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Preface

For many years the authors have been interested in developing methods
for generating multivariate distributions, especially for positive data.
Part of the motivation was to find models that would be useful in reli-
ability and survival analysis. This led us to the idea of writing a book
on multivariate nonnormal distributions. We thought that an introduc-
tory or reference chapter on the univariate case would be necessary. A
preliminary effort to write that chapter was the genesis of the present
book. We soon recognized what should have been obvious, that our
original idea was overly ambitious. Even in just the univariate case, we
found that to make the writing a manageable project we needed to im-
pose some boundaries on the topics covered. This led to the decision to
limit the book to probabilistic aspects of the subject and not to include
statistical topics, which itself would make for another book.

Initially, we had in mind an audience having a background typical
of someone with a master’s degree in statistics, mathematics, or engi-
neering. But the desire to be inclusive in order to make the book a more
valuable reference led us to include a number of proofs that are some-
what more advanced than we would have liked. However, we believe
that most of the results can be understood by our originally intended
audience, and reading of the proofs may not be essential. Indeed, we
have tried to provide motivations and insights to help the reader focus
on the implications, rather than the proofs. Nevertheless, we have paid
close attention to the proofs and have omitted only a few. Some proofs
are similar to those in print, but many are new, and we hope they will
provide further insights into the theory.

The reader should not hesitate to begin reading this book from
almost any place; references to required earlier material have been made
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as needed. In fact, some of the topics of earlier chapters might best be
appreciated if this kind of reading is followed.

One aspect of this book not present elsewhere is an effort to classify
and understand various categories of parameters. Scale and location
parameters are familiar in discussions of the normal distribution, but
other kinds of parameters, often referred to as “shape parameters,” also
play a fundamental role in statistics. A number of such parameters are
named and studied in this book. Here one of the important questions
addressed is how parameters relate to orderings of distributions.

For engineering applications, a number of books on reliability theory
are in print, and a number of texts are available on survival analysis
aimed at medical applications. This book should not be viewed as a
competitor to any such books, but we believe that it can stand alone
or be profitably used in conjunction with other books to provide an
increased depth of understanding.

Because a number of different distributions are surveyed in this
book, comparisons with the many books on specific distributions or
compendia on general distributions, as, for example, the volumes of
Johnson, Kotz and Balakrishnan (1994, 1995), are inevitable. We find
those volumes to be indispensable references, but they do not empha-
size connections between various distributions to the extent done here.

The authors recognize that this book is by no means a complete
treatment of its subject. Although the bibliography is extensive, we
know that it is not complete. A few papers and their contents were
intentionally omitted in a failed attempt to control the size of the book.
But more serious are the papers that we inadvertently missed—papers
with results that belong here. For these omissions, we offer our sincere
apologies both to their authors and to our readers. For us, time was a
factor; a manuscript was promised the publisher several years ago, and
we both wanted to avoid posthumous publication.

We have made a special effort to give attribution to the originator
of ideas and results, and we would appreciate readers bringing to our
attention cases where we have not been accurate.

Suggestions for Using this Book

Convexity and total positivity are important powerful methods that
are used throughout this book. Consequently, the reader should be-
come familiar with the contents of Chapter 21. Readers well-versed in
probability may skip Chapter 20, but for others this chapter may serve
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as a refresher of some of the needed concepts. Similarly, Chapter 24
provides a quick summary of some of the needed results from analysis.

Chapters 2 to 4 and 7 on ordering of distributions, mixtures, nonpara-
metric families, and semiparametric families constitute the central
theoretical portions of the book. These chapters may be referred to
for readers wishing to find specific theoretical results in the theory
of reliability and survival analysis.

Chapters 8 to 15 deal with specific parametric families, and here
the focus is on connecting for each family the basic concepts in
Chapters 2 to 4 and 7 to the parametric family. Thus, for example,
there is a discussion on the family of inverse Gaussian distributions
and the behavior of the hazard rate.

A discussion of coincidence of semiparametric families and stability of
semiparametric families constitute the contents of Chapters 18 and
19, and are not as basic as the the earlier chapters.

Because in applications, parameters are often functions of covariates,
Chapters 16 and 17 provide a review of their use.

A key feature in this book is an attempt to create a calculus of dis-
tributions. By this we show how different distributions may arise
from a common origin, and how the hierarchy of distributions can be
created. In so doing, we also provide a warehouse of tools that are
used to provide new proofs to many of the results in this field.

Albert W. Marshall
Ingram Olkin
March 2007
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Basic Notation and Terminology

Throughout this book, the terms “increasing” and “decreasing” are
used, respectively, to mean “nondecreasing” and “nonincreasing.”
Thus, the statement that ¢ is increasing means that

o(x) < ¢(y) whenever x < y.

If the stronger condition

#(z) < ¢(y) whenever z <y

holds, then ¢ is said to be strictly increasing. Similar use is made of
the terms “decreasing” and “strictly decreasing.”

Notation

(a) For any real number a, the notation @ = 1 — a is often used. This
same notation is used for real-valued functions ¢, that is, ¢(x) =
1—¢(x).

(b) log is always a natural log, that is, the base is e. log 0 is taken to
be —o0, and —oo + & = —oo for all real z.

(C) ¢(t_) = hmth ¢($)7 ¢(t+) = limxit (l)(l‘)

(d) If a real-valued function of a real variable changes sign twice, first
from 4+ to — and then from — to + as its argument increases
(0 values discarded), it is said that the function changes sign twice,
“in the order +, —, +”. Similar notations are used for other sign
change patterns.



XX Basic Notation and Terminology

Section and Equation Numbering

Throughout this book, chapters are numbered, and sections within
chapters are labeled with capital letters, whereas subsections are
labeled with lower case letters, starting with “a” in each section.
Equations are numbered, restarting at the beginning of each section.

Reference to equations by number only means that this equation is
in the same section as the reference. Equations referenced by letter and
number, say in the form B (7), refer to equation (7) of Section B in the
chapter containing the reference. Equations referenced from another
chapter are given the complete designation such as 9.B(3); this refers
to the third equation of Section B in Chapter 9.
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Preliminaries

Probability is a mathematical discipline with aims akin to those, for example,
of geometry or analytical mechanics. In each field we must carefully distinguish
three aspects of the theory: (a) the formal logical content, (b) the intuitive
background, and (c) the applications. The character, and the charm, of the
whole structure cannot be appreciated without considering all three aspects in
their proper relation.

William Feller, Introduction to Probability and Its Application, Vol. 1, p. 1.

A. Introduction

Although the title of this book refers to reliability and survival analysis,
nonnegative random variables arise in a wide variety of applications.
Life-lengths of man-made devices or of biological organisms are, respec-
tively, the focus of reliability and survival analysis. But other types of
waiting times also arise in applications; these can be waiting times for
delays in traffic, intervals between earthquakes or floods, or time pe-
riods required for learning a task. Nonnegative random variables also
arise as magnitudes related to physical objects; these may be anthropo-
morphic measurements, crack lengths, tree diameters or heights, wind
speeds, material strengths, stream flows, rainfall, tire wear, or chemical
composition. Economics is another area of applications in which non-
negative random variables arise; income, firm size, prices, and actuarial
losses are by their nature nonnegative.

By contrast, the normal distribution, which has long played a central
role in statistics, allows for the corresponding random variables to take
on all real values—both negative and positive. This is the case for
measurement errors, the context in which the normal distribution first
arose. For nonnegative random variables with standard deviations that
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are small compared to their means, the normal distribution has been
widely used and can often provide excellent approximations. In other
cases, the normal distribution may be an inappropriate model, and
alternatives must be considered.

For nonnegative random variables, there is no distribution as per-
vasive as the normal distribution, with its foundation in the central
limit theorem. This means that a wide variety of distributions share
relative importance. The purpose of this book is to investigate the ori-
gins and properties of the various distributions for nonnegative random
variables.

a. Statistical Motivation

For the analysis of data, several statistical approaches are in common
use. These approaches form the following hierarchy:

Distribution-free (nonparametric) methods. Statistical meth-
ods that do not depend on any assumptions about the underly-
ing distribution are attractive because there are no assumptions to
question. Although attractive from this point of view, conclusions
may be weaker than what might be possible with some plausible
assumptions.

Qualitatively conditioned methods. Familiarity with the origins of
the data may make qualitative assumptions reasonable. For example,
a practitioner may know that data comes from a distribution with
a decreasing density, a unimodal density, or that the density has a
heavy right hand tail. They may suspect from physical considerations
that the hazard rate is monotone or that it is initially decreasing and
eventually increasing. A number of statistical procedures are known
to test the validity of such assumptions. Others are based upon such
assumptions, and they can lead to insights not easily obtainable with
distribution-free methods.

Semiparametric methods. There are a number of possible hybrid
methods that involve an unspecified distribution and a specific para-
metric structure. Perhaps the best known such model is the propor-
tional hazards model, in which the survival function of the unspec-
ified distribution is raised to a positive power; this power is then a
parameter. Models such as this are called semiparametric models.

Parametric methods. Finally, one may be willing to assume that
the data comes from a specified parametric family. This is perhaps
the best known approach to statistical problems, and of course, the
assumption of normality is the most familiar.
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b. Use of Models

Except for the distribution-free methods, all of the statistical ap-
proaches described above depend upon what are sometimes called
“models.” Because the assumption of an inappropriate model can lead
to erroneous conclusions, why are models ever used?

In some applications, the assumption of a model involves little or
no risk. For example, the central limit theorem may make the normal
distribution a clear choice. Or, with count data, it may be that the bi-
nomial or Poisson distribution clearly applies. Unfortunately, in many
applications the “appropriate” model is not at all clear, but what con-
stitutes an appropriate model clearly depends upon how the model is
used and what is expected of it.

Parametric models were introduced early in studies of human life
lengths. In this context, life tables or mortality tables are fundamental.
Ideally, a mortality table starts with a fixed group of individuals, all
born at the same time, and records the number living at the end of each
successive year until all have passed away. Such a table represents an
empirical record with data grouped by years. Due to both random fluc-
tuations and errors in statements of age at death, the empirical “rates
of mortality” calculated from such mortality tables are irregular. Con-
sequently, actuaries concerned with the pricing of life insurance and
annuities adopted various methods of graduation, described by
Spurgeon (1932) as “the endeavor to arrive at the true law of mortality
underlying the rough results disclosed by the data.”

It was often assumed that the deaths in any year occurred uniformly
over the year; for purposes of graduation, De Moivre (1724) made the
assumption of uniformity over even longer periods of time, though he
recognized that this approximation is not strictly true. Again for the
purposes of graduation, Gompertz (1825) introduced the parametric
model now known as the Gompertz distribution as an approximation
to the “true law of mortality.” Gompertz worked closely with data,
and then developed a theoretical basis for his distribution, but to
obtain a good fit to the data he found it necessary to divide ages into
three groups, using different parameter values in each age group.

