

Beginning Java™
Google App Engine

■ ■ ■

Kyle Roche
Jeff Douglas

Beginning Java™ Google App Engine

Copyright © 2009 by Kyle Roche and Jeff Douglas

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2553-9

ISBN-13 (electronic): 978-1-4302-2554-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Tom Welsh
Technical Reviewer: Kunal Mittal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Jill Steinberg
Composition: ContentWorks, Inc.
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

There’s an Irish saying . . . no man can prosper without his woman’s leave. —KR

To Cathy, who has touched not only my heart,
but the hearts of so many that will never remember her. I love you. —JD

v

Contents at a Glance

Foreword ... xiii

About the Authors... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Introduction... xxi

Chapter 1: Beginning Google App Engine for Java ..1

Chapter 2: Introduction to App Engine ...7

Chapter 3: Getting Started with Google App Engine for Java25

Chapter 4: Servlet Container and Frameworks ..43

Chapter 5: Developing Your Application...89

Chapter 6: Authenticating Users...123

Chapter 7: Using the App Engine Datastore..135

Chapter 8: App Engine Services ...169

Chapter 9: Administration and Integration...197

Index...221

vii

Contents

Foreword ... xiii

About the Authors... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Introduction... xxi

Chapter 1: Beginning Google App Engine for Java ..1

Cloud Computing and App Engine ... 1

Find More Time to Innovate.. 4

What You’ll Learn in This Book... 5

Summary ... 6

Chapter 2: Introduction to App Engine ...7

App Engine Architecture.. 7

Being a Good Neighbor With Quotas.. 9

Billable and Fixed Quotas ... 10

Detailed Resource Quotas .. 12

Components of an App Engine Application.. 22

Summary ... 23

Chapter 3: Getting Started with Google App Engine for Java25

Where Do We Start? .. 25

Create Your First App Engine Project... 30

Local Development Server... 37

Summary ... 42

■ CONTENTS

viii

Chapter 4: Servlet Container and Frameworks ..43

Choosing a Framework.. 43

Servlets and JavaServer Pages ... 46

Views .. 46

Model.. 59

Controller .. 64

Deployment Descriptor ... 69

PersistenceManager... 69

Spring MVC.. 70

Server Configuration... 71

Views .. 72

Adobe Flex ... 74

Server Configuration... 76

Client-Side Code... 79

Server-Side Code.. 83

Summary ... 88

Chapter 5: Developing Your Application...89

Functional Specifications .. 89

Timecard UI Mock-up ... 90

Technical Specifications.. 91

Authentication .. 91

Presentation ... 91

Persistence... 92

Using Google Web Toolkit .. 92

Creating Your Project.. 93

Running the Initial Starter Application.. 96

Developing Your Application.. 97

Required Imports .. 101

Coding Your UI .. 102

 ■ CONTENTS

ix

Adding Your Styles ... 107

Modifying Your Hosted Page .. 107

Running Your Application ... 108

Handling Client-Side Events ... 108

Summary ... 121

Chapter 6: Authenticating Users...123

Introducing Google Accounts... 123

Restricting Access to Resources .. 124

Users API .. 125

Development Mode... 126

Adding Authentication for Your Application... 127

LoginInfo Class ... 128

LoginService and LoginServiceAsync Interfaces.. 129

Google Accounts Login Implementation ... 130

Modifying the Deployment Descriptor .. 131

Modifying the User Interface .. 131

Summary ... 133

Chapter 7: Using the App Engine Datastore..135

Introducing the App Engine Datastore... 135

Working with Entities... 136

Classes and Fields.. 137

CRUDing Entities... 143

Performing Queries with JDOQL.. 145

Filtering Queries ... 146

Sorting Queries... 147

Query Ranges ... 147

Using Indexes .. 147

Building Indexes ... 148

Creating Indexes In Development Mode... 148

■ CONTENTS

x

Using Transactions .. 149

Finishing Up Your Application.. 150

Making Remote Procedure Calls with GWT RPC... 150

Creating Your Data Service... 156

Modifying the Deployment Descriptor .. 161

Invoking the Service from the GWT Client .. 161

Displaying Timecard Entries... 166

Summary ... 168

Chapter 8: App Engine Services ...169

Setting up the Project.. 169

Memcache Service .. 171

URL Fetch Service ... 175

Images Service .. 178

Creating the Java Classes .. 179

Writing the ImageObject Class ... 180

Writing the PersistenceManagerFactory Class... 182

Writing the ImageSource Class .. 182

Writing the ImageTransform Class ... 183

Completing the Application .. 186

Testing the Service... 187

Mail API.. 189

XMPP Service .. 192

Summary ... 195

Chapter 9: Administration and Integration...197

Managing Your App Engine Application... 197

The Application Dashboard... 199

Application Versioning.. 203

Analyzing Log Files... 204

 ■ CONTENTS

xi

Integration ... 206

Integration with Google Wave... 206

Integration with Salesforce.com... 214

Summary ... 218

Index...221

xiii

Foreword

You’ve just picked up a book on Google App Engine. Welcome to the ground floor of a
critical component in our industry’s shift to cloud computing.

It’s not an exaggeration to say that the development of consumer and enterprise
applications has been completely transformed by the emergence of cloud computing
over the past several years. First came a revolution in application delivery—the idea
that applications could be delivered as a service over the Internet, without any
software to install or maintain. Then came a revolution in application
infrastructure—the idea that developers could consume raw computing and storage
capabilities as a service, without any physical infrastructure to deploy or maintain.

Now we’re seeing a revolution in application platforms—giving developers the
ability to build applications using higher-level building blocks, without needing to
know about the underlying physical machine. App Engine is Google’s entry into this
world of on-demand application development and deployment, and represents a
major contribution in this shift to the cloud. Here’s why App Engine is so important:

1. Development without worrying about deployment infrastructure
Most application development projects require a lot of time for planning the
development and deployment stack. Which app-server container, database server,
and load balancer should you use? Do you have enough licenses to deploy? Is your
app going to share an existing database or do you need to spin up a new instance?
How will you back up and monitor the performance of the app? Do you have enough
CPU, data, and network resources to adequately scale your app? All these questions
had to be answered before you could write a single line of code. Google App Engine
changes all that. Google provides a complete development and deployment stack,
and you can start developing with no up-front cost. Google does the heavy lifting,
allowing you to focus on the specific needs of your users.

2. Single development environment, end to end
Database development, application development, and UI development have
traditionally been done in completely different environments, often by completely
different development teams. With App Engine’s integration with Google Web
Toolkit, you can download the SDK, install the Eclipse plug-in, and start to code your
entire application in a single environment. You can build your UI directly in Java,

■ FOREWORD

xiv

connect it to App Engine Java Data Objects, and debug everything end to end, all
from within Eclipse.

3. Instant deployment, cloud scalability
Traditional application developers allocate up to one third of their total development
time to deployment into a production environment. Your first App Engine app will
deploy from your local development environment to Google's world-class, cloud-
scale production infrastructure, all with a press of a button. And your application can
scale from its first user to its millionth user with complete elasticity, literally running
on the same infrastructure as the highest traffic sites on the Internet.

The implications?
Given Google App Engine's new capabilities, we've been excited to add it to the set of
tools that we use at Appirio to help our enterprise customers do more with the cloud.
App Engine fills a recognized gulf between the two leading cloud platforms, Force.com
and Amazon Web Services. Force.com is a rich business application platform with built-
in business objects that allow applications to inherit a broad swath of functionality. But
some applications don't require this functionality and would benefit from having greater
control and direct access to "lower levels" of the platform. At the other end of the
spectrum, Amazon Web Services, in particular S3 and EC2, give application developers
the power to control their own infrastructure without the headaches of hardware
ownership. But many applications don't require this level of control of the infrastructure;
a higher level of abstraction would make development much more efficient.

We see Google App Engine as filling the void between these two leading
platforms. App Engine offers more control than you get from working in a Force.com
environment. And App Engine offers abstraction over several layers of infrastructure
that we'd prefer not to deal with in the applications that we build today on EC2, so,
for example, we don’t have to worry about the size of the machine we spin up.

The best part is that these technologies are almost completely complementary,
and toolkits exist to ease their interoperability. At an event this year, someone posed
the following question: “Is the industry on the verge of a new set of platform wars? Or
will all the different cloud platforms create an interwoven fabric of web applications
that draw from each cloud as is convenient?" We believe firmly in the latter. After all,
the real “platform war” is still against the old paradigm. Most developers out there
don’t know that they don’t need to buy hardware and software anymore in order to
develop and deploy world-class web applications.

But you will. Enjoy this introduction to the new world of developing on Google’s
App Engine. We look forward to seeing the applications that you develop!

Ryan Nichols
V.P. Cloud Strategy, Appirio

xv

About the Authors

■Kyle Roche has been working in the cloud-computing space
since 2005. Professionally, Kyle has over 10 years of experience
in the enterprise software space. With deep roots in application
architecture and systems management he quickly recognized
cloud computing as the future trend and has since led some of
the most progressive cloud-development efforts to date for
companies like Salesforce.com, Starbucks, and JP Morgan Chase.
Kyle is a regular speaker at industry conferences and user-group
meetings and is an evangelist for cloud computing. His personal
website is http://www.kyleroche.com.

He lives in Denver with his wife Jessica and his three children Aodhan, Avery,
and Kelly.

■Jeff DDouglas is a highly sought-after and award-winning
technologist with more than 15 years of leadership experience
crafting technology solutions for companies of all sizes. His
technology skills were honed during the fast and furious “dot
com era,” when he provided SAP development services for
Fortune 500 companies including Coca-Cola, Anheuser-Busch,
Disney Imagineering, Moen, and Ericsson. After years of being a
lowly Java developer, in 2006 he ascended into cloud computing.
He periodically writes for developer.force.com and actively
tries to work the word "chartreuse" into everyday technical

conversations. He speaks at industry conferences and enthusiastically blogs about
cloud computing at http://blog.jeffdouglas.com.

Jeff resides in Sarasota, FL, with his wife Cathy and four children Scott, Tyler,
Brittany, and Kira (adopted). He and his wife have been medical foster parents for
over 11 years, caring for more than 75 children.

Kyle and Jeff both work for Appirio, a cloud solution provider that offers both
products and professional services to help enterprises accelerate their adoption of

■ FOREWORD

xvi

the cloud. With over 2,500 customers, Appirio has a proven track record of
implementing mission-critical solutions and developing innovative products on
cloud platforms such as Salesforce.com, Google Apps, and Amazon Web Services.
From offices in the U.S. and Japan, Appirio serves a wide range of companies
including Avago, Hamilton Beach, Japan Post Network, Ltd, Pfizer, and Qualcomm.
Appirio was founded in 2006, is the fastest growing partner of Salesforce.com and
Google, and is backed by Sequoia Capital and GGV Capital.

 ■ ABOUT THE AUTHORS

xvii

About the Technical Reviewer

■Kunal Mittal serves as an Executive Director of Technology at
Sony Pictures Entertainment where he is responsible for the SOA
and Identity Management programs. He provides a centralized
engineering service to different lines of business and consults on
the open-source technologies, content management,
collaboration, and mobile strategies.

Kunal is an entrepreneur who helps startups define their
technology strategy, product roadmap, and development plans.
Having strong relations with several development partners
worldwide, he is able to help startups and large companies build

appropriate development partnerships. He generally works in an advisor or
consulting CTO capacity, and serves actively in the Project Management and
Technical Architect functions.

He has authored and edited several books and articles on J2EE, cloud computing,
and mobile technologies. He holds a Master’s degree in Software Engineering and is
an instrument-rated private pilot.

xix

Acknowledgments

This was an exciting title for Jeff and me. It’s difficult to get a book together on a
technology that was launched just weeks before and releases updates faster then
we’re drafting chapters. As this was our first printed publication we had a lot to learn
about the process. It was a growing experience for us and we want to thank some of
the key people who helped make this possible.

First, we’d like to thank our families who gave up a lot of their weekend and
evening time to allow this project to get completed. Thanks to my wife, Jessica, and
my three children: Aodhan, Avery, and Kelly. And thanks to Jeff’s wife, Cathy, who
went so far as to proofread all of his chapters before they were sent in, and his
children: Scott, Tyler, Brittany, and Kira.

Next, we’d like to acknowledge the team led by Kelly Moritz and Steve Anglin at
Apress that coordinated this entire effort. Kelly really helped us through our first
printed publication. It’s a difficult process and without her guidance this wouldn’t
have happened. Steve persevered through endless back and forth communications,
refining the abstract and the concept for the book. Of course, we’d also like to
acknowledge the editing team of Tom Welsh and Matthew Moodie, and our technical
reviewer Kunal Mittal, for their patience with two over-eager first-time writers.

Also, thanks to the Appirio team for putting us in a position to write a book on this
emerging technology. Appirio is like no other company we’ve encountered. Having
been a part of some of the most progressive cloud-computing projects to date, we
constantly get the opportunity to work with cutting-edge offerings, like Google App
Engine, as soon as they’re available. We’d especially like to thank Ryan Nichols, V.P.
of Cloud Strategy for Appirio, who wrote the fantastic Foreword for this book. Ryan is
a thought leader in the cloud computing space and we’re honored to have him take
an interest in our book.

Finally, thanks to all of you for taking that leap of faith from traditional
development environments to cloud-based platform development. App Engine is a
key component of cloud computing and will no doubt be a platform that runs some
of the most exciting web applications we’ll see in the next few years. Hopefully, with
this foundation, one (or more) of those applications will be yours!

Kyle Roche
Jeff Douglas

xxi

Introduction

Application development, as you know it, is about to change. Think about your
development project plans for a moment. Do they all seem to have the same line
items for the first phase? Build a server. Install a database. Configure the application
server. You’re a programmer, aren’t you? Why spread your talents so thin? You should
be able to focus your energy on building the application from day one. That’s where
Google App Engine comes into the picture. There’s no need to ever worry about
building a development server, installing a database, setting up an application server,
opening ports, and the endless other tasks that come with traditional development.
With Google App Engine, you can start building your application right away.

Google App Engine applications are built using the same tools you use today for
Java development. The Google Plugin for Eclipse allows you to develop your entire
application in a single IDE. Everything from data management to user-interface
design is encompassed in the development environment. You no longer need to use a
different tool or server for each layer of the application stack. And most importantly,
it’s an unquestionable advantage to be able to spend less time on setting up the
evironment and more time on the application's business value.

We’ve been there. We used to spend 80% of our time on application maintenance
and upgrades and only 20% on innovation. But the industry is evolving. It’s time to
reverse that formula. Let Google worry about scalability, security, hosting, load
balancing, bandwidth, and all the other preparatory and peripheral tasks that
accompany writing an application. We invite you to spend your time innovating and
concentrate on the business value of your applications, not their foundations.

In this book we’re going to take you through configuring your development
environment for Google App Engine. You’ll build your first application and quickly
advance your way through the offerings that come with App Engine. We’ll sprinkle
some other technologies into the various chapters—such as Spring, Flex, and Google
Web Toolkit (GWT).

This book presents some core examples that build on each other, but for the most
part, the chapters are isolated enough to enable you to skip around as needed. In the
end you’ll build a robust application from the ground up, and there are takeaways
from each chapter that you can use in your production environment. And if you are
looking for code samples, you’ve picked up the right book. The book is chock-full of
detailed examples of all App Engine’s services.

C H A P T E R 1

■ ■ ■

1

Beginning Google App Engine
for Java

By now, you’ve heard about cloud computing. It’s gone from a forward-looking
concept that was adopted quickly by cutting-edge development communities to
a serious requirement for a growing number of businesses. This book focuses on
Google App Engine, one of the leading cloud-based development platforms on the
market. Powering some of Google’s own offerings, like Google Wave and Google
Moderator, App Engine provides an affordable, efficient, and scalable platform for
developing web applications. App Engine supports both a Java runtime, which we’ll
cover in this book, and a Python runtime.

Cloud Computing and App Engine
A lot of vendors are staking claims to platform offerings “in the cloud.” Currently, it’s
our opinion that Google, Amazon.com, and Salesforce.com are leading the charge in
both the development community and the enterprise-computing space. There are
three main, accepted levels of cloud-computing offerings. They are Infrastructure as
a Service (IaaS),), Platform as a Service (PaaS),), and Software as a Service (Saas).).
Each has unique features and benefits, but there are some commonalities as well.

Any cloud-computing offering should have certain characteristics. Above all,
it should be multitenant. A key component of a true cloud-computing platform,
multitenancy is a type of software architecture where one instance of the offering
is used to serve multiple tenants. The alternative, single tenancy, is how you’re
probably designing solutions today. Each customer (or business group, or client)
gets her own server, database, application layer, and interface. In contrast, a
multitenant application would have a single instance of all these layers and would
partition the client’s data programmatically. Multitenancy is a shared trait among
offerings at the IaaS, PaaS, and SaaS layers.

CHAPTER 1 ■ BEGINNING GOOGLE APP ENGINE FOR JAVA

2

At the lowest level, IaaS offers the physical infrastructure (or virtualized physical
infrastructure) to tenants with the ability to pay for what they need in terms of
computing power. Instead of purchasing servers, software, and physical location,
a tenant of an IaaS offering can pay for these components as needed in a more
subscription-based fashion. Leading IaaS vendors like Amazon.com offer “pay per
CPU hour” pricing for Linux and Windows platforms. The servers are immediately
available and you can spin up dozens of servers in a matter of minutes.

At the highest level, SaaS, much like IaaS, offers solutions to the customer on
a per-usage model. The major difference is that SaaS offerings completely abstract
the physical and application layers from the end user or developer. For example,
Salesforce.com (widely consider the best example of a SaaS offering) provides its
own customizable user interface and proprietary programming language (Apex)
but doesn’t expose to the end user the hardware or software layers that power the
application. SaaS offerings have an important characteristic when it comes to
application upgrades and maintenance: everything is centrally updated. So, when a
new feature is released or a patch or upgrade is provided, it’s immediately available
to all customers.

In between IaaS and SaaS is the PaaS market. PaaS offers a bit more than IaaS,
without providing an actual end-user product. PaaS components are typically
building blocks or solution stacks that you can use to build your own applications.
This is where Google App Engine fits in your cloud-computing portfolio. App Engine
is a PaaS offering, currently supporting a Java and a Python runtime to build your
scalable web applications without the need for complex underlying hardware and
software layers. Google abstracts those layers and lets you concentrate fully on your
application. PaaS does have its own set of challenges, however. With PaaS offerings,
like App Engine and Force.com, you are restricted by a governor process or
application quotas. PaaS governors protect the shared layers of the multitenant
platform from being monopolized by one heavy application or runaway code.
Application quotas, which Google defines for App Engine applications, define the
daily-allotted amount of computing power, space, or bandwidth that any one
application is allowed to utilize. With App Engine you have the option to pay for
more power or space if needed. See Chapter 2 for more details on the quotas that
are defined and their limits.

Consider Figure 1-1 for a moment. Take a look at where the major players sit in
relation to the types of cloud offerings we’ve discussed so far as well as in comparison
to each other. You can quickly see that the major offerings seem to build on each
other. Amazon Web Services, in the bottom-left section, offers the least customization.
It simply removes your need to build out a physical infrastructure, leaving all the
management and support to your IT staff. Shifting to the right, you see that App Engine
offers just slightly more abstraction, now covering the platform and infrastructure.
Let’s compare those two scenarios briefly.

CHAPTER 1 ■ BEGINNING GOOGLE APP ENGINE FOR JAVA

3

Consider a basic J2EE application running on WebSphere. Assume that it meets
the requirements for an application that could be run on App Engine. (See Chapter 4
for more information on the restrictions that applications might face on App Engine.)
With Amazon’s Elastic Computing Cloud (EC2) you can quickly build the Linux stack
with a preconfigured Apache server and your choice of Java application server and
database. You have to support the operating system, the database, the application
server, the security, and all the same components you’d be supporting in an on-
premise environment, except the physical machine. This, no doubt, saves time and
money. But, IaaS offerings still need provisioning and long-term support at more
layers than the application. Now, on the flip side, consider this same application
running on App Engine. You don’t need hardware provisioned or software installed,
and you don’t need an application server or a database. All these are wrapped into
the core platform offering from Google.

Figure 1-1. Cloud vendor landscape (Source: Appirio CIO blog)

Figure 1-1 also shows the Force.com platform in the PaaS sector. It’s positioned a bit
higher than the App Engine offering, and there’s a reason for this. Like some other
platform vendors, Force.com encapsulates the runtime environment using its own
proprietary language. Apex, the language for Force.com development, looks and feels
like Java in many ways but doesn’t support the full implementation of any JRE.

CHAPTER 1 ■ BEGINNING GOOGLE APP ENGINE FOR JAVA

4

It’s important to note that the placement of the offerings on this diagram does not
indicate preference or correlate with value in any way. Each of these offerings has its
own unique value and place in the market. And, in many customer scenarios, we’ve
used a combination of these to build the best solution. In fact, both authors of this
book work for a consulting firm (with over 200 people) that has yet to purchase any
hardware. We are completely focused on cloud solutions and run our entire business
within the three offerings shown in the diagram.

Find More Time to Innovate
Take a look at Figure 1-2, which shows two diagrams comparing the scope of activities
and the budget and effort of a traditional IT department with those of another IT
department that is leveraging a PaaS offering for its business applications. Take special
notice of the amount of maintenance on the hardware, middleware, and application
layers for the traditional IT department. It’s apparent that all that lost time is intruding
on the time, budget, and effort left over for innovation. Now, in comparison, consider
the IT department leveraging PaaS offerings for their hardware and middleware layers.
Removing the maintenance required to keep those layers in house, the department is
free to spend that extra time innovating on its core business applications. You might
notice that vendor management is a new time-allotment category when you’re using
PaaS solutions. However, that’s a small effort in comparison to managing these
solutions internally.

Figure 1-2. Tradional IT versus IT leveraging PaaS (Source: Appirio CIO blog)

CHAPTER 1 ■ BEGINNING GOOGLE APP ENGINE FOR JAVA

5

If you’re currently embedded in a traditional software-development structure or a
traditional IT department, one of these previous illustrations probably hit home. The
inefficiency of traditional IT is one of the main reasons we decided to write this book.
The goal was to help you get a jump-start on the major features of Google App Engine
for Java, and to give you a platform for building web applications. Let’s review some
of the skills you’re going to learn in the coming chapters.

What You’ll Learn in This Book
We’ve briefly discussed cloud computing and where App Engine fits into the
landscape. In Chapter 2 we’ll introduce you to more of the underlying architecture
for App Engine as well as application quotas. A part of any production application
running on App Engine, quotas prevent your application from using too many
resources as well as protecting your application from losing resources to other
applications.

In Chapter 2, you’ll dive right in and sign up for access to App Engine, download
the SDK, set up your development IDE, and deploy your first application. If you’re
going to skip around in the book, make sure you start with Chapter 2, because it
lays the foundation and helps you get the tools you’ll need to complete the other
examples and exercises.

We’ll take a step back in Chapters 4 and 5 to tackle a real-world scenario. We’ll
look at the frameworks and libraries that work well on App Engine and some of the
restrictions (and libraries that don't work). Then we’ll introduce Google Web Toolkit,
and starting from scratch you’ll build a timecard application with a rich user
interface.

Chapters 6, 7, and 8 cover the service offerings and native tools that come
with App Engine. For example, you can leverage Google Authentication services for
your applications, which we’ll cover in Chapter 6. The App Engine datastore and
examples of how to store, query, and index are covered in Chapter 7. In Chapter 8
we’ll look at some of the underlying services that the App Engine platform offers
your applications. We’ll show you how to use App Engine services to send e-mail,
send XMPP (Google Talk) messages, manipulate images programmatically, and
fetch responses from other web applications.

Finally, we’ll cover the Administration Console, the logging functionality, and
other maintenance tasks in Chapter 9. We’re going to close with a few real-life
integration scenarios. First, you’ll integrate your App Engine application with
Salesforce.com, and then you’ll create an App Engine robot for the new and exciting
Google Wave offering.

CHAPTER 1 ■ BEGINNING GOOGLE APP ENGINE FOR JAVA

6

Summary
We have a lot to show you in this book. It’s our hope that you’ll walk away from it
with a solid understanding of the capabilities and features that Google App Engine
for Java has to offer. At the time of writing, we covered all the major features of the
SDK. If you know Google, you know that they “release early and release often,”
which makes for a fantastic platform for development as well as a moving target for
documentation. Check the online documentation often for updates, and happy
coding.

C H A P T E R 2

■ ■ ■

7

Introduction to App Engine

Google App Engine has been a fantastic disrupter in the technology industry. It’s
quickly driving innovation among developers and is starting to facilitate a different
type of thinking and planning in the enterprise space. App Engine enables you to
build enterprise-scalable applications on the same infrastructure that Google uses!
The release of Java as the second official language for App Engine marks a
tremendous shift in the way applications are being built.

In this chapter we’ll cover the basics of App Engine and how it’s structured. We’ll
discuss the major features and benefits of using a platform like App Engine as well as
some of the major design considerations (for example, application quotas) that must
take place in a multitenant environment.

App Engine Architecture
App Engine is structured differently from the typical web application server. At its core,
App Engine restricts your application from any access to the physical infrastructure,
preventing you from opening sockets, running background processes (although you
can use cron), and using other common back-end routines that application developers
take for granted in other environments. Take a look at Figure 2-1. Remember, App
Engine is designed to address your concerns about scalability and reliability. It is built
on the concept of horizontal scaling, which, in essence, means that instead of running
your application on more powerful hardware, you would run your application on more
instances of less powerful hardware.

In Figure 2-1 you can see your App Engine application running as an isolated
entity within the structure of the multitenant environment. As we discussed in
Chapter 1, App Engine shares resources among multiple applications but isolates the
data and security between each tenant as well. Your application is able to use some of
the Google services, like URL Fetch, to execute processes on its behalf. Because you
can’t open ports directly within your application, you have to rely on this service, for
example, to request Google to open a port and execute the fetch on a URL for the
application.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

8

Breaking it down a bit more, consider an apartment building (App Engine) with
central air and heating controls. You are a tenant (your App Engine application) in
this building. You can’t directly adjust the temperature because that would affect the
other tenants (other App Engine applications). So, you have to send a request to the
building super to change the temperature on your behalf (URLFetch, Bigtable query,
Memcache, mail, XMPP, any other Google App Engine service). This is essentially
what is happening with App Engine.

If you take a step back, you’ll see the long-term implications of this approach. As a
developer you now get to ignore scalability concerns like execution time on methods
after you have increased data in your datastore. In exchange, you get a fixed duration
on execution no matter what your scale becomes. App Engine’s response times will
be steady from your first request to your millionth request.

Figure 2-1. App Engine architecture

Notice that no file system or components of the architecture represent the physical
machine. With App Engine, you have access only to the application layer. There are
some open-source projects, for example, Google Virtual File System, that allow you to

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

9

host an emulated virtual drive on App Engine, but these are not part of the product
offering at this time.

Running all these services on behalf of your application isn’t something App
Engine handles without restrictions. Your application gets a daily limit on each type
of request, and each request is recorded and then subtracted from your daily
allotment. Let’s take a deeper look at these quotas.

Being a Good Neighbor With Quotas
As we mentioned in Chapter 1, App Engine is a multitenant platform. This is far
different from hosting your application on a dedicated server or in your own data
center. The fundamental difference is that you’re not alone! Thousands of other
developers are using the same network, hardware, and computing power that Google
is offering for use with your applications. At first glance, this might create concern
about scalability. Keep in mind that Google is the third largest e-mail provider on the
planet and your free App Engine account can scale to five million hits per day. Plus, if
you need more than that, you can always pay for more resources.

What if you shared a water source with your next-door neighbor? You wake up on
Monday to get ready for work, turn on the shower, and nothing happens. You take a
look out the window and notice that your neighbor left the hose on all night after
washing his car that afternoon. This shared environment with no restrictions or quotas
can be risky. How do you know if you’re using too much or if you’re neighbor is taking
more than his allotment? To protect users from this similar situation with respect to
computing power, multitenant platforms use application quotas or governor limits to
enforce application restrictions on users. For example, you can have a maximum of
7,400 secure incoming requests per minute on a free App Engine application. With
billing enabled (more on that later in this chapter) you can have 30,000 secure
incoming requests per minute. The point is, there’s a limit on what you can use. This
protects other users on the same platform from being affected by applications that
have significantly more traffic and resource needs. (This is known as “the slashdot
effect.” See http://en.wikipedia.org/wiki/slashdotted.)

■ Note If you need more resources than the billing-enabled quotas allow you can request an increase by visiting
http://code.google.com/support/bin/request.py?contact_type=AppEngineCPURequest.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

10

Billable and Fixed Quotas
App Engine defines two different types of quotas, as shown in Table 2-1.

Table 2-1. App Engine Quota Types

Quota Type Description

Billable
Quota

� Maximums are set by the user

� Budget-based

� Vary by application and can be set by the administrator

Fixed Quota � Maximums are set by App Engine

� System-based

� Same for all applications on App Engine

Most applications, and surely everything we show you in this book, will fit well within
the fixed quota limits of the free version of App Engine. Enabling billing on your App
Engine application increases your quota limits beyond what is provided with the free
version. You’ll see an increase in the fixed allotment of resources. And, if you still
need more, you can define a budget and allocate resources from there. Figure 2-2
shows the App Engine budgeting utility.

Figure 2-2. App Engine budget tool

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

11

You may be saying to yourself, “So, I run out…now what?” Quotas roll over each night
at midnight. Whatever usage you had starts over with the new calendar day. (App
Engine uses Pacific Standard Time for billing and quota measurements, so it may not
be midnight in your location.) As you saw in Figure 2-2, you have the option to set daily
quota budgets. If your resources exceed what your budget allows, App Engine
considers those resources depleted and you’ll have to either increase your budget or
wait for the next calendar day to get replenished. Except for data storage, which is a
rolling metric, all resource measurements are reset at the beginning of each day.

In addition to the daily quotas we’ve already discussed, App Engine measures a
few per-minute quotas. These are subsets of your daily allotment of resources but
have unique restrictions for per-minute usage. This is intended to protect your
application from using its daily allotment in a short period of time. And, of course,
being a multitenant environment, it also prevents other applications on App Engine
from monopolizing any one resource and affecting your application’s performance. If
your application consumes a resource too quickly, the word “Limited” will appear
next to the quota line item in the Quota Details screen of your App Engine
Administration Console. Once a particular resource has been depleted, App Engine
will deny requests for that resource, returning an HTPT 403 Forbidden status code.
This may mean that your application will no longer function until the resource has
been replenished. The following resources have this type of behavior:

� Requests

� CPU Time

� Incoming bandwidth

� Outgoing bandwidth

For other resources that are depleted, the application will throw an exception of type
OverQuotaError. This can be caught and handled and you can respond accordingly.
For example, you may want to display a more friendly error message.

■ Note The OverQuotaError exception is not yet available for Java applications.

You’re probably wondering whether you can query your application usage through the
API. Unfortunately, if you’re using Java on App Engine, it’s not possible (yet). For
Python applications on App Engine, you can query your application’s CPU usage by
calling the Quota API.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

12

Detailed Resource Quotas
The next section will cover in more detail the specific quotas for the various
resource types as of version 1.2.5. For up-to-date information, reference the App
Engine online documentation, located at http://code.google.com/appengine. Keep
in mind that you can purchase additional billable resources through your
application’s Administration Console.

Requests
App Engine Requests include the total number of requests to the application. If you
have billing enabled, there is a per-minute quota for the application, which allows for
up to 500 requests per second. That’s over a billion per month! Table 2-2 shows the
types of resources that are included in the Requests allocation bucket.

Table 2-2. App Engine Quotas for Request Resources

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing
Enabled)

Maximum Rate
(Billing
Enabled)

Requests (all requests to
application)

1.3M
requests

7,400 req /
min

43M
requests

30,000 req /
min

Outgoing Bandwidth
(billable includes HTTPS)

1GB 56MB / min 1GB free;
1,046GB max

740MB / min

Incoming Bandwidth
(billable includes HTTPS)

1GB 56MB / min 1GB free;
1,046GB max

740MB / min

CPU Time 6.5 CPU-
hrs

15 CPU-mins
/ min

6.5 CPU-hrs
free; 1,729
CPU-hrs
max

72 CPU-
mins / min

Let’s take a deeper look at each of these metrics to see how they’re calculated.

� Requests and Secure Requests: The total number of requests over
HTTPS to the application. These requests are measured separately
but also count toward the total number of requests.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

13

� Outgoing Bandwidth (billable): The amount of data the application
sends in response to requests. This includes responses over HTTP,
HTTPS, outbound e-mail messages, and data in outgoing requests
from the URL Fetch service.

� Incoming Bandwidth (billable): The amount of data received by the
application from inbound requests. This includes data over HTTP,
HTTPS, and responses from the URL Fetch service.

■ Note Secure Outgoing Bandwidth and Secure Incoming Bandwidth both carry their own measurements.
Both of these metrics count toward the overall measurement as well.

� CPU Time (billable): The measurement of the total processing time
the application is using to handle requests. This includes time
spent running the application and performing datastore operations
but excludes time spent waiting for the responses from other
services. For example, if your application is waiting for a response
from a URL Fetch request, you are not using CPU time for that
transaction.

CPU time is reported in seconds. This is equivalent to the number of CPU cycles that
can be performed by a 1.2 GHz Intel x86 processor in that amount of time. The actual
number of cycles may vary and depends on the conditions internal to App Engine.
The number is adjusted for reporting purposes by using the 1.2 GHz processor as a
benchmark.

If you’re using Python on App Engine you can profile your application in a bit
more detail during a transaction. See the online documentation on App Engine for
more details. Hopefully, the ability to query your current quota usage statistics
will be available for Java applications soon. If you’re an administrator of Java
applications you can use the Administration Console to examine the logs and see
how much CPU time has been used for each request to your application. Here are
a few key things to consider when designing your application that may help
conserve resources.

� Writes to the datastore use approximately five times the CPU
resources as reads from the datastore.

� More resources are needed for datastore writes that require an
update to indexes.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

14

� The more properties an entity has defined the more resources App
Engine will require to write that entity to the datastore.

� Queries are generally created equal with respect to resource
utilization. However, fetching results can require additional CPU
time.

Partial Units

App Engine will bill for partial units as they are incurred. Your actual usage of any resource on a
given day will be rounded down to the nearest base unit and then rounded up to the nearest
cent. The base units are as follows:

Datastore
The datastore has its own set of measurements and can be budgeted as well. The
metrics and their free and billable quota limits are outlined in Table 2-3.

Table 2-3. App Engine Quotas for Datastore Resources

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing
Enabled)

Maximum Rate
(Billing Enabled)

Datastore API Calls 10M calls 57,000 calls /
min

140M calls 129,000 calls /
min

Stored Data * 1GB None 1GB free; no
max

None

Data Sent to API 12GB 68MB / min 72GB 153MB / min

1. CPU Time: 1 megacycle = 1/1200 CPU second

2. Bandwidth in/out: 1 byte

3. Storage:1 byte

4. E-mail: 1 e-mail

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

15

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing
Enabled)

Maximum Rate
(Billing Enabled)

Data Received from
API

115GB 659MB / min 695GB 1,484MB / min

Datastore CPU Time 60 CPU-
hrs

20 CPU-mins /
min

1,200 CPU-
hrs

50 CPU-mins /
min

*Stored data is a constant metric. It does not replenish at midnight.

The datastore metrics are pretty impressive. It’s hard to think of any other application
where my maximum data storage was “unlimited.” You do pay for space, but the idea
that you can’t run out of it is pretty fascinating. Here are some descriptions that
better describe what the datastore metrics are and how they are measured.

� Datastore API Calls: Basically, the total number of CRUD
operations on the datastore. Every time your application creates,
retrieves, updates, or deletes an entity from the datastore, this
metric increases. Queries also count toward your datastore API
limits.

� Stored Data: As we mentioned above in Table 2-3’s footnote, this is
not a rolling metric. Data storage is constant and does not
replenish day to day, and in the datastore, it’s a bit complicated to
accurately estimate. There’s a certain amount of overhead attached
to storing an entity in the datastore. To do this, the following types
of metadata are required:

1. Each entity requires a key. This includes the kind (type), the ID
or key name, and the key of the entity’s parent entity.

2. The datastore is schemaless. So, the name and value of each
property must be stored in the datastore. This is very different
from a relational database where you are storing only the data
values. For each entity’s attributes you have to store the name
and the value in the datastore.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

16

3. You must store built-in and custom index rows that refer to the
entity. Each row contains the kind (type) and a collection of
property values for the index definition.

� Data Sent to / Received from the API: Just like it sounds, App Engine
measures how much data is requested from the datastore when
retrieving entities or performing queries and how much data is sent
to the datastore when creating or updating entities or performing
queries.

