3_Multiple frame = new Java3D_3_Multiple();
    frame.setSize(999, 999);
    frame.setVisible(true);
  }
}

8.6 Animation

Once a node is made live or compiled, the 
Java3D rendering system converts it to a more 
efficient internal representation so its values are 
fixed. In order to create animations, we need the 
capability to change values in a scene graph 
object after it becomes live. The list of values 
that can be modified is called the capabilities of 
the object. Each node has a set of capability bits. 
The values of these bits determine what 
capabilities exist for the node. The capabilities 
must be set before the node is either compiled or 
gone live.

As shown in Fig. 8.6, a behavior node is in 
reference to the transformation group node to 
modify its transformation and is added as a leaf 
child to it. Here the default transformation being 
modified is rotation around y axis by an 
interpolation of repeating values in an infinite 
loop. Example Java3D_4_Animate.java creates 
a scene graph as shown in Fig. 8.6, and an 
animation sequence is shown in Fig. 8.7. 

 Fig. 8.6 A behavior object that 
modifies a transformation 
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 Fig. 8.7 Animate a color cube [See Color Plate 11]

/* draw a cube with animation */

import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import javax.vecmath.Vector3f;

public class Java3D_4_Animate extends Java3D_3_Multiple {

  BranchGroup createSG1() {

    Transform3D rotate = new Transform3D();
    Transform3D translate = new Transform3D();

    rotate.rotX(Math.PI/8);

    Vector3f transV = new Vector3f(-0.4f, 0f, 0f);
    translate.setTranslation(transV);

    translate.mul(rotate);

    TransformGroup objTransform = new TransformGroup(
        translate);

    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objTransform);

    //1. Node closer to leaf object takes effect first
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    // Here objSpin transformation happens first, 
    //   then objTransform
    TransformGroup objSpin = new TransformGroup();
    objTransform.addChild(objSpin);
    objSpin.addChild(new ColorCube(0.2));

    //2. setCapability allows live change, and the default
    //   change is rot on Y axis
    objSpin.setCapability(TransformGroup.
                          ALLOW_TRANSFORM_WRITE);

    //3. Alpha provides a variable value of 0-1 for 
    // the angle of rotation; -1 means infinite loop
    // 5000 means in 5 second alpha goes from 0 to 1
    Alpha a = new Alpha(-1, 5000);
    
    //4. rotator is a behavior node in reference to ojbSpin
    // i.e., rotator links ojbSpin to alpha for rotation
    RotationInterpolator rotator = new RotationInterpolator(
        a, objSpin);

    //5. Bounding sphere specifies a region in which a 
    // behavior is active. Here a sphere centered at the 
    // origin with radius of 100 is created.
    BoundingSphere bounds = new BoundingSphere();
    rotator.setSchedulingBounds(bounds);
    
    //6. rotator (behavior node) is child of objSpin (TG)
    objSpin.addChild(rotator);

    return objRoot;
  }

  public static void main(String[] args) {

    Java3D_4_Animate frame = new Java3D_4_Animate();

    frame.setSize(999, 999);
    frame.setVisible(true);
  }

}

Example Java3D_4_Animate.java animates a colored cube in Java3D. Here we 
explain some details in the code: 
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1. We create two transformation nodes, objTransform and objSpin, and objSpin is a 
child of objTransform. As in OpenGL, because objSpin is closer to the colored 
cube, it takes effect first. As we will see, objSpin is a dynamic rotation around y 
axis. After that, objTransform will rotate the colored cube on x axis and then 
translate it along negative x axis. The result is an animation and a snapshot is 
shown in Fig. 8.7. 

2. Here we setCapability so we can modify the transformation matrix after objSpin
becomes live. The default that we can write into the matrix is a rotation around y
axis. 

3. Here an Alpha object a is used to create a time varying value of 0 to 1 for 
controlling the angle of rotation. In Alpha a = new Alpha(-1, 5000), -1 means 
infinite loop and 5000 means in 5 seconds alpha goes from 0 to 1. 

4. A RotationInterpolator object rotator is a behavior object that links a with 
objectSpin to change objSpin to a specific angle according to the current value of a. 
Because the value of a changes over time, the rotation changes as well. The default 
value of RotationInterpolator object is rotating around y axis from 0 to 360 
degrees, and the colored cube will rotate 360 degrees every 5 second. You can 
check out RotationInterpolator Class to find out how to set up rotation around other 
axes. 

5. Because behaviors are time consuming, for efficiency purposes, Java3D allows 
programmers to specify a spatial boundary, called a scheduling region, for a 
behavior to function. A behavior is not active unless the shape object is inside or 
intersects a Behavior object’s scheduling region. Here Bounding sphere specifies a 
region in which a behavior is active, which is a sphere centered at the origin with 
radius of 1 as default.

6. The behavior object rotator is set to be one of the children of objSpin, as shown in 
the scene graph in Fig. 8.6. 
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8.7 Primitives

In general, we define a shape through a Shape3D 
object and its NodeComponent objects, as in 
Fig. 8.8. The Geometry node component defines 
the object’s geometry, such as vertices and 
per-vertex colors. The Appearance node 
component defines the object’s attributes, material 
color, texture, and other information that is not 
defined in geometry. For simplicity, we have only 
used the ColorCube class to define 3D objects, 
which have predefined geometry and appearance 
already. Here we introduce more basic primitives 
in Java3D, and construct a virtual universe in 
Java3D_5_Primitives.java, as in Fig. 8.9. 

 Fig. 8.9 Shapes and their geometries and appearances [See Color Plate 11]
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The Java3D geometric utility classes create box, cone, cylinder, and sphere geometric 
primitives. Here a primitive object has pre-specified geometry, but the appearance can 
be specified, which has more flexibility than ColorCube. Each primitive class is 
actually composed of one or more Shape3D objects with their own Geometry node 
components, and in this example the Shape3D objects share one Appearance node 
component specified with the primitive. In our example in the left branch of the scene 
graph, we specify a sphere, and its default Appearance is white. In the right branch of 
the scene graph, we specify several Shape3D objects (points, lines, and triangles) with 
only their Geometry (coordinates and colors). The points and lines may not be obvious 
or visible in the display, but they exist. 

/* draw multiple primitives */

import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import javax.vecmath.*;

public class Java3D_5_Primitives extends Java3D_4_Animate {

    Color3f red = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f green = new Color3f(0.0f, 1.0f, 0.0f);
    Color3f blue = new Color3f(0.0f, 0.0f, 1.0f);
    Color3f white = new Color3f(1.0f, 1.0f, 1.0f);

  //Create sphere (cone, etc) rotating around y axis
  BranchGroup createSG1() {

    Transform3D rotate = new Transform3D();
    Transform3D translate = new Transform3D();
    rotate.rotX(Math.PI/8);

    Vector3f transV = new Vector3f(0.4f, 0f, 0f);
    translate.setTranslation(transV);
    translate.mul(rotate);

    TransformGroup objTransform = new TransformGroup(
        translate);
    TransformGroup objSpin = new TransformGroup();
    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objSpin);

    objSpin.addChild(objTransform);
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    //1. draw a sphere, cone, box, or cylinder
    Appearance app = new Appearance();
    Sphere sphere = new Sphere(0.2f);
    sphere.setAppearance(app);
    objTransform.addChild(sphere);

// Cone cone = new Cone(0.2f, 0.2f);
// cone.setAppearance(app);
// objSpin.addChild(cone);

// Box box = new Box(0.2f, 0.2f, 0.2f, app);
// box.setAppearance(app);
// objSpin.addChild(box);

// Cylinder cylinder = new Cylinder(0.2f, 0.2f);
// cylinder.setAppearance(app);
// objSpin.addChild(cylinder);

    objSpin.setCapability(TransformGroup.
                          ALLOW_TRANSFORM_WRITE);

    Alpha a = new Alpha(-1, 5000);
    RotationInterpolator rotator =
        new RotationInterpolator(a, objSpin);
    BoundingSphere bounds = new BoundingSphere();

    rotator.setSchedulingBounds(bounds);
    objSpin.addChild(rotator);

    return objRoot;
  }

  // primitive points, lines, triangles, etc.
  BranchGroup createSG2() {

    BranchGroup axisBG = new BranchGroup();

    //2. Create two points, may not be obviously visible
    PointArray points =
        new PointArray(2, PointArray.COORDINATES);
    axisBG.addChild(new Shape3D(points));

    points.setCoordinate(0, new Point3f(.5f, .5f, 0));
    points.setCoordinate(1, new Point3f(-.5f, -.5f, 0));

    //3. Create line for X axis
    LineArray xLine =
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        new LineArray(2, LineArray.COORDINATES
                      |LineArray.COLOR_3);
    axisBG.addChild(new Shape3D(xLine));

    xLine.setCoordinate(0, new Point3f(-1.0f, 0.0f, 0.0f));
    xLine.setCoordinate(1, new Point3f(1.0f, 0.0f, 0.0f));
    xLine.setColor(0, red);
    xLine.setColor(1, green);

    //4. Create line for Y axis
    LineArray yLine =
        new LineArray(2, LineArray.COORDINATES
                      |LineArray.COLOR_3);
    axisBG.addChild(new Shape3D(yLine));

    yLine.setCoordinate(0, new Point3f(0.0f, -1.0f, 0.0f));
    yLine.setCoordinate(1, new Point3f(0.0f, 1.0f, 0.0f));
    yLine.setColor(0, white);
    yLine.setColor(1, blue);

    //5. Create a triangle
    TriangleArray triangle =
        new TriangleArray(3, TriangleArray.COORDINATES
                          |TriangleArray.COLOR_3);
    axisBG.addChild(new Shape3D(triangle));

    triangle.setCoordinate(0, new Point3f(-.9f, .1f, -.5f));
    triangle.setCoordinate(1, new Point3f(-.1f, .1f, .0f));
    triangle.setCoordinate(2, new Point3f(-.1f, .7f, .5f));

    triangle.setColor(0, red);
    triangle.setColor(1, green);
    triangle.setColor(2, blue);

    return axisBG;
  }

  public static void main(String[] args) {

    Java3D_5_Primitives frame = new Java3D_5_Primitives();

    frame.setSize(999, 999);
    frame.setVisible(true);
  }
}
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 Fig. 8.10 Shapes and their appearances with light sources [See Color Plate 11]

8.8 Appearance

As we discussed earlier, Appearance class specifies attributes, material properties, 
textures, etc. As shown in Fig. 8.10a, here we implement a cone with coloring 
attribute (red), and a sphere with material properties (whitish) that work with light 
sources. There are two light sources in the environment. One light source is specified 
as a directional light facing the origin after transformation, is a sibling of the cone with 
the same color, and moves with the cone. The other light source is a white fixed point 
light source, which, according to its scene graph path, does not go through any 
transformation. The result is as shown in Fig. 8.10b. 