In a number of other applications, parametric models have played
a prominent historical role in statistical theory, and were long studied
under the older rubric of “curve fitting.” Some of the best known early
work is that of Pearson (1895), who created a set of “curves” or “fre-
quency distributions” that might be suitable for fitting to data arising
in a variety of contexts. Other sets of distributions were constructed
by Bruns, Charlier, Edgeworth, Kapteyn, Thiele, and others. Elderton
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and Johnson (1969, p. 2) indicate that “The advantages of any system
of curves depend on the simplicity of the formulae and the number
of classes of observations that can be dealt with satisfactorily,....”
See also Elderton (1906, 1934), Elderton and Johnson (1969), Sdrndal
(1971), Cramér (1972). Thus, there was a focus upon both the richness
of applications and mathematical simplicity.

What has been the motivation for selecting models? Fisher (1958,
p. 41) writes that “From a limited experience, for example, of individ-
uals of a species, or of the weather of a locality, we may obtain some
idea of the infinite hypothetical population from which our sample is
drawn, and so of the probable nature of future samples to which our
conclusions are to be applied.” Thus, prognosis or prediction is one
purpose underlying this description, but other reasons are also stated
in the literature. Models introduce parameters, the interpretation and
behavior of which leads to insights. Models also permit the automation
of statistical analysis and provide a sense of objectivity.

Historically, there was an underlying assumption that knowing that
a distribution provides a reasonable fit to data is sufficient. But what
is reasonable for one purpose may not be reasonable for another. This
concern was captured by Kingman (1978), who noted that “Although
it is often possible to justify the use of a distribution empirically, sim-
ply because it appears to fit the data, it is more satisfactory if the
structure of the distribution reflects plausible features of the underly-
ing mechanism.”

Many of the models discussed in this book can be derived from
assumptions that sometimes may be plausible on physical grounds.
Properties and consequences of various qualitative assumptions are
discussed, particularly as they relate to the structure of parametric
and semiparametric models. The aim is to help the practitioner uti-
lize knowledge of the physical origins of data when making a model
choice.

Choice of a parametric model may also be based upon the data,
particularly with the utilization of likelihood methods. However, even
with a considerable amount of data it is often the case that several para-
metric families will appear to provide reasonable fits. Consequently, an
understanding of the structure of these families and their origins can
be important.

A substantial body of literature exists concerning model choice.
This book does not include discussions of data-based model choice
methods or the actual statistical methods to be used once a model is
selected.
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B. Probabilistic Descriptions

To mathematically describe the distribution of a random variable, var-
ious alternative functions are in common use. These functions include
distribution functions, survival functions, densities, hazard rates, mean
residual lives, and total time on test transforms. When they exist, any of
these functions can be obtained, at least theoretically, from any other.
But there are good reasons to be interested in all of these functions;
none is uniformly best. Sometimes, one has a particularly simple form
whereas others are awkward to work with. Perhaps more important is
the fact that certain aspects of a distribution are revealed more clearly
by one function than any other. Different people may have different
preferences, depending upon the intuition they have developed. Also,
some of these functions may be easier to estimate than others.

a. Distribution Functions and Survival Functions

B.1.a. Definition. The function F defined on the interval (—oo,c0)
by

F(x) = P{X <z}

is called the distribution function of X.

Distribution functions are sometimes called “cumulative distribu-
tion functions.” When more than one random variable is being dis-
cussed, the distribution function of X is sometimes denoted by Fx. At
other times, distributions are distinguished by a numerical subscript.

A distribution function F is nondecreasing and right contin-
uous (i.e., lim,|, F(2) = F(x)). Moreover, lim, ., o F(z) =0 and
lim, . F(z) = 1. Any function with these properties is a distribution
for some random variable.

Some authors require distribution functions to be left continuous,
and this is an equally acceptable convention, but not the one adopted
here, and not in common use.

B.1.b. Definition. The function F' defined on the interval (—oo, co)
by

F(z) = P{X > 2}

is called the survival function of X.
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Of course, F =1 — F and so it might seem superfluous to intro-
duce the survival function. But it is often the case that for non-
negative random variables, the survival function is more meaningful
and takes a more convenient form than the better known distribution
function.

The survival function is sometimes called the “survivor function” or
the “reliability.” Various notations for this function have been used in
the literature; the “bar” notation was introduced by Frank Proschan
and was used by Barlow and Proschan (1965). Since that time this
notation has become widely used and is used in this book as well.

b. Probability Mass Functions and Density Functions

For any random variable, the distribution function and survival func-
tion always exist. This advantage is not enjoyed by probability mass
functions or density functions, but these functions sometimes have
other advantages.

Suppose first that the random variable X can take on only a finite
or countable number of values. For example, X might be the number of
trials required to obtain “heads” in repeated tosses of a coin. Then X
(and F') is said to be discrete. Discrete distribution functions are step
functions.

B.2.a. Definition. If xq,z9,z3,...1is the set of possible values of X
and p(x;) = P{X =x;},i=1,2,..., then

F(z) = pz),

r; <z

and p is called the probability mass function of X.

When X takes on all values in some (possibly infinite) interval of
the real line, it is often possible to write F' as an integral.

B.2.b. Definition. If fis a nonnegative function for which
X
F(x) = / f(2)dz, for all real z,
—0o

then fis called a probability density of X (or F).

When a density exists, X (or F') is said to be absolutely continu-
ous. When densities exist, they are not unique because they can be al-
tered arbitrarily at isolated points without changing the integral. More
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specifically, they can be altered on a set of Lebesgue measure 0. In
most examples, F' is differentiable (except possibly at a few isolated
points) and the derivative f = F’ is the usual form of the probability
density.

B.2.c. Cautionary note. In a number of instances in this book, the
shape of a density is discussed; for example, densities may be decreasing
on [0, o) or they may be unimodal. Such properties hold only for
the “right” version of the density. Often, this is the derivative of the
distribution function. But in what follows, it is often tacitly assumed
that the “right” version of the density is under consideration.

Because densities are nonnegative and integrate to one, they can-
not be increasing or decreasing on the entire real line. The densities
f encountered in this book have the property that lim, . f(z)=
lim, .~ f(x) = 0. However, it is not difficult to construct examples
where these limits fail.

If a density exists, then it has often been the preferred description
of a distribution. The most studied and used absolutely continuous
distribution, the normal distribution, has a density with a convenient
mathematical expression whereas the distribution function cannot be
written in closed form. Statisticians and researchers in various fields are
trained to look at histograms, empirical approximations of densities,
and they develop a feeling for their behavior.

B.3. Definition. A distribution F' is said to be concentrated on the
closed interval [a, b] if F(x) =0 for all x < a, and F(z) =1 for all
x > b. The support of the distribution F is the set of all points z such
that F(zx +¢) — F(zx —e) > 0, for all e > 0.

It can be shown that the support of a distribution is a closed set,
and in most examples discussed in this book, it is an interval. If F' is
concentrated on the interval [a, b], then the support of F' is a subset of
that interval. When F' is absolutely continuous and is concentrated on
the closed interval [a, b], then there is a natural version f of the corre-
sponding density that satisfies f(z) =0, for all x ¢ [a, b]. Sometimes,
the support of F' is defined as the closure of the set of all points z such
that f(x) > 0, but this presumes that an appropriate version of the
density has been chosen.

Clearly, to say that F' is said to be concentrated on the closed inter-
val [a, b] is less precise than to say that F' has the support [a, b], but
it is easier to check and is sufficient for most purposes.
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c. Unimodality

The idea of unimodality is best understood in terms of a density, but
is perhaps best defined in terms of the distribution function.

B.4. Definition. A distribution function F'is said to be unimodal with
mode at m if F(x) is convex in x < m and concave in z > m.

When F is unimodal and has a continuous density f, then f(z) is in-
creasing in x < m and decreasing in > m so that f(m) is a maximum
of f. If the density looks like the profile of a flat-topped mountain, then
F' is linear over some interval and the mode m may not be unique even
though F' is still said to be “unimodal.” When the mode of a unimodal
distribution is not unique, the set of modes form an interval.

The concept of a mode is sometimes extended to allow multiple
modes (which do not together form an interval); these “modes” are
local maxima of the density.

For more about unimodality see Section 20.A.e.

d. Hazard Functions and Hazard Rates

Some aspects of an absolutely continuous distribution, important or
even essential in certain contexts, can be seen more clearly from the
hazard rate than from either the distribution function or density func-
tion. Moreover, hazard rates have a distinct intuitive appeal, as de-
scribed below.

B.5. Definition. The function R defined on (—o0, c0) by
R(x) = — log F(x) (1)
is called the hazard function of F, or of X.
For a nonnegative random variable, R(0—) =0, R is increasing,
and lim,_,. R(x) = oo; any function with these properties is a haz-
ard function. Hazard functions are sometimes convenient mathematical

tools, but in contrast to hazard rates, they have little apparent intuitive
appeal.

B.6. Definition. If F'is an absolutely continuous distribution function
with density f, then the function r defined on (—o0, o) by

) -
(@) = Fe i Fle) >0
=00, if F(x)=0 (2)

is called a hazard rate of F, or of X.
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For x such that F(z) = 0, the ratio f(x)/F(z) is indeterminate; the
value oo is arbitrary but sometimes convenient. Because densities are
not unique, hazard rates are not unique, but fortunately, there is usually
a natural version, identified except possibly on one or two points.

B.7. Notes on terminology. Particularly in the biostatistics litera-
ture, hazard rates are often called “hazard functions,” and then hazard
functions are called “cumulative hazard functions.” This is a serious
source of potential confusion; the term “hazard function” is used in
the literature with two distinct meanings, and authors do not always
clearly indicate their usage.

There is another potential source of confusion: because the survival
function is sometimes called the “reliability,” it is sometimes denoted
by “R.” The function R is called the hazard function in this book, but
it has also been called the “hazard potential” by Singpurwalla (2003),
who employs an innovative interpretation of it.

In the reliability literature, the hazard rate is very often called the
“failure rate,” though some authors object to this term because of its
potential for confusion with another concept that arises in renewal the-
ory (see Section 20.F.b and Sherwin (1997)). The term “mortality rate”
has also been used. In actuarial work, the hazard rate has long been
called the “force of mortality,” but the terms “age specific force of mor-
tality” and “intensity of mortality” have also been used. For the normal
distribution, the reciprocal of the hazard rate is known as “Mills’ ratio.”
It is unfortunate that such a confusing array of terminology is in use.

