

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xv

About the Technical Reviewer �� xvii

Acknowledgments ��� xix

Introduction ��� xxi

Chapter 1: New Servlet Features ■ �� 1

Chapter 2: JavaServer Faces and Facelets ■ ��� 15

Chapter 3: Expression Language (EL) ■ ��� 39

Chapter 4: Object Relational Mapping and JPA ■ �� 55

Chapter 5: Business Logic Using EJB ■ ��� 73

Chapter 6: Validating Data ■ �� 83

Chapter 7: Contexts and Dependency Injection ■ �� 99

Chapter 8: Building RESTful Web Services ■ ��� 113

Chapter 9: WebSockets and JSON-P ■ ��� 131

Chapter 10: Java Message Service ■ �� 147

Chapter 11: Concurrency and Batch Applications ■ �� 163

Chapter 12: NetBeans and Java EE 7 ■ �� 189

Index ���211

xxi

Introduction

The Java platform is one of the most widely used platforms for application development in the world. The platform
is so popular that there are several different flavors of Java that can be used for developing applications that run on
different mediums. From development for desktop or mobile, to web applications and hardware operating systems,
Java can be utilized for development of just about any solution. As such, Java has become a very popular platform for
development of enterprise applications, offering web services, reliability, security, and much more.

Java Enterprise Edition was originally released in 1999 as Java 2 Platform, Enterprise Edition (J2EE). Although
several enterprise frameworks were available for development of reliable and secure applications on the Java
platform, it made sense to standardize some solutions in order to minimize customization and help to make
Java Enterprise development more prevalent in the industry. The platform originally included a terse number
of specifications for standardization, including Java Servlet, JavaServer Pages, RMI, Java Database Connectivity
(JDBC), Java Message Service API (JMS), Java Transaction API (JTA), and Enterprise JavaBeans. Development of
J2EE applications had a steep learning curve, and it was cumbersome because it required the use of XML for lots of
configurations. Even with these setbacks, it became popular amongst larger organizations and companies due to the
prevalence of Java and its well-known security benefits. In 2001, J2EE 1.3 was released, adding more specifications to
the platform, including the JavaServer Pages Standard Tag Library (JSTL, and Java Authentication and Authorization
Service (JAAS). Other specifications, such as Java Servlet, also gained enhancements under the J2EE 1.3 release,
making evolutionary enhancements to the platform. The release of J2EE 1.4 in 2003 marked a major milestone for
Java Enterprise, as many new specifications were added to the platform, providing standards for even more Java
technologies. The release of J2EE 1.4 marked the first iteration of Web Services for J2EE 1.1, JavaServer Faces (JSF),
and Java APIs for XML solutions such as JAXP, JAXR, and more. Although the release of J2EE 1.4 included many
specifications, it was still deemed as “difficult to learn” and “cumbersome.”

Over the next few years, J2EE was re-worked in an attempt to make it easier to learn and utilize. Although XML is
an excellent means for configuration, it can be cumbersome and hard to manage, so configuration was a big item that
was being addressed for the next release. Technologies such as Enterprise JavaBeans (EJB) included some redundant
characteristics, making EJB coding time consuming and difficult to manage, so an overhaul of EJB was also in order. In
May of 2006, Java EE 5 was released, leaving the J2EE acronym behind, changing to simply Java EE instead. The Java EE 5
platform was significantly easier to use and maintain because features such as annotations were introduced, cutting
down the amount of XML configuration significantly. EJBs were made easier to develop, making EJB a marketable
technology for object-relational mapping once again. Java Enterprise Edition has since become a widely adopted and
mature platform for enterprise development. Java EE 6 was released in 2009, making configuration and technologies
even easier, and adding more specifications to the platform. Specifications such as Contexts and Dependency
Injection and Bean Validation were introduced, making usability even easier and development more productive.

This latest release, Java EE 7, enhances the platform even more by adding new specifications such as WebSockets
and JSON-P. Specifications such as JSF and EJB were enhanced, adding even more features to increase productivity
and functionality. This book focuses on Java Enterprise as a whole, covering most of the widely used specifications
that make up Java EE. You will learn how to make use of each of the major specifications, using examples where
applicable. This book will cover APIs that have been updated for Java EE 7, as well as those that have been enhanced,
providing complete coverage on the latest features of the platform.

I work with Java Enterprise on a daily basis, and I have a deep passion for the technologies involved in the
platform. I hope that this book increases your passion for Java EE and the Java platform in its entirety.

■ IntroduCtIon

xxii

Who This Book Is For
This book is intended for all those who are interested in learning the latest features of Java enterprise edition
(Java EE 7). Intermediate and advanced Java developers who are looking to update their arsenal with the latest
features that Java EE 7 has to offer may benefit by reading the book from cover to cover, or they may choose to read
chapters that discuss the latest about only their favorite APIs.

How This Book Is Structured
This book is structured so that it does not have to be read from cover to cover. In fact, it is structured so that developers
can chose which topic(s) they’d like to read about and jump right to them. The book is designed to allow developers to
get up and running quickly with the latest features so that they can be home in time for dinner.

Conventions
Throughout the book, I’ve kept a consistent style for presenting Java code, SQL, command-line text, and results.
Where pieces of code, SQL, reserved words, or code fragments are presented in the text, they are presented in
fixed-width Courier font, such as this (working) example:

public class MyExample {
 public static void main(String[] args){
 System.out.println("Java EE 7 is excellent!");
 }
}

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link can be
found on the book’s information page under the Source Code/Downloads tab. This tab is located underneath the
Related Titles section of the page.

Note ■ the sources for this book may change over time, to provide new implementations that incorporate the most
up-to-date features in Java ee. that said, if any issues are found within the sources, please submit them via the
Apress web site “errata” form, and code will be adjusted accordingly.

Configuring a Database for the Book Sources
This book’s sources have been developed using the Apache Derby database, which ships with Netbeans IDE and
GlassFish. The book sources have also been optimized for use with an Oracle 11g database. Please install and
configure the database for use with the book sources using either of those database choices prior to working with
the sources. The database configuration involves creation of a database schema or user, as well as execution of the
create_database.sql script (contained within the book sources) that goes along with the database of your choice. You
must also place the appropriate database JDBC driver into the Glassfish CLASSPATH. You can do this by copying the
ojdbc6.jar (Oracle) or derbyclient.jar (Apache Derby) JAR file into your Integrated Development Environment (IDE)

http://www.apress.com

■ IntroduCtIon

xxiii

project for the book sources, or into the <GlassFish-Home>\glassfish4\domains\domain1\lib\ext directory. If copying
into the Glassfish lib directory, then once the JAR file has been copied into place the GlassFish server will need to be
restarted, if it is already running.

Once the database has been installed/configured, and the SQL scripts contained within the book sources have
been executed, please log into the Glassfish administrative console and set up a database connection pool to work
with the database of your choice.

After a connection pool has been configured, please update the persistence.xml file that is contained within
the book sources accordingly, so that the data source name aligns with the one you’ve assigned to the Glassfish
JDBC resource.

Setting Up a NetBeans Project
**Before setting up a NetBeans project for the book sources, please install and configure Glassfish v4 accordingly.

***Before setting up NetBeans project for the book sources, please install and/or configure Apache Derby or
Oracle database accordingly.

Please perform the following steps to set up the NetBeans project:

1. Open NetBeans IDE 7.3 or greater.

2. Choose the File ➤ New Project ➤ Java Web ➤ Web Application menu option.

3. Title the project “IntroToJavaEE7”, and choose a desired Project Location.

4. Server and Settings:

If you have not yet registered your Glassfish v4 server with Netbeans, please click the –
“Add” button in this dialog, and add the server. To do so, you will need to know the
location of the Glassfish server on your file system.

Java EE Version: Java EE 7 Web –

5. Frameworks:

Select JavaServer Faces, and then accept all defaults. –

6. Click “Finish”

7. Go to your file system and copy the contents from within the IntroducingJavaEE7Sources\src
directory into your new NetBeans project “src” directory.

1

Chapter 1

New Servlet Features

Along with the release of Java EE 7 comes an incremental upgrade to Java servlet technology. The servlet technology
has been updated to include features that help bring the technology inline for use with newer technologies, such as
HTML 5. The previous release, Servlet 3.0, focused on making servlets easier to write and manage. Such upgrades
as optional web.xml configuration, asynchronous request processing, and the addition of the FileUpload technology
make writing servlets much easier than before. The Servlet 3.1 release brings forth more enhancements to help bring
the technology inline with current technologies, including the following:

Builds upon the new features of Servlet 3.0, introducing the Non-Blocking I/O API•	

The ability to work with the WebSockets protocol•	

Includes security enhancements•	

Offers other, miscellaneous updates•	

Non-Blocking I/O
Servlet technology has allowed only traditional (blocking) input/output during request processing since its inception.
In the Servlet 3.1 release, the new Non-Blocking I/O API makes it possible for servlets to read or write without any
blocking. This means that other tasks can be performed at the same time as a read or write is occurring, without any
wait. This in turn means that now you can more easily accomplish Ajax and partial-page refreshes without making
separate calls to the servlet for each update. Such a solution opens up a new realm of possibilities for servlets, making
them much more flexible for use along with modern technologies such as the WebSockets protocol (covered in
Chapter 9).

To implement a nonblocking I/O solution, new programming interfaces have been added to
ServletInputStream and ServletOutputStream, as well as two event listeners: ReadListener and WriteListener.
The ReadListener and WriteListener interfaces make the servlet I/O processing occur in a nonblocking manner
via callback methods that are invoked when the container is able to do so without blocking other processes. Use the
ServletInputStream.setReadListener(ServletInputStream, AsyncContext) method to register a ReadListener
with a ServletInputStream, and use the I/O read ServletInputStream.setWriteListener(ServletOutputStream,
AsyncContext) method for registering a WriteListener. The following lines of code demonstrate how to register a
ReadListener implementation with a ServletInputStream:

AsyncContext context = request.startAsync();
ServletInputStream input = request.getInputStream();
input.setReadListener(new ReadListenerImpl(input, context));

Chapter 1 ■ New Servlet FeatureS

2

Note ■ In Servlet 3.0, AsyncContext was introduced to represent an execution context for an asynchronous operation
that is initiated on a servlet request. to use the asynchronous context, a servlet should be annotated as @WebServlet,
and the asyncSupported attribute of the annotation must be set to true. the @WebFilter annotation also contains the
asyncSupported attribute.

Let’s take a look at how to perform a nonblocking read. After a listener has been registered
with a ServletInputStream, the status of a nonblocking read can be checked by calling the methods
ServletInputStream.isReady and ServletInputStream.isFinished. For instance, a read can begin once
the ServletInputStream.isReady method returns a true, as shown here:

while (is.isReady() && (b = input.read()) != -1)) {
 len = is.read(b);
 String data = new String(b, 0, len);
}

To create a ReadListener or WriteListener, three methods must be overridden: onDataAvailable,
onAllDataRead, and onError. The onDataAvailable method is invoked when data is available to be read or
written, onAllDataRead is invoked once all the data has been read or written, and onError is invoked if an error is
encountered. The following code demonstrates one way to implement the ReadListener interface. You can view these
sources in the org.javaee7.chapter01.ReadListenerImpl.java file.

package org.javaee7.chapter01;

import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.AsyncContext;
import javax.servlet.ReadListener;
import javax.servlet.ServletInputStream;
import javax.servlet.ServletOutputStream;

public class ReadListenerImpl implements ReadListener {

 private ServletInputStream is = null;
 private AsyncContext context = null;

 public ReadListenerImpl(ServletInputStream in, AsyncContext ac) {
 this.is = is;
 this.context = ac;
 }

 @Override
 public void onDataAvailable() {
 try {
 StringBuilder sb = new StringBuilder();
 int len = -1;
 byte b[] = new byte[1024];

Chapter 1 ■ New Servlet FeatureS

3

 while (is.isReady()
 && (len = is.read(b)) != -1) {
 String data = new String(b, 0, len);
 System.out.println(data);
 }
 } catch (IOException ex) {
 Logger.getLogger(ReadListenerImpl.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 @Override
 public void onAllDataRead() {
 context.complete();

 }

 @Override
 public void onError(Throwable thrwbl) {
 System.out.println("Error: " + thrwbl);
 // perform cleanup here
 context.complete();
 }

}

The AsyncContext.complete method is called in the onAllDataRead method to indicate that the read has been
completed and to commit the response. This method is also called in the onError implementation so that the read
will complete, so it is important to perform any cleanup within the body of the onError method to ensure that no
resources are leaked.

Similarly, a WriteListener implementation can use the new ServletOutputStream.canWrite method, which
determines whether data can be written in a nonblocking manner. A WriteListener implementation class must
override a couple of methods: onWritePossible and onError. The onWritePossible method is invoked when a
nonblocking write can occur. The write implementation should take place within the body of this method. The
onError method is much the same as its ReadListener implementation counterpart, because it is invoked when an
error occurs.

The following lines of code demonstrate how to register a WriteListener with a ServletOutputStream:

AsyncContext context = request.startAsync();
ServletOutputStream os = response.getOutputStream();
os.setWriteListener(new WriteListenerImpl(os, context));

As mentioned previously, the WriteListener implementation class must include overriding methods
for onWritePossible and onError, as shown in the next example. The following sources are that of the
org.javaee7.chapter01.WriteListenerImpl class.

import javax.servlet.AsyncContext;
import javax.servlet.ServletOutputStream;
import javax.servlet.WriteListener;

Chapter 1 ■ New Servlet FeatureS

4

public class WriteListenerImpl implements WriteListener {

 ServletOutputStream os;
 AsyncContext context;

 public WriteListenerImpl(ServletOutputStream out, AsyncContext ctx){
 this.os = out;
 this.context = ctx;
 System.out.println("Write Listener Initialized");
 }

 @Override
 public void onWritePossible() {
 System.out.println("Now possible to write...");
 // Write implementation goes here...
 }

 @Override
 public void onError(Throwable thrwbl) {
 System.out.println("Error occurred");
 context.complete();
 }

}

Note ■ In most cases, the ReadListener and WriteListener implementation classes can be embedded within the calling
servlet. they have been broken out into separate classes for the examples in this book for demonstration purposes.

The new Non-Blocking I/O API helps bring the Servlet API into compliance with new web standards. The new
API makes it possible to create web-based applications that perform in an asynchronous fashion, making it possible
to handle a larger number of requests.

Upgrade Protocol
An HTTP response protocol can now be upgraded from HTTP 1.1 to some other protocol via a new protocol
upgrade API. Typically this is used for upgrading to WebSocket for more advanced communication. All protocol
processing takes place in a servlet named HttpUpgradeHandler, and although the servlet container is responsible for
performing the upgrade, the servlet code needs to invoke the process. An HttpServletResponse can be upgraded
by invoking its upgrade method, and when this occurs, the appropriate HttpUpgradeHandler for the requested
protocol is instantiated. Upon instantiation, the HttpUpgradeHandler.init method is invoked, which passes a
WebConnection to allow the protocol handler to access the data streams. If servlet filters are used before and during
the upgrade process, they will continue to process normally, and after the upgrade has been completed, then all
servlet filters will stop performing operations. Finally, the HttpUpgradeHandler.destroy method is invoked once the
upgrade processing is complete.

Chapter 1 ■ New Servlet FeatureS

5

In the following code, a decision is made to upgrade the protocol, and the upgrade method is invoked:

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 boolean decideToUpgrade = true; // Hard coded to force the upgrade...
 if (decideToUpgrade){
 request.upgrade(EchoProtocolHandler.class);

 }
 // perform processing as normal
 ...
}

The HttpUpgradeHandler class in the previous example is named EchoProtocolHandler. An example
implementation of this class would look similar to the following:

public class EchoProtocolHandler implements HttpUpgradeHandler {

 @Override
 public void init(WebConnection wc) {
 try {
 ServletInputStream input = wc.getInputStream();
 ServletOutputStream output = wc.getOutputStream();
 ReadListener readListener = new ReadListenerImpl(input,output);
 input.setReadListener(readListener);
 } catch (Exception e){
 System.out.println("Exception has occurred " + e);
 }

 }

 @Override
 public void destroy() {
 throw new UnsupportedOperationException("Not supported yet.");
 }

}

As you can see, the HttpUpgradeHandler accepts a WebConnection in the init method, and the
HttpUpgradeHandler.init passes that WebConnection automatically upon invocation. While most of the work takes
place behind the scenes, it is important to note that the upgrade process must be invoked within the code itself.

Such a solution makes sense when working with APIs such as the new WebSocket. In cases where a half-duplex
protocol is in use (see Chapter 9 for details), it would need to be upgraded to a full-duplex protocol for working with a
WebSocket.

Note ■ HttpUpgradeHandler can use nonblocking I/O to complete upgrade requests.

Chapter 1 ■ New Servlet FeatureS

6

Enhanced FileUpload
The Servlet 3.0 API included a new FileUpload mechanism that allows a servlet to be specified as a file upload
handler, making it unnecessary for third-party libraries to enable file uploading. As a brief review, any servlet that is
marked with the @MultipartConfig annotation can handle file upload requests. The processing for saving the file to
disk then occurs within the file upload servlet. The @MulipartConfig annotation can accept the following attributes,
which can be used to specify details for the file upload:

•	 location: Absolute path to the directory on the file system

•	 fileSizeThreshold: File size in bytes after which the file will be temporarily stored on disk

•	 maxFileSize: Maximum file size accepted, in bytes

•	 maxRequestSize: Maximum size allowed for the multipart/form-data request, in bytes

For example, suppose that an HTML page contained a file input and the request was sent to a servlet named
FileUploadHandler. The code for the FileUploadHandler servlet may look like the following:

@MultipartConfig
@WebServlet(name = "FileUploadHandler", urlPatterns = {"/uploadFile"})
public class FileUploadHandler extends HttpServlet {

 private final static Logger LOGGER =
 Logger.getLogger(FileUploadHandler.class.getCanonicalName());

 /**
 * Handles the HTTP
 * <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP
 * <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */

Chapter 1 ■ New Servlet FeatureS

7

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");

 final String filepath = request.getParameter("destination");
 final Part filePart = request.getPart("myfile");
 final String fileName = getFileName(filePart);

 final PrintWriter writer = response.getWriter();

 try(
 OutputStream out = new FileOutputStream(new File(filepath + File.separator + fileName));
 InputStream filecontent = filePart.getInputStream()){

 int read = 0;
 final byte[] bytes = new byte[1024];

 while ((read = filecontent.read(bytes)) != -1) {
 out.write(bytes, 0, read);
 }
 writer.println("New file " + fileName + " created at " + filepath);
 LOGGER.log(Level.INFO, "File{0}being uploaded to {1}",
 new Object[]{fileName, filepath});

 out.flush();

 } catch (FileNotFoundException fne) {
 writer.println("You either did not specify a file to upload or are " +
 "trying to upload a file to a protected or nonexistent location.");
 writer.println("
 ERROR: " + fne.getMessage());

Chapter 1 ■ New Servlet FeatureS

8

 LOGGER.log(Level.SEVERE, "Problems during file upload. Error: {0}",
 new Object[]{fne.getMessage()});
 } finally {

 if (writer != null) {
 writer.close();
 }
 }
 }

 private String getFileName(final Part part) {
 final String partHeader = part.getHeader("content-disposition");
 LOGGER.log(Level.INFO, "Part Header = {0}", partHeader);
 for (String content : part.getHeader("content-disposition").split(";")) {
 if (content.trim().startsWith("filename")) {
 return content.substring(
 content.indexOf('=') + 1).trim().replace("\"", "");
 }
 }
 return null;
 }

}

In the Servlet 3.1 release, the specification has been updated to include support for containers that do not
provide multipart/form-data processing. If the container does not provide the processing, then the data will be
available via HttpServletRequest.getInputStream. However, if the container does provide support, then the data
will be made available through the following methods in HttpServletRequest, as shown in the previous example:

•	 public Collection<Part> getParts();

•	 public Part getPart(String name);

The following example code demonstrates how a servlet without multipart/form-data processing may be coded:

...
protected void processRequestNoMultipart(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");

 final String filepath = request.getParameter("destination");
 final String path = request.getServletPath();
 final String fileName = getFileName(path, request);
 final PrintWriter writer = response.getWriter();

 try(

 InputStream filecontent = request.getInputStream();
 OutputStream out = new FileOutputStream(new File(filepath + File.separator +
request.getLocalName()))){
 int read = 0;

Chapter 1 ■ New Servlet FeatureS

9

 final byte[] bytes = new byte[1024];

 while ((read = filecontent.read(bytes)) != -1) {
 out.write(bytes, 0, read);
 }
 writer.println("New file " + fileName + " created at " + filepath);
 LOGGER.log(Level.INFO, "File{0}being uploaded to {1}",
 new Object[]{fileName, filepath});
 out.flush();

 } catch (FileNotFoundException fne) {
 writer.println("You either did not specify a file to upload or are " +
 "trying to upload a file to a protected or nonexistent location.");
 writer.println("
 ERROR: " + fne.getMessage());

 LOGGER.log(Level.SEVERE, "Problems during file upload. Error: {0}",
 new Object[]{fne.getMessage()});
 } finally {

 if (writer != null) {
 writer.close();
 }
 }
 }

 private String getFileName(final String path, HttpServletRequest req){
 String name;
 if (path.length() > 0 && path.charAt(0) == '/'){
 name = path.substring(1);
 } else {
 name = path;
 }

 name.replace('/', File.pathSeparatorChar);
 return req.getServletContext().getRealPath(name);
 }
...

Filter Life Cycle
Some minor changes have been made in the filter life cycle of a servlet in release 3.1. In an effort to better understand
the changes, let’s review the life cycle of a filter. After a web application is deployed but before the application can
begin serving requests, the container must locate the list of filters that are to be applied to the web resource. The list of
filters can be defined in the web.xml file or via annotations that have been applied to servlet classes. Only one instance
per <filter> declaration is instantiated per JVM of the container. When the container receives an incoming request,
it applies the first filter instance in the list of filters that need to be applied and calls its corresponding doFilter method.

For example, let’s say that the web.xml file contains two filter specifications for the given servlet path: FilterA
and FilterB. When a servlet in the path is requested, both of these filters must be applied to the request. Therefore,
the first filter’s doFilter method is invoked, and the filter is processed accordingly. Once complete, the next filter’s
doFilter method is invoked, and so on. It is possible that a filter’s doFilter method will invoke the next entity in

Chapter 1 ■ New Servlet FeatureS

10

the filter chain. In this case, a small change has been made to the life cycle. As of release 3.1, the service method is
required to run in the same thread as all filters that apply to the servlet. The following web.xml excerpt provides a
visual overview of this update:

<!—Filters to be applied ->

<filter>
 <filter-name>FilterA</filter-name>
 <filter-class>FilterA</filter-class>
</filter>
<filter>
 <filter-name>FilterB</filter-name>
 <filter-class>FilterB</filter-class>
</filter>
<filter-mapping>
 <filter-name>FilterA</filter-name>
 <servlet-name>ServletOne</servlet-name>
</filter-mapping>

In this example, when ServletOne is processed, FilterA must be applied because it is the first filter in the chain.
If FilterA contains a doFilter method that invokes FilterB, then the service method of FilterA must be executed in
the same thread as the service method of FilterB. This enhancement is handled by the container, but it is important
to understand for concurrency purposes.

Security Enhancements
The new Servlet 3.1 API includes security enhancements that improve the reliability and integrity of servlet-based
applications by applying the following:

Run-as security roles to •	 init and destroy methods

Session fixation attack defense•	

Default security semantics for nonspecified HTTP methods•	

This section will provide a quick overview of these new security enhancements, along with some example code to
help you begin implementing them.

Specifying an Identity for Executing init and destroy Methods
Security roles that are defined for a particular application can be mapped to a servlet by annotating the servlet class
with @RunAs. Any calls that a servlet makes to an EJB must provide a security identity, or principal, and the @RunAs is a
means to do just that. In Servlet 3.1, if a security role is bound via run-as to a servlet, then calls made from that servlet
to an EJB will be executed under the permission set of the role bound by the @RunAs. As such, even if a call is made
from a servlet’s init or destroy method, it will be initiated under the specified permission set.

For example, suppose you want to initiate a call to an EJB from a servlet under an administrative role named
“Admin.” To do so, simply annotate the servlet accordingly and make the calls, as needed. In the following example,
a servlet named AcmeServlet is configured for access by any user who is part of the “user” role.

@RunAs("user")
@WebServlet(name = "AcmeServlet", urlPatterns = {"/AcmeServlet"})
public class AcmeServlet extends HttpServlet {

Chapter 1 ■ New Servlet FeatureS

11

 @EJB
 EmployeeSession employeeSession;

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 List<Employee> empList = employeeSession.obtainActiveEmployeeCount();
 try {
 /* TODO output your page here. You may use following sample code. */
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet AcmeServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet AcmeServlet at " + request.getContextPath() + " is running as
Admin user</h1>");
 out.println("<h2>Employee List</h2>");
 for(Employee emp: empList){
 out.println(emp.getFirst() + " " + emp.getLast());
 }
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the
left to edit the code.">
 /**
 * Handles the HTTP
 * <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */

Chapter 1 ■ New Servlet FeatureS

12

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP
 * <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }// </editor-fold>
}

When a user visits this servlet, the servlet will be executed under the specified role. For more information
regarding the configuration of principals and roles in Glassfish, please refer to the online documentation.

Thwarting Session Fixation Attack
It is possible for a web hacker to obtain security IDs used by web sites for authentication purposes. When a malicious
hacker gets ahold of such an identifier, havoc could be wreaked upon a victim’s account because a security ID could
possibly grant a hacker full permissions to the hacked account. Such attacks are known as session fixation attacks.

In Servlet 3.1, session fixation attacks can be thwarted by changing the session ID once a user has successfully
authenticated to the application. The session ID can be changed by calling the new HttpServletRequest.changeSessionId
method after the session has already been created. The new HttpSessionIdListener interface can be used to implement
listener classes that are responsible for changing a session identifier.

The Servlet 3.1 code base has been updated to use the new HttpSessionIdListener as a standard listener.
As such, the following APIs now accept listener classes that implement the HttpSessionIdListener interface:

•	 addListener(String className)

•	 <T extends EventListener> void addListener(T t)

•	 void addListener(Class <? extends EventListener> listenerClass)

Chapter 1 ■ New Servlet FeatureS

13

•	 <T extends EventListener> void createListener(Class<T> clazz)

•	 @WebListener

The following excerpt from the servlet org.javaee.7.chapter01.SessionIdTest demonstrates how to change a
session identifier using this new technique.

...
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();

 try {
 /* TODO output your page here. You may use following sample code. */
 out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet SessionIdTest</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet SessionIdTest at " + request.getContextPath() + "</h1>");
 out.println("<p>the current sesion id is: " + session.getId());

 request.changeSessionId();
 out.println("<p>the current session id has been changed, now it is: " +
 session.getId());
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }...

Denying Uncovered HTTP Methods
To specify permissions for a given servlet, one must configure security constraints in the web.xml to specify role
auth-constraint for a given web-resource-collection. That said, in Servlet 3.0 and prior, any servlet that was not
explicitly configured with a security constraint within the web.xml was made available for everyone. The new element
<deny-uncovered-http-methods/> can be added to a web.xml in order to deny access to any of the http methods that
have not been specifically addressed within the security constraint.

For example, given the following security constraint configuration, members of the users role will be allowed
GET and POST access to all servlets within the url pattern. Without specifying <deny-uncovered-http-methods/>,
all other http methods, such as POST, would be open to everyone. However, by specifying the new
<deny-uncovered-http-methods> element, all other methods are not available to anyone. For instance, the following
could be listed within the web.xml for a Servlet 3.0 application in order to secure only the GET method.

Chapter 1 ■ New Servlet FeatureS

14

<security-constraint>
 <web-resource-collection>
 <web-resource-name>secured</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>users</role-name>
 </auth-constraint>

</security-constraint>

In contrast, the following could be specified in a Servlet 3.1 application in order to deny any http method that is
uncovered without explicitly listing them within the web.xml.

<deny-uncovered-http-methods/>

Changing the Content Length
Sometimes it is useful to manually set the content length of a servlet header by invoking the ServletRequest
setContentLength method. Usually this is done to help facilitate the creation of certain types of documents, among
other reasons. The Servlet API has always allowed you to get or set the content length in byte format using the Java
int type. With the inception of Servlet 3.1, it is also possible to utilize the long data type for working with the content
length. This can aid in the scenario where a content length greater than 2GB needs to be specified. In previous
releases, setting a long value that was equal to 2GB would cause a negative header to be sent. The following methods
have been added to the Servlet API for utilizing the long data type:

•	 ServletRequest.getContentLengthLong

•	 ServletResponse.setContentLengthLong

Summary
The Servlet 3.1 specification includes many nice enhancements. The non-blocking I/O support makes Servlets more
feasible for producing modern web applications that utilize asynchronous operations. The ability to easily upgrade
protocol allows Servlet processing to change and allows for full-duplex protocol usage, when needed. The other
updates that have been outlined in this chapter also help to enhance the Servlet API, making it less cumbersome to
develop robust solutions.

It should be noted that many smaller enhancements to the API have been made that were not addressed in the
chapter. For a complete list of changes, please see the Servlet 3.1 documentation, which can be found at the
JSR 340 Specification website: (http://jcp.org/en/jsr/detail?id=340).

http://jcp.org/en/jsr/detail?id=340

15

Chapter 2

JavaServer Faces and Facelets

The release of Java EE 7 embodies incremental updates for the JavaServer Faces (JSF) API, making it easier to use
and more compliant with modern technology. The JSF web framework originated in the early 2000s, and the web
landscape has changed much since its inception. The incremental releases of JSF 1.x added more features to help
build out the framework, but JSF 1.x was still very much a work in progress that, although it worked fine by itself, was
even better when paired with other third-party frameworks, such as JBoss Seam. When Java EE 6 was released, the
JSF 2.0 framework became more self-sufficient and required no third-party frameworks to be fully functional. When
utilized along with the new EJB infrastructure that was part of Java EE 6, JSF 2.0 worked seamlessly but still had a few
rough edges. The JSF 2.1 release repaired bugs and helped smooth some of the rough edges that remained.

The JSF 2.2 release brings with it even more incremental updates that aim to complete the framework even
further, bringing it into alignment with the next generation of web applications using HTML5. This chapter covers
many of the new features that will be important to a wide range of developers. The updated release brings forth better
integration with HTML5, less XML configuration, better page flow, and more security.

View Actions
In JSF 2.1 and prior, it was difficult to invoke action methods within a managed bean unless they were bound to a
command component. Sometimes it makes sense to invoke a method when the page is loading, after the page has
been fully loaded, and so on. In the past, this was done by using a preRenderView event listener, which causes the
method bound within a managed bean to be invoked before the view is rendered. Utilization of the preRenderView
event listener works, but it does not provide the level of control that is required to invoke a method during different
phases of the view life cycle. The preRenderView event listener also requires developers to programmatically check
the request type and work with the navigation handler.

In the JSF 2.2 release, you can use a new technique to invoke action methods within a managed bean during
specified life-cycle events that occur within the view. A new tag, f:viewAction, can be bound to a view, and it can
be incorporated into the JSF life cycle in both non-JSF (initial) and JSF (postback) requests. To use the tag, it must be
a child of the metadata facet. View parameters can be specified within the metadata facet as well, and they will be
available from within the managed bean when the action method is invoked.

The following simple JSF view demonstrates the use of the viewAction, because it will cause the
viewActionManagedBean.viewActionExample() method to be invoked before the view is built:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title>Chapter 2 - ViewAction Example</title>
 </h:head>

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/facelets

Chapter 2 ■ JavaServer FaCeS and FaCeletS

16

 <h:body>
 <ui:composition template="../layout/custom_template.xhtml">
 <ui:define name="content">
 <f:metadata>
 <f:viewAction action="#{viewActionManagedBean.viewActionExample()}"/>
 </f:metadata>
 Please look in the server log to see the message that is being
 printed via the viewActionManagedBean.viewActionExample() method.
 </ui:define>
 </ui:composition>
 </h:body>
</html>

In the ViewActionManagedBean controller, the action method named viewActionExample is invoked using the
viewAction. In the following example method, a String is returned, which enables implicit navigation from the
action method. If null is returned, the navigation handler is invoked, but the same view will be rendered again so
long as there are no navigation condition expressions that change the navigation. If a String-based view name is
returned, then the navigation handler will render that view once the method has completed. This can come in handy
for situations such as authentication handling, where an action method is used to check the user’s role, and then the
appropriate view is rendered based upon the authenticated user role.

public String viewActionExample(){
 System.out.println("This is being written to the server log when the "
 + "view is accessed...");
 return null;
}

As mentioned previously, the viewAction facet can be customized to allow the action method to be invoked at
different stages within the view life cycle. By default, the viewAction will be initiated before postback because they
are expected to execute whether the request was Faces or non-Faces. However, this can be changed by setting the
onPostback attribute of the viewAction tag to true.

<f:viewAction action="#{viewActionManagedBean.viewActionExample()}" onPostback="true"/>

If you need to get even more granular and invoke a view action during a specified life-cycle phase, it is
possible by setting the phase attribute to the phase required. Table 2-1 specifies the different phases along with
their phase value.

Table 2-1. JSF Life-Cycle Phases

Phase Tag Value

Restore View RESTORE_VIEW

Apply Request Values APPLY_REQUEST_VALUES

Process Validations PROCESS_VALIDATIONS

Update Model Values UPDATE_MODEL_VALUES

Invoke Application INVOKE_APPLICATION

Render Response RENDER_RESPONSE

Chapter 2 ■ JavaServer FaCeS and FaCeletS

17

The following example demonstrates the viewAction facet that will cause the action to be invoked during the
Process Validations phase:

<f:viewAction action="#{viewActionManagedBean.viewActionExample()}"
 phase="PROCESS_VALIDATIONS"/>

Faces Flow
The concept of session management has been a difficult feat to tackle since the beginning of web applications.
A web flow refers to a grouping of web views that are interrelated and must have the ability to share information with
each view within the flow. Many web frameworks have attempted to tackle this issue by creating different solutions
that would facilitate the sharing of data across multiple views. Oftentimes, a mixture of session variables, request
parameters, and cookies are used as a patchwork solution.

In JSF 2.2, a solution has been adopted for binding multiple JSF views to each other, allowing them to share
information among each other. This solution is called faces flow, and it allows a group of interrelated views to belong
to a “flow instance,” and information can be shared across all of the views belonging to that flow instance. Flows
contain separate navigation that pertains to the flow itself, and not the entire application. As such, flows contain their
own configuration, and custom navigation can be defined in an XML format or via code using a builder pattern.

In this section, you will take a brief tour of faces flow technology and learn how to get started using it right away.
However, this section will hardly scratch the surface because entire chapters could be written on the topic, and you
are encouraged to learn about all features of faces flow so that you can decide what works best for your applications.

Defining a Flow
Before a flow can be defined within an application, some configuration must be made. You can designate a flow
by creating a folder structure to encapsulate all nodes belonging to a flow. By convention, a directory that has the
same name as a flow can be used to contain all nodes belonging to that flow. Moreover, the start node for a flow can
optionally be designated as such by naming it the same as the flow (and the enclosing folder). For instance, if your
flow were named exampleFlow, then each of the views that belonged to the flow should be placed inside a folder
named exampleFlow, which resides at the root of the application web directory. Figure 2-1 shows how a flow directory
structure might look.

Figure 2-1. Faces flow directory structure

If you need to add custom navigation to your flows, you must decide upon the means by which your flow
configurations will be defined. As mentioned previously, flows can contain their own navigation rules. As such, each
flow can specify a set of navigational rules in some format, be it XML or code. If using XML, the flow configuration
can be placed within the faces-config.xml file, or it can be placed within an XML file that has the same name as the
flow, along with a flow.xml suffix, also referred to as a flow definition. Placing flow rules in their own separate files
can be handy if your application has more than one flow, because it tends to make maintenance a bit easier. It can
also be handy if you plan to package your flow for inclusion in another application, as described later in this chapter.

Chapter 2 ■ JavaServer FaCeS and FaCeletS

18

However, if you have only a small number of flows in an application, it may be simpler to include the flow navigation
rules in the faces-config.xml file. If flow definition XML files are utilized, they must be placed within either a
directory at the web root of the application that is named after the flow (/<flow-name>/<flow-name>-flow.xml),
or a directory named after the flow that resides at the root of the WEB-INF directory (/WEB-INF/<flow-name>/
<flow-name>-flow.xml). If you prefer to not use XML, then building out flow navigational rules in Java code is
possible using the Flow API, which utilizes a builder pattern.

Each flow should include two or more views, which we will refer to as nodes. As such, each flow has a beginning
node, an ending node, and optional intermediate nodes, which are also known as view nodes. Importantly, a flow
also contains its own CDI managed bean, which is used to define methods and variables for use by each view node
in the flow. The managed bean must be annotated with @FlowScoped to signify that it exists within the flow scope, and
the annotation should specify an id attribute that contains the name of the flow to which the managed bean belongs.
The following Java class, named FlowBean, demonstrates how to define a managed bean for use with a flow named
exampleFlow:

import javax.faces.flow.FlowScoped;
import javax.inject.Named;

@Named
@FlowScoped(id="exampleFlow")
public class FlowBean implements java.io.Serializable {

 private String beanValue = "From the flowBean";

 /**
 * Creates a new instance of FlowBean
 */
 public FlowBean() {
 }

 public void initializeIt(){
 System.out.println("Initialize the flow...");
 }

 public void finalizeIt(){
 System.out.println("Finalize the flow...");
 }

 public String navMethod(){
 return "nextViewNode";
 }

 /**
 * @return the beanValue
 */
 public String getBeanValue() {
 return beanValue;
 }

Chapter 2 ■ JavaServer FaCeS and FaCeletS

19

 /**
 * @param beanValue the beanValue to set
 */
 public void setBeanValue(String beanValue) {
 this.beanValue = beanValue;
 }
}

A standard JSF command component can be used to enter a flow, specifying the flow name for the action.
For instance, if you want to use a link to enter into a flow named exampleFlow, you can do something like
the following:

<h:commandLink value="Enter flow" action="exampleFlow" />

Specifying the flow name for the action works because the flow has the same name as the folder containing the
flow view nodes, so the action simply causes navigation to that folder. As mentioned previously, by convention,
the first view node within the flow should have the same name as the enclosing folder. Using this convention causes
the first view node within the flow to be accessed when specifying the flow name as the action for a command
component. The code below shows what the exampleFlow.xhtml view contains.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Faces Flow Example #1, Page 1</title>

 </h:head>
 <h:body>
 <ui:composition template="../layout/custom_template.xhtml">
 <ui:define name="content">

 <h:form prependId="false">
 <p>
 This is the first view of the flow.

 Is this page contained within the flow? #{null
 != facescontext.application.flowHandler.currentFlow}

 Message: #{flowBean.beanValue}

 <h:commandLink value="Go to another view in the flow" action=”intermediateFlow"/>
 </p>
 </h:form>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets

Chapter 2 ■ JavaServer FaCeS and FaCeletS

20

 </ui:define>
 </ui:composition>
 </h:body>
</html>

Navigation to other nodes within a flow can occur normally, by simply placing the name of the node that
you want to navigate to next within the action attribute of a command component. Optionally, navigation can be
definition within the flow configuration, via either code or XML. We will discuss navigation more in the following
sections. The next lines of code show you what intermediateFlow.xhtml looks like.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Faces Flow Example #1 - Second Page in Flow</title>

 </h:head>
 <h:body>
 <ui:composition template="../layout/custom_template.xhtml">
 <ui:define name="content">
 <h:form prependId="false">
 <p>
 This is the intermediate view of the flow.

 <h:commandLink value="Go to another final view in flow" action="endingFlow"/>

 <h:commandLink value="Go to first view in the flow" action="exampleFlow"/>

 <h:commandLink value="Exit Flow" action="/index"/>
 </p>
 </h:form>
 </ui:define>
 </ui:composition>
 </h:body>
</html>

To determine when a flow will exit, either navigate to a view that resides outside of the flow using standard JSF
navigation or specify an element entitled <faces-flow-return> in the flow definition. This <faces-flow-return>
element can contain a <navigation-case> that will lead to the exit of the flow. For example, the following demonstrates
a single exit navigational case for a flow:

<faces-flow-return id="intermediateFlow">
 <navigation-case>
 <from-outcome>nextViewNode</from-outcome>
 </navigation-case>
</faces-flow-return>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets

Chapter 2 ■ JavaServer FaCeS and FaCeletS

21

You will learn more about the flow definition in the section below entitled “Navigating View Nodes”. The code that
was previously listed for intermediateFlow.xhtml demonstrates how a link could be utilized to exit a flow.

The Flow Managed Bean
A flow contains its own managed bean annotated as @FlowScoped, which differs from @SessionScoped because the data
can be accessed only by other view nodes belonging to the flow. The @FlowScoped annotation relies upon contexts and
dependency injection (CDI), because FlowScope is a CDI scope that causes the runtime to consider classes with the
@FlowScoped annotation to be in the scope of the specified flow. A @FlowScoped bean maintains a life cycle that begins
and ends with a flow instance. Multiple flow instances can exist for a single application, and if a user begins a flow
within one browser tab and then opens another, a new flow instance will begin in the new tab. This solution resolves many
lingering issues around sessions and modern browsers, allowing users to open multiple tabs without causing session-based
issues. To maintain separate flow instances, the ClientId is used by JSF to differentiate among multiple instances.

Each flow can contain an initializer and a finalizer, that is, a method that will be invoked when a flow is entered,
and a method that will be invoked when a flow is exited, respectively. To declare an initializer, specify a child element
named <initializer> within the flow definition <faces-flow-definition>. The initializer element can be an EL
expression that declares the managed bean initializer method, as such:

...
<initializer>#{flowBean.initializeIt}></initializer>
...

Similarly, a <finalizer> element can be specified within the flow definition to define the method that will be
called when the flow is exited. The following demonstrates how to set the finalizer to an EL expression declaring the
managed bean finalizer method:

...
<finalizer>#{flowBean.finalizeIt}></finalizer>
...

Flows can contain method calls and variable values that are accessible only via the flow nodes. These methods
and variables should be placed within the FlowScoped bean and used the same as standard managed bean methods
and variables. The main difference is that any variable that is instantiated within a FlowScoped bean is available only
for a single flow instance.

Navigating View Nodes
Flows contain their own navigational rules. These rules can be straightforward and produce a page-by-page
navigation, or they can be complex and include conditional logic. There are a series of elements that can be specified

Table 2-2. Flow Navigational Nodes

Element Description

view Navigates to a standard JSF view.

switch One or more EL expressions that conditionally evaluate to true or false. If true, then navigation
occurs to the specified view node.

flow-return Outcome determined by the caller of the flow.

flow-call A call to another flow; creates a nested flow.

method-call Arbitrary method call that can invoke a method that returns a navigational outcome.

Chapter 2 ■ JavaServer FaCeS and FaCeletS

22

within the navigation rules, which will facilitate conditional navigation. Table 2-2 lists the different elements, along
with an explanation of what they do.

As mentioned previously, flow navigation can be specified in XML format by placing it inside an XML file
entitled flowName-flow.xml. Within this file, specify an html element that contains standard JSF taglib
declarations. However, an additional taglib must be declared to enable flow configuration access. The new taglib,
xmlns:j="http://xmlns.jcp.org/jsf/flow", allows access to those navigational elements listed in Table 2-2.
The following flow configuration is an example containing flow navigation that using conditional logic:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:j="http://xmlns.jcp.org/jsf/flow">

 <f:metadata>
 <j:faces-flow-definition>

 <j:initializer>#{flowBean.initializeIt}</j:initializer>
 <j:start-node>exampleFlow</j:start-node>

 <j:switch id="startNode">
 <j:navigation-case>
 <j:if>#{flowBean.someCondition}</j:if>
 <j:from-outcome>newView</J;from-outcome>
 </j:navigation-case>
 </j:switch>

 <j:flow-return id="exit">
 <j:navigation-case>
 <j:from-outcome>exitFlow</j:from-outcome>
 </j:navigation-case>
 </j:flow-return>

 <j:finalizer>#{flowBean.finalizeIt}</j:finalizer>

 </j:faces-flow-definition>
 </f:metadata>
</html>

As mentioned previously, flow navigation can also be defined within Java code by utilizing the flow builder API.
To use this technique, create a new Java class that is named the same as the flow identifier, and annotate it with
@FlowDefinition, which will earmark it as a flow definition class. Within the class, a method named defineFlow
should be implemented, which will accept FacesContext and FlowBuilder objects. The FlowBuilder can then be
used to construct the rules for the flow.

import javax.faces.context.FacesContext;
import javax.faces.flow.Flow;
import javax.faces.flow.FlowDefinition;
import javax.faces.flow.builder.FlowBuilder;
import javax.inject.Named;

http://xmlns.jcp.org/jsf/flow
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/flow

Chapter 2 ■ JavaServer FaCeS and FaCeletS

23

/**
 *
 * @author Juneau
 */
@Named("exampleFlow2")
@FlowDefinition
public class ExampleFlow {
 private static final long serialVersionUID = -7623501087369765218L;

 public Flow defineFlow(FacesContext context, FlowBuilder builder){
 String flowId = "example2";

 builder.id("",flowId);
 builder.viewNode(flowId, "/" + flowId + ".xhtml").markAsStartNode();

 builder.returnNode("returnFromFlow").fromOutcome("#{flowBean.returnValue}");

 return builder.getFlow();
 }
}

Table 2-3 specifies the different methods that are available via the FlowBuilder.

Table 2-3. FlowBuilder Methods

Method Description

finalizer(MethodExpression) Specifies the finalizer method for the flow

finalizer(String)

flowCallNode(String string) Specifies a call node for the flow

getFlow() Retrieves an instance of the flow

id(String, String) Specifies the flow identifier

inboundParameter(String, ValueExpression) Specifies an inbound parameter for the flow

inboundParameter(String, String)

initializer(MethodExpression) Specifies the initializer method for the flow

initializer(String)

methodCallNode(String) Specifies a method call node

returnNode(String) Specifies the name of the exiting node

switchNode(String) Specifies the name of a switch node

viewNode(String, String) Specifies a view node

Either technique, XML or Java, works in the same manner. However, it is a good idea to specify the flow
configuration within XML if you plan to change the way that the flow is configured, because using the Java API will
mandate a recompile.

Chapter 2 ■ JavaServer FaCeS and FaCeletS

24

Flow EL
Flows contain a new EL variable named facesFlowScope. This variable is associated with the current flow, and it is
a map that can be used for storing arbitrary values for use within a flow. The key-value pairs can be stored and read
via a JSF view or through Java code within a managed bean. For example, to display the content for a particular map
key, you could use the following:

The content for the key is: #{facesFlowScope.myKey}

Java API for Flow Context
It is possible to gain access to an application’s Flow context via the Java API by calling the javax.faces.application.
Application getFlowHandler() method. Calling the method will return a thread-safe singleton instance of the
FlowHandler for the application. A FlowHandler can then be used to gain access to the current flow, start a new flow,
and so on. The following Java code demonstrates some of the possibilities:

FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();

// Obtain the FlowHandler
FlowHandler handler = app.getFlowHandler();
// Obtain the current Flow
Flow flow = handler.getCurrentFlow();
// Obtain the current facesFlowScope Map content
Map flowScope = handler.getCurrentFlowScope();
// Add a new flow
Flow newFlow = new ExampleFlow();
handler.addFlow(context, newFlow, flow);

Note ■ Flows cannot be altered once they are defined because they are immutable. the FlowHandler can gain access
to a current flow to see information regarding the flow, but it cannot be used to dynamically alter the flow.

To learn the complete Java API, the best resource is to study the Javadoc for flows, which can be found at
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html.

Packaging a Flow
If a flow can be useful for more than one application, it can be made portable by packaging it up inside a JAR file.
Once packaged, the flow can be brought into applications by simply including the JAR file in the application CLASSPATH.
To package a flow, create a specific directory structure that includes the flow views, navigational XML, and any managed
beans that may be used by the flow.