/* draw objects with Appearance - light sources */

import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import javax.vecmath.*;
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public class Java3D_6_Appearance extends
    Java3D_5_Primitives {

  static Color3f redish = new Color3f(0.9f, 0.3f, 0.3f);
  static Color3f whitish = new Color3f(0.8f, 0.8f, 0.8f);
  static Color3f blackish = new Color3f(0.2f, 0.2f, 0.2f);
  static Color3f black = new Color3f(0f, 0f, 0f);

  // primitive sphere (cone, etc) rotate around y axis
  BranchGroup createSG1() {

    TransformGroup objSpin = new TransformGroup();
    BranchGroup objRoot = new BranchGroup();
    objRoot.addChild(objSpin);

    //1.  set material attributes 4 the app. of an sphere
    Appearance app1 = new Appearance();
    Material mat = new Material();
    mat.setAmbientColor(blackish);
    mat.setDiffuseColor(whitish);
    mat.setEmissiveColor(black);
    mat.setShininess(200);
    app1.setMaterial(mat);

    // sphare at origin
    Sphere sphere = 
      new Sphere(0.2f, Primitive.GENERATE_NORMALS, 80, app1);
    sphere.setAppearance(app1);
    objSpin.addChild(sphere);

    //2. specify a cone rotating around the sphere
    Transform3D rotate = new Transform3D();
    Transform3D translate = new Transform3D();
    rotate.rotZ(Math.PI/2);

    Vector3f transV = new Vector3f(0.7f, 0f, 0f);
    translate.setTranslation(transV);
    translate.mul(rotate);

    TransformGroup objTransform = 
      new TransformGroup(translate);
    // objTransform is a child of objSpin
    objSpin.addChild(objTransform);
    // cone is a child of objTransform
    Cone cone = new Cone(0.2f, 0.4f);
    objTransform.addChild(cone);
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    //3. Set coloring attributes for appearance of a cone
    Appearance app = new Appearance();
    app.setColoringAttributes(
        new ColoringAttributes(redish, 1));
    cone.setAppearance(app);

    //4. Specify a light source that goes with the cone
    BoundingSphere lightbounds = new BoundingSphere();
    Vector3f light1Direction = new Vector3f(0f, 1f, 0.0f); 
    // facing origin as cone
    DirectionalLight light1 = new DirectionalLight(
        redish, light1Direction);
    light1.setInfluencingBounds(lightbounds);
    // cone is a sibling, they go through same transform.
    objTransform.addChild(light1);

    //5. Specify another light source
    PointLight light2 = new PointLight();
    light2.setPosition(-1, 1, 1);
    light2.setInfluencingBounds(lightbounds);
    light2.setEnable(true);
    objRoot.addChild(light2);

    objSpin.setCapability(TransformGroup.
                          ALLOW_TRANSFORM_WRITE);

    Alpha a = new Alpha(-1, 5000);
    RotationInterpolator rotator =
        new RotationInterpolator(a, objSpin);
    BoundingSphere bounds = new BoundingSphere();
    rotator.setSchedulingBounds(bounds);
    objSpin.addChild(rotator);

    return objRoot;
  }

  public static void main(String[] args) {
    Java3D_6_Appearance frame = new Java3D_6_Appearance();
    frame.setSize(999, 999);
    frame.setVisible(true);
  }
}
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 Fig. 8.11 Texture mapping [See Color Plate 11]

8.9 Texture Mapping

Because texture mapping involves many options, here we go through the basic steps to 
make texture mapping available quickly. We just need to implement the following 
steps: 

1. Prepare texture images: choose an image as a texture map. The image has to satisfy 
dimensions of power of 2 on the width and height as required by OpenGL texture 
mapping. A TextureLoader object loads JPEG, GIF, and other file formats.

2. Load the texture: once a TextureLoader object loads an image, the image can be 
used to “get texture” so the image is in texture representation. 

3. Set the texture in Appearance bundle: Texture object is set in an appearance bundle 
referenced by the visual object. 
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4. Specify TextureCoordinates of Geometry: the programmer is allowed to specify 
the placement of the texture on the geometry through the texture coordinates. 
Texture coordinate specifications are made per geometry vertex. Each texture 
coordinate specifies a point of the texture to be applied to the vertex. When we 
create 3D objects, Java3D allows generating texture coordinates automatically.

Example Java3D_7_Texture.java demonstrates Java3D’s texture capability. As shown 
in Fig. 8.11a, a Sphere object is specified. The sphere will be animated by its parent’s 
behavior. At creation its geometry includes 3D coordinates and texture coordinates as 
well. Its texture map (image) and other attributes are specified with the Appearance 
node. TextureAttributes can be specified to define how the texture is applied to the 
Shape object, which we use default in this example. 

/* Java3D texture mapping */

import javax.media.j3d.*;
import com.sun.j3d.utils.geometry.*;
import javax.media.j3d.*;
import com.sun.j3d.utils.image.TextureLoader;

public class Java3D_7_Texture extends Java3D_6_Appearance {

  BranchGroup createSG1() {

    TransformGroup objSpin = new TransformGroup();
    BranchGroup objRoot = new BranchGroup();

    objRoot.addChild(objSpin);

    //set material attributes 4 the app. of an sphere
    Appearance app = new Appearance();

    // Create Texture object
    TextureLoader loader =
        new TextureLoader("EARTH1.JPG", this);

    Texture earth = loader.getTexture();

    // Attach Texture object to Appearance object
    app.setTexture(earth);
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    // Create a sphere with texture
    Sphere sphere =
       new Sphere(0.4f,Primitive.GENERATE_TEXTURE_COORDS,
                  50,app);
    objSpin.addChild(sphere);

    objSpin.setCapability(TransformGroup.
                          ALLOW_TRANSFORM_WRITE);

    Alpha a = new Alpha(-1, 5000);
    RotationInterpolator rotator =
        new RotationInterpolator(a, objSpin);

    BoundingSphere bounds = new BoundingSphere();
    rotator.setSchedulingBounds(bounds);

    objSpin.addChild(rotator);

    return objRoot;
  }

  public static void main(String[] args) {
    Java3D_7_Texture frame = new Java3D_7_Texture();

    frame.setSize(999, 999);
    frame.setVisible(true);
  }
}

8.10 Files and Loaders

In order to reuse constructed models and to transmit virtual universe across the 
Internet and on different platforms, 3D graphics files are created to save models, 
scenes, worlds, and animations. The relationships in an ordinary high-level 3D 
graphics tool are shown in Fig. 8.12. A 3D graphics tool is built on top of other 3D 
graphics tools or a low-level graphics library. Therefore, at the bottom of any graphics 
tool is a low-level graphics library. Low-level graphics libraries such as OpenGL or 
Direct3D are the rendering tools that actually draw 3D models into the display. 
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3D authoring tools are modeling tools 
that provide users with convenient 
methods to create, view, modify, and 
save models and virtual worlds, such 
as 3DStudio Max (3DS) and Alias 
Wavefront (OBJ). They free us from 
constructing complicated virtual 
universes and dealing with detailed 
specifications of 3D graphics file 
format definitions, which make our 
3D virtual world construction job 
much easier. 3D authoring tools 
usually have good user interfaces, 
which provide rich object editing tools (such as object extruding, splitting, and 
cutting, etc.) and flexible manipulation approaches. Using these tools, you can 
construct complicated 3D models conveniently even without knowing the 3D file 
formats. 

3D graphics file formats are storage methods for virtual universes. Due to the 
complexities of a virtual universe, 3D file formats include many specifications about 
how 3D models, scenes, and hierarchies are stored. In addition, different applications 
include different attributes and activities and thus may require different file formats. 
Over the years, many different authoring tools are developed, and their corresponding 
3D graphics file formats are in use today. DFX, VRML, 3DS, MAX, RAW, 
LightWave, POV, and NFF are probably the most commonly used formats. 

Java3D has many loaders that are able to load virtual universes constructed from 3D 
modeling tools that are saved in 3D files. New loaders are in development and we can 
write custom loaders as well. The Java3D loaders define the interface for the loading 
mechanism, and users can develop file loader classes with the same interface as other 
loader classes. There are some loaders available at 
http://java3d.j3d.org/utilities/loaders.html. For a current loader class and its usage, 
please check the Java3D home page.

3D File Format
Converters

3D Authoring
Tools

Programming 
Tool Libraries

3D Files &
Formats

Low-level Graphics Libraries
(OpenGL or Direct3D)

 Fig. 8.12 Relationships in 3D graphics tool
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8.11 Summary

Java3D is a comprehensive high-level 3D graphics API. In this chapter, we only 
covered the basic concept and some examples. Many important components in 
Java3D are not discussed here, such as advanced objects, rendering effects, and 
interaction. Our purpose is to build a scene graph structure concept in your 
knowledge, and demonstrate what a high-level graphics programming tool can bring. 
From here, you can build a hierachical virtual universe and expand into many virtual 
environment related applications. 

There are some other similar tools that exist as well, such as WorldToolKit and Vega. 
In the next chapter, we explain many graphics related tools and their applications, 
which are built on the basic graphics principle and programming we have covered so 
far. 

8.12 Review Questions

1. Compare JOGL with Java3D; which of the following is appropriate: 
 a. they are just two different 3D APIs with similar capabilities
 b. Java3D is a lower level programming environment
 c. JOGL is a runtime infrastructure for virtual objects and environments
 d. Java3D manipulates scene graphs in a hierarchy for a virtual world that JOGL doesn’t perceive

2. Java3D is a fast runtime environment. Please provide three application examples where you 
would choose Java3D instead of JOGL. 

3. Construct a scene graph for building a generalized solar system as in Chapter 4 with transparen-
cies and texture. 

4. VRML is a text based modeling language that is interpreted dynamically from the source files. A 
VRML browser can be implemented using Java3D. Please find a VRML file of about 100 lines of 
specifications and construct/sketch a scene graph from the VRML file. 

8.13 Programming Assignments

1. Build a generalized solar system in Java3D. Compare the source code of this with JOGL imple-
mentation. What are the advantages and drawbacks of using Java3D? 
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2. Extend the above program to allow transparency and texture mapping, so the earth will be cov-
ered with earth texture, and the cones as light fields will be transparent. 

3. Java3D works with an Internet browser. Try to set up and run your generalized solar system on a 
Web browser. Post a URL on your work. 

4. Find a file loader online that would allow you to load and save a 3D model. Then, save your gen-
eralized solar system as a file. After that, download several models online and display them. 

5. X3D is a scene description language in a text file format. There is a loader available for the X3D 
format at http://java3d.j3d.org/utilities/loaders.html. This loader also is capable of loading the 
majority of the VRML 97 specification, too. Please download it and use it to display some X3D and 
VRML models. 



9 
Advanced Topics

Chapter Objectives: 

• Wrap up basic computer graphics principles and programming

• Briefly introduce some advanced graphics concepts and methods

9.1 Introduction

We have covered basic graphics principles and OpenGL programming. A graphics 
system includes a graphics library and its supporting hardware. Most of the OpenGL 
library functions are implemented in hardware, which would otherwise be very slow. 
Some advanced graphics functions built on top of the basic library functions, such as 
drawing curves and curved surfaces, are also part of the OpenGL library or the 
OpenGL Utility library (GLU). GLU is considered part of the OpenGL system to 
facilitate complex model construction and rendering. 

On top of a graphics library, many graphics methods and tools (namely high-level 
graphics packages) are developed for certain capabilities or applications. For example, 
mathematics on curve and surface descriptions are used to construct curved shapes, 
constructive solid geometry (CSG) methods are used to assemble geometric models 
through logical operations, recursive functions are used to generate fractal images, 
visualization methods are developed to understand certain types of data, simulation 
methods are developed to animate certain processes, etc. In this chapter, we wrap up 
the book by briefly introducing some advanced graphics concepts. 

J.X. Chen, C. Chen, Foundations of 3D Graphics Programming,  
DOI: 10.1007/978-1-84800-284-5_9, © Springer-Verlag London Limited 2008 
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9.2 Graphics Libraries

A low-level graphics library or package is a software interface to graphics hardware. 
All graphics tools or applications are built on top of a certain low-level graphics 
library. High-level graphics tools are usually easier to learn and use. An introductory 
computer graphics course mainly discusses the implementations and applications of 
low-level graphics library functions. A graphics programmer understands how to 
program in at least one graphics library. OpenGL, Direct3D, and PHIGS are 
well-known low-level graphics libraries. OpenGL and Direct3D are currently the most 
widely adopted 3D graphics APIs in research and applications. 

A high-level graphics library, which is often called a 3D programming tool library
(e.g., OpenInventor), provides the means for application programs to handle scene 
constructions, 3D file imports and exports, object manipulations, and display. It is an 
API toolkit built on top of a low-level graphics library. Most high-level graphics 
libraries are categorized as animation, simulation, or virtual reality tools. 

9.3 Visualization

Visualization employs graphics to make pictures that give us insight into the abstract 
data and symbols. The pictures may directly portray the description of the data or 
completely present the content of the data in an innovative form. Users, when 
presented with a new computed result or some other collection of online data, want to 
see and understand the meaning as quickly as possible. They often prefer 
understanding through observing an image or 3D animation rather than from reading 
abstract numbers and symbols. 