� Datastore CPU Time: This measurement also counts toward your
CPU time quota. But with respect to datastore operations, CPU
time is measured separately as well. It’s calculated and
summarized using the same benchmark 1.2GHz CPU.

The datastore has some unique issues related to indexing, which is a more

advanced topic. Datastore indexes do count against your application’s storage quota.
Table 2-4 shows which data is stored for various indexes to help you estimate how
much your indexes are consuming.

Table 2-4. Datastore for Indexes

Index Type Rows Used Data per Row

Kind – querying
entities by type

One row per entity Application ID, kind,
primary key, small
formatting overhead

Property – querying
entities using a single
property value

One row per property value
per entity. Db.Blog and db.Text
value types are excluded.
ListProperty properties will
return one row per value in
the List

Application ID, property
name, property value,
primary key

Composite – querying
entities using multiple
property values

One row per unique
combination of property
values per entity

Application ID, value1,
value2,… where value* is
a unique combination of
values of properties in
the composite index

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

17

Mail
App Engine for Java utilizes the Mail API to allow your applications to send e-mail
messages programmatically. Although the measurements you see in Table 2-5 carry
their own metrics, each also contributes to the request-level metrics that
encompass these detailed line items. For example, outgoing data over the Mail API
will increase your outgoing bandwidth measurements. Table 2-5 shows the
specifics for the Mail API quotas.

Table 2-5. App Engine Quotas for Mail API Resources

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing

Enable
d)

Maximum Rate
(Billing Enabled)

Mail API Calls 7,000 calls 32 calls / min 1.7M calls 4,900 calls
/min

Recipients E-mailed 2,000
recipients

8 recipients /
min

2,000
recipients
free; 7.4M
max

5,100
recipients /
min

Admins E-mailed 5,000 mails 24 mails / min 3M mails 9,700 mails /
min

Message Body Data
Sent

60MB 340KB / min 29GB 84MB / min

Attachments Sent 2,000
attachment
s

8 attachments
/ min

2.9M
attachments

8,100
attachments /
min

Attachment Data
Sent

100MB 560 KB / min 100GB 300MB / min

This e-mail allocation is hefty, even for the free account. Let’s take a deeper look into
each of these measurements to see how App Engine calculates them.

� Mail API Calls: The total number of times the application accesses
the mail services to send an e-mail message.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

18

� Recipients E-mailed: The total number of recipients to whom the
application has sent e-mail messages.

� Admins E-mailed: The same as the Recipients E-mailed metric but
related to application administrators. You get a separate allocation
for administrators.

� Message Body Data Sent: For each e-mail message that is sent by
your application, App Engine measures the amount of data in the
body of the e-mail. This metric also counts toward your Outgoing
Bandwidth quota.

� Attachments Sent: The total number of attachments sent with your e-
mail messages.

� Attachment Data Sent: For each e-mail message that is sent by your
application, App Engine measures the amount of data sent as
attachments. This is in addition to the Message Body metric and also
counts toward your Outgoing Bandwidth quota.

URL Fetch
App Engine can communicate with other applications or access other resources on
the web by fetching URLs. An application can use this service to issue HTTP and
HTTPS requests and receive responses. Table 2-6 shows the quota limits for the URL
Fetch quota.

Table 2-6. App Engine Quotas for the URL Fetch Service

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing
Enabled)

Maximum Rate
(Billing Enabled)

URL Fetch API Calls 657,000
calls

3,000 calls /
min

46M calls 32,000 calls /
min

URL Fetch Data Sent 4GB 22MB / min 1,046GB 740MB / min

URL Fetch Data
Received

4GB 22MB / min 1,046GB 740MB / min

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

19

Here are the descriptions and calculation models for each of these metrics. The URL
Fetch service is covered in Chapter 8 in more detail.

� URL Fetch API Calls: The total number of times the application
accesses the URL Fetch service to perform an HTTP or HTTPS
request.

� URL Fetch Data Sent: Each request to the URL Fetch service gets
measured for data sent as part of the request. This also counts toward
your Outgoing Bandwidth quota.

� URL Fetch Data Received: The amount of data received in response
to a URL Fetch request. This also counts toward your Outgoing
Bandwidth quota.

XMPP
XMPP is new as of version 1.2.5 of the Java SDK for App Engine. This service allows
your App Engine application to interact with XMPP services like Google Talk. We’ll
show an example of that type of application in Chapter 9. Table 2-7 shows the limits
for the XMPP services.

Table 2-7. App Engine Quotas for the XMPP Service

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing
Enabled)

Maximum Rate
(Billing Enabled)

XMPP API Calls 657,000
calls

3,000 calls /
min

46M calls 32,000 calls /
min

XMPP Data Sent 4GB 22MB / min 1,046GB 740MB / min

XMPP Recipients
Messaged

657,000
recipients

n/a 46M
recipients

n/a

XMPP Invitations Sent 1,000
invitations

n/a 100,000
invitations

n/a

XMPP is a fantastic new addition to the App Engine API. Google Talk users can chat
with the application or send notifications from the application to a Google Talk user
who is online. Chapter 9 covers a few of the more advanced topics around App

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

20

Engine development, and interacting with a Google Talk user will be one of those
examples. Let’s take a quick look at how the XMPP quota calculates these metrics.

� XMPP API Calls: The total number of times the applications accesses
the XMPP service.

� XMPP Data Sent: The amount of data sent by the XMPP service. As
with the other data metrics, this counts toward your Outgoing
Bandwidth quota.

� XMPP Recipients Messaged: Each time you communicate with a
recipient over the XMPP service, App Engine subtracts from this
quota measurement.

� XMPP Invitations Sent: To initiate a chat with another party you may
need to send invitations. This metric represents the total number of
invitations sent by the application.

Image Manipulation
To manipulate image data, you can use App Engine’s dedicated Images service,
which allows you to resize, rotate, flip, and crop images. You can use the Images
service to construct a composite of multiple images and convert images from one
format to another. The service also provides a predefined algorithm for photo
enhancements. These Images service features count against the following quota. The
exact measurements are listed in Table 2-8.

Table 2-8. App Engine Quotas for the Images Service

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing Enabled)

Maximum Rate
(Billing Enabled)

Image Manipulation
API Calls

864,000
calls

4,800 calls / min 45M calls 31,000 calls

Data Sent to API 1GB 5MB / min 560GB 400MB / min

Data Received
from API

5GB 28MB / min 427GB 300MB / min

Transformations
executed

2.5M
transforms

14,000
transforms / min

47M
transforms

32,000 transforms
/ min

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

21

Here’s some more information on how the Images service calculates the
measurements for the quotas described in Table 2-8.

� Image Manipulation API Calls: The total number of times the
application accesses the Images service.

� Data Sent to API: The amount of data sent to the Images service.
Because this is internal to App Engine, this metric does not
consume Outgoing Bandwidth.

� Data Received from API: The amount of data received from the
Images service.

� Transformations executed: The number of times the service has
performed a transformation on an image for the application.
Transformations include resizing, rotating, flipping, and cropping
images. Other more advanced transformations are included in this
metric as well.

Memcache
Sometimes it’s more efficient for your application to create an in-memory data cache
for persistent storage across some tasks. Memcache serves this purpose for App
Engine applications. Table 2-9 outlines the quota measurements for the Memcache
service.

Table 2-9. App Engine Quotas for the Memcache Service

Resource Daily Limit
(Free)

Maximum Rate
(Free)

Daily Limit
(Billing
Enabled)

Maximum Rate
(Billing Enabled)

Memcache API Calls 8.6M 48,000 calls /
min

96M 108,000 calls /
min

Data Sent to API 10GB 56MB / min 60GB 128MB / min

Data Received from API 50GB 284MB / min 315GB 640MB / min

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

22

The Memcache service is covered in Chapter 8, but here are a few more details on
how the measurements are calculated.

� Memcache API Calls: Total number of times the application
accessed the Memcache service to get, set, or expire values.

� Data Sent to / Received from API: The total amount of data sent to
and from the Memcache service.

Components of an App Engine Application
Building scalable applications with Google App Engine for Java (GAE/J) is similar to
building Java applications in your typical on-premise environment with one large
exception: there’s no need for the network, hardware, operating system, database, or
application-server layers of the stack! With Google App Engine for Java, and Platform as a
Service offerings in general, you can start to innovate and develop on your application
right away and forget about the laborious tasks like setting up the OS and configuring the
database. Google App Engine for Java provides a Java 6 JVM and a Java Servlet interface,
and supports standard Java technologies like JDO, JPA, JavaMail, and JCache. Google App
Engine for Java applications can be developed using the Eclipse IDE, and the Google
Plugin for Eclipse even provides a local development server and deployment tools when
you’re ready to go live with your App Engine application.

There are a few standard components to any Google App Engine for Java application.
Some of these are optional if you’re using other technologies in their place. For example,
the Users service is a great way to provide a trusted authentication mechanism to your
user base. But, if you’re developing a Facebook application on the App Engine platform,
you might be using Facebook Connect from Facebook’s native authentication services,
in which case the Users service might not be relevant. Table 2-10 gives you a quick look at
the basic core components of a standard Google App Engine application.

Table 2-10. Standard App Engine Technology Stack

GAE / J service Description

JRE Google App Engine for Java provides a standard Java 6 JVM and
supports Java 5 and later. It also uses the Java Servlet standard, which
allows you to serve JSP pages and standard files.

Datastore Google App Engine for Java provides a persistent, scalable, fast
datastore built on the DataNucleus Access Platform. You can use JDO
and JPA to interact with the datastore and leverage the Memcache API
for transient distributed storage for queries results and calculations.

CHAPTER 2 ■ INTRODUCTION TO APP ENGINE

23

GAE / J service Description

Schedule Tasks Google App Engine for Java, via the Administration Console, provides
an interface for application owners to create and manage cron jobs
on App Engine. More on that in Chapter 9.

Java Tools The Eclipse IDE, Google Plugin for Eclipse, the local development
server, Apache Ant, and Google Web Toolkit (and much more) are
available for use on Google App Engine for Java.

Summary
Now that we’ve covered how App Engine works and we’ve reviewed the different
quotas and their limits, you’re ready to start coding. It’s important to note that these
quotas can change frequently. Reference the online documentation for the current
limits and pricing. In the next chapter you’ll set up your development environment
and get started coding for Google App Engine for Java. You’ll start by installing the
Google Plugin for Eclipse and creating some small sample projects, and then you’ll
move on to tackle a more complicated application.

C H A P T E R 3

■ ■ ■

25

Getting Started with Google App
Engine for Java

In this chapter we’ll walk you through all the components you need to start developing
on Google App Engine. The first steps are acquiring the App Engine SDK, setting up the
local development environment, and creating your first App Engine project using the
local development server.

As we’ve discussed, App Engine provides a set of major features in addition to
the Java 6 JVM. App Engine supports Java servlets, JDO, JPA, JCache, and JavaMail.
In traditional software environments you’d have to replicate your production
environment by building a development environment to properly test your
applications. App Engine provides a lightweight, local development server that
allows for quick testing and debugging of all features. This even includes a
development authentication engine.

Where Do We Start?
Like any other platform or development environment, the first step is to download
and configure the SDK and the development environment. Google App Engine for
Java uses the Google Plugin for Eclipse to enable your Eclipse IDE for App Engine
coding and debugging. The Google Plugin adds the following functionality to your
Eclipse IDE:

� New project wizards to automatically set the framework for App
Engine projects and web development projects leveraging the Google
Web Toolkit (GWT)

� Debugging tools to debug App Engine and GWT applications using
the local development server

� Deployment tools to migrate your App Engine applications to
appspot.com

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

26

Installing the Java SDK
Although App Engine supports both Java 5 and Java 6 we recommend that you run
the Java 6 libraries and JVM for compiling and testing your application, because the
Google App Engine production environment runs Java 6. So, naturally, you’ll want to
test and debug your application on the same platform that it will be running.

The fastest and easiest way to develop, debug, and deploy Java applications for
App Engine is by using the Eclipse IDE and the Google Plugin for Eclipse. In the next
section, we’ll walk through the installation of the Eclipse IDE (Galileo) and the Google
Plugin for Eclipse. Mac and Windows use the same installation process, and Figure 3-1
shows the installation dialog for both environments.

Installing the Google Plugin for Eclipse
Before you can install the Google Plugin for Eclipse you should verify that Java is
running on your machine. (If you’re already developing in Eclipse you can skip
this step. Eclipse requires a JDK to function, so you’re covered.) If you’re installing
Eclipse for the first time, verify that you have a JDK installed by running either of
the following commands from the terminal.

java –version
javac – version

If you need to download a JDK, start by downloading the appropriate release from
http://java.sun.com/javase/downloads. Follow the instructions to install the JDK,
and then run the preceding commands again to verify that everything is set up
correctly.

The Google Plugin for Eclipse is available for versions 3.3 (Europa), 3.4
(Ganymede), and 3.5 (Galileo) of the Eclipse IDE. To install the Eclipse IDE on a Mac,
you just navigate to www.eclipse.org and download the distribution for Mac OS X.
You need to extract a tar.gz file to the directory from which you’d like to run Eclipse,
for example, the Documents folder on a Mac. You can choose any location; it won’t
have an affect on the exercises in this book.

Once you have the Eclipse IDE installed you can use the Software Update feature
to install the Google Plugin for Eclipse. The Software Update feature is used to install
common add-ons and third-party packages into your Eclipse environment. You can
get started by launching Eclipse. On the Mac, double-click the file called Eclipse in
the directory where you extracted the distribution.

To install the plug-in using Eclipse 3.5 (Galileo) (see Figure 3-1):

1. Select the Help menu and then select the Install New Software
option.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

27

2. In the Work with text box, enter http://dl.google.com/eclipse/
plugin/3.5.

3. Expand the “Plugin” and “SDKs” elements in the navigation tree.
Select “Google Plugin for Eclipse 3.5” and “Google App Engine
SDK”. You’ll use the Google Web Toolkit for some examples later in
the book, so make sure you select the “Google Web Toolkit SDK”
option as well. Click Next.

4. Restart Eclipse when prompted. Make sure you are using the Java
perspective.

To install the plug-in, using Eclipse 3.4 (Ganymede):

1. Select the Help menu, and then select the Software Updates
option.

2. Select the Available Software tab and click the Add Site button. In the
Location text box enter http://dl.google.com/eclipse/plugin/3.4.

3. Expand the “Google” element in the navigation tree. Select “Google
Plugin for Eclipse 3.4” and “Google App Engine Java SDK”. You’ll
use the Google Web Toolkit for some examples later in the book, so
make sure you select the “Google Web Toolkit SDK” option as well.
Click Next. Follow the prompts to accept the terms of service and
install the plug-in.

4. Restart Eclipse when prompted. Make sure you are using the Java
perspective.

■ Note Eclipse 3.4 takes quite a bit longer to load then 3.5. That’s because Eclipse checks for
updates for all the plug-ins’ dependencies. If you want to prevent Eclipse from checking all the
dependencies, ensure that only Google Plugin for Eclipse 3.4 is selected in the Help ➤ Software
Updates ➤ Available Software ➤ Manage Sites dialog.

Figure 3-1 shows the dialog for Mac, and Figure 3-2 shows the dialog for Windows
versions of Eclipse 3.5 while selecting the Google Plugin for Eclipse options from the
Add Software dialog.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

28

Figure 3-1. Installing the Google Plugin for Eclipse on a Mac (Galileo)

Figure 3-2. Installing the Google Plugin for Eclipse on Windows (Galileo)

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

29

Signing Up for Google App Engine
Before you get too far, you need to enable your Google account for access to App
Engine. To get started, navigate to http://appengine.google.com. You’ll be prompted
for your Google account credentials, and you’ll be asked to accept the terms of
service. That’s it! You’re ready to get started, by launching the sample project that was
installed with the SDK. If you don’t have a Google account, you can register for one
for free by browsing to https://www.google.com/accounts/NewAccount.

Launching the Demo Application
The App Engine Java SDK includes a few demo applications to help you get
up and running. These might be a bit hard to locate. If you’re new to Eclipse,
it’s important to note that all the SDKs and add-ons you install to your Eclipse
environment get bundled in the plug-ins directory where you extracted the
Eclipse distribution. In your case, the demo files for Google App Engine
for Java will be located in the plugins/com.google.appengine.eclipse.sdk.
[sdkbundle_VERSION/ directory, where VERSION is the version identifier of the SDK.
There should be a demo directory under the subdirectory called “appengine-java-
sdk-version”. The online documentation for Google App Engine for Java walks
you through the steps to create a guestbook application. You’ll be creating your
own application throughout the course of this book. However, to verify that you
have set up your SDK correctly, open the precompiled demo application called
Guestbook. This represents the final version of the guestbook application if you
were to follow the online tutorials. Take a look around the application. We’ll be
walking through the creation of some of these features when you build your own
application. To launch the application select Debug As ➤ Web Application from
the Run menu in Eclipse.

Note that the authentication framework is present to facilitate local
development with test accounts, as shown in Figure 3-3. If you click the Sign in
link, you’ll be forwarded to a basic login page asking for only your username. The
local session will use whatever e-mail address you enter as the active user. If you’d
like to log in with administrator privileges, make sure you check the “Sign in as
Administrator” checkbox. The local development server that comes with the
Google App Engine SDK provides a set of methods that generate sign-in and sign-
out URLs and simulate Google accounts.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

30

Figure 3-3. The running guestbook demo application

Create Your First App Engine Project
Now you’ll create an App Engine project so you can get a deeper look at the
structure and components that make up the project and some features of the local
development server. Hopefully, you still have Eclipse open from the installation
steps you just completed. If not, open Eclipse and make sure you are in the Java
perspective. You should see Java (default) in the top-right corner of your Eclipse
environment. You can select Java (default) from the Open Perspective menu
after choosing Window on the toolbar. From the File menu choose New ➤ Web
Application Project. Use the values described in Table 3-1 for your project.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

31

Table 3-1. New Project Properties

Field Value

Project Name GAEJ - ChapterThree

Package gaej.chapterthree

Location Create new project in workspace

Google SDKs Select both Google Web Toolkit and Google App Engine, and then
select the default SDK for both. Yours may be a different version
from that shown in Figure 3-4.

Figure 3-4. The New Web Application Project wizard

Project Artifacts
Since you are using the Google Web Toolkit for this application, you’ll get a starter
template called the Guest-Service application. You’ll examine the project assets

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

32

and learn how to compile, run, and deploy your test application. You can see from
Figure 3-5 that a decent number of artifacts were loaded with your new project.
Table 3-2 gives you a look at what each one of these artifacts does.

Table 3-2. New Project Properties

Artifact Purpose

src/gaej.chaptertwo[GAEJ_
__ChapterThree.gwt.xml]

A GWT Module descriptor that loads the settings for
GWT in this application. You can set things like the
GWT theme and the application entry points here.

src/gaej.chaptertwo.server[
GreetingServiceImpl.java]

The server-side implementation of the
GreetingService.

src/gaej.chaptertwo.client[
GAEJ___ChapterThree.java][
GreetingService.java][Greeti
ngServiceAsync.java]

This includes the main entry point for the application
as well as the code for the Synchronous and
Asynchronous API for the GreetingService.

War[WEB-INF/web.xml][
GAEJ___ChapterThree.html]
[GAEJ___ChatperThree.css]

The web application archive for the GAE/J project. By
default you’ll get a starter example of an HTML shell
and a CSS file.

Figure 3-5. Default project artifacts for the GWT / GAE/J project

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

33

Before we start dissecting the code, it’s important to look at what the starter
application does. To launch the application from within Eclipse you can either right-
click the project and select Run as ➤ Web Application or choose Web Application
from the Run menu. Because you are using GWT for this project, the GWT Hosted
Mode Console will launch when you run or debug the application. The application
will prompt you for your name, as shown in Figure 3-6. Click Send and you should see
something similar to Figure 3-7.

Figure 3-6. Web Application Starter Project (GWT)

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

34

Figure 3-7. Web Application Starter Project (GWT)

Close the GWT Hosted Browser and return to Eclipse. Open the
GAEJ___ChapterThree.gwt.xml file from under the src/gaej.chaptertwo element
in the Package Explorer navigation tree. You should see the module XML element in
the Source view of the file, as shown in Listing 3-1.

Listing 3-1. Module XML Element

<module rename-to='gaej___chapterthree'>
 <!-- Inherit the core Web Toolkit stuff. -->
 <inherits name='com.google.gwt.user.User'/>

 <!-- Inherit the default GWT style sheet. You can change -->
 <!-- the theme of your GWT application by uncommenting -->
 <!-- any one of the following lines. -->
 <inherits name='com.google.gwt.user.theme.standard.Standard'/>
 <!-- <inherits name='com.google.gwt.user.theme.chrome.Chrome'/> -->
 <!-- <inherits name='com.google.gwt.user.theme.dark.Dark'/> -->

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

35

 <!-- Other module inherits -->

 <!-- Specify the app entry point class. -->
 <entry-point class='gaej.chaptertwo.client.GAEJ___ChapterThree'/>
</module>

If you’d like to start playing around with the GWT options, you can comment out the
following line:

<inherits name='com.google.gwt.user.theme.standard.Standard'/>

Then uncomment out either of these lines:

<!-- <inherits name='com.google.gwt.user.theme.chrome.Chrome'/> -->
<!-- <inherits name='com.google.gwt.user.theme.dark.Dark'/> -->

That change instructs GWT to load a new CSS template for the Dark or Chrome
theme. Dark is a more significant change from the Standard theme. You might not
notice the change from Standard to Chrome with the minimal amount of GWT
components in use in the starter application.

We need to point out another important setting in the file. That’s the following
line:

<entry-point class='gaej.chapterthree.client.GAEJ___ChapterThree'/>

That line tells App Engine where the entry point for the application is located. Find
the GAEJ___ChapterThree.java file under the src/gaej.chapterthree.client element
in the Package Explorer. There are a few key methods to browse to get an idea of
what’s going on with the sample application. Look for the onModuleLoad() method.
It should look similar to the code in Listing 3-2.

Listing 3-2. Code for the onModuleLoad() method

public void onModuleLoad() {
final Button sendButton = new Button("Send");
 final TextBox nameField = new TextBox();
 nameField.setText("GWT User");

 // We can add style names to widgets
 sendButton.addStyleName("sendButton");

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

36

 // Add the nameField and sendButton to the RootPanel
 // Use RootPanel.get() to get the entire body element
 RootPanel.get("nameFieldContainer").add(nameField);
 RootPanel.get("sendButtonContainer").add(sendButton);

 // Focus the cursor on the name field when the app loads
 nameField.setFocus(true);
 nameField.selectAll();

 // Create the popup dialog box
 final DialogBox dialogBox = new DialogBox();
 dialogBox.setText("Remote Procedure Call");
 dialogBox.setAnimationEnabled(true);
 final Button closeButton = new Button("Close");
 // We can set the id of a widget by accessing its Element
 closeButton.getElement().setId("closeButton");
 final Label textToServerLabel = new Label();
 final HTML serverResponseLabel = new HTML();
 VerticalPanel dialogVPanel = new VerticalPanel();
 dialogVPanel.addStyleName("dialogVPanel");
 dialogVPanel.add(new HTML("Sending name to the server:"));
 dialogVPanel.add(textToServerLabel);
 dialogVPanel.add(new HTML("
Server replies:"));
 dialogVPanel.add(serverResponseLabel);
 dialogVPanel.setHorizontalAlignment(VerticalPanel.ALIGN_RIGHT);
 dialogVPanel.add(closeButton);
 dialogBox.setWidget(dialogVPanel);

 // Add a handler to close the DialogBox
 closeButton.addClickHandler(new ClickHandler() {

public void onClick(ClickEvent event) {
 dialogBox.hide();
 sendButton.setEnabled(true);
 sendButton.setFocus(true);
 }
});

Without ever even using GWT you can quickly browse the code and follow exactly
what is happening. The method loads the Google Web Toolkit elements in an order
and fashion that lays out your page perfectly. Take the following lines, for example.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

37

RootPanel.get("nameFieldContainer").add(nameField);
RootPanel.get("sendButtonContainer").add(sendButton);

If you open the GAEJ___ChapterThree.html file from the web application archive (war
directory) you can see the following HTML elements.

<td id="nameFieldContainer"></td>
<td id="sendButtonContainer"></td>

GWT, using the add() method of the RootPanel class, knows to insert the GWT
components in that section of the application’s HTML. You can see how quickly and
easily you can leverage the power of Google Web Toolkit to build a pretty impressive
application.

Local Development Server
The App Engine SDK comes with a local development server for App Engine testing
and debugging. This is required because the Java Runtime on App Engine is slightly
different from the standard distribution. For example, you can’t open ports or sockets
in App Engine. To make a remote HTTP request you need to implement App Engine’s
URL Fetch service (covered in Chapter 8). The development server is part of the SDK.
You can‘t use your own development server for App Engine debugging and testing. The
App Engine JRE differs from other implementations. Let’s take a deeper look at some of
the features of the local development server and some miscellaneous tools to
accelerate application development on App Engine.

Ready to Launch
Soon after the birth of App Engine, a few Google employees used their “20 percent time”
(one day a week to work on projects that may not be part of their official jobs) to create
an App Engine launcher for Mac. With the release of the App Engine 1.2.5 SDK there was
a second group of 20-percenters that released a Windows/Linux version of the launcher.
The source code for all these distributions is available at code.google.com.

Figure 3-8 shows the App Engine Launcher for Mac. The launcher helps you
edit the configuration files for both Python and Java App Engine projects, browse
your applications locally, and even deploy your applications to the production
environment. If you’re interested, the source code for the Mac launcher is located
here on Google Code: http://code.google.com/p/google-appengine-mac-launcher.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

38

■ Note Google Suggest, AdSense for Content, and Orkut are among the many products created through
the “20 percent time” perk.

Figure 3-8. The Google App Engine launcher for Mac

You don’t have to use the launcher to start your development projects on the local
development server. If you’re using Eclipse and the Google Eclipse Plugin, you can
launch your application locally by selecting Debug As ➤ Web Application from the
Run menu.

For more control or to script the launch of your applications locally, you can
launch the development web server from the command line. You should execute this
command from the SDK’s appengine-java-sdk/bin directory.

If you are using Windows, run the following command:

appengine-java-sdk\bin\dev_appserver.cmd [options] war-location

If you are using Mac OS X or Linux, run the following command:

appengine-java-sdk/bin/dev_appserver.sh [options] war-location

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

39

These commands are OS-specific wrapper scripts that run the Java class com.google.
appengine.tools.KickStart in appengine-java-sdk/lib/appengine-tools-api.jar. For
details on the available command options reference the online documentation.

■ Note To stop the development server, press Control + C (on Windows, Mac, or Linux).

Deploying Your Sample Application
It’s time to deploy your application to App Engine where you can browse it
publicly and share it with the world. There’s a small Jet Engine icon in your
Eclipse tool bar that was created when you installed the Google Eclipse Plugin.
Click that icon while making sure that your ChapterThree sample application is
selected in the Package Explorer. It’s important to note that, at the time of this
writing, you get 10 applications per account. You may consider choosing generic
application IDs for the examples in this book and reusing them for each chapter.

You’ll be presented with a Deploy Project to Google App Engine dialog like the
one shown in Figure 3-9. The project name should have been defaulted to the project
you had selected in Eclipse. If it’s blank or doesn’t look quite right, click cancel, select
the ChapterThree project in Eclipse, and click the Jet Engine button again.

Figure 3-9. The Deploy Project to Google App Engine dialog

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

40

Once you’re ready to move forward click the App Engine project settings… link at
the bottom of the dialog window. You’ll see something similar to Figure 3-10.

Figure 3-10. The App Engine project settings dialog

Note that the Application ID field of your dialog isn’t populated. You first have to
create the application in your Google App Engine console to move past this point in
the deployment process. Use the My applications… link to open the Application
Registration form for your App Engine account. Figures 3-11 and 3-12 follow the
process for your account. You’ll have to create a unique Application identifier, which
must be unique across the appspot.com domain. Use the Check Availability feature
to verify that your application ID is available.

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

41

Figure 3-11. Registering kylechapterthree.appspot.com (use a unique name)

Figure 3-12. Confirming that the application was registered

Now that you’ve deployed your application you have a few options for production
use. You can browse to your application live on appspot.com by navigating to your
application’s unique domain on appspot. In the example case (shown in Figures 3-11
and 3-12), the application lives at http://kylechapterthree.appspot.com, as shown in

CHAPTER 3 ■ GETTING STARTED WITH GOOGLE APP ENGINE FOR JAVA

42

Figure 3-13. If you’re using Google Apps you can create a unique domain name for
your App Engine application. We’ll look at that later in the book.

Figure 3-13. The application live on appspot.com

Summary
In this chapter you built your first Google App Engine for Java application using the
Guestbook demo application that comes with the SDK. You set up and configured
the SDK and Google Plugin for Eclipse and even deployed your application to
appspot.com. We’re going to dive a little deeper into some development
technologies and application components in Chapter 4, where you’ll look at
different approaches to constructing a user interface in an App Engine application
and review some libraries and development frameworks.

C H A P T E R 4

■ ■ ■

43

Servlet Container and Frameworks

Now that you’ve set up your development environment and configured the SDK, it's
time to look at the design of your application. Out of the box, App Engine uses the
Java Servlet standard for web applications, but you may be able to use your favorite
framework as well. In this chapter we’ll look at different libraries and frameworks that
run in App Engine. You’ll build a small application with servlets and JavaServer (JSP)
pages as well as applications using Spring MVC and Adobe Flex with GraniteDS.

Choosing a Framework
Choosing the best application framework almost always generates a heated debate.
There are pros and cons for each framework, and every developer has an opinion. Some
developers may prefer a robust Enterprise JavaBeans (EJB) framework while others
prefer a lightweight, agile approach. To ensure that your application will run within the
App Engine server runtime environment, App Engine imposes some constraints that
enable applications to run “nicely” together and be scalable across multiple distributed
runtime instances.

While Google doesn't officially support the libraries or frameworks that run on App
Engine, it does take a community-oriented approach to compatibility. While many
frameworks will run seamlessly on App Engine, others will not. Some frameworks will
require modifications, and there is an active and vibrant community dedicated to
interoperability.

Popular Java libraries and frameworks are listed in Table 4-1. Frameworks marked
as compatible should work out-of-the-box with some minor configuration changes or
code tweaks. Ones marked “Semi-compatible” typically include some features that
will not operate properly due to App Engine restrictions (for example, writing to the
file system, multithreading). Most incompatible frameworks fail to run due to their
reliance on classes not supported by App Engine.

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

44

Table 4-1. Java libraries and frameworks from Google’s “Will it play in App Engine”
page

Framework Version(s) Status

Apache Commons FileUpload 1.2.1 Semi-Compatible

Apache POI ? Incompatible

BlazeDS 3.2.0 Compatible

Compass ? Semi-Compatible

Direct Web Remoting (DWR) 2.0.5, 3.0 RC1 Compatible

dyuproject ? Compatible

Ehcache 1.6.0 Compatible

Facelets 1.1.14 Compatible

Google Data (GData) client library for
Java

All Compatible

Grails 1.1.1 Compatible

GraniteDS ? Compatible

Guice ? Semi-Compatible

Hibernate All Incompatible

iText ? Incompatible

Java Topology Suite (JTS) 1.10 Compatible

JBoss Seam ? Semi-Compatible

Jersey 1.0.2 Semi-Compatible

log4j ? Compatible

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

45

Framework Version(s) Status

MyFaces 1.1.6 Compatible

OpenSocial client library for Java 20090402 Compatible

OSGi ? Semi-Compatible

Restlet ? Compatible

RichFaces 3.1.6 Incompatible

SiteMesh 2.4.2 + Compatible

Spring MVC 2.5.6 Compatible

Spring ORM 2.5.6 Compatible

Spring Security ? Semi-Compatible

Stripes Framework ? Compatible

Struts 1 1.2.28 Compatible

Struts 2 ? Compatible

Tapestry 5.0.18 Compatible

Tapestry 5.1 Incompatible

Tiles 2.0.7 Compatible

Vaadin ? Semi-Compatible

VRaptor 2 ? Compatible

WebORB ? Compatible

Wicket ? Semi-Compatible

ZK 3.6.2 + Compatible

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

46

Depending on your application’s needs, you may or may not choose to use a
framework. You can certainly develop feature-rich, scalable applications for
App Engine using servlets and JSPs. We are going to take a quick peek at some
applications built using the Java Servlet standard, Swing MVC, and Adobe Flex with
GraniteDS.

Servlets and JavaServer Pages
For web applications, the Java Servlet standard is one of the major foundations of
the server stack. By default App Engine utilizes this tried-and-true standard for web
applications as well. As with most servlet containers, App Engine serves up servlets,
JSPs, static files, and other data files from the web archive (WAR) directory based
on the configuration in the deployment descriptor. Gone are the days of manually
configuring and load-balancing your servers based on traffic. A major advantage of
App Engine is that it automatically scales your application for you. Applications run
on multiple web servers simultaneously and Google automatically adjusts the server
pool based on the load.

As with most multitenant environments, App Engine runs the JVM in a secured
“sandbox” environment to isolate applications from one another for security and
service availability. The sandbox ensures that applications don’t step on one another,
hog server resources, or perform actions that they shouldn’t. These restrictions
can be great for ensuring scalability but can make you want to pull your hair out
sometimes. For instance, applications don’t have access to the local file system for
write operations, cannot spawn threads, cannot leverage JNI or other native code,
and cannot make ad hoc network connections. Most of the time it’s not an issue, but
in certain cases you’ll find yourself wanting to write to the local file system or spawn a
new thread to perform operations more efficiently.

To get started with App Engine, you’re going to build a small application
that incorporates some basic functionality. The application is a simple telesales
application that sales representatives can use to field inbound sales calls. Users will
be able to search for existing accounts or create new accounts. They can view existing
sales opportunities for the account or create new opportunities that other sales reps
can follow up on. Your application will contain a single servlet and a number of JSPs.
You’ll persist your data to Bigtable. (We’ll just skim over the functionality here, as
we’ll dig into Bigtable in detail in Chapter 7.)

Views
Starting with the views for your application, the servlet container serves a welcome
page (Figure 4-1 and Listing 4-1), a simple form that allows the user to perform a

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

47

keyword search for existing accounts in Bigtable. Users can also choose to create a
new account for sales opportunities.

Figure 4-1. The default welcome web page

Listing 4-1. The code for index.html

<html>
<head>
 <title>Google App Engine Servlet Example with Bigtable</title>
 <link rel="stylesheet" type="text/css"
href="/stylesheets/styles.css"/>
</head>
<body>
 Google App Engine Servlet Example with
Bigtable
 <p>Before creating a new Opportunity, ensure that the Account does
not already exist. You can also create a new account.</p>
 <p/>
 <form method="post" action="telesales">

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

48

 <input type="hidden" name="action" value="accountLookup"/>
 Search by Account Name:
 <p/>
 <input type="text" name="accountName" value="ACME"
style="width:: 300px"/>

 <input type="submit" value="Search"/>

 </form>
 <p/>

</body>
</html>

If the account does not exist, users can create a new account using a standard
HTML form, as shown in Figure 4-2. You are simply collecting some summary
information in order to identify the account. Listing 4-2 contains the code for your
input form.

Figure 4-2. The Create a New Account web page

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

49

Listing 4-2. The code for accountCreate.jsp

<html>
<head>
 <title>Telesales Demo (Google App Engine for Java)</title>
 <link rel="stylesheet" type="text/css"
href="/stylesheets/styles.css"/>
</head>
<body>
 Back<p/>
 Create a New Account
 <p/>

 <form method="get" action="telesales">
 <input type="hidden" name="action" value="accountCreateDo"/>
 <table border="0" cellspacing="1" cellpadding="5" bgcolor="#CCCCCC">
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight: bold;">Name</td>
 <td bgcolor="#ffffff"><input type="input"
name="name"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight: bold;">City</td>
 <td bgcolor="#ffffff"><input type="input"
name="billingCity"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">State</td>
 <td bgcolor="#ffffff"><input type="input"
name="billingState"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Phone</td>
 <td bgcolor="#ffffff"><input type="input"
name="phone"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Website</td>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

50

 <td bgcolor="#ffffff"><input type="input"
name="website"></td>
 </tr>
 <tr>
 <td colspan="2" bgcolor="#ffffff" align="center"><input
type="submit" value="Submit"></td>
 </tr>
 </table>
 </form>

</body>
</html>

The search results page (Figure 4-3) displays the accounts returned from the servlet.
Listing 4-3 contains the code to display the search box and any results returned from
Bigtable by the keyword search. Users can click the account name to obtain more
details about the account.

