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PREFACE

Dynamic population modeling, the study of populations with changing
vital rates, is an emerging area of research in mathematical demography that
presently lacks an integrative, book length treatment. This volume seeks to fill
that gap. It can be seen as a continuation of my earlier monograph, Modeling
Multigroup Populations (Schoen 1988a), which focused on models with constant
rates. The chapters in this book, after summarizing the essential aspects of
fixed rate models, describe expanding efforts at introducing behavioral change.
The discussion proceeds from studies of one-time changes at the margin and
population momentum, through analyses of the effects of cohort timing on period
measures, to the development of fully dynamic models with multiple ages and
states. A demographic perspective is adopted throughout, with an emphasis on
human populations at the aggregate level, exogenous rates of behavior, and
deterministic models. Use is made of both continuous and discrete formula-
tions. Only one-sex models are covered, however, as two-sex population models
were extensively treated in Schoen (1988a); readers interested in more recent
developments are referred to Iannelli, Martcheva, and Milner (2005).

This book is intended to be as accessible as possible. It assumes a very
basic knowledge of calculus, but readers can find those essentials in Appendix A
of Schoen (1988a). Appendix A of this book provides the necessary background
in matrix algebra, an area unfamiliar to many demographers but necessary for
discussions of dynamic models. To reinforce concepts introduced in the text,
or to show additional relationships of interest, exercises are included at the
end of every chapter. Selected answers are provided in Appendix B. Notation
remains an issue, as there is no standard way to represent many of the terms
and concepts discussed. The book tries to be reasonably consistent, but is not
always successful. To help the reader follow the symbols employed, Appendix C
provides brief definitions and references to the equation in which the symbol
was introduced.

My work in mathematical demography has been advanced by
many colleagues, students, and institutions. My greatest debt is to the late
Young J. Kim, an outstanding mathematical demographer and biostatistician.
I was fortunate to be able to collaborate very closely with her for ten
years, and her contributions are manifest throughout this volume. Vladimir
Canudas-Romo worked closely with me for two years while on a post-doctoral
fellowship, provided innovative ideas and considerable energy, and furnished
very helpful comments on Chapter 5. Stefan H. Jonsson was an indefatigable
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and extraordinarily resourceful collaborator and Graduate Research Assistant.
Claudia Nau was very helpful in verifying a number of relationships and
assembling the materials used in the book. I would also like to express my
appreciation to Juha M. Alho, Cristina Bradatan, Alice Yen-hsin Cheng, Rachel
Durham, Juan Pablo Lewinger, Kenneth C. Land, Xianbin Li, Hui-Peng Liew,
P. Sankara Sarma, Kenneth D. Smith, Nicola Standish, Zenas Sykes, Paula Tufis,
Robin Weinick, Howard Weiss, and Yan Yan. Johns Hopkins University, through
its Department of Population Dynamics and Hopkins Population Center, provided
an excellent research environment for me during the years 1989–1999. Since
1999, I have been at The Pennsylvania State University, and have benefitted
greatly from the outstanding support and facilities provided by its Department
of Sociology and Population Research Institute, and for the Sabbatical leave
granted to me during Spring 2006. I especially want to thank Arnold S. and Bette
G. Hoffman for their generosity in establishing the Hoffman Professorship that
I currently hold, whose support has greatly facilitated my work. I am indebted
to the National Institute of Child Health and Human Development (NIH) for
its sustained support through grants HD19145 and HD28443. Evelien Bakker of
Springer provided helpful advice, a positive attitude, and unfailing good cheer.
My ultimate thanks are to my wife, Delores C. Schoen, for her encouragement
and unwavering support.

Robert Schoen, PhD, ASA
Hoffman Professor of Family
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CHAPTER 1

POPULATION MODELS WITH CONSTANT
RATES

1.1 INTRODUCTION

Population models are based on rates of birth, death, and movement,
both movement from place to place and from status to status. Models can
show how those basic demographic processes shape the size and composition
of a population, revealing the underlying dynamics of growth and attrition,
concentration and dispersal, aging and renewal.

Demography, the area of social science that focuses on populations,
dates back nearly three and a half centuries to the Natural and Political
Observations of John Graunt (1662). From Graunt’s early life table, demographic
models have grown in sophistication and in their ability to capture population
behavior. Recently, demographers have begun to study dynamic models,
i.e. models with behavioral rates that change over time. This volume traces a
path that begins with fixed rate life tables and their extensions to stable and
multistate models, passes through convergence to stability and the nature of
demographic change at the margin, and leads to a range of dynamic models and
the opportunities and challenges they present.

1.2 SOME BASIC CONCEPTS

The basic measures in demography are behavioral rates, e.g. birth rates,
death rates, and marriage rates. Unless explicitly stated otherwise, the term rates
in this book refers to occurrence/exposure rates, also known as central rates and
rates of the first kind. Specifically, if D refers to the frequency of some event
(e.g. births or deaths) and P represents the size of the population exposed to the
risk of that event, then the rate, M, is given by

M = D/P (1.1)

1



2 CHAPTER 1

Rates can, and usually are, made specific to population subgroups (Preston,
Heuveline and Guillot 2001; Schoen, 1988a). For example, the death rate for
men age 20–24 can be written

Mm�20� 5� = Dm�20� 5�/Pm�20� 5� (1.2)

where the 20–24 year interval is understood to begin at exact age 20 and extend
to the instant before the attainment of exact age 25, expressions of the form (x,n)
indicate the interval beginning at exact age x and extending for n years, and the
subscript m refers to males. For one-year age intervals, the width is usually not
shown (e.g. Mm�30� is the male death rate at age 30).

More fundamental and precise than rates, but not directly observable,
are demographic forces, also known as intensities, instantaneous rates, or
instantaneous probabilities. For example, the force of mortality at exact age x in
a basic, decrement-only life table, denoted ��x�, is defined by

��x� = �−1/��x�� �d��x�/dx� (1.3)

where ��x� represents the number of persons who survive to exact age x and
d/dx is the conventional expression indicating differentiation with respect to x.
The force of mortality thus represents the instantaneous risk of death at exact
age x, expressed as the marginal proportional decline in the number who survive
to exact age x. The minus sign is used so that the force is a positive quantity.
The force of mortality at the midpoint of an interval approximates the rate over
that interval, i.e.

��x +n/2� ≈ M�x� n� (1.4)

Equation (1.3) is one form of the classic differential equation of demography,
whose analysis is at the core of this book. When ��x� and ��x� are scalar
functions, the solution is straightforward. Since �−1/��x�� �d ��x�/dx� is the
same as �−d ln ��x�/dx�, where ln denotes the natural logarithm, we can
integrate equation (1.3) from x to x +n, exponentiate, and write

��x +n� = ��x� exp�− n∫
0

��x + a�da� (1.5)

The number of survivors to exact age x+n is equal to the number of survivors to
exact age x times the negative exponential of the sum of the forces of mortality
between ages x and x + n. Equation (1.5) expresses a general relationship that
applies over intervals of any length. If one can assume that the force of mortality
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is constant between ages x and x+n, then the force of mortality can be approx-
imated by M(x,n), and we have the constant forces solution

��x +n� = ��x� exp�−nM�x� n�� (1.6)

For the most part, demographic analyses have adopted one of two perspectives:
cohort or period. A cohort is a closed group of persons who share some initial
characteristic and are followed over time. [Unless explicitly noted otherwise, all
of the models discussed are assumed closed to migration.] For example, a birth
cohort may be composed of persons born in the same year, and a marriage
cohort can consist of those married during a specified time interval. A period
is a relatively short interval of calendar time, generally one year or several
consecutive years. Marriages occurring in a given year, or death rates based on a
three-year interval around a census, are examples of period data. In any one-year
period, a number of cohorts are active. The interplay of period and cohort plays
an important role in many social science analyses (cf. Ryder, 1965), and is the
subject of Chapters 5 and 6. We now turn to the life table, which simultaneously
embodies both the period and cohort perspectives.

1.3 THE BASIC LIFE TABLE

From the cohort perspective, a basic decrement-only life table follows
a cohort of ��0� persons from birth to the death of its last survivor, as the
cohort is subject to attrition from a set of age-specific death rates. It is widely
used in mortality analyses, and has been applied to many other subjects as well,
including marriage and divorce, contraceptive use, educational attainment, and
voting behavior. The starting value, ��0�, is known as the radix, and is usually
chosen to be a large round number (often 100,000). Complete life tables show
the number of survivors to every year. The more common abridged life tables
typically show ages 0, 1–4, 5–9,	 	 	, 80–85, and 85 and over. With improved
survivorship, the open ended interval increasingly begins at age 90.

The principal function of the life table is the survivorship function,
��x�, which gives the number surviving to exact age x. The remaining functions
follow from the ��x�. The number of cohort deaths between the ages of x and
x +n, d(x,n), is

d�x� n� = ��x�−��x +n� (1.7)

The probability a person exact age x dies between the ages of x and x + n,
q(x,n), is

q�x� n� = d�x� n�/��x� (1.8)
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The number of person-years lived by the cohort between the ages of x and x+n,
L(x,n), reflects the cohort’s exposure to risk, as a person-year is one year lived
by one person. Stated precisely,

L(x,n) = ∫
0

n ��x +u�du (1.9)

The life table death rate between the ages of x and x +n, m(x,n), is then

m(x,n) = d�x� n�/L�x� n� (1.10)

It is useful to define the function T(x) as the total number of person-years lived
by the cohort at and above exact age x. Thus T(x) is the sum of L functions
from age x to the end of the table, or the integral of ��x� from age x through the
highest attained age. The average life expectancy of a person exact age x, e(x),
is then given by

e(x) = T�x�/��x� (1.11)

To construct a life table from a set of age-specific death rates, it is necessary
to transform M rates to q probabilities or, equivalently, express � survivors in
terms of L person-years. The procedure begins at age 0 and proceeds age by
age. One could find L values by integrating the � function, but that is generally
not feasible unless the force of mortality is constant within age intervals. The
General Algorithm (Schoen and Land, 1979), provides a framework for the �
to L transformation. In life table construction, it consists of flow equations,
orientation equations, and person-year equations.

The flow equation of a decrement-only life table is simply
equation (1.7), which equates ��x + n� to ��x� minus the flow to death in the
interval. The orientation equation typically is

m(x,n) = M�x� n� (1.12)

which specifies that the life table reproduces the rates observed in the
population at every age. Alternative assumptions are possible and have been
used (e.g. Preston, Keyfitz, and Schoen 1972), but here we focus on the straight-
forward relationship in equation (1.12).

The person-year equation represents the chosen solution to integral
equation (1.9). Many choices are possible, but we emphasize three approaches
(cf. Schoen 1988a). First, under constant forces, equation (1.6) applies and
equation (1.9) can be integrated, yielding

L(x,n) = ��x�
1− exp�−nM�x� n���/M�x� n� (1.13)
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The assumption that forces are constant within intervals can be rather strong for
intervals of more than a year, and the constant forces assumption is generally
considered a bit too crude for abridged (i.e. 5-year age interval) life tables.

A second approach is to assume that ��x� is a linear function between
ages x and x +n. Under linearity, equation (1.9) becomes

L(x,n) = �n/2����x�+��x +n�� (1.14)

and the survivorship function is generated by

��x +n� = ��x�
1− �n/2�M�x� n��/
1+ �n/2�M�x� n�� (1.15)

A linear ��x� function implies a uniform distribution of deaths within each
interval, and hence an increasing force of mortality. Because mortality generally
does increase with age above ages 10–12, the linear assumption has been found
to produce acceptable abridged life tables. However, when forces of decrement
are decreasing with age and intervals are more than a year in length, the linear
method may not be appropriate.

The third alternative is the mean duration at transfer approach (cf.
Schoen 1988a). Chiang (1968) proposed the useful function a(x,n), defined as
the average number of years lived in the x to x+n age interval by persons dying
in that interval. Since the total number of person-years lived is the sum of those
lived by those who die and by those who survive, we can write

L(x,n) = n��x +n�+ a�x� n� d�x� n� (1.16)

Using equation (1.16), we can use Chiang’s a to generalize the linear relationship
in equation (1.15) to

��x +n� = ��x�
1− a�x� n�M�x� n��/
1+ �n − a�x� n��M�x� n�� (1.17)

Above age 5, a(x,n) is typically close to n/2. However, the size of a(x,n) is
influenced by the nature of the force of decrement in the interval. For a given
level of M(x,n), a more steeply rising force of decrement produces a larger a(x,n).
The Mean Duration at Transfer (MDAT) approach exploits that relationship and
uses the values of the rates in adjacent intervals to estimate a(x,n). Specifically
(Schoen, 1978)

a(x,n) = 
u�x� n���x�+w�x� n���x +n��/d�x� n� (1.18)
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where

u�x� n� = �n2/240�
M�x +n� n�+38 M�x� n�+M�x −n� n��

and w�x� n� = �n2/240�
14 M�x +n� n�+72 M�x� n�−6 M�x −n� n��

Because it allows the force of decrement to increase or decrease and makes
fuller use of the available data, the Mean Duration at Transfer method may
yield better values in 5-year age intervals. Alternatively, usable estimates of
Chiang’s a can be found in a number of ways (cf. Exercise 15 in Section 1.9
and the discussion in Preston, Heuveline and Guillot (2001, Ch. 3). Judgment
is always involved, and no method of life table construction should be used
mindlessly. In particular, if rates are large, intervals of one year (or less) should
be used. Indirect standardization (cf. Preston et al, 2001; Ch 2) is the simplest
approach to estimating rates for shorter age intervals. More advanced techniques
for graduating rates can be found in the classic actuarial text by Miller (1946).

Special procedures are needed at the youngest and oldest ages. As most
deaths in infancy occur soon after birth, the linear assumption is not appropriate.
Keyfitz (1970) suggested the empirical relationships

a(0) = 0	07+1	7 M�0�

a�1� 4� = 1	5 (1.19)

and alternative procedures are given in Preston et al (2001, Ch 3). To end the
life table, a highest age is selected, typically 85 or 90. Since everyone dies, the
number surviving to that highest age, say 90, is the number that will die above
that age. Thus we can rewrite equation (1.10) as

L�90��� = ��90�/m�90��� (1.20)

to find the number of person-years lived in the open-ended age interval.
The life table can also be viewed from a period perspective. Consider

a population that has a long history of constant births and age-specific mortality
that does not change over time. Eventually that population becomes stationary,
that is it attains a constant size and a fixed age composition. The number of
persons in the stationary population is T(0), there are ��0� births each year, and
there are L(x,n) persons between the ages of x and x+n. The period interpretation
of the L(x,n) function reinforces the rationale for its use as the denominator for
age-specific rates. Each year, the stationary population depicts what every cohort
experiences over its lifetime. For example, every year there are d(x,n) deaths
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between the ages of x and x + n, giving a total of ��0� deaths. The stationary
population (crude) rate of birth and death is then

M = ��0�/T�0� = 1/e�0� (1.21)

Regardless of the age pattern of mortality, if e�0� = 80, then the overall stationary
population death rate is 1/80.

As a stationary population, the life table goes beyond providing proba-
bilities of death and expectations of life. It is a model for processes that can be
assumed to change little from year to year. Hence it can be applied to such topics
as the number of students in an educational system or the number of persons on
a company’s pension rolls.

1.4 MULTIPLE DECREMENT AND CAUSE ELIMINATED LIFE TABLES

Multiple decrement life tables allow persons to leave the table for
different causes, e.g. for specified causes of death or, in the case of a nuptiality-
mortality life table, for either first marriage or death. To recognize multiple causes
of decrement, we first define the decrement rate specific to cause i, mi�x� n�, as

mi�x� n� = di�x� n�/L�x� n� (1.22)

where di�x� n� is the number of life table decrements to cause i between the ages
of x and x + n. The denominator must be L(x,n) as all persons are at risk of
decrementing from cause i. Causes must be exhaustive and mutually exclusive,
so that

d(x,n) =∑
i
di�x� n� (1.23)

To construct a multiple decrement life table, one needs observed age-cause
specific rates Mi�x� n� = Di�x� n�/P�x� n�, where Di�x� n� is the number of
observed decrements to cause i between the ages of x and x+n, and we assume
that Mi�x� n� = mi�x� n�. After constructing a basic life table for the population,
one can allocate the d(x,n) at each age to the different causes of decrement by

di�x� n� = d�x� n��Mi�x� n�/M�x� n�� (1.24)

The total number of decrements to cause i at and above age x is denoted by
�i�x�, and is given by

�i�x� = �j di�j� (1.25)



8 CHAPTER 1

where the sum over j goes from age x through the highest age in the table. The
age-cause-specific force of mortality is defined by

�i�x� = �−1/��x���d �i�x�/dx� (1.26)

As is true for the decrements, the �i�x�� �i�x�, and Mi�x� n� for every cause
sum to the corresponding basic life table value.

Multiple decrement life tables provide a number of useful summary
measures. The most commonly used is �i�0�, the lifetime number of decrements
due to cause i. The analogous person-year function, Li�x� n�, is generally neither
calculated nor used.

Questions are frequently asked about the effects of eliminating a cause
of decrement. For example, how much would life expectancy increase if deaths
from cancer were eliminated, or what proportion would ever marry if there were
no mortality before age 50. Cause eliminated, or Associated Single Decrement
(ASDT) life tables seek to answer such questions. Calculating such tables
involves two distinct assumptions. The first is the vitality assumption. Nearly
all ASDTs are calculated assuming that the force of decrement from the cause
active in the ASDT is the same as the force from that cause in the multiple
decrement life table. The force of decrement from the eliminated cause is set
to zero. That assumption of unchanging vitality is nearly always counterfactual.
For example, a cure for cancer would likely impact other causes of death, and
the chance of ever marrying is known to be related to health. The analyst
needs to chose the cause(s) to be eliminated so that the vitality assumption is
defensible.

The second assumption underlying ASDTs deals with the additional
exposure to the risk of decrement from the active cause(s). A number of
techniques are available to accommodate the additional risk (cf. Schoen 1988a;
Preston et al 2001). Because the approximate relationship in equation (1.4)
applies to cause-specific forces of decrement, the simplest approach is to assume
that the ASDT rate for active cause i is simply Mi�x� n�, the multiple decrement
rate for that cause. The cause eliminated table can then be constructed using the
Mi�x� n�.

The most commonly used summary measure provided by ASDTs is
the increase in life expectancy resulting from the elimination of a cause. For
example, Preston et al (1972, 770–71) show that e(0) was 73.78 years for U.S.
Females under the death rates observed in 1964. Neoplasms (largely cancers)
were the second leading cause of death, with �neoplasms�0� = 15� 336 on a radix
of 100,000. If mortality from neoplasms were eliminated, e(0) would increase
by 2.56 years. That increase is modest, in part because of the high death rates
from cardiovascular diseases at ages 85 and over that limit life expectancy.
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1.5 STABLE POPULATION MODELS

The stable population was pioneered by Alfred J. Lotka (1907, 1939),
though the germ of the idea goes back to Euler (1760). While the stationary
population reflects rates of decrement, the stable population reflects the long
term implications of rates of both fertility and mortality. In doing so, it reveals
the profound fact that constant rates of birth and death yield a population that
grows exponentially over time, and that has an age composition that remains
unchanged. The stable population was the dominant model of 20th century
mathematical demography. By incorporating fertility and allowing growth, stable
populations allow considerably more analytical flexibility than do stationary
populations. Two important strengths of stable populations are that they provide
a framework for analyzing populations and a basis for estimating demographic
behavior in the absence of adequate data. Those estimates are often robust to
substantial departures from the assumption of a history of constant vital rates.
The discussion here draws on Caswell (2001), Keyfitz (1977), Pollard (1973),
and Schoen (1988a).

1.5.1 Continuous Stable Models

Let us start with continuous functions and deal with female only popula-
tions. Demographers prefer female populations in fertility analyses because data on
mothers are generally better than data on fathers, and the female reproductive age
span is narrower and more clearly defined. It is clear that the number of births in a
year result from the prevailing age-specific birth rates acting on the population of
reproductive age, whose members are the survivors of births from earlier years. We
denote by f(x,n) the constant model birth rate for daughters born to women between
the ages of x to x+n, and let p(x) be the probability of surviving from birth to exact
age x. Then if B(t) is the number of births in year t

B(t) = ∫ B�t −x� p�x� f�x� dx (1.27)

(Unless otherwise noted, all integrals range from 0 to infinity.) Sharpe and Lotka
(1911) provided the basic solution for equation (1.27), though a rigorous and
complete treatment had to await Feller (1941). Under restrictions always met by
human patterns of fertility, the time trajectory of births has the form

B(t) =∑
i
Qi exp�rit� (1.28)

where the Qi are constants reflecting initial conditions (discussed in Chapter 2 and
Appendix A) and the ri are growth rates, i.e. the instantaneous increase in population
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size per unit of population. Given the integral form of equation (1.27) there can be
an unlimited number of roots, but it has been proven that there must be one unique
real root that is larger than the other real roots and the real part of the complex
roots. That dominant root, generally designated r1 or simply r, has been termed the
“intrinsic” growth rate or “Lotka’s r”. The other roots, being smaller than Lotka’s
r (and generally negative), become insignificant over time. Thus in the long term
B�t� = Q1 exp�r1t�, and equation (1.27) can be rewritten and rescaled into

1 = ∫ exp (-rx) p(x) f(x) dx (1.29)

Inspection of equation (1.29) shows that with mortality and fertility constant,
a larger value of r must lower the value of the integral. As the integral takes on
values from 0 to �, there can be one and only one real r that produces a value of 1.

Equation (1.29) is known as the characteristic or renewal equation, and
expresses the core of stable population theory. It can be interpreted as showing
that the unit birth in the reference year results from fertility at rate f(x) applied to
the p(x) fraction of survivors to age x of the exp�−rx� births born x years earlier,
summed over all ages x. The characteristic equation thus relates constant fertility
and mortality to the stable, exponential birth sequence. It also provides an equation
for Lotka’s r in terms of that constant fertility and mortality.

The standard solution for r is due to Lotka (1939), and uses moments. Let
us term p(x)f(x) the net maternity function, and express the Rith moment of that
function as

Ri = ∫ xi p�x� f�x� dx� i � 0 (1.30)

The zeroth moment, R0 = ∫ p(x) f(x) dx, is the Net Reproduction Rate (or NRR), the
number of daughters a woman would have in her lifetime under the given mortality
and fertility rates. The ratio R1/R0 = � gives the mean age at net maternity (or
childbearing) in any stable population cohort. The variance of the net maternity
function, 
2, is given by 
R2/R0 − �R1/R0�

2�. Expressing e−rx in equation (1.29) as
a power series and stopping at second moments (thus assuming that net maternity
can be adequately described by a normal curve), Lotka found the quadratic solution

r = 
�− ��2 −2
2 ln R0�
1/2�/
2 (1.31)

A range of alternative solutions, yielding very similar values, is given in (Schoen,
1988a: Ch 3).

Given the logic underlying characteristic equation (1.29), we can find a
number of stable population measures. The total number of persons in the stable
population (in the reference year when there is one birth) is T∗�0�, that is

T*(0) = ∫ exp�−rx� p�x� dx (1.32)
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or the sum of the survivors of all previous birth cohorts. The stable population crude
(or intrinsic) birth rate, b, is then

b = 1/T∗�0� (1.33)

The intrinsic death rate, or the crude death rate of the stable population, d, is

d = ∫ exp�−rx� p�x� ��x� dx/T∗�0� (1.34)

and by definition we have r = b−d. The fixed proportion of the population at age
x last birthday, or the proportion attaining exact age x during any year, c(x), is

c(x) = exp�−rx� p�x�/T∗�0� = b exp�−rx� p�x� (1.35)

From equation (1.32), it is easy to see that ∫ c�x� dx = 1. All of the above relation-
ships apply in stationary populations, which are simply stable populations with
r = 0.

Stable populations differ from stationary populations in one important
respect: period measures in a stable population are not the same as cohort measures.
The behavior of every stable population cohort is the same; only its size is different.
Every period population is also the same, apart from size. Each period population,
however, reflects a combination of cohorts of different size. This if r > 0, then the
mean age of the stable population, Yr, is less than the mean age of the stationary
population based on the same survivorship, because younger cohorts are larger than
older cohorts. Mathematically,

Yr = ∫ x exp�−rx� p�x� dx/T∗�0� (1.36)

The larger the value of r > 0, the more younger cohorts are weighted relative to
older cohorts. With respect to mortality, d is less than 1/e(0) when r > 0, as the life
table crude death rate reflects the older stationary population.

The stable population mean age at childbearing, A∗, differs from the cohort
measure � and can be written

A∗ = ∫ x exp�−rx� p�x� f�x� dx (1.37)

as the denominator is the characteristic equation and thus equals 1. Lotka introduced
a third measure of the timing of fertility in stable populations, the mean length of a
generation, T. It reflects the length of time needed for a stable population to grow
by a factor equal to its NRR, or

R0 = exp�rT� (1.38)

The three measures, �� A∗, and T are identical when r = 0. When r �= 0� T is close
to the geometric mean of � and A∗.
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1.5.2 Discrete Stable Models

Discrete functions are always involved when continuous population
relationships are applied to data. Beyond that, the discrete formulation affords a
distinct and valuable perspective on stable population behavior.

In terms of n year age intervals, characteristic equation (1.29) can be
written

1 =∑
exp�−r�x +n/2�� L(x,n) f(x,n)/��0� (1.39)

where the summation over the life span proceeds in steps of n years. Keyfitz (1977)
used that relationship to devise an iterative solution for Lotka’s r. Multiplying
both sides of equation (1.39) by exp[27.5r], which introduces r on the left hand
side and improves the rate of convergence, taking the natural logarithm, and then
rewriting gives

r′ = �1/27	5� ln 
� exp�−r�x −27	5+n/2�� L�x� n� f�x� n�/��0�� (1.40)

where improved intrinsic growth rate r′ is obtained from previously calculated value
r. Starting the iterative process with r = 0, convergence to 6 decimals is generally
achieved in about 6 iterations.

Discrete representations of stable populations stem from the works of
Bernardelli (1941), Lewis (1942), and Leslie (1945). As Leslie (1945) gave the most
thorough treatment, and published in the most visible journal, the matrix model is
generally associated with his name. We assume interval lengths of n years, which
divide the ages below the maximum age at reproduction (age 45 or 50) into �
intervals. Consider the � ×� matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 b2 b3 	 	 	 b�−1 b�

s1 0 0 	 	 	 0 0
0 s2 0 	 	 	 0 0

·
·

·
0 0 0 	 	 	 s�−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.41)

where the bi in the first row reflect fertility, the si on the subdiagonal reflect
survivorship, andallof theothermatrixelementsarezero.Moreprecisely,bi reflects
the contribution of persons in the ith age group at initial time t to the number of
persons in the first age group at the end of the interval, time t + n. Survivorship
ratios si reflect the proportion of persons in the ith age group at initial time t who
survive to be in the �i+1�st age group at time t +n [see Exercise 13, Section 1.9].
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Leslie matrix A is a population projection matrix (PPM), that is it can
project an initial population of reproductive age n years ahead. Let xt be a � × 1
column vector whose ith element, xit, is the number of persons in the ith age group
at time t. We then have the relationship

xt+n = A xt (1.42)

The sum of the bixit yields the number of persons in the first age group at time t +n,
that is the number of births during the t to t + n interval who survive to time t + n.
The subdiagonal elements provide the number of persons in age groups 2 through �.
The probability of surviving from age group 1 to age group i, pi, can then be written

pi+1 =
i∏

i=1

si (1.43)

with p1 = 1.
A stable population can be characterized by a Leslie matrix that is constant

over time, and the structure of that Leslie matrix affords another way to find the
stable growth rate and age composition. Appendix A gives a brief discussion of the
eigenstructure of a matrix, i.e. the unique decomposition that can be performed on a
broadrangeofmatrices.Thatdecomposition isespecially important indemographic
work because its results have substantive interpretations. The dominant eigenvalue
of A, or its dominant root, is generally denoted by �1 or just �. It is the stable growth
parameter (often called the stable growth rate, though that departs from our usual
use of the term rate) over the n year interval, hence

� = exp�rn� (1.44)

The dominant right eigenvector of A is the � × 1 column vector u, whose first
element is 1 and whose ith element is ui. In the stable population, ui describes the
age composition, as it gives the size of the ith age group relative to the first age
group. Algebraically, for i > 1� ui = pi�

1−i, a discrete representation analogous to
c(x)/c(0) from equation (1.35). The Leslie matrix underlying a stable population
thus provides the basic parameters of that stable population. If we have a stable
population with one person in the first age group at time t, equation (1.42) can be
rewritten

� u = A u (1.45)

Projecting the initial stable population over one interval has the effect of increasing
the number at every age by a factor of �.
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1.6 MULTISTATE LIFE TABLES

Multistate or increment-decrement life tables extend the multiple
decrement model by allowing cohort survivors to be followed through different
living states. A multistate life table describes the life course of a cohort as its
members age and move through the specified set of states. The state space of the
model can be chosen to suit the needs of the analyst, as the model states need only
be exhaustive and mutually exclusive. The first multistate table is apparently due
to L.G. DuPasquier (1912), who analyzed disability insurance using a model with
the states Healthy and Disabled. Despite later work by Fix and Neyman (1951)
and Chiang (1964), multistate models received little attention until the 1970s, but
by the early 1980s their relevance to demography was well established (cf. Land
and Rogers 1982). Multistate life tables have proven to be extremely useful in
demographic work (cf. Schoen 1988b), and have been applied to analyses of marital
and union statuses, labor force behavior, interregional migration, and numerous
other topics. The discussion that follows draws substantially on Schoen (1988a).

1.6.1 Scalar Multistate Equations

Consider a multistate model with k living states, at least two of which are
connected by decrements. Using the General Algorithm, the model can be specified,
age by age, by a series of flow, orientation and person-year equations. Let �i�x� be
the model number of persons in state i at exact age x, and let dij�x� n� be the number
of decrements (or moves or transfers) from state i to state j between the ages of x
and x +n. The model has k flow equations of the form

�i�x +n� = �i�x�−�j�=i dij�x� n�+�j �=i dji�x� n� (1.46)

where the flows include decrements to absorbing (or “dead”) state k + 1. In short,
the number of persons in state i at exact age x + n equals the number in state i at
exact age x, minus the decrements to, and plus the increments from, all of the other
states in the model. The ratio �i�x + n�/�i�x� can exceed 1 because of increments
from other states, and hence is not a “proper” probability. The population based or
“p-probability”, pi�x� n�, is

pi�x� n� = �i�x +n�/��x� (1.47)

and represents the probability that a person alive at exact age x is in state i at exact
age x +n.

Equation (1.46) deals with “net flows”, that is �i�x� functions that only
specify the state occupied at age x. However, it is also important to consider “gross
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flow” functions of the form �ij�x + u�, which represent the number of persons in
state j at exact age x+u who were also in state i at exact age x. Similarly, let dijh�x� n�
be the number of moves from state j to state h between the ages of x and x + n by
persons in state i at exact age x. At the level of the gross flows, there are k2 flow
equations of the form

�ij�x +n� = �ij�x�−�h �=j dijh�x� n�+�h �=j dihj�x� n� (1.48)

where �ij�x�� i �= j, is zero, as no one can be in two states at one time. Note that
from the way �ij�x + u� is defined, the “+” is part of the function definition, and
indicates more than addition. If z = x+u, we do not have �ij�x+u� = �ij�z�. After
the �ij�x+n� have been determined, they can be summed over i to provide the initial
�j value for the next age interval.

The gross flow functions give rise to the Markov transition probabilities,
or “�-probabilities”. Specifically, �ij�x� n�, the probability that a person in state i
at exact age x is in state j at exact age x +n is given by

�ij�x,n� = �ij�x +n�/�i�x� (1.49)

Following our usual procedure, we assume that the model reproduces the observed
rates. Let Mij�x� n� be the observed rate of decrement from state i to state j between
the ages of x and x+n, and let mij�x� n� be the analogous model rate. We then have
k2 orientation equations of the form

Mij�x� n� = mij�x� n� (1.50)

where mij�x� n� = dij�x� n�/Li�x� n�, and Li�x� n� represents the number of person-
years lived in state i between the ages of x and x +n. For the rates, there is no need
to recognize the state occupied at the beginning of the interval. The model employs
the traditional Markov assumption that past history does not matter, and that the
risk of movement depends only on present state and age. The underlying force of
transition, or instantaneous rate of transfer, from state i to state j at exact age x,
�ij�x�, is defined as

�ij�x� = lim
u↓0

�ij�x� u�/u � i �= j (1.51)

The person-year equations finish the specification of the model. At the level of the
net flows, we have k equations of the form

Li�x� n� = n∫
0
�i�x +u� du (1.52)
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and at the level of the gross flows, k2 equations of the form

Lij�x� n� = n∫
0
�ij�x +u� du (1.53)

where Lij�x� n� represents the number of person-years lived in state j between the
ages of x and x +n by persons who were in state i at exact age x.

1.6.2 Matrix Multistate Equations

As with the basic life table, model construction starts at age 0 and proceeds
age by age. Finding successive values of �ij�x+n� is greatly facilitated by the intro-
duction of matrices. Let the end of the age interval gross flow matrix, ��x +n�, be

��x +n� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11�x +n� �12�x +n� 	 	 	 �1�k+1�x +n�
�21�x +n� �22�x +n� 	 	 	 �2�k+1�x +n�

	 	 	
	 	 	
	 	 	

�k+1�1�x +n� �k+1�2�x +n� 	 	 	 �k+1�k+1�x +n�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.54)

where we include a �k + 1�st “dead” state that persons enter but do not leave.
Diagonal matrix ��x� is also specified by equation (1.54), as �11�x� = �1�x�.

The matrix of decrements, d(x,n), can be written

d�x� n� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
�d11j −d1j1�

∑
�d12j −d1j2� 	 	 	

∑
�−d1j�k+1�∑

�d21j −d2j1�
∑

�d22j −d2j2� 	 	 	
∑

�−d2j�k+1�
	 	 	
	 	 	
	 	 	
0 0 	 	 	 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.55)

where the (x,n) interval identifiers have been suppressed. From equations (1.54)
and (1.55) we have the matrix flow equation

��x +n� = ��x�−d�x� n� (1.56)

which is analogous to basic life table equation (1.7).
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The matrix of transition probabilities, ��x� n�, can be written

��x� n� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11�x� n� �12�x� n� 	 	 	 �1�k+1�x� n�
�21�x� n� �22�x� n� 	 	 	 �2�k+1�x� n�

	 	 	
	 	 	
	 	 	

�k+1�1�x� n� �k+1�2�x� n� 	 	 	 �k+1�k+1�x� n�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.57)

From equations (1.54) and (1.57), it can be seen that

��x� n� = �−1�x���x +n� (1.58)

where the superscript �−1� indicates the matrix inverse.
The matrix of observed or data transition rates, M(x,n), can be written

M�x� n� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
M1j�x� n� −M12�x� n� 	 	 	 −M1�k+1�x� n�

−M21�x� n�
∑

M2j�x� n� 	 	 	 −M2�k+1�x� n�
	 	 	
	 	 	
	 	 	
0 0 	 	 	 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.59)

Note that each row sums to zero. The matrix of model rates, m(x,n), has the same
structure, but contains m instead of M rates. Our orientation equations are then
expressed by

M(x,n) = m(x,n) (1.60)

The person-year matrix, L(x,n), has the same structure as ��x + n�, and its (i,j)th
element is Lij�x� n�. Paralleling basic life table equation (1.9)

L�x� n� = n∫
0
��x +u� du (1.61)

It follows from the definitions of the L� d, and m matrices that

d�x� n� = L�x� n� m�x� n� (1.62)

the matrix analog to basic life table equation (1.10). The flow, orientation, and
person-year equations of the multistate model can thus be written compactly in
matrix form in a way that closely resembles their basic life table counterparts.
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The three life table solutions discussed in section 1.3 can be extended to
the multistate case, again using matrix equations that parallel the previous scalar
expressions. The exponential or constant forces solution is

��x +n� = ��x� exp�−nM�x� n�� (1.63)

That exponentiated matrix is defined by an infinite power series, i.e.

exp�−nM�x� n�� = I −nM�x� n�+ �n2/2!�M2�x� n�− �n3/3!�M3�x� n�+ 	 	 	
(1.64)

where I is the �k + 1� × �k + 1� identity matrix. The series always
converges, though not necessarily rapidly.

The linear multistate solution can be written

��x +n� = ��x��I − �n/2�M�x� n���I + �n/2�M�x� n��−1 (1.65)

The more general Mean Duration at Transfer approach has gross flows given by

��x +n� = ��x��I −U�x� n�M�x� n���I +nM�x +n�+W�x� n�M�x� n��−1

(1.66)

where the U and W are weight matrices with elements paralleling the u(x,n) and
w(x,n) functions defined after equation (1.18). Specifically, the (i,j)th element of U
and W is that weighted function of Mij values.

The linear matrix of person-year values is given by

L�x� n� = �n/2����x�+��x +n�� (1.67a)

and the MDAT person-year matrix by

L�x� n� = n��x +n�+��x�U�x� n�+��x +n�W�x� n� (1.67b)

The elements of the exponential person-year matrix parallel equation (1.13).
Special procedures are again needed at the youngest and oldest ages. Infant

deaths occur, on average, well before age 1/2, but the linear approximation may be
satisfactory for other causes of decrement (e.g. interregional migration). To end the
table, one can use the matrix analog of equation (1.20), that is

L�90��� = ��90�M−1�90��� (1.68)

Since the �k + 1� by �k + 1� M matrix of equation (1.59) has a row of zeroes and
cannot be inverted, a k × k M matrix that excludes the �k + 1�st row and column
should be used in equation (1.68).
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The equations presented above assume that data are available in the form
of occurrence/exposure rates. That is often not the case, but multistate models can
be constructed from other forms of data as well. Event history data generally allow
the determination of events and the person-years of exposure lived in each state.
Prospective and even retrospective data can be used, as they allow the calculation
of survivorship proportions.

Let the data survivorship proportion Sij�x� n� represent the proportion of
persons in state i between the ages of x and x +n who are in state j exactly n years
later. (If thedataare retrospective, thesizeof theearlierpopulationhas tobeadjusted
for loss to mortality over the interval; that is generally done by using a relevant life
table and assuming the same mortality in all states.) Collect the S proportions in
matrix S(x,n), whose (i,j)th element is Sij�x� n�. The S matrices can then be related
to the multistate transition probability matrices in several ways. Rees and Wilson
(1977) used the relationship

��x� n� = 1/2�S�x� n�+S�x −n� n�� (1.69)

and Hoem and Fong (1976) proposed

��x +n/2� n� = S�x� n� (1.70)

Both of those assumptions are essentially linear, so the linear solution of
equation (1.65) and general equations (1.56), (1.58), and (1.61) can be used to
find the remaining functions. [Exercise 10 in Section 1.9 provides relationships
between ��x +n/2� n� and ��x� n�.]

1.6.3 Multistate Expectancies and Summary Measures

Life expectancy measures are essentially integrals, or sums, of probabil-
ities. Consequently, the p- and �-probabilities lead to different measures of average
future lifetimes.

The p-probabilities lead to population based expectations of life. Let ei�x�
denote the average future lifetime a person exact age x can expect to spend in state
i. Then

ei�x� = ∫ �i�x +u� du/��x� (1.71)

That integral is the sum of the Li values from age x to the end of the table, and
hence is readily calculable. Population based life expectancies are useful in many
analyses, providing such measures as the expected number of years a person age 15
will spend in the labor force or the expected number of years a person age 50 will
spend disabled.
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The �-probabilities lead to status based life expectancies that are condi-
tional on status at initial age x. Let �ij�x� be the status based expectancy in state j
for a person exact age x who is in state i. Then

�ij�x� = ∫ �ij�x +u� du/�i�x� (1.72)

Because �ij�x� is based on the closed group of persons in state i at age x, it cannot
be found from conventional multistate life table functions, where the closed group
is respecified at the beginning of each interval. A supplementary calculation must
be made to determine the future life course of a person age x in state i. Status based
life expectancies are valuable measures and often differ markedly from population
based expectancies. For example, the average number of years a person age 50 will
spend in the Married state is generally quite different for persons who are married
and persons who are not.

Life expectancies are only one of many summary measures of behavior
that can be found in multistate models. Analyses may be interested in the proportion
of life lived by state, in the average age of the population by state, in the number of
decrements between specified states, and in the average age at each type of transfer.
Different substantive areas tend to emphasize different measures. In labor force
status models, the average number of labor force entries (or exits) per person is
often of interest. In a multiregional model where all persons are born in a particular
region, specifics regarding movement patterns to other states are important. In
marital status life tables, the model can yield the probability a marriage ends in
divorce and the average length of a marriage, measures difficult to obtain in other
ways.

Multistate models with any state space can be calculated from the matrix
equations given above by means of mathematical packages such as STATA, S-
PLUS, MATLAB, MAPLE, or MATHEMATICA. A number of specific computer
programs are also available to simplify the task. Appendix D to Schoen (1988a)
provides FORTRAN programs for a two living state model based on survivorship
proportions and for a four living state model based on rates. Tiemeyer and Ulmer
(1991) have a program in C ++ that can accommodate any number of states, and
Rogers (1995) provides a DOS compatible program.

1.7 THE MULTISTATE STABLE POPULATION

The multistate stable population was pioneered by Rogers (1975), and can
combine the three core processes of demography. It shows that the long term impli-
cations of rates of mortality, fertility, and interstate transfer are a population with
an unchanging age-state composition that is growing exponentially at a constant,
intrinsic, rate r.
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The characteristic or renewal equation for a multistate stable population
can be given by

��0� = ∫ exp�−rx� ��x� f�x� dx (1.73)

where the �k +1�× �k +1� diagonal matrix f(x) has fi�x�, the fertility rate in state
i at age x, as its ith diagonal element. In the multistate life table (or multistate
stationary population), the age zero state composition can be chosen by the analyst.
In the multistate stable population, however, it is determined by the constant rates
of fertility, mortality, and interstate transfer. Given a unit total birth cohort size in
the reference year, matrix equation (1.73) represents k equations for k unknowns:
intrinsic r and the relative sizes of the number of births in the k living states. For
state j, then, equation (1.73) implies the scalar equation

�j�0� = ∫ exp�−rx� �j�x� fj�x� dx (1.74)

where fj�x� is the fertility rate in state j (for births in state j) at age x. The number
of births in state j thus results from the application of fertility rate fj�x� to the �j�x�
fraction of births, from a cohort of size e−rx, who survived to be in state j at age x,
summed over all ages x. The unit birth in the reference year is the sum of the births
in all k living states.

Finding intrinsic growth rate r and the age zero state composition is best
accomplished by functional iteration (cf. Schoen 1988a). Extending the approach
underlying equations (1.39) and (1.40), we can write k discrete equations of the form

�i�0� =∑
exp�−r�x +n/2�� Li�x� n� fi�x� n� (1.75)

where the summation over age proceeds in steps of n years from 0 to the highest
age of reproduction. Summing those k equations over all states, multiplying by
e27	5r, taking logs and rewriting leads to an iterative equation for the intrinsic growth
rate, i.e.

r′ = �1/27	5� ln 
�i�x exp�−r�x−27	5+n/2�� Li�x� n� fi�x� n�/��0�� (1.76)

Start with r = 0 and a multistate life table to find the first improved r’ value.
That improved r’ is used in equation (1.75) to provide better values for all of the
�i�0�. Those updated �i�0� values are then used to calculate a new multistate life
table, which yields improved Li values. In turn, those Li values are employed in
equation (1.76) to yield a further improved r′. The number of iterations required
depends on the specified tolerance between r and r′ and on how close the initial �i�0�
are to the final multistate distribution.
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The General Algorithm for constructing a multistate stable population
adds renewal equation (1.73) to the flow, orientation, and person-year equations of
the previous section. The orientation equations now include the specification that
the data fertility rate in state i at age x, Fi�x�, equals its model counterpart fi�x�.

The total number of persons in the multistate stable population in the year
when there is one birth, T∗∗�0�, is

T∗∗�0� = �i ∫ exp�−rx� �i�x� dx (1.77)

where the sum ranges over the k living states. Equation (1.77) is the multistate
version of equation (1.32). The intrinsic birth rate, b, is

b = 1/T∗∗�0� (1.78)

If we denote by ci�x� the proportion of the multistate stable population in state i at
age x, or the proportion that attains age x in state i, then

ci�x� = b exp�−rx� �i�x� (1.79)

with c�x� = �i ci�x�.
The multistate stable population has received only modest use. The model

has extensive data requirements and is not simple to construct. The assumption of
constant interstate transfer rates is often difficult to justify. In addition, the age-state
composition of the multistate stable population appears to have limited analytical
value. As we see in Chapter 2, multistate stability can take considerably longer to
arise than does stability in birth-death models.

1.8 SUMMARY

This chapter provides a brief introduction to fixed rate population models.
Procedures for life table construction are set out in a General Algorithm, whose
flow, orientation, and person-year equations specify the model and the relationship
between survivorship ��� and person-year (L) values. For stable population model
construction, an equation for population renewal is also required.

The basic life table describes the experience of a cohort from birth to
the death of its last member. The life table can also be interpreted as a stationary
population, and as such provides a model with a constant size and age composition.
Recognizing causes of decrement leads to multiple decrement models, and to their
associated, or cause eliminated, variants.

The stable population model is based on the fact that constant rates
of birth and death lead, in time, to a population that grows exponentially and
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has a fixed age composition. The stable model provides a framework for
population analysis and a tool to estimate demographic measures in the context of
limited data.

Multistate life tables recognize any number of living states, and allow
cohort members to move between them in prescribed ways. They provide a detailed
description of cohort behavior with respect to the states in the model. Multistate
stable populations add growth, and provide a model that can capture the long term
implications of fertility, mortality, and migration, the three core process of demog-
raphy.

1.9 EXERCISES

[See Appendix B for selected answers]

1. Show that in a cohort’s last year of life
a. the death rate (M) exceeds 1
b. the force of mortality ��� exceeds 1

2. The Expectation of Productive Life (EPL) has been defined as the number of
years a person age 15 will live between the ages of 15 and 65. Express the EPL
in terms of life table functions.

3. In terms of the death rate in the open ended interval M�90���, what is
a. e(90)
b. a�90���

4. In 1724, de Moivre suggested representing the survivorship curve by a straight
line. Jordan (1975) expressed such a curve as ��x� = k ��−x�, where � is the
highest age attained by the cohort. Under that form of survivorship, what is
a. ��x�
b. e(x)

5. The most famous Law of Mortality is that proposed by Benjamin Gompertz
in 1825, which expresses the force of mortality as an exponential function.
Under Gompertz’ Law, we can write ��x� = exp�A +bx�. Show that implies
��x� = ��0� exp��eA − eA+bx�/b�.

6. Consider a double decrement table with causes of death i and �−i� [read “not
i”]. In the ASDT with cause i active, the probability of surviving to age x is
p�i��x�, and in the ASDT with cause �−i� active, the probability of surviving to
age x is p�−i��x�. If the probability of surviving to age x in the double decrement
life table is p(x), show that p�x� = p�i��x�p�−i��x�.

7. In a certain stationary population, everyone between the ages of 20 and 65
works, while everyone 65 and over is retired. If all retired persons receive a
pension of $D a year, how much must each person 15 to 65 contribute to provide
that benefit?
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8. Show that in a stable population with B births in the reference year �t = 0�, the
number of persons attaining age x in year t, N(x,t), equals B exp�−r�x− t��p�x�.

9. In a stable population, assume that d and the p(x) schedule are known. Find r,
b and c(x).

10. In a linear multistate life table, show that
a. M�x� n� = �2/n� �I +��x� n��−1 �I −��x� n��
b. S�x� n� = �I − �n/2�M�x� n�� �I + �n/2�M�x +n� n��−1

c. ��x� n/2� = �I +��x� n��/2
d. ��x +n/2� n/2� = 2 �I +��x� n��−1 ��x� n�

11. In a two living state linear multistate life table, show that

�12�x� n�/�21�x� n� = M12�x� n�/M21�x� n�

12. Miller (1946) presented a 2n + 1 term weighted moving average to produce
graduated ux values from observed u”x values using the relationship

ux = � a	n−i	 u”x+n−i

where the sum over i ranges from 0 to 2n and the vertical bars indicate the
absolute value. The a’s are weights that sum to 1, with ar = a−r� r = 1		n. Taking
a cubic polynomial as the standard for smoothness, the maximum reduction in
mean square error is obtained when the ar are given by

ar = 
3�3 n2 +3n −1�−15 r2�/
�2n −1��2n +1��2n +3�� � r = 0		n

With u”x values of 13, 15, 20, 18 and 19, use a 5 term moving average to
“smooth” the middle u”x value.

13. Show that bj, the jth element of the first row of a Leslie matrix, can be written as

bj = Z�fj + sj fj+1�/2

where fj is the fertility of the jth age group, sj survives persons from the jth to
the �j+1�st age group, and Z is the number of life table person years lived in the
(0,n) age interval divided by ��0�. If fj is not restricted to female births, Z needs
to include a factor reflecting the fraction of births that are female. [Note: If Lj

represents the number of person years lived in the jth age group, sj = Lj+1/Lj.]
14. Provethat theagecompositionofanyobservedpopulationcanberepresentedas

the age composition of a stable composition (though not necessarily a realistic
one). [Hint: use the u (relative age composition) eigenvector.]
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15. Regarding Chiang’s a, show that equations (1.17) and (1.18) imply that

a�x� n� = u�x� n�+w�x� n�+nM�x� n�u�x� n�

M�x� n��n +u�x� n�+w�x� n��

where u(x,n) and w(x,n) are as defined after equation (1.18).



CHAPTER 2

CONVERGENCE TO STABILITY

2.1 INTRODUCTION

The experience of a cohort spans a single lifetime, but the emergence of
a stable (or stationary) population can take considerably longer. In this chapter,
we examine the conditions under which a time invariant set of rates produces a
population with a fixed age (or state) composition, and explore the process of
convergence to stability.

2.2 CONDITIONS FOR STABILITY

Human populations subject to fixed rates generally find the population
composition that reproduces itself under those rates, though the mathematics of
convergence is a bit more complicated. The discussion in this section emphasizes
human population models, drawing on Caswell (2001, Ch 4) and the matrix
algebra presented in Appendix A.

A � ×� population projection matrix, whether it be a Leslie matrix for
a birth-death model or a population projection matrix (PPM) for a multistate
population, has � eigenvalues. The nature of those eigenvalues determines
whether convergence to a fixed stable model occurs and whether the initial
composition of the population is forgotten. Let our PPM, A, be written in eigen-
structure form [equation (A.3)] as

A = U�V (2.1)

where U is the matrix of right eigenvectors, V = U−1, and � is the diagonal
matrix of eigenvalues, with dominant eigenvalue �1 the (1,1) element. Projecting
t intervals ahead is equivalent to raising A, or �, to the t-th power, i.e.

At = U�tV (2.2)

The process of convergence is essentially the process where �t becomes a scalar,
�t

1, as the subordinate eigenvectors become zero (or insignificant relative to �t
1).

Under certain circumstances, however, that does not happen.

27
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As we are dealing with nonnegative PPMs, i.e. demographic matrices
that cannot have negative elements, the Theorem of Perron and Frobenius tells
us that there are three possible cases: A is primitive, imprimitive, or reducible.
In all cases, the dominant root, �1, is nonnegative. The most common case
demographically is for A to be primitive. A Leslie matrix is primitive if any two
adjacent first row elements are nonzero, or if any two nonzero first row elements
are in positions (1,i) and (1,j) where i and j are relatively prime. Thus a 4 × 4
Leslie matrix is primitive if there are positive numbers in first row positions
1 and 2 or 2 and 3, but not if the only nonzero elements are in positions 2
and 4. In general, a � ×� PPM A is primitive if all of its elements are positive
(i.e. nonzero), or if A���−2�+2 has all positive elements.

A primitive matrix converges to stability, as there is some time T such
that the subordinate eigenvectors can be ignored and A becomes a rank one
matrix, that is a matrix that can be written as the product of two vectors. At time
T, equation (2.2) reduces to

AT = �1
Tuv, (2.3)

where u is the dominant right eigenvector (the first column of U, which is
associated with �1) and v� is the dominant left eigenvector (the first row of V).

