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Preface

For many years the authors have been interested in developing methods
for generating multivariate distributions, especially for positive data.
Part of the motivation was to find models that would be useful in reli-
ability and survival analysis. This led us to the idea of writing a book
on multivariate nonnormal distributions. We thought that an introduc-
tory or reference chapter on the univariate case would be necessary. A
preliminary effort to write that chapter was the genesis of the present
book. We soon recognized what should have been obvious, that our
original idea was overly ambitious. Even in just the univariate case, we
found that to make the writing a manageable project we needed to im-
pose some boundaries on the topics covered. This led to the decision to
limit the book to probabilistic aspects of the subject and not to include
statistical topics, which itself would make for another book.

Initially, we had in mind an audience having a background typical
of someone with a master’s degree in statistics, mathematics, or engi-
neering. But the desire to be inclusive in order to make the book a more
valuable reference led us to include a number of proofs that are some-
what more advanced than we would have liked. However, we believe
that most of the results can be understood by our originally intended
audience, and reading of the proofs may not be essential. Indeed, we
have tried to provide motivations and insights to help the reader focus
on the implications, rather than the proofs. Nevertheless, we have paid
close attention to the proofs and have omitted only a few. Some proofs
are similar to those in print, but many are new, and we hope they will
provide further insights into the theory.

The reader should not hesitate to begin reading this book from
almost any place; references to required earlier material have been made
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as needed. In fact, some of the topics of earlier chapters might best be
appreciated if this kind of reading is followed.

One aspect of this book not present elsewhere is an effort to classify
and understand various categories of parameters. Scale and location
parameters are familiar in discussions of the normal distribution, but
other kinds of parameters, often referred to as “shape parameters,” also
play a fundamental role in statistics. A number of such parameters are
named and studied in this book. Here one of the important questions
addressed is how parameters relate to orderings of distributions.

For engineering applications, a number of books on reliability theory
are in print, and a number of texts are available on survival analysis
aimed at medical applications. This book should not be viewed as a
competitor to any such books, but we believe that it can stand alone
or be profitably used in conjunction with other books to provide an
increased depth of understanding.

Because a number of different distributions are surveyed in this
book, comparisons with the many books on specific distributions or
compendia on general distributions, as, for example, the volumes of
Johnson, Kotz and Balakrishnan (1994, 1995), are inevitable. We find
those volumes to be indispensable references, but they do not empha-
size connections between various distributions to the extent done here.

The authors recognize that this book is by no means a complete
treatment of its subject. Although the bibliography is extensive, we
know that it is not complete. A few papers and their contents were
intentionally omitted in a failed attempt to control the size of the book.
But more serious are the papers that we inadvertently missed—papers
with results that belong here. For these omissions, we offer our sincere
apologies both to their authors and to our readers. For us, time was a
factor; a manuscript was promised the publisher several years ago, and
we both wanted to avoid posthumous publication.

We have made a special effort to give attribution to the originator
of ideas and results, and we would appreciate readers bringing to our
attention cases where we have not been accurate.

Suggestions for Using this Book

Convexity and total positivity are important powerful methods that
are used throughout this book. Consequently, the reader should be-
come familiar with the contents of Chapter 21. Readers well-versed in
probability may skip Chapter 20, but for others this chapter may serve
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as a refresher of some of the needed concepts. Similarly, Chapter 24
provides a quick summary of some of the needed results from analysis.

Chapters 2 to 4 and 7 on ordering of distributions, mixtures, nonpara-
metric families, and semiparametric families constitute the central
theoretical portions of the book. These chapters may be referred to
for readers wishing to find specific theoretical results in the theory
of reliability and survival analysis.

Chapters 8 to 15 deal with specific parametric families, and here
the focus is on connecting for each family the basic concepts in
Chapters 2 to 4 and 7 to the parametric family. Thus, for example,
there is a discussion on the family of inverse Gaussian distributions
and the behavior of the hazard rate.

A discussion of coincidence of semiparametric families and stability of
semiparametric families constitute the contents of Chapters 18 and
19, and are not as basic as the the earlier chapters.

Because in applications, parameters are often functions of covariates,
Chapters 16 and 17 provide a review of their use.

A key feature in this book is an attempt to create a calculus of dis-
tributions. By this we show how different distributions may arise
from a common origin, and how the hierarchy of distributions can be
created. In so doing, we also provide a warehouse of tools that are
used to provide new proofs to many of the results in this field.

Albert W. Marshall
Ingram Olkin

March 2007
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F. Poisson and Pólya Processes: Renewal Theory .................... 663
G. Extreme-Value Distributions .......................................... 669
H. Chebyshev’s Covariance Inequality .................................. 673
I. Multivariate Basics...................................................... 674

21. Convexity and Total Positivity...................................... 687
A. Convex Functions........................................................ 687
B. Total Positivity .......................................................... 694

22. Some Functional Equations........................................... 701
A. Cauchy’s Equations ..................................................... 701
B. Variants of Cauchy’s Equations....................................... 704
C. Some Additional Functional Equations ............................. 712

23. Gamma and Beta Functions ......................................... 717
A. The Gamma Function .................................................. 717
B. The Beta Function ...................................................... 722

24. Some Topics from Analysis........................................... 729
A. Basic Results from Calculus........................................... 729
B. Some Results Concerning Lebesgue Integrals ...................... 731

References........................................................................ 733

Author Index ................................................................... 763
Subject Index................................................................... 771



SVNY289-Olkin June 8, 2007 9:34

Basic Notation and Terminology

Throughout this book, the terms “increasing” and “decreasing” are
used, respectively, to mean “nondecreasing” and “nonincreasing.”
Thus, the statement that φ is increasing means that

φ(x) ≤ φ(y) whenever x < y.

If the stronger condition

φ(x) < φ(y) whenever x < y

holds, then φ is said to be strictly increasing. Similar use is made of
the terms “decreasing” and “strictly decreasing.”

Notation

(a) For any real number a, the notation ā = 1 − a is often used. This
same notation is used for real-valued functions φ, that is, φ̄(x) =
1 − φ(x).

(b) log is always a natural log, that is, the base is e. log 0 is taken to
be −∞, and −∞ + x = −∞ for all real x.

(c) φ(t−) = limx↑t φ(x), φ(t+) = limx↓t φ(x).
(d) If a real-valued function of a real variable changes sign twice, first

from + to − and then from − to + as its argument increases
(0 values discarded), it is said that the function changes sign twice,
“in the order +,−,+”. Similar notations are used for other sign
change patterns.
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xx Basic Notation and Terminology

Section and Equation Numbering

Throughout this book, chapters are numbered, and sections within
chapters are labeled with capital letters, whereas subsections are
labeled with lower case letters, starting with “a” in each section.
Equations are numbered, restarting at the beginning of each section.

Reference to equations by number only means that this equation is
in the same section as the reference. Equations referenced by letter and
number, say in the form B (7), refer to equation (7) of Section B in the
chapter containing the reference. Equations referenced from another
chapter are given the complete designation such as 9.B(3); this refers
to the third equation of Section B in Chapter 9.
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1

Preliminaries

Probability is a mathematical discipline with aims akin to those, for example,
of geometry or analytical mechanics. In each field we must carefully distinguish
three aspects of the theory: (a) the formal logical content, (b) the intuitive
background, and (c) the applications. The character, and the charm, of the
whole structure cannot be appreciated without considering all three aspects in
their proper relation.

William Feller, Introduction to Probability and Its Application, Vol. 1, p. 1.

A. Introduction

Although the title of this book refers to reliability and survival analysis,
nonnegative random variables arise in a wide variety of applications.
Life-lengths of man-made devices or of biological organisms are, respec-
tively, the focus of reliability and survival analysis. But other types of
waiting times also arise in applications; these can be waiting times for
delays in traffic, intervals between earthquakes or floods, or time pe-
riods required for learning a task. Nonnegative random variables also
arise as magnitudes related to physical objects; these may be anthropo-
morphic measurements, crack lengths, tree diameters or heights, wind
speeds, material strengths, stream flows, rainfall, tire wear, or chemical
composition. Economics is another area of applications in which non-
negative random variables arise; income, firm size, prices, and actuarial
losses are by their nature nonnegative.

By contrast, the normal distribution, which has long played a central
role in statistics, allows for the corresponding random variables to take
on all real values—both negative and positive. This is the case for
measurement errors, the context in which the normal distribution first
arose. For nonnegative random variables with standard deviations that
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are small compared to their means, the normal distribution has been
widely used and can often provide excellent approximations. In other
cases, the normal distribution may be an inappropriate model, and
alternatives must be considered.

For nonnegative random variables, there is no distribution as per-
vasive as the normal distribution, with its foundation in the central
limit theorem. This means that a wide variety of distributions share
relative importance. The purpose of this book is to investigate the ori-
gins and properties of the various distributions for nonnegative random
variables.

a. Statistical Motivation

For the analysis of data, several statistical approaches are in common
use. These approaches form the following hierarchy:

Distribution-free (nonparametric) methods. Statistical meth-
ods that do not depend on any assumptions about the underly-
ing distribution are attractive because there are no assumptions to
question. Although attractive from this point of view, conclusions
may be weaker than what might be possible with some plausible
assumptions.

Qualitatively conditioned methods. Familiarity with the origins of
the data may make qualitative assumptions reasonable. For example,
a practitioner may know that data comes from a distribution with
a decreasing density, a unimodal density, or that the density has a
heavy right hand tail. They may suspect from physical considerations
that the hazard rate is monotone or that it is initially decreasing and
eventually increasing. A number of statistical procedures are known
to test the validity of such assumptions. Others are based upon such
assumptions, and they can lead to insights not easily obtainable with
distribution-free methods.

Semiparametric methods. There are a number of possible hybrid
methods that involve an unspecified distribution and a specific para-
metric structure. Perhaps the best known such model is the propor-
tional hazards model, in which the survival function of the unspec-
ified distribution is raised to a positive power; this power is then a
parameter. Models such as this are called semiparametric models.

Parametric methods. Finally, one may be willing to assume that
the data comes from a specified parametric family. This is perhaps
the best known approach to statistical problems, and of course, the
assumption of normality is the most familiar.



SVNY289-Olkin April 16, 2007 14:15

A. Introduction 5

b. Use of Models

Except for the distribution-free methods, all of the statistical ap-
proaches described above depend upon what are sometimes called
“models.” Because the assumption of an inappropriate model can lead
to erroneous conclusions, why are models ever used?

In some applications, the assumption of a model involves little or
no risk. For example, the central limit theorem may make the normal
distribution a clear choice. Or, with count data, it may be that the bi-
nomial or Poisson distribution clearly applies. Unfortunately, in many
applications the “appropriate” model is not at all clear, but what con-
stitutes an appropriate model clearly depends upon how the model is
used and what is expected of it.

Parametric models were introduced early in studies of human life
lengths. In this context, life tables or mortality tables are fundamental.
Ideally, a mortality table starts with a fixed group of individuals, all
born at the same time, and records the number living at the end of each
successive year until all have passed away. Such a table represents an
empirical record with data grouped by years. Due to both random fluc-
tuations and errors in statements of age at death, the empirical “rates
of mortality” calculated from such mortality tables are irregular. Con-
sequently, actuaries concerned with the pricing of life insurance and
annuities adopted various methods of graduation, described by
Spurgeon (1932) as “the endeavor to arrive at the true law of mortality
underlying the rough results disclosed by the data.”

It was often assumed that the deaths in any year occurred uniformly
over the year; for purposes of graduation, De Moivre (1724) made the
assumption of uniformity over even longer periods of time, though he
recognized that this approximation is not strictly true. Again for the
purposes of graduation, Gompertz (1825) introduced the parametric
model now known as the Gompertz distribution as an approximation
to the “true law of mortality.” Gompertz worked closely with data,
and then developed a theoretical basis for his distribution, but to
obtain a good fit to the data he found it necessary to divide ages into
three groups, using different parameter values in each age group.