9.3.1 Interactive Visualization and Computational Steering

Interactive visualization allows visualizing the results or presentations interactively in 
different perspectives (e.g., angles, magnitude, layers, levels of detail, etc.), and thus 
helps the user to better understand the results on the fly. Interactive visualization 
systems are most effective when the results of models or simulations have multiple or 
dynamic forms, layers, or levels of detail, which help users interact with visual 
presentations and understand the different aspects of the results. 
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For scientific computation and visualization, the integration of computation, 
visualization, and control into one tool is highly desirable, because it allows users to 
interactively “steer” the computation. At the beginning of the computation, before any 
result is generated, a few important pieces of feedback will significantly help in 
choosing correct parameters and initial values. Users can visualize some intermediate 
results and key factors to steer the computation in the right direction. With 
computational steering, users are able to modify parameters in their systems as the 
computation progresses and avoid errors or uninteresting output after long tedious 
computation. Computational steering is an important method for adjusting uncertain 
parameters, moving the simulation in the right direction, and fine tuning the results. 

9.3.2 Data Visualization: Dimensions and Data Types

A visualization technique is applicable to certain data types (discrete, continual, point, 
scalar, or vector) and dimensions (1D, 2D, 3D, and multiple: N-D). Scatter Data 
represent data as discrete points on a line (1D), plane (2D), or in space (3D). We may 
use different colors, shapes, sizes, and other attributes to represent the points in higher 
dimensions beyond 3D, or use a function or a representation to transform the high 
dimensional data into 2D/3D. Scalar Data have scalar values in addition to dimension 
values. The scalar value is actually a special additional dimension that we pay more 
attention to. 2D diagrams like histograms, bar charts, or pie charts are 1D scalar data 
visualization methods. Both histograms and bar charts have one coordinate as the 
dimension scale and another as the value scale. Histograms usually have scalar values 
in confined ranges, while bar charts do not carry this information. Pie charts use a 
slice area in a pie to represent a percentage. 2D contours (iso-lines in a map) of 
constant values, 2D images (pixels of x-y points and color values), and 3D surfaces 
(pixels of x-y points and height values) are 2D scalar data visualization methods. 
Volume and iso-surface rendering methods are for 3D scalar data. A voxel (volume 
pixel) is a 3D scalar datum with (x, y, z) coordinates and an intensity or color value. 
Vector Data include directions in addition to scalar and dimension values. We use line 
segments, arrows, streamlines, and animations to present the directions. 

Volume rendering or visualization is a method for extracting meaningful information 
from a set of 2D scalar data. A sequence of 2D image slices of human body can be 
reconstructed into a 3D volume model and visualized for diagnostic purposes or for 
planning of treatment or surgery. For example, a set of volumetric data such as a deck 
of Magnetic Resonance Imaging (MRI) slices or Computed Tomography (CT) can be 
blended into a 2D X-ray image by firing rays through the volume and blending the 
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voxels along the rays. This is a rather costly operation and the blending methods vary. 
The concept of volume rendering is also to extract the contours from given data slices. 
An iso-surface is a 3D constant intensity surface represented by triangle strips or 
higher-order surface patches within a volume. For example, the voxels on the surface 
of bones in a deck of MRI slices appear to have the same intensity value. 

From the study of turbulence or plasmas to the design of new wings or jet nozzles, 
flow visualization motivates much of the research effort in scientific visualization. 
Flow data are mostly 3D vectors or tensors of high dimensions. The main challenge of 
flow visualization is to find ways of visualizing multivariate data sets. Colors, arrows, 
particles, line convolutions, textures, surfaces, and volumes are used to represent 
different aspects of fluid flows (velocities, pressures, streamlines, streaklines, 
vortices, etc.)

The visual presentation and examination of large data sets from physical and natural 
sciences often require the integration of terabyte or gigabyte distributed scientific 
databases with visualization. Genetic algorithms, radar range images, materials 
simulations, and atmospheric and oceanographic measurements are among the areas 
that generate large multidimensional multivariate data sets. The data vary with 
different geometries, sampling rates, and error characteristics. The display and 
interpretation of the data sets employ statistical analyses and other techniques in 
conjunction with visualization. 

The field of information visualization includes visualizing retrieved information from 
large document collections (e.g., digital libraries), the Internet, and text databases. 
Information is completely abstract. We need to map the data into a physical space that 
will represent relationships contained in the information faithfully and efficiently. 
This could enable the observers to use their innate abilities to understand through 
spatial relationships the correlations in the library. Finding a good spatial 
representation of the information at hand is one of the most challenging tasks in 
information visualization. 

Many forms and choices exist for the visualization of 2D or 3D data sets, which are 
relatively easy to conceive and understand. For data sets that are more than 3D, 
visualization methods are challenging research topics. For example, the Linked 
micromap plots are developed to display spatially indexed data that integrate 
geographical and statistical summaries (http://www.netgraphi.com/cancer4/). 
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9.3.3 Parallel Coordinates

The parallel coordinates method 
represents d-dimensional data as 
values on d coordinates parallel to 
the x-axis equally spaced along the 
y-axis (Fig. 9.1, or the other way 
around, rotating 90 degrees). Each 
d-dimensional datum corresponds 
to the line segments between the 
parallel coordinates connecting the 
corresponding values. That is, each 
polygonal line of (d-1) segments in 
the parallel coordinates represents a 
point in d-dimensional space. 
Parallel coordinates provide a 
means to visualize higher order geometries in an easily recognizable 2D 
representation. It also helps find the patterns, trends, and correlations in the data set.

The purpose of using parallel coordinates is to find certain features in the data set 
through visualization. Consider a series of points on a straight line in Cartesian 
coordinates: y=mx+b. If we display these points in parallel coordinates, the points on 
a line in Cartesian coordinates become line segments. These line segments intersect at 
a point. This point in the parallel coordinates is called the dual of the line in the 
Cartesian coordinates. The point~line duality extends to conic sections. An ellipse in 
Cartesian coordinates maps into a hyperbola in parallel coordinates, and vice versa. 
Rotations in Cartesian coordinates become translations in parallel coordinates, and 
vice versa. 

Clustering is easily isolated and visualized in parallel coordinates. An individual 
parallel coordinate axis represents a 1D projection of the data set. Thus, separation 
between or among sets of data on one axis represents a view of the data of isolated 
clusters. The brushing technique is to interactively separate a cluster of data by 
painting it with a unique color. The brushed color becomes an attribute of the cluster. 
Different clusters can be brushed with different colors, and relations among clusters 
can then be visually detected. Heavily plotted areas can be blended with color mixes 
and transparencies. Animation of the colored clusters through time allows 
visualization of the data evolution history. 

x1

x2

x3

x4

x5

 Fig. 9.1 Parallel coordinates: an example
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The grand tour method is used to search for patterns in the high-dimensional data by 
looking at the data from different angles. That is, to project the data into all possible 
d-planes through generalized rotations. The purpose of the grand tour animation is to 
look for unusual configurations of the data that may reflect some structure from a 
specific angle. The rotation, projection, and animation methods vary depending on 
specific assumptions. There are visualization tools that include parallel coordinates 
and grand tours:  
 
ExplorN (ftp://www.galaxy.gmu.edu/pub/software/ExplorN_v1.tar),  
CrystalVision (ftp://www.galaxy.gmu.edu/pub/software/CrystalVisionDemo.exe),  
and XGobi (http://www.research.att.com/areas/stat/xgobi/). 

9.4 Modeling and Rendering

Modeling is a process of constructing a virtual 3D graphics object (computer model, 
or model) from a real object or an imaginary entity. Creating graphics models requires 
a significant amount of time and effort. Modeling tools make creating and 
constructing complex 3D models fast and easy. A graphics model includes 
geometrical descriptions (particles, vertices, polygons, etc.) as well as associated 
graphics attributes (colors, shadings, transparencies, materials, etc.), which can be 
saved in a file using a standard (3D model) file format. Modeling tools help create 
virtual objects and environments for CAD (computer-aided design), visualization, 
virtual reality, simulation, education, training, and entertainment. 

Rendering is a process of creating images from graphics models. 3D graphics models 
are saved in computer memory or hard-disk files. The term rasterization and 
scan-conversion are used to refer to low-level image generation or drawing. All 
modeling tools provide certain drawing capabilities to visualize the models generated. 
However, in addition to simply drawing (scan-converting) geometric objects, 
rendering tools often include lighting, shading, texture mapping, color blending, ray 
tracing, radiosity, and other advanced graphics capabilities. For example, the 
RenderMan Toolkit includes photorealistic modeling and rendering of particle 
systems, hair, and many other objects with advanced graphics functions such as ray 
tracing, volume display, motion blur, depth-of-field, and so forth. Many powerful 
graphics tools include modeling, rendering, animation, and other functions in one 
package. 



9.4  Modeling and Rendering          345

Basic modeling and rendering methods were discussed in previous chapters. Here we 
introduce some advanced modeling and rendering techniques. 

9.4.1 Sweep Representations

We can create a 3D volume by sweeping a 2D area along a linear path normal to the 
area. Sweeping is implemented in most graphics modeling tools. The generated model 
contains many vertices that may be eliminated. Algorithms are developed to simplify 
models and measure the similarity between models. A model can also be represented 
with multiple levels of detail for use with fast animations and high-resolution 
rendering interchangeably. 

9.4.2 Instances

In a hierachical model, there are parts that are exactly the same. For example, all four 
wheels of a car can be the same model. Instead of saving four copies of the model, we 
save just one primitive model and three instances, which are really pointers to the 
same primitive. If we modify the primitive, we know that the primitive and the 
instances are identically changed. 

9.4.3 Constructive Solid Geometry

Constructive Solid Geometry (CSG) is a solid modeling method. A set of solid 
primitives such as cubes, cylinders, spheres, and cones are combined by union, 
difference, and intersection to construct a more complex solid model. In CSG, a solid 
model is stored as a tree with operators at the internal nodes and solid primitives at the 
leaves. The tree is processed in the depth-first search with a corresponding sequence 
of operations and, finally, rendering. CSG is a modeling method that is often used to 
create new and complex mechanical parts. 

9.4.4 Procedural Models

Procedural models describe objects by procedures instead of using a list of primitives. 
Fractal models, grammar-based models, particle system models, and physically-based 
models are all procedural models. Procedural models can interact with external events 
to modify themselves. Also, very small changes in specifications can result in drastic 
changes of form. 
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9.4.5 Fractals

A fractal is a geometric shape that is substantially and recursively self-similar. 
Theoretically, only infinitely recursive processes are true fractals. Fractal models have 
been developed to render plants, clouds, fluid, music, and more. For example, a 
grammar model can be used to generate self-similar tree branches: T -> T | T[T] | (T)T 
| (T)[T] | (T)T[T], where square brackets denote a right branch and parentheses denote 
a left branch. We may choose a different angle, thickness, and length for the branch at 
a depth in the recursion with flowers or leaves at the end of the recursions. 

9.4.6 Particle Systems

Particle systems are used to model and render irregular fuzzy objects such as dust, 
fire, and smoke. A set of particles are employed to represent an object. Each 
individual particle generated evolves and disappears in space, all at different times 
depending on its individual animation. In general, a particle system and its particles 
have very similar parameters, but with different values:

• Position (including orientation in 3D space and center location x, y, and z)

• Movement (including velocity, rotation, acceleration, etc.)

• Color (RGB) and transparency (alpha)

• Shape (point, line, fractal, sphere, cube, rectangle, etc.)