Figure 4-3. The account lookup web page

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

51

Listing 4-3. The code for accountLookup.jsp

<%@ page import="java.util.List"%>
<%@ page import="com.appirio.entity.*"%>

<%
 List<Account> accounts =
(List<Account>)request.getAttribute("accounts");
%>

<html>
<head>
 <title>Google App Engine Servlet Example with Bigtable</title>
 <link rel="stylesheet" type="text/css"
href="/stylesheets/styles.css"/>
</head>
<body>
 Google App Engine Servlet Example with
Bigtable
 <p/>
 <p>Before creating a new Opportunity, ensure that the Account does
not already exist. You can also create a new account.</p>
 <p/>
 <form method="post" action="telesales">
 <input type="hidden" name="action" value="accountLookup"/>
 Search by Account Name:
 <p/>
 <input type="text" name="accountName" value="<% iif
(request.getParameter("accountName") != nnull) {
out.println(request.getParameter("accountName")); } %>" style="width:
300px"/>

 <input type="submit" value="Search"/>

 </form>
 <p/>
 <% iif (accounts.size() > 0) { %>
 <%= accounts.size() %> accounts matching
your search criteria:

 <p/>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

52

 <table border="0" cellspacing="1" cellpadding="5"
bgcolor="#CCCCCC" width="50%">
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight: bold;">Name</td>
 <td style="color: #ffffff; font-weight: bold;">City</td>
 <td style="color: #ffffff; font-weight:
bold;">State</td>
 <td style="color: #ffffff; font-weight:
bold;">Phone</td>
 </tr>
 <% ffor (iint i = 0;i<accounts.size();i++) { %>
 <% Account a = (Account)accounts.get(i); %>
 <tr style="background:#ffffff"
onMouseOver="this.style.background='#eeeeee';"
onMouseOut="this.style.background='#ffffff';">
 <td><a
href="telesales?action=accountDisplay&accountId=<%= a.getId() %>"><%=
a.getName() %></td>
 <td><%= a.getCity() %></td>
 <td><%= a.getState() %></td>
 <td><%= a.getPhone() %></td>
 </tr>
 <% } %>
 </table>

 <% } eelse { %>
 No matching accounts found.
 <% } %>
 <p/>

</body>
</html>

The Account Display view (Figure 4-4) shows the details of the account, a link to
create a new sales opportunity, and a list of all opportunities for the account in
Bigtable. Listing 4-4 contains the code for this page.

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

53

Figure 4-4. The Account Display web page

Listing 4-4. The code for accountDisplay.jsp

<%@ page import="java.util.List"%>
<%@ page import="java.text.SimpleDateFormat"%>
<%@ page import="com.appirio.entity.*"%>

<%
 Account account = (Account)request.getAttribute("account");
 List<Opportunity> opportunities =
(List<Opportunity>)request.getAttribute("opportunities");
 SimpleDateFormat sdf = nnew SimpleDateFormat("M/d/yyyy");
%>

<html>
<head>
 <title>Telesales Demo (Google App Engine for Java)</title>
 <link rel="stylesheet" type="text/css"
href="/stylesheets/styles.css"/>
</head>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

54

<body>
 Search<p/>
 Account Display
 <p/>

 <table border="0" cellspacing="1" cellpadding="5" bgcolor="#CCCCCC">
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight: bold;">Name</td>
 <td bgcolor="#ffffff"><%= account.getName() %></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight: bold;">City</td>
 <td bgcolor="#ffffff"><%= account.getCity() %></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">State</td>
 <td bgcolor="#ffffff"><%= account.getState() %></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Phone</td>
 <td bgcolor="#ffffff"><%= account.getPhone() %></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Website</td>
 <td bgcolor="#ffffff"><%= account.getWebsite() %></td>
 </tr>
 </table>

<a href="telesales?action=opportunityCreate&accountId=<%=
account.getId() %>">Create a new Opportunity<p/>

 <% iif (opportunities.size() > 0) { %>

 <p/>Opportunities for <%=
account.getName() %>
<p/>

 <table border="0" cellspacing="1" cellpadding="5"
bgcolor="#CCCCCC">
 <tr bgcolor="#407BA8">

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

55

 <td style="color: #ffffff; font-weight: bold;">Name</td>
 <td style="color: #ffffff; font-weight:
bold;">Amount</td>
 <td style="color: #ffffff; font-weight:
bold;">Stage</td>
 <td style="color: #ffffff; font-weight:
bold;">Probability</td>
 <td style="color: #ffffff; font-weight: bold;">Close
Date</td>
 <td style="color: #ffffff; font-weight:
bold;">Order</td>
 </tr>
 <% ffor (iint i = 0;i<opportunities.size();i++) { %>
 <% Opportunity o = (Opportunity)opportunities.get(i); %>
 <tr style="background:#ffffff"
onMouseOver="this.style.background='#eeeeee';"
onMouseOut="this.style.background='#ffffff';">
 <td nowrap><%= o.getName() %></td>
 <td>$<%= o.getAmount() %></td>
 <td><%= o.getStageName() %></td>
 <td><%= o.getProbability() %>%</td>
 <td><%= sdf.format(o.getCloseDate()) %></td>
 <td><%= o.getOrderNumber() %></td>
 </tr>
 <% } %>
 </table>

 <% } eelse { %>
 <p/>No Opportunities found for <%=
account.getName() %>
 <% } %>

</body>
</html>

Listing 4-5 contains the code for the Create New Opportunity page, which is shown
in Figure 4-5. This HTML form collects the name of the opportunity, the anticipated
amount of the opportunity, and some additional attributes. Submitting the form
creates the new opportunity in Bigtable and takes users back to the Account Display
page where they can view the newly created opportunity (Figure 4-6).

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

56

Figure 4-5. The Create a New Opportunity web page

Listing 4-5. The code for opportunityCreate.jsp

<%
 String accountName = (String)request.getAttribute("accountName");
%>

<html>
<head>
 <title>Telesales Demo (Google App Engine for Java)</title>
 <link rel="stylesheet" type="text/css"
href="/stylesheets/styles.css"/>
</head>
<body>
 <a
href="telesales?action=accountDisplay&accountId=<%=
request.getParameter("accountId") %>">Back<p/>
 Create a New Opportunity
 <p/>

 <form method="post"
action="telesales?action=opportunityCreateDo&accountId=<%=
request.getParameter("accountId") %>">

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

57

 <input type="hidden" name="accountId" value="{{accountId}}">
 <table border="0" cellspacing="1" cellpadding="5" bgcolor="#CCCCCC">
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Account</td>
 <td bgcolor="#ffffff"><%= accountName %></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight: bold;">Name</td>
 <td bgcolor="#ffffff"><input type="input" name="name"
style="width:250px"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Amount</td>
 <td bgcolor="#ffffff"><input type="input" name="amount"
value="125.25"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Stage</td>
 <td bgcolor="#ffffff">
 <select name="stageName">
 <option>Prospecting</option>
 <option>Qualifications</option>
 <option>Value Proposition</option>
 </select>
 </td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Probability</td>
 <td bgcolor="#ffffff">
 <select name="probability">
 <option value="10">10%</option>
 <option value="25">25%</option>
 <option value="50">50%</option>
 <option value="75">75%</option>
 </select>
 </td>
 </tr>
 <tr bgcolor="#407BA8">

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

58

 <td style="color: #ffffff; font-weight: bold;">Close
Date</td>
 <td bgcolor="#ffffff"><input type="input"
name="closeDate" value="1/1/2012"></td>
 </tr>
 <tr bgcolor="#407BA8">
 <td style="color: #ffffff; font-weight:
bold;">Order</td>
 <td bgcolor="#ffffff"><input type="input"
name="orderNumber" value="7"></td>
 </tr>
 <tr>
 <td colspan="2" bgcolor="#ffffff" align="center"><input
type="submit" value="Submit"></td>
 </tr>
 </table>
 </form>

 There is no form validation so please fill in all fields.

</body>
</html>

Figure 4-6. The Account Display web page with the newly created opportunity

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

59

Model
Our model consists of two POJOs for the Account and Opportunity objects used by the
application. These domain-specific objects are constructed by the servlet and passed to
and from the controller to the views. Your application uses JDO, therefore Listings 4-6
and 4-7 represent the objects along with the required annotations for JDO.

Listing 4-6. The code for Account.java

package com.appirio.entity;

import javax.jdo.annotations.IdGeneratorStrategy;
import javax.jdo.annotations.IdentityType;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;
import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Account {

 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) private Long
id;
 @Persistent private String name;
 @Persistent private String city;
 @Persistent private String state;
 @Persistent private String phone;
 @Persistent String website;

 public Account(String name, String city, String state, String phone,
String website) {
 this.name = name;
 this.city = city;
 this.state = state;
 this.phone = phone;
 this.website = website;
 }

 /**
 * @return the id
 */
 public Long getId() {

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

60

 return id;
 }
 /**
 * @param id the id to set
 */
 public void setId(Long id) {
 this.id = id;
 }
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }
 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }
 /**
 * @return the state
 */
 public String getState() {
 return state;
 }
 /**
 * @param state the state to set
 */
 public void setState(String state) {

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

61

 this.state = state;
 }
 /**
 * @return the phone
 */
 public String getPhone() {
 return phone;
 }
 /**
 * @param phone the phone to set
 */
 public void setPhone(String phone) {
 this.phone = phone;
 }
 /**
 * @return the website
 */
 public String getWebsite() {
 return website;
 }
 /**
 * @param website the website to set
 */
 public void setWebsite(String website) {
 this.website = website;
 }
}

Listing 4-7. The code for Opportunity.java

package com.appirio.entity;

import java.util.Date;

import javax.jdo.annotations.IdGeneratorStrategy;
import javax.jdo.annotations.IdentityType;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;
import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Opportunity {

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

62

 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) Long id;
 @Persistent private String name;
 @Persistent private double amount;
 @Persistent private String stageName;
 @Persistent private int probability;
 @Persistent private Date closeDate;
 @Persistent private int orderNumber;
 @Persistent private Long accountId;

 public Opportunity(String name, double amount, String stageName, int
probability, Date closeDate, int orderNumber, Long accountId) {
 this.name = name;
 this.amount = amount;
 this.stageName = stageName;
 this.probability = probability;
 this.closeDate = closeDate;
 this.orderNumber = orderNumber;
 this.accountId = accountId;
 }

 /**
 * @return the id
 */
 public Long getId() {
 return id;
 }
 /**
 * @param id the id to set
 */
 public void setId(Long id) {
 this.id = id;
 }
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 /**
 * @param name the name to set
 */
 public void setName(String name) {

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

63

 this.name = name;
 }
 /**
 * @return the amount
 */
 public double getAmount() {
 return amount;
 }
 /**
 * @param amount the amount to set
 */
 public void setAmount(double amount) {
 this.amount = amount;
 }
 /**
 * @return the stageName
 */
 public String getStageName() {
 return stageName;
 }
 /**
 * @param stageName the stageName to set
 */
 public void setStageName(String stageName) {
 this.stageName = stageName;
 }
 /**
 * @return the probability
 */
 public int getProbability() {
 return probability;
 }
 /**
 * @param probability the probability to set
 */
 public void setProbability(int probability) {
 this.probability = probability;
 }
 /**
 * @return the closeDate
 */
 public Date getCloseDate() {

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

64

 return closeDate;
 }
 /**
 * @param closeDate the closeDate to set
 */
 public void setCloseDate(Date closeDate) {
 this.closeDate = closeDate;
 }
 /**
 * @return the orderNumber
 */
 public int getOrderNumber() {
 return orderNumber;
 }
 /**
 * @param orderNumber the orderNumber to set
 */
 public void setOrderNumber(int orderNumber) {
 this.orderNumber = orderNumber;
 }
 /**
 * @return the accountId
 */
 public Long getAccountId() {
 return accountId;
 }
 /**
 * @param accountId the accountId to set
 */
 public void setAccountId(Long accountId) {
 this.accountId = accountId;
 }
}

Controller
The controller processes and responds to application events and, for our
application, is implemented by a single servlet. All of the methods called from your
views are implemented in this servlet (Listing 4-8). The servlet uses an instance of
the PersistenceManager and well as some JDO Query Language (JDOQL) queries,
which we’ll explain in detail in Chapter 7.

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

65

Listing 4-8. The code for TelesalesServlet.java

package com.appirio;

import java.io.IOException;
import javax.servlet.http.*;

import java.util.Date;
import java.util.List;
import java.text.DateFormat;
import javax.servlet.*;
import javax.jdo.PersistenceManager;
import com.appirio.entity.*;

import com.google.appengine.api.datastore.Key;
import com.google.appengine.api.datastore.KeyFactory;

@SuppressWarnings("serial")
public class TelesalesServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {

 // create the persistence manager instance
 PersistenceManager pm = PMF.get().getPersistenceManager();

 // display the lookup form
 if(request.getParameter("action").equals("accountLookup")) {

 // query for the entities by name
 String query = "select from " + Account.class.getName()
+ " where name == '"+request.getParameter("accountName")+"'";
 List<Account> accounts = (List<Account>)
pm.newQuery(query).execute();

 // pass the list to the jsp
 request.setAttribute("accounts", accounts);
 // forward the request to the jsp
 RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/accountLookup.jsp");
 dispatcher.forward(request, response);

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

66

 // display the create new account form
 } else
if(request.getParameter("action").equals("accountCreate")) {
 response.sendRedirect("/accountCreate.jsp");

 // process the new account creation and send the user to the
account display page
 } else
if(request.getParameter("action").equals("accountCreateDo")) {

 // create the new account
 Account a = new Account(
 request.getParameter("name"),
 request.getParameter("billingCity"),
 request.getParameter("billingState"),
 request.getParameter("phone"),
 request.getParameter("website")
);

 // persist the entity
 try {
 pm.makePersistent(a);
 } finally {
 pm.close();
 }

response.sendRedirect("telesales?action=accountDisplay&accountId="+a.getId(
));

 // display the account details and opportunities
 } else
if(request.getParameter("action").equals("accountDisplay")) {

 // fetch the account
 Key k =
KeyFactory.createKey(Account.class.getSimpleName(), new
Integer(request.getParameter("accountId")).intValue());
 Account a = pm.getObjectById(Account.class, k);

 // query for the opportunities

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

67

 String query = "select from " +
Opportunity.class.getName() + " where accountId ==
"+request.getParameter("accountId");
 List<Opportunity> opportunities = (List<Opportunity>)
pm.newQuery(query).execute();

 // pass the list to the jsp
 request.setAttribute("account", a);
 // pass the list to the jsp
 request.setAttribute("opportunities", opportunities);

 // forward the request to the jsp
 RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/accountDisplay.jsp");
 dispatcher.forward(request, response);

 // display the create new opportunity form
 } else
if(request.getParameter("action").equals("opportunityCreate")) {

 Key k =
KeyFactory.createKey(Account.class.getSimpleName(), new
Integer(request.getParameter("accountId")).intValue());
 Account a = pm.getObjectById(Account.class, k);

 // pass the account name to the jsp
 request.setAttribute("accountName", a.getName());
 // forward the request to the jsp
 RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/opportunityCreate.jsp");
 dispatcher.forward(request, response);

 // process the new opportunity creation and send the user to
the account display page
 } else
if(request.getParameter("action").equals("opportunityCreateDo")) {

 Date closeDate = new Date();

 // try to parse the date
 try {
 DateFormat df = DateFormat.getDateInstance(3);

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

68

 closeDate = df.parse(request.getParameter("closeDate"));
 } catch(java.text.ParseException pe) {
 System.out.println("Exception " + pe);
 }

 // create the new opportunity
 Opportunity opp = new Opportunity(
 request.getParameter("name"),
 new
Double(request.getParameter("amount")).doubleValue(),
 request.getParameter("stageName"),
 new
Integer(request.getParameter("probability")).intValue(),
 closeDate,
 new
Integer(request.getParameter("orderNumber")).intValue(),
 new Long(request.getParameter("accountId"))
);

 // persist the entity
 try {
 pm.makePersistent(opp);
 } finally {
 pm.close();
 }

response.sendRedirect("telesales?action=accountDisplay&accountId="+request.
getParameter("accountId"));

 }

 }

 public void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 doGet(request, response);
 }

}

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

69

■ Note The servlet in Listing 4-8 describes code for interacting with Bigtable. We’ll provide more
details on the PersistenceManager, JDO, and JDOQL in Chapter 7.

Deployment Descriptor
When the web server receives a request for your application, it uses the deployment
descriptor to map the URL of the request to the code handling the request. Modify the
web.xml file with the code in Listing 4-9 to use the TelesalesServlet class. The servlet
mapping specifies that all incoming requests to “telesales” be mapped to the newly
created servlet defined in the servlet definition.

Listing 4-9. The web.xml file

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
 <servlet>
 <servlet-name>telesales</servlet-name>
 <servlet-class>com.appirio.TelesalesServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>telesales</servlet-name>
 <url-pattern>/telesales</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

PersistenceManager
The servlet utilizes Bigtable to store data for your application. Listing 4-10
displays how you obtain an instance of the PersistenceManager from the
PersistenceManagerFactory object. As with most datastores, obtaining a
connection is expensive so you should the wrap it in a singleton.

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

70

Listing 4-10. The code for PMF.java

package com.appirio;

import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

public final class PMF {

 private static final PersistenceManagerFactory pmfInstance =

JDOHelper.getPersistenceManagerFactory("transactions-optional");
 private PMF() {}

 public static PersistenceManagerFactory get() {
 return pmfInstance;
 }

}

Spring MVC
Spring MVC is one of the more popular frameworks and is fully compatible with
App Engine. The only modification you may have to make is if you are using Spring
Forms, in which case you’ll need to register custom editors for your properties.

In this section you’re going to set up a quick Spring application to show the best
practices and configuration to run on App Engine.

To get started, create a new Web Application Project and paste the following jar
files from the Spring distribution into your /WEB-INB/lib directory. You’ll also need to
add the files to your build path.

� spring-web.jar

� spring-webmvc.jar

� spring-core.jar

� spring-beans.jar

� spring-context.jar

� standard.jar

� jstl.jar

� commons-logging.jar

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

71

■ Note Don't include the all-in-one jar (spring.jar) as it will throw java.lang.NoClassDefFoundError:
javax/naming/NamingException.

Server Configuration
Modify the web.xml file generated by Eclipse with the code in Listing 4-11, to use the
Spring DispatchServlet.

Listing 4-11. The web.xml file

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
 <servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Create the dispatcher-servlet.xml file in your /WEB-inf/ directory with the code from
Listing 4-12. The viewResolver bean allows you to swap out rendering models without
tying you to a specific view technology.

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

72

Listing 4-12. The dispatcher-servlet.xml file

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.appirio" />

 <bean id="viewResolver"

 class="org.springframework.web.servlet.view.InternalResourceViewResol
ver"
 p:prefix="/WEB-INF/views/"
 p:suffix=".jsp" />

</beans>

Views
Now create the views for the application. First, you need a simple form that allows the
user to enter a name (Figure 4-7). Listing 4-13 is the JSP page that is loaded from the
deployment descriptor as the default web page. It includes a standard HTML form
with a single input field.

Listing 4-13. The index.jsp page

<?xml version="1.0" encoding="ISO-8859-1" ?>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<title>Spring - GAE</title>
</head>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

73

<body>
 <form action="test.do" method="post">What's your first name?

 <input type="text" name="name" />

 <input type="submit" value="Submit" /></form>
</body>
</html>

Figure 4-7. The index.jsp page providing user input

Now you need to create the JSP page that displays the value submitted by the user.
The code in Listing 4-14 uses the JavaServer Pages Standard Tag Library to display
the name that the user entered in the previous page (Figure 4-8).

Listing 4-14. The test.jsp page

<?xml version="1.0" encoding="ISO-8859-1" ?>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ page isELIgnored="false"%>
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

74

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<title>Insert title here</title>
</head>
<body>
 Hello <c:out value="${name}" />!!
</body>
</html>

Figure 4-8. The test.jsp page displaying the standard “hello” with the user’s input

Adobe Flex
Adobe Flex is becoming a popular choice for generating the client side of enterprise
Java applications. Flex applications run on the ubiquitous Adobe Flash Player and are
developed using both ActionScript and MXML. MXML is a declarative, XML-based
language that is preprocessed into ActionScript during compilation. You use it to
create and interact with components such as panels, input fields, and data grids.
ActionScript 3.0 is a powerful, object-oriented programming language that is used for
the core logic of Flex applications. Flex development has a fairly low learning curve
due to the striking similarity between Java and ActionScript in language features,
concepts, and syntax. The languages use similar conditional statements, looping
syntax, and even coding conventions (Figure 4-9).

The UI portion of Flex applications are typically constructed using MXML. This
is a declarative, XML-based language that is pre-processed into ActionScript during
compilation. You use MXML to create and interact with components such as panels,

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

75

input fields, and data grids. We are simply providing a cursory overview of
ActionScript and MXML as your application focuses more on the Java aspects of
the application.

Figure 4-9. Similar classes in both ActionScript and Java

Flex communicates with Java application servers using HTTP, SOAP-based
web services, or Action Message Format (AMF),), Adobe’s proprietary format. You
can choose from a few open-source AMF implementations including WebORB,
GraniteDS, and Adobe’s BlazeDS. All of these implementations provide the ability
to communicate via JMS or Flex remoting. Remoting is much quicker and more
efficient than using XML across the wire and is the protocol that you will be using
for your application.

You are going to set up a Flex application that fetches accounts from Bigtable
using GraniteDS. The remoting service is a high-performance data transfer service
that allows your Flex application to directly invoke Java object methods on your
application and consume the return values natively. The objects returned from the

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

76

server-side methods are automatically deserialized into either dynamic or typed
ActionScript objects.

If you don’t already have the Flex Builder installed, you can download a
60-day trial of either the Adobe Flex Builder 3 or the Flex Builder 3 plug-in from
http://www.adobe.com/cfusion/entitlement/index.cfm?e=flex3email. The plug-in
may get you up and running a little quicker and it’s a pretty straightforward install if
you are comfortable with the Eclipse installation process.

Now create a new Web Application Project and uncheck “Use Google Web
Toolkit”. Since you are going to be using Flex as the front end for your application,
you’ll want to add the Flex Project Nature to your project. Right-click the project
name in the left panel and select Flex Project Nature � Add Flex Project Nature.
Choose “Other” as the application server, click Next, and then click Finish. This
will automatically create your Flex main.mxml file in the src directory. Once the
main.mxml file has been created, the Eclipse Problems tab should display the
following error message, “Cannot create HTML wrapper. Right-click here to recreate
folder html-template.” To fix this error, simply right-click the error message and
select “Recreate HTML Templates.”

Now you need to install the required jar files for GraniteDS. Download the latest
version of GraniteDS from http://sourceforge.net/projects/granite/files, unzip the
files, find granite.jar in the graniteds/build/ directory, and place the jar file into your
project’s /WEB-INF/lib/ directory. You’ll also need to get the latest version of Xalan-J
from http://www.apache.org/dyn/closer.cgi/xml/xalan-j. Unzip the files and copy
serializer.jar and xalan.jar into your project’s /WEB-INF/lib/ directory.

Server Configuration
Now that you have the Flex Builder (or plug-in) set up correctly and your project
created with all of its requirements, you can start configuring your application.
First, you need to tell App Engine which classes GraniteDS uses as well as define its
servlet mappings. Place the code shown in Listing 4-15 in the web-xml file between
the <web-app> tags.

Listing 4-15. The web.xml file

<!-- GraniteDS -->
<listener>
 <listener-class>org.granite.config.GraniteConfigListener</listener-
class>
</listener>

<!-- handle AMF requests serialization and deserialization -->

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

77

<filter>
 <filter-name>AMFMessageFilter</filter-name>
 <filter-class>org.granite.messaging.webapp.AMFMessageFilter</filter-
class>
</filter>
<filter-mapping>
 <filter-name>AMFMessageFilter</filter-name>
 <url-pattern>/graniteamf/*</url-pattern>
</filter-mapping>

<!-- processes AMF requests -->
<servlet>
 <servlet-name>AMFMessageServlet</servlet-name>
 <servlet-
class>org.granite.messaging.webapp.AMFMessageServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>AMFMessageServlet</servlet-name>
 <url-pattern>/graniteamf/*</url-pattern>
</servlet-mapping>

GraniteDS communicates with the servlet container through a remoting destination,
which exposes a Java class to your Flex application so that it can invoke methods
remotely. In Listing 4-16, the destination ID is a logical name that your Flex application
uses to refer to the remote class. This eliminates the need to hard-code a reference to the
fully qualified Java class name. This logical name is mapped to the Java class as part of
the destination configuration in services-config.xml. Create a new folder under /WEB-
INF/ called “flex” and create the services-config.xml file with the code in Listing 4-16.

Listing 4-16. The services-config file for your remoting destination

<?xml version="1.0" encoding="UTF-8"?>
<services-config>
 <services>
 <service
 id="granite-service"
 class="flex.messaging.services.RemotingService"
 messageTypes="flex.messaging.messages.RemotingMessage">
 <destination id="Gateway">
 <channels>
 <channel ref="my-graniteamf"/>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

78

 </channels>
 <properties>
 <scope>application</scope>
 <source>com.appirio.Gateway</source>
 </properties>
 </destination>
 </service>
 </services>

 <channels>
 <channel-definition id="my-graniteamf"
class="mx.messaging.channels.AMFChannel">
 <endpoint
 uri="/graniteamf/amf"
 class="flex.messaging.endpoints.AMFEndpoint"/>
 </channel-definition>
 </channels>
</services-config>

For Flex remoting to work correctly you need to pass some arguments to the compiler,
telling it where to find the services file that defines your remoting destination. Your
remoting destination points to a class called Gateway that you will create shortly. Right-
click the project name in the left panel and select Properties � Flex Compiler. Replace
your compiler arguments with the following:

-locale en_US -services ../war/WEB-INF/flex/services-config.xml

Since you are using GraniteDS, you have to provide the runtime configuration
for the container. Create a new folder called “granite” under /WEB-INF/ and paste
the granite-config.xml file from graniteds/examples/graniteds_pojo/resources/
WEB-INF/granite/ into it.

In this example you’ll be using the Java Persistence API (JPA) as the persistence
protocol. Since App Engine utilizes JDO by default, you’ll need to create the
configuration file for JPA manually. Create the persistence.xml file with the code
from Listing 4-17 in the /src/META-INF/ directory.

Listing 4-17. JPA persistence.xml file

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

79

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">
 <persistence-unit name="transactions-optional">

<provider>org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider<
/provider>
 <properties>
 <property name="datanucleus.NontransactionalRead"
value="true"/>
 <property name="datanucleus.NontransactionalWrite"
value="true"/>
 <property name="datanucleus.ConnectionURL"
value="appengine"/>
 </properties>
 </persistence-unit>
</persistence>

Client-Side Code
Designing your Flex client is much easier than you might expect. Your client will be
very basic and will expose two functions through a tabbed interface. Users will be
able to either create a new account or look up the details of an existing one by its ID
(Figure 4-10).

Figure 4-10. The Flex UI displaying an account lookup

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

80

Your Flex client will consist of a single MXML file containing all of your code and
UI elements. For larger, more complex applications where you have clearly defined
layers, you would typically break up the application into multiple MXML files and
ActionScript classes using an MVC paradigm. Since your application is relatively
small, there is really no need for this type of separation.

As you look at the code for main.mxml in Listing 4-18, pay particular attention
to the RemoteObject tag at the top of the file. The ID of the tag (gateway) is used to
reference the RemoteObject throughout the file, while the destination (Gateway) is
the same destination you set up in your services-config.xml file specifying your
remoting destination of com.appirio.Gateway.

The individual methods specified by the RemoteObject tag map directly to the
public methods in the Gateway class that you will define in Listing 4-18.

Listing 4-18. The Flex UI: main.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
width="500" height="400">
 <mx:RemoteObject id="gateway" destination="Gateway"
fault="status.text=event.fault.toString();">
 <mx:method name="createAccount"
result="status.text='Created.';"/>
 <mx:method name="fetchAccount" result="displayAccount(event);"/>
 </mx:RemoteObject>

 <mx:Script>
 <![CDATA[
 import mx.rpc.events.ResultEvent;

 // create the account in App Engine
 private function createAccount():void {
 // submit the create request to App Engine

 gateway.createAccount(frmId.text,frmName.text,frmCity.text,frmState.t
ext,frmPhone.text,frmWebsite.text);
 // remove current text
 status.text=null;
 frmId.text=null;
 frmName.text=null;
 frmCity.text=null;
 frmState.text=null;

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

81

 frmPhone.text=null;
 frmWebsite.text=null;
 }

 // fetch the account
 private function fetchAccount():void {
 status.text='Fetching account...';
 // fetch the account by Id from App Engine
 gateway.fetchAccount(fetchId.text);
 }

 // display the results from App Engine returned from
fetchAccount()
 private function displayAccount(event:ResultEvent):void {
 status.text='Displaying account...';
 var account:Account = event.result as Account;
 txtName.text=account.name;
 txtCity.text=account.city;
 txtState.text=account.state;
 txtPhone.text=account.phone;
 txtWebsite.text=account.website;
 }

]]>
 </mx:Script>

 <mx:Text x="10" y="14" text="Telesales Demo" fontSize="18"
color="#FFFFFF"/>
 <mx:TabNavigator left="5" right="5" bottom="50" top="50">
 <mx:Canvas label="Display Account" width="100%" height="100%">
 <mx:Form width="100%" height="100%" left="0">
 <mx:FormItem label="Id">
 <mx:TextInput id="fetchId"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Fetch"
click="fetchAccount();"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Spacer/>
 </mx:FormItem>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

82

 <mx:FormItem label="Name">
 <mx:Text id="txtName"/>
 </mx:FormItem>
 <mx:FormItem label="City">
 <mx:Text id="txtCity"/>
 </mx:FormItem>
 <mx:FormItem label="State">
 <mx:Text id="txtState"/>
 </mx:FormItem>
 <mx:FormItem label="Phone">
 <mx:Text id="txtPhone"/>
 </mx:FormItem>
 <mx:FormItem label="Website">
 <mx:Text id="txtWebsite"/>
 </mx:FormItem>
 </mx:Form>
 </mx:Canvas>
 <mx:Canvas label="New Account" width="100%" height="100%">
 <mx:Form width="100%" height="100%" left="0">
 <mx:FormItem label="Id">
 <mx:TextInput id="frmId"/>
 </mx:FormItem>
 <mx:FormItem label="Name">
 <mx:TextInput id="frmName"/>
 </mx:FormItem>
 <mx:FormItem label="City">
 <mx:TextInput id="frmCity"/>
 </mx:FormItem>
 <mx:FormItem label="State">
 <mx:TextInput id="frmState"/>
 </mx:FormItem>
 <mx:FormItem label="Phone">
 <mx:TextInput id="frmPhone"/>
 </mx:FormItem>
 <mx:FormItem label="Website">
 <mx:TextInput id="frmWebsite"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Save"
click="createAccount()"/>
 </mx:FormItem>

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

83

 </mx:Form>
 </mx:Canvas>
 </mx:TabNavigator>
 <mx:Text x="10" y="358" id="status" color="#FFFFFF" width="200"/>

</mx:Application>

Now you need to create an Account value object to hold the data returned from the
server. Right-click the src folder and select New � ActionScript Class. Enter the class
name “Account” and click Finish. Add the code in Listing 4-19 to this class. Notice
that the code uses the [RemoteClass(alias=" com.appirio.Account")] annotation to
map the ActionScript version of the Account class (Account.as) to the Java version
(Account.java). As a result, Account objects returned by the fetchAccount() method
of the service layer are deserialized into instances of the ActionScript Account class
automatically.

Listing 4-19. The Account.as file

package
{
 [Bindable]
 [RemoteClass(alias="com.appirio.Account")]
 public class Account
 {

 public var id:String;
 public var name:String;
 public var city:String;
 public var state:String;
 public var phone:String;
 public var website:String;

 }
}

Server-Side Code
Your client-side code is now complete and you can jump back to the server side to
finish up your application. You need to add the JPA entity that will store your data in
App Engine. Create the Account class with the code from Listing 4-20. This class will
consist of the same members as the ActionScript class so that GraniteDS can translate

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

84

them back and forth for you. We won’t go into the specifics of JPA as we will cover this
topic in more detail in Chapter 7.

Listing 4-20. The Account entity class

package com.appirio;

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity public class Account {
 @Id String id;
 String name;
 String city;
 String state;
 String phone;
 String website;

 public Account(String id, String name, String city, String state,
String phone, String website) {
 this.id = id;
 this.name = name;
 this.city = city;
 this.state = state;
 this.phone = phone;
 this.website = website;
 }

 /**
 * @return the id
 */
 public String getId() {
 return id;
 }
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 /**
 * @param name the name to set

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

85

 */
 public void setName(String name) {
 this.name = name;
 }
 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }
 /**
 * @return the state
 */
 public String getState() {
 return state;
 }
 /**
 * @param state the state to set
 */
 public void setState(String state) {
 this.state = state;
 }
 /**
 * @return the phone
 */
 public String getPhone() {
 return phone;
 }
 /**
 * @param phone the phone to set
 */
 public void setPhone(String phone) {
 this.phone = phone;
 }
 /**
 * @return the website

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

86

 */
 public String getWebsite() {
 return website;
 }
 /**
 * @param website the website to set
 */
 public void setWebsite(String website) {
 this.website = website;
 }
}

Like any datastore, you need to create a connection to fetch data. To obtain a
connection to Bigtable you need to obtain an instance of the EntityManagerFactory.
The implementation is pretty straightforward, but like your JDO example, you want
to wrap this into a singleton due to the high connection overhead. Use the code in
Listing 4-21 to create the EMF class.

Listing 4-21. The EMF singleton

package com.appirio;

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class EMF {
 private static final EntityManagerFactory emf =
Persistence.createEntityManagerFactory("transactions-optional");

 public static EntityManagerFactory get() {
 return emf;
 }

 private EMF() {
 }
}

The last bit of code you need to write for your application will implement the
Gateway class that GraniteDS uses as the remoting endpoint. The Gateway object
in Listing 4-22 contains the public methods that the Flex front end calls via the
RemoteObject tag in main.mxml. Notice that you are not doing any special type of
casting for the Flex front end as GraniteDS takes care of that for you.

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

87

Listing 4-22. The Gateway service object

package com.appirio;

import javax.persistence.EntityManager;
import javax.persistence.EntityTransaction;

public class Gateway {

 public void createAccount(String id, String name, String city, String
state, String phone, String website) {

 EntityManager em = EMF.get().createEntityManager();
 EntityTransaction tx = em.getTransaction();

 Account account = new Account(id, name, city, state, phone,
website);

 try {
 tx.begin();
 em.persist(account);
 tx.commit();
 } finally {
 if (tx.isActive()) {
 tx.rollback();
 }
 em.close();
 }

 }

 public Account fetchAccount(String id) {

 EntityManager em = EMF.get().createEntityManager();
 return em.find(Account.class, id);

 }

}

CHAPTER 4 ■ SERVLET CONTAINER AND FRAMEWORKS

88

Running the application should now result in an application that looks like Figure 4-10.
When you deploy this application to App Engine, it will also deploy the required
supporting Flex files for you.

Summary
Many popular Java libraries and frameworks run on App Engine. Google doesn't
officially support these projects but it does take a community-oriented approach to
compatibility. There is an active and vibrant community dedicated to interoperability
of these projects. While some frameworks work with minor configuration changes,
others fail due to App Engine restrictions or unsupported classes.

In this chapter you built three applications using various technologies and
frameworks. Out of the box App Engine uses servlets and JSPs for web applications.
You built a small telesales application that used JSPs for the views, simple POJOs for
the model, and a single servlet for the controller. The application used Bigtable to
store and retrieve data with the JDO API.

You also created an application using the Spring MVC framework. The
application was light on actual functionality but was developed to show the best
practices and configuration needed to run on App Engine.

Your last application was developed using Adobe Flex for the front-end and using
GraniteDS for the remoting protocol. Remoting is much quicker and more efficient
than using XML across the wire and allows Flex applications to directly invoke remote
Java object methods and consume the return values natively. We walked through the
client-side MXML and ActionScript code development as well as the server-side. We
also took an in depth look at the server configuration to provide interoperability with
remoting.

In our next chapter you'll actually start building your demo application. We'll
explore the functional as well as technical requirements and start developing the
front-end using Google Web Toolkit.

C H A P T E R 5

■ ■ ■

89

Developing Your Application

In the last chapter we looked at some of the libraries and frameworks that are compatible
with App Engine plus some sample applications that run on App Engine’s servlet
container. Now it’s time to roll up your sleeves and get to work. To make your application
a little more interesting, you are going to be writing the presentation layer using Google
Web Toolkit (GWT).). We’ll examine the functional and technical specifications for the
project and then walk through the code over the next couple of chapters.

If you are reading this book, you are probably a software engineer. At some time
or another you have probably worked as a consultant writing code for clients for
money, billing your work as a fixed-price job or as time and expense. If you’ve done
any time-and-expense work, then you are familiar with reporting your time to clients
and having them pay you for your efforts. If this is the case, then the application you
will be building will be quite familiar to you.