Although hazard rates are not unique, more often than not reference
is made to “the hazard rate.” When F' is absolutely continuous and the
hazard function R is differentiable, then its derivative is a hazard rate.

To more fully understand hazard rates, it is helpful to note that

Plr< X <z+A|X >z}
A :

r(z) = lima g

Thus,
Ar(z) = Pl < X <z+A|X >z}

Consequently, Ar(z) can be thought of as the conditional probability,
given survival up to time z, of death or failure in the next small incre-
ment A of time. It is this interpretation that makes the concept of a
hazard rate so useful, both in theory and in applications. It is interest-
ing to note that actuaries long used the hazard rate, i.e., the “force of
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mortality,” and did not really focus on the density (“curves of death”
in their terminology) until the time of Karl Pearson.
From (1) and (2), it can be seen that if F'(0) = 0, then

Fz) = exp{—R(x)} = exp{— /O () dz}. (3)

This key formula shows how to retrieve the survival function from the
hazard rate. But the second equality of (3) is valid only if F is absolutely
continuous. In particular, it fails when F has a discrete part, even
though F' has a density apart from isolated points of discontinuity. See
Singpurwalla and Wilson (1993) for a discussion of the validity of (3).

When F' is absolutely continuous, it can be seen from the second
equality of (3) that

From (2) and (3) it follows that a function r is the hazard rate of
some distribution on (0, c0) if and only if

(i) r(x) >0, forall z >0,

(ii) / r(t)dt < oo, for some x > 0,
0

(iii) / r(t) dt = oo,
0

(iv) / r(t) dt = oo implies r(z) = oo, for all z > x.
0

Condition (ii) requires some explanation. If the distribution F cor-
responding to r satisfies F(z) <1 for all z, then the integral of
(i) is finite for all x < co. But if there is a number a < oo such that
F(z) < 1forz < aand F(a) = 1, then the integral (ii) is finite only for
x < a. Condition (iv) results from the way the hazard rate is defined for
x> a.

B.8. Proposition. If F'is concentrated on [0,a] and has the hazard
rate 7, then lim sup,, r(x) = co.

Proof. This is a consequence of (3) which shows that r is integrable on
[0, z] for = < a, but the integral must diverge on [0,a]. O
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B.9. Observation. If the hazard rate r is decreasing at x = x, then
the corresponding density fis also decreasing at . This follows directly
from (2).

It is shown in Section H that if Z = min [X, Y], then the hazard
rate of Z is the sum of the hazard rates of X and Y. This mechanism
produces a variety of hazard rate shapes.

e. Reverse Hazard Functions and Reverse Hazard Rates

The reverse hazard function is defined in a manner similar to the haz-
ard function R(r) = —log F(z), but with the distribution function F
replacing the survival function F'. In addition, the minus sign is omit-
ted to make it, like the hazard function, increasing.

B.10. Definition. The function S defined on (—o0, c0) by
$(z) = log F(z) (4)

is called the reverse hazard function of F, or of X. If F is an abso-
lutely continuous distribution function with density f, then a function
s defined on (—o0, 00) by

s(x) = f(x)/F(x) ()

is called a reverse hazard rate of F, or of X.

Note that S(x) = log F(z), whereas R(z) = — log F(z); with these
definitions, both functions are increasing.

The reverse hazard function and reverse hazard rate of F' have not
played a prominent role in the literature. The reverse hazard rate was
introduced by von Mises (1936) and was discussed briefly by Barlow,
Marshall and Proschan (1963), who note that s(—=z) is the hazard rate
of — X, thus the terminology here. More recently it has been discussed
in some detail by Block, Savits and Singh (1998); see also Shaked and
Shanthikumar (1994, p. 24).

From (4) and (5), it can be seen that if F'(0) =0,

Fz) = exp {S()} = exp { /0 " s(2) dz} . (6)

The reverse hazard rate has largely been ignored in the literature pri-
marily because it does not have the strong intuitive content of the
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hazard rate. These functions do not play a big role in this book, but
they arise, e.g., in the study of domains of attraction for extreme value
distributions in Section 20.G.

Note that if the reverse hazard rate is increasing at a point, say at x,
then the density f is increasing at xy. This means that a distribution
F with increasing reverse hazard rate must, at some finite point m,
satisfy F'(m) = 1.

B.11. Proposition. The hazard rate r and reverse hazard rate s have
the following monotonicity properties:

s is increasing = r is increasing,

r is decreasing = s is decreasing.

These results are weak, and the implications do not reverse. They can
be easily obtained from the relationship r(z) = s(x)[F(x)/F(x)]. For a
further result, see Proposition B.17.

f. The Residual Life Distribution

The distribution of remaining life for an unfailed item of age ¢ is often
of interest and plays a recurring role in what follows.

B.12. Definition. Let F' be a distribution function such that
F(0) = 0. The residual life distribution Fy of F at t is defined for all
t > 0 such that F'(t) > 0 by

Fi(z) = %, x > 0. (7)

If F has a density f, then F} has density f; and hazard rate r; given by

ft<$) = %a r=U, (8)
ro(z) = Jj(ﬂc+t)
! F(z+1)

=r(x+t), x>0. 9)

Clearly, the residual life distribution F; is a conditional distribution
of the remaining life given survival up to time ¢ This distribution is
of considerable practical interest because the remaining life of devices
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(used cars, etc.) or of biological entities (people, for example) is often
of interest.

B.13. Proposition. If the hazard rate r of F'has a finite positive limit,
limy_,oo 7(t) = A, then F; converges in distribution to an exponential
distribution (defined in Section F.a) with parameter A as t — oc.

Proof. From (3), it follows that

_ _ _ t+x
—log Fy(z) = —log F(z +t) + log F'(t) = / r(z)dz — Az as t — 0.

K O
Proposition 20.G.5 gives a related but more general result. Limits of

residual life distributions have been used by Rojo (1996) to categorize
distributions according to “tail length.”

g. The Mean Residual Life Function

In order to introduce the concept of a mean residual life, it is neces-
sary to anticipate Section C of this chapter and define the “mean” or
“expectation” of a random variable.

B.14. Definition. Suppose that the random variable X has the dis-
tribution function F and that the integral

/O; | dF ()

exists (is finite). Then, the ezpected value EX of X exists and is given
by the integral

o
EX = / x dF(x).
—0o0
The expected value of X is also called the mean of X, or the expectation

of X, and is often denoted by pu.
B.14.a. Proposition.

EX = /OOO F(x)dr — /Ooo F(x)dx; (10a)

for nonnegative random variables, that is, for distributions such that
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F(z) =0 for z <0,
EX = / F(z)dz. (10b)
0

Proof. To obtain (10a), make use of Fubini’s theorem 24.B.1 to compute

EX = / v dF(z) = /:OO xdzdF() /z__oo/ dz dF (z)
S RCR S S
:/OOOF'(QU) dm—[wF(x) dz

See Figure B.1. O

~ Ara B

Fig. B.1. The expectation in terms of area: EX = Area A — Area B
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B.15. Definition. The mean residual life function m(t) is the mean
of the residual life distribution F; as a function of ¢. More explicitly,
when [ has a finite mean p and F(x) = 0, for x < 0, the mean residual
life function is given by

m(t):/OOOF“t / F’j dz—/t (’;f(;)dF() (11)

for t such that F(t) > 0,
=0, if F(t)=0.

Formula (11) explains the terminology of this definition. Other
terms have been used for this function; in the context of actuarial
science, it has been called the average excess claim or the mean ex-
cess function.

The mean residual life function provides yet another way to describe
a distribution. To see that it determines the survival function, first
compute directly that for ¢ such that F(t) > 0,

d %o _ 1
alog/t F(z) dz = “n)”

Now, integrate both sides of this equation from 0 to  and make use of
(10) to obtain

T dt
/ log/ dt—log/
o mf(t)
= log i — log m(x) — log F(x).

This yields, for ¢ such that F(t) > 0,

F(t):#t)exp{—/ot%}. (12)

Here is the survival function in terms of the mean residual life func-
tion; this result is given by Cox (1962), Muth (1977), and Gupta (1979).
Equation (12) is somewhat reminiscent of the much better known equa-
tion (3), which shows how to retrieve the survival function from the
hazard rate.
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As noted by Muth (1977), the hazard rate can also be directly ob-
tained from the mean residual life function through the equation

m'(t)+1
m(t)

r(t) = (13)
This result can be verified directly by differentiating m(t) using the
second form given in (11). Because r(t) > 0, it follows from (13) that
the derivative of the mean residual life has a lower bound that holds

for all F';
m/(t) > —1. (14)

This result was also noted by Muth (1977).

An excellent review of the theory and applications of the mean resid-
ual life function is provided by Guess and Proschan (1988). See also Hall
and Wellner (1981), Kupka and Loo (1989), and Ghai and Mi (1999)
for further discussions of the mean residual life.

h. Equilibrium Distributions

Let F be a distribution function with finite mean p such that F(z) =0
for z < 0, and let

F(z)

F(x)

Jo(x) =

(1) (@) p /F
=0, < 0.

, (15)

The density function f) arises in later chapters and in the context of re-
newal theory (see Section 20.F.b) where the corresponding distribution
is called the equilibrium distribution or the stationary renewal distri-
bution.

For any distribution F' such that F'(0) = 0, f(1)(0) = 1/, and with
this, F' can be retrieved from f(;). Clearly, every equilibrium density
J() is decreasing. A density g is an equilibrium density if and only if
(i) g(x) = 0,2 < 0, (ii) g is decreasing on [0, c0), and (iii) g(0) < oco.

It is straightforward to show that the hazard rate r(;) of the equi-
librium distribution is the reciprocal of the mean residual life, that is,

1

T(l)(t) = m (16)

For a further discussion of equilibrium distributions and generaliza-
tions, see Section 20.B.c.
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i. The Odds Ratio

If A and B are two mutually exclusive events, it is common especially
in the content of gambling to speak of the “odds of A against B.” This
quantity is the ratio P{A}/P{B} of the probabilities of the two events.
Here, the two events are “survival beyond time z” and “failure by time
x.” It is in this context that odds ratios are often used in the medical
literature, where comparisons are sometimes made between the odds
ratio for a treatment group and the odds ratio for a control group.

Notation for odds ratios has not been standardized. Here, the odds
of surviving and of not surviving both are considered, for which the
notations @ and @~ are used. Usually these odds ratios are not con-
sidered simultaneously, in which case there is no need to distinguish
them. Then, notations such as “OR,” “0O,” and “Odds” have all been
used. In the medical literature, the notation “w” for the odds ratio is
particularly common.