• Volume, density, and mass

• Lifetime (only for particles)

• Blur head and rear pointers (only for particles)

The position, shape, and size of a particle system determine the initial positions of the 
particles and their range of movement. The movements of the particles are restricted 
within the range defined by their associated particle system. The shape of a particle 
system can be a point, line segment, fractal, sphere, box, or cylinder. The movement 
of a particle system is affected by internal or external forces, and the results of the 
rotations and accelerations of the particles as a whole. A particle system may change 
its shape, size, color, transparency, or some other attributes. The lifetime defines how 
long a particle will be active. A particle has both a head position and a tail position. 
The head position is animated and the tail position follows along for motion blur. 
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 Fig. 9.2 Applications of particle systems in computer graphics

In general, particle systems are first initialized with each particle having an original 
position, velocity, color, transparency, shape, size, mass, and lifetime. After the 
initialization, for each calculation and rendering frame, some parameters of the 
particles are updated using a rule base, and the resulting particle systems are rendered. 
Fig. 9.2 summarizes the applications that employ particle systems. Structured particle 
systems are often used to model trees, water drops, leaves, grass, rainbows, and 
clouds. Stochastic particle systems are often used to model fireworks, explosions, 
snow, and so forth. Oriented particle systems are often used to model deformable and 
rigid bodies such as cloth, lava flow, etc. 

9.4.7 Image-based Modeling and Rendering

Image-based modeling or rendering uses images or photographs to replace geometric 
models. This technique achieves shorter modeling times, faster rendering speeds, and 
unprecedented levels of photorealism. It also addresses different approaches to turn 
images into models and then back into renderings, including movie maps, panoramas, 
image warping, light fields, and 3D scanning. 
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It has been observed that the rendering process can be accelerated significantly by 
reusing the images to approximate the new frames instead of rendering them from the 
geometric model directly. The rendering error introduced by the approximation, which 
determines whether or not an image must be refreshed, can be calculated by 
comparing the image to the object’s geometry. 

Given the view position and direction, we can use a texture image mapped onto a 
polygon with transparent background to replace a complex model such as a tree, 
building, or human avatar. The polygon is called a billboard or poster if it is always 
perpendicular to the viewpoint. 

We can integrate image-based rendering and model-based rendering in one 
application. For example, we can use images to render avatar body parts and employ 
geometrical transformations to move and shape the parts. A human-like avatar 
geometric model consists of joints and body segments. The 3D positions of these 
joints, governed by the movement mechanism or pre-generated motion data, uniquely 
define the avatar’s gesture at a moment. The entire animation process is used to find 
the joint coordinates of each frame in terms of animation time. 

If we project every segment of the 3D avatar separately onto the projection plane, the 
synthesis of these projected 2D images will be the final image of the 3D avatar we 
actually see on the screen, provided the segment depth values are taken into account 
appropriately. Therefore, avatar walking can be simulated by the appropriate 
transformations of the avatar segment images. From this point of view, the avatar's 
walking is the same as its segments’ movements in the 3D space. Here, the basic idea 
is to reuse the snapshot segment images over several frames rather than rendering the 
avatar for each frame from the geometric model directly. The complicated human-like 
3D avatar model is used only for capturing body segment images when they need to 
be updated. The subsequent animation frames are dynamically generated through 2D 
transformations and synthesis of the snapshot segment images. 

9.5 Animation and Simulation

Computer animation is achieved by refreshing the screen display with a sequence of 
images at more than 24 frames per second. Keyframe animation is achieved by using 
pre-calculated keyframe images and in-between images, which may take a significant 
amount of time, and then displaying (playing back) the sequence of generated images 
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in real time. Keyframe animation is often used for visual effects in films and TV 
commercials, where no interactions or unpredictable changes are necessary. 
Interactive animation, on the other hand, is achieved by calculating, generating, and 
displaying the images simultaneously on the fly. When we talk about real-time 
animation, we mean the virtual animation occurring in the same time frames as real 
world behavior. However, for graphics researchers, real-time animation often simply 
implies the animation is smooth or interactive. Real-time animation is often used in 
virtual environments for education, training, and 3D games. Many modeling and 
rendering tools are also animation tools, which are often associated with simulation. 

Simulation, on the other hand, is a software system we construct, execute, and 
experiment with to understand the behavior of the real world or imaginary system, 
which often means a process of generating certain natural phenomena through 
scientific computation. The simulation results may be large data sets of atomic 
activities (positions, velocities, pressures, and other parameters of atoms) or fluid 
behaviors (volume of vectors and pressures). Computer simulation allows scientists to 
generate the atomic behavior of certain nanostructured materials for understanding 
material structure and durability and to find new compounds with superior quality. 
Simulation integrated with visualization can help pilots learn to fly and aid automobile 
designers in testing the integrity of the passenger compartment during crashes. For 
many computational scientists, simulation may not be related to any visualization at 
all. However, for many graphics researchers, simulation often simply means 
animation. Today, graphical simulation, or simply simulation, is an animation of a 
certain process or behavior that is often generated through scientific computation and 
modeling. Here we emphasize an integration of simulation and animation — the 
simulated results are used to generate graphics models and control animation 
behaviors. It is far easier, cheaper, and safer to experiment with a model through 
simulation than with a real entity. In fact, in many situations, such as training 
space-shuttle pilots and studying molecular dynamics, modeling and simulation are 
the only feasible methods to achieve the goals. Real-time simulation is an overloaded 
term. To computational scientists, it often means the simulation time is the actual time 
in which the physical process (under simulation) should occur. In automatic control, it 
means the output response time is fast enough for automatic feedback and control. In 
graphics, it often means that the simulation is animated at an interactive rate of human 
perception. The emphasis in graphics is more on responsiveness and smooth 
animation rather than strictly accurate timing of the physical process. In many 
simulation-for-training applications, the emphasis is on generating realistic behavior 
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for interactive training environments rather than strictly scientific or physical 
computation. 

9.5.1 Physics-based Modeling and Simulation: Triangular Polyhedra

A polyhedron is an arbitrary 3D shape whose surface is a collection of flat polygons. 
A regular polyhedron is one whose faces and vertices all look the same. There are 
only five regular polyhedra: the tetrahedron — 4 faces with three equilateral triangles 
at a vertex; the cube — 6 faces with three squares at a vertex; the octahedron — 8 
faces with four equilateral triangles at a vertex; the dodecahedron — 12 faces with 
three pentagons at a vertex; and the icosahedron — 20 faces with five equilateral 
triangles at a vertex. The regular polyhedron models can be found in many books and 
graphics packages. However, the complex polyhedron model requires effort to be 
constructed. 

Physics-based modeling (also called physically-based modeling) is a modeling 
method that employs physics laws to construct models. Here, we use the 
physics-based modeling method to construct some polyhedra. Given an arbitrary 
number n, we construct a triangular polyhedron model of n vertices such that the 
distance from each vertex to the origin equals one, and the distances between the 
neighboring vertices are as far distant as possible. Let’s assume that the radius of the 
polyhedron is one. The method includes the following steps:

1. Generate n arbitrary vertices vtx[i] in 3D space for i=0 to n-1. Each vertex is an 
imaginary object with mass M. 

2. Normalize the vertices so that the distance from each vertex to the origin is one. 
The vertices can be viewed as vectors. A normalized vector has unit length.

3. Establish a physical relation between each pair of vertices by connecting them with 
an imaginary spring. The spring is at rest when the distance between the vertices is 
two, which is the farthest distance on a sphere of unit radius. Otherwise, the spring 
will apply an attracting or repelling force on the two vertices. According to 
Hooke’s law, the spring force on vertex i from all vertices j is 

f[i].x = f[i].y = f[i].z = 0; 

for (j = 0; j < n; j++) if (i != j) {
 f[i].x = f[i].x + K*(direction.x*2 - vtx[i].x + vtx[j].x); 
 f[i].y = f[i].y + K*(direction.y*2 - vtx[i].y + vtx[j].y); 
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 f[i].z = f[i].z + K*(direction.z*2 - vtx[i].z + vtx[j].z); 
}

where K is the spring coefficient and direction is a unit vector along vertex i and j.
Because x, y, and z components are basically the same and independent, in the rest 
of the discussion we only present the x component. 

As we know, a spring will bounce back and forth forever if there is no damping 
force. Therefore, we add an air friction force proportional to the vertex’s velocity. 
The vertices will eventually converge to stable coordinates after a number of 
iterations:

f[i].x = f[i].x - K1*dv[i].x;
// K1 is the velocity damping coefficient

4. Calculate the new coordinates of the vertices after a short period DT according to 
the physics relation: for each vertex, 

ddv[i].x = f[i].x/M; 
// the acceleration

dv[i].x = dv[i].x + ddv[i].x*DT; 
// the new velocity and 

vtx[i].x = vtx[i].x + dv[i].x*DT; 
// the new position.

5. Repeat Steps 2 to 4 until a satisfactory condition 
is reached. Draw the current polyhedron. A 
satisfactory condition can be, for example, that 
each vertex velocity is smaller than some 
criterion.

The samples and source code for the above 
modeling method are at http://graphics.gmu.edu/
polyhedra/.

In the program, we can construct and display an 
equilateral triangle, a tetrahedron, an octahedron, or 
an icosahedron (Fig. 9.3) by simply specifying 3, 4, 

 Fig. 9.3 An icosahedron 
[See Color Plate 12]
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6, or 12 vertices, respectively. We can also construct many specific irregular 
polyhedra. From the above example, we know that we can achieve many different 
shapes by specifying different physics relations among the vertices and the origin. 
This method is totally different from the traditional methods used to construct 
polyhedron models. Instead of using mathematical relations to find out the exact 
vertex coordinates, it relies on physics relations to dynamically construct the models. 
The construction process is a simulation of the designed physics relations. Many 
complex models could be constructed easily this way. Today, physics-based modeling 
is employed in some advanced graphics modeling tools for constructing certain 3D 
models. 

9.5.2 Real-Time Animation and Simulation: A Spider Web

The display refresh rate is the rate of reading from the frame buffer and sending the 
pixels to the display by the video controller. A refresh rate at 60 (frames per second) is 
smoother than one at 30, and 120 is marginally better than 60. However, if the image 
frame rate is much lower, the animation could be jittery. Sometimes, it is an 
easy-to-be-rendered model that takes time to be constructed. Sometimes, it is an 
easy-to-be-constructed model that takes time to be rendered. To achieve smooth 
animation, we need high-performance algorithms as well as graphics hardware to 
efficiently carry out modeling, simulation, and graphics rendering. Graphical 
simulation, or simply simulation, animates certain processes or behaviors generated 
through scientific computation and modeling. A simulation model is a physics or math 
description of the simulated entity or system. Simulation can be used to achieve a 
static graphics model like a polyhedron, or dynamic behavior like a waving spider 
web. In the above example of modeling polyhedra, the simulation model describes the 
physical relationships among the vertices. The simulated results are used to generate 
the graphics models and control the animation behavior. That is, the simulation model 
describes the graphics model, and the graphics model is the simulation result. 

A real-time simulation is a simulation where the time is the actual time in which the 
physical process (under simulation) occurs. Many real-time simulation systems are 
event-driven, in which the evolution of the simulation is determined by the complexity 
of both the computation and the graphics rendering. A real-time simulation can be 
synchronized with a wall clock, so that the simulation proceeds accurately on the 
physical time scale we perceive. The simulation will appear at the same speed on 
different computing platforms. The method is as follows. A variable (lastTime) is used 
to record the last time the simulation updated its state. Each time the simulation begins 
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to update its state, it reads the computer’s clock to get the current time (currentTime) 
and subtract lastTime from currentTime to determine the period between the current 
time and the last time when the state was updated. This period, the time slice passed 
— together with the simulation’s old state — determines the simulation’s new state. 
At the same time, lastTime will be updated to currentTime. 

Real-time simulation often employs a wide range of physical laws that are functions 
of time. To retain numerical stability and to limit the numerical offset error, many 
activities cannot be calculated with a time slice bigger than a threshold. However, 
varying time slices between states can be so large that the numerical computation of 
the physics-based model diverges. Our solution to this problem is as follows. Let’s 
assume that DT satisfies numerical stability and at simulation state m the time slice is 
DTm. When DTm is larger than DT, DTm can be divided into a number of DTs and the 
physical phenomena can be simulated DTm/DT times. The residue of the time division 
can be added to the next simulation period.  