Let the population vector at time T be xT, whose ith element xiT is the
number of persons in group i at time T. Projecting the initial population to time
T (see equation (1.42)) yields

xT = �1
Tu�v,x0� (2.4)

where �1 is the stable growth parameter and u represents the stable state compo-
sition. The product �v,x0� is a scalar, often designated by Q, and represents
the contribution of the initial population to the size of the time T population.
Aside from contributing to the magnitude of Q, the size and composition of the
time zero population is “forgotten”, a process known as ergodicity. Equation (2.4)
is a statement of the Strong Ergodic Theorem, the “strong” indicating projection
by a constant PPM.

In a primitive matrix, �1 is strictly greater than the magnitude ��j� of
any other eigenvalue. The magnitude of positive real eigenvalue �1 is �1. In
general, the magnitude of an eigenvalue �j = � + 	i (where � and 	 are real
and i is the square root of minus one), is

��j� = 
�2 +	2�1/2 (2.5)

where the positive square root is taken. In an imprimitive matrix, �1 ≥ ��j�� j > 1.
Among the subordinate eigenvalues, there are d −1 that have magnitudes equal
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to �1, even though �1 is greater than the real part of those roots. Such subordinate
eigenvalues usually come in complex conjugate pairs. In birth-death models,
imprimitivity typically arises when there is only a single reproductive age group.
A simple example is a PPM with �1 = 1, but with subordinate eigenvalues
equal to the two complex cube roots of 1, i.e. 
−1/2 ± 1/2�3�

1/2i�. Over a cycle of
length d (here 3), the growth produced by those subordinate eigenvalues equals
the growth produced by �1. If the initial population has a state distribution
proportional to the dominant right eigenvector of imprimitive PPM A, it stays
with that distribution. Otherwise, it does not converge to any fixed distribution.
Instead, the state composition fluctuates with cycle length d, and the initial state
distribution is not forgotten. On average, however, the cyclic population grows
by factor �1.

Both primitive and imprimitive matrices are irreducible, that is every
state can contribute to every other state. In reducible matrices that is not the
case, as at least one state cannot contribute to some other state(s). The crucial
criterion is that a � × � PPM A is irreducible if and only if �I + A��−1 is a
positive matrix. Reducible matrices can arise in practice in several ways. One
is non-overlapping generations. A second is if post-reproductive age groups
are included in a Leslie PPM, as those age groups cannot contribute to any
younger age group. A third, which is quite common in multistate analyses, occurs
when states are hierarchical, for example a two living state model where there
are movements from state 1 to state 2, but not from state 2 to state 1. In a
reducible matrix, �1 ≥ ��j�� �1 can equal zero, the dominant right eigenvector
may have zero elements, and the initial state distribution of the population may
not be forgotten. Sometimes these issues are not problematic, e.g. the lack of a
contribution from post-reproductive age groups in birth-death models (Caswell
2001; 88–92) and reducible matrices may yield useful demographic models.

2.3 THE SPEED OF CONVERGENCE

Unless otherwise noted, we now consider only primitive PPMs. The
trajectory to convergence is provided by

xt = Atx0 (2.6)

At every point in that trajectory, the distance to stability and the speed of
convergence can be quantified. That is best done using a measure, initially
derived in information theory, known as the Kullback distance. Drawing on
Tuljapurkar (1982), who brought that measure into the demographic literature,
and on Schlögl (1976), we follow Schoen and Kim (1991) in relating the Kullback
distance to the process of convergence.
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Recall Q = �v,x0� from equation (2.4). The scalar Q has been termed
the stable equivalent, and in birth-death models, the stable equivalent number of
births. If the ultimate stable composition was in place at initial time 0, having
Q persons age 0 would yield an ultimate stable population with the same size as
the one that arises from projecting an actual initial population forward. For any
time t, let us adopt continuous notation, focus on birth-death models, and define
the stable equivalent by

Q�t� = ∫ N�x� t� v�x� dx (2.7)

where N(x,t) is the number of persons age x at time t and v(x) is the constant
reproductive contribution associated with age x. Reproductive function v(x) gives
the contribution from age x to the number of births (or persons in the first age
group) in the stable population. Specifically

v�x� = �∫
x

exp�−ra� p�a� f�a� da/
A∗ exp�−rx� p�x�� (2.8)

where A∗ is the mean age at childbearing in the stable population. The integral in
equation (2.8) resembles the characteristic equation, but ranges from age x to the
end of childbearing. When divided by exp�−rx� p�x�, the number in the stable
population at age x, it is a reproductive value that represents the “present value”
of future children, that is the number of children borne after age x discounted
back to age x at “interest rate” r. Division by A∗ expresses that reproductive value
on a per year basis. In R.A. Fisher’s metaphor, stable population characteristic
equation (1.29) indicates that the “loan” of a life is “repaid” by net maternity
over the life course, including interest that accrues at rate r. In that metaphor,
the reproductive value, v�x�A∗, represents the amount still owed at age x.

The proportional contribution of the population age x at time t to stable
equivalent Q(t) can be designated q(x,t) and written

q�x� t� = N�x� t� v�x�/Q�t� (2.9)

Since ∫ q�x� t�dx = 1� q�x� t� is a density function. The corresponding repro-
ductive value density distribution in the ultimate stable population, s(x), can be
written

s�x� = exp
−rx� p�x� v�x� (2.10)

The Kullback distance at time t, K(t), measures the distance between the q(x,t)
and s(x) distributions. It is defined as

K�t� = ∫ q�x� t� ln
q�x� t�/s�x�� dx (2.11)
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Let us specify the “stable equivalent population” at age x and time t, S(x,t), by

S�x� t� = Q�t� exp
−rx� p�x� (2.12)

Over time, the stable equivalent population becomes the ultimate stable
population. Using equation (2.12), the Kullback distance can be rewritten as

K�t� = −∫ q�x� t� ln
S�x� t�/N�x� t�� dx (2.13)

where the minus sign preserves a nonnegative K(t). In the form of equation (2.13),
the Kullback distance is an interpretable demographic quantity. The ratio
S(x,t)/N(x,t) compares the sizes of the stable equivalent population and the
observed population at age x and time t. Taking the natural logarithm yields a
measure of the amount of growth needed for the observed population to equal
its stable equivalent. Accumulating that growth, weighted by each age’s contri-
bution to the stable equivalent number of births, provides an overall measure of
the growth needed for an observed population to achieve stability.

As the population is projected ahead, K(t) declines monotonically to
zero. The size of the decline in K(t) reflects the amount of convergence.
Following Schoen and Kim (1991), let us define the force of convergence to
stability at time t, h�t� > 0, by the log derivative

h�t� = −
dK�t�/dt�/K�t� (2.14)

At any time t, K(t) and h(t) provide precise measures of the distance to stability
and the speed of convergence to stability, respectively.

It is worth considering whether h(t) approaches a limit as convergence
proceeds. Kim and Schoen (1993a) considered that question in some depth, and
found that in general the answer is no. If �2 is real, however, there is an constant
ultimate force of convergence, h∗, given by

h∗ = 1− ���2�/�1

2 (2.15)

That relationship does not hold if �2 is complex; in that case the long term force
of convergence fluctuates with undiminishing amplitude around the ultimate
level given by equation (2.15). In both cases, the long term speed of convergence
is negatively related to the square of the relative magnitudes of the dominant
and second largest eigenvalues of the PPM.

In birth-death models, the net maternity function p(x)f(x) has been
parameterized in three principal ways: a normal curve (Lotka), a Type III Gamma
function (Wicksell), and an exponential function (Hadwiger). Keyfitz (1977:
156–57) describes those parameterizations and relates them to the moments of



32 CHAPTER 2

the stable net maternity function, e−rxp�x�f�x�. Using those relationships, Kim
and Schoen (1993a) found that h∗ can be closely approximated by

h∗ ≈ 1− exp
−4n�2�2/�3� (2.16)

where � and �2 are the mean and variance of stable net maternity, n is the length
of the projection interval, and � is the familiar constant, approximately 3.14159.
Equation (2.16) is exact when stable net maternity follows a Hadwiger distri-
bution. The Coefficient of Variation (CV) is defined as the standard deviation
divided by the mean, i.e. as �/�. Equation (2.16) indicates that the long term
speed of convergence is directly proportional to the square of the CV and inversely
proportional to the mean of stable net maternity. Thus the greater the variability
in stable net maternity, and the smaller the stable mean age at childbearing, the
faster the pace of convergence. The level of net maternity, i.e. the NRR, is not a
factor.

Kim and Schoen (1993a) examined empirical data to evaluate the range
of values of h∗ and the accuracy of equation (2.16). Using data from Keyfitz and
Flieger (1968, 1971) they compared h∗ values calculated from equation (2.16)
with values from the eigenvalue relationship in equation (2.15). The 2 values
were highly correlated. Using 177 populations from Keyfitz and Flieger (1968),
R2 was .96, and with 90 populations from Keyfitz and Flieger (1971), R2 was
.98. Knowledge of the first two moments of stable net maternity thus allows h∗

to be found with considerable accuracy.
Entropy, a measure of the randomness (or information content) in a

distribution is an important concept in physics that plays a significant role in
demographic analyses. If q represents a density distribution, its entropy has the
basic form ∫ q ln q, though the concept has been specified in a number of ways
in different applications. Entropy thus has a form similar to that of the Kullback
distance. Tuljapurkar(1982;1993) discussed relationships between entropy and
convergence, and showed that entropy provides a lower bound on the rate of
convergence. To compare entropy and h∗, we follow Kim and Schoen (1993a),
assume stable net maternity can be described by a normal curve, and write
entropy (H) in terms of the moments of stable net maternity as

H = �ln
��2��
1/2�+ 1/2
/� (2.17)

Essentially, entropy varies with ln
��/�, while h∗ varies with 
�2/�3�.
The two are not identical, but they move in the same direction and both reflect
the underlying dispersion of stable net maternity. In a regression analysis based
on 177 populations in Keyfitz and Flieger (1968), Kim and Schoen (1993a)
found the linear relationship

H = �2089+ �2620 h∗ (2.18)

with R2 = �95.
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Table 2.1. Demographic Measures Related to Convergence for 3 Selected Female
Populations

Population

Measure Japan 1963 Togo 1961 United States 1959–61

1. Expectation of Life at
Birth

72�33 40�12 66�84

2. Net Reproduction
Rate

0�926 2�141 1�713

3. Mean Age of Stable
Net Maternity

27�85 27�06 25�51

4. Variance of Stable
Net Maternity

17�09 50�48 31�76

5. Entropy (H) �2539 �3323 �3182
6. Ultimate Level of

the Force of
Convergence �h∗�

�2062 �5019 �4096

7. Kullback Distance
�×1000�, Year 0

5�97724 45�85946 3�30507

8. Kullback Distance
�×1000�, Year 100

0�06011 0�00007 0�00009

Source: Kim and Schoen (1993), with data from Keyfitz and Flieger (1968). Reprinted
with permission from Mathematical Population Studies, Taylor and Francis Group, LLC,
http://taylorandfrancis.com, (c) 1993.

To examine empirical patterns of convergence, Kim and Schoen (1993a)
used data from Keyfitz and Flieger (1968) for three populations with quite different
patterns of fertility and mortality. Table 2.1 shows selected values for Japan 1963,
Togo 1961, and the United States 1959–61. The level of h∗ varied from around
0.2 to 0.5, indicating fairly rapid convergence. The long term fluctuations around
h∗ were modest for the United States and even less substantial for Togo, but were
quite pronounced for Japan. Keyfitz (1972) found that the second largest root is
responsible for most of the fluctuations that occur during the transition to stability;
effects from the other subordinate roots attenuate very quickly. The second largest
root typicallyhasacycle length thatapproximates the lengthofageneration(Keyfitz
1977: Ch. 6), and under the Hadwiger distribution that cycle length exactly equals
A∗, the stable mean age at childbearing.

2.4 SOME EXPLICIT ANALYSES OF CONVERGENCE

We consider the process of convergence to stability in some detail in the
context of three relatively simple models. The first is a birth-death model with
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2 ages, the second a birth-death model with 3 ages, and the third a 2 living state
multistate model without age.

2.4.1 Convergence in 2×2 Leslie Models

In a 2 age group Leslie model, the discrete characteristic equation can
be written

1 = b1/�+ s1b2/�2 = a/�+b/�2 (2.19)

where the si and bj follow the notation used in equation (1.41), with a = b1 and
b = s1b2 introduced as simplifications. The NRR is �a +b�. Equation (2.19) is a
quadratic in � whose 2 roots are

� = 1/2 
a ± �a2 +4b�
1/2� (2.20)

where �1 is associated with the positive root and both roots are real. From
the relationship between the roots of a quadratic and coefficients a and b (see
Exercise 1), we have

h∗ = 1− �1− a/�1�
2 (2.21)

The more net maternity is concentrated in the first age group, the faster the
ultimate rate of convergence.

2.4.2 Convergence in a 3×3 Leslie Model

The discrete characteristic equation of a 3 age group Leslie model is
given by

1 = b1/�+ s1b2/�2 + s1s2b3/�3

= a/�+b/�2 + c/�3 (2.22)

where a = b1� b = s1b2� c = s1s2b3, and the NRR is �a +b+c�. Equation (2.22)
is cubic, and as usual we let its dominant root be �1. To simplify the solution,
we use the transformed values a’ = a/�1� b’ = b/�1

2, and c’ = c/�1
3. Here a’,

b’, and c’ are the elements of the discrete stable net maternity function, and they
sum to 1. With �′ = �/�1, equation (2.22) can be rewritten as the quadratic
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��′�2 + �1− a’��′ + c’ = 0 (2.23)

(see Exercise 1). The roots of equation (2.23) are

��′
2��′

3
 = 1/2
−�1− a’�± ��1− a’�2 −4c’

1/2� (2.24)

with �′
1 = 1 and �′

2 assigned to the positive root of equation (2.24). Subordinate
roots �′

2 and �′
3 can be either real and negative or complex conjugates. Reasonable

values of net maternity can lead to either pattern of roots.
If the discriminant, the term in curly brackets in equation (2.24) whose

square root is taken, is nonnegative, the roots are real, and

c’ ≤ �1− a’�2/4

In this case, equation (2.24) implies that the larger the value of c’, the stable net
maternity value for the highest age group, the smaller the magnitude of �′

2 and
the larger the value of h∗. If the discriminant is negative, there are 2 complex
conjugate roots. Equation (2.24) then gives ��′

2� = 
c’�
1/2, which also implies

h∗ = 1−c’. When the subordinate eigenvalues are complex, the larger the value
of c’ the larger the magnitude of �′

2 and the smaller the long term speed of
convergence.

To summarize the relationship between c’ and h∗, we begin with c’
small and both subordinate roots real. As c’ increases, ��′

2� decreases and h∗

becomes larger, up to the point where the discriminant equals zero. At that
point, the subordinate roots are real and equal, and h∗ attains its maximum (for
that value of a’; the larger a’, the greater the maximum). As c’ continues to
increase, the subordinate roots become complex and h∗ declines, accompanied
by oscillations of increasing amplitude.

The Leslie model with three reproductive age groups, ages 0–14, 15–29,
and 30–44, captures much of the dynamics of models with 5-year age groups,
but is more amenable to explicit algebraic analysis. That is especially true when
there is a double root (i.e. �2 = �3). While multiple roots usually complicate
matters, here they reduce a cubic equation to a quadratic and allow an explicit
expression for the birth trajectory to stability (cf. Schoen and Kim 1996).

The eigenvalues in the double root case are dominant root � = �1 and
double root �2 = −�
c’�

1/2, with a’ = 1−2
c’�
1/2 and b’ = 2
c’�

1/2 −c’. Here PPM
A does not have a full complement of eigenvectors, but can be put in Jordan
canonical form (Impagliazzo, 1985; Noble and Daniel, 1988, see Exercise 7).
Raising A to successive powers yields the birth trajectory, Bt, i.e. the number of
persons in the first age group at time t. With births discounted for stable growth,

Bt/�t = Q+�−
c’�
1/2
t
�1−Q�+ t�1+�
c’�

1/2 x20/s1 −Q�1+ 
c’�
1/2�
� (2.25)
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where xj0 represents the number of persons in age group j at initial time 0. The
stable equivalent number of births in equation (2.25) is given by

Q = �1+2�
c′�
1/2 x20/s1 +�2c′x30/�s1s2�
/�1+ 
c′�

1/2
2 (2.26)

In the long term, Bt = Q�t , as indicated by equation (2.3). In the short
term, there are fluctuations around that exponential trajectory on the order of
t{−[c’]

1/2
t, which alternate in sign and diminish by a factor of approximately
[c’]

1/2 every 15 years. When the initial population is stable with growth parameter
1.25, Figure 2.1 shows the trajectory to stationarity when � = 1, for the double
root case (c’=0.1225) and for neighboring values of c’. The birth trajectories are
very similar for all values of c’, and show initially sizeable but rapidly dampening
fluctuations in the number of births. Larger values of c’ are associated with a
smaller ultimate number of births. In most empirical populations, after 60 years

Figure 2.1. Birth Trajectories to Stationarity in the Neighborhood of a Double
Root, Leslie Model with 3 Age Groups

Calculated by projection from an initial population given by x0 = �1� �1�25�−1�
�1�25�−2�′. The double root net maternity pattern is (.3, .5775, .1225). In all
cases, a = �3.
Source: Schoen and Kim (1996, Figure1b). Reprinted with permission from
Mathematical Population Studies, Taylor and Francis Group, LLC, http://
taylorandfrancis.com, (c) 1996.
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the size of the birth cohort is typically close to its ultimate stationary level, and
the total size of the population is also close to its final size. As a rough rule of
thumb, most initial populations approximate their ultimate stationary values up
to age x after 60+x years.

Birth fluctuations produced by a rapid decline in fertility can substan-
tially impact the age composition of a stabilizing population. Sixty years after
the shift to a stationary net maternity regime, the largest (time 0) birth cohort
is at ages 60–74, while the smallest cohort is at ages 45–59. That can produce
a “surge” in the proportion of the population over age 60 that goes beyond the
long term population aging associated with fertility declines (a topic discussed
in Chapter 3). Schoen (1996) found that the surge was closely approximated by
1/Q. With the initial population stable with growth parameter � ,

Q ≈ �� +1�/�2�� (2.27)

If � = 1�25 (i.e. Lotka’s r = 0�0149), then Q ≈ 0�90 and the surge, 1/�9 = 1�11,
increases the proportion of the population over age 60 at Year 60 by a factor of
11% above its ultimate stationary value.

Earlier in the transition, compositional changes can have the effect of
temporarily reducing a population’s dependency burden. Let the total dependency
ratio be the population under age 15 and over age 65 divided by the population
at ages 15–64. After a drop in fertility, the population under age 15 falls,
but it is some time before the number over age 65 rises appreciably. In the
intervening period, which can last several decades, the dependency ratio can fall
below 0.5. That “demographic window” or “demographic bonus” can provide an
opportunity for accelerating economic development (Birdsall and Sinding 2001;
Robine, Cheung, Tu and Zeng 2003).

2.4.3 Convergence in a Two Living State Multistate Model

Consider a multistate population with two living states, A and B,
governed by the differential equations

dA�t�/dt = A�t�
�A −�AB −�A��+B�t��BA

dB�t�/dt = B�t�
�B −�BA −�B��+A�t��AB (2.28)

where � indicates the fixed force of fertility and �IH is the constant force of
decrement from state I to state H, with � indicating the “dead” state. All of the
forces are non-negative, and either �AB or �BA is positive to insure that the two
states intercommunicate. We want to examine how such a model moves from
arbitrary initial composition A(0) and B(0) to the stable state composition.
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It is useful to consider the “autonomous” growth rate of each state,
that is its rate of natural increase in the absence of interstate movements. Those
autonomous growth rates are

rA = �A −�A�

rB = �B −�B� (2.29)

It is also convenient to introduce the symbols

� = rA −�AB

	 = rB −�BA (2.30)

Differential equations (2.28) can be written in matrix form as

dx�t�/dt = � x�t� (2.31)

where x(t) is a column vector with elements A(t) and B(t) and � is the matrix
of forces (or rates)

� =
[

� �BA

�AB 	

]

(2.32)

The eigenvalues of �, dominant root r and subordinate root s, are given by

r� s = 1/2���+	�± 
��−	�2 +4�AB�BA�
1/2
 (2.33)

which satisfies the trace relationship �r + s� = �� + 	�. The right eigenvector
matrix of � can be written

U =
[

1 1
�AB/�r −	� �AB/�s−	�

]

=
[

1 1
�r −��/�BA �s−��/�BA

]

(2.34)

which implies the relationship

�r −���r −	� = �AB�BA = �s−���s−	� (2.35)

If either �AB or �BA is zero, r must be equal to either � or 	. If �AB = 0, we must
have r = 	, and hence 	 > �, or the proportion in state B goes to zero. With
one transfer rate equal to zero, the model’s PPM is reducible (see Exercise 4).

The reproductive contributions matrix, V = U−1, can be written

V =
[

�r −	� −�r −	��s−	�/�AB

−�s−	� �r −	��s−	�/�AB

]

�1/�r − s�
 (2.36)



CONVERGENCE TO STABILITY 39

The first column of V sums to 1 and the second column sums to zero. The
(1,2) element of V can also be written �BA/�r − s� as �AB�BA = −�r −	��s −
	� = −�r −���s−��.

The general solution to differential equations (2.28) can be obtained in a
straightforward fashion (e.g. Ford 1955), and written (cf. Ledent 1978; Schoen and
Kim 1993)

A�t� = Q1ert +Q2est

B�t� = ��AB/�r −	�
 Q1ert + ��AB/�s−	�
 Q2 est (2.37)

where Q1 and Q2 are stable equivalents, i.e. Q1 is the vector product of the first row
of V in equation (2.36) and x0, and Q2 is the product of the second row of V and
x0. Note that the elements in the second row of U are part of the equation for B(t).
In equations (2.37), the ert terms reflect the number in the dominant component of
the population that grows to become the multistate stable population, while the est

terms reflect the number in the subordinate component that declines over time to
zero (or insignificance).

An alternative approach to differential equations (2.28) is to solve matrix
equation (2.31). Since � is constant, that yields

x�t� = exp��t� x�0�

= U exp�Rt�V x�0� (2.38)

where R is the eigenvalue matrix of � = URV, which has r as its first diagonal
element and s as its second diagonal element. The PPM eigenvalue matrix
� = exp�Rt� is a diagonal matrix whose elements are ert and est. The population
projection matrix At = exp��t� takes the population from time 0 to time t.
Expanding matrix equation (2.38) yields the solution in equations (2.37).

Applying the definition of the Kullback distance, Schoen and Kim
(1993) derived a general expression for K(t). At large time T,

K�T� = − exp
−2T�r − s��
Q2/Q1�
�Q2�AB/�s−	�
/�Q1�AB/�r −	�
�
(2.39)

In words, that Kullback distance reflects the product of (i) the initial
ratio of the size of the subordinate component to that of the dominant component
in state A times (ii) that same ratio in state B, which is (iii) discounted for
T years of growth in each state by the extent that r exceeds s. The Kullback
distance is always positive; the minus sign in equation (2.39) reflects that the
subordinate component in either state A or state B is negative.

The long term force of convergence, minus the log derivative of K(T),
is then

h∗ = 2�r − s� = 2
��−	�2 +4�AB�BA�
1/2 (2.40)
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Since r > s� h∗ is positive. For a given pair of transfer rates, h∗ is minimized
when � = 	. When the autonomous growth rates are given, h∗ is minimized when
�rA − rB� = �AB +�BA. Hence increases in the rates of interstate transfer accel-
erate the speed of convergence whenever their sum is larger than the difference
between the autonomous growth rates.

Theoretically h∗ has no upper bound, but human growth rates are
typically small. In an application to an urban/rural model using hypothetical but
plausible data, Schoen and Kim (1993) found h∗ values on the order of 0.02.
That is smaller than the h∗ values found in birth-death models by an order of
magnitude, and it implies that convergence to stability in multistate models is
much slower than in birth-death models. In one instance, Schoen and Kim (1993)
found a 3% difference between the proportion in a state 500 years after time
0 and the ultimate stable proportion. Liaw (1980), in a multistate analysis of
the Canadian population by age and region, found that after 100 years the age
composition of the projected population was close to its stable values, while the
regional distribution was perhaps halfway to stability.

2.5 SUMMARY

This chapter examines the process of stabilization through which an
initial population becomes stable under a regime of time invariant demographic
rates. Convergence to stability is assured only for primitive population projection
matrices, where the dominant root is larger in magnitude than any subordinate
root. If a � ×� PPM raised to the ��� −2�+2 power has all positive elements,
it is primitive, as is any Leslie matrix with net maternity in adjacent age
groups.

The Kullback distance, a measure from information theory, reflects a
population’s distance to stability and, over time, the pace at which that distance
monotonically declines to zero during convergence. The long term speed of
convergence depends on the square of the ratio of the magnitudes of the two
largest roots, but in general does not approach a fixed limit. In birth-death
models, the speed of convergence is greater when net maternity has a larger
coefficient of variation and a smaller mean age. Typically, stabilization up to
age x is approximately complete after 60+x years.

The process of convergence is more transparent in relatively simple
models. Leslie matrices with 2 and 3 age groups are examined, and a complete
birth trajectory to stability is presented for a 3 age group model with equal
subordinate roots. A complete trajectory is also given for a two living state
multistate model, where convergence to the stable state composition is typically
much slower.
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2.6 EXERCISES

[See Appendix B for selected answers]

1. Characteristic equation (2.22) can be rewritten as

�3 − a�2 −b�− c = 0

with roots �1� �2, and �3.
a. Show that a = �1 +�2 +�3

b = −��1�2 +�1�3 +�2�3�
c = �1�2�3

b. With transformed coefficients a’, b’, and c’ (as defined after
equation (2.22)), show that all of the roots are divided by �1.

c. Show that in the quadratic equation

�2 −�� −	 = 0

with roots �1 and �2 that � = �1 + �2

and 	 = −��1�2�
d. Verify equation (2.24)

2. Consider the PPM
⎡

⎢
⎢
⎣

0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥
⎥
⎦

a. Determine whether it is primitive, imprimitive, or reducible.
b. Evaluate the matrix raised to the 20th power.

3. Consider the following PPMs

a.
[

0 1
1 0

]

b.

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

Show that they are imprimitive. Find their cycle lengths, roots, and cyclic
patterns.

4. Consider the rate matrix

� =
[

� 0
�AB 	

]
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a. Find the associated population projection matrix A. Satisfy yourself that
all elements of A are nonnegative.

b. Verify that A is reducible.
5. Consider a 3×3 Leslie matrix with first row elements a, b, and c. If c=1/4(1-a)2

and b = 1− a − c, show that the matrix has a double root.
6. Show that if the initial population is x′

0 = �1� �−1� �−2�, where the ′ indicates
a matrix transposition, then equations (2.25) and (2.26) become
a. Bt/�t = Q + �−
c’�

1/2
t
�1−Q�+ t
c’Q�
1/2�1−�/���

b. Q = ��1+ 
c′�
1/2�/��/�1+ 
c′�

1/2�
2

7. In the 3×3 double root case, PPM A can be written A = WJW−1, where J
is the Jordan form matrix

J =
⎡

⎣
� 0 0
0 �2 1
0 0 �2

⎤

⎦

and W is

W =
⎡

⎣
1 1 1

s1/� s1/�2 �s1/�2��1−1/�2�

s1s2/�2 s1s2/�2
2 �s1s2/�2

2��1−2/�2�

⎤

⎦

Show that
a. At = WJtW−1

b. Jt has the form

Jt =
⎡

⎣
�t 0 0
0 �2

t t �2
t−1

0 0 �t
2

⎤

⎦

8. With �1 = er and �2 = es, show that, to linear terms, the h∗ of equation (2.15)
is the same as the h∗ of equation (2.40).

9. Espenshade, Bouvier, and Arthur (1982) analyzed a population with constant,
below replacement, vital rates that received a constant number of inmigrants,
by age, each year. Assume that, in the long term, the migrants have B1 female
births each year. Verify Espenshade et al’s finding that every year the total
number of births in that ultimate stationary population is B = B1/�1−NRR�.

10. Describe how an arbitrary population, with 15 year age intervals, can achieve
a given stable composition through age 45 in 45 years.



CHAPTER 3

POPULATION MOMENTUM

3.1 INTRODUCTION

Population momentum is the long term change in size that results from
a change in vital rates, most frequently to a regime that yields an ultimately
stationary population. As discussed in Chapter 2, after convergence, a population
subject to a fixed set of demographic rates has a state composition and rate of
growth that depends only on those fixed rates. The population’s previous size
and state composition are forgotten, except for an enduring influence on the
ultimate population’s size. In this chapter, we examine the concept of population
momentum, its importance in demographic theory and practice, how it can be
measured, and how it relates to other demographic quantities. After considering
birth-death models at some length, we turn to multistate models and explore the
phenomenon of spatial momentum.

3.2 MOMENTUM AS A DEMOGRAPHIC PHENOMENON

3.2.1 The Basic Dynamics

The analysis of population momentum dates from Keyfitz (1971), which
examined a growing stable population that suddenly experiences a fall in fertility
to replacement level (i.e. an NRR of 1), maintaining those replacement level
rates thereafter. Momentum is defined as the ratio of the ultimate stationary
population to that of the initial population. With mortality remaining constant
and the decline in fertility proportional at all ages, Keyfitz (1971) showed that
momentum, �, can be expressed as

� = b e(0) Q (3.1)

where b is the intrinsic birth rate of the stable population and e(0) the constant
life expectancy at birth. Recall that in equation (1.33) b is the reciprocal of the
size of the initial stable population with a unit birth at the time of the fertility
decline, and that e(0) is the size of the stationary population given a unit birth

43
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each year. Thus the product be(0) represents the ratio of the size of the ultimate
stationary population to that of the initial stable population, with both having
birth cohorts of the same size. However, given a unit birth for the initial stable
population, the size of every birth cohort in the ultimate stationary population
is not 1 but Q, the stable (here stationary) equivalent number of births. In the
scenario of Keyfitz (1971),

Q = �R0 −1�/�r � R0� (3.2)

where R0 is the stable population Net Reproduction Rate, r is the intrinsic growth
rate, and � is the mean age at net maternity in the stationary population.

It is not realistic to assume that the fertility of a rapidly growing
population will immediately drop to replacement level, but that assumption
can provide a minimum estimate for future population growth. Keyfitz (1971)
examined some contemporary populations and found a number of momentum
values around 1.5 to 1.7, indicating that national population growth of some
50% to 70% could result from population momentum alone. The importance of
momentum as a major source of population growth was reinforced in a recent
comprehensive analysis by Bongaarts and Bulatao (1999), which showed that
population momentum is likely to be responsible for most of the future growth
of the world’s population.

To examine the characteristics of the growth associated with
momentum, let us look at equation (3.1) more closely. When r > 0� R0 > 1
and Q < 1. Because fertility falls when the initial R0 is above replacement, one
should expect that the stationary population birth cohort would be smaller than
the initial stable birth cohort. To a reasonable approximation (Keyfitz 1985:157;
see Exercise 1)

Q ≈ �R0�
−1/2 (3.3)

Thus if the initial population R0 = 1�69 then Q ≈ 1/1�3 or about 0.769.
Since birth cohort size decreases, the growth in population must come

from the ratio be(0). With initial and ultimate birth cohorts the same size, we
can use equation (1.32) to write

b e(0) = ∫ � �a� da/∫ exp�−ra���a� da (3.4)

where as usual the integrals range from 0 to � and �(a) represents the number
of survivors to exact age a from a cohort of ��0� births. With r > 0, the numbers
at the higher ages in the stable population are substantially reduced in size,
relative to those in the life table population, because they are the survivors of



POPULATION MOMENTUM 45

smaller birth cohorts, whose size is discounted for many years of exponential
growth at rate r. The further back in time, the greater the differential cohort
size, hence the larger the value of r, the greater the population momentum. For
example, in a female stable population with e�0� = 75, population size is 75
when r = 0, 52.03 when r = �01, and 38.01 when r = �02 (see Coale and Demeny
1966:70). Thus be(0) is 1.44 when r = �01 and 1.97 when r = �02. In contrast, Q
is about 0.87 when r is .01 and 0.75 when r = �02, yielding momentum values
of approximately 1.25 and 1.48, respectively.

With sustained below replacement fertility in a number of countries,
more attention is being given to cases of “negative momentum”, i.e. populations
whose rates imply r < 0 and where NRR < 1 (e.g. Lutz, O’Neill and Scherbov
2003). The same equations apply in both cases. When net reproduction is less
than 1, Q > 1� be�0� < 1, and � < 1. Although the ultimate stationary population
has a larger birth cohort size, it has smaller numbers at the higher ages and
thus becomes smaller over the transition to stationarity. As the momentum
associated with past population increase leads to more growth, the momentum
associated with past population decrease leads to more decline.

Equation (3.1) can readily be modified to apply to the case where any
initial population has an arbitrary change in vital rates to replacement level, with
those new rates continuing unchanged. Specifically we can write

� = BR e�0� Q (3.5)

where BR is the initial birth rate, e(0) is the ultimate stationary population life
expectancy, and the stable equivalent number of births, Q = v′x0, is based on
the ultimate stationary rates and the initial population (see equations 2.4, 2.7,
and 2.8).

The concept of momentum can be extended even further, to the size
adjustment implied by any change in vital rates. In examining the Kullback distance,
Schoen and Kim (1991) defined an age x, time t specific momentum, ��x� t�, as

��x� t� = S�x� t�/N�x� t� (3.6)

where S(x,t) is the stable equivalent population age x at time t under the prevailing
rates [see equation 2.12] and N(x,t) is the population age x at time t. Under
that definition, the prevailing rates need not lead to a stationary population, and
overall momentum is just the ratio of the total stable equivalent population at
time t to the total time t population. In certain circumstances it is useful to think
of momentum in those terms, but there are two caveats. First, the size adjustment
may be purely theoretical, as the rates may continue to change. Second, that
generalized momentum ignores the future stable growth that occurs when the
rates do not imply long term stationarity. The stable equivalent size adjustment
from the shift in rates may be dwarfed by differences in long term growth.
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3.2.2 Momentum and Aging

Preston (1986), an insightful paper, considered the age compositional
implications of the growth associated with conventional population momentum.
It argued that up to an age approximating the length of a generation, the initial and
ultimate stationary populations have the same number of persons. Thus all of the
growth associated with momentum comes above that age. Heuristically, Preston
(1986) divided an initial population into 3 generation-long segments, intervals
of some 28 to 30 years each. In the transition from initial conditions to the
ultimate stationary population, the size of the first segment remains unchanged;
the size of the second segment increases by a factor approximating the initial
NRR, i.e. the amount of growth over a generation; and the size of the third
segment increases by a factor approximating two generation’s growth, i.e. the
NRR squared.

Preston (1986) took Lotka’s generation length, T, as the age up to
which there was no change in size over the transition to stationarity. Further
research, however, showed that Lotka’s T does not always provide a good
estimate (Wachter, 1988; Kim and Schoen, 1993b, see Section 4.4). Kim, Schoen
and Sarma (1991) noted that momentum could be expressed as the ratio of initial
to ultimate population proportions through age G, the age up to which there is
no change in size, or

� ≈ CN�0� G�/CL�0� G� (3.7)

where C(0,G) represents the fraction of the population between ages 0 and G,
subscript N indicates the initial population, and subscript L indicates the ultimate
stationary (life table) population. To determine age G, Kim et al (1991) suggested
the geometric mean relationship

G ≈ 	�AN

1/2

where � and AN are the stationary and initial population mean ages at child-
bearing, respectively.

Figure 3.1, adapted from that work, shows population sizes up to each
age based on the female birth and death rates observed in Singapore 1957. The
size of the (implicit) initial stable population has been rescaled to 1. The total
size of the ultimate stationary population, 1.75, is thus the stable population’s
momentum based on that implicit initial population. Below the age where the
two curves cross, about age 30, there are more people in the initial population;
after that age, there are more in the ultimate population, and the gap widens
with age.
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Figure 3.1. Cumulative Initial and Ultimate Populations, By Age, Based on
Rates Observed in Singapore 1957

Note: Number of persons up to each age in the initial stable population (solid
line), and the ultimate stationary population (broken line). The cumulative (total)
size of the initial stable population has been scaled to 1. The cumulative size of
the ultimate stationary population, �, is 1.75.
Source: Kim, Schoen and Sarma (1991, Figure 2).

Kim and Schoen (1997) further explored the relationship between
momentum and population aging. Using stable population relationships,
momentum could be approximated by

� ≈ 1+ r �YL −VL� (3.8)

where YL is the mean age of the ultimate stationary population and VL is the
stationary population mean age of reproductivity. That mean of the stationary
population reproductive value distribution is not well known, but is a bit over
half the mean age at net maternity and, to second order terms, is given by

VL = ��1+ 	�2/�2
�/2 (3.9)

where � and �2 are the mean and variance of net maternity in the stationary
population. The initial stable population mean age, Yr, can be related to the
ultimate stationary population mean age by the approximation

Yr ≈ YL − r �2
Y (3.10)
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where �2
Y is the variance of the stationary population age distribution.

Combining equations (3.8) and (3.10) gives an approximate linear relationship
between momentum and aging, that is

� ≈ 1+�A	�YL −VL�/�2
Y
 (3.11)

where �A = YL −Yr is the increase in the mean age of the population over the
transition from stable to stationary.

That linear relationship between momentum and aging holds up
extremely well under both theoretical and empirical analysis. Using 39 Coale
and Demeny (1966) Model West female stable populations, with e(0) values of
60, 70, and 80 and r values ranging from .01 to .05, Kim and Schoen (1997)
estimated the regression equation

� = �997+ �047 �A
��007� ��001� (3.12)

where the standard errors are shown in parentheses and the adjusted R2 is .995.
The model population results in equation (3.12) are consistent with the intercept
of 1 predicted by equation (3.11), and close to the predicted slope, as the model
population values of �YL −VL�/�2

Y ranged from .041 to .044. With no change in
the mean age of the population, � = 1. Each year of increase in mean population
age is associated with population growth of 4.7%.

Kim and Schoen (1997) estimated the same model using the 41 female
populations for the year 1985 given in Keyfitz and Flieger (1990). The regression
equation is

� = �980+ �047 �A
��007� ��001� (3.13)

very close to the previous result and with an adjusted R2 of .985. Such a close
fit with empirical data is remarkable, demonstrating the strength of the linear
relationship between momentum and the increase in mean population age.

Figure 3.2, taken from Kim et al (1991), shows a striking constancy in
the number of persons under age 30 during the transition to stationarity of the
observed population of Singapore 1957. Kim and Schoen (1997) used the same
approach and data sets to examine the appropriateness of using age 30 as the age
under which the numbers in the initial and ultimate populations are identical. Let
F30 be the ratio of the initial population proportion under age 30 to the ultimate
stationary population proportion under age 30, i.e.

F30 = CN�0� 30�/CL�0� 30� (3.14)
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Figure 3.2. Projection to Stationarity of the Observed Population
of Singapore 1957

Note: Figure shows the evolution of population segments from age 0 to age
90, in 5-year age groups. Solid lines represent ages 30, 60, and 90. Time is in
units of 5 years. The initial size of the population was rescaled to 100, and the
ultimate size of the projected population is 162.
Source: Kim, Schoen and Sarma (1991, Figure 1).

The expected relationship is simply � = F30. The model population regression
yielded

� = �003+ �998 F30 (3.15)

with an adjusted R2 of .9997, and the empirical population regression gave

� = �003+ �989 F30 (3.16)

with an R2 of .997. Momentum was virtually identical to the ratio of the initial
population fraction under age 30 to the ultimate population fraction under age 30.

In sum, demographic momentum is essentially the long term change
in the number of persons over age 30 that occurs when an initial population
abruptly shifts to replacement level vital rates. Theoretically and empirically, the
change in population size associated with momentum is a linear transformation
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of the change in mean population age. Momentum and aging are inseparably
linked, as both are manifestations of the changes in population size and structure
that accompany a transition to long term zero population growth.

3.3 MOMENTUM UNDER GRADUAL DECLINES TO STATIONARITY

A good deal of work has been done to explore population momentum
in cases where the vital rates decline to replacement level over a number of
years. Empirically, Ryder (1975) examined the population of India, calculating
a momentum of 1.42 as the initial population of 600 million would grow to 851
million if there were an immediate drop in fertility to replacement. Under the
more reasonable assumption that the decline in fertility would span 40 years while
life expectancy would rise from 50 to 70 years, however, the ultimate stationary
population would be 2.1 billion. Numerically, delays in the achievement of
replacement level vital rates, with or without improvements in mortality, can
lead to substantial increases in ultimate population size.

Theoretically, Frauenthal (1975) and Mitra (1976) examined different
patterns of one-time fertility declines, and Mitra (1987) and Cerone (1996)
examined momentum under certain specified patterns of fertility decline. Schoen
and Kim (1998) examined the case where the growth rate in the number of births
declines linearly to zero. If the initial growth rate of births is rB and the decline
spans Y years, “Keyfitz momentum”, i.e. that given by equations (3.1) and (3.2),
increases by a factor of exp�rBY/2�. In effect, growth at the initial rate continues
for half the period of decline.

Li and Tuljapurkar (1999, 2000) derived new mathematical results from
renewal theory, summing births from successive generations to find momentum
under a variety of age and time patterns of fertility decline. For an initial stable
population, and a proportional decline in net maternity over age with a linear
decline over time,

�LT = �K	exp�rY�−1
/�rY� (3.17)

where the subscripts on � refer to the Li-Tuljapurkar and Keyfitz approaches,
r is the growth rate of the initial population, and Y is again the length of the
period of decline. Equation (3.17) is derived using only first generation births,
but appears to be accurate for declines taking up to 40–50 years.

Goldstein (2002) pursued an alternative approach applicable to declines
of up to 50 years, finding a momentum, �G, given by

�G = �K R0
	Y/50
 (3.18)
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For an instantaneous decline, �G = �K, and for a decline phased in over 50
years, �G = R0 �K, the result in Frauenthal (1975). Goldstein and Stecklov
(2002) utilized the linear approximation

exp�rY/2� ≈ 	exp�rY�−1
/�rY� (3.19)

to modify �LT and provide the long term expression

�GS = �K exp�rY/2� 
eL�0�/eN�0�� (3.20)

where eL�0� and eN�0� are the ultimate stationary and initial population life
expectancies and �GS is the Goldstein-Stecklov momentum. Equation (3.20)
gave results that corresponded well with conventional long term projections,
supporting the argument that such simple analytic projections provide a valuable
demographic tool.

Schoen and Jonsson (2003) used a dynamic model that allows
monotonic changes in net maternity, is suitable for decline periods of any length,
and facilitates analyses of stable-to-stable as well as stable-to-stationary transi-
tions. That model is discussed in detail in Section 7.3 The basic result for
gradual declines to stationarity parallels equations (3.17) and (3.19), but adds
an additional term that increases exponentially with Y to reflect interactions
between changing net maternity and the evolving population age composition.

In short, recent work has shown that, for an initial population growing
at rate r, linear declines in net maternity over Y years (say for Y< 50) add a
factor of about erY/2 to the momentum given by equation (3.1). Differences in
the age pattern of net maternity decline do effect momentum, but those effects
are generally modest. Differences in the time pattern of fertility declines can be
more substantial. Linear declines lead to more growth than exponential declines,
as the latter produce greater fertility decreases in the early years.

3.4 SPATIAL MOMENTUM

As a change in size associated with a transition to stationarity,
momentum is not restricted to birth-death models. In two-sex populations,
Schoen (1988a: 191) found a (small) growth effect associated with the difference
between the initial and ultimate sex compositions. In multistate models, changes
in state composition can lead to population growth, and interregional migration
has emerged as the demographic behavior most significantly associated with
momentum.

Rogers and Willekens (1978) gave the first analysis of spatial
momentum in a multistate context, presenting a multiregional generalization of
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the relationships in equations (3.1) and (3.2). Extending the Ryder (1975) calcu-
lation for India, that analysis saw India’s urban fraction, as well as its urban
population, increasing substantially during the transition to stationarity.

Several commonly prevailing factors combine to generate spatial
momentum, which can be defined as the population growth produced by changes
in regional composition during a transition to multistate stationarity. Let us focus
on models with the states Urban and Rural. Empirically, interregional migration
typically favors the urban areas, as there is more movement to cities than to the
countryside. In the present as well as in the past, rural fertility generally exceeds
urban fertility. With mortality differentials frequently small, rural areas have a
larger rate of natural increase, and that differential in growth is likely to be
maintained after the fall in fertility. The ultimate stationary population thus has
positive natural increase in the Rural state and negative natural increase in the
Urban state, with overall zero growth achieved by net migration from Rural to
Urban. As the model population urbanizes during the transition to stationarity, the
still overrepresented Rural population continues to generate overall population
growth. The transition can be a lengthy process (see subsection 2.4.3), allowing
time for a substantial increase in population size.

3.4.1 Spatial Momentum in Two Region Models Without Age

Schoen and Kim (1993) analyzed a basic two region (Urban, Rural)
model. Let behavior in that model be described by regional rate matrix �R,
specified by

�R =
[
�U −mUN mNU

mUN �N −mNU

]

(3.21)

where � represents a rate of natural increase (birth rate minus death rate), m
is a transfer rate, U indicates the Urban state, and N indicates the Rural (or
Nonurban) state. The eigenvalues of �R are given by equation 2.33, and here
are denoted rR and sR, with the former the dominant root.

The regional rate matrix can be transformed to a stationary matrix by
subtracting rRI, where I is the 2 × 2 identity matrix. In effect, that subtraction
decreases each state’s � by the overall growth rate implied by �R, leaving the
transfer rates unchanged and yielding a new rate matrix with zero growth. If the
initial urban population is U(0) and the initial rural population is N(0), Schoen
and Kim (1993) found that spatial momentum, �R, is given by

�R −1 = 	1/�rR − sR�

	��U − rR�U�0�+ ��N − rR�N�0�
�/
�U�0�+N�0��
(3.22)
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Equation (3.22) expresses spatial momentum in terms of two factors. The first,
	1/�rR − sR�
, is twice the reciprocal of the force of convergence to station-
arity (see equation 2.40). The faster the convergence, the smaller the spatial
momentum. The second factor, the ratio of the terms in curly brackets, is the
growth rate of the population immediately after the shift to replacement level
rates. The faster that growth rate, the greater the spatial momentum. Schoen and
Kim (1993) concluded that in a two-region model, spatial momentum leads to
population growth when the faster growing state is overrepresented in the initial
population.

Schoen (2002) continued that analysis in a work that provides the
basis for the rest of this section. To simplify the relationships and eliminate
the eigenvalues of �R, let mUN, the rate of movement from Urban to Rural,
be zero. To prevent the rural population from going to zero, it is assumed that
��N −mNU� > �U. In this simplified case, spatial momentum, �RR, is

�RR = 
N�0�/	U�0�+N�0�
�
�N −�U�/
�N −�U −mNU� (3.23)

Three elements in equation (3.23) give meaningful behavioral quantities that
influence spatial momentum. The first, in the first set of curly brackets, is
the initial proportion rural, which varies directly with spatial momentum. The
second element, part of both the second and third sets of curly brackets, is the
extent to which the rural rate of natural increase exceeds the urban. The smaller

�N −�U�, the greater �RR. Heuristically, that is because a smaller difference in
rates of natural increase implies a larger ultimate fraction Urban and prolongs the
transition to stationarity. The third element is the rural to urban migration rate.
The larger mNU, the greater spatial momentum. Equation (3.23) thus provides
three theoretically based propositions that can be examined in the light of data
and in the context of models recognizing both age and region.

3.4.2 Decomposing Total Multistate Population Momentum

Let us consider the momentum of a model with 2 regions and � ages.
Let the initial, non-stationary PPM of the model be a 2� × 2� matrix, B, with
the form

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 a21 a22 � � � a�1 a�2

b11 b12 b21 b22 � � � b�1 b�2

s111 s121 0 0 � � � 0 0
s112 s122 0 0 � � � 0 0
0 0 s211 s221 � � � 0 0
0 0 s212 s222 � � � 0 0
� � � � � � �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.24)
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PPM B is a block Leslie matrix (Feeney, 1970), with aij representing the fertility
element (see equation 1.41) for births in state 1 per person in age group i and
state j; bij representing the fertility element for births in state 2 per person in age
group i and state j; and sijk representing the proportion of those initially in age
group i and state j who survive to be in state k at age i+1. The initial population
vector, x0, has odd numbered elements xj1 representing the number of persons in
age group j, region 1, and even numbered elements, xi2 representing the number
of persons in age group i, region 2.

Multistate PPM B can be transformed into a matrix with dominant
eigenvalue 1 in a number of ways. One is to divide every element of B by
�B, the dominant root of B. However, that procedure changes the survivorship
proportions as well as the fertility values. An attractive alternative, which we
make use of in the future as well, is to transform the fertility rates to

cij
∗ = cij/�B

i (3.25)

where cij refers to element aij or bij. Because �B is raised to the minus ith power
in transforming cij to cij

∗, a decline in fertility affects older ages more than
younger ages, a realistic pattern of fertility change. That pattern of change was
advanced by Sykes (1973), employed in the Coale and Trussell (1974) Model
Fertility Schedules, and used in Kim and Schoen (1996).

The initial population can be projected to stationarity by transformed
PPM B∗, which is identical to B except that it has elements cij

∗ instead of
cij in the first two rows. The total momentum of the multi-age/multistate
population is then readily found by dividing the total number of persons in
that ultimate stationary population by the total number in the initial population.
However, that total momentum, �T, reflects the combination of conventional
age momentum, �A, spatial momentum, �R, and the interaction between
them, �I. To find those individual components, we need to collapse initial
PPM B.

Let the � × � Leslie matrix A be the age-specific PPM obtained by
collapsing B over region, using the initial population values to weight the matrix
elements involved. With �A the dominant root of A, stationary PPM A∗ can
be obtained by applying the transformation used in equation (3.25) to the first
row elements of A. Age momentum can then be found by projecting the initial
age-specific population to stationarity using A∗.

Let the collapsed region-specific PPM be 2 × 2 matrix BR, whose ijth
element, rji is the contribution of each person in state j to the population in state i
one interval later. The underlying rate matrix is the �R shown in equation (3.21),
whose dominant root is rR. Matrix �R can be transformed into stationary rate
matrix �R

∗ by subtracting rRI. Stationary PPM BR
∗ is then obtained from �R

∗
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(see Exercise 7), and �R is calculated by projecting the initial region-specific
population to stationarity using BR

∗. To complete the decomposition, assume that
�I reflects a multiplicative interaction. The value of �I can then be obtained from

�T = �A �R �I (3.26)

Given the scarcity of actual data regarding the elements of B, the three proposi-
tions derived in subsection 3.4.1 are examined using plausible but hypothetical
data (see Schoen 2002, for details). Fifteen year age intervals are used. Mortality
is assumed to be low 	e�0� ≈ 78 years
 and fertility moderate, yielding a stable
r ≈ �0185. The initial percents Urban are set at 25% and 37.5%, approximating
the urban proportions in the world’s less developed areas in 1970 and 1998 (UN
Population Division 1999:26). The High urban/rural fertility differential has rural
rates 40% above urban; under the Low differential, rural rates are 20% higher.
Migration assumptions are based on patterns in Rogers and Castro (1986), and
emphasize movements at ages under 30. The rate of rural to urban migration is
set at twice the rate of urban to rural. Under the High migration scenario, rural
to urban movement, reflected by PPM BR

∗ element rNU/�R, is 0.2 at ages 0–14
and 0.4 at ages 15–29. Under the Medium migration scenario, the values are
half that size.

Results for the eight combinations of the initial percent urban, the
differential in urban/rural fertility, and the urban/rural migration level are shown
in Table 3.1. Total momentum varies from 1.376 to 1.656. Most of the growth
is attributable to age momentum, and interaction factors are rather small. Spatial
momentum ranges from 0.950 to 1.226. In 6 of the 8 cases shown, spatial
momentum leads to growth of at least 8% beyond that due to age momentum.
All three theoretical propositions are confirmed. In comparisons between values
where only one factor changes, spatial momentum is always higher when the
initial proportion rural is higher, when the urban/rural fertility differential is
lower, and when the pace of rural to urban migration is higher. Moreover,
spatial momentum is quite sensitive to the difference between the initial and
ultimate fractions urban, as �R is usually close to 1 plus the increase in the
proportion urban.