In a number of other applications, parametric models have played
a prominent historical role in statistical theory, and were long studied
under the older rubric of “curve fitting.” Some of the best known early
work is that of Pearson (1895), who created a set of “curves” or “fre-
quency distributions” that might be suitable for fitting to data arising
in a variety of contexts. Other sets of distributions were constructed
by Bruns, Charlier, Edgeworth, Kapteyn, Thiele, and others. Elderton
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and Johnson (1969, p. 2) indicate that “The advantages of any system
of curves depend on the simplicity of the formulae and the number
of classes of observations that can be dealt with satisfactorily, . . . .”
See also Elderton (1906, 1934), Elderton and Johnson (1969), Särndal
(1971), Cramér (1972). Thus, there was a focus upon both the richness
of applications and mathematical simplicity.

What has been the motivation for selecting models? Fisher (1958,
p. 41) writes that “From a limited experience, for example, of individ-
uals of a species, or of the weather of a locality, we may obtain some
idea of the infinite hypothetical population from which our sample is
drawn, and so of the probable nature of future samples to which our
conclusions are to be applied.” Thus, prognosis or prediction is one
purpose underlying this description, but other reasons are also stated
in the literature. Models introduce parameters, the interpretation and
behavior of which leads to insights. Models also permit the automation
of statistical analysis and provide a sense of objectivity.

Historically, there was an underlying assumption that knowing that
a distribution provides a reasonable fit to data is sufficient. But what
is reasonable for one purpose may not be reasonable for another. This
concern was captured by Kingman (1978), who noted that “Although
it is often possible to justify the use of a distribution empirically, sim-
ply because it appears to fit the data, it is more satisfactory if the
structure of the distribution reflects plausible features of the underly-
ing mechanism.”

Many of the models discussed in this book can be derived from
assumptions that sometimes may be plausible on physical grounds.
Properties and consequences of various qualitative assumptions are
discussed, particularly as they relate to the structure of parametric
and semiparametric models. The aim is to help the practitioner uti-
lize knowledge of the physical origins of data when making a model
choice.

Choice of a parametric model may also be based upon the data,
particularly with the utilization of likelihood methods. However, even
with a considerable amount of data it is often the case that several para-
metric families will appear to provide reasonable fits. Consequently, an
understanding of the structure of these families and their origins can
be important.

A substantial body of literature exists concerning model choice.
This book does not include discussions of data-based model choice
methods or the actual statistical methods to be used once a model is
selected.
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B. Probabilistic Descriptions

To mathematically describe the distribution of a random variable, var-
ious alternative functions are in common use. These functions include
distribution functions, survival functions, densities, hazard rates, mean
residual lives, and total time on test transforms. When they exist, any of
these functions can be obtained, at least theoretically, from any other.
But there are good reasons to be interested in all of these functions;
none is uniformly best. Sometimes, one has a particularly simple form
whereas others are awkward to work with. Perhaps more important is
the fact that certain aspects of a distribution are revealed more clearly
by one function than any other. Different people may have different
preferences, depending upon the intuition they have developed. Also,
some of these functions may be easier to estimate than others.

a. Distribution Functions and Survival Functions

B.1.a. Definition. The function F defined on the interval (−∞,∞)
by

F (x) = P{X ≤ x}

is called the distribution function of X.

Distribution functions are sometimes called “cumulative distribu-
tion functions.” When more than one random variable is being dis-
cussed, the distribution function of X is sometimes denoted by FX . At
other times, distributions are distinguished by a numerical subscript.

A distribution function F is nondecreasing and right contin-
uous (i.e., limz↓x F (z) = F (x)). Moreover, limz→−∞ F (z) = 0 and
limz→∞ F (z) = 1. Any function with these properties is a distribution
for some random variable.

Some authors require distribution functions to be left continuous,
and this is an equally acceptable convention, but not the one adopted
here, and not in common use.

B.1.b. Definition. The function F̄ defined on the interval (−∞,∞)
by

F̄ (x) = P{X > x}

is called the survival function of X.
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Of course, F̄ = 1 − F and so it might seem superfluous to intro-
duce the survival function. But it is often the case that for non-
negative random variables, the survival function is more meaningful
and takes a more convenient form than the better known distribution
function.

The survival function is sometimes called the “survivor function” or
the “reliability.” Various notations for this function have been used in
the literature; the “bar” notation was introduced by Frank Proschan
and was used by Barlow and Proschan (1965). Since that time this
notation has become widely used and is used in this book as well.

b. Probability Mass Functions and Density Functions

For any random variable, the distribution function and survival func-
tion always exist. This advantage is not enjoyed by probability mass
functions or density functions, but these functions sometimes have
other advantages.

Suppose first that the random variable X can take on only a finite
or countable number of values. For example, X might be the number of
trials required to obtain “heads” in repeated tosses of a coin. Then X
(and F ) is said to be discrete. Discrete distribution functions are step
functions.

B.2.a. Definition. If x1, x2, x3, . . . is the set of possible values of X
and p(xi) = P{X = xi}, i = 1, 2, . . . , then

F (x) =
∑
xi≤x

p(xi),

and p is called the probability mass function of X.

When X takes on all values in some (possibly infinite) interval of
the real line, it is often possible to write F as an integral.

B.2.b. Definition. If f is a nonnegative function for which

F (x) =
∫ x

−∞
f(z) dz, for all real x,

then f is called a probability density of X (or F).

When a density exists, X (or F ) is said to be absolutely continu-
ous. When densities exist, they are not unique because they can be al-
tered arbitrarily at isolated points without changing the integral. More
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specifically, they can be altered on a set of Lebesgue measure 0. In
most examples, F is differentiable (except possibly at a few isolated
points) and the derivative f = F ′ is the usual form of the probability
density.

B.2.c. Cautionary note. In a number of instances in this book, the
shape of a density is discussed; for example, densities may be decreasing
on [0, ∞) or they may be unimodal. Such properties hold only for
the “right” version of the density. Often, this is the derivative of the
distribution function. But in what follows, it is often tacitly assumed
that the “right” version of the density is under consideration.

Because densities are nonnegative and integrate to one, they can-
not be increasing or decreasing on the entire real line. The densities
f encountered in this book have the property that limx→∞ f(x) =
limx→−∞ f(x) = 0. However, it is not difficult to construct examples
where these limits fail.

If a density exists, then it has often been the preferred description
of a distribution. The most studied and used absolutely continuous
distribution, the normal distribution, has a density with a convenient
mathematical expression whereas the distribution function cannot be
written in closed form. Statisticians and researchers in various fields are
trained to look at histograms, empirical approximations of densities,
and they develop a feeling for their behavior.

B.3. Definition. A distribution F is said to be concentrated on the
closed interval [a, b] if F (x) = 0 for all x < a, and F (x) = 1 for all
x > b. The support of the distribution F is the set of all points x such
that F (x + ε) − F (x− ε) > 0, for all ε > 0.

It can be shown that the support of a distribution is a closed set,
and in most examples discussed in this book, it is an interval. If F is
concentrated on the interval [a, b], then the support of F is a subset of
that interval. When F is absolutely continuous and is concentrated on
the closed interval [a, b], then there is a natural version f of the corre-
sponding density that satisfies f(x) = 0, for all x �∈ [a, b]. Sometimes,
the support of F is defined as the closure of the set of all points x such
that f(x) > 0, but this presumes that an appropriate version of the
density has been chosen.

Clearly, to say that F is said to be concentrated on the closed inter-
val [a, b] is less precise than to say that F has the support [a, b], but
it is easier to check and is sufficient for most purposes.
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c. Unimodality

The idea of unimodality is best understood in terms of a density, but
is perhaps best defined in terms of the distribution function.

B.4. Definition. A distribution function F is said to be unimodal with
mode at m if F (x) is convex in x < m and concave in x > m.

When F is unimodal and has a continuous density f, then f(x) is in-
creasing in x < m and decreasing in x > m so that f(m) is a maximum
of f. If the density looks like the profile of a flat-topped mountain, then
F is linear over some interval and the mode m may not be unique even
though F is still said to be “unimodal.” When the mode of a unimodal
distribution is not unique, the set of modes form an interval.

The concept of a mode is sometimes extended to allow multiple
modes (which do not together form an interval); these “modes” are
local maxima of the density.

For more about unimodality see Section 20.A.e.

d. Hazard Functions and Hazard Rates

Some aspects of an absolutely continuous distribution, important or
even essential in certain contexts, can be seen more clearly from the
hazard rate than from either the distribution function or density func-
tion. Moreover, hazard rates have a distinct intuitive appeal, as de-
scribed below.

B.5. Definition. The function R defined on (−∞,∞) by

R(x) = − log F̄ (x) (1)

is called the hazard function of F, or of X.

For a nonnegative random variable, R(0−) = 0, R is increasing,
and limx→∞R(x) = ∞; any function with these properties is a haz-
ard function. Hazard functions are sometimes convenient mathematical
tools, but in contrast to hazard rates, they have little apparent intuitive
appeal.

B.6. Definition. If F is an absolutely continuous distribution function
with density f, then the function r defined on (−∞,∞) by

r(x) =
f(x)
F̄ (x)

, if F̄ (x) > 0

= ∞, if F̄ (x) = 0 (2)

is called a hazard rate of F, or of X.
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For x such that F̄ (x) = 0, the ratio f(x)/F̄ (x) is indeterminate; the
value ∞ is arbitrary but sometimes convenient. Because densities are
not unique, hazard rates are not unique, but fortunately, there is usually
a natural version, identified except possibly on one or two points.

B.7. Notes on terminology. Particularly in the biostatistics litera-
ture, hazard rates are often called “hazard functions,” and then hazard
functions are called “cumulative hazard functions.” This is a serious
source of potential confusion; the term “hazard function” is used in
the literature with two distinct meanings, and authors do not always
clearly indicate their usage.

There is another potential source of confusion: because the survival
function is sometimes called the “reliability,” it is sometimes denoted
by “R.” The function R is called the hazard function in this book, but
it has also been called the “hazard potential” by Singpurwalla (2003),
who employs an innovative interpretation of it.

In the reliability literature, the hazard rate is very often called the
“failure rate,” though some authors object to this term because of its
potential for confusion with another concept that arises in renewal the-
ory (see Section 20.F.b and Sherwin (1997)). The term “mortality rate”
has also been used. In actuarial work, the hazard rate has long been
called the “force of mortality,” but the terms “age specific force of mor-
tality” and “intensity of mortality” have also been used. For the normal
distribution, the reciprocal of the hazard rate is known as “Mills’ ratio.”
It is unfortunate that such a confusing array of terminology is in use.

Although hazard rates are not unique, more often than not reference
is made to “the hazard rate.” When F is absolutely continuous and the
hazard function R is differentiable, then its derivative is a hazard rate.

To more fully understand hazard rates, it is helpful to note that

r(x) = limΔ↓0
P{x < X ≤ x + Δ |X > x}

Δ
.

Thus,

Δr(x) ≈ P{x < X ≤ x + Δ |X > x}.

Consequently, Δr(x) can be thought of as the conditional probability,
given survival up to time x, of death or failure in the next small incre-
ment Δ of time. It is this interpretation that makes the concept of a
hazard rate so useful, both in theory and in applications. It is interest-
ing to note that actuaries long used the hazard rate, i.e., the “force of
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mortality,” and did not really focus on the density (“curves of death”
in their terminology) until the time of Karl Pearson.

From (1) and (2), it can be seen that if F (0) = 0, then

F̄ (x) = exp{−R(x)} = exp
{
−

∫ x

0
r(z) dz

}
. (3)

This key formula shows how to retrieve the survival function from the
hazard rate. But the second equality of (3) is valid only if F is absolutely
continuous. In particular, it fails when F has a discrete part, even
though F has a density apart from isolated points of discontinuity. See
Singpurwalla and Wilson (1993) for a discussion of the validity of (3).

When F is absolutely continuous, it can be seen from the second
equality of (3) that

r(x) =
dR(x)
dx

.