As an example, we simulate a spider walking on a web in real time synchronized with 
the wall clock. Again, we use springs to construct the simulation model. The data 
structure for the web is as in Fig. 9.4. The modeling method mainly includes the 
following steps:

1. Generate 4 vertex arrays a[i], b[i], 
c[i], and d[i] in 3D space for i=0 to 
n-1. Each vertex is an imaginary 
object with mass M. 

2. Fix the end points of the vertex 
arrays. 

3. Rotate the web into an orientation of 
your choice. The vector down is a 
fixed direction pointing toward the 
ground after the rotation. 

4. Establish a physical relationship 
between neighboring vertices by 
connecting them with a spring line, as 
in Fig. 9.4. The spring is at rest when the distance between the vertices is zero. 
Otherwise, the spring will apply an attracting force on the two neighboring 

a[s]

b[s]

c[s]

d[s]

 Fig. 9.4 A spider-web data structure
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vertices. According to Hooke’s law, the spring force Fa[i] on vertex a[i] includes 4 
components (in x, y, and z direction, respectively; here we only show the force in x 
direction): 

Fa[i].x = K*(a[i+1].x - a[i].x) + K*(a[i-1].x - a[i].x);
// the force generated by 
// the 2 springs along the diagonal line 

Fa[i].x = Fa[i].x + K1*(b[i].x-a[i].x)+ 
K1*(d[S-1-i].x-a[i].x);

// the force generated by 
// the 2 springs along the circle line 

Fa[i].x = Fa[i].x - K2*da[i].x; 
// the air damping force according to 
// the velocity of a[i] 

Fa[i].x = Fa[i].x + gravity*down.x; 
// the gravity force so the web will be 
// drawn towards the ground 

If (spider is at a[i]) 
Fa[i].x = Fa[i].x + spiderWeight*down.x;

// the spider’s weight. The spider is 
// moving around on the web

5. Calculate the new coordinates of the vertices after a period 

DTm = period() + (DTm % DT);

where period() returns the clock time passed since last time we updated the 
vertices, and (DTm % DT) is the remainder time from the last simulation. We 
repeat the following simulation (DTm/DT) times (except the acceleration, which 
only calculates once): 

dda[i].x = fa[i].x/M; 
// the acceleration

da[i].x = da[i].x + dda[i].x*DT; 
// the new velocity and

a[i] = a[i]+da[i]*DT;
// the new position
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6. Draw the current spider and web. 

7. Move the spider. Repeat Steps 3 to 7.  

Fig. 9.5 is a snapshot of the simulation 
result: a spider walking on the web. We 
may have multiple spiders in the 
environment as well. The samples and 
source code for the above modeling 
method are on line at http://
graphics.gmu.edu/spider/. 

9.5.3 The Efficiency of Modeling and 
Simulation 

Fortunately, in the above example the 
simulation and graphics rendering are 
both fast enough on an ordinary PC to 
achieve the web and spider behavior in 
real time. More often than not, the simulation efficiency and the physical and visual 
realism are contradictory to the point that we cannot achieve both. To achieve real 
time, we sacrifice the physical realism and/or the visual quality by simplifying the 
complex physics-based model and/or the graphics rendering method. The 3D graphics 
rendering speed is often the bottleneck of real-time simulation. The bottom line is that 
the associated processing loads must not reduce the system update rate below what we 
consider to be real time (24 frames per second). We can improve the simulation 
efficiency by changing the software or hardware, or both, to accommodate real time. 
A real-time graphics simulation pipeline is a loop that includes the following major 
processes: 

1. Handle user input (keyboard, mouse, external sensors, VR trackers, etc.); 

2. Calculate the new state of the simulation model; 

3. Preprocess 3D objects (collision detection, clipping/culling, organization, etc.); 

4. Render the virtual world. Repeat Steps 1 to 4. 

Software methods. For Step 2, we can simplify the simulation model to the point that it 
satisfies the minimum requirements, or use a simpler model that achieves the partial 

 Fig. 9.5 A simulation of a spider web 
[See Color Plate 12]
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requirements. For Step 3, where there are different algorithms that provide collision 
detection and other graphics preprocessing functions, we can choose the most efficient 
algorithms. For Step 4, we have different rendering methods that will significantly 
change the efficiency. For example, we can use polygons instead of curved surfaces, 
shaded polygons instead of texture mapped polygons, flat polygons instead of shaded 
polygons, wire-frame objects instead of polygonal objects, etc. Choosing graphics 
rendering methods to improve efficiency often requires more understanding of the 
graphics system. 

Hardware methods. Many low-level graphics functions are implemented in the 
hardware on a graphics card. In fact, without a graphics card, no graphical simulation 
can be in real time. However, not all graphics cards are the same. Some functions are 
expensive to implement in hardware. The prices on the graphics cards are different. 
Therefore, it is important to know what graphics functions are necessary and to 
purchase the card that comes with the necessary functions. For example, if a 
simulation application requires large-number polygon rendering, we may choose a 
specially configured intensive-polygon-rendering hardware. If a simulation requires 
frequent texture mapping, we will need texture mapping hardware. Texture mapping 
would be extremely slow if there were no hardware support. Some high-performance 
graphics cards, such as Intense3D Wildcat 5110, have very large dedicated texture 
memory and frame buffers for hardware texture mapping. Hardware makes it possible 
to achieve advanced graphics effects such as lighting, texture mapping, volume 
rendering, antialiasing, and scene accumulation in real time.

9.6 Virtual Reality

Virtual Reality (VR) extends 3D graphics world to include stereoscopic, acoustic, 
haptic, tactile, and other feedbacks to create a sense of immersion. A 3D image is like 
an ordinary picture we see, but a stereo image gives a strong sense of depth in 3D. It is 
generated by providing two slightly different views (images) of the same object to our 
two eyes separately. The head-mounted device (HMD), the ImmersaDesk/CAVE, and 
the VREX stereo projectors are different kinds of display devices for stereo images. A 
HMD has two separate display channels/screens to cover our two eyes. An 
ImmersaDesk or CAVE has only one channel like an ordinary display screen, except 
that it displays two different images alternatively for our two eyes. Lightweight liquid 
crystal shutter glasses are worn by viewers. These glasses activate each eye in 
succession. The glasses are kept synchronized with the two images through an 
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infrared emitter. CAVE is the predecessor of ImmersaDesk, which is more expensive 
and has multiple display screens surrounding the viewers. An ImmersaDesk can be 
considered to be a one-wall CAVE. VREX’s stereo projectors generate two images at 
the same time that can be viewed through lightweight, inexpensive polarized glasses. 

9.6.1 Hardware and Software

The key hardware technologies in achieving VR are real-time graphics, stereo 
displays/views, tracking sensors, sound machines, and haptic devices. Real-time 
graphics (computer) and stereo displays (HMD, ImmersaDesk, CAVE, or VREX 
projectors) allow us to view stereoscopic scene and animation, and provide us a sense 
of immersion. Tracking sensors, which get the position and orientation of the viewer’s 
head, hands, body parts, or other inputs, will enable us to manipulate models and 
navigate in the virtual environment. Sound machines provide a sense of locations and 
orientations of certain objects and activities in the environment. Like sound machines, 
haptic devices vibrate and touch a user’s body, generating another feedback from the 
virtual environment in addition to stereoscopic view and 3D sound, enhancing the 
sense of immersion. 

Some VR software tools are available that recognize well-defined commercial 
tracking sensors, sound machines, and haptic devices, in addition to functions in 
developing 3D virtual environment. Sense8’s WorldToolKit and World_Up are 
cross-platform software development system for building real-time integrated 3D
applications. WorldToolKit also supports network-based distributed simulations, 
CAVE-like immersive display options, and many interface devices, such as HMDs, 
trackers, and navigation controllers. Lincom’s VrTool is an OpenInventor-based 
toolkit to provide a rapid prototyping capability to enable VR users to quickly get their 
application running with the minimum amount of effort. MultiGen-Paradigm’s Vega is 
a real-time visual and audio simulation software tool that includes stereo imaging. MR 
(Minimal Reality) Toolkit by the graphics group at University of Alberta is a set of 
software tools for the production of virtual reality systems and other forms of 
three-dimensional user interfaces. 

9.6.2 Non-immersive Systems

Often non-immersive 3D graphics systems are also called VR systems by some 
people. Users can change the viewpoint and navigate in the virtual world through 
input devices interactively. VRML (Virtual Reality Modeling Language) is a 
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Web-based 3D modeling and animation language – a subset of OpenInventor. Java3D, 
similar to VRML, is also a Web-based graphics tool to assemble and manipulate 
predefined geometric models. DIVE (Distributed Interactive Virtual Environment) is 
an Internet-based multi-user VR system where participants navigate in 3D space and 
see, meet and interact with other users and applications. Alice is a scripting and 
prototyping environment for 3D object behavior. By writing simple scripts, Alice 
users can control object appearance and behavior, and while the scripts are executing, 
objects respond to user input via mouse and keyboard. 

9.6.3 Basic VR System Properties

In an immersive VR system, users wear head-mounted devices (HMD) or special 
glasses to view stereoscopic images. The viewpoint usually follows the viewer’s head 
movement in real time. In a non-immersive VR, which is usually a lot cheaper, users 
usually do not wear any device, and the viewpoint does not follow the user’s head 
movement. Users navigate in the virtual world through input devices interactively and 
the image is usually a first-person view. In a VR system, navigation allows a user to 
move around and to view virtual objects and places, and interaction provides an active 
way for a user to control the appearance and behavior of objects. 3D navigation, 
probably with interaction, stereoscopes, and visualization, is the main property of a 
VR system, immersive or not.

Simulation is another property of a VR system. Simulations integrate scientific results 
and rules to control, display, and animate virtual objects, behaviors, and environments. 
Without simulation, the virtual world will not be able to describe and represent real 
world phenomena correctly. Different VR applications may simulate different objects, 
phenomena, behaviors, and environments, mostly in real time. These properties make 
the VR technology able to be applied in various areas such as data visualization, 
training, surgery, scientific studying, science learning, and game playing. 

9.6.4 VR Tools

A VR system often simulates certain real-world activities in various areas, such as 
training, education, and entertainment. A VR system always repeats the following 
processing steps: 

1. Handle user inputs from various devices — keyboard, mouse, VR trackers, 
sensors, voice recognition systems, etc. 
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2. Calculate the new state of the objects and the environment according to the 
simulation models.

3. Preprocess 3D objects including collision detection, levels of detail, 
clipping/culling, etc.

4. Render the virtual world.

In order to achieve the above process, the software in the VR system has to be able to 
create a virtual world, handle various events from input devices, control the 
appearances and behaviors of the 3D objects, render the virtual world and display it on 
the display devices. In Step 2, different VR applications may use different simulation 
models. No matter what application a VR system implements, the software to handle 
the other three steps, a high-level graphics library called a VR tool (or VR toolkit), is 
always needed. Therefore, VR tools, which are built on a low-level graphics library, 
are usually independent of the applications. 

9.6.5 VR Simulation Tools

A VR system is usually a VR application implemented on top of a VR tool, which 
provides an API for the VR application to manipulate the objects according to the 
simulation models. VR tools are likely to be device dependent, built on low-level 
basic graphics libraries with interfaces to sensory devices. Some VR tools, such as 
MR Toolkit, OpenInventor, and WorldToolkit, only provide APIs embedded in certain 
programming languages for VR developers. It requires more knowledge and 
programming skills to employ these toolkits, but they provide more flexibility in 
application implementations. Others, such as Alice and WorldUp (often called VR 
simulation tools), provide graphical user interfaces (GUIs) for the developers to build 
applications. Developers achieve virtual worlds and simulations by typing, clicking, 
and dragging through GUIs. Sometimes simple script languages are used to construct 
simulation processes. VR simulation tools allow developing a VR system quicker and 
easier, but the application developed is an independent fixed module that cannot be 
modified or integrated in a user-developed program. A VR simulation tool, which is 
part of VR tools, is generally developed on top of another VR tool, so it is one level 
higher than the basic VR tools in software levels. 
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9.6.6 Basic Functions in VR Tool 

In addition to a simulation loop and basic graphics functions, a VR tool usually 
provides the following functions as well:

• Import that loads 3D objects or worlds from files on the hard disk into computer 
internal memory as data structures (called scene graphs) for manipulation and 
rendering. The 3D virtual world is usually generated with a 3D modeling tool.