To create the directory structure, place a META-INF folder at the root, and then create a subdirectory for each of
the flows that are packaged in the JAR. The subdirectory should be entitled flows, and it should contain a directory for
each flow that will be packaged. Each of the flow directories should have the same name as the flow identifier. The flows
must be explicitly defined in a faces-config.xml file that resides within the META-INF folder. Each of the nodes within a
flow should be placed within the flow subdirectory. All Java code that belongs to a flow, such as the @FlowScoped and

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

Chapter 2 ■ JavaServer FaCeS and FaCeletS

25

@FlowDefinition beans, should be packaged into their corresponding Java packages and accompanied by a beans.xml
file. The following outlines at the directory structure for a flow that is going to be packaged:

META-INF/faces-config.xml
META-INF/flows/exampleFlow/exampleFlow.xhtml
META-INF/flows/exampleFlow/intermediateFlow.xhtml
META-INF/flows/exampleFlow/endingFlow.xhtml
META-INF/beans.xml
org.javaee7.chapter02.jsf.ExampleFlow.java
org.javaee7.chapter02.jsf.FlowBean.java

Ajax Queues
By default, JSF Ajax requests are held in an Ajax request queue on the client in order to ensure that requests are
sent to the server in the correct order. When a request is sent, it goes to the queue and waits until its turn to be sent
to the server. After the request is sent to the server, a callback method is invoked that will remove that request from
the queue.

A new delay attribute for the f:ajax tag allows a developer to specify a value in milliseconds that will be used
to meter the time between server requests. If multiple requests arrive to the queue within the specified delay period,
then only the most recent request is sent to the server. This prevents multiple unnecessary server requests from being
sent, which can help performance in your application and reduce network traffic. Using the new attribute would be
similar to the following example:

<h:commandButton value="Send Message" action="#{ajaxBean.sendMessage()}">
 <f:ajax delay="500"/>
</h:commandButton>

File Upload
JSF 2.2 includes a new file upload component that relies upon new Servlet 3.1 file upload support. The file upload
support can be Ajax enabled or non-Ajax enabled. A new JSF component named inputFile has been added to the list
of standard JSF components. This component can be used with or without the f:ajax tag, so files can be uploaded
with a page refresh (non-Ajax) or without (Ajax).

To utilize the inputFile component, it must be placed within a JSF form that has an enctype set to multipart/
form-data and no ID prepended. The h:form element contains the attributes enctype and prependId, which can be
used to set these values, respectively. The following line of code demonstrates how to set the attributes for a form
containing an inputFile component:

<h:form prependId="false" enctype="multipart/form-data">

The value of an inputFile component must be set to a managed bean variable that has a type of
javax.servlet.http.Part (named ajaxBean.upFile in the following example). A JSF command component or
the f:ajax tag should be set to an action method within the managed bean, which will save the file to disk.

The following JSF view demonstrates the use of the inputFile component in a non-Ajax solution:

<h:form prependId="false" enctype="multipart/form-data">
 Choose a file to upload to the server:

 <h:inputFile id="uploadFile" value="#{ajaxBean.upFile}">
 <f:validator validatorId="FileValidator"/>

Chapter 2 ■ JavaServer FaCeS and FaCeletS

26

 </h:inputFile>

 <h:commandButton action="#{ajaxBean.uploadFile}" value="Upload File"/>
</h:form>

The value attribute of the inputFile component is set to a variable of type javax.servlet.http.Part within
the AjaxBean managed bean, and the commandButton has an action set to the managed bean’s uploadFile method.
In this particular example, a validator is applied to the file, which can contain code that is necessary to ensure
the file for upload meets the standards for your application. The following example validator class,
org.javaee7.chapter02.FileValidator, demonstrates how to write such a validator:

@FacesValidator(value = "FileValidator")
public class FileValidator implements Validator {

 public FileValidator() {
 }

 @Override
 public void validate(FacesContext context, UIComponent component, Object value)
throws ValidatorException {
 Part file = (Part) value;
 String text = null;
 try {
 InputStream is = file.getInputStream();
 text = new Scanner(is).useDelimiter("\\A").next();
 } catch (Exception ex) {
 throw new ValidatorException(new FacesMessage("Exception thrown"));
 }
 }

In the uploadFile method, the file is being stored into a directory named /Java_Dev/ on the server. The sources
for the uploadFile method are as follows:

public void uploadFile() {
 try(InputStream is = file.getInputStream()) {

 int i = is.available();
 byte[] b = new byte[i];
 is.read(b);
 String fileName = getFileName(upFile);
 FileOutputStream os = new FileOutputStream("/Java_Dev/" + fileName);
 os.write(b);
 is.close();
 } catch (IOException ex) {
 Logger.getLogger(AjaxBean.class.getName()).log(Level.SEVERE, null, ex);
 }
}

 private String getFileName(Part part) {
 String partHeader = part.getHeader("content-disposition");

Chapter 2 ■ JavaServer FaCeS and FaCeletS

27

 for (String cd : part.getHeader("content-disposition").split(";")) {
 if (cd.trim().startsWith("filename")) {
 return cd.substring(cd.indexOf('=') + 1).trim()
 .replace("\"", "");
 }
 }
 return null;

 }

To make the file upload component work with Ajax, simply embed the f:ajax tag and provide the same action
as the commandButton that is used in this example:

<h:inputFile id="ajaxUploadFile" value="#{ajaxBean.file}">
 <f:ajax execute="@form" listener="#{ajaxBean.uploadFile}"/>
</h:inputFile>

The new file upload component is a welcome addition to the JSF family of components. Since a file upload
component is very oftentimes required within enterprise applications, it is now much easier because there are no
third-party libraries to depend upon for acquiring this functionality.

Stateless Views
In JSF, every view by default carries some amount of statefulness. That is, when users navigate from view to view,
some amount of state is persisted from view to view so that components can be rendered accordingly. In JSF, the
component tree state is initialized upon the first Facelet request. Upon each subsequent request, only partial state
changes are made, meaning that only the components within a view’s component tree that require updating would
be added to the view state. This means that the view state is always changing, which may cause application issues,
depending upon a particular application’s requirements. Therefore, an enhancement has been made in JSF 2.2,
allowing the existing “transient” attribute to be added to an <f:view> tag and set to a value of true, thereby marking
the view as stateless. When JSF encounters a view that contains a true transient attribute, the view’s component state
saving is skipped.

Let’s take a look at a simple example. The following JSF view has been flagged as stateless since the transient
attribute has been added to the <f:view> tag with a true value.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Chapter 2 - Stateless View Example</title>
 </h:head>
 <h:body>
 <ui:composition template="../layout/custom_template.xhtml">
 <ui:define name="content">
 <f:view transient="true">
 <h:form>
 <p>
 <h:outputText value="This is a stateless view..." />

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets

Chapter 2 ■ JavaServer FaCeS and FaCeletS

28

 </p>
 </h:form>
 </f:view>
 </ui:define>
 </ui:composition>
 </h:body>
</html>

Along with this enhancement, the javax.faces.render.ResponseStateManager.isStateless(FacesContext
context, String viewId) method has been added to determine whether the previous state that was posted
contains any state. All views that are marked as stateless cause a value of “stateless” to be assigned to the view state
parameter “javax.faces.ViewState”. Therefore, a call to the new isStateless method checks this parameter.

HTML5 and JSF
One of the most prominent new capabilities of JSF 2.2 is increased support for HTML5. There have been some
significant improvements to JSF that help facilitate the use of HTML5 attributes with standard JSF components, as well
as including HTML5 tags within JSF views. This section covers a couple of these new features, including passthrough
attributes and HTML5-friendly markup. After reading these sections, you will be able to incorporate modern HTML5
abilities into your JSF views with ease.

Passthrough Attributes
One major hurdle for using HTML5 along with standard JSF components is that there are attributes required by
HTML5 tags that are not supported by the JSF components. HTML5 tags include data attributes that have the purpose
of attaching data to HTML elements. The JSF components do not support these data attributes, but with the JSF 2.2
release, a new approach, known as passthrough attributes, helps resolve this issue. JSF passthrough attributes allow
for attributes to be set for JSF components, to be passed through to the client directly, and not be consumed and/or
processed by the component at all.

There are a few different ways to implement passthrough attributes. The first way is to use the new taglib URI
(xmlns:p="http://xmlns.jcp.org/jsf/passthrough"), along with the new attribute p:placeholder to set the attribute.
Using this technique, any JSF component can accept a p:placeHolder attribute, and it will be ignored by the component.
The following example demonstrates how to utilize the p:placeHolder attribute of an inputText component:

<h:inputText value="#{ptBean.ptValue1}" p:placeholder="Passthrough Attribute 1">
 <f:ajax execute="@this" update="ptValues"/>
</h:inputText>

Another way to make use of passthrough attributes is to utilize a tag handler by embedding the
f:passThroughAttribute tag inside a JSF component. The following example demonstrates the use of the
f:passThroughAttribute tag:

<h:inputText value="#{ptBean.ptValue2}" >
 <f:passThroughAttribute name="ptValue2" value="Passthrough Attribute 2" />
 <f:ajax execute="@this" update="ptValues"/>
</h:inputText>

http://xmlns.jcp.org/jsf/passthrough

Chapter 2 ■ JavaServer FaCeS and FaCeletS

29

How about the cases where multiple passthrough attributes need to be set? The JSF 2.2 specification takes care
of these cases by embedding the f:passThroughAttributes inside a JSF component. To set the values for multiple
attributes, store them into a Map<String,Object> that resides within a managed bean, or use EL to define a Map of
key-value pairs.

First, let’s take a look at the solution where the value is bound to a Map residing in the managed bean.

<h:outputText id="ptValues" value="Attribute Values" >
 <f:passThroughAttributes value="#{ptBean.ptValues}" />
</h:outputText>

Next, we will look at the case where EL is used to specify a Map of name-value pairs to set for the passthrough
attributes.

<h:outputText id="ptValues2" value="Attribute Values" >
 <f:passThroughAttributes value="{'first':1,'second':2,'third':3}" />
</h:outputText>

The following code demonstrates the use of each passthrough attribute solution in a JSF view:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://xmlns.jcp.org/jsf/passthrough">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Passthrough Attribute Examples</title>
 </h:head>
 <h:body>
 <h:form>
 Using the passthrough placeholder attribute:
 <h:inputText value="#{ptBean.ptValue1}" p:placeholder="Passthrough Value 1">
 <f:ajax execute="@this" update="ptValues"/>
 </h:inputText>

 Using the f:passThroughAttribute taghandler:
 <h:inputText value="#{ptBean.ptValue2}" >
 <f:passThroughAttribute name="ptValue2" value="Passthrough Value 2" />
 <f:ajax execute="@this" update="ptValues"/>
 </h:inputText>

 Multiple Passthrough Attributes
 <h:outputText id="ptValues" value="Attribute Values" >
 <f:passThroughAttributes value="#{ptBean.ptValues}" />
 </h:outputText>
 </h:form>
 </h:body>
</html>

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/passthrough

Chapter 2 ■ JavaServer FaCeS and FaCeletS

30

HTML5-Friendly Markup
The JSF 2.2 release includes the ability to utilize HTML5 markup within JSF views. As a matter of fact, the markup
is not limited to HTML5; it can also include HTML4, and so on. The addition of a new tag URI makes this possible
because it allows existing HTML tags to be bound to the JSF life cycle via new namespace attributes. It is now possible
to develop entire JSF views without using any JSF tags at all.

To utilize the new namespace attributes, your JSF view must import the new taglib URI
jsf="http://xmlns.jcp.org/jsf". The new taglib can then be referenced as attributes within existing HTML tags,
setting the underlying JSF attributes that are referenced. For instance, to utilize an HTML input tag with JSF, you
would add the jsf:id attribute and set it equal to the JSF ID that you want to assign to that component. You would
then set an attribute of jsf:value equal to the managed bean value. The following source code demonstrates a
complete implementation of HTML5 code in a JSF view.

Note ■ there is no need to import the http://xmlns.jcp.org/jsf/html taglib because you are no longer utilizing
JSF component tags in the view.<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:jsf="http://xmlns.jcp.org/jsf">
 <head jsf:id="head">
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 </head>
 <body jsf:id="body">
 <form jsf:id="form" jsf:prependId="false">
 <input type="email" jsf:id="value1" jsf:value="#{ajaxBean.value1}">
 <f:ajax execute="@this" render="status"/>
 </input>

 <input type="text" jsf:id="value2" jsf:value="#{ajaxBean.value2}">
 <f:ajax execute="@this" render="status"/>
 </input>

 <label for="status">Message: </label>
 <output jsf:id="status">#{ajaxBean.status}</output>
 </form>
 </body>
</html>

The new syntax provides several benefits for web developers. Although not all web developers are familiar with
JSF component tags, HTML tags are well known. Utilizing the new syntax, both JSF and HTML developers alike can
create web views that utilize the power of JSF along with the flexibility of HTML. The new syntax also makes it easier
to bind HTML tags with JavaScript, if needed. You no longer need to worry about JSF view IDs getting in the way when
working with HTML and JavaScript. With the addition of the new JSF taglib namespace for use with HTML tags, both
JSF and HTML alike have been improved.

http://xmlns.jcp.org/jsf
http://xmlns.jcp.org/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf

Chapter 2 ■ JavaServer FaCeS and FaCeletS

31

Facelets Enhancements
There have been a handful of updates to the Facelets implementation for JSF 2.2. Improvements and updates include
the following:

The ability to omit XML taglib files for custom components•	

Facelets resource resolver annotation•	

This section covers each of these updates briefly and includes examples of each.

Exclude XML from Custom Components
The creation of custom components just got easier with the JSF 2.2 release. In previous versions, Facelets required the
creation of a *-taglib.xml file that contained the name for the component. Once again, we have been mixing XML
configurations into Java applications, making management more tedious. With the release of JSF 2.2, it is now possible
to get rid of the taglib XML and use the @FacesComponent annotation instead, specifying the createTag attribute.

The @FacesComponent annotation should be placed on the custom component class. Table 2-4 lists possible
attributes. To omit the taglib XML, the createTag attribute must be set to true.

Table 2-4. @FacesComponent Attributes

Attribute Description

createTag Set to true to make component directly usable via a tag on a Facelet.

tagName Optional tag name.

namespace Optional explicit namespace for tag. If omitted, the namespace of
http://xmlns.jcp.org/jsf/component will be used.

value Custom-component fully qualified name.

An example custom component class is as follows:

import javax.faces.component.FacesComponent;
import javax.faces.component.UIComponentBase;

@FacesComponent(value="components.SpecialComponent", createTag=true,
 namespace="http://www.apress.com/jsf/components")
public class SpecialComponent extends UIComponentBase {

 @Override
 public String getFamily() {
 // Do something here throw new UnsupportedOperationException("Not supported yet.");
 //To change body of generated methods, choose Tools | Templates.
 }

 //...
}

http://xmlns.jcp.org/jsf/component
http://www.apress.com/jsf/components

Chapter 2 ■ JavaServer FaCeS and FaCeletS

32

@FaceletsResourceResolver Annotation
In some cases, developers require the ability to influence the way that Facelets loads templates. In these
circumstances, developers can specify the javax.faces.FACELETS_RESOURCE_RESOLVER environment parameter in
the web.xml deployment descriptor. Since JSF 2.2 is steering more toward getting away from XML configuration and
more toward annotation usage, the @FaceletsResourceResolver annotation has been created to take place of the old
configuration. While the specification of javax.faces.FACELETS_RESOURCE_RESOLVER in the deployment descriptor
still works, the new annotation makes it easy to register a Facelets resource resolver.

To use the annotation, specify it on a Java class that is intended for use as a resource resolver. By doing so,
Facelets will automatically register the class as a resource resolver. The following source demonstrates the use of the
new annotation.

import java.io.IOException;
import java.net.URL;
import javax.faces.application.Resource;
import javax.faces.view.facelets.FaceletsResourceResolver;
import javax.faces.context.FacesContext;
import javax.faces.view.facelets.ResourceResolver;

@FaceletsResourceResolver
public class AppResourceResolver extends ResourceResolver {
 private ResourceResolver parent;
 public AppResourceResolver(ResourceResolver parent) {
 this.parent = parent;
 }

 public URL resolveUrl(String path) {
 System.out.println("Using Custom Resource Resolver");
 URL url = parent.resolveUrl(path);
 if (url == null) {

 if (path.startsWith("/")) {
 path = path.substring(1);
 }
 url = parent.resolveUrl(path);
 }
 return url;
 }

}

Resource Library Contracts
An enhancement to the JSF resource library has made it easier to include new and/or additional templates for use within
an application. The new enhancement enables multiple templates to be utilized within an application, with the ability to
dynamically or statically define which template is to be applied to specified views. Let’s start with the basics of setting up
a resource library contract, and then we’ll dive into the various means of applying one or more templates to views.

JSF allows templates to be created by adding a folder named /contracts to the root of an application’s web
directory, or into the /META-INF directory. Once added, one or more template directories can be placed inside of the
contracts folder, each containing an associated template file and any optional resource files (CSS, JavaScript, etc.)

Chapter 2 ■ JavaServer FaCeS and FaCeletS

33

to be used along with the template. The template file must be named template.xhtml. For instance, to generate a
template named “mocha” for an application, one could construct a hierarchy such as in Figure 2-2.

Figure 2-2. Resource Library Contracts Hierarchy

If only one template directory resides within an application’s /contracts or /META-INF/contracts directory,
then that template can be applied to any view within the application by simply referencing the template as
/template.xhtml within the template annotation of a view. For example, the contents of the template.xhtml file
residing within the mocha directory are as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet name="layout.css"/>
 <title>Introduction to Java EE 7 - Mocha Style</title>

 </h:head>

 <h:body>

 <div id="top">
 <h2>Intro to Java EE 7</h2>
 </div>
 <div>
 <div id="left">
 <h:form id="navForm">
 <h:outputLink value="/IntroToJavaEE7/faces/chapter01/index.xhtml" >
 Chapter 1</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter02/index.xhtml">
 Chapter 2</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter03/index.xhtml">
 Chapter 3</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter04/index.xhtml">
 Chapter 4</h:outputLink>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html

Chapter 2 ■ JavaServer FaCeS and FaCeletS

34

 <h:outputLink value="/IntroToJavaEE7/faces/chapter05/index.xhtml">
 Chapter 5</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter06/index.xhtml">
 Chapter 6</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter07/index.xhtml">
 Chapter 7</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter08/index.xhtml">
 Chapter 8</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter09/index.xhtml">
 Chapter 9</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter10/index.xhtml">
 Chapter 10</h:outputLink>

 <h:outputLink value="/IntroToJavaEE7/faces/chapter11/index.xhtml">
 Chapter 11</h:outputLink>

 </h:form>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 <div id="bottom">
 Written by Josh Juneau, Apress Author
 </div>

 </h:body>

</html>

The following view can reside within any other folder within the application’s web directory, and it can still
simply specify “/template.xhtml” in order to make use of the “mocha” template.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Mocha Style</title>
 </h:head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets

Chapter 2 ■ JavaServer FaCeS and FaCeletS

35

 <h:body>
 <ui:composition template="/template.xhtml">
 <ui:define name="content">
 <f:view>
 <h:form>
 ...content here
 </h:form>
 </f:view>
 </ui:define>
 </ui:composition>
 </h:body>
</html>

If more than one template directory resides within an application’s contracts directory then the desired
template must be specified using one of a couple techniques. To dynamically or statically specify a view’s template
from directly within a view, utilize the new contracts annotation within the <f:view> tag of a view, specifying the
desired template name. The following view demonstrates how to utilize this technique to specify a template named
mocha for the view.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Mocha Style</title>
 </h:head>
 <h:body>
 <ui:composition template="/template.xhtml">
 <ui:define name="content">
 <f:view contracts="mocha">
 <h:form>
 <p>
 <h:commandLink value="Enter flow" action="exampleFlow" />

 <h:commandLink value="Enter flow #2" action="exampleFlow2" />
 </p>
 </h:form>
 </f:view>
 </ui:define>
 </ui:composition>
 </h:body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets

Chapter 2 ■ JavaServer FaCeS and FaCeletS

36

JSF expresssion language could be utilized in-place of the static value for the contracts attribute in order to
dynamically determine the name of the template to use. In this scenario, the value of the contracts annotation could
be bound to a backing bean value, such as the following demonstrates:

<f:view contracts="#{myBean.chosenTemplate}">
 ...
</f:view>

It is also possible to statically define the templates within the faces-config.xml configuration file, associating
a specified template to a URL path. To use this solution, add a <resource-library-contracts> section within
the <application> configuration of the faces-config.xml. List each resource mapping within the
<resource-library-contracts> section, mapping the templates that reside within the application’s contracts directory
to static URLs. The following is an excerpt from the faces-config.xml file, which ships with the book sources. The excerpt
demonstrates how to facilitate a static URL mapping for two different templates named “mocha” and “blanco”.

<application>
 <resource-library-contracts>
 <contract-mapping>
 <url-pattern>/chapter02/blanco/*</url-pattern>
 <contracts>blanco</contracts>
 </contract-mapping>
 <contract-mapping>
 <url-pattern>/chapter02/mocha/*</url-pattern>
 <contracts>mocha</contracts>
 </contract-mapping>
 </resource-library-contracts>
</application>

The full multi-templating implementation that was planned for inclusion in JSF 2.2 was cut from the final
specification. However, the resource library contracts implementation, which is a scaled-down version of the
previously planned implementation, is a step in the right direction.

Security Enhancements
The JSF 2.2 API includes security enhancements, and one of the most prominent of those is the ability to prevent
cross-site forgery. It is possible for someone to alter a web site in such a way that when users input information into an
application, they are redirected to some harmful server resource where information can be compromised. Oftentimes
web site users do not even know that they’ve been redirected and end up providing personal information to a malicious
site. JSF takes measures to prevent this type of attack because state is saved on the server side instead of on a client.

With the JSF 2.2 release, additional and stricter protection has been provided against this type of attack. By
default, all postback requests are encrypted. If the page is not a postback request, then the following process occurs:

 1. ViewHandler looks to see whether the view is listed within the <protected-views>
element. If so, then the request is processed normally.

 2. If the view is not listed under <protected-views>, the ViewHandler looks at the response
header to determine whether the request is coming from another view within that same
application. If so, then the request is processed.

 3. If the request header is not present, then the ViewHandler checks to see whether there
is a ResponseStateManager.NON_POSTBACK_VIEW_TOKEN_PARAM available. This query
parameter should be present, by default, if the view is valid.

Chapter 2 ■ JavaServer FaCeS and FaCeletS

37

If a nonprotected page attempts to access a protected page without being validated by the ViewHandler as a
secure view, then a javax.faces.application.ProtectedViewException will be raised. To specify a view manually,
place the <protected-views> element in the faces-config.xml file, as shown here:

...
<protected-views>
 <url-pattern>/my_view.xhtml</url-pattern>
</protected-views>

Summary
The JSF 2.2 release adds great value to an already robust web framework. The addition of viewActions enables
developers to invoke server side actions when views are accessed, which can be useful in any number of scenarios.
The inclusion of faces flows helps to make web conversations even tighter, allowing scope to be maintained
throughout the lifecycle of a conversation. HTML5 is becoming a prevalent option for web application development,
and JSF 2.2 binds JSF with HTML5 more closely than in previous releases. This enables developers with more options
for including HTML5 content within existing JSF applications, and even building entire JSF applications using HTML5
for the entire front end. Resource library contracts help to bring the concept of multi-templating into fruition, and
security enhancements help to make JSF applications even more solid. The JSF 2.2 release is a very important release
in the evolution of JSF, and it should enable the world of Java Enterprise to become even more widespread and a top
choice for web development for the HTML5 era.

39

Chapter 3

Expression Language (EL)

The Expression Language (EL) 3.0 release is full of features that help enrich the language by making the language
more powerful and by increasing productivity for developers. EL has always been a sweet spot for JSP and JSF
developers, allowing the use of a very productive scripting language that provides the ability to interact directly with
server-side Java within web views. This release enhances the language by adding features such as collection support
and lambda expressions, which helps bring EL in line with more modern scripting languages. The release also adds
support for working within a stand-alone environment. It is now possible to evaluate expressions, set variables, work
with static fields and methods, and define functions.

Lambda Expressions
The EL 3.0 release brings support for lambda expressions. Simply put, a lambda expression behaves much like a
function, because it accepts parameters and returns a value. Lambdas provide a way to encapsulate a function by
assigning it to an identifier. That said, using lambdas, functions can be passed around as objects and even used as
parameters to other functions. A lambda expression accepts parameters that go on the left side of the -> operator, and
the function or body of the expression is placed on the right side of the -> operator. Lambda expressions in EL look
much like those that are part of JDK 8, but the difference is that the body portion of an EL lambda is an EL expression
that can utilize all the features provided by EL 3.0. For instance, all the reserved words that are available to EL, such as
gt, lt, and eq, are available for use within a lambda expression. That said, let’s take a look at some examples!

Lambda Concept and Examples
The following lambda expression accepts two parameters and returns the product:

((a,b) -> a * b (3,4)) -- Returns 12

Breaking down the example, the (a,b) part of the expression consists of the parameters that are accepted by
the lambda. The -> operator separates the parameters from the body of the lambda, which is a * b. Lastly, (3,4)
are the values that are passed to the expression, and then the entire expression is surrounded by parentheses. The
values being passed to the expression are optional, because the lambda could be assigned to an identifier instead. If
a lambda is assigned to an identifier, that identifier can later be treated as a function, passing the values you want to
utilize within the lambda as parameters. You’ll see an example of this in the following section.

As mentioned previously, EL can be used within lambda expressions. Therefore, any of the EL operators are valid
for use, so something like the following is possible:

a -> a == 0 ? 1 : a * a

Chapter 3 ■ expression Language (eL)

40

The preceding example demonstrates a couple of concepts. First, the expression accepts a parameter (a), and the
ternary operator says that if a is equal to 0, then 1 will be returned; otherwise, the product of a * a will be returned.
Therefore, this example demonstrates the use of EL operators within a lambda expression. Second, note that this
expression contains no parentheses. That is because parentheses are optional if there is only one parameter being
passed into a lambda. If there are two or more parameters in use, then parentheses are required.

Variable Assignment
Sometimes it is useful to assign expressions to variables so that they can be passed around and utilized at a later time.
This holds true for lambda expressions, because it allows for the encapsulation of a function, much like the concept of
closures. The following EL demonstrates this concept by creating a lambda that returns the square root of a value that
is passed in as a parameter:

// Assign the lambda to an identifier
sqrt = x -> x * x
// Use the lambda at a later point
sqrt(10) // returns 100

Nesting
Nesting a lambda expression inside another can produce very useful results. It is important to note that the scope
within lambda functions is to the body of the lambda itself. Therefore, any identifiers, variables, or arguments that
are defined inside a lambda body are available only within the scope of that expression. This can be useful for nesting
because objects that are defined within a lambda can be passed to nested expressions but not vice versa. Take the
following example, for instance:

c->[(c.num1, c.num2) -> x + y]

In the previous expression, the c identifier would be an object that contains num1 and num2. Within the lambda,
the c object is broken out and then used to find the sum of the two numbers, and then the result is returned.

Passing Lambdas to Java
It is possible to pass lambda expressions to Java code for evaluation, which can be beneficial to developers for
a couple of reasons. First, having the ability to pass lambda expressions written in EL to a Java class provides the
option to change that lambda at a later date without recompiling the Java code. This means that in a production
environment, lambda expressions can be changed without redeploying an application.

Another good reason to pass lambdas to Java is so that you can utilize lambdas in code bases that are compiled
using pre–Java 8 versions of the JDK. Lambdas are not available for use within Java code prior to the release of JDK 8;
therefore, in order to benefit from the use of lambdas in Java, code bases will need to be migrated to JDK 8. This may
not always be possible for a multitude of reasons. Therefore, for backward compatibility, lambda expressions may be
written an EL and then passed to Java code that is compiled under JDK 7. Lastly, passing lambdas from EL to Java can
aid in situations such as when there is a need to support query expressions on collections.

Let’s take a look at how you can utilize EL lambda expressions from Java. Suppose you are using an EL lambda
expression in a JSF view; then it could be passed to a managed bean method for evaluation, and a result could be
returned. To accept a lambda expression, the Java method must accept a javax.el.LambdaExpression as a parameter.
The lambda expression can then be invoked by calling its invoke method, which will return the result of the lambda.

The following EL is contained in a JSF view named chapter03\PassToJava.xhtml. The lambda expression in the
EL is passed to a managed bean function named elExampleBean.

Chapter 3 ■ expression Language (eL)

41

The employee makes more than 50,000:
 #{elExampleManagedBean.displayResult(x -> x.wage gt 50000)}

Next, you’ll take a look at the eLExampleManagedBean.displayResult method, which accepts
a javax.el.LambdaExpression as a parameter.

public boolean displayResult(javax.el.LambdaExpression le){
 Employee e = new Employee(); // Grab an employee instance
 if (le.invoke(e)){
 return true;
 } else {
 return false;
 }
}

Collections Enhancements
Collections have been reworked for EL 3.0, bringing them more in line with Java SE 8. Collections (sets, maps, and
lists) can be constructed dynamically in EL. EL collections can be constructed from literals or from EL expressions.
This can be a huge advantage when dynamically constructing a collection. In this section, I will briefly cover examples
for creating and using each type of collection.

Sets
Sets are surrounded by curly braces, as in {}, and elements of the set are separated by commas. The following are
examples of Set objects:

{a, b, c}
{1, "two", 3}
{a * b, 3, 5 * c}

Maps
Maps are key-value pairs, just like in the Java language. They are surrounded by curly braces, as in {}, just like Set
objects. In a Map element, a colon is used to separate the key from the value. The following are examples of Map
objects:

{"one":1, "two":2, 3:"three"}
{"first":"Josh", "last":"Juneau}

Lists
Lists are very similar to Set objects, but they have a different syntax because they are enclosed by brackets, [], rather
than braces. The following are examples of List objects:

[a, b, c]
[1, "two", 3]
[d, [e, f, g, h], x]

Chapter 3 ■ expression Language (eL)

42

Supporting Operations
A collection of data is represented in EL as java.lang.Iterable<Object>. Collections of data can be iterated over,
and EL provides operations to perform on data while iterating over it. There are operations that can be performed on
collections to accomplish a myriad of tasks, including filtering, sorting, selecting a subset of elements, and so forth.
In this section, you will learn each of the collection operations and how they work.

There are two different types of collection operations: lazy and eager. Lazy operations tend to iterate only
when necessary, and they avoid the creation of new collections (Table 3-1). Eager operations iterate over the entire
collection each time they are performed (Table 3-2). The following sections break the collection operations into each
of these two categories.

Table 3-1. Lazy Collection Operations

Operation Description

take Iterates over the source elements and yields the number of elements specified by the
given argument. Elements are yielded from the front of the collection. If the count is
greater than the number of source elements, all the elements are yielded; otherwise, if the
count is less than or equal to zero, no elements are yielded.

Example: employees.take(2)

skip Iterates over the source elements, skipping the number of elements specified by the
argument and yielding all of the remaining elements. If the source collection contains
fewer elements than the number specified by the argument, nothing is yielded. If count is
less than or equal to zero, all elements are yielded.

Example: employees.skip(2)

takeWhile Iterates over the source elements, applying the given predicate function to each element
and yielding the elements that return a true result. The iteration stops the first time the
predicate function returns false or when all of the elements have been processed. The
predicate function takes two arguments. The first argument represents the element to
test. The second argument, if present, represents the zero-based index of the element
within the source collection.

Example: employees.takeWhile(Boolean predicate)

skipWhile Iterates over the source elements, applying the given predicate function to each element
and skipping those elements that return a true result. The first element that returns a
false result is yielded, along with all remaining elements. No elements are yielded if
the predicate function returns true for all elements. The predicate function takes two
arguments. The first argument represents the element to test. The second argument,
if present, represents the zero-based index of the element within the source sequence.

Example: employees.skipWhile(Boolean predicate)

first Iterates the source elements, and if a predicate function is specified, then the first
element returning a true result is yielded. Otherwise, if no predicate function is specified,
the first operator simply returns the first element in the collection.

An InvalidOperationException is thrown if no element matches the predicate or if the
source collection is empty.

Example: employees.first()

(continued)

Chapter 3 ■ expression Language (eL)

43

Table 3-1. (continued)

Operation Description

firstOrDefault Iterates over the source elements, and if a predicate function is specified, then the first
element returning a true result is yielded. Otherwise, if no predicate function is specified,
the firstOrDefault operator simply returns the first element in the collection.

If no element matches the predicate or if the source sequence is empty, a null is
returned.

Example: employees.firstOrDefault()

last Iterates over the source elements, and if a predicate function is specified, then the last
element returning a true result is yielded. Otherwise, if no predicate function is specified,
the last operator simply returns the last element in the collection.

An InvalidOperationException is thrown if no element matches the predicate or if the
source collection is empty.

Example: employees.last()

lastOrDefault Iterates over the source elements, and if a predicate function is specified, then the last
element returning a true result is yielded. If no predicate function is specified, the
lastOrDefault operator simply returns the last element in the collection.

If no element matches the predicate or if the source sequence is empty, a null is
returned.

Example: employees.lastOrDefault()

single Iterates over the source elements and returns the single element that returns true from
the predicate function. If no predicate function is specified, the single operator simply
returns the single element of the collection.

An InvalidOperationException is thrown if the source sequence is empty or contains no
matching element or more than one matching element.

Example: employees.single()

singleOrDefault Iterates over the source elements and returns the single element that returns true
from the predicate function. If no predicate function is specified, the singleOrDefault
operator simply returns the single element of the collection.

An InvalidOperationException is thrown if the source sequence contains more than
one matching element. If no element matches the predicate or if the source sequence is
empty, null is returned.

Example: employees.singleOrDefault()

elementAt The List.get() method is used to obtain the element at the specified index if the
collection is a List. Otherwise, the elements in the collection are iterated index number
of times, and the element found at the specified position is returned.

An IndexOutOfBoundException is thrown if the index is less than zero or greater than or
equal to the number of elements in the collection.

Example: employees.elementAt(12)

(continued)

Chapter 3 ■ expression Language (eL)

44

Table 3-1. (continued)

Operation Description

elementAtOrDefault The List.get() method is used to obtain the element at the specified index if the
collection is a List. Otherwise, the elements in the collection are iterated index number
of times, and the element found at the specified position is returned.

A null is returned if the index is less than zero or greater than or equal to the number of
elements in the collection.

Example: employees.elementAtOrDefault(10)

any Iterates over the source elements to determine if any of the elements satisfy the predicate
function test. If so, then true is returned. If no predicate function is specified, the any
operator simply returns true if the source collection is greater than zero in size.

The iteration stops as soon as the result is known.

Example: employees.any()

all If the collection is empty, then null is returned. Otherwise all elements that satisfy the
test given by the predicate are returned. The iteration halts when the result is known.

Example: employees.all()

contains The Collection.contains() method is invoked to obtain the result if the source implements
the collection type. Otherwise the elements of the collection are iterated to determine if the
element is found. The iteration stops as soon as a matching element is found.

Example: employees.contains(elem) // where elem is an element

Table 3-2. Eager Collection Operations

Operation Description

where Iterates over the source elements yielding each one for which the specified predicate
function returns true. The predicate function can accept two arguments. The first
argument of predicate function represents the element to test. The second optional
argument represents the zero-based index of the element within the source collection.

Example: employees.where(e->e.wage >= 50000)

select Iterates over the source and yields the results of applying the selector function for each
element. The first argument of selector represents the element to process. The second
argument, if any, represents the zero-based index of the element within the source collection.

Example: employees.select(e->e.first)

selectMany Iterates over the source elements, producing an Iterable for each element by evaluating
the selector function. If the result of evaluating the selector function is not an Iterable,
the behavior is undefined. The inner Iterable is then iterated, and if there is no
resultSelector function then its element is yielded. If there is a resultSelector
function, it is invoked, passing the outer and inner elements as its arguments, and the
result is yielded. The second optional argument to the selector function represents the
zero-based index of the element within the source collection.

Example: employees.selectMany(e->e.position)

(continued)

Chapter 3 ■ expression Language (eL)

45

Operation Description

join Iterates over the source elements, and for each element (referred to as outer element),
the outerKeySelector function is evaluated to a value (referred to as key1). For each
non-null key1, innerKeySequence is iterated, and for each element (referred to as inner
element), the innerKeySelector function is evaluated to a value (referred to as key2).
The value key1 is compared with key2, and if equal, the resultKeySelector function is
evaluated (with the outer element and the inner element as its arguments), and the result
is yielded.

A comparator can be used for the comparison key1 to key2.

Example: employees.join(positions, e->e.positionId, p->p.positionId,

(e, p) -> [e.first, e.last, p.position])

groupJoin Iterates over the source elements, and for each element (referred to as outer element),
the outerKeySelector function is evaluated to a value (referred to as key1). If key1 is
non-null, innerSequence is iterated, and for each element (referred to as inner element),
the innerKeySelector function is evaluated to a value (referred to as key2). The inner
elements whose key2 equals key1 are collected in a list. The resultSelector function
is then evaluated, with the outer element and the list (can possibly be empty) as its
arguments, and the result is yielded.

A comparator can be used for the comparison of key1 and key2. The operator preserves
the order of the outer elements, and for each outer element, the order of the matching
inner elements is preserved.

Example: employees.select(e ->

[e.first, e.last, e.yearsOfService.sum(y->y.years)])

concat Iterates over the source elements, yields each element in the collection, and then iterates
over the second collection, yielding each element in the collection.

Example: employees.concat(positions)

 orderBy, thenBy, orderByDescending, thenByDescending

 These operators can be used together to order a collection via multiple keys.
A composition of the operators has the form

 source.orderBy(...).thenBy(...).thenBy(...) ...

where orderBy(...) is an invocation of orderBy or orderByDescending and each
thenBy(...), if any, is an invocation of thenBy or thenByDescending. The primary
ordering is established by the initial orderBy or orderByDescending, the first thenBy
or thenByDescending establishes the secondary ordering, the second thenBy or
thenByDescending establishes the tertiary ordering, and so on.

Example: employees.orderBy(p->p.position)

thenByDescending(p->p.salary)

reverse Iterates over the source elements, collecting all elements in a list. Each element in the
resulting list is then yielded in reverse order.

Example: employees.reverse()

Table 3-2. (continued)

(continued)

Chapter 3 ■ expression Language (eL)

46

Operation Description

groupBy Iterates over the collection and, for each element, evaluates the keySelector and
elementSelector functions, if present. The keySelector and the elementSelector
select a key and a destination element, respectively, from the source elements. If no
elementSelector is specified, elements of the collection become the destination
elements. The destination elements with the same key value are grouped in a Grouping,
which is then yielded.

The groupings are yielded in the order in which their key values first occurred in the
original collection, and destination elements within a grouping are ordered by their
occurrences in the source elements.

A comparator can be used for comparison of the key values.

Example: employees.groupBy(p->p.position, p->p.salary)

distinct Iterates over the source elements, yielding each element that has not previously been
yielded.

A comparator can be used to compare the elements.

Example: employees.distinct()

union Iterates over the elements of the source and second collections, in that order. Each
element that has not yet been yielded is returned.

A comparator can be used to compare the elements.

Example: [1,3,5,7,9].union([2,4,6,8,10])

intersect Iterates over the source elements, and each element that is contained in the second
collection and has not yet been yielded is returned.

A comparator can be used to compare the elements.

Example: [1,3,5,7,9].intersect([2,4,6,8,10])

except Iterates over the source elements, and each element that is contained in the second
collection and has not yet been yielded is returned.

A comparator can be used to compare the elements.

Example: [1,3,5,7,9].except([1,2,3,4,5]) //returns 2,4,7,9

toArray Iterates over the collection and returns an array containing the elements.

toSet Iterates over the collection and returns a Set containing the elements.

toList Iterates over the collection and returns a List containing the elements.

toMap Iterates over the collection and evaluates the keySelector and elementSelector functions
for each element, producing a key and a value. The resulting key and value pairs are
returned in a Map. If no elementSelector was specified, the value is the element itself.

toLookup Iterates over the source elements and evaluates the keySelector and elementSelector
functions for each element, producing a key and a value. The values with the same key
are grouped together in a Grouping, and the resulting key and the Grouping pairs are
returned in a Map. If no elementSelector is specified, the value for each element is the
element itself.

Example: employees.toLookup(e->e.last, e->e.positionId)

Table 3-2. (continued)

(continued)

Chapter 3 ■ expression Language (eL)

47

Operation Description

sequenceEqual Iterates over the two source elements in parallel and compares their corresponding
elements. If all corresponding elements are equal and the collection sizes are equal, then
true is returned. Otherwise, the method returns false.

If a comparator is specified, it is used to compare the elements.

Example: seqA.sequenceEqual(seqB)

defaultIfEmpty Iterates over and yields all elements of the source collection. If the source collection is
empty, the defaultValue is yielded. If defaultvalue is not specified, a null is yielded.

Example: employees.defaultIfEmpty()

count Collection.size() is used to obtain the count if there is no predicate function specified
and if the source implements Collection. If the source does not implement Collection,
then the count operator iterates over the source elements, counting the total number.

If a predicate is specified, the count operator iterates over the source elements and
counts the number of elements for which the predicate function returns true.

Example: employees.count()

sum Iterates over the source elements, invoking the selector function for each element.
Computes the sum of the returned values. If no selector function is specified, the sum of
the elements in the collection is computed.

Zero is returned for an empty collection. Furthermore, the operator does not include
null values in the result.

Example: [3,5,7,10].sum()

min Iterates over the source elements, invoking the selector function for each element. Finds
the minimum of the returned values. If no selector function is specified, the minimum of
the elements in the collection is computed. The values to be compared must implement
Comparable.

null is returned for an empty collection.

Example: [3,5,7,10].min() // returns 3

max Iterates over the source elements, invoking the selector function for each element. Finds
the maximum of the returned values. If no selector function is specified, the maximum of
the elements in the collection is computed. The values to be compared must implement
Comparable.

The max operator returns null for an empty collection.

Example: [3,5,7,10].max() // returns 10

average Iterates over the source elements, invoking the selector function for each element.
Computes the average of the returned values. If no selector function is specified, the
average of the elements in the collection is calculated.

The average operator returns null for an empty collection.

Example: [3,5,7].average()

Table 3-2. (continued)

(continued)

Chapter 3 ■ expression Language (eL)

48

Operation Description

aggregate If a seed value is specified, then it is assigned to an internal accumulator variable.
Iterates over the source elements, repeatedly computing the next accumulator value by
invoking the specified function and passing the current accumulator value as the first
argument and the current element as the second argument. At the end of the iteration,
if a resultSelector is not specified, the final accumulator value is returned; otherwise,
resultSelector function is invoked, passing the final accumulator as its argument, and
the result is returned.

If no seed value is specified, then the value of the first element is used as the seed value.
If the source collection is empty, the aggregate operator without a seed value throws an
InvalidOperationException.

forEach Iterates over the source elements and applies the action function to each element. The
action can take two arguments. The first argument of action represents the element to
process. The second argument, if present, represents the zero-based index of the element
within the source collection.

The forEach operators always return null.

Table 3-2. (continued)

Note ■ it is important to note that zero or more operators can be chained together to achieve the desired result.
For instance, you can apply a select operator to a collection and then apply a where operator to that same collection.

New Operators
New operators have been added to EL in order to bring new features to the language. This section will cover each of
the new operators and provide a brief example for each. Lastly, there have been some operator precedence changes in
order to accommodate the new additions to the language, so I’ll cover them as well.

String Concatenation Operator
The String concatenation operator works if and only if one of the operands is a String. The new operators for
concatenation are + and cat. Since the + operator has been overloaded, if both operands are numeric values, then it
adds the two together; otherwise, if one operand is a String, then concatenation will occur.

The following examples demonstrate the use of the new + operator for concatenation:

${"Hello " + emp.name}
${100 + "3"} // produces: 1003

The other concatenation operator, cat, is used in the following way:

${"Hello ".cat(emp.name)}

Chapter 3 ■ expression Language (eL)

49

Assignment Operator
The assignment operator can be applied to expressions, and it assigns the rvalue to the lvalue.

Note ■ an lvalue refers to the value or expression on the left side of the = sign, and the rvalue refers to the value
or expression on the right side of the = sign. if the lvalue is not writable, then a PropertyNotWriteableException will
be thrown.

In the case of X = Y, X would be assigned the value of Y. If there are more than one equal signs present in an
expression, then when read from left to right, the first equal sign divides the lvalue and rvalue. All remaining equal
signs are part of the rvalue. For instance, the parentheses in the following example surround the rvalue:

y = (a = z –x * 10)

The ELResolver.setValue method determines how assignment is made. If an assignment is illegal in a given
circumstance, then the ELResolver.setValue method will not make the assignment. In a stand-alone environment,
the ELResolver is part of a class named the StandardELContext. If an assignment is made to an identifier that has
not yet been declared, then a new bean is created in the local bean repository, and it is named the same as the newly
specified identifier.

Semicolon Operator
The semicolon operator (;) is used to return from an expression. The semicolon operator is much like the semicolon
in Java, whereas it is used to end a statement or expression. Therefore, if there were more than one expression on the
same line and the expressions were separated by semicolons, then the first expression would be evaluated, followed
by the second, and so on. After each expression is evaluated, it is discarded, and the next expression is evaluated
separately.

Precedence Changes
Operator precedence can become important if more than one operator exists in the same expression. It is important
to understand which operator will be evaluated first so that the correct expression will be evaluated first. Table 3-3
lists each of the operators that are part of EL, from highest precedence to lowest precedence, given that an expression
is evaluated from left to right. If more than one operator has the same precedence, then each of those operators will be
listed in the same table line.

Chapter 3 ■ expression Language (eL)

50

Static Field and Methods
A static field or method can be referenced by referring to the class that embodies the field or method and then using
the dot (.) operator to denote the static field or method. To refer to a given class, use the following notation, where
className refers to the fully qualified name of the class:

T(className)

Therefore, the following references would be valid:

T(classA).myVar
T(java.lang.Boolean).FALSE

Note ■ T is used with Java generics to specify a type whenever there is nothing more specific about the type to
distinguish it.

Stand-Alone API
The 3.0 release provides a stand-alone API for the Expression Language (EL). Utilization of such an API can be handy
in various situations. In the forefront, a stand-alone API can be useful if you are interested in making use of Expression
Language within a Java SE environment. However, it can also be useful when developing EL that will be later utilized
within JSPs or JSF views.

Table 3-3. EL Operator Precedence

Operator

 1 [] .

 2 ()

 3 - (unary) not ! empty

 4 * / div % mod

 5 + - (binary)

 6 cat

 7 < > <= >= lt gt le ge

 8 == != eq ne

 9 && and

10 || or

11 ? :

12 ->

13 =

14 ;

Chapter 3 ■ expression Language (eL)

51

The stand-alone API makes use of the javax.el.ELProcessor class to obtain an instance of the ELProcessor for
working with the EL. To use this class, instantiate a new instance and then call upon its methods to utilize different
components of the EL stand alone API. Table 3-4 lists the different methods that can be called upon from an instance
of the ELProcessor class, along with a description of each.

Table 3-4. ELProcessor Methods

Method Description

defineBean(String, Object) Defines a variable within the EL environment and assigns
a specified JavaBean to that variable. This makes the bean
available in the local bean repository.

defineFunction(String, String, Method) Defines an EL function in the local function mapper.

defineFunction(String, String, String, String)

eval(String) Evaluates an EL Expression.

getELManager() Returns an EL Manager that can be used for EL Processing.

getValue(String, Class) Evaluates a given EL expression, coerces it into the
specified type, and returns the result.

setValue(String, Object) Sets an expression with a value.

setVariable(String, String) Assigns an EL expression to an EL variable.