From (2) and (3) it follows that a function r is the hazard rate of
some distribution on (0,∞) if and only if

(i) r(x) ≥ 0, for all x > 0,

(ii)
∫ x

0
r(t) dt < ∞, for some x > 0,

(iii)
∫ ∞

0
r(t) dt = ∞,

(iv)
∫ x

0
r(t) dt = ∞ implies r(z) = ∞, for all z > x.

Condition (ii) requires some explanation. If the distribution F cor-
responding to r satisfies F (x) < 1 for all x, then the integral of
(ii) is finite for all x < ∞. But if there is a number a < ∞ such that
F (x) < 1 for x < a and F (a) = 1, then the integral (ii) is finite only for
x < a. Condition (iv) results from the way the hazard rate is defined for
x > a.

B.8. Proposition. If F is concentrated on [0, a] and has the hazard
rate r, then lim supx↑a r(x) = ∞.

Proof. This is a consequence of (3) which shows that r is integrable on
[0, x] for x < a, but the integral must diverge on [0, a]. �
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B.9. Observation. If the hazard rate r is decreasing at x = x0, then
the corresponding density f is also decreasing at x0. This follows directly
from (2).

It is shown in Section H that if Z = min [X,Y ], then the hazard
rate of Z is the sum of the hazard rates of X and Y. This mechanism
produces a variety of hazard rate shapes.

e. Reverse Hazard Functions and Reverse Hazard Rates

The reverse hazard function is defined in a manner similar to the haz-
ard function R(x) = −log F̄ (x), but with the distribution function F
replacing the survival function F̄ . In addition, the minus sign is omit-
ted to make it, like the hazard function, increasing.

B.10. Definition. The function S defined on (−∞,∞) by

S(x) = logF (x) (4)

is called the reverse hazard function of F, or of X. If F is an abso-
lutely continuous distribution function with density f, then a function
s defined on (−∞,∞) by

s(x) = f(x)/F (x) (5)

is called a reverse hazard rate of F, or of X.

Note that S(x) = logF (x), whereas R(x) = − log F̄ (x); with these
definitions, both functions are increasing.

The reverse hazard function and reverse hazard rate of F have not
played a prominent role in the literature. The reverse hazard rate was
introduced by von Mises (1936) and was discussed briefly by Barlow,
Marshall and Proschan (1963), who note that s(−x) is the hazard rate
of −X, thus the terminology here. More recently it has been discussed
in some detail by Block, Savits and Singh (1998); see also Shaked and
Shanthikumar (1994, p. 24).

From (4) and (5), it can be seen that if F (0) = 0,

F (x) = exp {S(x)} = exp
{∫ x

0
s(z) dz

}
. (6)

The reverse hazard rate has largely been ignored in the literature pri-
marily because it does not have the strong intuitive content of the
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hazard rate. These functions do not play a big role in this book, but
they arise, e.g., in the study of domains of attraction for extreme value
distributions in Section 20.G.

Note that if the reverse hazard rate is increasing at a point, say at x0,
then the density f is increasing at x0. This means that a distribution
F with increasing reverse hazard rate must, at some finite point m,
satisfy F (m) = 1.

B.11. Proposition. The hazard rate r and reverse hazard rate s have
the following monotonicity properties:

s is increasing ⇒ r is increasing,
r is decreasing ⇒ s is decreasing.

These results are weak, and the implications do not reverse. They can
be easily obtained from the relationship r(x) = s(x)[F (x)/F̄ (x)]. For a
further result, see Proposition B.17.

f. The Residual Life Distribution

The distribution of remaining life for an unfailed item of age t is often
of interest and plays a recurring role in what follows.

B.12. Definition. Let F be a distribution function such that
F (0) = 0. The residual life distribution Ft of F at t is defined for all
t ≥ 0 such that F̄ (t) > 0 by

F̄t(x) =
F̄ (x + t)
F̄ (t)

, x ≥ 0. (7)

If F has a density f, then Ft has density ft and hazard rate rt given by

ft(x) =
f(x + t)
F̄ (t)

, x ≥ 0, (8)

rt(x) =
f(x + t)
F̄ (x + t)

= r(x + t), x ≥ 0. (9)

Clearly, the residual life distribution Ft is a conditional distribution
of the remaining life given survival up to time t. This distribution is
of considerable practical interest because the remaining life of devices
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(used cars, etc.) or of biological entities (people, for example) is often
of interest.

B.13. Proposition. If the hazard rate r of F has a finite positive limit,
limt→∞ r(t) = λ, then Ft converges in distribution to an exponential
distribution (defined in Section F.a) with parameter λ as t → ∞.

Proof. From (3), it follows that

− log F̄t(x) = − log F̄ (x + t) + log F̄ (t) =
∫ t+x

t
r(z) dz → λx as t → ∞.

�

Proposition 20.G.5 gives a related but more general result. Limits of
residual life distributions have been used by Rojo (1996) to categorize
distributions according to “tail length.”

g. The Mean Residual Life Function

In order to introduce the concept of a mean residual life, it is neces-
sary to anticipate Section C of this chapter and define the “mean” or
“expectation” of a random variable.

B.14. Definition. Suppose that the random variable X has the dis-
tribution function F and that the integral

∫ ∞

−∞
|x| dF (x)

exists (is finite). Then, the expected value EX of X exists and is given
by the integral

EX =
∫ ∞

−∞
x dF (x).

The expected value of X is also called the mean of X, or the expectation
of X, and is often denoted by μ.

B.14.a. Proposition.

EX =
∫ ∞

0
F̄ (x) dx−

∫ 0

−∞
F (x) dx; (10a)

for nonnegative random variables, that is, for distributions such that
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F (x) = 0 for x < 0,

EX =
∫ ∞

0
F̄ (x) dx. (10b)

Proof. To obtain (10a), make use of Fubini’s theorem 24.B.1 to compute

EX =
∫ ∞

−∞
x dF (x) =

∫ ∞

x=0

∫ x

z=0
dz dF (x) −

∫ 0

x=−∞

∫ 0

z=x
dz dF (x)

=
∫ ∞

z=0

∫ ∞

x=z
dF (x) dz −

∫ 0

z=−∞

∫ z

x=−∞
dF (x) dz

=
∫ ∞

0
F̄ (x) dx−

∫ 0

−∞
F (x) dx.

See Figure B.1. �

Area B

F(x)

Area A

0 x

Fig. B.1. The expectation in terms of area: EX = Area A− Area B
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B.15. Definition. The mean residual life function m(t) is the mean
of the residual life distribution Ft as a function of t. More explicitly,
when F has a finite mean μ and F (x) = 0, for x < 0, the mean residual
life function is given by

m(t) =
∫ ∞

0

F̄ (x + t)
F̄ (t)

dx =
∫ ∞

t

F̄ (z)
F̄ (t)

dz =
∫ ∞

t

(t− z)
F̄ (t)

dF (z) (11)

for t such that F̄ (t) > 0,

= 0, if F̄ (t) = 0.

Formula (11) explains the terminology of this definition. Other
terms have been used for this function; in the context of actuarial
science, it has been called the average excess claim or the mean ex-
cess function.

The mean residual life function provides yet another way to describe
a distribution. To see that it determines the survival function, first
compute directly that for t such that F̄ (t) > 0,

d

dt
log

∫ ∞

t
F̄ (z) dz = − 1

m(t)
.

Now, integrate both sides of this equation from 0 to x and make use of
(10) to obtain

∫ x

0

dt

m(t)
= log

∫ ∞

0
F̄ (t) dt− log

∫ ∞

x
F̄ (t) dt

= logμ− logm(x) − log F̄ (x).

This yields, for t such that F̄ (t) > 0,

F̄ (t) =
μ

m(t)
exp

{
−

∫ t

0

dz

m(z)

}
. (12)

Here is the survival function in terms of the mean residual life func-
tion; this result is given by Cox (1962), Muth (1977), and Gupta (1979).
Equation (12) is somewhat reminiscent of the much better known equa-
tion (3), which shows how to retrieve the survival function from the
hazard rate.
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As noted by Muth (1977), the hazard rate can also be directly ob-
tained from the mean residual life function through the equation

r(t) =
m′(t) + 1
m(t)

. (13)

This result can be verified directly by differentiating m(t) using the
second form given in (11). Because r(t) ≥ 0, it follows from (13) that
the derivative of the mean residual life has a lower bound that holds
for all F ;

m′(t) ≥ −1. (14)

This result was also noted by Muth (1977).
An excellent review of the theory and applications of the mean resid-

ual life function is provided by Guess and Proschan (1988). See also Hall
and Wellner (1981), Kupka and Loo (1989), and Ghai and Mi (1999)
for further discussions of the mean residual life.

h. Equilibrium Distributions

Let F be a distribution function with finite mean μ such that F (x) = 0
for x < 0, and let

f(1)(x) =
F̄ (x)
μ

=
F̄ (x)∫ ∞

0
F̄ (z) dz

, x ≥ 0, (15)

= 0, x < 0.

The density function f(1) arises in later chapters and in the context of re-
newal theory (see Section 20.F.b) where the corresponding distribution
is called the equilibrium distribution or the stationary renewal distri-
bution.

For any distribution F such that F (0) = 0, f(1)(0) = 1/μ, and with
this, F can be retrieved from f(1). Clearly, every equilibrium density
f(1) is decreasing. A density g is an equilibrium density if and only if
(i) g(x) = 0, x < 0, (ii) g is decreasing on [0,∞), and (iii) g(0) < ∞.

It is straightforward to show that the hazard rate r(1) of the equi-
librium distribution is the reciprocal of the mean residual life, that is,

r(1)(t) =
1

m(t)
. (16)

For a further discussion of equilibrium distributions and generaliza-
tions, see Section 20.B.c.
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i. The Odds Ratio

If A and B are two mutually exclusive events, it is common especially
in the content of gambling to speak of the “odds of A against B.” This
quantity is the ratio P{A}/P{B} of the probabilities of the two events.
Here, the two events are “survival beyond time x” and “failure by time
x.” It is in this context that odds ratios are often used in the medical
literature, where comparisons are sometimes made between the odds
ratio for a treatment group and the odds ratio for a control group.

Notation for odds ratios has not been standardized. Here, the odds
of surviving and of not surviving both are considered, for which the
notations Ø+ and Ø− are used. Usually these odds ratios are not con-
sidered simultaneously, in which case there is no need to distinguish
them. Then, notations such as “OR,” “O,” and “Odds” have all been
used. In the medical literature, the notation “ω” for the odds ratio is
particularly common.

B.16. Definition. The function Ø+, defined for x such that F (x) > 0
by

Ø+(x) = F̄ (x)/F (x), (17a)

is called the odds ratio of surviving beyond time x. The function Ø−

defined for x such that F̄ (x) > 0 by

Ø−(x) = F (x)/F̄ (x) (17b)

is called the odds ratio of failure by time x.

Sometimes, the term “odds” is used in place of “odds ratio.”
If both F (x) > 0 and F̄ (x) > 0, then Ø+(x) = 1/Ø−(x). These odds
ratios can be defined for all x with the convention that they take the
value ∞ when a denominator is 0.

When the odds ratios exist,

F̄ (x) = Ø+(x)/[1 + Ø+(x)] = 1/[1 + Ø−(x)]. (18)

When both the odds ratios exist and F has a density,

Ø+(x)r(x) = s(x) and Ø−(x)s(x) = r(x), (19)

where r and s are the hazard rate and reverse hazard rate, respectively.
Note that the odds ratio Ø+(x) is decreasing in x and Ø−(x) is

increasing in x. It can be checked that the odds ratio Ø+
t of the residual
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life distribution at t is given by

Ø+
t = [F̄ (t)/F̄ (x + t)] − 1. (20)

B.17. Proposition. Monotonicity of the hazard rate r, reverse hazard
rate s, and convexity of odds ratios have the following relationships:

s is increasing ⇒ r is increasing ⇒ Ø− is convex,
r is decreasing ⇒ s is decreasing ⇒ Ø+ is convex.

Proof. The implications relating r and s are given in Proposition B.11.
Assuming that derivatives exist, the other implications can be verified
by showing that the derivatives of Ø− and Ø+ are monotone under the
given conditions. �

The fact that r is decreasing implies Ø+ is convex is given by Kir-
mani and Gupta (2001).