• Stereo display that allows two different projections of the VR environment to 
appear in our two eyes. For different display devices, such as HMD, CAVE, and 
Workbench, the display channels and operating mechanisms are different. A VR 
tool should support different display devices as well.

• Event handling that accepts and processes user interaction and control. Various 
input from users and external devices are generated in the form of events. The 
event handling must be fast enough to guarantee the system to run in real time.

• Audio and haptic output that generates sounds through the computer speaker or 
headphone and signals to drive the haptic devices. 

• Collision detection that prevents two objects to collide with each other and to 
touch or pick up virtual objects. Collision detection is a time-consuming 
operation, so most VR tools provide collision Enable/Disable switching functions 
for VR applications to turn it on/off if necessary.

• Level of detail (LOD) that optimizes the rendering detail for faster display and 
animation. To provide LOD, a VR tool should save multiple different models for 
one object. VR tool will choose a corresponding model to render according to the 
distance between the viewpoint and the object. 

• User interface that accepts user inputs for data and status managements. 

9.6.7 Characteristics of VR

We have briefly introduced VR. What does a high-end VR offer data visualization that 
conventional technologies do not? Although a number of items could be cited, here is 
a list of those that are important:  
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• Immersion, which implies realism, multisensory coverage, and freedom from 
distractions. Immersion is more an ultimate goal than a complete virtue due to the 
hardware limitations. For data visualization, immersion should provide a user 
with an increased ability to identify patterns, anomalies, and trends in data that is 
visualized.

• Multisensory, which allows user input and system feedback to users in different 
sensory channels in addition to traditional hand (mouse/keyboard) input and 
visual (screen display) feedback. For data visualization, multisensory allows 
multimodal manipulation and perception of abstract information in data. 

• Presence, which is more subjective – a feel of being in the environment, probably 
with other realistic, sociable, and interactive objects and people. Presence can 
contribute to the “naturalness” of the environment in which a user works and the 
ease with which the user interacts with that environment. Clearly, the “quality” of 
the virtual reality—as measured by display fidelity, sensory richness, and 
real-time behavior—is critical to a sense of presence.

• Navigation, which permits users to move around and investigate virtual objects 
and places not only by 3D traversal, but through multisensory interactions and 
presence. Navigation motivate users to “visualize” and investigate data in 
multiple perspectives that goes beyond traditional 3D graphics.

• Multi-modal displays, which “displays” the VR contents through auditory, 
haptic, vestibular, olfactory, and gustatory senses in addition to the visual sense. 
The mapping of information onto more than one sensory modality may well 
increase the “human bandwidth” for understanding complex, multi-variate data. 
Lacking a theory of multisensory perception and processing of information, the 
critical issue is determining what data “best” maps onto what sensory input 
channel. Virtual reality offers the opportunity to explore this interesting frontier to 
find a means of enabling users to effectively work with more and more complex 
information.

9.7 Graphics on the Internet: Web3D

The Internet has been the most dynamic new technology in the past decade. Many 
Web-based 3D modeling, rendering, and animation tools have emerged. It is not 
difficult to foresee that Web3D will be the future of education, visualization, 
advertising, shopping, communication, and entertainment. Currently, most Web3D 



362          9 Advanced Topics

tools are individual plug-ins for a general Web browser. Most of the tools are built on 
OpenGL or Direct3D, such as X3D (VRML) browser and the Java3D programming 
environment. Here, after a brief introduction to VRML and X3D, we discuss Java3D 
in detail to integrate with Java and JOGL programming. 

9.7.1 Virtual Reality Modeling Language (VRML)

VRML is a scene description language that presents 3D objects and environments 
over the Internet. It is also a file format that defines the layout and content of a 3D 
world. VRML worlds usually have the file extension .wrl or .wrl.gz as opposed to 
.html. When a Web browser sees a file with the .wrl file extension, it launches the 
VRML engine, which is usually a plug-in viewer. A VRML file containing complex 
interactive 3D worlds is similar to an ordinary HTML page in size. 

9.7.2 X3D 

X3D is new open file format standard for 3D graphics and interactive simulation 
based on VRML. It provides an XML-encoded scene graph and scene authoring 
interface. The XML encoding enables 3D to be incorporated into Web services and 
distributed environments (including mobile computing devices), and facilitates 
cross-platform 3D data transfer between applications. X3D is VRML Backwards 
Compatible and preserves VRML97 content and developments. 

9.7.3 Java3D

Java3D by Sun Microsystems, which was introduced in the previous chapter, is a 
scene-graph based 3D API that runs on multiple platforms, which can be deployed 
over the Internet. Unlike JOGL, which is a low-level OpenGL graphics library, 
Java3D was developed earlier on top of Direct3D or OpenGL with a scene-graph 
strecture. 3D graphics can be easily integrated with Java applications and applets. 
VRML and other 3D files can be loaded into the Java3D environment, which are 
controlled and manipulated according to the program and user interactions. 

On top of lower graphics libraries, many new Web-based 3D API engines similar to 
Java3D have been developed by individuals and companies. VRML, X3D, Java, 
Java3D, Streaming Media, and dynamic database are evolving technologies that will 
enable a new kind of 3D hypermedia Web site.
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9.8 3D File Formats 

In order to reuse constructed models and to transmit virtual worlds across the Internet 
and on different platforms, 3D graphics files are created to save models, scenes, 
worlds, and animations. However, graphics developers have created many different 
3D graphics file formats for different applications. Here, we discuss some popular 3D 
graphics file formats, programming tool libraries that understand different formats, 
authoring tools that create virtual worlds and save them in graphics files, and format 
conversion tools that transform files from one format into another. We hope to provide 
a panoramic view of 3D virtual world technologies to facilitate 3D modeling, reuse, 
programming, and virtual world construction. 

The relationships in an ordinary 
high-level 3D graphics tool are 
shown in Fig. 9.6. A 3D graphics tool 
is built on top of other 3D graphics 
tools or a low-level graphics library. 
Therefore, at the bottom of any 
graphics tool is a low-level graphics 
library. Low-level graphics libraries 
such as OpenGL or Direct3D are the 
rendering tools that actually draw 3D 
models into the display. 3D models 
can also be stored and transmitted as 
3D graphics files. 3D authoring tools 
are modeling tools that provide users with convenient methods to create, view, 
modify, and save models and virtual worlds. In general, a 3D authoring tool includes a 
3D browser. 3D browsers or viewers are graphics tools that read, analyze, and convert 
3D graphics files into the tools’ internal formats, and then display the converted 
worlds to the user. 3D graphics viewers, authoring tools, and format converters may 
access 3D files directly, or go through programming tool library functions. 

9.8.1 3D File Formats 

There are different names for virtual worlds or environments. A virtual world is a 
scene database, which is composed of hierarchical 3D scenes, for example, as in 
VRML. A 3D scene is an ordered collection of nodes that include 3D models, 
attributes, animations, and so forth. 3D graphics file formats are storage methods for 

3D File Format
Converters

3D Authoring
Tools

Programming 
Tool Libraries

3D Files &
Formats

Low-level Graphics Libraries
(OpenGL or Direct3D)

 Fig. 9.6 Relationships in 3D graphics tools
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virtual worlds. Due to the complexities of virtual worlds, 3D file formats include 
many specifications about how 3D models, scenes, and hierarchies are stored. In 
addition, different applications include different attributes and activities and thus may 
require different file formats. Over the years, many different 3D graphics file formats 
have been developed that are in use today. DFX, VRML, 3DS, MAX, RAW, 
LightWave, POV, and NFF are probably the most commonly used formats. 

9.8.2 3D Programming Tool Libraries 

3D programming tool libraries provide powerful and easy-to-use functions for 
programs to handle 3D file imports and exports, model and scene constructions, and 
virtual world manipulations and display. They are also called high-level graphics 
libraries, built on top of low-level graphics libraries, but they are really primitive 
functions for higher-level graphics applications. They make sophisticated 3D file 
formats and virtual world hierarchies easy to handle and thus reduce application 
developers’ programming efforts. Many high-level graphics tools are built on top of 
certain programming tool libraries. Usually, a 3D programming tool library supports 
one 3D file format by providing a series of functions that an application program can 
call to store, import, parse, and manipulate 3D models or scenes. If we develop our 
own 3D applications, we save much time and effort by using a 3D programming tool 
library. In general, for the same file format, commercial products with customer 
service are much more reliable than freeware tools. 

9.8.3 3D Authoring Tools

3D graphics authoring tools, which in general are modeling tools, free us from 
constructing complicated objects, worlds, and dealing with complicated specifications 
of 3D graphics file format definitions and make our 3D world construction job much 
easier. 3D authoring tools usually have good user interfaces, which provide rich object 
editing tools (such as object extruding, splitting, and cutting, etc.) and flexible 
manipulation approaches. Using these tools, you can construct complicated 3D 
models conveniently even without knowing the 3D file formats. 

9.8.4 3D File Format Converters

There are many 3D file formats in use. Every 3D file-format has its specific details. 
People have created and are still creating huge amounts of 3D models and 3D scenes 
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with different 3D graphics file formats. Without knowing clearly the 3D file format 
specifications, is it possible — or is there a shortcut for us — to use these different 
formatted 3D resources and import (reuse) them into our own 3D worlds? Fortunately, 
the answer is yes. We can employ the 3D graphics file format conversion tools. By the 
way, many 3D authoring tools also provide certain 3D file format conversion 
functions. 

Some attributes and properties of the 3D models or scenes may be lost during the 
format converting. This is because some specifications of a 3D file format can’t be 
translated into another 3D file format; the converters just throw these specifications 
away. So we should not anticipate that all the details of the 3D models or scenes will 
be fully translated from one 3D file format to another. Here we briefly introduce a 
couple of commonly used tools. A detailed list of the tools is provided later. 

9.8.5 Built-in and Plug-in VRML Exporters

X3D/VRML is the standard 3D file format on the Web. Many 3D file converters can 
convert different file formats to VRML format. Many 3D authoring tools have the 
capability to import 3D models from some other file formats and export 3D scenes to 
VRML file format. Here is a list of authoring tools that support VRML export: 
Alias/Wavefront's Maya, AutoCAD's Mechanical Desktop, Bentley MicroStation, 
CAD Studio, Kinetix's VRML Exporter (a free plug-in for 3D Studio MAX), 
Lightwave, Poser, and SolidWorks. 

9.8.6 Independent 3D File Format Converters

Some independent 3D file format conversion tools, such as Crossroads 3D and 
3DWinOGL, are free. Others are commercial products with reliable technique 
supports, such as Interchange and NuGraf. 

9.9 3D Graphics Software Tools

Today, 3D graphics tools, or simply 3D tools, facilitate powerful visual technologies, 
including visualization, modeling, rendering, animation, simulation, and virtual 
reality. These visual technologies enable new methods in research, engineering, 
medicine, and entertainment. Scientists in different disciplines realize the power of 3D 



366          9 Advanced Topics

graphics but are also bewildered by the complex implementations of a graphics 
system and numerous 3D tools. If we choose a wrong 3D tool for an application, we 
likely end up with unsatisfactory results. Hopefully, if we know what basic functions 
many graphics tools provide, we can understand and employ some graphics tools 
without spending much precious time on learning all the details that may not be 
applicable. 