Most of the methods that can be called upon from the ELProcessor class can be called upon to work with the EL
processor and achieve the desired effect. The getELManager() method is different in that it returns an instance of the
ELManager class, which allows one to further configure the EL environment. The following sections will further outline
the functionality of the EL Processor.

Defining a Bean
Consider the case where you have a Java class that you would like to make available for use within an EL expression.
The ELProcessor defineBean method can be utilized for doing just that. This method takes two parameters, the first
being a string that will be used to declare the EL variable name, and the second being the JavaBean object that you’d
like to make available from within the EL. The following example demonstrates how to make a bean named TestBean
available for use within an EL context. First, let’s take a look at the TestBean source to see that it is a simple JavaBean
that contains no additional extras to facilitate the ELProcessor.

public class TestBean {

 private int num1 = 5;
 private int num2 = 7;

 /**
 * @return the num1
 */
 public int getNum1() {
 return num1;
 }

Chapter 3 ■ expression Language (eL)

52

 /**
 * @param num1 the num1 to set
 */
 public void setNum1(int num1) {
 this.num1 = num1;
 }

 /**
 * @return the num2
 */
 public int getNum2() {
 return num2;
 }

 /**
 * @param num2 the num2 to set
 */
 public void setNum2(int num2) {
 this.num2 = num2;
 }

 public static String obtainMessage(){
 return "Hello from the function";
 }
}

Next, we’ll take a look at the code that can be utilized to bring an instance of TestBean into an EL context for use
with EL expressions. To do so, an instance of ELProcessor must be obtained, and then the defineBean method is
invoked, passing the String-based variable name along with the String-based fully qualified class name of the bean
that we wish to make available. Once the bean has been made available, it can be utilized in an EL expression and
evaluated by calling the ELProcessor eval method, as demonstrated in the following code.

ELProcessor el = new ELProcessor();
// Assign a bean instance to a variable
el.defineBean("c", new TestBean());
el.setVariable("adder", "(x,y) -> x + y");
// Utilize the bean instance variables
Object result = el.eval("adder(c.num1, c.num2)");

Declaring a Variable
The stand-alone API makes it easy to declare an EL variable and assign an expression to it. This can be done by first
obtaining an instance of ELProcessor, and then calling the setVariable method, passing the String-based name of the
desired variable, along with the String-based expression. The following lines of code demonstrate this functionality by
assigning a lambda expression to a String-based variable.

ELProcessor el = new ELProcessor();
el.setVariable("sqrt", "x -> (x * x)");

Object result = el.eval("sqrt(150)");

Chapter 3 ■ expression Language (eL)

53

Defining a Function
If you wish to assign a Java-based function to an EL expression variable, you can do so by calling one of the
ELProcessor defineFunction methods. These two methods both achieve the same result, but they each accept
different parameters to get there. First, you can call the defineFunction(String, String, Method) function by
passing the following parameters:

String-based prefix (Java package) that should be utilized to fully qualify the function•	

String-based name of the Java class that contains the method you would like to assign to the •	
function

Method object that you’d like to invoke•	

The second defineFunction method accepts four String-based parameter values, those being the following:

Prefix (Java package) that should be utilized to fully qualify the function•	

Name identifier to which you would like to assign the method call•	

Name of the Java class that contains the method that you would like to assign to the function•	

Name of the static Java method to utlize•	

The following lines of code demonstrate how to define a function named obtainMessage to a Java-based method
named obtainMessage, which belongs within the TestBean class.

ELProcessor el = new ELProcessor();
try {
 el.defineFunction("org", "obtainMessage", "org.javaee7.chapter03.el.client.TestBean",
"obtainMessage");
} catch (ClassNotFoundException|NoSuchMethodException ex) {
 // handle error
}

Object result = el.eval("org:obtainMessage()");

Utilizing the ELManager
The ELManager class can be used to set configurations for the EL environment. For instance, it can be used to import
Java packages or classes for use within EL expressions. Table 3-5 lists the methods that can be useful within the
ELManager for configuring the EL environment. It should be noted that some of the methods mirror those that are
available from the ELProcessor.

Chapter 3 ■ expression Language (eL)

54

The following code listing demonstrates how to make use of the ELManager for importing a Java class into the
EL context.

ELProcessor el = new ELProcessor();
ELManager elMgr = el.getELManager();
elMgr.importClass("org.javaee7.chapter03.el.client.TestBean");
el.setVariable("bean", "new TestBean()");
Object result = el.eval("bean.num1 + bean.num2");

Incompatibilities with Previous Releases
Most of the EL 3.0 release is backward compatible; however, there are a few incompatibilities with previous releases,
mostly because of the nature of the new features. The list of incompatibilities is as follows:

The new keywords are •	 T and cat.

The •	 + operator is overloaded for String concatenation.

Non-primitive types are coerced to •	 null by default.

Summary
Expression Language provides a binding between web views and server side logic. The Expression Language 3.0
release brings with it many great enhancements, including a stand-alone API, and more modern coding techniques
such as lambda expressions. Brushing up with the latest enhancements to the API will enhance any developer’s
productivity, and it can also increase the availability of the API for those who wish to utilize EL within Java SE
applications.

Table 3-5. ELManager Methods

Method Description

addBeanNameResolver Registers a bean-name resolver

addELResolver Registers an EL Resolver

addEvaluationListener Registers an EvaluationListener

defineBean Defines a bean with the local bean repository

getELContext Returns ELContext that can be used for parsing and evaluating expressions

importClass Imports a Java class

importMethod Imports a Java method

importStatic Imports a static field or method

mapFunction Maps a static method to a function name

setELContext Used to set the ELContext

setVariable Assigns a value or expression to an EL variable

55

Chapter 4

Object Relational Mapping and JPA

Object Relational Mapping (ORM) is the process of mapping entity classes to underlying database tables, and using
those entities to work with data, rather than direct SQL. Many developers have adopted ORM solutions over the years,
and a variety of different ORM technologies have emerged due to the uptake. The Java EE platform contains the Java
Persistence API (JPA), which is the standard ORM technology for Java enterprise development. Over the years, JPA has
changed significantly, making development easier and opening more options to developers with each release. The
latest release, JPA 2.1, is no exception, as it brings forth many incremental updates to the API, allowing developers
more flexibility and ease of development than ever before.

In this chapter, you will learn about the updates that have been made to JPA in an effort to expand the API.
Such updates include: ON Conditions, the ability to invoke database functions, bulk updates and deletions via the
Criteria API, and so on. You will also learn about enhancements to JPA that make development even easier and more
productive, such as schema generation.

Support for Joins with ON Conditions
When writing Java Persistence Query Language (JPQL) queries, it is sometimes beneficial to join two or more tables
to acquire related information. Furthermore, it is usually helpful to filter information based upon certain specified
criteria so that the number of records returned can be manageable. JPQL joins typically include INNER, OUTER, and
FETCH joins. To review, an INNER join allows retrieval from two tables such that records being returned contain at
least one match in both tables. For instance, you may wish to query an Employee entity join it to the Jobs entity to
return only employees that have a specific job title. An OUTER join allows retrieval from two tables such that all of the
records from one of the entities (left entity) are returned, regardless if they match with a record in the other entity.
Lastly, a FETCH join enables the fetching of an association as a side effect of the query execution. In JPA 2.1, JPQL
has been updated to include the ON condition, which allows one to perform an OUTER join and include a specified
condition with the join. This capability has always been available with the WHERE clause of the JPQL query . . . but what
about the cases when you wish to return all matching records along with those that may not match, as with an OUTER
join? The JPA 2.1 release provides this functionality in a concise manner with the addition of ON conditions. Simply
put, an ON condition modifies a join query such that it will incorporate better control over the data that is returned in
a concise manner.

In order to demonstrate this new syntax, let’s take a look at an SQL query and then we will compare it to its JPQL
counterpart. The following SQL will join the EMPLOYEE table with the JOBS table on the JOB_ID field. It will also limit
the returned records to those that include a salary of >= 50,000 with the specification in the WHERE clause.

SELECT J.TITLE, COUNT(E.ID)
FROM JOBS J LEFT JOIN EMPLOYEE E
 ON J.JOB_ID = E.JOB_ID and E.STATUS = 'ACTIVE'
WHERE J.SALARY >= 50000
GROUP BY J.TITLE;

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

56

This will return all of the JOB records, grouped by job title, listing the number of each job that contains an
Employee whose status is ACTIVE, as shown below.

HR TITLE A 1
HR TITLE B 0
IT TITLE A 0
IT TITLE B 0
TITLE A 0

The following method includes the JPQL that is the equivalent of the SQL above, and it uses the new ON condition.
This method, named activeEmployeeCount, can be found within the org.javaee7.jpa.session.EmployeeSession file.

public List obtainActiveEmployeeCount() {
 TypedQuery<Object[]> qry = em.createQuery("SELECT j.title, count(e) "
 + "FROM Jobs j LEFT JOIN j.employees e "
 + "ON e.status = 'ACTIVE' "
 + "WHERE j.salary >= 50000 "
 + "GROUP BY j.title", Object[].class);

 List data = new ArrayList();
 if (!qry.getResultList().isEmpty()) {
 List<Object[]> tdata = qry.getResultList();
 for (Object[] t : tdata) {
 HashMap resultMap = new HashMap();
 resultMap.put("title", t[0]);
 resultMap.put("count", t[1]);
 data.add(resultMap);
 }
 }
 return data;

 }

In the end, the ON condition helps to make JPQL outer joins more concise and easy to use. Although the same
capability has been available in previous versions of JPQL, but the ON clause helps to make record filtering with joins
much easier.

Invocation of Database Functions
It is possible to invoke database functions directly within a JPQL query using the new function invocation syntax. Both
predefined database functions or user-defined database functions are supported for use via this feature. The FUNCTION
keyword can be used within a query to invoke a database function using the following syntax:

FUNCTION(function_name {,args}*)

When calling a database function, zero or more arguments can be passed to the function by listing them after
the String-based name of the function, separated by commas. The following example JPQL invokes a function named
“aboveTaxBracket”, passing the employee salary as an argument.

SELECT e FROM Employee e WHERE FUNCTION('aboveTaxBracket', e.salary)

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

57

Note ■ if an application utilizes FUnCtiOn invocation, it may not be portable across databases.

Bulk Updates and Deletions
The Criteria API has been enhanced to support bulk updates and deletions. The Criteria API allows developers to
utilize Java language syntax in order to perform database queries and manipulations, rather than JPQL or SQL.
A javax.persistence.criteria.CriteriaUpdate object can be used to perform bulk update operations, and a
javax.persistence.critera.CriteriaDelete object can be used to perform bulk deletion operations. How do
we obtain such objects? The Criteria API is dependent upon the javax.persistence.criteria.CriteriaBuilder
interface, which is used to return objects that can be used to work with specified Entity classes. In the JPA 2.1 release,
the CriteriaBuilder has been updated to include the methods createCriteriaUpdate and createCriteriaDelete,
which will return the CriteriaUpdate or CriteriaDelete objects, respectively.

To make use of the CriteriaBuilder, you first need to obtain a CriteriaBuilder from the EntityManager. You
can then use the CriteriaBuilder to obtain the CriteriaUpdate or CriteriaDelete object of your choosing. In the
following lines of code, a CriteriaUpdate object is obtained for use with an Employee entity.

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.class);

Once obtained, the CriteriaUpdate can be used to build a query and set values, as desired, for making the
necessary updates or deletions. In the following excerpt, the CriteriaUpdate object is used to update all Employee
objects that have a status of INACTIVE, changing that status to ACTIVE.

Root<Employee> e = q.from(Employee.class);
q.set(e.get("status"), "ACTIVE")
 .where(builder.equal(e.get("status"), "INACTIVE"));

Let’s break this down a bit to explain what exactly is going on. First, the query root is set by calling the q.from
method and passing the entity class for which we wish to obtain the root, where q is the CriteriaUpdate object. Next,
the q.set method is invoked, passing the Path to the Employee status attribute, along with the ACTIVE String. The
q.set method is performing the bulk update. To further refine the query, a WHERE clause is added by adding a chained
call to the .where method, and passing the Employee objects that have a status of INACTIVE. To see an entire example,
please visit the org.javaee7.chapter04.jsf.CriteriaUpdates class. The entire Criteria update looks as follows:

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.class);
Root<Employee> e = q.from(Employee.class);
q.set(e.get("status"), "ACTIVE")
 .where(builder.equal(e.get("status"), "INACTIVE"));

Finally, to complete the transaction, you must create the Query object and then execute it using the following
lines of code:

Query criteriaUpd = em.createQuery(q);
criteriaUpd.executeUpdate();

The complete code for the bulk update in this example resides within a method named
updateEmployeeStatusInactive, which is listed below.

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

58

 ...
 @Resource
 private UserTransaction ut;
 ...
 public String updateEmployeeStatusInactive {
 try {
 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.class);
 Root<Employee> e = q.from(Employee.class);
 q.set(e.get("status"), "INACTIVE")
 .where(builder.equal(e.get("status"), "ACTIVE"));
 ut.begin();
 Query criteriaUpd = em.createQuery(q);
 criteriaUpd.executeUpdate();
 ut.commit();
 } catch (NotSupportedException | RollbackException | SystemException |
HeuristicMixedException | HeuristicRollbackException ex) {
 Logger.getLogger(CriteriaUpdates.class.getName()).log(Level.SEVERE, null, ex);
 }
 return null;
 }
 ...

The bulk deletion is very similar, except instead of using the CriteriaBuilder to obtain a CriteriaUpdate object,
use it to obtain a CriteriaDelete object instead. To obtain a CriteriaDelete object, call the CriteriaBuilder
createCriteriaDelete method, as follows.

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaDelete<Employee> q = builder.createCriteriaDelete(Employee.class);

Once a CriteriaDelete object has been obtained, then the conditions for deletion need to be specified by
filtering the results using a call (or chain of calls) to the .where method. When using the bulk delete, all objects that
match the specified condition will be deleted. For example, the following lines of code demonstrate how to delete all
Employee objects that have the status attribute equal to INACTIVE.

Root<Employee> e = q.from(Employee.class);
q.where(builder.equal(e.get("status"), "INACTIVE"));

The complete code for the bulk deletion in this example resides within a method named
deleteEmployeeOnStatus, which is listed below.

...
@Resource
private UserTransaction ut;
...
public String deleteEmployeeOnStatus(String condition) {
 try {
 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaDelete<Employee> q = builder.createCriteriaDelete(Employee.class);
 Root<Employee> e = q.from(Employee.class);
 q.where(builder.equal(e.get("status"), condition));
 ut.begin();

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

59

 Query criteriaDel = em.createQuery(q);
 criteriaDel.executeUpdate();
 ut.commit();
 } catch (NotSupportedException | RollbackException | SystemException |
HeuristicMixedException | HeuristicRollbackException ex) {
 Logger.getLogger(CriteriaUpdates.class.getName()).log(Level.SEVERE, null, ex);
 }
 return null;
}
...

Note ■ both the CriteriaUpdate and CriteriaDelete examples that we’ve demonstrated can be made more
type-safe by making use of the MetaModel api. For each entity class in a particular persistence unit, a metamodel class
is created with a trailing underscore, along with the attributes that correspond to the persistent fields of the entity class.
this metamodel can be used to managed entity classes and their persistent state and relationships. therefore, instead
of specifying an error prone String in the Path to obtain a particular attribute, you could specify the metamodel attribute
instead, as follows: e.get(Employee_.status)

For more information on using the MetaModel api to create type-safe queries, please refer to the online documentation.

The Criteria API can be very detailed, and it is also very powerful. To learn more about the Criteria API, please see
the documentation online at http://docs.oracle.com/javaee/6/tutorial/doc/gjitv.html.

Downcasting in the FROM and WHERE clauses
The act of downcasting is defined as the casting of a base type or class reference to one of its derived types or classes.
The Java EE 7 platform introduces the concept of downcasting to JPA by providing the ability to obtain a reference to
a subclass of a specified entity within a query. In other words, you can explicitly query one or more entities and
retrieve the attributes from each of the entities as well as any attributes from entities that are subclasses of those that
are explicitly declared in the query. In order to provide this ability, the new TREAT keyword has been added to JPA.

The use of the TREAT operator is supported for downcasting within path expressions in the FROM and WHERE
clauses. The first argument to the TREAT operator should be a subtype of the target type, otherwise the path is
considered to have no value, attributing nothing to the end result. The TREAT operator can filter on the specified types
and subtypes, as well as perform a downcast.

The syntax for use of the TREAT operator is as follows:

SELECT b.attr1, b.attr2
FROM EntityA a JOIN TREAT(a.referenceToEntityB as EntityBType) b

In the above JPQL, the TREAT operator contains an attribute from the specified entity (EntityA) that relates to
a subtype (EntityB). The downcast takes place when attributes from EntityBType, a subclass of EntityB, are specified
within the SELECT clause. The TREAT operator performs the downcast and allows access to subtype entities.
The following lines of code demonstrate this technique in action. This method is taken from the class
org.javaee7.session.ProductSession, and it is used to obtain the name and color of WidgetA entities, which are
a sub-type of the Product entity.

http://docs.oracle.com/javaee/6/tutorial/doc/gjitv.html

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

60

public List obtainProduct() {
 TypedQuery<Object[]> qry = em.createQuery("select a.name, a.color " +
 "from Factory f JOIN TREAT(f.product as WidgetA) a", Object[].class);

 List data = new ArrayList();
 if (!qry.getResultList().isEmpty()) {
 List<Object[]> tdata = qry.getResultList();
 for (Object[] t : tdata) {
 HashMap resultMap = new HashMap();
 resultMap.put("name", t[0]);
 resultMap.put("color", t[1]);
 data.add(resultMap);
 }
 }
 return data;

 }

To better understand this concept, let’s talk a bit about the underlying database. The Factory entity class is the
object relational mapping for the FACTORY database table. The Product entity class is the object-relational mapping for
the PRODUCT database table. Lastly, the WidgetA entity class is a sub-type of the Product entity, so the PRODUCT table is
also utilized for storage of WidgetA object types. The overall structure of the PRODUCT database table is as follows:

CREATE TABLE PRODUCT (
ID NUMERIC PRIMARY KEY,
NAME VARCHAR(150),
PRODUCT_TYPE VARCHAR(50),
DESCRIPTION VARCHAR(2000),
COLOR VARCHAR2(100),
FACTORY_ID NUMERIC);

The Product entity class contains a few annotations that help to facilitate the entity relationship. First,
the @Inheritence annotation denotes that this entity is capable of SINGLE_TABLE inheritence. Next,
the @DiscriminatorColumn annotation declares the database column of PRODUCT_TYPE as a discriminator
column for the entity. This means that the PRODUCT_TYPE column is used to determine which entity sub-type object
to utilize for working with the data.

package org.javaee7.entity;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.DiscriminatorColumn;
import javax.persistence.DiscriminatorType;
import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;
import javax.persistence.JoinColumn;

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

61

import javax.persistence.ManyToOne;
import org.glassfish.internal.embedded.ScatteredArchive.Builder.type;

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="PRODUCT_TYPE", discriminatorType=DiscriminatorType.STRING,length=20)
@DiscriminatorValue("A")
public abstract class Product implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 @Column(name="NAME")
 String name;
 @Column(name="DESCRIPTION")
 String description;
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="FACTORY_ID", referencedColumnName="ID")
 private Factory factory;
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (getId() != null ? getId().hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 // TODO: Warning - this method won't work in the case the id fields are not set
 if (!(object instanceof Product)) {
 return false;
 }
 Product other = (Product) object;
 if ((this.getId() == null && other.getId() != null) || (this.getId() != null && !this.
id.equals(other.id))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "org.javaee7.entity.Factory[id=" + getId() + "]";
 }

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

62

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the description
 */
 public String getDescription() {
 return description;
 }

 /**
 * @param description the description to set
 */
 public void setDescription(String description) {
 this.description = description;
 }

 /**
 * @return the factory
 */
 public Factory getFactory() {
 return factory;
 }

 /**
 * @param factory the factory to set
 */
 public void setFactory(Factory factory) {
 this.factory = factory;
 }

}

The WidgetA entity class is a sub-class of Product, and therefore all attributes that are part of the Product entity
can be utilized within the WidgetA entity. This entity class also defines the color attribute, which maps to the column
within the PRODUCT database table of the same name. The @DiscriminatorValue annotation denotes the value of the
PRODUCT_TYPE database column for this type of entity. Since it is a sub-class of Product, the @DiscriminatorValue
helps to determine the “category” for this relation.

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

63

package org.javaee7.entity;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;

/**
 *
 * @author Juneau
 */
@Entity
@DiscriminatorValue("A")
public class WidgetA extends Product implements Serializable {

 @Column(name="COLOR")
 private String color;

 public WidgetA(){

 }

 /**
 * @return the color
 */
 public String getColor() {
 return color;
 }

 /**
 * @param color the color to set
 */
 public void setColor(String color) {
 this.color = color;
 }

}

The following JSF view excerpt demonstrates how to display the results of the downcast. The dataTable
references productBean.productType() for the value, which initiates the invocation of the obtainProduct method
within the ProductSession EJB.

...
 <h:dataTable var="product" border="1" value="#{productBean.productType()}">
 <h:column>
 <f:facet name="header">
 Product Name
 </f:facet>
 <h:outputText value="#{product.name}"/>
 </h:column>

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

64

 <h:column>
 <f:facet name="header">
 Product Color
 </f:facet>
 <h:outputText value="#{product.color}"/>
 </h:column>

 </h:dataTable>
...

As mentioned previously, the TREAT operator can also be used within the WHERE clause in order to filter a query
based upon subtype attribute values. In the following example, the query will return all employees that are from the
IT department and have a status of ACTIVE. The assumption is that the ItEmployee entity is a subtype of the Employee
entity.

SELECT e FROM Employee
WHERE TREAT(e as ItEmployee).status = "ACTIVE";

Downcasting support adds yet another feature to the scope of JPA, making it even more flexible for developers to
use. This technique will make it easier to obtain values from related entities or subtypes, without the need to issue an
extra query.

Schema Generation
Schema generation refers to the creation of underlying database tables, views, constraints, and other database
artifacts. Prior to the Java EE 7 release, schema generation has only been automated via the use of an IDE such as
Netbeans or Eclipse. However, the EE 7 release takes a step towards breaking this dependency on an IDE by allowing
schema generation to become automated by configuring an appropriate persistence.xml for an application.

Schema generation can be applied directly to the database or it can generate SQL scripts that can be manually
applied to the database (or both), depending upon which options are configured for the application. Schema generation
may occur prior to application deployment, or when an EntityManagerFactory is created as part of the application
deployment and initialization. To perform schema generation, the container may call the PersistenceProvider
generateSchema method separate from and/or prior to the entity manager factory for the persistence unit. The
createContainerEntityManagerFactory call can accept additional information to cause generation of schema
constructs to occur as part of the entity manager factory creation or initialization process. Furthermore, this information
can determine whether the database is manipulated directly or if SQL scripts are created, or both.

Note ■ Schema generation is also available outside of a managed container (eg., application server) in java Se
environments. to perform schema generation in an Se environment, the application may call the Persistence
generateSchema method separately from and/or prior to the creation of the entity manager factory or may pass
information to the createEntityManagerFactory method to cause schema generation to occur as part of the entity
manager factory creation.

Schema generation is determined by the object/relational metadata of the persistence.xml file unless custom
scripts are provided for the generation. The application developer can package scripts as part of the persistence unit
or can supply URLs to the location of the scripts for schema generation. The execution of such scripts can be carried
out by the container itself, or the container may direct the persistence provider to take care of script execution.

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

65

Table 4-1 lists the different persistence.xml or EntityManagerFactory properties that are used to configure
schema generation. These properties are passed as a Map argument from the container to the PersistenceProvider
generateSchema method, or the createContainerEntityManagerFactory method. Each of the properties resides
within the javax.persistence package, and therefore, should be prefixed with javax.persistence.

Table 4-1. Schema Generation Properties

Property Purpose

schema-generation.create-script-source Name of script that is packaged as part of application, or a string
corresponding to file URL string that designates a script.

schema-generation.drop-script-source Name of script that is packaged as part of application, or a string
corresponding to file URL string that designates a script

sql-load-script-source Name of script that is packaged as part of application, or a string
corresponding to file URL string that designates a script

schema-generation.database.action Controls action to be taken by persistence provider with regard to
database access

Values: “none,” “create,” “drop-and-create,” “drop”

schema-generation.scripts.action Controls action to be taken by persistence provider with regard to script
generation

Values: “none,” “create,” “drop-and-create,” “drop”

schema-generation.create-source Specifies whether the creation of database artifacts should occur on the
basis of the ORM metadata, DDL script, or both

Values: “metadata,” “script,” “metadata-then-script,” “script-then-metadata”

schema-generation.drop-source Specifies whether the dropping of database artifacts should occur on
the basis of ORM metadata, DDL script, or both

Values: “metadata,” “script,” “metadata-then-script,” “script-then-metadata”

schema-generation.scripts.create-target When generating scripts, these properties specify the

schema-generation.scripts.drop-target the target locations in String format.

The schema generation is controlled by utilization of the properties that are listed in Table 4-1 within the
persistence.xml. The following example of persistence.xml demonstrates how to have database artifacts and
scripts generated for creation of both.

 <?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/
persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="IntroToJavaEE7PU" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/DerbyConnection</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <properties>
 <property name="javax.persistence.schema-generation.database.action" value="create"/>
 <property name="javax.persistence.schema-generation.scripts.action" value="create"/>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

66

 <property name="javax.persistence.schema-generation.scripts.create-target"
value="/ddl-scripts/create-trarget-script.ddl"/>
 <property name="eclipselink.deploy-on-startup" value="true"/>
 </properties>
 </properties>
 </persistence-unit>
</persistence>

Programmatically, schema generation is determined by a series of annotations that are placed in entity classes.
The @Table annotation denotes an entity mapping to an underlying database table. By default, a table is generated for
each top-level entity and includes columns based upon the specified attributes for that entity. Therefore, the @Column
and @JoinColumn annotations are used for generating such columns for a table. Column ordering is not determined
based upon the ordering of @Column or @JoinColumn annotations. If column ordering is important then a Data
Definition Language (DDL) script must be supplied for generation of the table. Other annotations and annotation
attributes, such as @Id, also play important roles in schema generation. Table 4-2 lists the different annotations that
are involved in schema generation, along with a brief description and the elements that can be populated for further
control over the generated schema.

(continued)

Table 4-2. Schema Generation Annotations

Annotation Description Elements

@Table Used for generating tables. By default, the table name is
generated from the entity name, and the entity name is
defaulted from the class name.

@SecondaryTable A secondary table is created to partition the mapping of
entity state across multiple tables.

@CollectionTable A colletion table is created for mapping of an element
collection. The Column, AttributeOverride, and
AssociationOverride annotations may be used to override
CollectionTable mappings.

@JoinTable By default, join tables are created for the mapping of
many-to-many relationships and unidirectional one-to-
many relationships.

@TableGenerator Table generator tables are used to store generated primary
key values.

@Column Determines the name and configuration for a column within
a table.

unique
nullable
columnDefinition
table
length
precision
scale
name

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

67

(continued)

Table 4-2. (continued)

Annotation Description Elements

@MapKeyColumn The MapKeyColumn annotation specifies the mapping of a
key column of a map when the key is of basic type.

name
unique
nullable
columnDefinition
table
length
precision
scale

@Enumerated,
@MapKeyEnumerated

Control whether string- or integer-valued columns are
generated for basic attributes of enumerated types and
therefore impact the default column mapping of these types.

@Temporal,
@MapKeyTemporal

Control whether date-, time-, or timestamp-value columns are
generated for basic attributes of temporal types, and therefore
impact the default column mappings for these types.

@Lob Specifies that a persistent attribute is to be persisted to a
database large object type.

@OrderColumn Specifies the generation of a column that is used to maintain
the persistent ordering of a list that is represented in an
element collection, one-to-many, or many-to-many
relationship.

name
nullable
columnDefinition

@DiscriminatorColumn A discriminator column is generated for the SINGLE_TABLE
mapping strategy and may optionally be generated by the
provider for use with the JOINED inheritance strategy.

@Version Specifies the generation of a column to serve as an entity’s
optimistic lock.

@Id Specifies attributes whose database columns correspond to a
primary key. Use of the Id annotation results in the creation
of a primary key consisting of the corresponding column or
columns.

@EmbeddedId Specifies an embedded attribute whose corresponding
columns correspond to a database primary key. Use of the
EmbeddedId annotation results in the creation of a primary
key consisting of the corresponding columns.

@GeneratedValue Indicates a primary key whose value is to be generated by the
provider. If a strategy is indicated, the provider must use it if
it is supported by the target database.

@JoinColumn The JoinColumn annotation is typically used in specifying a
foreign key mapping. In general, the foreign key definitions
created will be provider-dependent and database-dependent.
Applications that are sensitive to the exact mapping that is
used should use the foreignKey element of the JoinColumn
annotation or include DDL files that specify how the
database schemas are to be generated.

name
referencedColumnName
unique
nullable
columnDefinition
table
foreignKey

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

68

Annotation Description Elements

@MapKeyJoinColumn Specify foreign key mappings to entities that are map keys in
map-valued element collections or relationships. In general,
the foreign key definitions created should be expected to be
provider-dependent and database-dependent. Applications
that are sensitive to the exact mapping that is used should
use the foreignKey element of the MapKeyJoinColumn
annotation or include DDL files that specify how the
database schemas are to be generated.

name
referencedColumnName
unique
nullable
columnDefinition
table
foreignKey

@PrimaryJoinKeyColumn Specifies that a primary key column is to be used as a foreign
key. This annotation is used in the specification of the
JOINED mapping strategy and for joining a secondary table
to a primary table in a OneToOne relationship mapping.
In general, the foreign key definitions created should be
expected to be provider-dependent and database-dependent.
Applications that are sensitive to the exact mapping that
is used should use the foreignKey element of the
PrimaryKeyJoinColumn annotation or include DDL files that
specify how the database schemas are to be generated.

@ForeignKey Used within the JoinColumn, JoinColumns,
MapKeyJoinColumn, MapKeyJoinColumns,
PrimaryKeyJoinColumn, and PrimaryKeyJoinColumns
annotations to specify or override a foreign keyconstraint.

@SequenceGenerator Creates a database sequence to be used for Id generation.
The use of generators is limited to those databases that
support them.

@Index Generates an index consisting of the specified columns. The
ordering of the names in the columnList element specified in
the Index annotation must be observed by the provider
when creating the index.

@UniqueConstraint Generates a unique constraint for the given table. Databases
typically implement unique constraints by creating unique
indexes. The ordering of the columnNames specified in
the UniqueConstraint annotation must be observed by the
provider when creating the constraint.

As per Table 4-2, there are a couple of new annotations that have been created specifically to facilitate schema
generation. The new annotations are @Index and @ForeignKey, where @Index is responsible for generating an index of
the specified columns. @ForeignKey is used to define a foreign key on a table.

Table 4-2. (continued)

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

69

Support for Database Stored Procedures
In some applications, database stored procedures are used to encapsulate logic for performing database-specific
transactions. Many times, these database stored procedures need to be invoked from an application. Historically,
the only way to work with database-stored procedures from JPA was to utilize a native query. To create a native query,
a SQL string needs to be created, which can then be passed to the EntityManager createNativeQuery method. The
returned Query object can then be used to invoke the stored procedure.

Suppose that there was a database procedure named CREATE_EMP, and it accepted three arguments: first, last
and status. You could invoke the CREATE_EMP procedure by calling it via a native SQL query. The following method,
named createEmpOld, accepts a first, last, and status as arguments, and passes them to the underlying database
procedure and executes it.

public void createEmpOld(String first,
 String last,
 String status) {

 Query qry = em.createNativeQuery("select CREATE_EMP(:first, :last, :status) from dual")
 .setParameter("first", first)
 .setParameter("last", last)
 .setParameter("status", status);
 qry.executeUpdate();

 }

Using this technique, the EntityManager's createNativeQuery method is called, and a SQL String that
performs a SELECT on the stored procedure is passed to the method. In SQL, performing a SELECT on a stored
procedure will cause the procedure to be executed. Notice that the DUAL table is being referenced in the SQL. The
DUAL is a dummy table in Oracle that can be used when you need to apply SELECT statements to different database
constructs, such as a stored procedure. One could also issue the following SQL string to do the same thing.

"begin create_emp(:first, :last, :status); end; "
OR
"exec create_emp(:first, :last, :status) ";

Execution of native SQL is an acceptable solution for invoking stored procedures that have no return values, or
when you only have a limited number of SQL statements to maintain. However, in most enterprise situations that
require an application with multiple stored procedure calls or calls that require a return value, the better technique is
to utilize the new @NamedStoredProcedureQuery annotation within an entity class to specify the name and parameters
of a stored procedure.

@NamedStoredProcedureQuery(name="createEmp", procedureName="CREATE_EMP")

Execution of the stored procedure occurs within the EJB by calling the EntityManager object’s
createNamedStoredProcedureQuery method, and passing the name that was specified within the
@NamedStoredProcedureQuery annotation. The following method, which resides within the org.javaee7.jpa.
session.EmployeeSession, can be used to invoke the underlying database’s CREATE_EMP procedure.

public boolean createEmp(String firstName, String lastName, String status){
 boolean result = false;
 System.out.println("executing the stored procedure");
 StoredProcedureQuery qry = em.createNamedStoredProcedureQuery("createEmp");

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

70

 qry.registerStoredProcedureParameter(1, String.class, ParameterMode.IN);
 qry.setParameter(1, firstName);
 qry.registerStoredProcedureParameter(2, String.class, ParameterMode.IN);
 qry.setParameter(2,lastName);
 qry.registerStoredProcedureParameter(3, String.class, ParameterMode.IN);
 qry.setParameter(3, status);

 try {
 qry.execute();
 String response = qry.getOutputParameterValue(1).toString();
 System.out.println("stored procedure executed..." + response);
 } catch (Exception ex) {
 System.out.println(ex);
 }
 return result;
 }

Using a native query works fine for executing stored procedures, but it can become more difficult since it must
return a cursor object or read an OUT parameter when attempting to return values from a stored procedure. It can
also become a maintenance nightmare if too many native SQL Strings are embedded throughout an application’s
codebase. It is best to use JPQL or the Critiera API when working with JPA.

Let’s dig a bit deeper into the @NamedStoredProcedureQuery annotation. Metadata or annotations can be used
to declare stored procedures and their associated parameters. The @NamedStoredProcedureQuery can be specified
within an entity class to assign a name to a particular stored procedure. The @NamedStoredProcedureQuery accepts
the following parameters:

•	 name: The String-based name that will be used to call the stored procedure

•	 procedureName: The name of the underlying stored procedure

•	 resultClass: The entity object that can be used to return the stored procedure result

•	 resultSetMapping: SqlResultSetMapping if needed

•	 returnsResultSet: boolean value indicating whether or not a resultSet is returned

•	 parameters: zero or more @StoredProcedureParameter annotations, one for each of the
parameters accepted by the stored procedure.

In the example, the CREATE_EMP stored procedure is configured using an @NamedStoredProcedureQuery
annotation. Since there are three parameters that are accepted by the stored procedure, all three of them must be
passed to the stored procedure within the EJB stored procedure call. Execution of a named stored procedure is much
like the execution of a named query. A StoredProcedureQuery object is obtained by calling the EntityManager’s
createStoredProcedureQuery method, passing the name specified for the @NamedStoredProcedureQuery annotation.
Parameter values are set by calling both the Query object’s registerStoredProcedureParameter method, and the
setParameter method against the StoredProcedureQuery, and passing the name of the parameter along with
the value to be substituted. The registerStoredProcedureParameter method accepts the parameter position as
the first argument, the parameter type as the second, and the type of ParameterMode as the third. The subsequent
call to setParameter registers the parameter value with the corresponding parameter position. Finally, to invoke the
stored procedure, call the StoredProcedureQuery object’s execute method.

A dynamic stored procedure can also be constructed using the StoredProcedureQuery API, rather than using a
named stored procedure. To construct a StoredProcedureQuery object dynamically, pass the name of the underlying
database stored procedure to the EntityManager’s createStoredProcedureQuery method. Parameters for a dynamic

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

71

stored procedure invocation must be registered using the registerStoredProcedureParameter method, rather
than the StoredProcedureQuery interface. The following code shows how to call the CREATE_EMP stored procedure
dynamically:

StoredProcedureQuery qry = em.createStoredProcedureQuery("CREATE_EMP");
qry.registerStoredProcedureParameter("FIRSTNAME", firstName);
qry.registerStoredProcedureParameter("LASTNAME", lastName);
qry.registerStoredProcedureParameter(“STATUS”, status);
qry.executeUpdate();

Note ■ Utiliztion of database stored procedures can be beneficial because they allow for separation between the
compiled java code and the database procedure. that is, if a database stored procedure implementation needs to
change, it can be adjusted without redeploying the java application, so long as the procedure name or number of
parameters stays the same.

Synchronization of Persistence Contexts
By default, persistence contexts are synchronized, meaning that the context is automatically joined to the current JTA
transaction, and that any updates that are made are propagated accordingly. In JPA 2.1, a persistence context can
be specified as unsynchronized, meaning that it be not enlisted in any JTA transaction unless explicitly joined to
a transaction by the application. One may wish to create an entity manager as unsynchronized if an application
needed to perform work against Entity classes, without having the changes flushed to the database until the work
was complete. To create an unsynchronized persistence context, specify a synchronization attribute of type
SynchronizationType.UNSYNCHRONIZED. The following demonstrates how to create such a persistence context:

@PersistenceContext(synchronization=SynchronizationType.UNSYNCHRONIZED) EntityManager em;

To join an unsynchronized persistence context to a JTA transaction, invoke the EntityManager joinTransaction
method. After a persistence context has been joined to a transaction, it remains enlisted until a transaction either
commits or is rolled back. An application can make use of an unsynchronized persistence context’s persist, remove,
merge, and refresh entity lifecycle operations without being joined to a JTA transaction. This makes it possible to
perform work against Entities without affecting the underlying data store. If an unsynchronized persistence context
has had lifecycle operations invoked, it can later flush those operations to a database by being joined to a transaction.

Entity Listeners using CDI
It is possible to create a listener for an entity class; which handle lifecycle events. In JPA 2.1, entity listeners became
even more powerful via the support of Contexts and Dependency Injection (CDI). An entity listener can be registered
with an entity class, and that listener can have resources injected into it via CDI. Note that resources are not injected
via the Java EE container, so you can only inject resources available via CDI.

An entity listener class must have a public, no argument constructor. The entity listener class can optionally
define lifecycle callback methods annotated with the PostConstruct and PreDestroy methods. The following
entity listener class, org.javaee7.entity.listener.EmployeeEntityListener, is registered on the
org.javaee7.entity.Employee entity. It demonstrates the new functionality by injecting a mail session into the listener.

Chapter 4 ■ ObjeCt relatiOnal Mapping and jpa

72

public class EmployeeEntityListener {

 @Resource(name="jndi/AcmeMail")
 javax.mail.Session mailSession;

 @PrePersist
 public void prePersist(Employee employee){
 System.out.println("The following Employee enity is about to be persisted: "
+ employee.getLast());
 // use the mail session
 }

}

To register this entity listener on the entity, utilize the @EntityListeners annotation on the entity itself, as
follows:

@Entity
@Table(name = "EMPLOYEE")
@EntityListeners(EmployeeEntityListener.class)
public class Employee implements Serializable {
...
}

Summary
Object-relational mapping is a natural way of mapping database tables to Java objects. Coding against Java objects,
rather than writing standard SQL to work with databases, can be beneficial for a number of reasons. Not only does
it make an application easier to maintain, but it also makes it less error prone. The JPA 2.1 release includes some
incremental enhancements that help to make it even more productive and enable even more features, such as the
ability to utilize stored database procedures more easily. Furthermore, schema management has never been easier
than it is now with the new JPA schema generation. Although the JPA 2.1 release is incremental, it brings forth many
improvements that help to solidify object-oriented development for Java Enterprise applications.

73

Chapter 5

Business Logic Using EJB

The EJB 3.2 specification has been included as part of the Java EE 7 release, and with it will come more enhancements
to further solidify the Java enterprise platform. Although the EJB 3.2 release does not include any radical redesigns,
it helps improve developer productivity and flexibility by adding a few new features and bringing the specification
into alignment with other EE 7 technology updates. The updates include minor enhancements to the transactional
life cycle, bean passivation, timers, and more. New features have been added to EJB Lite, a subset of features for those
who do not need the entire EJB stack. Better alignment with the Java Message Service (JMS) has also been added,
making it even easier to configure message-driven beans (MDBs). Lastly, a handful of features that are rarely used,
or induce overhead, have been pruned from the release to make it even easier to use. This chapter will focus on each
area of the updates and show examples of how to utilize the latest features.

General Updates and Improvements
Many of the changes made in the EJB specification for 3.2 are considered incremental updates and improvements.
That said, these features are a nice addition and will certainly come in handy in certain situations. This section
will cover these enhancements.

Transaction Life-Cycle Callbacks in Session Beans
Session beans have callback methods that are invoked when certain stages of a bean’s life cycle occur. For instance,
a method can be registered within a session bean via annotation to invoke after the bean is constructed
(@PostConstruct), before it is destroyed (@PreDestroy), and so on. Sometimes it makes sense to start a new
transaction when one of these events occurs. It is possible to specify the transactional status of an annotated
life-cycle callback method within a session bean, when using container-managed transactions. In the following
excerpt from org.javaee7.jpa.session.AcmeFacade, a new transaction is started upon creation of the bean and
also upon destruction of the bean:

@Stateful
public class AcmeFacade {

 @PersistenceContext(unitName = "IntroToJavaEE7PU", type = PersistenceContextType.EXTENDED)
 private EntityManager em;

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 @PostConstruct
 public void init() {
 System.out.println("The Acme Bean has been created");
 }

Chapter 5 ■ Business LogiC using eJB

74

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 @PreDestroy
 public void destroy() {
 System.out.println("The Acme Bean is being destroyed...");
 em.flush();
 }
}

Note that the @TransactionAttribute annotation is used to specify the transaction type of the callback method,
if needed. The annotation accepts a transaction type as per the values listed in Table 5-1.

By default, the life-cycle callback methods are not transactional in order to maintain backward compatibility.
By annotating the callback method with the @TransactionAttribute and the preferred demarcation type,
the callback method has opted in to be transactional.

To see the complete example of a transactional life-cycle callback, deploy the demo application for this book and
look at the Chapter 5 transactional examples. When you visit the web page for the example, the AcmeFacade session
bean is initialized, and the message is printed to the system log.

Passivation Made Optional
When a stateful session bean has been inactive for a period of time, the container may choose to passivate the bean
in an effort to conserve memory and resources. Typically, the EJB container will passivate stateful session beans
using a least recently used algorithm. When passivation occurs, the bean is moved to secondary storage and removed
from memory. Prior to the passivation of a stateful session bean, any methods annotated with @PrePassivate will
be invoked. When a stateful session bean that has been passivated needs to be made active again, the EJB container
activates the bean, then calls any methods annotated with @PostActivate, and finally moves the bean to the ready
stage. In EJB 3.2, stateful session beans can opt out of passivation so that they will remain in memory instead of being
transferred to secondary storage if inactive. This may be helpful in situations where a bean needs to remain active for
application processes or where the bean contains a nonserializable field, since these fields cannot be passivated and
are made null upon passivation.

Table 5-1. Container-Managed Transaction Demarcation

Attribute Description

MANDATORY The container must invoke an enterprise bean method whose transaction is set to this attribute
in the client’s transaction context. The client is required to call with a transaction context.

REQUIRED The container must invoke an enterprise bean method whose transaction is set to this attribute
value with an unspecified transaction context.

REQUIRES_NEW The container must invoke an enterprise bean method whose transaction is set to this attribute
value with a new transaction context.

SUPPORTS If the client calls with a transaction context, then the container treats it as REQUIRED. If the client
calls without a transaction context, the container treats it as NOT_SUPPORTED.

NOT_SUPPORTED The container invokes an enterprise bean method whose transaction attribute is set to this value
with an unspecified transaction context.

NEVER The container invokes an enterprise bean method whose transaction is set to this value without
a transaction context defined by the EJB specification.

Chapter 5 ■ Business LogiC using eJB

75

To opt out of passivation, set the passivationCapable attribute of the @Stateful annotation to false, as
demonstrated in the following excerpt:

@Stateful(passivationCapable=false)
public class AcmeFacade {
 ...
}

Explicitly Denoting Local and Remote Business Interfaces
The release of EJB 3.0 greatly simplified development with EJBs because it introduced the no-interface view for
making local business interfaces optional. The no-interface view automatically exposes all public methods of a
bean to the caller. By default, a no-interface view is automatically exposed by any session bean that does not include
an implements clause and has no local or remote client views defined. The EJB 3.2 release aims to provide further
granularity for those situations where local and remote interfaces need to be explicitly specified.

A business interface cannot be made both the local and remote business interfaces for a bean. Therefore, a new
API has been developed to specify whether a business interface is intended as local or remote. The following rules
pertain to business interfaces implemented by enterprise bean classes:

The •	 java.io.Serializable interface, the java.io.Externalizable interface, and interfaces
defined by the javax.ejb package are always excluded when the determination of local or
remote business interfaces are declared for a bean.

If a bean class contains the •	 @Remote annotation, then all implemented interfaces are assumed
to be remote.

If a bean class contains no annotation or if the •	 @Local annotation is specified, then all
implemented interfaces are assumed to be local.

Any business interface that is explicitly defined for a bean that contains the no-interface view •	
must be designated as @Local.

Any business interface must be explicitly designated as local or remote if the bean class •	
explicitly specifies the @Local or @Remote annotation with a nonempty value.

Any business interface must be explicitly designated as local or remote if the deployment •	
descriptor specifies as such.

Let’s break down these rules a bit so that they are easier to understand. First, if an EJB exposes local interfaces,
then there is no need to explicitly denote a bean as such. For instance, the following bean contains a local interface,
although it is not explicitly denoted:

@Stateless
public class AcmeSession implements interfaceA {
 ...
}
public interfaceA { ... }

Chapter 5 ■ Business LogiC using eJB

76

If a bean class is annotated with @Remote, then any interfaces that it implements are assumed to be remote.
For instance, the following bean class implements two interfaces, and both are assumed to be remote although
they do not contain any annotation to indicate as such:

@Remote
@Stateless
public class AcmeSession implements interfaceA, interfaceB {
 ...
}

If a bean class contains the @Local annotation, then any interfaces that it implements are assumed to be local.
For instance, the following bean class implements two interfaces, and both are assumed to be local although they
do not contain any annotation to indicate as such:

@Local
@Stateless
public class AcmeSession implements interfaceA, interfaceB {
 ...
}

If a bean class contains the @Local or @Remote annotation and specifies an interface name within the annotation,
then the specified interface is designated the same designation as the annotated bean. For instance, the following
bean is annotated to include a local business interface, and the name of the interface is specified in the annotation,
thereby making the interface local:

@Local(interfaceA.class)
@Stateless
public class AcmeSession implements interfaceA {
 ...
}

These new designation rules make it easier to designate and determine the type of business interface that
is implemented by a bean.

Extended TimerService API
The TimerService API has been extended to include a new convenience method that allows you to obtain information
about all active timers. The TimerService API is a facility that allows time-based method invocations to occur within
a session bean. Using the API, it is possible to create scheduled tasks, programmatically timed tasks, and automated
tasks based upon a specified time and/or date. In this section, you’ll take a brief look at creating a couple of timers,
and then you will see how to utilize the newly added getAllTimers method to return all active timers within the
same bean.

Utilize dependency injection to obtain an instance of the TimerService for use within your bean. A TimerService
can be an injected using the @Resource annotation, as follows:

@Resource
TimerService timerService;

As mentioned, you can create different types of timers, depending upon the use case. To programmatically create
a timer, use the TimerService API to return the type of timer desired. Table 5-2 describes the types of programmatic
timers that can be created by the TimerService API .