The odds ratio Ø−(x) for a distribution function F has all of the
properties of the hazard function of another distribution, say H−.
That is,

H̄−(x) = e−F (x)/F̄ (x) (21)

defines a survival function. Similarly, −Ø+(x) has all of the properties
of a reverse hazard rate such that

H+(x) = e−F̄ (x)/F (x) (22)

is a distribution function. Equations (21) and (22) yield some possibly
unexpected connections between familiar pairs of distributions. See, for
example, Sections 10.A.e and 11.B.o.

Equations (21) and (22) can be solved for F̄ to yield

F̄ (x) =
1

1 − log H̄−(x)
=

− logH+(x)
1 − logH+(x)

.

Direct calculations show that if F has the hazard rate r, then H− has
the hazard rate r(·)/F̄ (·). Thus, if r is increasing, then the hazard rate
of H− is increasing.

j. Inverse Distribution Functions

Inverse distribution functions also characterize a distribution, and as
such could well find a place in this section. Because inverse distribution
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functions involve more technicalities and are perhaps somewhat less
important, their consideration is delayed until Section I.

k. Summary

Table B.1. exhibits various functions that define a survival function.
For the inverse distribution function, see Section I later in this chapter.

Table B.1. Alternatives for determination of a survival function

Function Survival function

Density

f(x) = F ′(x) F̄ (x) =
∫ ∞

x
f(z) dz

Hazard function
R(x) = − log F̄ (x) F̄ (x) = exp {−R(x)}

Hazard rate

r(x) = R′(x) = f(x)/F̄ (x) F̄ (x) = exp
{
−

∫ x

0
r(z) dz

}
Reverse hazard function

S(x) = logF (x) F̄ (x) = 1 − exp {S(x)}
Reverse hazard rate

s(x) = S′(x) = f(x)/F (x) F̄ (x) = 1 − exp
{∫ x

0
s(z) dz

}
Residual life distribution

F̄t(x) = F̄ (x + t)/F̄ (t) F̄ (x) = F̄0(x)
Mean residual life function

m(t) =
∫ ∞

0
F̄ (x + t)/F (t) dx F̄ (t) =

μ

m(t)
exp

{
−

∫ t

0

dz

m(t)

}
Odds ratios

Ø+(x) = F̄ (x)/F (x) F̄ (x) = Ø+(x)/[1 + Ø+(x)]
Ø−(x) = F (x)/F̄ (x) F̄ (x) = 1/[1 + Ø−(x)]

Equilibrium distribution
f(1)(x) = F̄ (x)/μ, x ≥ 0 F̄ (x) = [f(1)(x)]/[f(1)(0)],

when F (0) = 0
Inverse distribution function

F−1(p) = sup{z : F (z) ≤ p}, F̄ (x) = 1 − inf {p : F−1(p) ≥ x}
0 ≤ p < 1

= sup{z : F (z) < 1},
p = 1
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C. Moments and Other Expectations

The expected value of a random variable is defined in Definition B.13.
For discrete random variables, the expected value of X can be written
in the notation of Definition B.2.a as

EX =
∞∑
n=1

xip(xi);

for absolutely continuous random variables with density f,

EX =
∫ ∞

−∞
xf(x) dx.

Of course, for nonnegative random variables, the lower limit of the
integral can be replaced by 0.

For a random variable with distribution function F such that F (t) =
0 for t < 0, it is well known (Proposition 20.B.1) that if Y = ψ(X) and
if the expectation EY exists, then

EY = Eψ(X) =
∫ ∞

0
ψ(x) dF (x). (1)

A case of particular interest is ψ(x) = xr, and then

μr = EXr =
∫ ∞

0
xr dF (x) (2)

is called the rth moment of X. The rth moment may or may not exist,
i.e., the integral of (2) may or may not converge. According to Propo-
sition 20.B.4, if μr < ∞ for some r > 0, then μs < ∞, 0 ≤ s ≤ r. Thus,
the existence of the rth moment gurarantees the existence of all smaller
positive moments. Of course, the first moment is just the expectation
of X ; this moment is also called the mean of X and is customarily
denoted by μ, with the subscript 1 being omitted.

a. Moment Generating Functions and Laplace Transforms

Various generating functions can be used to find the moments μr when
r is a positive integer.
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C.1. Definition. The function

mgf(s) = E esX =
∞∑
j=0

sjEXj

j!

is called the moment generating function of X.

The moment generating function is finite for all s in some interval of
the form (−∞, a) where a ≥ 0. In case a > 0 and r is a positive integer,
the rth derivative of the moment generating function evaluated at s = 0
yields the rth moment:

EXr =
dr

dsr
mgf(s)|s=0.

In some contexts of this book, the less well-known normalized mo-
ments are more convenient than the moments themselves. The rth nor-
malized moment λr of X is defined as

λr = μr/Γ(r + 1), (3)

where Γ is the well-known gamma function discussed in Chapter 23.
For purposes of computation, formulas (1) and (2) are not always the

most convenient, especially when neither a probability mass function
nor a density exists, or when there is a simple expression for F̄ . In
this case, and for certain theoretical purposes, it is useful to note the
alternative expression

EXr = r

∫ ∞

0
F̄ (x)xr−1 dx. (4)

This formula, repeated in Proposition 20.B.3, can be established from
(2) through an integration by parts (see 20.A.1); alternatively, some
readers may prefer to write xr =

∫ x
0 rzr−1 dz in (2) and make a change

in the order of integration.
Yet another form of the rth moment that is sometimes used in

computations is given in Proposition 20.B.4, namely,

EXr =
∫ 1

0
[F−1(p)]r dp. (5)
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The formulas (2), (4), and (5) all provide ways to compute EXr.
For any given distribution F, the formulas can vary widely in their ease
of use.

The existence or nonexistence of moments can sometimes be deter-
mined quite easily from the hazard rate, as indicated by Proposition
20.B.6.

C.2. Measures of location. The first moment EX of X is often
used as a measure of the “center” or “location” of the distribution
of X. Indeed, if the density of X were used as a profile and cut from
a sheet of metal, then the cut-out would balance at EX. Another mea-
sure sometimes used to locate the “center” of the distribution of X is
the median med X. A median is a point m such that P{X > m} ≤ 1/2
and P{X < m} ≤ 1/2. For strictly increasing distribution functions,
the median is unique, and can be defined in terms of the inverse distri-
bution (see Section I).

Another concept related to location is the mode (Definition B.4).
If a unimodal density is symmetric about some point and has a finite
expectation, that point is simultaneously a mode, a median, and an
expectation (first moment).

C.3. Measures of spread. When EX2 is finite, the variance of X (or
F ) exists and is defined by

σ2 = Var(X) = E(X − EX)2 = EX2 − (EX)2; (6)

The variance is often used as a measure of spread or dispersion. The
variance and the standard deviation σ of X are perhaps less important
for random variables with support [0,∞) than they are for distributions
with support (−∞,∞), but they are still the most commonly used
measures of dispersion.

The coefficient of variation of X (or F ) is defined as the ratio

CV(X) = σ/μ; (7)

because CV(aX) = CV(X), for all a > 0, the coefficient of variation is
used as a measure of scale invariant dispersion.

A measure of concentration, the opposite of dispersion or spread, is
the Gini index of Definition I.14 below.

C.4. Transforms. Several kinds of transforms are defined in terms of
expectations. In particular, the Laplace transform φ of X is defined
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as

φ(s) = E e−sX .

For nonnegative random variables, the Laplace transform exists for all
s ≥ 0 and may exist for some or all values of s < 0. Laplace transforms
and several of their important properties are discussed in Section 20.D.

The moment generating function mgf(s) of X is related to the
Laplace transform through the equation

mgf(s) = φ(−s).

Finally, the Mellin transform mel(s) of X is defined by

mel(s) = EXs

for all values of s such that the expectation is finite.
Unlike the Laplace transform, the Mellin transform does not neces-

sarily determine the distribution of X.

D. Families of Distributions

Families of distributions indexed by a real number or by several real
numbers are called parametric families, and the indexing variables are
called parameters. For a distribution F having a parameter θ, the no-
tations F (· | θ) and Fθ are used interchangeably in what follows.

The most familiar parameters are location and scale parameters,
which are best introduced by way of the following definition.

D.1. Definition. Distributions F and G are said to be of the same
type if, for some real number b and some a > 0,

F (x) = G(ax + b), for all x.

There is a symmetry in this definition relating F and G, and it can
equivalently be said that

F

(
x− b

a

)
= G(x).

Whether in the form ax + b or (x− b)/a, a is said to be a “scale pa-
rameter” and b is called a “location parameter.” To avoid confusion in
this book, the following terminology is adopted.
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D.2. Definition. A parametric family {F (· | λ), λ > 0} of the form
F (x |λ) = F (λx | 1) is said to be a scale parameter family and λ is
called a scale parameter.

As noted above, the alternative definition that would call 1/λ a scale
parameter rather than λ itself could just as well have been adopted,
and would be more natural in some contexts. In particular, such an
alternative definition would be necessary to make the standard devia-
tion of the normal distribution a scale parameter. But in the context
of nonnegative random variables where the exponential distribution
plays a central role, Definition D.2 is more convenient and it simplifies
typography.

Location parameters do not play a central role in the study of life
distributions because these distributions are concerned with nonnega-
tive random variables that have a natural location. However, a number
of other kinds of parameters are important and are discussed in detail
in Chapter 7.

E. Mixtures of Distributions: Introduction

If F1 and F2 are distribution functions and 0 < π < 1,

F = πF1 + (1 − π)F2, (1a)

or equivalently,

F̄ = πF̄1 + (1 − π)F̄2, (1b)

then F is said to be a mixture of F1 and F2. Unless F is the distribution
function of a constant random variable, it can arise as a mixture of two
different distributions in infinitely many ways so that a decomposition
or mixture representation of the form (1) is not unique. But in practical
applications, there is often one mixture that is natural. For example,
data on humans can naturally be separated according to ethnic origins
or by gender. It is often the case that data cannot be fully understood
without recognizing the mixture aspect, so it is important to see what
can be learned from mixture representations. Sometimes, such repre-
sentations are also helpful in theoretical studies, especially when the
components of the mixture are relatively simple to understand and
work with.
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E.1. Definition. Let F = {Fθ | θ ∈ Θ} be a family of distributions and
let G be a distribution on Θ. Then,

F (x) =
∫

Θ
Fθ(x) dG(θ) (2)

is the mixture of F with respect to G.
Mixtures have sometimes been called compound distributions.

It is easy to see that the densities (if they exist) and survival func-
tions of mixtures are mixtures of the corresponding densities and sur-
vival functions. That is,

f(x) =
∫

Θ
fθ(x) dG(θ),

F̄ (x) =
∫

Θ
F̄θ(x) dG(θ).

But the corresponding formulas are not true for hazard functions or
hazard rates. When the distributions Fθ of (2) have densities fθ, F has
the hazard rate

r(x) =

∫
Θ
fθ(x) dG(θ)∫

Θ
F̄θ(x) dG(θ)

. (3)

An interesting special case is the mixture of but two distributions,
say F1 and F2, as in (1). Let π̄ = 1 − π. Then, when densities exist, (2)
and (3) take the form

F (x) = πF1(x) + π̄F2(x) (4)

and

r(x) =
πf1(x) + π̄f2(x)
πF̄1(x) + π̄F̄2(x)

. (5)

In this special case, F̄ (x) = πF̄1(x) + π̄F̄2(x).
A more complete discussion of mixtures is given in Chapter 3.
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F. Parametric Families: Basic Examples

In this section, the exponential, Weibull, gamma, and lognormal dis-
tributions are briefly introduced to make them available for illustrative
purposes. These distributions are discussed in detail in Chapters 8, 9,
and 12.

a. The Exponential Distribution

The one parameter family of exponential distributions, often referred
to simply as “the exponential distribution,” is without competition for
the position of the most fundamental, basic family of life distributions.
For this distribution, the parameter λ > 0 is a scale parameter and

F̄ (x) = e−λx, x ≥ 0, (1)

f(x) = λ e−λx, x ≥ 0, and (2)

r(x) = λ, x ≥ 0. (3)

For the exponential distribution, it is easy to see that

F̄ (x + t)
F̄ (t)

= F̄ (x), (4)

that is, the conditional probability of surviving an additional period of
time x, given survival up to time t, is the same as the unconditional
probability of survival to time x. In fact, this property characterizes the
exponential distribution (see Proposition 8.B.1). Both (3) and (4) can
be interpreted as saying that an item with an exponential distribution
is not affected by wear or ageing, and it is this property that provides
the basis for the importance of the distribution.