9.9.1 Low-Level Graphics Libraries

OpenGL, Direct3D, PHIGS, and GKS-3D are well-known low-level graphics 
libraries. As we know, Java is a rapidly growing language and many universities have 
already adopted it as the programming platform. Released by Sun Microsystems in 
June 2003, the recent OpenGL binding with Java, JOGL, provides students, scientists, 
and engineers a new venue of graphics learning, research, and applications. The 
examples in this book are developed in JOGL. 

Direct3D is the de facto standard 3D graphics API for Windows platform. It has an 
OpenGL-comparable feature set. It is mainly used in PC games. Both Direct3D and 
OpenGL are mostly supported by hardware graphics card vendors. 

PHIGS and GKS-3D are earlier international standards that were defined in the 1980s. 
Some high-level graphics packages had been developed on PHIGS or GSK-3D. 

9.9.2 Visualization

AVS, IRIS Explorer, Data Explorer, MATLAB, PV-WAVE, Khoros, and Vtk are 
multiple purpose visualization commercial products that satisfy most of the 
visualization needs. AVS has applications in many scientific areas, including 
engineering analysis, CFD, medical imaging, and GIS (Geographic Information 
Systems). It is built on top of OpenGL and runs on multiple platforms. IRIS Explorer 
includes visual programming environment for 3D data visualization, animation, and 
manipulation. IRIS Explorer modules can be plugged together, which enables users to 
interactively analyze collections of data and visualize the results. IRIS Explorer is 
built on top of OpenInventor, an interactive 3D object scene management, 
manipulation, and animation tool. OpenInventor was used as the basis for the Virtual 
Reality Modeling Language (VRML). The rendering engine for IRIS Explorer and 
OpenInventor are OpenGL. IBM’s Data Explorer (DX) is a general-purpose software 
package for data visualization and analysis. OpenDX is the open source software 
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version of the DX Product. DX is also built on top of OpenGL and runs on multiple 
platforms. MATLAB was originally developed to provide easy access to matrix 
software. Today, it is a powerful simulation and visualization tool used in a variety of 
application areas including signal and image processing, control system design, 
financial engineering, and medical research. PV-WAVE integrates charting, volume 
visualization, image processing, advanced numerical analysis, and many other 
functions. Khoros is a software integration, simulation, and visual programming 
environment that includes image processing and visualization. Vtk is a graphics tool 
that supports a variety of visualization and modeling functions on multiple platforms. 
In Vtk, applications can be written directly in C++ or in Tcl (an interpretive language). 

Volumizer, 3DVIEWNIX, ANALYZE, and VolVis are 3D imaging and volume 
rendering tools. Volume rendering is a method of extracting meaningful information 
from a set of volumetric data. For example, a sequence of 2D image slices of the 
human body can be drawn (namely rendered) in 3D volume and visualized for 
diagnostic purposes or for planning of surgery. 

StarCD, FAST, pV3, FIELDVIEW, EnSight, and Visual3 are CFD (Computational 
Fluid Dynamics) visualization tools. Fluid flow is a rich area for visualization 
applications. Many CFD tools integrate interactive visualization with scientific 
computation of turbulence or plasmas for the design of new wings or jet nozzles, the 
prediction of atmosphere and ocean activities, and the understanding of material 
behaviors. 

NCAR, Vis5D, FERRET, Gnuplot, and SciAn are software tools for visual 
presentation and examination of data sets from physical and natural sciences, often 
requiring the integration of terabyte or gigabyte distributed scientific databases with 
visualization. The integration of multi-disciplinary data and information (e.g., 
atmospheric, oceanographic, and geographic) into visualization systems will help and 
support cross-disciplinary explorations and communications. 

9.9.3 Modeling and Rendering

Modeling tools make creating and constructing complex 3D models easy and simple. 
A graphics model includes geometrical descriptions (particles, vertices, polygons, 
etc.) as well as associated graphics attributes (colors, shadings, transparencies, 
materials, etc.), which can be saved in a file using certain standard 3D model file 
formats. Modeling tools help create virtual objects and environments for CAD 
(computer-aided design), visualization, education, training, and entertainment. For 
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examples, MultigenPro is a powerful modeling tool for 3D objects and terrain 
generation/editing, AutoCAD and MicroStation are popular for 2D/3D mechanical 
designing and drawing, and Rhino3D is for freeform curve surface objects. There are 
numerous powerful modeling tools around. 

All modeling tools provide certain drawing capabilities to visualize the models 
generated. However, in addition to simply drawing (scan-converting) geometric 
objects, rendering tools often include lighting, shading, texture mapping, color 
blending, ray tracing, radiosity, and other advanced graphics capabilities. For 
example, RenderMan Toolkit includes photorealistic modeling and rendering of 
particle system, hair, and many other objects with advanced graphics functions such as 
ray tracing, volume display, motion blur, depth-of-field, and so forth. Some successful 
rendering tools were free (originally developed by excellent researchers at their earlier 
career or school years), such as POVRay, LightScape, Rayshade, Radiance, and 
BMRT. POVRay is a popular ray tracing package across multiple platforms that 
provides a set of geometric primitives and many surface and texture effects. 
LightScape employs radiosity and ray tracing to produce realistic digital images and 
scenes. Rayshade is an extensible system for creating ray-traced images that includes 
a rich set of primitives, CSG (constructive solid geometry) functions, and texture 
tools. Radiance is a rendering package for the analysis and visualization of lighting in 
design. It is employed by architects and engineers to predict illumination, visual 
quality and appearance of design spaces, and by researchers to evaluate new lighting 
technologies. BMRT (Blue Moon Rendering Tools) is a RenderMan-compliant ray 
tracing and radiosity rendering package. The package contains visual tools to help 
users create RenderMan Input Bytestream (RIB) input files. Today, some of these 
tools are getting obsolete due to lack of support and continuation. 

Many powerful commercial graphics tools include modeling, rendering, animation, 
and other functions in one package, such as Alias|Wavefront’s Studio series and Maya, 
SoftImage, 3DStudioMax, LightWave, and TrueSpace. It takes serious course training 
to use these tools. Alias|Wavefront’s Studio series provides extensive tools for 
industrial design, automotive styling, and technical surfacing. Its Maya is a powerful 
and productive 3D software for character animation that has been used to create visual 
effects in some of the hottest film releases, including A Bug’s Life and Titanic. 
SoftImage3D provides advanced modeling and animation features such as NURBS, 
skin, and particle system that are excellent for special effects and have been employed 
in many computer games and films, including animations in Deep Impact and Airforce 
One. 3DStudioMax is a very popular 3D modeling, animation, and rendering package 
on Windows platform for game development. Its open plug-in architecture makes it an 
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ideal platform for third-party developers. LightWave is another powerful tool that has 
been successfully used in many TV feature movies, games, and commercials. 
TrueSpace is yet another popular and powerful 3D modeling, animation, and 
rendering package on Windows platforms. 

9.9.4 Animation and Simulation

Many modeling and rendering tools, such as 3DStudioMax, Maya, and MultigenPro, 
are also animation tools. Animation is closely related to and  associated with 
simulation. Vega is MultiGen-Paradigm’s software environment for real-time visual 
and audio simulation, virtual reality, and general visualization applications. It provides 
the basis for building, editing, and running sophisticated applications quickly and 
easily. It simplifies development of complex applications such as flight simulation, 
simulation-based design, virtual reality, interactive entertainment, broadcast video, 
CAD, and architectural walk-through. EON Studio is a comprehensive tool box for 
creating and deploying interactive real-time 3D simulations on the Windows 
platforms. Popular application areas include marketing and sales tools, product 
development, simulation based training, architectural studies, and community 
planning.  Activeworlds is a collection of networked virtual environments for 
interactive shopping, gaming, and chatting. It’s a networked virtual environment that 
provides a range of user, client, server, and development applications. WorldUp is a 
3D modeling, rendering, and simulation tool good at creating various VR worlds. 
20-sim is a modeling and simulation program for electrical, mechanical, and hydraulic 
systems or any combination of these systems. VisSim/Comm is a Windows-based 
modeling and simulation program for end-to-end communication systems at the signal 
or physical level. It provides solutions for analog, digital, and mixed-mode 
communication system designs. SIMUL8 is a visual discrete event simulation tool. It 
provides performance measures and insights into how machines and people will 
perform in different combinations. Mathematica is an integrated environment that 
provides technical computing, simulation, and communication. Its numeric and 
symbolic computation abilities, graphical simulation, and intuitive programming 
language are combined with a full-featured document processing system. As we 
discussed earlier, MATLAB, Khoros, and many other tools contain modeling and 
simulation functions. 
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9.9.5 Virtual Reality

Some VR software tools are available that recognize well-defined commercial 
tracking sensors, sound machines, and haptic devices, in addition to functioning as 
developing and rendering stereo virtual environments. Java3D is an extension to Java 
for displaying 3D graphics, and it includes methods for stereo virtual environment. 
Sense8’s WorldToolKit and World_Up are cross-platform software development 
systems for building real-time integrated 3D applications. Lincom’s VrTool is an 
OpenInventor-based toolkit to provide a rapid prototyping capability to enable VR 
users to quickly get their application running with the minimum amount of effort. 
MultiGen-Paradigm’s Vega is a real-time visual and audio simulation software tool 
that includes stereo imaging. MR (Minimal Reality) Toolkit is a set of software tools 
for the production of virtual reality systems and other forms of three-dimensional user 
interfaces. 

9.9.6 Web3D

VRML is a scene description language that presents 3D objects and environments 
over the Internet. It is also a file format that defines the layout and content of a 3D 
world. VRML worlds usually have the file extension .wrl or .wrl.gz as opposed to 
.html. When a Web browser sees a file with the .wrl file extension, it launches the 
VRML engine, which is usually a plug-in viewer. A VRML file containing complex 
interactive 3D worlds is similar to an ordinary HTML page in size. VRML was first 
specified in 1994 from simplifying the OpenInventor file format by SGI. The current 
version is VRML97 (ISO/IEC 14772-1:1997). Since 1997, VRML was mostly 
stopped due to the debut of X3D, which is VRML compatible. 

X3D is a newer Open Standard XML-enabled 3D file format to enable Web3D. It has 
a rich set of features for use in visualization, CAD, simulation, and Web-based virtual 
environment. According to Web3D Consortium (http://www.web3d.org), X3D is a 
considerably more mature and refined standard than its VRML predecessor. 

Xj3D is an emerging API of the Web3D Consortium focused on creating a toolkit for 
VRML97 and X3D content written completely in Java. This toolkit has the capability 
to import X3D and VRML content as well as to create a fully-fledged browser. Web 
standards or file specifications, such as X3D (http://www.web3d.org) or VRML, can 
then be executed in existing browsers (http://www.web3d.org/applications/tools
/viewers_and_browsers/). 
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Java3D by Sun Microsystems, Inc. has been employed to develop web-based 3D 
animations. Java3D, however, is not actively supported. Instead, JOGL (Java for 
OpenGL) is under development. 

On top of the lower graphics libraries, many new Web-based 3D API engines similar 
to Java3D have been developed by individuals and companies. XML, X3D, VRML, 
Java3D, streaming media, and dynamic database are evolving technologies that will 
enable a new kind of 3D hypermedia Website in the future if not now.

9.9.7 3D File Format Converters

There are 3D model and scene file format converting tools available, such as 
PolyTrans, Crossroads, 3DWin, InterChange, Amapi3D, PolyForm, VIEW3D, and 
Materialize3D. Some attributes and parameters unique to certain formats will be lost 
or omitted for simplicity in the conversions. 