Chapter 5 ■ Business LogiC using eJB

77

The following excerpt, taken from org.javaee7.jpa.session.AcmeTimerFacade, demonstrates how to create
a programmatic timer that will expire in 6,000 milliseconds:

public String createProgrammaticTimer() {
 long duration = 6000;
 Timer timer = timerService.createTimer(duration, "Created new programmatic timer");
 return "TimerExamples"; // Used for Navigation
}

When creating a programmatic timer, such as demonstrated in the previous example, the method within the
bean that is annotated with @Timeout will be invoked when the programmatic timer expires and then again upon
each duration expiration. The following code demonstrates an example of one such method that will be invoked
when a bean’s programmatic timer expires:

@Timeout
 public void timeout(Timer timer){
 System.out.println("The timer was just invoked...");
 }

To schedule a timer based upon a given calendar time and date, annotate the session bean method that you want
to invoke with the @Schedule annotation, which was introduced in EJB 3.1. The following method demonstrates a
timer that will expire every minute:

@Schedule(minute="*, hour="*")
 public void scheduledTimerExample(){
 System.out.println("This timer will go off every minute");
 }

In the previous example, the @Schedule annotation accepts two attributes: minute and hour. In the example, the
minute value is indicated by the wildcard character *, meaning that the timer is scheduled to go off every hour
of every minute. Suppose that you have each of these timers (and possibly more) specified within a given
session bean. At any given point it may make sense to check which timers are active. You can do so by calling the
TimerService.getAllTimers method, which returns a Collection of Timer instances. The following method demonstrates
how to obtain all the active timers and build a String that provides the current information for each of them:

public String getTimerInfo(){
 Collection<Timer> timers = timerService.getAllTimers();
 StringBuffer sb = new StringBuffer();
 int x = 0;

Table 5-2. Programmatic TimerService Methods for Timer Creation

Method Description

createCalendarTimer Creates a calendar timer based upon the input schedule expression.

createIntervalTimer Creates an interval timer whose first expiration occurs at a given point in time or
duration and whose subsequent expirations occur after a specified interval.

createSingleActionTimer Creates a single-action timer that expires after a specified period of time or duration.

createTimer Creates a timer whose type depends upon the parameters that are passed to the
createTimer method.

Chapter 5 ■ Business LogiC using eJB

78

 for (Timer timer:timers){
 sb.append("Time Remaining on timer #" + x);
 sb.append(" " + timer.getTimeRemaining());
 sb.append(" ");
 x++;
 }
 timerInfo = sb.toString();
 return timerInfo;
}

JMS Alignment
Message-driven beans (MDBs) are Enterprise JavaBeans that are utilized for processing messages in an asynchronous
manner. Most often MDBs are JMS message listeners, receiving messages and processing accordingly. In brief, a
message-driven bean is created by annotating a bean with the @MessageDriven annotation and implementing the
MessageListener interface. When a message is received in the container queue, the container invokes the bean’s
onMessage method, which contains the business logic that is responsible for processing the message accordingly.
The following class, org.javaee7.session.AcmeMessageDrivenBean, demonstrates a simple MDB implementation:

@MessageDriven(mappedName = "jms/Queue", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue")
})
public class AcmeMessageDrivenBean implements MessageListener {

 public AcmeMessageDrivenBean() {
 }

 @Override
 public void onMessage(Message message) {
 System.out.println("The following message has been received: " + message);
 }
}

In this example, when a message is sent to the bean, the onMessage method is invoked, which prints a message
to the system log. As shown in the example, bean providers may provide special configurations for MDBs to the
deployers, such as information regarding message selectors, acknowledgment modes, and so on, by means of
the activationConfig element of the @MessageDriven annotation. The EJB 3.2 release provides a standard list of
activationConfig properties for JMS 2.0 alignment. Table 5-3 describes the new properties.

Chapter 5 ■ Business LogiC using eJB

79

Embeddable EJBContainer Now Autocloseable
The embeddable EJBContainer enables the use of EJBs within Java SE applications. The embeddable container
cannot be used within a Java EE environment because it allows both the client-side code and EJBs to reside within
the same JVM container. That said, it is noteworthy that the embeddable EJBContainer has been updated in EJB 3.2
in order to bring it inline with more current Java 7 coding techniques.

When using an EJBContainer, it is important to close it when finished. To do so, a client can directly invoke the
container’s close method. As of EJB 3.2, the close method can also be invoked via the try-with-resources statement
because the EJBContainer now implements the java.lang.AutoCloseable interface.

New Features in EJB Lite
EJB Lite was introduced in the 3.1 release, and it allows developers to utilize a subset of EJB functionality, without
the requirement to package the entire API. The EJB 3.2 release includes a couple of new features for the EJB Lite
configuration. One of those features is asynchronous session bean invocation. In EJB 3.1, this ability was added to
session beans; previously the only way to asynchronously invoke a method within an enterprise bean was to utilize
a message-driven bean. When asynchronous session bean invocation was introduced, it was only made part of the EJB
full implementation. However, it was later determined that those using EJB Lite would also benefit from the feature.

Although asynchronous session bean invocation has been around a while, I will go through a brief example
for those who are not yet familiar with the topic. To mark an EJB method as asynchronous, simply annotate the
method with @Asynchronous. When a method that is annotated with @Asynchronous is invoked, the call will
return immediately, allowing other work to be performed while the method invocation runs in the background.
The container ensures that the method is executed to completion. It is most common to see asynchronous
methods with a void return type; however, it is certainly possible to return a value using a return type of
 java.util.concurrent.Future<V>, where V represents the type of the asynchronous return,
an AsyncResult<V> object.

Table 5-3. JMS 2.0 Aligned activationConfig Properties

Property Description

destinationLookup Provides advice to the deployer regarding whether the message-driven bean is
intended to be associated with a Queue or Topic. Values for this property are
javax.jms.Queue and javax.jms.Topic.

connectionFactoryLookup Specifies the lookup name of an administratively defined ConnectionFactory
object that will be used for the connection to the JMS provider from which a
message-driven bean will send JMS messages.

clientId Specifies the client identifier that will be used for the connection to the JMS provider
from which a message-driven bean will send JMS messages.

subscriptionName If the message-driven bean is intended to be used with a topic, then the bean
provider can specify the name of a durable subscription with this property and set
the subscriptionDurability property to Durable.

shareSubscriptions This property is to be used only when a message-driven bean is deployed to a
clustered application server, and the value for this property can be either true
or false. A value of true means that the same durable subscription name or
nondurable subscription will be used for each instance in the cluster. A value of
false means that a different durable subscription name or nondurable subscription
will be used for each instance in the cluster.

Chapter 5 ■ Business LogiC using eJB

80

Let’s take a look at an asynchronous method that includes a void return type. The following method has been
excerpted from the org.javaee7.jpa.session.JobsSession class, and the asynchronous task involves querying the
Jobs entity and returning all results:

@Asynchronous
 public void retrieveJobs(){
 Query qry = em.createQuery("select j from Jobs j");
 List<Jobs> jobs = qry.getResultList();

 for (Jobs job:jobs){
 System.out.println(job.getTitle());
 }
 }

The following is an example of an asynchronous method that returns a result. The same method that was used
in the previous example has been altered to return a Boolean value to indicate whether any Jobs entities exist.

@Asynchronous
 public Future<Boolean> obtainJobListing(){
 Query qry = em.createQuery("select j from Jobs j");
 List<Jobs> jobs = qry.getResultList();
 if(jobs.size() > 0){
 this.jobList = jobs;
 return new AsyncResult<Boolean>(true);
 } else {
 return new AsyncResult<Boolean>(false);
 }
 }

Another new feature for EJB Lite is that it is now possible to specify a nonpersistent timer service. To specify
a timer as nonpersistent, specify the persistent attribute with a value of false for the @Schedule annotation.
The following schedule-based timer demonstrates a nonpersistent timer designation:

@Schedule(minute="*/1", hour="*", persistent=false)
 public void scheduledTimerExample(){
 System.out.println("This timer will go off every minute");
 }

Optional Features
As the EJB specification grows and matures, a number of older API features are no longer required. As a result, it is
prudent to make such features optional in order to maintain backward compatibility. The following features have
been made optional in the EJB 3.2 release:

Entity bean component contract for CMP and BMP•	

Client view of an EJB 2.1 and earlier entity bean•	

EJBQL•	

JAX-RPC web service endpoints and client view•	

Remember, these features are optional because they represent older APIs being phased out. You may want to stay
away from these APIs when writing new code.

Chapter 5 ■ Business LogiC using eJB

81

Summary
The EJB API has been incrementally enhanced with the 3.2 release. The enhancements that have been included in
the release help developers create more integrated solutions. To summarize, the new features covered in this book
include the following:

Lifecycle callback interceptor methods of stageful session beans added option to be executed •	
in transaction context that is determined by the lifecycle callback method’s transaction
attribute

Ability to disable passivation of stageful session beans•	

TimerService API enhancements•	

Embeddable EJBContainer has been enhanced to implement AutoClosable•	

Default rules for session bean to designate local or remote interfaces have been relaxed•	

Enhanced JMS MDB activation properties•	

EJB Lite enhancements•	

The inclusions in this release are not limited to those that have been presented in this book. To learn
more about these additional features, please take a look at the specification, which is available at:
http://www.jcp.org/en/jsr/detail?id=345. Additional features of the 3.2 release include:

MDB contracts enhanced with a no-method message listener interface to expose any public •	
methods as message listeners

New security role named “**” which indicates any authenticated callers that are not assigned •	
to a designated role name

Local asynchronous session bean invocations and non-persistent EJB Timer Service has been •	
added to the EJB Lite group

http://www.jcp.org/en/jsr/detail?id=345

83

Chapter 6

Validating Data

The Bean Validation API is utilized for validating data values in both Java SE and EE applications. As of Java EE 6,
Bean Validation was included in the platform, adding integrated validation capabilities for enterprise applications.
JavaServer Faces applications can utilize bean validation for validating values that are entered on an input form or
even for calculations that are processed on the server. The best part is that the validation can occur with minimal
programming because annotations are utilized to declaratively apply constraints against data for validation.

The Bean Validation 1.1 API is included in the Java EE 7 platform, and it brings forth a handful of welcome
enhancements, as well as some new features that make validation even more useful. This chapter covers those new
features and provides brief overviews of how they are to be used.

An Overview of Bean Validation with Java EE
The Bean Validation API can be used with many different technologies in both SE and EE environments. In the
context of Java EE, Bean Validation can be performed by placing annotations on a field, method, or class such as a
JSF managed bean or entity class. For instance, in a Java EE application that utilizes the JSF framework, validation
occurs when a user enters values into a view and those values are propagated to the server via either a form submit
or Ajax. To validate a specified entity field, simply annotate that field within the managed bean with the appropriate
annotation according to the validations that you want to apply. When the JSF Process Validations phase occurs,
the value that was entered by the user will be validated based upon the specified validation criteria. At this point,
if the validation fails, the Render Response phase is executed, and an appropriate error message is added to the
FacesContext. However, if the validation is successful, then the life cycle continues normally.

Suppose you wanted to perform validation on the fields of an entity class, such that the values for each field will
be validated accordingly when a user has entered the values for creating a new entity object. In the following example,
the AuthorWork entity has been enhanced to include bean validation for the id, address1, state, and zip fields,
by incorporating some of the built-in constraint validation annotations:

...
@Entity
@Table(name = "AUTHOR_DETAIL")

public class AuthorDetailBeanValidation implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="author_detail_s_generator",sequenceName="author__detail_s",
initialValue=1, allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="author_detail_s_generator")
 @NotNull

Chapter 6 ■ Validating data

84

 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 200)
 @Pattern(regexp="", message="Invalid Address")
 @Column(name = "ADDRESS1")
 private String address1;
 @Size(max = 200)
 @Column(name = "ADDRESS2")
 private String address2;
 @Size(max = 250)
 @Column(name = "CITY")
 private String city;
 @Size(max = 2)
 @Column(name = "STATE")
 @Pattern(regexp="^(?-i:A[LKSZRAEP]|C[AOT]|D[EC]|F[LM]|G[AU]|HI|I[ADLN]|K[SY]|LA|M[ADEHINOPST]
|N[CDEHJMVY]|O[HKR]|P[ARW]|RI|S[CD]|T[NX]|UT|V[AIT]|W[AIVY])$",
 message="Invalid State")
 private String state;
 @Size(max = 10)
 @Column(name = "ZIP")
 @Pattern(regexp="^\\d{5}\\p{Punct}?\\s?(?:\\d{4})?$",
 message="Invalid Zip Code")
 private String zip;
 @Column(name = "START_DATE")
 @Temporal(TemporalType.DATE)
 private Date startDate;
 @Lob
 @Column(name = "NOTES")
 private String notes;
 @ManyToOne
 private AuthorBeanValidation author;
...

As you can see, the @Size, @Pattern, and @NotNull constraint annotations are specified on various fields
within the example entity class. These annotations check to ensure that the values entered for these fields adhere
to the specified rules, namely, that the size does not exceed a certain limit, a String matches a specified pattern,
and a String is not empty, respectively. This example barely scratches the surface of the types of validation that are
possible; for an in-depth tutorial on bean validation or for detailed documentation on the constraint annotations,
please refer to the online documentation. This chapter aims to cover the new additions in the Bean Validation 1.1
release, but it will compare those changes with the previous functionality, where possible.

Constraint Validation Annotations
Annotations are the heart of the Bean Validation API because they are used to decorate any fields, methods, or classes
that are being validated. By utilizing annotations, the validation can be specified in a declarative manner, rather than
by coding conditional logic by hand. The Bean Validation API comes prepackaged with some constraint validation
annotations that are most commonly used. Table 6-1 includes an overview of the full list of built-in constraint
annotations that can be used to perform validation, along with a description of what they validate.

Chapter 6 ■ Validating data

85

Table 6-1. Built-in Bean Validation Constraints

Annotation Type Description

@AssertFalse The annotated element must be false.

@AssertTrue The annotated element must be true.

@DecimalMax The annotated element must be a number that cannot have a value that is greater than the
specified maximum value.

Supported types:

BigDecimal

BigInteger

CharSequence

byte, short, int, long, and their wrappers

@DecimalMin The annotated element must be a number that cannot have a value that is less than the
specified minimum value.

Supported types:

Same as @DecimalMax

@Digits The annotated element must be a number within the accepted range.

Supported types:

Same as @DecimalMax

@Future The annotated element must be a date that will occur at some point in the future.

Supported types:

java.util.Date

java.util.Calendar

@Max The annotated element must be a number that contains a value that is lower than or equal to
the specified maximum value.

Supported types:

Same as @DecimalMax

@Min The annotated element must be a number that contains a value that is greater than or equal to
the specified minimum value.

Supported types:

Same as @DecimalMax

@NotNull The annotated element must not be NULL.

@Null The annotated element must be NULL.

@Past The annotated element must be a data that occurred at some point in the past.

Supported types:

Same as @Future

(continued)

Chapter 6 ■ Validating data

86

What happens when you’d like to perform some validation that is not covered by one of the built-in constraint
annotations? Well, it is easy to build custom constraint annotations to incorporate validations that are not available
with the built-ins. Let’s briefly review how this is done.

Suppose that employees in your organization have a customized employee identifier and want to include
validation to ensure that a given employee identifier complies with the standard for your organization. There are
a couple of ways to implement custom validation.

Implementing a managed bean method that has the task of performing validation•	

Creating a custom •	 Validator class by implementing the javax.faces.validator.Validator
interface

Review: Utilizing Different Validation Techniques
In this section, I will review how to implement validation for a form using both bean validation as well as a JSF
validator to compare the differences. The easiest way to write a custom JSF validator solution is to implement a
managed bean method that performs the validation. To do so, create a method that accepts three arguments.

•	 FacesContext: The current context

•	 UIComponent: The component being validated (must be of type UIInput)

•	 Object: The value of the component being validated

The idea is that the value being passed into the method is validated against a custom constraint. If the validation
fails, the FacesContext is utilized to create a message, and the UIComponent’s valid attribute is set to null to indicate
that the validation has failed. Once the method has been created within a managed bean, it can be bound to a JSF
component via the component’s validator attribute.

In the following example, method validation is used to process the value that is specified for an employee ID in a
UIInput component. If the value does not match the pattern constraint, then the validation fails. The validator method
in the following code excerpt is taken from a session-scoped JSF managed bean, org.javaee7.jsf.UsersBean:

public void validateUserId(FacesContext context,
 UIComponent component,
 Object value){
 String idValue = (String) value;

Table 6-1. (continued)

Annotation Type Description

@Pattern The annotated CharSequence must match the specified regular expression. The regular
expression follows the conventions of java.util.regex.Pattern.

@Size The annotated element must be sided between the specified boundaries.

Supported Types:

CharSequence

Collection

Map

Array

Chapter 6 ■ Validating data

87

 boolean result = idValue.matches("[0-9]{7}[JJ]");
 if (!result) {
 FacesMessage message = new FacesMessage();
 message.setSeverity(FacesMessage.SEVERITY_ERROR);
 message.setSummary(component.getClientId()
 .substring(component.getClientId().indexOf(":") + 1) +
 " issue, please use the format XXXXXXXJJ");
 context.addMessage(component.getClientId(), message);
 // Set the component's valid attribute to false
 ((UIInput) component).setValid(false);
 }
 }

If the values passed into the validateUserId method do not match the regular expression pattern, then the
validation fails, and a message is displayed to the user. Now, let’s take a look at bean validation to see how it differs from
the use of a JSF validator. Rather than implementing a separate validation method or class, an annotation is placed on
the property field of the bean that you want to validate. The following entity, org.javaee7.entity.Users, contains
bean validation constraint annotations on its fields. The same validation that is being utilized by the validateUserId
method in the previous code listing can be achieved using an @Pattern annotation.

...
@Entity
@Table(name="USERS")
public class Users implements Serializable {

 @Id
 @Basic(optional = false)
 @NotNull
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "ID")
 private BigDecimal id;

 @Pattern(regexp="[0-9]{7}[JJ]")
 private String userId;

 @Size(min=8, groups=Authentication.class)
 private String username;

 @Size(min=8, groups=Authentication.class)
 @Pattern(regexp="^[a-zA-Z\\d_]{4,12}$")
 private String password;

 @NotNull
 private String firstname;

 @NotNull
 private String lastname;

 @NotNull()
 private String email;
...

Chapter 6 ■ Validating data

88

The excerpt taken from the following JSF view demonstrates how to bind a UIInput component to this method
for validation purposes. Note that the userid field does not use bean validation since the JSF validator method is
registered with it.

...
<h:form prependId="false">
 <h1>Create User</h1>

 <h:messages infoStyle="color: green;" errorStyle="color:red;"/>

 <h:panelGrid columns="2" width="50%" cellspacing="5px;">
 <h:outputLabel for="userid" value="User ID "/>
 <h:panelGroup>
 <h:inputText id="userid" value="#{usersBean.users.userId}"
 validator="#{usersBean.validateUserId}"/>
 <h:message for="userid" errorStyle="color: red;"
 infoStyle="color: green"/>
 </h:panelGroup>

 <h:outputLabel for="username" value="Username: "/>

 <h:panelGroup>
 <h:inputText id="username" value="#{usersBean.users.username}"/>
 <h:message for="username" errorStyle="color: red;"
 infoStyle="color: green"/>
 </h:panelGroup>

 <h:outputLabel for="firstname" value="First: "/>
 <h:panelGroup>
 <h:inputText id="firstname"
 value="#{usersBean.users.firstname}"/>
 <h:message for="firstname" errorStyle="color: red;"
 infoStyle="color: green"/>
 </h:panelGroup>

 <h:outputLabel for="lastname" value="Last: "/>
 <h:panelGroup>
 <h:inputText id="lastname" value="#{usersBean.users.lastname}"/>
 <h:message for="lastname" errorStyle="color: red;"
 infoStyle="color: green"/>
 </h:panelGroup>

 <h:outputLabel for="password" value="Password: "/>
 <h:panelGroup>
 <h:inputSecret id="password"
 value="#{usersBean.users.password}"/>
 <h:message for="password" errorStyle="color: red;"
 infoStyle="color: green"/>
 </h:panelGroup>
 </h:panelGrid>

Chapter 6 ■ Validating data

89

 <h:commandButton action="#{usersBean.createUser()}"
 value="Create User"/>

 </h:form>...

If the form is entered with incorrect values, then error messages are displayed to the user. Figure 6-1 shows what
a user may see if invalid values are entered.

Review: Writing a Custom Constraint Annotation
To create a custom constraint annotation, simply create a Java interface that contains the customized constraint code.
In the following code example, a custom constraint annotation is developed that will provide the same level of validation
as the method validator and bean validation annotation used in the previous section for validating a userid field:

@Pattern(regexp = "[0-9]{7}[JJ]")
@Documented
@Target({ElementType.METHOD, ElementType.FIELD, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface UserIdValidator {

 String message() default "{invalid.userid}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};
}

To apply this custom constraint annotation to a field, indicate the interface name after the annotation character,
as follows:

@UserIdValidator
private String userId;

Figure 6-1. Validation errors on input

Chapter 6 ■ Validating data

90

Contexts and Dependency Injection Integration
There have been several integration points between Bean Validation and CDI added with the 1.1 release. This section
will cover each of these integration points and provide examples of how to utilize the integrations.

ValidatorFactory and Validator Injection
The @ValidatorFactory is used to provide initialized instances of Validator to Bean Validation clients. You
would want to obtain a Validator instance so that you could obtain metadata related to a given object or perform
manual validations on bean classes and other objects. If using Bean Validation prior to 1.1, the ValidatorFactory
had to be obtained by calling the Validation.buildDefaultValidatorFactory() method. However, it has been made
easier because the ValidatorFactory can now be injected, as follows:

@Inject ValidatorFactory;

For a bit of background, you may want to obtain a Validator instance so that manual validation can be
performed. The following lines of code demonstrate how to perform manual validation and then parse out the results:

Validator validator = factory.getValidator();
Set<ConstraintViolation<Object>> constraintViolations = validator.validate(o);
 for (ConstraintViolation<Object> violation : constraintViolations) {
 // do something
 }

Depending upon the work that needs to be done, CDI integration makes this process easier once again by
allowing the injection of a Validator as well. To inject a validator, use the same technique as was demonstrated with
the ValidatorFactory injection.

@Inject Validator;

These injections can also be registered as provider-specific by adding a custom qualifier at the injection point.
Using a custom qualifier will help reduce ambiguity in the event that more than one Validator or ValidationFactory
is eligible for injection in a single application. For instance, if you wanted to ensure that injections pertained to a
specific product name of MYPRODUCT, you could inject as follows:

@Inject @MYPRODUCT Validator;

Managed Instances of Requested Classes
If an application requests one of the following classes via XML configuration within the web.xml deployment
descriptor, then an injected ValidationFactory will be configured with managed instances of each of the requested
classes.

•	 ConstraintValidatorFactory

•	 MessageInterpolator

•	 ParameterNameProvider

•	 TransversableResolver

In cases where one or more of the listed classes is registered with an application, the aforementioned managed
instance can be injected into a bean via the @Inject annotation.

Chapter 6 ■ Validating data

91

Method Validation
Have you ever had the need to validate method parameters or return values without writing an extra layer of code?
The Bean Validation 1.1 release aims to solve this issue by providing the capability to utilize a programming style
known as Programming by Contract (PbC). This programming style adheres to a couple of key standards.

Validations can be expressed declaratively, without writing an extra layer of code.•	

Annotations are automatically included in any JavaDoc that is generated from a method that •	
includes validation.

Method validation takes place in a couple of different contexts. A validation can be placed on the constructor
of a class, a method of a class, or a method’s parameters. All validation techniques that apply to methods of a class
also pertain to the validation of a class constructor. For a method to be capable of validation, it must be nonstatic.
Constraint annotations that are placed on a method are used to validate the return value of that method. To validate
parameters for a method, constraint annotations can be placed directly on each parameter.

Note ■ it is also possible to utilize a constraint mapping file, rather than annotations, for applying constraints to a
method and/or its parameters. this technique is known as method-level overriding, and you can learn more about this
technique by visiting the online documentation at http://beanvalidation.org/1.1/spec/.

Declaring Parameter Constraints
To declare constraints on the parameters of a method or constructor, place annotations on the parameter(s) you want
to validate. For instance, to place a constraint on a method parameter that ensures the parameter is not null, utilize
an @NotNull annotation in the method signature. The following method signature demonstrates how to validate
parameters of a method named placeOrder:

public void createJob(
 @NotNull @Size(min = 3, max = 20) Integer jobId,
 @NotNull String jobTitle,
 @DecimalMin("35000") BigDecimal salary,
 @NotNull String division) {
 Jobs newJob = new Jobs();
 newJob.setDivision(division);
 newJob.setJobId(jobId);
 newJob.setTitle(jobTitle);
 newJob.setSalary(salary);
 jobsSession.create(newJob);
 }

In the case that a parameter fails validation, it is identified in the resulting ConstraintViolation.
To gain access to the list of ConstraintViolation exceptions that are thrown, the Bean Validation API defines the
javax.validation.ParameterNameProvider API to retrieve the parameter names. To retrieve the names of the
parameters that were in violation, call the getParameterNames() method of the ParamterNameProvider.

ParameterNameProvider provider = // obtain the provider...
List<parameter name> pnames = provider.getParameterNames()

http://beanvalidation.org/1.1/spec/

Chapter 6 ■ Validating data

92

Declaring Return Value Constraints
To declare constraints on method return values, apply constraint annotation(s) directly on the method. In the
following method named placeOrder, the return value will be validated to ensure that at least one order is placed:

@NotNull
public Order placeOrder(...) {
 ...
 return order;

}

Similarly, a return value constraint can be placed on the constructor of a class to ensure that the object being
returned conforms to the specified constraints. For instance, to validate that the WidgetOrderingService in the
following example is valid, the constructor can be decorated with a constraint annotation, which validates the rules
to adhere as a valid service:

@ValidOrderingService
public WidgetOrderingService(){
 ...
}

Cascaded Validation
Marking a method or parameter with the @Valid annotation flags it for cascaded validation. This means that the
validation is recursive, in that any parameter or return value marked with @Valid will be validated. For example,
in the following example, any time that the placeOrder method is invoked, it will cause recursive validation to occur:

@NotNull @Valid
public Order placeOrder(...) {
 ...
 return order;

}

Customizing Method, Constructor, or Getter Validation
It is possible to customize whether a method, constructor, or getter is validated. To do so the @ValidateOnExecution
annotation can be placed on a method, constructor, getter method, or type declaring the executable in order to
validate the annotated executable upon execution. The same effect can also be achieved via configuration within the
validation.xml file. First, let’s take a look at how to make use of the @ValidateOnExecution annotation.

The @ValidateOnExecution annotation accepts an argument named type, which accepts an executable type that
is used to specify the override you want to perform. Table 6-2 lists the different executable types that can be passed to
the @ValidateOnExecution annotation.

Chapter 6 ■ Validating data

93

Table 6-2. @ValidateOnExecution Executable Types

Type Description

NONE Parameters and return types are not validated upon execution.

CONSTRUCTORS Parameters and return types are validated as long as the executable is a constructor.

NON_GETTER_METHODS Parameters and return types are validated as long as the executable is not a getter method.

GETTER_METHODS Parameters and return types are validated as long as the executable is a getter method.

IMPLICIT When placed on a class or interface, it causes validation to be skipped; otherwise,
the type attribute must match the type of executable being annotated. For instance,
if on a constructor, then the type attribute must be equal to CONSTRUCTORS.

ALL All parameters and return types are validated for all executables.

If a constructor or method is annotated with the @ValidateOnExecution annotation, and the annotation’s type
attribute is set to the executable type or IMPLICIT, then the executable will be validated upon execution. Otherwise,
the validation will be skipped. Similarly, if a class or interface is annotated with @ValidateOnExecution, and the
annotation’s type attribute contains the executable type, then the class or interface will be validated. However, if the
class or interface annotation contains a type attribute set to IMPLICIT, then the validation will be skipped.

Let’s take a look at one of the use cases for specification of the @ValidateOnExecution annotation. By default,
getter methods are not validated when method-level validation is being used. It is possible to change this default
behavior by annotating any getter methods that you want to validate with the @ValidateOnExecution annotation and
passing the appropriate type argument to the annotation. The following lines of code demonstrate how to enable a
getter method for validation:

@ValidateOnExecution(type=GETTER_METHODS)
 public BigDecimal getTotal() {
 return total;
 }

It is also possible to specify more than one type for the @ValidateOnExecution annotation. To do so,
enclose the type values within curly brackets, as demonstrated in the following example. Suppose that we have
a service that it utilized for online catalog processing. The service class could include default impementations
for performing common tasks, such as processing an order. It is possible to validate these methods utilizing the
@ValidateOnExecution annotation, as follows:

public class CatalogService {
 ...

 @ValidateOnExecution(type={javax.validation.executable.ExecutableType.NON_GETTER_METHODS,
 javax.validation.executable.ExecutableType.CONSTRUCTORS})
 public Order placeOrder(
 @NotNull @Size(min = 3, max = 20) String customerNumber,
 @NotNull @Valid Widget widget,
 @Min(1) int quantity) {
 Order order = new Order();
 order.setCustomerNumber(customerNumber);

Chapter 6 ■ Validating data

94

 order.setProduct(widget);
 order.setQuantity(quantity);

 // Send the order to the database
 return order;
 }
 ...
}

Now let’s consider a class that extends another class, overriding method(s) that contain the
@ValidateOnExecution annotation. It is possible to override the validation type, or specify another validation type
within the extending class. In the following example, WidgetOrderingService extends the CatalogService class
that was previously presented. The @ValidateOnExecution annotation has been specified at the class level,
indicating that any GETTER_METHODS or CONSTRUCTORS should be validated.

@ValidateOnExecution(type={javax.validation.executable.ExecutableType.GETTER_METHODS,
 javax.validation.executable.ExecutableType.CONSTRUCTORS})
public class WidgetOrderingService extends CatalogService {

 public WidgetOrderingService(){
 }

 @Override
 public Order placeOrder(
 @NotNull @Size(min = 3, max = 20) String customerNumber,
 @NotNull @Valid Widget widget,
 @Min(1) int quantity) {
 Order order = new Order();
 order.setCustomerNumber(customerNumber);
 order.setProduct(widget);
 order.setQuantity(quantity);
 // Do something specific with widget order
 return order;

 }
}

Another way to achieve customizable validation is to utilize either the executable-validation or
default-validated-executable-types elements within the validation.xml configuration file. If the
executable-validation element is specified, and its enabled attribute is set to false, then executable validation
is disabled. However, if the default-validated-executable-types element is specified as a sub-element to the
executable-validation element, then specific executable types can be specified for executable validation.
For example, the following excerpt from a validation.xml file demonstrates how to disable executable validation
for all executables with the exception of getter methods:

...
<executable-validation>
 <default-validated-executable-types>
 <executable-type>GETTER_METHODS</executable-type>
 </default-validated-executable-types>
 </executable-validation>
...

Chapter 6 ■ Validating data

95

Manual Method Level Validation Invocation
As mentioned previously, method validation is not automatic, and it must be implemented by the provider or
manually invoked via code. The process for invoking method-level validation varies depending upon the type of
validation you want to perform. In all cases, you must use the javax.validation.ExecutableValidator interface
to manually invoke the execution. To obtain a handle on the ExecutableValidator, utilize the Validation.
buildDefaultValidatorFactory.getValidator().forExecutables() call, as demonstrated in the following lines:

ExecutableValidator executableValidator = Validation
 .buildDefaultValidatorFactory().getValidator().forExecutables();

Depending upon the type of method-level validation that you want to invoke, make calls to the appropriate
ExecutableValidator methods. Table 6-3 lists the different methods available for invoking validation.

Table 6-3. ExecutableValidator Validation Methods

Method and Description

validateParameters(T object, Method method, Object[] parameterValues, Class<?>... groups)

Validates the arguments (as given in parameterValues) for the parameters of a given method (identified by method)

validateReturnValue(T object, Method method, Object returnValue, Class<?>... groups)

Validates the return value (specified by returnValue) of a given method (identified by method)

validateConstructorParameters(Constructor<T> constructor, Object[] parameterValues, Class<?>... groups)

Validates the arguments (as given in parameterValues) for the parameters of a given constructor (identified by
constructor)

validateConstructorReturnValue(Constructor<T> constructor, T createdObject, Class<?>... groups)

Validates the object (specified by createdObject) of a given constructor (identified by constructor)

The following example demonstrates how to manually invoke validation. The call will return a Set of
ConstraintViolation objects, one for each violation that occurred. If no issues occurred, then there will be
an empty set returned.

Set<ConstraintViolation> constraintViolations = executableValidator.validateParameters(
 widgetOrderingService, placeOrder, new Object[] { null, widget1, 5 })

Group Conversion
Group validation refers to the notion that constraints can belong to one or more groups that will be used for
validation. A new feature of Bean Validation 1.1 is known as group conversion, which I will discuss within this section.
First, we will summarize the concept of validation groups and their associated concepts. After a brief overview,
I’ll dig into group conversions.

Applications can elect to validate a specific “group” of constraints based upon an activity that is being performed.
This means that instead of validating all constraints that belong to an object graph, a subset of those constraints can
be validated, if so desired. Why would this be useful? Consider the case where a user is logging into an application
and you want to validate the user name and password. The user object may contain several different constraint
validations, perhaps constraints on e-mail address, street address, and so on, but you need to validate only the
username and password. In such a case, the login process can validate a subset of those constraints by using the
validation group.

Chapter 6 ■ Validating data

96

Validation groups are Java interfaces, so to create a group, you simply create an interface. For instance,
to create the authorization group that was mentioned in the previous paragraph, an interface such as the following
could be created:

public interface Authentication {}

To apply one or more groups to a specified constraint annotation, use the groups attribute of the annotation
constraint and indicate the class name of the interface. For instance, in the following example, the User class contains
two fields that belong to the Authentication group:

public class Users {

 @Size(min=8, groups=Authentication.class)
 private String username;

 @Size(min=8, groups=Authentication.class)
 @Pattern(regexp="^[a-zA-Z\\d_]{4,12}$")
 private String password;

 @NotNull
 private String firstname;

 @NotNull
 private String lastname;

 @NotNull()
 private String email;

 ...
}

It is possible to specify more than one group for a constraint annotation by denoting a list of values for the groups
attribute. For instance, if the username field needed to also belong to the Authentication2 group, then it could be
registered to both groups using the following notation:

@Size(min=8, groups={Authentication.class, Authentication2.class})
private String username;

Note ■ the Default.class group is created automatically, and any validation constraint that does not have a group
specified will belong to the Default group.

Group Validation
In some situations, it makes sense to have one group inherit another. In such cases, it is possible to apply group
inheritance by performing interface inheritance. For example, if the Authentication group needs to inherit the
BaseAuthentication group, it could be done by specifying the inheritance within the Authentication interface.

public interface Authentication extends BasicAuthentication {}

Chapter 6 ■ Validating data

97

Specifying the Order of Group Validation
By default, the Bean Validation API will validate each constraint within a group in no particular order. In some cases,
it may make sense to define an explicit ordering for validation, such as when one validation depends upon another.
In such cases, explicit ordering can be implemented by creating a group sequence. To define a group sequence,
declare a Java interface to create a new validation group, and then annotate that interface with the @GroupSequence
annotation, specifying validation groups within the annotation in the order in which they should be validated.
If a constraint that belongs to one group fails, then the validation halts, and all subsequent groups are not validated.

For example, the following group, named MasterAuthentication, specifies a group sequence in which all
constraints belonging to the Authentication group are first validated, followed by the constraints belonging to the
Authentication2 group:

@GroupSequence({Authentication.class, Authentication2.class})
public interface MasterAuthentication {}

Note ■ if a group sequence is defined and there is a circular dependency with another sequence or group,
then a GroupDefinitionException is raised.

Group Conversion
The brief overview that was given in the previous sections will help you understand group conversion, which is a new
feature of Bean Validation 1.1. It is now possible to alter a validation group specification to use a group different from
the one originally requested. To do so, specify the @ConvertGroup annotation, which can be used anywhere that
@Valid can be used. If used without specifying the @Valid annotation, then a ConstraintDeclarationException
is raised.

The @Valid annotation indicates that validation is to be propagated and groups are passed as nested elements
unless the @ConvertGroup annotation is specified. You can think of group conversion as a conditional element of
group validation. For instance, in one circumstance it may make sense to utilize one group of validations, whereas
in another circumstance it may make sense to utilize a different group of validations. Let’s say you wanted to apply a
stronger authentication mechanism to administrator users and apply a lesser authentication mechanism to standard
users. You could do so by indicating which validation group to use under each circumstance using group conversion.

To use this technique, specify the @ConvertGroup annotation on any field that may have multiple group
designations, depending upon the circumstance. Specify the group that should be indicated by using the from
attribute of the @ConvertGroup annotation, and specify the group that should be converted to with the to attribute.
To indicate more than one case of group conversion, specify the @ConvertGroup.List annotation, and specify a List
of @ConvertGroup annotations.

Perhaps the easiest way to understand this concept is to see an example. In the following example, the User
group is going to utilize the Authentication validation group if a Default group is specified (standard user), and it
will utilize the Authentiation2 validation group if a Admin group is specified:

public class User {
 @Valid
 @ConvertGroup.List({
 @ConvertGroup(from=Default.class, to=Authentication.class),
 @ConvertGroup(from=Admin.class, to=Authentication2.class)
 })
 private String getPassword() { ... }
}

Chapter 6 ■ Validating data

98

By utilizing group conversion, you can achieve the full potential of validation groups. This allows applications to
become more versatile and also enhances the validation of application objects since it allows for finer-grained control.

Message Interpolation via EL
The Bean Validation 1.1 release has made validation messaging much more flexible via the use of messaging within
the unified expression language (EL). A formatter object and the validation values are now injected into the EL
context, allowing nicely formatted messages to be made available for use within an application’s views.

For example, suppose that you wished to print an error message if a @NotNull constraint was violated.
It is possible to embed the EL within the error message, as in the following excerpt:

@NotNull(message="The message is dated ${today}, and the username should not be null")
@Size(min=8, groups=Authentication.class)
private String username;

A Truly Open API
Bean Validation 1.1 is an open source API. That is, the web site (http://beanvalidation.org) sources, discussions,
and work are all performed in the open. As such, not only is the API tied into Java EE 7, but it can also be used with
many other technologies outside of Java EE. Anyone can join the mailing lists and get involved in working with Bean
Validation, if interested.

Summary
In the early days of web applications, one had to utilize a combination of JavaScript and server-side logic in order to
validate data being entered into a web form. Applications using that kind of validation were difficult to develop and
maintain because one had to jump back and forth between JavaScript, Java, and HTML, while paying careful attention
to the DOM to ensure that everything was being referenced properly. Bean validation aims to make it easier to apply
validation to applications by moving validation logic into the server-side bean and getting rid of the cumbersome
JavaScript technique. The release of Bean Validation 1.1 makes this API even more robust, adding features such as CDI
integration and method validation.

http://beanvalidation.org/

99

Chapter 7

Contexts and Dependency Injection

One of the most important features in Java EE is Contexts and Dependency Injection (CDI). CDI helps bind the web
tier and the business logic or transactional tier of the Java EE platform together and makes it easy to utilize resources
and objects throughout an application. CDI makes it easy to expose business objects for use within JSF web views so
that developers can directly bind JSF view widgets to public JavaBean members and methods. It also provides facilities
that make it possible to inject JavaBean classes and resources into other Java objects in a type-safe and efficient
manner.

CDI is architected from two methodologies: contexts and dependency injection. Contexts provide the ability to
bind the life cycle and interactions of stateful components to well-defined but extensive contexts, per Oracle’s Java EE 7
tutorial. In the same tutorial, dependency injection is defined as the ability to inject components into an application in
a type-safe manner, including the ability to choose at deployment time which implementation of a particular interface
to inject. To use CDI, a developer should become familiar with a series of annotations that can be used to decorate
objects and injected components. This chapter covers concepts that will demonstrate such annotations and where
they should be used.

Since CDI provides a high level of loose coupling, it is an important piece of any Java EE application. Applications
that use CDI in the right way can become very efficient because CDI provides decoupling of resources, as well as
strong typing by eliminating the requirement to use String-based names for managed resources, and provides
the use of declarative Java annotations to specify just about everything. Although it is possible to develop Java EE
applications without the use of CDI, it is very easy to use and enables enterprise applications to become more robust
and efficient than those that do not use CDI features.

This chapter will provide a brief overview of the concepts that comprise CDI, but it will focus on mostly those
new features that are part of CDI 1.1 and the Java EE 7 platform. CDI 1.1 is an incremental release, which provides
many small enhancements to help solidify the API. If you are unfamiliar with CDI, I recommend you learn more
about it from the Oracle Java EE 7 tutorial online before reading this chapter. If you want to be on the cutting edge of
CDI, you can learn much more about current and future CDI features by referencing Weld, a subset of the JBoss Seam
web framework, which is the reference implementation for CDI. To learn more about Weld, please refer to the online
documentation at http://seamframework.org/Weld.

Brief Overview of CDI
While CDI is part of Java EE 7 and is certainly utilized within Java EE applications, it is by no means available only
within the Java EE ecosystem; it can also be utilized within Java SE applications. Of course, only a subset of the CDI
API, such as bean injection and bean scope, is available for use within Java SE applications. The focus of this chapter
is geared toward use within a Java EE environment; to learn more about using CDI within Java SE, please refer to the
online documentation.

CDI is comprised of a variety of concepts and programming techniques. Let’s break it down just a bit so you can
more easily understand the scope of CDI. As mentioned in the introduction to this chapter, the C portion of CDI refers
to the contextual scoping of resources within an application. Inherently, resources that are managed by CDI will have
scope propagated to them in such a way that the container or application will automatically manage their scopes.

http://seamframework.org/Weld

Chapter 7 ■ Contexts and dependenCy InjeCtIon

100

You can refer to resources that are instantiated and bound to CDI as contextual instances. When an application is
deployed and enabled, a contextual instance of a resource that is denoted as ApplicationScoped can be created,
and that same resource can be destroyed when an application is undeployed or disabled. The application developer
does not need to do anything to manage the scope of such resources; the container simply takes care of the scope
management. Similarly, a resource that is denoted as SessionScoped can be instantiated when a session begins, and
then once the session ends, that resource will be destroyed. Contextual scoping makes CDI a very important piece of
Java applications, especially for resource management.

Also mentioned in the introduction, the DI portion of CDI refers to the ability to inject resources, or contextual
instances, into other resources. By use of dependency injection, objects and resources can be injected into other
objects that are referred to as injection targets. Those injected objects and resources maintain their context, and
therefore, if one SessionScoped managed bean is injected into another, all of the session-specific information is
available and can be accessed/updated as needed.

CDI is one of those technologies that has a tendency to be a game changer, making the life of a programmer
much easier once all of its benefits are utilized. This chapter will briefly cover some of the most widely used portions
of CDI and delve into the enhancements that have been made in CDI 1.1.

Dependency Injection
The concept of dependency injection greatly reduces the amount of overhead that is necessary for a developer to gain
reference to a Java object from within another Java class. The Java EE stack makes it very easy to gain reference to just
about any Java object from within another class. Dependency injection refers to the ability to inject components into
an application in a type-safe manner, including the ability to choose at deployment time which implementation of
a particular interface to inject. CDI allows almost any Java class to be injected into another with very little configuration.
This ability increases the usability of resources since such resource can be referenced from any number of different
classes and maintain the same state wherever they are being used. In reality, just about any object can be injected
anywhere with CDI. The following are some Java objects that can be injected:

Almost any Java class•	

Session beans•	

Java EE resources, including data sources, JMS topics, queues, and connection factories•	

Persistence contexts•	

Producer fields•	

Objects returned by producer methods•	

Web service references•	

Remote EJB references•	

To inject a resource into another, the application module or JAR file must contain a META-INF directory
that includes a beans.xml configuration file. The beans.xml file may or may not be empty depending upon the
configuration. However, for the purposes of this example (and for most general CDI use cases), the beans.xml file is
usually an empty configuration file that is used as a placeholder to tell Java EE that the application wants to use CDI.

Note ■ In previous versions of java ee, most configuration and deployments were accomplished via xML.

Chapter 7 ■ Contexts and dependenCy InjeCtIon

101

Next, the javax.inject.Inject annotation (@Inject) must be used to denote the class being injected by
annotating a class variable of the object type. For instance, if you want to inject a Java object of TypeA, you would
declare a class variable of type TypeA and annotate it with @Inject, as follows:

@Inject
TypeA myTypeVar;

Once the injection is performed, the declared variable can be utilized throughout the class because it is a direct
reference to the original class of the specified Java type. By defining a specific scope to the injection bean, you can
indicate whether an injected object will cause the instantiation of a new object of that type or whether it will look
up an existing object of that type and reuse it. By far, one of the most convenient and useful cases for using CDI is
the ability to inject a managed bean into another object and make use of its current state, as if its contents existed
everywhere.

CDI provides type-safe injection because there is no need to specify a String-based name in order to instantiate
or refer to another object. By maintaining declared variables that are used as points of injection, the variable name
itself provides for strong typing and thus reduces the number of errors that may arise. A couple new features have
been added to make dependency injection even more useful, and the following sections aim to describe those
enhancements.

Injection of Bean Metadata
The Bean, Interceptor, and Decorator interfaces provide metadata about a bean. As of CDI 1.1, it is possible for bean
metadata to be injected into a bean instance. To obtain information using the Bean interface, inject it into the bean
that needs to use it, and then call upon its methods to obtain the desired information. The following bean types can be
injected using the Bean type:

A bean with scope •	 @Dependent, @Default as the qualifier, and type Bean

A bean with scope •	 @Dependent, @Default as the qualifier, and type Interceptor

A bean with scope •	 @Dependent, @Default as the qualifier, and type Decorator

Additionally, beans that allow interceptors and decorators can obtain information about the beans that they
intercept and/or decorate. A definition error occurs if an Interceptor or Decorator instance is injected into any bean
instance other than an interceptor or decorator instance, respectively.

The following example demonstrates the use of the Bean interface to retrieve metadata regarding the bean named
OrderProcessor:

@Named("Order")
public class OrderProcessor {
 @Inject Bean<OrderProcessor> bean;

 public String getBeanName(){
 return bean.getName();
 }

 public Class<? extends Annotation> getScope(){
 return bean.getScope();
 }
}

Chapter 7 ■ Contexts and dependenCy InjeCtIon

102

In the previous example, the getBeanName method will return the String-based name of the bean, and
getBeanScope will return the Annotation class for the bean scope. The Class<? extends Annotation> is a generic
syntax that designates an Annotation type class. Table 7-1 lists the different methods available from the Bean interface
for obtaining metadata, along with a brief description of each.

Table 7-1. Bean Interface Methods for Obtaining Metadata

Method Returns Description

getBeanClass Class<?> Returns the bean class of the managed or
session bean, or of the bean that declares the
producer method or field.

getInjectionPoints Set<InjectionPoint> Returns the InjectionPoint objects of the bean.

getName String Returns the EL name of the bean, if it exists.

getQualifiers Set<Annotation> Returns the bean’s qualifiers.

getScope Class<? extends Annotation> Returns the scope of the bean.

getStereotypes Set<Class ? extends Annotation> Returns the stereotypes of the bean.

getTypes Set<Type> Returns the types of the bean.

isAlternative boolean Determines whether the bean is an alternative.

isNullable boolean Determines whether the create() method may
return a null value.

Injection of the ServletContext
It is now possible to inject ServletContext into application classes using the javax.servlet.ServletContext
bean type. Doing so allows control of the servlet context for a particular application. As such, one can add listeners,
create filters, work with attributes, and so on, just as if a bean were a standard Java servlet class. To inject the
ServletContext, write the following code:

@Inject
ServletContext context;

Let’s take a look at how you can use the ServletContext information from a JSF application. Suppose that you
want to display the server information on a JSF view. In the following code for org.javaee7.jsf.AcmeBean, the
ServletContext is injected using the new enhancement, and data from it is made available for use in a JSF view:

package org.javaee7.jsf;

...
import javax.servlet.ServletContext;

@ManagedBean(name = "acmeBean")
@SessionScoped
public class AcmeBean implements Serializable {

 @EJB
 private AcmeFacade facade;

Chapter 7 ■ Contexts and dependenCy InjeCtIon

103

 @EJB
 private AcmeTimerFacade timerFacade;

 @Inject
 ServletContext context;

 ...
 public String getContextInfo(){
 return context.getServerInfo();
 }
}

Now within a JSF view, the server information can be displayed by simply calling upon the contextInfo getter
that was implemented in AcmeBean.