If X has an exponential distribution with parameter λ, then for
r > −1,

μr = EXr =
∫ ∞

0
xrλ e−λx dx = Γ(r + 1)/λr, (5)

where Γ is the usual gamma function, discussed in Chapter 23. Thus,
exponential distributions have finite moments of all orders greater than
−1 and they have a simple form. The normalized moments defined by
(3) of Section C have an even simpler form and they play a special role
in Section 6.A.
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The terms “exponential distribution” and “exponential family”
should not be confused. The former is a specific parametric family,
whereas the latter is a broad family often of use in statistical analysis
because it has a convenient form and includes a wide range of distri-
butions.

b. The Gamma Distribution

The two parameter family of gamma distributions includes the expo-
nential distribution as a special case. Whereas the density of the gamma
distribution has a nice form, the survival function and hazard rate can
be written in closed form only for certain parameter values. Again, the
scale parameter λ > 0; additionally, there is a shape parameter ν > 0
and

f(x |λ, ν) = λνxν−1 e−λx/Γ(ν), x ≥ 0. (6)

With the shape parameter ν = 1, this is just an exponential distribu-
tion. The fact that this density integrates to unity is a direct conse-
quence of the usual definition of the gamma function as an integral
(Definition 23.A.1).

When the shape parameter ν is an integer,

F̄ (x |λ, ν) =
ν−1∑
k=0

e−λx(λx)k/k!, x ≥ 0. (7)

Of course, the hazard rate can be easily obtained using (6) and (7),
but the resulting expression is awkward and needs to be evaluated
numerically to be understood. See Chapter 11 for further details.

c. The Weibull Distribution

The Weibull distribution is another two parameter family that includes
the exponential distribution. This family has a scale parameter λ and a
shape parameter α, both positive. Unlike the gamma distribution, the
survival function here has a simple form, specifically

F̄ (x) = exp {−(λx)α}, x ≥ 0. (8)

Differentiation of this survival function yields the density function

f(x) = αλ(λx)α−1 exp {−(λx)α}, x ≥ 0. (9)
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Clearly,

r(x) = αλ(λx)α−1, x ≥ 0. (10)

For a more complete discussion of the Weibull distribution see
Chapter 9.

d. The Lognormal Distribution

If Y is a random variable having a normal distribution and X = eY ,
then X is said to have a lognormal distribution. Because the normal
distribution function does not have a closed form, neither the distri-
bution function nor the hazard rate of the lognormal distribution can
be expressed in closed form. But the density can be obtained from the
density of the normal distribution.

The lognormal distribution can be usefully parameterized in several
ways, three of which are noted here. Suppose that −∞ < μ, β < ∞, 0 <
λ, σ, α, and let

μ = − log λ, σ = 1/α, and β = α2μ = μ/σ2. (11)

For x > 0, the density is given by

f(x) =
1√

2πσx
exp

{
−(log x− μ)2

2σ2

}
(12a)

=
α√
2πx

exp

{
−[log(λx)α]2

2

}
(12b)

= xβ exp{−β2/2α2} α√
2πx

exp

{
−[log xα]2

2

}
. (12c)

Thus, the density can be expressed in terms of the parameters
(μ, σ), (λ, α), or (α, β). Further discussion of the lognormal distribu-
tion can be found in Chapter 12.

G. Nonparametric Families: Basic Examples

A number of nonparametric families of life distributions are discussed
in Chapter 4; here, some basic examples are briefly introduced.
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a. Log-Concave and Log-Convex Densities

The logarithm of a number of standard densities is either convex or
concave. (A discussion of convexity and log convexity is given in Section
21.A.)

(i) The normal density is a well-known example of a log-concave den-
sity.

(ii) It can be seen from (6) and the concavity of the logarithm function
that the gamma density is log concave for ν ≥ 1 and log convex
for ν ≤ 1.

(iii) The Weibull density (9) is log concave for α ≥ 1 and log convex
for α ≤ 1.

These facts have implications, both probabilistic and statistical, that
make them worth noting. Some conditions for log convexity or log con-
cavity and various probabilistic consequences are given in Chapters 3
and 4.

b. Monotone Hazard Rates

The notion of a monotone hazard rate has played an important role
in reliability theory since the early 1960s. It cannot be escaped in any
serious study of life distributions. A distribution F is said to have an
increasing hazard rate (IHR) if it has a density f for which r = f/F̄ is
increasing. (Definition 4.C.1 of this concept is slightly more general in
that it does not require the existence of a density.) A random variable
with a distribution having an increasing hazard rate is also said to be
IHR.

As already mentioned in Section B, the importance of the haz-
ard rate stems from the interpretation of r(t) dt as the conditional
probability of failure in the interval [t, t + dt] given survival up to
time t. With an increasing hazard rate, the probability of failure in
the next instant of time increases as the device or organism ages,
a property intuitively appealing as a mathematical description of
“wearout.”

The similarly defined notion of a decreasing hazard rate (DHR) is of
less obvious interest because it appears to be a mathematical descrip-
tion of what might be called “wearin.” Nevertheless, wines, cheeses,
and violins provide examples of items that may improve with age, so
there are some direct applications. But perhaps more importantly, the
property arises in mixtures, as discussed in Chapter 3.
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If a density is log concave [convex], then the corresponding hazard
rate is increasing [decreasing]. These facts are the content of Propo-
sition 4.B.8.a, and an indirect proof is obtained in Chapter 2. See
Remark 2.A.15.a.

H. Functions of Random Variables

The minimum, maximum, and a sum of two independent random vari-
ables are briefly discussed here; these functions are encountered in sev-
eral places in this book. One function, the reciprocal, of a single random
variable is also mentioned.

H.1. Reciprocals. If X is a positive random variable with survival
function F̄ , then Y = 1/X is also a positive random variable. The dis-
tribution function G of Y is given by

G(y) = F̄ (1/y), y > 0.

When F is a gamma or Weibull distribution, then sometimes the distri-
bution G is called the “inverse” gamma or “inverse” Weibull distribu-
tion. There is some possible confusion in this terminology, because the
name of the inverse Gaussian distribution is well entrenched and that
distribution is not the distribution of the reciprocal of a Gaussian vari-
ate; it arises in a quite different way. The term “inverse” is also used in
another way in Section I. In this book, the term reciprocal distribution
is used for the distribution of the reciprocal of a random variable.

H.2. Minima. The minimum Z = min(X,Y ) of two random life
lengths X and Y arises when there are two distinct possible causes
of failure. Think of X as the waiting time for “death” due to one cause
and Y as the waiting time for “death” due to the other cause. Or-
dinarily, it is not possible to observe both X and Y, but only their
minimum. In this setup, the two causes of death are called “competing
risks,” and they are the subject of further study in Chapter 17. This
theory was developed primarily with medical applications in mind. But
there is another point of view in which minima arise in engineering
applications.

If a device has two components, both of which are essential for the
device to function, then the life length of the device is the minimum of
the two component life lengths. Devices of this kind are called “series
systems”; they are another reason why the distribution of the minimum
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of two random variables is interesting. More general systems are con-
sidered in Chapter 5.

Let X and Y be independent random variables and let Z =
min(X,Y ). If the respective distributions of X,Y , and Z are F,G,
and H, it follows that

H̄(x) = F̄ (x) Ḡ(x). (1)

If F and G have densities f and g, then H has the density

h(x) = f(x) Ḡ(x) + F̄ (x) g(x) (2)

and hazard rate

rH(x) =
h(x)
H̄(x)

=
f(x)
F̄ (x)

+
g(x)
Ḡ(x)

. (3)

Thus, the hazard rate of the minimum is the sum of the component
hazard rates. It follows from (3) that if X and Y are independent and
have increasing hazard rates, then Z has an increasing hazard rate.
Other consequences of (3) are noted later in this book. Of course, (1)–
(3) fail to hold when X and Y are not independent.

In the context of competing risks, improper random variables (those
that need not be finite valued) may be of some practical interest because
there may be causes of death that affect some, but not all, individuals.
If Z = min[X,Y ], then Z is a proper random variable as long as at least
one of the variables X and Y is proper. In this book, distribution func-
tions are assumed to be proper, but improper distribution functions can
be constructed by multiplying a proper one by a factor less than one.

H.3. Maxima. When high reliability is important, systems are often
constructed with redundancy. In a simple case, the system has two
components and it functions as long as at least one of the components
functions. Such a system is called a “parallel” system, and its life length
is the maximum of the component life lengths. The renal system in
humans is an example of a parallel system because it consists of two
kidneys, and one alone is sufficient.

Let X and Y be independent random variables and let Z =
max[X,Y ]. If the respective distributions of X,Y , and Z are F,G,
and K, it follows that

K(x) = F (x)G(x). (4)
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If F and G have densities f and g, then K has the density

k(x) = f(x)G(x) + F (x)g(x) (5)

and hazard rate

rK(x) =
k(x)
K̄(x)

=
f(x)G(x) + g(x)F (x)

1 − F (x)G(x)
. (6)

This is a contrast to (3), because unlike the minimum, the hazard rate
of the maximum does not have a simple expression in terms of the
component hazard rates. On the other hand, the reverse hazard rate
for the maximum Z is given in terms of the reverse hazard functions
of X and Y by

sK(x) =
k(x)
K(x)

=
f(x)
F (x)

+
g(x)
G(x)

,

and this is a counterpart to (3).

H.4. Sums. Sometimes, a spare part is available to be placed in service
when the original part fails. This terminology is standard in industry,
but organ transplantation can also be considered as the utilization of
a “spare part.” Together, the original part and the spare part act as a
system, which has a life length that is the sum of the two component
life lengths. This system is similar to the parallel system in that it has
built-in redundancy.

Again, let X and Y be independent nonnegative random variables,
but now, let Z = X + Y . If the respective distributions of X,Y , and Z
are F,G, and H, then

H(x) =
∫ ∞

0
F (x− z) dG(z) =

∫ x

0
F (x− z) dG(z); (7)

H is called the convolution of F and G and is denoted by H = F ∗
G. Because H is the distribution of Z = X + Y , it is apparent that
convolutions are commutative and distributive, that is,

F ∗G = G ∗F and F1 ∗ (F2 ∗F3) = (F1 ∗F2) ∗F3.
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When F and G have densities f and g, then H = F ∗G has the density

h(x) =
∫ x

0
f(x− z) dG(z) =

∫ x

0
f(x− z)g(z) dz, (8a)

and h is said to be the convolution of f and g. In case the random
variables are not nonnegative, (8a) is replaced by

h(x) =
∫ ∞

−∞
f(x− z) dG(z) =

∫ ∞

−∞
f(x− z)g(z) dz. (8b)

Note that (7) has the form of E(2) with Fθ(x) = F (x− θ), so the
convolution can be viewed as a mixture.