PolyTrans imports and exports about 24 different file formats. Each import converter 
basically simulates a specific animation/rendering program, allowing it to translate the 
external scene database to the internal PolyTrans scene database format. Once 
imported, the scene can be manipulated and/or examined with the PolyTrans graphical 
user interface then exported to another format. NuGraf, a companion of PolyTrans, 
includes a rendering software that allows all the supported import 3D formats to be 
rendered and contains all the functionality of PolyTrans. PolyTrans converts formats 
among Alias Triangle, Apple 3D Metafile, 3DS, Lightwave, NuGraf BDF, 
OpenFlight, SoftImage, StereoLithography, Strata StudioPro, TrueSpace, and 
Wavefront. Crossroads is a freeware that converts formats among 3D Studio (3DS), 
AutoCAD (DXF), POVRay, RAW Triangle, TrueSpace, VRML, Wavefront, and 
WorldToolkit. 3DWin is another freeware that includes 3DS (*.3ds, *.prj, *.asc), 
Imagine (*.iob, *.obj), Lightwave (*.iwo, *.iws), Autodesk (*.dxf), POV-Ray (*.pob, 
*.pov), Alias/Wavefront (*.obj), SoftFX (*.sce), RenderWare (*.rwx), VRML (*.wrl), 
Dirext 3D (*.x), and Real 3D (*.rpl, *.obj). InterChange includes 3DS, MLI, Alias, 
BRender, CAD-3D, Coryphaeus, GDS, Imagine, LightWave, Movie BYU, Haines 
NFF, PLG, Prisms, Pro/E, QuickDraw 3D, RenderMorphics, Sculpt, Sense8 NFF, 
Stereolithography, Swivel, Symbolics, TrueSpace, Vertigo, Vista DEM, VideoScape, 
Wavefront, Inventor, Alias, and VRML files. Amapi3D is an interactive 3D modeler 
and converter for PC and Mac that creates and converts models for a range of 
applications. It provides 3D file format converting functions including imports: 
AutoCAD DXF, IGES, VRML, 3DMF (Mac), Illustrator, 3DS, Softimage, Amapi, 
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Immersion MicroScribe-3D, and PICT (Mac); and exports: AutoCAD DXF, 3DS, 
Renderman RIB, 3DGF, Illustrator, RayDream, IGES, LightWave, FACT (Mac), 
3DMF, VRML, Artlantis Render, STL, TrueSpace, POVRay, Softimage, PICT, 
HPGL, 3DMF (Mac), and Amapi. PolyForm converts over 20 3D file formats 
including 3DS, DXF, TrueSpace, Wavefront, LightWave3D, Imagine, Sculpt 4D, 
Caligari, Vista Pro DEM, Scenery Animator DEM, Color PostScript, and EPS. 
VIEW3D is a 3DS file viewer that can render 3DS files in OpenGL then output them 
as C programs in OpenGL language, thus you can include them in your own OpenGL 
applications. Materialize3D is a 3D model converter, material and texture editor, and 
polygon processor. It has an easy-to-use interface that allows you to process any 
polygons you desire regardless of model object hierarchies, create vertex normals, 
reverse polygon ordering, project textures, and add or modify materials and textures. 
It has imports: 3DS, AutoCAD, and Direct3D X; and exports: POV-ray, AutoCAD,
and Direct3D X.



Appendix A 
Basic Mathematics for 3D 
Computer Graphics

A.1 Vector Operations

A vector v is a represented as , which has a length and direction. The 
location of a vector is actually undefined. We can consider it is parallel to the line 
from origin to a 3D point v. If we use two points  and  to 

represent a vector AB, then AB = , which is again parallel 

to the line from origin to . We can consider a vector as a ray 
from a starting point to an end point. However, the two points really specify a length 
and a direction. This vector is equivalent to any other vectors with the same length and 
direction. 

A.1.1 The Length and Direction 

The length of v is a scalar value as follows: 

. (EQ 218)

v1 v2 v3, ,( )

A1 A2 A3, ,( ) B1 B2 B3, ,( )

B1 A1– B2 A2– B3 A3–, ,( )

B1 A1– B2 A2– B3 A3–, ,( )

v v1
2

v2
2

v3
2+ +=



374          Appendix A Basic Mathematics for 3D Computer Graphics

The direction of the vector, which can be represented with a unit vector with length 
equal to one, is: 

. (EQ 219)

That is, when we normalize a vector, we find its corresponding unit vector. If we 
consider the vector as a point, then the vector direction is from the origin to that point. 

A.1.2 Addition and Subtraction

If we have two points  and  to represent two vectors A and B, 
then you can consider they are vectors from the origin to the points. As we said, any 
parallel vectors with the same length and direction are equivalent. Therefore, we can 
move a vector in 3D space as long as it stays parallel. As shown in Fig. Appendix A.1, 
vector addition is just connecting the vectors. That is: 

A+B = . (EQ 220)

A negative vector is just the original vector in reverse direction. Therefore, vector 
subtraction is just adding a negative vector. 

A-B = . (EQ 221)

 Fig. A.1 Vector addition and subtraction

normalize v( )
v1
v1
--------

v2
v2
--------

v3
v3
--------, ,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

A1 A2 A3, ,( ) B1 B2 B3, ,( )

A1 B1+ A2 B2+ A3 B3+, ,( )

A1 B1– A2 B2– A3 B3–, ,( )

A

B -B

A
A

B

-B

A
A-B

A+B

a) vector A and B b) -B c) A + B d) A - B
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A.1.3 Dot Product and Cross Product

The dot product of two vectors is a scalar value as follows: 

. (EQ 222)

The dot product is also equal to: 

, (EQ 223)

where θ is the angle between the two vectors. Therefore, given two vectors, we can 
easily find the angle between the two vectors according to Equation 222 and 
Equation 223. When the two vectors are unit vectors, their dot product is the cosine of 
their angle. 

The cross product of two vectors A and B is a vector perpendicular to the two vectors 
and has a magnitude equal to the area of the parallelogram generated from the two 
vectors, as shown Fig. Appendix A.2. 

 Fig. A.2 Vector dot product and cross product 

The area of the parallelogram is: 

. (EQ 224)

The direction of the cross product is according to the right-hand rule, which is in the 
thumb’s direction if our right-hand’s four fingers go from vector A to B. Therefore, the 

A B• A1B1 A2B2 A3B3+ +=

A B• A B θcos=

B

A
a) vector dot product

θ
B

A
a) vector cross product

θ

A×B

A B× A B θsin=
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order of the two vectors in the cross product equation matters. The cross product can 
be calculated by a determinant as follows: 

, (EQ 225)

where (i, j, k) represent (x, y, z) components. That is, 

. (EQ 226)

Cross products are often used to find a vector that is perpendicular to the two vectors. 
Also, according to Equation 224 and Equation 226, the cross products are often used 
to find sine of their angle. 

A.1.4 Reflection

A reflection of vector A around vector N is a vector B as shown in Fig. Appendix A.3, 
which has the same length making the same angle around N. 

 Fig. A.3 Vector reflection around a normal vector

As we can see, 

B = N’ - A; (EQ 227)

A B×
i j k

A1 A2 A3

B1 B2 B3

=

A B× A2B3 A3B2– A3B1 A1B3– A1B2 A2B1–, ,( )=

B

θ

A

θ

N

B

θ

A

θ

N
N’
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N’ = 2n|A|cosθ. (EQ 228)

where n is the unit vector along N: 

n = N/|N|, (EQ 229)

and 

cosθ = n•A/|A|. (EQ 230)

Putting them all together, 

B = 2N•A/|N| - A. (EQ 231)

Reflection is needed in ray tracing. 

A.2 Matrix Operations

A matrix is represented as A = (ai,j) for i=1,...n rows; j=1,...,m columns as follows: 

. (EQ 232)

A.2.1 Transpose

The transpose of A = (ai,j) for i=1,...n; j=1,...,m is a matrix AT = (aj,i) for i=1,...n; 
j=1,...,m, which swaps the rows with columns of the original matrix. That is: 

A

a11 ... a1m

... ... ...

an1 ... anm

=
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. (EQ 233)

A.2.2 Addition and Subtraction

For two matrices A = (ai,j) and B = (bi,j), A + B = (ai,j + bi,j) and A - B = (ai,j -bi,j) for
i=1,...n; j=1,...,m. That is: 

; (EQ 234)

. (EQ 235)

For example, 

. (EQ 236)

The transpose of two matrices added together is:

. (EQ 237)

A
T

a11 ... an1

... ... ...

a1m ... anm

=

A B+
a11 b11+( ) ... a1m b1m+( )

... ... ...

an1 bn1+( ) ... anm bnm+( )

=

A B–
a11 b11–( ) ... a1m b1m–( )

... ... ...

an1 bn1–( ) ... anm bnm–( )

=

1 2 3

4 5 6

7 8 9

3 2 1

7 8 9

4 5 6

+
1 3+( ) 2 2+( ) 3 1+( )
4 7+( ) 5 8+( ) 6 9+( )
7 4+( ) 8 5+( ) 9 6+( )

4 4 4

11 13 15

11 13 15

= =

A B+( )T A
T

B
T+=
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A.2.3 Multiplications

If we multiply a matrix A = (ai,j) for i=1,...n; j=1,...,m with a scalar value c, the result 
is calculated by multiplying every element of A with c: cA = (cai,j) for i=1,...n; 
j=1,...,m. For example: 

(EQ 238)

(EQ 239)

If we multiply two matrices together, it is required that the number of columns of the 
left matrix is the same as the number of rows of the right matrix. For example, if 
matrix A = (ai,j) for i=1,...n; j=1,...,m, then matrix B = (bi,j) has to be with i=1,...m; 
j=1,...,n in order to have the matrix multiplication: 

 (EQ 240)

That is: 

(EQ 241)

3
3 2 1

7 8 9

4 5 6

9 6 3

21 24 27

12 15 18

=

3 2 1

7 8 9

4 5 6

3⁄

1
2
3
--- 1
3
---

7
3
--- 8
3
--- 3

4
3
--- 5
3
--- 2

=

AB ai k, bk j,( )
0 k n≤ ≤
∑=

AB

a1 k, bk 1,( )
1 k n≤ ≤
∑ ... a1 k, bk m,( )

1 k n≤ ≤
∑

... ... ...

an k, bk 1,( )
1 k n≤ ≤
∑ ... an k, bk m,( )

1 k n≤ ≤
∑

=
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For example, 

. (EQ 242)

As we can see, matrix multiplication is not commutative. In general, AB≠BA. The 
transpose of two matrices multiplied together is: 

. (EQ 243)

A.2.4 Square Matrix and Inverse

A square matrix is a matrix with the same number of rows and columns: A = (ai,j) for
i=1,...n and j=1,...n. An identity matrix I, which is also called a unit matrix, is a 
square matrix with the main diagonal value equal to one (ai,j = 1) and all other 
elements equal to zero. Any matrix multiply its identity matrix is the matrix itself: AI 
= IA = I. For example, for n=3, 

. (EQ 244)

If AB = I, then B is called the inverse or reciprocal matrix of A, denoted by A-1. A has 
an inverse, which is called nonsingular or invertible, if and only if the determinant 
|A|≠0. 

For a 2×2 matrix, , 

1 2 3

4 5 6

1 2

3 4

5 6

1 6 15+ +( ) 2 8 18+ +( )
4 15 30+ +( ) 8 20 36+ +( )

22 28

49 64
= =

AB( )T B
T
A
T=

I3

1 0 0

0 1 0

0 0 1

=

A
a11 a12

a21 a22
=
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. (EQ 245)

There are several methods to calculate the inverse, but they are numerically complex. 
The numerical complexity of matrix inversions is several orders of more calculations 
than matrix multiplications. In graphics, matrix inverse is implemented for 
transforming the normals and other applications. 

A
1– 1

A
-----

a22 a– 12

a– 21 a11
=
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vectors 42
vertex shader 263
vertex shading 263
video controller 13
view point 107, 148
view point direction 148
viewing 106
viewing volume 85, 108



386           Index

viewport 106
Viewport transformation 110
Virtual Reality 356
virtual universe 310
visible-surface 

determination 84
visualization 340
voxel 341
VR simulation tool 359
VR tookit 359
VR tool 359

W
weighted area sampling 34

X
X3D 370

Z
z-buffer 84
z-buffer algorithm 84
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