<h:outputText id="widget" style="font-weight: bold;" value="#{acmeBean.contextInfo}"/>

Marking Classes as Ignored by CDI
Almost any Java object can be injected using CDI, and injection is even possible into beans that are not managed by
CDI. A managed bean in the context of CDI is a bean class that is implemented by a Java class. CDI utilization within
managed beans serves a number of purposes. For instance, managed beans can be annotated for scoping, naming
and referential purposes, and so forth. EJB session beans can also utilize CDI in a number of ways, similar to managed
beans. The topic of CDI usage within managed beans and session beans is very large and out of scope for this book
on new features. Therefore, to learn more about the ways CDI can be used in these bean types, please refer to the
documentation or other books, such as Java EE 7 Recipes by Apress.

New to managed and session beans in CDI 1.1 is the ability to veto beans in a declarative manner by utilizing the
@Veto and @Requires annotations. To veto a bean means to mark it as ignored by CDI. Therefore, if a bean contains
the @Veto annotation, it cannot be processed by CDI. A vetoed class will not contain the life cycle of a contextual
instance, nor can it be injected into other classes. In fact, if a managed bean or session bean contains the @Veto
annotation, it cannot be considered a managed bean or session bean at all. In some cases, it makes sense to mark
a bean as such to ensure that it cannot become managed by CDI. The following code demonstrates how to apply the
@Veto annotation to a class:

@Veto
public class OrderFacade implements java.io.Serializable {
...

The @Veto annotation can also be placed on a package declaration, which will prevent all of the beans that are
contained within that package from being processed via CDI.

@Veto
package org.javaee.chapter7.*;
...

Any of the following definitions on a vetoed type will not be processed:

Managed beans, session beans, interceptors, decorators•	

Observer methods, producer methods, producer fields•	

Chapter 7 ■ Contexts and dependenCy InjeCtIon

104

The @Requires annotation can be used to mark a class to be ignored by CDI if it does not meet the specified
required criteria. The @Requires annotation accepts a String-based fully qualified class name of the dependency
or dependencies. If the object is able to fulfill its dependencies, then it will be managed by CDI. For instance, the
following class requires the dependency of javax.persistence.EntityManager in order to be managed by CDI:

@Requires("javax.persistence.EntityManager")
public class EmployeeFacade {
 ...
 @Produces
 public EntityManager getEntityManager(){
 ...
 }
 ...
}

Similarly to @Veto, the @Requires annotation can be placed on a package as well. If that package is unable to fulfill
the dependency that is denoted by @Requires, then all classes contained within that package will be unmanaged by CDI.

Producers
CDI brings forth the concept of producers. According to the specification, a producer method acts as a source of
objects to be injected, where the following are all true:

Objects to be injected aren’t required to be bean instances.•	

Injected object types may vary at runtime.•	

An initialization method is required, separate from the bean constructor.•	

In a nutshell, a producer method allows generation of an injectable object. They are very useful in situations
where an application requires injection of an object that is not injectable or an object requires some custom
initialization that the bean’s constructor does not take care of. Producer methods are annotated with the
javax.enterprise.inject.Produces annotation.

For instance, the following producer method can be called upon to obtain an injectable Widget bean, the type of
which may vary depending upon the given criteria:

public class WidgetBean implements java.io.Serializable {

 private String widgetType = Widget.GENERIC;
 private Widget selectedWidget;

 public WidgetBean() {
 }

 @Produces
 public Widget getWidget() {
 switch (widgetType) {
 case Widget.PLASTIC:
 return new WidgetOne();
 case Widget.METAL:

Chapter 7 ■ Contexts and dependenCy InjeCtIon

105

 return new WidgetTwo();
 default:
 return new WidgetX();
 }
 }
...

In the next example, a list of widgets is returned for use via a JSF view.

...
@Produces
 @Named
 public List<Widget> getWidgets(){
 return widgets;
 }
...

The previous list of widgets can be displayed via a JSF view using the following markup:

<h:dataTable id="widgets" var="widget" value="#{widgetBean.widgets}">
 <h:column>
 <h:outputText value="#{widget.type}"/>
 </h:column>
</h:dataTable>

Producer fields are an alternative to producer methods. They are a field of a bean that can generate an object.
Producer fields are commonly used for the declaration of resources, but they can be used for the generation of other
objects as well.

A producer method can be used to generate an object that needs to be removed once it is no longer needed.
Much like a finalizer for a class, an object that has been injected via a producer method can contain a method that
is invoked when the injected instance is being destroyed. Such a method is known as a disposer method. To declare
a method as a disposer method, create a method defined by the same class as the producer method. The disposer
method must have at least one parameter, with the same type and qualifiers as the producer method. That parameter
should be annotated with @Disposes. In CDI 1.1, this technique can now be applied to producer fields as well.

Programmatic Lookup
In some cases, programmatic lookup of contextual instances may not be convenient. For instance, injection may not
be possible or convenient in the following circumstances:

If a bean’s type or qualifiers vary dynamically•	

If there is no bean that satisfies the given type and/or qualifiers•	

If an application needs to iterate over all beans of a specified type•	

In these situations, you can inject a javax.enterprise.inject.Instance interface in order to gain access to
contextual references. For instance, in the following example, a contextual instance of AcmeBean is obtained. Once the
instance of the bean has been injected, its get method can be invoked to obtain the contextual reference.

@Inject Instance<AcmeBean> acmeBean;
AcmeBean ab = acmeBean.get();

Chapter 7 ■ Contexts and dependenCy InjeCtIon

106

Similarly, the javax.enterprise.inject.spi.BeanManager interface provides operations for obtaining
contextual references for beans, along with many operations that can be used with portable extensions. For instance,
the BeanManager can be used to obtain a reference to a bean by calling its getReference method, as demonstrated in
the following lines of code:

@Inject
BeanManager beanManager;

...
beanManager.getReference(bean, beanType, creationalContext);
...

Most recently, with the release of CDI 1.1, the BeanManager can be used to obtain programmatic access to a
Producer, InjectionTarget, and AnnotatedType. To do so, the BeanManager must be obtained and then invoke the
method corresponding to the object that needs to be obtained. Table 7-2 lists the different methods that can be called
against the BeanManager in order to obtain access to these three types. By no means is the table an exhaustive list of all
methods available via the BeanManager, but it lists the new BeanManager methods.

Table 7-2. BeanManager Methods

Method Description

createAnnotatedType Returns an AnnotatedType that may be used to read the annotations of the given
Java class or interface

getAnnotatedType
getAnnotatedTypes

Returns the AnnotatedType(s) discovered or added during container initialization

createInjectionTarget Returns a container-provided implementation of InjectionTarget for a given
AnnotatedType or throws an IllegalArgumentException if there is a definition error
associated with any injection point of the type

getExtensions Returns the container’s instance of an Extension class that is declared in the
META-INF/services file or throws an IllegalArgumentException if the container
does not contain an instance of the specified class

createProducer Returns a container provided implementation of Producer for a given
AnnotatedMethod or AnnotatedField or throws an IllegalArgumentException if
there is a definition error associated with the producer method or field

Note ■ please see the online documentation for comprehensive details regarding the BeanManager interface:
https://javaee-spec.java.net/nonav/javadocs/javax/enterprise/inject/spi/BeanManager.html

Container Life-Cycle Events
The application server container fires a series of events that allow portable extensions to integrate with the container
initialization process. This series of events is known as the container life-cycle events. For instance, before the
container begins the bean discovery process, it must fire a BeforeBeanDiscovery event. After the bean discovery
process has completed, the AfterBeanDiscovery event is fired.

https://javaee-spec.java.net/nonav/javadocs/javax/enterprise/inject/spi/BeanManager.html

Chapter 7 ■ Contexts and dependenCy InjeCtIon

107

New in CDI 1.1, the container must fire an event for each bean archive, before it processes the classes that
have been packaged in that module. This event is known as the AfterTypeDiscovery event. Any observer, or class
that listens for events, of the AfterTypeDiscovery event is permitted to add and/or remove classes from the set of
alternatives, list of interceptors, or list of decorators. The beans.xml file is used to initialize values of the collections.
The AfterTypeDiscovery interface contains the methods listed in Table 7-3.

Table 7-3. AfterTypeDiscovery Interface Methods

Method Description

getAlternatives Returns the set of enabled alternatives in the bean deployment archive

getAnnotatedTypes Returns the set of enabled annotated types in the bean deployment archive

getBeansXml Returns an InputStream that can be utilized for reading the beans.xml configuration file
for the module

getDecorators Returns a list of enabled decorators in the bean deployment archive

getInterceptors Returns an Iterator that can be used to traverse over the AnnotatedTypes objects that
represent the Java class or interfaces in the bean deployment archive

Priorities
The @Priority annotation has been added to CDI 1.1 to aid in the ordering of use for specific bean types. In Java EE,
the @Priority annotation can be specified on a class to indicate that the class should be invoked before another class.
In other words, the annotation allows one to indicate in what order classes should be invoked. In CDI, the @Priority
annotation can be utilized to specify the ordering of Interceptors, Alternatives, and Decorators.

Interceptors
Interceptors are part of the EJB specification, and allow developers to invoke targeted tasks outside of the business
logic of an application. Also known as cross-cutting tasks, interceptors can be bound to application events and
specified business methods so that they become invoked when a specified event occurs upon the intercepted method.
To review, interceptor methods contain one or more methods annotated with one of the following: @AroundInvoke,
@AroundTimeout, @PostContruct, or @PreDestroy. These annotations indicate the time at which the interceptor
method or class should be invoked within the event lifecycle. In order to bind an interceptor to a class or method, an
interceptor binding type must also be declared.

The CDI 1.1 specification enhances interceptors by allowing developers to specify precedence for the invocation
of interceptors if more than one has been defined for a particular class or method. The @Priority annotation can be
specified on an interceptor in order to control interceptor invocation order. Let’s take a look at an example.

Suppose that we had an interceptor named MessageInterceptor. Further suppose that it should be invoked
before any other in an application. The priority specification may look as follows:

...
@Priority(Interceptor.Priority.APPLICATION+10)
 @Interceptor public class MessageInterceptor { ... }

The @Priority annotation accepts a Interceptor.Priority value. Table 7-4 lists each of the priorites that are
available for use. Each of the priority values are of type static int. According to the specification, the interceptor
containing the highest priority value is invoked first.

Chapter 7 ■ Contexts and dependenCy InjeCtIon

108

Table 7-4. Interceptor.Priority Values

Priority Field Description

APPLICATION Start of the range for interceptors that are defined by applications. (Value: 2000)

LIBRARY_AFTER Start of the range for late interceptors that are defined by extension libraries. (Value: 3000)

LIBRARY_BEFORE Start of the range for early interceptors that are defined by extension libraries.
(Value: 1000)

PLATFORM_AFTER Start of the range for late interceptors that are defined by specifications of platforms.
(Value: 4000)

PLATFORM_BEFORE Start of the range for early interceptors that are defined by specifications of platforms.
(Value: 0)

Note ■ since the Interceptor.Priority value is a constant int, another int can be added to it in order to ensure
that a higher priority than other interceptors that are given the specified priority value. In the preceding example, the
value 10 is added to Interceptor.Priority.APPLICATION. the resulting priority then has the value 2010. (2000 is from
the APPLICATION priority. see table 7-4).

For more information on utilization of interceptors, please refer to the documentation that can be found online.

Decorators
Decorators are Java classes that have the ability to intercept invocations for a particular Java interface, and therefore
they are aware of any semantics that apply to the specified interface. Additional functionality can then be applied
to the methods of the implementation class, and that additional functionality will be invoked and processed along
with the standard implementation. Decorators entail operations that include business logic, so they differ from
interceptors in that respect. In effect, the decorator class implementation surrounds the inner class. A decorator can
be an abstract class, and it must contain a special injection point known as the delegate injection point. This point
must be the same type as the beans being decorated, and it must be injected along with the @Delegate annotation.
Let’s look at an example.

In this example, a human resources department may choose to implement a specialized hiring process for
employees in different departments. Rather than creating separate implementation classes, it would be easier to
“wrap” additional functionality around the standard implementation. In this case, a decorator class is used to add
functionality to the employee hiring process. The following class, EmployeeProcessorDecorator, demonstrates a
decorator that has the ability to implement additional functionality around the standard implementations for the Hire
interface.

package org.javaee7.chapter07;

import javax.decorator.Decorator;
import javax.decorator.Delegate;
import javax.enterprise.inject.Any;

import javax.inject.Inject;

Chapter 7 ■ Contexts and dependenCy InjeCtIon

109

/**
 * This decorator class is applied to the employee hiring process to implement
 * additional functionality to any of the methods implemented within are called.
 * @author Juneau
 */
@Decorator
public class EmployeeProcessorDecorator implements Hire{

 @Inject
 @Delegate
 @Any
 Hire hire;

 @Override
 public String badgeEmployee() {
 String result = null;
 // Perform a test implementation for badging an employee
 hire.badgeEmployee();
 return result;
 }

 @Override
 public String trainEmployee() {
 String result = null;
 // Perform a test implementation for training an employee
 hire.trainEmployee();
 return result;
 }
}

As of CDI 1.1, it is possible to define the ordering of decorator classes by applying the @Priority annotation.
The following example demonstrates how to specify priority for a decorator class known as EmployeeProcessorDecorator:

@Decorator
@Priority(Interceptor.Priority.APPLICATION)
public class EmployeeProcessorDecorator implements Hire{
...
}

Please refer to Table 7-4 for more information regarding Interceptor.Priority values. Also, if you are unfamiliar
with the concept of decorators, please refer to the documentation that can be found within the online Java EE 7
tutorial for more information.

Alternatives
Alternatives provide a good solution for implementing multiple versions of a bean that can be used for different
purposes. Qualifiers can be utlilized during the development phase for injecting different bean implementations,
whereas alternatives allow one to choose between different implementations at deployment time. Alternatives are
useful for scenarios where an application may be deployed with some default functionality, but made configurable to
utlize a different functionality if deployed in another environment. They can also be useful for testing different versions
of beans, whereby a default implementation is written, but an alternate bean can be specified at deployment time.

Chapter 7 ■ Contexts and dependenCy InjeCtIon

110

To mark a bean as an alternative, annotate it with the javax.enterprise.inject.Altertative annotation, and then
specify it within an alternative element in the beans.xml file. For example, in this scenario, the human resources
department would like to implement a standard employee hiring process, as well as an alternative testing implementation.
All of the processes that must be initiated for hiring an employee are defined within an interface named Hire, as follows.

package org.javaee7.chapter07;

/**
 * This is the definition of an employee hiring process. This interface
 * declares the processes that must be initiated when an employee is hired.
 * @author Juneau
 */
public interface Hire {
 public String badgeEmployee();
 public String trainEmployee();

}

The employee hiring implementation class must then implement Hire. In this case, both the standard class
and the testing class must implement the Hire interface, but each can have its own implementation of the declared
methods. For brevity, lets take a look at the test implementation, assuming that the standard implementation
looks exactly the same, but includes a different implementation for each of the methods. Note that the test
implementation class is annotated with @Alternative, meaning that it can be specified as an alternative for the
standard implementation class at deployment time. The following class, EmployeeProcessorTestImpl, is the test
implementation for the employee hiring process.

package org.javaee7.chapter07;

import javax.enterprise.inject.Alternative;

/**
 * This bean would be a test implementation for the employee hiring process.
 * To make this bean active, it must be specified within the beans.xml as an
 * alternative implementation for EmployeeProcessor.
 * @author Juneau
 */
@Alternative
public class EmployeeProcessorTestImpl implements Hire {

 @Override
 public String badgeEmployee() {
 String result = null;
 // Perform a test implementation for badging an employee
 return result;
 }

 @Override
 public String trainEmployee() {
 String result = null;
 // Perform a test implementation for training an employee
 return result;
 }

}

Chapter 7 ■ Contexts and dependenCy InjeCtIon

111

To make use of the alternative implementation, the alternative class must be specified within the beans.xml,
which can be changed at deployment time.

<beans ... >
 <alternatives>
 <class>org.javaee7.chapter07.EmployeeProcessorTestImpl</class>
 </alternatives>
 </beans>

Note ■ In order to use the standard implementation rather than the alternative, simply comment out the
<alternatives> elements along with all enclosing alternative class specifications.

In CDI 1.1, the @Priority annotation can be used to indicate that an alternative is to be used for an entire
application. For instance, in the following code, the EmployeeProcessorTestImpl alternative contains a priority of
APPLICATION:

@Alternative
@Priority(APPLICATION)
public class EmployeeProcessorTestImpl implements Hire {
...
}

For more information on alternatives, please see the online documentation in the Java EE 7 tutorial.

Deprecations
The @New annotation was previously used to allow the application to obtain a new instance of a bean, which is not
bound to the declared scope but has had dependency injection performed. The CDI 1.1 update deprecates the use
of the @New qualifier and injects @Dependent-scoped beans instead. Let’s take a look at how the @New qualifier used to
work, and then you will learn how to utilize the @Dependent scope instead.

In the following example, the @New qualifier is specified at an injection point to obtain a new instance of a bean
that is not bound to the declared scope.

@Produces @ConversationScoped
Order getOrder(@New(Order.class) Order order){
 ...
}

This same type of result can be achieved by declaring a bean as @Dependent. When a bean is declared to have
@Dependent scope, the following are all true:

It is not possible to share an injected instance of that bean between any other injection points.•	

Any instance of the bean that has been injected into an object that is created by the container •	
is bound to the same life cycle as the newly created object.

At most one instance of the bean is instantiated if referred to within JSF or JSP EL.•	

Chapter 7 ■ Contexts and dependenCy InjeCtIon

112

Any instance of the bean that utilizes a producer method or field, disposer method or field, or •	
observer method invocation can service only that invocation.

Any injections of the bean into method parameters of disposer or observer methods exist to •	
service that method invocation only.

Going back to the example that was previously demonstrated using the @New qualifier, the same results can be
achieved using the following code:

@Dependent
public class Order (){
 ...
 @Produces @ConversationScoped
 Order getOrder(Order order){
 ...
 }
 ...
}

Summary
The CDI specification contains a plethora of beneficial information, and that is because this technology encompasses
a plethora of capability. Utilizing what CDI has to offer can increase developer productivity and make an application
more robust. CDI is a complex API that can take some time to get your head around, but once you take the time to
learn it, the benefits will pay off.

CDI 1.0 was full of new concepts and techniques that had been brought forward from the Weld project into
Java EE. It changed the way that Java EE developers create enterprise applications. The first release of CDI was
revolutionary for Java EE. .The latest release continues to build upon the groundbreaking features that were
introduced in Java EE 6. This chapter covered only the tip of the iceberg, so please do not stop here if this chapter
introduced you to CDI; embrace it and empower your applications.

113

Chapter 8

Building RESTful Web Services

The Java EE 6 platform introduced the Java API for RESTful Web Services (JAX-RS), enabling developers to easily
develop powerful web services. RESTful web services are those that support the Representational State Transfer
(REST) architectural style, which is an architecture for producing web services that focus on a system’s resources,
specifically on how states are transferred over HTTP. JAX-RS web services are stateless, and they utilize HTTP methods
explicitly by mapping methods of web service classes to HTTP protocols (GET, POST, PUT, DELETE) via annotations.
A RESTful web service provides custom URIs for access to web service resources, allowing web service methods to be
invoked and passing zero or more parameters via a simple URI call from a web service client. RESTful web services
can send responses that are in XML, JavaScript Object Notation (JSON), or other formats. The JAX-RS stack provides
an annotation-rich architecture for designing web services, which makes it much easier for developers to produce
powerful web services without XML configuration.

Although JAX-RS was first introduced in the Java EE platform with the release of EE 6, the concept of RESTful web
services has been around for a number of years. The reference implementation for JAX-RS is a project named Jersey,
which is hosted on Java.net (http://jersey.java.net). As such, new features for the development of RESTful web
services are first available in the reference implementation, so those who want to be on the bleeding edge of REST for
Java enterprise applications can utilize the Jersey project within their applications.

Java EE 7 introduces the next evolution in JAX-RS, which is the release of JAX-RS 2.0. This release is considered
a major release, because it greatly enhances the functionality of JAX-RS in a number of areas. For instance, in Java EE
6, there was no standard way to produce a JAX-RS client. Developers had to utilize different means for testing web
services, provide nonstandard implementations for reading and processing web service data, and so on. With the
release of JAX-RS 2.0, a new client API is being introduced to fill the gap in this area. The new release also provides
asynchronous processing capabilities, the ability to filter and/or intercept requests, and many more enhancements to
make JAX-RS even more attractive for web service development.

This chapter will first provide a brief overview of how to utilize JAX-RS, demonstrating how to produce a web
service to produce and consume data. It will then delve into coverage of each new feature, providing examples of
each. Although you are expected to be familiar with the Java EE concepts, this chapter will appeal to those who are
new to JAX-RS as well, since the brief overview should be enough information to get started utilizing the API.

Overview of JAX-RS
For years, some developers have cringed over the idea of developing web services because they entailed lots of XML
configuration and coding. However, even though web services were historically time-consuming to create, they have
proven to be a major benefit to enterprise technology. The Java EE 6 platform introduced JAX-RS for the development
of web service resources, which makes it much easier to develop such resources using annotations and little or
no XML configuration. JAX-RS provides the ability to create web services that have the capability of producing or
consuming content by annotating Plain Old Java Object (POJO) classes with a special set of annotations according to
the service you want to provide. In this section, you’ll take a brief look at how to develop web services using JAX-RS,
along with an overview of the different concepts. If you are new to JAX-RS, this section will provide you with enough

http://jersey.java.net/

Chapter 8 ■ Building reStful WeB ServiCeS

114

information to get started using the technology. For those who are familiar with the API, feel free to move onto the
next section of the chapter to begin learning the new features that JAX-RS 2.0 has to offer.

Utilizing the JAX-RS API
A JAX-RS application consists of one or more resources and zero or more providers that are configured via
an application-supplied subclass of Application. A Java class that uses JAX-RS annotations to implement a
corresponding web resource is also known as a resource class. A provider class implements one or more JAX-RS
interfaces. As such, JAX-RS resources, and JAX-RS providers contain a myriad of annotations. JAX-RS resources must
contain a constructor that can accept zero or more arguments. Public constructors may include parameters that are
annotated with: @Context, @CookieParam, @HeaderParam, @PathParam, @MatrixParam, or @QueryParam. Let’s begin by
taking a look at an example of a JAX-RS web service resource class. The following JAX-RS service can be invoked to
return a list of Jobs entities to be displayed in a String format:

@Path("/jobsService")
public class JobsService {

 @EJB
 JobsSession jobsSession;

 public JobsService(){

 }

 @GET
 @Produces("text/html")
 public String getAsHtml() {
 List<Jobs> jobList = jobsSession.retrieveJobsSynchronously();
 StringBuilder sb = new StringBuilder();
 sb.append("<p>");
 for (Jobs job:jobList){
 sb.append(job.getJobId() + " - " + job.getTitle());
 }
 sb.append("<p>");
 return sb.toString();
 }
}

As mentioned previously, JAX-RS applications must be configured via an application subclass of
javax.ws.rs.core.Application. Therefore, if no Application subclass has been provided, then a servlet must be
configured within web.xml to make use of Application. The following servlet resources should be added to the
web.xml file of any Java EE application that will use JAX-RS, and does not already contain a servlet that handles the
application accordingly:

<servlet>
 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>

Chapter 8 ■ Building reStful WeB ServiCeS

115

If however, an application contains a servlet that contains an initialization parameter of
javax.ws.rs.core.Application, and whose value is the fully qualified name of the Application subclass, then
no additional configuration is necessary.

Once an application has been configured to use JAX-RS or contains a servlet that handles the application,
resource classes and providers can be implemented. To invoke the JobsService REST service that was implemented in
the example, deploy the application that has been configured to accordingly, and load the appropriate URL
(http://localhost:8080/IntroToJavaEE7/rest/jobsService) into a web browser. In this case, the application is
named IntroToJavaEE7, since you are working with the book sources. Table 8-1 describes the possible annotations
that can be used to create a REST service.

Table 8-1. REST Service Annotations

Annotation Description

@POST Request method designator that processes HTTP POST requests.

@GET Request method designator that processes HTTP GET requests.

@PUT Request method designator that processes HTTP PUT requests.

@DELETE Request method designator that processes HTTP DELETE requests.

@HEAD Request method designator that corresponds to the HTTP HEAD method. It processes HTTP HEAD
requests.

@Path The value of this annotation should correlate to the relative URI path that indicates where the
Java class will be hosted. Variables can be embedded in the URIs to make a URI path template.

@Context Injects an instance of a supported resource.

@MatrixParam A type of parameter that can be extracted for use in the resource class. Matrix parameters are
extracted from the request.

@CookieParam Extracts the value of a cookie.

@HeaderParam Extracts the value of a header.

@PathParam A type of parameter that can be extracted for use in the resource class. URI path parameters are
extracted from the request URI, and the parameter names correspond to the URI path template
variable names specified in the @Path class-level annotation.

@QueryParam A type of parameter that can be extracted for use in the resource class. Query parameters are
extracted from the request.

@Consumes Used to specify the MIME media types of representations that a resource can consume.

@Produces Used to specify the MIME media types of representations that a resource can produce.

@Provider Used to specify a provider class for automatic discovery.

To designate a class a REST service, the @Path annotation must be placed prior to the class or before at least one
of the class method signatures. The @Path annotation is responsible for constructing the URI that will be used for
accessing the web resource. To learn more detail regarding @Path, please see the following section, “Constructing
Meaningful URIs.”

Designate methods with the @GET, @POST, @PUT, or @DELETE designator to process the type of web service request
that is desired. Methods annotated as such are also known as resource methods. Adding resource methods to a
resource class generates web service functionality. If more than one resource method exists within a REST web
service implementation and @Path is specified only at the class level and not at the method level, then the method
that returns the MIME type the client requires will be invoked. If you want your method to display content, designate

http://localhost:8080/IntroToJavaEE7/rest/jobsService

Chapter 8 ■ Building reStful WeB ServiCeS

116

a method with @GET. If you want to create a method for updating or inserting an object or data, designate the method
as @POST. If you are creating a method for inserting new objects only, then designate it with @PUT. Finally, if you are
creating a method for removing objects, then designate it with @DELETE.

REST services can become fairly complex if they constitute many different methods and paths. Entire
applications exist based upon REST services, where all Create, Retrieve, Update, Delete (CRUD) manipulations are
invoked via web service calls. This example provides only the foundation for developing with JAX-RS, but it should be
enough to get you started using the API.

Constructing Meaningful URIs
To use a web service, a client must make a call to a URI that will, in turn, invoke the service. Therefore, URIs map to
resource methods, which in turn invoke web service content production or consummation. The URI of a web service
makes a resource method accessible to a web URI. Therefore, it is important to ensure that the URL makes logical
sense with regard to the data that the web resource is consuming or producing. The @Path annotation is used to
indicate the URI that should correspond to the service. The full URI includes the host name, port number, application
name, and REST servlet name, followed by the path designated with the @Path annotation. The following example
demonstrates a simple REST service implementation named SimpleRest.

package org.javaee7.services;

import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;
import javax.ws.rs.QueryParam;

// Set the PATH to http://host:port/application/rest/simplerest/
@Path("/simplerest")
public class SimpleRest {

 private String message = "Hello from a simple REST Service";
 private String htmlMessage = "<p>" + message + "</p>";

 @GET
 // Produces plain text message
 @Produces("text/plain")
 public String getPlainMessage() {
 return message;
 }

 @GET
 // Produces plain text message
 @Produces("text/html")
 public String getHTMLMessage() {
 return htmlMessage;
 }

 @POST
 @Path("add")
 @Consumes("text/plain")

http://host:port/application/rest/simplerest/

Chapter 8 ■ Building reStful WeB ServiCeS

117

 public String add(@QueryParam("text") String text){
 this.message = text;
 return message;
 }
}

In the example, the @Path annotation specifies /simplerest as the service path, so the URL
http://localhost:8080/IntroToJavaEE7/rest/simplerest will invoke the web service. It is possible to include
variables within a URL by enclosing them in the @Path annotation, within brackets using the syntax {var}. For
example, if each user had his or her own profile for a particular site, the @Path designation could be as follows:

...
@Path("/simplerest/{user}")
...

In such a case, the URL could look like the following:
http://localhost:8080/IntroToJavaEE7/rest/simplerest/juneau.

In addition to specifying the @Path annotation at the class level, it can also be specified before any methods that
are marked with @GET, @POST, @PUT, or @DELETE in order to specify a URI for invoking the denoted method. Moreover,
variables can be placed within the path in order to accept a more dynamic URL. For instance, suppose a method was
added to the class in Solution #1 that would return a greeting for the user specified as a parameter within the URL.
You can do something like the following in order to make the URL unique:

@Path("{user}")
@GET
@Produces("text/html")
public String getUserMessage(@PathParam("user") String user){
 return "Greetings " + "" + user + "";
}

In this case, the getUserMessage method would be invoked if a URL such as the following were placed into the
browser: http://localhost:8080/IntroToJavaEE7/rest/simplerest/josh. If this URL were specified, then the
method would be invoked, passing josh as the user variable value, and the message would be displayed as follows:

Greetings josh

Producing Content
To produce content via a web resource, create a Java class and annotate it with the @Path annotation, specifying a path
you want to use for publishing the resource. Use the @Produces annotation to specify the MIME type for content you
want to produce from a decorated method. The following excerpt demonstrates the use of @Produces:

...
 @GET
 @Path("/get")
 // Produces an XML message
 @Produces(MediaType.APPLICATION_XML)
 public String getProducts() {
 List<Product> productList = productSession.findAll();
 StringBuilder xmlstring= new StringBuilder();

http://localhost:8080/IntroToJavaEE7/rest/simplerest
http://localhost:8080/IntroToJavaEE7/rest/simplerest/juneau
http://localhost:8080/IntroToJavaEE7/rest/simplerest/juneau
http://localhost:8080/IntroToJavaEE7/rest/simplerest/josh

Chapter 8 ■ Building reStful WeB ServiCeS

118

 for(Product product:productList){
 xmlstring.append("<product>");
 xmlstring.append("<id>" + product.getId() + "</id>");
 xmlstring.append("<name>" + product.getName() + "</name>");
 xmlstring.append("<description>" + product.getDescription() + "</description>");
 xmlstring.append("</product>");

 }
 return xmlstring.toString();
 }

The @GET annotation designates this as a resource method that will be utilized for obtaining data. When the
specified URI that is designated within the @Path annotation is visited, this method will be invoked, producing XML
content.

Consuming Content
Annotate resource methods within a JAX-RS class with @POST or @PUT to indicate that some content is being passed to
the method. The following briefly summarizes the different HTTP methods that can be used for consuming content:

•	 POST updates an existing resource or creates a new resource.

•	 PUT creates a new idempotent resource.

To specify the type of content being passed, annotate the same method with @Consumes(content-type).
The following excerpt demonstrates the use of @Consumes:

@Path("simplerest")
public class SimpleRest {
...
@PUT
 @Path("add")
 @Consumes("text/plain")
 public String add(@QueryParam("text") String text){
 this.message = text;
 return message;
 }
...
}

Note that the add method specifies the @Path annotation, so it becomes accessible by appending the add string to
the URI that was specified in the class’s @Path. To input a new message stating Java, you would visit a URL using the
following format in your browser, which would pass the new message to the text variable:

http://your-host:port/ApplicationName/rest/simplerest/add?text=Java

Note ■ for the list of different content types that can be produced or consumed, please refer to table 8-2.

http://your-host:port/ApplicationName/rest/simplerest/add?text=Java

Chapter 8 ■ Building reStful WeB ServiCeS

119

Client API
Historically, it has involved many lines of code to invoke REST services. That is because in order to access a REST
service, clients using HttpUrlConnection had to be created. In the JAX-RS 2.0 release, a client API has been included,
allowing developers to follow a standard API for developing clients.

To use the client API, obtain an instance of javax.ws.rs.client.Client by calling the javax.ws.rs.client.
ClientBuilder newClient method. Once a Client instance is obtained, it can be configured by setting properties or
registering Provider and/or Feature classes. Properties are simply name-value pairs that can be passed to the client
via the setProperty method. Features are Providers that implement the Feature interface. A Feature can be used
for grouping related properties and Providers into a single unit, making configuration even easier.

Let’s take a look at a simple client that will call upon a target URI for the simplerest service that was created in
one of this chapter’s earlier examples. In the following example, a Client instance is obtained, and then a URI target is
set. The client goes on to request a response of type application/xml and then makes the call to get the request.

public class RestClientJava {

 public static void main(String[] args){
 // Obtain an instance of the client
 Client client = ClientBuilder.newClient();

 WebTarget webTarget = client.target("http://localhost:8080/IntroToJavaEE7/rest/simplerest");
 Response res = webTarget.request("text/plain").get();

 System.out.println(res.readEntity(String.class));
 }
}

As a result of running this client class, the output of the web service call will be written to the server log. Although
this client simply prints the result, a real client could be created using the same technique, and then it could process
the data into a more useful format. If one wished to create a web client, rather than a standard Java client, the same
JAX-RS client API can be used within a web application. For instance, the following JSF managed bean can be used to
implement the same tests as RestClientJava that was demonstrated above.

import javax.faces.application.FacesMessage;
import javax.faces.bean.ManagedBean;
import javax.faces.context.FacesContext;
import javax.ws.rs.client.Client;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;

@ManagedBean(name="restClientOne")
public class RestClientOne {

 private String clientOutput;

 // May be able to do @Inject before final release
 public void testServiceOne(){
 // Obtain an instance of the client
 Client client = javax.ws.rs.client.ClientBuilder.newClient();

http://localhost:8080/IntroToJavaEE7/rest/simplerest

Chapter 8 ■ Building reStful WeB ServiCeS

120

 WebTarget webTarget = client.target("http://localhost:8080/IntroToJavaEE7/rest/simplerest");
 Response res = webTarget.request("text/plain").get();

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(
 FacesMessage.SEVERITY_INFO, "Invoked test client",
 "Invoked test client"));
 setClientOutput(res.toString());

 }

 /**
 * @return the clientOutput
 */
 public String getClientOutput() {
 return clientOutput;
 }

 /**
 * @param clientOutput the clientOutput to set
 */
 public void setClientOutput(String clientOutput) {
 this.clientOutput = clientOutput;
 }

}

Web Resource Targets
The first step toward invoking a web resource is to make a call to a target. This can be done in a couple of ways. The
previous example demonstrated the use of the Client target method, which accepts a URI and returns a WebTarget.

WebTarget myTarget = client.target("http://somehost.com/service");

Once the target has been obtained, a number of things can be done with it. A request can be made against it, as in
the RestClientOne example, by invoking the target’s request method. A target can also be further qualified by calling
its path method and passing the next sequence in a URI path.

WebTarget myTarget =
 client.target("http://somehost.com/service").path("one");

A path can also contain dynamic content in the form of URI template parameters. To include a template
parameter, wrap the dynamic portion of the path in curly brackets, as in { }, and then chain a call to the pathParam
method, passing the name-value pair of the parameter.

WebTarget myTarget =
 client.target("http://somehost.com/service").path("one").path("{code}")
 .pathParam("code","100375");

http://localhost:8080/IntroToJavaEE7/rest/simplerest
http://somehost.com/service
http://somehost.com/service%22).path(%22one
http://somehost.com/service%22).path(%22one%22).path(%22%7Bcode

Chapter 8 ■ Building reStful WeB ServiCeS

121

WebTarget objects are immutable, in that methods for altering WebTargets, such as path, return new instances of
WebTarget. This pattern is very similar to the Builder pattern, although there is no build() method call. WebTargets
can also be configured by registering features or providers via a call to the target’s register method, passing either
type of class.

client.register(Feature.class)
client.register(Provider.class)

An example of a basic provider class that implements MessageBodyWriter is as follows:

@Provider
public class MyProvider implements WriterInterceptor {

 @Override
 public void aroundWriteTo(WriterInterceptorContext ctx) throws IOException,
WebApplicationException {
 String customMessage = "This is a custom message";
 OutputStream os = ctx.getOutputStream();
 ctx.proceed();
 os.write(customMessage.getBytes());
 }

}

Note ■ WriterInterceptor wraps calls to MessageBodyWriter.writeTo(). that wrapping makes it easy to develop
a MessageBodyWriter solution by simply implementing the aroundWriteTo method.

Now let’s take a look at how this provider class is registered to a web service client. In the following client, the
MyProvider interceptor is applied to the client for testing.

public static void main(String[] args){
 // Obtain an instance of the client
 Client client = ClientBuilder.newClient();
 client.register(MyProvider.class);
 WebTarget webTarget = client.target("http://localhost:8080/IntroToJavaEE7/rest/simplerest");
 Response res = webTarget.request("text/plain").get();

 System.out.println(res.readEntity(String.class));
 }

Obtaining a Response
The example at the beginning of this section demonstrated a simple client that returns an XML response. However,
it is possible to return different response types by passing different Strings or MediaType fields to the client target
request method. Table 8-2 lists the different MediaType fields that can be used. All fields listed within the table that
contain a _TYPE suffix are of type MediaType, whereas the others are static String types.

http://localhost:8080/IntroToJavaEE7/rest/simplerest

Chapter 8 ■ Building reStful WeB ServiCeS

122

To obtain a requested resource, call the WebTarget.request().get() method, which will return a
javax.ws.rs.core.Response object. The returned Response can be used to process the results accordingly,
depending upon the results you are trying to achieve within the client. In the example, the Response object’s
readEntity method is called, which simply returns the results in the requested format. In the example, a
String.class is passed to the readEntity method, implying that a response should be returned in String format.
To see a complete list of methods that can be called against a Response object, please refer to the online
documentation (http://docs.oracle.com/javaee/7/api/javax/ws/rs/core/Response.html) because the list is
quite lengthy.

It is possible to filter a response by chaining methods, as needed, to specify headers, cookies, and so on, off
of the request method. Each of these chained method calls returns a Builder object, which can be further built

Table 8-2. MediaType Fields

Field String

APPLICATION_ATOM_XML "application/atom+xml"

APPLICATION_ATOM_XML_TYPE

APPLICATION_FORM_URLENCODED "application/x-www-form-urlencoded"

APPLICATION_FORM_URLENCODED_TYPE

APPLICATION_JSON "application/json"

APPLICATION_JSON_TYPE

APPLICATION_OCTET_STREAM "application/octet-stream"

APPLICATION_OCTET_STREAM_TYPE

APPILCATION_SVG_XML "application/svg+xml"

APPLICATION_SVG_XML_TYPE

APPLICATION_XHTML_XML "application/xhtml+xml"

APPLICATION_XHTML_XML_TYPE

APPLICATION_XML "application/xml"

APPLICATION_XML_TYPE

MEDIA_TYPE_WILDCARD "*"

MULTIPART_FORM_DATA "multipart/form-data"

MULTIPART_FORM_DATA_TYPE

TEXT_HTML "text/html"

TEXT_HTML_TYPE

TEXT_PLAIN "text/plain"

TEXT_PLAIN_TYPE

TEXT_XML "text/xml"

TEXT_XML_TYPE

WILDCARD "*/*"

WILDCARD_TYPE

http://docs.oracle.com/javaee/7/api/javax/ws/rs/core/Response.html

Chapter 8 ■ Building reStful WeB ServiCeS

123

upon. The methods that can be chained to further build the request are cookie(Cookie); cookie(String, String);
header(String, Object); headers(MultivaluedMap<String, Object>); and register.

Returning Entities
Sometimes there is a requirement to return a type other than Response from a web resource. In these cases, it is
possible to obtain an entity type by passing the entity class to the get call. The following lines of code demonstrate
how to return a Jobs entity, rather than a standard Response object:

Client client = ClientBuilder.newClient();

Jobs jobs = client.target("http://localhost:8080/IntroToJavaEE7/rest/jobsSearch")
.request("application/xml").get(Jobs.class);

System.out.println(jobs.getJobId() + " - " + jobs.getTitle());

In cases where entities are being returned, the request type is required to be application/xml or
APPLICATION_XML_TYPE.

Invoking at a Later Time
There are cases when it makes sense to obtain a request and prepare it for execution but not invoke that request until
a later time. In such cases, you can prepare an Invocation that can be executed at a later time. In the following lines of
code, an Invocation is created by making a request to a WebTarget and then calling the buildGet method.

Invocation inv1 = client.target("http://localhost:8080/IntroToJavaEE7/rest/simplerest")
 .request("text/plain").buildGet();
// Sometime later...
Response res = inv1.invoke();

If you were posting a response, the buildPost method could be called against the WebTarget instead, as shown here:

Invocation inv1 = client.target("http://localhost:8080/IntroToJavaEE7/rest/makeithappen")
 .request("text/plain").buildPost(order);
 Response res = inv1.invoke();

Note ■ to asynchronously execute an Invocation, call the invocation submit method, rather than the invoke method.

Invocation objects can be configured similarly to WebTarget and Client objects. Filters, interceptors, properties,
features, and providers can be configured on an Invocation by calling the register method and passing the
appropriate configuration instance, as demonstrated here:

// Assume that inv1 is an Invocation instance
String result = inv1.register(MyInterceptor.class).invoke(String.class);

Note ■ to learn more about filters and interceptors, read the “filters and interceptors” section in this chapter.

http://localhost:8080/IntroToJavaEE7/rest/jobsSearch
http://localhost:8080/IntroToJavaEE7/rest/simplerest
http://localhost:8080/IntroToJavaEE7/rest/makeithappen

Chapter 8 ■ Building reStful WeB ServiCeS

124

WebTarget Injection
A WebTarget can be injected into any JAX-RS managed resource by specifying the @Uri annotation and passing the
WebTarget URI. In following example, where a WebTarget resource is injected into a JAX-RS resource to demonstrate
this concept:

@Path("/orderservice")
public class OrderService {
 @Uri("order/{id}")
 WebTarget orderId;

 //...
}

Filters and Interceptors
The concept of filters and interceptors is analogous to the post office processing your mail before it comes to your
address. Rather than a message being delivered directly from point A to point B, it is first routed to one or more postal
offices where it is further processed before reaching point B. Web resource filters and interceptors apply that same
concept to requests or responses that are being processed via a web service. If a filter or interceptor is bound to a web
resource, then it will be invoked at some point in the life cycle of a request or response to that web resource. The type
of filter or interceptor determines at what point in the life cycle it is applied. Interceptors (otherwise known as entity
interceptors) wrap around a method invocation at a specified extension point. Filters, on the other hand, execute code
at a specified extension point, but they are not wrapped around methods. In the next few sections, you will take a
closer look at each and how they are used.

Filters
An extension point is an interface that includes a method, which is responsible for filtering or intercepting the request
or response. Filters have four such extension point interfaces: ClientRequestFilter, ClientResponseFilter,
ContainerRequestFilter, and ContainerResponseFilter. The name of the extension point helps describe to
what a filter is applied and at what point. ClientRequestFilter and ClientResponseFilter are for use with
the JAX-RS Client API. A ClientRequestFilter is applied before an HTTP request is delivered to the network,
and a ClientResponseFilter is applied when a server response is received and before control is returned to the
application. ContainerRequestFilter and ContainerResponseFilter classes are for use with the JAX-RS Server API.
Similar to the client-side filters, a ContainerRequestFilter is applied upon receiving a request from a client, and
a ContainerResponseFilter is applied before the HTTP response is delivered.

Before going any further, let’s take a look at an example of a client filter, as well as an example of a server filter.
The client filter will be used to print a message to the server log when a request is received or before a response is sent.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.ext.Provider;

Chapter 8 ■ Building reStful WeB ServiCeS

125

@Provider
class AlertFilter implements ContainerRequestFilter,
 ContainerResponseFilter {

 @Override
 public void filter(ContainerRequestContext requestContext)
 throws IOException {
 alert(requestContext);
 }

 @Override
 public void filter(ContainerRequestContext crc, ContainerResponseContext crc1) throws
IOException {
 alert(crc);
 }

 public void alert(ContainerRequestContext context) {

 try(InputStream in = context.getEntityStream();) {
 if (in != null) {
 InputStreamReader inreader = new InputStreamReader(in);
 BufferedReader reader = new BufferedReader(inreader);
 String text = "";

 while ((text = reader.readLine()) != null) {
 System.out.println(text);

 }

 }
 } catch (IOException ex) {
 // Error handling
 }
 }
}

Note ■ Both filter methods in the implementation are required because each accepts different parameters,
and implementing the ContainerRequestFilter and ContainerResponseFilter require it.

Note that the AlertFilter class is decorated with the @Provider annotation. That is because all filters and
interceptors are provider classes and must be annotated as such. The filter must implement ContainerRequestFilter
and ContainerResponseFilter since it is a server-side filter implementation. These two classes provide information
regarding the filter, such as URIs, headers, and so on.

Filters are grouped into chains, and each of the extension points contains their own filter chain. The filters in
the chain are executed in order of precedence via priority. To learn more about setting the priority, please refer to the
“Filter and Interceptor Priorities” section. If a request filter needs to be executed upon receiving a request but before
a resource is matched, then the @PreMatching annotation can be placed on that filter.

Chapter 8 ■ Building reStful WeB ServiCeS

126

Note ■ the abortWith(Response) method of a ClientRequestFilter or ContainerResponseFilter can stop
execution of the filter chain.

Entity Interceptors
As mentioned in the previous section, an extension point is an interface that includes a method, which is
responsible for filtering or intercepting the request or response. Entity interceptors have two such extension
points: ReaderInterceptor and WriterInterceptor. An entity interceptor class must implement one or
both of these extension points. Also mentioned previously, entity interceptors wrap calls to methods. More
specifically, MessageBodyWriter implementations wrap calls to the writeTo method, whereas MessageBodyReader
implementations wrap calls to the readFrom method.

Let’s take a look at an interceptor so that you can more easily visualize how they are coded. In the following
example, the aroundWriteTo method converts an OutputStream to a ZipOutputStream:

@Provider
public class ZipEncoder implements WriterInterceptor {

 public void aroundWriteTo(WriterInterceptorContext ctx) throws IOException,
WebApplicationException {
 ZipOutputStream zip = new ZipOutputStream(ctx.getOutputStream());

 try {
 zip.putNextEntry(new ZipEntry("Test));
 ctx.setOutputStream(zip);
 ctx.proceed();
 } catch (ZipException ex){
 System.out.println("ZipEncoder ERROR: " + ex);
 } finally {
 zip.finish();
 }
 }
}

As you can see in the example, a aroundWriteTo method must accept a WriteInterceptorContext argument,
whereas a readFrom method must accept a ReaderInterceptorContext argument. These arguments provide read and
write access to any parameters that are passed into the wrapped methods. Entity interceptors can be chained, just like
filters. To proceed to the next interceptor in the chain, an interceptor must call its proceed method.

Binding Filters and Interceptors
Filters and interceptors must be associated to application classes or methods, and this process is also known as
binding. The default type of binding is global binding, and any filter or interceptor that does not include annotations
is bound globally. Global binding associates the filter or interceptor with all resource methods (those annotated with
@GET, @POST, and so on) in an application. That said, any time a resource method is invoked, all globally bound filters
and interceptors are processed as well.

Filters and interceptors can be registered manually via Application or Configuration, or they can be registered
dynamically. To indicate that a filter or interceptor should be registered dynamically, it can be annotated with
@Provider. If a filter or interceptor is not annotated as such, it must be registered manually.