B.16. Definition. The function @, defined for z such that F(z) > 0
by
OF(x) = F(x)/F(x), (17a)

is called the odds ratio of surviving beyond time x. The function @~
defined for z such that F'(x) > 0 by

O~ (x) = F(z)/F(x) (17b)

is called the odds ratio of failure by time z.

Sometimes, the term “odds” is used in place of “odds ratio.”
If both F(x) >0 and F(z) > 0, then @"(z) = 1/@~(z). These odds
ratios can be defined for all x with the convention that they take the
value co when a denominator is 0.

When the odds ratios exist,

F(z)=0%(2)/1+ 0" (2)] = 1/[1 + @ (2)]. (18)
When both the odds ratios exist and F' has a density,

Ot (z)r(x) = s(x) and O (x)s(z) = r(z), (19)
where r and s are the hazard rate and reverse hazard rate, respectively.

Note that the odds ratio @*(z) is decreasing in x and @~ (x) is
increasing in z. It can be checked that the odds ratio @] of the residual
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life distribution at t is given by
OFf =[Ft)/F(z+1t)] - 1. (20)

B.17. Proposition. Monotonicity of the hazard rate r, reverse hazard
rate s, and convexity of odds ratios have the following relationships:

s is increasing = 7 is increasing = 0~ is convex,

r is decreasing = s is decreasing = @7 is convex.

Proof. The implications relating r and s are given in Proposition B.11.
Assuming that derivatives exist, the other implications can be verified
by showing that the derivatives of @~ and @ are monotone under the
given conditions. O

The fact that r is decreasing implies @ is convex is given by Kir-
mani and Gupta (2001).

The odds ratio @~ (x) for a distribution function F' has all of the
properties of the hazard function of another distribution, say H_.
That is,

H_(z) = e F@)/F) (21)

defines a survival function. Similarly, —@*(z) has all of the properties
of a reverse hazard rate such that

H (z) = e~ F(@)/F(z) (22)

is a distribution function. Equations (21) and (22) yield some possibly
unexpected connections between familiar pairs of distributions. See, for
example, Sections 10.A.e and 11.B.o.

Equations (21) and (22) can be solved for F to yield

_ 1 _ —logH ()
PO S T e @)~ 1= log (o)

Direct calculations show that if F' has the hazard rate r, then H_ has
the hazard rate r(-)/F'(-). Thus, if r is increasing, then the hazard rate
of H_ is increasing.

j. Inverse Distribution Functions

Inverse distribution functions also characterize a distribution, and as
such could well find a place in this section. Because inverse distribution
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functions involve more technicalities and are perhaps somewhat less
important, their consideration is delayed until Section I.

k. Summary

Table B.1. exhibits various functions that define a survival function.
For the inverse distribution function, see Section I later in this chapter.

Table B.1. Alternatives for determination of a survival function

Function Survival function
Density
f@) = P'(@) F)= [~ 1)z

Hazard function ~

R(z) = —log F(x)
Hazard rate

r(x) = R'(z) = f(x)/F(z)
Reverse hazard function

S(z) = log F(x)
Reverse hazard rate

s(x) = S'(x) = f(z)/F(x)
Resid_ual life (iistributio_n

Fy(z) = F(x +t)/F(t)
Mean residual life function

m(t) = / Fla +t)/F(t) de

0

Odds ratios ~

OF(x) = F(z)/F(x)

0~ (z) = F(2)/F()
Equilibrium distribution

foy(x) = F(x)/p,

x>0

Inverse distribution function
F~(p) = sup{z : F(2) <p},
0<p<1
=sup{z : F(z) < 1},
p=1

F(x) = exp{—R(x)}

F(z) = exp {_/Ox r(2) dz}

F(z) =1—exp{S(z)}

F(z) =1—exp {/OI s(2) dz}

Fo=siaee )

(2) = 0% (2) /[1 + O* ()]
(2) = 1/[1 + 0~ ()]

F(z) = [fo)(@)]/[f0)(0)];
when F(0) =0

F
F

F(z)=1—inf{p : F~(p) > x}
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C. Moments and Other Expectations

The expected value of a random variable is defined in Definition B.13.
For discrete random variables, the expected value of X can be written
in the notation of Definition B.2.a as

EX =Y xip(w;);

n=1

for absolutely continuous random variables with density f,

EX = /O:Oxf(x)d:p

Of course, for nonnegative random variables, the lower limit of the
integral can be replaced by 0.

For a random variable with distribution function F' such that F'(¢) =
0 for t < 0, it is well known (Proposition 20.B.1) that if Y = ¢(X) and
if the expectation FY exists, then

BY = Bo(X) = [ b(a) dF(a). (1)
A case of particular interest is ¢ (z) = 2", and then
1y = EX7 = / " dF(2) 2)
0

is called the rth moment of X. The rth moment may or may not exist,
i.e., the integral of (2) may or may not converge. According to Propo-
sition 20.B.4, if u, < oo for some r > 0, then ps < 00,0 < s < r. Thus,
the existence of the 7th moment gurarantees the existence of all smaller
positive moments. Of course, the first moment is just the expectation
of X; this moment is also called the mean of X and is customarily
denoted by p, with the subscript 1 being omitted.

a. Moment Generating Functions and Laplace Transforms

Various generating functions can be used to find the moments pu,, when
r is a positive integer.
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C.1. Definition. The function

> JEXI
mgf(s) = Ee*X = Z i S
= 7

is called the moment generating function of X.

The moment generating function is finite for all s in some interval of
the form (—o0, a) where a > 0. In case a > 0 and r is a positive integer,
the rth derivative of the moment generating function evaluated at s = 0
yields the rth moment:

r

EX" =
ds”

mgf(s)‘s:O'

In some contexts of this book, the less well-known normalized mo-
ments are more convenient than the moments themselves. The rth nor-
malized moment A\, of X is defined as

A = 11 /T(r + 1), (3)

where I' is the well-known gamma function discussed in Chapter 23.

For purposes of computation, formulas (1) and (2) are not always the
most convenient, especially when neither a probability mass function
nor a density exists, or when there is a simple expression for F. In
this case, and for certain theoretical purposes, it is useful to note the
alternative expression

EX" = T/OOO F(z)z" ! da. (4)

This formula, repeated in Proposition 20.B.3, can be established from
(2) through an integration by parts (see 20.A.1); alternatively, some
readers may prefer to write 2" = [’ 72" "' dz in (2) and make a change
in the order of integration.

Yet another form of the rth moment that is sometimes used in
computations is given in Proposition 20.B.4, namely,

Bxr = [ ) o)



24 1. Preliminaries

The formulas (2), (4), and (5) all provide ways to compute EX".
For any given distribution F, the formulas can vary widely in their ease
of use.

The existence or nonexistence of moments can sometimes be deter-
mined quite easily from the hazard rate, as indicated by Proposition
20.B.6.

C.2. Measures of location. The first moment EX of X is often
used as a measure of the “center” or “location” of the distribution
of X. Indeed, if the density of X were used as a profile and cut from
a sheet of metal, then the cut-out would balance at EX. Another mea-
sure sometimes used to locate the “center” of the distribution of X is
the median med X. A median is a point m such that P{X > m} <1/2
and P{X <m} <1/2. For strictly increasing distribution functions,
the median is unique, and can be defined in terms of the inverse distri-
bution (see Section I).

Another concept related to location is the mode (Definition B.4).
If a unimodal density is symmetric about some point and has a finite
expectation, that point is simultaneously a mode, a median, and an
expectation (first moment).

C.3. Measures of spread. When EX? is finite, the variance of X (or
F) exists and is defined by

0? = Var(X) = E(X — EX)* = EX? — (EX)* (6)

The variance is often used as a measure of spread or dispersion. The
variance and the standard deviation o of X are perhaps less important
for random variables with support [0, 00) than they are for distributions
with support (—oo,00), but they are still the most commonly used
measures of dispersion.

The coefficient of variation of X (or F') is defined as the ratio

CV(X) =0/ (7)

because CV(aX) = CV(X), for all a > 0, the coefficient of variation is
used as a measure of scale invariant dispersion.

A measure of concentration, the opposite of dispersion or spread, is
the Gini index of Definition 1.14 below.

C.4. Transforms. Several kinds of transforms are defined in terms of
expectations. In particular, the Laplace transform ¢ of X is defined
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as
P(s) = Ee X,

For nonnegative random variables, the Laplace transform exists for all
s > 0 and may exist for some or all values of s < 0. Laplace transforms
and several of their important properties are discussed in Section 20.D.

The moment generating function mgf(s) of X is related to the
Laplace transform through the equation

mgf(s) = ¢(—s).
Finally, the Mellin transform mel(s) of X is defined by
mel(s) = EX?

for all values of s such that the expectation is finite.
Unlike the Laplace transform, the Mellin transform does not neces-
sarily determine the distribution of X.

D. Families of Distributions

Families of distributions indexed by a real number or by several real
numbers are called parametric families, and the indexing variables are
called parameters. For a distribution F' having a parameter ¢, the no-
tations F'(-|6) and Fy are used interchangeably in what follows.

The most familiar parameters are location and scale parameters,
which are best introduced by way of the following definition.

D.1. Definition. Distributions F' and G are said to be of the same
type if, for some real number b and some a > 0,

F(z) = G(ax +b), for all z.

There is a symmetry in this definition relating F' and G, and it can
equivalently be said that

F (”” - b) — Gla).

a

Whether in the form ax + b or (z — b)/a,a is said to be a “scale pa-
rameter” and b is called a “location parameter.” To avoid confusion in
this book, the following terminology is adopted.
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D.2. Definition. A parametric family {F(-| A\), A > 0} of the form
F(z|A) =F(Ax|1) is said to be a scale parameter family and X is
called a scale parameter.

As noted above, the alternative definition that would call 1/ a scale
parameter rather than X itself could just as well have been adopted,
and would be more natural in some contexts. In particular, such an
alternative definition would be necessary to make the standard devia-
tion of the normal distribution a scale parameter. But in the context
of nonnegative random variables where the exponential distribution
plays a central role, Definition D.2 is more convenient and it simplifies
typography.

Location parameters do not play a central role in the study of life
distributions because these distributions are concerned with nonnega-
tive random variables that have a natural location. However, a number
of other kinds of parameters are important and are discussed in detail
in Chapter 7.