An analysis of spatial momentum using actual (though partially
estimated) data is possible in the case of Mexico 1970 [see Schoen 2002 for
details]. The demographic transition began in Mexico around 1970, and the
country has experienced considerable internal and international migration. Calcu-
lations using the female population were made following the procedures outlined
above. The results show an increase in the proportion urban from .596 to .820,
and indicate the following patterns of growth over the transition to stationarity:



56 CHAPTER 3

Momentum Type Value

Total 2�031
Age 1�721
Spatial 1�148
Interaction 1�028

Total momentum more than doubles the initial population size, while spatial
momentum alone accounts for 15% growth.

Although it has received little attention, spatial momentum is a signif-
icant demographic phenomenon. Many contemporary countries have a relatively
low percent urban, a modest urban/rural fertility differential, and considerable
rural-to-urban migration. As those are the conditions that generate spatial
momentum, interregional redistribution can have a substantial impact on future
world population growth.

Table 3.1. Momentum and Ultimate Proportion Urban Values for Hypothetical
Populations By Initial Percent Urban, Urban/Rural Fertility Differential, and Level of
Urban/Rural Migration

Momentum Ultimate
Proportion

UrbanCharacteristics Total Age Spatial Interaction

A. High urban/rural fertility
differential
1. 25% initially urban

a. high migration 1�656 1�393 1�207 �985 �468
b. medium migration 1�572 1�393 1�094 1�032 �337

2. 37.5% initially urban
a. high migration 1�478 1�345 1�084 1�013 �462
b. medium migration 1�376 1�345 �950 1�076 �329

B. Low urban/rural fertility
differential
1. 25% initially urban

a. high migration 1�639 1�383 1�226 �967 �519
b. medium migration 1�650 1�383 1�149 1�038 �392

2. 37.5% initially urban
a. high migration 1�505 1�341 1�121 1�001 �520
b. medium migration 1�493 1�341 1�019 1�092 �394

Source: Adapted from Schoen (2002, Table 1).
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3.5 SUMMARY

Population momentum generally refers to the growth that follows a
sudden drop in vital rates to replacement level, and reflects the reproductive
potential of the initial population. It is a demographic phenomenon that is likely
to be responsible for most of the future growth of the world’s population.
Momentum can be defined as the ratio of the total size of the ultimate stationary
population to the total size of the initial population. For contemporary popula-
tions, momentum ��� can easily be 1.5 to 1.7. In birth-death models, momentum
can be calculated as the product of 3 factors: the initial birth rate, the ultimate
life expectancy, and the stable equivalent number of births. Essentially all of the
growth in birth-death models that is attributable to momentum comes at ages
over 30, inextricably linking momentum and population aging. Theoretically
and empirically, momentum is a simple linear function of the change in mean
population age over the transition to stationarity. If the fall to replacement level
fertility is not immediate but takes place over Y years, momentum increases by
a factor that approximates continued growth at the initial rate for Y/2 years.

Momentum also arises in multistate models, where spatial momentum
reflects the additional population growth attributable to changes in regional
composition. In two region models, spatial momentum can be sizeable when
the faster growing region is overrepresented in the initial population. Since that
characterizes the urban and rural areas of much of the contemporary developing
world, spatial momentum is likely to play a significant role in global population
growth over the next century.

3.6 EXERCISES

[See Appendix B for selected answers]

1. A power series often seen in mathematical demography is

ex = 1+x + �1/2!� x2 + �1/3!� x3 + � � �

Using that series to linear terms and the (rough) approximation that mean age
at childbearing � equals Lotka’s T, verify equation (3.3) by showing that Q
in equation (3.2) is about �R0�

−1/2.
2. Assume that a stable population growing at intrinsic rate r experiences a

sudden fall in fertility to replacement level. Show that
a. the age at which the initial stable and ultimate stationary populations have

the same proportion, yp, is given by

yp = ln 	be�0�
/r
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b. the age at which the initial stable and ultimate stationary populations have
the same number of persons, yN, is given by

yN = ln 	be�0�/Q
/r

3. Consider a 3 age group Leslie PPM with a double root. Show that its
momentum is given by

� = b e�0� 
�1+ 	c’

1/2/��/�1+ 	c’


1/2��2

where c’ is defined following equation (2.22) and � is the growth parameter
of the initial stable population.

4. Consider the 3×3 PPM (with 15 year age groups)

AA =
⎡

⎣
�36 �864 �1728
1 0 0
0 1 0

⎤

⎦

Verify that the dominant root of AA is 1.2. Assume initial population x� = (1,
.83333, .69444).
a. Assume a proportional fall in fertility to replacement level. Verify that

v� = ��535911� �397791� �066298� and Q = �913444

b. Assume that fertility falls to replacement via the Sykes transform of
equation (3.25).
Verify that the PPM first row elements are (.3, .6, .1); v′ = (.555556,
.388889, .055556); and Q = �918210.

c. Compare the initial population under exact age 30 with that in the
stationary populations implied by the 2 patterns of fertility fall. Evaluate
equation (2.27) in this context.

5. Assume that initial population x′ = �0� 0� 1� is projected into the future by
a series of stationary level PPMs. Those PPMs need not be the same, but
all must have a dominant root of 1. What is the largest possible size of the
projected population?

6. The matrix B in equation (3.24) could also be transformed into a PPM with
dominant root 1 by subtracting �BI, with I the 2� × 2� identity matrix. Is
that a viable approach?

7. Rate matrix �R in equation (3.21) is transformed to a rate matrix with
dominant eigenvalue 0 by subtracting rRI (with I the 2 × 2 identity matrix).
Show that BR, the PPM that follows from �R, is transformed to PPM BR

∗

with dominant root 1 by dividing each element of BR by exp�rR�.
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DEMOGRAPHIC CHANGE AT THE MARGIN

4.1 INTRODUCTION

Life tables and stable populations depict the implications of specified,
fixed rates for population size and composition. To relax the fixed rate
constraint, we begin by examining a change in rates in the context of fixed
rate models. We then consider age-dependent growth, and explore connections
between different populations with the same vital rates. The objective is to
understand how demographic rates influence population structures. Its pursuit
leads to a fundamental principle underlying population dynamics, derivatives of
demographic measures, and a spectral decomposition of population growth.

4.2 MARGINAL CHANGE IN FIXED RATE MODELS

In the basic life table, equation (1.5) shows how the number of survivors
to any age depends on the number of persons at the initial age and the force
of mortality function between those ages. Now let us consider the changes in
survivorship that result from some patterned changes in mortality. While not
particularly realistic, the simplest form of change to analyze is an additive change
in the force of mortality at all ages, i.e.

�∗�x� = ��x�+ c (4.1)

where the asterisk indicates the new force of mortality and c is the constant
change at all ages.

The new survivorship function, �∗�x�, is then

�∗�x� = ��x� exp�−cx� (4.2)

indicating that the difference in survivorship widens exponentially over age.

59



60 CHAPTER 4

A more realistic form of change is when the risk of death changes proportionally
at all ages, or

�∗�x� = ��x��1+k� (4.3)

Under that form of mortality change

�∗�x�/��x� = ���x�/��0��k (4.4)

Keyfitz (1985) showed that under equation (4.3) life expectancy at birth
changes by

� e�0� = −k e�0� H (4.5)

where H is the entropy of the survivorship distribution, defined as

H = −∫ p�x� ln �p�x�� dx/e�0� (4.6)

Since entropy is well below 1 in low mortality populations, the entropy factor
reduces the impact of proportional mortality changes on longevity. For example,
consider a 10% decline in death rates at all ages. If H = 0	2, a reasonable
value, and the initial e(0) is 70 years, life expectancy increases by only
�0	1��70��0	2� = 1	4 years.

4.2.1 Changes in Stable Population Measures

In the context of stable populations, increases in mortality can make
the population older or younger, depending on the pattern of mortality and the
nature of the change. The additive change in equation (4.1) has been termed
a “neutral” change in mortality as it leaves age composition unchanged (see
Exercise 1). Deaths can occur at any age, but fertility directly impacts the lower
end of the age distribution as births always occur at age zero. It follows that
fertility declines lower intrinsic growth rate r, lower the fraction at the younger
ages, and raise the fraction at the older ages.

To analyze how the age composition of a stable population changes
with r, we can use equation (1.35) and examine

d ln c�x�/dr = �1/c�x�� �d/dr� c�x� = �d/dr� ln�b e−rx p�x�� (4.7)

The probability of survival does not vary with r, and equations (1.32) and (1.33)
imply that [(d/dr) ln b] is the mean age of the stable population �Yr�. Hence
equation (4.7) can be rewritten

�d/dr� c�x� = c�x� �Yr −x� (4.8)
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an expression both simple and meaningful. Age composition pivots around Yr.
A decrease in r decreases c(x), in proportion to its initial size, at all ages below
the mean population age. Since the change is greater the further an age is from
Yr, the greatest impacts are at age zero and the highest ages. For example, if
r decreases by 0.01 in a population with a mean age of 30, c(0) would change by
c�0��−0	01��30–0� or decrease by [0.3c(0)]. Thus a one percentage point drop
in r lowers the proportion at age 0 by 30%.

Arthur (1984) used functional calculus to explore linkages between
demographic measures under any pattern of change in vital rates. Let 
y be the
change in function y brought about by perturbation 
x in function x. Then the
linear approximation of the effect on survival of any set of changes in the force
of mortality, 
�, is given by


p�x� = −p�x�
x∫
0

��a�da (4.9)

If the change in � is proportional at all ages, equation (4.9) provides a linear
approximation to the result in equation (4.4).

Arthur (1984) showed how the power of functional differentiation can
illuminate the nature of changes in stable population measures. Changes in the
intrinsic growth rate are related to changes in fertility and survivorship by


r = �∫ e−rx�
p�x�f�x�+p�x�
f�x�� dx�/A∗ (4.10)

The impact on growth is thus scaled by the stable population mean age at
childbearing, so that equivalent changes in fertility or survivorship have less
impact when A∗ is larger.

The complex effects of mortality change on age composition are the
result of three different effects, as


c�x�/c�x� = 
p�x�/p�x�−b∫ e−ra 
p�a�da + ��Yr −x�/A∗�∫ e−ra f�a� 
p�a�da
(4.11)

The second term on the right side of equation (4.11) tends to be approximately
constant, while the first and third terms tend to offset one another. In the
West up to around 1970, 20th century mortality declines at ages under 5 were
proportionately greater than at most other ages. The third term in equation (4.11)
thus had a greater effect than the first, and mortality declines increased the
proportion at younger ages, making the population younger. In recent decades,
as child mortality has reached low levels and there have been sustained mortality
improvements at older ages, the first term has dominated the third and mortality
change has contributed to population aging.
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The effects of fertility on age composition are simpler. Arthur (1984)
found


c�x�/c�x� = ��Yr −x�/A∗�∫ e−ra p�a� 
f�a�da (4.12)

As the effect of an increase in fertility is to increase r, equation (4.12) is somewhat
similar to equation (4.8), but it is now clear that the impact of fertility is scaled
by the stable population mean age at childbearing.

4.2.2 Changes in Stable Population Characteristics

Coale (1972, Ch 2) examined stable populations where the proportion
of persons with a given characteristic, or who experience a given event, varies
with age. Let g(x) be the rate (or proportion) at age x, and let G be the overall rate
(or proportion of persons with that characteristic) in the stable population. Then

G = ∫ g�x� c�x� dx (4.13)

To see how G varies with r, differentiate using equation (4.8), which yields

dG/dr = G�Yr −Yg� (4.14)

where Yg is the mean age of the population with characteristic g. At the
margin, the proportional change in G is a simple difference between the mean
age of the entire stable population and that of the fraction with characteristic
g. Equation (4.8) can be seen as the special case of equation (4.14) where the
specified characteristic is being age x. Coale (1972) noted that an extremum of
G occurs when Yr = Yg. That extremum is a maximum when the variance of
the population with characteristic g (denoted by 
2

g) is less than the variance of
the stable population age distribution �
2

Y�, and a minimum when 
2
g > 
2

Y.
Using equation (4.14), Coale (1972) verified an earlier result of Lotka, showing
that a stable population has its minimum crude death rate when Yr = 1/b.
Equation (4.14) applies to multistate stable populations as well.

Preston (1982) extended that line of analysis to examine how changes
in growth differentially affect period measures in stable populations and the
experience of cohorts in those stable populations. Changes in fertility affect
period measures, but not the life course of any cohort. Neutral changes in
mortality [i.e. those of equation (4.1) and, to a fair extent, those similar to
equation (4.3)] affect individual life cycles but do not appreciably impact the
composition of any period. Let GP be the proportion of persons in the stable
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population with characteristic g, and GL be the analogous cohort (stationary
population) proportion. A change in r changes GP by

�GP/�r = GP�YL −YGL� (4.15)

where YL is the mean age of the stationary population and YGL is the mean age
of those with attribute g in the stationary population. At the margin, a neutral
change in mortality of size c has the same impact on cohort measures, i.e.

�GL/�c = GL �YL −YGL� (4.16)

Preston (1982) used those relationships to examine situations where
population characteristics (e.g. occupational structures or consumption levels)
are constrained and force alterations in life cycles. For example, based on
United States data for 1977, a 0.01 increase in r would decrease the stable
population proportion living in nursing homes from 0.0110 to 0.0065, a 41%
decline. The mean age of those in nursing homes was 80.2 years, while
the mean age of the stationary population was 38.9, 41.3 years younger.
Those changes are consistent with equation (4.15), multiplied by �r/GP, as
�	0065–.0110]/�	0110�=(.01)�38	9–80	2� = −	41. The same proportional decline,
but in the cohort fraction of life lived in nursing homes, would follow from a
0.01 increase in the force of mortality at all ages.

4.3 RECOGNIZING AGE-DEPENDENT GROWTH

In a stationary population, equation (1.3) indicates that the proportional
change in the number of survivors at age x is −��x�. In a stable population with
n�x� = e−rxp�x� persons at age x, the proportional change in n(x) over age is

d�ln n�x��/dx = −��x�− r (4.17)

Movement down the age column in a stable population results in fewer persons
for two reasons: mortality and growth in cohort size.

Preston and Coale (1982), building on the analysis of Bennett and
Horiuchi (1981), generalized that relationship to any population. Let N(x,t) be
the number of persons age x at time t, and let r(x,t) be defined as

r(x,t) = �1/N(x,t)� �N(x,t)/�t (4.18)

Age-dependent growth rate r(x,t) is thus the proportional change in population
size over time. It follows that

�1/N(x,t)� �N(x,t)/�x = −��x� t�− r�x� t� (4.19)
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where the force of mortality can also vary with time. The population in year t
can then be found by integrating equation (4.19), yielding

N(x,t) = N�0� t� exp�− x∫
0

r(a,t)da� p(x,t) (4.20)

where N(0,t) = B�t� is the number of births occurring during year t.
Equation (4.20) is a significant extension of stable population formalism

to any study population. Dividing both sides of the equation by N(t), the total
size of the year t population, yields a relationship analogous to equation (1.35)
for the age composition of a stable population. The core of the Preston-Coale
“variable-r” approach is the ability to replace e−rx by exp�−∫ r(a,t)da�, where
the integration goes from 0 to x. The sum over the age-specific r(a,t) reflects
past differences in birth cohort size and age-specific mortality, allowing p(x,t) to
reflect the death rates of year t alone. Preston and Coale (1982) found variable-
r expressions that extended all of the basic stable population relationships.
Horiuchi and Preston (1988: p429,438) saw the r(x,t) as “the legacy of past
population dynamics”, though they acknowledged that “[a]ge-specific growth
rate profiles cannot be unambiguously interpreted.”

Those same general relationships were then derived by Arthur and
Vaupel (1984) in terms of an age-time Lexis surface. That analysis defined the
proportional change over age, �(x,t), by

�(x,t) = −�1/N(x,t)� �N(x,t)/�x (4.21)

The fundamental local identity linking change over age and time could then be
written

�(x,t) = �(x,t)− r(x,t) (4.22)

a form equivalent to the classical differential equation of von Förster (1959).
In discrete applications, the value of the age-dependent growth function

over the interval from t to t + s can be found from

r�x� n� t + s� = �1/s� ln �N�x� n� t + s�/N�x� n� t�� (4.23)

where r�x� n� t + s� is the growth rate of the (x, n) age interval over the time
interval ending at time t + s, and N(x, n, t) is the population aged x to x +n at
time t.

Preston and Coale (1982) described how the variable-r approach could
be used to estimate a wide range of demographic measures. Kim (1986)
further developed the age-dependent growth relationships in discrete form, but
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questioned the approach’s usefulness in demographic estimation because of
the data needed to calculate the r(x, t). Despite that significant limitation, the
variable-r approach has contributed to an integrated system for demographic
estimation from two age distributions (Preston 1983), and has proven to be useful
in situations where age intervals and time intervals are unequal.

4.4 CONNECTIONS BETWEEN POPULATIONS HAVING THE SAME
VITAL RATES

The same vital rates can occur in populations with different age or
state compositions. The most commonly encountered examples are observed,
stable, and stationary populations based on the same vital rates. To explore the
connections between demographic measures in such populations, we examine
points of equality that have been termed “crossover” points.

A crossover point is a point where demographic density distributions from
two populations with the same rates intersect (Kim and Schoen 1993). Consider
birth density distributions, i.e. the proportional contributions to the total number
of births from persons at each age, arising from a stationary and a stable
population with the same fertility and mortality. If those distributions are not
identical, they must intersect because the area underneath each curve is one (by
definition). At such a crossover point, say B1, the birth densities are equal, so

p�B1�f�B1�/∫ p�x�f�x�dx = exp�−r B1� p�B1�f�B1�/∫ e−rx p�x�f�x�dx
(4.24)

Cancelling, using equations (1.29) and (1.30), and rewriting gives

R0 = exp�r B1� (4.25)

Equation (1.38) indicates that crossover point B1 is Lotka’s T.
More generally, stationary and stable population crossovers of distribu-

tions based on characteristic Z lead to the relationship

Total stationary cases of Z = �Total stable cases of Z� exp�r XZ� (4.26)

where XZ is the point where the stationary and stable density distributions
of Z cross over. For example, in equation (4.25), the unit birth in the stable
population, adjusted by stable growth over T years, yields the R0 births in the
cohort (or stationary population). Characteristic Z can reflect any of a number
of demographic distributions, including those of deaths, reproductive values,
population numbers, marriages, and divorces.

Preston (1975; 1978) related stationary to stable population summary
measures for a broad range of demographic events, e.g. how the probability a
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person ever marries relates to the stable population period ratio of first marriages
to births. That relationship can be written

Prob�M1� = �M1/B� exp�r AM1� (4.27)

where Prob�M1� is the cohort probability of first marriage, M1 is the number of
period first marriages in a stable population with the same rates, B is the number
of births in the stable population that year, and AM1 is the stable population
average age at first marriage.

As Preston (1978) noted, that approach relates to work by Keyfitz (1977:
p126), which showed that Lotka’s T could be expressed in terms of an infinite
series, specifically

T = �− r 
2/2+ r2 �3/6− 	 	 	 (4.28)

where �� 
2, and �3 are the first, second and third cumulants of the cohort
birth distribution. [The first two cumulants of a distribution are its mean and
variance; the third cumulant is the third moment around the mean, and is related
to skewness (cf. Kendall and Stuart 1958: Vol. I, p67–74).] The relationships
in Preston (1975; 1978) are essentially linear approximations. Using additional
terms from the series in Keyfitz (1977) leads to the exact, crossover, value. In
equation (4.27), that would be obtained by replacing AM1 by the age at which
the stationary and stable first marriage density distributions intersect, i.e. by
�N − r
2

N/2 + r2�3N/6 − 	 	 	 , where �N�
2
N��3N, and so on, are the first,

second, third, etc. cumulants of the stationary population distribution of first
marriages.

Now let us consider crossover points involving any observed population.
Using variable-r notation, the stable-any birth crossover point, B3, can be written

exp�−
B3∫
0

r�a�da�p�B3�f�B3�/∫ exp�− x∫
0

r�a�da� p�x�f�x�dx

= exp�−rB3� p�B3�f�B3�/∫ e−rx p�x�f�x�dx (4.29)

Simplifying as before, noting that the variable-r characteristic equation also
equals 1 (see Exercise 4), taking logs, and rewriting yields the result in Kim and
Schoen (1993), i.e.

r = �1/B3�
B3∫
0

r�a�da (4.30)

The average growth rate up to age B3 is Lotka’s r. Put differently, the previous
B3 years of growth in the stable population defined by the prevailing rates is
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the same as the previous B3 years of age-dependent growth in the observed
population. It follows that if r = 0, age B3 is the age up to which there is no
growth over the transition to stationarity, and thus B3 is the correct value for
G in equation (3.7). With an actual population, however, there may be multiple
crossover values, and those values must be found by graphical, approximate,
or “brute force” methods (cf. Kim and Schoen 1993). No series analogous to
equation (4.28) is known. In principle if not in convenient practice, crossover-
age based adjustments can be found to transform a summary measure in one
population to the corresponding summary measure in any other population with
the same vital rates.

4.5 MARGINAL CHANGE IN DYNAMIC POPULATIONS

4.5.1 Derivatives of Aggregate Demographic Measures

Schoen and Kim (1992) showed how the age-dependent growth function
can be used to determine how a variety of measures change over time. Rewriting
equation (4.18) gives

�N�x� t�/�t = r�x� t� N�x� t� (4.31)

or that at time t the number of persons at age x grows at rate r(x, t). Growth at
age zero can also be expressed using the renewal equation. By definition, the
number of births at time t is

B�t� = N�0� t� = ∫ N�x� t� f�x� t� dx (4.32)

Differentiating with respect to time using equation (4.31) and dividing by B(t)
yields

r�0� t� = RB�t� = � ln B�x� t�/�t

= �∫ r�x� t� N�x� t� f�x� t� dx +∫ N�x� t� ��f�x� t�/�t� dx�/B�t�
(4.33)

with RB�t� denoting the rate of increase in births at time t. If fertility is constant
over time, equation (4.33) simplifies to

RB�t� = ∫ r�x� t� N�x� t� f�x� dx/B�t� (4.34)

or the average of the growth rates weighted by the age distribution of births.
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Equation (4.31) leads to the time derivatives of a number of demographic
functions. With N(t) the total number alive at time t,

RN�t� = � ln N�t�/�t = ∫ N�x� t� r�x� t� dx/N�t�

= ∫ r�x� t� cN�x� t� dx (4.35)

where RN�t� is the crude rate of natural increase at time t and cN�x� t� is
the time t population proportion at age x. Equation (4.35) directly parallels
equation (4.34), and shows that the overall growth rate is the composition
weighted average of the age-specific growth rates. The population age compo-
sition itself changes according to

�cN�x� t�/�t = ��/�t� �N�x� t�/N�t�� = cN�x� t� �r�x� t�−RN�t�� (4.36)

The proportional change in the population fraction at age x is thus the difference
between growth at age x and overall growth.

Many demographic summary measures are age-aggregated functions of
the form

G�t� = ∫ Z�x� t� g�x� dx/∫ Z�x� t� dx (4.37)

where g(x) can be any function of age and Z(x, t) is any variable that satisfies

�Z�x� t�/�t = r�x� t� Z�x� t� (4.38)

Accordingly, Z(x, t) can refer to persons, births, deaths, or other demographic
distributions. For example, if Z�x� t� = N�x� t� and g�x� = ��x�, then G(t) is a
crude death rate. If Z�x� t� = N�x� t�f�x� and g�x� = x, then G(t) is an average
age at childbearing.

To examine change in G(t), we differentiate equation (4.37) and find

�G�t�/�t = ∫ r�x� t� Z�x� t� g�x� dx/∫ Z�x� t� dx

−G�t� �∫ r�x� t� Z�x� t� dx/∫ Z�x� t� dx� (4.39)

The second ratio of integrals on the right hand side of equation (4.39) is the
overall rate of growth in Z at time t, and can be denoted RZ�t�. The expression

∫ r�x� t� Z�x� t�g�x� dx/∫ Z�x� t�g�x� dx

is the overall growth rate of Zg, and can be denoted RZg�t�. Hence equation (4.39)
can be rewritten

�G�t�/�t = G�t� �RZg�t�−RZ�t�� (4.40)
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Equation (4.40) shows that the proportional change in G(t) is the difference
between the growth rate of Zg and the growth rate of Z. Although it is similar to
equation (4.14), the Coale (1972) change relationship, equation (4.40) is more
general. Equation (4.14) gives the marginal change in the composition of a stable
population when it begins to move toward stability based on a different intrinsic
growth rate. Equation (4.40) gives the marginal change over time in G(t) when
any given initial population experiences a change in demographic rates.

Extending an insight in Preston, Himes and Eggers (1989), Schoen and
Kim (1992) observed that equation (4.39) can be written in terms of covariances.
If E(X) is the expected value of random variable X, then the covariance of
random variables X and Y can be written (Hanushek and Jackson 1977: p331)

cov�X� Y� = E�XY�−E�X� E�Y� (4.41)

Let covZ�r� g� be the covariance between r(x, t) and g(x), where those variables
are weighted by Z(x, t). Then equation (4.41) implies

�G�t�/�t = covZ�r� g� (4.42)

The marginal change in aggregate measure G(t) is thus the Z-weighted covariance
between the age graded variable g(x) and age-specific growth. The more that
large values of g(x) are associated with large values of r(x, t), the more G(t)
increases. That result is not surprising, but it is significant because it specifies
and quantifies the mechanism underlying changes in aggregate measures.

To take a specific example, let Z�x� t� = N�x� t� and g�x� = f�x�. Then
G(t) is the crude birth rate and

�BR�t�/�t = BR�t� �RB�t�−RN�t�� = covN�r� f� (4.43)

The proportional change in the crude birth rate is the difference between the rate
of increase in births and the overall rate of natural increase. Alternatively, that
proportional change is the population weighted covariance between the rates of
age-specific growth and fertility.

Preston, Himes and Eggers (1989) derived an expression for the change
in the mean age of a population (see Exercise 6). An alternative, but algebraically
equivalent, expression follows from setting Z�x� t� = N�x� t� and g�x� = x, i.e.

�YN�t�/�t = YN�t� �RNx�t�−RN�t�� = covN�r� x� (4.44)

where YN�t� is the average age of the observed population at time t and RNx�t�
is the overall rate of increase in Nx (i.e. population times age). Equation (4.44)
shows that a population ages to the extent that age-specific growth covaries with
age. For reference, Table 4.1 gives time derivatives for a number of common
demographic functions.
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Table 4.1. Time Derivatives of Population Functions

Derivative expressed in terms of

Function Covariance Growth rates

1. Observed
population (N)

— r(x) N(x)

2. Age
composition
�cN�

covN�
∗�a −x�� r�x�� cN�a��r�a�−RN�

3. Birth rate (BR) covN�f�x�� r�x�� BR�RB −RN�
4. Death rate

(DR)
covN���x�� r�x�� DR�RD −RN�

5. Rate of
population
increase �RN�

covN��f�x�−��x��� r�x�� BR RB −DR RD −RN
2

6. Ratio BR/DR covN��f�x�−��x�BR/DR�� r�x��/DR BR�RB −RD�/DR
7. Mean

population age
�YN�

covN�x� r�x�� YN�RNx −RN�

8. Mean age at
childbearing
�AN�

covB�x� r�x�� AN�RBx −RB�

9. Mean age at
death �Y
�

covD�x� r�x�� Y
�RDx −RD�

Notes: Time index (t) is not shown. The subscript of cov refers to the number of persons
(N), births (B), or deaths (D) ; the function 
∗�a − x� is 1 when a = x and 0 otherwise;
RNx� RBx, and RDx denote the overall rate of increase in persons times age, births times
age, and deaths times age, respectively.
Source: Adapted from Schoen (1992). Reprinted with permission from Population Index,
Office of Population Research, Princeton University, (c) 1992.

4.5.2 Marginal Change and Stabilization

Convergence to stability is the result of a series of marginal changes
that occur as a population is exposed to a fixed set of rates. To look at a given
step in the process, we follow Schoen and Kim (1991), and start by letting Q(t)
be the stable equivalent number of births at time t [see equation (2.7)]. If the
rates are constant for even a momentary period of time, Q(t) grows exponentially
at the stable r implied by those rates, hence

dQ�t�/dt = rQ�t� = ∫ r�x� t�N�x� t�v�x�dx (4.45)
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where v(x) are the reproductive contributions based on the prevailing rates [see
equation (2.8)]. With q(x, t) the proportional contribution of the time t population
age x to Q(t) [see equation (2.9)], we find

dq�x� t�/dt = q�x� t� �r�x� t�−∫ r�x� t�q�x� t�dx� (4.46)

Using equations (4.45) and (2.7), the integral in equation (4.46) is

r = ∫ r�x� t�q�x� t�dx (4.47)

a striking relationship that equates stable growth under the prevailing rates to
the average of the age-specific growth rates weighted by q(x, t). Equation (4.46)
then becomes

dq�x� t�/dt = q�x� t� �r�x� t�− r� (4.48)

showing that at any time t the proportional contribution to the current stable
equivalent from age x changes in proportion to the difference between age-
specific growth at age x and the stable growth implied by prevailing rates.

At time t, the distance between the observed population and the stable
equivalent population implied by the prevailing rates is given by the Kullback
distance, K(t), of equation (2.13). Defining the momentum of persons age x [or
between ages x and x +dx] at time t by ��x� t�, we can write

��x� t� = S�x� t�/N�x� t� (4.49)

and express the Kullback distance as

K�t� = −∫ q�x� t� ln ��x� t� dx (4.50)

At the margin, the change in the Kullback distance is

dK�t�/dt = K�t� �rK�t�− r� (4.51)

where

rK�t� = −∫ r�x� t� q�x� t� ln ��x� t� dx/K�t� (4.52)

or rK�t� is the average of age-specific growth weighted by each age’s proportional
contribution to the Kullback distance. Applying equation (4.42), we have the
result in Schoen and Kim (1991)

dK�t�/dt = −covq�r� ln �� (4.53)
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The decline in the Kullback distance at any time reflects the q-weighted
covariance between age-specific growth and the natural logarithm of age-specific
momentum. Convergence proceeds more rapidly when ages with larger growth
rates are small relative to their stable equivalent.

The result in equation (4.53) is broadly applicable because the prevailing
rates are assumed fixed for only an instant. In the interpretation of Schoen and
Kim (1991: p460) a fundamental principle of population dynamics is that every
population always moves toward the stable equivalent implied by the prevailing
vital rates, and does so by an amount equal to the q-weighted covariance
between log momentum and age-specific growth. As the rates change the
target stable population changes, but the underlying dynamic principle remains
the same.

4.6 A SPECTRAL DECOMPOSITION OF MARGINAL CHANGE

The discrete model can provide a different perspective on the
relationships between r(x, t), ��x� t�, and q(x, t), three functions central to
population change at the margin. Using the definition in Kim (1986), discrete
age-specific growth is given by

exp�rjt� = Njt/Nj�t−1 (4.54)

where rjt is the growth rate of the jth age group between time points t–1 and
t, and Njt is the number of persons in the jth age group at time t. The unit of
time is the number of years in the interval between t–1 and t, which is also
the number of years in each age group. Using that definition, Schoen and Kim
(1992) derived a discrete form of equation (4.39), and provided first differences
for the change in a number of population functions (see Exercise 9).

Given a study population and a set of age-specific vital rates, it is
possible to spectrally decompose that population, i.e. divide it into compo-
nents related to the roots of the associated population projection (Leslie) matrix
[cf. Keyfitz, 1977: Ch 3]. The number of persons in the ith spectral component
may be negative or complex, but that component grows over time according to
the ith root of the Leslie matrix. In the spectral decomposition, let Nijt be the
number in the ith component and jth age group at time t. Component 1 is the
component associated with the dominant root, and Njt = �i Nijt. Following the
development in Schoen and Kim (1992), we have

Nijt = �t
i Qi0 uij (4.55)

where �i is the ith eigenvalue of the Leslie matrix, Qit is the stable equivalent
number of births in the ith component at time t, and uij = �

−�j−1�
i pj is the jth
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element of the right eigenvector associated with �i. Survivorship fraction p is
defined in equation (1.43), and Qi0 can be written

Qi0 = �j Nj0 vij (4.56)

where vij is the jth element of the left eigenvector associated with �i. In terms
of the bj fertility elements of equation (1.41),

vij = �k=j �−k
i pk bk/uij �i (4.57)

where �i is the stable population mean age at net maternity in the ith
component, or

�i = �j j�−j
i pj bj (4.58)

To generalize the concept of momentum to component as well as age and time,
Schoen and Kim (1992) extended the idea underlying equation (4.49) and wrote

�ijt = Nijt/Njt (4.59)

It follows that �i �ijt = 1. The discrete form of the ��x� t� of equation (4.49) is
thus �1jt. However, while �1jt approaches 1 as a population approaches stability,
�ijt�i �= 1� approaches 0 as the subordinate components disappear.

To relate age-specific growth rjt to the roots of the Leslie matrix,
equations (4.54) and (4.55) can be combined to write

Nj�t+1 = �i �i Nijt = exp�rj�t+1� Njt (4.60)

Using equation (4.59), equation (4.60) becomes

exp�rj�t+1� = �i �i �ijt (4.61)

Age-specific growth is thus a momentum-weighted average of the growth in
each spectral component. As the population approaches stability, exp�rj�t+1�
approaches �1.

Matrix notation allows all ages to be combined in one expression. Let �
element column vector exp�rt+1� have exp�rj�t+1� as its jth element, let � element
column vector � have �i as its ith element, and let � ×� matrix �t have �jit as
its (i,j)th element. Then equation (4.61) leads to

exp�rt+1� = �t � (4.62)
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As the population approaches stability, �t becomes a matrix with ones in the
first column and zeros elsewhere.

Alternatively, we can relate age-specific growth and the roots of the
Leslie matrix through the component-specific reproductive contribution function
qijt, given by

qijt = Njt vij/Qit (4.63)

where �j qijt = 1. At time t, qijt is the contribution of the jth age group to the
stable equivalent of the ith component. At time t +1

�j qij�t+1 = 1 = �j Nj�t+1 vij/Qi�t+1

= �j exp�rj�t+1� Njt vij/��i Qit� (4.64)

using equation (4.54) and the fact that Qit grows by factor �i. Rearranging
equation (4.64) yields

�i = �j exp�rj�t+1� qijt (4.65)

which generalizes equation (4.47) to all components. The growth rate of every
spectral component is the q-weighted average of the exponentiated age-specific
growth rates. Using matrix notation to combine all ages, with � × � matrix
qt having (i,j)th element qijt, equation (4.65) yields

exp�rt+1� = qt
−1 � (4.66)

As noted by Schoen and Kim (1992), equations (4.62) and (4.66) not only show
how the age-specific growth rates are linked to all of the roots of the Leslie
matrix, they lead to

�t = qt
−1 (4.67)

which shows the intimate relationship between momentum and reproductive
contributions across the spectral decomposition. The inverse of the array of repro-
ductive contributions by age to each component gives population momentum,
by component, at each age.

4.7 SUMMARY

This chapter has examined how demographic behavior influences
population size and composition at the margin. In the context of fixed rate
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models, ordinary and functional differentiation show how demographic measures
vary over time. Fertility directly impacts the lower end of the age structure,
causing it to pivot around the mean age of the population. In contrast, mortality’s
influence comes from three distinct and frequently offsetting effects. Introducing
the “variable-r” concept allows any population to be expressed in terms of its
age-dependent growth, facilitating sensitivity analyses in dynamic populations.
Crossover points serve to connect summary measures in populations sharing
the same vital rates. An example is Lotka’s T, the crossover age where
stable and stationary birth density distributions intersect, which functionally
relates the unit birth in a stable population to the R0 births arising from a
cohort.

In any population, equation (4.42) shows that change in a broad range
of summary measures can be expressed in terms of a weighted covariance
between age-specific growth and an age-dependent demographic variable.
For example, the change in a crude birth rate is a population weighted
covariance between age-specific rates of growth and fertility. Viewing a
marginal change as one step in the process of stabilization leads to the funda-
mental principle that every population is always moving toward the stable
equivalent implied by its prevailing rates. The discrete model allows those
relationships to be extended to all of the population components implied by
the roots of the prevailing population projection matrix. Age-specific growth
is a weighted average of component-specific growth rates, where the age-
component-specific weights can reflect either momentum or reproductive contri-
butions. Age-dependent growth combines changes over all components, as
momentum and reproductive contributions are intimately related across the entire
spectrum.

4.8 EXERCISES

[See Appendix B for selected answers]

1. Consider stable population characteristic equation (1.29). If there is a neutral
change in mortality of the form of equation (4.1), show that the age
composition of the stable population remains unchanged. Is there a change
in stable r?

2. If mortality changes proportionately as in equation (4.3), verify that
equation (4.9) gives a linear approximation to equation (4.4).

3. Consider a stable population with e�0� = 80 and no mortality before age
80. Using equation (4.14), what value of r maximizes the fraction of the
population between the ages of 15 and 65, and what is that maximum
fraction?
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4. Under the variable-r approach of Preston and Coale (1982), verify that the
characteristic equation can be written

1 = ∫ exp�− x∫
0

r�a� t�da� p�x� f�x� dx

5. Keyfitz (1977: p126) provided a series for the stable mean age at childbearing
in terms of the cumulants of cohort net maternity, specifically

A∗ = �− r
2 + r2�3/2− 	 	 	

Use that result to verify the relationship in Kim and Schoen (1993) that

T = �1/r�
r∫
0

A∗���d�

where A∗��� is the period mean age at childbearing in a stable population
with growth rate �.

6. Preston, Himes and Eggers (1989) derived the relationship

dYN�t�/dt = 1−DR�Y
�t�−YN�t��−BR YN�t�

where Y
�t� is the mean age at death in the population and BR and DR are the
population’s crude rates of birth and death, respectively. Show that relationship
is algebraically equivalent to equation (4.44).

7. Using equation (4.54), show that RNt, the overall rate of population growth
between times t–1 and t, can be expressed as both (i) the arithmetic mean
of the age-specific growth rates weighted by the population at time t–1 and
(ii) the harmonic mean of the age-specific growth rates weighted by the
population at time t.

8. If ��t� is the momentum at time t in a fixed rate, r = 0, population
transitioning to stationarity, show that ���t�/�t = −��t�RN�t�.

9. Using equation (4.54), verify the following first differences with respect to time
a. �Nj = Nj�exp�rj�− 1�, where Nj is the population in age group j and rj

is the growth rate of that population
b. �cNj = cNj�exp�rj −RN�−1�, where cNj is the population fraction in age

group j.
c. �BR = BR�exp�RB −RN�−1�
d. �DR = DR�exp�RD −RN�−1�, where RD is the rate of increase in deaths
e. �YN = YN�exp�RNx −RN�−1�, where RNx is the rate of increase in Nx

(births times age)
f. �Y
 = Y
�exp�RDx − RD�− 1�, where RDx is the rate of increase in Dx

(deaths times age)



DEMOGRAPHIC CHANGE AT THE MARGIN 77

10. Verify equation (4.67) algebraically, with initial population x and PPM A
given by

x =
[

1
x

]

� A =
[

a 1− a
1 0

]

11. Show that

�d/dr� ln d = Yr −Y


where Y
 is defined in Exercise 6 and d is the stable population crude death
rate (from Preston, Heuveline and Guillot 2001: p158).



CHAPTER 5

LONGEVITY AND DYNAMIC MORTALITY

5.1 INTRODUCTION

Mortality is the core demographic process that has been studied the
longest, with work dating back to Graunt (1662) and the dawn of demography.
Methodologically, it is also the most straightforward—everyone dies, and does
so exactly once. From a cohort perspective, analyses do not involve issues related
to the ultimate level of mortality, but only questions of timing. Mortality does
impact rates of net maternity, but at contemporary levels the mortality effect
on the size of future cohorts is miniscule. Mortality can thus be isolated from
fertility and studied on its own. Those characteristics greatly simplify fixed rate
analyses, but changing mortality rates raise issues that have only recently become
subjects of research, and dynamic mortality models are just beginning to be
developed.

In this chapter, we begin with a brief overview of mortality trends, and
identify a new analytical perspective that emerges in dynamic mortality models.
After examining period-cohort relationships in the context of changing death
rates, we consider dynamic models and the relationships that arise in them.

5.2 AN OVERVIEW OF CHANGES IN HUMAN MORTALITY

The 20th century was a time of unprecedented improvements in
mortality. In 1900, life expectancy at birth in the healthiest countries was around
40 years; in 2000, it was about 80 years. The Epidemiological Transition (Omran,
1971) experienced by much of the world saw the leading causes of death
shift from infectious to degenerative diseases, with the most profound changes
among children and young adults. The last decades of the 20th century saw
sustained improvements in mortality at advanced ages in most industrial countries
(Kannisto et al., 1994), and a rapid growth in the number of centenarians. By
the end of the century, mortality declines had replaced fertility declines as the
dominant factor producing population aging in the West (Preston, Himes and
Eggers 1989).

79
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One striking feature of those epochal changes is that despite very large
declines in the level of mortality, the shape of the age curve of death risks changed
only modestly. Coale and Demeny (1983, p26) produced model life tables that
spanned female life expectancies at birth from 20 to 80 years. Figure 5.1 shows
how both model and observed female age-specific probabilities of death follow
quite similar age patterns at very different levels of mortality, one level implying
a life expectancy at birth of 38.6 years and the other an e(0) of 75.2 years.
Table 5.1 summarizes mortality changes using Coale-Demeny “West” model
life table values. As life expectancy rises from 20 to 80, the mean age of the
stationary population increases, reaching almost 41 years when life expectancy
is 80. The standard deviation of the distribution of deaths also changes, but not

Figure 5.1. Observed and Coale-Demeny Model “West” Life Table
Age-Specific Probabilities of Death in a High and a Low Mortality Population

Source: Coale and Demeny (1966, p.27). Reprinted with permission from
Regional Model Life Tables and Stable Populations, Office of Population
Research, Princeton University (c) 1966.
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Table 5.1. Summary Measures of Mortality for Life Expectancies of 20 to 80
Years, Coale-Demeny Model “West” Female Life Tables

Mortality
Level

Life
Expectancy[e(0)]

Mean Age
of Stationary
Population(A)

Standard
Deviation of

Ages at
Death∗

Category of
Modal Age
at Death∗∗

1 20 25�53 24�92 0
3 25 27�31 27�21 0
5 30 28�89 28�87 0
7 35 30�32 29�96 0
9 40 31�63 30�50 0

11 45 32�85 30�52 0
13 50 33�97 29�95 0
15 55 34�95 28�63 75–79
17 60 35�96 26�74 75–79
19 65 36�96 24�08 75–79
21 70 37�98 20�43 75–79
23 75 39�29 16�39 80–84
25 80 40�91 12�07 80–84

Notes:
∗ Calculated as the positive square root of e�0��2A − e�0��.
∗∗ Using age categories 0, 1–4, 5–9, � � �, 90–94, and 95 and over.

Source: Ryder (1975) and Coale and Demeny (1983).

monotonically. At low levels of life expectancy, deaths are concentrated at the
youngest ages. With an e(0) of 20 years, 53% of all deaths occur before age
5. As mortality improves the dispersion increases. The standard deviation of
deaths reaches its maximum when life expectancy is in the low 40s, a point
where the median age at death is around 50 and both extremes of the age
distribution account for substantial numbers of deaths. The modal age category
of deaths remains age 0 through a life expectancy of 50 years; it then jumps
to the 75–79 age group. At life expectancies of 50 and higher, deaths become
increasingly concentrated at the older ages, and the dispersion of deaths sharply
contracts.

The concentration of deaths at older ages, and the continuing mortality
declines at those ages, have renewed speculation about the maximum human
life span. Currently there is a fairly general sense that, if such a limit exists,
we are not yet close to it (Wilmoth, 1997). Most population projections assume
that mortality declines will continue for some time (Bongaarts and Bulatao,
2000), despite the spread of AIDS and continuing concerns about epidemics of
respiratory diseases. Considerable work has been done in recent years to improve
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methods for projecting mortality and to estimate the standard errors associated
with those projections (Lee and Carter 1992; Li and Lee 2005; Alho and Spencer
2005; Bongaarts 2005). Here we focus on models of changing mortality, and
consider a new perspective that arises in dynamic mortality models.

5.3 A THIRD ANALYTICAL PERSPECTIVE: THE WEDGE-PERIOD

Traditionally, demographers have emphasized two analytical perspec-
tives: period and cohort. Brouard (1986) was the first to realize that dynamic
mortality analysis involves a third perspective. Consider a model population with
a unit number of births each year where mortality is free to vary over age and
time. At time t, the population at every age is the number from earlier birth
cohorts who have survived to that age under the death rates affecting the cohort
at each previous time. The time t model population is not the customary model
period population (e.g. a period life table population) because it is not derived
from a single set of period rates. It is clearly not a cohort, as it is composed of
numerous cohorts. Schoen, Jonsson and Tufis (2004) termed it a wedge-period
population because, if the age-time-specific mortality rates underlying it are
indicated on an age-time (Lexis) surface, they form a triangular or wedge-shaped
pattern.

Brouard (1986) called the number of persons in the wedge-period
population the “durée de vie moyenne actuelle.” Guillot (2003) translated
Brouard’s term as the “cross-sectional average length of life,” and denoted the
total size of the time t population by CAL(t). The analysis in Guillot (2003)
saw CAL as a mortality index that could usefully be compared to the period
life expectancy. When mortality has been declining over time, the period life
expectancy based on the death rates of time t, e(0,t), is greater than CAL(t), as
CAL(t) shows the effects of the higher mortality of earlier years. Past mortality
declines have implications for the future growth of the wedge-period population.
If mortality rates become constant at time t levels, the size of the wedge-period
population would grow by a ratio of e(0,t)/CAL(t) as the wedge-period population
moves from size CAL(t) to e(0,t), the stationary population size and composition.

5.4 PERIOD-COHORT CONSIDERATIONS

5.4.1 The Period-Cohort Contrast in Mortality

Although period and cohort rates are drawn from the same array, they
have different practical and theoretical implications. People live year by year,
and data are typically collected and published annually. Period life tables can
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generally be calculated from data for a very recent year. Cohort life tables
require data spanning over a century, while the lifetime experience of recent birth
cohorts is still unknown. Substantively, individuals can be influenced by past
experiences, and cohorts represent actual people with a shared history. Ryder
(1965), in an influential theoretical paper, argued that cohorts are the agents
of social change. In mortality analysis, there is evidence that past experiences,
especially at early ages, have a substantial effect on later mortality (Elo and
Preston, 1992). Moreover, methodological work has found empirical regularities
in patterns of cohort mortality (Hobcraft, Menken, and Preston 1982).

5.4.2 Average Cohort Life Expectancy

The period life expectancy given by a life table based on the rates
of year t, e(0,t), characterizes the experience of a hypothetical (or synthetic)
cohort, not any real group of persons (cf. equation (1.11)). When death rates are
changing, that measure should not be interpreted as reflecting the longevity of
any actual cohort. One way to relate period and cohort behavior is to calculate a
period-specific “Average Cohort Life Expectancy” (ACLE). For time t, (Schoen
and Canudas-Romo, 2005) proposed the measure

ACLE(t) = ∫ ec�0� t − a��c�a� t − a�da/CAL�t� (5.1)

with

CAL�t� = ∫ �c�a� t − a� da

ec �0� t − a� represents the life expectancy of the cohort born at time t − a, and
�c �a� t−a� represents the number of survivors to age a, from a unit birth cohort,
under the death rates experienced by the cohort born at time t −a. By definition,
the sum over age of the �c �a� t − a� is CAL(t). The ACLE measure is thus a
weighted average of the life expectancies of the cohorts alive at time t, where
the weights are given by the cohort probabilities of survival to each age. Age-
specific weights are needed because the few persons who survive to the highest
ages should not receive the same emphasis as newborns, and cohort survivorship
provides a logical weight for a measure of cohort survival.

To calculate ACLE(t), one must know the mortality risks to which all
cohorts alive at time t are subject throughout their lifetimes, information that
spans over 200 years and is not available until a century after time t. The need
for cohort data is unavoidable, however, because the purpose of the measure is
to calculate average cohort life expectancy. Schoen and Canudas-Romo (2005)
advanced several arguments regarding those extensive data requirements. First,
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ACLE provides a precise, conceptually clear measure for average cohort life
expectancy. It is thus a “gold standard” when it can be calculated, e.g. for
populations with a long history of mortality data or in the context of models with
known values. Second, when it cannot be calculated, it identifies what needs to
be estimated, focusing attention on the estimation of future mortality trends and
the implications of variations in those estimates.

When mortality is constant over time, ACLE�t� = e�0� t� = CAL�t� =
ec �0� t�. When mortality is steadily declining, ec �0� t� > ACLE�t� > e�0� t� >
CAL�t�. When mortality is fluctuating, patterns over time can be more complex.
Figure 5.2 shows time trajectories for those four measures in the context of a
model with one birth per year and mortality changing cyclically over cohorts.
At age x and time t, the force of mortality is given by

	�x� t� = exp�A + �b+ c�x − ct − �25 sin�2
t/60�� (5.2)

a modified Gompertz pattern. [In the classic Gompertz pattern, 	�x� = exp�A +
bx�; see Section 1.9, Exercise 5.] Parameter A = −11�215 sets the level of 	�50� 0�
at 0.002, a reasonable level for a low mortality population. Parameter b, the rate
of mortality increase over age, is given its usual value of 0.1. Parameter c, the
rate of mortality decrease over time, is taken as 0.008, a decline of less than 1%

Figure 5.2. Cohort and Period Life Expectancy, ACLE, and CAL for a
Sinusoidally Declining Mortality Model with Cohort Cyclical Fluctuations of

60 Years and Parameters A = −11.215, b = 0.1, c = 0.008 and d = 0.25
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per year. The sine term introduces the fluctuations, which have an amplitude (d)
of 0.25 and a cycle length of 60 years. The figure shows that all four measures
reflect long term increases over time. Cohort life expectancy is consistently the
largest of the four measures, and fluctuates with the greatest amplitude. Period life
expectancy and CAL alternate as the smallest measure, with CAL usually lower.
Even though CAL is based on a wedge of rates, its fluctuation is about as large
as that of period life expectancy. ACLE is the second largest measure and, as a
weighted average, shows the underlying trend with the least amount of fluctuation.

5.5 A SHIFTING GOMPERTZ MORTALITY CHANGE MODEL

5.5.1 The Bongaarts-Feeney Approach

A flexible model of changing mortality was set forth in an important
paper by Bongaarts and Feeney (2002). Consider a model population with one
birth each year, and recall the ��x� t� function of equation (4.21). With N(x,t)
the number of persons in the wedge-period population age x at time t, and
N�0� t� = 1, equation (4.21) implies

N(x,t) = exp�− x∫
0
��a� t�da� (5.3)

a result consistent with equations (4.20) and (4.22). Basically, ��x� t� would be
a force of mortality if N(x,t) described a life table survivorship curve rather than
the number of persons in a population. Bongaarts and Feeney (2002) assumed
that v(x,t) followed a Gompertz pattern with

v(x,0) = exp�A +bx� (5.4)

where A is the parameter that specifies the level of ��0� 0�, and b is the parameter
that indicates the pace of increase with age. A Siler model (Siler 1979) can
incorporate infant and child mortality, and a logistic model (cf. Bongaarts, 2005)
can better capture mortality at high ages, but the Gompertz is by far the most
convenient analytical formulation. Bongaarts and Feeney (2002) focus on ages
30 and over to avoid the complications of childhood, adolescent, and young
adult mortality. Using equation (5.4) in equation (5.3) and integrating,

N(x,0) = exp�−eA�ebx −1
/b� (5.5)

Bongaarts and Feeney (2002) introduced change by allowing the v function to
shift horizontally over time. Let F(t) be the shift (or offset) in v between times
0 and t, i.e. let

v(x,t) = ��x −F�t�� 0� = exp�A +b�x −F�t�
� (5.6)
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Figure 5.3. Stylized 	 and � Curves and the Distances Between Them, Shifting
Gompertz Mortality Change Model

(see Figure 5.3). It follows from equation (5.3) that

N�x� t� = exp�− X∫
F�t�

��a −F�t��� 0� da�

= exp�−eA�eb�x−F�t�
 −1
/b� (5.7)

The lower limit of the integral in equation (5.7) is F(t) because of the shift in
the age argument of �. By definition, whenever the age argument is less than
zero, � is set equal to zero. Comparing equations (5.5) and (5.7) shows that the
N distribution also shifts by F(t) years.