Chapter 8 ■ Building reStful WeB ServiCeS

127

To manually bind a filter or interceptor to a resource method, the filter or interceptor class must be denoted
with an @NameBinding annotation. An @NameBinding annotation can be coded just like a standard annotation, but
the annotation implementation should also include the @NameBinding annotation in its interface. The following
annotation code could be used to create an @NameBinding annotation that might be placed on a filter that is
responsible for firing alerts:

@NameBinding
@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
public @interface Alerter { }

To associate the @NameBinding with a filter or interceptor, simply annotate the filter or interceptor class with it.
The following AlertFilter class is a filter implementation that is denoted with the @Alerter annotation:

@Provider
@Alerter
class AlertFilter implements ContainerRequestFilter,
 ContainerResponseFilter {

...

}

That filter can now be bound to a resource method by annotating the resource method with the same @
NameBinding as the filter class, as demonstrated here:

@GET
@Produces("text/html")
@Alerter
public String getJobs(){
 ...
}

Note ■ this same concept can be applied to Application subclasses in order to globally bind the filter or interceptor.

Setting Priorities
As mentioned in the previous sections, filters and interceptors can be chained. Chains of filters or interceptors invoke
individual filters or interceptors based upon a given priority. To assign priority to a filter or interceptor, denote the
implementation class with the @Priority annotation. The Priorities class in JAX-RS is used to specify the type of
priority that needs to be set. There are built-in priorities for security, header decorators, decoders, and encoders.
In the following example, the priority of a filter, the AlertFilter that was introduced in the previous section, is set to
a priority of Priorities.USER:

@Provider
@Alerter
@Priority(Priorities.USER)

Chapter 8 ■ Building reStful WeB ServiCeS

128

class AlertFilter implements ContainerRequestFilter,
 ContainerResponseFilter {

 @Override
 public void filter(ContainerRequestContext requestContext)
 throws IOException {
 alert(requestContext);
 }
...

Table 8-3 lists the different priorities that are available by default, along with their priority number.

Table 8-3. Priority Values

Priority Number

Priorities.AUTHENTICATION 1000

Priorities.AUTHORIZATION 2000

Priorities.HEADER_DECORATOR 3000

Priorities.ENTITY_CODER 4000

Priorities.USER 5000

The default priority, if nothing is specified, is Priorities.USER.

Asynchronous Processing
Asynchronous processing with JAX-RS is available for both the Client API and Server API. On the server side, it is
possible for a resource method to suspend a client connection and then resume it at some point in the future when
the response becomes available. To make this occur, the method that is responsible for receiving requests within the
web resource must accept an @Suspended final AsyncResponse argument. It is assumed that this method will be
performing some long-running task, and hence it will be made asynchronous in order to achieve better performance.
The AsyncResponse argument will be called at some point in the future when the long-running task has completed,
and its resume method will be invoked.

Asynchronous tasks usually involve the spawning of a thread, which will be used to run a process in the
background. JAX-RS asynchronous processing is no different; the long-running operation should occur within
a Runnable instance, and the AsyncResponse resume method should be called at the end of the task within the
Runnable. The ManagedExecutorService, part of the new Java EE Concurrency API (covered in Chapter 11), can be
used to submit the Runnable for processing. The following example demonstrates this process:

@Path("/async/longRunningservice")
public class LongRunningService {

 @Resource(name = "concurrent/BatchExecutor")
 ManagedExecutorService mes;

Chapter 8 ■ Building reStful WeB ServiCeS

129

 @GET
 public void longRunningOp(@Suspended final AsyncResponse ar) {
 mes.submit(
 new Runnable() {
 public void run() {
 // Long running operation
 ar.resume("Return asynchronously!");
 }
 });
 }
}

An EJB resource can also be utilized in an asynchronous manner, although coded a bit differently. A web resource
method within an EJB can denoted with the @Asynchronous annotation to signify that the method contents are to
be processed asynchronously. The method should accept the same @Suspended AsyncResponse argument, and that
argument’s resume method should be invoked at the end of the long-running process. There is no need to create a
Runnable or work with an Executor in an EJB web resource because the @Asynchronous annotation takes care of that
detail. The EJB container automatically allocates the resources necessary to handle the asynchronous operation. The
following example demonstrates the coding of an asynchronous method within an EJB:

...
@GET @Asynchronous
public void longRunningOp(@Suspended AsyncResponse ar){
 // Long running operation
 ar.resume("Return asynchronously");
}

Note that there is no special treatment that needs to be done, with regard to threading or utilization of Runnable.
Everything just works because the EJB container takes care of the concurrency.

Resource Context
The JAX-RS API provides contexts that can be used to obtain metadata information about the application deployment
context and/or the context of individual requests. To obtain metadata regarding context, the required metadata can
be injected into a web resource by specifying the @Context annotation along with the context type you want to inject.
For instance, if there is a requirement to obtain metadata regarding an application’s configuration, an instance of the
application-supplied Application subclass can be injected into a web resource class field or method parameter by
specifying the @Context annotation.

@Context Application app;

Other contexts are made available via the @Context annotation as well. Table 8-4 describes the different
context types.

Chapter 8 ■ Building reStful WeB ServiCeS

130

Summary
The JAX-RS API has been re-worked to enable more customization of REST services. Along with an expanded API
for creating services, a client API has been included with JAX-RS 2.0, providing another standard means for which to
create stand-alone or web clients. Features such as asynchronous processing and filters will increase the capability of
services, while making them more useable via rich clients such as those written in HTML5.

Table 8-4. Context Types

Context Type Description

Application Provides information regarding application configuration

UriInfo Provides static or dynamic information regarding a request URI

HttpHeaders Provides access to request header information, either in a map format or via convenience
methods

Request Provides support for content negotiation and preconditions

SecurityContext Provides information about the security of a request

Providers Allows for a lookup of provider instances

ResourceContext Provides access to the instantiation and initialization of resource or subresource classes in the
per-request scope

131

Chapter 9

WebSockets and JSON-P

The Java EE 7 platform aims to provide a common ground for developing Java Enterprise solutions that incorporate
HTML5 technology. As such, there are a few core features that have been added to Java EE 7, allowing for better
bi-directional support of HTML5.

This chapter will focus on examples that demonstrate these HTML5 application programming interfaces (APIs).
You will learn how to make use of WebSockets and JSON-P so that your application’s client-server communication can
become seamless, whether the user interface is written with HTML5, JSF, or another markup language.

WebSockets
The Java EE 7 platform eases communication between the client and the server via a technology named WebSockets,
enabling more parity with the HTML5 standard. WebSockets are full-duplex communication mechanisms that
allow for both text and binary messages to be sent between clients and servers, without the HTTP request/response
lifecycle. WebSockets allow either the client or the server to send a message at any time, providing an asynchronous
solution for delivering data while the user is performing a task, most often a browser task or event.

To get started, it is useful to familiarize yourself with a few of the most common terms that you may come across
when reading about WebSockets. Here are some terms to know:

Connection: Networking connection between two endpoints that are utilizing the
WebSocket protocol.

Endpoint: A Java component that is stationed at one end of a communication between
two peers.

Client Endpoint: Initiates connections to a peer, but may not accept connections.

Server Endpoint: Accepts WebSocket connections from peers, but cannot initiate
connections.

Peer: Represents the opposite participant from an endpoint in a WebSocket
communication.

Session: Represents a sequence of WebSocket connections between endpoint and a single peer.

A WebSocket application consists of endpoints that can be created in a couple of different ways. The first way
to create an endpoint is to implement the WebSocket API interfaces, also referred to as a programmatic endpoint.
The second is to utilize annotations from the WebSocket API to decorate a “Plain Old Java Object,” or POJO, also
referred to as an annotated endpoint. If using the second means, the implementation creates the appropriate objects
to deploy the POJO as a WebSocket endpoint at runtime. Endpoints that are designed to listen for incoming
requests are known as ServerEndpoints. Likewise, endpoints that are designed to initate requests and not to
listen are known as ClientEndpoints. To see the complete Javadoc for WebSockets, please refer to it online at:
http://docs.oracle.com/javaee/7/tutorial/doc/websocket.htm#GKJIQ5.

http://docs.oracle.com/javaee/7/tutorial/doc/websocket.htm%23GKJIQ5
http://docs.oracle.com/javaee/7/tutorial/doc/websocket.htm%23GKJIQ5

Chapter 9 ■ WebSoCketS and JSon-p

132

Consuming Messages
A server-side class can accept messages from clients by configuring it as a WebSocket endpoint. To develop a
WebSocket endpoint, you can utilize an annotation-based approach or an interface implementation approach.
To use annotations for creating a WebSocket server endpoint, create a Java “Plain Old Java Object” POJO, and
annotate it with @ServerEndpoint (javax.websocket.server.ServerEndpoint). The @ServerEndpoint annotation
accepts a String-based path attribute, which is used to indicate the URI path at which the server is available to accept
client messages. Therefore, when the server is started, the specified path would be appended to the end of the
context path and application name in which the WebSocket resides. Additionally, a path may include one or more
string-based parameters after the server endpoint to pass additional parameters to subsequent method calls.
By initiating a call to that URL, a method annotated with @OnMessage (javax.websocket.OnMessage), will be invoked
to process the message that is sent, and any additional parameters may be accepted via the inclusion of the @PathParam
annotation within the list of parameters for that method’s signature. There are two other important methods within
a WebSocket server endpoint, and those are the methods that are invoked when a connection is established and when
it is closed. The method that is to be invoked when the connection has been established should be annotated with
@OnOpen, whereas the method that is to be invoked when the connection is closed should be annotated with @OnClose.

Let’s dive a bit deeper into the three important methods for implementing a WebSocket endpoint. Each of the
three methods can accept a number of optional parameters. To begin, it should be noted that each of the methods
accepts zero or more strings annotated with @PathParam. As mentioned previously, these parameters refer to strings
that have been appended to the WebService endpoint URI.

The @OnMessage method can accept the following three types of parameters:

•	 javax.websocket.Session

any number of strings annotated with •	 @PathParam

the message itself•	

The @OnOpen method can accept the following three types of parameters:

•	 javax.websocket.Session

an •	 EndpointConfig instance (Contains metadata regarding the endpoint configuration)

any number of strings annotated with •	 @PathParam

Lastly, the @OnClose method can accept any of the following three types of parameters:

•	 javax.websocket.Session (Not accessible after the connection is closed)

•	 javax.websocket.CloseReason (Contains the reason why connection was closed)

any number of strings annotated with •	 @PathParam

In the example below, a class named AcmeChatEndpoint is annotated as a WebSocket, so it is accessible to
clients as an endpoint for receiving messages, and returning a response. When initiating communication with
the WebSocket endpoint, the client must utilize the URL that contains a scheme of “ws”, rather than “http”
(e.g., ws://localhost:8080/AppName/ServerEndpoint). The “ws” URI scheme was introduced by the WebSocket
protocol, and as such, indicates that the URI is used for communication with a WebSocket. In this example, a client
can send a message to the server via the AcmeChatEndpoint WebSocket, and the server can send a message back at
the same time, because WebSockets allow for full-duplex communication, as opposed to half-duplex communication,
which is offered by HTTP. Full-duplex communication is an HTML5 standard, accomplishing similar functionality to
Asynchronous JavaScript and XML (AJAX), which utilizes a request-response communication.

In the following example, a simple POJO class, named org.javaee7.chapter09.AcmeChatEndpoint, is annotated
to indicate that it should be accessible via the web as a WebSocket endpoint. The class contains a method named
messageReceiver, which is annotated with @OnMessage to make it accessible to a client as a callable message consumer.

Chapter 9 ■ WebSoCketS and JSon-p

133

@ServerEndpoint("/acmechat")
public class AcmeChatEndpoint {

 /**
 * Message receiver method
 *
 * @param message
 * @return
 */
 @OnMessage
 public String messageReceiver(String message) {
 System.out.println("Received message:" + message);
 // Do something with message
 return message;
 }

 @OnOpen
 public void onOpen(Session session) {
 System.out.println("onOpen: " + session.getId());
 // Do something with session object
 }

 @OnClose
 public void onClose(Session session) {
 System.out.println(session.getId());
 // Do something with session object
 }
}

The WebSocket endpoint will be accessible to clients at the URL ws://localhost:8080/IntroToEE7/acmechat.
When a message is sent from a client to the endpoint, it is sent to the messageReceiver method, where is processed
accordingly. In this case, a simple String message is returned to the client. Note that the messageReceiver method
could have accepted a number of string-based parameters, as mentioned previously. For instance, to send a
messageId parameter to the endpoint, path of /acmechat/{messageId} could have been used, and the method would
then look as follows:

@OnMessage
public String messageReceiver(String message,
 @PathParam("messageId") String messageId) {
 System.out.println("Received message:" + message + messageId);
 // Do something with message
 return message;
}

To learn more regarding @PathParam, please see the online documeantation at
http://docs.oracle.com/javaee/7/api/javax/websocket/server/PathParam.html.

To implement a WebSocket endpoint without using annotations, extend javax.websocket.Endpoint. In such
a case, the endpoint implementation must override the onMessage method, and can optionally override onOpen
and onError. The following example class demonstrates a WebSocket endpoint using the interface implementation
approach.

http://docs.oracle.com/javaee/7/api/javax/websocket/server/PathParam.html

Chapter 9 ■ WebSoCketS and JSon-p

134

public class AcmeChatEndpointIf extends javax.websocket.Endpoint {

 @Override
 public void onOpen(Session session, EndpointConfig config) {
 // Implementation here
 }

 public void onClose(Session session){
 // Implementation here
 }

 public void onError(Session session){
 // Implementation here
 }

}

Creating WebSocket Clients
A POJO class can be made a WebSocket client by annotating it with @ClientEndpoint. Any POJO that is annotated
as such can be used to initiate, but will not listen for incoming requests and therefore contains on path specification.
The following code demonstrates an example of such a client.

@ClientEndpoint
public class AcmeChatClient {

 @OnOpen
 public void onOpen(Session session) {
 System.out.println("Connected to endpoint: " + session.getAsyncRemote());

 String name = "Message from the Acme Chat Client";

 session.getAsyncRemote().sendText(name);

 }

 @OnMessage
 public void processMessage(String message) {
 System.out.println("Received message in client: " + message);
 }
}

Utilizing a Simple Client
To test a WebSocket without creating the associated browser client page, make use of the
ContainerProvider.getWebSocketContainer() method. This method returns a WebSocketContainer object,
which can then be used to connect to an existing web socket endpoint. The following class demonstrates how to test
a connection to a WebSocket endpoint using a simple client.

Chapter 9 ■ WebSoCketS and JSon-p

135

public class WebSocketClient {

 public static void main(String[] args) {
 try {
 WebSocketContainer container = ContainerProvider.getWebSocketContainer();
 String uri = "ws://localhost:8080/IntroToEE7/acmechat/";
 System.out.println("Connecting to " + uri);
 container.connectToServer(AcmeChatEndpoint.class, URI.create(uri));
 // send and receive messages
 } catch (DeploymentException | IOException ex) {
 Logger.getLogger(Client.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
}

Sending Messages
The ability to asynchronously send messages (text or binary) from a browser client to a server defines the foundation
of AJAX and WebSocket (in HTML5) capability. The WebSockets API allows browser clients to send messages
asynchronously to the server via JavaScript calls to a WebSocket endpoint. Conversely, the API allows clients to
asynchronously receive messages and process them accordingly via a series of JavaScript functions. The following
example demonstrates how to send a message to a WebSocket endpoint by clicking on a button in a web page.
When the button is clicked, a JavaScript function named acmeChatRelay is invoked, which embodies the processing
implementation.

To send a message to a WebSocket endpoint via a JavaScript function, the first task is to confirm whether the
user’s browser is capable of working with WebSockets (HTML5 compliant). This confirmation can be done by using
a conditional statement to verify if the “WebSocket” object is available within the client by using the following
if-statement, written in JavaScript.

if("WebSocket" in window){
...
} else {
...
}

If the client browser is capable of working with WebSockets, then the implementation inside of the if block is
invoked, otherwise, the implementation within the else block is invoked. To process the WebSocket message, a new
WebSocket object must be instantiated to establish the server connection, which is done by passing the URL to the
WebSocket endpoint to a new WebSocket object.

var ws = new WebSocket("ws://localhost:8080/IntroToEE7/acmechat");

The constructor for creating a browser client JavaScript WebSocket takes either one or two parameters. The first
parameter is the URL of the server to which the WebSocket will connect, and the second optional parameter is
a String of protocols that can be used for message transmission. The WebSocket object contains a handful of events
that are utilized to help implement message processing. Table 9-1 lists the different events that can occur in the
lifecycle of a WebSocket object, along with a description of what they do.

Chapter 9 ■ WebSoCketS and JSon-p

136

After the WebSocket object has been instantiated successfully, a connection to the server will be established,
which will cause the open event to occur. To process this event, assign a function to the onOpen handler, and process
events accordingly within that function. Messages can be sent to the server when the open event occurs, and this is
demonstrated within the example.

ws.onopen = function()
{
 // Web Socket is connected, send data using send()
 ws.send("Message to send");
 alert("Message is sent...");
};

Similarly, we can listen for any other events to occur, and then process tasks accordingly when they do. In the
example, when a message is received from the server, it is printed within an alert dialog. Also, in the example shown
below when the WebSocket is closed, an alert dialog is presented to the user.

The example does not demonstrate all of the possible ways that the WebSocket object in JavaScript can be
utilized. For instance, we could send messages to the server by invoking the send() method, and passing the data
that we wish to send as a parameter. The close() method can be called on a WebSocket to manually terminate the
existing connection. WebSocket objects also contain the helpful attributes, readyState and bufferedAmount, that
can be used for obtaining information about a connection. The readyState attribute will advise the current state of
the WebSocket connection via a returned number, and the bufferedAmount attribute value represents the number of
bytes of UTF-8 text that have been queued using the send() method. Table 9-2 displays the different possible values
for the readyState attribute, along with a description of each.

Table 9-1. JavaScript WebSocket Object Events

Event Handler Method Description

open onOpen occurs when the WebSocket connection is established

close onClose occurs when the WebSocket connection is closed

error onError occurs when there is a communication error

message onMessage occurs when data is received from the server

Table 9-2. JavaScript WebSocket readyState Values

Value Description

0 connection not yet established

1 connection established, and communication is possible

2 connection going through closing handshake

3 connection is closed and cannot be opened

Ready to dig into the code? In the following example, a JavaScript solution is engineered that can be used to send
messages from a client browser to a WebSocket endpoint. Invoke the JavaScript function via an action event that is
bound to an HTML input tag within the view. In the following example, a button contains an onclick attribute that
will invoke a JavaScript function named acmeChatRelay. The acmeChatRelay function is responsible for opening
a session with a WebSocket endpoint so that messages can be sent. The listing below is an excerpt from the <head>
section of the /layout/custom_template.xhtml JSF view, which is located within the web directory of the
IntroToEE7 project.

Chapter 9 ■ WebSoCketS and JSon-p

137

...
<h:head>
<script type="text/javascript">
 function acmeChatRelay()
 {
 alert("working");
 if ("WebSocket" in window)
 {
 alert("WebSocket is supported by your Browser!");
 // Let us open a web socket
 var ws = new WebSocket("ws://localhost:8080/IntroToEE7/acmechat");
 ws.onopen = function()
 {
 // Web Socket is connected, send data using send()
 ws.send("Message to send");
 alert("Message is sent...");
 };
 ws.onmessage = function(evt)
 {
 var received_msg = evt.data;
 alert("Message from server: " + received_msg);
 };
 ws.onclose = function()
 {
 // websocket is closed.
 alert("Connection is closed...");
 };
 }
 else
 {
 // The browser doesn't support WebSocket
 alert("WebSocket NOT supported by your Browser!");
 }
 }
 </script>
</h:head>

The following excerpt is taken from web/chapter09/acmeChatClient.xhtml, and it demonstrates how to invoke
the WebSocket call.

...
<h:body>
 <ui:composition template="../layout/custom_template.xhtml">
 <ui:define name="content">
 <h:form>
 <p>
 Welcome to the Acme Chat Client. Use the
 </p>
 <h:inputTextarea id="messageText" cols="30" rows="10"/>

Chapter 9 ■ WebSoCketS and JSon-p

138

 <input id="wsRelay" type="button" value="Send Message"
 onclick="acmeChatRelay();"/>

 </h:form>
 </ui:define>
 </ui:composition>
 </h:body>
...

When the button is pressed, the message will be sent from the browser client to the WebSocket endpoint, and
a message will be returned from the endpoint to the client. Alerts will be displayed as the asynchronous events occur.

Message Types
As noted before, WebSockets can be very useful for sending different types of messages. In fact, just about any Java
object can be sent as a WebSocket message. Classes known as encoders and decoders can be utilized to facilitate
different message types. A message can be encoded in to any Java object type by implementing a custom encoder
class, and similarly, an object can be decoded back into a message by implementing a custom decoder class. Encoders
and Decoders can be created for the processing of the following types of messages:

Text Messages•	

Binary Messages•	

Pong Messages (Messages containing metadata regarding the WebSocket connection)•	

Let’s take a look at a simple example to demonstrate how to encode a String based message into a Java object,
and then decode it back into a message later. The class below, AjaxChatObj, is a simple Java object that can be used to
hold String based messages.

public class AcmeChatObj {
 private String message;

 /**
 * @return the message
 */
 public String getMessage() {
 return message;
 }

 /**
 * @param message the message to set
 */
 public void setMessage(String message) {
 this.message = message;
 }

}

Chapter 9 ■ WebSoCketS and JSon-p

139

To encode a string-based message into an object of type AcmeChatObj, an encoder can be registered with a
WebSocket endpoint by specifying a value for the @ServerEndpoint annotation encoders attribute. In this example,
an encoder named AcmeChatEncoder will be used to encode string-based messages into objects of type AcmeChatObj.
The example code is as follows:

public class AcmeChatTextEncoder implements javax.websocket.Encoder.Text<AcmeChatObj> {

 @Override
 public String encode(AcmeChatObj object) throws EncodeException {
 return object.getMessage();
 }

 @Override
 public void init(EndpointConfig config) {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 @Override
 public void destroy() {
 throw new UnsupportedOperationException("Not supported yet.");
 }

}

Similarly, a decoder class can be implementd to convert the AcmeChatObj back into a string. To register a decoder
with a WebSocket endpoint, specify a value for the @ServerEndpoint annotation decoders attribute. In this example,
a decoder named AcmeChatDecoder will be used to decode an AcmeChatObj into a String. The example code is as follows:

public class AcmeChatTextDecoder implements javax.websocket.Decoder.Text<AcmeChatObj> {

 @Override
 public AcmeChatObj decode(String s) throws DecodeException {
 AcmeChatObj obj = new AcmeChatObj();
 obj.setMessage(s);
 return obj;
 }

 @Override
 public boolean willDecode(String s) {
 if (s != null) {
 return true;
 } else {
 return false;
 }
 }

 @Override
 public void init(EndpointConfig config) {
 throw new UnsupportedOperationException("Not supported yet.");
 //To change body of generated methods, choose Tools | Templates.
 }

Chapter 9 ■ WebSoCketS and JSon-p

140

 @Override
 public void destroy() {
 throw new UnsupportedOperationException("Not supported yet.");
 //To change body of generated methods, choose Tools | Templates.
 }
}

As mentioned previously, the encoder and decoder classes can be registered with a WebSocket endpoint by
specifying the encoders and decoders attributes, respectively. The following example demonstrates how to do so for
registering the example classes to the AcmeChatEndpoint WebSocket endpoint:

...
@ServerEndpoint(value="/acmechat", encoders=AcmeChatTextEncoder.class,
 decoders=AcmeChatTextDecoder.class)
...

JavaScript Object Notation—JSON
The universally supported JSON (JavaScript Object Notation) object has become a widely adopted solution for
sending data between web communication endpoints. HTML5-based web applications can utilize JSON to transport
data, using WebSockets, Ajax, or other transport technologies. The Java EE 7 platform provides the JSON-P API, which
introduces utilities that make it easier to build and work with JSON objects within the Java language. JSON-P, also
referred to as “JSON with padding,” has become the standard way to build JSON objects using Java.

This section will delve into the JSON-P API, which is part of the Java EE 7 platform. You will learn how to build
a JSON file using the API, read JSON, and parse JSON. These are barebones steps to producing data sets with JSON,
and they should get you on your way to building applications with JSON and HTML5! To see the complete Javadoc
for JSON, please refer to the online documentation at: http://docs.oracle.com/javaee/7/api/javax/json/
package-frame.html.

Building JSON
The JSON-P API includes a helper class that can be used to create JSON objects using the builder pattern. Using the
JsonBuilder class, JSON objects can be built using a series of method calls, each building upon each other, hence,
the builder pattern. Once the JSON object has been built, the JsonBuilder build method can be called to return
a JsonObject.

In the example in this section, we construct a JSON object that provides details regarding a book. The
JsonBuilder.add() method can be called to return a JsonObjectBuilder, which is a building block of a JSON object.
The add method is used to build components to the object, including name/value properties, much like that of a Map.
Therefore, the following line adds a property named title with a value of Intro to Java EE 7:

.add("title", "Intro to Java EE 7")

Objects can be embedded inside of one another, creating a hierarchy of different sections within one JsonObject.
In the example that follows, the first call to add initiates the build of an embedded JsonObjectBuilder, 'jsonJob',
within the JsonObjectBuilder in the example, providing an object name for the embedded structure, jsonJob.
Subsequent calls to add build sub-objects inside of the initial JsonObject by calling, passing the name/value of the
embedded object. Embedded objects can also contain properties, so to add properties to the embedded object, call
the add() method within the embedded object, nesting to as many levels as needed. JsonObjects can embody as

http://docs.oracle.com/javaee/7/api/javax/json/package-frame.html
http://docs.oracle.com/javaee/7/api/javax/json/package-frame.html

Chapter 9 ■ WebSoCketS and JSon-p

141

many embedded objects as needed. The following lines of code demonstrate the beginning and end of an embedded
object definition:

JsonObjectBuilder builder = Json.createObjectBuilder();
builder.add("jsonJob", Json.createObjectBuilder()
 .add("jobId", job.getJobId())
 .add("division", job.getDivision())
 .add("title", job.getTitle())
 .add("salary", job.getSalary()));

It is also possible that a JsonObject may have an array of related sub-objects. Arrays can consist of objects, and
even hierarchies of objects, arrays, etc. In the example that follows, the “jsonJob” object consists of a single array.
Once a JsonObject has been created, it can be passed to a client. WebSockets work well for passing JsonObjects
back to a client, but there are a bevy of different technologies available for communicating with JSON. The following
example class utilizes an EJB call to obtain Jobs entities, which are then used to build a JSON object.

import java.io.StringWriter;
import java.util.List;
import javax.ejb.EJB;
import javax.inject.Named;
import javax.json.Json;
import javax.json.JsonObject;
import javax.json.JsonObjectBuilder;
import javax.json.JsonWriter;
import org.javaee7.entity.Jobs;
import org.javaee7.jpa.session.JobsSession;

@Named
public class JsonController {

 @EJB
 JobsSession jobsFacade;

 public String buildJobs() {
 List<Jobs> jobs = jobsFacade.findAll();
 JsonObjectBuilder builder = Json.createObjectBuilder();
 StringBuilder json = new StringBuilder();
 for (Jobs job : jobs) {
 builder.add("jsonJob", Json.createObjectBuilder()
 .add("jobId", job.getJobId())
 .add("division", job.getDivision())
 .add("title", job.getTitle())
 .add("salary", job.getSalary()));
 JsonObject result = builder.build();
 StringWriter sw = new StringWriter();
 try (JsonWriter writer = Json.createWriter(sw)) {
 writer.writeObject(result);
 }
 json.append(sw.toString());
 }
 return json.toString();
 }
}

Chapter 9 ■ WebSoCketS and JSon-p

142

Once created, the JsonObject can be passed to a client for processing. In this example, the object sections are
printed to the server log, and the output looks similar to the following:

{"jsonJob":{"jobId":1,"division":"IT","title":"IT TITLE A","salary":60000}}

Persisting JSON
The JsonWriter class can be utilized to write a JsonObject to a Java writer object. A JsonWriter is instantiated by
passing a Writer object as an argument. Instantiating a JsonWriter will prepare the Writer object that had been
passed as an argument to write JSON format. After that Writer has been created, the JsonWriter writeObject()
method can be invoked, passing the JsonObject that is to be written. Once the JsonObject has been written, the
JsonWriter can be closed by calling its close() method. These are the only steps that are necessary for writing a
JSON object to a Java Writer class type.

The example below goes one step further and writes the JSON object to disk. In this case, a StringWriter
encapsulates the JsonWriter. To do so, a new FileWriter is instantiated, passing the name of the file that we wish
to create. Next, a BufferedWriter is created, passing the FileWriter that was previously instantiated. Lastly, the
contents of the StringWriter that contains the JSON object is written to the BufferedWriter by calling out.write().
Doing so writes the content to the File that was created. When this process is complete, a new JSON object will have
been written to disk.

The following example utilizes the JSON-P API to build a JSON object, and then store it to the file system. The
JsonWriter class makes it possible to create a file on disk and then write the JSON to that file.

public void writeJson() {
 try {
 JsonObject jsonObject = jsonController.buildJobsJson();
 StringWriter writer = new StringWriter();
 JsonWriter jsonWriter = Json.createWriter(writer);
 jsonWriter.writeObject(jsonObject);
 jsonWriter.close();
 writer.close();
 // Write file
 FileWriter fstream = new FileWriter("Jobs.json");
 BufferedWriter out = new BufferedWriter(fstream);
 out.write(writer.toString());
 out.close();
 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(
 FacesMessage.SEVERITY_INFO, "JSON Built",
 "JSON Built"));
 } catch (IOException ex) {
 System.out.println(ex);
 }
 }

Parsing JSON
In order to perform some tasks, a JSON object must be searched to find only the content that is desired and useful
for the current task. Utilizing a JSON parser can make jobs such as these easier, as a parser is able to break the
object down into pieces so that each different name/value pair or attribute can be examined as needed to locate the
desired result.

Chapter 9 ■ WebSoCketS and JSon-p

143

The javax.json.Json class contains a static factory method, createParser(), that accepts a bevy of input,
and returns an iterable JsonParser. Table 9-3 lists the different possible input types that are accepted via the
createParser() method.

Table 9-3. createParser Method Input Types

Input Type Method Call

InputStream createParser(InputStream in)

JsonArray createParser(JsonArray arr)

JsonObject createParser(JsonObject obj)

Reader createParser(Reader reader)

Once a JsonParser has been created, it can be made into an Iterator of Event objects. Each Event correlates to
a different structure within the JSON object. For instance, when the JSON object is created, a START_OBJECT event
occurs, adding a name\value pair that will trigger both a KEY_NAME and VALUE_STRING event. These events can be
utilized to obtain the desired information from a JSON object. In the example, the event names are merely printed to
a server log. However, in a real-life application, a conditional would most likely test each iteration to find a particular
event, and then perform some processing. Table 9-4 lists the different JSON events, along with a description of when
each occurs.

Table 9-4. JSON Object Events

Event Occurrence

START_OBJECT start of an object

END_OBJECT end of an object

START_ARRAY start of an array

END_ARRAY end of an array

KEY_NAME name of a key

VALUE_STRING value of a name\value pair in String format

VALUE_NUMBER value of a name\value pair in numeric format

VALUE_TRUE value of a name\value pair in Boolean format

VALUE_FALSE value of a name\value pair in Boolean format

VALUE_NULL value of a name\value pair as NULL

Obtain a JSON object that you would like to parse, and then parse it using the javax.json.Json createParser
utility. In the following example, a JSON file is read from disk, and then parsed to determine the hierarchy of events
within. Each of the events is printed to the server log as the JSON is being parsed.

public void parseObject() {
 Reader fileReader = new InputStreamReader(getClass().getResourceAsStream("BookObject.json"));
 JsonParser parser = Json.createParser(fileReader);
 Iterator<Event> it = parser.iterator();

Chapter 9 ■ WebSoCketS and JSon-p

144

 while (it.hasNext()) {
 Event ev = it.next();
 System.out.println(ev);
 }
 }

The resulting server log will look as follows:

START_OBJECT
KEY_NAME
VALUE_STRING
KEY_NAME
START_OBJECT
KEY_NAME
VALUE_STRING
KEY_NAME
VALUE_STRING
END_OBJECT
KEY_NAME
START_OBJECT
KEY_NAME
VALUE_STRING
KEY_NAME
VALUE_STRING
END_OBJECT
KEY_NAME
START_ARRAY
START_OBJECT
KEY_NAME
VALUE_STRING
KEY_NAME
VALUE_STRING
END_OBJECT
START_OBJECT
KEY_NAME
VALUE_STRING
KEY_NAME
VALUE_STRING
END_OBJECT
END_ARRAY
KEY_NAME
START_ARRAY
START_OBJECT
KEY_NAME
VALUE_STRING
KEY_NAME
VALUE_STRING
END_OBJECT
START_OBJECT
KEY_NAME
VALUE_STRING

Chapter 9 ■ WebSoCketS and JSon-p

145

KEY_NAME
VALUE_STRING
END_OBJECT
END_ARRAY

Utilizing APIs such as WebSockets and JSON-P can help to make applications more versatile and compliant with
HTML5. Asynchronous communication, such as WebSockets solutions, is a must-have for modern web applications.
Modern Java EE 7 applications that send and receive messages can now utilize standards by combining WebSockets
and JSON-P to create robust solutions.

Summary
The release of Java EE 7 comes a long way in revolutionizing the way in which Java enterprise applications are built.
HTML5 has changed the way that we interact with applications and/or websites via a browser. In order to make the
best use of HTML5, technologies such as WebSockets and JSON must be used. The WebSockets and JSON-P APIs
help to ensure that Java EE applications can be written to enable responsive and easy-to-use application interfaces.
Although these APIs have been recently added to Java EE, they can also be used with older techonlogies to help clear
the way for more advanced messaging and functionality.

147

Chapter 10

Java Message Service

The Java Message Service (JMS) is an API that allows software to create, edit, read, and send messages among other
software applications or components. The API allows resources to be created within an application server that
facilitate messaging capability in various contexts. The application server creates, houses, and maintains Connection
Factory and Destination resources. That being said, different application server implementations may have minor
differences in their JMS implementations.

In addition to the basic messaging facilities, JMS also provides the ability to send messages to destinations and
publish messages to subscriptions. This chapter contains examples that focus on basic concepts of JMS, as well as
some advanced techniques and new additions with Java EE 7. When following along with the examples, it should be
noted that JMS could be used in various situations for creating many different types of messages. That being said,
many of the examples in this chapter will be invoked using JSF view actions, although in real-life applications there
are many different ways to implement the sending and receiving of messages. From internal message invocation,
to scheduled tasks via an Enterprise JavaBean (EJB) timer, and even implementation of JMS messaging with EJB
message-driven beans, JMS can be utilized in many different contexts. After reading through the examples, you should
be able to apply the strategies utilized within the recipes in order to create the messaging system of your needs.

New to JMS 2.0 is a simplified API for sending and receiving messages. In this chapter, you will see the standard
API in comparison with the simplified API. The updated API also includes enhancements to message subscriptions,
delivery delay, and more. This chapter will touch upon these new features, providing examples to get you started for
using them within your own applications.

Brief Overview
JMS provides a facility for applications to send and receive messages in a loosely coupled manner. Senders
can publish messages to a JMS destination, and consumers can retrieve messages from those destinations via
subscription. Utilizing this messaging model, the sender and receiver do not need to know about each other; they only
need to know the types of messages being sent and consumed, along with the destination.

JMS offers a couple of different messaging domains that can be used, each providing different features so that
an application can utilize the one that makes the most sense for the particular solution. The two types are Point-To-
Point (PTP) and Publish/Subscribe (pub/sub). PTP messaging involves message queues, in which publishers can
send messages to a specific queue, and receivers extract messages from a specific queue. Queues have the following
characteristics:

Messages sent to a queue can have only one consumer.•	

Senders and receivers do not have to coordinate the sending/receiving process. The sender •	
publishes the message and the receiver consumes it, when available.

Receivers acknowledge a successful processing once they have consumed a message.•	

Chapter 10 ■ Java Message serviCe

148

The other type of messaging domain, pub/sub, is facilitated by means of message topics. Publishers address
messages to a specific topic, and subscribers can subscribe to a specific topic to consume messages. Topics differ from
queues because they can contain multiple messages, and the messages can have more than one consumer. Messages
sent to a topic are anonymous, meaning that publishers do not have to address to a specific consumer. Clients that
subscribe to a topic can only consume messages that have been sent to the topic after the subscription time, and
subscribers must remain active in order to continue consuming messages.

JMS Resources
The JMS API utilizes administrative resources in order to create and consume messages. We refer to these resources as
JMS resources. There are a couple of different types of JMS resources that can be created: Connection Resources and
Destination Resources. The Connection resources are used to create connections to a provider. There are three types
of connection resources that can be created:

ConnectionFactory: Instance of javax.jms.ConnectionFactory interface. Can be used to
create JMS Topics and JMS Queue types.

TopicConnectionFactory: Instance of javax.jms.TopicConnectionFactory interface

QueueConnectionFactory: Instance of javax.jms.QueueConnectionFactory interface

JMS connection factory resources are very similar to JDBC connection factories in that they provide a pool of
connections that an application can use in order to connect and produce a session. There are many attributes that can
be provided when creating connection factory resources:

Initial and Minimum Pool Size: The initial and minimum number of connections that will
be created and maintained by the connection pool.

Maximum Pool Size: The maximum number of connections that can be created within the
pool.

Pool Resize Quantity: The number of connections that will be removed when the pool idle
timeout expires.

Idle Timeout: The maximum amount of time that connections can remain in the pool if
they are idle. (Seconds)

Max Wait Time: The maximum amount of time that a caller will wait before a connection
timeout is sent. (Milliseconds)

On Any Failure: If set to true (checked), all connections will be closed and reconnected on
failure.

Transaction Support: The level of transaction support (XATransaction,
LocalTransaction, NoTransaction. The default is empty.

Connection Validation: If set to true, then connections will need to be validated.

Connection factory and destination resources are created and reside within an application server container.
They can be created using an IDE, such as Netbeans, or by using the application server administrative tools. The
most important piece of information to provide when creating a destination is the name. As with any JMS resource,
the JNDI name should begin with the jms/ prefix. When creating a destination resource, a unique name must also
be provided for the Destination Resource Name, although other Java EE application servers may or may not make this
a mandatory specification.

Chapter 10 ■ Java Message serviCe

149

To get started with the examples in this book, we will briefly demonstrate how to create these resources using the
Glassfish v4 administrative console. Let’s take a look at how to create a javax.jmx.Queue resource. Follow the steps
below in order to create the resource:

 1. Log into the Glassfish Administrative Console, and Expand the Resources➤JMS Resources
menu in the navigation tree to expose the “Destination Resources” menu option
(Figure 10-1).

 2. Click the “New” button within the “JMS Destination Resources” window (Figure10-2) to
open the “New JMS Destination Resource” window. Enter a JNDI name (beginning with
jms/), followed by providing a unique name for the “Physical Destination Name,” and
finally, choose the Resource Type that you wish to create.

Figure 10-1. Glassfish Administration Console Destination Resource Menu

Chapter 10 ■ Java Message serviCe

150

 3. Click “OK” to create the destination.

Application server resources can also be generated via a command-line or terminal using the asadmin
create-jms-resource command. The following demonstrates usage of the create-jms-resource command,
although you can see the complete help by typing asadmin create-jms-resource –help.

create-jms-resource [--help]
 --restype type
 [--target target]
 [--enabled={true|false}]
 [--description text]
 [--property (name=value)[:name=value]*]
 [--force[={false|true}]]
 jndi_name

ConnectionFactory objects are registered automatically with JNDI once created, and they can then be injected
into Java classes and used. The following lines of code demonstrate how to inject a ConnectionFactory resource into
a class:

@Resource(name = "jms/MyConnectionFactory")
private static ConnectionFactory connectionFactory;

Destination resources can be injected into Java classes in the same manner as ConnectionFactory resources.
The following lines of code demonstrate the injection of a Topic resource.

@Resource(name="jms/myTopic")
private Topic myTopic;

Figure 10-2. Glassfish Administration Console New JMS Destination Resource

Chapter 10 ■ Java Message serviCe

151

JMS Sessions
As mentioned previously, the JMS 2.0 release utilizes a newer simplified API. However, previous versions of the API
may still need to be used for maintenance purposes and other reasons. For that reason, it is useful to understand the
concept of JMS Sessions, which are abstracted away from the developer when using the newer simplified API.

When using the standard API, you must obtain a JMS connection so that you can start a session before you can
begin to send or consume messages. A session can be used to create JMS resources such as Message Consumers,
Message Producers, Messages, Queue Browsers, and Temporary Queues and Topics. A session can be created
using a Connection object. The following line of code demonstrates how to obtain a Connection from an injected
ConnectionFactory.

Connection connection = connectionFactory.createConnection();

To create a session, call a Connection object’s createSession method, and pass the appropriate arguments
depending upon your application’s needs. The createSession syntax is as follows:

createSession(boolean isTransacted, int acknowledgementType)

The first argument to the createSession method is a boolean value to indicate if transactions should take
place within the session. If a session is created as transacted (set true for the first argument to createSession),
acknowledgement occurs once the entire transaction is successfully committed. If, for some reason, the transaction
is not committed, the entire transaction is rolled back, and all messages are redelivered. However, if a session is not
transacted, one must indicate which type of acknowledgment must be received to consider a message successfully
sent. The second argument to the createSession method indicates the acknowledgment type. Table 10-1 lists the
different acknowledgment types along with a description of each.

For example, session creation may look something like the following:

Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

The session that is created above is non-transactional, and the receipt type is Session.AUTO_ACKNOWLEDGE.
This is the most common type of JMS session that is created. Once the session has been created, then it can be used
to create JMS resources.

Table 10-1. JMS Session Message Acknowledgment

Acknowledgment Type Description

Session.AUTO_ACKNOWLEDGE The session automatically acknowledges a client’s receipt of a message either
when the client has successfully returned from a call to receive or when the
MessageListener it has called to process the message returns successfully.

Session.CLIENT_ACKNOWLEDGE The client acknowledges the receipt of a message by calling the message's
acknowledge method.

Session.DUPS_OK_ACKNOWLEDGE Lazy acknowledgement of messages . . . allowing duplicates to be received.

Chapter 10 ■ Java Message serviCe

152

JMS Messages
This section will give you a basic understanding of the standard (older) API for sending and receiving messages. In
a later section entitled API Enhancements, you will see the newer simplified API. Let’s begin by taking a look at a
sample of code using the standard API for sending a message. This example demonstrates how to send a text message
to a queue destination.

...
 public void sendMessage() {
 if (connection != null) {
 System.out.println("Creating Session");
 try(Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);) {
 myQueue = (Queue) getContext().lookup("jms/javaEERecipesQueue");
 MessageProducer producer = session.createProducer(myQueue);
 TextMessage message = session.createTextMessage();
 message.setText("Java EE 7 Is the Best!");

 producer.send(message);
 producer.close();
 setConnectionString("Message Successfully Sent to Queue");

 } catch (NamingException | JMSException ex) {
 System.out.println(ex);
 setConnectionString("Session not created and message not sent");
 }
 } else {
 setConnectionString("No connection available");
 }
 }
...

Now let’s discuss the example. To send a JMS message using the standard API, you need to create a resource
destination for your message, and obtain a connection as well as a JMS session, as mentioned previously. Once
you have obtained a JMS session, the next step is to create a MessageProducer using the Session createProducer
method, passing the destination as an argument. After this legwork has been completed, the message can be
constructed. You can create a message by calling the javax.jms.Session method that corresponds to the type of
message that you wish to create. To see all of the available methods, please refer to the online documentation at:
http://docs.oracle.com/javaee/6/api/javax/jms/Session.html. In the example shown above, a text message
is created by calling the session.createTextMessage() method. The text is then set by calling the TextMessage
object’s setText method.

Once a message has been created, a MessageProducer must be created in order to facilitate the sending of the
message. Again, javax.jms.Session comes to the rescue here, as we can call its createProducer method, passing the
destination resource for which we’d like to create the MessageProducer. Once created, the producer’s sendMessage
method can be invoked, passing the message that you wish to send.

As mentioned previously, the javax.jms.Session can be used to generate different message types. Table 10-2
lists the different message types that can be created, along with a description.

http://docs.oracle.com/javaee/6/api/javax/jms/Session.html

Chapter 10 ■ Java Message serviCe

153

The receiving client of a message is also known as the message consumer. Message consumers can be created
using the standard or the simplified JMS API. Using the standard API, a consumer is created from JMS Session objects
in the same manner that producers are created, that is, by calling the createConsumer method of JMS Session and
passing the destination object from which the consumer will listen for and accept messages. Message consumers
have the ability to consume messages that are waiting within a queue, and they listen indefinitely for new incoming
messages. Let’s take a look at an example that uses the standard API for consuming messages. In this example, the
method named receiveMessage is responsible for consuming messages from a specified destination point Queue.

...
public void receiveMessage() {
 boolean stopReceivingMessages = false;
 if(connection == null){
 createConnection();
 }
 try(Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);) {
 createConnection();
 myQueue = (Queue) getContext().lookup("jms/javaEERecipesQueue");
 try (MessageConsumer consumer = session.createConsumer(myQueue)) {
 connection.start();

 while (!stopReceivingMessages) {
 Message inMessage = consumer.receive();
 if (inMessage != null) {
 if (inMessage instanceof TextMessage) {
 String messageStr = ((TextMessage) inMessage).getText();
 setDisplayMessage(messageStr);
 } else {
 setDisplayMessage("Message was of another type");
 }
 } else {
 stopReceivingMessages = true;
 }
 }
 connection.stop();
 }
 } catch (NamingException | JMSException ex) {

Table 10-2. JMS Message Types

Message Type Creation Method

StreamMessage The message body contains a stream of primitive values in the Java programming language.
Filled and read sequentially.

MapMessage Message body contains a set of name/value pairs that are formed from Strings objects and
Java primitives. May be accessed sequentially or randomly by name, and the order of entries is
undefined.

TextMessage Message body contains a String object. Able to be used for plain text as well as XML messages.

ObjectMessage Message body contains a Serializable Java object.

BytesMessage Message body contains a stream of uninterpreted bytes.

Chapter 10 ■ Java Message serviCe

154

 // log errors
 } finally {
 if (connection != null){
 closeConnection();
 }
 }
 }
...

To set up a consumer, call the JMS Session object’s createConsumer method, and pass the destination object
that you wish to consume from. The next step is to call the JMS Connection start method. This will tell JMS that the
consumer is ready to begin receiving messages. After invoking the connection.start() method, a consumer can
receive a message by calling the Consumer object’s receive method, optionally passing a time in milliseconds for the
consumer to listen for messages. If no time limit is specified, the consumer will listen indefinitely.

As you can see from the example in this recipe, once the receive method is called, a Message object is retrieved.
Once the message is received, the application can glean whatever it needs by calling the Message object’s getter
methods accordingly.

Additional Information
This has been a brief overview of the JMS messaging concepts, and the use of the standard API for working with
messages. At this point, if you would like to delve deeper into these concepts, please refer to online documentation
via the Java EE 7 tutorial, or a book that covers these topics in detail. The remainder of this chapter will focus on new
features that JMS 2.0 has to offer.

API Enhancements
Prior to the release of Java EE 7, the JMS API had not been overhauled for a number of years. The newer features of the
Java platform were not being utilized to the fullest potential, and working with JMS was more complex than it needed
to be. The JMS 2.0 release brings the API up-to-date with the latest developments in Java EE, and makes it easier to
use. This section will cover some of those enhancements, including the newer simplified API, and the ability to utilize
try-with-resources, which gave the JMS API the facelift that it needed to become useful with Java 7 capabilities.

New Simple API
The reason that any application makes use of JMS is to incorporate the ability to send or receive messages. Therefore,
it is no surprise that the JMS API has been developed to make these tasks very easy for the developer. In Java EE 7,
things get even easier using the simplified JMS API.