E. Mixtures of Distributions: Introduction
If F7 and F5 are distribution functions and 0 < 7 < 1,
F=nF+(1—m)F, (1a)
or equivalently,
F=7nF+ (1 -7k, (1b)

then F' is said to be a mixture of Fy and Fy. Unless F' is the distribution
function of a constant random variable, it can arise as a mixture of two
different distributions in infinitely many ways so that a decomposition
or mixture representation of the form (1) is not unique. But in practical
applications, there is often one mixture that is natural. For example,
data on humans can naturally be separated according to ethnic origins
or by gender. It is often the case that data cannot be fully understood
without recognizing the mixture aspect, so it is important to see what
can be learned from mixture representations. Sometimes, such repre-
sentations are also helpful in theoretical studies, especially when the
components of the mixture are relatively simple to understand and
work with.
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E.1. Definition. Let F = {Fy |6 € ©} be a family of distributions and
let G be a distribution on ©. Then,

- [ R dc(o) @
(C]

is the mizture of F with respect to G.
Mixtures have sometimes been called compound distributions.

It is easy to see that the densities (if they exist) and survival func-
tions of mixtures are mixtures of the corresponding densities and sur-

vival functions. That is,
:AM@M@

:/@mmmm
(._)

But the corresponding formulas are not true for hazard functions or
hazard rates. When the distributions Fy of (2) have densities fy, F' has

the hazard rate
/ﬁ )dG(6

/% ) dG(

An interesting special case is the mixture of but two distributions,
say Iy and Fy, as in (1). Let # = 1 — 7. Then, when densities exist, (2)
and (3) take the form

3)

F(x) =7F(z) + TFy(x) (4)
and

W]_”l(ac) + 7_7]12(33)
F (z) + TFy(z)

r(z) =

In this special case, F(x) = nF)(x) + 75 (z).
A more complete discussion of mixtures is given in Chapter 3.
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F. Parametric Families: Basic Examples

In this section, the exponential, Weibull, gamma, and lognormal dis-
tributions are briefly introduced to make them available for illustrative
purposes. These distributions are discussed in detail in Chapters 8, 9,
and 12.

a. The Exponential Distribution

The one parameter family of exponential distributions, often referred
to simply as “the exponential distribution,” is without competition for
the position of the most fundamental, basic family of life distributions.
For this distribution, the parameter A > 0 is a scale parameter and

F(z)=e?, 22>0, (1)
fz)=Xe™ >0, and (2)
r(z) =\, z>0. (3)

For the exponential distribution, it is easy to see that

Flz+t) =
that is, the conditional probability of surviving an additional period of
time z, given survival up to time ¢, is the same as the unconditional
probability of survival to time z. In fact, this property characterizes the
exponential distribution (see Proposition 8.B.1). Both (3) and (4) can
be interpreted as saying that an item with an exponential distribution
is not affected by wear or ageing, and it is this property that provides
the basis for the importance of the distribution.

If X has an exponential distribution with parameter A, then for
r>—1,

o
Mr:EXr:/ 2" Ae M dr =T(r 4 1)/, (5)
0

where I' is the usual gamma function, discussed in Chapter 23. Thus,
exponential distributions have finite moments of all orders greater than
—1 and they have a simple form. The normalized moments defined by

(3) of Section C have an even simpler form and they play a special role
in Section 6.A.
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The terms “exponential distribution” and “exponential family”
should not be confused. The former is a specific parametric family,
whereas the latter is a broad family often of use in statistical analysis
because it has a convenient form and includes a wide range of distri-
butions.

b. The Gamma Distribution

The two parameter family of gamma distributions includes the expo-
nential distribution as a special case. Whereas the density of the gamma
distribution has a nice form, the survival function and hazard rate can
be written in closed form only for certain parameter values. Again, the
scale parameter A > (; additionally, there is a shape parameter v > 0
and

fx| A\ v)=Na""te/T(v), z>0. (6)

With the shape parameter v = 1, this is just an exponential distribu-
tion. The fact that this density integrates to unity is a direct conse-
quence of the usual definition of the gamma function as an integral
(Definition 23.A.1).

When the shape parameter v is an integer,

F(z|\v) = Vi:le_’\z()\x)k/k:!, x> 0. (7)
k=0

Of course, the hazard rate can be easily obtained using (6) and (7),
but the resulting expression is awkward and needs to be evaluated
numerically to be understood. See Chapter 11 for further details.

c. The Weibull Distribution

The Weibull distribution is another two parameter family that includes
the exponential distribution. This family has a scale parameter A and a
shape parameter «, both positive. Unlike the gamma distribution, the
survival function here has a simple form, specifically

P(2) = exp{~(A0)}, @20, (8)
Differentiation of this survival function yields the density function

f(z) = ax(Ax)* texp {—(A\2)*}, = >0. (9)
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Clearly,
r(z) = ad(z)*™, 2 >0. (10)

For a more complete discussion of the Weibull distribution see
Chapter 9.

d. The Lognormal Distribution

If Y is a random variable having a normal distribution and X = eY,

then X is said to have a lognormal distribution. Because the normal
distribution function does not have a closed form, neither the distri-
bution function nor the hazard rate of the lognormal distribution can
be expressed in closed form. But the density can be obtained from the
density of the normal distribution.

The lognormal distribution can be usefully parameterized in several
ways, three of which are noted here. Suppose that —oco < p, 8 < 00,0 <
A, 0,a, and let

p=—log), o=1/a, and B =’y =p/o’. (11)

For x > 0, the density is given by

fe) = L e {M} (12a)

2rox 202

_ @ —[log(Az)“]?
= Jona exp{#} (12b)

o —[log 222
=P exp{—ﬁ2/2a2}\/ﬂx exp{ [log 2] } (12c)

2

Thus, the density can be expressed in terms of the parameters
(1, 0), (N @), or (o, 3). Further discussion of the lognormal distribu-
tion can be found in Chapter 12.

G. Nonparametric Families: Basic Examples

A number of nonparametric families of life distributions are discussed
in Chapter 4; here, some basic examples are briefly introduced.
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a. Log-Concave and Log-Convex Densities

The logarithm of a number of standard densities is either convex or
concave. (A discussion of convexity and log convexity is given in Section

21.A.)

(i) The normal density is a well-known example of a log-concave den-
sity.
(ii) It can be seen from (6) and the concavity of the logarithm function
that the gamma density is log concave for ¥ > 1 and log convex
for v < 1.
(iii) The Weibull density (9) is log concave for o > 1 and log convex
for o < 1.

These facts have implications, both probabilistic and statistical, that
make them worth noting. Some conditions for log convexity or log con-
cavity and various probabilistic consequences are given in Chapters 3
and 4.

b. Monotone Hazard Rates

The notion of a monotone hazard rate has played an important role
in reliability theory since the early 1960s. It cannot be escaped in any
serious study of life distributions. A distribution F' is said to have an
increasing hazard rate (IHR) if it has a density f for which r» = f/F is
increasing. (Definition 4.C.1 of this concept is slightly more general in
that it does not require the existence of a density.) A random variable
with a distribution having an increasing hazard rate is also said to be
THR.

As already mentioned in Section B, the importance of the haz-
ard rate stems from the interpretation of r(t)dt as the conditional
probability of failure in the interval [¢,t+ dt] given survival up to
time ¢. With an increasing hazard rate, the probability of failure in
the next instant of time increases as the device or organism ages,
a property intuitively appealing as a mathematical description of
“wearout.”

The similarly defined notion of a decreasing hazard rate (DHR) is of
less obvious interest because it appears to be a mathematical descrip-
tion of what might be called “wearin.” Nevertheless, wines, cheeses,
and violins provide examples of items that may improve with age, so
there are some direct applications. But perhaps more importantly, the
property arises in mixtures, as discussed in Chapter 3.
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If a density is log concave [convex]|, then the corresponding hazard
rate is increasing [decreasing]. These facts are the content of Propo-
sition 4.B.8.a, and an indirect proof is obtained in Chapter 2. See
Remark 2.A.15.a.

H. Functions of Random Variables

The minimum, maximum, and a sum of two independent random vari-
ables are briefly discussed here; these functions are encountered in sev-
eral places in this book. One function, the reciprocal, of a single random
variable is also mentioned.

H.1. Reciprocals. If X is a positive random variable with survival
function F, then Y = 1/X is also a positive random variable. The dis-
tribution function G of Y is given by

G(y)=F(Q1/y), y>0.

When F'is a gamma or Weibull distribution, then sometimes the distri-
bution G is called the “inverse” gamma or “inverse” Weibull distribu-
tion. There is some possible confusion in this terminology, because the
name of the inverse Gaussian distribution is well entrenched and that
distribution is not the distribution of the reciprocal of a Gaussian vari-
ate; it arises in a quite different way. The term “inverse” is also used in
another way in Section I. In this book, the term reciprocal distribution
is used for the distribution of the reciprocal of a random variable.

H.2. Minima. The minimum Z = min(X,Y) of two random life
lengths X and Y arises when there are two distinct possible causes
of failure. Think of X as the waiting time for “death” due to one cause
and Y as the waiting time for “death” due to the other cause. Or-
dinarily, it is not possible to observe both X and Y, but only their
minimum. In this setup, the two causes of death are called “competing
risks,” and they are the subject of further study in Chapter 17. This
theory was developed primarily with medical applications in mind. But
there is another point of view in which minima arise in engineering
applications.

If a device has two components, both of which are essential for the
device to function, then the life length of the device is the minimum of
the two component life lengths. Devices of this kind are called “series
systems”; they are another reason why the distribution of the minimum
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of two random variables is interesting. More general systems are con-
sidered in Chapter 5.

Let X and Y be independent random variables and let Z =
min(X,Y). If the respective distributions of X,Y, and Z are F,G,
and H, it follows that

H(z) = F(z) G(x). (1)

If F and G have densities f and g, then H has the density

h(z) = f(2) G(z) + F(2) g(x) (2)

and hazard rate

_ _ fl@) gz
1) = Foy T Fa) G 3)

Thus, the hazard rate of the minimum is the sum of the component
hazard rates. It follows from (3) that if X and Y are independent and
have increasing hazard rates, then Z has an increasing hazard rate.
Other consequences of (3) are noted later in this book. Of course, (1)—
(3) fail to hold when X and Y are not independent.

In the context of competing risks, improper random variables (those
that need not be finite valued) may be of some practical interest because
there may be causes of death that affect some, but not all, individuals.
If Z = min[X, Y], then Z is a proper random variable as long as at least
one of the variables X and Y is proper. In this book, distribution func-
tions are assumed to be proper, but improper distribution functions can
be constructed by multiplying a proper one by a factor less than one.

H.3. Maxima. When high reliability is important, systems are often
constructed with redundancy. In a simple case, the system has two
components and it functions as long as at least one of the components
functions. Such a system is called a “parallel” system, and its life length
is the maximum of the component life lengths. The renal system in
humans is an example of a parallel system because it consists of two
kidneys, and one alone is sufficient.