Functional Specifications
You will be building a simple timecard-entry system throughout the next couple of
chapters. Your application won't have all of the bells and whistles of a commercial-
grade system, but it will have enough to really sink your teeth into Google App Engine
and GWT, to a certain extent.

The basic functionality of your application should include:

Authentication against some type of user repository to provide
users with their own project settings and data.

The ability for users to select a date range so that they can enter
time for any start day of the week.

A picklist for displaying a list of all projects that users are working
on so that they can report time against each project.

A picklist with project-specific milestones that users can report
time against.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

90

An indicator for reporting whether the entry is billable or non-
billable.

Input fields allowing users to enter time for individual days of the
week, from Monday to Sunday.

A subtotal of hours for all entries for a particular week, organized
by project and milestone.

A grand total of all hours for the current timecard.

The ability to click a button to add a new time-entry row to the
application.

The ability to click a Save button that persists users’ entries to some
type of data store and clears the user interface of all entries.

The ability to display all of the timecard entries that a user has
submitted.

The ability for users to log out of their sessions and exit the
application.

Timecard UI Mock-up
Since this is the era of Web 2.0, you should put a slick interface on the application,
with dynamic page refreshes, flashy transitions, and AJAX calls. Figure 5-1 shows a
mock-up what your final application should look like.

Figure 5-1. Proposed timecard UI design

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

91

■ Note I want to stress that you will not be building a production-quality application. Some features and
functionality will be missing. This is due mainly to the fact that this is a beginning-level book, and we want to
demonstrate just the basics and not overwhelm you with endless lines of rote code. Try not to focus too much
on the functional requirements.

Technical Specifications
One of the great things about Google App Engine is that it supports so many
languages, libraries, and frameworks, giving you a large number of tools with which
to build your application. To implement your functional requirements you are going
to use GWT and several services and technologies provided by Google and App
Engine.

Authentication
Since you are using Java, you can roll your own authentication framework using
the servlet session interface, App Engine's data store, and its caching service. An
easier way, and the one you'll implement, is to use Google Accounts service. This
service allows App Engine to authenticate your users with Google Accounts,
providing for a much cleaner experience. App Engine can determine whether your
application's user has logged in with their Google accounts, and can redirect them
to the standard Google Accounts login page or allow them to create a new
account. App Engine can also detect whether the current user is a Google
Accounts administrator, making it easy to present them with content or
functionality applicable to their access level. You'll use Google Accounts to set up
authentication for your application in Chapter 6.

Presentation
App Engines supports a number of frameworks that should be familiar to the average
Java developer. Other frameworks are either totally incompatible (for example,
RichFaces) or semicompatible (for example, JBoss Seam, Wicket). As you saw in
Chapter 4, the App Engine environment provides you with a Java 6 JVM, a Java
servlets interface, and support for standard interfaces. This makes writing MVC web
applications very straightforward if you are familiar with servlets and JavaServer
Pages (JSPs).). Servlets and JSPs have their pros and cons but most seasoned
developers can get an application up and running in no time.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

92

However, since servlets and JSPs are so "Web 1.0," you are going to be
developing your presentation layer using Google Web Toolkit (GWT).). If you've
ever done any web development, you know how frustrating, time consuming, and
error prone it is to write the sexy, dynamic applications that users crave, given the
ways that different browsers and versions of browsers interpret your code. With
GWT, you write your AJAX front end in Java, and GWT then compiles it into
optimized JavaScript that automagically works across all major browsers. You get
the "Web 2.0" functionality without all of the hassle of writing cross-compatible
JavaScript on the client side.

Persistence
It's an understatement to say that virtually all applications need a way to persist their
data. This could be user-generated data or simply configuration settings required by
your application at runtime. Some frameworks and web application servers are
distributed with lightweight, embedded databases, but App Engine comes with a
massive, scalable database called Bigtable. Bigtable is a flexible, schema-less object
database or entity store. It supports massive data sets with millions of entities and
petabytes of data across thousands of commodity servers. Many projects at Google
store data in Bigtable, including web indexing, Google Earth, and Google Finance.
Using Bigtable, your applications can take advantage of the same fault-tolerant
storage that Google relies on to run its business.

Your timecard application will use Bigtable to store the daily time entries that
users enter. Your application will be inserting and querying for entities but not
updating them. We'll be covering Bigtable and topics such as scalability, JDO, JPA,
and JDOQL in more detail in Chapter 7.

Using Google Web Toolkit
As previously stated, you will be using GWT for your front end. GWT isn't a server-
side framework like Spring and GraniteDS but an entirely separate product that
Google has recently baked into App Engine using its Eclipse plug-in. Just as App
Engine doesn't depend entirely on GWT, GWT can run just fine without App Engine.
You can write GWT applications that can be embedded into HTML pages or used
with other application servers. You can run a GWT application on a PHP/MySQL
stack if you'd like.

One of the main advantages of GWT is that it hides the complexity of writing
cross-browser JavaScript. You write your AJAX front end in Java, which GWT then
cross-compiles into optimized JavaScript that automatically works across all major
browsers. During development, you can iterate functionality quickly with the same

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

93

methodology you're accustomed to with JavaScript, but with the Eclipse IDE you can
step through and debug your Java code line by line in the same toolset that you are
already comfortable with. When you're ready to deploy your application to App
Engine, GWT compiles your source code into optimized, stand-alone JavaScript that
works across all major browsers. GWT enables you to:

Communicate with back-end servers using GWT RPC, JSON, and
XML. With GWT RPC you can specify remote endpoints to call
across the Internet with remarkable ease. GWT does the heavy
lifting for you by serializing arguments, invoking the methods on
the server, and deserializing the return values.

Create UI components that can be packaged and reused in other
projects.

Develop your own JavaScript functionality to include in your
applications using JavaScript Native Interface (JSNI).).

Support for the browser Back button and history. You don’t have to
waste time programming the lack of state in your application.

Use GWT-deferred binding techniques to create compact
internationalized applications based on user profiles.

Get started right away using your favorite tools like Eclipse, JUnit,
and JProfiler.

■ Note This book is not intended to be a deep-dive into GWT but should provide just enough
information to allow you to understand the technology and get you started developing with GWT. For
more details on developing with GWT, check out http://tinyurl.com/o3vcpg.

Creating Your Project

Creating your project is a snap using the Google plug-in for Eclipse. Select File ➤ New
➤ Web Application Project and enter the information for your project. Ensure that
you check “Use Google Web Toolkit” and “Use Google App Engine” and that you are
using the latest version of each SDK. Fortunately, Eclipse will notify you when a new
version of either SDK is available for download. After the wizard finishes, you will see
that it has created a number of files to get your project up and running quickly (see
Figure 5-2). As you work through your application, you will be replacing the code
generated by the Eclipse plug-in with your own code.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

94

Figure 5-2. Initial files and directories created by the new project wizard

We’ll be going through each of these files in detail during the development cycle, but
it’s important to touch on a few of the generated files that we will skim over during
this process. Table 5-1 provides a summary of each file.

GWT Module Definition
In the TimeEntry.xml file, you specify your application's entry-point class,
TimeEntry.java. In order to compile, a GWT module must specify an entry point. If a
GWT module has no entry point, then it can be inherited only by other modules. You can
include other modules that have entry points specified in their module XML files. If your
module has multiple entry points, then each one is executed in the specified sequence.

The Host Page
For your project the code for the web application executes within the TimeEntry.html
page, a.k.a the “host” page. The host page references the JavaScript source code that
renders the dynamic elements of your HTML page. You can either let Eclipse
dynamically generate the entire contents of the body element for you, or you can
render the application in your existing web page as part of a larger application. In the
latter case, you simply need to create an HTML <div> element to use as placeholder
for the dynamically generated portions of the page.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

95

The host page also references the application style sheet, TimeEntry.css, as well as
the default GWT style sheet, standard.css, from the module definition. Eclipse
generates three different themes for you, and you can choose the one you like best by
uncommenting one of the lines. You’ll be adding a few of your own styles to the
TimeEntry.css file to give your application a nice look and feel.

Table 5-1. Project files created by the Eclipse plug-in

File Description

TimeEntry.gwt.xml GWT module definition. The module definition
includes the collection of resources that comprise a
GWT application or a shared package. By default, all
applications inherit the core GWT functionality
required for every project. You can also specify other
GWT modules from which to inherit.

GreetingService.java Interface for the client-side service that extends
RemoteService and lists all RPC methods.

GreetingServiceAsync.java Asynchronous service interface that is called from the
client-side code.

TimeEntry.java GWT entry point class. You’ll be writing most of your
code here.

GreetingServiceImpl.java Server-side implementation of the RPC service that
extends RemoteServiceServlet and implements the
GreetingService interface.

appengine-web.xml App Engine Java application configuration file specifies
the application's registered application ID and the
version identifier.

web.xml Java web application descriptor containing the servlet
definitions and mappings and welcome file setting.

TimeEntry.css Application style sheet referenced by the host page.

TimeEntry.html Host page rendering your GWT application.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

96

Running the Initial Starter Application
Take a look at the starter application that Eclipse generated, as shown in Figure 5-3.
Select the application folder on the left and choose Run ➤ Run as ➤ Web Application.
This will start your application, in hosted mode, opening two windows: the hosted
mode browser and the development shell. The development shell contains a log
viewer displaying status and error messages while the hosted mode browser contains
your initial starter application.

Figure 5-3. Your starter application

Your GWT application runs in two modes, hosted and web. The power of GWT lies in
its ability to use the Eclipse IDE for front-end development.

Hosted Mode
For ease of use, GWT comes bundled with its own internal Jetty web server, but you
can use your own server. The Jetty instance serves up your application directly out of
the project’s WAR directory. You will spend most of your development time running
in hosted mode. When running in this mode your code is interacting with GWT

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

97

without compiling it into JavaScript. The JVM is merely executing your application
code as compiled bytecode and piping the results into the hosted mode browser.

One of the nice features of hosted mode is that you don’t have to restart the
hosted mode browser each time you make modifications to your source code. You
can simply click the Refresh button on the hosted-mode browser, and your code is
recompiled and loaded into that browser. However, if you make configuration or
server-side code changes, you will need to click the Restart Server button to cycle
Jetty and reload your application.

Hosted mode is the “magic” that makes GWT unique. By running your code as Java
bytecode instead of JavaScript, you can take advantage of Eclipse’s debugging
capabilities to debug your server-side Java code and your client-side GWT (JavaScript)
code. With GWT, gone are the days of writing debug comments to the browser window,
displaying pop-ups for breakpoint messages, and, for that matter, using Firebug. With
GWT and Eclipse, you can do the code-test-debug steps in one integrated
environment, which dramatically increases productivity and reduces the number of
runtime, client-side errors. In hosted mode you can use the Eclipse debugger to catch
exceptions that normally occur in the browser, presenting users with ugly errors.

Web Mode
At some point in your development cycle you will want to start testing your
application with your target browsers to check the performance and see how your
application looks, feels, and operates on different browsers. Click the
Compile/Browse button on the hosted mode browser toolbar and GWT will compile
your source code into optimized JavaScript. You can then test your application, as it
will be deployed on any browser you’d like by using the same URL as in hosted mode.

Developing Your Application
Now you’ll start designing your application’s UI. If you have experience developing
Java applications using Swing, GWT will be an easy transition for you. Even if you’ve
never touched Swing, you should be able to jump in and start laying out applications
with a minimal learning curve.

GWT was designed for the front end and provides a rich set of UI components for
implementing your design specifications. A well-defined look and feel is very important
as you begin this stage. It really helps if you have a clearly defined UI, as retooling visual
components down the road can become quite tedious. As you can see in Figure 5-4,
you will be incorporating a variety of widgets in your application, but almost everything
is built upon panels. GWT provides a wide range of panels (see Table 5-2) that can be
nested in the same way that you might nest HTML tables or div elements on web pages.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

98

Figure 5-4. Proposed timecard UI design displaying the major layout components

Your application will use a VerticalPanel to hold all of your visual elements. The top
section of the panel will consist of a HorizontalPanel holding your logo, email
address, and sign-out link, while the bottom portion will hold a TabPanel with a
number of interfaces.

The first tab is where your users will perform most of their work. It will consist of a
HorizontalPanel holding a date picker, Add Row and Save buttons, and a FlexTable
allowing users to enter their time per day. The bottom of the tab will also have a
HorizontalPanel holding the total number of hours for the timecard.

The second tab will display the hours that the user has entered into the timecard
in a FlexTable. It will be a simple listing and users will not be allowed to edit or delete
entries.

The last panel will contain some text describing your application.

■ Note Some of the new features for the recently announced GWT 2.0 include an improved layout system
and the UiBuilder service. This proposed service will generate widget and DOM structures from XML
markup. This approach is very similar to what you see in Adobe Flex or other XML layout frameworks.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

99

Table 5-2. Summary of GWT layout panels

Panel Description

DisclosurePanel

A widget that consists of a
header and a content panel
that displays the content when
a user clicks the header.

DockPanel

A panel that arranges its child
widgets "docked" at its outer
edges, and allows its last
widget to take up the
remaining space in its center.

FlowPanel

A panel that formats its child
widgets using the default
HTML layout behavior.

HorizontalPanel

A panel that arranges its
widgets in a single horizontal
column.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

100

Panel Description

HorizontalSplitPanel

A panel that arranges two
widgets in a single horizontal
row and allows the user to
interactively change the
proportion of the width
dedicated to each of the two
widgets. Widgets contained
within a HorizontalSplitPanel
will be automatically
decorated with scrollbars
when necessary.

PopupPanel A panel that can "pop up" over
other widgets. It overlays the
browser's client area (and any
previously created pop-ups).

StackPanel

A panel that stacks its children
vertically, displaying only one
at a time, with a header for
each child, which the user can
click to display.

TabPanel

A panel that represents a
tabbed set of pages, each of
which contains a widget. Its
child widgets are shown as the
user selects the various tabs
associated with them. The
tabs can contain arbitrary
HTML.

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

101

Panel Description

VerticalPanel

A panel that arranges its
widgets in a single vertical
column.

VerticalSplitPanel

A panel that arranges two
widgets in a single vertical
column and allows the user
to interactively change the
proportion of the height
dedicated to each of the two
widgets. Widgets contained
within a VerticalSplitterPanel
will be automatically decorated
with scrollbars when necessary.

Required Imports
To get started you’ll need to add some imports for the GWT components that you’ll
be using. Open TimeEntry.java and add the following imports:

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.Button;
import com.google.gwt.user.client.ui.FlexTable;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.VerticalPanel;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.datepicker.client.DateBox;
import com.google.gwt.user.client.ui.AbsolutePanel;
import com.google.gwt.i18n.client.DateTimeFormat;
import com.google.gwt.user.client.ui.HasHorizontalAlignment;
import com.google.gwt.user.client.ui.Anchor;
import com.google.gwt.user.client.ui.Image;
import com.google.gwt.user.client.ui.DecoratedTabPanel;

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

102

import com.google.gwt.user.client.ui.ListBox;
import com.google.gwt.user.client.ui.TextBox;
import com.google.gwt.user.client.ui.CheckBox;
import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.event.logical.shared.ValueChangeEvent;
import com.google.gwt.event.logical.shared.ValueChangeHandler;
import com.google.gwt.user.client.ui.HTMLTable;
import com.google.gwt.user.client.Window;
import com.google.gwt.i18n.client.NumberFormat;
import java.util.Date;

Coding Your UI
Now you’ll start adding your layout and UI components. We will demonstrate
different techniques for working with your components to provide examples of how
flexible GWT can be. Initialize some of your main components as private class
instance variables:

private VerticalPanel mainPanel = new VerticalPanel();
private AbsolutePanel totalPanel = new AbsolutePanel();
private DockPanel navPanel = new DockPanel();
private HorizontalPanel topPanel = new HorizontalPanel();
private Label totalLabel = new Label("0.00");
private FlexTable flexEntryTable = new FlexTable();
private FlexTable flexCurrentTable = new FlexTable();
private Image logo = new Image();

You’ll eventually add sign-in functionality to your timecard, but initially your
application will be displayed as soon as your host page loads in the user’s browser.
With this configuration you’ll implement your code in the onModuleLoad method.

Your first line of code sets the logo for your UI. Create a folder under the
/war/ directory called “images,” and drop in your favorite logo. Next, create a
HorizontalPanel, set the width to 1000px to provide enough real estate to work
with, and then add your logo, e-mail address, and sign-out link. You’ll also need to
align the user information to the right to make things look nice.

logo.setUrl("images/appiriologo.png");

HorizontalPanel userPanel = new HorizontalPanel();
Anchor logOutLink = new Anchor("Sign Out");
Label separator = new Label("|");

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

103

separator.setStyleName("separator");
userPanel.add(new Label("jeffdonthemic@gmail.com"));
userPanel.add(separator);
userPanel.add(logOutLink);

topPanel.setWidth("1000px");
topPanel.add(logo);
topPanel.add(userPanel);
topPanel.setCellHorizontalAlignment(userPanel,
HasHorizontalAlignment.ALIGN_RIGHT);

Add your next HorizontalPanel to hold the date picker and the Action button. You’ll
also do some alignment to get the UI to look the way you want using a DockPanel.

// set up a horizontal panel to hold the date picker
HorizontalPanel leftNav = new HorizontalPanel();
leftNav.setSpacing(5);
leftNav.add(new Label("Week Start Date"));
DateBox dateBox = new DateBox();
dateBox.setWidth("100px");
dateBox.setFormat(new
DateBox.DefaultFormat(DateTimeFormat.getFormat("M/d/yyyy")));
leftNav.add(dateBox);

// set up a horizontal panel to hold the Add and Save buttons
HorizontalPanel buttonPanel = new HorizontalPanel();
buttonPanel.setSpacing(5);
Button addRowButton = new Button("Add Row");
Button saveButton = new Button("Save");
buttonPanel.add(addRowButton);
buttonPanel.add(saveButton);

// set up another horizontal panel to dock all of the buttons to the right
final HorizontalPanel rightNav = new HorizontalPanel();
rightNav.setHorizontalAlignment(HasHorizontalAlignment.ALIGN_RIGHT);
rightNav.setWidth("100%");
rightNav.add(buttonPanel);

// add all of the navigation panels to the dock panel
navPanel.setWidth("1000px");
navPanel.add(leftNav, DockPanel.WEST);
navPanel.add(rightNav, DockPanel.EAST);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

104

Add a final HorizontalPanel to hold the grand total for the timecard that will appear
at the bottom of the UI under the FlexTable.

// set up a horizontal panel to hold the grand total
totalPanel.setSize("1000px","50px");
totalPanel.add(new Label("Total:"), 900, 25);
totalPanel.add(totalLabel, 950, 25);

Now you’ll start setting up your FlexPanel that will consist of the main UI component
for your application. First, you set the width of the table to expand the entire width of
your tabbed interface, and then you add all of your columns and headers.

// set the width of the table to expand the size of the navPanel
flexEntryTable.setWidth("100%");
// set the style for the table to be accessed in the css
flexEntryTable.setStylePrimaryName("timeEntryTable");

// add the columns and headers
flexEntryTable.setText(0, 0, "Project");
flexEntryTable.setText(0, 1, "Milestone");
flexEntryTable.setText(0, 2, "Billable?");
flexEntryTable.setText(0, 3, "Mon");
flexEntryTable.setText(0, 4, "Tue");
flexEntryTable.setText(0, 5, "Wed");
flexEntryTable.setText(0, 6, "Thu");
flexEntryTable.setText(0, 7, "Fri");
flexEntryTable.setText(0, 8, "Sat");
flexEntryTable.setText(0, 9, "Sun");
flexEntryTable.setText(0, 10, "Total");

Now you need to add all of the relevant UI components to your tabbed interface.
Create a new VerticalPanel to hold the date picker, buttons, FlexTable, and grand
total, and add this new panel to the first tab. Add your tabbed panel, set the width,
and enable animation. Add your UI to the first tab. You’ll set some properties of your
tabbed interface and make sure the first tab is the one that your users see by default
when your application loads. You’ll be adding more tabs to your panel later on.

VerticalPanel tab1Content = new VerticalPanel();
tab1Content.add(navPanel);
tab1Content.add(flexEntryTable);
tab1Content.add(totalPanel);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

105

DecoratedTabPanel tabPanel = new DecoratedTabPanel();
tabPanel.setWidth("100%");
tabPanel.setAnimationEnabled(true);
tabPanel.add(tab1Content, "Enter Time");
tabPanel.selectTab(0);

The last thing to do in your onModuleLoad method is to add all of your components to
the RootPanel.

// add the navpanel and flex table to the main panel
mainPanel.add(topPanel);
mainPanel.add(tabPanel);
// associate the main panel with the HTML host page.
RootPanel.get("timeentryUI").add(mainPanel);

The Root panel is a special container that sits at the top of the GWT user interface
hierarchy. It’s an invisible container for your dynamic elements that is, by default,
wrapped in a <body> element in your HTML host page. You’ll make some changes to
your generated host page to wrap the Root panel in a <div> element instead.

One of the major functional requirements for your application is to provide users
with the ability to add new time-entry rows to the timecard. Each row will consist of a
list box for projects, a list box for project-dependent milestones, text boxes for
each day of the week, and a label for the row total. You’ll add the following code to
accomplish this task and then we’ll look at how to call this method via the Add Row
button click event when you implement listeners for your application. You can add a
call to this method after the Root panel is set, allowing users to see a blank row when
the application initially loads.

It is important to note that the two list boxes are defined as final, which allows
your code to access the components from different methods and to fill their contents
from your server-side code.

private void addRow() {

 int row = flexEntryTable.getRowCount();

 final ListBox lbMilestones = new ListBox(false);
 final ListBox lbProjects = new ListBox(false);
 lbProjects.addItem("-- Select a Project --");

 // create the time input fields for all 7 days
 final TextBox day1 = new TextBox();

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

106

 day1.setValue("0");
 day1.setWidth("50px");
 day1.setEnabled(false);
 final TextBox day2 = new TextBox();
 day2.setValue("0");
 day2.setWidth("50px");
 day2.setEnabled(false);
 final TextBox day3 = new TextBox();
 day3.setValue("0");
 day3.setWidth("50px");
 day3.setEnabled(false);
 final TextBox day4 = new TextBox();
 day4.setValue("0");
 day4.setWidth("50px");
 day4.setEnabled(false);
 final TextBox day5 = new TextBox();
 day5.setValue("0");
 day5.setWidth("50px");
 day5.setEnabled(false);
 final TextBox day6 = new TextBox();
 day6.setValue("0");
 day6.setWidth("50px");
 day6.setEnabled(false);
 final TextBox day7 = new TextBox();
 day7.setValue("0");
 day7.setWidth("50px");
 day7.setEnabled(false);

 // add all of the widgets to the flex table
 flexEntryTable.setWidget(row, 0, lbProjects);
 flexEntryTable.setWidget(row, 1, lbMilestones);
 flexEntryTable.setWidget(row, 2, new CheckBox());
 flexEntryTable.setWidget(row, 3, day1);
 flexEntryTable.setWidget(row, 4, day2);
 flexEntryTable.setWidget(row, 5, day3);
 flexEntryTable.setWidget(row, 6, day4);
 flexEntryTable.setWidget(row, 7, day5);
 flexEntryTable.setWidget(row, 8, day6);
 flexEntryTable.setWidget(row, 9, day7);
 flexEntryTable.setWidget(row, 10, new Label("0.00"));

}

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

107

Adding Your Styles
When it comes to styling your application, GWT wisely defers to Cascading Style
Sheets (CSS),), which allow you to cleanly separate your application code from your
presentation. You can then offload some of your work and have time to concentrate
on the Java code by handing styling duties over to a designer. Add the following
entries to TimeEntry.css to implement your styles.

.timeEntryTable {
 padding-top: 35px;
}

.existingEntryTable {
 padding-top: 10px;
}

.separator {
 padding-left: 10px;
 padding-right: 10px;
}

You can add the class attributes for the styles above by using the addStyleName
property for the various UI components. In the onModuleLoad method, you set the
style for your flex table by adding the following:

flexEntryTable.setStylePrimaryName("timeEntryTable");

Modifying Your Hosted Page
One last modification before you run your modified application is to insert your new
Root panel identifier. You need to modify TimeEntry.html and use your own HTML
code instead of what is generated by the project wizard. Replace the code in the
hosted page with the following:

<table align="center" width="1000">
 <tr>
 <td id="timeentryUI"></td>
 </tr>
 <tr>
 <td><img
src="http://code.google.com/appengine/images/appengine-noborder-120x30.gif"
alt="Powered by Google App Engine" style="padding-top: 20px"/></td>
 </tr>

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

108

 </table>

Running Your Application
Click the Run button again to launch your application in hosted mode. It should look
like Figure 5-5.

Figure 5-5. Your newly designed application

Handling Client-Side Events
Like most web-based applications, your code executes based on user interaction. The
user triggers some kind of event, such as a button click or a key press, and your
application responds accordingly by performing some action. It shouldn’t be a
surprise to discover that GWT handles events with the same event-handler interface
model that you find in other user-interface frameworks. A widget announces or
publishes an event (for example, clicking a button), and other widgets subscribe to
the event by receiving a particular event-handler interface and performing some
action (for example, displaying a pop-up message).

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

109

Start by adding a click handler and an event listener for your Add Row button.
You'll handle the Add Row button's click event by passing it an object that
implements the ClickHandler interface. In the code below, you'll see that we use an
anonymous inner class to implement ClickHandler. The interface has one method,
onClick, which fires when the user clicks the button and adds a new row to the
FlexTable for a new time entry.

// listen for mouse events on the add new row button
addRowButton.addClickHandler(new ClickHandler() {
 public void onClick(ClickEvent event) {
 addRow();
 }
});

One of your functional requirements is to allow users to record the amount of
time they worked based on a user-defined start date. With your date picker you’ll
listen for changes to the selected date based on the interface’s onValueChanged
method. When the widget detects a change to its date, it sets the class variable to the
widget’s selected date, renames the columns of the FlexTable based on the start date,
and displays the major visible components of the application.

// listen for the changes in the value of the date
dateBox.addValueChangeHandler(new ValueChangeHandler<Date>() {
 public void onValueChange(ValueChangeEvent<Date> evt) {
 startDate = evt.getValue();
 renameColumns();
 // show the main parts of the UI now
 flexEntryTable.setVisible(true);
 rightNav.setVisible(true);
 totalPanel.setVisible(true);
 }
});

Since the code above displays your major UI components when a date is selected
by the date picker, you should add the code to hide the the components when the
application initially loads. Add the following code before setting the Root panel in the
onModuleLoad method.

// hide the main parts of the UI until they choose a date
flexEntryTable.setVisible(false);
rightNav.setVisible(false);
totalPanel.setVisible(false);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

110

To track the date that the user selected in the addValueChangeHandler method above,
you’ll need to add another private instance variable called startDate.

private Date startDate;

Your preceding addValueChangeHandler method also calls a renameColumns method.
To implement this method and its helper methods we need to have a quick
discussion regarding date classes. Unfortunately, GWT doesn't support
java.util.Calendar on the client and it doesn't appear that it will any time soon. Due
to the way that individual browsers deal with dates, using dates on the client side
with GWT is currently messy and involves using all of the deprecated methods of the
java.util.Date class. Here is your renameColumns method along with the helper
methods using the deprecated java.util.Date class methods.

private void renameColumns() {
 flexEntryTable.setText(0, 3, formatDate(startDate));
 flexEntryTable.setText(0, 4, formatDate(addDays(startDate,1)));
 flexEntryTable.setText(0, 5, formatDate(addDays(startDate,2)));
 flexEntryTable.setText(0, 6, formatDate(addDays(startDate,3)));
 flexEntryTable.setText(0, 7, formatDate(addDays(startDate,4)));
 flexEntryTable.setText(0, 8, formatDate(addDays(startDate,5)));
 flexEntryTable.setText(0, 9, formatDate(addDays(startDate,6)));
}

private Date addDays(Date d, int numberOfDays) {
 int day = d.getDate();
 int month = d.getMonth();
 int year = d.getYear();
 return new Date(year, month, day+numberOfDays);
}

private String formatDate(Date d) {
 return (d.getMonth()+1)+"/"+d.getDate()+"
("+d.toString().substring(0, 2)+")";
}

The last part of this chapter covers the FlexTable and how users enter their time.
Each row has a text box for each day of the week, and you’ll need to implement
handlers and listeners to validate the data that the user enters. Add the following

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

111

private class instance variables, which will allow you to track the row and column
with which the user is currently interacting.

// tracks the current row and column in the grid
private int currentRow = 0;
private int currentColumn = 0;

Add a new event handler to the FlexTable and an anonymous inner class to
implement ClickEvent. In this listener you want to determine the column and row for
which the user is entering time. You’ll use these values to total each row and validate
user input.

flexEntryTable.addClickHandler(new ClickHandler(){
 public void onClick(ClickEvent event) {
 HTMLTable.Cell cellForEvent =
flexEntryTable.getCellForEvent(event);
 currentRow = cellForEvent.getRowIndex();
 currentColumn = cellForEvent.getCellIndex();
 }
});

Virtually every application requires validating user input to ensure valid
parameters and data integrity. Your application is no different, however GWT is very
weak in the validation department. A few frameworks can address this situation, but
they are outside the scope of this book. You’ll implement some simple validation
using some standard and GWT components.

You need to ensure that the time that users enter are valid numbers and that they
do not enter more than 24 hours for a single day. Instead of writing a series of
listeners for each text box, you’ll write a single handler and listener that will be
shared by all data-entry text boxes.

private ValueChangeHandler<String> timeChangeHandler = new
ValueChangeHandler<String>() {
 public void onValueChange(ValueChangeEvent<String> evt) {

 try {
 double t = Double.parseDouble(evt.getValue());
 if (t > 24) {
 Window.alert("You cannot work more than 24 hours
a day.");

} else {
 totalRow();

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

112

 }
 } catch (NumberFormatException e) {
 TextBox tb = (TextBox)
flexEntryTable.getWidget(currentRow, currentColumn);
 tb.setValue("0");
 flexEntryTable.setWidget(currentRow, currentColumn, tb);
 Window.alert("Not a valid number.");
 }

 }
};

day1.addValueChangeHandler(timeChangeHandler);
day2.addValueChangeHandler(timeChangeHandler);
day3.addValueChangeHandler(timeChangeHandler);
day4.addValueChangeHandler(timeChangeHandler);
day5.addValueChangeHandler(timeChangeHandler);
day6.addValueChangeHandler(timeChangeHandler);
day7.addValueChangeHandler(timeChangeHandler);

In the preceding timeChangeHandler method you make a call to total the current row’s
entries if the user enters a valid number that is less than 24. Your method loops
through all of the time-entry TextBoxes for the current row, totals the amount, and
then sets the display text widget for the row total. Since you’ve changed the total of
the current row, you also want to update the total for the entire timecard. You make a
call to totalGrid, which provides that functionality.

private void totalRow() {
 double rowTotal = 0.00;
 for (int cell = 3;cell<=9; cell++) {
 TextBox timeWidget = (TextBox)
flexEntryTable.getWidget(currentRow, cell);
 double t = Double.parseDouble(timeWidget.getValue());
 rowTotal = rowTotal + t;
 }
 flexEntryTable.setWidget(currentRow, 10, new
Label(NumberFormat.getFormat(".00").format(rowTotal)));
 totalGrid();
}

Totaling the entire timecard involves the summation of the rows in the FlexTable.
Your method iterates over the current rows in the FlexTable (skipping the header row,

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

113

of course) and sums the values in the row’s total column. The grand total for the
timecard is then displayed at the lower-right corner of the UI.

private void totalGrid() {
 double grandTotal = 0.00;
 for (int row=1;row<flexEntryTable.getRowCount();row++) {
 Label rowTotalWidget = (Label) flexEntryTable.getWidget(row,
10);
 double rowTotal =
Double.parseDouble(rowTotalWidget.getText());
 grandTotal = grandTotal + rowTotal;
 }
 ;
 totalLabel.setText(NumberFormat.getFormat(".00").format(grandTotal));
}

At this point your application’s basic functionality is in place. The next couple of
chapters will deal with authentication and persistence, so this is a good time to take a
look at the entire code in the TimeEntry.java file (Listing 5-1).