Sending Messages
In the overview, we discussed the underlying concepts behind sending JMS messages. We also looked at how to send
messages using the standard API. Now let's take a look at how we can do the same work using the new simplified API.
To utilize the simplified API, create a JMSContext object, and then utilize it to create a MessageProducer and send the
message to the appropriate destination. In the following example, a simple String-based message is sent to a Queue
using the simplified API.

Chapter 10 ■ Java Message serviCe

155

@Resource(name = "jms/acmeConnectionFactory")
 private ConnectionFactory connectionFactory;
 @Resource(lookup = "jms/Queue")
 Queue inboundQueue;
...
 public void sendMessage() {
 JMSContext context = connectionFactory.createContext();
 StringBuilder message = new StringBuilder();
 message.append("Java EE 7 Is the Best!");
 context.createProducer().send(inboundQueue, message.toString());
 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(
 FacesMessage.SEVERITY_INFO, "Message sent",
 "Message sent"));

 }

When utilizing the simplified API, there are a few shortcuts that can be made, as compared to the standard API,
also known as “Classic.” In comparing the “Classic” versus Simplified APIs, the simplified API enables developers
to produce the same results as the standard API with much less code. A JMSContext object is obtained via a call to
the ConnectionFactory’s createContext method, and it can be used to begin a chain of method invocations that
will result in the sending of a message in just one line of code. To break it down a bit, after the JMSContext has been
obtained, its createProducer method can be called, chaining a call to the send method, passing the Queue and the
message to be sent.

JMS message implementations may vary between the different application server products. However, all JMS
messages types share some common characteristics. For instance, all JMS messages implement the javax.jms.
Message interface. Messages are composed of a header, properties, and a body. The header of a message contains
values that are utilized by clients and providers for routing and identification purposes; properties provide message
filtering; and the body portion of the message carries the actual message content. The message header is used for
linking messages to one another, and a field named the JMSCorrelationID contains this content. Message objects
contain the ability to support application-defined property values. The properties can be set via a construct known as
message selectors, and they are responsible for filtering messages. For more detailed information regarding message
properties, please see the online documentation that can be found at http://docs.oracle.com/javaee/6/api/
javax/jms/Message.html. The body varies across the different message types, as listed in Table 10-2.

Another means of sending messages in JMS involves the creation of a QueueSession to produce a QueueSender.
Although this technique does not utilize the simplified API, we’ll show a brief example using JMS 2.0 to demonstrate
how this is performed using resource injection, rather than InitialContext to gain access to server resources. The
following example demonstrates the domain-specific API for point-to-point messaging, and the sending of a message
to a Queue resource.

...
 @Resource(name = "jms/QueueConnFactory")
 private QueueConnectionFactory queueConnFactory;
 @Resource(lookup = "jms/Queue")
 Queue queue;

 /**
 * Create and send a message using QueueSession
 * @throws NamingException
 * @throws JMSException
 */

http://docs.oracle.com/javaee/6/api/javax/jms/message.html
http://docs.oracle.com/javaee/6/api/javax/jms/message.html

Chapter 10 ■ Java Message serviCe

156

 public void sendMessage() throws NamingException, JMSException {

 try (QueueConnection queueConnection = queueConnFactory.createQueueConnection();) {
 queueConnection.start();
 QueueSession queueSession =
 queueConnection.createQueueSession(false, QueueSession.AUTO_ACKNOWLEDGE);
 queue = queueSession.createQueue("JavaEEQueue");

 // create the message to send
 TextMessage textMessage = queueSession.createTextMessage("This is a test message");

 QueueSender sender = queueSession.createSender(queue);
 sender.send(textMessage);
 queueSession.close();

 }
 }
...

With the aid of resource injection, a number of lines can be removed from previous JMS solutions, making code
easier to read and maintain.

Similarly, the domain specific API for pub/sub messaging has been made simpler via updated technologies
such as resource injection. Although the simplified API is not used for creation of TopicPublisher object from a
TopicSession, the work involved has been reduced significantly in JMS 2.0. The following example demonstrates how
to create a TopicPublisher and send messages to a Topic.

 ...
 @Resource(name = "jms/TopicConnFactory")
 private TopicConnectionFactory topicConnFactory;
 @Resource(lookup = "jms/Topic")
 Topic topic;

 public void publishMessage() throws NamingException, JMSException {

 try (TopicConnection topicConnection = topicConnFactory.createTopicConnection();
 TopicSession topicSession =
 topicConnection.createTopicSession(false, TopicSession.AUTO_ACKNOWLEDGE);) {
 topicConnection.start();
 Topic topic = topicSession.createTopic("JavaEE");

 // create the message to send
 TextMessage textMessage = topicSession.createTextMessage("This is a test message");

 javax.jms.TopicPublisher topicPublisher = topicSession.createPublisher(topic);
 topicPublisher.setDeliveryDelay(1000);
 topicPublisher.publish(textMessage);

 }
 }
...

Chapter 10 ■ Java Message serviCe

157

Consuming Messages
Let’s take a look at how to consume messages using the simplified API. Utilize a JMSContext object to create the
JMSConsumer in an efficient and simplified manner. The following example method resides within a managed bean
controller. The message consumer in this example will be created and set up to receive the message that was sent by
the producer in the previous example.

public String receiveMessage() {
 JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createConsumer(inboundQueue);
 return consumer.receiveBody(String.class);
}

A client that receives a message is also known as the message consumer. Message consumers can be created
using the standard or the simplified JMS API. As you can see from the example above, there are very few lines of code
needed to create a message consumer using the simplified API. The JMSContext object aids in producing less code
by calling its createConsumer method and passing the resource from which the application will need to consume
messages. This method call will return a JMSConsumer, which has a similar API to MessageConsumer, with the ability
to receive a message both synchronously and asynchronously. In the example, a String message is consumed
synchronously.

It is possible to create an asynchronous consumer by registering a MessageListener with the MessageConsumer.
After a listener has been registered for the consumer, the listener’s onMessage() method will be called each time a
message has been delivered. The following code demonstrates how to create a simple message listener that will be
used to display the received message in the server log.

public class AcmeMessageListener implements MessageListener {

 @Override
 public void onMessage(Message message) {
 try {
 System.out.println("Do something with this message: " + message.getBody(String.class));
 } catch (JMSException ex) {
 Logger.getLogger(AcmeMessageListener.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

}

To register the message listener with a consumer, call the consumer setMessageListener method, passing the
listener.

JMSContext context = connectionFactory.createContext();
JMSConsumer consumer = context.createConsumer(inboundQueue);
javax.jms.MessageListener acmeMessageListener = new AcmeMessageListener();
consumer.setMessageListener(acmeMessageListener);
messageReceived = consumer.receiveBody(String.class);

Chapter 10 ■ Java Message serviCe

158

Autocloseable Resources
The JMS API has been completely re-worked to make use of the Java 7 autocloseable API. If you are familiar with
AutoCloseable, then you know that it allows for better resource handing in a simpler manner. When combined with
the multi-catch implementation that was introduced in Java SE 7, code can become terse, easier to read, and more
robust. In the following example, a message browser is used to iterate through the messages that are contained in
a queue using the standard API. Note that the Connection, Session, and QueueBrowser instances do not have to be
closed since they are contained within the try-clause. Encapsulating AutoCloseable instances within the try-clause
ensures that they will be closed when they are no longer needed.

public void browseMessages() {

 try(Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 QueueBrowser browser = session.createBrowser(inboundQueue);) {

 Enumeration msgs = browser.getEnumeration();

 if(!msgs.hasMoreElements()){
 System.out.println("No more messages within the queue...");
 } else {
 while(msgs.hasMoreElements()){
 Message currMsg = (Message)msgs.nextElement();
 System.out.println("Message ID: " + currMsg.getJMSMessageID());
 }
 }

 } catch (JMSException ex) {
 System.out.println(ex);
 }
}

Message Body
A new getBody method has been added to the javax.jms.Message object to allow for easier access to the body
of a message. The getBody method accepts one parameter that is the class type of the message body. For instance,
to obtain the body of a message that is of the String type, make a call to the method, as follows:

...
message.getBody(String.class)
...

New Messaging Features
The JMS 2.0 update includes some important new messaging features that extend upon the pre-2.0 functionality, and
help bring JMS in alignment with more modern technologies. Two of the biggest messaging additions include delivery
delay of messages, and the ability to send asynchronous messages. This section will briefly touch upon each of these
new features.

Chapter 10 ■ Java Message serviCe

159

Message Delivery Delay
The JMS API provides a method, setDeliveryDelay, which can be applied to producers. This method can be called,
passing the delay time in milliseconds, prior to sending the message. Once the delay has been set, this will cause all
subsequent message deliveries by that producer to be delayed by the specified time.

Set the time of delay in milliseconds by calling the producer’s setDeliveryDelay(long) method. In the following
example, the message sending will be delayed by 1,000 milliseconds.

@Resource(name = "jms/topicConnFactory")
private TopicConnectionFactory topicConnFactory;
@Resource(lookup = "jms/Topic")
Topic topic;

public void publishMessage() throws NamingException, JMSException {

 TopicConnection topicConnection = topicConnFactory.createTopicConnection();
 topicConnection.start();
 TopicSession topicSession =
 topicConnection.createTopicSession(false, QueueSession.AUTO_ACKNOWLEDGE);

 Topic topic = topicSession.createTopic("JavaEE");
 TextMessage textMessage = topicSession.createTextMessage("This is a test message");

 javax.jms.TopicPublisher topicPublisher = topicSession.createPublisher(topic);
 topicPublisher.setDeliveryDelay(1000);
 topicPublisher.publish(textMessage);

 topicSession.close();
 topicConnection.close();
}

New Send Methods for Asynchronous Sending
JMS clients have the ability to send messages synchronously and asynchronously via a JMS message producer. In JMS
2.0, new send methods have been added for asynchronous message sending. Sending a message asynchronously
allows the sending of a task to be performed in a separate thread from other tasks that are being performed. When
using the classic API, the following methods allow for asynchronous sending:

•	 send(Message message, CompletionListener listener)

•	 send(Message message, int deliveryMode, int priority, long timeToLive,
CompletionListener completionListener)

•	 send(Destination destination, Message message, CompletionListener
completionListener)

•	 send(Destination destination, Message message, int deliveryMode, int priority,
long timeToLive, CompletionListener completionListener)

Chapter 10 ■ Java Message serviCe

160

When using the simplified API, the following method can be called on the JMSProducer prior to invocation of the
synchronous sending methods:

•	 setAsync(CompletionListener completionListener)

The asynchronous sending of a message results in a message being sent without waiting for an acknowledgment
of receipt before returning. When an acknowledgment is eventually sent, the JMS provider notifies the application by
invoking the onCompletion method of the CompletionListener object that resides within the application. Conversely,
if no receipt is sent, then the onException method of the CompletionListener is invoked.

Although JMS 2.0 offers asynchronous message sending, messages cannot be sent in an asynchronous manner
from within a Java EE EJB or web container. As a result, violating applications will trigger a JMSException or
JMSRuntimeException. Since this book focuses on Java EE 7 new features, this section will not delve any deeper into
the asynchronous sending of messages. However, if you plan to use this feature in a different environment, please see
more information at http://jms-spec.java.net/.

Multiple Consumers on the Same Subscription
Prior to JMS 2.0, a durable or non-durable topic subscription was only permitted to have one consumer at a time.
This limited scalability since the processing work could not be distributed. In the 2.0 release, multiple consumers
were allowed on the same subscription. With regards to non-durable subscriptions, otherwise known as “shared
non-durable subscriptions,” this type of subscription is useful for those cases where the work of receiving messages
from a non-durable topic subscription needs to be shared amongst multiple consumers in order to distribute the
payload. It should be noted that each message from the subscription is only delivered to one of the consumers on that
subscription.

To facilitate this enhancement for non-durable subscriptions, each of the APIs for creating consumers has been
updated as follows:

If using the classic API, Session has been updated to include several •	 createSharedConsumer
methods, which return a MessageConsumer object. The createSharedConsumer message that is
used depends upon the criteria specified.

If using the simplified API, •	 JMSContext contains several createSharedConsumer methods,
which return a JMSConsumer object. The createSharedConsumer message that is used depends
upon the criteria specified.

If using the legacy domain-specific API for pub/sub, •	 TopicSession has been updated to
include several createSharedConsumer methods, which return a MessageConsumer object. The
createSharedConsumer message that is used depends upon the criteria specified.

The following example demonstrates the creation of a subscription that accepts more than one consumer, using
the simplified API.

 ...
 @Resource(name = "jms/connectionFactory")
 private ConnectionFactory connectionFactory;
 @Resource(lookup = "jms/Topic")
 Topic topic;
...
public void createSharedNonDurable(){
 String topicName = "JavaEE";
 JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createSharedConsumer(topic, topicName);

http://jms-spec.java.net/

Chapter 10 ■ Java Message serviCe

161

 consumer.receive();
 //do something
 }
...

If you require the use of shared durable subscriptions, you will be happy to know that they received the same
treatment as non-durable subscriptions in the JMS 2.0 release. As background, a durable subscription is useful for
applications that need to receive all messages published on a topic, even those that have no consumer assigned.
A shared, non-durable subscription is used by clients that need the ability to share the task of receiving messages
from a durable subscription among multiple different consumers. Much like shared non-durable subscriptions; it is
possible for shared-durable subscriptions to have multiple consumers. Again, each message from the subscription
will only be sent to one of the consumers, not each of them.

To facilitate this enhancement for shared durable subscriptions, each of the APIs for creating consumers has
been updated, as follows:

If using the classic API, Session has been updated to include several •	
createSharedDurableConsumer methods, each returning a MessageConsumer object. The
createSharedDurableConsumer method that is used depends upon the specified criteria.

If using the simplified API, •	 JMSContext contains several createSharedDurableConsumer
methods, each returning a JMSConsumer object. The createSharedDurableConsumer method
that is used depends upon the specified criteria.

If using the legacy domain-specific API for pub/sub, the •	 JMSContext includes several
createSharedDurableConsumer methods, each returning a JMSConsumer object. The
createSharedDurableConsumer method that is used depends upon the specified criteria.

The following example demonstrates how to create a shared durable subscription using the simplified API.
 ...
 @Resource(name = "jms/connectionFactory")
 private ConnectionFactory connectionFactory;
 @Resource(lookup = "jms/Topic")
 Topic topic;
 ...
 public void createSharedDurable(){
 String topicName = "JavaEE";
 JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createSharedConsumer(topic, topicName);
 consumer.receive();
 // do something
 }
...

Summary
JMS 2.0 is a completely overhauled release of the API, which applies modern programming techniques to make the
use of JMS even easier. Using the simplified API, dozens of code lines can be cut from JMS applications, making code
development and maintainability even easier. Going along with the Java 7 simplifications, JMS resources are now
autocloseable, making the API more efficient. Additionally, features such as the ability to easily access message body
content and set the delay on message sending help to provide developers with more fine-grained control. Although
it has been a number of years since the API has been updated, this is one update that is certainly welcome since it
modernizes the API, and adds simplification and more ability throughout.

163

Chapter 11

Concurrency and Batch Applications

The Java Enterprise platform has been missing a few key features since its inception. Those features include standard
techniques for processing tasks concurrently, and standardization for batch application processing. In the release
of Java EE 7, these two missing features have been addressed with the addition of the Java Concurrency Utilities and
Batch Processing APIs.

The scope of these additional APIs is very large, and this chapter will not attempt to cover each feature. However, the
examples contained within this chapter should provide enough information to get a developer up and running using
some of the most frequently required pieces of each API. For more in-depth information regarding the details of the
Concurrency Utilities for Java EE, please refer to the JavaDoc located at http://concurrency-ee-spec.java.net/javadoc/.
The Batch Applications for the Java Platform API are immense, with a plethora of options available. This chapter will
barely scratch the surface of the API; for more information, please refer to the specification at
https://java.net/projects/jbatch/pages/Home.

Concurrency
Using Java SE concurrency utilities such as java.util.concurrent and java.lang.Thread in Java EE applications has
been problematic in the past, since the application server container has no knowledge of such resources. Extensions
of the java.util.concurrent API allows application servers and other EE containers to become aware of these
concurrency resources. The extensions allow enterprise applications to appropriately utilize asynchronous operations
via the use of java.util.concurrent.ExecutorService resources that are made available within the EE environment.

Understanding the Contextual Objects and Tasks
The Concurrency Utilities for Java EE API makes use of the following different types of managed objects:

ManagedExecutorService•	

ManagedScheduledExecutorService•	

ContextService•	

ManagedThreadFactory•	

In this section of the chapter, you will learn how to make use of these managed objects from within an application
server container, such as GlassFish v4. You will then learn about using each of these managed objects to provide
concurrency to your applications, and you will see examples of each.

http://concurrency-ee-spec.java.net/javadoc/
https://java.net/projects/jbatch/pages/Home
https://java.net/projects/jbatch/pages/Home

Chapter 11 ■ ConCurrenCy and BatCh appliCations

164

Note ■ as an option, task classes can implement the javax.enterprise.concurrent.ManagedTask interface. task
classes that implement this interface provide identity information and execution properties. implementations of the
Managedtask interface can also register a javax.enterprise.concurrent.ManagedTaskListener instance to receive
lifecycle events notifications.

Creating Application Server Concurrent Resources
In Java EE 7, the ManagedExecutorService was introduced, adding the ability to produce asynchronous tasks that are
managed by an application server. Application server administrators can create ManagedExecutorService resources
within an application server that can be utilized by one or more applications, much like a Java Message Service (JMS)
Topic or Queue. There are a couple of ways to create application server concurrent resources. You can utilize the
GlassFish command line asadmin utility. Alternatively, the GlassFish administration console has been enhanced with
new forms for concurrent resource management for those who prefer working in a GUI. First, let’s take a look at how
to utilize the asadmin utility for creation of the resources.

To create a service, issue the asadmin create-managed-executor-service command at the command prompt,
passing the name that you would like to use to identify the service. There are a bevy of options that can be used to
customize the service in different ways. For instance, the service can be configured to let tasks run for a specified
amount of time, thread pools can be configured, etc., allowing one to generate a ManagedExecutorService that will
best suit the application requirements. To utilize concurrent utilities such as reporter tasks, the application server
must be configured to utilize a ManagedExecutorService. To create a ManagedExecutor Service in GlassFish, run the
following command at the command prompt:

<path-to-glassfish>/bin/asadmin create-managed-executor-service concurrent/BatchExecutor

In the preceding command-line action, the name of the ManagedExecutorService that is being created is
concurrent/BatchExecutor. However, this could be changed to better suit the application; the service can be named
with any valid String. To see all of the options available for the create-managed-executor-service command, issue the
--help flag. The following shows the results of doing so:

bin/asadmin create-managed-executor-service --help
NAME
 create-managed-executor-service

SYNOPSIS
 Usage: create-managed-executor-service [--enabled=true] [--c
 ontextinfo=contextinfo] [--threadpriority=5] [--longrunningt
 asks=false] [--hungafterseconds=hungafterseconds] [--corepoo
 lsize=0] [--maximumpoolsize=2147483647] [--keepaliveseconds=
 60] [--threadlifetimeseconds=0] [--taskqueuecapacity=2147483
 647] [--description=description] [--property=property] [--ta
 rget=target] jndi_name

Chapter 11 ■ ConCurrenCy and BatCh appliCations

165

OPTIONS
 --enabled

 --contextinfo

 --threadpriority

 --longrunningtasks

 --hungafterseconds

 --corepoolsize

 --maximumpoolsize

 --keepaliveseconds

 --threadlifetimeseconds

 --taskqueuecapacity

 --description

 --property

 --target

OPERANDS
 jndi_name

For those who would prefer to work within the GlassFish administration console, there have been a few new
administration panels added to make creation and management of concurrent resources easier. The new “Managed
Executor Service” panel can be used to create new application server ManagedExecutorService resources, as well
as manage those that already exist. To do so, authenticate successfully into the administrative console, and navigate
to the “Concurrent Resources” ➤“Managed Executor Services” administration panel using the left-hand tree menu
(Figure 11-1).

Chapter 11 ■ ConCurrenCy and BatCh appliCations

166

Once you’ve opened the panel, click on the “New” button to create a new service. This will open the “New
Managed Executor Service” panel, in which you will be required to populate a “JNDI Name” for your new service
(Figure 11-2).

Figure 11-1. GlassFish Managed Executor Services Panel

Chapter 11 ■ ConCurrenCy and BatCh appliCations

167

This panel offers quite a few options for creation of the service. However, the only option that is required is the
JNDI Name, as all others are populated with default values. The JNDI name that is specified should follow the format
of concurrent/YourExecutorServiceName, where YourExecutorServiceName is a custom name of your choice.

Running the Reporter Task
After the ManagedExecutorService has been created, it can be utilized by one or more applications to
perform concurrent operations. An application must be either configured via XML to allow access to the
ManagedExecutorService resource in the application server container, or the resource can be injected via the use of
the @Resource annotation. In the example, each of these options is demonstrated. For the purposes of the example, it
is assumed that the @Resource annotation is utilized to inject the service into the servlet.

To run a task concurrently using the service, you must create the task in a separate class that implements
java.util.Runnable, so that it can be invoked as a separate process, much like a standard Java Thread. In the
example, a class named ReporterTask implements Runnable, and within the run method the reporter task performs
the tasks that we wish to run in an asynchronous manner. In the case of this example, a couple of methods are
invoked from within the run method. The Runnable class that has been generated can then be passed to the
ManagedExecutorService to be executed concurrently while other tasks are being performed by the application.

Figure 11-2. New Managed Executor Service Panel

Chapter 11 ■ ConCurrenCy and BatCh appliCations

168

To make use of the ManagedExecutorService, register it with the application via XML or by resource injection. In the
example, resource injection is utilized, making the ManagedExecutorService available from within the Java servlet. To
inject the resource, specify the name of it to the @Resource annotation.

@Resource(name = "concurrent/BatchExecutor")
ManagedExecutorService mes;

The ManagedExecutorService can then be invoked by calling the submit method, and passing an instance of
the Runnable task that we’d like to submit for processing. In this case, the ReporterTask class is instantiated, and an
instance of it is then passed to the service, returning a java.util.concurrent.Future object.

ReporterTask reporterTask = new ReporterTask("BookReport");
Future reportFuture = mes.submit(reporterTask);

Once submitted, the Future object that was returned can be periodically queried to see if it is still running, or if
it has been completed by calling its isDone method. It can be cancelled by calling the cancel method, and a canceled
task can be checked by calling its isCanceled method.

Example of ReporterTask
Once the application server has been configured and the ManagedExecutorService has been created, an application
can be written to utilize the newly created service. Within an application, one can choose to configure the application
to make use of the ManagedExecutorService via XML, or a @Resource annotation can be used to inject the resource.
To configure via XML, add a <resource-env-ref> element to the web.xml deployment descriptor. In this case, you
need to configure a resource of type javax.enterprise.concurrent.ManagedExecutorService, as shown in the
excerpt from the web.xml below:

<resource-env-ref>
 <description>
This executor is used for the application's reporter task. This executor has the following
requirements:
Run Location: NA
Context Info: Local Namespace
 </description>
 <resource-env-ref-name>
 concurrent/BatchExecutor
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.enterprise.concurrent.ManagedExecutorService
 </resource-env-ref-type>
</resource-env-ref>

In the XML configuration, the resource has been assigned to a reference name of concurrent/BatchExecutor,
but you could name the reference to best suit your application. If you would rather utilize an annotation, then the
following @Resource annotation can be specified to inject a ManagedExecutorService into a class for use. You will see
an example of this in use later on.

@Resource(name = "concurrent/BatchExecutor")
ManagedExecutorService mes;

Chapter 11 ■ ConCurrenCy and BatCh appliCations

169

Once the configuration is complete, you can create a report task class, which is a class that implements Runnable
and is responsible for running the actual reports. The following class, org.javaee7.chapter11.ReporterTask, is an
example of such as class.

package org.javaee7.chapter11;

import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import javax.ejb.EJB;
import org.javaee7.entity.Jobs;
import org.javaee7.entity.Product;
import org.javaee7.jpa.session.JobsSession;
import org.javaee7.jpa.session.ProductSession;

/**
 *
 * @author Juneau
 */
public class ReporterTask implements Runnable {

 String reportName;
 @EJB
 private JobsSession jobsFacade;
 @EJB
 private ProductSession productFacade;

 public ReporterTask(String reportName) {
 this.reportName = reportName;
 }

 public void run() {
// Run the named report
 if ("JobsReport".equals(reportName)) {
 runJobReport();

 } else if ("ProductReport".equals(reportName)) {
 runProductReport();
 }
 }

Chapter 11 ■ ConCurrenCy and BatCh appliCations

170

 /**
 * Prints a list of jobs to the system log.
 */
 public void runJobReport() {
 List<Jobs> jobs = jobsFacade.getJobList();
 System.out.println("Job Listing Report");
 System.out.println("=====================");

 for (Jobs job : jobs) {
 System.out.println(job.getTitle() + " " + job.getDivision());
 }
 }

 /**
 * Prints a list of products
 */
 void runProductReport() {
 System.out.println("Querying the database");
 Path reportFile = Paths.get("ProductReport.txt");

 try (BufferedWriter writer = Files.newBufferedWriter(
 reportFile, Charset.defaultCharset())) {
 Files.deleteIfExists(reportFile);
 reportFile = Files.createFile(reportFile);
 writer.append("Product Listing Report");
 writer.newLine();
 writer.append("===================");
 writer.newLine();
 List<Product> products = productFacade.obtainProduct();
 for (Product product : products) {
 writer.append(product.getName());
 writer.newLine();
 }
 writer.flush();
 } catch (IOException exception) {
 System.out.println("Error writing to file");
 }

 }
}

Lastly, the report needs to be invoked by the ManagedExecutorService that was configured within the web.xml.
In this example, the ManagedExecutorService is injected into a Servlet, which is then used to invoke the report, as
seen in the following code:

import java.io.IOException;
import java.io.PrintWriter;
import java.util.concurrent.Future;
import javax.annotation.Resource;
import javax.enterprise.concurrent.ManagedExecutorService;

Chapter 11 ■ ConCurrenCy and BatCh appliCations

171

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 *
 * @author Juneau
 */
@WebServlet(name = "ReporterServlet", urlPatterns = {"/ReporterServlet"})
public class ReporterServlet extends HttpServlet {

 @Resource(name = "concurrent/BatchExecutor")
 ManagedExecutorService mes;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Job Report Invoker</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>This servlet initiates the job report task. Please look "
 + "in the server log to see the results.</h2>
" +
 " This task is not run asynchronously, however, the " +
 " task will process independently.");
 out.println("

");
 ReporterTask reporterTask = new ReporterTask("JobsReport");
 Future reportFuture = mes.submit(reporterTask);
 while(!reportFuture.isDone())
 out.println("Running...
");
 if (reportFuture.isDone()){
 out.println("Report Complete");
 }
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
...
}

When the servlet is visited, the reporter task will be initiated and it will begin to produce results.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

172

Running Multiple Tasks at Once Asynchronously
To coordinate the processing of tasks in an asynchronous manner via a ManagedExecutorService, two or more
tasks that need to be processed should be contained in separate classes or multiple instances of the same
task class. Each of the task classes should implement the java.util.concurrent.Callable and
javax.enterprise.concurrent.ManagedTask interfaces. A task class should include a constructor that enables
a caller to pass arguments that are required to instantiate the object, and should implement a call method, which returns
the information that is needed to construct the report to the client. Two or more such task classes can then be invoked via
the ManagedExecutorService in order to orchestrate the execution and process all results into the required format.

To assemble the tasks for processing, create an ArrayList<Callable>, and add instances of each task to the
array. In the example below, the array is named builderTasks, and instances of two different task types are added to
that array.

ArrayList<Callable<AuthorInfo>> builderTasks = new ArrayList<Callable<AuthorInfo>>();
builderTasks.add(new AuthorTask(authorId));
builderTasks.add(new AuthorTaskTwo(authorId2);

Next, pass the array that has been constructed to the ManagedExecutorService, returning a
List<Future<object>>, which can then be used to process the results.

List<Future<AuthorInfo>> results = mes.invokeAll(builderTasks);
AuthorInfo authorInfo = (AuthorInfo) results.get(0).get();
// Process the results

Suppose you are writing an application that needs the ability to connect a database and retrieve data from two or
more tables to obtain results at the same time. You wish to have the results aggregated before returning them to the
user. Create a builder task that can be used to run two different tasks in parallel. Each of the tasks can retrieve the data
from the different sources, and in the end the data will be merged together and aggregated to formulate the result.
In this case, you need to configure a resource of type javax.enterprise.concurrent.ManagedExecutorService, as
shown in the excerpt from the web.xml below:

<resource-env-ref>
 <description>
This executor is used for the application's builder tasks. This executor has the following
requirements:
Run Location: Local
Context Info: Local Namespace, Security
 </description>
 <resource-env-ref-name>
 concurrent/BuilderExecutor
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.enterprise.concurrent.ManagedExecutorService
 </resource-env-ref-type>
</resource-env>

In this example, the ManagedExecutorService resource in the application is configured to work with a
resource that has been registered with the application server container and identified by the JNDI name of
concurrent/BuilderExecutor. If you would rather utilize an annotation, then the following @Resource annotation
can be specified to inject a ManagedExecutorService into a class for use within the Runnable.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

173

@Resource(name = "concurrent/BuilderExecutor")
ManagedExecutorService mes;

Once the application has been configured to work with the ManagedExecutorService resource, you can
create task classes for each of the different tasks that you wish to run. Each task class must implement the
javax.enterprise.concurrent.ManagedTask interfaces. The following code is from the file org.javaee7.chapter11.
EmployeeTask.java, and it shows what a task class should look like.

import java.math.BigDecimal;
import java.util.HashMap;
import java.util.Locale;
import java.util.Map;
import java.util.concurrent.Callable;
import javax.enterprise.concurrent.ManagedTask;
import javax.enterprise.concurrent.ManagedTaskListener;

/**
 *
 * @author Juneau
 */

public class EmployeeTask implements Callable<EmployeeInfo>, ManagedTask {
 // The ID of the request to report on demand.
 BigDecimal employeeId;
 EmployeeInfo employeeInfo;
 Map<String, String> execProps;

 public EmployeeTask(BigDecimal id) {
 this.employeeId = id;
 execProps = new HashMap<>();

 execProps.put(ManagedTask.IDENTITY_NAME, getIdentityName());
 }

 public EmployeeInfo call() {
// Find the entity bean and return it to the client.
 return employeeInfo;
 }

 public String getIdentityName() {
 return "EmployeeTask: AuthorID=" + employeeId;
 }

 public Map<String, String> getExecutionProperties() {
 return execProps;
 }

 public String getIdentityDescription(Locale locale) {
 // Use a resource bundle...
 return "EmployeeTask asynchronous EJB invoker";
 }

Chapter 11 ■ ConCurrenCy and BatCh appliCations

174

 @Override
 public ManagedTaskListener getManagedTaskListener() {
 return new CustomManagedTaskListener();
 }
}

One or more such task classes can be implemented, and then they can be processed via the builder task using
the ManagedExecutorService resource that has been registered with the application server container. The following
servlet makes use of a ManagedExecutorService to coordinate the invocation of two task classes. In this case the task
class names are EmployeeTask and EmployeeTaskTwo.

import java.io.IOException;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.annotation.Resource;
import javax.enterprise.concurrent.ManagedExecutorService;
import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "BuilderServlet", urlPatterns = {"/builderServlet"})
public class BuilderServlet extends HttpServlet implements Servlet {
 // Retrieve our executor instance.

 @Resource(name = "concurrent/BuilderExecutor")
 ManagedExecutorService mes;
 EmployeeInfo employeeInfo;

 protected void processRequest(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
 try {
 PrintWriter out = resp.getWriter();
 // Create the task instances
 Future<EmployeeInfo> empFuture = mes.submit(new EmployeeTask(new BigDecimal(1)));
 Future<EmployeeInfo> empFuture2 = mes.submit(new EmployeeTask(new BigDecimal(2)));

 // Wait for results
 EmployeeInfo empInfo = empFuture.get();
 EmployeeInfo empInfo2 = empFuture2.get();
 // Process Results

Chapter 11 ■ ConCurrenCy and BatCh appliCations

175

 } catch (InterruptedException|ExecutionException ex) {
 Logger.getLogger(BuilderServlet.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 ,,,

}

Utilizing this technique, a series of tasks can be concurrently processed, returning results that can be later used
to formulate a response. In the case of this example, a report is constructed by calling two task classes and returning
the results of queried information. This same technique can be applied to an array of different tasks, allowing an
application to process the results of multiple task invocations in one central location.

Scheduled Tasks
To schedule a task to run at specific times, utilize the javax.concurrent.ManagedScheduledExecutorService
interface. This interface extends the java.util.concurrent.ScheduledExecutorService and
javax.enterprise.concurrent.ManagedExecutorService interfaces. The ManagedScheduleExecutorService can
be used to execute a Runnable task according to a specified schedule.

The Executor Service
As mentioned previously, a ManagedScheduleExecutorService can be used to schedule Runnable tasks. That is, any
class that implements java.lang.Runnable can be invoked via the service. The code that is contained within the task
class’s run method is invoked each time the task is initiated. In the example that follows, the run method executes
another method within the class that is used to query an entity and perform some work against the results.

To make use of a ManagedScheduledExecutorService, one can be created within the application server
container. Similarly to the ManagedExecutorService, this resource can be created by issuing the asadmin
create-managed-scheduled-executor-service command. The GlassFish 4.0 application server also contains
a panel within the administrative console for creation of such resources. To create the resource from within the
administrative console, log in and navigate to the Resources ➤ Concurrent Resources ➤ Managed Scheduled
Executor Services panel (Figure 11-3).

Figure 11-3. Managed Scheduled Executor Services Panel

Chapter 11 ■ ConCurrenCy and BatCh appliCations

176

Once you have successfully navigated to the panel, click on the “New” button to open the “New Managed
Scheduled Executor Service” panel (Figure 11-4). Within this panel, you must specify a JNDI name for the resource,
along with a number of optional parameters, including context settings, thread priority, and thread pool settings.

Figure 11-4. New Managed Scheduled Executor Service Panel

However, it is not necessary to generate your own ManagedScheduledExecutorService because GlassFish, and,
any Java EE 7 compliant application server, should contain a default ManagedScheduledExecutorService. To enable
an application to access the service, XML configuration within the web.xml deployment descriptor can be used, or a
@Resource annotation can be used to inject the resource. In the example below, both techniques are demonstrated.
However, in the class that is used to initiate the example task, the @Resource annotation is used to inject the
application server’s default ManagedScheduledExecutorService that can be identified by the name of
concurrent/__defaultManagedScheduledExecutorService.

@Resource(name=" concurrent/__defaultManagedScheduledExecutorService ")
 ManagedScheduledExecutorService mes;

To schedule the task, create an instance of the task class, and then pass the instance to one of the
ManagedScheduledExecutorService scheduler methods that are made available via the ScheduleExecutorService
interface. The methods that can be used to schedule tasks are shown in Table 11-1.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

177

In the example, the scheduleAtFixedRate method is called, passing the task class, along with the initial delay
period of 5 minutes and then the task is executed every 5 minutes thereafter.

Example of Scheduled Task
Use the ManagedScheduleExecutorService to create a scheduled task within your application. As mentioned
previously, before an application can use the service, it must be created within the application server container.
To create a ManagedScheduleExecutorService instance within GlassFish, issue the following command from the
command-line:

bin/asadmin create-managed-scheduled-executor-service concurrent/name-of-service

In the command above, name-of-service can be whatever name you choose. The create-managed-scheduled-
executor-service command has many options that can be specified. To see and learn more about each option,
invoke the command help by issuing the --help flag after the command, rather than providing the name of the
service to create. Optionally, you could create the service using an application server resource, such as the GlassFish
administration console.

Once the service has been created within the container, it can be utilized by an application. To utilize this type of
service, the environment must be configured via XML or annotation. To utilize XML configuration, add a
<resource-env-ref> element to the web.xml deployment descriptor. In this case, you need to configure a resource of type
javax.enterprise.concurrent.ManagedScheduledExecutorService, as shown in the excerpt from the web.xml below:

<resource-env-ref>
 <description>Prints alerts to server log, if warranted, on a periodic basis</description>
<resource-env-ref-name>
concurrent/__defaultScheduledManagedExecutorService
</resource-env-ref-name>
 <resource-env-ref-type>
javax.enterprise.concurrent.ManagedScheduledExecutorService
 </resource-env-ref-type>
</resource-env-ref>

If you wish to use annotations rather than XML, the @Resource annotation can be used in
client code to inject the ManagedScheduledExecutorService, as shown in the following lines. In this case, the

Table 11-1. ScheduleExecutorService Methods

Method Description

schedule(Callable<V> callable, long delay,
TimeUnit unit)

Creates and executes a ScheduledFeature object. The object
becomes available after the specified delay period.

schedule(Runnable command, long delay,
TimeUnit unit)

Creates and executes a one-time task that becomes available after
the specified delay.

scheduleAtFixedRate(Runnable command, long
initialDelay, long period, TimeUnit unit)

Creates and executes a periodic tasks that becomes available after
the initial specified delay period. Subsequent executions are then
scheduled in increments of the specified period after the initial
delay.

scheduleWithFixedDelay(Runnable command,
long initialDelay, long delay, TimeUnit unit)

Creates and executes a periodic task that becomes available after
the initial delay period. Subsequent executions are then scheduled
with the specified delay period in between each execution.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

178

injected resource references a ManagedScheduledExecutorService that is identified by the name
concurrent/__defaultManagedScheduledExecutorService.

@Resource(name="concurrent/__defaultManagedScheduledExecutorService")
ManagedScheduledExecutorService mes;

To write the task that you wish to have scheduled, create a Java class that implements Runnable. As such, the class
will contain a run method, which will be invoked each time the scheduled task is initiated. The following example
demonstrates how to construct a task that can be used for logging. In this example, the Employee entity is queried on
a periodic basis to determine if new employees have been added to the database.

import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.EntityTransaction;
import javax.persistence.Persistence;
import javax.persistence.Query;
import org.javaee7.entity.Employee;

/**
 * Chapter 11 - Scheduled Logger
 * @author Juneau
 */
public class ScheduledEmployeeAlert implements Runnable {

 EntityManagerFactory emf = null;
 EntityManager em = null;

 @Override
 public void run() {
 emf = Persistence.createEntityManagerFactory("IntroToJavaEE7PU");
 em = emf.createEntityManager();
 queryEmployees();
 }

 public void queryEmployees(){
 EntityTransaction entr = em.getTransaction();
 entr.begin();
 String qry = "select object(o) from Employee o";
 Query query = em.createQuery(qry);
 List<Employee> emps = query.getResultList();
 for(Employee emp: emps){
 // if employee is new then alert
 }
 }
}

To periodically invoke the task, utilize the ManagedScheduledExecutorService resource. The following JSF
managed bean class demonstrates how to invoke this type of service.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

179

package org.javaee7.chapter11;

import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
import javax.annotation.Resource;
import javax.enterprise.concurrent.ManagedScheduledExecutorService;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.inject.Named;

/**
 * Managed Bean for scheduling new employee alerts
 * @author Juneau
 */
@Named
public class ScheduledEmployeeAlerter {

 Future alertHandle = null;

 @Resource(name="concurrent/__defaultManagedScheduledExecutorService")
 ManagedScheduledExecutorService mes;

 public void alertScheduler() {

 ScheduledEmployeeAlert ae = new ScheduledEmployeeAlert();
 alertHandle = mes.scheduleAtFixedRate(
 ae, 5L, 5L, TimeUnit.MINUTES);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO, "Task Scheduled",
"Task Scheduled");
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

}

Thread Instances
Until the release of Java EE 7, multi-threaded enterprise applications were very customized. In fact, until the EE 7
release, there was no formal framework to utilize for spawning threads within an enterprise application. In this latest
release that includes the Concurrency utilities, thread processing has been formalized. To utilize threading within an
enterprise application, one should create ManagedThreadFactory resource(s) within the application server container,
and utilize those resources within application(s), as needed.

Before an application can use the service, it must be created within the application server container. As with
the other concurrent resources, there are a couple of different ways to create the ManagedThreadFactory within the
GlassFish application server. To create a ManagedThreadFactory instance within GlassFish utilizing the command line
utility, issue the following command from the command-line:

asadmin create-managed-thread-factory concurrent/name-of-service

Chapter 11 ■ ConCurrenCy and BatCh appliCations

180

In the command above, name-of-service can be whatever name you choose. The create-managed-thread-factory
command has many options that can be specified. To see and learn more about each option, invoke the command
help by issuing the --help flag after the command, rather than providing the name of the service to create. At a
minimum, the desired name for the resource should be included with the invocation of the command. However, there
are a number of different options that can be specified to customize the resource. To learn more about those options,
please see the online documentation. One can also create a ManagedThreadFactory from within the GlassFish
administrative console. To do so, log into the console, and navigate to the Resources ➤ Concurrent Resources ➤
Managed Thread Factories menu option from the left-hand tree menu (Figure 11-5).

Figure 11-5. Managed Thread Factories Panel

Once you have navigated to the “Managed Thread Factories” panel, click on the “New” button to open the “New
Managed Thread Factory” panel (Figure 11-6). Specify a JNDI name and, optionally, a thread priority. Lastly, click on
“OK” to create the resource.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

181

As mentioned in the example, an application can make use of a ManagedThreadFactory resource by configuring
XML within the web.xml deployment descriptor, or by injecting via the @Resource annotation within the classes that
need to make use of the resource. Once that resource has been injected, calls can be made against it to spawn new
threads using the newThread method. The newThread method returns a Thread instance, which can then be utilized
by calling the Thread instance methods, as needed. In the example, the thread is started by calling the thread’s start
method, and when the context is destroyed, the thread’s interrupt method is invoked.

To utilize a ManagedThreadFactory, the environment must be configured via XML or annotation. To utilize XML
configuration, add a <resource-env-ref> element to the web.xml deployment descriptor. In this case, you need to
configure a resource of type javax.enterprise.concurrent.ManagedThreadFactory, as shown in the excerpt from
the web.xml below:

<resource-env-ref>
 <description>
</description>
<resource-env-ref-name>
concurrent/AcmeThreadFactory
</resource-env-ref-name>
 <resource-env-ref-type>
javax.enterprise.concurrent.ManagedThreadFactory
 </resource-env-ref-type>
</resource-env-ref>

To utilize annotations rather than XML configuration, the ManagedThreadFactory can be injected using an
annotation such as the following:

@Resource(name="concurrent/AcmeThreadFactory");
ManagedThreadFactory threadFactory;

Figure 11-6. New Managed Thread Factory panel

Chapter 11 ■ ConCurrenCy and BatCh appliCations

182

In this example, a ManagedThreadFactory will be injected into an EJB, so that a logging task can be used to print
output to the server log when the EJB is created or destroyed. The following code demonstrates how to create a task
that can be utilized by the ManagedThreadFactory:

public class MessagePrinter implements Runnable {

 @Override
 public void run() {
 printMessage();
 }

 public void printMessage(){
 System.out.println("Here we are performing some work...");
 }
}

To initiate the threading, call the ManagedThreadFactory, which can be injected into a using class via the
@Resource annotation. The ManageThreadFactory newThread method can then be invoked to spawn a new thread,
passing the Runnable class instance for which the thread should process. In the servlet context listener example
below, when a thread context is initialized, then a Runnable class that was listed in the previous code listing,
MessagePrinter, is instantiated and passed to the ManagedThreadFactory to spawn a new thread.

package org.javaee7.chapter11;

import javax.annotation.Resource;
import javax.enterprise.concurrent.ManagedThreadFactory;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

/**
 * Servlet Context Listener: Prints message when context is initialized
 * @author Juneau
 */
public class ServletCtxListener implements ServletContextListener {
 Thread printerThread = null;

 @Resource(name ="concurrent/AcmeThreadFactory")
 ManagedThreadFactory threadFactory;

 @Override
 public void contextInitialized(ServletContextEvent scEvent) {

 MessagePrinter printer = new MessagePrinter();
 Thread loggerThread = threadFactory.newThread(printer);
 loggerThread.start();
 }

Chapter 11 ■ ConCurrenCy and BatCh appliCations

183

 public void contextDestroyed(ServletContextEvent scEvent) {
 synchronized (printerThread) {
 printerThread.interrupt();
 }
 }
}

The addition of a formal threading framework into Java EE is much welcomed. By adhering to the use of
ManagedThreadFactory API, your enterprise applications can be made multi-threaded using an accepted standard solution.

Batch Applications for the Java Platform
The new API for batch processing provides a fine-grained experience for developers, which enables them to produce
and process batch applications in a variety of different ways. Enterprise applications no longer need to utilize
customized classes for performing batch processing, allowing enterprise applications to adhere to an adopted
standard.

There are two different approaches to creating batch applications using the API, those being “item oriented”
and “task-oriented.” Item-oriented processing is useful for those applications that require many different processes
to be combined together to formulate one job. This type of processing is also known as “chunk” processing, since
the different processes are performed in chunks. The second approach is known as task-oriented, and this type of
processing supports batch steps that are also known as batchlets.

Item-Oriented Processing
Prior to the inclusion of Batch Applications for Java EE, organizations and individuals had to write their own custom
Java implementations for processing batch jobs. Utilizing the newly added API, developers can create batch jobs using a
standard combination of XML for defining a job, and Java for programming the implementation. In the example below,
a simple batch job reads text from a file, processes it using a comparison, and then writes out the processed text. The
example batch program is simplistic, but it demonstrates how the API makes it easy to write very complex jobs.

Let’s begin the explanation by taking a brief look at the API from a high level. A job consists of one or more steps,
and each step has no more than one ItemReader, ItemWriter, and ItemProcessor. A JobOperator is responsible
for launching a job, and a JobRepository is used to maintain metadata regarding the currently running job. Jobs are
defined via XML, and the <Job> element is at the root of the job definition. Thus, a <Job> is the foundational element,
which consists of one or more <step> elements, and also defines other specifics of the job such as the job name and if
it is restartable or not. Each <step> of a job consists of one or more chunks or batchlets. In this example, which covers
item-oriented processes, each step has just one chunk. To learn more about task-oriented jobs and batchlets, please
see the specification or online documentation at https://java.net/projects/jbatch/pages/Home.

As expected, each chunk of a step is defined within the XML using a <chunk> element. A <chunk> element, which
is a child of <step>, defines the reader, writer, processor pattern of a batch job. A chunk runs within the scope of a
transaction, and it is restartable at a checkpoint if it does not complete. The <reader> element is a child element of
<chunk>, and it is used to specify the reader for that chunk. The <reader> element can accept zero or more name/
value pair properties using a <properties> element. The <processor> element is also a child element of <chunk>,
which specifies the processor element for that chunk. Like a <reader> element, a <processor> element can accept
zero or more name/value pair properties using a <properties> element. The <writer> element is a child element
of <chunk> as well, which specifies the writer for the chunk step. Again, like the reader and processor, the <writer>
element can accept zero or more name/value pair properties using a <properties> element.

The XML configuration for a job resides in an XML file that should be named similar to the batch job to which it
belongs. This file should reside within a folder named batch-jobs, which in turn resides in the application META-INF folder.
An XML file named batch.xml should also reside within the META-INF folder. This file contains the mapping for the item
reader, writer, and processor elements using <ref> elements and mapping the item names to a Java implementation class.

https://java.net/projects/jbatch/pages/Home

Chapter 11 ■ ConCurrenCy and BatCh appliCations

184

<batch-artifacts xmlns="http://jcp.org.batch/jsl">
 <ref id="acmeReader" class="org.javaee7.chapter11.AcmeReader"/>
 <ref id="acmeProcessor" class="org.javaee7.chapter11.AcmeProcessor"/>
 <ref id="acmeWriter" class="org.javaee7.chapter11.AcmeWriter"/>
</batch-artifacts>

The implementation classes should either extend abstract classes (reader and writer), or implement an interface
(processor). The ItemReader implementation class (AcmeReader in the example) extends the AbstractItemReader
, and accepts an object into which the read items will be stored. In the example, that object class is named
WidgetReportItem. As such, the class should implement the readItem method, which is responsible for performing
the reading. The method should return the object to which the items are read, or return a null when there are no
more items to read.

public class AcmeReader extends AbstractItemReader<WidgetReportItem> {
...
@Override
 public WidgetReportItem readItem() throws Exception {
 Path file = Paths.get("widgetFile.txt");
 List<String> fileLines;
 Charset charset = Charset.forName("US-ASCII");
 fileLines = Files.readAllLines(file, charset);
 for(String line:fileLines){
 return new WidgetReportItem(line);
 }
 return null;

 }
...