Let X and Y be independent random variables and let Z =
max[X,Y]. If the respective distributions of X,Y, and Z are F,G,
and K, it follows that

K(z) = F(x)G(x). (4)
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If F and G have densities f and g, then K has the density

k(z) = f(2)G(z) + F(z)g(z) (5)
and hazard rate
_ k(@) _ f(#)G(z) + g(2)F(z)
ri(e) = K@)~ 1-F@)G@) (6)

This is a contrast to (3), because unlike the minimum, the hazard rate
of the maximum does not have a simple expression in terms of the
component hazard rates. On the other hand, the reverse hazard rate
for the maximum Z is given in terms of the reverse hazard functions
of X and Y by

and this is a counterpart to (3).

H.4. Sums. Sometimes, a spare part is available to be placed in service
when the original part fails. This terminology is standard in industry,
but organ transplantation can also be considered as the utilization of
a “spare part.” Together, the original part and the spare part act as a
system, which has a life length that is the sum of the two component
life lengths. This system is similar to the parallel system in that it has
built-in redundancy.

Again, let X and Y be independent nonnegative random variables,
but now, let Z = X + Y. If the respective distributions of X,Y, and Z
are F, G, and H, then

H(z) = /UOO Pz — 2)dG(z) = /0 Flo — 2) dG(2): (7)

H is called the convolution of F and G and is denoted by H = F x
G. Because H is the distribution of Z = X + Y, it is apparent that
convolutions are commutative and distributive, that is,

F+xG=G*F and Fl*(FQ*Fg):(Fl*FQ)*Fg.
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When F and G have densities f and g, then H = F * G has the density

/f:v—z )dG(z /fx—z z)dz (8a)

and h is said to be the convolution of f and ¢. In case the random
variables are not nonnegative, (8a) is replaced by

h(a:):/oof(:c—sz / Flx - 2)g(2) dz (8b)

—00

Note that (7) has the form of E(2) with Fp(x) = F(z — 0), so the
convolution can be viewed as a mixture.

I. Inverse Distributions: The Lorenz Curve and
the Total Time on Test Transform

Inverse distribution functions sometimes play an important role and
must be handled with some care because they have no generally ac-
cepted definition. The problem is that the definition involves a degree
of arbitrariness. Both the total time on test transform and the Lorenz
curve, discussed in this section, are often defined in terms of inverse
distributions.

a. Inverse Distribution Functions

Inverse distributions are essentially the same as quantiles and are some-
times called “quantile functions”; the important statistical role that
these functions play is surveyed by Parzen (2004). For a distribution
function F, a number ¢ satisfying F'(z) < p for all x < ¢ and F(q) > p
is called a pth quantile of F. The apparent asymmetry of this def-
inition is due to the fact that distribution functions have been as-
sumed to be right continuous. If F' is strictly increasing on its sup-
port, then for 0 < p < 1, the pth quantile is unique. But if F' is “flat”
at level p, then there is a closed interval of values all of which qual-
ify as pth quantiles. Defining an inverse distribution function is es-
sentially the same as defining pth quantiles in such a way that they
are unique, and this is where the arbitrariness appears. Here, to avoid
technicalities, the basic ideas are introduced under the assumption
that F' is strictly increasing. For a discussion of the general case, see
Section 20.A.f.
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I.1. Definition. For a strictly increasing distribution function F, the
inverse F~! of F is the function defined by

F~Yp)=sup{z : F(z)<p}=inf{z : F(z) >p}, 0<p<1.(1)
Similarly, the inverse =1 of the survival function F is defined by

, 0<p<l,

Fl(p)=sup{z : F(2) >p} =inf{z : F(2) <p}
0}, p=0.

=sup{z : F(2) >0} =inf{z : F(2) =
With these definitions,

F7 (1 —p)=F"'(p) (2)

and F~1(1) = oo.
From the inverse F'~! of F, F can be recovered via the formula

F(z)=inf{p : F~'(p) > z}. (3)

b. The Total Time on Test Transform

Suppose that several items are placed on test for a fixed period of time
to determine their life lengths. Some of the items may fail during the
test period, but others may still be functioning at the termination of
the test. The total time on test statistic is the sum of all observed
complete and incomplete lifetimes. This statistic has a theoretical limit
as the number of items placed on test goes to infinity, a limit known as
the total time on test transform. The total time on test transform was
introduced by Barlow, Bartholomew, Bremner and Brunk (1972) for
its usefulness in certain estimation problems. It was further studied by
Barlow and Campo (1975) who discuss its use as a tool for selecting a
model for data analysis. Barlow (1979) discusses the total time on test
transform distribution and its properties.

I.2. Definition. The function Hy' defined on the interval [0, 1] by

F=i(p) _
Hw = [ P ()

is called the total time on test transform of the distribution function
F. See Figure I.1a,b.
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F(z)

Fig. I.1a. The total time on test transform (shaded area)

When the distribution F'is clear from the context, the notation

is sometimes used for typographical simplicity. The function Hp is
called the total time on test transform distribution.

Note that Hz'(0) =0, and if F has mean u < oo, then because
F~1(1) = o0, it follows from C(4) that H'(1) = pu. Because F is an
increasing function, so is !, and this means H ;1 is an increasing func-
tion. Consequently, Hp is increasing, which together with Hr(0) = 0,
and Hp(u) = 1, shows that Hp is a distribution function concentrated
on [0, p].

I.3.a. Example. Suppose that F is an exponential distribution (dis-
cussed in Section F.a). Then,

_ 1
F 1(7’):_X log(1-p), 0<p<l,
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Fig. I.1b. The total time on test transform (shaded area)

and straightforward computations using (4) show that

Thus,
Hp(z) =Xz, 0<z <A\

For this distribution, g = 1/ so that as expected, Hp(u) = 1.

1.3.b. Example. Consider the discrete distribution that places prob-
ability p; at the point x;,¢=1,2,...,n, where 71 < x9 < -+ < Tp.
Let P;=3Y"%_,pji=1,2,...,n, so that P, =Y7,p; =1. For this
distribution, it can be seen from Figure 1.2 that

Hgl(PT) =x + (1 — Pl)(.%'g — 1'1) + (1 — PQ)(CL‘g — .CCQ)
bt (1= Py (@ — 2. (5a)
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Fig. I.2. The survival function of a discrete distribution (Example 1.3.b)

1.3.c. Empirical Distributions. If F' is the empirical distribution
function based upon the ordered observations X; < Xp < --- < X,
then F has the structure of Example 1.3.b with P; =1i/n and z; =
X;,1=0,1,...,n. Suppose n items are placed on test and the observa-
tions are their successive failure times. There are n items on test until
the first failure occurs at time X; and n — 1 items on test from time
X1 to time Xy; the number of items on test continues to diminish one
by one until all items have failed. The total time of exposure up to the
rth failure is given by

T(X;) =nXi+ (n=1)(Xo = Xi) + -+ (n—r + DXy = Xp1);
(5b)

this statistic is known as the total time on test statistic. By comparing
(5a) and (5b), it can be seen that

Hg'(r/n) = T(z,)/n. (6)
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I.4. Proposition. As n — oo while r/n — p, the total time on test
statistic converges uniformly in p to the total time on test transform.

The proof of this proposition is omitted. The result is similar to the
well-known Glivenko—Cantelli theorem (Billingsley, 1995, p. 269), which
states that empirical distributions converge uniformly to the parent
distribution F' as the sample size goes to infinity.

Clearly, the distribution function F' determines HEI; that the re-
verse is also true is not quite so easy to verify.

Consider first the case that F' is absolutely continuous and strictly
increasing on its support. Make the change of variables ( = F'(x) and
rewrite

o o1-¢
17 0) = | sy 7)

Let

u(¢) =1/ F(F~H(Q))

and differentiate both sides of (7) with respect to p to obtain

dHp' (p)

pra (1 =p)u(p). (8)

By solving for u and integrating, it follows, with the notation U(p) =
J¥ u(¢) d¢, that

L

dH!
1 —p F (p)7

U() = F (@) = [

which yields F(x) = U~!(z) in terms of Hy".
It is possible to show that Hgl determines F' in the discrete case by
using (Ha) with various values of r to solve for the z; and p;.

I.5. Proposition (Barlow, Bartholomew, Bremner and Brunk, 1972).
If F' has the hazard rate r, then H;l is differentiable and

d
—H;! - = ——.

Proof. This is a direct consequence of (8). O
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Remark. Proposition 1.5 and B(16) together reveal an interesting con-
nection; the mean residual life of a distribution coincides with the
derivative of the total time on test transform of the equilibrium distri-
bution.

I.6. Proposition. If G(x) = F(Az) for some A > 0 and all x > 0, then
Hp'(p) = AHg'(p), 0<p<1.
Proof. Use Proposition 20.A.8 or make direct use of (4) to obtain

AG~(p)

H:'(p) = /0 Glu/N) du = NHZ (). o

c. Normalized Total Time on Test Transform

Note that if F' has a finite first moment pp, then
1 > =
lim,_1 Hy (p) = /0 F(u)du = pp. 9)

Because of (9) and Proposition 1.6, it is possible and convenient for
many purposes to consider the normalized total time on test transform,
defined for distributions F' with finite expectation up by

Ki'(p) = Hp' (p)/pr- (10)

The notation

¥(p) = K5'(p)

is sometimes used in later chapters where the distribution F' is clear
from the context.

Some shape characteristics of the normalized total time on test
transform are related in simple ways to the behavior of the hazard
rate (when it exists). Several results of this kind are given in Chap-
ters 4 and 5. With the aid of Proposition 1.6, the normalized total
time on test transform determines the distribution apart from a scale
parameter.
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d. The Lorenz Curve and Gini Index

The normalized total time on test transform is closely related to
another function, the Lorenz curve. This curve was first defined
by Lorenz (1905) for empirical distributions as follows: For ordered
observations x(y) <--- < x(p), let L(i/n) = ( ;-:1 z())/ (i1 ()
The Lorenz curve is obtained by linearly interpolating between the
points (i/n, L(i/n)). The Lorenz curve has proven to be of great inter-
est in economics, particularly with reference to inequality of incomes.
See, for example, Kleiber and Kotz (2003) and the references therein.

The purpose of the following definition is to extend this idea to
arbitrary distributions.

1.7. Definition. The Lorenz curve L of a distribution function F with
finite expectation is defined by

/F /OFl(p)a:dF(m)
/F /OooxdF(x) 7

The function

F~(p)
/F du—/ xdF(x), 0<p<1,

without the normalization, is also sometimes called the Lorenz curve.
For a comparison of the total time on test transform and the Lorenz
curve see Figure 1.3. The above definition is due to Gastwirth (1971),
but see also Gastwirth (1972); alternative equivalent conditions go back
to Lorenz (1905). The Lorenz curve is extensively discussed by Arnold
(1983, Sections 4.2.1 and 4.2.6) and also by Arnold (1987). Because in-
verse distributions are increasing, it follows from the first form given for
L(p) that Lorenz curves are convex. For a brief discussion of convexity,
see Chapter 21.