Listing 5-1. The code for TimeEntry.java

package com.appirio.timeentry.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.Button;
import com.google.gwt.user.client.ui.FlexTable;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.VerticalPanel;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.datepicker.client.DateBox;
import com.google.gwt.user.client.ui.AbsolutePanel;
import com.google.gwt.i18n.client.DateTimeFormat;
import com.google.gwt.user.client.ui.HasHorizontalAlignment;
import com.google.gwt.user.client.ui.Anchor;
import com.google.gwt.user.client.ui.Image;
import com.google.gwt.user.client.ui.DecoratedTabPanel;
import com.google.gwt.user.client.ui.ListBox;
import com.google.gwt.user.client.ui.TextBox;
import com.google.gwt.user.client.ui.CheckBox;

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

114

import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.event.logical.shared.ValueChangeEvent;
import com.google.gwt.event.logical.shared.ValueChangeHandler;
import java.util.Date;
import com.google.gwt.user.client.ui.HTMLTable;
import com.google.gwt.user.client.Window;
import com.google.gwt.i18n.client.NumberFormat;

public class TimeEntry implements EntryPoint {

 private VerticalPanel mainPanel = new VerticalPanel();
 private AbsolutePanel totalPanel = new AbsolutePanel();
 private DockPanel navPanel = new DockPanel();
 private HorizontalPanel topPanel = new HorizontalPanel();

 private Label totalLabel = new Label("0.00");
 private FlexTable flexEntryTable = new FlexTable();
 private Image logo = new Image();

 // track the current row and column in the grid
 private int currentRow = 0;
 private int currentColumn = 0;
 private Date startDate;

 public void onModuleLoad() {

 logo.setUrl("images/appiriologo.png");

 HorizontalPanel userPanel = new HorizontalPanel();
 Anchor logOutLink = new Anchor("Sign Out");
 Label separator = new Label("|");
 separator.setStyleName("separator");
 userPanel.add(new Label("jeffdonthemic@gmail.com"));
 userPanel.add(separator);
 userPanel.add(logOutLink);

 topPanel.setWidth("1000px");
 topPanel.add(logo);
 topPanel.add(userPanel);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

115

 topPanel.setCellHorizontalAlignment(userPanel,
HasHorizontalAlignment.ALIGN_RIGHT);

 // set up a horizontal panel to hold the date picker
 HorizontalPanel leftNav = new HorizontalPanel();
 leftNav.setSpacing(5);
 leftNav.add(new Label("Week Start Date"));
 DateBox dateBox = new DateBox();
 dateBox.setWidth("100px");
 dateBox.setFormat(new
DateBox.DefaultFormat(DateTimeFormat.getFormat("M/d/yyyy")));
 leftNav.add(dateBox);

 // set up a horizontal panel to hold the Add and Save buttons
 HorizontalPanel buttonPanel = new HorizontalPanel();
 buttonPanel.setSpacing(5);
 Button addRowButton = new Button("Add Row");
 Button saveButton = new Button("Save");
 buttonPanel.add(addRowButton);
 buttonPanel.add(saveButton);

 // set up another horizontal panel to dock all the buttons to
the right
 final HorizontalPanel rightNav = new HorizontalPanel();

 rightNav.setHorizontalAlignment(HasHorizontalAlignment.ALIGN_RIGHT);
 rightNav.setWidth("100%");
 rightNav.add(buttonPanel);

 // add all of the navigation panels to the dock panel
 navPanel.setWidth("1000px");
 navPanel.add(leftNav, DockPanel.WEST);
 navPanel.add(rightNav, DockPanel.EAST);

 // set up a horizontal panel to hold the grand total
 totalPanel.setSize("1000px","50px");
 totalPanel.add(new Label("Total:"), 900, 25);
 totalPanel.add(totalLabel, 950, 25);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

116

 // listen for mouse events on the Add New Row button
 addRowButton.addClickHandler(new ClickHandler() {
 public void onClick(ClickEvent event) {
 addRow();
 }
 });

 // listen for the changes in the value of the date
 dateBox.addValueChangeHandler(new ValueChangeHandler<Date>() {
 public void onValueChange(ValueChangeEvent<Date> evt) {
 startDate = evt.getValue();
 renameColumns();
 // show the main parts of the UI now
 flexEntryTable.setVisible(true);
 rightNav.setVisible(true);
 totalPanel.setVisible(true);
 }
 });

 // set the width of the table to expand the size of the
navPanel
 flexEntryTable.setWidth("100%");

 // set the style for the table to be accessed in the css
 flexEntryTable.setStylePrimaryName("timeEntryTable");
 // add the columns and headers
 flexEntryTable.setText(0, 0, "Project");
 flexEntryTable.setText(0, 1, "Milestone");
 flexEntryTable.setText(0, 2, "Billable?");
 flexEntryTable.setText(0, 3, "Mon");
 flexEntryTable.setText(0, 4, "Tue");
 flexEntryTable.setText(0, 5, "Wed");
 flexEntryTable.setText(0, 6, "Thu");
 flexEntryTable.setText(0, 7, "Fri");
 flexEntryTable.setText(0, 8, "Sat");
 flexEntryTable.setText(0, 9, "Sun");
 flexEntryTable.setText(0, 10, "Total");

 VerticalPanel tab1Content = new VerticalPanel();
 tab1Content.add(navPanel);
 tab1Content.add(flexEntryTable);
 tab1Content.add(totalPanel);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

117

 DecoratedTabPanel tabPanel = new DecoratedTabPanel();
 tabPanel.setWidth("100%");
 tabPanel.setAnimationEnabled(true);
 tabPanel.add(tab1Content, "Enter Time");
 tabPanel.selectTab(0);

 // add the navpanel and flex table to the main panel
 mainPanel.add(topPanel);
 mainPanel.add(tabPanel);
 // associate the main panel with the HTML host page.
 RootPanel.get("timeentryUI").add(mainPanel);

 addRow();

 }

 private void addRow() {

 int row = flexEntryTable.getRowCount();

 final ListBox lbMilestones = new ListBox(false);
 final ListBox lbProjects = new ListBox(false);
 lbProjects.addItem("-- Select a Project --");

 // create the time input fields for all 7 days
 final TextBox day1 = new TextBox();
 day1.setValue("0");
 day1.setWidth("50px");
 day1.setEnabled(false);
 final TextBox day2 = new TextBox();
 day2.setValue("0");
 day2.setWidth("50px");
 day2.setEnabled(false);
 final TextBox day3 = new TextBox();
 day3.setValue("0");
 day3.setWidth("50px");
 day3.setEnabled(false);
 final TextBox day4 = new TextBox();
 day4.setValue("0");
 day4.setWidth("50px");
 day4.setEnabled(false);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

118

 final TextBox day5 = new TextBox();
 day5.setValue("0");
 day5.setWidth("50px");
 day5.setEnabled(false);
 final TextBox day6 = new TextBox();
 day6.setValue("0");
 day6.setWidth("50px");
 day6.setEnabled(false);
 final TextBox day7 = new TextBox();
 day7.setValue("0");
 day7.setWidth("50px");
 day7.setEnabled(false);

 // add all of the widgets to the flex table
 flexEntryTable.setWidget(row, 0, lbProjects);
 flexEntryTable.setWidget(row, 1, lbMilestones);
 flexEntryTable.setWidget(row, 2, new CheckBox());
 flexEntryTable.setWidget(row, 3, day1);
 flexEntryTable.setWidget(row, 4, day2);
 flexEntryTable.setWidget(row, 5, day3);
 flexEntryTable.setWidget(row, 6, day4);
 flexEntryTable.setWidget(row, 7, day5);
 flexEntryTable.setWidget(row, 8, day6);
 flexEntryTable.setWidget(row, 9, day7);
 flexEntryTable.setWidget(row, 10, new Label("0.00"));

 flexEntryTable.addClickHandler(new ClickHandler(){
 public void onClick(ClickEvent event) {
 HTMLTable.Cell cellForEvent =
flexEntryTable.getCellForEvent(event);
 currentRow = cellForEvent.getRowIndex();
 currentColumn = cellForEvent.getCellIndex();
 }
 });

 day1.addValueChangeHandler(timeChangeHandler);
 day2.addValueChangeHandler(timeChangeHandler);
 day3.addValueChangeHandler(timeChangeHandler);
 day4.addValueChangeHandler(timeChangeHandler);
 day5.addValueChangeHandler(timeChangeHandler);
 day6.addValueChangeHandler(timeChangeHandler);
 day7.addValueChangeHandler(timeChangeHandler);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

119

 }

 private void renameColumns() {
 flexEntryTable.setText(0, 3, formatDate(startDate));
 flexEntryTable.setText(0, 4,
formatDate(addDays(startDate,1)));
 flexEntryTable.setText(0, 5,
formatDate(addDays(startDate,2)));
 flexEntryTable.setText(0, 6,
formatDate(addDays(startDate,3)));
 flexEntryTable.setText(0, 7,
formatDate(addDays(startDate,4)));
 flexEntryTable.setText(0, 8,
formatDate(addDays(startDate,5)));
 flexEntryTable.setText(0, 9,
formatDate(addDays(startDate,6)));
 }

 private ValueChangeHandler<String> timeChangeHandler = new
ValueChangeHandler<String>() {
 public void onValueChange(ValueChangeEvent<String> evt) {

 try {
 double t = Double.parseDouble(evt.getValue());
 if (t > 24) {
 Window.alert("You cannot work more than 24
hours a day.");
 TextBox tb = (TextBox)
flexEntryTable.getWidget(currentRow, currentColumn);
 tb.setValue("0");
 flexEntryTable.setWidget(currentRow,
currentColumn, tb);
 } else {
 totalRow();
 }
 } catch (NumberFormatException e) {
 TextBox tb = (TextBox)
flexEntryTable.getWidget(currentRow, currentColumn);
 tb.setValue("0");
 flexEntryTable.setWidget(currentRow,
currentColumn, tb);

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

120

 Window.alert("Not a valid number.");
 }

 }
 };

 private void totalRow() {
 double rowTotal = 0.00;
 for (int cell = 3;cell<=9; cell++) {
 TextBox timeWidget = (TextBox)
flexEntryTable.getWidget(currentRow, cell);
 double t = Double.parseDouble(timeWidget.getValue());
 rowTotal = rowTotal + t;
 }
 flexEntryTable.setWidget(currentRow, 10, new
Label(NumberFormat.getFormat(".00").format(rowTotal)));
 totalGrid();
 }

 private void totalGrid() {
 double grandTotal = 0.00;
 for (int row=1;row<flexEntryTable.getRowCount();row++) {
 Label rowTotalWidget = (Label)
flexEntryTable.getWidget(row, 10);
 double rowTotal =
Double.parseDouble(rowTotalWidget.getText());
 grandTotal = grandTotal + rowTotal;
 }
 ;

 totalLabel.setText(NumberFormat.getFormat(".00").format(grandTotal));
 }

 private Date addDays(Date d, int numberOfDays) {
 int day = d.getDate();
 int month = d.getMonth();
 int year = d.getYear();
 return new Date(year, month, day+numberOfDays);
 }

 private String formatDate(Date d) {

CHAPTER 5 ■ DEVELOPING YOUR APPLICATION

121

 return (d.getMonth()+1)+"/"+d.getDate()+"
("+d.toString().substring(0, 2)+")";
 }

}

Your front end is essentiallty complete. You’ll make some minor tweaks in the
upcoming chapters, but now you can focus your attention on the server side of your
application.

Summary
In this chapter you got to work developing your application. You defined the
functionality for your application as a standard timecard entry system that uses
Google Accounts for authentication, Google Web Toolkit for presentation, and
Bigtable for data persistence.

You started by creating your project in Eclipse and finished almost the entire
front-end development by the end of the chapter. You got a good look at GWT and
some of the features that make it an ideal platform for front-end development. A
main advantage of GWT is that it hides the complexity of writing cross-browser
JavaScript. You write your AJAX front-end in Java, which GWT then cross-compiles
into optimized JavaScript that automatically works across all major browsers. The
combination of the Eclipse plug-in and the hosted mode server are the "magic" that
allows you to catch client-side exceptions in the Eclipse IDE instead of them popping
up in the user's browser as a runtime exception.

During the course of the chapter you laid out your application and added custom
styling to give it a nice look and feel. You then added all of your UI widgets and the
handlers needed to respond to client-side events. At the end of the chapter you had
all of the code necessary for your application’s front end. In the next chapter we’ll
look at implementing authentication using Google Accounts.

C H A P T E R 6

■ ■ ■

123

Authenticating Users

Nearly every web application nowadays requires user authentication of some sort,
whether it's simply to change your e-mail address or manage your stock portfolio.
Your application will be no different. You’ll build out your authentication framework
to let users enter and view timecard entries—naturally, only for themselves.

Authentication with App Engine comes in two flavors. You can choose to plug
into Google’s Accounts service (a.k.a Users service), or you can roll your own with
custom classes, tables, and memcache. Developing your own authentication
framework using memcache and sessions is fairly straightforward, but given the
simplicity of Google Accounts, no one seems to do it. For most cases it just doesn’t
make sense to create a sign-up page, the ability to store user passwords, and add a
“forgot my password” function, when you can use Google’s code instead. You might
want to make your own if you need to implement custom profiles and permissions,
but typically you can just plug into Google Accounts and mark this requirement off
your checklist. You’ll get first-hand knowledge of the authentication functionality in
Google Accounts because you’ll be implementing this service for your application
as well.

Introducing Google Accounts
Google Accounts is a mature and robust offering that currently boasts millions of
active users. App Engine easily ties into this service and offers a smooth and familiar
sign-in process for your users. There are cases when you may not want to use Google
Accounts, but it is a quick and easy way to get users up and running with your
application.

If your application is running under a Google Apps account, you can even use
these Accounts features with members of your organization, eliminating the need to
train users on how to create and manage their own accounts.

CHAPTER 6 ■ AUTHENTICATING USERS

124

When your application utilizes the Google Accounts service, the Users API can
determine whether the current user has signed in using her Google account. If she is
not currently signed in, the service can redirect her to a sign-in page customized with
text for your application, or it can allow her to create a new Google account. After the
user signs in or creates an account, the service will redirect her back to your original
page. Google takes care of generating the sign-in and sign-out URLs for you and can
either display the URL to the user or automatically redirect them.

Another feature of the service is that it can distinguish admin users from regular
users. So if the current user is an administrator for the application or a Google Apps
user marked as an administrator, you can present them with an admin interface or
another context specific to their profile. However, if you need to implement additional
profiles, again, you will need to create your own authentication framework to achieve
this level of functionality.

Restricting Access to Resources
In addition to restricting your entire application to authenticated users, you can
specify access restrictions for certain URLs or URL paths based on the user’s account.
You configure access restrictions in the deployment descriptor by defining a series of
<security-constraint> elements for URLs based on pattern matching. In addition to
the URL, the security constraint also specifies the Google Accounts users or role. App
Engine only supports * (“all users”) and admin roles. It does not support custom
security roles.

The process works the same as if you are restricting your entire application to
authenticated users. If an unauthenticated user attempts to access a URL that
matches a security constraint defined in the deployment descriptor, App Engine
redirects him to the Google Accounts sign-in page. After he has logged in successfully,
the service redirects him back to the original URL. Listing 6-1 provides a sample
deployment descriptor using this approach.

Listing 6-1. The web.xml deployment descriptor with security constraints

<security-constraint>
 <web-resource-collection>
 <url-pattern>/myaccount/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

CHAPTER 6 ■ AUTHENTICATING USERS

125

<security-constraint>
 <web-resource-collection>
 <url-pattern>/private/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>

■ Note Users must be signed in to your application before being granted access. If a user has signed in
to a different application using a Google account, they are not authorized to access your application.

Users API
The Users API consists of a UserService, a User object, and a UserServiceFactory that
creates a new UserService. Methods for the service and User object are described in
Tables 6-1 and 6-2. In addition to the Users API, you can use the standard Servlet API
and access the request object’s getUserPrincipal() method to determine if the user
has logged in with his Google account. The servlet can also access a user’s e-mail
address with getUserPrincipal.getName().

According to the documentation, App Engine supports storing the User object in
Bigtable as its own special data type, however it does caution against using it as a
stable identifier. You can add entities to the data store that contain a User object but
querying with these identifiers returns no results. Google says that it may update this
service to utilize this user type, but for now your best practice is to persist the user’s
e-mail address instead.

Table 6-1. Methods in the UserService class

Method Description

createLoginURL Returns a URL that can be used to display a login page to
the user.

createLogoutURL Returns a URL that can be used to log the current user out
of this application.

CHAPTER 6 ■ AUTHENTICATING USERS

126

Method Description

getCurrentUser If the user is logged in, this method will return a User that
contains information about him.

isUserLoggedIn Returns true if a user is logged in, otherwise returns false.

Table 6-2. Major methods in the User class

Method Description

getNickname Return this user's nickname. The nickname will be a
unique, human- readable identifier (for example, an
e-mail address) for this user with respect to this
application. It will be an email address for some users,
but not all.

getAuthDomain Domain name into which this user has authenticated, or
"gmail.com" for normal Google authentication.

getEmail The user’s e-mail address.

Development Mode
Google makes it easy to simulate its Accounts service by providing a dummy sign-in
screen (see Figure 6-1) while you are developing your application. When your
application requires authentication, it obtains a URL for the sign-in screen from the
Users API. App Engine returns a special development URL and presents you with a
dummy sign-in form that requires an e-mail address but no password. You can enter
any e-mail address you’d like, and your application will execute just as it would if
actually authenticating against Google Accounts. This sign-in screen also includes a
check box so that you can simulate signing in as an administrator.

Once signed in, you can use the Users API to obtain a sign-out URL that cancels
your dummy session.

CHAPTER 6 ■ AUTHENTICATING USERS

127

Figure 6-1. The dummy sign-in screen

Adding Authentication for Your Application
To authenticate your users, you will need to make a GWT remote procedure call to
invoke the Users API. The GWT RPC framework simplifies the exchange of Java
objects over the wire between your client and server components. Your client-side
code will use GWT-generated proxy classes to make calls to your server-side service.
These proxy objects will be serialized back and forth by GWT for method arguments
and return values. To develop your login RPC service, you'll need to write the
following four components:

� LoginInfo – An object that will contain the login info returned from
the User service.

� LoginService - An interface that extends RemoteService and lists all
of your RPC methods.

� LoginServiceImpl - A class that extends RemoteServiceServlet and
implements the interface created in LoginService.

� LoginServiceAsync - The asynchronous interface for your service
that is called by your client-side code.

CHAPTER 6 ■ AUTHENTICATING USERS

128

LoginInfo Class
This class is a simple POJO returned by the User service when a user has successfully
logged in using the Google Accounts service. The LoginInfo class is implemented in
Listing 6-2.

Listing 6-2. The code for LoginInfo.class

package com.appirio.timeentry.client;

import java.io.Serializable;

public class LoginInfo implements Serializable {

 private boolean loggedIn = false;
 private String loginUrl;
 private String logoutUrl;
 private String emailAddress;
 private String nickname;

 public boolean isLoggedIn() {
 return loggedIn;
 }

 public void setLoggedIn(boolean loggedIn) {
 this.loggedIn = loggedIn;
 }

 public String getLoginUrl() {
 return loginUrl;
 }

 public void setLoginUrl(String loginUrl) {
 this.loginUrl = loginUrl;
 }

 public String getLogoutUrl() {
 return logoutUrl;
 }

 public void setLogoutUrl(String logoutUrl) {
 this.logoutUrl = logoutUrl;

CHAPTER 6 ■ AUTHENTICATING USERS

129

 }

 public String getEmailAddress() {
 return emailAddress;
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }

 public String getNickname() {
 return nickname;
 }

 public void setNickname(String nickname) {
 this.nickname = nickname;
 }
}

LoginService and LoginServiceAsync Interfaces
Now you need to create two interfaces defining your login service and its methods.
In Listing 6-3 notice the “login” path annotation in the LoginService class. You’ll
configure this path in the deployment descriptor to map the configuration to this
service.

Listing 6-3. The code for LoginService.class

package com.appirio.timeentry.client;

import com.google.gwt.user.client.rpc.RemoteService;
import com.google.gwt.user.client.rpc.RemoteServiceRelativePath;

@RemoteServiceRelativePath("login")
public interface LoginService extends RemoteService {
 public LoginInfo login(String requestUri);
}

Next, you need to add an AsyncCallback parameter to your service method. Your
interface in Listing 6-4 must be located in the same package as the service interface
and must also have the same name but appended with Async. Each method in this
interface must have the same name and signature as in the service interface

CHAPTER 6 ■ AUTHENTICATING USERS

130

however, the method has no return type and the last parameter is an AsyncCallback
object.

Listing 6-4. The code for LoginServiceAsync.class

package com.appirio.timeentry.client;

import com.google.gwt.user.client.rpc.AsyncCallback;

public interface LoginServiceAsync {
 public void login(String requestUri, AsyncCallback<LoginInfo> async);
}

Google Accounts Login Implementation
Now you need to create your server-side implementation (Listing 6-5) that uses
Google Accounts to actually authenticate your users and return their information if
successful.

Listing 6-5. The code for LoginServiceImpl.class

package com.appirio.timeentry.server;

import com.google.appengine.api.users.User;
import com.google.appengine.api.users.UserService;
import com.google.appengine.api.users.UserServiceFactory;
import com.appirio.timeentry.client.LoginInfo;
import com.appirio.timeentry.client.LoginService;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

public class LoginServiceImpl extends RemoteServiceServlet implements
 LoginService {

 public LoginInfo login(String requestUri) {
 LoginInfo loginInfo = new LoginInfo();
 UserService userService = UserServiceFactory.getUserService();
 User user = userService.getCurrentUser();

 if (user != null) {
 loginInfo.setLoggedIn(true);

 loginInfo.setLogoutUrl(userService.createLogoutURL(requestUri));

CHAPTER 6 ■ AUTHENTICATING USERS

131

 loginInfo.setNickname(user.getNickname());
 loginInfo.setEmailAddress(user.getEmail());
 } else {
 loginInfo.setLoggedIn(false);

 loginInfo.setLoginUrl(userService.createLoginURL(requestUri));
 }
 return loginInfo;
 }
}

Modifying the Deployment Descriptor
In your LoginService class you defined the “login” path annotation. Now you need to
add this definition to the deployment descriptor in Listing 6-6. You can also remove
the reference to greetServlet since it is not needed.

Listing 6-6. Servlet configuration to be added to the deployment descriptor

<servlet>
 <servlet-name>loginService</servlet-name>
 <servlet-class>com.appirio.timeentry.server.LoginServiceImpl</servlet-
class>
</servlet>

<servlet-mapping>
 <servlet-name>loginService</servlet-name>
 <url-pattern>/timeentry/login</url-pattern>
</servlet-mapping>

Modifying the User Interface
Now that your login RPC framework is in place, you need to tweak the client to allow
it to use your new authentication functionality. Currently, when your users load the
application, your timecard UI is immediately available. You need to change the flow
of the application to load the timecard UI if the user is already logged in or to redirect
them to the sign-in page if they are not. Once they sign-in with their Google account,
you’ll still need to make a check to ensure that they are indeed authenticated.

You’ll need to do some refactoring in TimeEntry.java to accomplish these tasks. In
Listing 6-7 you’ll move the call to load the UI from the onModuleLoad method to a new

CHAPTER 6 ■ AUTHENTICATING USERS

132

private method. You’ll then add a new panel that displays the login form and modify
onModuleLoad to display this panel conditionally.

First, rename the current onModuleLoad method to “loadMainUI” and make it
private. Now add the following imports and methods to TimeEntry.java.

Listing 6-7. Changes to TimeEntry.java

import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;

public void onModuleLoad() {

 logo.setUrl("images/appiriologo.png");

 LoginServiceAsync loginService = GWT.create(LoginService.class);
 loginService.login(GWT.getHostPageBaseURL(), new
AsyncCallback<LoginInfo>() {
 public void onFailure(Throwable error) {
 }

 public void onSuccess(LoginInfo result) {
 loginInfo = result;
 if(loginInfo.isLoggedIn()) {
 loadMainUI();
 } else {
 loadLoginUI();
 }
 }
 });

}

private void loadLoginUI() {
 VerticalPanel loginPanel = new VerticalPanel();
 Anchor loginLink = new Anchor("Sign In");
 loginLink.setHref(loginInfo.getLoginUrl());
 loginPanel.add(logo);
 loginPanel.add(new Label("Please sign-in with your Google Account to
access the Time Entry application."));
 loginPanel.add(loginLink);
 RootPanel.get("timeentryUI").add(loginPanel);
}

CHAPTER 6 ■ AUTHENTICATING USERS

133

Now when your application loads, if users have not authenticated, they will see the
sign-in page shown in Figure 6-2 as opposed to your timecard UI if they have already
signed in.

Figure 6-2. The Google Accounts sign-in page for your application

Summary
This chapter demonstrated how quick and easy it is to implement authentication
for your timecard application using Google Accounts. The service offers role-based
security to your application as well as individual directories.

App Engine is flexible and does not require you to use Google Accounts for
authentication if it’s not the best fiat for your application. If you need more granular
security with customized permissions, you are free to develop your own framework
using custom classes, tables, and memcache. However, doing so eliminates some of
the development benefits that you get for free with Google Accounts.

CHAPTER 6 ■ AUTHENTICATING USERS

134

C H A P T E R 7

■ ■ ■

135

Using the App Engine Datastore

In the last couple of chapters we have focused on the client side of your application.
You’ve developed the look and feel using GWT, and the authentication method that
your application will utilize. Now it’s time to move on to the server side, primarily
your data integration layer.

In this chapter you’ll get a detailed look at the App Engine datastore and you’ll
finish up the development of your application. At the end of this chapter you’ll have a
completed application that you can deploy to Google App Engine.

Introducing the App Engine Datastore
Designing highly scalable, data-intensive applications can be tricky. If you've ever
used hardware or software load balancing, you know that your users can be
interacting with any one of a dozen or so web and database servers. A user's request
may not be serviced from the same server that handled his previous request. These
servers could be spread out in different data centers or perhaps in different countries,
requiring you to implement processes to keep your data safe, secure, and
synchronized. The hardware and software required to scale your application can also
be complex and expensive, and may even dictate that you outsource or hire
dedicated resources.

With App Engine, Google takes care of everything for you. The App Engine
datastore provides distribution, replication, and load-balancing services behind the
scenes, freeing you up to focus on implementing your business logic. App Engine's
datastore is powered mainly by two Google services: Bigtable and Google File System
(GFS).).

Bigtable is a highly distributed and scalable service for storing and managing
structured data. It was designed to scale to an extremely large size with petabytes of
data across thousands of clustered commodity servers. It is the same service that
Google uses for over 60 of its own projects including web indexing, Google Finance,
and Google Earth.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

136

The datastore also uses GFS to store data and log files. GFS is a scalable, fault-
tolerant file system designed for large, distributed, data-intensive applications such
as Gmail and YouTube. Originally developed to store crawling data and search
indexes, GFS is now widely used to store user-generated content for numerous
Google products.

Bigtable stores data as entities with properties organized by application-defined
kinds such as customers, sales orders, or products. Entities of the same kind are not
required to have the same properties or the same value types for the same properties.
Bigtable queries entities of the same kind and can use filters and sort orders on both
keys and property values. It also pre-indexes all queries, which results in impressive
performance even with very large data sets. The service also supports transactional
updates on single or application-defined groups of entities.

The first thing you'll notice about Bigtable is that it is not a relational database.
Bigtable utilizes a non-relationship object model to store entities, allowing you to
create simple, fast, and scalable applications. Google isn't alone in offering this type
of architecture. Amazon's SimpleDB and many open-source datastores (for example,
CouchDB and Hypertable) use this same approach, which requires no schema while
providing auto-indexing of data and simple APIs for storage and access.

You can interact with Bigtable using either a standard API or a-low level API. With
the standard API, either a Java Data Objects (JDO)) or Java Persistence API (JPA))
implementation, you can ensure that your applications are portable to other hosting
providers and database technologies if you decide to jump ship. This makes a good
argument for App Engine as it prevents vendor lock-in. If you are certain that your
application will always run on App Engine, you can utilize the low-level API as it
exposes the full capabilities of Bigtable. Both APIs achieve roughly the same results in
terms of ability and performance, so it comes down to personal preference. Do you
like working with low-level database functionality or abstracting this layer so that
your experience is applicable across multiple datastore implementations?

The datastore provides full CRUD (create, read, update, and delete) access to
entities in Bigtable and allows you to query against the datastore using a standard
SQL-like query language called JDOQL. The syntax is enough like SQL to lull you into
a sense of familiarity, but there are some differences when dealing with JDO-
enhanced objects. One notable exception is the lack of support for joins, which is
present in relational databases. However, this is understandable since the datastore is
non-relational.

Working with Entities
The fundamental unit of data in the datastore is an “entity,” which consists of an
immutable identifier and zero or more properties. Once again, entities are schema-
less and this allows for some interesting possibilities. Since entities are not required

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

137

to have the same properties or types, your application must enforce adherence to
your data model, whatever that may be at the time. A property can have one or more
values, embedded classes, child objects, and even values of mixed types. Entities are
very flexible and are not defined by a database schema as in a relational database. At
any point during the application life cycle you can add or remove entity properties.
Newly created and fetched entities will utilize this new schema. Your application’s
logic must be able to handle these changes.

App Engine uses the Java Persistence API (JPA)) and Java Data Objects (JDO))
interfaces for modeling and persisting entities. These APIs, rather than the low-level
API, ensure application portability. For your application, you’ll use JDO since the
Eclipse plug-in generates your JDO configuration files. Of course, JPA is supported,
but it requires some additional setup and configuration steps. If you are familiar with
Hibernate or other object-relational mapping (ORM)) solutions, JDO should be fairly
easy to grok as these solutions share many features.

App Engine's JDO implementation is provided by the DataNucleus Access
Platform, an open-source implementation of JDO 2.3. Again, the JDO specification is
database-agnostic and defines high-level interfaces for annotating simple POJOs,
persisting and querying objects, and utilizing transactions. Applications
implementing JDO can query for entities by property values or they can fetch a
specific entity from the datastore using its key. Queries can return zero or more
entities and sort them by property values, if desired.

Classes and Fields
JDO uses annotations on POJOs to describe how these objects are persisted to the
datastore and how to recreate them when they are, in turn, fetched from the datastore.
The kind of entity is defined by the simple name of the class while each class member
specified as persistent represents a property of the entity. The data class is required to
have a field dedicated to storing the primary key of its corresponding entity.

Each entity has a key that is unique to Bigtable. Keys consist of the application ID, the
entity ID, and the kind of entity. Some keys may also contain information pertaining to
the entity group. Your application can generate keys for your entities, or you can allow
Bigtable to automatically assign numeric IDs for you. In most cases it is easier to let
Bigtable assign your keys so you don't have to write code to ensure that your keys are
unique across all objects of the same kind plus entity group parent (if being used).

There are four types of primary key fields:

1. Long: An ID that is automatically generated by Bigtable when the
instance is saved.

2. Uncoded String: An ID or "key name" that your application
provides to the instance prior to being saved.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

138

3. Key: A value that includes the key of any entity-group parent that is
being used and an application-generated string ID or a system-
generated numeric ID.

4. Key as Encoded String: Essentially, an encoded key to ensure
portability and still allow your application to take advantage of
Bigtable's entity groups.

If you want to implement your own key system, you simply use the createKey static
method of the KeyFactory class. You pass the method the kind and either an
application-assigned string or a system-assigned number, and the method returns
the appropriate Key instance. So, to create a key for an Order entity with the key
name "jeff@noemail.com" you would use:

Key key = KeyFactory.createKey(Order.class.getSimpleName(),
"jeff@noemail.com");

■ Note If your implementation inadvertently creates a duplicate key for your entity, this new entity will
overwrite the existing entity in the datastore.

Listing 7-1 is an example JDO class with an automatically generated Long ID provided
by Bigtable with both persisted and non-persisted fields. The phone member is only
available within the scope of the object and is not persisted to the database. Entities
created from a database call will contain a null value for the phone member.

Listing 7-1. Sample JDO POJO

import javax.jdo.annotations.IdGeneratorStrategy;
import javax.jdo.annotations.IdentityType;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;
import javax.jdo.annotations.NotPersistent;
import javax.jdo.annotations.PrimaryKey;

// Declares the class as capable of being stored and retrieved with JDO
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Contact {

 // Required primary key populated automatically by JDO
 @PrimaryKey

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

139

 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 @Persistent
 private String name;

 // Field *NOT* persisted to the datastore
 @NotPersistent
 private String phone;

 public Contact(String name, String phone) {
 this.name = name;
 this.phone = phone;
 }

 // Accessors - used by your application but not JDO
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPhone() {
 return phone;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

}

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

140

The types of fields supported by JDO for entities include:

� Core types supported by Bigtable, as shown in Table 7-1

� An array of core datastore type values

� A Collection of core datastore type values

� @PersistenceCapable class instances or Collections

� Serializable class instances or Collections (stored as a Blob)

� Embedded classes that are stored as entity properties

As noted, a field value can be an instance of a class that is marked as
@PersistenceCapable. A single instance creates a one-to-one relationship while a
collection creates a one-to-many relationship. Using these types of relationships can
dramatically increase object-modeling and code-writing productivity. For instance,
you can create an Order class that defines an Address class as a persistent field. When
your application creates an instance of the Order class, populates the address field
with a new Address instance, and then saves the Order, the datastore will create both
the Order and Address entities for you. The key of the Address entity has the key of
the Order entity as its entity parent group.

Another object-modeling approach is to use embedded classes for persisting field
values. With embedded classes the fields are stored directly in the datastore entity of
the containing instance and do not exist as separate classes. Any data class marked as
@PersistenceCapable can be used to embed in another data class. There is no need to
specify a primary key field for the object as it is not stored as a self-referencing object.

@Persistent
@Embedded(members = {
 @Persistent(name="mailingAddress", columns=@Column(name="address1")),
 @Persistent(name="mailingCity", columns=@Column(name="city1")),
 @Persistent(name="mailingState", columns=@Column(name="state1")),
 @Persistent(name="mailingPostalCode",
columns=@Column(name="postalCode1")),
})
private Address address;

Since embedded classes are stored as part of the actual entity itself, you can use them
with dot notation in JDOQL query filters and sort orders.

Select from Order Where address.mailingState = "KY"

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

141

Table 7-1. The Datastore Core Value Types

Type Java Class Notes

short text
string, < 500
bytes

java.lang.String

short byte
string, < 500
bytes

com.google.appengine.api.datastore.ShortBlob ShortBlob contains
an array of bytes of a
configurable length.

Boolean
value

boolean or java.lang.Boolean

integer short, java.lang.Short, int, java.lang.Integer, long,
java.lang.Long

Stored as a long
integer, and then
converted to the
field type.

floating
point
number

float, java.lang.Float, double, java.lang.Double

Stored as a double-
width float, and then
converted to the field
type.

date-time java.util.Date

Google
account

com.google.appengine.api.users.User User represents a
specific user,
represented by the
combination of an
e-mail address and a
specific Google
Apps domain.

long text
string

com.google.appengine.api.datastore.Text String of unlimited
size.

long byte
string

com.google.appengine.api.datastore.Blob Blob contains an
array of bytes of
unlimited size.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

142

Type Java Class Notes

entity key com.google.appengine.api.datastore.Key, or the
referenced object (as a child)

The primary key for
a datastore entity. A
datastore GUID.

a category com.google.appengine.api.datastore.Category A tag. For example, a
descriptive word or
phrase.

an e-mail
address

com.google.appengine.api.datastore.Email An RFC2822 e-mail
address. Makes no
attempt at
validation.

a
geographical
point

com.google.appengine.api.datastore.GeoPt A geographical point,
specified by float
latitude and
longitude
coordinates.

an instant
messaging
handle

com.google.appengine.api.datastore.IMHandle An instant-
messaging handle
including both an
address and its
protocol.

a URL com.google.appengine.api.datastore.Link A URL with a limit of
2038 characters.

a phone
number

com.google.appengine.api.datastore.PhoneNumber A human-readable
phone number. No
validation is
performed.

a postal
address

com.google.appengine.api.datastore.PostalAddress A human-readable
mailing address. No
validation is
performed.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

143

Type Java Class Notes

a user-
provided
rating, an
integer
between 0
to 100

com.google.appengine.api.datastore.Rating A user-provided
integer rating for a
piece of content.
Normalized to a 0-
100 scale.

CRUDing Entities
With most datastores, obtaining a connection is an expensive process. The App
Engine's datastore is no different. Applications utilizing JDO interact with the
datastore by using an instance of the PersistenceManager class. By instantiating an
instance of the PersistenceManagerFactory class, the factory creates an instance of
the PersistenceManager using the JDO configuration. Due to the high overhead of
creating the instance, you should wrap this class in a singleton so that it can be
reused and prevented from creating additional instances.

import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

public final class PMF {
 private static final PersistenceManagerFactory pmfInstance =
 JDOHelper.getPersistenceManagerFactory("transactions-optional");

 private PMF() {}

 public static PersistenceManagerFactory get() {
 return pmfInstance;
 }
}

Creating Entities
Once you have a connection to the datastore, it's relatively simple to persist entities.
Just create a new instance, and then pass it to the makePersistent synchronous
method.

PersistenceManager pm = PMF.get().getPersistenceManager();
Order o = new Order("Jeff Douglas", "111-222-3333");

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

144

try {
 pm.makePersistent(o);
} finally {
 pm.close();
}

Fetching Entities
You can fetch an entity with its key by using the PersistenceManager's getObjectById
method.

PersistenceManager pm = PMF.get().getPersistenceManager();
Key key = KeyFactory.createKey(Order.class.getSimpleName(),
"jeff@noemail.com");
Order o = pm.getObjectById(Order.class, key);

If you are using an encoded string ID or a numeric ID, you can fetch the entity by
passing the getObjectById method the simple value of the key.

PersistenceManager pm = PMF.get().getPersistenceManager();
Order o = pm.getObjectById(Order.class, "jeff@noemail.com");

Updating Entities
You typically update an entity by fetching it with the PersistenceManager, make any
changes to the instance, and then close the PersistenceManager. When the
PersistenceManager is closed, it automatically updates any changes to the entity in the
datastore, as the instance is said to be "attached" to the PersistenceManager.

public void updateOrder(Order order, String customerName) {
 PersistenceManager pm = PMF.get().getPersistenceManager();
 try {
 Order o = pm.getObjectById(Order.class, order.getId());
 o.setName(customerName);
 } finally {
 pm.close();
 }
}

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

145

Deleting Entities
Deleting an entity is relatively straightforward. Call the PersistenceManager's
deletePersistent method with the object to delete. You can also delete multiple
objects by calling the PersistenceManager's deletePersistentAll method with the
Collection of objects. The delete action can also cascade down to any child objects,
which can be deleted as well.

public void deleteOrder(Order order) {
 PersistenceManager pm = PMF.get().getPersistenceManager();
 try {
 Order o = pm.getObjectById(Order.class, order.getId());
 pm.deletePersistent(o);
 } finally {
 pm.close();
 }
}

Performing Queries with JDOQL
Now that you can perform basic CRUD functions, you’ll need to be able to find
entities that you’d like to take action on. JDO includes a SQL-like query language
called JDOQL that performs queries for entities that meet specific sets of criteria. A
JDOQL query specifies the entity kind to query, zero or more conditions or “filters” on
entity properties, and zero or more sort-order descriptions. JDOQL also performs
type checking for results and query parameters to make life easier.

The query API is very accommodating and allows you to mix and match your
JDOQL query string to suit your preferences. You can write your entire JDOQL query
as a single string or construct all or some of the query by calling methods on the
query object with filters and parameter substitutions in the order in which they are
declared. Literal values are also supported for string and numeric values.

Here is a simple query constructed with the JDOQL string syntax:

import java.util.List;
import javax.jdo.Query;

Query qry = pm.newQuery("select from Contact where country == countryParam
" +
 "order by dateCreated desc " +
 "parameters String countryParam");

List<Contact> contacts = (List<Contact>) qry.execute("USA");

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

146

Here is the same query using the method style of calling. This method is a little more
straightforward and is easier to maintain than the string format.

Query qry = pm.newQuery(Contact.class);
qry.setFilter("country == countryParam");
qry.setOrdering("dateCreated desc");
qry.declareParameters("String countryParam");

List<Contact> contacts = (List<Contact>) qry.execute("USA");

Again, JDOQL is very flexible. You can mix these two styles according to your business
requirements to create some interesting and dynamic combinations.

Query qry = pm.newQuery(Contact.class,

"country == countryParam order by dateCreated desc");
qry.declareParameters("String countryParam");

List<Contact> contacts = (List<Contact>) qry.execute("USA");

Filtering Queries
Queries can contain zero or more filters specifying a field name, an operator, and a
value. Values cannot refer to another property or be calculated in terms of other
properties. Your application must provide the values for the filters. JDOQL supports
only the following filter operators: <, <=, ==, >=, and >.

When using the JDOQL string syntax, you can only use && (logical “and”) to
separate your filters. The datastore does not support other combinations (for
example, “or”, “not”).

Another restriction for queries pertains to inequality filters. You must not
construct your queries to contain inequality filters on more than one property.
However, the same property may contain multiple inequality filters, as shown in this
example.

qry.setFilter("countryName == 'USA' && stateName == stateName");
qry.declareParameters("String stateName");

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

147

Sorting Queries
The results of a JDOQL query can be sorted based on a property and a direction,
either ascending or descending. If a sort order is not specified, then the results of the
query are returned in the order of their entity keys.