I. Inverse Distributions: The Lorenz Curve and
the Total Time on Test Transform

Inverse distribution functions sometimes play an important role and
must be handled with some care because they have no generally ac-
cepted definition. The problem is that the definition involves a degree
of arbitrariness. Both the total time on test transform and the Lorenz
curve, discussed in this section, are often defined in terms of inverse
distributions.

a. Inverse Distribution Functions

Inverse distributions are essentially the same as quantiles and are some-
times called “quantile functions”; the important statistical role that
these functions play is surveyed by Parzen (2004). For a distribution
function F, a number q satisfying F (x) ≤ p for all x < q and F (q) ≥ p
is called a pth quantile of F. The apparent asymmetry of this def-
inition is due to the fact that distribution functions have been as-
sumed to be right continuous. If F is strictly increasing on its sup-
port, then for 0 < p < 1, the pth quantile is unique. But if F is “flat”
at level p, then there is a closed interval of values all of which qual-
ify as pth quantiles. Defining an inverse distribution function is es-
sentially the same as defining pth quantiles in such a way that they
are unique, and this is where the arbitrariness appears. Here, to avoid
technicalities, the basic ideas are introduced under the assumption
that F is strictly increasing. For a discussion of the general case, see
Section 20.A.f.
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I.1. Definition. For a strictly increasing distribution function F, the
inverse F−1 of F is the function defined by

F−1(p) = sup {z : F (z) ≤ p} = inf {z : F (z) ≥ p}, 0 < p < 1. (1)

Similarly, the inverse F̄−1 of the survival function F̄ is defined by

F̄−1(p) = sup {z : F̄ (z) ≥ p} = inf {z : F̄ (z) ≤ p}, 0 < p ≤ 1,
= sup {z : F̄ (z) > 0} = inf {z : F̄ (z) = 0}, p = 0.

With these definitions,

F−1(1 − p) = F̄−1(p) (2)

and F−1(1) = ∞.
From the inverse F−1 of F, F can be recovered via the formula

F (z) = inf {p : F−1(p) > z}. (3)

b. The Total Time on Test Transform

Suppose that several items are placed on test for a fixed period of time
to determine their life lengths. Some of the items may fail during the
test period, but others may still be functioning at the termination of
the test. The total time on test statistic is the sum of all observed
complete and incomplete lifetimes. This statistic has a theoretical limit
as the number of items placed on test goes to infinity, a limit known as
the total time on test transform. The total time on test transform was
introduced by Barlow, Bartholomew, Bremner and Brunk (1972) for
its usefulness in certain estimation problems. It was further studied by
Barlow and Campo (1975) who discuss its use as a tool for selecting a
model for data analysis. Barlow (1979) discusses the total time on test
transform distribution and its properties.

I.2. Definition. The function H−1
F defined on the interval [0, 1] by

H−1
F (p) =

∫ F−1(p)

0
F̄ (x) dx (4)

is called the total time on test transform of the distribution function
F. See Figure I.1a,b.
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F (x)

F  −1(p)

F (x)

Fig. I.1a. The total time on test transform (shaded area)

When the distribution F is clear from the context, the notation

ψ(p) = H−1
F (p)

is sometimes used for typographical simplicity. The function HF is
called the total time on test transform distribution.

Note that H−1
F (0) = 0, and if F has mean μ ≤ ∞, then because

F̄−1(1) = ∞, it follows from C(4) that H−1
F (1) = μ. Because F is an

increasing function, so is F−1, and this means H−1
F is an increasing func-

tion. Consequently, HF is increasing, which together with HF (0) = 0,
and HF (μ) = 1, shows that HF is a distribution function concentrated
on [0, μ].

I.3.a. Example. Suppose that F is an exponential distribution (dis-
cussed in Section F.a). Then,

F̄−1(p) = − 1
λ

log (1 − p), 0 ≤ p ≤ 1,
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p
F (x)

F −1(p)

F (x)

Fig. I.1b. The total time on test transform (shaded area)

and straightforward computations using (4) show that

H−1
F (p) =

p

λ
, 0 ≤ p ≤ 1.

Thus,

HF (x) = λx, 0 ≤ x ≤ λ.

For this distribution, μ = 1/λ so that as expected, HF (μ) = 1.

I.3.b. Example. Consider the discrete distribution that places prob-
ability pi at the point xi, i = 1, 2, . . . , n, where x1 < x2 < · · · < xn.
Let Pi =

∑i
j=1 pj , i = 1, 2, . . . , n, so that Pn =

∑n
j=1 pj = 1. For this

distribution, it can be seen from Figure I.2 that

H−1
F (Pr) = x1 + (1 − P1)(x2 − x1) + (1 − P2)(x3 − x2)

+ · · · + (1 − Pr−1)(xr − xr−1). (5a)
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1 − P1
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1 − P4
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Fig. I.2. The survival function of a discrete distribution (Example I.3.b)

I.3.c. Empirical Distributions. If F is the empirical distribution
function based upon the ordered observations X1 < X2 < · · · < Xn,
then F has the structure of Example I.3.b with Pi = i/n and xi =
Xi, i = 0, 1, . . . , n. Suppose n items are placed on test and the observa-
tions are their successive failure times. There are n items on test until
the first failure occurs at time X1 and n− 1 items on test from time
X1 to time X2; the number of items on test continues to diminish one
by one until all items have failed. The total time of exposure up to the
rth failure is given by

T (Xr) = nX1 + (n− 1)(X2 −X1) + · · · + (n− r + 1)(Xr −Xr−1);
(5b)

this statistic is known as the total time on test statistic. By comparing
(5a) and (5b), it can be seen that

H−1
F (r/n) = T (xr)/n. (6)
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I.4. Proposition. As n → ∞ while r/n → p, the total time on test
statistic converges uniformly in p to the total time on test transform.

The proof of this proposition is omitted. The result is similar to the
well-known Glivenko–Cantelli theorem (Billingsley, 1995, p. 269), which
states that empirical distributions converge uniformly to the parent
distribution F as the sample size goes to infinity.

Clearly, the distribution function F determines H−1
F ; that the re-

verse is also true is not quite so easy to verify.
Consider first the case that F is absolutely continuous and strictly

increasing on its support. Make the change of variables ζ = F (x) and
rewrite

H−1
F (p) =

∫ p

0

1 − ζ

f(F−1(ζ))
dζ. (7)

Let

u(ζ) = 1/f(F−1(ζ))

and differentiate both sides of (7) with respect to p to obtain

dH−1
F (p)
dp

= (1 − p)u(p). (8)

By solving for u and integrating, it follows, with the notation U(p) =∫ p
0 u(ζ) dζ, that

U(x) = F−1(x) =
∫ x

0

1
1 − p

dH−1
F (p),

which yields F (x) = U−1(x) in terms of H−1
F .

It is possible to show that H−1
F determines F in the discrete case by

using (5a) with various values of r to solve for the xi and pi.

I.5. Proposition (Barlow, Bartholomew, Bremner and Brunk, 1972).
If F has the hazard rate r, then H−1

F is differentiable and

d

dp
H−1

F (p)|p=F (x) =
1

r(x)
.

Proof. This is a direct consequence of (8). �
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Remark. Proposition I.5 and B(16) together reveal an interesting con-
nection; the mean residual life of a distribution coincides with the
derivative of the total time on test transform of the equilibrium distri-
bution.

I.6. Proposition. If G(x) = F (λx) for some λ > 0 and all x ≥ 0, then

H−1
F (p) = λH−1

G (p), 0 ≤ p ≤ 1.

Proof. Use Proposition 20.A.8 or make direct use of (4) to obtain

H−1
F (p) =

∫ λG−1(p)

0
Ḡ(u/λ) du = λH−1

G (p). �

c. Normalized Total Time on Test Transform

Note that if F has a finite first moment μF , then

limp→1 H
−1
F (p) =

∫ ∞

0
F̄ (u) du = μF . (9)

Because of (9) and Proposition I.6, it is possible and convenient for
many purposes to consider the normalized total time on test transform,
defined for distributions F with finite expectation μF by

K−1
F (p) = H−1

F (p)/μF . (10)

The notation

ψ̃(p) = K−1
F (p)

is sometimes used in later chapters where the distribution F is clear
from the context.

Some shape characteristics of the normalized total time on test
transform are related in simple ways to the behavior of the hazard
rate (when it exists). Several results of this kind are given in Chap-
ters 4 and 5. With the aid of Proposition I.6, the normalized total
time on test transform determines the distribution apart from a scale
parameter.
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d. The Lorenz Curve and Gini Index

The normalized total time on test transform is closely related to
another function, the Lorenz curve. This curve was first defined
by Lorenz (1905) for empirical distributions as follows: For ordered
observations x(1) ≤ · · · ≤ x(n), let L(i/n) = (

∑i
j=1 x(j))/(

∑n
j=1 x(j)).

The Lorenz curve is obtained by linearly interpolating between the
points (i/n, L(i/n)). The Lorenz curve has proven to be of great inter-
est in economics, particularly with reference to inequality of incomes.
See, for example, Kleiber and Kotz (2003) and the references therein.

The purpose of the following definition is to extend this idea to
arbitrary distributions.

I.7. Definition. The Lorenz curve L of a distribution function F with
finite expectation is defined by

L(p) =

∫ p

0
F−1(u) du∫ 1

0
F−1(u) du

=

∫ F−1(p)

0
x dF (x)∫ ∞

0
x dF (x)

, 0 ≤ p ≤ 1.

The function

L∗(p) =
∫ p

0
F−1(u) du =

∫ F−1(p)

0
x dF (x), 0 ≤ p ≤ 1,

without the normalization, is also sometimes called the Lorenz curve.
For a comparison of the total time on test transform and the Lorenz
curve see Figure I.3. The above definition is due to Gastwirth (1971),
but see also Gastwirth (1972); alternative equivalent conditions go back
to Lorenz (1905). The Lorenz curve is extensively discussed by Arnold
(1983, Sections 4.2.1 and 4.2.6) and also by Arnold (1987). Because in-
verse distributions are increasing, it follows from the first form given for
L(p) that Lorenz curves are convex. For a brief discussion of convexity,
see Chapter 21.

I.8. Proposition (Chandra and Singpurwalla, 1981).

L(p) = K−1
F (p) − F−1(p)[1 − FF−1(p)]/μF .

Proof. Rewrite L as

L(p) =

∫ F−1(p)

0
z dF (z)∫ ∞

0
z dF (z)

=
∫ F−1(p)

0

∫ z

0
dt dF (z)/μF .
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Fig. I.3. The total time on test transform and the Lorenz curve without normalization
(for the exponential distribution)

With F−1(u) = z, this becomes

L(p) =

∫ F−1(p)

0

∫ F−1(p)

t
dF (z) dt

μF
=

∫ F−1(p)

0
[F̄ (t) − F−1F̄ (p)] dt

μF

=

∫ F−1(p)

0
F̄ (t) dt

μF
−

∫ F−1(p)

0
F−1F̄ (p) dt

μF

= K−1
F (p) − [F−1(p)F̄F−1(p)][1/μF ]

= K−1
F (p) − F−1(p)[1 − FF−1(p)][1/μF ]. �

This expression can be simplified if F is strictly increasing on its sup-
port. In that case, FF−1(p) = p and

L(p) = K−1
F (p) − F−1(p)

1 − p

μF
. (11)
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I.9. Example. If F̄ (x) = e−λx, x > 0, then F−1(p) = −[log (1 − p)]/λ.
Thus, K−1

F (p) = p and L(p) = p + (1 − p) log (1 − p).

The Lorenz curve is scale invariant, as evident in Example I.9. As
noted above, the Lorenz curve is convex, and clearly, L(0) = 0, L(1) =
1. Thus, the Lorenz curve falls below the line l(p) = p, 0 ≤ p ≤ 1. Twice
the area between this line and the Lorenz curve is called the Gini index
of F, a quantity formally defined below. Gini (1912) proposed this index
as a measure of concentration, inequality, or diversity as a competitor
to the variance. See also Yitzhaki (2003).

Because the Lorenz curve is scale invariant (or because of Proposi-
tion 20.A.8), it is not possible to recover the underlying distribution F
from L. On the other hand, F−1 can be obtained by differentiating L∗,
and then F can be recovered using (3).

I.10. Definition. The integral

GF = 2
∫ 1

0
[p− L(p)] dp

is called the Gini index or the Gini index of concentration of F.

From the area interpretation of the Gini index, it can be seen that
0 ≤ GF ≤ 1. See Figure I.4.