I.8. Proposition (Chandra and Singpurwalla, 1981).

L(p) = Kp'(p) — F~'(p)[1 = FF~'(p)]/ur.
Proof. Rewrite L as

L(p) = o [ [ aar
0
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p

Fig. I.3. The total time on test transform and the Lorenz curve without normalization
(for the exponential distribution)

With F~1(u) = z, this becomes

F=Yp) F~(p) F-lp) _ .
. /0 /t : dF(2) dt /O (F(t) — F'F(p)| dt
F

ur

F~'(p) _ F~'(p) L=
/ Ft) dt / FUF(p) dt
_JO 0

jur 1F
= K;'(p) = [F'(p) FF " (p)][1/ 1er]
=K' (p) — F(p)[1 — FF(p)][1/r). O

This expression can be simplified if F' is strictly increasing on its sup-
port. In that case, FF~!(p) = p and

L(p) = K7'(p) - Fl(za)lﬁ. (11)
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1.9. Example. If ['(z) = e 2 > 0, then F~'(p) = —[log (1 — p)]/\.
Thus, K.'(p) = p and L(p) = p + (1 — p) log (1 — p).

The Lorenz curve is scale invariant, as evident in Example 1.9. As
noted above, the Lorenz curve is convex, and clearly, L(0) =0, L(1) =
1. Thus, the Lorenz curve falls below the line [(p) = p,0 < p < 1. Twice
the area between this line and the Lorenz curve is called the Gini index
of F, a quantity formally defined below. Gini (1912) proposed this index
as a measure of concentration, inequality, or diversity as a competitor
to the variance. See also Yitzhaki (2003).

Because the Lorenz curve is scale invariant (or because of Proposi-
tion 20.A.8), it is not possible to recover the underlying distribution F'
from L. On the other hand, F~! can be obtained by differentiating L*,
and then F' can be recovered using (3).

1.10. Definition. The integral

GF=2/01[pL<p>]dp

is called the Gini index or the Gini index of concentration of F.

From the area interpretation of the Gini index, it can be seen that
0 < Gp < 1. See Figure 1.4.

Various alternative formulations of the Gini index are known. A
particularly interesting one is the following:

G :1_/0 T P@F@ _ 2000(X, F(X))
KF

// o =] 4P ()27 )

Here, it is clear that the Gini index is defined only if urp < oo, a condi-
tion imposed above for defining the Lorenz curve. The equality of the
first two expressions for G is a consequence of C(4) with » = 1. The
last expression for G involving the covariance can be obtained using
Definition 20.I1(6) and an integration by parts.

For a survey of results concerning the Gini index and generaliza-
tions of it, see Kleiber and Kotz (2002). For an excellent survey that

(12)
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Fig. I.4. Half the Gini index as a shaded area

includes much of the results given in this section as well as additional
related results, see Pham and Turkkan (1994). For a discussion of the
Lorenz curve and Gini index in the context of an application, see
Losinger (1997); estimation considerations are studied by Gastwirth
(1972).



2

Ordering Distributions: Descriptive Statistics

Some are and must be greater than the rest.
Alexander Pope, Essay on Man (ep. IV, 1. 49)

Characteristics of distributions or densities such as location, disper-
sion, skewness, and kurtosis have long been used for descriptive pur-
poses. Early on, measures of such characteristics were proposed, though
precise definitions of the characteristics may even now remain elusive;
the characteristics were often defined as “that which the measure mea-
sures.” The standard deviation as a measure of dispersion or spread
is a familiar example, but measures of skewness and kurtosis based on
moments were also proposed by Pearson (1895).

A second approach to distributional characteristics is followed in
this chapter; for a given characteristic of interest, an ordering F' < G is
introduced to make precise the idea that F' has less of the characteristic
than does G. This approach was used by Mann and Whitney (1947)
who introduced what is now called “stochastic order”; it was used by
Birnbaum (1948) in a study of “peakedness.” Other important orders
were introduced by van Zwet (1964) and the notion of ordering distri-
butions was brought into clear focus by Lehmann (1955) and by Bickel
and Lehmann (1975). The introduction of an ordering to represent the
idea that one distribution has more of some characteristic than another
requires careful consideration of the characteristic’s nature.

Once an ordering appropriate for a given characteristic has been
found, proposed measures of the characteristic can be subjected to the
test that they be order-preserving. That is, if F' < G in the ordering,
then a measure m of that characteristic should satisfy m(F) < m(G).
Additional properties may also be required of the measure.
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The orders considered in this chapter do not all naturally relate to
a standard characteristic; still, these orders are geometrically mean-
ingful, especially when restricted to the comparison of distributions of
nonnegative random variables.

Location and dispersion are especially familiar as they relate to the
normal distribution, whereas skewness and kurtosis are concepts espe-
cially useful in the consideration of departures from normality. Kurtosis
is a concept most often applied to symmetric distributions, although
MacGillivray and Blanda (1988) and Blanda and MacGillivray (1988,
1990) extend the idea to the nonsymmetric case. It is even more difficult
to see how these ideas might extend to distributions of nonnegative ran-
dom variables, where the origin prescribes the location, and the mean,
a location parameter for the normal distribution, becomes what here
will be called a magnitude parameter. For distributions on [0, c0), mag-
nitude and dispersion are often related. Note that for the exponential
distribution, the mean and standard deviation are both equal to 1/A;
the parameter \ affects both magnitude and spread.

Historically, descriptive statistics indicating location, spread, and
other characteristics were oriented toward describing density shapes.
But some important characteristics of distributions are not readily ap-
parent from the density. For example, tail behavior and the existence of
moments is usually not clear from a graph of the density, but they are
sometimes quite obvious from a graph of the hazard rate. Sometimes,
such characteristics can also be seen clearly from properties of the total
time on test transform. So to more fully understand the properties of a
distribution, it is often advantageous to look at more than one function
describing the distribution.

This chapter provides only a brief and limited exposure to the topic
of ordering distributions; for more complete treatments, see the books
devoted to the subject written by Shaked and Shanthikumar (1994,
2007), Szekli (1995), or Miiller and Stoyan (2002) (see also Stoyan, 1977,
1983). Sections 19.D and 19.E also discuss orderings, particularly as
they relate to semiparametric families; the treatment there is somewhat
more abstract than that offered in this chapter.

The orderings < of distributions considered in this chapter have two
properties; they are both reflexive and transitive. That is,

F < F, for all distribution functions F (reflexivity)
and

F <G and G < H implies F < H (transitivity).
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Orderings with these two properties are called preorders; if in addition
they satisfy the condition that

F<G and G<F implies F' =G,

then the orders are called partial orders. Preorders and partial orders,
unlike numerical measures of a characteristic, can recognize when two
distributions are too disparate to be compared: F' < G and G < F may
both be false.

In what follows, it is sometimes convenient to write X <Y to mean
that the distribution F' of X and the distribution G of Y satisfy
F <G.

In general, the orders considered here can be classified as either re-
lated to magnitude, dispersion, or some other aspect of “shape.” Many
of the comparisons involving shape are scale invariant, which is not a
usual property of dispersion orders, but still the shape orderings are
related to dispersion and are called “variability” orders by Shaked and
Shanthikumar (1994, 2007). Whatever the name, degenerate distribu-
tions form the smallest class of distributions in these orders, but there
is no largest distribution.

For parametric families with two parameters, it may be desirable
that one parameter orders the family according to magnitude and the
other parameter orders the family according to dispersion or shape.
Many such relations are established in later chapters, although for some
reason they are mostly not well known. Understanding these orders and
their occurrences in parametric families will help illuminate the role
that various parameters play in parametric families.

A. Magnitude

The usual stochastic order, defined below, has a number of properties
that make it what might be called a “magnitude order.” Other orders
are included in this section because they imply stochastic order, but
their properties may differ.

a. The Usual Stochastic Order

Suppose that )~(~' and Y are random variables such that always X<Y.
Even though X and X have the same distribution, ¥ and Y have
the same distribution, it need not be that X < Y. But still, it seems
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reasonable to say that in some sense, X is less than Y. This idea leads
to the “usual” concept of stochastic order, an order in which X is less
than Y if and only if the survival function of X is everywhere less
than the survival function of Y. It is surprising that such a simple and
fundamental idea is not very old; apparently, it was first introduced
by Mann and Whitney (1947). However, a method for comparing two
estimators of a parameter, due to Pitman (1937), could be regarded as
a forerunner of stochastic order.

A.1. Definition. If X and Y are random variables such that P{X >
z} < P{Y > z} for all z, then X is said to be stochastically smaller
than Y. This relationship is often notated by X <y Y, or by F < G,
where X has distribution F and Y has distribution G.

A note of caution: F <y G means that F(z) < G(z) for all z
and consequently, F'(z) > G(z) for all z This is a potential source of
confusion.

The condition F'(z) < G(z), for all 2, that one survival function dom-
inates another is often easily checked, suggestive both of examples and
potential applications, and it arises in a number of contexts. It is use-
ful, for example, in comparing treatments in a medical experiment in
which X may be either the convalescent or survival time associated
with one treatment and Y may be the corresponding time for another
treatment. Or X and Y might be the earnings resulting from different
business strategies. In economics and utility theory, stochastic order is
called “first order stochastic dominance.” See D.4, where second-order
stochastic dominance is defined.

If P{X <Y} =1, then clearly X <y Y. From this fact, a number of
examples follow. If there exists a random variable Z and functions g and
h such that X = g(Z),Y = h(Z), and g(z) < h(z) for all z, then X <y
Y. If there exists a number a such that P{X <a} =1 and P{Y >
a} =1, then again X <y Y.

Several equivalent conditions for stochastic ordering are worth
noting.

A.2. Proposition. The following conditions are equivalent:

X <4Y. (1)
E¢(X) < E¢(Y) for all increasing functions ¢ such that the
expectations exist. (2)

d(X) <i ¢(Y) for all increasing functions ¢. (3)
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There exist random Varialzles X and Y such that X and X have the
same distribution, Y and Y have the same distribution, and

P{X<Y}=1, (4)
GF'(u)<u, 0<u<l, (5)

where X has distribution function F and Y has distribution function G.