As with filters, there are some restrictions on the sorting that can be performed. If
your query includes sort orders on some properties and inequality filters on other
properties, then the property that includes the inequality filters must be ordered
before the other properties. Here is a short example of sorting by multiple properties.

qry.setOrdering("dateCreated desc, stateName asc");

Query Ranges
Your JDOQL queries can specify a range of entities to be returned to your application.
The setRange method accepts numeric indexes for the first and last entities that should
be included in the resultset. The index is zero-based, so given the query below, the third,
fourth, and fifth entities will be returned in the results.

qry.setRange(2,5);

Using ranges can be resource-intensive because the datastore returns all entities
and then discards the ones prior to the starting index. Use ranges with care for large
data sets.

You might be tempted to use ranges to implement pagination for your
application. However, App Engine recommends a slightly different approach, as
discussed in the article, “Paging through large datasets”
(http://code.google.com/appengine/articles/paging.html).

Using Indexes
For performance and scalability, the datastore maintains an index for each query that
your application can execute. An index is built as a combination of each kind, filter
property and operator, and sort order for every query in your application. As changes
are made to your entities in the datastore, the datastore automatically updates its
indexes with the correct results. When a JDOQL query is executed, the datastore
returns the results directly from its corresponding index.

Scanning Google Groups you will find that there is much uncertainty surrounding
indexes and how they are built. You can either define them manually in the
datastore-index.xml configuration file, or the development web server may create
them for you.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

148

Building Indexes
At runtime, if App Engine executes a query with no corresponding index, it will fail
miserably. By default, App Engine builds a number of simple indexes for you. For
more complex indexes, you will have to build them manually in the index
configuration file, as shown in Listing 7-2.

Listing 7-2. Sample datastore-index.xml file

<?xml version="1.0" encoding="utf-8"?>
<datastore-indexes
 xmlns="http://appengine.google.com/ns/datastore-indexes/1.0"
 autoGenerate="true">
 <datastore-index kind="Contact" ancestor="false">
 <property name="countryName" direction="asc" />
 </datastore-index>
</datastore-indexes>

Indexes are built automatically by App Engine for queries that contain:

� Single property inequality filters

� Only one property sort order (ascending or descending) and no filters

� Inequality or range filters on keys and equality filters on properties

� Only ancestor and equality filters

You must specify in the index configuration file any queries containing:

� Multiple sort orders

� Inequality and ancestor filters

� A sort order on multiple keys in descending order

� One or more inequality filters on a property and one or more equality
filters over the properties

Creating Indexes In Development Mode
During development, App Engines tries to create your indexes for you in the
configuration file. If the development web server encounters a query that does not have
a corresponding index, it will try to create an index for you automatically. If your unit
tests call every possible query for your application, the generated configuration file will
contain a complete set of all indexes. This is where confusion creeps into the process. If

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

149

you think your tests call all possible queries but your application still fails at runtime,
you’ll have to edit the datastore-index.xml file and add these indexes manually.

Using Transactions
At a high level, the App Engine datastore supports transactions like most relational
databases. A transaction consists of one or more database operations that either
succeed or fail in entirety. If a transaction succeeds, then all operations are
committed to the datastore. However, if one of the operations fails, then all
operations are rolled back to their original state. An example method using
transactions is shown in Listing 7-3.

Listing 7-3. Sample transaction

import javax.jdo.Transaction;

public void createContact(Contact contact, String accountId) {

 PersistenceManager pm = PMF.get().getPersistenceManager();
 Transaction tx = pm.currentTransaction();

 try {
 // start the transaction
 tx.begin();

 // persist the contact
 pm.makePersistent(contact);

 // fetch the parent account
 Account account = pm.getObjectById(Account.class, accountId);
 account.incrementContacts(1);
 pm.makePersistent(account);

 // commit if no errors
 tx.commit();
 } finally {

 // roll back the transactions in case of an error
 if (tx.isActive()) {
 tx.rollback();
 }
 }
}

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

150

All entities in the datastore belong to an entity group. Entities in the same group are
stored in the same part of Google’s distributed network. Better distribution across
database nodes improves performance when creating and updating data. When
creating a new entity, you can assign an existing entity as its parent so that the new
entity becomes part of that entity group. If you do not specify a parent for an entity, it
is considered a root entity.

The datastore places restrictions on what operations can be performed inside a
single transaction:

� Your application can perform a query inside a transaction but only
if the query includes an ancestor filter to retrieve all descendants of
the specific entity.

� A transaction must operate only on entities in the same entity
group.

� If your transaction fails, your application must try again
programmatically. JDO will not attempt to retry the transaction
automatically, like most systems with optimistic concurrency.

� A transaction can only update an entity once.

Finishing Up Your Application
Now that you have a good understanding of the App Engine datastore and how to use
JDO to interact with it, you can finish up the application. You’ll need to tie various
parts of your application into the datastore using GWT RPC to create a fully
functioning application, following these steps:

� Populate your Projects picklist with values.

� Populate your Milestones picklist with values based on the selected
project.

� Implement your Save handler to persist your timecard entries to
the datastore.

� Display the current user’s timecard entries from the datastore.

Making Remote Procedure Calls with GWT RPC
Similar to your authentication service, your data service will use GTW RPC to
communicate with your server (see Figure 7-1). You’ll create a server-side service that

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

151

is invoked by your client to fetch and save timecard entries and related project
information. You will need to implement the following components to round out
your application:

1. A server-side service containing the methods that your client will
invoke

2. The client-side code that will invoke the service

3. A serializable POJO containing your actual timecard data that is
passed between your server and client

Figure 7-1. Your GWT RPC components model

TimeEntryData POJO
Your client and server will need a POJO to pass data back and forth. The POJO in
Listing 7-4 will be a single timecard entry that will be persisted to the datastore.
When using GWT RPC, the class, parameters, and return types must be
serializable so that the object can be moved from layer to layer.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

152

Listing 7-4. The TimeEntryData POJO

package com.appirio.timeentry.client;

import java.io.Serializable;
import java.util.Date;

public class TimeEntryData implements Serializable {

 private String project;
 private String milestone;
 private Boolean billable;
 private Date date;
 private double hours;

 public String getProject() {
 return project;
 }

 public void setProject(String project) {
 this.project = project;
 }

 public String getMilestone() {
 return milestone;
 }

 public void setMilestone(String milestone) {
 this.milestone = milestone;
 }

 public Boolean getBillable() {
 return billable;
 }

 public void setBillable(Boolean billable) {
 this.billable = billable;
 }

 public Date getDate() {
 return date;
 }

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

153

 public void setDate(Date date) {
 this.date = date;
 }

 public double getHours() {
 return hours;
 }

 public void setHours(double hours) {
 this.hours = hours;
 }

}

■ Note GWT serialization is a little different from the Java Serializable interface. Check out the GWT
Developer’s Guide for details on the differences and reasons behind them.

TimeEntryEntity JDO Class
Your TimeEntryData POJO is transferred across the wire to your server and is
deserialized automatically. For flexibility, you’re going to create the JDO class in
Listing 7-5 for persisting your instances to the datastore.

Listing 7-5. The code for your JDO class, TimeEntryEntity.java

package com.appirio.timeentry.server;

import javax.jdo.annotations.IdGeneratorStrategy;
import javax.jdo.annotations.IdentityType;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;
import javax.jdo.annotations.PrimaryKey;
import java.util.Date;

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class TimeEntryEntity {

 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

154

 private Long id;
 @Persistent
 private String email;
 @Persistent
 private String project;
 @Persistent
 private String milestone;
 @Persistent
 private Boolean billable;
 @Persistent
 private Date date;
 @Persistent
 private double hours;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getProject() {
 return project;
 }

 public void setProject(String project) {
 this.project = project;
 }

 public String getMilestone() {
 return milestone;
 }

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

155

 public void setMilestone(String milestone) {
 this.milestone = milestone;
 }

 public Boolean getBillable() {
 return billable;
 }

 public void setBillable(Boolean billable) {
 this.billable = billable;
 }

 public Date getDate() {
 return date;
 }

 public void setDate(Date date) {
 this.date = date;
 }

 public double getHours() {
 return hours;
 }

 public void setHours(double hours) {
 this.hours = hours;
 }

}

NotLoggedIn Exception
When interacting with the datastore, your service needs to ensure that the user is
logged in to the application with her Google account. If the user has not logged in or
her session has expired, you need to handle this by throwing the
NotLoggedInException shown in Listing 7-6.

Listing 7-6. The code for the NotLoggedInException

package com.appirio.timeentry.client;

import java.io.Serializable;

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

156

public class NotLoggedInException extends Exception implements Serializable
{

 public NotLoggedInException() {
 super();
 }

 public NotLoggedInException(String message) {
 super(message);
 }

}

Creating Your Data Service
In order to create your data service for your server, you need to define both a service
interface and the actual service. For your service interface you need to define the
interface extending the GWT RemoteService interface,GWT RemoteService
interface, as shown in Listing 7-7. Your service will consist of the following methods
that will be called from your client:

1. getProjects: Returns an Array of Strings for the Project picklist

2. getMilestones: Accepts a project name and returns an Array of
Strings for the Milestones picklist

3. addEntries: Accepts a Vector of TimeEntryData objects and returns
a String with the results of the datastore commit

4. getEntries: Returns a Vector of TimeEntryData objects containing
the current timecard entries for the current user

Listing 7-7. Your data service extending the GWT RemoteService

package com.appirio.timeentry.client;

import java.util.Vector;

import com.google.gwt.user.client.rpc.RemoteService;
import com.google.gwt.user.client.rpc.RemoteServiceRelativePath;
import com.appirio.timeentry.client.TimeEntryData;

@RemoteServiceRelativePath("data")
public interface DataService extends RemoteService {

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

157

 String[] getProjects();
 String[] getMilestones(String project);
 String addEntries(Vector<TimeEntryData> entries) throws
NotLoggedInException;
 Vector<TimeEntryData> getEntries() throws NotLoggedInException;
}

■ Note Notice the @RemoteServiceRelativePath annotation. You’ll define this path in the deployment
descriptor based on the relative path of the base URL.

The guts of your service reside in the DataServiceImpl class shown in Listing 7-8. The
methods defined in your interface are implemented in addition to a number of helper
methods. This class extends GWT RemoteServiceServlet and does the heavy lifting of
serializing responses and deserializing requests for you. Since the servlet runs as Java
bytecode instead of JavaScript on the client, you are not hamstrung by the
functionality of the browser.

Listing 7-8. The entire listing for DataServiceImpl.java

package com.appirio.timeentry.server;

import java.util.List;
import java.util.Vector;
import java.util.logging.Logger;
import java.util.logging.Level;

import javax.jdo.PersistenceManager;
import javax.jdo.PersistenceManagerFactory;
import javax.jdo.JDOHelper;

import com.google.appengine.api.users.User;
import com.google.appengine.api.users.UserService;
import com.google.appengine.api.users.UserServiceFactory;
import com.appirio.timeentry.client.NotLoggedInException;

import com.appirio.timeentry.client.DataService;
import com.appirio.timeentry.client.TimeEntryData;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

158

@SuppressWarnings("serial")
public class DataServiceImpl extends RemoteServiceServlet implements
DataService {

 private static final Logger LOG =
Logger.getLogger(DataServiceImpl.class.getName());
 private static final PersistenceManagerFactory PMF =
JDOHelper.getPersistenceManagerFactory("transactions-optional");

 public String addEntries(Vector<TimeEntryData> entries) throws
NotLoggedInException {

 // ensure that the current user is logged in
 checkLoggedIn();

 PersistenceManager pm = getPersistenceManager();
 try {
 pm.makePersistentAll(toEntities(entries));
 } finally {
 pm.close();
 }
 LOG.log(Level.INFO, entries.size()+" entries added.");
 return entries.size()+" entries added.";
 }

 public Vector<TimeEntryData> getEntries() throws NotLoggedInException
{

 // ensure that the current user is logged in
 checkLoggedIn();

 Vector<TimeEntryData> entries = new Vector<TimeEntryData>();

 PersistenceManager pm = getPersistenceManager();
 try {
 String query = "select from " +
TimeEntryEntity.class.getName() + " where email == '"+ getUser().getEmail()
+"' order by date desc";
 List<TimeEntryEntity> entities = (List<TimeEntryEntity>)
pm.newQuery(query).execute();

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

159

 for (TimeEntryEntity entity : entities) {
 TimeEntryData ted = new TimeEntryData();
 ted.setBillable(entity.getBillable());
 ted.setDate(entity.getDate());
 ted.setHours(entity.getHours());
 ted.setMilestone(entity.getMilestone());
 ted.setProject(entity.getProject());
 entries.add(ted);
 }

 } finally {
 pm.close();
 }

 return entries;
 }

 // returns a simple String Array of project names
 public String[] getProjects() {

 String[] projects = new String[3];
 projects[0] = "Project 1";
 projects[1] = "Project 2";
 projects[2] = "Project 3";

 return projects;
 }

 // returns a simple String Array of milestone name for a project
 public String[] getMilestones(String project) {

 String[] milestones = new String[3];

 if (project.equals("Project 1")) {
 milestones[0] = "Milestone 1-1";
 milestones[1] = "Milestone 1-2";
 milestones[2] = "Milestone 1-3";
 } else if (project.equals("Project 2")) {
 milestones[0] = "Milestone 2-1";
 milestones[1] = "Milestone 2-2";
 milestones[2] = "Milestone 2-3";

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

160

 } else {
 milestones[0] = "Milestone 3-1";
 milestones[1] = "Milestone 3-2";
 milestones[2] = "Milestone 3-3";
 }

 return milestones;
 }

 private PersistenceManager getPersistenceManager() {
 return PMF.getPersistenceManager();
 }

 // returns the current user from Google Accounts
 private User getUser() {
 UserService userService = UserServiceFactory.getUserService();
 return userService.getCurrentUser();
 }

 // determines if the user is currently logged in. If not, throws an
exception.
 private void checkLoggedIn() throws NotLoggedInException {
 if (getUser() == null)
 throw new NotLoggedInException("User not logged in.
Please login with your Google Accounts credentials.");
 }

 // utility method to translate client objects to server-side objects
 private Vector<TimeEntryEntity> toEntities(Vector<TimeEntryData>
entries) {
 // create a new vector of entities to return
 Vector<TimeEntryEntity> entities = new
Vector<TimeEntryEntity>();
 for (int i=0;i<entries.size();i++) {
 TimeEntryData ted = (TimeEntryData) entries.get(i);
 TimeEntryEntity tee = new TimeEntryEntity();
 tee.setBillable(ted.getBillable());
 tee.setDate(ted.getDate());
 tee.setHours(ted.getHours());
 tee.setMilestone(ted.getMilestone());
 tee.setProject(ted.getProject());
 tee.setEmail(getUser().getEmail());

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

161

 entities.add(tee);
 }
 return entities;
 }

}

Modifying the Deployment Descriptor
Since your service implementation runs on the server as a servlet, you need to tell
the embedded Servlet container where to find the code to execute. Open the
web.xml file in the project’s war directory and add the entries in Listing 7-9. The
URL pattern for the dataServlet corresponds to the
@RemoteServiceRelativePath("data") annotation in the DataService interface
that you added earlier.

Listing 7-9. The web.xml definition for the DataServiceImpl servlet

<servlet>
 <servlet-name>dataServlet</servlet-name>
 <servlet-class>com.appirio.timeentry.server.DataServiceImpl</servlet-
class>
</servlet>

<servlet-mapping>
 <servlet-name>dataServlet</servlet-name>
 <url-pattern>/timeentry/data</url-pattern>
</servlet-mapping>

Invoking the Service from the GWT Client
Now that the server side of your application is complete, you need to implement the
client-side code that invokes your service. Before you make your modifications to
your EntryPoint class, you need to add one more component for your GWT RPC calls.

You need to add an AsyncCallback parameter to each of your server-side calls for
your DataService. Your new interface in Listing 7-10 must be located in the same
package as your service interface and it must have the same name as the interface but
appended with Async.

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

162

Listing 7-10. The code for DataServiceAsync

package com.appirio.timeentry.client;

import java.util.Vector;

import com.appirio.timeentry.client.TimeEntryData;
import com.google.gwt.user.client.rpc.AsyncCallback;

public interface DataServiceAsync {
 void getProjects(AsyncCallback<String[]> callback);
 void getMilestones(String project, AsyncCallback<String[]> callback);
 void addEntries(Vector<TimeEntryData> entries, AsyncCallback<String>
callback);
 void getEntries(AsyncCallback<Vector<TimeEntryData>> callback);
}

The first thing you need to do before you can start making RPC calls to your server is to
create an instance of the service proxy class. Add the following private class member to
your EntryPoint class, TimeEntry.java.

private final DataServiceAsync dataService = GWT.create(DataService.class);

With your dataService proxy defined you can start integrating your data from the
datastore into your client. Add the code in Listing 7-11 at the end of the addRow
method. This new code interacts with your server in two important ways. Whenever a
new row is added to the FlexTable, the getProjects method makes an RPC call to
fetch all of the projects from the server, and then populates the values in the picklist.
The inline AsyncCallback object contains two methods, onSuccess and onFailure, the
appropriate one of which is called depending on whether the RPC call succeeds or
fails.

The code also adds a listener to the Project picklist that detects changes in the
selected value. When a user selects a project from the picklist, the getMilestones RPC
RPC method is called and fetches the appropriate milestones. If the call succeeds, the
resulting milestones populate the values in the Milestone picklist and the seven time
input boxes are enabled for entry.

Listing 7-11. Code added to the addRow method in TimeEntry.java

// get all of the projects for the user
dataService.getProjects(new AsyncCallback<String[]>() {

 public void onFailure(Throwable caught) {
 handleError(caught);

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

163

 }

 public void onSuccess(String[] results) {
 for (int i=0;i<results.length;i++)
 lbProjects.addItem(results[i]);
 }

});

lbProjects.addChangeHandler(new ChangeHandler () {
 public void onChange(ChangeEvent event) {

 // remove all of the current items in the milestone list

 for (int i=lbMilestones.getItemCount()-1;i>=0;i--)

 lbMilestones.removeItem(i);

 // get all of the milestones for the project

 dataService.getMilestones(lbProjects.getItemText(lbProjects.getSelect
edIndex()), new AsyncCallback<String[]>() {

 public void onFailure(Throwable caught) {
 handleError(caught);
 }

 public void onSuccess(String[] results) {
 for (int i=0;i<results.length;i++)
 lbMilestones.addItem(results[i]);

 day1.setEnabled(true);
 day2.setEnabled(true);
 day3.setEnabled(true);
 day4.setEnabled(true);
 day5.setEnabled(true);
 day6.setEnabled(true);
 day7.setEnabled(true);
 }
 });

 }
});

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

164

The onFailure method of your AsyncCallback object references a small helper method to
display any error returned from the server. Add this method to your class along with
some required import statements.

import com.google.gwt.event.dom.client.ChangeEvent;
import com.google.gwt.event.dom.client.ChangeHandler;
import java.util.Vector;

private void handleError(Throwable error) {
 Window.alert(error.getMessage());
 if (error instanceof NotLoggedInException)
 Window.Location.replace(loginInfo.getLogoutUrl());

}

Your time-entry UI is almost complete. Users can now add rows to their timecards,
select projects and milestones, and enter their time for the appropriate days. Your
last major task for entering time is writing the entries to the datastore. To perform
this function you’ll add the code in Listing 7-12.

The saveEntries method gathers up all of the user-entered timecard data rows
into a Vector of TimeEntryData objects. If there are any timecard entries to submit to
the server, the Vector of objects is passed to the server, the entries are persisted to the
datastore, and the results are sent back and displayed to the user in a standard
JavaScript Alert window.

Listing 7-12. Code for the saveEntries method

private void saveEntries() {

 Vector<TimeEntryData> entries = new Vector<TimeEntryData>();

 for (int row=1;row<flexEntryTable.getRowCount();row++) {

 ListBox projectWidget = (ListBox)
flexEntryTable.getWidget(row, 0);
 ListBox milestoneWidget = (ListBox)
flexEntryTable.getWidget(row, 1);
 CheckBox billableWidget = (CheckBox)
flexEntryTable.getWidget(row, 2);

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

165

 for (int column=3;column<10;column++) {
 // get the current text box for the day
 TextBox textBox = (TextBox)
flexEntryTable.getWidget(row, column);
 double hours = Double.parseDouble(textBox.getValue());
 if (hours > 0) {
 TimeEntryData ted = new TimeEntryData();
 ted.setHours(hours);

 ted.setMilestone(milestoneWidget.getItemText(

milestoneWidget.getSelectedIndex()));
 ted.setProject(projectWidget.getItemText(

projectWidget.getSelectedIndex()));
 ted.setBillable(billableWidget.getValue());
 ted.setDate(addDays(startDate,(column-3)));
 entries.add(ted);
 }
 }

 }

 if (!entries.isEmpty()) {

 // submit the entries to the server
 dataService.addEntries(entries, new AsyncCallback<String>() {

 public void onFailure(Throwable caught) {
 handleError(caught);
 }

 public void onSuccess(String message) {
 Window.alert(message);
 }
 });
 }
}

One thing you still need to do is add the click event to the Save button to call this new
saveEntries method method. Add the following code to the loadLoginUI method:

// listen for mouse events on the save button
saveButton.addClickHandler(new ClickHandler() {

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

166

 public void onClick(ClickEvent event) {
 saveEntries();
 removeAllRows();
 }
});

After you save the entries to the server, your code needs to remove all of the current
timecard entries and present the user with a FlexTable that contains only one blank
row for new data entry. Add the following method to the TimeEntry class.

private void removeAllRows() {
 // remove all of the rows from the flex table
 for (int row=flexEntryTable.getRowCount()-1;row>0;row--)
 flexEntryTable.removeRow(row);

 // rest the total
 totalLabel.setText("0.00");
 // add a new blank row to the flex table
 addRow();
}

Displaying Timecard Entries
Now your timecard entry UI is complete! However, one of your functional
requirements was to display the user’s current timecard entries. You’ll add another
tab to your UI and display a simple FlexTable with all of the user’s current entries.
Remember, you already implemented the server-side code earlier in this chapter.

Start by adding a new FlexTable to hold all of the existing timecard entries. Add
the following private class member.

private FlexTable flexCurrentTable = new FlexTable();

Now simply add another tab titled “Current Entries” to the DecoratedTabPanel with
your newly created FlexTable.

tabPanel.add(flexCurrentTable,"Current Entries");

There’s only one function of your new FlexTable: display entries for the current user.
To populate the FlexTable with data from the server, you need to implement the
following getCurrentEntries method in Listing 7-13 that makes an RPC call to the
server and fetches the user’s current entries. The method doesn’t need to pass any

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

167

type of user indentifier as the implementation on the server simply references the
user’s data from their Google account.

Listing 7-13. Code for the getCurrentEntries method

private void getCurrentEntries() {

 // get all of the milestones for the project
 dataService.getEntries(new AsyncCallback<Vector<TimeEntryData>>() {

 public void onFailure(Throwable caught) {
 handleError(caught);
 }

 public void onSuccess(Vector<TimeEntryData> entries) {
 int row = flexEntryTable.getRowCount();
 for (TimeEntryData ted : entries) {
 row++;
 flexCurrentTable.setText(row, 0,
ted.getProject());
 flexCurrentTable.setText(row, 1,
ted.getMilestone());
 flexCurrentTable.setText(row, 2,
ted.getBillable() ? "Yes":"No");

flexCurrentTable.setText(row, 3,

 DateTimeFormat.getShortDateFormat().format(ted.ge
tDate()));

flexCurrentTable.setText(row, 4,
String.valueOf(NumberFormat.getFormat(".00").form
at(ted.getHours())));

 }
 }

});

}

You want to fetch the user’s current entries at a couple of different points during the
timecard process. First, after the user successfully logs in and is shown the UI, you
want to fetch all of his current entries. Add the following code to the bottom of the
loadMainUI method.

// get the current entries for the user
getCurrentEntries();

CHAPTER 7 ■ USING THE APP ENGINE DATASTORE

168

Second, after the user saves his timecard entries, you need to refresh the FlexTable to
include the ones that he just entered. In the onSuccess Async method of the
saveEntries method, add the following call.

// re-fetch the entries for the current user
getCurrentEntries();

Voilà! Your timecard application is now complete.

Summary
In this large and information-packed chapter you took a deep dive into the datastore
and then used what you learned to complete your application. Since databases are an
integral part of almost every application, it’s worth recapping what you've learned.

Bigtable is a highly distributed and scalable service for storing and managing
structured data. Bigtable is not a typical relational database that stores records as
rows in a table. Instead, it stores data as entities with properties organized by
application-defined kinds that can be manipulated using either low-level or high-
level APIs.

Using JDO you can perform common CRUD operations as well as query for
entities using JDOQL, a SQL-like query language. JDOQL supports filtering, sorting,
and indexing of queries. At a high level, Bigtable supports transactions like most
relational databases.

For the remainder of the chapter the focus was on finishing up your application.
First you created an RPC data service that allowed your GWT front end to
communicate with the server. You created quite a few classes and interfaces to
implement this service as well as the objects that were passed between client and
server layers. When you were done, you had a complete and working timecard
application.

In the next chapter we'll focus on some of the functional services available to App
Engine applications.a

C H A P T E R 8

■ ■ ■

169

App Engine Services

In Chapter 7 you spent a lot of time in the data layer of the application stack. Let’s
take it up one level and focus on some of the functional services available to App
Engine applications. The App Engine JRE has APIs for App Engine services that
include a memory cache service, an HTTP request service, a mail API, an image
API, and the Google Accounts API, which we discussed in Chapter 6. And, new to
version 1.2.5, is the XMPP service, which allows your App Engine application to
interact with XMPP-based applications like Google Talk.

This chapter starts with a quick review of the Memcache service, the URL
Fetch service, and the Images service. We’ll go a little deeper with some functional
examples of the Mail API and the XMPP service. You’ll be creating an application
that sends an e-mail via the Mail API and also sends an instant message via XMPP.

Setting up the Project
Throughout this chapter you’ll be using a single project for all the examples. To
get that project started, create a new web application project in Eclipse. Call the
project GAEJ – AppEngine Services. Make sure you uncheck Google Web Toolkit in
the New Web Application Project dialog. Figure 8-1 shows the project settings I’ll
be using in the examples in this chapter.

CHAPTER 8 ■ APP ENGINE SERVICES

170

Figure 8-1. New GAEJ project settings

Now that you have created your project, you can get started with the Memcache
service.

CHAPTER 8 ■ APP ENGINE SERVICES

171

Memcache Service
App Engine provides a distributed in-memory data cache in front of the robust,
persistent storage that you can use for certain transient tasks. The Memcache API
supports the JCache interface. JCache is a draft standard that provides a map-like
interface to the cached data store. Through JCache you store objects of any type or
class in key/value pairs. This makes it very quick and simple to store and retrieve
session data, query results, and subsets of data that will be reused throughout the
application.

If you’re running the same set of data-store queries multiple times in the same
user’s session, you should consider using the memory cache to speed the response
time of the application. For example, consider a web site where users are browsing
for a phonebook-type service in their area. If multiple users were all searching for
Denver, CO, querying the data store on each request would become extremely
inefficient. For queries with the same parameters, where the data is relatively static,
you can store the results in the memory cache and have your query check there first.
If the cache is expired or the results are no longer accessible, then the application can
query the data store and refresh the cache with the new results. You can configure
data to expire in two ways. You can provide an expiration time as a number of
seconds relative to when the value is added, or as an absolute Unix epoch time in the
future (for example, the number of seconds from midnight January 1, 1970).

No matter how you decide to approach expiration, there is one important design
aspect to consider when using Memcache in your application. The data is not
reliable, so make sure you store a copy of the data in the data store if the application
requires the data to function properly. Data is not reliable because App Engine can
expire the Memcache data at any time, even before the expiration deadline. That may
make you a bit nervous, but don’t worry too much. Memcache will try to keep the
data for as long as possible. It will evict the data if the application is under pressure
for memory resources, if you’ve coded the application to explicitly remove it, or if
some sort of outage or restart has occurred. If you’d like to expire the data yourself,
you have the option either to expire it after an amount of time has passed since the
data has been set or at an absolute date and time. In all cases, your application
should not assume that the data in the cache will be available.

Let’s take a look at a sample application that uses the Memcache API to store
data, retrieve data, and report usage statistics about the use of the cache. When you
created the application for this chapter, the Google Plugin for Eclipse created some
default files in the project. One of these is a servlet, which you’ll be extending to
exercise the Memcache API. Open the servlet in the src/com.kyleroche.gaeservices
directory in your Eclipse project. Replace the default code with the code from
Listing 8-1.

CHAPTER 8 ■ APP ENGINE SERVICES

172

Listing 8-1. Servlet code for the Memcache API example

package com.kyleroche.gaeservices;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.cache.Cache;
import javax.cache.CacheException;
import javax.cache.CacheFactory;
import javax.cache.CacheManager;
import javax.cache.CacheStatistics;
import javax.servlet.http.*;

import com.google.appengine.api.memcache.MemcacheService;
import com.google.appengine.api.memcache.stdimpl.GCacheFactory;

@SuppressWarnings("serial")
public class GAEJ___AppEngine_ServicesServlet extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/html");

 Cache cache = null;
 Map props = new HashMap();
 props.put(GCacheFactory.EXPIRATION_DELTA, 3600);
 props.put(MemcacheService.SetPolicy.ADD_ONLY_IF_NOT_PRESENT,
true);

 try {
 CacheFactory cacheFactory =
CacheManager.getInstance().getCacheFactory();
 cache = cacheFactory.createCache(props);
 } catch (CacheException e) {
 resp.getWriter().println(e.getMessage());
 }

CHAPTER 8 ■ APP ENGINE SERVICES

173

 String key = "keyname";
 String value = "valuename";

 CacheStatistics stats = cache.getCacheStatistics();
 int hits = stats.getCacheHits();

 cache.put(key, value);
 resp.getWriter().println("
value is " +
cache.get(key).toString());
 resp.getWriter().println("
hit count is " + hits);

 }
}

Before you test the example, look at a few major sections of code in the preceding listing,
Listing 8-1. The first thing you’ll notice is that you have just about as many import
statements as you do lines of code. There are no unused imports in the set. Listing 8-2
demonstrates how to query for the expiration of the cache.

Listing 8-2. Cache configuration settings

Map props = new HashMap();
props.put(GCacheFactory.EXPIRATION_DELTA, 3600);
props.put(MemcacheService.SetPolicy.ADD_ONLY_IF_NOT_PRESENT, true);

try {
 CacheFactory cacheFactory =
CacheManager.getInstance().getCacheFactory();
 cache = cacheFactory.createCache(props);
} catch (CacheException e) {
 resp.getWriter().println(e.getMessage());
}

In Listing 8-2 you can see where the GCacheFactory class is being used to set the
expiration of the cache. As discussed earlier in this chapter, you can expire the cache
after a specific period of time has passed or at an absolute date and time. In this case,
you’re using EXPIRATION_DELTA to set the cache to expire an hour after it's been set. The
available configuration options that control expiration are listed in Table 8-1.

CHAPTER 8 ■ APP ENGINE SERVICES

174

Table 8-1. GCacheFactory expiration values

Value Description

EXPIRATION_DELTA Expires after a relative number of seconds have passed

EXPIRATION_DELTA_MILLIS Expires after a relative number of milliseconds have
passed

EXPIRATION Absolute date in time as a java.util.Date

As you move along in the code take note of where you set the key and value strings

that you’re putting in the cache. It’s important to realize that you’re not restricted to just
Strings as objects in the cache. You can put any serializable object in the cache.

Take a look at the code in Listing 8-3. Here you are accessing the
ConfigurationStatistics class to query some metrics on how many times your cache
has been accessed, or hit.

Listing 8-3. Cache statistics

CacheStatistics stats = cache.getCacheStatistics();
int hits = stats.getCacheHits();

It’s time to test out the application. Run it as a local web application. Since you’re
not using GWT, Eclipse will start a local web server and assign it a port. In most cases,
unless you’ve reconfigured Eclipse, the address should be http://localhost:8080.
Open the application. You should see something similar to Figure 8-2.

Figure 8-2. Welcome page (index.html)

CHAPTER 8 ■ APP ENGINE SERVICES

175

Click the only listing in the Available Servlets list. This will open the servlet and run
through your Memcache example, as shown in Figure 8-3.

Figure 8-3. Cache example on first run

Take a look at the code again. Notice that you are pulling the cache statistics after you
store your data and before you retrieve it from the cache. Because of this, the first
time you access the application the hit count to your cache should be zero, as shown
in Figure 8-3. Go ahead and reload the browser a few times and watch the hit count
increase, as shown in Figure 8-4.

Figure 8-4. Thirteen refreshes later

That’s Memcache. It was a short example, but you’ve learned how to configure your cache
settings, store data, retrieve data, and query cache statistics in just 45 lines of code. Next
we’ll take a look at another App Engine service used for HTTP requests and responses.

URL Fetch Service
App Engine applications can communicate with other systems using HTTP and HTTPS
callouts. This is a service that runs on the Google network infrastructure. It’s fast and

CHAPTER 8 ■ APP ENGINE SERVICES

176

reliable. There are a few limitations, however. For example, an App Engine application
can only access other resources on the web that are exposed over port 80 (HTTP) or port
443 (HTTPS). App Engine can’t fetch URLs from non-standard ports or arbitrary port
assignments. For the basic request-and-response scenario that we’ll be looking at in this
chapter, it doesn’t make sense, but it’s important to realize that your application is not
actually communicating over a socket to the other systems on the web. As URLFetch is a
service that runs on Google’s infrastructure, your application is just invoking this service.

 Consider the code in Listing 8-4. These two lines use the standard java.net
namespace to fetch the response from a given URL. In this case, you’re fetching the
response from http://www.google.com. You are capturing the response by opening
a stream to a new BufferedReader object. If you were to print this back to the screen,
it would render what appears to be the Google landing pageGoogle landing page.
However, by examining the URL in the browser’s navigation bar, you will notice that
you’re still pointing to the App Engine application. See Figure 8-5 for an example of an
App Engine application using URLFetch to retrieve the Google landing page.

Listing 8-4. URL Fetch

URL url = new URL("http://www.google.com/");
BufferedReader reader = new BufferedReader(new
InputStreamReader(url.openStream()));

Figure 8-5. Fetching google.com

CHAPTER 8 ■ APP ENGINE SERVICES

177

With that short example, you can start to conceptualize the potential scenarios for
leveraging the URLFetch service. Using the URL Fetch service is how you address
the creation of HTTP and HTTPS connections from App Engine. App Engine does
not allow your application to make socket connections directly. You must use URL
Fetch to achieve the same result. For example, take the scenario of a REST-based
web service that your application would like to query. In any other JSP or Java
environment, you could set up an HTTP connection to the web service’s URI and
parse the response directly. With App Engine, you must use URL Fetch to make
the request, and then when your response is received, it's business as usual from
there. For the full code used in the servlet that resulted in Figure 8-5, take a look at
Listing 8-5.

Listing 8-5. URL Fetch

package com.kyleroche.gaeservices;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@SuppressWarnings("serial")
public class UrlFetchServlet extends HttpServlet{

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException {
 try {
 URL url = new URL("http://www.google.com");
 BufferedReader reader = new BufferedReader(new
InputStreamReader(url.openStream()));
 String line;

 while ((line = reader.readLine()) != null) {
 resp.getOutputStream().println(line);
 }
 reader.close();

CHAPTER 8 ■ APP ENGINE SERVICES

178

 } catch (MalformedURLException e) {
 resp.getOutputStream().println(e.getMessage());
 } catch (IOException e) {
 resp.getOutputStream().println(e.getMessage());
 }
 }
}

You can use URL Fetch to retrieve and parse XML documents, call RESTful web
services, and read RSS feeds. If you want to look at a REST-based web service
example, set the URL to http://ws.geonames.org/findNearby?lat=47.3&lng=9. This is
an example of an XML-based web serviceXML-based web service that exposes a
public REST API to return nearby country codes. Next, you’ll take a quick look at
another App Engine service for manipulating images.

Images Service
App Engine has a service, Images service, which can be leveraged for image
manipulation. To demonstrate how to use this service, we’ll walk you through the
creation of a basic servlet that will flip uploaded images on the vertical axis. You’ll
continue to build on the same Eclipse project, but you need to add some more
libraries:

1. This example uses the Apache Commons FileUpload package.
Start by downloading that package from the following location:
http://commons.apache.org/fileupload. We’re using Version 1.2.1
for this example. Download and unzip the binary distribution of
the package.

2. Drag the commons-fileupload-1.2.1.jar file from the lib directory into
the WEB-INF/lib directory on the Eclipse Package ExplorerEclipse
Package Explorer of your project.