Bongaarts (2002) assumed that death rates also follow a Gompertz
pattern, one based on the same parameters as �. At time 0, let

	�x� 0� = exp�A +b�x −S�0�
� = ���x −S�0�
� 0� (5.8)

In equation (5.8), S(0) years is the offset at time 0 that shifts the � function to
the 	 function (see Figure 5.3). Hence at time 0, the force of mortality at age x
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is the same as the � function at age �x−S�0��. Since ages less than zero are not
defined, 	 is set equal to zero whenever the age argument (here �x − S�0��) is
less than zero. At any time t, let S(t) be the offset that shifts ��x� t� to 	�x� t�.
Hence

	�x� t� = ���x −S�t�
� t� = e−bS�t���x� t� (5.9)

Bongaarts and Feeney (2002) observed that multiplying the force of mortality
by a constant at all ages is equivalent (except at the lowest ages) to shifting the
	 curve horizontally. Accordingly, at time t > 0 we can write

	�x� t� = exp�A +b�x −S�0�− J�t�
� (5.10)

for �x−S�0�−J�t�� ≥ 0, where J(t) is a function that indicates the horizontal shift
in the force of mortality curve from time 0 to time t (see Figure 5.3). It follows
that 	�x� t� equals 	�x� 0� times exp�−bJ�t��, and is the same as 	�x− J�t�� 0�.
If J�t� > 0, the force of mortality curve shifts to the right and mortality declines,
while if J�t� < 0, the force of mortality curve shifts to the left and mortality
rises. When J�t� > 0, the size of J(t) equals the rise in period life expectancy
from initial conditions, as there is no mortality below age J(t).

Let �LT�x� t� be the number of survivors in a life table cohort of one
person under the mortality prevailing at time t. Then with mortality given by
	�x� t�, equations (1.5), (5.8), and (5.10) give

�LT�x� t� = exp�− x∫
S�0�+J�t�

	�a� t� da� = exp�−eA�ebx−b�S�0�+J�t�� −1
/b� (5.11)

where the last equality follows from carrying out the integration. The lower limit
in the integral is S�0�+ J�t� in order to avoid the “negative ages” where 	 is set
to zero. Note that �LT�x� t� has the same form as N(x,t) in equation (5.7), except
that the shift is �S�0�+ J�t�� years instead of F(t) years. Since S(t) is the shift
between 	�x� t� and ��x� t�, it is also the shift between the �LT and N schedules,
so we must have

e(0,t) = CAL�t�+S�t� (5.12)
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Recall the age dependent growth rate r(x,t) of equation (4.18). It follows from
equations (5.6) and (5.7) that

� ln N�x� t�/�t = r�x� t� = ��x� t� dF�t�/dt

where the last equality is found by carrying out the partial differentiation. Hence,
at every age, r(x,t), the proportional change in N(x,t) over time, equals ��x� t�,
the proportional change in N(x,t) over age, times the change in the offset between
N(x,0) and N(x,t). Since �� 	, and r are related by equation (4.22), we have

	�x� t� = ��x� t��1−dF�t�/dt
 = v�x� t��1−dCAL�t�/dt
 (5.13)

The last equality in equation (5.13) follows from

d F(t)/dt = d CAL�t�/dt (5.14)

which holds because � and N shift by the same amount. Equation (5.13) shows
that, at a given time, a constant factor transforms the age-specific � function
into the age-specific 	 function (at all ages above F(t)), confirming the shift in
	. That relationship between �� 	, and F generally holds in models with shifts
(i.e. offsets where “negative ages” have zero rates), as it does not depend on
Gompertz mortality. Combining equations (5.9), (5.13), and (5.14), we find

d CAL(t)/dt = 1− e−bS�t� = 1−	�x� t�/��x� t� (5.15)

Equation (5.15) is significant as it relates the change in total population size to
both the offset between 	 and � and the ratio of the 	 and � functions.

With a cohort size of one, the number of persons in any life table
stationary population is the same as the average age at death in that stationary
population. Bongaarts and Feeney (2002) showed that relationship holds in the
shifting Gompertz model as well, since

Y��t� = ∫ x	�x� t� N�x� t� dx/∫	�x� t� N�x� t� dx

= ∫ x ��x� t� N�x� t� dx/∫ ��x� t� N�x� t� dx = CAL�t� (5.16)

where Y��t� is the time t wedge-period population average age at death. The
first equality in equation (5.16) expresses the definition of Y��t�. The second
equality follows from equation (5.13), where the factor of �1 − dF�t�/dt� at all
ages drops out. The final result comes from recalling that � and N are related to
each other in the same way as 	 and �LT, and for the hypothetical cohort of one
person where ��x� t� is the force of mortality, the average age at death equals
the size of the stationary population, i.e. CAL(t).
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Equations (5.12), (5.13), (5.15), and (5.16) provide the central relation-
ships in the Bongaarts-Feeney approach (see the summary in Table 5.2). They
reflect a dynamic population where shifting Gompertz mortality implies a shifting
wedge-period population. Aside from the youngest ages, the relative age structure
of the population remains constant, and the change in population size at any time
reflects the ratio between the 	 and � functions.

Bongaarts and Feeney (2002) saw CAL(t) as a timing adjusted measure
of longevity, an interpretation that has been disputed (Goldstein, 2005; Rodriguez
2006; Wachter, 2005). Since longevity is inherently a measure of the timing of
death, it is difficult to conceptually specify what a meaningful timing adjustment
should involve (Guillot, 2006). Figure 5.2 indicates that CAL is affected by
fluctuations in cohort mortality to about the same extent as period life expectancy.
When mortality is monotonically declining, CAL(t) is always less than the life
expectancy of year t; the analysis in Wachter (2005) showed that CAL(t) is
essentially a weighted average of life expectancies for t and earlier years. It should
be noted that the timing adjustment interpretation is not a part of the dynamic
model. There is no doubt that the shifting Gompertz model is a significant step
forward in dynamic mortality modeling, and that CAL is an important indicator
that simultaneously reflects both the total size of the model population and its
average age at death.

5.5.2 Relationships in a Shifting Gompertz Model

It is worth examining the shifting Gompertz model further to explore
some additional relationships among model functions. Equation (5.15) can be
rearranged and written as

exp�−bS�t�� = exp�−b�S�0�+ J�t�
� exp�bF�t��

from which it follows that

S(t) = S�0�+ J�t�−F�t� (5.17)

a new result that describes the additive relationship linking the different offsets.
Figure 5.3 provides an illustration consistent with equation (5.17).

Equations (5.14) and (5.15) relate the derivative of CAL(t), or F(t),
to S(t). It is thus straightforward to go from a known, differentiable F(t) [or
��x� t�] function, with Gompertz parameters A and b, to S(t), then J(t), and on
to the other model functions (see Exercise 7). Typical demographic practice,
however, begins with the force of mortality and its pattern of change over time,
i.e. with the J(t) function. With J(t) known and S(t) given by equation (5.17), the
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procedure is not straightforward because differential equations (5.13)–(5.15) are
generally not analytically soluble for F(t). As we see below, the reason is that
the change in F (or �) associated with a change in J (or 	) depends in a fairly
complicated way on an earlier value of F, or on the difference between 	 and �
(i.e. on S).

To find an equation for F(t) in terms of J(t), we proceed indirectly
and compare N(x,t) from equation (5.7) with an expression for N(x,t) found by
applying equation (1.5) and surviving N�x −1� t −1�. To facilitate that process,
we constrain 	�x� t� to be the force of mortality at age x from exact time t −1
through exact time t, for all x satisfying �x −1+S�0�+ J�t�� > 0. Then we can
determine the population at time t by surviving the population at time t−1 using
the expression

N(x,t) = N�x −1� t −1� exp�− X∫
X−1

	�a� t� da� (5.18)

To evaluate equation (5.18), note that N�x −1� t −1� can be written in terms of
the ��x� t −1�. Using equation (5.6), we find

N�x −1� t −1� = exp�− X−1∫
0

��a� t −1� da�

= exp�− X−1∫
F�t−1�

��a −F�t −1�� 0� da

= exp�−eA�eb�x−1−F�t−1�� −1
/b� (5.19)

where the lower limit of integration becomes F�t − 1� when the age argument
of � shifts. The second (exponential) term on the right side of equation (5.18)
can be explicitly integrated using equation (5.10). Combining that result with
equation (5.19) yields

N(x,t) = exp�−eA�eb�x−1�−bF�t−1� −1
/b− eA−bS�0�−bJ�t��ebx − eb�x−1�
/b�
(5.20)

Equating the expressions for N(x,t) in equations (5.7) and (5.20), simpli-
fying, and rearranging yields a new expression for F(t), i.e.

F(t) = − ln�e−b−bF�t−1� − e−b−b�S�0�+J�t�
 + e−b�S�0�+J�t�
�/b (5.21)

The value of F(t) is independent of age, as the terms in equations (5.7) and (5.20)
that involve age drop out. The shift in the � (or N) function depends on initial
conditions (i.e. the Gompertz parameter b and S(0), the time 0 offset between �
and 	); on J(t), the overall shift in the force of mortality between times 0 and



LONGEVITY AND DYNAMIC MORTALITY 91

t; and on F�t −1� or, using equation (5.17), on S�t −1� and J�t −1�. Values at
time �t −1� thus exert a considerable, nonlinear influence on the value of F, and
hence �, at time t.

Consider equation (5.21) when � = 	, that is when F�t − 1� = S�0�+
J�t�. In that case, the first two terms of the logarithm in equation (5.21) cancel
each other, and we have F�t� = F�t−1�. Hence, in the stationary population case,
F(t) remains constant [and N�x� t� = �LT�x� t�]. Examination of equation (5.21)
shows that when J�t� = J�t −1� but F�t −1� differs from S�0�+ J�t�, the value
of F(t) is closer to S�0�+ J�t� than F�t −1� is (see Exercise 10). In other words,
� moves toward 	 when mortality is constant. Since equation (5.14) shows that
the derivative of F(t) is the same as the derivative of CAL(t), equation (5.21)
indicates that the change in CAL(t) depends on circumstances prior to time t.
The shape of the N schedule, at ages over F, is fixed, but the size of the shift
in N at any given time depends on the past and generally cannot be determined
from a simple relationship.

The shifting Gompertz mortality model involves numerous variables,
some of which are not standard. A summary of model variable relationships,
including those of this subsection, can be found in Table 5.2.

Table 5.2. Functions and Relationships in a Shifting Gompertz Mortality Change Model

A. Wedge-Period Functions
��x� t� = �1/N�x� t����N�x� t�/�x
 �4�21�
��x� t� = ��x −F�t�� 0� = exp�A +b�x −F�t�
� �5�6�
N�x� t� = exp�−∫ ��a −F�t��� 0� da� = exp�−eA�eb�x−F�t�
 −1
/b� �5�7�

B. Life Table Functions
	�x� = �−1/�LT�x���d�LT�x�/dx
 �1�3�
	�x� t� = 	�x − J�t�� 0� = exp�A +b�x −S�0�− J�t�
� �5�10�

�LT�x� t� = exp�− x∫
S�0�+J�t�

	�a� t� da� = exp�−eA�ebx−b�S�0�+J�t�� −1
/b� �5�11�

C. Offset Function and Change Relationships
��x� t� = 	�x� t�+ r�x� t� �4�22�
	�x� t� = e−bS�t� ��x� t� �5�9�
e�0� t� = CAL�t�+S�t� �5�12�
	�x� t� = ��x� t��1−dF�t�/dt
 = ��x� t� �1−dCAL�t�/dt
 �5�13�
dF�t�/dt = d CAL�t�/dt �5�14�
d CAL�t�/dt = 1− e−bS�t� = 1−	�x� t�/��x� t� �5�15�
CAL�t� = Y��t� �5�16�
S�t� = S�0�+ J�t�−F�t� �5�17�
F�t� = − ln�e−b−bF�t−1� − e−b−b�S�0�+J�t�
 + e−b�S�0�+J�t�
�/b �5�21�
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5.6 MODELS OF CONSTANT MORTALITY DECLINE OVER TIME

5.6.1 Three Models With Linearly Changing Mortality

To find more tractable expressions linking shifts in mortality to shifts in
population size and structure, we need to specialize the general relationships in
Table 5.2 to specific patterns of change. A restrictive yet simple and reasonable
kind of mortality change is a linear decline over time. Consider the situation
where mortality at age x and time t is given by the Gompertz form relationship

	�x� t� = exp�A +bx − ct� (5.22)

where parameter c indicates the constant pace of decline in mortality, at all
ages, over time. Equation (5.22), the basis of the “Gompertz linear change
model”, resembles that of a linearly shifting Gompertz model, except that under
equation (5.22) the force of mortality at all ages follows an exponential form and
does not “slide” at the lowest ages. Under equation (5.22), the model relationships
in Table 5.2 hold only approximately. Numerically both models typically yield
very similar results, unless c is close to, or greater than, b.

Vaupel (1986) found that equation (5.22) led to an approximately
constant change in period life expectancy, i.e.

de(0,t)/dt ≈ c/b (5.23)

Hence if mortality improves by 1% a year �c = 0�01� and b = 0�1, life expectancy
would increase by about 0.1 years each year. Vaupel (1986) also explored the
relationship between mortality change and entropy. We previously encountered
entropy in Section 2.3, where it referred to the net maternity distribution and was
related to the speed of convergence to stability. Here we are interested in the
entropy of a survivorship function, which Vaupel (1986) noted can be interpreted
as a measure of the heterogeneity of a population with respect to mortality at
different ages. If all deaths occur at the same age, entropy (H) is zero. If the
force of mortality is constant over age, entropy is one. In the life table context,
with a cohort size of 1,

HLT�t� = −∫ �LT�x� t� ln �LT�x� t� dx/e�0� t� (5.24a)

In the wedge-period model context, assuming one birth each year, the analogous
entropy at time t can be written as

H(t) = −∫ N�x� t� ln N�x� t� dx/CAL�t� (5.24b)
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When mortality follows equation (5.22), Vaupel (1986) gave the approximate
relationship

HLT�t� ≈ 1/�be�0� t�
 (5.25)

indicating that entropy would steadily decline as life expectancy increased.
Schoen, Jonsson and Tufis (2004) further explored the implications

of equation (5.22). They found that the increase in total population size is
approximately linear, with

CAL�t +1�−CAL�t� = 1−D�t� ≈ c/b (5.26)

where D(t) represents the total number of deaths in the wedge-period population
during year t. In the Gompertz linear change model, CAL(t) and e(0,t) increase at
the same pace. The annual number of deaths remains approximately constant, i.e.

D(t) ≈ �b− c�/b (5.27)

Schoen, Jonsson and Tufis (2004) also found close connections to entropy.
The wedge-period population crude rate of natural increase is proportional to
entropy, with

d ln CAL�t�/dt = RNI�t� ≈ cH�t� (5.28)

where RNI(t) is the rate of natural increase at time t. The crude birth rate (CBR)
and the crude death rate (CDR) are also proportional to entropy, and at time t
can be approximated by

CBR�t� ≈ b H�t�

CDR(t) ≈ �b− c�H�t� (5.29)

Comparing the Gompertz linear change model of equation (5.22) to the
shifting Gompertz model, Schoen, Jonsson and Tufis (2004) found that under
equation (5.22) the wedge-period average age at death is approximately though
not exactly equal to CAL. Equation (5.26) suggests that the derivative of CAL
is about c/b, which implies that S(t) is roughly c/b2 (from equation (5.15),
assuming that �ln y� ≈ �y−1�).

By way of comparison, in a “linearly shifting Gompertz model”, we
can let J�t� = �c/b�t, with �c/b� < 1. Equations (5.14) and (5.15) then lead to a
constant S(t), i.e.

S = − ln�1− �c/b��/b (5.30)
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Using equation (5.30), equation (5.17) yields J�t� = F�t� = �c/b�t. Thus with
linear shifts, 	 and � (and N) move linearly over time at the same pace.

Goldstein and Wachter (2006) considered an “extended Gompertz linear
change” model where mortality follows a linearly changing Gompertz function.
Under equation (5.22), survivorship from age 0 to age x at time 0 is given by

�LT�x� 0� = exp�−�eA+bx − eA�/b� (5.31)

In the extended Gompertz model, the survivorship function is instead

�LT�x� 0� = exp�−�eA+bx�/b� (5.32)

in effect considering survivorship from age �−�� to age x. Numerically, the
difference between equations (5.31) and (5.32) is generally quite small. With
eA on the order of 0.00002, the additional exposure in the extended Gompertz
linear change model is typically to miniscule forces of mortality. Analyti-
cally, equation (5.32) simplifies matters because it eliminates the eA term while
preserving the linear shift relationship

	�x� t� = 	�x − �c/b�t� 0� (5.33)

Goldstein and Wachter (2006) noted that equation (5.32) implies

e(0,0) = ��ln b�−A −�E�/b (5.34)

where �E is Euler’s constant, approximately 0.577215 (cf. Pollard and Valkovics
1992). As in equation (5.23), life expectancy increases by c/b years per year.
The life expectancy of the cohort born in year t is given by

ec�0� t� ≈ CAL�t��b/�b− c��

≈ e�0� 0�+ �c/�b− c���e�0� 0�+ t − �1/b�
 (5.35)

In the extended Gompertz linear change model, cohort life expectancy increases
linearly over time at a more rapid pace than period life expectancy.

5.6.2 Gaps and Lags Between Period and Cohort Life Expectancies

Goldstein and Wachter (2006) pioneered the investigation of gaps and
lags in populations with changing mortality. The gap at time t, ��t�, is the
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difference between the life expectancy of the cohort born in year t and period
life expectancy at time t, that is

��t� = ec�0� t�− e�0� t� (5.36)

The forward lag in year t, �f�t�, is the number of years before period life
expectancy equals ec�0� t�. The backward lag in year t, �b�t�, is the number of
years one must move back before the cohort life expectancy of the cohort born
in that year equals e(0,t). Figure 5.4 diagrams the relationships between gaps
and lags and period and cohort life expectancies.

In the context of a linearly shifting Gompertz model, Goldstein and
Wachter (2006) found that the gap can be approximated by

��t� ≈ �c/�b�b− c�
��ct −A + ln b−1�5772� (5.37)

indicating linear growth over time at a pace reflecting the speed of the mortality
decline.

Figure 5.4. Gaps and Lags Between Period and Cohort Life Expectancies

Note: Line segment AB is the gap at time t and line segment CD is the gap at
time t +u.
Line segment BC is the forward lag at time t and the backward lag at time t +u.
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Canudas-Romo and Schoen (2005) found that in a Gompertz linear
change model gaps and lags were related by

��t�/�f�t� ≈ c/b

��t�/�b�t� ≈ c/�b− c� (5.38)

Numerically, with b = 0�1� c = 0�01, and A = −11, the gap is about 8 years, �f

is about 80 years, and �b is about 72 years. Schoen and Canudas-Romo (2005)
argued that recent increases in the gap between e(0,t) and the life expectancy
of the cohort born in year t are attributable to the substantial late 20th century
mortality declines at the high ages, and suggested that the divergence between
the period and cohort measures will grow as deaths are increasingly concentrated
at the high ages.

Following a separate line of inquiry, Goldstein (2006) showed that in
a linearly shifting Gompertz model, CAL(t) is the cohort life expectancy of the
cohort born CAL(t) years earlier. Mathematically, that can be written

ec�0� t −CAL�t�� = CAL�t� (5.39)

In this context, CAL(t) reflects a unique lag in cohort longevity.

5.6.3 The Modal Age At Death

Regularities in the central tendency of the distribution of ages at death
can approached using the mode as well as the mean. The modal age at death
is simply the age at which the largest number of deaths occurs, and interest in
the mode as a measure of mortality goes back to Lexis (1878). Wilmoth and
Horiuchi (1999) noted that in a life table context the mode is signaled by an
inflection point in the survivorship curve. Canudas-Romo (2005) showed that at
modal age M, the force of mortality equals its log derivative with respect to age
(see Exercise 8).

Consider a dynamic model with Gompertz mortality over age and any
pattern of change over time that affects all ages proportionally. In the life table
based on the rates of time t, Canudas-Romo (2005) found that the modal age at
death is given by

M�t� = � ln�b�− ln�	�0� t��
/b (5.40)

where b is the Gompertz age parameter. With the number of survivors to age x
under the time t life table given by

�LT�x� t� = exp�	�0� t��1− ebx
/b�
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Figure 5.5. Life Table Survivorship Functions and Distributions of Deaths for
a Linearly Declining Gompertz Mortality Model with Parameters

A = −11, b = 0.1 and c = 0.01

Note: The horizontal dashed line indicates �LT�M� = e−1 ≈ 0�36788 on the left
hand scale and dLT�M� t� = be−1 ≈ 0�03679 on the right hand scale (with b = 0�1).
Source: Canudas-Romo (2005, Figure 2).

the number of persons at the modal age is

�LT�M� t� = exp��	�0� t�/b
−1� (5.41)

and the modal number of life table deaths is

dLT�M� t� = �LT�M� t�	�M� t� = b exp��	�0� t�/b
−1� (5.42)

as 	�M� t� = b. When 	�0� t� approaches 0, the number of life table survivors
to the modal age approaches

�LT�M� = e−1 ≈ �36788 (5.43)

and the modal number of deaths approaches dLT�M� = b e−1.
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Now consider the Gompertz linear change model of equation (5.22). In
this case, equation (5.40) yields

M(t) = �c/b�t − �A − ln b�/b (5.44)

If A = −11� b = 0�1, and c = 0�01� M�t� ≈ 86�974+0�1t, and the modal age at
death increases by a tenth of a year each year. With those parameters, e(0,t) is
approximately 5.27 years less than M(t), as both e(0,t) and M(t) increase at the
same pace. Moreover, the distribution of life table deaths around the modal age
remains constant in both shape and level, as the mode moves along the age axis
at (c/b) years per year (see Figure 5.5). The mode thus specifies a meaningful
point in an age distribution of deaths whose form is largely time invariant.

5.7 SUMMARY

During the 20th century there were dramatic mortality improvements
that greatly reduced death rates at young ages and initiated a period of
sustained declines in death rates at older ages. Although mortality has been
the subject of demographic analysis for over 300 years, attempts to develop
models that explicitly incorporate rates that change over time are relatively
recent. A new analytical perspective emerges in such models. It can be termed
the wedge-period, and represents a model population based on a constant (unit)
annual number of births exposed to risks of death that change over both age and
time. Mortality has a cohort component that is not generally captured by period
measures, but a measure of average cohort life expectancy, ACLE, provides a
way to determine the weighted mean longevity of cohorts active in a given year.

The most general dynamic model currently available is the shifting
Gompertz mortality model, where both the age-specific rates and the population
structure shift horizontally over time. When mortality changes over time in
a linear fashion, the shifting Gompertz model simplifies, and linear relation-
ships emerge to describe changes in life expectancy and in population size and
structure. The modal age at death provides a useful summary measure, as that
age has a fixed death rate, a fixed survivorship value, and moves linearly with
life expectancy. Linear relationships also describe gaps and lags between values
of period and cohort longevity. The size of the wedge-period population at time t,
CAL(t), is the life expectancy of the cohort born CAL(t) years earlier. Period and
cohort measures of longevity are expected to increasingly diverge, as the virtual
elimination of childhood mortality makes likely future mortality improvements
qualitatively different from past changes.
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5.8 EXERCISES

[See Appendix B for selected answers]

1. With d(x) denoting the life table distribution of deaths by age (for a unit
birth cohort), show that the variance of d(x) is given by e�0��2YL − e�0��,
where e(0) is the expectation of life at birth and YL is the mean age of the
stationary population.

2. Consider a wedge-period population with a history of declining mortality
that, at time t, begins a regime of constant mortality at the time t level.
Reconcile the result in Guillot (2003, 2005) that momentum ��� is given
by e(0,t)/CAL(t) with equation (3.1), where � = b e�0� Q [with b denoting
the crude birth rate].

3. Consider a wedge-period population where the Gompertz form force of
mortality is given by

	�x� t� = exp�A +bx − f�t��

and let f�t� = 0 for t ≤ 0 and f�t� = 1 for t > 0. Verify the relationship in
Schoen and Canudas-Romo (2005) that

CAL�t� = w�t� LE�−�+ �1−w�t�� LE�+�

where LE�−� and LE�+� are the old and new life expectancies, and w(t) is
the time t weight exerted by LE�−�.

4. Let d(x,t) be the probability density function describing the time t distribution
of deaths, with ∫ d�x� t�dx = 1. In a population with Gompertz mortality,
verify the relationship in Vaupel and Canudas-Romo (2003) that

1/b ≈ ∫ e�x� t� d�x� t� dx

where e(x,t) is the expectation of life at age x and time t and b is the
Gompertz parameter.

5. Under the Gompertz linear change model of equation (5.22), verify the
following results from Schoen, Jonsson and Tufis (2004):
a. Show that equation (5.23) is an approximation of

de�0� t�/dt = �c/b��1−	�0� t� e�0� t��

and evaluate the size of the additional term.
b. Show that the Preston-Coale r(x,t) can be approximated by

r�x� t� = �c/�b− c��	�x� t�
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c. Show that with b = c,
(i) at every age the mortality of persons born in year t is given by

	�x� t +x� = exp�A − ct�

(ii) N�x� t� = exp�−x	�x� t��
d. Show that �LT�x� t� = ��LT�x� 0��exp�−ct�

6. Consider a Siler model where

	�x� = A exp�−�x�+B+C exp��x� � ��� > 0�

Show that with a unit birth cohort, the number surviving to exact age x is

�LT�x� = exp�A�e−�x −1�/�−Bx +C�1− e�x�/��

7. Consider a shifting Gompertz model where

F�t� = ��1+ sin��t −
/2�
 � ��� < 1/2�

where angles are measured in radians so sin�−
/2� = −1. Show
a. S�t� = �−1/b� ln�1−�� cos��t −
/2�

b. J�t� = ��1+ sin��t −
/2�
− �1/b� ln�1−�� cos��t −
/2�


8. Verify the result in Canudas-Romo (2005) that in a life table population, at
modal age at death M, the following relationship always holds:

	�x� = �1/	�x�� d	�x�/dt

9. In a shifting Gompertz model, show that
a. ��/�t� ln ��x� t� = −b��/�t� F�t�
b. ��/�t� ��x� t� = −��/�x� r�x� t�

10. Let b = 0�1 and �S�0�+ J�t�� = 2. Use equation (5.21) to find F(t) when
a. F�t −1� = 1�8
b. F�t −1� = 1�9
c. F�t −1� = 2
d. F�t −1� = 2�5



CHAPTER 6

TIMING EFFECTS ON FERTILITY, MARRIAGE,
AND DIVORCE

6.1 INTRODUCTION

In this chapter we examine fertility, marriage, and divorce, events that
may never happen to an individual or that may happen more than once. The focus
is on timing effects, in particular how the pace of cohort behavior impacts period
measures, with feedback effects generally not considered. The chapter begins
with a discussion of period and cohort perspectives on fertility. It then describes
two approaches to adjusting period fertility for timing effects, one proposed
by Bongaarts and Feeney (1998) and the other involving the Average Cohort
Fertility. Those measures are compared in the context of population models and
20th century experience in the United States. Apparently paradoxical period-
cohort relationships in fertility are further examined using the dynamic fertility
model underlying the Bongaarts-Feeney approach. Extensions of the Average
Cohort Fertility approach to first marriage and to divorce are then described and
discussed.

6.2 THE PERIOD-COHORT CONTRAST

In recent decades, a number of countries have had rates of fertility
below the level needed for long term replacement, i.e. below a Net Reproduction
Rate (NRR or R0) of 1. At the same time, the mean age at childbearing in many
of those countries has been increasing. The combination of those two factors
has renewed debate on the interpretation of period fertility measures and on the
importance of changes in fertility timing. This chapter examines those issues in
depth, drawing heavily on Schoen (2004).

The standard measure of fertility is the Total Fertility Rate (TFR). The
TFR can be defined as the sum of the age-specific (female) fertility rates for
all ages, and interpreted as the number of children the average woman would
have under that specified schedule of fertility (in the absence of mortality and
migration). If the birth rates of a particular year (or period) are summed, one gets
a period TFR. The period TFR relates to a hypothetical (or synthetic) cohort, and
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does not describe the experience of any actual group of persons. A cohort TFR
is found if the birth rates used follow the experience of an actual birth cohort.

A number of demographers, Norman Ryder (1969; 1980; 1986) fore-
most among them, have argued that the cohort perspective affords the best way
to analyze fertility. Birth cohort measures describe the experience of real groups
of women, exposed to the same historical events at the same point in their lives,
who share a common reproductive past. Populations have fertility each year,
but women have children, one at a time. Fertility theories generally seek to
explain completed family size, i.e. cohort fertility. Over time, the cohort TFR
(CTFR) has fluctuated less than the period TFR (PTFR), indicating that it is
a more stable measure. To cohort advocates, a crucial limitation of the period
TFR is that it does not distinguish between a change in the timing (or tempo)
of cohort fertility and a change in the level (or quantum) of cohort fertility. For
example, a decline in the PTFR of a particular year might mean that the cohorts
active in that year are having fewer children, or simply that they have postponed
childbearing without changing their ultimate completed family size.

The primacy of the cohort perspective has been undermined by
challenges to both its conceptual basis and empirical support. Ni Bhrolchain
(1992) saw “period as paramount”, noting that the cohort perspective implies
a fixed-target view of decision making that is not consistent with observed
behavior. Statistical analyses of fertility behavior have repeatedly shown that
periods, not cohorts, account for most of the variation in fertility behavior.
Characteristic age patterns have been observed in period fertility but, unlike the
case in mortality, no such patterns have been found in cohort fertility. The typical
pattern of change has been a rise (or a fall) in period fertility at all ages.

Those facts clearly demonstrate the importance of the period
perspective, but they can be interpreted in ways much less critical of the cohort
view. To say that cohort changes account for less variability in fertility just puts a
different slant on the argument that the cohort TFR is a more stable measure. It is
the meaningfulness of the measure, not its variability, that counts. What matters
theoretically, and in many cases substantively, is completed family size. Women
can achieve their long term childbearing goals in many ways, and one should
expect that period circumstances will influence fertility timing. The process can
be seen as analogous to a drive from one location to another. The driver proceeds
toward a given destination, but at different speeds under different traffic
conditions.

The argument that the cohort view embodies a fixed reproductive target
is a serious criticism, because there is considerable evidence that there is no
such target (cf. Lee, 1980). Yet the fact that women change their reproductive
goals over time is not problematic unless an extreme cohort position is taken.
Returning to the driving analogy, the initial destination can remain meaningful



TIMING EFFECTS ON FERTILITY, MARRIAGE, AND DIVORCE 103

even if traffic conditions cause the driver to stop earlier or go further than first
planned. Moreover, the final destination is often the fact of greatest importance.

In sum, both the cohort and period perspectives are valuable in the
study of fertility. To ignore either one can be unwise (see Section 6.7. below).
Furthermore, given the present focus on timing, we need to compare and contrast
period and cohort fertility behavior. The period perspective by itself is not
enough because, as Bongaarts and Feeney (1998: 178) recognized, “a notion of
‘deferring’ or ‘advancing’ births necessarily refers at some level to cohorts.”

6.3 THE BONGAARTS-FEENEY APPROACH

In an influential article, Bongaarts and Feeney (1998) proposed a
procedure for adjusting the period TFR to eliminate “distortions” produced by
changes in the timing of reproduction. Let f(x,t) be the fertility rate for women
age x at time t. The TFR for year t can then be written

TFR�t� = �x f�x� t� (6.1)

where the sum ranges over all reproductive ages. Bongaarts and Feeney (1998)
defined a year t Total Fertility Rate for births of order o, TFRo�t�, as the sum of
“incidence” rates of order o. Those incidence rates are defined as births of order
o to women age x at time t divided by the number of women age x at time t in
all birth orders. Consequently

TFR�t� = �o TFRo�t� (6.2)

where the sum ranges over all birth orders. The basic measure of timing used is
the MAC, the mean age at childbearing, calculated as the unweighted average
of the age-specific fertility rates. For each year, an order-specific MACo�t� is
found from the incidence rates for each birth order. The change in the timing of
fertility at order o during year t, ro�t�, is then given by

ro�t� = �MACo�t +1�−MACo�t −1��/2 (6.3)

Bongaarts and Feeney (1998) advanced a model where the age curve of fertility
maintains a fixed shape over time, but can shift along the age axis. For example,
assume that at the beginning of year t the reproductive period starts at age 15
and ends at age 46. If the MAC increases by 0.1 years over the course of year
t, the reproductive period would shift so that at the end of year t it would begin
at 15.1 years and end at 46.1 years. The shape of the age curve of fertility,
however, would remain the same. Given that model, the paper proved a new
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relationship between period and cohort fertility when there was a constant linear
change over time in the MAC, and argued that new relationship could also be
applied to cases where shifts in the fertility schedule varied over time. Under the
Bongaarts-Feeney approach, the order-specific tempo adjusted TFRo for year t,
TFRo

∗�t�, is given by

TFRo
∗�t� = TFRo�t�/�1− ro�t�� (6.4)

The Bongaarts-Feeney tempo adjusted TFR∗ for all birth orders combined is
then found from

TFR∗�t� = �oTFRo
∗�t� (6.5)

When the MAC is rising, the tempo-adjusted TFR∗ can be considerably larger
than the conventional period TFR. Since increases in the MAC characterized
many nations during the last quarter of the 20th century, Bongaarts (1998; 1999;
2002) argued that many recent period TFRs in the United States, other developed
countries, and a number of developing countries were substantially depressed by
timing effects produced by the postponement of births. Bongaarts (1998: p240)
predicted that “Once women stop deferring births, the distortion disappears and
the very low fertility rates observed in the developed world should rise closer to
the two children most couples want.”

Other observers disagreed. Lesthaeghe and Willems (1999), Van Imhoff
and Keilman (2000), and Frejka and Calot (2001) examined fertility patterns in
many low fertility countries and did not see that any increases in fertility were
likely in the relatively near term. Van Imhoff and Keilman (2001) and Kohler and
Ortega (2002) questioned the use of incidence rather than occurence/exposure
rates. In addition, Kim and Schoen (1999; 2000) criticized the methodology
underlying the Bongaarts-Feeney adjustment, arguing that when the change in
MAC was not linear, the adjustment could be unstable and inaccurate.

Zeng and Land (2002: p270) pointed out that the Bongaarts-Feeney tempo
adjustmentprovides“theaverage totalnumberofbirthsperwomanofahypothetical
cohort that has gone through the imagined extended period with changing tempo but
constant quantum and invariant shape of the [fertility] schedule.” The usefulness of
the Bongaarts-Feeney procedure really hangs on whether an adjusted measure of
that kind appropriately captures tempo effects. The classic timing question involves
how changes in cohort timing impact period quantum. Yet Bongaarts and Feeney
(1998: p275) explicitly assumed that there are no cohort fertility effects, only age,
period, parity, and duration since last birth effects. If the period MAC increases, the
Bongaarts-Feeney fertility adjustment must be upward because women are exposed
to the given fertility rates over a longer reproductive interval. In actuality, the period
MAC could increase either because of a change in cohort tempo or a change in
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cohort quantum; the latter should not prompt a tempo adjustment. The assumption
that an increase in the MAC observed during a single year persists through every
year of the hypothetical cohort’s reproductive life is of particular concern. Because
it perpetuates a one time change, the Bongaarts-Feeney adjustment rests on a strong
and generally counterfactual assumption.

The combination of unprecedented low levels of fertility and sustained
increases in mean ages of childbearing does raise a substantial likelihood
that cohort tempo may be impacting the level of period fertility. Given the
concerns about the Bongaarts-Feeney adjustment, we need to consider alternative
approaches to measuring tempo effects.

6.4 AVERAGE COHORT FERTILITY

We consider timing effects to be changes in the level of period fertility
that do not reflect changes in completed family size. Other analyses (e.g. Lutz,
O’Neill and Scherbov 2003) have included broader effects, such as the slower
population growth and age compositional changes associated with a higher MAC,
but they introduce additional considerations and are not pursued here. To opera-
tionalize our more focused concept of timing, we employ a measure that was
independently and roughly simultaneously developed by Butz and Ward (1979)
and Ryder (1980). Butz and Ward (1979) called the measure the Timing Index,
and it examines the proportions of cohort fertility arising in a particular period.

The cohort TFR for women born in year � can be expressed in a form
similar to equation (6.1) by

CTFR��� = �x f�x� � +x� (6.6)

The proportion of the CTFR for the cohort born in year � that is contributed by
women age x (during year � +x) can be denoted by 	�x� � +x� and expressed as

	�x� � +x� = f�x� � +x�/CTFR��� (6.7)

The Timing Index for year t, TI(t), can then be written

TI�t� = �x 	�x� t� (6.8)

In effect, the TI(t) gauges the extent to which the cohort fertility of women
childbearing during year t occurs in that period. There is no timing effect
when TI�t� = 1, as the childbearing cohorts have fractions of their lifetime
fertility during year t that are consistent with constant cohort timing. When
TI�t� > 1, year t has a disproportionately large amount of the cohort fertility of
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the reproductively active cohorts, indicating that cohort tempo changes favored
that year. Analogously, if TI�t� < 1, year t has a disproportionately small amount
of the fertility of the reproducing cohorts, indicating that cohort tempo changes
avoided that year. The Timing Index thus directly measures the impact of cohort
tempo on period quantum.

The Timing Index allows the period TFR to be decomposed into
quantum and tempo components. Let the Average Cohort Fertility at time t,
ACF(t), be the quantum component. Following Butz and Ward (1979), we have

ACF�t� = TFR�t�/TI�t� (6.9)

Equation (6.9) has a form similar to that of equation (6.4), the Bongaarts-Feeney
adjustment equation, with TI(t) the new tempo component. However, the ACF
is not simply an adjusted TFR. Butz and Ward (1979) showed that ACF(t) is a
weighted average of the CTFRs of the active cohorts, where the weight at each
age is 	�x� t�. The ACF(t) is not a weighted average of period TFRs and does
not represent the fertility of any actual cohort, but provides an average of the
CTFRs of the cohorts reproducing at time t.

The ACF has two other features of note. First, it is a strictly behavioral
measure of age-specific fertility behavior and its distribution over time. It conveys
no information about fertility intentions at any time or about desired family
sizes.

Second, the ACF requires information on the lifetime fertility behavior
of all actively reproducing cohorts. That information is not available for some
30–35 years after time t, the usual situation encountered in cohort fertility
analyses. The problem is unavoidable, since one must know the full age distri-
bution of cohort fertility in order to understand cohort tempo. In historical data,
and in population models, those data demands may be met for the times of
interest. Moreover, at time t, ACF(t) can be estimated on the basis of assumed
patterns of future fertility. The range of ACF(t) values under alternative assump-
tions can be very informative, and the process serves to illuminate the uncer-
tainties involved in measuring current timing effects.

6.5 COMPARING THE BONGAARTS-FEENEY AND ACF APPROACHES

Schoen (2004) compared TFR∗ and ACF using both model populations
and actual data. Seeing how the measures perform in the context of a model
where everything is known and manipulable can be revealing, while a comparison
using observed rates can show the magnitude of historical timing effects on
fertility.
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6.5.1 Timing Effects in Selected Models

We begin by considering cyclical changes in period tempo with period
quantum fixed at 1. Schoen (2004) used models whose age pattern of fertility
was that of United States Females, 1975, and introduced a cyclical pattern of
change beginning at time 50. To produce period tempo changes, the base age
pattern of fertility, f(x) where �x f�x� = 1, was changed so that for t > 50


�x� t� = f�x��1+ st�x/�i�f�i��1+ st�i� (6.10)

With s > 0, multiplication by �1 + st�x increases fertility rates more at older
ages than at younger ages. Dividing each f�x��1 + st�x value by their sum over
age insures that the adjusted period fertility rates at every time sum to 1, while
preserving the later age pattern of fertility. That transformation is a convenient
tool that has useful analytical properties and yields a reasonable fertility pattern
(Coale and Trussell 1974; Schoen and Kim 1996, see Exercise 2).

Figure 6.1 compares the Bongaarts-Feeney TFR∗ with ACF when s, the
annual rate of increase in the fertility transformation, is 0.04 and the length of
each cycle is 40 years. The mean age at childbearing, divided by 25 to put it on
a comparable scale, is also shown. The ACF cycles moderately with the MAC,
while the TFR∗ cycles with an exaggerated amplitude. During each cycle, there
are times (e.g. between years 75 and 80) when the TFR∗ indicates that period
fertility is in one direction from the base value of 1 while the ACF shows that
the average fertility of the active cohorts lies in the other direction.

Schoen (2004) also examined models where the MAC rose indefinitely
and where the MAC rose for 40 years and then became constant at that higher
level. In both cases, the TFR∗ showed steeper and larger changes than the ACF.
Earlier, Kim and Schoen (2000) compared the two measures in a cyclical model
with uniform fertility over age. With the cycle length set equal to the length of
the reproductive period, both the PTFR and the CTFR were constant at a value of
1. The ACF was also constant at a value of 1, while the TFR∗ fluctuated greatly.
When MAC varied by ±4 years over a cycle of 30 years, the TFR∗ reached
values over 6. In sum, model comparisons indicate that TFR∗ can misconstrue
and exaggerate, sometimes dramatically, the extent of changes in average cohort
fertility produced by demographically plausible fluctuations in fertility timing.

6.5.2 Timing Effects in the United States, 1917–97

Schoen (2004) compared the ACF and TFR∗ using published data for
the twentieth century United States. Single year period data were used with
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Figure 6.1. Values of the Mean Age at Childbearing (MAC), Bongaarts-Feeney
Adjusted Fertility �TFR∗�, and Average Cohort Fertility (ACF) in a Model

Population with a Constant Period TFR of 1 that Experiences Cyclical
Changes in the Timing of Period Fertility Beginning at Time 50
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Note: Cycles shown have length 40 years with s = 0
04 in the underlying fertility
transformation.
Source: Schoen (2004, Figure 3d).

single year of age fertility data for ages 15 through 49 and parities 0 through
7 and 8+. Period TFRs were found using equation (6.1), cohort TFRs from
equation (6.6), and TFR∗ from equations (6.2) through (6.5). The ACF was
calculated from equations (6.7) through (6.9), but for 1950 and earlier years,
when estimates were needed for years before 1917, the ACF was taken from
Ryder (1980). To complete the experience of cohorts active after 2001, the latest
data year, the average of the (fairly constant) rates for the 1997–2001 period
was used. Those estimates affected ACF and CTFR values for cohorts born after
1952, with cohorts born in 1968 and later years having rates estimated for ages
under 35.
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Figure 6.2 shows values for the period TFR, ACF, and TFR∗, as well
as the CTFR for the cohort born 26 years earlier. American fertility fluctuated
substantially over the twentieth century. The PTFR declined to a low of 2.17 in
1933, rose irregularly to a high of 3.68 in 1957, and then fell to a low of 1.74
in 1976. It remained below 2.00 until 1989, and stayed in the 2.0 to 2.1 range
through 2001, the latest data year. The shifted CTFR and the ACF followed
similar paths, but with smaller fluctuations. As it represents a weighted average
of the completed family size of many different cohorts, the ACF is more stable
than the shifted CTFR. In contrast, the TFR∗ displayed a trajectory similar to the
PTFR, frequently with leads or lags of several years, and displayed considerable
variability.

Timing effects, as indicated by the difference between the ACF and
the PTFR, have often been sizeable. The biggest differences were during the
Baby Boom years of 1951–64, where they were as large as two-thirds of a
child. Sizeable timing effects also occurred during the 1920s, 1930s, and 1970s.
Those of the 1920–27 period have received far less attention than those of the
Depression years of the 1930s or the Baby Boom of the 1950s. In the 1920s,

Figure 6.2. Values of the Period Total Fertility Rate (PTFR), the Average
Cohort Fertility (ACF), the Cohort Total Fertility Rate for the Cohort Born in

the Year t-26, and the Bongaarts-Feeney Adjusted Measure �TFR∗�,
United States, 1917–2001
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timing effects raised the PTFR above the ACF by as much as 0.39 (in 1924),
although both measures were generally declining and the MAC changed little.
The apparent “acceleration” of fertility in the 1920s is better viewed in the light
of the low fertility levels that prevailed during the post-1929 Depression years
(Butz and Ward, 1979). As previously noted, the TI and ACF specify timing
effects solely with respect to the distribution of cohort fertility over time, and
do not imply any intentionality.

Timing effects played a very large and to date underappreciated role
in the “Birth Dearth” of the 1970s. Although the ACF was never less than
2.06 during the 1970s, the PTFR fell to a low of 1.74 in 1976. In that year,
the ACF was 2.11, indicating that timing effects lowered the PTFR by 0.37,
moving the fertility level from above replacement to clearly below replacement.
Through 1997, the U.S. has never had an ACF below 2.03, a level reached during
1982–85.

In contrast to the stability shown by the ACF, the TFR∗ varied nearly
as much as the PTFR, sometimes overadjusting, frequently underadjusting and,
during the years 1963–66, adjusting in the wrong direction. As in the cyclical
model of Figure 6.1, the TFR∗ showed later maxima and, during the Birth Dearth,
an earlier minimum than the ACF. During the 1970s, the TFR∗ substantially
understated the size of the timing effect that produced the lowest PTFRs in U.S.
history. When the PTFR was at its minimum of 1.74 in 1976, the TFR∗ stood
at 1.96.

In summary, both model populations and the twentieth century
experience of the United States demonstrate that timing effects can substantially
raise or lower the period TFR. Measuring timing effects needs to become a
routine part of fertility analysis. The ACF provides a way to do so that rests on a
solid conceptual foundation, is easily interpreted, and has been validated empiri-
cally. The TFR∗ is less suitable, as it is based on strong and generally unrealistic
assumptions and can be unstable empirically. For recent years, when complete
data on cohorts are not available, the ACF can be approximated from assump-
tions on the future course of fertility, a procedure that reflects the uncertainties
inherent in measuring the extent of timing effects on current period fertility.

6.6 EXAMINING PARITY-SPECIFIC PERIOD TFRs

An alternative approach to achieving a better understanding of fertility
behavior is to improve period measures. Ni Bhrolchain (1992) recommended
the use of period fertility rates specific not only to age but also to parity and
duration since last birth. Fertility is known to vary substantially by parity and
duration, and Ryder (1986) concluded that the U.S. Baby Boom was largely the
result of higher fertility among women of parities 1 and 2.
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Schoen (2006) employed rates prepared by the National Center for
Health Statistics for the United States, 1917–97, to analyze the implications
of using age-parity-specific fertility rates. Data were not available to calculate
fertility rates by duration since last birth. The published fertility rates were
used to construct parity status life tables (PSLTs) that, at every age, recognized
parities 0 through 7 and 8 or more. Such a PSLT shows the experience of a real
or hypothetical cohort of women, born at parity 0, as they move into parities 1
through 8 subject to a given regime of age-parity-specific fertility rates (and
no mortality). Each life table cohort was followed, by single years of age, to
age 50, and the parity distribution at age 50 furnished each cohort’s completed
fertility. For example, the proportion of women parity 0 at age 50 provided the
proportion childless. With �p�x� the number of women of parity p at exact age
x, the PSLT TFR (or PSTFR) is given by

PSTFR = ��pp �p�50��/�0�0� (6.11)

where births of parity 9 and higher are ignored.
Schoen (2006) compared the conventional period TFR with the PSTFR

over the 1917–97 interval. Because the PSTFR incorporates information on
parity, it is based on a different set of population exposures to risk, and generally
differs from the period TFR. For the twentieth century United States, the two
measures followed a similar pattern, though the PSTFR fluctuated more, having
both lower minimum and higher maximum values. The largest difference, 0.55,
was in 1957, the peak of the Baby Boom, when the TFR was 3.68 and the
PSTFR was 4.23. That substantial gap occurred because high period fertility at
young ages and low parities accelerated the movement of the PSLT cohort into
higher parities, where they had more years of exposure to the unusually high
rates prevailing at those parities. In other words, timing effects on parity as well
as age elevated the period PSTFR above the period TFR. Greater specificity in
the period fertility rates produced an increase, not a decrease, in the influence
of cohort tempo on period quantum.

Schoen (2006) found similar effects with respect to the ultimate parity
distribution. Since the 1970s, those distributions have been fairly stable, with
about one-third of women having 2 children, and about one-sixth of women
ending at each of parities 0, 1, 3, and 4 or more. However, during the years
1951 through 1963, over 30% of the women in the PSLT cohorts had 5 or more
children; over 40% had 5 or more children in the PSLTs for 1956 and 1957. No
cohort PSLT relating to those years ever reflected a fraction of women having
5 or more children as high as 30%. Although adding parity to age does reveal
more of the implications of observed fertility rates, age-parity-specific measures
can amplify timing effects.



112 CHAPTER 6

6.7 A DIMINISHING POPULATION WHOSE EVERY COHORT
MORE THAN REPLACES ITSELF

In a linearly shifting fertility model of the kind analyzed by Bongaarts
and Feeney (1998, see Section 6.3) period and cohort TFRs are constant over
time and are related by

CTFR = PTFR/�1− r� (6.12)

where r is the constant annual increase in the mean age at childbearing. Schoen
and Jonsson (2003a) noted that an apparent paradox can arise in that model when
the MAC is rising. The following discussion draws largely on that work.

Let us consider only female births and assume that there is no mortality
below the highest age of childbearing. Equation (6.12) then applies to the period
and cohort NRRs. When r > 0, it is possible for the period NRR to be less than
1 while the cohort NRR is greater than 1. For example, if the period NRR is 0.9
and r = 0
2, then the cohort NRR is 0
9/0
8 = 1
125. In this case, we either have
a population that is growing in size even though every period NRR is below
replacement, or a population that is diminishing is size even though every cohort
more than replaces itself.

To analyze the birth trajectory in such a model, let us begin with a
“rectangular” population, i.e. a population that has one person at every age
through the highest age of childbearing. With a period NRR of 1, that population
would be stationary. Now let fertility decline so that the period NRR is 0.9,
while the fixed-shape fertility schedule begins to shift to higher ages at a rate of
0.2 years per year. In the following year, there would be 0.9 births. Birth cohorts
would remain that size until enough time passes for those smaller cohorts to
reach reproductive age, after which birth cohort size would fall further below
replacement. Starting with a non-stationary age distribution could make the birth
trajectory more complicated, but the same result would eventually arise—birth
cohort size would decline over time.

Figure 6.3 shows birth trajectories for 6 model populations representing
combinations of NRRs of 0.990 and 0.975 with r values of 0, 0.03, and
0.05. With r > 0, all of those combinations yield cohort NRRs greater than 1.
Figure 6.3 begins at time 150 when initial population compositional effects have
largely disappeared, but all trajectories started with a rectangular population at
time 0. It is clear that in all 6 cases the annual number of births declines over
time. A smaller NRR and a smaller r both decrease the number of births and
increase the rate of decline in the number of births, though declines in the NRR
have a greater effect.

Models with changing rates expand the scope of demographic analysis
and encompass situations that cannot arise in fixed rate models. Here, the
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Figure 6.3. Annual Number of Births in Linearly Shifting Fertility Models by
NRR and Annual Change in the Mean Age of Childbearing
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apparent paradox of a declining population with cohort NRRs greater than 1
is resolved by realizing that the cohorts that more than replace themselves are
continually decreasing in size. With period fertility always below replacement,
birth cohort size must eventually decline; timing effects can slow but not stop that
process. Period, not cohort, fertility is the key determinant of birth trajectories.
Cohort size is a variable that is usually neglected in cohort fertility analyses, but
it is worth remembering that cohort size arises from the combination of period
fertility and period composition.