Various alternative formulations of the Gini index are known. A
particularly interesting one is the following:

GF = 1 −

∫ ∞

0
[F̄ (x)]2 dx

μF
=

∫ ∞

0
F (x)F̄ (x) dx

μF
=

2Cov (X,F (X))
μF

=

∫ ∞

−∞

∫ ∞

−∞
|x− y| dF (x) dF (y)

2μF
. (12)

Here, it is clear that the Gini index is defined only if μF < ∞, a condi-
tion imposed above for defining the Lorenz curve. The equality of the
first two expressions for GF is a consequence of C(4) with r = 1. The
last expression for GF involving the covariance can be obtained using
Definition 20.I(6) and an integration by parts.

For a survey of results concerning the Gini index and generaliza-
tions of it, see Kleiber and Kotz (2002). For an excellent survey that
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Fig. I.4. Half the Gini index as a shaded area

includes much of the results given in this section as well as additional
related results, see Pham and Turkkan (1994). For a discussion of the
Lorenz curve and Gini index in the context of an application, see
Losinger (1997); estimation considerations are studied by Gastwirth
(1972).
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2

Ordering Distributions: Descriptive Statistics

Some are and must be greater than the rest.
Alexander Pope, Essay on Man (ep. IV, I. 49)

Characteristics of distributions or densities such as location, disper-
sion, skewness, and kurtosis have long been used for descriptive pur-
poses. Early on, measures of such characteristics were proposed, though
precise definitions of the characteristics may even now remain elusive;
the characteristics were often defined as “that which the measure mea-
sures.” The standard deviation as a measure of dispersion or spread
is a familiar example, but measures of skewness and kurtosis based on
moments were also proposed by Pearson (1895).

A second approach to distributional characteristics is followed in
this chapter; for a given characteristic of interest, an ordering F ≤ G is
introduced to make precise the idea that F has less of the characteristic
than does G. This approach was used by Mann and Whitney (1947)
who introduced what is now called “stochastic order”; it was used by
Birnbaum (1948) in a study of “peakedness.” Other important orders
were introduced by van Zwet (1964) and the notion of ordering distri-
butions was brought into clear focus by Lehmann (1955) and by Bickel
and Lehmann (1975). The introduction of an ordering to represent the
idea that one distribution has more of some characteristic than another
requires careful consideration of the characteristic’s nature.

Once an ordering appropriate for a given characteristic has been
found, proposed measures of the characteristic can be subjected to the
test that they be order-preserving. That is, if F ≤ G in the ordering,
then a measure m of that characteristic should satisfy m(F ) ≤ m(G).
Additional properties may also be required of the measure.
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The orders considered in this chapter do not all naturally relate to
a standard characteristic; still, these orders are geometrically mean-
ingful, especially when restricted to the comparison of distributions of
nonnegative random variables.

Location and dispersion are especially familiar as they relate to the
normal distribution, whereas skewness and kurtosis are concepts espe-
cially useful in the consideration of departures from normality. Kurtosis
is a concept most often applied to symmetric distributions, although
MacGillivray and Blanda (1988) and Blanda and MacGillivray (1988,
1990) extend the idea to the nonsymmetric case. It is even more difficult
to see how these ideas might extend to distributions of nonnegative ran-
dom variables, where the origin prescribes the location, and the mean,
a location parameter for the normal distribution, becomes what here
will be called a magnitude parameter. For distributions on [0,∞), mag-
nitude and dispersion are often related. Note that for the exponential
distribution, the mean and standard deviation are both equal to 1/λ;
the parameter λ affects both magnitude and spread.

Historically, descriptive statistics indicating location, spread, and
other characteristics were oriented toward describing density shapes.
But some important characteristics of distributions are not readily ap-
parent from the density. For example, tail behavior and the existence of
moments is usually not clear from a graph of the density, but they are
sometimes quite obvious from a graph of the hazard rate. Sometimes,
such characteristics can also be seen clearly from properties of the total
time on test transform. So to more fully understand the properties of a
distribution, it is often advantageous to look at more than one function
describing the distribution.

This chapter provides only a brief and limited exposure to the topic
of ordering distributions; for more complete treatments, see the books
devoted to the subject written by Shaked and Shanthikumar (1994,
2007), Szekli (1995), or Müller and Stoyan (2002) (see also Stoyan, 1977,
1983). Sections 19.D and 19.E also discuss orderings, particularly as
they relate to semiparametric families; the treatment there is somewhat
more abstract than that offered in this chapter.

The orderings ≤ of distributions considered in this chapter have two
properties; they are both reflexive and transitive. That is,

F ≤ F, for all distribution functions F (reflexivity)

and

F ≤ G and G ≤ H implies F ≤ H (transitivity).
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Orderings with these two properties are called preorders; if in addition
they satisfy the condition that

F ≤ G and G ≤ F implies F = G,

then the orders are called partial orders. Preorders and partial orders,
unlike numerical measures of a characteristic, can recognize when two
distributions are too disparate to be compared: F ≤ G and G ≤ F may
both be false.

In what follows, it is sometimes convenient to write X ≤ Y to mean
that the distribution F of X and the distribution G of Y satisfy
F ≤ G.

In general, the orders considered here can be classified as either re-
lated to magnitude, dispersion, or some other aspect of “shape.” Many
of the comparisons involving shape are scale invariant, which is not a
usual property of dispersion orders, but still the shape orderings are
related to dispersion and are called “variability” orders by Shaked and
Shanthikumar (1994, 2007). Whatever the name, degenerate distribu-
tions form the smallest class of distributions in these orders, but there
is no largest distribution.

For parametric families with two parameters, it may be desirable
that one parameter orders the family according to magnitude and the
other parameter orders the family according to dispersion or shape.
Many such relations are established in later chapters, although for some
reason they are mostly not well known. Understanding these orders and
their occurrences in parametric families will help illuminate the role
that various parameters play in parametric families.

A. Magnitude

The usual stochastic order, defined below, has a number of properties
that make it what might be called a “magnitude order.” Other orders
are included in this section because they imply stochastic order, but
their properties may differ.

a. The Usual Stochastic Order

Suppose that X̃ and Ỹ are random variables such that always X̃ ≤ Ỹ .
Even though X̃ and X have the same distribution, Ỹ and Y have
the same distribution, it need not be that X ≤ Y . But still, it seems
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reasonable to say that in some sense, X is less than Y. This idea leads
to the “usual” concept of stochastic order, an order in which X is less
than Y if and only if the survival function of X is everywhere less
than the survival function of Y. It is surprising that such a simple and
fundamental idea is not very old; apparently, it was first introduced
by Mann and Whitney (1947). However, a method for comparing two
estimators of a parameter, due to Pitman (1937), could be regarded as
a forerunner of stochastic order.

A.1. Definition. If X and Y are random variables such that P{X >
z} ≤ P{Y > z} for all z, then X is said to be stochastically smaller
than Y. This relationship is often notated by X ≤st Y, or by F ≤st G,
where X has distribution F and Y has distribution G.

A note of caution: F ≤st G means that F̄ (z) ≤ Ḡ(z) for all z,
and consequently, F (z) ≥ G(z) for all z. This is a potential source of
confusion.

The condition F̄ (z) ≤ Ḡ(z), for all z, that one survival function dom-
inates another is often easily checked, suggestive both of examples and
potential applications, and it arises in a number of contexts. It is use-
ful, for example, in comparing treatments in a medical experiment in
which X may be either the convalescent or survival time associated
with one treatment and Y may be the corresponding time for another
treatment. Or X and Y might be the earnings resulting from different
business strategies. In economics and utility theory, stochastic order is
called “first order stochastic dominance.” See D.4, where second-order
stochastic dominance is defined.

If P{X ≤ Y } = 1, then clearly X ≤st Y . From this fact, a number of
examples follow. If there exists a random variable Z and functions g and
h such that X = g(Z), Y = h(Z), and g(z) ≤ h(z) for all z, then X ≤st
Y . If there exists a number a such that P{X ≤ a} = 1 and P{Y ≥
a} = 1, then again X ≤st Y .

Several equivalent conditions for stochastic ordering are worth
noting.

A.2. Proposition. The following conditions are equivalent:

X ≤st Y. (1)
Eφ(X) ≤ Eφ(Y ) for all increasing functions φ such that the

expectations exist. (2)
φ(X) ≤st φ(Y ) for all increasing functions φ. (3)
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There exist random variables X̃ and Ỹ such that X and X̃ have the
same distribution, Y and Ỹ have the same distribution, and

P{X̃ ≤ Ỹ } = 1, (4)

GF−1(u) ≤ u, 0 < u < 1, (5)

where X has distribution function F and Y has distribution function G.

The equivalence of (1) to (4) is straightforward to prove. The con-
cept of stochastic ordering for random variables is unrelated to issues
of their dependence or independence. The fundamental fact that (4)
and (1) are equivalent is due to Lehmann (1955); (4) introduces a joint
distribution and makes a “probability one” statement; and apart from
its intuitive content, which was used to introduce this section, (4) can
sometimes be quite useful in theoretical computations. Condition (5)
has been given by Lehmann and Rojo (1992).

Certain consequences of a stochastic ordering are quite conveniently
obtained from (2). In particular, with φ(x) = xr, it follows directly from
(2) that X ≤st Y implies EXr ≤ EY r, for r ≥ 0, and EXr ≥ EY r, for
r ≤ 0. With φ(x) = esx, it follows from (2) that EesX ≤ EesY for s ≥ 0,
and EesX ≥ EesY for s ≤ 0.

It follows directly from (3) that if X ≤st Y, then φ(X) ≤st φ(Y )
for all increasing functions φ. Thus, X ≤st Y implies Xr ≤st Y

r for all
r > 0, and other examples may come to mind.

A.3. Proposition. If X ≤st Y and U ≤st V , where X and U and Y
and V are independent, then

X + U ≤st Y + V.

If these random variables are nonnegative with probability 1, then also

XU ≤st Y V.

A.4.a. Example. If X has distribution F (where F (0) = 0), and if
Z = aX, where a ≥ 1, then X ≤st Z.

Here, the distribution of Z is obtained from that of X by “stretching
the axis out” away from the origin; whatever the value of X,Z is always
bigger than X because a ≥ 1. In this example, a can be replaced by
any random variable that, with probability 1, is at least 1.
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A.4.b. Example. If X and Y are random variables, and Z =
min (X,Y ), then always Z ≤ X and Z ≤ Y . Consequently, Z ≤st X and
Z ≤st Y , with no requirement that X and Y be independent. On the
other hand, if Z = max (X,Y ), or X and Y are nonnegative random
variables and Z = X + Y , then Z ≥st X and Z ≥st Y . These observa-
tions are further expanded in Example A.8.

Somewhat more detailed discussions of stochastic ordering is given
by Marshall and Olkin (1979, Chapter 17), Shaked and Shantikumar
(1994, 2007), and Müller and Stoyan (2002).

b. Hazard Rate Order

Suppose that X and Y are life lengths of two devices or organisms
and that X ≤st Y . If the organisms are both observed to be alive at
time t > 0, one might conjecture that the residual lives would also be
stochastically ordered. The following definition is motivated by the fact
that this conjecture is false. A counterexample can be obtained from
Example A.6 below by choosing a hazard rate that fails to satisfy (8).
Another counterexample is given below in Example A.8.

A.5. Definition. Let X and Y be random variables with correspond-
ing distribution functions F and G. Then X is said to be smaller in the
hazard rate ordering than Y, denoted by X ≤hr Y or by F ≤hr G if

F̄t(x) = P{X > x + t |X > t} ≤ P{Y > x + t |Y > t} = Ḡt(x)
for all x and t≥0 such that F̄ (t)>0, Ḡ(t)>0. (6a)

It follows from the definition of conditional probability that (6a) is
equivalent to

det
∣∣∣∣ F̄ (t) F̄ (x + t)

Ḡ(t) Ḡ(x + t)

∣∣∣∣ ≥ 0

for all x and t ≥ 0 such that F̄ (t) > 0, Ḡ(t) > 0,

and this in turn can be written as

det
∣∣∣∣ F̄ (u) F̄ (v)

Ḡ(u) Ḡ(v)

∣∣∣∣ ≥ 0 for all u ≤ v such that F̄ (u) > 0, Ḡ(u) > 0,

(6b)
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that is,

F̄ (z)
Ḡ(z)

is decreasing in z such that Ḡ(z) > 0. (6c)

Condition (6c) was introduced and utilized by Brown (1984) in a study
of the distance between two distributions. For its convenience, (6c) is
taken as the definition of the hazard rate ordering by Nanda and Shaked
(2001). As noted by Lehmann and Rojo (1992), with the substitution
u = Ḡ(z), condition (6c) can be rewritten as

F̄ Ḡ−1(u)
u

is increasing in u, 0 < u < 1. (6d)

Condition (6b) relates the hazard rate ordering to total positivity (see
Chapter 21).