3. Right-click the file in the Eclipse Package Explorer and select Build
Path ➤ Add to Build Path.

4. You also need to use the Apache Commons IO library. Repeat the
previous steps after downloading Commons IO from http://
commons.apache.org/io. We’re using version 1.4 for this example.

CHAPTER 8 ■ APP ENGINE SERVICES

179

Creating the Java Classes
Now that the prerequisite libraries have been set up in your project, you’ll need four
new Java classes in order to leverage the Images service. Create a new servlet called
ImageTransform. See Figure 8-6 for more information on the options you chose in the
New Java Class dialog.

Figure 8-6. Creating the ImageTransform servlet

CHAPTER 8 ■ APP ENGINE SERVICES

180

Repeat the previous step to create Java classes called ImageObject.java,
ImageSource.java, and PMF.java. Each of these has a specific purpose in the
application:

� The ImageObject class defines the attributes that you’ll store for
each image you upload in the App Engine data store.

� The ImageSource servlet renders your images back to the browser
after retrieving them from the data store.

� The ImageTransform servlet does the processing of the POST
request and stores the files in the data store.

� The PMF class is a PersistanceManager class similar to the one
discussed in Chapter 7.

Writing the ImageObject Class
Starting with the ImageObject class, copy the code from Listing 8-6 to ImageObject.java.
This code defines three fields in the data store where you can pass through information
about your image requests.

� The first, id, is the primary key of type Long.

� The second, name, will store the name of the image file in a string. In
this case, this will be the file name.

� The third, ImageObject, is of type com.google.appengine.
api.datastore.Blob. This field will contain a byte array of your
image’s source file.

Listing 8-6. ImageObject.java

package com.kyleroche.gaeservices;
import java.util.Date;
import javax.jdo.annotations.IdGeneratorStrategy;
import javax.jdo.annotations.IdentityType;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;
import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ImageObject {
 @PrimaryKey

CHAPTER 8 ■ APP ENGINE SERVICES

181

 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 @Persistent
 private String name;

 @Persistent
 private com.google.appengine.api.datastore.Blob content;

 @Persistent
 private Date date;

 public ImageObject(String name, com.google.appengine.api.datastore.Blob
content, Date date) {
 this.name = name;
 this.content = content;
 this.date = date;
 }

 public Long getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public com.google.appengine.api.datastore.Blob getContent() {
 return content;
 }

 public Date getDate() {
 return date;
 }

 public void setName(String name) {
 this.name = name;
 }

CHAPTER 8 ■ APP ENGINE SERVICES

182

 public void setContent(com.google.appengine.api.datastore.Blob content)
{
 this.content = content;
 }

 public void setDate(Date date) {
 this.date = date;
 }
}

Writing the PersistenceManagerFactory Class
Now that you’ve defined the data structure where you’ll be storing your images, you
can build the PersistenceManagerFactory class, like you did in Chapter 7, to facilitate
communication with the data store. Copy the code from Listing 8-7 into PMF.java.

Listing 8-7. PMF.java

package com.kyleroche.gaeservices;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

public final class PMF {
 private static final PersistenceManagerFactory pmfInstance =
 JDOHelper.getPersistenceManagerFactory("transactions-optional");

 private PMF() {}

 public static PersistenceManagerFactory get() {
 return pmfInstance;
 }
}

Writing the ImageSource Class
There are two more new classes to create, and then you’ll set up the HTML form to
upload your image file for transformation. The ImageSource.java file retrieves the
byte array you stored in the data store and renders it back to the browser. It uses an
HTML parameter named “id” to filter the data-store query. Actually, to be accurate,
you’re using the getObjectById method of the PersistenceManager class to retrieve
the image object. Copy the code from Listing 8-8 to the ImageSource servlet you
already created.

CHAPTER 8 ■ APP ENGINE SERVICES

183

Listing 8-8. ImageSource.java

package com.kyleroche.gaeservices;

import java.io.IOException;
import javax.jdo.PersistenceManager;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@SuppressWarnings("serial")
public class ImageSource extends HttpServlet{

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException {
 resp.setContentType("image/jpeg");
 PersistenceManager pm = PMF.get().getPersistenceManager();

 resp.getOutputStream().write(pm.getObjectById(ImageObject.class,
Long.valueOf(req.getParameter("id").toString())).getContent().getBytes());
 resp.getOutputStream().flush();
 resp.getOutputStream().close();
 }
}

Writing the ImageTransform Class
So far, you’ve created the PersistenceManager class to handle the communication
with the data store, the ImageObject itself, and the servlet to retrieve and render
the image from the data store. The next piece is the most significant. How do you
handle the HTTP POST form that will be sending you the image and apply the
transformation prior to storing the image in the data store? The ImageTransform
servlet that you first added to your project is going to accept the POST parameters
from the HTML form, save the image to the data store, call the App Engine Images
service to transform the image, and display both the original and the transformed
images to the browser.

Copy the code from Listing 8-9 to ImageTransform.java. Pay close attention to the
line of code in bold print. This is where the transformation is defined. You are telling
the Images service what type of transformation you are going to apply to the image
before you commit the changes.

CHAPTER 8 ■ APP ENGINE SERVICES

184

Listing 8-9. ImageTransform.java

package com.kyleroche.gaeservices;

import java.io.BufferedInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Date;

import javax.jdo.PersistenceManager;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.fileupload.FileItemIterator;
import org.apache.commons.fileupload.FileItemStream;
import org.apache.commons.fileupload.servlet.ServletFileUpload;
import org.apache.commons.io.IOUtils;

import com.google.appengine.api.images.Image;
import com.google.appengine.api.images.ImagesService;
import com.google.appengine.api.images.ImagesServiceFactory;
import com.google.appengine.api.images.Transform;

@SuppressWarnings("serial")
public class ImageTransform extends HttpServlet{
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 {
 doPost(req, resp);
 }

 public void doPost(HttpServletRequest req, HttpServletResponse resp)
{
 ServletFileUpload upload = new ServletFileUpload();
 upload.setSizeMax(50000000);

 PrintWriter pw = null;
 try {
 resp.reset();
 pw = resp.getWriter();
 resp.setContentType("text/html");

 FileItemIterator iterator = upload.getItemIterator(req);

CHAPTER 8 ■ APP ENGINE SERVICES

185

 while (iterator.hasNext()) {
 FileItemStream item = iterator.next();
 InputStream in = item.openStream();

 BufferedInputStream bis = new
BufferedInputStream(in);
 byte[] bisArray = IOUtils.toByteArray(bis);

 Date date = new Date();

 ImagesService imagesService =
ImagesServiceFactory.getImagesService();

 Image origImage =
ImagesServiceFactory.makeImage(bisArray);
 com.google.appengine.api.datastore.Blob origBlob
= new com.google.appengine.api.datastore.Blob(origImage.getImageData());
 ImageObject origImageObject = new
ImageObject("origFile.jpg", origBlob, date);

 Transform flip =
ImagesServiceFactory.makeHorizontalFlip();
 Image newImage =
imagesService.applyTransform(flip, origImage);
 com.google.appengine.api.datastore.Blob newBlob =
new com.google.appengine.api.datastore.Blob(newImage.getImageData());
 ImageObject newImageObject = new
ImageObject("newFile.jpg", newBlob, date);

 PersistenceManager pm =
PMF.get().getPersistenceManager();

 try {
 pm.makePersistent(origImageObject);
 pm.makePersistent(newImageObject);

 pw.println("<HTML><HEAD></HEAD><BODY>");
 pw.println("<img src='" + "/ImageSource" +
"?id=" + String.valueOf(origImageObject.getId()) + "'/>");
 pw.println("<img src='" + "/ImageSource" +
"?id=" + String.valueOf(newImageObject.getId()) + "'/>");
 pw.println("</BODY></HTML>");
 } catch (Exception ex) {
 // do something

CHAPTER 8 ■ APP ENGINE SERVICES

186

 }
 }
 } catch (Exception ex) {
 //do something
 }
 }
}

Completing the Application
There are just a few more steps to finish before you can test this example. First, you
need to adjust the index.html file that was created with your App Engine project.
You’re going to add a basic HTML form to POST your uploaded image to the
ImageTransform servlet you created. Copy the code from Listing 8-10 to war/
WEB-INF/index.html. Paste the code block just before the closing BODY tag.

Listing 8-10. war/WEB-INF/index.html

 <form action="ImageTransform" method="POST" enctype="multipart/form-data">
 <div id="status" style="text-align:center;color:red"></div>
 <table align="center">
 <tr>
 <td colspan="2" style="font-weight:bold;">Please select your file
to upload:</td>
 </tr>
 <tr>
 <td>File:</td>
 <td><input type="file" name="fileObj"/></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit"/>
 </td>
 </tr>
 </table>
 </form>

Finally, you need to map your new servlet so App Engine knows where to send your
POST request. Open the web.xml file in the war/WEB-INF/lib directory of the App
Engine project and add the code from Listing 8-11. The XML elements in Listing 8-11
map the ImageTransform and ImageSource servlets to their respective URL patterns.

CHAPTER 8 ■ APP ENGINE SERVICES

187

Listing 8-11. Add to war/WEB-INF/lib/web.xml

<servlet>
<servlet-name>ImageTransform</servlet-name>
<servlet-class>com.kyleroche.gaeservices.ImageTransform</servlet-

class>
</servlet>
<servlet>

<servlet-name>ImageSource</servlet-name>
<servlet-class>com.kyleroche.gaeservices.ImageSource</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ImageTransform</servlet-name>
<url-pattern>/ImageTransform</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>ImageSource</servlet-name>
<url-pattern>/ImageSource</url-pattern>

</servlet-mapping>

Testing the Service
You’re ready to test the service. Locate a jpg file you can use for testing. In this
example, we’re using the image of the book cover. Start the application by choosing
Run As ➤ Web Application from the Run menu in Eclipse. The application will start
up and display the path in the Eclipse console, as shown in Figure 8-7.

Figure 8-7. Path to the application shown in the Eclipse console (Mac OS X)

Open your browser to the URL shown in your Eclipse console. Click the Browse button
to select a file to upload. Navigate to the JPG image you selected earlier, select that
image, and then click Submit. The result of the upload is shown in Figure 8-8 where the
book cover is rendered along with a mirror image flipped on the vertical axis.

CHAPTER 8 ■ APP ENGINE SERVICES

188

Figure 8-8. Transformed book cover

In this section you used the Images service in Google App Engine to flip an
uploaded image on its vertical axis. You also leveraged some of the things you
learned about the data store in Chapter 7. Before moving on to the Mail API,
experiment with the transformation options available from the Images service.
You can find a full list of available transformations and their descriptions in
Table 8-1.

Table 8-1. Image transformations

Transformation Description of Transformation

Resize Resizes images while maintaining the same aspect ratio

Rotate Rotates the image in 90-degree increments

Flip Horizontally Flips the image on the horizontal axis

Flip Vertically Flips the image on the vertical axis

Crop Crops the image using a bounding box

I’m feeling Lucky Auto-adjusts the image to enhance dark and bright
colors to optimal levels

CHAPTER 8 ■ APP ENGINE SERVICES

189

Next, you’re going to use two services to interact with users outside of your
application.

Mail API
The services we’ve looked at so far this chapter have all been background-
processing or behind-the-scenes services. It’s time to take a look at a few services
that let you interact with the world outside of your application. Starting with App
Engine’s Mail API, Google App Engine Mail service supports the JavaMail interface
for sending e-mails programmatically from within an application. Your application
can send e-mails on behalf of either the application administrator or the currently
logged-in user. To see a full list of features, reference the JavaMail API by visiting
http://java.sun.com/products/javamail/javadocs/index.html. The App Engine Mail
API implements the full JavaMail API excluding the ability to connect to other mail
services for sending and receiving e-mail messages. Any SMTP configuration added
to the Transport or Session will be ignored.

As mentioned, the Mail service Java API supports the JavaMail interface. This
means that you have the ability to add e-mail targets to blind copy e-mail addresses,
send HTML-formatted messages, and add multiple attachments. There’s no need
to provide any SMTP server configuration when you create a JavaMail session.
App Engine will always use the Mail service for sending messages, which can be
distributed to individuals or to large distribution lists. Messages count against your
application quota (see Chapter 3 for more details), but you get plenty of transactions
per day to fit almost any use case. You can also send attachments using the Mail
service. There are limitations on the size of attachments you can send along with a
message. Reference the online documentation for the current size limits. Table 8-2
shows a list of accepted MIME types and their corresponding file-name extensions.

Table 8-2. MIME Types accepted by the Mail service

MIME Type Filename Extension

image/x-ms-bmp bmp

text/css css

text/comma-separated-values csv

image/gif gif

CHAPTER 8 ■ APP ENGINE SERVICES

190

MIME Type Filename Extension

text/html htm html

image/jpeg jpeg jpg jpe

application/pdf pdf

image/png png

application/rss+sml rss

text/plain text txt asc diff pot

image/tiff tiff tif

image/vnd.wap.wbmp wbmp

text/calendar ics

text/x-vcard vcf

The Mail service works only on deployed App Engine applications. The code in
Listing 8-12, which you’ll be using in this demonstration, will not send an e-mail
running locally on the development server. You’re going to use the same Eclipse
project you used for the previous examples in this chapter. Create a new Java class
called MailServlet.java. Copy the code from Listing 8-12 to the new servlet.

Listing 8-12. MailServlet.java

package com.kyleroche.gaeservices;

import java.io.IOException;
import java.util.Properties;

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

CHAPTER 8 ■ APP ENGINE SERVICES

191

import javax.servlet.http.*;

@SuppressWarnings("serial")
public class MailServlet extends HttpServlet{
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/html");

 Properties props = new Properties();
 Session session = Session.getDefaultInstance(props, null);

 String messageBody = "What do you think about the book. You
can reply to this and I'll get it.";

 try {
 Message emailMessage = new MimeMessage(session);
 emailMessage.setFrom(new
InternetAddress("kyle.m.roche@gmail.com", "The Author"));
 emailMessage.addRecipient(Message.RecipientType.TO, new
InternetAddress("", "The Reader"));
 emailMessage.setSubject("How's the book?");
 emailMessage.setText(messageBody);
 Transport.send(emailMessage);
 resp.getOutputStream().println("Message sent!");
 } catch (AddressException e) {

 } catch (MessagingException e) {

 }
 }
}

Let’s review the code before you deploy and test the application. The application’s
entire logic lives in the doGet method of the servlet’s class. This means that all the
code will execute as soon as a user browses to this page of the application. Inside
the try/catch block you are creating a new instance of the Message class, and then
passing it to the Transport.send method to initiate the sending of the message. Since,
at the time of this writing, Google restricts each user to only 10 deployed applications
on App Engine, you might not want to create a new application ID and deploy this
example. However, you can always reuse an application ID from a previous chapter
to test out the Mail service in a deployed application. Figure 8-9 shows the e-mail
message sent from a deployed copy of this servlet.

CHAPTER 8 ■ APP ENGINE SERVICES

192

Figure 8-9. Email sent from the App Engine Mail service

In this section you viewed the features of App Engine’s Mail service. You learned
that only deployed applications can use the Mail service. Once deployed, you can
send e-mails to individuals or larger distribution groups. Sometimes Mail isn’t the
best option for communicating with your application’s users. What if you had a
requirement for using instant messaging? Well, Google App Engine provides an XMPP
service in addition to the other services discussed in this chapter.

XMPP Service
The XMPP service works slightly differently from the Mail service in that users must
perform an action before you can send them a message. With the Mail API, you only
had to worry about valid “from” addresses. You could send a message to whomever
you wanted. With XMPP, users to whom you are going to send a message need to
add the App Engine application to their Google Talk friend list or their Jabber client
buddy list. In this example, you’ll use Google Talk. If you don’t have a Google Talk
account, you can register for a free account at https://www.google.com/accounts/
NewAccount?service=talk.

This example requires that you deploy this application to App Engine. The
XMPP service will not work from the local development server. This example
uses the App Engine application ID apressxmpp. If you recall from Chapter 3,
application IDs are unique across all App Engine applications. Once deployed,
your application gets its own appspot.com domain name. In addition, the
applications also get a mapped handler in the form of an e-mail address, for
example, apressxmpp@appspot.com. Before you can have your application send

CHAPTER 8 ■ APP ENGINE SERVICES

193

you an instant message you need to add the application to your friend list in
Google Talk. In the web interface for Google Talk, which is nested inside the Gmail
interface, we’ve added apressxmpp@appspot.com as illustrated in Figure 8-10.

Figure 8-10. Application ID added to Google Talk

You can see that the application appears to be online. You can send it messages, but
it will not respond. You’re just going to be looking at sending XMPP messages. If
you’d like to enable your application to receive XMPP messages, reference the
online documentation at http://code.google.com/appengine. Create a servlet called
XMPPServlet.java in the same Eclipse project that you’ve been using throughout
this chapter. Copy the code from Listing 8-13 into the new servlet.

Listing 8-13. MailServlet.java

package com.kyleroche.xmpp;

import java.io.IOException;
import javax.servlet.http.*;
import com.google.appengine.api.xmpp.JID;
import com.google.appengine.api.xmpp.Message;
import com.google.appengine.api.xmpp.MessageBuilder;
import com.google.appengine.api.xmpp.SendResponse;
import com.google.appengine.api.xmpp.XMPPService;
import com.google.appengine.api.xmpp.XMPPServiceFactory;

@SuppressWarnings("serial")
public class XMPPServlet extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 JID jid = new JID("put your gmail account here");

CHAPTER 8 ■ APP ENGINE SERVICES

194

 String msgBody = "App Engine is pretty cool. I can't believe it's
this easy to send XMPP!";
 Message msg = new MessageBuilder()
 .withRecipientJids(jid)
 .withBody(msgBody)
 .build();

 boolean messageSent = false;
 XMPPService xmpp = XMPPServiceFactory.getXMPPService();
 if (xmpp.getPresence(jid).isAvailable()) {
 SendResponse status = xmpp.sendMessage(msg);
 messageSent = (status.getStatusMap().get(jid) ==
SendResponse.Status.SUCCESS);
 }

 if (!messageSent) {
 // do something
 }
 }
}

There’s not much to it. You’re creating an instance of the XMPPService and using the
com.google.appengine.api.xmpp.JID class to define the Jabber ID that will be
receiving your message. Save this servlet after putting your own Gmail ID in place of
put your gmail account here. Deploy the project to App Engine. Don’t forget to map
your servlet in your web.xml file. Once you land on the page, if you’ve already added
the application to your friend list, you should get an instant message right away. An
example message is displayed in Figure 8-10.

Figure 8-10. XMPP Message received from App Engine

CHAPTER 8 ■ APP ENGINE SERVICES

195

The XMPP service is another great way to enable your application to reach out to your
user base in more creative ways. Traditional e-mail is available in almost every
consumer application. Google provides a simple, easy-to-use XMPP service that
allows you to create cutting-edge applications that can actually instant message
application users!

Summary
In this chapter you took a tour of the services that App Engine provides. First, you
reviewed the Memcache service, which allows you to cache data to keep from making
roundtrips to the data store and to maximize the speed of your application. Next, you
tried out the URLFetch service. URLFetch can be used to interact with RESTful APIs,
send POST data, and get HTTP responses. Finally, you constructed a brief
demonstration that pulls the HTML response from www.google.com using a GET
request.

The other three services were a bit more advanced. You built a servlet to accept an
uploaded image file, which you stored in the App Engine data store. You then took
this image and transformed it using the App Engine Images service. You flipped the
image on the vertical axis and rendered both the original and the altered versions
back to the user. Finally, you got a brief look at two App Engine services that allow
you to interact with users outside of your application. The Mail API can be used to
send messages to individuals or distribution lists. You built a servlet that sends an e-
mail with a simple message to a hard-coded user. Then you took that a step further
and sent a user an instant message using the XMPP service that App Engine provides.
All these services increase the value of building your application on Google App
Engine. Having these services available to you in such an easy fashion makes you
wonder why you’d ever need to build an application stack from the bottom up again.
In Chapter 9 we’re going to take a look at some more advanced scenarios using
Google App Engine.

C H A P T E R 9

■ ■ ■

197

Administration and Integration

You started out by creating your first App Engine application and finished with a
pretty complicated example application, and you got a tour of the major features of
Google App Engine. In this final section we’re going to introduce you to some of the
more advanced aspects of App Engine . You’ll learn how to maintain and monitor
your application once it’s been deployed to appspot.com, and you’ll try out some
new and exciting approaches to integration.

Nearly every application you write needs to integrate with another system. It’s
rare that you can encapsulate all your application needs in your code. In most cases
you’re going to have to connect to a financial system, an ERP system, a warehouse
management system, or a number of other technology components. Since you’re
considering App Engine for your application’s platform, you’ve already considered
the benefits and value statements around cloud computing. It’s common for cloud-
computing application platforms to connect to other cloud-computing platforms.
For example, you may be writing a business application on App Engine that needs to
retrieve information from Salesforce.com, a CRM system. In this chapter, we’ll walk
you through some integration scenarios, and we’ll introduce you to some cutting-
edge technologies that are also cloud-based.

Managing Your App Engine Application
After you have deployed your application, you can use Google’s Administration
Console for App Engine to manage, monitor, and configure your application.
From the Administration Console you can create new Application IDs, invite other
developers to contribute to your application, view access data and error logs, analyze
traffic, browse the datastore, manage your scheduled tasks, and much more. This is
the central location for managing and monitoring your App Engine application.

The App Engine Administration Console comes in two flavors. If you’ve been using
your personal Google account, you can simply log in to http://appengine.google.com
to manage your applications. If you’re using a Google Apps account to develop on App
Engine, you should use the Administration Console located at

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

198

http://appengine.google.com/a/yourdomain.com, where yourdomain.com is your
Google Apps domain name. It’s important to note that since some services aren’t yet
available on Google Apps (Reader, Blogger, Google Voice) many people have logins that
match their Google Apps domain for the public services. If this is the case, your App
Engine applications will show up only in your Google Apps Administration Console.
Your list will appear empty until you log in with the /a/yourdomain.com suffix.

Start by logging in to the appropriate URI to open your Google Apps
Administration Console. Reference Table 9-1 for the correct URI. You might be
prompted for your Google Accounts credentials.

Table 9-1. App Engine Administration Consoles

Google Account Type Administration Console URL

Google Apps
(@yourdomain.com)

http://appengine.google.com/a/yourdomain.com

Google Accounts
(@gmail.com or
@other.com)

http://appengine.google.com

Once you’ve logged in you should see the list of applications you’ve created so far.
You’ll see two columns, as shown in Figure 9-1.

Figure 9-1. The My Applications list

The Application column shows the App Engine application ID. This is the same
name you used when you deployed your application to appspot.com. Each registered
application gets a unique subdomain under appspot.com. Because of this and to prevent
domain-name parking, you are restricted to a total of 10 registered applications. There’s
no way to rename or delete applications at this time, so choose your names carefully!

The Current Version column lists the App Engine version for each of your
applications. You can click the link to see the running application. Each unique
version you deploy to App Engine gets its own URI, so you can test your changes
before rolling them out. Each application version you upload can be accessed

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

199

directly through the version's unique URI, which is formatted as follows:
http://version.latest.applicationID.appspot.com, where version is the unique
version number version number (for example, 1, 2, 3,), and applicationID is
the application identifier for App Engine. Each application can have one default
application version. We’ll show you how to set the default version and list the other
uploaded versions later in this chapter. Click any of the application names in the
left column of your My Applications page. This will open the dashboard for that
application. Let’s take a deeper look at some of the features of the dashboard.

The Application Dashboard
When you open the dashboard for one of your App Engine applications you get a
snapshot of the key metrics of the running application. Take a look at Figure 9-2. You
should see something similar on your application’s dashboard.

Figure 9-2. The application dashboard

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

200

Three components make up the header of the dashboard. They are the navigation
utility to switch to another App Engine application’s dashboard, the version selector,
and the link back to your application list. Keep in mind that multiple versions of the
same application can be live simultaneously. Let’s walk through the navigation links
in the left column and take a look at what each of these do in more detail.

Table 9-2. App Engine Administration Consoles

Administration
Console

Purpose

Dashboard The dashboard (Figure 9-3) displays high-level information
about the running application, its versions, traffic, and
quotas.

Figure 9-3. The dashboard

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

201

Administration
Console

Purpose

Quota Details The Quota Details utility (Figure 9-4) shows all the quotas
and where your application stands in relation to your limits.

Figure 9-4. The Quota Details utility

Logs Use the App Engine Logs utility (Figure 9-5) to debug your
application using five levels of sensitivity. From Debug, the
least severe, to Critical, the most severe, you can see any
recent error messages from your application.

Figure 9-5. The Logs utility

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

202

Administration
Console

Purpose

Cron Jobs You can schedule cron jobs within the cron.xml file in the
project’s WEB-INF folder. This view will be empty until you
create a cron job.

Task Queues Task queues allow you to run code outside of a user request.
If an application needs to execute some background work, it
may use the Task Queue API. You can manage your task
queues from this console.

Indexes Datastore indexes are defined in the datastore-indexes.xml
configuration file for each application. Refer to Chapter 7 for
more details on datastore indexes.

Data Viewer You can query data in the datastore directly from this view
using Google Query Language (GQL).).

Application
Settings

In the application settings view you can set the Applications
Title, the Authentication Options, Cookie Expiration, and
you can manage inbound services like XMPP.

Developers Invite other developers to contribute to the application.

Versions Manage the different versions you’ve deployed, and set the
default version for the application. Figure 9-6 shows an
example of an application with three deployed versions,
where version 2 is the default version.

Figure 9-6. Multiple versions of an application

Admin Logs The Admin log displays actions committed by application
administrators using the Administration Console or the SDK.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

203

Administration
Console

Purpose

Billing Settings You can enable billing on your App Engine application and
set higher application quotas through the Billing Settings
view. If you’ve already enabled billing, you can set your
Billing Administrator here as well as manage your Resource
Allocations and Daily Budgets.

Billing History You can access your usage reports and billing events in the
Billing History view.

Application Versioning
Now that you know your way around the Administration Console, it’s time to dive a
bit deeper into versioning your applications. In Chapter 3 you deployed your first App
Engine application using the Deployment utility that came with the Google Plugin
forGoogle Plugin for Eclipse. From the deployment configuration dialog, shown in
Figure 9-7, you have the opportunity to set the version number. Open one of your
previous projects from this book and click the App Engine icon in the toolbar to open
the deployment configuration dialog. Click App Engine project settings to open the
dialog shown in Figure 9-7.

Figure 9-7. The deployment configuration dialog

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

204

This dialog changes the value in the war/WEB-INF/lib/appengine-config.xml file
before the application is deployed. This file holds the same configuration data that
you can configure in the deployment configuration utility. Listing 9-1 contains a
sample portion of the appengine-config.xml file.

Listing 9-1. appengine-config.xml

<?xml version="1.0" encoding="utf-8"?>
<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">
<application>applicationid</application>
<version>1</version>

Go ahead and set the application’s version to 2. You can do this by either changing
the value in the appengine-config.xml file or through the App Engine application
settings dialog of the deployment configuration utility. Once you’ve redeployed your
application to App Engine, you’ll see that both versions are available in the Versions
section of your Administration Console (see Figure 9-6). You’ll notice that the new
version is not automatically set as the default version. You must manually set the
default version in the Administration Console.

Analyzing Log Files
Often your application runs perfectly both locally and in debug mode, but when you
deploy it, something unexpected happens. As mentioned earlier in this chapter, you
can access the application log files for your App Engine application through the
Administration Console. Open the console for one of your applications. Switch to the
Logs utility. Use the link on the left-hand navigation bar to open the application’s log.
To see how the Log utility works, let’s cause an error. In this example case, we’re
using an application called gaesandbox. Adjust this to reflect the name of the App
Engine application whose Log console you have opened.

Analyze Google App Engine Log Files

This exercise will force a warning message to your Google App Engine application’s log file. It
will demonstrate how to access the Log utility, how to adjust the sensitivity of the messages
displayed, how to filter messages, and how to get more detail on a Log message. Replace
applicationid with the application ID of your Google App Engine application.

1. Open your browser to http://applicationid.appspot.com/
thispathdoesnotexist.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

205

2. You’ll receive an HTTP 404 error message.

3. Open your App Engine Administration Console. Click the Logs link in the
left navigation panel.

4. Change the Minimum Severity to Debug.

5. Open the most recent Warning message by clicking the plus (+) sign to the
left of the message. The subject should be No handlers matched this URL.

6. Analyze the message. You’ll notice that the URL that you tried to access in
the first step is what caused this warning in the application. For example, if
this were a real situation you might have inadvertently excluded an entry in
your web.xml file.

7. Expand the Options link to the right of the Minimum Severity drop-down. In
the Filter text field enter URL, and then click View. Experiment with the
other options to show messages before or after certain time periods.

This was a quick example of how to analyze the Google App Engine application log for
warning messages. In this case you caused a 404 Not Found error by attempting to access
an invalid path.

Downloading Log Files
You can download the log files from your application for more detailed analysis. To
download the logs to your local computer, use the request_logs action of your appcfg
utility, which came with the App Engine SDK. Listing 9-2 shows the command syntax
for Mac OS X. Listing 9-3 shows the command syntax for Windows.

Listing 9-2. Download log files on Mac OS X

appengine-java-sdk/bin/appcfg.sh request_logs myapp\war mylog.txt

Listing 9-3. Download log files on Windows

appengine-java-sdk\bin\appcfg.cmd request_logs myapp\war mylog.txt

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

206

Integration
Not every cloud platform can meet the needs of every enterprise challenge. However,
it's common, especially in cloud-based application architectures, to integrate some
of the leading cloud platforms to meet the needs of your business. This is what is
sometimes called the “Cloud of Clouds,” an application architecture that spans
multiple cloud platforms. In this next section we’re going to walk through two
examples of connecting the clouds. First, we’ll take a look at interacting with Google
Wave, the next-generation communication and collaboration platform from Google.
After that, we’ll integrate with Salesforce.com, another leading platform as a service
provider.

Integration with Google Wave
Google Wave is a new tool for communication and collaboration on the web. It was
announced at Google I/O 2009 and is already available for early preview by over
100,000 developers. Google Wave is a hybrid e-mail /IM/document solution that is
built on XMPP. Instead of communicating through e-mail threads, you use waves,
which are part conversation and part document. All the users that have been added
to the conversation can add content, images, video, and even maps. Each user in the
conversation can see in real time what other users are typing, editing, or adding to
the wave. This tool is sure to change the way we communicate electronically and
drive innovation in a way that we haven’t seen since instant messaging was
introduced. We’ll briefly touch on the types of APIs or extensions that are available
with Google Wave.

Google Wave Gadgets
Google Wave allows you to embed almost any Google Gadget into a conversation.
Gadgets allow non-Wave code elements or programs to interact with the users in the
conversation. Gadgets exist for scenarios like multiple users collaborating on a map,
users playing chess against each other, and adding photos or uploading files.

Gadgets are more interface oriented and aren’t something we’ll be covering in
this book. Unlike, Google Wave Robots, which require App Engine, gadgets can be
built on any platform. For more information on Google Wave Gadgets reference
the online documentation at http://code.google.com/apis/wave.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

207

Google Wave Robots
The Google Wave Robot API works a bit differently. It’s a programmatic way to
interact with the conversation thread without requiring a user interface. Wave Robots
are automated participants in a wave and are notified via XMPP of any updates or
additions to the wave. They can then respond accordingly and add contextual
information to the wave or embed a gadget on the fly.

Wave Robots can talk with users and interact with the wave by adding content
from outside sources. Consider the case where two friends or colleagues are
discussing the stock market. Each time they mention a stock in the conversation,
the robot can chime in with some useful details like current quotes, news about that
stock, or historical trending. At this time, robots are only supported as Google App
Engine hosted applications. The ability to build an application that can intelligently
contribute to a conversation in real time is pretty appealing. You’re going to create a
simple robot that will send a welcome message to a group that is added to a wave and
that will respond when someone mentions Apress.

■ Note Google Wave should be released around the time of this book’s publication. If you’re following
these examples and Wave is still in preview mode, you can use the Account Request form at
https://services.google.com/fb/forms/wavesignupfordev to request access to the
Developer Sandbox.

Before you can create the project in Eclipse, you need to gather a few prerequisites, the
first being a few .jar files that you need in order to receive and respond to requests from
Wave. Navigate to http://code.google.com/p/wave-robot-java-client/downloads/list
and download the following files:

� jsonrpc.jar

� json.jar

� wave-robot-api-version.jar

Next, you need to decide on an application ID for the robot. Remember, App Engine
allows you to register only 10 application IDs. You can’t rename or remove them once
they’ve been created. If you’d rather reuse one from a previous example in the book,
you can just change the version number and the application’s default version in the
Administration Console, as demonstrated earlier in this chapter. In this example,
we’ll use apresswave as the application ID, as shown in Figure 9-8.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

208

Figure 9-8. Registering the App Engine ID for the Google Wave Robot

Now you’re ready to create the Web Application Project in Eclipse. Make sure you
uncheck the Google Web Toolkit for this project. Google Web Toolkit is currently
only supported on Java 1.5, while Google Wave requires Java 1.6. In addition,
you’re not going to be building a user interface for this project, so GWT isn’t
needed. Set your namespace to com.kyleroche.wave so you can easily copy the
sample code.

If your project defaults to Java 1.5, you will need to right-click the JRE System
Library folder in the Eclipse Package Explorer and select Properties. A dialog
similar to the one in Figure 9-9 will appear. Select a 1.6 JRE to ensure that you’re
using a supported version for the Google Wave SDK.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

209

Figure 9-9. Using an alternate JRE in an Eclipse project

Now that you’ve created your project and set the appropriate JRE for Google Wave, you
can copy the SDK files into the project. Drag and drop the three files you downloaded
from Google Code to the war/WEB-INF/lib directory. After the three .jar files appear in
the Package Explorer, right-click them and select Build Path�➤�Add to Build Path. This
will create another directory in your project called Referenced Libraries with the
Google Wave libraries. You’re ready to add the code.

A robot actively participates in the wave through HTTP requests and responses
using the Wave Robot Protocol. The files that you just added to your build path
encapsulate that protocol so you can manage your robot without worrying about the
underlying protocol. Currently, as mentioned, Wave only supports robots built on
App Engine, which identifies applications using their application.appspot.com web
address. When a user adds a robot as a participant in a wave, they use the participant

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

210

address of application@appspot.com. Even though this appears to be an e-mail
address, Wave uses an HTTP mechanism to contact the robot.

Follow the steps in the next exercise to complete the robot. Once you have copied
the code into the appropriate files, we’ll go through the major functions in more
detail. When you’ve completed the exercise you should see a directory structure that
resembles the one shown in Figure 9-10.

Figure 9-10. The desired application structure

Creating the Google Wave Robot

The following steps will complete your Google Wave Robot. You need to create a servlet to
respond to the HTTP POST requests from Wave, a servlet to describe your robot to Wave, and
some configuration files for Wave. After you’ve copied the following code to the newly created
files, you’ll test out the Wave Robot, and then we’ll examine the code in more detail.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

211

It’s crucial that you edit your web.xml file with the contents shown in Listing 9-8. Google Wave
sends HTTP POST requests to /_wave/jsonrpc each time an event occurs in a wave. Without
that mapping your robot won’t respond to any requests.

1. Create two servlets in the src/com.kyleroche.wave directory.

2. Create a subdirectory under /war called _wave. Create two files in that directory.

� capabilities.xml

� profile.xml

3. Copy the code from Listing 9-4 to Wave_ApressProfile.java.

4. Copy the code from Listing 9-5 to Wave_ApressServlet.java.

5. Copy the code from Listing 9-6 to capabilities.xml.

6. Copy the code from Listing 9-7 to profile.xml.

7. Copy the code from Listing 9-8 to your existing web.xml file.

8. Deploy your application to App Engine.

After you’ve completed these steps you’ll be able to interact with your robot in a wave.