6.8 TIMING EFFECTS ON FIRST MARRIAGE

The ability of cohort tempo to affect period quantum extends to
demographic behaviors other than fertility. Marriage is a prime example. Over the
past several decades, many Western countries have experienced large declines in
levels of first marriage, accompanied by substantial increases in the average age
at first marriage. As in the case of fertility, that raises the question of whether
recent period values reflect underlying cohort behavior.

Winkler-Dworak and Engelhardt (2004) analyzed data for Austria,
Germany, and Switzerland, and argued that a significant part of the decline in



114 CHAPTER 6

first marriage levels was due to tempo effects. Goldstein (2004) analyzed French
data, and came to a similar conclusion. Both studies were based on adaptations of
the Bongaarts-Feeney fertility adjustment, however, which reduces confidence
in their findings. Here, we focus on the work of Schoen and Canudas-Romo
(2005a), which adapted the ACF approach to first marriage behavior and analyzed
patterns in England and Wales and the United States.

6.8.1 Measuring Timing Effects on First Marriage

Analytically, first marriage differs from fertility because individuals
can only enter a first marriage once. The standard measure of the level of
first marriage is the proportion ever marrying (PEM). Let m(x,t) be the occur-
rence/exposure first marriage rate at age x and time t, that is the number of first
marriages to persons age x at time t divided by the number of never married
persons age x at time t. The time t total first nuptiality ratio, TFNR(t) can then
be defined by

TFNR�t� = �x m�x� t� (6.13)

where the sum ranges over all first marriage ages. The proportion ever marrying
under the rates of time t is then given by the usual life table relationship

PEM�t� = 1− e−TFNR�t� = 1− exp�−�x m�x� t�� (6.14)

which assumes that the rates are constant within the one-year age intervals.
Similar relationships hold for cohorts. For the cohort born at time t, the cohort
TFNR is given by

CTFNR�t� = �x m�x� t +x� (6.15)

and that cohort’s proportion ever marrying is

CPEM�t� = 1− e−CTFNR�t� = 1− exp�−�x m�x� t +x�� (6.16)

To separate quantum and tempo effects, we follow the logic underlying the TI
and ACF. Let a timing effect be a level change in a period PEM that does not
reflect a level change in a cohort PEM. For example, if the initial first marriage
rate at age x increases by �m at time t and the initial first marriage rate at age
x+n and time t +n decreases by �m, then the period PEMs at times t and t +n
change while the cohort PEM for the cohort born at time t −x remains constant.
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For the cohort born at time �, denote the proportion of the cohort TFNR arising
at age x (during year � +x) as 	�x� � +x�. Then

	�x� � +x� = m�x� � +x�/�a m�a� � + a�

= m�x� � +x�/CTFNR��� (6.17)

As in equation (6.8), the Timing Index for year t is given by

TI�t� = �x 	�x� t� (6.18)

Paralleling the case in fertility, TI(t) measures the extent to which year t has a
disproportionate share of the first marriage rates of the active cohorts.

The Timing Index gives the tempo component of the TFNR. To obtain
the quantum component, which can be termed the adjusted first marriage ratio
(AFMR), we proceed in a manner analogous to equation (6.9) and write

AFMR�t� = TFNR�t�/TI�t� (6.19)

When TI�t� > 1, indicating a concentration of first marriage behavior in year
t, equation (6.19) reduces the period TFNR proportionately. When TI�t� < 1,
indicating an avoidance of year t, equation (6.19) proportionately increases the
period TFNR. The time t adjusted proportion ever marrying, PEM∗�t�, is then
given by

PEM∗�t� = 1− exp�−TFNR�t�/TI�t�� = 1− e−AFMR�t� (6.20)

By analogy to the ACF, PEM∗ provides a type of weighted average of the
proportions ever marrying among the active cohorts.

6.8.2 Timing Effects on First Marriage in England and Wales
and the United States

Schoen and Canudas-Romo (2005a) based their analyses on rates of
first marriage derived from published vital statistics and census data. Cohort
behavior was completed using the age-specific rates of the latest data year, 2001
for England and Wales and 2003 for the United States. For the cohort of 1972
(the latest or close to latest CPEM shown), observed data are available though
age 29 for England and Wales and through age 31 for the United States. Since
most first marriages in those countries are contracted before age 30, CPEM(1972)
should be fairly accurate, even though partially estimated. A number of PEM∗

values are also dependent on estimated rates. Assume that a cohort TFNR can
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be accurately determined by rates up to age 35, and that few first marriages
occur at ages 16 and below. Then PEM∗ values can be reliably found for
England and Wales through 1983 (i.e. year 2001 minus 35 years for the oldest
cohort plus 17 years for the youngest cohort) and for the United States through
1985.

Figure 6.4 shows the time trajectory of PEM∗ and period and cohort
PEMs for women in England and Wales and the United States. Trajectories for
men are qualitatively similar. The CPEM values for time t refer to the cohort
born 29 years (about a generation) earlier. The overall pattern for both countries
is a rise in proportions ever marrying up to around 1970 and a decline afterwards.
Levels of first marriage are generally lower in England and Wales than in the
United States, but England and Wales showed both a larger pre-1970 increase
and a steeper post-1970 decline. For both populations, the cohort PEM fluctuates
less than the period PEM, with the trajectory of the PEM∗ even smoother.
Fluctuations in proportions ever marrying are associated with the two World
Wars, the Depression of the 1930s, and the years immediately following World
War II. Women in England and Wales in 1940, for example, have a PEM of
0.96 but a PEM∗ of 0.90. In the United States, PEM values notably understate
average cohort behavior for women in the 1970s and 1980s. For example, in
1985 the U.S. PEM is 0.90 while the PEM∗ is 0.94.

Considerable interest has focused on recent declines in period marriage
rates. The 1990–2000 decline for U.S. women was fairly small; the decline in
PEM∗ from 0.93 to 0.91 was larger than the decline in PEM. For women in
England and Wales, however, the fall in PEM values has been particularly large,
going from 0.81 in 1990 to 0.69 in 2000. In contrast, the comparable PEM∗ values
went from 0.85 to 0.77. Since those PEM∗ values are significantly influenced
by estimated rates, two sets of additional calculations were done assuming that
England and Wales first marriage rates either (i) decline linearly by 20% from
2001 to 2020 or (ii) increase linearly by 10% from 2001 to 2020. The resultant
England and Wales PEM∗ values for 2001 show little change, varying only from
0.74 to 0.76. It is therefore quite likely that the year 2000 England and Wales
PEM values for women are substantially influenced by timing effects, and that
the average likelihood of first marriage in the cohorts active that year is about
three-quarters rather than two-thirds.

6.9 TIMING EFFECTS ON DIVORCE

Divorce provides another instance where cohort tempo can affect
period quantum. The classic study by Preston and McDonald (1979) found
that the cohort probability a marriage would end in divorce increased smoothly
(and exponentially) in the United States from 1867 to 1969, while period
measures fluctuated markedly. Changes in divorce laws and practices provide
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Figure 6.4. Period and Cohort Proportion Ever Marrying (PEM) and Timing
Adjusted PEM∗ Trajectories
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another factor that can influence the timing of divorce (Schoen, Greenblatt and
Mielke, 1975; Wright and Stetson 1978). In this section, we lean on the analysis
of Schoen and Canudas-Romo (2006a), which examined divorce behavior in
the twentieth century United States.

6.9.1 Measuring Timing Effects on Divorce

A number of studies (e.g. Schoen and Standish, 2001) have examined
marriage and divorce behavior in the context of marital status life tables. Here
we consider a multistate model with marital states Never Married (s), Presently
Married (m), and Divorced (v). The focus is on ages 15 through 59, where
mortality (and widowhood) can be ignored. In the model, the probability that a
marriage ends in divorce (by age 60, but there is little divorce after that age) is
simply the ratio of the total number of divorces to the total number of marriages.
Let dij�x� represent the number of life table cohort moves from state i to state j
between the ages of x and x+1. Then the probability a marriage ends in divorce,
PMED, can be written

PMED = �x dmv�x�/�x �dsm�x�+dvm�x�� (6.21)

where the sum ranges from age 15 through age 59.
To measure how the timing of cohort divorce affects the level of period

divorce, we again follow the logic underlying the TI and ACF. In the cohort
marital status life table for persons born in year t −x, let the number of divorces
at age x (and time t) be denoted by cmv�x� t −x�. The proportion 	 can then be
defined as

	�x� t� = cmv�x� t −x�/�y cmv�y� t −x� (6.22)

Then the year t Timing Index is once more given by

TI�t� = �x 	�x� t� (6.23)

Using the TI, the divorce rates observed in year t can be adjusted for timing
effects. With an asterisk denoting an adjusted rate and mmv�x� t� representing the
occurrence/exposure divorce rate for persons age x at time t, we have

mmv
∗�x� t� = mmv�x� t�/TI�t� (6.24)

The time t adjusted divorce rates are thus the observed divorce rates divided by
TI(t). The time t tempo adjusted probability of divorce, PMED∗�t�, can be found
from equation (6.21) using values from a period marital status life table for time
t constructed using the mmv

∗�x� t� as the age-specific rates of divorce.
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6.9.2 Timing Effects on Divorce in the United States

Schoen and Canudas-Romo (2006a) examined twentieth century
American divorce probabilities using published vital statistics and census data
and previously constructed marital status life tables for the United States
(cf. Schoen 1987; Schoen and Standish 2001; Schoen, Urton, Woodrow and
Baj 1985). To complete cohort experience after 2000, the latest data year, the
cohort PMED (CPMED) and the adjusted PMED∗ were calculated under three
scenarios: (i) year 2000 age-specific divorce rates remain constant, (ii) year 2000
divorce rates decline linearly by 20% from 2000 to 2020 and then continue at
that lower level, and (iii) year 2000 divorce rates increase linearly by 20% from
2000 to 2020 and then continue at that higher level.

Figure 6.5 shows the trajectories of PMED, PMED∗, and CPMED for
U.S. women over the years 1910 through 2000. The values for men are quite
similar to those for women. For PMED∗ and CPMED, Figure 6.5 gives values

Figure 6.5. Period and Cohort Probability of a Marriage Ending in Divorce
(PMED) and Adjusted PMED∗ for Women Under Two Future Scenarios,

Linear Increases and Decreases of 20% in Divorce Rates from 2000 to 2020
United States 1910–2000.
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under Scenarios (ii) and (iii), i.e. future decreases or increases of 20%. The
CPMED value for time t refers to the cohort born 35 years earlier, as 35 years
approximates the mean age at divorce.

Figure 6.5 indicates that the PMED has fluctuated markedly in the U.S.
over the twentieth century, generally rising until about 1980 and then remaining
roughly constant. The CPMED, lagged 35 years, and the PMED∗ have largely
followed the same trend, though with much less irregularity. The fluctuations
in PMED have led to sizeable timing effects on the probability of divorce. The
1946 PMED spike at the end of World War II has long been recognized as a
period phenomenon, but tempo effects are evident in most decades. The timing
of cohort divorce lowered the risk of divorce during the 1950s and 1960s, and
raised it substantially from the early 1970s to the late 1980s. For example, in
1975 the PMED for women was 0.44 while PMED∗ was 0.38.

The PMED∗ peaked about 1990, and has not exhibited much of a trend
since. It also demonstrated only a modest variability under the different scenarios
presented. In 2000, the PMED∗ ranged from 0.44 to 0.46; the PMED was 0.42.
Divorce rates imply that just under half of American marriages now end in a
legal divorce, and the PMED∗ values provide no evidence that the risk of divorce
has begun to fall.

6.10 SUMMARY

Timing effects are changes in the level of period measures caused
by changes in the timing (but not the level) of cohort behavior. Both period
and cohort perspectives are involved, because the idea of “postponing” or
“advancing” events necessarily relates to cohort behavior across periods. Two
ways to adjust period measures of fertility for timing effects are considered,
the Bongaarts-Feeney and Average Cohort Fertility (ACF) approaches. The
Bongaarts-Feeney method assumes that an observed period change in timing
persists over a hypothetical cohort’s reproductive years. The ACF method does
not involve any strong assumptions, but uses lifetime data on the fertility of all
actively reproducing cohorts to determine the extent to which cohort behavior
is concentrated in a given year. The two measures are compared in the context
of both models and the twentieth century experience of the United States. The
results indicate that the ACF provides a sound and easily interpretable period
measure that adjusts for timing effects, revealing the considerable impact those
effects had on U.S. fertility during the Depression, the Baby Boom, and the
1970s Birth Dearth. The Bongaarts-Feeney adjusted TFR∗ is less satisfactory,
frequently yielding values that substantially exaggerate or understate timing
effects. The ACF approach, with modifications, can be applied to first marriage
and divorce behavior. Doing so indicates that during the twentieth century timing
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effects substantially influenced period measures of divorce in the U.S. and first
marriage behavior in both the U.S. and England and Wales.

A different tack toward dealing with timing issues is to make period
rates specific to other important aspects of fertility, especially parity and duration
since last birth. However, an analysis using age-parity-specific rates in a parity
specific life table context indicates that such an approach can amplify rather than
attenuate timing effects. In a fertility model where there are constant linear shifts
over time in a fixed-shape age curve of fertility, timing effects appear to produce
paradoxical circumstances. A population with every period NRR below 1 and
every cohort NRR above 1 can arise, and represents a population where cohorts
of decreasing size more than replace themselves.

6.11 EXERCISES

[See Appendix B for selected answers]

1. Ryder (1964) examined demographic “translation”, i.e. how period TFRs can
generate cohort TFRs and vice versa. His basic translation equation can be
written

CTFR = PTFR/�1− c�

where c is the annual change in the cohort mean age at childbearing. Consider
a Bongaarts-Feeney fertility model that ignores parity and has constant period
linear shifts of r in its period fertility schedule (and thus in its period mean
age at childbearing). Show that model implies c = r.

2. Consider a stable population where each age-specific net maternity rate is
given by a continuous variant of equation (6.10), i.e.


�x� = f�x� esx

with ∫ f�x�dx = 1 and s an arbitrary parameter. Show that Lotka’s r = s, and
that the stable net maternity function �e−rx
�x� is constant for all s.

3. Consider a model where fertility has been constant over time and is uniform
over all ages of childbearing, which range from � to 	. Now assume that
cohort fertility shifts upward by ∈ years every year. Verify the Kim and
Schoen (1999) relationship that, for periods after time 	,

TFR = CTFR/�1+��

4. Consider birth cohorts born during calendar years t − 1 and t. Assume that
most deaths at age 0 in the year t − 1 birth cohort occur during the first
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6 months of life, while most deaths at age 0 in the year t birth cohort occur
during the second 6 months of life. Verify the argument in Horiuchi (2005)
that such a timing pattern can produce a lower age 0 death rate during calendar
year t than is experienced by either birth cohort.

5. Consider the dynamic linearly shifting fertility population of section 6.7,
where the period NRR is less than one and the cohort NRR is greater than 1.
Show logically that at any time t, the dynamic population is decreasing at a
rate slower (i.e. less negative) than that of the stable population implied by
the rates of time t.

6. Consider the linearly shifting fertility population examined in section 6.7
where the period NRR is always 1 and the cohort NRR is always greater
than 1. Does such a population grow over time?



CHAPTER 7

DYNAMIC BIRTH-DEATH (MULTI-AGE)
MODELS

7.1 INTRODUCTION

This chapter explores age-graded populations with rates of birth and
death that change over time. The stable population, the principal model of
mathematical demography, has the great strengths of logical closure, the ability
to reflect the implications of any set of age-specific birth and death rates, and
the profound insight that constant vital rates lead to both an exponential birth
trajectory and an unchanging age composition. Yet the stable model is essentially
static; it is based on unchanging vital rates and thus cannot reflect the dynamics
of actual populations. Changing rates greatly complicate the relationship between
vital rates and the birth trajectory as, in general, there is no way to simplify the
product of a series of population projection matrices.

To seek regularities in models with changing rates, we first consider
patterns in a dynamic model that does not explicitly include age. Assuming
a constant generation length yields solutions for birth trajectories, including
cyclical trajectories, from given sequences of net reproduction. Even a simple
population with sinusoidal fluctuations in births can exhibit complex patterns of
intergenerational transfers. Next we examine two models, the “metastable” and
the “intrinsically dynamic”, that generalize the stable model, recognize age, and
yield solutions for birth trajectories from changing rates. Finally, two methods
for determining age-specific rates consistent with a given birth trajectory are
examined.

7.2 MODELS WHERE THE AGE-SPECIFIC RATES ARE IMPLICIT

Pioneering analytical work on populations with changing vital rates was
done by Coale (1972) and Lee (1974). Kim (1987) found a general algebraic
solution relating rates to births, but in most instances it is too complex to render
in closed form. Cyclically stable models, produced by a fixed sequence of rates
that repeats indefinitely, were introduced by Skellam (1967) and examined by
Namboodiri (1969), Coale (1972), Tuljapurkar (1985; 1990), and Schoen and

123



124 CHAPTER 7

Kim (1994). Nonlinear models, where the rates are influenced by population size
and composition, have begun to be explored (Tuljapurkar 1990; Frauenthal and
Swick 1983; Wachter and Lee 1989; Wachter 1991), but such analyses frequently
lead to great complexity if not “chaos”, and are largely beyond the scope of this
chapter (cf. May 1974; Strogatz 1994; Alligood, Sauer and Yorke 1996).

7.2.1 Considering Models With a Constant Generation Length

Schoen and Kim (1997) developed a technique for finding the birth
trajectory that results from any given sequence of net reproduction. This and the
following subsection draw heavily on that work.

Let g(t) be the number of births between times t and t + dt, scaled so
that g�0� = 1. Denote the net maternity rate between the ages of x and x+dx at
time t by ��x� t�, where

��x� t� = f�x� t� p�x� t� (7.1)

with f(x, t) the fertility rate at age x and time t and p(x, t) the probability of
surviving to attain age x at time t. General population renewal equation (1.27)
can then be rewritten

1 = ∫�g�t −x�/g�t����x� t� dx (7.2)

and the Net Reproduction Rate at time t, R(t), is given by

R�t� = ∫��x� t� dx (7.3)

The Mean Value Theorem can be applied to equation (7.2), and using
equation (7.3) we have

R�t� = g�t�/g�t −A�t�� (7.4)

where A(t) is the applicable mean value at time t. Schoen and Kim (1997)
assumed that net maternity changed in such a way that A(t) remained constant
over time, yielding

R�t� = g�t�/g�t −A� (7.5)

Recalling stable population equation (1.38), A can be interpreted as a generation
length.
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Looking forward over time, with g�0� = 1, equation (7.5) leads to the
relationship

g�nA� = R�A� R�2A� � � � R�nA� (7.6)

where n can be any positive integer. Equation (7.6) can be rewritten as an
exponentiated sum of logs, i.e. as

g�nA� = exp�	 ln R�jA�� (7.7)

where the sum over j ranges from 1 to n. Equation (7.7) expresses a birth
sequence in terms of NRRs, and letting t = nA, we can use it to explore times
of any length.

Consider the case where R(t) is constant over time at value R. Then

g�t� = exp��ln R� t/A� (7.8)

indicating stable (exponential) population growth at rate r = �ln R�/A. From
equation (1.38), it is evident that in this case A is Lotka’s mean generation
length T.

Let us now consider the case where R(t) increases exponentially,
i.e. where R�t� = eht. The sum in equation then leads to

g�t� = exp��ht +ht2�/�2A�� (7.9)

An exponential increase in R(t) thus implies a quadratic exponential increase in
births. In general, equation (7.7) implies that if the NRR increases by an exponen-
tiated mth degree polynomial, then g(t) increases according to an exponentiated
�m +1�st degree polynomial.

Two caveats apply to the general solution in equation (7.7). First,
because that equation is based on discrete time units, it is necessary to verify that
the result holds at any time t. That can be done using equation (7.5), and in the
cases presented here (and in Schoen and Kim 1997) the ratio g�t�/g�t−A� gives
the original R(t) at all t. Second, although the Mean Value Theorem guarantees
that at least one real, non-negative schedule of age-specific net maternity rates
exists at every time, there may be only one such schedule. As time approaches
A years after an extremum of g(t), the variance of ��x� t� declines markedly.
Exactly A years after an extremum, all net maternity is concentrated at age
A. Even that worst case, however, involves nothing more than assuming that all
net maternity is concentrated at the mean.
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7.2.2 Cyclical Models With a Constant Generation Length

Let us explore the case where the NRR is cyclical, specifically where

R�t� = exp�b sin�
t�� (7.10)

with 
 representing the cycle frequency. By definition, the cycle length,
T, satisfies the relationship 
 = 2�/T. Schoen and Kim (1997), using an
analytical summation of equation (7.7) and the cotangent identity cot�x/2� =
sin �x�/�1− cos �x��, found that

g�t� = g�0� exp��b/2��sin�
t�+ �1− cos�
t�� cot�
A/2�
� (7.11)

Equation (7.11) provides an exact birth trajectory for the cyclical NRR function
in equation (7.10), and Figure 7.1 shows birth and NRR trajectories for two
combinations of parameter values.

Qualitatively, relationships in the cyclical model depend largely on
the ratio of cycle length T to generation length A. The focus is on models
where T > A/2, i.e. the cycle length is about 15 years or more. That includes
most models of demographic interest, and there is only one case (i.e. T = A)
where g(t) is not defined. If 
A/2 = n�, n a non-negative integer, cot�
A/2�

Figure 7.1. Exponentiated Sinusoidal NRR Trajectory, R(t), and Associated
Birth Trajectory, g(t), for Generation Length A = 30, Amplitude b = 0�2, and

Selected Cycle Lengths, T

FIGURE 1a  T = 2A = 60 FIGURE 1b  T = 4A = 120

Source: Schoen and Kim (1997, Figure 1cd). Reprinted with permission from
Mathematical Population Studies, Taylor and Francis Group, LLC, http://taylor
andfrancis.com © 1997.
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becomes infinite and g(t) is undefined. In contrast, if 
A/2 = �n + 1/2��, then
cot�
A/2� = 0 and the birth trajectory reduces to

g�t� = �R�t��1/2 (7.12)

If equation (7.12) applies, there is no phase difference between g(t) and R(t) and
both are exponentiated sinusoids (see Figure 7.1a). For other generation lengths,
the extrema of g(t) can be found by setting the time derivative of g(t) equal to
zero. If tgmax identifies the time when g(t) attains its first maximum after t = 0,


 tgmax =
⎧
⎨

⎩

� −
A/2 if A < T

2� −
A/2 if A/2 < T < A
(7.13)

Defining phase difference � as the difference in time between the maximum of
g(t) and the maximum of R(t) expressed as a fraction of cycle length, we have

� = �tgmax − tRmax�/T (7.14)

where tRmax is the time where R(t) attains its first maximum after t = 0, i.e. T/4.
When � > 0, g(t) leads R(t), and in general

� =
⎧
⎨

⎩

1/4 −A/�2T� if A < T

3/4 −A/�2T� if A/2 < T < A
(7.15)

The size of � is bounded by ± 1/4. For A < T < 2A� � is negative [and R(t)
leads g(t)], and for T > 2A� � is always positive (e.g. Figure 7.1b). Since the
maxima and minima of both g(t) and R(t) differ by exactly T/2, � is the phase
difference between both their maxima and minima.

Relative amplification also depends on the ratio of T to A, but is
influenced by amplitude parameter b as well. With b > 0, the maximum and
minimum values of R, Rmax and Rmin, are given by

Rmax = eb� Rmin = e−b (7.16)

The maximum and minimum values of birth trajectory g, gmax and gmin, are
given by

gmax = exp�b cot�
A/4�/2�� gmin = exp�−b tan�
A/4�/2� (7.17)
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for T > A, and by those same relationships with minimum and maximum
switched for A/2 < T < A. If the index of relative amplification, M, is the ratio
of gmax to gmin divided by the ratio of Rmax to Rmin, then

M =
⎧
⎨

⎩

exp�b�csc�
A/2�−2
� if A < T

exp�−b�csc�
A/2�+2
� if A/2 < T < A
(7.18)

or in terms of the phase difference

M = exp�b�sec�2���−2
� (7.19)

Equation (7.19) applies at all cycle lengths, and indicates that M varies directly
with the absolute value of �. When the phase difference is zero, M is at its
minimum value, e−b. M has no maximum value, and goes to � as T approaches
A/n (n a nonnegative integer). There is no relative amplification (i.e. M = 1)
when � is ±�1/6� radians. For T > A/2, that occurs when T is 6A, 6A/5, 6A/7,
and 6A/11. The ratio of NRRs exceeds the ratio of births (i.e. M < 1� over a
substantial span of demographically likely cycle lengths, including 1.2A to 6A.

Schoen and Kim (1997), following on work by Wachter (1991; 1994),
noted a connection between the exponentiated sinusoidal model and the Easterlin
Hypothesis. Easterlin (1980) argued that large birth cohorts encounter economic
disadvantages because of their size, leading them to have lower fertility, while
small cohorts are economically advantaged and have higher fertility. In the model
of equations (7.10) and (7.11), assume that a cohort’s fertility is concentrated at
mean age A. The NRR at time t then reflects the reproductive level of the cohort
born at time t-A. When there is no phase difference between R(t) and g(t), for
example when T is 2A or 2A/3, behavior in the exponentiated sinusoidal model
follows the Easterlin Hypothesis. As illustrated in Figure 1a, where T = 2A,
large cohorts have the fewest children and small cohorts have the most children.

7.2.3 Intergenerational Relationships in a Simple Model
With Sinusoidal Births

A stationary population has often been used as a long term, zero growth
model, but observers as far back as Malthus believed that populations would
oscillate about their long term equilibrium (cited in Lee 1997, p1092). Economic-
demographic interactions can give rise to a number of cyclical patterns, including
Easterlin’s cycles of two generations (cf. Lee 1997). Epidemics and climate
cycles can also contribute. At the individual level, fluctuations in the number
of births can have substantial impacts. Preston (1984) saw a shift in transfer
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payments from the young to the old, Menken (1985) spoke of a dependency bind
where middle aged persons faced simultaneous demands from children and aging
parents, and a number of observers (e.g. Keyfitz 1988) saw a rise in intercohort
inequities in pension benefits.

To illustrate some of the intergenerational dynamics generated by birth
fluctuations, we follow Schoen and Jonsson (2006) and consider a simple, basic
model. Assume a cyclically stationary population, where there is no long term
growth and the vital rates repeat every T years. Fertility rates are such as to yield
birth cohorts whose size in year t, g(t), is given by

g�t� = 1+b sin�
t� (7.20)

where −1 < b < 1 represents the amplitude of the sine wave, 
 is its frequency,
T = 2�/
, and the model is scaled so that g�0� = 1. Every person born survives
to exact age 90, and then dies. The total population size at time t, P(t), is then

P�t� = 90+ �b/
��cos�
�t −90��− cos�
t�
 (7.21)

It follows that the size of the population is bounded by 90 ± 2b/
 [or by
90±bT/�].

To distinguish between the economically active and inactive
(dependent) components of the population, we arbitrarily set the active ages as
20 to 65, half the lifespan. No distinction is made between young age depen-
dents (at ages 0 to 20) and old age dependents (at ages 65 and over). The total
population dependency ratio at time t, D(t), is then

D�t� = �P�0� 20� t�+P�65� 25� t��/P�20� 45� t� (7.22)

where P(x, n, t) represents the population between the ages of x and x + n at
time t.

The analysis in Schoen and Jonsson (2006) indicates that qualitatively,
the dynamics of the model are determined by cycle length T. To focus on the
range of greatest demographic interest, we restrict T to between 15 and 105
years. Amplitude b increases (or decreases) the magnitude of the effects in close
to a linear fashion. Accordingly, b is set equal to 0.3, on the argument that it is
plausible to have the NRR vary from 0.7 to 1.3.

Figure 7.2 shows how the maximum dependency ratio varies with T.
(The minimum dependency ratio is approximately the reciprocal of the
maximum.) The maximum value of D is the base value of 1 whenever T is
an integral divisor of 45, that is at graphed values of 15, 22.5, and 45 years.
For 15 < T < 22�5, the maximum D is less that 1.1, while for 22�5 < T < 45
it reaches 1.195 when T = 35. The maximum D increases steadily for T > 45,
reaching a peak of 1.478 when T = 83. For larger values of T, the maximum
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Figure 7.2. Maximum Dependency Ratio (D) When Amplitude (b) is 0.3, for
Values of Cycle Length (T) from 15 to 105 Years in a Cyclical Stationary

Population Model

Source: Originally published as Figure 1 in Robert Schoen and Stefan Jonsson
(2006). “Some Intergenerational Transfer Implications of Birth Fluctuations”
in “Allocating Public and Private Resources across Generations”, Anne H.
Gauthier, C.Y. Cyrus Chu and Shripad Tuljapurkar, eds. pp. 279–290. Reprinted
with kind permission from Springer Science and Business Media.

D declines slowly, eventually approaching 1. Within each T year cycle, the
dependency burden can very considerably. For T = 83, D goes from a high of
1.478 to a low of 0.664, indicating that in some years the dependency burden is
more than twice that of other years.

A major concern is the effect of cyclical fluctuations on intergenerational
transfer systems, especially pension funds. Such transfers can be examined in the
simple, cyclically stationary model of equation (7.20). Schoen and Jonsson (2006)
considered two common types of transfer systems. The first, known as defined
contribution plans, specify the contributions to be made. Here we assume that each
active person contributes $1 each year, and refer to the plan as “Pay $45”. The
second type, known as defined benefit plans, specify the benefit to be received.
Here we assume that each dependent receives $1 a year, and refer to the plan as
“Get $45”. As is more or less the case with national pension systems, the program
functions on a “pay as you go” basis. Each year the system distributes the funds that
are paid in. Thus in the Pay $45 plan, each dependent gets $(1/D(t)) in year t, while
in the Get $45 plan each economically active person contributes $D(t) in year t.
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Table 7.1 shows maximum dollar gains and losses under Pay $45 and
Get $45 plans by cycle length. At cycle lengths characterized by large maximum
dependency ratios, the year in which one is born in the cycle matters greatly.
In Pay $45 plans, large cohorts generally get less than they contribute while
small cohorts get more. In Get $45 plans, the reverse is true, and members of
large cohorts get more than they pay in over their lifetimes. When T = 35, the
most favored birth cohort in a Pay $45 plan (born in year 26 of the cycle)
receives $49.00, while the least favored cohorts (born in years 8 and 9 of the
cycle) receive only $41.91, less than 86% of that amount. When T > 55, the
discrepancies are generally even larger. Even in this simple and predictable
model, both defined benefit and defined contribution plans lead to substantial
inequities between cohorts. Weaving them together to produce a “fair” plan for
an actual population is clearly a daunting task (cf. De Santis 2003).

Table 7.1. Maximum Dollar Gain and Loss Values (Benefits Minus Contributions) Under
Pay $45 and Get $45 Plans, When Amplitude (b) is 0.3, By Cycle Length (T) in a
Cyclically Stationary Population

Pay $45 Get $45
T Maximum

Gain
Maximum

Loss
Gain−
Loss

Maximum
Gain

Maximum
Loss

Gain−
Loss

20 0�21 −0�17 0�38 0�17 −0�21 0�38
25 0�18 −0�16 0�34 0�16 −0�19 0�34
30 1�40 −1�03 2�43 1�03 −1�40 2�43
35 4�00 −3�09 7�09 1�34 −1�87 3�21
40 1�94 −1�42 3�36 0�50 −0�69 1�19
45 0 0 0 0 0 0
50 2�05 −1�55 3�60 0�54 −0�70 1�24
55 6�82 −5�01 11�83 1�92 −2�45 4�37
60 12�05 −8�36 20�41 3�66 −4�63 8�29
65 16�04 −10�62 26�66 5�37 −6�79 12�16
70 18�12 −11�73 29�85 6�83 −8�70 15�53
75 18�30 −11�93 30�27 7�95 −10�26 18�21
80 17�09 −11�50 28�59 8�74 −11�45 20�19
85 15�14 −10�64 25�78 9�25 −12�32 21�57
90 12�90 −9�52 22�42 9�52 −12�90 22�42
95 10�69 −8�28 18�97 9�61 −13�25 22�86

100 8�66 −6�99 15�65 9�57 −13�40 22�97
105 6�88 −5�72 12�60 9�42 −13�42 22�84

Source: Originally published as Table 1 in Robert Schoen and Stefan Jonsson (2006).
“Some Intergenerational Transfer Implications of Birth Fluctuations” in “Allocating
Public and Private Resources across Generations”, Anne H. Gauthier, C.Y. Cyrus Chu
and Shripad Tuljapurkar, eds. pp. 279–290. Reprinted with kind permission from Springer
Science and Business Media.
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7.3 METASTABILITY, A CLOSED FORM EXTENSION OF STABILITY

The constant generation models of section 7.2 do not explicitly include
age, an essential aspect of conventional demographic models. In particular, while
equation (7.9) indicates that exponentially increasing net maternity leads to an
exponentiated quadratic birth sequence, it does not provide a set of underlying
age-time specific net maternity schedules. Doing so is not a simple matter.
Coale (1972) examined the problem, but was able to find only an approximate
solution. Feichtinger and Vogelsang (1978) and Vogelsang and Feichtinger (1979)
extended the analysis, but could not find a closed form relationship between
the exponentially increasing rates and the quadratic exponential birth sequence.

In this section, we draw on Schoen and Kim (1994a), Kim and Schoen
(1996), and especially Schoen and Jonsson (2003), which provide such a closed
form relationship and examine some of its implications. That last paper called
the model Quadratic Hyperstable (QH), but here it is termed “metastable” to set
it apart and emphasize that it goes beyond classical stability to incorporate the
implications of exponentially changing vital rates through a set of closed form
relationships that include the stable model as a special case.

7.3.1 Deriving the Discrete Metastable Model

The discrete formulation provides the easiest access to the metastable
model. Consider an n ×n time-varying population projection (Leslie) matrix of
the form

At =

⎡

⎢
⎢
⎣

f1c kt f2c2k2t f3c3k3t � � � fncnknt

1 0 0 � � � 0
0 1 0 � � � 0
0 0 � � � 1 0

⎤

⎥
⎥
⎦ (7.23)

The fj factors provide the base age pattern of net maternity, with 	j fj = 1.
Parameter c is the dominant eigenvalue of the matrix at time 0, and gives the
initial (implicit) stable growth level. The survivorship values in the subdiagonal
are set to 1. Doing so greatly simplifies the algebra at very little cost, though it
must be borne in mind that the resultant sequence of Leslie matrices generates
a birth trajectory rather that a population trajectory, leaving mortality to be
added later.

The powers of k in the first row show how net maternity varies exponen-
tially over both age and time. When k = 1, the At generate a stable population
with growth rate c. When net maternity increases over time, i.e. k > 1, values
at the higher ages increase more, a reasonable pattern because higher fertility
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implies more higher order births, which arise largely at older ages. The opposite
holds when net maternity decreases over time, i.e. when k < 1, a pattern that
is consistent with observed declines in fertility. Analytically, that exponential
pattern of change in fertility has been applied by a number of researchers
(including Sykes 1973; Mitra 1976; and Schoen and Kim 1996), was incorpo-
rated in the structure of the Coale-Trussell Model Fertility Schedules (Coale
and Trussell 1974), and was employed in equation (6.10) to systematically vary
the pattern of fertility. That pattern of net maternity change has two important
implications. First, it produces a constant proportional distribution of births by
age of mother even as the level of net maternity changes over time. Second, net
maternity always increases (or decreases) at a constant pace over time.

Because of the form of the At in equation (7.23), Sykes (1973) noted that

At = c kt Ut F Ut
−1 (7.24)

where Ut is an n ×n diagonal matrix whose jth diagonal element is �c kt�−�j−1�,
the jth element of the dominant right eigenvector of At. The F matrix is of
the form

F =

⎡

⎢
⎢
⎣

f1 f2 f3 � � � fn

1 0 0 � � � 0
0 1 0 � � � 0
0 0 � � � 1 0

⎤

⎥
⎥
⎦ (7.25)

As it is a row stochastic population projection matrix (i.e. all of its rows sum
to 1), its dominant eigenvalue ��F� equals 1. The “Sykes transformation” of
equation (7.24) rewrites At in terms of its dominant eigenvalue �c kt�, a time
varying diagonal matrix �Ut� and its inverse, and constant matrix F.

Let us examine the product matrix that projects the initial (time 0)
population to time t, that is

M0�t = At At−1 At−2 � � � A1 (7.26)

Crucially, within this sequence of matrix multiplications, the matrix product
U�+1

−1 U� always reduces to a constant diagonal matrix, K, whose jth diagonal
element is kj−1. Using equation (7.24), equation (7.26) can be rewritten as

M0�t = ct kt�t+1�/2 Ut �FK�t U0
−1 (7.27)

Equation (7.27) is the key to the metastable model, as it expresses the product
of the At in terms of three factors: (1) the product of scalar growth rates
c and k from times 1 through t; (2) diagonal matrices reflecting the stable
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age compositions of the initial (time 0) and final (time t) Leslie matrices; and
(3) a constant Leslie-form matrix raised to the tth power. The time invariant
matrix S that synthesizes F and K can be written

S = F K =

⎡

⎢
⎢
⎣

f1 f2 k f3 k2 � � � fn kn−1

1 0 0 � � � 0
0 k 0 � � � 0
0 0 � � � kn−2 0

⎤

⎥
⎥
⎦ (7.28)

The emergence of constant matrix S makes convergence in the metastable model
equivalent to stable convergence. After a sufficiently long time, say � intervals,
equation (2.3) implies

S� = �s
� us v’s (7.29)

where �s is the dominant eigenvalue of S, us is the dominant right eigenvector
of S, and v’s is the dominant left eigenvector of S. From the structure of S, �s

is greater than, equal to, or less than 1 as k is greater than, equal to, or less than
1. (The eigenstructure of S is further explored in Exercises 2 and 3.)

When equation (7.29) applies, the product matrix becomes

M0�t = ct kt�t+1�/2
�s

t Ut us v’s U0
−1 (7.30)

which captures the long term dynamics of the metastable model. From the
projection relationship xt = M0�t x0, we have

xt = ct kt�t+1�/2
�s

t Ut us �v’s U0
−1 x0� (7.31)

which provides the long term size and composition of the metastable population.
The product QM = �v’s U0

−1 x0� is a scalar analogous to the product
Q = �v’x0� in equation (2.4), and represents the contribution of initial population
x0 to the size of the time t metastable population. In convergence to metastability,
as in convergence to stability, the long term effect of the size and composition
of the initial population is captured by a single scalar constant.

The age composition of the metastable population at time t (more
precisely the size of the birth cohorts of the recent past relative to the number of
births at time t) is given by the product Ut us. At time t, that n-age group vector
can be written

Ut us =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
�c�s�

−1 k−t

�c�s�
−2 k−2t k

���
�c�s�

−�n−1� k−t�n−1� k�n−1��n−2�/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.32)
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The metastable age composition combines the time-varying composition
associated with At (i.e. Ut� and the fixed age composition associated with
S (i.e. us). As the jth age group includes the factor k−t�j−1�, the relative size of
the older age groups increases over time when k < 1. The jth age group also has
a factor of k to the power j2. When k > 1, that factor increases the size of the
jth age group relative to the first age group, reflecting slower population growth
in the past than at time t. The reverse is the case when k < 1.

The time t metastable population grows at rate �c�s kt�. That growth
rate increases over time when k > 1, and differs from the long term growth rate
implied by At by a factor of �s. If fertility is declining, i.e. both k and �s are
less than 1, the time t metastable population has a slower pace of growth than
the stable population with the same vital rates. From equation (7.30), the birth
trajectory (i.e. the number in the first age group) of the metastable population is
given by

gt = g0�c�s�
tkt�t+1�/2 (7.33)

The long term birth trajectory is an exponentiated quadratic based on parameter
k accompanied by a linear exponential based on �c�s�.

Growth factor �s, which emerges in the derivation, further augments
the pace of growth in the number of births when k > 1 and retards it when k < 1.
That growth factor essentially reflects the different histories of the metastable and
associated stable populations. When k > 1, the size of the cohorts of reproductive
age (especially those at the higher reproductive ages where the fertility rates
increase most rapidly) relative to the size of the cohort age 0 is generally larger
in the metastable than in the associated stable population, because the metastable
population grew more slowly in the past. The reverse is true when k < 1. That
yields different population proportions exposed to the same regime of vital rates,
and thus different rates of growth.

The above closed form equations fully specify a discrete, rate generated,
dynamic model in which fertility can increase or decrease by any fixed rate. The
underlying vital rates and the size and structure of the metastable population
at any time are provided through exact relationships. As we see below, the
model can be used to analyze fertility transitions in general, as well as gradual
transitions to stationarity and the population growth associated with them.

7.3.2 The Continuous Metastable Model

The discrete equations of the previous subsection have their continuous
counterparts. With net maternity rates given by the ��x� t� of equation (7.1) and
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known initial rates ��x� 0�, let the pattern of net maternity change over age and
time be given by

��x� t� = ��x� 0� ehxt = �0�x� erx ehxt (7.34)

where h is a known constant and ��x� 0� = �0�x� erx. Note that net maternity
changes with the exponentiated product of both age and time. Since the time
0 stable population characteristic equation is

1 = ∫ e−rx ��x� 0� dx (7.35)

we must have 1 = ∫�0�x� dx and r as the time 0 stable population intrinsic
growth rate.

The number of births at time t in the metastable population is then given
by

g�t� = g�0� exp��r + s�t +ht2/2� (7.36)

which satisfies g�t� = ∫ g�t −x� ��x� t�dx when parameter s is defined by

1 = ∫ exp�−sx +hx2/2� �0�x� dx (7.37)

The quantity integrated in equation (7.37) represents the metastable fixed fraction
of births to mothers age x. Continuous equation (7.37) is analogous to the discrete
characteristic equation of matrix S, i.e.

1 = 	j fj kj�j−1�/2 �s
−j (7.38)

where fj corresponds to �0�x�� �s to exp[s], and kj�j−1�/2 to exp�hx2/2�.
Equations (7.34) through (7.37) fully specify the continuous metastable model,
and reduce to the stable model when change parameter h = 0.

Let us explore some relationships in the continuous model. With birth
function g(t) and p(x, t) as the probability of surviving to age x at time t, the
number of persons age x at time t, relative to g(t), can be represented by n(x, t)
and written as

n�x� t� = exp�−x�r + s+ht�+hx2/2� p�x� t� (7.39)

Equation (7.39) is analogous to discrete equation (7.32).
Age-specific growth rate r(x, t) is defined in equation (4.18). If we

assume constant mortality, it can be found by differentiating equation (7.36) and
evaluating the derivative at �t −x�. Kim and Schoen (1996) found the result

r�x� t� = r + s+h�t −x� (7.40)
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Thus when h > 0, the age-time-specific growth rate increases over time at all
ages, though at any given time it decreases over age.

Consider the time t associated stable population. Its intrinsic growth
rate at time t, rA�t�, is defined, using equation (7.34), by characteristic equation

1 = ∫ exp�−x�rA�t�−ht
� ��x� 0� dx (7.41)

Since rA�0� is r, equation (7.41) implies that

rA�t� = r +ht (7.42)

or that the intrinsic growth rate of the associated stable population increases
linearly over time. That relationship also implies that the proportional distribution
of births by age of mother is the same in every associated stable population,
as the changes in rA�t� and ��x� t� offset one another. That fixed proportional
distribution of births, however, differs from its metastable counterpart.

Age-specific momentum at time t, ��x� t�, is defined in equation (4.49)
as the ratio of S(x, t), the number of persons in the stable equivalent population
at age x and time t, divided by N(x, t), the number of persons in the population at
age x and time t. Following Kim and Schoen (1996), for a metastable population
at time t, S(x, t) can be written

S�x� t� = Q�t� exp�−x�r +ht�� p�x� (7.43)

where p(x) reflects survivorship to age x under the assumed constant mortality
rates. Q(t), the time t stable equivalent number of births, is given by

Q�t� = ∫ N�x� t� V�x� t� dx (7.44)

The age-specific reproductive value at time t, V(x, t), is provided by

V�x� t� =
∫ �

X e−a�r+ht� ��a� t� da

e−x�r+ht� p�x� ∫�
0 ∫�

X e−a�r+ht� ��a� t� da dx
(7.45)

Using equation (7.34) and the metastable fixed proportional distribution of births
by age of mother, equation (7.45) can be written

V�x� t� = V�x� 0� ehxt (7.46)

which indicates that V(x, t) changes in the same way that ��x� t� changes. The
double integral in the denominator of equation (7.45), which represents the
mean age of stable net maternity, is constant over time. The fraction of the
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total time t reproductive value arising at age x, Q�x� t� = N�x� t�V�x� t� is, using
equation (7.46)

Q�x� t� = Q�x� 0� exp��r + s�t +ht2/2� (7.47)

Integrating over age we have

Q�t� = Q�0� exp��r + s�t +ht2/2� (7.48)

which indicates that Q(t) increases in the same manner as g(t) does. Using
equation (7.36) and equations (7.43) through (7.48), we find the Kim and Schoen
(1996) result

��x� t� = �Q�0�/g�0�� exp�sx −hx2/2� = S�x� 0�/N�x� 0� (7.49)

Age-specific momentum is time invariant in metastable models. At every age,
the ratio of the associated stable population to the metastable population remains
constant over time.

The Kullback distance, K(t), defined in equation (2.11), measures the
distance between a given population and the stable population implied by the
prevailing vital rates. K(t) is a function of ��x� t� and q�x� t� = Q�x� t�/Q�t�,
neither of which changes over time in the metastable case. The Kullback distance
of a metastable population is thus constant over time. In the long term, the
metastable population never moves closer to nor further from its associated
stable population, even though the structure and vital rates of both populations
are continually changing.

7.3.3 Modeling Fertility Transitions and Their Associated Momentum

The metastable model facilitates the analysis of transitions from one set
of vital rates to another. One transition of particular importance, because of the
large role momentum is likely to play in future world population growth, is a
gradual fall in fertility to replacement level.

As discussed in Section 3.3, the population growth associated with
gradual declines to stationarity has been analyzed from a number of perspectives.
Here we follow Schoen and Jonsson (2003) and focus on how the metastable
model can be used to capture that process. The basic approach is to set a value
of k such that net maternity moves toward replacement level and, after that level
is attained, to hold net maternity at replacement level indefinitely.

Let us assume that the data are in the form of the usual 10 ×10 Leslie
matrix, which spans the first 50 years of life using ten 5-year age intervals.
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The first step is to put that Leslie matrix, Z0, into the form of matrix At in
equation (7.23). Mortality can be removed from the subdiagonal and incorporated
in the first row elements. To do so, let sj be the jth subdiagonal element. Leave
the first element of the first row of Z0 as is, and replace the jth element of the
first row, zj, by s1 s2 � � � sj−1 zj. Then set the subdiagonal elements equal to 1 to
establish new matrix A0. The eigenvectors of the original Leslie matrix change,
but the dominant eigenvalue and the future birth trajectory remain the same.
The dominant eigenvalue of Z0, c, can be found using a standard mathematical
package (e.g. Maple, Mathematica, or S+). The fj of the new A0 matrix can be
found from the relationship [adjusted zj� = fj cj, and the procedure verified by
confirming that the fj sum to one.

Assume that the decline from the initial level of the Z0 matrix to
replacement takes N intervals (each of 5 years). At the end of the Nth interval, we
want A0 to be a stationary level matrix identical to matrix F in equation (7.25).
That result can be obtained by setting k = c−1/N. Because of the nature of the
metastable model, the decline in net maternity over time is exponential, with
the largest decreases in the earliest intervals. Although nonlinear, that pattern of
decline is quite reasonable.

After the Nth internal, the logic underlying equation (7.31) indicates
that the size and age composition of the population are given by

xN = c�N−1�/2 SN U0
−1 x0 (7.50)

as the product of the c and k terms simplify, and UN is the identity matrix. From
that point on, the behavior of the population is determined by matrix F, and it
ultimately becomes stationary. At time point “�”, when F has become a rank
one matrix, that stationary population is given by

x� = c�N−1�/2 uF vF
,SN U0

−1 x0 (7.51)

where uF is the dominant right eigenvector of F and vF
� is its dominant left

eigenvector. The first element of x� gives the size of the ultimate birth cohort,
QM. Momentum, �M, can then be found from equation (3.1) which gives

�M = be�0�QM (7.52)

with b the crude birth rate of the initial population and e(0) the ultimate life
expectancy.

Equation (7.51) can be simplified considerably by introducing some
fairly reasonable assumptions. If the initial population is stable at growth rate c,
then U0

−1 x0 = uF, i.e. a column vector of ones. Even for short declines, SN can
be approximated by its rank one form, i.e. by �s

Nusvs
� and we have

x� ≈ c�N−1�/2 �s
N uF �vF

,usvs
,uF� (7.53)
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The product of the 4 vectors in parentheses in equation (7.53) is a scalar. The
product of the first two is the change in birth cohort size resulting from the
shift from the stable population defined by S to the stationary population defined
by F. The product of the last two vectors yields the long term change in birth
cohort size produced by a change from the stationary population defined by
F to the stable population defined by S. Those two adjustments largely offset
one another, leaving the product �vF

,usvS
,uF� ≈ 1. Under those approximations,

the momentum associated with an N interval decline in fertility to replacement,
�∗

M, becomes

�∗
M = b e�0� c�N−1�/2 �s

N (7.54)

Equation (7.54) indicates that momentum following a gradual decline to
replacement is increased by a factor representing continued growth at the initial
stable rate for half the length of the decline, a factor found in previous work.
In addition, there is a new factor, �s

N, which is less than 1 when k < 1. The
�s

N factor reduces momentum by the negative growth of the S matrix over the
period of decline. As the age structure of the population moves from its initial
stable composition to its ultimate stationary composition, its overall growth is
lessened because the falling fertility schedule shifts toward the younger ages,
where it characterizes the behavior of relatively smaller cohorts.

Table 7.2 shows momentum values for two hypothetical populations
and for fertility declines ranging from 0 to 95 years. The momentum values from
equation (7.53) are quite good for delays of 5 years or more, as compared to
exact values from a population projection (or equation (7.51)). The values from
equation (7.54) are nearly as good, especially for declines of 10 or more years.
Both equations (7.53) and (7.54) improve in accuracy as the period of decline
lengthens, because their underlying rank 1 assumption becomes closer to reality.
It is clear from Table 7.2 that even populations with moderate fertility (an NRR
of 1.90) can grow substantially, especially if the decline to replacement level is
prolonged. Any such momentum figure must be regarded with some reservations,
however. Aside from the inherent difficulties in predicting the future course
of fertility, assumptions regarding the age and, especially, the time pattern of
decline can exert a substantial influence on the final momentum value.

The approach used to model a transition to stationarity can be applied to
modeling the shift from a stable population growing at rate c1 to one growing at
rate c2 (Schoen and Jonsson 2003). The transition begins with A0, a Leslie matrix
in the form of matrix At in equation (7.23) that has a dominant eigenvalue of
c1. It ends with B0, a Leslie matrix of the same form with dominant eigenvalue
c2. For a decline of N 5-year intervals, the change parameter of the metastable
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transition model is

k = �c2/c1�
1/N (7.55)

The jth first row element of At� 0 ≤ t ≤ N, is �fj c1
j kjt�, which is �fj c1

j� at t = 0
and �fj c2

j� at t = N. With S = FK and the assumption that SN can be written as
a rank 1 matrix, the product matrix that projects the initial population from time
0 to time N can be written as

M0�N = c1
�N−1�/2 c2

�N+1�/2 �s
N UN usvs

,U0
−1 (7.56)

UN is a diagonal matrix containing the relative age composition of AN = B0,
whose jth diagonal element is c2

−�j−1�, and U0 is the diagonal matrix showing
the relative age composition of A0, with jth diagonal element c1

−�j−1�.
After N intervals, the population becomes subject to matrix B0. If we

assume that the initial (time 0) population is stable at growth rate c1, and that
at time N + Z matrix B0 can be written in rank 1 form, then the size of the
population at time N +Z is

xN+Z = c1
�N−1�/2 c2

Z+�N+1�/2 �s
N uB �vF

,usvs
,uF� (7.57)

as vB
,UN = vF

, and U0
−1uA = uF. The subscripts A and B refer to matrices

A0 and B0 respectively. Equation (7.57) has the same scalar product of four
vectors as equation (7.53), and that product can again be approximated as 1.
Equation (7.57) indicates that during the transition the population grows at rate c1

for about half the period of decline, and at rate c2 for about half of the period
of decline (and for the entire interval after the decline). Once again, there is
a factor of �s

N that moderates the transitional growth in recognition of the
population’s changing age structure. The metastable model provides a convenient
“bridge” between the two stable regimes, and the resulting projection equations
are simplified because the two size adjustment factors yield a product that is
close to 1.