The equivalence of (1) to (4) is straightforward to prove. The con-
cept of stochastic ordering for random variables is unrelated to issues
of their dependence or independence. The fundamental fact that (4)
and (1) are equivalent is due to Lehmann (1955); (4) introduces a joint
distribution and makes a “probability one” statement; and apart from
its intuitive content, which was used to introduce this section, (4) can
sometimes be quite useful in theoretical computations. Condition (5)
has been given by Lehmann and Rojo (1992).

Certain consequences of a stochastic ordering are quite conveniently
obtained from (2). In particular, with ¢(x) = 2", it follows directly from
(2) that X <y Y implies EX" < EY", for r > 0, and EX" > EY", for
r < 0. With ¢(x) = €, it follows from (2) that Ees* < Ee®Y for s > 0,
and EesX > EesY for s < 0.

It follows directly from (3) that if X <y Y, then ¢(X) <4 ¢(Y)
for all increasing functions ¢. Thus, X <y Y implies X" <y Y for all
r > 0, and other examples may come to mind.

A.3. Proposition. If X <, Y and U <y V, where X and U and Y
and V are independent, then

X+U Sst Y+ V.
If these random variables are nonnegative with probability 1, then also
XU <4 YV.

A.4.a. Example. If X has distribution F' (where F(0) =0), and if
Z = aX, where a > 1, then X < Z.

Here, the distribution of Z is obtained from that of X by “stretching
the axis out” away from the origin; whatever the value of X, Z is always
bigger than X because a > 1. In this example, a can be replaced by
any random variable that, with probability 1, is at least 1.
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A.4.b. Example. If X and Y are random variables, and Z =
min (X,Y), then always Z < X and Z < Y. Consequently, Z <y X and
Z <4 Y, with no requirement that X and Y be independent. On the
other hand, if Z = max (X,Y), or X and Y are nonnegative random
variables and Z = X 4+ Y, then Z >4 X and Z >4 Y. These observa-
tions are further expanded in Example A.8.

Somewhat more detailed discussions of stochastic ordering is given
by Marshall and Olkin (1979, Chapter 17), Shaked and Shantikumar
(1994, 2007), and Miiller and Stoyan (2002).

b. Hazard Rate Order

Suppose that X and Y are life lengths of two devices or organisms
and that X < Y. If the organisms are both observed to be alive at
time ¢ > 0, one might conjecture that the residual lives would also be
stochastically ordered. The following definition is motivated by the fact
that this conjecture is false. A counterexample can be obtained from
Example A.6 below by choosing a hazard rate that fails to satisfy (8).
Another counterexample is given below in Example A.8.

A.5. Definition. Let X and Y be random variables with correspond-
ing distribution functions F' and G. Then X is said to be smaller in the
hazard rate ordering than Y, denoted by X <, Y or by F <y, G if

Fix)=P{X>2+t| X >t} < P{Y >a+t|Y >t} = Gy(x)
for all 2 and ¢ >0 such that F(t)>0,G(t)>0. (6a)

It follows from the definition of conditional probability that (6a) is
equivalent to

det’ F(o) B >0
G(t) G(

x+1) ‘
x+1)
for all  and ¢ > 0 such that F(t) > 0,G(t) > 0,

and this in turn can be written as

:‘3‘
/’11|

v)

det >0 for all u < v such that F(u) > 0,G(u) > 0,

u
u

E}
/@\'

(6b)
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that is,

is decreasing in z such that G(z) > 0. (6¢)

Condition (6¢) was introduced and utilized by Brown (1984) in a study
of the distance between two distributions. For its convenience, (6¢) is
taken as the definition of the hazard rate ordering by Nanda and Shaked
(2001). As noted by Lehmann and Rojo (1992), with the substitution
u = G(2), condition (6¢) can be rewritten as

~1
FGU () is increasing in u, 0<u < 1. (6d)
Condition (6b) relates the hazard rate ordering to total positivity (see
Chapter 21).

In case X and Y are absolutely continuous random variables with
corresponding hazard rates rx and ry obtained by differentiating the
hazard functions, then (6¢) is equivalent to

rx(z) > ry(z), forall z>0. (6e)

This explains the terminology of Definition A.5, but take care to note
that the larger hazard rate belongs to the random variable smaller in
the hazard rate order. From (6a) it follows that

X < Y implies X <y Y. (6f)

If in (6b) the survival functions are replaced by distribution func-
tions, then another order, called the reverse hazard rate order, is ob-
tained. Thus, X is less than Y in the reverse hazard rate order if

F(x) F(y)

det >0 forallz <y. (7a)
G(z) G(y)

In terms of conditional probabilities, (7a) can be rewritten as

P{X<z|X<y}>P{Y <z|Y <y}, z<uy. (7b)
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When densities exist, the condition counterpart to (6e) is
sx(z) <sy(z) forall z>0, (7c)

where s is the reverse hazard rate of 1.B(5). It can be seen from 1.B(6)
that if X is less than Y in the reverse hazard rate order, then also, X
is less than Y in the sense of stochastic order. But note the comparison
of (6e) and (7c).

The hazard rate and reverse hazard rate orderings were introduced
and studied by Keilson and Sumita (1982).

A.6. Example. Suppose that X has distribution F' (where F'(0) = 0),
and Y = aX where ¢ > 1. If X has a hazard rate r such that

xr(z) is increasing in z > 0, (8)

then X <, Y.

Condition (8) is obtained by computing the hazard rate of Y. The
condition is satisfied if r is increasing, but it may fail when r is decreas-
ing. For a more detailed discussion of this example, see Propositions
7.C.6 and 7.C.6.a.

A.7. Example. For all positive constants C, X <p, X + C' if and only
if the hazard rate of X is increasing.

Proof. This result follows from the fact that if X has hazard rate r,
then X + C' has hazard rate r¢ given by

ro(z)=r(x+C), x>C,

=0, 0<zx<C. 0
A.8. Example. If X and Y are independent positive random vari-
ables, and Z = min (X,Y’), then it is clear from 1.H(3) that Z <j, X
and Z <y, Y. On the other hand, if W = max (X,Y’), it might be ex-
pected that W >, X and W >y, Y, but this turns out to be false even
though the weaker stochastic order holds. To show that W need not
be greater than X or Y in the hazard rate order, let |G, and H re-
spectively, be the distributions of X,Y", and Z. Then, from 1.H(6) and
some elementary algebra, it follows that at z, the hazard rate of W is
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less than that of X if and only if

g) _ _ [f(@)
G(z) = F(x)F(z)

The left-hand side of (9) is a hazard rate, and thus is finitely integrable
at least in some interval [0,¢], but because F(0) = 0, the right-hand
side of (9) is not finitely integrable in any such interval. Thus, (9) holds
for sufficiently small values of z. But examples can be constructed for
which (9) fails for large values of z, because then the comparison (9) is
essentially a comparison of the hazard rates of X and Y.

Equation (9) is the condition that the hazard rate of W is less
than that of X; the condition that the hazard rate of W is less than
that of Y is obtained by interchanging F' and G. The assumption that
both inequalities are violated leads to a contradiction, so it follows
that

9)

Q

h(z)
H(x)

gmax<_

) S
(@) F@))

Q

Because the right-hand side of this inequality is not the hazard rate
of a function of X and Y, the result cannot be translated as a natural
hazard rate ordering.

In view of the above discussion, it is rather curious that

Z =min (X,Y) <, max (X,Y) =W.

This result can be generalized to other order statistics; if the indepen-
dent nonnegative random variables Xi,..., X, are ordered to obtain
X(l) <. < X(n), then X(k) <ur X(k+1)7 k=1,...,n—1. For this re-
sult, see Shaked and Shanthikumar (1994, p. 22; 2007, p. 31).

If Z=X+4Y, then as noted in Example A.4.b, Z >4 X and Z >4
Y. But again, stochastic ordering cannot be replaced by hazard rate
ordering, as can be seen from Example A.7.

In view of the fact that the hazard rate can be interpreted as the
probability of failure in the next instant of time given survival up to a
specified time, it is clear that the hazard rate ordering would be appro-
priate for comparing the life lengths of identical devices, one operating
in a more hazardous environment than the other.
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c. Likelihood Ratio Order

A further strengthening of (6a) of Definition A.5 leads to a still stronger
condition that turns out to be quite useful.

A.9. Definition. The random variable X is said to be smaller in the
likelihood ratio ordering than the random variable Y if for all u,

P{X>ula<X<b}<P{Y>ul|la<Y <b}, (10)

whenever a < b and the conditional probabilities are defined.

This relationship is denoted by X <;, Y or by F' <;; GG, where F' is the
distribution of X and @ is the distribution of Y.

The following proposition provides a useful way of verifying a like-
lihood ratio order when densities exist.

A.10. Proposition. If X and Y are absolutely continuous random
variables, then X <;, Y if and only if there are versions f and g of
the corresponding densities such that

f(u)g(v) > f(v)g(u) for all u <w. (11)

Proof. First, suppose that (10) holds and that a < u < b. Rewrite (10)
in the form

P{u<X§b}<P{u<Y§b}

. 12
Pla<X<b — Pla<Y <0} (122)
Subtracting both sides of this inequality from 1 yields
< <
P{a<X_u}>P{a<Y_u}‘ (12b)

Pla<X <b} = Pla<Y <b}’
multiplication of (12a) and (12b) yields

Pla< X <u}P{u<Y <b} > Pla<Y <u}P{u< X < b},
a<u<b. (13)

It follows from a change of variables in (13) that when u < b < v,

Plu< X <b}P{b<Y <v}>P{u<Y <b}P{b< X <wv}. (14)
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Multiplication of (13) and (14) yields
Pla< X <u}P{b<Y <v}>Pla<Y <u}P{b< X <w}. (15)

Now, let @ — u and b — v so as to obtain (11).

Next, suppose that (11) holds. Then, f(y)g(z) < f(z)g(y), for
x <y; integration on y from u to b and on z from a to
u gives P{u< X <b}P{a<Y <u} < P{u<Y <b}P{a < X <u}.
Addition of P{u < X <b}P{u <Y < b} to both sides yields (10). O

Clearly, the terminology of Definition A.9 comes from the fact that
when denominators are positive, (11) can be rewritten as the compar-
ison

~

(u)  fv)

u

v

for all u < v, (16a)

<
—~
~
)
—~
<
N—

of likelihood ratios.

A.10.a. Proposition (Lehmann and Rojo, 1992). The condition
F <. G is equivalent to the condition that

FG'(p)is convex inp, 0<p<1. (16b)

Proof. Make use of the fact 21.A.3 (iv) that a differentiable function is
convex if and only if its derivative is increasing. Assume that densities
exist and note that from 24.A.4.b with F' and G interchanged, it follows
that the derivative of FG~! (p) is given by

fG
gG=

(16¢)

Because G~ ! is a decreasing function, the quantity (16¢) is i