Listing 9-4. Wave_ApressProfile.java

package com.kyleroche.wave;
import com.google.wave.api.ProfileServlet;

public class Wave_ApressProfile extends ProfileServlet{

@Override
 public String getRobotName() {
 return "Apress Wave";
 }
}

Listing 9-5. Wave_ApressServlet.java

package com.kyleroche.wave;
import java.util.regex.Pattern;

� Wave_ApressProfile.java

� Wave_ApressServlet.java

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

212

import com.google.wave.api.*;

public class Wave_ApressServlet extends AbstractRobotServlet{

 @Override
 public void processEvents(RobotMessageBundle bundle) {
 Wavelet wavelet = bundle.getWavelet();

 if (bundle.wasSelfAdded()){
 Blip b = wavelet.appendBlip();
 TextView t = b.getDocument();
 t.append("This is the welcome message when I join a
Wave");
 }

 for (Event e : bundle.getEvents()) {
 if (e.getType() == EventType.BLIP_SUBMITTED) {
 submit(wavelet, e.getBlip());
 }
 }
 }

 private void submit(Wavelet wavelet, Blip blip)
 {
 TextView t = blip.getDocument();
 String str = t.getText();
 if (Pattern.matches("apress", str)) {
 t.append("\n\nHow's the book?");
 }
 }
}

Listing 9-6. capabilities.xml

<?xml version="1.0" encoding="utf-8"?>
<w:robot xmlns:w="http://wave.google.com/extensions/robots/1.0">
 <w:capabilities>
 <w:capability name="BLIP_SUBMITTED" content="true" />
 </w:capabilities>
 <w:version>0.6</w:version>
 <w:profile name="Wave_Apress" profileurl="/_wave/profile.xml"/>
</w:robot>

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

213

Listing 9-7. profile.xml

<?xml version="1.0"?>
<wagent-profile>Wave_Apress</wagent-profile>

Listing 9-8. web.xml

<servlet>
 <servlet-name>Wave_ApressServlet</servlet-name>
 <servlet-class>com.kyleroche.wave.Wave_ApressServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>Profile</servlet-name>
 <servlet-
class>com.kyleroche.wave.Wave_ApressProfile</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Profile</servlet-name>
 <url-pattern>/_wave/robot/profile</url-pattern>
 </servlet-mapping>

<servlet-mapping>
<servlet-name>Wave_ApressServlet</servlet-name>
 <url-pattern>/_wave/robot/jsonrpc</url-pattern>
</servlet-mapping>

Try things out with Wave and see how your robot responds. Start a new wave. Click the New Wave
button at the top of your Inbox. Click the plus sign (+) next to your profile picture at the top of your
new wave. Add application@appspot.com to the wave, where “application” is the application
ID of your Google App Engine project. Once the robot has been added to the conversation it will
respond with the welcome message from Wave_ApressServlet.java. This response comes
after you check the .wasSelfAdded() method of the event bundle that you were sent from Wave.
Google Wave will send your application a bundle of “events” every time something has happened in
the wave. Among dozens of other actions, events include adding participants, changing text, adding
images or elements to the wave, and removing participants.

Now when the robot finds the text string “Apress” in the conversation, it will respond with
“How’s the book?” This is a simple example, but keep in mind that you could have easily called
out to another system, enriching the conversation with relevant data from your financial system,
or your CRM database. See Figure 9-11, which demonstrates both responses from your robot.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

214

Figure 9-11. Interacting with your Google Wave Robot

Integration with Salesforce.com
Salesforce.com is used by millions of people for sales-force automation, CRM, case
management, and much more. In addition to the Software as a Service offerings like
Salesforce.com CRM, Salesforce.com’s Force.com platform powers high-traffic
community sites like http://mystarbucksidea.force.com/, http://www.ideastorm.com,
and http://pledge5.starbucks.com. Force.com and Google Apps have been
collaborating on numerous solutions since the launch of Google Apps to bring the two
cloud offerings together.

Before App Engine was released, Google and Salesforce.com had 10 integration
options that were shipping with every Salesforce.com org. In Salesforce.com
vernacular, an “org” is the equivalent of an “environment,” or, more generally
speaking, the segregated section of a customer’s data in the multitenant
environment. Recall from our earlier discussions that multitenant environments
allow multiple customers to share the same data and application tiers while
maintaining segregation of the actual customer data.

From attaching documents to synchronizing your contact lists, combining Google
Apps, App Engine, and Salesforce.com made it possible to build more complex
application architectures that met more business requirements without reverting to
on-premise software. If you’re building a business application for a company that
uses one of Salesforce.com’s offerings, you can quickly integrate the two platforms
using the Force.com toolkit for Google App Engine. In the following section you’ll
create a Salesforce.com development org and integrate it with App Engine.

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

215

Setting Up a Salesforce.com Development Org
This isn’t a Salesforce.com book, so you’re not going to do anything beyond creating
an org and pulling data from the org to your App Engine application. To create your
Free Developer Edition org, browse to http://developer.force.com and locate the
Get a Free Developer Edition link. Follow the instructions and fill in the form to
receive your developer login information. You’ll receive an e-mail with an activation
link. Follow that link to set your password, and you’ll be automatically logged in to
your new Development Edition org.

To minimize the amount of discussion on Force.com and to remain focused on
App Engine, we’re going to take a few security shortcuts in this example. Force.com
uses a Security Token for each user to authenticate via the API. To avoid having to
deal with Security Tokens, you’re going to open your Development Edition org so
that you can receive requests from any IP address without a Security Token. This is
not a recommended practice for a production environment.

Click the Setup link at the top-right corner of your Salesforce.com org. Use the
navigation tree in the left panel to open the Security Controls�➤�Network Access
utility, as shown in Figure 9-12. Click New and add 75.101.133.136 as the start and end
IP address of the entry.

Figure 9-12. Network Access configuration in Salesforce.com

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

216

You’re going to use a publicly available service for whitelisting (adding all IP addresses
to your Trusted IP Range) your org. Navigate to http://appirio.net/whitelist in your
browser. Enter your Salesforce.com credentials, as shown in Figure 9-13, and click the
Go button. That’s all the Salesforce.com work you’ll be doing in this book. You can close
that window if you want.

Figure 9-13. Whitelisting your Salesforce.com org using the Appirio IP Whitelisting tool

Connecting to the Development Org
Create a new Web Application Project in Eclipse. Make sure you uncheck Google Web
Toolkit. As with the Google Wave example, you need to change the JRE to 1.6 to use
the Saleforce.com libraries. Reference Figure 9-9 earlier in this chapter if you skipped
the Google Wave example.

As with Google Wave, you need to download the libraries to interact with
Force.com. Point your browser to http://code.google.com/p/sfdc-wsc/downloads/list
and download the partner-library.jar file and the wsc-gae-version.jar. Similar to
the steps in the preceding example, you need to add these files to the war/WEB-INF/lib

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

217

directory of your project. Right-click the project directory in Eclipse and select Build
Path�➤�Add to Build Path. Open the servlet that was automatically created for you
under your src folder. Ours was called HelloWorldServlet.java. Copy the code from
Listing 9-9 into the servlet.

Listing 9-9. Code for the servlet

package com.kyleroche.sfdcwsc;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.*;
import com.sforce.ws.*;
import com.sforce.soap.partner.*;
import com.sforce.soap.partner.sobject.SObject;

@SuppressWarnings("serial") public class HelloWorldServlet extends
HttpServlet {

private String username = "appengine@apress.com";
private String password = "app1r10#123";
private PartnerConnection connection;

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws IOException { resp.setContentType("text/html");

resp.getWriter().println("Hello, from Salesforce.com");
 PrintWriter t = resp.getWriter();

getConnection(t, req);
if (connection == null) { return; }
QueryResult result = null;

try {

result = connection.query("select name from Account
limit 10");
} catch (ConnectionException e) {

e.printStackTrace();
}

for (SObject account : result.getRecords()) {

t.println(""+ (String)account.getField("Name") +
"");
}

}

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

218

void getConnection(PrintWriter out, HttpServletRequest req) {

ConnectorConfig config = new ConnectorConfig();

config.setUsername(username);
config.setPassword(password);
connection = Connector.newConnection(config);

}
}

Once you’ve completed the code, deploy your application. Browse to the application
in your browser. You should see the default index.html file that was created with the
Web Application Project template. Click the listing for the servlet where you added
the code from Listing 9-9. You should see something similar to Figure 9-14.
Salesforce.com creates a default set of accounts in Development orgs, so you should
have the same record set.

Listing 9-14. Salesforce.com integration from Google App Engine

Summary
In this chapter we introduced you to application administration and integration with
other services like Salesforce.com and Google Wave to demonstrate how easy it is to
connect App Engine applications to leading cloud platforms. Starting off with the App
Engine Administration Console, you viewed your list of application IDs and learned

CHAPTER 9 ■ ADMINISTRATION AND INTEGRATION

219

how to version applications. You used the dashboard to analyze usage statistics, and
you used the App Engine Log utility to do some basic application troubleshooting.

After briefly looking at the administration options available to App Engine
administrators, you constructed two examples of integrations with Google App
Engine. First, you used App Engine to create a robot for Google Wave. After having a
conversation with your robot in a wave, you integrated with Salesforce.com.

We had a great time writing this book. It was exciting to work with Google App
Engine so soon after its release. We wanted to show you a number of features rather
than dive too deeply into any one area. We hope we’ve armed you with a broad
understanding of the possibilities of Google App Engine, and we look forward to
seeing your innovative applications come to life very soon.

221

Index

■A
Account Display view, 52

Account Request form, 207

Action Message Format (AMF), 75

ActionScript, 74, 83

add() method, 37

addEntries method, 156

Address class, 140

addRow method, TimeEntry.java class, 162

addStyleName property, 107

addValueChangeHandler method, 110

Admin log, 202

administration

log files, 204–205

managing applications

application dashboard, 199–200

application versioning, 203–204

Administration Console, 13, 197

Admins E-mailed resource, 17–18

Adobe Flex framework

client-side code, 79–83

server configuration, 76–78

server-side code, 83–88

Amazon SimpleDB, 136

AMF (Action Message Format), 75

analyzing log files, 204–205

Apache Commons FileUpload framework,
44

Apache Commons FileUpload package,
178

Apache Commons IO library, 178

Apache POI framework, 44

App Engine. See Google App Engine for
Java (GAE/J)

appcfg utility, 205

appengine-config.xml file, 204

appengine-java-sdk/bin directory, 38

appengine-java-sdk/lib/appengine-tools-
api.jar class, 39

appengine-java-sdk-version subdirectory,
29

appengine-web.xml file, 95

Appirio IP Whitelisting tool, 216

Application column, My Application list,
198

application dashboard, 199–200

Application ID field, 40

application ID, Google App Engine, 213

■ INDEX

222

application settings view, 202

application.appspot.com web address, 209

applicationID, 199

application/pdf MIME type, 190

application/rss+sml MIME type, 190

applications

authentication for

Google accounts login
implementation, 130

LoginInfo class, 128

LoginService interface, 129–130

LoginServiceAsync interface, 129–
130

modifying deployment descriptor,
131

modifying user interface (UI), 131–
133

completing, 186

demo, launching, 29

developing. See also Google Web toolkit
(GWT)

coding user interface (UI), 102–105

functional specifications, 89–90

handling client-side events, 108, 121

modifying hosted pages, 107

required imports, 101

styles of, 107

technical specifications, 91–92

log files, 204–205

managing

dashboard, 199–200

versioning, 203–204

running, 108

sample, deploying, 39–42

appspot.com, 198

apressxmpp application ID, 192

architecture of App Engine, 7–9

asc extension, 190

AsyncCallback object, 130, 162, 164

AsyncCallback parameter, 129, 161

Attachment Data Sent resource, 17–18

Attachments Sent resource, 17–18

authenticating users

for applications

Google accounts login
implementation, 130

LoginInfo class, 128

LoginService interface, 129–130

LoginServiceAsync interface, 129–
130

modifying deployment descriptor,
131

modifying user interface (UI), 131–
133

Google accounts

development mode, 126

login implementation, 130

restricting access to resources, 124

Users API, 125

Authentication Options, application
settings view, 202

Available Servlets list, 175

■ INDEX

223

Available Software tab, 27

■B
Bigtable service, 46, 50, 75, 92, 135–138,

140, 168

billable quotas, 10–11

Billing History view, 203

Billing Settings view, 203

BlazeDS framework, 44

bmp extension, 189

BODY tag, 186

<body> element, 105

BufferedReader object, 176

bytecode, 97

■C
capabilities.xml file, 211

Cascading Style Sheets (CSS), 107

Check Availability feature, 40

classes, 137–140

ClickEvent class, 111

ClickHandler interface, 109

client, GWT, invoking service from, 161–
166

client-side code, Adobe Flex framework,
79–83

client-side events, 108, 121

Cloud of Clouds application, 206

coding user interface (UI), 102–105

com.appirio.Gateway file, 80

com.google.appengine.api.datastore.Blob
class, 141

com.google.appengine.api.datastore.Categ
ory class, 142

com.google.appengine.api.datastore.Email
class, 142

com.google.appengine.api.datastore.GeoP
t class, 142

com.google.appengine.api.datastore.IMHa
ndle class, 142

com.google.appengine.api.datastore.Key
class, 142

com.google.appengine.api.datastore.Link
class, 142

com.google.appengine.api.datastore.Phon
eNumber class, 142

com.google.appengine.api.datastore.Posta
lAddress class, 142

com.google.appengine.api.datastore.Ratin
g class, 143

com.google.appengine.api.datastore.Short
Blob class, 141

com.google.appengine.api.datastore.Text
class, 141

com.google.appengine.api.users.User
class, 141

com.google.appengine.api.xmpp.JID class,
194

com.google.appengine.tools.KickStart
class, 39

commons-fileupload-1.2.1.jar file, 178

Compass framework, 44

Composite index, 16

ConfigurationStatistics class, 174

config.xml file, 77

controllers, 64

CouchDB datastore, 136

■ INDEX

224

CPU Time, 12–13

Create New Opportunity page, 55

create, read, update, and delete (CRUD)
access, 136

createKey method, KeyFactory class, 138

createLoginURL method, 125

createLogoutURL method, 125

Cron Jobs console, 202

cron.xml file, 202

crop transformation, 188

CRUD (create, read, update, and delete)
access, 136

CSS (Cascading Style Sheets), 107

css extension, 189

CSS template, 35

csv extension, 189

Current Version column, My Applications
list, 198

■D
data class, 137

Data Received from API, 20–21

Data Sent to API, 20–21

data services, 156–157

data viewer, 202

DataNucleus Access Platform, JDO 2.3, 137

DataService interface, 161

dataService proxy, 162

DataServiceImpl class, 157

datastore, 22

creating data services, 156–157

detailed resource quotas, 14–16

displaying timecard entries, 166–168

entities

classes, 137–140

creating, 143

deleting, 145

fetching, 144

fields, 137–140

updating, 144

Google Web Toolkit (GWT) remote
procedure call (RPC)

NotLoggedIn Exception, 155

TimeEntryData Plain Old Java
Object (POJO), 151

TimeEntryEntity Java Data Objects
(JDO) class, 153

indexes, 148–149, 202

invoking service from Google Web
Toolkit (GWT) client, 161–166

Java Data Objects Query Language
(JDOQL)

filtering queries, 146

query ranges, 147

sorting queries, 147

metrics, 15

modifying deployment descriptor, 161

transactions, 149–150

Datastore API Calls, 14–15

Datastore CPU Time, 16

datastore-indexes.xml file, 202

datastore-index.xml file, 147, 149

■ INDEX

225

date-time type, 141

debugging tools, 25

deletePersistent method,
PersistenceManager class, 145

deletePersistentAll method,
PersistenceManager class, 145

deployment configuration utility, 204

deployment descriptors

Java Servlet standard, 69

JavaServer pages (JSPs), 69

modifying, 131, 161

detailed resource quotas

datastore, 14–16

Extensible Messaging and Presence
Protocol (XMPP), 19–20

image manipulation, 20–21

mail, 17

Memcache, 21–22

requests, 12–13

Uniform Resource Locator (URL) Fetch,
18–19

Developers console, 202

development mode

creating indexes in, 148–149

Google accounts, 126

Development Org, Salesforce.com, 216–219

diff extension, 190

Direct Web Remoting (DWR) framework, 44

DisclosurePanel panel, 99

dispatcher-servlet.xml file, 71

<div> element, 94, 105

DockPanel class, 103

DockPanel panel, 99

doGet method, servlet class, 191

downloading log files, 205

DWR (Direct Web Remoting) framework,
44

dyuproject framework, 44

■E
EC2 (Elastic Computing Cloud), 3

Eclipse, 25, 96, 169, 174

console, 187

Google Plugin for, 26–27, 171, 203

plug-in, 92, 137

Eclipse IDE, 22

Eclipse Package Explorer, 178, 208

Ehcache framework, 44

EJB (Enterprise JavaBeans), 43

Elastic Computing Cloud (EC2), 3

e-mail address type, 142

embedded classes, 140

Enterprise JavaBeans (EJB), 43

entities

classes, 137–140

creating, 143

deleting, 145

fetching, 144

fields, 137–140

updating, 144

entity key type, 142

■ INDEX

226

EntityManagerFactory instance, 86

EntryPoint class, 161–162

EXPIRATION value, 174

EXPIRATION_DELTA value, 174

EXPIRATION_DELTA_MILLIS value, 174

Extensible Messaging and Presence
Protocol (XMPP), 19–20

■F
Facebook application, 22

fetchAccount() method, 83

fetching entities, 144

fields, 137–140

filtering queries, 146

fixed quotas, 10–11

FlexPanel class, 104

FlexTable class, 98, 111

flip transformation, 188

floating point number, 141

FlowPanel panel, 99

frameworks

Adobe Flex

client-side code, 79–83

server configuration, 76–78

server-side code, 83–88

selecting, 43–46

Spring Model-View-Controller (MVC)

server configuration, 71

views, 72–73

Free Developer Edition org, 215

functional specifications, 90

■G
GAE/J. See Google App Engine for Java

gaesandbox application, 204

GCacheFactory class, 173

GData (Google Data) client library, 44

geographical point type, 142

GET request, 195

getAuthDomain method, 126

getCurrentEntries method, 166–167

getCurrentUser method, 126

getEmail method, 126

getEntries method, 156

getMilestones method, 156, 162

getNickname method, 126

getObjectById method, 144

getObjectById method,
PersistenceManager class, 144, 182

getProjects method, 156, 162

getUserPrincipal() method, 125

getUserPrincipal.getName() method, 125

GFS (Google File System), 135–136

gif extension, 189

Gmail ID, 194

Gmail interface, 193

Go button, Salesforce.com, 216

Google accounts

development mode, 126

login implementation, 130

■ INDEX

227

restricting access to resources with, 124

Users API, 125

Google App Engine for Java (GAE/J)

architecture of, 7–9

components of, 22–23

production environment, 26

signing up for, 29

Google Apps Administration Console, 198

Google Authentication services, 5

Google Data (GData) client library, 44

Google Earth, 135

Google Eclipse Plugin, 39

Google File System (GFS), 135–136

Google Finance, 135

Google Groups, 147

Google landing page, 176

Google Plugin for Eclipse, 25–27, 171, 203

Google Query Language (GQL), 202

Google SDKs project, 31

Google Talk, 192–193

Google Virtual File System, 8

Google Wave, 218

Gadgets, 206

Robots, 207–213

Google Web Toolkit (GWT), 5, 89, 92, 150,
169, 208, 216

creating projects, 94–95

invoking service from client, 161–166

making remote procedure calls (RPCs)
with

NotLoggedIn Exception, 155

TimeEntryData Plain Old Java
Object (POJO), 151

TimeEntryEntity Java Data Objects
(JDO) class, 153

running initial starter application, 96–
97

Google's Administration Console, 197

GQL (Google Query Language), 202

Grails framework, 44

GraniteDS class, 86

GraniteDS framework, 44

graniteds/build/ directory, 76

GreetingServiceAsync.java file, 95

GreetingServiceImpl.java file, 95

GreetingService.java file, 95

greetServlet method, 131

Guice framework, 44

GWT. See Google Web Toolkit

GWT Developer's Guide, 153

GWT Hosted Mode Console, 33

GWT RemoteService interface, 156

GWT RemoteServiceServlet, 157

■H
handling client-side events, 108, 121

hardware layer, 4

HelloWorldServlet.java servlet, 217

Hibernate framework, 44

Hibernate object-relational mapping
(ORM) library, 137

■ INDEX

228

horizontal scaling concept, 7

HorizontalPanel class, 98, 102–103

HorizontalPanel panel, 99

HorizontalSplitPanel panel, 100

hosted mode, Google Web toolkit (GWT),
96–97

hosted pages

Google Web toolkit (GWT), 94–95

modifying, 107

.htm extension, 190

.html extension, 190

html-template, 76

HTPT 403 Forbidden status code, 11

HTTP callout, 175

HTTP POST form, 183

HTTPS callout, 175

Hypertable datastore, 136

■I
IaaS (Infrastructure as a Service), 1

ics extension, 190

id field, 180

image manipulation, 20–21

image/gif MIME type, 189

image/jpeg MIME type, 190

ImageObject class, 180

ImageObject field, 180

ImageObject.java class, 180

image/png MIME type, 190

Images service

completing application, 186

creating Java classes, 179–180

writing ImageObject class, 180

writing ImageSource class, 182

writing ImageTransform class, 183

writing PersistenceManagerFactory
class, 182

ImageSource class, 182

ImageSource servlet, 180, 182, 186

ImageSource.java class, 180

ImageSource.java file, 182

image/tiff MIME type, 190

ImageTransform class, 183

ImageTransform servlet, 179–180, 183, 186

image/vnd.wap.wbmp MIME type, 190

image/x-ms-bmp MIME type, 189

import statements, 173

imports, adding, 101

Incoming Bandwidth, 12–13

indexes, 148–149

Indexes console, 202

index.html file, 186, 218

Infrastructure as a Service (IaaS), 1

initial starter application, GWT, 96–97

installing

Google Plugin for Eclipse, 26–27

Java SDK, 26

instant messaging handle type, 142

integer type, 141

integration

■ INDEX

229

with Google Wave

Gadgets, 206

Robots, 207–213

with Salesforce.com, 214–218

invoking service from Google Web Toolkit
(GWT) client, 161–166

isUserLoggedIn method, 126

iText framework, 44

■J
J2EE application, 3

Jabber client, 192

Jabber ID, 194

Java

creating classes, 179–180

Google App Engine for. See Google App
Engine for Java (GAE/J)

Java Data Objects (JDO), 136, 140, 168

class, 138

interface, 137

Java Data Objects Query Language
(JDOQL)

filtering queries, 146

interacting with Bigtable services, 136

query ranges, 147

sorting queries, 147

Java Development Kit (JDK), 26

Java Persistence API (JPA), 78, 136–137

Java Runtime Environment (JRE) service,
22

Java SDK, installing, 26

Java Serializable interface, 153

Java Servlet interface, 22

Java Servlet standard

controllers, 64

deployment descriptors, 69

models, 59

PersistenceManager, 69

views, 46, 58

Java Tools service, 23

Java Topology Suite (JTS) framework, 44

java.lang.Boolean class, 141

java.lang.Double class, 141

java.lang.Float class, 141

java.lang.String class, 141

JavaMail API service, 189

JavaMail interface, 189

java.net namespace, 176

JavaScript Native Interface (JSNI), 93

JavaServer Pages (JSPs), 91

controllers, 64

deployment descriptors, 69

models, 59

PersistenceManager, 69

views, 46, 58

JavaServer Pages Standard Tag Library, 73

java.util.Calendar class, 110

java.util.Date class, 110, 141

JBoss Seam framework, 44

JCache interface, 171

JDK (Java Development Kit), 26

■ INDEX

230

JDO (Java Data Objects), 136–138, 140, 168

JDOQL (Java Data Objects Query
Language), 64

filtering queries, 146

interacting with Bigtable services, 136

query ranges, 147

sorting queries, 147

Jersey framework, 44

JPA (Java Persistence API), 78, 136–137

.jpe extension, 190

.jpeg extension, 190

.jpg extension, 190

JProfiler tool, 93

JRE (Java Runtime Environment) service,
22

JSNI (JavaScript Native Interface), 93

json.jar file, 207

jsonrpc.jar file, 207

JSPs (JavaServer Pages), 91

controllers, 64

deployment descriptors, 69

models, 59

PersistenceManager, 69

views, 46, 58

JTS (Java Topology Suite) framework, 44

JUnit tool, 93

■K
Key as Encoded String ID, 138

key fields, 137

key value, 138

KeyFactory class, 138

kind index type, 16

■L
landing page, Google, 176

launching demo application, 29

lib directory, 178

list boxes, 105

loadLoginUI method, 165

loadMainUI method, 167

local development server, deploying, 39–
42

Location project, 31

log files

analyzing, 204–205

downloading, 205

Log utility, 204, 219

log4j framework, 44

login implementation in Google accounts,
130

LoginInfo class, 128

LoginInfo object, 127

LoginService class, 131

LoginService interface, 127, 129–130

LoginServiceAsync interface, 127, 129–130

LoginServiceImpl class, 127

Logs utility, 201, 204

long byte string, 141

Long ID, 137–138

long text string, 141

■ INDEX

231

■M
mail, 17

Mail API, 188–189

Mail service, 17, 189, 192

MailServlet.java class, 190

makePersistent method, 143

Memcache service, 21–22, 169–175, 195

Message Body Data Sent resource, 17–18

Message class, 191

middleware layer, 4

MIME types, 189–190

Minimum Severity drop-down menu, 205

module definition, Google Web toolkit
(GWT), 94

multitenancy, 1

MVC (Spring Model-View-Controller)
framework, 45

server configuration, 71

views, 72–73

My applications... link, 40

My Applications list, 198

My Applications page, 199

MyFaces framework, 45

■N
name field, 180

New Java Class dialog, 179

New project wizards, 25

New Wave button, 213

New Web Application Project dialog, 169

NotLoggedIn Exception, 155

■O
object-relational mapping (ORM),

Hibernate, 137

onClick method, 109

onFailure method, 162, 164

onModuleLoad method, 35, 102, 105, 107,
109, 131

onSuccess Async method, 168

onSuccess method, 162

onValueChanged method, 109

OpenSocial client library, 45

Order class, 140

Order entity, 138

ORM (object-relational mapping),
Hibernate, 137

OSGi framework, 45

OverQuotaError exception, 11

■P
PaaS (Platform as a Service), 1

Package Explorer, 34, 178

Package project, 31

partner-library.jar file, 216

pdf extension, 190

PersistanceManager class, 180

persistence, 92

PersistenceCapable class, 140

PersistenceManager class, 64, 69, 143–144,
182–183

PersistenceManagerFactory class, 143, 182

■ INDEX

232

PersistenceManagerFactory object, 69

phone member, 138

phone number type, 142

PHP/MySQL stack, 92

picklist, 89

Plain Old Java Objects (POJOs), 137, 151

Platform as a Service (PaaS), 1

plug-ins directory, 29

PMF class, 180

PMF.java class, 180

png extension, 190

POJOs (Plain Old Java Objects), 137, 151

PopupPanel panel, 100

ports, 176

POST request, 180

postal address type, 142

pot extension, 190

presentation, 91–92

profile.xml file, 211

Project Name project, 31

projects

artifacts, 31–37

creating with Google Web toolkit
(GWT), 94–95

setting up, 169–170

Property index, 16

proprietary programming language, 2

Python, 2, 13

■Q
queries, 146–147

Quota API, 11

Quota Details utility, 201

quotas

billable, 10–11

detailed resource

datastore, 14–16

image manipulation, 20–21

mail, 17

Memcache, 21–22

requests, 12–13

Uniform Resource Locator (URL)
Fetch, 18–19

XMPP, 19–20

fixed, 10–11

■R
Recipients E-mailed resource, 17–18

Referenced Libraries directory, 209

remote procedure call (RPC), making with
GWT

NotLoggedIn Exception, 155

TimeEntryData Plain Old Java Object
(POJO), 151

TimeEntryEntity Java Data Objects
(JDO) class, 153

RemoteObject tag, 80, 86

RemoteService interface, GWT, 156

RemoteServiceServlet, GWT, 157

■ INDEX

233

renameColumns method, 110

request_logs action, 205

requests, 12–13

resize transformation, 188

REST API, 178

Restart Server button, 97

REST-based web service, 177

RESTful web services, 178

Restlet framework, 45

restricting access to resources with Google
accounts, 124

RichFaces framework, 45

Robots, Google Wave, 207–213

Root panel, 105

RootPanel class, 37, 105

rotate transformation, 188

RPC. See remote procedure call

RPC getMilestones method, 162

rss extension, 190

RSS feeds, 178

Run menu, 29, 38

■S
Saas (Software as a Service), 1

Salesforce.com, Development Org

connecting to, 216–219

setting up, 215–216

saveEntries method, 164–165, 168

security token, 215

<security-constraint> elements, 124

Serializable class, 140

serializable object, 174

serialization, 153

server configuration, Adobe Flex
framework, 76–78

server-side code, Adobe Flex framework,
83–88

services

data, 156–157

images

completing application, 186

creating Java classes, 179–180

writing ImageObject class, 180

writing ImageSource class, 182

writing ImageTransform class, 183

writing PersistenceManagerFactory
class, 182

invoking from GWT client, 161–166

Mail API, 189–192

Memcache, 171–175

setting up project, 169–170

testing, 187–189

URL Fetch, 175–178

XMPP, 192–195

servlet containers

Java Servlet standard

controllers, 64

deployment descriptors, 69

models, 59

PersistenceManager, 69

views, 46, 58

■ INDEX

234

JavaServer pages (JSPs)

controllers, 64

deployment descriptors, 69

models, 59

PersistenceManager, 69

views, 46, 58

servlet file, 171

servlet mapping, 69

setRange method, 147

setting up project, 169–170

Setup link, Salesforce.com org, 215

signing up, 29

SimpleDB, Amazon, 136

SiteMesh framework, 45

slashdot effect, 9

Software as a Service (Saas), 1

Software Update feature, 26

sorting queries, 147

Source view, 34

specifications

functional, 90

technical, 91–92

Spring DispatchServlet class, 71

Spring Model-View-Controller (MVC)
framework, 45

server configuration, 71

views, 72–73

Spring ORM framework, 45

Spring Security, 45

src folder, 217

src/com.kyleroche.gaeservices directory,
Eclipse, 171

src/com.kyleroche.wave directory, 211

src/gaej.chapterthree.client element, 35

src/gaej.chaptertwo element, 34

src/gaej.chaptertwo property, 32

src/gaej.chaptertwo.client property, 32

src/gaej.chaptertwo.server property, 32

/src/META-INF/ directory, 78

StackPanel panel, 100

standard.css file, 95

startDate variable, 110

Stored Data, 14–15

Strings object, 174

Stripes Framework, 45

Struts 1 framework, 45

Struts 2 framework, 45

styles of applications, 107

Swing MVC, 46

■T
TabPanel class, 98

TabPanel panel, 100

Tapestry framework, 45

Task Queue API, 202

task queues, 202

technical specifications

authentication, 91

persistence, 92

presentation, 91–92

■ INDEX

235

TelesalesServlet class, 69

testing services, 187, 189

text boxes, 105

text extension, 190

text/calendar MIME type, 190

text/comma-separated-values MIME type,
189

text/css MIME type, 189

text/html MIME type, 190

text/plain MIME type, 190

text/x-vcard MIME type, 190

.tif extension, 190

.tiff extension, 190

Tiles framework, 45

timecard entries, displaying, 166–168

Timecard UI Mock-up, 90

timeChangeHandler method, 112

TimeEntry class, 166

TimeEntry.css file, 95

TimeEntryData object, 164

TimeEntryData Plain Old Java Object
(POJO), 151

TimeEntryEntity Java Data Objects (JDO)
class, 153

TimeEntry.gwt.xml file, 95

TimeEntry.html file, 95, 107

TimeEntry.java file, 94–95, 101, 113, 132

TimeEntry.xml file, 94

totalGrid method, 112

transactions, 149–150

Transformations executed, 20–21

Transport.send method, 191

txt extension, 190

■U
UI. See user interface

Uncoded String ID, 137

Uniform Resource Locator (URL) Fetch,
18–19

unique version number, 199

Unix epoch time, 171

URL (Uniform Resource Locator) Fetch,
18–19

URL Fetch, 7

URL Fetch API Calls resource, 18–19

URL Fetch Data Received resource, 18–19

URL Fetch Data Sent resource, 18–19

URL Fetch service, 169, 175–178

URL type, 142

URLFetch service, 195

user interface (UI), 2

coding, 102–105

modifying, 131–133

user-provided rating, integer between 0 to
100, 143

Users API, 125–126

UserService class, 125

UserServiceFactory class, 125

■V
Vaadin framework, 45

vcf extension, 190

■ INDEX

236

version number, 199

versioning, applications, 203–204

versions view, 202

VerticalPanel class, 98

VerticalPanel panel, 101

VerticalSplitPanel panel, 101

viewResolver bean, 71

VRaptor 2 framework, 45

■W
WAR (web archive) directory, 46

/war/ directory, 102

War property, 32

war/WEB-INF/lib directory, 186, 209, 217

war/WEB-INF/lib/appengine-config.xml
file, 204

wasSelfAdded() method, 213

Wave Robot Protocol, 209

Wave_ApressProfile.java servlet, 211

Wave_ApressServlet.java servlet, 211

wave-robot-api-version.jar file, 207

wbmp extension, 190

Web Application Project, 70, 76, 208, 216,
218

web archive (WAR) directory, 46

web mode, GWT, 97

web service

REST-based, 177

XML-based, 178

<web-app> tag, 76

/WEB-INB/lib directory, 70

/WEB-inf/ directory, 71

/WEB-INF/ directory, 77, 202

/WEB-INF/lib/ directory, 76

WEB-INF/lib directory, 178

WebORB framework, 45, 75

WebSphere, 3

web.xml file, 69, 71, 95, 161, 186, 194, 205,
211

Wicket framework, 45

wsc-gae-version.jar file, 216

■X
XML element, 34

XML-based web service, 178

XMPP (Extensible Messaging and Presence
Protocol), 19–20

XMPPServlet.java servlet, 193

■Z
ZK framework, 45

	Title Page
	Copyright Page

	Contents at a Glance
	Table of Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1 Beginning Google App Engine for Java
	Cloud Computing and App Engine
	Find More Time to Innovate
	What You’ll Learn in This Book

	Summary

	Chapter 2 Introduction to App Engine
	App Engine Architecture
	Being a Good Neighbor With Quotas
	Billable and Fixed Quotas
	Detailed Resource Quotas
	Requests
	Datastore
	URL Fetch
	XMPP
	Image Manipulation
	Memcache

	Components of an App Engine Application
	Summary

	Chapter 3 Getting Started with Google App Engine for Java
	Where Do We Start?
	Installing the Java SDK
	Installing the Google Plugin for Eclipse
	Signing Up for Google App Engine
	Launching the Demo Application

	Create Your First App Engine Project
	Project Artifacts

	Local Development Server
	Ready to Launch
	Deploying Your Sample Application

	Summary

	Chapter 4 Servlet Container and Frameworks
	Choosing a Framework
	Servlets and JavaServer Pages
	Views
	Model
	Controller
	Deployment Descriptor
	PersistenceManager

	Spring MVC
	Server Configuration
	Views

	Adobe Flex
	Server Configuration
	Client-Side Code
	Server-Side Code

	Summary

	Chapter 5 Developing Your Application
	Functional Specifications
	Timecard UI Mock-up

	Technical Specifications
	Authentication
	Presentation
	Persistence

	Using Google Web Toolkit
	Creating Your Project
	GWT Module Definition
	The Host Page

	Running the Initial Starter Application
	Hosted Mode
	Web Mode

	Developing Your Application
	Required Imports
	Coding Your UI
	Adding Your Styles
	Modifying Your Hosted Page
	Running Your Application
	Handling Client-Side Events

	Summary

	Chapter 6 Authenticating Users
	Introducing Google Accounts
	Restricting Access to Resources
	Users API
	Development Mode

	Adding Authentication for Your Application
	LoginInfo Class
	LoginService and LoginServiceAsync Interfaces
	Google Accounts Login Implementation
	Modifying the Deployment Descriptor
	Modifying the User Interface

	Summary

	Chapter 7 Using the App Engine Datastore
	Introducing the App Engine Datastore
	Working with Entities
	Classes and Fields
	CRUDing Entities
	Creating Entities
	Fetching Entities
	Updating Entities
	Deleting Entities

	Performing Queries with JDOQL
	Filtering Queries
	Sorting Queries
	Query Ranges

	Using Indexes
	Building Indexes
	Creating Indexes In Development Mode

	Using Transactions
	Finishing Up Your Application
	Making Remote Procedure Calls with GWT RPC
	TimeEntryData POJO
	TimeEntryEntity JDO Class
	NotLoggedIn Exception

	Creating Your Data Service
	Modifying the Deployment Descriptor
	Invoking the Service from the GWT Client
	Displaying Timecard Entries

	Summary

	Chapter 8 App Engine Services
	Setting up the Project
	Memcache Service
	URL Fetch Service
	Images Service
	Creating the Java Classes
	Writing the ImageObject Class
	Writing the PersistenceManagerFactory Class
	Writing the ImageSource Class
	Writing the ImageTransform Class
	Completing the Application
	Testing the Service

	Mail API
	XMPP Service
	Summary

	Chapter 9 Administration and Integration
	Managing Your App Engine Application
	The Application Dashboard
	Application Versioning
	Analyzing Log Files
	Downloading Log Files

	Integration
	Integration with Google Wave
	Google Wave Gadgets
	Google Wave Robots

	Integration with Salesforce.com
	Setting Up a Salesforce.com Development Org
	Connecting to the Development Org

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