The metastable model has the potential to be a valuable analytical tool,
as it extends the stable population model that has provided an extremely useful
framework for demographic analysis. Metastability is also likely to be helpful
in estimating demographic measures in populations with changing rates. The
realization of that potential must be left to future work.

7.4 INTRINSICALLY DYNAMIC MODELS, AN ALTERNATIVE
EXTENSION OF STABILITY

The metastable model provides a complete closed form generalization of
the stable model, but is restricted to monotonic increases or decreases in fertility.
In this section, we draw on Schoen (2005) and examine a different approach that
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allows any pattern of fertility change over time, but involves convergent infinite
series and a constraining pattern of age-specific fertility change.

An analytically useful dynamic model must provide a solution for the
product of a sequence of time-varying Leslie matrices. A general analytical
solution is not possible because matrix multiplication does not commute (cf.
Gantmacher 1959), but special cases—like metastability—may lead to useful
solutions. Another circumstance that simplifies the determination of the birth
trajectory is when the population growth rate over a number of intervals (i.e. the
dominant eigenvalue of the relevant product matrix) is equal to the product of
the growth rates of each interval (i.e. the product of the dominant eigenvalues
of the individual interval population projection matrices). Schoen (2005) termed
such a model “intrinsically dynamic” because that multiplicative property links
the intrinsic growth of each interval with the intrinsic growth across intervals.
Tuljapurkar (1990, p83–85) noted that when Leslie matrices shared a common
set of reproductive values, overall growth exhibited that multiplicative property.
In Leslie matrices without mortality, constant eigenvalues imply constant eigen-
vectors, so we examine Intrinsically Dynamic Models (IDMs) in the case where
only the dominant eigenvalue varies over time.

7.4.1 The Two Age Group Intrinsically Dynamic Model

It is easiest to begin with 2 × 2 Leslie matrices that ignore mortality.
At time t, let the dominant and subordinate roots of IDM matrix At be �1t and
(constant) �2. Tuljapurkar (1993 : 265) noted that the elements of a Leslie matrix
can be written in terms of its roots, and in the present case that yields

At =
[
�1t +�2 −�1t�2

1 0

]

(7.58)

It is apparent that �2 < 0. Using the relationship following Appendix equation
(A.8), it can readily be verified that the (1,1) element of At is at = �1t +�2

and the (1,2) element bt = −�1t�2. It is evident from equation (7.58) that the
elements of a 2×2 Leslie matrix are simple and symmetric functions of both roots.

Consider the product matrix M0�2 = A2 A1. In terms of its own eigen-
structure, equation (2.1) allows that product matrix to be written

M0�2 = UM2 �M2 VM2 (7.59)

Using equations (A.8) through (A.10), we have

UM2 =
⎡

⎣
1 1

�11 +�2

�11��12 +�2�

1
�2

⎤

⎦ (7.60)
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�M2 =
[
�12�11 0

0 �2
2

]

(7.61)

and

VM2 =

⎡

⎢
⎢
⎢
⎢
⎣

1 −�2

−�2��11 +�2�

�11��12 +�2�
�2

⎤

⎥
⎥
⎥
⎥
⎦

{
�11��12 +�2�

�12�11 −�2
2

}

(7.62)

That decomposition reveals three important characteristics of IDMs. First, the
desired multiplicative property holds, with the �M2 matrix indicating that the
property applies to both the dominant and subordinate roots. Second, the subor-
dinate right eigenvector �1/�2� is the same in the product matrix and in both
A matrices. Third, the relative sizes of the first row elements of the left eigen-
vector matrices are the same in M0�2� A1, and A2. In M0�2, however, those
elements are multiplied by the time-varying factor in curly brackets to the right
of the matrix in equation (7.62). That factor can be interpreted as 1/�M2, the
mean age at childbearing under product matrix M0�2.

The NRR of Leslie matrices with no mortality is the sum of the first
row elements. Here, at time t, that is �1t + �2 − �1t�2. Generally, in terms of
elements of A, the mean age at childbearing �A is given by

�A = a/�1 +2b/�1
2 = ��1 −�2�/�1 (7.63)

The dominant right eigenvector of the product matrix is not constant over time,
allowing the age structure of the population to change. To examine how it
changes over time, consider a distant time Z when M0�Z is a rank 1 matrix and
only the dominant component of the dynamic population is present. The logic
of equations (7.59) through (7.62) is that the rank 1 matrix can be written

M0�Z = �
Z∏

j=1

�1j


⎡

⎣
1/�MZ

1
�1Z��M�Z−1�

⎤

⎦ �1 −�2� (7.64)

where �Mt is the mean age at childbearing in product matrix M0�t and the equation
incorporates the mean ages at childbearing into the column vector so that the
row vector is constant. At time Z, the (1,1) element of M0�Z is the product of the
Z time-varying dominant eigenvalues times �1/�MZ�. The (2,1) element at time
Z is the (1,1) element at time Z −1, that is the product of the first �Z −1� �1’s
times �1/�M�Z−1�. Equation (7.64) thus gives the size and structure of the long
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term IDM in terms of individual population projection matrix (PPM) eigenvalues
and the yet to be determined mean ages �Mt.

To find the �Mt, begin by observing that the relative sizes of the elements
in the column vector in equation (7.64) and the known constant subordinate
eigenvector imply that

UMt =
⎡

⎣
1 1

�Mt

�1t��M�t−1�

1
�2

⎤

⎦ (7.65)

At any time V = U−1, so equation (7.65) leads to VMt and the determination that
its scalar factor is

1/�Mt = �1t/��1t −�2��Mt/�M�t−1�
 (7.66)

Equation (7.66) leads to a recursive relationship for �Mt. Using that relationship
at times t −1� t −2, etc. to eliminate �M values at times before t generates the
infinite series solution

1
�Mt

= 1+ �2

�1t

+ �2
2

�1t �1�t−1

+ �2
3

�1t �1�t−1 �1�t−2

+ �2
4

�1t �1�t−1 �1�t−2 �1�t−3

+· · ·
(7.67)

The series in equation (7.67) must converge because the terms alternate in
sign (as �2 < 0) and the absolute value of the ratio �2/�1 is always less than
one because �1 is the dominant root. It can be verified algebraically that the
relationships in equations (7.64) and (7.67) satisfy the basic projection equation
xt = At xt−1 when the population vectors are in equation (7.64) form and At is
an IDM projection matrix in the form of equation (7.58). In the stable case when
the dominant root is constant, the series in equation (7.67) sums to �1/��1 −�2�,
the stable solution in equation (7.63).

Equation (7.67) indicates that �Mt increases whenever �1t increases. It
also describes the process of how, as time passes, the impact of a one time
increase in �1 is attenuated by successive movement to smaller and smaller
terms in the series. Equation (7.67) is an unavoidable complication because, by
adjusting birth cohort size, it is needed to reconcile IDM population growth at �1t

with the population’s age structure, which bears the imprint of past vital rates.
The two age group IDM solution of equations (7.64) and (7.67) was

confirmed by numerical calculations with hypothetical data. With �2 = −0�4,
convergence occurred fairly quickly. Six terms of the series in equation (7.67)
provided �Mt values that were accurate to about 0.002, and nine terms gave
values accurate to about 0.0001.
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7.4.2 The Three Age Group Intrinsically Dynamic Model

In a 3×3 IDM Leslie matrix with no mortality, the subdiagonal elements
are both equal to one and the first row elements are ��1t +�2 +�3�� −��1t�2 +
�1t�3 +�2�3�, and (�1t�2�3�. The NRR is again the sum of the first row elements.
At time t that yields

Rt = 1− �1−�1t��1−�2��1−�3� (7.68)

With three age groups, the time t PPM mean age at childbearing is given by

�At = ��1t −�2���1t −�3�/�1t
2 (7.69)

The model specifying approach here parallels that used in the two age group
case. The rank 1 product matrix that spans the interval from times 0 to Z can be
written

M0�Z = �
Z∏

j=1

�1j


⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/�MZ

1
�1Z��M�Z−1�

1
�1Z�1�Z−1��M�Z−2�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�1 − ��2 +�3� �2�3� (7.70)

The third row element of the column vector at time Z relates to the first row
element of the corresponding vector at time Z − 2, i.e. it is 1/��M�Z−2� divided
by the product of the growth rates from Z −2 to Z. To find the long term �Mt,
create UMt in a manner analogous to equation (7.65), invert it to find the factor
multiplying VMt, and use that factor recursively to obtain an equation similar to
equation (7.67). The result is

1
�Mt

= 1+ �2 +�3

�1t

+ ��2
3 −�3

3�/��2 −�3�

�1t �1�t−1

+ ��2
4 −�3

4�/��2 −�3�

�1t �1�t−1 �1�t−2

+ ��2
5 −�3

5�/��2 −�3�

�1t �1�t−1 �1�t−2 �1�t−3

+· · · (7.71)

Equations (7.70) and (7.71) provide the solution for the 3 age group IDM.
The infinite series in equation (7.71) converges because it is an alternating
series and �1t ≥ −��2 + �3� since ��1t + �2 + �3� = at ≥ 0. Equations (7.70)
and (7.71) satisfy the basic projection relationship algebraically, regardless of
whether the subordinate roots are real and unequal, real and equal, or complex
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conjugates. Calculations using hypothetical data have verified those relationships
numerically. Convergence of the series for �Mt is a bit slower than in the 2 age
group case, with accuracy to about 0.01 to 0.02 after 7 terms and about 0.001
after 10 terms.

Table 7.3 considers four different fertility patterns and how age-specific
fertility varies with the value of the dominant root. The two subordinate roots set
the age pattern, and the four patterns were chosen to span the range of commonly
encountered three age group discrete fertility schedules. Pattern 1 emphasizes
early fertility, Pattern 2 mid-reproductive age fertility, and Patterns 3 and 4 late
fertility. Patterns 1 and 4 have complex conjugate subordinate roots, Pattern 2 has
two real and unequal subordinate roots, and Pattern 3 has a double subordinate root.

In every pattern, at every age, fertility varies linearly with �1. When
�1 increases, age group 0–14 always has the largest increase, age group 15–29
the second largest, and age group 30–44 the smallest. That pattern is consistent
with the inverse relationship between �1 and the mean age at childbearing.
Those fertility changes depart from proportionality, but even if not typical they
are plausible given the variability in human fertility. Nonetheless, Pattern 1
has atypically high relative fertility at ages 0–14 when �1 is 1.5 (and Lotka’s
r = 0�027), and Patterns 3 and 4 have zero fertility in that age group when
�1 is 0.8 (and Lotka’s r = −0�015). Since the size of the first age group moves
in lockstep with �1, values of �1 less that 0.8 would produce unacceptable
(negative) values.

Table 7.3. Age-Specific Fertility Patterns and their Variation With the Dominant Root in
Three Age Group Intrinsically Dynamic Models

Pattern 1 Pattern 2 Pattern 3 Pattern 4
Root (�1) a b c a b c a b c a b c

0�8 �2 �38 �08 �1 �46 �08 0 �48 �128 0 �44 �16
0�9 �3 �44 �09 �2 �53 �09 �1 �56 �144 �1 �52 �18
1�0 �4 �5 �1 �3 �6 �1 �2 �64 �16 �2 �6 �2
1�1 �5 �56 �11 �4 �67 �11 �3 �72 �176 �3 �68 �22
1�2 �6 �62 �12 �5 �74 �12 �4 �8 �192 �4 �76 �24
1�3 �7 �68 �13 �6 �81 �13 �5 �88 �208 �5 �84 �26
1�4 �8 �74 �14 �7 �88 �14 �6 �96 �224 �6 �92 �28
1�5 �9 �8 �15 �8 �95 �15 �7 1�04 �24 �7 1�0 �3

Subordinate
Roots

−0�3± �1i −0�2� −0�5 −0�4 (double root) −0�4± �2i

Note: Column headings a, b, and c refer, respectively, to the first, second, and third
elements of the first row of the Leslie matrix.
Source: Schoen (2005).
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The constant subordinate eigenstructure of the IDM model was adopted
for its mathematical, not its demographic properties. By restricting changes in
the age pattern of fertility, it allows an analytical determination of the birth
trajectory generated by any sequence of NRRs, and provides a consistent set of
underlying age-specific fertility values. Although Table 7.3 indicates that care
must be taken to avoid negative values, the IDM model performs reasonably
well with 15-year age groups. It relaxes the constant rate stable restriction and
allows much greater flexibility in the nature of fertility change than does the
metastable model.

7.4.3 The n-Age Group Intrinsically Dynamic Model

The equations for the case of n age groups can be derived by extending
the previous approach. The Tuljapurkar (1993: 265) relationship for the first row
elements of each Leslie matrix is essentially that the first term of the first row
is the sum of the roots, the second term is minus the sum of the roots taken two
at a time, the third term is the sum of the roots taken three at a time, and so
on. Thus the jth first row element at time t, ajt, is �−1�j+1 times the sum of all
possible combinations of the roots taken j at a time. All of the first row elements
of At are linear functions of �1t.

The NRR in the n-age group, no mortality case can be expressed
algebraically as

Rt = 1−
n∏

j=1

�1−�jt� (7.72)

The mean age at childbearing implied by PPM At is given by

�At = a1t/�1t +2a2t/�1t
2 +3a3t/�1t

3 + � � �+nant/�1t
n (7.73)

In terms of the roots, that relationship can be written

�At = ��1t
1−n


n∏

j=2

��1t −�j� (7.74)

The product matrix in the n age group case is an extension of equation (7.70),
its form in the three age group case. A recursive equation for �Mt can again
be derived, though it becomes increasingly complicated as the number of age
groups increases.

There is a serious problem with the IDM approach when n > 3, not
because of complexity but because of the pattern of change in the age-specific
rates. Consider the conventional 10 × 10 Leslie model with 5-year age groups.
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Since human populations have essentially zero fertility under age 10, the (1,1)
element of every 10×10 Leslie matrix must be zero. However, the (1,1) element
is the sum of all of the roots. If that sum is zero at one time point, any change
in the dominant root would give it a demographically unacceptable value. The
problem is not so stark when n is 4 or 5, but the pattern of change can be
unrealistic.

The 3 × 3 model emerges as the most useful IDM in the birth-death
(multi-age) case. Patterns of fertility are usually acceptable, and 15-year age
intervals coincide quite well with the beginning of childbearing, the mean age at
childbearing, and the end of childbearing. When 5-year age data are available,
the observed 10 × 10 Leslie matrix can readily be condensed to 3 × 3 matrix.
A procedure for doing so is set forth in Keyfitz (1968, 37–40).

7.4.4 IDM Birth Trajectories

The trajectory of IDM births over time is, apart from adjustments
reflecting changes in the product matrix mean age at childbearing, determined by
the product of the dominant roots of the individual PPMs. When the �1t follow
a known functional form, it is often possible to find their product analytically.
If �1t = exp�ht� for some known constant h, the usual summation formula from
1 to t can be applied to yield

�Mt = exp�h t �t +1�/2� (7.75)

an exponentiated quadratic trajectory. If �1t = exp�ht2�, then the standard
summation relationship gives

�Mt = exp�ht �t +1��2t +1�/6� (7.76)

and if �1t = exp�ht3�, we have

�Mt = exp�ht2�t +1�2/4� (7.77)

The case where �1t varies cyclically is of particular interest, and Schoen (2005)
found that if �1t = exp�h sin�
t��, then

�Mt = exp��h/2��sin�
�− sin�
�t +1��+ �cot�
/2���sin�
� cos�
�

− cos�
�t +1���
� (7.78)

Equation (7.78) resembles equation (7.11), the Constant Generation
Length relationship for the birth trajectory resulting from a cyclical NRR
sequence. As an exponentiated polynomial change in fertility levels leads to
population growth according to an exponentiated polynomial one degree higher,
sinusoidal change in fertility appears to lead to population cycles that follow a
trajectory determined by a combination of sine and cosine functions.
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7.4.5 Observed Populations as IDM Populations

Any given observed population can be viewed as an IDM population,
although that IDM representation is not unique. Schoen (2005) derived a repre-
sentation for the case of a time 0 reproductive population with three age groups,
assuming that the population was stable with dominant root �A and subordinate
roots �2 and �3 before time �−1�. With x0, the given observed time 0 population,
scaled so that there is one person in the first age group, x20 persons in the second
age group, and x30 persons in the third age group, that IDM representation can
be written

x0 =
⎡

⎢
⎣

1

��A +�A��M0 −�A��−1

��A
2 +�A �A��M0 −�A��−1

⎤

⎥
⎦ (7.79)

where �A = x20/x30� �A = ��A − �2���A − �3��A
−2, and �M0 = �1 + x20 �A ×

��A −1��/�x20 �A�. The age composition of the population is stable at �A when
�A = �M0, i.e. when x20/x30 = 1/x20.

7.4.6 Transitions and Momentum in IDM Populations

Transitions from one set of fixed rates to another can readily be modeled
using IDMs. Assume that a stable population with dominant root �A shifts to a
new vital rate regime with dominant root �B, the subordinate roots remaining
constant. We consider a three age group population with the number of persons
in the first age group scaled to 1 at t = 0. With the shift in rates occurring
immediately after time 0, equations (7.70) and (7.71) describe the population
trajectory. Figure 7.3 shows the birth trajectory (i.e. the number of persons age 0–
14) when �A = 1�5 and �B = 1 under Patterns 2 and 4 of Table 7.3. After fertility
falls to replacement, the number of births drops sharply, partially recovers, and
then continues to oscillate with fluctuations of diminishing amplitude around the
ultimate stationary level. Figure 7.4 shows that the product matrix mean age at
childbearing, �Mt, follows a rather similar path as it moves from �A to �B.

The population momentum associated with such a change in vital rates
can be found by applying equation (3.1). In an IDM, equation (7.70) indicates
that the size of the ultimate stationary birth cohort relative to the initial birth
cohort, Q, is simply

Q = �A/�B (7.80)
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Figure 7.3. The IDM Birth Trajectory Following a Transition, at Time 0, From
a Stable ��A = 1�5� to a Stationary ��B = 1� Regime, Under Fertility Patterns
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Under Pattern 2, with �A = 1�5 and �B = 1, that ratio is 22
2
3 /27 or 0.8395. Under

Pattern 4, the ratio is 241/3/30 or 0.8111. In both cases, the fall in fertility leads
to an increase in the mean age at childbearing.

In general, birth cohort size adjustment Q can be applied to the change
in relative cohort size associated with any change in vital rates, after removing
the effects of changes in overall population growth. From equation (7.70), the
ratio from time � to time � is

Q = �M�/�M� (7.81)

The IDM approach can thus examine population growth associated with any
given path to stationarity, expanding the metastable analysis in subsection 7.3.3.
Let the initial population mean age at childbearing be �M0, which can always be
found via equation (7.79). With ultimate stationary mean age at childbearing �B

at time �, and �1t� 0 < t < �, the PPM growth rate at time t, the relative size of
the ultimate birth cohort, Q∗, is

Q∗ = �
∏

�1j
 �M0/�B (7.82)
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Figure 7.4. The IDM Cumulative Mean Age of Childbearing ��Mt� Following a
Transition, at Time 0, From a Stable ��A = 1�5� to a Stationary ��B = 1�

Regime, Under Fertility Patterns 2 and 4
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where the product is taken from j = 1 to j = B. The associated momentum
follows immediately from equation (3.1). The relationship is exact in IDMs,
i.e. when the multiplicative property links the �s of the PPMs and the
product matrices. In hypothetical calculations, Schoen (2005) found that
equation (7.82) gave results that were quite close to projections assuming
proportional declines in age-specific fertility rather than IDM pattern fertility
declines.

7.5 FINDING RATES CONSISTENT WITH A KNOWN BIRTH
TRAJECTORY

Instead of seeking the birth trajectory implied by a given sequence of
vital rates, the problem can be approached from the other direction, i.e. one can
seek a sequence of Leslie matrices that yields a given birth trajectory. There is
no unique solution, as any birth trajectory can be produced by many different
PPM sequences, each following from different assumptions.
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7.5.1 Hyperstable Models

Following Schoen and Kim (1994a), consider population renewal
equation (7.2) under the assumption that persons at each age x have a fixed
proportion of all births at every time, i.e. that

f�x� = �g�t −x�/g�t�� ��x� t� (7.83)

where f(x) is the time invariant contribution from age x, with ∫ f�x�dx = 1. That
assumption usually yields demographically plausible values (Schoen and Kim
1994a), and leads to the array of net maternity rates

��x� t� = f�x� �g�t�/g�t −x�� (7.84)

or, in terms of known net maternity pattern ��x� 0�

��x� t� = ��x� 0� �g�t�g�−x��/g�t −x� (7.85)

That “fixed f” or “hyperstable” assumption immediately links any birth
trajectory g(t) with a consistent set of net maternity rates. To be specific, let
g�t� = exp�ht2/2�. Then from equation (7.85) we can write

��x� t� = ��x� 0� exp�hxt� (7.86)

the same relationship as in metastable equation (7.34). From equation (7.2), the
renewal or characteristic equation of the model is then

1 = ∫ exp�hx2/2� ��x� 0� dx (7.87)

Metastable models are closely related to exponentially quadratic hyperstable
models, but the two are not identical. Exercise 12 shows that with the identical
birth trajectory, the two models have different sets of vital rates.

If the birth trajectory is the cubic relationship g�t� = exp�ht3�, net
maternity is given by

��x� t� = ��x� 0� exp�3hxt�t −x�� (7.88)

and the hyperstable renewal equation is

1 = ∫ exp�−hx3� ��x� 0� dx (7.89)

In the general polynomial form

g�t� = exp�	 hj tj� (7.90)



154 CHAPTER 7

where the sum runs from j = 1 to j = n, net maternity is

��x� t� = ��x� 0� exp�	 hj�tj + �−x�j − �t −x�j
� (7.91)

and the hyperstable characteristic equation is

1 = ∫ exp�	hj�−x�j� ��x� 0� dx (7.92)

Sinusoidal and other birth functions can easily be incorporated as well (e.g. see
Exercise 9). The stable population is the special case where g�t� = exp�rt�. Once
established, of course, the birth trajectory/vital rate relationship can be pursued
in either direction.

It is useful to write the hyperstable model in discrete form. At time t,
let n ×n hyperstable PPM At have the form

At =

⎡

⎢
⎢
⎣

f1gt/gt−1 f2gt/gt−2 f3gt/gt−3 � � � fngt/gt−n

1 0 0 � � � 0
0 1 0 � � � 0
0 0 � � � 1 0

⎤

⎥
⎥
⎦ (7.93)

where fj represents the fixed proportion of births arising from persons in age
group j and gt represents the number of births (persons in the first age group) at
time t. As equation (7.93) ignores mortality, PPM At projects the birth sequence.
Now let Gt be an n × n diagonal matrix whose jth diagonal element is gt−j+1.
PPM At can then be written

At = Gt F Gt−1
−1 (7.94)

where F is the matrix defined in equation (7.25). Equation (7.94) provides the
hyperstable PPM at any time in terms of the known birth trajectory and the fixed
proportional distribution of births. It follows that the product of the At from time
1 to time t is

M0�t = Gt Ft G0
−1

(7.95)

The form of equation (7.95) assures convergence to hyperstability. The contri-
bution of any initial population to the size of the ultimate hyperstable population
can be expressed as a constant factor in terms of the dominant left eigenvector
of F. Kim (1987) described population dynamics in terms of “forward” and
“backward” growth rates that generally differed from each other. The hyperstable
population is a special case where both the forward and backward growth rates
are equal to the growth rate of births.
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7.5.2 Models With Proportional Rates

Vital rates consistent with a given birth trajectory can be found by
assuming that a known age-specific schedule of net maternity rates varies propor-
tionally at all ages. That assumption assures a reasonable age pattern of rates.

Kim and Schoen (1996a) analyzed models with proportional rates and
sinusoidal birth trajectories. Drawing on that work, let ��x� be the base schedule
of net maternity, scaled so that ∫��x� dx = 1. Then assume that

��x� t� = R�t� ��x� (7.96)

or that age-specific net maternity varies directly with the period NRR.
Equation (7.2) yields the relationship

R�t� = g�t�/�∫ g�t −x� ��x� dx� (7.97)

Assume that the birth function is given by

g�t� = 1+b sin�
t� (7.98)

To find a closed form expression for R(t), Kim and Schoen (1996a) assumed that
age-specific net maternity was normally distributed with mean � and standard
deviation � . Equations (7.97) and (7.98) then yield

R�t� = �1+b sin�
t��/�1+��
��� b sin�
�t −�
�� (7.99)

where ��
��� = exp�−
2�2/2�. Equation (7.99) shows that the NRR cycles
with the same cycle length as g(t), even though it is not a simple sine function.

7.6 SUMMARY

Birth-death models with changing vital rates provide a platform for
analyzing the dynamics of observed populations and exploring their underlying
regularities. This chapter emphasizes relationships between changing rates and
the birth trajectories associated with them. Assuming a constant generation length
in models that do not explicitly recognize age reveals several overall patterns.
If fertility changes according to an exponentiated nth degree polynomial, the
associated birth trajectory is an exponentiated polynomial of degree n + 1. If
fertility varies sinusoidally, births vary as a (not necessarily simple) function
of sines and cosines with the same cycle length. Model dynamics are largely
determined by the ratio of cycle length to generation length. Population age
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structure, and the intergenerational transfer environment encountered by different
cohorts, can vary substantially by position in the cycle.

In dynamic models incorporating age, a key problem is to analytically
determine the product matrix in terms of the individual Leslie matrices. Two
distinct solutions to that problem are examined. The metastable model provides a
full, closed form generalization of the stable model, is based on a realistic pattern
of age-specific fertility change, and facilitates analyses of fertility transitions.
However, change in the metastable model is limited to monotonic increases
or decreases in fertility. Intrinsically Dynamic Models (IDMs) also generalize
the stable model, and allow any pattern of change in fertility over time. To do
so, the IDM solution requires convergent infinite series, and the age-specific
fertility pattern implied by its assumption of constant subordinate roots can be
unrealistic for age intervals of less than 15 years. Both approaches contribute
to the analysis of population momentum under gradual declines to replacement
level reproduction.

Many approaches can yield sequences of Leslie matrices that are
consistent with a given birth trajectory, as there is no unique solution. Hyper-
stable models assume a fixed proportional distribution of births and generate
demographically reasonable Leslie matrices for a broad range of birth trajectories.
They are readily expressed in discrete form, and the hyperstable model with
an exponentiated quadratic birth trajectory is closely related to the metastable
model. An alternative approach assumes that fertility changes proportionally at
all ages. In the sinusoidal case, the proportional fertility assumption exemplifies
the connection between sinusoidal change in births and levels of fertility that are
trigonometric functions with the same cycle length.

7.7 EXERCISES

[See Appendix B for selected answers]

1. Equations (7.10) and (7.11) can be seen as the solution of a pair of differential
equations (Schoen and Kim 1997: 287). If x = ln g�t� and y = ln R�t�, show
that with phase difference � �= 0

y’ = 
�y tan�
A/2�−2x tan�
A/2�+b�

x’ = �
/2��y tan�
A/2��1+ cot2�
A/2�
−2x tan�
A/2�+b�

and that when � = 0 (e.g. when T = 2A) that

y’ = ±b
�1− �2x/b�2�

x’ = ±b
�1− �y/b�2�/2
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where the ± indicates that x and y always move in the same direction.
Verify that the above equations provide a formal parallel between cyclical
reproduction models and predator-prey models.

2. For synthesis matrix S in equation (7.28), with dominant root �s, verify that
a. dominant right eigenvector us has first element 1 and jth element

��s�
−�j−1� k�j−1��j−2�/2

b. the ith element of dominant left eigenvector vs is given by

�
n∑

j=i

�
j−1∏

h=i

k�h−1�
 fj k�j−1� ��s�
�i−j−1��/�s

where mean age at childbearing �s = 	j j f j k�j−1�/2 ��s�
−j

3. In matrix S of equation (7.28), �s and k are clearly related.
a. In a 3×3 S matrix, if f1 = k

1/2 −k2� f2 = k2, and f3 = 1−k
1/2 , show that

�s = k
1/2 .

b. In a 10×10 S matrix, evaluate the approximation �s ≈ k2�5.
4. Consider a metastable model with �s = k2�5� k = eb �b < 0�, and birth

trajectory

g�t� = g�0� eat e2�5bt ebt�t+1�/2

Given the Gaussian (normal curve) density distribution Z�t� =
�1/���2�


1/2 �� exp�−t2/�2�2��, show that g(t) follows a Gaussian distri-
bution with

g�0� = �−b/�2��

1/2� a = −3b� and �2 = −1/b

5. Consider the metastable/associated stable population birth crossover point
�B4�, i.e. the age at which the metastable and associated stable populations
have the same proportion of their births. Using the notation of equation (7.36),
show that at every time point

B4 = 2s/h

6. Show that in a metastable population where p(x,t) is the probability of
surviving to age x at time t, c(x,t), the proportion age x at time t, can be
written

c�x� t� = bM�t� exp�−hxt −x�r + s�+hx2/2� p�x� t�

where bM�t� is the metastable birth rate at time t.
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7. Consider an n × n Leslie matrix with ones on the subdiagonal and jth first
row element fj = �j times binomial coefficient �n −1� j−1�/2n−1. [Binomial
coefficient �n� j� = n!/�j!�n − j�!
� Show that the NRR is then given by

R�t� = ��1+��n−1/2n−1

8. Consider the IDM populations in Figure 7.3. For Patterns 2 and 4
a. find the initial and final number of persons under age 30.
b. how do the numbers in part a relate to the claim that the number of persons

under age 30 is essentially constant over the transition to stationarity?
9. Show that under hyperstability, if g�t� = 1+b sin�2�t/T�, the net maternity

function is given by

��x� t� = ��x� 0��1+b sin�2�t/T���1−b sin�2�x/T��/

�1+b sin�2��t −x
/T��

and the hyperstable characteristic equation by

1 = ∫�1−b sin�2�x/T�� ��x� 0� dx

10. Let PPM At = Kt Gt F Gt−1
−1 K−t for diagonal matrices K and G, and

matrix F of equation (7.25). Show that the product matrix for times 1 through
Z is given by

M0�Z = KZ GZ �F K
−1

�Z G0
−1

11. Consider the birth trajectory g�t� = exp�ht��. If h > 0 and 0 < � < 1, show that
a. g�t� > 1 and increasing over time
b. R�t� > 1 and decreasing to 1 over time

12. Consider metastable and hyperstable models where g�t� = ct kt�t+1�/2 ��s�
t .

Show that
a. the jth first row element of the hyperstable At is fj cj kjt−j�j−1�/2 ��s�

j

b. the jth first row element of the metastable At is fj cj kjt

c. that the metastable and hyperstable first row values must be different
13. Consider a 3 × 3 Leslie matrix with ones as subdiagonal elements and first

row elements a, b, and c. Show
a. the characteristic (eigenvalue defining) equation of that matrix is

�3 − a�2 −b�− c = 0
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b. the roots of that equation are

�1 = �2a +Z + �12b+4a2�/Z�/6

�2 = �4a −Z − �12b+4a2�/Z�/12+ �3
1/2i/12��Z − �12b+4a2�/Z�

�3 = �4a −Z − �12b+4a2�/Z�/12− �3
1/2i/12��Z − �12b+4a2�/Z�

where i is the square root of minus one and

Z = �36ab+108c+8a3 +12�12a3c+81c2 +54abc−3a2b2 −12b3�
1/2


1/3

14. Consider hyperstable equation (7.94). Show that in the long term, the time t
PPM is unaffected if matrix F changes over time, as long as it remains row
stochastic.

15. In hyperstable equation (7.94), let the jth diagonal element of matrix G be the
current number of persons in the jth age group, with the number of persons
in the first age group always equal to 1. Show that specifies a hyperstable
dynamic mortality model.



CHAPTER 8

DYNAMIC MULTISTATE MODELS

8.1 INTRODUCTION

In multistate models, changing rates of birth, death, and interstate
transfer determine the evolving size and state composition of the population.
Since state and age are conceptually distinct, multistate models differ from the
multi-age models of the previous chapter, with the differences introducing both
complexity and analytical flexibility. Transfers to a variety of states may or may
not occur, and because movement is not directly linked to time, discrete models
with rates as well as survivorship probabilities are possible.

Multistate life tables have become standard and widely used tools in
demography (cf. section 1.6). Although contributing to a number of valuable
analyses (e.g. Rogers and Willekens, 1986), the multistate stable population
has received less attention (see section 1.7). In part that is because of the
strong assumption of fixed rates and the weak connection between observed
and multistate stable population compositions. Dynamic multistate models have
the potential to overcome that difficulty, but research is still at a relatively
early stage. In this chapter we discuss a number of approaches that have been
advanced, their underlying assumptions, and the relationships they imply.

We begin with a cohort analysis where time and age are interchangeable,
and consider circumstances where it can be assumed that all rates change propor-
tionally over time. Next we examine how the metastable and IDM solutions of
Chapter 7 can be applied to find multistate trajectories from specified changes
in growth and interstate transfer rates. Multistate hyperstable models, including
their specification in terms of rates and their relationship to birth-death models,
are then explored. Finally we consider two approaches to estimating multistate
rates from known population distributions, noting their conceptual differences
and numerical similarities.

8.2 COHORT MULTISTATE MODELS WITH PROPORTIONAL
TRANSFER RATES

In the basic life table, it is simple to aggregate survivorship over age
intervals. The number of survivors to any age is readily found using the discrete
version of equation (1.5), where the integral of the forces of mortality is replaced

161
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by the sum of the age-specific death rates. In a multistate life table, however,
movements between states introduce major complications. As equation (1.63)
indicates, multistate survivorship across age intervals requires matrix multipli-
cation, not simply summation. One can always carry out the matrix multiplica-
tions involved and obtain numerical solutions, but there is no generally applicable
analytical procedure for finding the product of a sequence of matrices. Although
multistate models are frequently used in demographic analyses, there are no
standard techniques for analyzing such questions as how decreases in fertility
levels affect a cohort’s parity distribution, how changes in marriage and divorce
rates impact a cohort’s marital status composition, or how changes in movements
between health states influence cohort longevity.

Schoen and Canudas-Romo (2006) advanced a Proportional Transfer
Rate (PTR) approach for aggregating effects over age intervals, assuming that
all age-state-specific rates of transfer are proportional over age. They applied
the model to the analysis of cohort parity progression, and Schoen and Canudas-
Romo (2005b) used the same approach to examine a three living state model of
first marriage, divorce, and remarriage. This section draws largely on that work.

8.2.1 Relationships in Proportional Transfer Rate (PTR) Models

The PTR approach begins with base rate matrix �. Consider the general
case with k living states, and let � be a k ×k matrix whose row i and column j
element �i �= j� is �ji, the base rate of movement from state j to state i. The jth
diagonal element of � is −��ji, where the sum over i includes all states except
j. For example, when k = 3, the base rate matrix can be written

� =
⎡

⎣
−�12 −�13 −�1� �21 �31

�12 −�21 −�23 −�2� �32

�13 �23 −�31 −�32 −�3�

⎤

⎦ (8.1)

with � representing an absorbing state (usually death). Every age-specific transfer
rate matrix is a scalar multiple of base matrix �, with z(x,n) the factor that sets
the level of the transfer rates for the (x,n) age interval. The transfer rate matrix
for the (x,n) age interval, M(x, n), is then

M�x� n� = z�x� n�� (8.2)

As a result, every M matrix has the same ratio between every pair of transfer
rates, e.g.

M21�x� n�/M12�x� n� = M21�x +n� n�/M12�x +n� n� = �21/�12 (8.3)
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Assuming constant rates within age intervals, we can use the standard exponential
solution to transform a transfer rate matrix into a survivorship (or cohort
projection) matrix. Paralleling constant forces equation (1.63)

A�x� n� = exp�n M�x� n�	 = exp�n z�x� n��	 (8.4)

where A(x, n) is the matrix of transition probabilities from exact age x to exact
age x + n. The (i,j)th element of A(x, n) gives the probability that a person in
state j at age x will be in state i at age x +n.

Under the PTR assumption, the rate matrices commute and can readily
be aggregated over age. To survive the cohort from age x to age x+w, we form
product matrix P(x, w), which can be written

P�x� w� = A�x +w −n� n�A�x +w −2n� n� 
 
 
 A�x� n�

= exp�n � z�s� n��	 (8.5)

where the last equality comes from applying equation (8.4), and the sum over s
ranges from x to x+w−n in steps of n years. [For convenience, equation (8.5)
assumes that w is an integral multiple of n and that all age intervals have length
n, but those restrictions can easily be relaxed.] Now let y(x) be a k element
column vector whose jth element, yj�x�, gives the number of persons in state j at
exact age x. From equations (8.4) and (8.5), we can write the projection equation

y�x +w� = P�x� w� y�x� = exp�n� z�s� n��	 y�x� (8.6)

Equation (8.6) is the general PTR solution for advancing a cohort from any age
x to any age x+w. Base rate matrix � can be of any form as long as it reflects
demographically realistic rates (i.e. non-negative, finite, real numbers). As x+w
becomes large, P(x, w) becomes a rank one matrix and y�x + w� approaches
the stable state composition implied by the dominant right eigenvector of �.
That does not arise in cohort analysis, however, because convergence to stability
typically requires considerably longer than a single lifetime.

It is useful to examine the PTR equations using eigenstructure relation-
ships, i.e. � = URV� � = exp�nR	, and A = U�V (cf. Equation (A.11)). With
cumulative level factor Z(x) defined by

Z�x� =
x−1∑

s=0

z�s� (8.7)

the eigenstructure relationships and equation (8.6) yield

y�x� = U�Z�x�V y�0� = AZ�x� y�0� (8.8)
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The k element vector of person-years lived by the cohort in each state at age
x can be denoted by Y(x), where jth element Yj�x� represents the number of
person-years lived in state j at age x last birthday. The value of Y(x) can be
found by integrating y(x) over age from x to x + 1. With I the k × k identity
matrix, the eigenstructure relations and equation (8.8) yield

Y�x� = U�∫ esz�x�Rds	V y�x�

= U��z�x� − I�R−1V y�x�/z�x� (8.9)

Paralleling equations (1.10) and (1.62), the elements of Y can be used to
determine the number of decrements between states in an age interval. For
example, the number of decrements from state j to state i between the ages of
x and x + 1 is given by the product of Yj�x� times z�x��ji. The Yj can also be
used in calculating population based life expectancies (cf. equation (1.71)).

Using eigenstructure facilitates sensitivity analyses with respect to
cumulative level factor Z. The eigenstructure relationships and equation (8.8)
lead to

d y�x�/d Z�x� = nU �Z�x�R V y�0� (8.10)

As in equation (8.9), all roots of the base rate matrix play an important role in
the result.

Graphically, a plot showing how state composition y varies with Z,
what Schoen and Canudas-Romo (2006) termed a life course schematic, can
have considerable heuristic value. Such a schematic indicates all of the possible
state distributions that a cohort can manifest as its members move through life
under the pattern of rates specified by � (see Figure 8.1).

In the PTR model of equations (8.1) and (8.2), mortality rates are
subject to the same proportionality factors as the rates of interstate transfer.
An alternative way to incorporate mortality is to assume that there is an equal
risk of dying in all states. Survivorship can then be added as an “exogenous”
multiplicative factor applied to all states. With death rates excluded from base
rate matrix �, the age-specific rate matrix, including mortality, can be written

M�x� n� = z�x� n��−���x� n�I

where ���x� n� is the death rate in all states between the ages of x and x + n.
That modification changes the total number of survivors but not the proportion
in each state, and allows great flexibility with regard to recognizing age-specific
mortality.
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Figure 8.1. Life Course Schematic of Parity Distributions for Z Values From
0 to 10, United States Females, 1997
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8.2.2 PTR Models With 2 Living States

Consider the general model with two living states, designated states 1
and 2. The base rate matrix can be written

� =
[−�12 −�1� �21

�12 −�21 −�2�

]

(8.11)

Persons in the model can move back and forth between states 1 and 2 and from
either state to absorbing state �.

The PTR solution can be shown in scalar terms when the eigenstructure of
� is relatively simple, as is the case here. The eigenvalue matrix of � is given by

R =
[

r1 0
0 r2

]

(8.12)

and equation (A.4) gives the roots as

r1�2 = 1/2�−�12 −�1� −�21 −�2� ± ���12 +�1� −�21 −�2��
2

+4 �12�21�
1/2 	 (8.13)
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where r1 is associated with the positive square root. The right eigenvector matrix
is then

U =
⎡

⎣
1 1

�12

r1 +�21 +�2�

�12

r2 +�21 +�2�

⎤

⎦ (8.14)

(cf. equation (A.5)), with U−1 = V. Given n year age intervals, the eigenvalue
matrix of A is

� =
[

exp�n r1� 0

0 exp�n r2�

]

(8.15)

with diagonal elements 
j = exp�n rj�.
Assume that at age 0 the population consists of one person in state 1

and no persons in state 2. Equation (8.8) then yields the solution

y�x� =
[

�
1
Z�x��r1 +�21 +�2�	−
2

Z�x��r2 +�21 +�2�	�/�r1 − r2�

�12�
1
Z�x� −
2

Z�x�	/�r1 − r2�

]

(8.16)

Equation (8.16) shows how the age-specific size and state trajectory of the two
living state model are driven by Z(x), the sole function of age on the right-
hand side of equation (8.8). Both the dominant and subordinate roots of � play
significant roles in model dynamics.

8.2.3 Hierarchical PTR Models

Hierarchical models require interstate movements to follow a given
ordering, and do not permit returns to a previously occupied state. They arise
frequently in demographic analysis. Examples include multistate models with
the marital statuses Never Married and Ever Married; the health statuses Suscep-
tible, Infected, and Recovered/immune; and the parity statuses having 0 children,
having 1 child, having 2 children, etc. Hierarchical models may be particularly
suitable for PTR analyses because it is often reasonable to assume that all rates
move proportionally over age, and in many instances the eigenstructure of the
underlying rate matrix is relatively simple.

The base transfer rate matrix of a strictly hierarchical model with any
number of living states can be written

� =

⎡

⎢
⎢
⎣

−�12 0 0 0 
 
 

�12 −�23 0 0 
 
 

0 �23 −�34 0 
 
 

0 0 �34 −�45 
 
 


⎤

⎥
⎥
⎦ (8.17)
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Persons can move from state 1 to state 2, from state 2 to state 3, from state 3 to
state 4, and so on. The model can accommodate any number of states, as long as
all moves are from state j to state j+1. Mortality can be incorporated most easily
as an exogenous survivorship factor that affects all states to the same degree.

The base rate matrix of equation (8.17) is a lower triangular matrix,
hence its roots are its diagonal elements (i.e. minus the state specific transfer
rates). The right eigenvector matrix is patterned and can be written rather
compactly (see Exercise 2). If we again assume that the age 0 population has
just one person in state 1, equation (8.8) leads to the state trajectories

y1�x� = exp�−n Z�x��12	

y2�x� = �12�exp�−n Z�x��23	− exp�−n Z�x��12	�/��12 −�23�

y3�x� = ��12�23	���12 −�23� exp�−nZ�x��34	− ��12 −�34� exp�−nZ�x��23	− ��23 −�34� exp�−nZ�x��12	�

��12 −�23���12 −�34���23 −�34�

and in general

yj�x� = �
j−1∏

i=1

�i�i+1	
j∑

i=1

�exp�−n Z�x��i�i+1	/
j∏

h=1
h �=i

��h�h+1 −�i�i+1�� (8.18)

Schoen and Canudas-Romo (2006) employed the solution in equation (8.18)
to model parity progression, using a six living state model that recognized the
parities 0, 1, 2, 3, 4, and 5 or more. The relatively few births to women at parities
6 and over were ignored, as was mortality under the highest age at childbearing.
Using data for women in the United States 1997, they found the proportionality
assumption to be approximately true for all parities.

To specify the proportionalized rates, Schoen and Canudas-Romo
(2006) first preserved the observed age-specific transfer rates from parity 0 to
parity 1. The fixed ratio of the base rate at parity j to the base rate at parity 0
was determined by the ratio of the observed rates at ages 26–30. That interval is
close to the mean age at childbearing, and produced proportionalized rates with a
TFR almost identical to the TFR of the observed rates. The principal deviations
from proportionality occurred at the younger ages, where rates at higher parities
(which reflected the behavior of relatively few women) were disproportionately
large. Comparing the state trajectories implied by the observed and proportion-
alized rates, Schoen and Canudas-Romo (2006a) found substantial similarities,
the major departure being that the proportionalized rates overstated the age 25
proportion at parity 1 by 0.05. On balance, they considered the proportionalized
rates sufficiently similar to the observed rates to justify their illustrative use.
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Figure 8.1 shows the life course schematic of the PTR model, i.e. the
proportion in each parity state by cumulative level function Z. The single year of
age occurrence/exposure rates of first birth in the base matrix were normalized
to 1, so the Z function represents the cumulative sum of the rates of transfer to
parity 1. The observed TFR in the US 1997 was 2.09, which under the PTR base
� matrix is attained at a Z value of 1.91. The PTR proportion childless at that
Z level is then exp�−1
91	 or 0.148 (cf. equation (8.18)). As Z increases, the
proportion at parity 0 declines exponentially from 1 to zero, while the proportion
in “absorbing” parity 6 increases sigmoidally from 0 to 1 (see scale at the left
of Figure 8.1). The proportions at parities 1 through 5 are all unimodal with a
skew to the right (scale at the right of Figure 8.1).

Given the level of the 1997 rates, parity 2 has the highest maximum
proportion of any parity, 0.320, which is attained when Z = 1
74. The maxima
for parities 3, 4, and 5 are at successively smaller proportions of the total cohort,
and all are attained at Z values above the level reached by the 1997 US rates.
Since women of parity 3 comprise the largest fraction of the model cohort for
Z values from 2.46 to 4.27 (or TFRs of 2.61 to 4.05), fertility would have
to be extraordinarily high by contemporary Western standards before the most
common parity would exceed 3. There is no Z value at which women of parity
1 comprise the largest fraction of the cohort. When Z is 1.25 (and the TFR is
1.40) the most common parity shifts from 0 to 2.

It is clear from Figure 8.1 that the slope of a parity trajectory varies
markedly with Z. The slope of the parity 0 trajectory is always negative (though
it declines as Z increases), the slope of the parity 6 trajectory is always positive
(though to differing degrees), and the slopes of the other parity trajectories are
positive before their mode and negative thereafter. Assume that all of the US
1997 rates had been a bit higher at some age so as to retain the same � but attain
a slightly larger Z. Then the ultimate proportion at parities 0–2 would decrease
and the ultimate proportion at parities 3 and higher would increase, with the
proportion at parity 3 increasing the most.

The effect of changing the relative size of one of the base rates can be
found by differentiating equation (8.18) with respect to that base rate. For rates
to parities 1 through 5, the pattern of effects is similar and worth examining. Let
us look at changes in �12, the base transfer rate from parity 0 to parity 1, and
focus on y2, the proportion at parity 1. From equation (8.18) we obtain

d y2�Z�/d �12 = �exp�−nZ�12	��23 +�12��12 −�23�Z	

−�23 exp�−n Z�23	�/��12 −�23�
2 (8.19)
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a weighted difference between exponential terms in �12 and �23. Setting the
derivative equal to zero and rearranging terms gives

Z = ln�1+ �Z �12��12 −�23�/�23	�/�n��12 −�23�	 (8.20)

an iterative equation for the extremum of Z. Numerical analyses of
equation (8.20) indicate that there is a unique positive value of Z associated
with zero change in y2�Z�. At low values of Z, an increase in �12 raises the
proportion at parity 1, but as Z increases that effect is reduced and then reversed,
with y2�Z� ultimately becoming smaller than it was under the original �12.

Figure 8.2 shows how the proportions at parities 0 through 3 vary from
their Figure 8.1 values when �12 is increased or decreased by 25% of its base rate
matrix value. Panel A shows that the proportion at parity 0 varies inversely with
�12. In Panel B, a 25% increase in �12 yields a larger proportion at parity 1 when

Figure 8.2. Proportion at Parities 0, 1, 2 and 3 Under Proportionalized Rates
for United States Females, 1997 With Alternative Base Rates of Movement

From Parity 0 to 1

Source: Schoen and Canudas-Romo (2006).
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Z is less than 1.59, but a smaller proportion for higher values of Z. Panels C and
D show qualitatively similar effects on proportions at parities 2 and 3. A larger
base �12 initially produces a higher proportion in the state, but the effect reverses
at some higher level of Z.

That pattern of change may seem counterintuitive, but it is rooted in
the dynamics of the hierarchical PTR model. It is clear that an increase in �12

initially increases the proportion at parity 1 because the pace of transfer from
parity 0 is accelerated. However, that larger fraction at parity 1 is immediately
exposed to the risk of transfer to parity 2. As Z increases, the smaller proportion
at parity 0 adds fewer persons to parity 1, while �23 continues to reduce the
increased fraction at parity 1. At some point, the smaller number of entrants
to parity 1 and the greater (longer) exposure to the rate of transfer to parity 2
lowers the fraction at parity 1 below its level under the original �12. The increase
in �12, by accelerating transfers from parity 1, generates the same dynamic at
parities 2 and above, though the crossover to lower proportions at those parities
than under the initial base value occurs at ever higher levels of Z.

8.2.4 A PTR Model of Marriage, Divorce, and Remarriage

Another potential application of PTR models is in the area of marriage,
divorce, and remarriage. Marriage and remarriage rates generally move in the
same direction, and divorce rates often move in that direction as well.

Schoen and Canudas-Romo (2005b) defined the base rate matrix for a
three living state model of first marriage, divorce, and remarriage as

� =
⎡

⎣
−�sm 0 0

�sm −�mv �vm

0 �mv −�vm

⎤

⎦ (8.21)

The three model states are Never Married (s), Presently Married (m), and
Divorced (v), and moves can be made from state s to state m (first marriages),
from state m to state v (divorces), and from state v to state m (remarriages).
To simplify the model, the focus is on ages 15 through 50, with mortality (and
widowhood) disregarded.

The model of equation (8.21) is not hierarchical, but the eigenstructure
is still fairly simple. The roots of � are 0, −�sm, and −�mv − �vm. The right
eigenvector matrix can be written

U =
⎡

⎣
0 0 ��sm −�mv −�vm�/�mv

�vm/�mv −1 ��vm −�sm�/�mv

1 1 1

⎤

⎦ (8.22)
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With the initial population vector, y(15), consisting of one person in
state s, equation (8.8) yields

y�x� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

exp�−Z�x��sm	

�vm

�vm +�mv
− exp�−Z�x���vm +�mv�	�sm�mv

��vm +�mv −�sm���vm +�mv�
− exp�−Z�x��sm	��vm −�sm�	

��vm +�mv −�sm�

�mv

�vm +�mv
+ exp�−Z�x���vm +�mv�	�sm�mv

��vm +�mv −�sm���vm +�mv�
− exp�−Z�x��sm	�mv

��vm +�mv −�sm�

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8.23)

where the first element refers to state s, the second to state m, and the third
to state v. In the absence of mortality, the sum of the three elements of y(x)
is always 1. Each element is a weighted sum involving exponentiated eigen-
values of �.

Schoen and Canudas-Romo (2005b) applied the PTR model to data
for United States women in 1995. They started with the observed single year
of age first marriage rates, and determined the relative sizes of the divorce
and remarriage rates based on the ratios observed at ages 34–38. Those ages
were chosen to provide the closest agreement between the proportionalized (or
“stylized”) rates and the observed rates over the 15–49 year age range. The base
first marriage rates were then scaled to 1, yielding ratios of 1 : 0.4491 : 1.8701
that were used as the elements of the base rate matrix.

Figure 8.3 shows a reasonably good agreement between the observed
and stylized rates. The largest departures from proportionality involve rates
based on small fractions of the cohort, especially married women under age
20 and divorced women in their teens and early 20s. Schoen and Canudas-
Romo (2005b) also found that the observed and stylized state trajectories were
quite similar. At age 50, where agreement was poorest, the proportions married
differed by only 0.013 and the proportions divorced by only 0.007.