The ItemProcessor class implementation (AcmeProcessor in the example) is responsible for performing
processing for the chunk, and it should implement the ItemProcessor interface, accepting both the object containing
the read items, and an object to which the processed items will be stored. The ItemProcessor implementation class
should implement a processItem method, which is responsible for performing the processing.

The ItemWriter class implementation (AcmeWriter in the example) is responsible for performing the writing
for the chunk. The class implementation should extend the AbstractItemWriter class, and accept the object to which
the processed items will be written. This implementation must contain the writeItems method, which is responsible
for performing the writing.

Example of Item-Oriented Processing
In this example, a batch process is created to read text from a file, process that text accordingly, and then write
out the processed text. To begin, construct an XML file to define the job. The XML file for this example will be
called acmeFileProcessor.xml. Let’s take a look at what a job process looks like. The lines below are from the
acmeFileProcessor.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<job id="acmeFileProcessor" xmlns="http://batch.jsr352/jsl">
 <step id="readingStep" >
 <chunk item-count="2">
 <reader ref="acmeReader"></reader>

http://jcp.org.batch/jsl
http://batch.jsr352/jsl

Chapter 11 ■ ConCurrenCy and BatCh appliCations

185

 <processor ref="acmeProcessor"></processor>
 </chunk>
 </step>
 <step id="writingStep" >
 <chunk item-count="1">
 <writer ref="acmeWriter"></writer>
 </chunk>
 </step>
</job>

There are three tasks being performed in this particular job: acmeReader, acmeProcessor, and acmeWriter. These
three tasks can be associated with Java class implementations within the batch.xml file, which is located within the
META-INF directory. The following code shows what the batch.xml looks like.

<?xml version="1.0" encoding="UTF-8"?>
<batch-artifacts xmlns="http://jcp.org.batch/jsl">
 <ref id="acmeReader" class="org.javaee7.chapter11.AcmeReader"/>
 <ref id="acmeProcessor" class="org.javaee7.chapter11.AcmeProcessor"/>
 <ref id="acmeWriter" class="org.javaee7.chapter11.AcmeWriter"/>
</batch-artifacts>

Next, let’s take a look at each of these class implementations. We will begin by looking at the AcmeReader class
implementation below. This class is responsible for reading a file and creating a new WidgetReportItem object for
each line of text.

package org.javaee7.chapter11;

import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import javax.batch.api.AbstractItemReader;

/**
 * Example of a file reading task
 *
 * @author Juneau
 */
public class AcmeReader extends AbstractItemReader<WidgetReportItem> {

 public AcmeReader() {
 }

 /**
 * Read lines of report and store each into a WidgetReportItem object. Once
 * all lines have been read then return null to trigger the end of file.
 * @return
 * @throws Exception
 */
 @Override

http://jcp.org.batch/jsl

Chapter 11 ■ ConCurrenCy and BatCh appliCations

186

 public WidgetReportItem readItem() throws Exception {
 Path file = Paths.get("widgetFile.txt");
 List<String> fileLines;
 Charset charset = Charset.forName("US-ASCII");
 fileLines = Files.readAllLines(file, charset);
 for(String line:fileLines){
 return new WidgetReportItem(line);
 }
 return null;

 }
}

Next, let’s take a look at the AcmeProcessor class. This class is responsible for processing each WidgetReportItem
accordingly. In this case, if the line of text that is contained in the object has the text “Two” in it, then it will be added
to a WidgetOutputItem object.

package org.javaee7.chapter11;

import javax.batch.api.ItemProcessor;

/**
 *
 * @author Juneau
 */
public class AcmeProcessor implements ItemProcessor<WidgetReportItem, WidgetOutputItem> {

 public AcmeProcessor(){}

 /**
 * Write out all lines that contain the text "Two"
 * @param item
 * @return
 * @throws Exception
 */
 @Override
 public WidgetOutputItem processItem(WidgetReportItem item) throws Exception {
 if(item.getLineText().contains("Two")){
 return new WidgetOutputItem(item.getLineText());
 } else {
 return null;
 }
 }

}

Lastly, let’s see what the AcmeWriter class looks like. This class is responsible for writing the WidgetOutputItem
objects that have been processed by AcmeProcessor.

package org.javaee7.chapter11;

Chapter 11 ■ ConCurrenCy and BatCh appliCations

187

import java.util.List;
import javax.batch.api.AbstractItemWriter;

/**
 *
 * @author Juneau
 */
public class AcmeWriter extends AbstractItemWriter<WidgetOutputItem> {

 @Override
 public void writeItems(List<WidgetOutputItem> list) throws Exception {
 for(WidgetOutputItem item:list){
 System.out.println("Write to file:" + item.getLineText());
 }
 }

}

The WidgetReportItem and WidgetOutputItem objects are merely containers that hold a String of text. Below is
the implementation for WidgetReportItem, the WidgetOutputItem object is identical other than the name.

public class WidgetReportItem {
 private String lineText;

 public WidgetReportItem(String line){
 this.lineText = line;
 }

 /**
 * @return the lineText
 */
 public String getLineText() {
 return lineText;
 }

 /**
 * @param lineText the lineText to set
 */
 public void setLineText(String lineText) {
 this.lineText = lineText;
 }
}

When this batch job is executed, the text file is read, processed, and then specific lines of text are written to the system
log. The read and process tasks are performed as part of the first step, and then the write is processed as the second
step. To execute this batch job, the a JobOperator must be obtained by executing BatchRuntime.geteJobOperator().
Once the JobOperator has been obtained, its start method can be invoked, passing the name of the batch XML file
for processing, along with the necessary Properties. In the example below, an EJB timer is used to schedule the batch
job that we have created in the previous code examples.

Chapter 11 ■ ConCurrenCy and BatCh appliCations

188

package org.javaee7.chapter11;

import java.util.Properties;
import javax.annotation.Resource;
import javax.batch.operations.JobOperator;
import javax.batch.runtime.BatchRuntime;
import javax.ejb.Schedule;
import javax.ejb.Stateless;
import javax.ejb.TimerService;

@Stateless
public class BatchTimer {

 @Resource
 TimerService timerService;

 @Schedule(minute="*", hour="*")
 public void scheduledTimerExample(){
 System.out.println("Initiating the batch job...");
 JobOperator job = BatchRuntime.getJobOperator();
 job.start("acmeFileProcessor", new Properties());
 }
}

As mentioned in the introduction to this chapter, the Batch Applications for Java EE API is very detailed, and this
example barely scratches the surface of how to write batch jobs. You are encouraged to learn more about the API by
reading through the specification for JSR-352.

Summary
The Java Enterprise platform has been missing some commonly required APIs until the latest release of Java EE 7.
Until the EE 7 release, there had not been a standard way to develop multi-threaded applications that are deployed in
an application server environment. Moreover, there has never been a standard way to perform and/or schedule batch
applications. The EE 7 release brings forth a handful of new APIs for enterprise development, and among those are
the Concurrency Utilities for Java EE and Batch Applications.

This chapter reviewed some of the basic concepts for both the Concurrency and Batch APIs for Java EE. You learned
how to configure application server resources that are used with these technologies, and also learned how to utilize the
new APIs to integrate these techonlogies into your applications. Going forward, Java Enterprise developers can begin to
utilize these new standards for developing applications that necessitate concurrency and/or batch solutions.

189

Chapter 12

NetBeans and Java EE 7

The NetBeans IDE has been completely overhauled for support of Java EE 7 and its APIs. For years, enterprise
application development has been made easier by NetBeans and other IDEs because of their abstraction of tedious
tasks. Capabilities such as auto-completion, syntax coloring, and compilation and CLASSPATH management make
the use of IDEs a nearly essential ingredient for any developer’s productivity. The latest releases of NetBeans aid in the
development of Java EE 7 applications by providing mainstream support for the newer APIs, adding wizards to help
configure applications for use with new features such as faces flows, and automatic bundling of newer libraries.

Configuring Application Servers
Before you can associate application projects with a server for deployment and testing, you need to configure one
or more application servers for use within NetBeans. Please note that it is a good practice to only configure those
application servers that are used for application development and testing purposes within NetBeans.

To add a local or remote server to NetBeans, perform the following tasks.

 1. Navigate to the “Services” window, and right-click on the “Servers” menu selection. Click
on “Add Server” as shown in Figure 12-1.

Figure 12-1. Add Server to NetBeans IDE

 2. When the “Add Server Instance” dialog appears, choose the server type that you wish to add.
(Figure 12-2)

Chapter 12 ■ NetBeaNs aNd Java ee 7

190

 3. On the next screen, enter the path to the application server installation that you would like
to configure within NetBeans (Figure 12-3). Once you have chosen the location, click the
“Finish” button.

Figure 12-2. Add Server Instance

Figure 12-3. Set Server Location

Chapter 12 ■ NetBeaNs aNd Java ee 7

191

Developing Java Enterprise Applications
The NetBeans IDE really makes it easy to develop Java Enterprise Applications. To begin, you create a Java EE project
within the IDE, and subsequently use the IDE to configure the project accordingly. NetBeans not only makes it easy
to configure your application projects, but it also eases development with the aid of such features as auto-completion,
syntax highlighting, auto-formatting, etc. This section will cover how NetBeans can help Java EE developers with some
of the most commonly performed Java EE development tasks.

Note ■ to make use of Java ee 7 specific wizards and features, the project type must be specified as Java ee 7 when
it is created.

NetBeans Java Web Projects
There are a few different configurations to choose from for creation of a Java Enterprise project within NetBeans.
This book covers the creation of “Java Web” application projects within NetBeans, which is the standard project
selection for development of Java EE 6 and EE 7 applications.

To begin creation of a new project, open the “New Project” dialog by choosing “File” ➤ “New Project”. In the
“New Project” dialog, you will see all of the different Java project categories listed within the left-hand list box.
Selecting one of the categories will display the project types for the selected category within the right-hand list box.
To create a Java EE 6 or Java EE 7 project, select the “Java Web” category, and then “Web Application” as the project
type (Figure 12-5).

Figure 12-4. Expand and Administer Server in NetBeans

 4. You can now deploy applications to the server by registering them with a given project
from within the project properties. Note that you can also perform some basic application
server tasks by selecting the application server from within the “Services” window in
NetBeans, as demonstrated in Figure 12-4.

Chapter 12 ■ NetBeaNs aNd Java ee 7

192

Note ■ the “Java ee” category allows development of projects using the old-style Java ee configuration. that is,
project types within the “Java ee” category adhere to standards for developing with Java ee 5 or earlier. In such projects,
separate Web (War) and eJB (Jar) projects are created, rather than a single project that deploys to a single distributable
War file.

After selecting the project type, the “New Web Application” dialog will open. Enter a project name and location,
as shown in Figure 12-6. Once finished, choose “Next”.

Figure 12-5. Creating a New Java EE Project in NetBeans

Chapter 12 ■ NetBeaNs aNd Java ee 7

193

In the “Server and Settings” screen, choose the application server that you wish to use for deployment (see the
preceding section “Configuring Application Servers”). Also choose the Java EE version that you wish to use. If you plan
to make use of Contexts and Dependency Injection, then select the designated checkbox (Figure. 12-7).

Figure 12-6. New Web Application

Figure 12-7. Server and Settings

Chapter 12 ■ NetBeaNs aNd Java ee 7

194

JSF
The NetBeans IDE makes it easy to generate files and work with markup\code within JSF application projects.
The NetBeans 7.3 release brings forth many enhancements that enable compatibility with Java EE 7. In this section,
we’ll cover many of the most useful JSF features with step-by-step instructions. However, there are many hidden
features that do not require step-by-step instructions, but are very useful. The following list includes Java EE 7 specific
updates that are low-keyed, but important nonetheless:

The IDE hints that •	 javax.faces.bean will be deprecated

JSF editor complains about use of •	 java.sun.com/jsf tag argument

Editor is now enabled for use with JSF 2.2 specific markup, such as the new •	 jsf: and p:
namespaces

Facelets template client now loads templates from the Resource Libraries•	

Awareness of the •	 @FlowScoped scope

To open the JSF menu, right-click on an application “Source Packages” directory to open the context menu.
From within the context menu, choose “New” and then “Other . . . ” to open the “New File” dialog. Within the dialog,
choose “JavaServer Faces” from the Categories listbox to open the JSF file types within the left-hand listbox (Figure 12-8).

Figure 12-8. New File Menu – JSF File Types

http://java.sun.com/jsf

Chapter 12 ■ NetBeaNs aNd Java ee 7

195

The JSF file types include the following options:

JSF Page•	

JSF Managed Bean•	

JSF Faces Configuration•	

JSF Composite Component•	

JSF Pages from Entity Classes•	

Faces Template•	

Faces Template Client•	

The JSF Page file selection opens a dialog that can be used to generate a new JSF page (Figure 12-9). The dialog
allows one to choose a file location and name, and it also contains the ability to apply different options for the page
type. The option choices for page type are Facelets (default), JSP File, or JSP Segment. The examples throughout this
book feature the Facelets page type.

Figure 12-9. New JSF Page Dialog

Chapter 12 ■ NetBeaNs aNd Java ee 7

196

The JSF Managed Bean file selection opens a dialog that allows one to generate a JSF Managed Bean controller
class (Figure 12-10). The dialog provides the ability to choose to add the bean data to the faces-config file, as well as
choose the scope of the bean.

Figure 12-10. New JSF Managed Bean Dialog

The JSF Faces Configuration File selection is used to create a faces-config.xml file for a project. However, this
option is not required if you choose to create a JSF project within the NetBeans Project Creation wizard.

The JSF Composite Component file selection opens a dialog that can be used to create a composite component
file. The dialog does not provide many options other than the ability to choose a file location and name. The generated
file contains the skeleton of a composite component, as listed in the following lines:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/composite

Chapter 12 ■ NetBeaNs aNd Java ee 7

197

 <!-- INTERFACE -->
 <cc:interface>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 </cc:implementation>
</html>

The JSF Pages from Entity Classes file selection can be quite powerful, in that it allows one to choose an Entity
Class from which to generate a JSF page, and then the resulting JSF page will be bound to the entity class upon
generation. In order to use this option, the project must contain at least one entity class.

JPA
The NetBeans IDE provides excellent support for JPA, including schema generation support, code completion and
annotation support, as well as facilities to help develop Entity Bean classes either manually, or based upon a selected
database table. To access the entity class wizards, right-click on a project’s “Source Packages” folder to open the
context-menu, and then choose “New” ➤ “Other” to open the “New File” dialog. Once open, choose the “Persistence”
category from the left-hand list box to display the file types in the right-hand list box (Figure 12-11).

Figure 12-11. New File – Persistence

Chapter 12 ■ NetBeaNs aNd Java ee 7

198

The option entitled “Entity Class” allows one to generate a blank entity class, and “Entity Classes from Database”
allows one to generate an entity class from a selected database table. In doing so, all of the requisite code for mapping
the entity class to the selected database table is automatically generated for you.

JPQL
NetBeans 7.3 and beyond include a new feature that allows one to query a database using JPQL syntax. This can be
quite helpful for those who are using JPQL in their EJB session beans. To access the JPQL query tool, perform the
following steps:

 1. Expand a NetBeans Web Project that contains a persistence.xml configuration file in the
project “Configuration Files” directory.

 2. Right-click on the persistence.xml configuration file to open the context menu.

 3. Click on “Run JPQL Query” to open the tool.

 4. Type the JPQL query into the editor and click the run button to execute, as shown in
Figure 12-12.

Figure 12-12. JPQL Query

Chapter 12 ■ NetBeaNs aNd Java ee 7

199

JMS
The NetBeans IDE wizards help with the creation of JMS resources. To create a JMS resource from the IDE,
perform the following steps:

 1. Right-click on a project directory, or select File ➤ “New File” from the NetBeans File menu
to open the “New File” dialog.

 2. Select “Glassfish” from the “Categories” selection box of the “New File” dialog, and then
choose “JMS Resource” from the “File Types” selection box. This will open the “New JMS
Resource” dialog (Figure 12-13).

Figure 12-13. New JMS Resource

 3. Type a JNDI name for the resource, and then choose the resource type from the given
options. Once you’ve done this, press the “Next” button.

 4. Add any properties to the JMS resource using the “JMS Properties” panel of the “New JMS
Resource” dialog (Figure 12-14).

Chapter 12 ■ NetBeaNs aNd Java ee 7

200

Once you have completed the configuration, the JMS resource will be deployed to the Glassfish server the
next time the application is built and deployed. This happens because the wizard actually generates XML into the
glassfish-resources.xml file, as shown in the excerpt below:

<admin-object-resource enabled="true" jndi-name="jms/myQueue" object-type="user" res-
adapter="jmsra" res-type="javax.jms.Queue">
 <description/>
 <property name="Name" value="0"/>
 </admin-object-resource>

Web Services
The NetBeans IDE has been updated to cover the latest features included in JAX-RS. Of course, syntax highlighting
and auto-completion are baked into the IDE for supporting the JAX-RS 2.0 API. NetBeans includes standard JAX-RS
wizards for generation of JAX-RS web services from entity classes, databases, and patterns. The IDE also contains wizards
for generation of SOAP web services and clients. Above and beyond the basic IDE support and web service wizards,
NetBeans 7.3 includes wizards for generating JAX-RS 2.0 filters, interceptors and clients. In this section, we’ll take a look at
how to utilize these wizards to make filter and interceptor generation a breeze.

Figure 12-14. JMS Properties

Chapter 12 ■ NetBeaNs aNd Java ee 7

201

Filters
To create a JAX-RS 2.0 Filter, perform the following steps:

 1. Right-click on a project directory, or select File ➤ “New File” from the NetBeans File menu
to open the “New File” dialog.

 2. Select “Web Services” from the Categories select box, and then select “JAX-RS 2.0 Filter”
from the “File Types” select box, as shown in Figure 12-15.

Figure 12-15. Create JAX-RS 2.0 Filter

 3. Designate the type of filter you wish to create within the “New JAX-RS 2.0 Filter” dialog
(Figure 12-16).

Chapter 12 ■ NetBeaNs aNd Java ee 7

202

 4. Edit the generated JAX-RS 2.0 filter file accordingly (Figure 12-17).

Figure 12-16. New JAX-RS 2.0 Filter Dialog

Chapter 12 ■ NetBeaNs aNd Java ee 7

203

Interceptors
To create a JAX-RS 2.0 Interceptor using the NetBeans wizard, follow these steps:

 1. Right-click on a project directory, or select File ➤ “New File” from the NetBeans File menu
to open the “New File” dialog.

 2. Select “Web Services” from the Categories select box, and then select “JAX-RS 2.0
Interceptor” from the “File Types” select box.

 3. When the “New JAX-RS 2.0 Interceptor” dialog opens, choose the type of interceptor
you wish to create (ReaderInterceptor or WriterInterceptor), and specify file name and
location, as seen in Figure 12-18.

Figure 12-17. Generated JAX-RS 2.0 Filter File

Chapter 12 ■ NetBeaNs aNd Java ee 7

204

 4. Edit the generated interceptor file, accordingly (Figure 12-19).

Figure 12-18. New JAX-RS 2.0 Interceptor Dialog

Chapter 12 ■ NetBeaNs aNd Java ee 7

205

Clients
One of the most useful additions to JAX-RS 2.0 is the ability to generate RESTful clients. NetBeans 7.3 accommodates
this new feature by containing wizards for generation of RESTful Java clients and RESTful JavaScript clients.
Let’s begin by looking at the procedure to generate a RESTful Java client using the NetBeans wizard.

 1. Right-click on a project directory or select “File” ➤ “New File” from the NetBeans File
menu to open the “New File” dialog.

 2. Select “Web Services” from the “Categories” select box, and then select “RESTful
Java Client” from the “File Types” select box (Figure 12-20). Add a name for the client,
along with the type of REST resource, whether it belongs to a project within the IDE,
or if it has been registered as a cloud service with the IDE (such as Google or Amazon).
Lastly, provide a type of authentication for the client.

Figure 12-19. JAX-RS 2.0 Interceptor Generated File

Chapter 12 ■ NetBeaNs aNd Java ee 7

206

Once you’ve run though the wizard, a RESTful Java client will be generated for the REST resource that you had
selected. If you would rather generate a JavaScript client, you can do that by performing the following steps:

 3. Right-click on a project directory or select “File” ➤ “New File” from the NetBeans File
menu to open the “New File” dialog.

 4. Select “Web Services” from the “Categories” select box, and then select “RESTful
JavaScript Client” from the “File Types” select box (Figure 12-21). After the dialog window
opens, select a folder into which the JavaScript client should be generated. Also specify
one or more projects for which you would like to have stubs generated. If you would rather
specify a WADL to generate stubs, choose that option and select the file instead.

Figure 12-20. New RESTful Java Client Dialog

Chapter 12 ■ NetBeaNs aNd Java ee 7

207

Once you have run the client, the necessary files for JavaScript client will be generated and placed into the
folder that was designated from within the wizard. In Figure 12-22, you can see that the stubs for a project named
JavaEERecipesJPA and SimpleRest have been placed inside of the rest folder.

Figure 12-21. Creating New JAX-RS 2.0 JavaScript Client

Figure 12-22. Generated JavaScript Client Stubs

Chapter 12 ■ NetBeaNs aNd Java ee 7

208

HTML5
Many modern web applications make use of HTML5. The Java community has taken note of that and has made it
easy to begin working with HTML5 within NetBeans itself. NetBeans has an HTML5 project option, which enables
developers to debug HTML5 pages using a Chrome web browser plugin. To create an HTML5 project from within the
IDE, select the “New Project” option and then choose HTML/JavaScript in the “Categories” selection list, followed by
“HTML5 Application” from the “Projects” selection list (Figure 12-23).

Figure 12-23. Create New HTML5 Application

Next, you are given the option to choose “No Site Template,” or you can select a template that you provide, or use
one that you can download, as seen in Figure 12-24.

Chapter 12 ■ NetBeaNs aNd Java ee 7

209

Lastly, choose any libraries that you wish to add to your HTML5 Project (Figure 12-25), then click “Finish”.

Figure 12-24. Choose Site Template

Chapter 12 ■ NetBeaNs aNd Java ee 7

210

Once the project has been created, you can choose “Run” to have it opened up within Chrome, assuming that
you have installed the Chrome plugin. If you have not yet installed the Chrome plugin, you will be prompted to do so.

Summary
The days of working in text files and your operating system file structure may be numbered. It is no doubt
that utilization of feature-rich integrated development environments such as NetBeans can make application
development much easier. Utilization of an IDE takes away worries such as the CLASSPATH, and makes it easier to
develop by providing features such as syntax coloring, code completion, and wizards. The latest releases of NetBeans
are no exception, as they provide full support for Java EE 7.

Figure 12-25. Add Libraries to Project

A���������
Asynchronous JavaScript and XML (AJAX), 132
Asynchronous processing, 128

B���������
Batch applications

Java platform
AcmeProcessor class, 186
AcmeReader class, 185
AcmeWriter class, 186
batch job, schedule, 187
item oriented processing, 183
ItemWriter class, 184
readItem method, 184
tasks of, 185
WidgetReportItem, 187
XML configuration, 183

C���������
Client API

entities, return, 123
injection (WebTarget), 124
invocation, 123
MediaType fields, 122
MessageBodyWriter, 121
request/response, 119
resource, obtain, 121
RestClientJava, 119
web resource targets, 120

Concurrency
application server

Java message service (JMS), 164
ManagedExecutorService, 164
service panel, 167

contextual objects and tasks, 163

multi tasks, asynchronously
ArrayList, 172
EmployeeTask, 174
Runnable resource, 172
task class of, 173
tasks of, 172

reporter task, 167
ManagedExecutorService, 168
Runnable tasks, 169
services codes, 170

scheduled tasks
Employee entity, 178
executor service, 175
factories panel, thread, 180
JSF bean class, 178
ManagedExecutorService, 175
ManagedScheduleExecutorService, 177
ManagedThreadFactory, 181–182
MessagePrinter, 182
Resource annotation, 178
ScheduleExecutorService methods, 177
thread instances, 179

Container life-cycle events, 106
Contexts and dependency injection (CDI), 21, 99

BeanManager methods, 106
container life-cycle events, 106
deprecations, 111
overview of, 99
@Priority

cross-cutting tasks, 107
EmployeeProcessorDecorator, 108
Hire interface, 109
interceptors, 107

producers, 104
programmatic lookup, 105
type-safe injection, 101
@Veto and @Requires annotations, 103

Contextual instances, 100

Index

211

D���������
Data validation, 83

annotations, constraint, 84
annotations, write, 89
built-in Bean validation, 85
different techniques, 86
FacesContext, 86
input errors, 89
UIInput, 88
ValidateUserId, 87

Bean validation, Java EE, 83
contexts and injection integration

instances, requested classes, 90
ValidatorFactory, 90
ValidatorInjection, 90

group conversions
authentication, 96
order specification, validation, 97
overview, 97
validation, 95–96

message interpolation via EL, 98
methods

cascaded, 92
customize (method, constructor

or getter validation), 92
ExecutableValidator, 95
manual, level validation, 95
parameter constraints, 91
return value constraints, 92
@ValidateOnExecution, 93

open API, 98
Dependency injection, 99–100

Bean interface, 101
Java objects, 100
ServletContext, 102

E���������
Enterprise JavaBeans (EJB)

EJB lite, features, 79
EJB specification, 80
updates and improvements

container-managed transaction, 74
EJBContainer, 79
JMS alignment, 78
life-cycle callback, 73
local/remote business

interfaces, 75
passivationCapable, 74
roles of, 75
TimerService API, 76–77

Expression Language (EL)
API, stand alone, 50

Bean definition, 51
ELManager, 53

ELProcessor methods, 51
function definition, 53
variable declaration, 52

collection enhancements
eager operations, 44
lazy operations, 42
lists, 41
maps, 41
operations, 42
sets, 41

Lambda
concepts, 39
nesting, 40
pass to, Java, 40
variable assignments, 40

operators
assignment, 49
EL precedence, 49
semicolon (;), 49
string concatenation, 48

release incompatibilities, 54
static field and methods, 50

F, G, H���������
Facelets. See JavaServer Faces
Filters and interceptors

binding, 126
entity, 126
filters, 124
priority setting, 127

I���������
Injection targets, 100

J, K, L���������
Java Message Service (JMS)

API
autocloseable resources, 158
getBody method, 158
message consumers, 157
sending messages, 154

connection factory resources, 148
connection resources, 148
destination resources, 148
messages, 152
new messaging features, 158

asynchronous sending, 159
setDeliveryDelay method, 159
shared non-durable

subscriptions, 160
PTP messaging, 147
queue characteristics, 147
sessions, 151

■ index

212

JavaScript Object Notation (JSON)
builder pattern, 140
parsing JSON, 143–144
persisting JSON, 142

JavaServer Faces (JSF)
Ajax queues, 25
facelets

component attributes, 31
@FaceletsResourceResolver

annotation, 32
XML exclusion, 31

file upload
commandButton, 27
inputFile component, 25
uploadFile method, 26
validator class, 26

flow of
API, context, 24
command component, 19
configuration, 22
directory structure, 17
exampleFlow.xhtml, 19
FlowBean, 18
FlowBuilder, 22–23
Flow EL, 24
FlowHandler, 24
FlowScope, 21
intermediateFlow.xhtml, 20
managed bean, 21
navigational nodes, 21
nodes, 18
nodes, navigate view, 21
package, 24
view nodes, 18
web flow, 17

and HTML5, 28
friendly markup, 30
passthrough attributes, 28

library contracts, resource, 32, 34–35
backing bean value, 36
hierarchy, 33
mocha directory, 33
static URL mapping, 36

security, 36
stateless views, 27
view actions

controller, 16
life cycle phases, 16
preRenderView, 15

JAX-RS, 113
API utilization

REST service, 115
service annotations, 115
servlets, 114
string format, 114

consuming content, 118

content production, 117
URI construction, 116

JPA. See Object relational mapping
JSON-P. See JavaScript Object Notation (JSON)

M���������
Message consumers, 157

N���������
Netbeans IDE and Java EE7

application server
location of, 190
server instance, 189

enterprise application
server and setiings, 193
web application, 193
web projects, 191

HTML5
application, 208
libraries, 210
site template, 209

JMS
properties, 200
resources, 199

JPA, 197
JPQL, 198
JSF

Bean dialog, 196
file types, 194
page, 195

web services, 200
clients, 205
filters, 201
interceptors, 203
JavaScript client stubs, 207
JAX-RS 2.0 filter, 201
JAX-RS 2.0 interceptor, 204
RESTful Java clients, 206

O���������
Object relational mapping

database functions, 56
downcasting (FROM and WHEN clauses)

entity sub type, 60
Factory entity, 60
ProductSessionEJB, 63
TREAT operator, 59
WIDGETA entity, 62

entity listeners, CDI, 71
ON conditions

activeEmployeeCount method, 56
JOB records, 56
JPQL, 55

■ index

213

schema generation, 64
annotations, 66
persistence.xml, 65
properties, 65

stored procedures, database
EntityManger, 69
NamedStoredProcedureQuery, 69–70

synchronization, 71
update and delete (bulk)

CriteriaBuilder, 57
CriteriaDelete, 58
query object, 57
updateEmployeeStatusInactive, 57

onAllDataRead, 2
onDataAvailable, 2
onError, 2
onPostback, 16

P, Q���������
Point-To-Point (PTP), 147
Publish/Subscribe (pub/sub), 147

R���������
ReadListener, 1–2
RESTful web services, 113

asynchronous processing
in EJB, 129
runnable, 128

client API
entities, return, 123
injection (WebTarget), 124
invocation, 123
MessageBodyWriter, 121
request\response, 119
response, obtain, 121
RestClientJava, 119
web resource targets, 120
WebTarget.request().get() method, 122

filters and interceptors
AlertFilter class, 125
binding, 126–127
entity, 126
extension point interfaces, 124
priorities setting, 127
read and write interceptor, 126
request or response, 124

JAX-RS, 113
API utilization, 114
consuming content, 118
content production, 117
URI construction, 116

resource context, 129

S, T, U���������
Servlet technology

FileUpload
FileUploadHandler servlet, 6
HttpServletRequest, 8
@MultipartConfig, 6
multipart/form-data processing,

without servlet, 8
filter life cycle, 9–10
non-blocking I/O

event listeners, 1
override methods, 2
ReadListener, 2
status of, 2
WriteListener, 3

protocol upgrade, 4
HttpUpgradeHandler, 5
methods, 5
WebConnection, 5
WebSocket, 5

security
AcmeServlet, 10
content length, 14
HTTP methods uncovered, 13
identity specification, init and

destroy methods, 10
servlet 3.1 API, 10
session fixation attack, 12

V���������
viewAction, 15

W, X, Y, Z���������
WebSockets

client creation
@ClientEndpoint, 134
utilization, 134

consuming messages
parameters, 132
@PathParam, 133
POJO class, 132
URL, 133

sending messages
invoke, 137
JavaScript solution, 136–137
JavaScript WebSocket

object events, 135
message types, 138–140
open event, 136
readyState values, 136

terms, 131
WriteListener, 1, 3

■ index

214

Object relational mapping (cont.)

Introducing Java EE 7
A Look at What’s New

Josh Juneau

Introducing Java EE 7: A Look at What’s New

Copyright © 2013 by Josh Juneau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5848-3

ISBN-13 (electronic): 978-1-4302-5849-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: David Coffin
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Larissa Shmailo
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

This book is dedicated to my wife, Angela, and my four children, Kaitlyn, Jacob, Matthew, and Zachary. You
are my joy and inspiration. It is also dedicated to the many Java developers worldwide. I hope that

this book can lead you to develop the sophisticated solutions of tomorrow.

— Josh Juneau

vii

Contents

About the Author �� xv

About the Technical Reviewer �� xvii

Acknowledgments ��� xix

Introduction ��� xxi

Chapter 1: New Servlet Features ■ ��1

Non-Blocking I/O ..1

Upgrade Protocol ..4

Enhanced FileUpload ..6

Filter Life Cycle ...9

Security Enhancements ...10

Specifying an Identity for Executing init and destroy Methods ..10

Thwarting Session Fixation Attack ...12

Denying Uncovered HTTP Methods ...13

Changing the Content Length ...14

Summary ..14

Chapter 2: JavaServer Faces and Facelets ■ ���15

View Actions ...15

Faces Flow ...17

Defining a Flow ...17

The Flow Managed Bean ..21

Navigating View Nodes ..21

Flow EL ...24

■ Contents

viii

Java API for Flow Context ...24

Packaging a Flow ...24

Ajax Queues ...25

File Upload ...25

Stateless Views ..27

HTML5 and JSF ..28

Passthrough Attributes ...28

HTML5-Friendly Markup ...30

Facelets Enhancements ...31

Exclude XML from Custom Components...31

@FaceletsResourceResolver Annotation ..32

Resource Library Contracts ..32

Security Enhancements ...36

Summary ..37

Chapter 3: Expression Language (EL) ■ ���39

Lambda Expressions ..39

Lambda Concept and Examples ...39

Variable Assignment ...40

Nesting ...40

Passing Lambdas to Java ...40

Collections Enhancements ...41

Sets...41

Maps ...41

Lists ..41

Supporting Operations ..42

New Operators ...48

String Concatenation Operator ...48

Assignment Operator ..49

Semicolon Operator ..49

Precedence Changes ..49

■ Contents

ix

Static Field and Methods ..50

Stand-Alone API ..50

Defining a Bean ..51

Declaring a Variable ..52

Defining a Function...53

Utilizing the ELManager ..53

Incompatibilities with Previous Releases ...54

Summary ..54

Chapter 4: Object Relational Mapping and JPA ■ ��55

Support for Joins with ON Conditions ..55

Invocation of Database Functions ..56

Bulk Updates and Deletions ...57

Downcasting in the FROM and WHERE clauses ...59

Schema Generation ..64

Support for Database Stored Procedures ...69

Synchronization of Persistence Contexts ...71

Entity Listeners using CDI ..71

Summary ..72

Chapter 5: Business Logic Using EJB ■ ���73

General Updates and Improvements ..73

Transaction Life-Cycle Callbacks in Session Beans ...73

Passivation Made Optional ...74

Explicitly Denoting Local and Remote Business Interfaces ..75

Extended TimerService API ...76

JMS Alignment ...78

Embeddable EJBContainer Now Autocloseable ..79

New Features in EJB Lite ...79

Optional Features ...80

Summary ..81

■ Contents

x

Chapter 6: Validating Data ■ ��83

An Overview of Bean Validation with Java EE ..83

Constraint Validation Annotations ...84

Review: Utilizing Different Validation Techniques ...86

Review: Writing a Custom Constraint Annotation ...89

Contexts and Dependency Injection Integration ...90

ValidatorFactory and Validator Injection ...90

Managed Instances of Requested Classes ...90

Method Validation ...91

Declaring Parameter Constraints ..91

Declaring Return Value Constraints ..92

Cascaded Validation ...92

Customizing Method, Constructor, or Getter Validation ..92

Manual Method Level Validation Invocation ...95

Group Conversion ...95

Group Validation ..96

Specifying the Order of Group Validation ..97

Group Conversion ...97

Message Interpolation via EL ...98

A Truly Open API ...98

Summary ..98

Chapter 7: Contexts and Dependency Injection ■ ��99

Brief Overview of CDI ...99

Dependency Injection ...100

Injection of Bean Metadata ...101

Injection of the ServletContext ...102

Marking Classes as Ignored by CDI ..103

Producers ...104

■ Contents

xi

Programmatic Lookup ..105

Container Life-Cycle Events ...106

Priorities ...107

Interceptors ..107

Decorators ..108

Alternatives...109

Deprecations ..111

Summary ..112

Chapter 8: Building RESTful Web Services ■ ���113

Overview of JAX-RS ...113

Utilizing the JAX-RS API ..114

Constructing Meaningful URIs ..116

Producing Content ..117

Consuming Content ..118

Client API ..119

Web Resource Targets ..120

Obtaining a Response ...121

Returning Entities ...123

Invoking at a Later Time ...123

WebTarget Injection ..124

Filters and Interceptors ..124

Filters ..124

Entity Interceptors ..126

Binding Filters and Interceptors ...126

Setting Priorities ...127

Asynchronous Processing ..128

Resource Context ...129

Summary ..130

■ Contents

xii

Chapter 9: WebSockets and JSON-P ■ ���131

WebSockets ..131

Consuming Messages...132

Creating WebSocket Clients ..134

Sending Messages ...135

JavaScript Object Notation—JSON ..140

Building JSON ...140

Persisting JSON ..142

Parsing JSON ..142

Summary ..145

Chapter 10: Java Message Service ■ ��147

Brief Overview ..147

JMS Resources ...148

JMS Sessions ...151

JMS Messages ...152

Additional Information ..154

API Enhancements ...154

New Simple API ..154

Autocloseable Resources ...158

Message Body ..158

New Messaging Features ...158

Message Delivery Delay ...159

New Send Methods for Asynchronous Sending ..159

Multiple Consumers on the Same Subscription..160

Summary ..161

Chapter 11: Concurrency and Batch Applications ■ ��163

Concurrency ...163

Understanding the Contextual Objects and Tasks ..163

Creating Application Server Concurrent Resources ..164

Running the Reporter Task ...167

■ Contents

xiii

Example of ReporterTask ..168

Running Multiple Tasks at Once Asynchronously ...172

Scheduled Tasks ...175

The Executor Service ..175

Example of Scheduled Task ..177

Thread Instances ..179

Batch Applications for the Java Platform ...183

Item-Oriented Processing ...183

Example of Item-Oriented Processing ..184

Summary ..188

Chapter 12: NetBeans and Java EE 7 ■ ��189

Configuring Application Servers ..189

Developing Java Enterprise Applications ...191

NetBeans Java Web Projects ..191

JSF ...194

JPA ...197

JPQL ...198

JMS ..199

Web Services ..200

Filters ..201

Interceptors ..203

Clients ...205

HTML5 ..208

Summary ..210

Index ���211

xv

About the Author

Josh Juneau has been developing software and enterprise since the early days
of Java EE (at the time, J2EE). Enterprise application programming and database
development has been his focus since the start of his career. He became an
Oracle database administrator and adopted the PL/SQL language for performing
administrative tasks and developing applications for Oracle database. In an effort
to build more complex solutions, he began to incorporate Java into his PL/SQL
applications, and later developed stand-alone and web applications with Java.
Josh wrote his early Java web applications utilizing JDBC to work with backend
databases. Later, he incorporated frameworks into his enterprise solutions,
including Java EE and JBoss Seam. Today, he primarily develops enterprise web
solutions utilizing Java EE and other enterprise technologies, such as the Python or
Jython programming language with Django.

Since 2006, Josh has been the editor and publisher for the Jython Monthly newsletter. In late 2008, he began a
podcast dedicated to the Jython programming language. Josh was the lead author for The Definitive Guide to Jython,
Oracle PL/SQL Recipes, Java 7 Recipes, and solo author of Java EE 7 Recipes, which were all published by Apress.
He works as an application developer and system analyst at Fermi National Accelerator Laboratory, and he is the
lead for the Django-Jython project (http://code.google.com/p/django-jython/). Josh has a wonderful wife and
four children who he loves very much. He enjoys spending time with his family fishing, swimming, playing ball, and
watching his kids’ sporting events. To hear more from Josh, follow his blog, which can be found at
http://jj-blogger.blogspot.com. You can also follow him on Twitter via @javajuneau.

http://code.google.com/p/django-jython/
http://jj-%20blogger.blogspot.com
http://@javajuneau

xvii

About the Technical Reviewer

David Coffin is the author of Expert Oracle and Java Security (Apress, 2011). Find
his recent blogs at http://oraclejavasecure.blogspot.com. He is an IT analyst
working at the Savannah River Site, a large U.S. Department of Energy facility. For
more than 30 years, his expertise has been in multiplatform network integration
and systems programming. Before coming to the Savannah River Site, he worked for
several defense contractors and served as the technical lead for office and network
computing at the National Aerospace Plane Joint Program Office at Wright-Patterson
Air Force Base in Ohio. As a perpetual student, he has completed one master’s degree
program and has begun several others. As a family man, he has raised eight children.
Coffin is an athlete and distance swimmer who competes in the middle of the pack.
He is also a classical guitar player, but he’s not quitting his day job.

http://oraclejavasecure.blogspot.com

xix

Acknowledgments

To my wife, Angela: I am still amazed by you and always will be. Thanks for being such a great wife and mother to
our children. You’ve helped me make it through another book, as your inspiration always keeps me moving forward.
Thanks for all you do. I love the way that you do so much for our family, including Girl Scouts, Boy Scouts, being a
great room Mom, preparing tasty meals, keeping track of our appointments, etc., etc., and so much more . . . you are
the best, and I love you dearly.

To my children, Kaitlyn, Jacob, Matthew, and Zachary: I love you all so much and I cherish every moment we
have together. I love each of your softball, baseball, and T-Ball games, and I enjoy all of the times that we spend
together. Don’t grow up too fast, please! I am so proud of each of you.

I want to thank my family for their continued support of my career. I also want to thank my co-workers at
Fermilab, including Kent Collins, for allowing me to guide the organization’s application development efforts and
build successful solutions to keep us moving forward.

To the folks at Apress, I thank you for providing me with the chance to share my knowledge with others. I especially
thank Jonathan Gennick for the continued support of my work and for providing the continued guidance to produce
useful content for our readers. You’ve become a good friend over the last couple of years and I really enjoy working with
you. I also thank James Markham for his hand in editing this book. I thank Kathleen Sullivan and Kevin Shea for doing
a great job coordinating this project. I thank my technical reviewer, David Coffin, who has done an excellent job of
solidifying the book content. Thanks again for your hard work and technical expertise. Lastly, I’d like to thank everyone
else at Apress who had a hand in this book. I also thank Kevin and James for talking hockey with a Chicago Blackhawks
fan, even though they are die-hard Bruins fans!

To the Java community: thanks for helping to make the Java platform such an innovative and effective realm for
application development. We all have the privilege of working with a mature and robust platform, and it would not be
successful today if it weren’t for everyone’s continued contributions to the technology. I also thank all the Oracle Java
experts; the roadmap for the future is still looking great. I am looking forward to using Java technology for many years
to come.

—Josh Juneau

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: New Servlet Features
	Non-Blocking I/O
	Upgrade Protocol
	Enhanced FileUpload
	Filter Life Cycle
	Security Enhancements
	Specifying an Identity for Executing init and destroy Methods
	Thwarting Session Fixation Attack
	Denying Uncovered HTTP Methods
	Changing the Content Length

	Summary

	Chapter 2: JavaServer Faces and Facelets
	View Actions
	Faces Flow
	Defining a Flow
	The Flow Managed Bean
	Navigating View Nodes
	Flow EL
	Java API for Flow Context
	Packaging a Flow

	Ajax Queues
	File Upload
	Stateless Views
	HTML5 and JSF
	Passthrough Attributes
	HTML5-Friendly Markup

	Facelets Enhancements
	Exclude XML from Custom Components
	@FaceletsResourceResolver Annotation

	Resource Library Contracts
	Security Enhancements
	Summary

	Chapter 3: Expression Language (EL)
	Lambda Expressions
	Lambda Concept and Examples
	Variable Assignment
	Nesting
	Passing Lambdas to Java

	Collections Enhancements
	Sets
	Maps
	Lists
	Supporting Operations

	New Operators
	String Concatenation Operator
	Assignment Operator
	Semicolon Operator
	Precedence Changes

	Static Field and Methods
	Stand-Alone API
	Defining a Bean
	Declaring a Variable
	Defining a Function
	Utilizing the ELManager

	Incompatibilities with Previous Releases
	Summary

	Chapter 4: Object Relational Mapping and JPA
	Support for Joins with ON Conditions
	Invocation of Database Functions
	Bulk Updates and Deletions
	Downcasting in the FROM and WHERE clauses
	Schema Generation
	Support for Database Stored Procedures
	Synchronization of Persistence Contexts
	Entity Listeners using CDI
	Summary

	Chapter 5: Business Logic Using EJB
	General Updates and Improvements
	Transaction Life-Cycle Callbacks in Session Beans
	Passivation Made Optional
	Explicitly Denoting Local and Remote Business Interfaces
	Extended TimerService API
	JMS Alignment
	Embeddable EJBContainer Now Autocloseable

	New Features in EJB Lite
	Optional Features
	Summary

	Chapter 6: Validating Data
	An Overview of Bean Validation with Java EE
	Constraint Validation Annotations
	Review: Utilizing Different Validation Techniques
	Review: Writing a Custom Constraint Annotation

	Contexts and Dependency Injection Integration
	ValidatorFactory and Validator Injection
	Managed Instances of Requested Classes

	Method Validation
	Declaring Parameter Constraints
	Declaring Return Value Constraints
	Cascaded Validation
	Customizing Method, Constructor, or Getter Validation
	Manual Method Level Validation Invocation

	Group Conversion
	Group Validation
	Specifying the Order of Group Validation
	Group Conversion

	Message Interpolation via EL
	A Truly Open API
	Summary

	Chapter 7: Contexts and Dependency Injection
	Brief Overview of CDI
	Dependency Injection
	Injection of Bean Metadata
	Injection of the ServletContext

	Marking Classes as Ignored by CDI
	Producers
	Programmatic Lookup
	Container Life-Cycle Events
	Priorities
	Interceptors
	Decorators
	Alternatives

	Deprecations
	Summary

	Chapter 8: Building RESTful Web Services
	Overview of JAX-RS
	Utilizing the JAX-RS API
	Constructing Meaningful URIs
	Producing Content
	Consuming Content

	Client API
	Web Resource Targets
	Obtaining a Response
	Returning Entities
	Invoking at a Later Time
	WebTarget Injection

	Filters and Interceptors
	Filters
	Entity Interceptors
	Binding Filters and Interceptors
	Setting Priorities

	Asynchronous Processing
	Resource Context
	Summary

	Chapter 9: WebSockets and JSON-P
	WebSockets
	Consuming Messages
	Creating WebSocket Clients
	Utilizing a Simple Client

	Sending Messages
	Message Types

	JavaScript Object Notation—JSON
	Building JSON
	Persisting JSON
	Parsing JSON

	Summary

	Chapter 10: Java Message Service
	Brief Overview
	JMS Resources
	JMS Sessions
	JMS Messages
	Additional Information

	API Enhancements
	New Simple API
	Sending Messages
	Consuming Messages

	Autocloseable Resources
	Message Body

	New Messaging Features
	Message Delivery Delay
	New Send Methods for Asynchronous Sending
	Multiple Consumers on the Same Subscription

	Summary

	Chapter 11: Concurrency and Batch Applications
	Concurrency
	Understanding the Contextual Objects and Tasks
	Creating Application Server Concurrent Resources
	Running the Reporter Task
	Example of ReporterTask
	Running Multiple Tasks at Once Asynchronously

	Scheduled Tasks
	The Executor Service
	Example of Scheduled Task
	Thread Instances

	Batch Applications for the Java Platform
	Item-Oriented Processing
	Example of Item-Oriented Processing

	Summary

	Chapter 12: NetBeans and Java EE 7
	Configuring Application Servers
	Developing Java Enterprise Applications
	NetBeans Java Web Projects

	JSF
	JPA
	JPQL
	JMS
	Web Services
	Filters
	Interceptors
	Clients

	HTML5
	Summary

	Index