Figure 8.4 provides the life course schematic for the marriage-divorce-
remarriage model. With the first marriage rates scaled to 1 in the � matrix, Z(x)
is the sum of the age-specific first marriage rates up to that age. At age 50, the
PTR proportion never married is 0.116, indicating that 0
116 = exp�−Z�50�	 or
that Z�50� = 2
154. As indicated in equation (8.23), the cohort proportion Never
Married declines exponentially with Z. At high values of Z, the proportion in
state s is essentially zero, and the relative proportions in states m and v approach
the stable ratio �vm/�mv (see equation (8.22)). In the present model that ratio is
1
8701/0
4491 = 4
164; eventually the proportion in state m becomes 0.806 and
the proportion in state v becomes 0.194. Figure 8.4 shows that the proportions
in both states grow monotonically from 0 to their long term values. (Under
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Figure 8.3. Observed (obs) and Stylized (sty) Rates of First Marriage, Divorce,
and Remarriage, with the Stylized Rates Based on Ages 34 to 38, United States

Females, 1995
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Source: Schoen and Canudas-Romo (2005b).

certain conditions, however, the trajectory in the Presently Married state can be
nonmonotonic; see Exercise 4.)

Schoen and Canudas-Romo (2005b) examined how the proportions in
each state would change in the event of a 25% increase or decrease in the relative
size of each base rate. Given the US 1995 values, the base rate of remarriage is
87% higher than the base rate of first marriage. Nonetheless, changes in the base
remarriage rate have only modest effects. The base rate of divorce is 45% of
the base first marriage rate. Changes in divorce rates have a substantial impact
on the proportion divorced, but not on the proportion married. Changes in first
marriage rates, however, have a substantial impact on the proportion in every
marital status. They concluded that the large proportions presently married and
small proportions never married observed in the United States are primarily the
result of continuing high rates of first marriage.

8.3 MULTISTATE METASTABLE MODELS

To specify metastable models in the multistate context, let us begin with
a k × k base � rate matrix of the form of equation (8.1), which can be written
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Figure 8.4. Life Course Schematic Showing Proportions Never Married,
Married, and Divorced for Z Values From 0 to 6, United States Females, 1995
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in terms of its eigenstructure as � = URV. Given time intervals of n years, the
associated survivorship (or projection) matrix is A = U�V, where � = exp�nR�.
As in equation (8.4), the (i,j)th element of A, aij, yields the number of persons
in state i at the end of the n year interval per person in state j at the beginning
of the interval.

To extend metastability, we introduce k ×k non-negative matrix H. Let

At = HtA H−t (8.24)

It follows that product matrix P0�t = AtAt−1 
 
 
 A1 is then given by

P0�t = Ht�AH−1�t (8.25)

with metastable synthesis matrix S = �AH−1�.
Although the formal extension is quite straightforward, there are signif-

icant substantive differences. The nature of the change in the elements of A in
the birth-death case was closely linked to both the dominant eigenvalue of A and
a demographically realistic pattern of change in net maternity. Neither applies
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in the multistate case. Assume that H is a diagonal matrix with jth diagonal
element hj. Then at every time point, premultiplying by Ht and postmultiplying
by H−t leaves the diagonal elements of A unchanged. However, the (i,j)th off-
diagonal element becomes hi

thj
−t aij. That increase or decrease in the size of the

(i,j)th element impacts both risks of interstate transfer and rates of population
growth, because one person in state j at the beginning of the interval now implies
a different total number of persons at the end of the interval. Analysts using the
model need to verify that such changes are appropriate.

Nothing in the derivation of equation (8.25) prevents H from having
nonzero off-diagonal elements. That opens new analytical possibilities that have
not been studied in any detail. Still, it is clear that nonzero off-diagonal elements
change some of the mathematical properties of the model. As indicated in
Exercise 6, the multistate metastable model with diagonal H matrices maintains
constant age-specific momentum over time, and exhibits a time invariant
Kullback distance between the metastable population and its associated stable
population. Those properties are not preserved when H has nonzero off-diagonal
elements.

8.4 MULTISTATE INTRINSICALLY DYNAMIC MODELS

In multi-age IDM models, requiring constant subordinate eigenvalues
is enough to assure the multiplicative property (i.e. that the dominant root of
the product matrix equals the product of the individual PPM dominant roots).
That requirement is also sufficient to generate PPM elements and to specify
an analytically soluble dynamic model. In the multistate context, additional
restrictions are needed to obtain an analytical solution, because multi-age
models impose strong conditions not present in multistate models. Assuming
equal rates of natural increase across all living states implies a rate matrix
with constant column sums, and satisfies the multiplicative property. However,
uniform natural increase alone is not enough to yield tractable dynamic models.
In this section (except for new results in subsection 8.4.2), we draw on Schoen
(2003), which provides state trajectories from rates for a restricted set of
multistate IDMs.

8.4.1 The Restricted Two Living State Uniform Growth Model

Let us start by specifying a continuous two living state model in terms
of the differential equations



DYNAMIC MULTISTATE MODELS 175

d�1�t�/dt = −m12�t��1�t�+m21�t��2�t�

d�2�t�/dt = −m21�t��2�t�+m12�t��1�t� (8.26)

where �j�t� represents the number of persons in state j at time t and mij�t�
represents the instantaneous rate (or force) of transfer from state i to state j at
time t. The model of equations (8.26) allows movements between states 1 and 2,
but no natural increase in either state (i.e. each state’s birth rate minus its death
rate is zero). The absence of growth in either state is manifested in the fact that
the sum of the two equations in (8.26) is always zero.

Without loss of generality we can scale the model so that

�1�t�+�2�t� = 1 (8.27)

Equation (8.27) can be used in equation (8.26) to yield the single differential
equation

d�1�t�/dt = −�m12�t�+m21�t�	�1�t�+m21�t� (8.28)

Equation (8.28) is an elementary first order differential equation whose solution
is (cf. Ford 1955)

�1�t� = �1�0� e−H�t� + e−H�t� ∫t
0 eH�s�m21�s� ds (8.29)

where

H�t� = t∫
0
�m12�u�+m21�u�	 du

The integration in equation (8.29) is very difficult to perform unless �m12�u�+
m21�u�	 is constant over time. That sum of rates represents the “metabolism”
or rate of turnover in the model; assuming a constant metabolism is often quite
reasonable. Imposing that restriction gives the solution

�1�t� = �1�0�e−Mt + e−Mt ∫t
0 eMs m21�s� ds (8.30)

where the fixed turnover rate is given by

M = m12�t�+m21�t�

If m21 is a polynomial, exponential, or trigonometric function, the integral in
equation (8.30) can be evaluated analytically.
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Let m21�t� be a simple exponential function of time, i.e.

m21�t� = m21�0� eat (8.31)

In the long term, the �1�0�e−Mt term on the right hand side of equation (8.30) goes
to zero because M must be a positive number if either rate is nonzero. Substan-
tively, the attenuation of that term describes how the initial state composition of
the model is forgotten. In the long term, with parameters that yield non-negative
transfer rates, the population composition at time t under equation (8.31) is

�1�t� = m21�0� eat/�M+ a� (8.32)

The fraction in state 1 changes exponentially over time. It goes to zero if a < 0
and to infinity if a > 0, though the model ceases to be valid demographically
when �1�t� > 1.

Models with cyclical change are of particular interest, and with suitable
parameters remain demographically realistic indefinitely. With �b� < 1, let us
assume that

m21�t� = m21�0��1+b sin��t�	 (8.33)

In the long term when e−Mt goes to zero, equation (8.30) yields

�1�t� = m21�0���1/M�+b�M sin��t�−� cos��t�	/�M2 +�2	� (8.34)

Equation (8.34) shows that the proportion in state 1 cycles around its stable
fraction, i.e. around m21�0�/M. The fluctuations have cycle length T = 2�/�,
and are determined by a weighted linear combination of sin��t� and cos��t�.

Figure 8.5 shows how the fraction in state 1 and the normalized transfer
rate m21�t�/M vary over time in a typical sinusoidal model. From equation (8.33),
the first maximum of m21�t� after t = 0 comes at time T/4. The �1�t� curve always
leads the m21�t�/M curve, though the sinusoidal fluctuations in the latter always
have a greater amplitude. Both curves are symmetric and have the same cycle
length. They intersect twice during each cycle, at the maximum and minimum
points of the �1�t� curve. At those points, the dynamic model and its associated
stable population have identical rates and state compositions (see Exercises 7
and 8).

To this point, we have only considered the model of equations (8.30)
and (8.33) in the long term. The complete solution is

�1�s+ t� =�1�s�e−Mt +m21�0���1− e−Mt	/M+ �b/�M2 +�2�	·
�M sin ��s+ t�−� cos ��s+ t�− e−Mt�M sin��s�−� cos��s��	�

(8.35)
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Figure 8.5. Time Trajectories of the Normalized Rate of Transfer from State 2
to State 1 �m21/M� and the Fraction of Persons in State 1 ��1�, Sinusoidal Two

Living State, No Growth Intrinsically Dynamic Model

Source: Schoen (2003, Figure 1). Reprinted with permission from Mathematical
Population Studies, Taylor and Francis Group, LLC, http://taylorand francis.com,
(c) 2003.

Assume that �1�s� = 1, or that the total population of the model is in state 1 at time
s. In that case, the value of �1�s + t� given by equation (8.35) is the probability
that a person in state 1 at time s will be in state 1 at time s + t. We can denote that
probability by p11�s� t�. If we assume that �1�s� = 0, then the value of �1�s + t�
given by equation (8.35) is p21�s� t�, the probability that a person in state 2 at time s
will be in state 1 at time s + t. With no births and deaths, it follows that p12�s� t� =
1−p11�s� t�, and p22�s� t� = 1−p21�s� t�, completing the array of probabilities.

The model of equations (8.30) and (8.33) can easily be extended to allow
time varying growth, as long as that growth is always the same in all states. Let
the growth rate of each state at time t be ��t�. To introduce growth, add the
term �1�t���t� to the right hand side of the first equation in (8.26) and the term
�2�t���t� to the right hand side of the second equation. The solution to modified
equations (8.26) is identical to equation (8.35), except that the entire expression
on the right hand side of equation (8.35) is multiplied by exp�∫��u�du	, with the
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integral ranging from s to s+ t. Thus the total size of the model population changes
over time, but the state composition remains the same as in the no growth case.

8.4.2 Additional Two Living State Models

This subsection extends the preceding discussion in two ways. First, it
provides a solution for the discrete version of the no growth constant metabolism
model of equation (8.30) for any sequence of discrete transfer rates m21t.
Second, it derives the discrete state trajectory of a hierarchical two living state
model without assuming constant metabolism. An explicit solution for the two
living state no growth case, without constant metabolism, can be obtained by
straightforward algebra, but is quite complicated. The limiting factor in seeking
explicit IDM solutions is the rapidly increasing algebraic complexity of multi-
state survivorship/projection expressions that span multiple age intervals.

In the discrete case with intervals of one year, model rates at time t can
be arrayed in the constant metabolism, no growth rate matrix

�t =
[−�M−m21t	 m21t

M−m21t −m21t

]

(8.36)

Each column of the � matrix sums to zero. The dominant and subordinate roots
of �t , 0 and −M, are constant over time. The right eigenvector matrix of �t can
be written

Ut =
⎡

⎣
1 1

M−m21t

m21t

−1

⎤

⎦ (8.37)

where the subordinate right eigenvector is constant over time. With V = U−1,
the time t PPM is given by At = Ut exp�R� Vt, or

At =
⎡

⎣�m21t + exp�−M	�M−m21t��/M m21t�1− exp�−M	�/M

�M−m21t��1− exp�−M	�/M �M−m21t�1− exp�−M	��/M

⎤

⎦

(8.38)
Each column of At sums to one.

Finding the product matrix here is reminiscent of the situation encoun-
tered in the discrete birth-death model of subsection 7.4.1, and the present
derivation is achieved in a similar fashion. The multistate analog of the time t
birth-death product matrix mean age at childbearing, �Mt, is given by the series

1/�Mt = ��1− exp�−M	�/M��m21t + exp�−M	m21�t−1 + exp�−2M	m21�t−2 + 
 
 


+ exp�−M�t −2�	m212 + exp�−M�t −1�	m211� (8.39)
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Since M > 0, earlier terms are increasingly discounted, and 1/�Mt can be inter-
preted as a weighted function of m12t/m21t ratios that emphasizes recent behavior.
The right eigenvector matrix of product matrix P0�t = AtAt−1 
 
 
 A1 is then
given by

UPt =
[

1 1
�Mt −1 −1

]

(8.40)

The IDM product matrix dominant growth rate is always 1. Its dominant left
eigenvector is v’Mt = �1 1	/�Mt, which includes the time varying �Mt. When
the time t population given by the first column of UPt is premultiplied by the
At+1 matrix that follows from equation (8.38), consistent time t + 1 values are
obtained, confirming the projection relationship.

Turning to the hierarchical two living state model, its rate matrix can
be written

�t =
[−wt 0

wt −zt

]

(8.41)

where wt is the time t rate of transfer from state 1 to state 2, and zt is the time t
rate of movement from state 2 to the absorbing state (and thus out of the model
population). By the usual constant forces within age intervals assumption, the
survivorship/projection matrix is given by

At =
[

exp�−wt	 0
Gt exp�−zt	

]

(8.42)

where

Gt = wt�exp�−zt	− exp�−wt	�/�wt − zt�

Product matrix P0�t = At At−1 
 
 
 A1 can be found by straightforward algebra.
The result is

P0�t =
[

exp�−� wj	 0
H0�t exp�−� zj	

]

(8.43)

where the sums over j range from 1 to t and H0�t is given by

H0�t =
t∑

j=1

Gj exp�−
j−1∑

i=1

wi	 exp�−
t∑

i=j+1

zi	
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8.4.3 The Restricted No Growth IDM With Three Living States

Returning to the Schoen (2003) approach used in subsection 8.4.1, we
can specify a three living state, no growth model using the differential equations

d�1�t�/dt = −�m12�t�+m13�t�	�1�t�+m21�t��2�t�+m31�t��3�t�

d�2�t�/dt = −�m21�t�+m23�t�	�2�t�+m12�t��1�t�+m32�t��3�t�

d�3�t�/dt = −�m31�t�+m32�t�	�3�t�+m13�t��1�t�+m23�t��2�t� (8.44)

In the absence of growth the model population can be scaled without loss of
generality, hence we assume

�1�t�+�2�t�+�3�t� = 1 (8.45)

By substituting equation (8.45) in equation (8.44) to eliminate �3�t� we can write

d�1�t�/dt = −�m12�t�+m13�t�+m31�t�	�1�t�+ �m21�t�−m31�t�	�2�t�+m31�t�

d�2�t�/dt = −�m21�t�+m23�t�+m32�t�	�2�t�+ �m12�t�−m32�t�	�1�t�+m32�t�
(8.46)

To simplify the solution, we require the four bracketed sets of rates in
equation (8.46) to be constant over time and write

M1 = m12�t�+m13�t�+m31�t�

M2 = m21�t�+m23�t�+m32�t�

M3 = m21�t�−m31�t�

M4 = m12�t�−m32�t� (8.47)

Given equations (8.47), equations (8.46) lead to a second order differential
equation where rates m31 and m32 are free to vary with time. When those
rates are simple polynomial, exponential, or trigonometric functions, the differ-
ential equations can be solved by established procedures such as the Method
of Undetermined Coefficients (cf. Boyce and DiPrima 1977, Ch. 5). In addition
to preserving the IDM multiplicative property, equations (8.46) and (8.47) are
associated with models whose PPMs have constant subordinate right eigen-
vectors.

The simplest case occurs when M3 = M4 = 0. In that “diagonal” case,
the �2�t� term falls out of the equation for �1�t�, and the �1�t� term falls out of
the equation for �2�t�. That simplification occurs because the constrained rates of
movement into states 1 and 2 do not depend on the state of origin. Consequently,
each equation in (8.46) is of the form of equation (8.30) and can be solved
independently of the other.
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8.4.4 The Restricted Uniform Growth IDM With n Living States

The no growth model with n living states can be specified using differ-
ential equations of the form

d�j�t�/dt = −��imji�t�	�j�t�+�i �mij�t��i�t�	 (8.48)

where the sums range over all living states i �= j. With the total model population
equal to 1, �n�t� can be eliminated from equations (8.48), leaving �n−1� equations
of the form

d�j�t�/dt = −�mnj�t�+
n∑

i=1

mji�t�	�j�t�+
n−1∑

i=1

�mij�t�−mnj�t�	�i�t�+mnj�t�

(8.49)

where the sums exclude i = j. With n living states, �n −1� rates, i.e. the mnj�t�, can
be chosen by the analyst. Population growth that varies over time but is uniform
across all n states can also be introduced, as discussed at the end of subsection 8.4.1.
The remaining �n−1�2 rates are constrained by the �n−1�2 values of constants Mj.
There is one Mj for each bracketed expression in equation (8.49).

When the mnj are simple polynomial, exponential, or trigonometric
functions, equations (8.49) can be solved in closed form by standard techniques
for dealing with systems of linear differential equations (e.g. Ford 1955, ch. 4).
In general, for the multistate IDMs considered here, polynomial rates yield
polynomial state trajectories, exponential rates yield exponential trajectories, and
sine or cosine rate functions yield trajectories that are sine and cosine functions.

8.5 MULTISTATE HYPERSTABILITY

The hyperstable approach of subsection 7.5.1 has its analog in the multi-
state case. In this section we derive the multistate hyperstable equations from the
basic differential equation of population change, discuss the relationship between
the multi-age and multistate models, and further examine the model with two living
states. The presentation rests on the analyses in Schoen and Kim (2000) and Schoen
(2001).

8.5.1 Deriving the Multistate Hyperstable Equations

The basic differential equation underlying a multistate model with n
living states can be written

x′�t� = ��t� x�t� (8.50)
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where x(t) is an n element column vector whose jth element, xj�t� is the number
of persons in state j at time t, the prime (′) indicates differentiation with respect
to time, and ��t� is the n × n rate matrix of equation (8.1) with the elements
specific to time t. Given ��t�, the solution to equation (8.50) can be expressed
in terms of a set of linearly independent vectors x�1��t�� � � �� x�n��t� termed a
fundamental set of solutions (cf. Boyce and DiPrima, 1977, Ch 7). Choosing
such a fundamental set of vectors, we can combine them in n × n fundamental
or solution matrix X(t), which transforms equation (8.50) into

X′�t� = ��t� X�t� (8.51)

Paralleling the case when � is constant, let us write the solution matrix as

X�t� = W�t� L�t� (8.52)

where W(t) is an n ×n matrix whose first row elements are 1 and whose (i,j)th
element, i > 1, is wij�t�, and L(t) is an n ×n diagonal matrix whose jth element
is lj�t�. Matrix W can be seen as analogous to right eigenvector matrix U, and
L can be seen as analogous to PPM eigenvalue matrix �. Using equation (8.52)
in equation (8.51) and differentiating leads to

��t� = W�t�Ř�t� W−1�t�+W′�t� W−1�t� (8.53)

where Ř�t�, which can be seen as analogous to the eigenvalue matrix of �, is a
diagonal matrix defined by

Ř�t� = L′�t� L−1�t� (8.54)

The jth diagonal element of Ř�t� is denoted by řj�t�.
To specify the population projection matrix of this general model, we

let Xt be the discrete counterpart of X(t) (i.e. the corresponding discrete solution)
and write the projection equation

Xt+1 = At+1Xt (8.55)

where PPM At+1 is defined analogously to PPM A in equation (8.24). Let the
product matrix Pt�s that projects the population from time t to time t + s be
defined by

Pt�s = At+s At+s−1 
 
 
 At+1 (8.56)

Using equations (8.51), (8.55), and (8.56), we have

Pt�s = Xt+s Xt
−1 = Wt+s�Lt+sLt

−1�Wt
−1 (8.57)
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The product of the PPMs telescopes, leaving only the W matrices for times
t and t + s and the exponentiated sum of the Ř matrices over that s year
time interval. Making the reasonable assumption that the sequence of primitive
matrices A constitute an ergodic set, initial conditions are ultimately forgotten
(Cohen, 1982). Hence in the long term Pt�s is a rank one matrix and the state
composition of the model is proportional to the first column of Wt+s.

Equation (8.53) is not a new relationship, as it dates back at least to
Gantmacher (1959, Vol II, Ch XIV). However, it is an important relationship as
it affords a different perspective on multistate dynamics, and suggests defining
a matrix v(t) by

��t� = W�t�Ř�t� W−1�t� (8.58)

Matrix �(t) can be termed a “latent rate” matrix, as it would become the rate
matrix if W′�t� were zero. In other words, the time t latent rates imply a
multistate stable population identical to the model population at time t. From
knowledge of �(t) one can use equation (8.53) to generate the sequence of �(t).
However, a demographically reasonable sequence of latent rate matrices need
not yield a demographically reasonable sequence of rate matrices.

Unfortunately, from a given sequence of �(t), it is generally not possible
to find the �(t) or to solve differential equation (8.53). An additional constraining
assumption is needed, and a number of alternatives are possible. Schoen (2001)
considered the Additive Eigenvector assumption, which is briefly described in
Exercise 11. Here we focus on the Proportional Eigenvector assumption, which
can be written

W�t� = H�t� C (8.59)

where H(t) is an n × n diagonal matrix with first diagonal element h1�t� = 1
and jth diagonal element hj�t�, and C is an n × n time invariant matrix whose
first row and first column elements are equal to 1 and whose (i,j)th element,
i� j�> 1, is cij. The name attached to the assumption reflects the fact that all of
the elements in row i of latent rate eigenvector matrix W(t) are multiplied by
hi�t�, so that at every time the ratio of the (i,j)th element of W to the (i,1)st
element is cij.

Equation (8.59), along with a known ��t� and investigator determined
trajectories for 2n−1 rates, can provide a solution to equation (8.53). Substituting
the former equation into the latter yields

��t� = H�t� C Ř�t� C−1H−1�t�+H′�t� H−1�t� (8.60)

The derivatives are therefore confined to �n−1� diagonal elements of ��t�. Each
of the n2 known elements of ��t� provides one scalar equation and, disregarding
the derivatives for a moment, there are n2 unknowns: �n − 1� unknown values
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of hj�t�, n unknown values of řj�t�, and �n − 1�2 unknown values of cij. Using
2n −1 scalar equations without derivatives, the hj�t� and řj�t� can be expressed
in terms of known values of ��t� and the constants cij. Since the only unknown
values in the equations for the hj�t� are constants, the hj�t� can be differentiated
in terms of the chosen rate trajectories. The remaining �n − 1�2 equations are
then available to determine the constants cij. For times other than the initial t,
the values of the constants cij constrain �n − 1�2 elements of �. In short, given
an initial rate matrix, an investigator can choose trajectories for 2n−1 of the n2

rates and from them determine the size and state composition of the dynamic
model at every point in time. The full rate matrices are specified as part of the
solution, and the investigator needs to be satisfied that the inferred trajectories
of the other �n −1�2 rates are demographically appropriate.

8.5.2 Relationships Between the Multi-Age and Multistate Hyperstable
Models

To relate multi-age and multistate hyperstable models, note that
equations (8.55) to (8.57) and (8.59) allow the Proportional Eigenvector PPM to
be written

At = HtC �Lt Lt−1
−1�C−1 Ht−1

−1 (8.61)

The analogous multi-age hyperstable PPM, given in equation (7.94), is

At = GtF Gt−1
−1 (8.62)

Multistate diagonal adjustment matrix H parallels multi-age diagonal birth
matrix G. With constant growth, the matrix product C�Lt Lt−1

−1�C−1 corre-
sponds to constant Leslie form matrix F. The multi-age hyperstable model is
thus analogous to the multistate, with the added assumption of proportional
eigenvalues. In the multistate context, the proportional eigenvalue assumption
adds �n −1� constraints, leaving n rates to the investigator’s discretion.

The multi-age (“fixed f”) models maintain a constant proportional distri-
bution of births by age of mother. Assuming proportional eigenvalues, multistate
hyperstable models maintain a constant proportional distribution of persons by
origin state (the analog to mother’s age at birth). Thus for every state j, there is
a constant proportion of persons in that state at time t who were in any given
state i at time t − 1. The constant proportions feature is more of a restriction
in multistate models than in multi-age models, because state composition may
be more variable in the multistate case and there is no underlying biological
constraint. From a different perspective, hyperstable models with proportional
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eigenvalues impose a “destination based” criterion, in that movers from every
other living state constitute a fixed proportion of each destination state. While
often unrealistic, that sort of behavioral model is quite acceptable in some
contexts (e.g. birth-death models) and may be useful in others (e.g. analyses of
migration). In the absence of the proportional eigenvalue assumption, multistate
hyperstable models do not have the constant proportions restriction.

8.5.3 A Further Examination of the Dynamic Two Living State Model

Multistate differential equation (8.50) can be solved, using
equations (8.53) and (8.58), when the latent rates v(t) are known in functional
form. Matrices W(t) and L(t) can be found from the eigenstructure of v(t), and
X(t) can then be obtained from equation (8.52). Assuming that W(t) and L(t)
are differentiable, ��t� can be found from equations (8.53) and (8.54).

Rate matrix ��t� can be written in terms of latent rates v(t) in the two
living state case. If

��t� =
[

a�t� b�t�
c�t� d�t�

]

(8.63)

and

��t� =
[

a∗�t� b∗�t�
c∗�t� d∗�t�

]

(8.64)

then

a∗ = a

b∗ = b

c∗ = c�1+ ��a −d�/��a −d�2 +4bc	��D ln�bc/�a −d�2	�	

d∗ = d + ��a −d�2 D ln��a −d�/b	+2bc D ln�c/b	�/��a −d�2 +4bc	
(8.65)

where the time index in equation (8.65) is suppressed to simplify the notation
and D ln indicates the time derivative of the natural logarithm of the immediately
following bracketed function.

The first row elements of ��t� are the same as those of v(t). The second
row elements of ��t� involve derivatives of latent rates, and differ from the
corresponding elements of v(t) when those derivatives are not equal to zero. If
b(t) and c(t) are constant and the difference �a�t�− d�t�	 is fixed, v�t� = ��t�.
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The latent and model rates are also equal if the ratios b�t�/�a�t� − d�t�	 and
c�t�/�a�t�−d�t�	 are time invariant. When v�t� = ��t� the derivative of W(t) is
zero, and we have the Proportional Transfer Rate model discussed in section 8.2.

In the Proportional Eigenvector hyperstable model, equations (8.65)
simplify because ln�bc/�a − d�2	 is constant, hence c∗�t� = c�t�. Let ��t� be
given by

��t� =
[
�1�t�−m12�t� m21�t�

m12�t� �2�t�−m21�t�

]

(8.66)

where �j�t� is the time t rate of natural increase in state j and mij�t� is the time t
transfer rate from state i to state j. With the hyperstable functions as defined in
equations (8.53), (8.54) and (8.59), we can write

h2�t� = �m12�t�/��−c22�m21�t�	�
1/2

ř1�t� = �1�t�−m12�t�+ �m12�t�m21�t�/�−c22��
1/2

ř2�t� = �1�t�−m12�t�− �m12�t� m21�t�/�−c22��
1/2

�2�t�−m21�t� = �1�t�−m12�t�+ �1+ c22��m12�t� m21�t�/�−c22��
1/2 +D ln h2�t�

(8.67)

With �1�t�� m12�t�, and m21�t� known functions, the last equation in (8.67) uses
the initial conditions value of �2 to find c22 (which is always negative). When c22

is known, that equation is used to obtain �2�t�. Even before the value of c22 is
ascertained, the derivative of h2�t� can be found using the first equation in (8.67).

To illustrate a dynamic two living state hyperstable model, let

a�t� = a∗�t� = a

b�t� = b∗�t� = b exp�f sin��t�	

c�t� = c∗�t� = 0

d�t� = d (8.68)

If follows from either equations (8.65) or (8.67) that

d∗�t� = d − f� cos��t� (8.69)

completing the specification of ��t�. For a demographically realistic model
with two living states, �d − f�� > a. The known elements of v(t) yield its right
eigenvector matrix

W�t� =
[

1 1
�d − a�e−f sin��t�/b 0

]

(8.70)
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The eigenvalue matrix of ��t�� Ř�t�, is constant, with (1,1) element d and (2,2)
element a. Using equations (8.54) and (8.57), the long term product matrix from
time 0 to time T can be written as

P0�T = edT

[
1

�d − a�e−f sin��T�/b

]

�0 b/�d − a�	 (8.71)

Assume the time 0 population, x0, has 1 person in state 1 and �d −a�/b persons
in state 2, i.e. that x0 is a column vector whose elements are those of the first
column of W(0). Then the size and structure of the multistate model at time T
are given by

x0 = edT

[
1

�d − a�e−f sin��T�/b

]

(8.72)

Figure 8.6 shows the relative state composition (i.e. number of persons in
state 2 per person in state 1) and the total population size for the model of
equations (8.68), with parameters a = −0
015� b = 0
16� d = 0
005� � = 0
1,
and f = 0
15. Since the rates of natural increase in both states are constant
while b�t� = b∗�t� varies sinusoidally, total population size oscillates around an

Figure 8.6. Relative State Composition �w1� and Total Population Size (N) for
a Hierarchical Two Living State Proportional Eigenvector Model

Source: Schoen (2001, Figure 2).
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exponentially increasing trajectory. The state composition reflects the sinusoidal
transfer rate from state 2 to state 1, and cycles with period T = 20�. The
dynamic model thus exhibits modest fluctuations around an exponential growth
trajectory, accompanied by a state structure that varies in a pronounced sinusoidal
manner.

Dynamic multistate models can be generated from the Proportional
Eigenvector (hyperstable) assumption or directly from assumed latent rates. Both
approaches fully describe model behavior over time, and can facilitate analyses
of the sensitivity of population size and structure to changes in demographic
behavior.

8.6 FINDING RATES CONSISTENT WITH MULTISTATE POPULATION
DISTRIBUTIONS

There are many occasions when data are available on the size and
composition of a multistate population at two proximate points in time, but the
growth and transfer rates describing the population’s behavior between those time
points are unknown. Census or survey data frequently provide population distri-
butions by marital status, labor force status, place of residence, and numerous
other demographic characteristics. What is sought is a method for using those
data to estimate the prevailing rates of marriage and divorce, job entry and
exit, interregional migration, or other relevant demographic transfers. No unique
solution is possible, as with n living states there are generally n constraints on
n2 unknown rates.

Estimating rate matrices from beginning of interval and end of interval
data on population size and structure is considerably more difficult in the multi-
state case than in the multi-age case (see section 7.5). With a given base rate
matrix, the Proportional Transfer Rate model cannot fit arbitrary initial and end
of interval population distributions. Other methods discussed in this chapter
can, but in trial calculations with well behaved data they have yielded poor
results. Specifically, unsuccessful attempts were made using metastable models,
IDMs with both proportional eigenvalues and constant subordinate eigenvalues,
hyperstable models with proportional eigenvalues, and the Additive Eigenvector
assumption. Frequently, small changes in transfer rates produced substantial
changes in growth or mortality rates. It appears that none of those dynamic
models reflect how demographic rates typically change.

Two approaches do yield reasonable results: Iterative Proportional
Fitting (IPF) and the Relative State Attraction (RSA) method. Drawing on Schoen
and Jonsson (2003b), this section discusses those approaches, their conceptual
underpinnings, and the rate estimates they produce.
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8.6.1 Estimating Multistate Arrays Through Iterative Proportional Fitting

IPF, the most commonly used approach, has been known by many
names, including the Deming-Stephan procedure, the DSF procedure (referring
to Deming, Stephan, and Furness), bi- (or multi-) proportional adjustment, and
the RAS method. The procedure’s development and statistical properties have
been discussed in Bishop, Fienberg, and Holland (1975) and Willekens (1982).

To describe the IPF procedure, consider a non-negative array, D, of r
rows and c columns, whose (i, j)th element is dij. The dij can be thought of as base
values that represent prior knowledge of patterns of interaction or movement; if
there is no such prior knowledge, each dij can be set equal to 1. Let us specify
Ri� i = 1� r, as the desired sum of the ith row, and Cj� j = 1� c, as the desired sum
of the jth column. Kruithof (1937), Deming and Stephan (1940), and Furness
(1965) have shown that there exists a unique set of row factors fi� i = 1� r, and
column factors gj� j = 1� c, that produce an array D∗ with (i,j)th element

d∗
ij = fi gj dij (8.73)

that has the desired row and column totals. The d∗
ij and the row and column

factors are determined by a 3 step iterative procedure: (1) each D matrix element
in a given row is multiplied by a row factor to produce the desired row total,
and that process is repeated for every row; (2) each (adjusted) matrix element
in a given column is multiplied by a column factor to produce the desired
column total, and that process is repeated for every column; and (3) the row
and column adjustments are continued until both row and column sums equal
the desired totals. The algebraic solution is complex even for matrices of 2 rows
and 2 columns, but the IPF procedure can easily be programmed for matrices of
any size and convergence to a unique solution is assured.

The IPF procedure has many desirable properties. It can be applied to
matrices of any size, and readily accommodates “structural zeros” (i.e. values that
must be zero because a transfer between those states is not possible). Willekens
(1982) showed that IPF is equivalent to estimating an array by a log linear
model, when that model ignores higher order interactions. IPF is equivalent
to entropy maximization (Willekens, 1999). Entropy reflects the amount of
randomness (or lack of structure) in the data [cf. equations (2.17), (5.24), and
the associated discussions of entropy with regard to fertility and mortality].
The maximum entropy solution essentially finds the pattern of flows that can
be achieved in the greatest number of ways (Halli and Rao, 1992). Entropy
maximization is especially appropriate when the probability model underlying
the data is not known, as it yields estimates equivalent to those of maximum
likelihood procedures (Batty and Mackie; 1972 Bishop, Fienberg, and Holland
1975, Chs 3 and 5).
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Iterative proportional fitting has been widely used to estimate spatial
interaction flows and input-output models. In demography, it has frequently
been employed to estimate migration arrays (Chilton and Poet 1973; Nair 1985;
Philipov 1978; Willekens 1982). McFarland (1975) applied IPF to the “two
sex problem” of demography, using it to reconcile inconsistencies between
the number of marriages implied by male and female marriage rates. Overall,
reasonable results have been reported, though some migration flows involving
relatively few persons were poorly estimated.

IPF is not without some shortcomings. The IPF approach to
demographic rate estimation lacks strong empirical verification, as most
previous demographic analyses did not compare their estimated values to
known data. Conceptually, demography emphasizes the regularities that charac-
terize population behavior, while IPF maximizes randomness. For demographic
analyses, there is thus reason to consider alternative approaches based on
plausible patterns of behavior.

8.6.2 Estimating Multistate Rates By the Relative State
Attraction (RSA) Method

A simple behavioral notion is that some demographic states “attract”
people while others “repel” them. For example, if marriage is perceived as
less attractive, marriage rates are likely to decline and divorce rates are likely
to rise. Similarly, if region R is experiencing economic prosperity, that region
is apt to attract more inmigrants and experience less outmigration. While it
clearly oversimplifies reality, the attraction/repulsion notion offers a plausible,
behaviorally based criterion for adjusting demographic rates. Given that only n
constraints are available for the estimation of n2 unknown rates, any criterion
that permits estimation must impose substantial restrictions.

At the core of the RSA method, which was advanced in Schoen and
Jonsson (2003b), are adjustment factors that reflect the relative attraction of each
living state. Let mij�x� u� represent a base, or standard, rate of transfer from state
i to state j between the ages of x and x +u. Let the age-state-specific attraction
adjustment factor ki�x� u� reflect, for state i between the ages of x and x+u, the
change in state attraction from base rate conditions. The adjusted transfer rate,
m∗

ij�x� u�, is then given by

m∗
ij�x� u� = mij�x� u��kj�x� u�/ki�x� u�	 (8.74)

As the attraction of destination state j increases, the estimated rate of movement
to j increases, and as the attraction of origin state i rises, the estimated rate of exit
from i declines. The origin and destination state attraction factors thus interact
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to produce the estimated rates. The adjustment factors are symmetrical in that
equation (8.74) implies

m∗
ij�x� u� m∗

ji�x� u� = mij�x� u� mji�x� u� (8.75)

For all states i and j, the product of the two adjusted transfer rates between
those states equals the product of the two standard transfer rates. When rates are
adjusted upwards in one direction, they are adjusted downwards in the other.
Substantively, that is plausible as, for example, it is reasonable to expect an
increase in divorce rates when remarriage rates fall, and for migration into a
region to decline as migration out of that region rises. Such a pattern has often
been observed, though exceptions are common.

To implement the RSA method, flow equations incorporating rates,
derived from equations (1.46) and (1.50), are employed to link the beginning
and ending populations. Let ��t� be an n element column vector describing
the observed initial population, with jth element �j�t� representing the number
of persons in state j at time t. Vector ��t + u� is the analogous vector for the
observed end of interval population. Person-year vector L(t,u), with jth element
Lj�t� u�, represents the number of person-years lived in state j between times t and
t +u. It can be linked to the population vectors by the linear relationship

L�t� u� = �u/2����t�+��t +u�	 (8.76)

or by an alternative person-year relationship.
Base rate matrix M can describe demographic behavior in any multistate

population, and arrays the mij in a manner very similar to base rate matrix
� in equation (8.1). The (i,j)th element of M, i �= j, is again mji, but the jth
diagonal element of M is slightly different from that in equation (8.1). It is
given by

Mj = �j −mj� −�i mji (8.77)

where the sum over i spans all other living states, �j represents the fertility rate
in state j, and mj� represents the death rate in state j. The base rate matrix is best
taken from a known population whose behavior is close to that of the population
whose rates are being estimated.

Let matrix M∗�t� u� denote the array of adjusted rates. The (i,j)th
element of M∗�t� u�� i �= j, is m∗

ji�t� u� = mji�t� u��ki�t� u�/kj�t� u�	. The jth
diagonal element is

M∗
j�t� u� = �j�t� u� kj�t� u�−mj��t� u�/kj�t� u�−�im

∗
ji�t� u� (8.78)
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The fertility rate in state j is adjusted proportionally to the state j adjustment
factor, while the mortality rate in state j is adjusted inversely to that factor.
Essentially, the “dead” and “preborn” states are assumed to have adjustment
factors of 1. [Alternatively, additional data on mortality and fertility can be
brought to bear. Schoen and Jonsson (2003, note 3) discuss incorporating such
additional data.]

Adjusted rate matrix M∗�t� u� must satisfy the multistate matrix flow
equation

��t +u� = ��t�+M∗�t� u� L�t� u� (8.79)

The adjustment factors are found by solving the set of scalar equations
embodied in (8.79). Those equations are nonlinear, and even the general two
living state model gives rise to a complicated cubic solution. Numerically,
the solution can readily be found using a mathematical program such as
Maple, Mathematica, or S+. Numerous calculations involving models with 2, 3,
and 4 living states have been made, and all have yielded only one solution
where every kj�t� u� > 0. When the equations include mortality or fertility,
a numerical value for each kj�t� u� can be obtained. When there is no fertility
or mortality in the model, one equation in (8.79) is linearly dependent on the
other �n − 1�, and the solution is best obtained in terms of kj�t� u�/k1�t� u�
ratios. Exercise 12 shows the algebraic solution for the two living state model
without fertility and mortality, and demonstrates that there is only one solution
where k2�t� u�/k1�t� u� > 0.

The RSA method has a number of strengths. It is based on a simple
and reasonable behavioral premise that can readily be explained to nontech-
nical audiences. It is applicable to models of any size, easily accommodates
structural zeros, and is straightforward to apply in practice. The RSA approach
also allows some analytical options that are not available with IPF. Because
RSA is based on an interpretable behavioral assumption, it can be used to
examine scenarios expressed in terms of changes in state attraction. For example,
one can begin with an observed population and set of rates, and assume that
the attraction of given states changes in specified ways over time. RSA calcu-
lations can show the population trajectories that follow from those changes in
state attraction. Such scenarios cannot be developed using IPF, because that
procedure is not able to incorporate patterns of change based on behavioral
assumptions.

RSA has its limitations as well. As a new method, it is less familiar to
potential users and lacks a track record. Its statistical properties are not known.
Moreover, it has not been proven that there is always one and only one solution
that yields positive adjustment factors. The existence of such a unique solution
may be dependent on the choice of standard rate matrix M.
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8.6.3 Evaluating the IPF and RSA Approaches

Schoen and Jonsson (2003b) evaluated the IPF and RSA approaches by
comparing their estimates to known values. Two of their comparisons systemat-
ically changed the base rates, and a third compared an estimated rate multistate
model with one calculated from observed data. That study appears to provide
the only systematic analysis of either method where the estimates are compared
to known demographic rates.

Indirect standardization is a demographic technique that exploits the
typical regularity in demographic behavior over age (cf. Preston, Heuveline and
Guillot 2001). Starting with that idea, the first two comparisons multiplied age
schedules of observed rates, at all ages, by different factors, and examined how the
RSA and IPF estimates responded to those new base rates. That imposed pattern of
change is not related to the assumptions underlying either estimation procedure.

The first comparison was based on the two living state
(Married/Unmarried) model for Sweden Females Born 1930–34, which was
presented in Schoen (1988a, p92–3). Published life table survivorship values at
ages x and x+5 provided the initial and final population figures for both states.
The evaluation focused on ages 15–39, and fertility rate �j was set to zero.
For IPF, estimation was based on equation (8.73). For RSA, equation (8.79)
was used to determine the kj�x� 5�, and the m∗

ij�x� 5� followed from them using
equations (8.74) and (8.78).

Figure 8.7 shows 4 sets of marriage (U to M) rates: actual, estimated
by IPF, estimated by RSA, and the “standard” rates obtained by multiplying the
observed rates by factors of 0.7 and/or 1.4. In Panel A, observed rates from M
to U and from U to M were both multiplied by 0.7 and used as the standard
rates. The estimates from both procedures are reasonable at all ages and follow
the actual age pattern quite well, though they are somewhat low at ages 25
through 59. The RSA and IPF estimates are extremely similar. In Panel B, the
observed rates from M to U were multiplied by a factor of 1.4 while the observed
rates from U to M were multiplied by a factor of 0.7. Since the product of
those factors is close to 1, those adjustments are consistent with the symmetrical
relationship underlying the RSA method and expressed in equation (8.75). Panel
B shows that both estimates are extremely close to the actual values, with the
only palpable difference appearing in the large rate for the 25–29 year age group.
Panel C shows the results when both observed rates were multiplied by factors of
1.4. Both estimates remain reasonable, though there is a sizeable discrepancy at
age 25–29 and the estimates are somewhat high at ages 20 through 54. In every
case, at almost every age, the RSA and IPF estimates are nearly indistinguishable.

Estimates were also made using factors of 0.8, 0.9, 1.1, and 1.25, and
the Married to Unmarried rates were examined as well. Those results reinforced
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Figure 8.7. Actual, Estimated, and Standard Marriage Rates From a
Two-Living State (Married/Unmarried) Model Based on Rates for Swedish

Women, Cohort Born 1930–1934

Source: Schoen and Jonsson (2003b, Figure 1).

the pattern shown in Figure 8.7. Errors of estimation are quite small when the
product of the adjustment factors is close to 1, but increase when that product
diverges from 1. The age pattern of the estimates consistently parallel the actual
rates, and the RSA and IPF estimates are invariably close.

A similar evaluation considered the 4 living state (Never Married,
Presently Married, Widowed, and Divorced) marital status life table for
United States Females 1995 examined in Schoen and Standish (2001). The
adjustment factors again ranged from 0.7 to 1.4, and were applied to the first
marriage and divorce rates. The effects of different combinations of those factors
on estimated rates of first marriage, divorce, and remarriage from divorce were
then examined. Since there are no transfers to the Never Married state, estimates
of first marriage rates are consistently good. Estimates of the other two rates
followed a pattern similar to that in Figure 8.7. The closeness of the estimates
varies with the deviation of the product of the adjustment factors from 1, though
the age pattern of the estimated rates is consistently reasonable and the RSA and
IPF estimates are always very similar.
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A third evaluation was performed using the same 4 living state model. It
compared actual and estimated rates for US Females 1995 taking observed rates
for US Females 1988 as the standard. Although the 1988 rates are a reasonable
choice, U.S. age-specific marriage and divorce patterns changed significantly
over that interval. In 1995, first marriage, divorce, and remarriage rates were
substantially lower at younger ages but somewhat higher at older ages than they
were in 1988. As a result, the product of the implicit rate adjustment factors is not
close to 1. The resultant pattern of the estimated rates consequently resembles
the results obtained when the standard 1995 rates were manipulated by arbitrary
factors. First marriage rate estimates are close, while divorce and remarriage
rate estimates are somewhat off. There were large errors in estimated rates of
remarriage from divorce at ages under 25, as both transfer rates fell and there was

Table 8.1. Selected Summary Measures from Actual 1988, Actual 1995, and Estimated
1995 Female Marital Status Life Tables for the United States

Measure Actual RSA Estimated IPF Estimated
1988 1995 1995 1995

1. Proportion ever
marrying of those
surviving to age 15

.879 .887 .886 .884

2. Mean age at first
marriage

25.1 26.6 26.6 26.6

3. Proportion of
marriages ending in
divorce

.432 .425 .415 .419

4. Mean age at
divorce

34.4 37.3 35.5 35.6

5. Average duration of
a marriage

24.8 25.7 25.8 25.8

6. Remarriages
of widowed
persons per
widowhood

.063 .048 .057 .056

7. Remarriages of
divorced persons per
divorce

.723 .687 .695 .695

8. Mean age at
remarriage from
divorce

36.0 39.7 37.8 37.8

Source: (Schoen and Jonsson, 2003b, Table 4).
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a particularly large 1988–1995 decline at those ages in rates of remarriage from
divorce. Estimates from the RSA and IPF methods are again quite close, and
IPF estimates again worsen when the assumptions underlying the RSA method
are violated. Overall, Table 8.1 shows that the errors in the rate estimates do
not substantially effect most major summary measures of marriage and divorce,
though the estimated mean ages at divorce and at remarriage from divorce are
off by nearly 2 years. Both estimation methods thus seem reasonably robust to
fairly considerable departures from the behavior described by the standard rates.

In sum, there appear to be two viable approaches to estimating an
array of multistate transfer rates given the initial and end of interval populations
in each state. The IPF procedure has a stronger statistical foundation, while
the RSA approach is based on a simple and plausible behavioral assumption.
Given their conceptual and mathematical differences, it is striking that the
two approaches consistently yield very similar estimates. Both procedures are
standard dependent. Estimates worsen when the shift in the observed rate from
state i to state j, relative to its standard rate, is not offset by a shift in the opposite
direction on the part of the observed rate from state j to state i, relative to its
standard rate. Nonetheless, it is reassuring that estimates based on maximum
likelihood/entropy maximization and estimates based on changes in relative state
attraction bear a great resemblance to one another.

8.7 SUMMARY

Dynamic models without age but with more than one living state provide
new analytical opportunities and additional complexities. In cohort analyses
where time and age are the same, the proportional transfer rate (PTR) assumption
allows risks of interstate movement to be aggregated over age, so that state
composition at every age can be determined analytically. The PTR assumption is
tenable for a number of demographic behaviors, and applications of PTR models
to analyses of parity progression and marriage/divorce/remarriage are discussed.

Both the metastable and IDM approaches can be extended to the multi-
state case. A number of interesting relationships have emerged, but little applied
work using such models has been done to date. IDMs with uniform growth
across all living states are examined in some detail, with particular attention
given to the analysis of two living state models. Multistate hyperstable models
are then considered, and their relationships to “latent rates” and to birth-death
models are explored, especially in two living state models.

None of the dynamic models considered provide reasonable estimates
of multistate transfer rates over an interval from data on the beginning and end
of interval populations in each state. Two methods that do, Iterative Proportional
Fitting (IPF) and Relative State Attraction (RSA), are discussed. Despite great
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differences in their underlying assumptions, those methods consistently yield
very similar estimates.

8.8 EXERCISES

[See Appendix B for selected answers]

1. Let rate matrix � be defined as in equation (8.66). Show that the associated
population projection matrix can be written

A =
[−R1�r2−�1+m12�+R2�r1−�1+m12�

�r1−r2�

m21�R1−R2�

�r1−r2�

m12�R1−R2�

�r1−r2�

R1�r1−�1+m12�−R2�r2−�1+m12�

�r1−r2�

]

where the eigenvalues of � are r1�2 = ��1 −m12 +�2 −m21 ±���1 −m12 −�2 +
m21	

2 + 4m12m21�
1/2 	/2 and Rj = exp�n rj	, with n the length of the age/time

interval.
2. Consider a 4 living state hierarchical PTR with a � matrix in the form of

equation (8.17). Verify that the right eigenvector matrix of � is given by

U =

⎡

⎢
⎢
⎢
⎣

−ABC/�12�23�34 0 0 0
BC/�23�34 DE/�23�34 0 0
−C/�34 −E/�34 −F/�34 0

1 1 1 1

⎤

⎥
⎥
⎥
⎦

where A = ��12 −�23�� B = ��12 −�34�� C = ��12 −�45�� D = ��23 −�34��
E = ��23 −�45�, and F = ��34 −�45�.

3. Consider the hierarchical PTR parity progression model of equation (8.17) in
the special case where all transfer rates are equal. With yj�x� the proportion
in state j (parity j − 1) at age x, Z(x) the sum of the transfer rates to parity
1 up to age x, and the age 0 population consisting of one person in state 1,
show that
a. yj�x� = Zj−1�x� exp�−Z�x�	/�j−1�!
b. �j yj�x� = 1 at all ages
c. when Z�x� = �j − 1�� yj�x� is at its maximum value [e.g. the maximum

fraction of the cohort in parity 3 �j = 4� is achieved when Z�x� = 3]
d. the maximum value of yj�x� in part c is given by �j − 1�j−1 exp�−�j −

1�	/�j−1�!
4. Consider the PTR marriage/divorce/remarriage model whose state distribution

is given in equation (8.23). Show that if ��mv +�vm	 > �sm > �vm there is a
value of Z at which the proportion married attains a maximum value that is
greater than its ultimate stable value.
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5. Let the sequence of two living state PPMs At have the form

At = 
t

[
1−ut vt vt

ut�1−ut vt� ut vt

]

Show that the product matrix from time 0 to time t, M0�t = At At−1 
 
 
 A1,
can be written

M0�t = Q∗��
j�ut

where the product is taken over j from 1 to t, Q∗ is a scalar, and the transpose
of ut� ut’ = �1 ut	. Determine the form of vt’.

6. Consider the multistate metastable model of equation (8.24) when H is a
diagonal matrix whose (1,1) element is 1 and whose jth diagonal element
is hj. Let the time t dominant right eigenvector of At be ut and the time t
dominant left eigenvector of At be vt’. Verify that
a. the jth element of ut� ujt, is given by ujt = uj0 hj

t

b. the jth element of vt’� vjt, is given by vjt = vj0/hj
t

c. with 1 person in state 1 at time 0, the time t stable equivalent number of
persons in state 1 of the metastable population is

Qt = 
s
t�j ujs vj0

where the sum ranges over all states, 
s is the dominant root of metastable
synthesis matrix S, and ujs is the jth element of the dominant eigenvector
of S.
d. the metastable state-specific momentum for state x at time t is given by
the time invariant expression

�xt = ux0�j ujs vj0/uxs

e. with Qxt the contribution to Qt from state x at time t and qxt = Qxt/Qt, we
have the time invariant relationship

qxt = �uxs vx0	/�j ujs vj0

f. the time invariant value of the Kullback distance between the time t multi-
state metastable population and its associated stable population is given by

K�t� = −�x��uxs vx0	/�j ujs vj0	��ln �ux0�j ujs vj0/uxs	�
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7. In the no growth, constant metabolism model of equations (8.30) and (8.34),
show that
a. the time t Kullback distance between the model population and its associated
stable population is given by

K�t� = �1�t� ln��1�t� M/m21�t�	+�2�t� ln��2�t� M/�M−m21�t��	

b. K�t� = 0 when �1�t� = m21�t�/M, i.e. when the �1�t� and m21�t�/M curves
intersect

8. Consider the no growth, constant metabolism model of equations (8.30)
and (8.34). Show that
a. if text is the time at which an extremum of �1�t� occurs,

text = tan−1�−M/��/�

b. the first extremum of �1�t� is a maximum and occurs between times 3T/4
and T years.
c. at time tz, when �1�tz� = m21�tz�/M� tan �tz = −M/�, hence �1�tz� is at
an extremum
d. let the relative amplification, RA, the ratio of �1�text� to m21�T/4�/M be
given by

RA = �1+b sin��text�	/�1+b	

Show that implies that the maximum of �1�t� is less than the maximum of
m21�t�/M, and that the minimum of �1�t� is greater than the minimum of
m21�t�/M.

9. Consider the constant metabolism, no growth model of equation (8.36). Show
that
a. if m21�t� = m21�0� eat, as in equation (8.31), then equation (8.39) yields

1/�Mt = �m21�0� eat�1− e−M�	/�M�1− e−M−a�	

b. show that under the exponential rate function of equation (8.31),
equation (8.32) can be rewritten �2�t�/�1�t� = �Mt − 1 = �M + a −
m21�0� eat	/�m21�0� eat	
c. reconcile the result for �2�t�/�1�t� = ��Mt −1� in b with the result for �Mt

in a.
10. Consider the � matrix of equation (8.21). Show that if �sm and ��mv +�vm�

are constant over time, �t is an IDM no growth rate matrix with one
subordinate right eigenvector that varies over time.
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11. In the Additive Eigenvector approach, matrix W of equation (8.52) satisfies
the relationship

W�t� = J�t�+K

where J(t) is an n × n matrix with ones in the first row and Jh�t� = wh1�t�
as the value of all elements in the hth row, and K is a constant n × n
matrix whose first row and first column elements are all zero and whose
(i,j)th element is kij. Show that in the two living state case, the Additive
Eigenvector assumption leads to the solution in equation (8.65) with d∗ = d.

12. A non-hierarchical two living state RSA model with no fertility and no
mortality can be described by the equations

�1�t +u� = �1�t�−Z L1�t�u� m12�t�u�+L2�t�u� m21�t�u�/Z

�2�t +u� = �2�t�−L2�t�u� m21�t�u�/Z +Z L1�t�u� m12�t�u�

where Z = k2�t� u�/k1�t� u�.
a. Show that those equations lead to the quadratic solution

Z = ���1�t�−�1�t +u�	± ���1�t�−�1�t +u��2

+4 L1�t�u�m12�t�u�L2�t�u�m21�t�u�	
1/2�/�2L1�t�u�m12�t�u�	

b. Show that the positive root in the above solution always yields a positive
Z and the negative root a negative Z, proving that there is one and only
one positive solution.

13. Let Bt designate a sequence of multistate PPMs, and let

At = BtB
−1

t−1

If M0�t = At At−1 
 
 
 A1, show that

M0�t = BtB
−1

0

indicating that the product matrix of such an At sequence is readily found.
14. Let PPM At be of the form

At = Kf�t�CtK
−f�t�
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where K is a diagonal matrix with nonnegative elements, Ct a sequence of
multistate PPMs, and f(t) a specified function of time. Show that if

f�t� = t +ht2

and

Ct = C1K2h�t−1�

then M0�t = At At−1 
 
 
 A1 is given by

M0�t = Kt+h�t∧2��C1 K−1−h�t

where �t∧2� = t2. Confirm that the time varying Ct allow a variant of
the metastable approach to describe growth that does not follow a simple
exponential.

15. Consider a PPM A with dominant root �, and let W be a diagonal matrix
whose inverse is Z and whose jth diagonal element is the jth element of the
dominant right eigenvector of the PPM. Show that the product ZAW/�, an
extended Sykes transformation, yields a matrix whose rows sum to 1.



CHAPTER 9

DYNAMIC MODELS WITH MULTIPLE AGES
AND STATES

9.1 INTRODUCTION

Models of demographic renewal and of movement between different
living states have proven to be of great analytical value. Allowing vital rates to
change over time enhances that value. Combining renewal, interstate movement,
and change over time leads to dynamic models incorporating both age and
state. By generalizing the multi-age, multistate stable populations of Section 1.7,
such models integrate the multi-age approach of Chapter 7 with the multistate
emphasis of Chapter 8. They allow the three core processes of demography—
mortality, fertility, and migration—to be analyzed simultaneously in the context
of populations with changing rates. Dynamic multi-age and multistate models
are in their infancy, however, and working with them can involve both extensive
data inputs and analytical complexity.

The easiest way to approach models with multiple ages and states
is through the use of discrete matrix models. Such matrices can be written
in several ways, but we follow Feeney (1970) and use the “block Leslie”
approach introduced in equation (3.24). Whenever data are available, discrete
multi-age and state models can be projected over time using conventional
projection (or matrix multiplication) methods. That approach can be quite useful,
as in the United Nations multiregional population projections (e.g. United
Nations 2005).

In this chapter, we focus on extensions of the dynamic approaches
discussed earlier. The hyperstable model is considered first, with an application
involving the health statuses Robust and Frail. The metastable model, whose
specification requires an additional step, is then considered. As of now, no
way has been found to extend intrinsically dynamic models to the multi-age,
multistate case.

203
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9.2 THE MULTI-AGE AND STATE HYPERSTABLE (MASH) MODEL

9.2.1 Specifying the MASH Model

The hyperstable model of Subsection 7.5.1 and the PTR model of
Section 8.2 can be combined to provide a flexible platform for analyzing popula-
tions with multiple ages and states. Essentially, the MASH model uses the hyper-
stable approach to vary age-state-specific fertility and the proportional transfer
rate assumption to survive each cohort. Given the model’s complexity, it is most
conveniently expressed in terms of matrices whose elements are matrices. To
facilitate the presentation, we assume a model with three 15-year age groups and
two living states, but the approach taken can readily be applied to any number
of ages and states.

The MASH matrix that projects the time t-1 population, at all ages, to
time t, is denoted At. That PPM is expressed as the product

At = ℘t Xt � X−1
t−1 ℘−1

t−1 (9.1)

Matrix � is the base block Leslie matrix. The diagonal X matrices determine the
size and allocation of birth cohorts, and the block diagonal ℘ matrices survive
(or advance) birth cohorts over age and time. To fully define each of those
matrices, we start at the center and work outward.

Matrix � is a time invariant, stationary, block Leslie matrix. It is
analogous to the F matrix defined in equation (7.25), but with matrix elements.
Specifically,

� =
⎡

⎣
F1 F2 F3

I 0 0
0 I 0

⎤

⎦ (9.2)

where I is the 2 ×2 identity matrix, 0 a 2 ×2 matrix all of whose elements are
zero, and Fi is a 2×2 matrix of age-state-specific fertility rates, that is

Fi =
[

f i11 fi21

fi12 fi22

]

(9.3)

with fijk denoting the number of persons in age group 1, state k, at the end of
the interval per person in age group i, state j, at the beginning of the interval.
Matrix � is defined to be row stochastic, i.e. the sum of the kth row elements
over all of the Fi is 1.
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Diagonal matrix Xt reflects the number and allocation of births,
i.e. persons in the first age group, at time t and earlier times. Let the scalar xt

be the total number of persons in the first age group, in all states, at time t, and
let Gt be the 2×2 diagonal matrix

Gt =
[

1−gt 0
0 gt

]

(9.4)

where gt represents the fraction of time t births in state 2. We can then write

Xt =
⎡

⎣
xtGt 0 0

0 xt−1Gt−1 0
0 0 xt−2Gt−2

⎤

⎦ (9.5)

Block diagonal matrix ℘t projects (i.e. advances) every cohort living at time
t −1 forward to time t with respect to both survivorship and interstate transfer.
It can be written

℘t =
⎡

⎣
I 0 0
0 P2t 0
0 0 P3t P2�t−1

⎤

⎦ (9.6)

where Pjt is the age-time-specific matrix that advances those in age group j−1
at time t −1 to age group j at time t. So that behavior can be readily cumulated
over age intervals, each cohort advances subject to a specified, constant PTR
base matrix. The base matrix for the cohort in age group 1 at time t is denoted
by �, the Cyrillic letter P, with

�t =
[

p11t p21t

p12t p22t

]

(9.7)

where pjkt is the number of persons in the kth state at the end of the interval per
person in the jth state at the beginning of the interval. Using equations (9.6) and
(9.7), we can write

Pjt = ��t−j+1�
z�j�t� (9.8)

where z(j,t) reflects the scalar factor adjusting all of the underlying base transfer
rates from age group j−1 at time t −1 to age group j at time t. Equation (9.8)
is analogous to PTR equation (8.4). Using equation (9.8), the (3,3) element in
the matrix in equation (9.6) can be written

P3t P2�t−1 = ��t−2�
z�3�t�+z�2�t−1� (9.9)
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If there are more than 3 age intervals, longer products of P matrices will arise,
but every such product can be represented as a single � matrix raised to a power.
Employing equations (9.1) through (9.8), MASH PPM At can be written

At =
⎡

⎣
xtGtF1�xt−1Gt−1�

−1 xtGtF2�xt−2Gt−2�
−1P−1

2�t−1 xtGtF3�xt−3Gt−3�
−1P−1

2�t−2P−1
3�t−1

P2t 0 0
0 P3t 0

⎤

⎦

(9.10)

The long term population vector at time t has the form

xt =
⎡

⎣
gt xt

P2t gt−1 xt−1

P3t P2�t−1 gt−2 xt−2

⎤

⎦ (9.11)

where vector gt is defined by

gt =
[

1−gt

gt

]

(9.12)

It follows from equations (9.10) - (9.12) that the projection relationship holds,
i.e.

xt = At xt−1 (9.13)

The first element of xt is reproduced because F1 +F2 +F3 is row stochastic.
The form of equation (9.1) simplifies the product of the PPMs over

time. With the product matrix M0�t = At At−1� � �A1, we find

M0�t = ℘t Xt �
t X−1

0 ℘−1
0 (9.14)

In the long term, � t becomes a rank one matrix, and the effects of any arbitrary
initial population composition are reduced to a scalar factor. The dominant
eigenvalue of � is 1. The dominant right eigenvector of � � u� , is simply
a column vector of ones. (The dominant left eigenvector of � � v’� , is more
complex, and depends on the specified age-state pattern of fertility.)

The MASH model is quite general in scope, and provides consistent,
closed form expressions for the time-specific PPMs and population vectors. It
can accommodate any specified birth sequence, and allows the births of each year
to be allocated across states in any chosen manner. Cohort advancement must
satisfy the proportional transfer rate assumption, but each cohort can have its own
base transfer matrix, and a chosen adjustment factor can be applied to each age
at every time. The number of person-years lived in each state during each time
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interval can be found from the population vectors and a person-year assumption
(cf. equations (1.9) and (8.9)). The number of movements between specified
states during each interval quickly follows (cf. equation (1.10)). Nonetheless,
simplifying the product of the PPMs over time comes at a price. The fertility rates
are determined by the choices made regarding birth cohort size, state allocation,
and survivorship. The pattern of cohort advancement does not influence either
birth cohort size or state composition. The projection expression for the long
term model, xt = Atxt−1 where At is given by equation (9.1), essentially operates
by undoing previous cohort advancement, eliminating the initial size and compo-
sition of every cohort, creating unit birth cohorts via � , scaling and allocating
those cohorts, and then surviving them to time t.

9.2.2 An Illustrative Application

The MASH model has a number of potential applications. It can model a
wide range of scenarios, for example a fertility-mortality transition accompanied
by urbanization. It allows the specification and identification of distinct age,
period, and cohort effects (see Exercise 6). Wedge-period models arise when the
birth cohorts are of uniform size, and can be used to examine changing patterns
of survivorship and interstate transfer.

As an illustration, consider a population with two living health statuses,
“Robust” and “Frail”. The initial composition of each birth cohort is assumed to
change linearly from 90% Frail at times 0 and earlier to 90% Robust at times
80 and later. Given a fixed base PTR advancement matrix, death and interstate
movement rates vary over age, but age-state-specific mortality and age-state-
specific rates of interstate transfer remain constant over time. At the level of
the total population, the model describes how changing population heterogeneity
affects survivorship.

Age-specific death rates for the Robust state are taken from the Female
U.S. Decennial Life Tables for 1989–91 (National Center for Health Statistics
1997). At each age, the death rates in the Frail state are three times those
in the Robust state. Each age-specific rate of transfer from Robust to Frail is
the same as the rate from Frail to Robust, and both are set at twice the death
rate in the Robust state. As a result, the base 	 matrix has elements −3 and 2
in the first row and 2 and −5 in the second row. For each period, an associated
life expectancy at birth was calculated using death rates for each age weighted by
the period population’s health status composition at that age. In each age-specific
base fertility matrix, the two rows are equal. For F1, F2, and F3, respectively,
the elements in each row are [.15, .15], [.30, .30], and [.05, .05].

Figure 9.1 shows, for years 0 through 205, the time trajectory of the
percent Frail in the period population, the size of the period population (CAL(t)),
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Figure 9.1. Summary Measures of the Trajectory of a Robust/Frail
MASH Model

64

66

68

70

72

74

76

0 25 50 75 100 125 150 175 200

Time

C
A

L
/ P

er
io

d 
L

if
e 

E
xp

ec
ta

nc
y

0

0.25

0.5

0.75

1

P
ro

po
rt

io
n 

F
ra

il 
in

 P
er

io
d 

P
op

ul
at

io
n

CAL

Period Life
Expectancy

Proportion Frail
in Period
Population

and the period life expectancy at birth (e(0,t)). Initially, the period population is a
multistate stationary population based on birth cohorts 90% Frail. In year 205, it
is essentially a multistate population based on birth cohorts that are 90% Robust.
In the total population, the proportion Frail varies from 80.5% to 17.0%. With
birth cohorts of unit size, the total number of persons in the period population
goes from 68.22 to 74.24, while the associated period life expectancy varies from
67.79 to 74.23. Even at years 0 and 205, life expectancy does not equal CAL
because survivorship in the associated life table does not reflect the interstate
dynamics present in the multistate model. Period life expectancy increases more
rapidly during the transition from birth cohorts that are 90% Frail to those 90%
Robust because the decrease in frailty at birth immediately affects all ages in the
associated life table.

One important caveat must be noted regarding applications of the
MASH model. The form of PPM At in equation (9.10) includes inverses of
advancement matrix P. The P−1 matrices have negative elements, which makes
it possible for the first row elements of MASH PPM At to be negative. In the
example considered here, that would occur if a birth cohort were 95% Frail.
Negative first row elements are less likely to arise when birth allocations and
fertility rates are more equal across states. Negative values in At indicate that the
desired birth cohort state composition could not arise in a real population that
had the model population’s composition and the given fertility and advancement
patterns.
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9.3 THE MULTI-AGE AND STATE METASTABLE (MASM) MODEL

The MASM model is similar to the MASH model in a number of
respects, but has a population trajectory determined by a specified rate trajectory.
It is also less flexible. All cohorts have the same base PTR matrix, there is a
fixed allocation of births to states, and fertility and survivorship both change
exponentially over time. To simplify the presentation, we again focus on a three-
age, two living state model, but the approach is valid for any number of ages
and states.

The MASM matrix that projects the time t − 1 population, at all ages,
to time t, is once again denoted At. That PPM is expressed as the product

At = ℘t Bt � B−1
t ℘−1

t (9.15)

Note that all time varying matrices have the same time index. Here, to define
each of the matrices on the right hand side of equation (9.15), we start at the left
and work inward.

MASM advancement matrix ℘t is defined by

℘t =
⎡

⎣
I 0 0
0 P
+�t 0
0 0 P
+�+t��+
�

⎤

⎦ (9.16)

Base PTR advancement matrix P is a 2×2 matrix with known, constant elements,
i.e. those of matrix � in equation (9.7); parameter 
 reflects the initial (time 0)
adjustment factor associated with advancement from age group 1 to age group
2; � reflects the initial (time 0) adjustment factor associated with advancement
from age group 2 to age group 3; � gives the rate of change over time in the
adjustment factor from age group 1 to age group 2; and 
 gives the rate of
change in the adjustment factor from age group 2 to age group 3.

Diagonal birth cohort size matrix Bt is defined by

Bt =
⎡

⎣
I 0 0
0 �−1�−tI 0
0 0 �−2�−2tI

⎤

⎦ (9.17)

where again I is the identity matrix and 0 a matrix of zeroes. Parameter � reflects
the growth rate of the (implicit) initial stable population and parameter � the
rate of change over time in the stable growth implied by each At. Note that Bt

does not allocate births across states.
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Matrix � is a time invariant, block Leslie matrix analogous to the �
matrix of equation (9.2), specifically

� =
⎡

⎣
�1 �2 �3

I 0 0
0 I 0

⎤

⎦ (9.18)

where the age-state-specific MASM net maternity matrices are given by

�i =
[
�i11 �i21

�i12 �i22

]

(9.19)

with �ijk denoting the number of persons in age group 1, state k, at the end of
the interval per person in age group i, state j, at the beginning of the interval.
However, the MASM � is not row stochastic. Instead, it satisfies the renewal
condition in equation (9.22), as discussed below.

Using equations (9.15) through (9.19), the MASM PPM can be written

At =
⎡

⎣
��t �1 �2�2t �2 P−
−�t �3�3t �3 P−
−�−t��+
�

P
+�t 0 0
0 P�+�t 0

⎤

⎦ (9.20)

The MASM population vector at time t, xt, is given by

xt =
⎡

⎣
�t�t�t+1�/2 g

�t−1�t�t−1�/2 P
+�t g
�t−2��t−1��t−2�/2 P
+�+��t−1�+
t g

⎤

⎦ (9.21)

where g is the constant birth allocation vector whose form is given in
equation (9.12).

The projection relationship of equation (9.13), i.e. xt = At xt−1, must
hold. Under equations (9.20) and (9.21), that implies

g = ��1 +� �2 P−� +�3 �3 P−2�−
� g (9.22)

Equation (9.22) is a renewal relationship analogous to equation (7.38) in the
birth-death metastable model.

There are many ways to choose the elements of the �j so that
equation (9.22) holds. One reasonable way to do so is to start with the elements of
a row stochastic � , and multiply row j of every Fi by an appropriate adjustment
factor, say kj. Let adjustment matrix K be given by

K =
[

k1 0
0 k2

]

(9.23)
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with

�i = K Fi (9.24)

With n living states, equations (9.22)–(9.24) lead to n simultaneous equations
that can be solved for the n unknown kj.

To solve the 2 living state case, let 2 ×2 matrix Y with (i,j)th element
y(i,j) be defined by

Y = F1 +� F2 P−� +�3 F3 P−2�−
 (9.25)

Since KY is equal to the expression in brackets on the right hand side of
equation (9.22), it follows from equations (9.22)–(9.25) that

k1 = �1−g�/��1−g� y�1� 1�+g y�1� 2��� k2 = g/��1−g� y�2� 1�+g y�2� 2��
(9.26)

With the elements of K and thus the �i determined, the projection relationship
holds and the MASM model is fully specified.

The form of equation (9.15) makes it possible to analytically determine
product matrix M0�t = At At−1� � �A1. Writing out that product, we find

M0�t = �t�t�t+1�/2 ℘t Bt St B−1
0 ℘−1

0 (9.27)

where

S =
⎡

⎣
�1 � �2 P−� �2 �3 P−�−


I 0 0
0 � P−� 0

⎤

⎦ (9.28)

Time invariant MASM synthesis matrix S has the same characteristic equation
as matrix KY, the bracketed expression on the right hand side of equation (9.22).
Its dominant root, �s, is one (see Exercise 2), hence S does not affect the long
term rate of population growth. When ST becomes a rank one matrix, the long
term effect of initial population size and composition is again simply that of a
constant overall factor.

The MASM model can serve as a framework for analyzing patterned
change in multi-age, multistate models. For example, one can consider the three
living state marriage, divorce, and remarriage model of Subsection 8.2.4 in the
context of continually rising transfer rates and declining birth cohort sizes. With
� = � = 1, uniform birth cohorts produce a wedge-period population that can
facilitate the analysis of monotonically changing interstate transfer rates.
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9.4 SUMMARY AND OVERVIEW

9.4.1 Chapter Summary

Dynamic multi-age, multistate models are potentially valuable
demographic tools that go beyond conventional single state interval-by-interval
projection. Two approaches are described that provide closed form solutions
linking population size and age-state composition trajectories with generating
sequences of population projection matrices. Hyperstable models allow any
specified birth trajectory, with each birth cohort advancing according to its given
PTR base matrix and set of age and period influences. Metastable models allow
less flexibility, but give the age and state population trajectory produced by a
set of changing rates of birth and cohort advancement. Further development of
these models can enhance analyses that simultaneously examine changing rates
of birth, death, and interstate movement.

9.4.2 Overview and Recapitulation

This book emphasizes the implications of changing demographic
behavior. It focuses on occurrence/exposure rates of demographic events, exploits
the logical closure of population dynamics, and stresses the close relationships
between population stocks and flows.

Chapter 1 discusses the classical fixed rate models of demography, both
stationary and stable, and shows how they can be calculated using a General
Algorithm. The decrement only life table describes the life course of a cohort.
Multistate life tables extend that basic model to include movements between a
broad range of living states. The stable population model adds fertility behavior
and population renewal, while the multistate stable population can reflect the
implications of given rates of fertility, mortality, and migration, the three core
population processes.

Chapter 2 focuses on convergence to the stable state, the conditions
necessary for convergence, and the speed at which convergence takes place.
Chapter 3 considers population momentum, the change in population size
that generally accompanies a change in vital rates. In modern demographic
history, the demographic transition from high to low rates of birth and death
has produced both substantial population growth and unprecedented population
aging. Chapter 4 examines how demographic rates influence population size
and structure at the margin. Age-specific growth rates link age-specific behav-
ioral change with overall demographic summary measures. Every population, at
every time point, is always moving toward the stable population implied by its
prevailing rates.
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Chapter 5 explores the relationships between period and cohort
measures of mortality. When initial cohort size does not change over time,
changing mortality creates a new perspective, the wedge-period. Average Cohort
Life Expectancy (ACLE) provides the average longevity of all cohorts alive in
a given year. Mortality dynamics can be analyzed using a shifting Gompertz
mortality model. When death rates decline linearly over time, the model yields
simple relationships for changes in longevity and population size and structure.
Chapter 6 looks at timing effects in fertility analyses, where changes in cohort
timing are known to affect the level of period measures. Average Cohort Fertility
(ACF) can measure the average fertility of cohorts reproducing in a given year,
and shows the substantial effects timing factors had on 20th century American
fertility. Extensions of the average cohort approach reveal considerable timing
effects on past levels of nuptiality and divorce.

Chapter 7 examines birth-death (multi-age) models with changing vital
rates. If fertility varies according to an exponentiated mth degree polynomial,
the birth trajectory follows an exponentiated polynomial of degree m + 1; if
fertility fluctuates cyclically, so do births. Two approaches to finding the birth
trajectory associated with a given sequence of vital rates are examined. The
metastable approach yields a closed form solution for births when fertility is
changing exponentially. Intrinsically dynamic models (IDMs) yield solutions for
any pattern of fertility change. However, they require that the dominant roots of
the population projection matrices be multiplicative over age/time intervals, and
involve convergent infinite series. Hyperstable models, which assume a fixed
proportional distribution of births by age of mother (i.e. by origin state), can
yield sequences of Leslie matrices consistent with any given birth trajectory.
Assuming that the age-specific fertility schedule changes proportionally at all
ages can do so as well. In sum, a considerable number of tools are now available
for analyzing dynamic multi-age models.

Chapter 8 considers multistate models with changing rates. The Propor-
tional Transfer Rate (PTR) approach simplifies cohort analyses when all transfer
rates vary proportionally with age. The metastable, IDM, and hyperstable
approaches extend to the multistate case, and yield noteworthy relationships.
However, those approaches do not provide satisfactory estimates of transfer rates
from population distributions. Two procedures that do, Iterative Proportional
Fitting (IPF) and Relative State Attraction (RSA), give very similar results from
very different premises. Chapter 9 considers dynamic models with multiple ages
and states. The study of those complex models is in its early stages, though both
the hyperstable and metastable approaches can be brought to bear.

In efforts to model changing rates, it is necessary to come to grips with
the complexity embodied in the seemingly simple differential equation

x′ = 	x (9.29)
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where x represents a population, the prime indicates differentiation with respect
to time, and 	 represents demographic behavior. When those quantities are
scalars, they indicate that constant demographic behavior implies an exponential
population trajectory. With changing behavior and multiple ages or states,
solutions to equation (9.29) are generally only calculable, not expressible analyt-
ically. However, metastable models, IDMs, and hyperstable models offer special
cases where analytical solutions are possible. Other demographically plausible
and analytically tractable dynamic models undoubtedly exist, and are worthy
goals for future research.

Throughout, this book is concerned with change. We live in a rapidly
globalizing world where many nations are experiencing profound demographic
transformations, and where developing countries closely interact with post-
industrial, post-Zero Population Growth societies. In that context, it is fitting for
demographic analysis to move beyond fixed rates and structures to encompass
processes of change and confront the challenges of dynamic multi-age and multi-
state modeling.

9.5 EXERCISES

[See Appendix B for selected answers]

1. Given beginning and end of interval population distributions by age and state,
and appropriate standard values, verify that the RSA approach of Section 8.6
can be used to find fertility and interstate transfer rates by proceeding one
age group at a time.

2. Show that equation (9.22) implies that the determinant �S − I� = 0, and
therefore S has a dominant root of 1.

3. Algebraically verify
a. the MASH projection relationship in equation (9.13)
b. that, given equation (9.22), projection equation (9.13) holds in MASM

models
4. Consider a 2 living state, 3 age group MASM model where changes over age

occur at the same pace as changes over time (i.e. in equation (9.20), 
 = �
and � = 
�, and where � = � = 1.
a. Verify that the synthesis matrix is given by

S =
⎡

⎣
�1 �2 P−� �3 P−2�

I 0 0
0 P−� 0

⎤

⎦
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b. Confirm that the dominant right eigenvector of S can be written

us =
⎡

⎣
w
w

P−� w

⎤

⎦

where w is given by

w =
[

1
g/�1−g�

]

with g the fraction of births allocated to state 2. Show that in S matrices
with additional age groups the jth vector element of us is P−��j−1��j−2�/2 w.

c. Let � = 0�1� g = 0�3, and

P =
[
�8 �1
�2 �9

]

F1 =
[
�25 �05
�1 �2

]

F2 =
[

�5 �1
�15 �45

]

F3 =
[
�08 �02
�03 �07

]

Find the K matrix that yields �i values satisfying equation (9.22).
5. Consider the mixed MASH/MASM model where

At = ℘t Bt � B−1
t−1 ℘−1

t

where ℘t and � are defined as in equation (9.15), but

Bt =
⎡

⎣
xtI 0 0
0 xt−1I 0
0 0 xt−2I

⎤

⎦

and

xt =
⎡

⎣
xt g

xt−1 P
+�t g
xt−2 P
+�+��t−1�+
t g

⎤

⎦
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The model has metastable change in P, but allows any arbitrary birth sequence.
Verify that
a. the renewal condition analogous to equation (9.22) is

g = ��1 +�2 P−� +�3 P−2�−
� g

b. the synthesis matrix is

S =
⎡

⎣
�1 �2 P−� �3 P−�−


1 0 0
0 P−� 0

⎤

⎦

which has a dominant eigenvalue of 1.
c. the product matrix is

M0�t = ℘t Bt St B−1
0 ℘−1

0

6. In the MASH model of equation (9.10), with X constant, show that the z(j,t)
function can be seen as specifying age and period effects, while the relative
sizes of the elements of PTR matrix � can be seen as specifying noncollinear
cohort effects.
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MATRICES AND THEIR EIGENSTRUCTURE

This appendix provides the basic knowledge of matrix algebra needed to follow
the material in the text. The mathematical level is kept as low as possible, even
at the risk of some oversimplification. Those seeking a more thorough, though
still abbreviated, discussion are referred to the appendix in Caswell (2001). The
classic text on matrices is Gantmacher (1959). Some standard texts are Franklin
(1968) and Horn and Johnson (1985). Seneta (1981) is a more advanced text on
nonnegative matrices.

A matrix is an ordered, rectangular array of r rows and c columns. The
(i,j)th element of a matrix is the element in row i and column j. Two matrices
are equal when all of their corresponding elements are equal. Here we focus
on square matrices with � rows and � columns. We also consider vectors, or
ordered sequences. A column vector with � elements can be considered a � ×1
matrix, and a row vector with � elements can be considered a 1 ×� matrix. A
diagonal matrix has nonzero elements only on its main diagonal, i.e. the elements
where i = j.

Let A, B, and C be � ×� matrices whose (i,j)th elements are aij� bij,
and cij respectively. Addition involves summing corresponding elements. Thus
A+B = C when aij +bij = cij for all i and j. Multiplication by a scalar (ordinary
number) involves multiplying each element of the matrix by that scalar. Multi-
plication of two vectors and/or matrices is more complicated. The product of
two matrices is only defined when the number of rows in the first (leftmost)
matrix is equal to the number of columns in the second. If AB = C, then

cij = � aik bkj (A.1)

where the sum over k goes from 1 to �. Thus the (i,j)th element of AB is found
by summing the products obtained from multiplying corresponding elements in
the ith row of A and the jth column of B.

Matrix algebra satisfies the Associative Law �A+B = B+A� and the
Distributive Law �A�B + C� = AB + AC�. However matrix multiplication does
not follow the Commutative Law (i.e. AB is not generally equal to BA). Matrix
multiplication is commutative, however if both matrices are diagonal, that is
both matrices have all of their off diagonal elements equal to zero.
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Matrix division is accomplished by inversion. The inverse of matrix A,
denoted A−1, is a matrix such that

A−1 A = A A−1 = I (A.2)

where I, the identity matrix, is a � ×� diagonal matrix whose diagonal elements
are 1. Multiplying a matrix by I leaves that matrix unchanged. Only square
matrices with nonzero determinants can be inverted. The determinant is a unique
scalar associated with a matrix, and matrices with a determinant of zero are
termed “singular”. Most of the demographic matrices we deal with are non-
singular and can be inverted. The inverse of a diagonal matrix is a diagonal
matrix whose ith diagonal element is the reciprocal of the ith diagonal element
of the original matrix.

Eigenstructure refers to a unique decomposition possible with non-
singular, square matrices. The eigenstructure of � × � population projection
matrix A can be written

A = U�V (A.3)

where U is a � ×� matrix whose first row elements are equal to 1, 	 is a � ×�
diagonal matrix, and V is the inverse of U.

Matrix �, whose ith diagonal element is 
i, is the matrix of eigenvalues
(also called roots or characteristic values or latent values). The matrix is typically
written with 
1 being the largest root, 
2 the second largest, and so on. The 
i

are the solutions to the equation

�A−
I� = 0 (A.4)

where the vertical bars in equation (A.4) indicate the determinant. Equation (A.4),
which is known as the characteristic equation of A, is a system of � equations
in 
, giving rise to � roots. For the most part, we assume that the roots are
distinct, as is generally the case in demography. When � > 2, at least some
roots are usually complex conjugates (i.e. expressions of the form ��+�i� and
��−�i�, where � and � are real numbers and i is the square root of minus one).
Demographically, the roots are growth rates. The dominant root, 
1, is associated
with the dominant or stable component of the population. From equation (1.44),

1 = exp�n r1�, where r1 is Lotka’s r and n is the length of the interval. At
stability, the dominant component is the entire population. The subordinate 
i

are the growth rates of subordinate components, which by definition grow more
slowly. The sum of the roots of a matrix is known as its trace, and is equal to
the sum of the diagonal elements of the matrix.
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Each column of U represents the relative age composition of one
population component. The leftmost column vector, u1, represents the number of
persons in each age group of the stable population relative to the number in the
first age group. Succeeding columns of U represent the relative age compositions
of subordinate components. The u vectors, the right eigenvectors of A, are found
by solving the basic eigenstructure equation


 u = A u (A.5)

which is identical in form to stable population projection equation (1.45).
Equation (A.5) can be interpreted as indicating that projecting any right eigen-
vector ahead one interval is equivalent to multiplying that eigenvector by its
eigenvalue. The eigenstructure renders the matrix multiplication of a vector
equivalent to a scalar multiplication.

Matrix V, the inverse of U, is demographically meaningful in its own
right. Each row of V is a left eigenvector, defined by the equation


 v’ = v’A (A.6)

where the prime (‘) indicates a transpose, i.e. that �×1 column vector v becomes
a 1×� row vector. The first row of V represents the dominant left eigenvector
and contains reproductive contributions. Specifically, the ith row element gives
the contribution of each person in the ith category of the population being
projected to the first category of the ultimate stable population. In the Leslie
(birth-death) matrix, v1j, the jth element of the dominant left eigenvector, is a
contribution to future births. It gives the contribution of each person in the jth
age group to the stable equivalent number of births, that is the number of births
in the ultimate stable population discounted for growth to the initial time point.
Eigenvectors are defined only up to a scalar factor. Conventionally, they are
scaled so that v’u = 1.

For the most part, finding the eigenstructure of a matrix is best
left to a mathematical computer package (such as MATLAB, MAPLE, or
MATHEMATICA). The eigenstructure of a 2 × 2 matrix is fairly simple,
however, and worth examining. Let our matrix be population projection matrix
A. Then we have

A =
[

a b
c d

]

(A.7)

and

� =
[

1 0
0 
2

]

(A.8)
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where 
1�2 = 
a +d ± ��a −d�2 +4bc��5�/2. The eigenvector matrices are

U =
[

1 1
c/�
1 −d� c/�
2 −d�

]

(A.9)

and

V =
[


1 −d −�
1 −d��
2 −d�/c
−�
2 −d� �
1 −d��
2 −d�/c

]


1/�
1 −
2�� (A.10)

The determinant of A is �ad − bc�, and the trace is �a + d�. In the 2 × 2 Leslie
matrix, d = 0, and the eigenvector matrix elements simplify.

The use of eigenstructure can simplify functional transformations of
matrices. Consider the rate matrix � = URV. The exponential of that rate matrix
is population projection matrix A, which, for a unit projection interval, can be
written

A = exp�URV� = U exp�R� V (A.11)

where exp�R� is defined as �. However, the Leslie matrix is a PPM that does
not have a well defined underlying rate matrix because its states are based on
age. Employing eigenstructure is useful in raising a matrix to a power. Since
VU = I, the matrix A2 = AA can be written

A2 = �U�V��U�V� = U�2V

and in general

At = U�tV (A.12)
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SELECTED ANSWERS TO EXERCISES

CHAPTER 1: POPULATION MODELS WITH CONSTANT RATES

1. M must exceed 1 as there is one death for less than a person-year of life.
The value of � must become infinite to drive survivorship to zero.

2. EPL = �T�15�−T�65��/��15�
3. e�90� = a�90��� = 1/M�90���
4. a. � = 1/�	−x� b. e�0� = 	/2
6. It follows from ��x� = ��i��x�+��−i��x�
7. D T�65�/�T�20�−T�65��
9. Use equations (1.32) and (1.33) and b = r +d to iteratively solve for r. The

relationship between the probabilities of survival and the crude death rate
imply r.

12. a0 = 17/35� a1 = 12/35� a2 = −3/35, and the smoothed value is 18.286.
14. Scale the observed population so that the number in the first age group is 1.

Then the number in the ith age group, xi = pi

i−1 = s1s2 � � � si−1


i−1. With �
age groups, those relationships lead to � −1 equations of the form si


−1 =
xi+1/xi

2. Select the largest ratio of x’s, and set the associated si = 1. Then
use the � − 1 equations to find 
 and the remaining s values. The solution
is not unique as any nonzero scalar multiple will satisfy the equations.

CHAPTER 2: CONVERGENCE TO STABILITY

2. a. It is reducible. b. The first row elements are (89 0 55 0).
3. a. Cycle length 2, roots 1 and −1. b. Cycle length 3, roots are the cube roots

of 1, i.e. 1, −1/2[1 ±i(3)1/2]
4. The t-th power of the PPM is

[
e
t 0

�AB�e
t−e�t�

�
−��
e�t

]

8. It follows directly from ex ≈ 1+x.
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10. At time 15, let the number of births, adjusted for mortality, be the number
in the third age group of the desired stable population at time 45. At time
30, let the number of births, adjusted for mortality, be the number in the
second age group of the desired stable population at time 45. At time 45, let
the number of births be that of the desired stable population, and the stable
composition is in place through age 45.

CHAPTER 3: POPULATION MOMENTUM

4c. The initial population under age 30 is 1.8333. In a the ultimate population
under 30 is 1.82689, and in b it is 1.83642. Equation (2.27) gives Q =
0�91667, or an ultimate population under 30 of 1.8333.

5. The projected population can grow to infinity. One way to demonstrate that
is to project by 3 PPMs that are repeated indefinitely. Let the first of those
PPMs be

⎡

⎣
0 0 4
�5 0 0
0 �5 0

⎤

⎦

and let the second and third PPMs be
⎡

⎣
1 0 0
1 0 0
0 1 0

⎤

⎦

Then after the first cycle of projection by the 3 PPMs, there are 4 persons at
each age. After the second cycle there are 42, and after the nth there are 4n.

6. No, because it would produce negative elements in B, e.g. element (3,3).

CHAPTER 4: DEMOGRAPHIC CHANGE AT THE MARGIN

1. From equation (4.2), p∗�x� = p�x�e−cx. The age composition does not
change because r∗ = r − c.

2. It follows because equation (4.9) yields �p�x�/p�x� = ln�p�x�k� ≈ p�x�k −1,
which is the result given by equation (4.4).

3. The maximum of 5/8 occurs when r = 0.
5. Integrate the series for A∗ and relate to equation (4.28).

6–9. See Schoen and Kim (1992)
10. The relationship holds as q11 = 1/�1 + x�1 − a��� q12 = x�1 − a�/�1 + x

�1−a��� q21 = 1/�1−x�, and q22 = −x/�1−x� while �11 = �1+x�1−a��/
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�2 − a���12 = �1 + x�1 − a��/�x�2 − a��, �21 = �1 − x��1 − a�/
�2 − a�, and �22 = −�1−x�/�x�2 − a��, remembering that �21 is the (1,2)
element of matrix �.

CHAPTER 5: LONGEVITY AND DYNAMIC MORTALITY

1. Expand the square in ∫�x − e�0��2d�x� dx, and use integration by parts to
simplify the integral with x2.

2. In the wedge-period context, Q = 1 and b = 1/CAL�t�.
8. With �LT�x� representing life table survivorship to age x and dLT�x� repre-

senting the number of deaths between ages x and x+n in that life table, we
seek the age where dLT�x� is a maximum. Differentiation yields

d dLT�x�/dx = dLT�x��d ln ��x�/dx −��x��

For dLT�x� �= 0, setting the derivative equal to zero gives d ln ��x�/dx =
��x�.

10. a. 1.8189 b. 1.9095 c. 2 d. 2.4513

CHAPTER 6: TIMING EFFECTS ON FERTILITY, MARRIAGE,
AND DIVORCE

5. Assume that the time t composition of the model population is that of the
stable population implied by time t rates. With Lotka’s r less than 0 and an
absence of mortality below the highest age of reproduction ���, the number
of persons in the stable population increases with age through �. A shift in the
fertility curve to higher ages would thus increase the number of births, though
the number of births in that stable population is decreasing over time. That
contradiction indicates that the number of persons in the dynamic population
must rise more slowly with age, and thus the dynamic population declines at
a rate that is less negative than the stable rate.

6. The population does not grow but adopts a constant birth trajectory.

CHAPTER 7: DYNAMIC BIRTH-DEATH (MULTI-AGE) MODELS

3b. That is usually a reasonable approximation.
5. It follows from equating proportions, as in equation (4.24). Here

exp�−rB4�p�B4� f�B4�/1 = exp�−B4�r + s�+hB2
4/2�p�B4� f�B4�/1
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8. For Pattern 2, �A = 222/3, �B = 27� Q = 0�83951, and the initial and final
numbers under age 30 are 1.66667 and 1.67901. For Pattern 4, �A = 241/3,
�B = 30� Q = 0�81111, and the initial and final numbers under age 30 are
1.66667 and 1.62222.

12c. The value of 
s is constant and cannot be made equal to the k−j�j−1�/2� j=1,n.

CHAPTER 8: DYNAMIC MULTISTABLE MODELS

3. The sum of the yj�x� as j goes from 0 to � is 1 because it is equal to exp�−Z�
times a power series that sums to exp�Z�. The maximum of yj�x� is found
by setting its derivative with respect to Z equal to zero.

4. Setting dym/dZ = 0 yields the relationship exp�−Z��mv + �vm − �sm�� =
��sm −�vm�/�mv.

5. Each PPM At is rank 1, i.e. row and column proportional. As a result,
At = 
t ut vt’, where vt’ = �1−utvt� vt� and vt is a scalar reproductive value.
It follows that vt’ut−1 is a scalar while vt’ut = 1. PPMs of the form of At

represent a readily soluble dynamic model, but the form of At is quite unusual
for a demographic PPM.

9c. Because equation (8.31) is for a continuous model and equation (8.39) for a
discrete model, they are not strictly comparable. However, using the linear
approximation e−x ≈ 1−x in part a yields the solution in part b.

CHAPTER 9: DYNAMIC MODELS WITH MULTIPLE AGES AND STATES

4c. k1 = 1�094074� k2 = 0�738281



APPENDIX C

INDEX OF THE PRINCIPAL SYMBOLS USED

Symbol Brief Description
Introduced

in Equation(s)

Boldface a matrix (or vector) (1.42)
(x, n) following a function, age group x to x +n (1.2)
a (x, n) number of years lived in an interval by persons

dying in the interval (Chiang’s a) (1.16)
A mean age at childbearing (7.5)
A∗ stable population mean age at childbearing (1.37)
AM1 stable population mean age at first marriage (4.27)
AN observed population mean age at childbearing after (3.7)
ACF Average Cohort Fertility (6.9)
ACLE Average Cohort Life Expectancy (5.1)
A population projection matrix (PPM) (1.42)
b intrinsic birth rate (1.33)
b Gompertz parameter (5.2)
bi projection matrix first row fertility element (1.41)
B (t) number of births (1.27)
BR crude birth rate of a data population (3.5)
B block Leslie age-state PPM (3.24)
c (x) proportion of the population at age x last

birthday (1.35)
ci�x� proportion of the population attaining age x in

state i (1.79)
cN�x� t� population proportion at age x, time t (4.35)
cov (X,Y) covariance between variables X and Y (4.41)
CL�0� G� fraction of life table population between ages 0

and G (3.7)
CN�0� G� fraction of observed population between ages 0

and G (3.7)

(Continued)

225



226 APPENDIX C

(Continued)

Symbol Brief Description
Introduced

in Equation(s)

CAL (t) size of wedge-period population (5.1)
d (x,n) life table decrement (1.7)
dij�x� n� number of decrements from state i to state j at

ages (x,n)
(1.46)

d (x,n) multistate matrix of decrements (1.55)
D (x,n) a data event or decrement (1.1)
e (x) an expectation of life (1.11)
e (x,t) life expectancy at age x under rates of time t (5.12)
ec�0� t� life expectancy of cohort born year t (5.1)
ei�x� population based life expectancy in state i (1.71)
f (x) [f(x,n)] fertility rate at age x [over (x,n) interval] (1.27)
F30 ratio of initial to ultimate populations under age 30 (3.14)
F (t) shift in � from 0 to t (5.6)
F base Leslie matrix (7.25)
� MASH stationary block Leslie matrix (9.1)
g(x) an age graded function (4.13), (4.37)
g(t) number of births at time t before (7.1)
gt MASH/MASM birth allocation vector (9.12)
G a population summary measure (4.13), (4.37)
Gt diagonal matrix of births at (and before) time t (7.94)
GL cohort proportion with characteristic g (4.16)
GP stable population proportion with characteristic g (4.15)
h∗ ultimate level of the force of convergence (2.15)
h (t) force of convergence at time t (2.14)
H entropy (2.17), (5.24)
i square root of −1 (2.5)
I identity matrix (A.2)
J (t) shift in force of mortality from 0 to t (5.10)
k metastable growth factor (7.23)
kj�x� u� relative state attraction factor (8.74)
K (t) Kullback distance at time t (2.11)
ln natural logarithm above (1.5)
��x� number of survivors to exact age x (1.3)
�c�x� t −x� survivors to exact age x in cohort born time t-x (5.1)
�i�x� number of survivors to exact age x in state i (1.46)
�LT�x� t� survivors to exact age x in life table for time t (5.11)
��x +n� multistate survivorship matrix at age x +n (1.54)
L (x,n) life table population/number of person-years at

ages (x,n) (1.9)
Li�x� n� life table population in state i at ages (x,n) (1.52)
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L (x,n) multistate person-year matrix (1.61)
L (t) eigenvalue matrix of multistate PPM (8.52), (8.54)
m (x,n) a model occurrence/exposure rate (1.10)
mij �x� n� model rate of transfer from state i to state j at

ages (x,n) (1.50)
m(x,n) multistate matrix of model rates (1.60)
MAC Mean Age at Childbearing (6.3)
M (x,n) a data occurrence/exposure rate (1.1)
Mij�x� n� data rate of transfer from state i to state j at ages

(x,n) (1.50)
M (t) modal age at death at time t (5.37)
M1 stable population number of first marriages (4.27)
M (x,n) multistate data rate matrix (1.59)
M0�t product matrix that projects from time 0 to time t (7.26)
n (x) stable population number at age x (4.17)
N (x,t) number of persons age x at time t (2.7)
Njt number of persons in age group j at time t (4.54)
Nijt number in the ith component, jth age group, at

time t (4.55)
NRR �R0� Net Reproduction Rate (1.30)
p (x) probability of surviving from birth to exact age x (1.27)
pi probability of surviving from age group 1 to age

group i (1.43)
pi�x� n� multistate p-probability of survival (1.47)
P (x,n) a data population between the ages of x and x+n (1.1)
Pjt MASH/MASM cohort advancement matrix (9.6)
P�x� w�� P0�t product of population projection matrices (8.5), (8.25)
℘t MASH/MASM survivorship matrix (9.1)
PEM∗ adjusted proportion ever marrying (6.20)
PMED proportion of marriages ending in divorce (6.21)
PPM population projection matrix (1.41), (2.1)
q (x,n) life table probability of decrement (1.8)
q (x,t) proportional contribution of the population age

x at time t to stable equivalent births Q(t) (2.9)
qijt contribution of the jth age group, ith component

to the time t stable equivalent Qit (4.63)
qt matrix of qijt (4.66)
Q stable equivalent number [often of births] (1.28), (2.4)
Qit stable equivalent of component i at time t (4.55)
r Lotka’s intrinsic stable rate of growth (1.29)
r (x,t) growth of population age x at time t (4.18)
ro change in the timing of fertility of order o (6.3)

(Continued)
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(Continued)

Symbol Brief Description
Introduced

in Equation(s)

rjt growth rate of the jth age group between times
t −1 and t (4.54)

rt vector of age-specific growth rates (4.62)
řj�t� jth eigenvalue of latent rate matrix � after (8.54)
R0 Net Reproduction Rate (NRR) (1.30)
Ri ith moment of a distribution (1.30)
R (t) NRR at time t (7.3)
R eigenvalue matrix of � (2.38), (A.11)
RB�t� rate of increase in births at time t (4.33)
RZ rate of increase in Z (4.40)
RZg rate of increase in Z times g (4.40)
Ř�t� Diagonal matrix of eigenvalues of latent rate

matrix ��t� (8.54)
s subordinate eigenvalue of � (2.33)
si projection matrix survivorship element (1.41)
s (x) stable reproductive value density distribution (2.10)
S (t) offset that shifts � to � (5.8)
S (x,t) stable equivalent population age x at time t (2.12)
S (x,n) matrix of survivorship proportions (1.69)
S metastable synthesis matrix (7.28)
T(x) life table population over age x (1.11)
T∗�0� total number of persons in a stable population (1.32)
T Lotka’s length of generation (1.38)
TI Timing Index (6.8), (6.18)
TFR Total Fertility Rate (6.1)
TFR∗ Bongaarts-Feeney adjusted TFR (6.5)
uij jth element of ith right eigenvector (4.55)
u dominant right eigenvector of A (1.45), (A.5)
U matrix of right eigenvectors of A (2.1), (A.3)
VL stationary population mean age of reproductivity (3.8)
v (x) reproductive contribution function (2.8)
vij jth element of ith left eigenvector (4.56)
v’ dominant left (row) eigenvector of A (2.3), (A.6)
V matrix of left eigenvectors of A (2.1), (A.3)
W (t) right eigenvector matrix of latent rate matrix ��t� (8.52)
xjt jth element of the time t population vector (2.25)
xt population vector, time t (1.42)
Xt MASH birth matrix (9.1)
X (t) fundamental matrix of multistate solution vectors (8.51)
XZ crossover point for stable and stationary Z densities (4.26)
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yj number of persons in state j of a multistate
population (8.6)

Yj�x� number of person-years lived in state j at age x (8.9)
Yg mean age of the population with characteristic g (4.14)
YGL stationary population mean age with

characteristic g (4.15)
YL	 stationary population mean age (3.8)
YN mean age of observed population (4.44)
Yr mean age of a stable population (1.36), (3.10)
Y
 population mean age at death Ch.4/Ex.6,(5.16)
z (x,n) level of rates factor (8.2)
Z (x) sum of level factors z (x,n) up to age x (8.7)
Z (x,t) a demographic variable that changes according to

r (x,t) (4.37)
��x� t� Fraction of experience of the cohort born year t-x

at age x
(6.7), (6.17)

� dimension of a PPM (1.41)
��t� gap between period and cohort life expectancy at

time t
(5.33)

�E Euler’s constant, approx. 0.577215 (5.31)

 absorbing or “dead” state (2.28)

 change operator (4.9)
∈ij �x� status based life expectancy (1.72)

i stable population mean age at childbearing,

component i (4.57)
� stable population growth parameter, dominant

root of A (1.44)
�f forward lag at time t (5.35)
�i ith eigenvector of a PPM (4.55)
�s dominant eigenvalue of synthesis matrix S (7.29)
� vector of component-specific eigenvalues (4.62)
� diagonal matrix of eigenvalues of A (2.1), (A.3)
� mean age of net maternity/childbearing (1.31), (7.63)
��x� force of mortality (or other decrement) (1.3)
�ij�x� force of decrement from state i to state j at age x (1.51)
�3 third cumulant of the cohort birth distribution (4.28)
� �x� t� proportional change over age (4.21), (5.3)
� �t� matrix of latent rates (8.58)
�ij�x� n� multistate �-probability of survival (1.49)
��x� n� multistate matrix of �-probabilities (1.57)
�t MASH base PTR matrix (Cyrillic P) (9.7)
� multistate model rate of natural increase (3.21)
�2 variance of cohort net maternity (1.31)

(Continued)
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(Continued)

Symbol Brief Description
Introduced

in Equation(s)

�2
Y variance of stationary population age distribution (3.10)

��x� t� net maternity rate at age x and time t (7.1)
� MASM block Leslie matrix (9.15)
� population momentum (3.1)
��x� t� momentum of age x at time t (4.49)
�ijt momentum of age group j, component i, at time t (4.59)
	t matrix of �ijt (4.59)
� infinity (1.20)
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p-probabilities, 14–15
�-probabilities, 15

Probability a Marriage Ends in Divorce
(PMED), 118

Product matrix, 133, 144, 154, 163, 173, 179,
187, 198 (#5), 206, 211

Proportion Ever Marrying (PEM), 114
Proportional Transfer Rate (PTR) models,

161–172, 173, 197 (#3)
age-state composition, 163–164
base rate matrix, 162

sensitivity analyses, 168–170
eigenstructure relationships, 163
hierarchical models, 166–170
life course schematic, 165, 168, 171–173
marital status models, 170–172, 173
MASH model, 204–206
mortality options, 164
parity status, 167–170
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proportionalized (stylized) rates, 167,

171–172
special case of equal transfer rates, 197 (#3)
two living states, 165–166

Q

Quadratic Hyperstable (QH) model, see
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further relationships, 89–91
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convergence to, 27–29
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in models, 107
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Vitality assumption, 8
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