In case X and Y are absolutely continuous random variables with
corresponding hazard rates rX and rY obtained by differentiating the
hazard functions, then (6c) is equivalent to

rX(z) ≥ rY (z), for all z ≥ 0. (6e)

This explains the terminology of Definition A.5, but take care to note
that the larger hazard rate belongs to the random variable smaller in
the hazard rate order. From (6a) it follows that

X ≤hr Y implies X ≤st Y. (6f)

If in (6b) the survival functions are replaced by distribution func-
tions, then another order, called the reverse hazard rate order, is ob-
tained. Thus, X is less than Y in the reverse hazard rate order if

det

∣∣∣∣∣F (x) F (y)

G(x) G(y)

∣∣∣∣∣ ≥ 0 for all x ≤ y. (7a)

In terms of conditional probabilities, (7a) can be rewritten as

P{X ≤ x |X ≤ y} ≥ P{Y ≤ x |Y ≤ y}, x ≤ y. (7b)
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When densities exist, the condition counterpart to (6e) is

sX(z) ≤ sY (z) for all z ≥ 0, (7c)

where s is the reverse hazard rate of 1.B(5). It can be seen from 1.B(6)
that if X is less than Y in the reverse hazard rate order, then also, X
is less than Y in the sense of stochastic order. But note the comparison
of (6e) and (7c).

The hazard rate and reverse hazard rate orderings were introduced
and studied by Keilson and Sumita (1982).

A.6. Example. Suppose that X has distribution F (where F (0) = 0),
and Y = aX where a ≥ 1. If X has a hazard rate r such that

x r(x) is increasing in x > 0, (8)

then X ≤hr Y .

Condition (8) is obtained by computing the hazard rate of Y. The
condition is satisfied if r is increasing, but it may fail when r is decreas-
ing. For a more detailed discussion of this example, see Propositions
7.C.6 and 7.C.6.a.

A.7. Example. For all positive constants C,X ≤hr X + C if and only
if the hazard rate of X is increasing.

Proof. This result follows from the fact that if X has hazard rate r,
then X + C has hazard rate rC given by

rC(x) = r(x + C), x ≥ C,

= 0, 0 ≤ x ≤ C. �

A.8. Example. If X and Y are independent positive random vari-
ables, and Z = min (X,Y ), then it is clear from 1.H(3) that Z ≤hr X
and Z ≤hr Y . On the other hand, if W = max (X,Y ), it might be ex-
pected that W ≥hr X and W ≥hr Y , but this turns out to be false even
though the weaker stochastic order holds. To show that W need not
be greater than X or Y in the hazard rate order, let F,G, and H re-
spectively, be the distributions of X,Y , and Z. Then, from 1.H(6) and
some elementary algebra, it follows that at x, the hazard rate of W is
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less than that of X if and only if

g(x)
Ḡ(x)

≤ f(x)
F (x)F̄ (x)

. (9)

The left-hand side of (9) is a hazard rate, and thus is finitely integrable
at least in some interval [0, ε], but because F (0) = 0, the right-hand
side of (9) is not finitely integrable in any such interval. Thus, (9) holds
for sufficiently small values of x. But examples can be constructed for
which (9) fails for large values of x, because then the comparison (9) is
essentially a comparison of the hazard rates of X and Y.

Equation (9) is the condition that the hazard rate of W is less
than that of X ; the condition that the hazard rate of W is less than
that of Y is obtained by interchanging F and G. The assumption that
both inequalities are violated leads to a contradiction, so it follows
that

h(x)
H̄(x)

≤ max
(
g(x)
Ḡ(x)

,
f(x)
F̄ (x)

)
.

Because the right-hand side of this inequality is not the hazard rate
of a function of X and Y, the result cannot be translated as a natural
hazard rate ordering.

In view of the above discussion, it is rather curious that

Z = min (X,Y ) ≤hr max (X,Y ) = W.

This result can be generalized to other order statistics; if the indepen-
dent nonnegative random variables X1, . . . , Xn are ordered to obtain
X(1) ≤ · · · ≤ X(n), then X(k) ≤hr X(k+1), k = 1, . . . , n− 1. For this re-
sult, see Shaked and Shanthikumar (1994, p. 22; 2007, p. 31).

If Z = X + Y , then as noted in Example A.4.b, Z ≥st X and Z ≥st
Y . But again, stochastic ordering cannot be replaced by hazard rate
ordering, as can be seen from Example A.7.

In view of the fact that the hazard rate can be interpreted as the
probability of failure in the next instant of time given survival up to a
specified time, it is clear that the hazard rate ordering would be appro-
priate for comparing the life lengths of identical devices, one operating
in a more hazardous environment than the other.
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c. Likelihood Ratio Order

A further strengthening of (6a) of Definition A.5 leads to a still stronger
condition that turns out to be quite useful.

A.9. Definition. The random variable X is said to be smaller in the
likelihood ratio ordering than the random variable Y if for all u,

P{X > u | a < X ≤ b} ≤ P{Y > u | a < Y ≤ b}, (10)

whenever a < b and the conditional probabilities are defined.

This relationship is denoted by X ≤lr Y or by F ≤lr G, where F is the
distribution of X and G is the distribution of Y.

The following proposition provides a useful way of verifying a like-
lihood ratio order when densities exist.

A.10. Proposition. If X and Y are absolutely continuous random
variables, then X ≤lr Y if and only if there are versions f and g of
the corresponding densities such that

f(u)g(v) ≥ f(v)g(u) for all u ≤ v. (11)

Proof. First, suppose that (10) holds and that a ≤ u ≤ b. Rewrite (10)
in the form

P{u < X ≤ b}
P{a < X ≤ b} ≤ P{u < Y ≤ b}

P{a < Y ≤ b} . (12a)

Subtracting both sides of this inequality from 1 yields

P{a < X ≤ u}
P{a < X ≤ b} ≥ P{a < Y ≤ u}

P{a < Y ≤ b} ; (12b)

multiplication of (12a) and (12b) yields

P{a < X ≤ u}P{u < Y ≤ b} ≥ P{a < Y ≤ u}P{u < X ≤ b},
a ≤ u ≤ b. (13)

It follows from a change of variables in (13) that when u ≤ b ≤ v,

P{u < X ≤ b}P{b < Y ≤ v} ≥ P{u < Y ≤ b}P{b < X ≤ v}. (14)
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Multiplication of (13) and (14) yields

P{a < X ≤ u}P{b < Y ≤ v} ≥ P{a < Y ≤ u}P{b < X ≤ v}. (15)

Now, let a → u and b → v so as to obtain (11).
Next, suppose that (11) holds. Then, f(y)g(x) ≤ f(x)g(y), for

x ≤ y; integration on y from u to b and on x from a to
u gives P{u < X ≤ b}P{a < Y ≤ u} ≤ P{u < Y ≤ b}P{a < X ≤ u}.
Addition of P{u < X ≤ b}P{u < Y ≤ b} to both sides yields (10). �

Clearly, the terminology of Definition A.9 comes from the fact that
when denominators are positive, (11) can be rewritten as the compar-
ison

f(u)
g(u)

≥ f(v)
g(v)

for all u ≤ v, (16a)

of likelihood ratios.

A.10.a. Proposition (Lehmann and Rojo, 1992). The condition
F ≤lr G is equivalent to the condition that

F̄ Ḡ−1(p) is convex in p, 0 ≤ p ≤ 1. (16b)

Proof. Make use of the fact 21.A.3 (iv) that a differentiable function is
convex if and only if its derivative is increasing. Assume that densities
exist and note that from 24.A.4.b with F and G interchanged, it follows
that the derivative of F̄ Ḡ−1 (p) is given by

fḠ−1

gḠ−1 . (16c)

Because Ḡ−1 is a decreasing function, the quantity (16c) is increasing
if and only if (16a) holds. �

A.11. Proposition. Suppose that X and Y are absolutely continuous
random variables with respective densities f(· | θ1) and f(· | θ2) in the
same parametric family. Then, X ≤lr Y whenever θ1 < θ2 if and only
if there is a version f(· | θ) of the density such that f(x | θ) is totally
positive of order 2 in x and θ.
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Proof. According to Definition 21.B.1, f(x | θ) is totally positivity of
order 2 in x and θ if and only if

det

[
f(x1 | θ1) f(x1 | θ2)
f(x2 | θ1) f(x2 | θ2)

]
≥ 0 for all x1 < x2, θ1 < θ2.

But this now is just a restatement of (11), where f(· | θ1) = f(·) and
f(· | θ2) = g(·). �

A.12. Proposition. If X ≤lr Y , then the density f of X crosses the
density g of Y exactly once, and at this crossing, f crosses g from above.

Proof. It follows directly from (16a) that the ratio f(u)/g(u) is decreas-
ing. Consequently, if f(u0)/g(u0) = 1, then f(u)/g(u) ≥ 1, for u ≤ u0,
and f(u)/g(u) ≤ 1, for u ≥ u0. It follows that the density f of X can
cross the density g of Y at most once, and if there is a crossing, f must
cross g from above. Because both densities integrate to 1, there must
be at least one crossing. �

Directly from (10), it follows that

X ≤lr Y implies X ≤hr Y (17)

and similarly, X ≤lr Y implies that X is less than Y in the reverse
hazard rate order.

The likelihood ratio and hazard rate orders are connected through
the equilibrium distributions, which are defined and discussed in Sec-
tions 1.B.h and 20.B.c. For distributions F and G with corresponding
equilibrium distributions F(1) and G(1), it is a direct consequence of
their definition, (6c), and (11) that

F(1) ≤lr G(1) if and only if F ≤hr G.

This fact is noted by Navarro, Belzunce and Ruiz (1997).

It is often the case that densities have a nice form but survival
functions and hazard rates do not. Then, the likelihood ratio order can
be much easier to verify than the hazard rate order.

A.13. Example. Consider the gamma distribution with density given
by 1.F(6). The survival function of this distribution cannot be given
in closed form unless the shape parameter ν is an integer and even
then, the hazard rate is awkward to study. In the shape parameter
ν of this distribution, is the family stochastically ordered or hazard
rate ordered? Although stochastic order can easily be shown using
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the derivation (iii) of Section 9.A.b, the question of hazard rate or-
der is unpleasant to attack directly. But consider the ratio of densities
f(x | λ, θ)/f(x | λ, ν) = Cxθ−ν , where C is a positive constant. This
ratio is decreasing in x whenever θ ≤ ν, so that in the likelihood ratio
ordering, the distribution is increasing in the shape parameter. This
means that in both the hazard rate ordering and in the stochastic or-
dering, the distribution also is increasing in the shape parameter.

A.14. Example. Suppose that X has distribution F (where F (0) =
0), and that Y = aX where a ≥ 1. If X has a density f satisfying

f(x)/f(x/a) is decreasing in x ≥ 0 for all a > 1, (18)

then X ≤lr Y .

For a proof of this and related results, see Propositions 7.C.8 and
7.C.8.a.

A.15. Example. For all positive constants C,X ≤lr X + C if and only
if the logarithm of the density of X is concave.

Proof. Because the density of X + C is given by f(x− C), x ≥ C, it fol-
lows from (10) that X ≤lr X + C if and only if for all u < v, f(u)f(v −
C) ≥ f(v)f(u− C). From Definition 21.B.7 and Proposition 21.B.8, it
follows that this condition for all C > 0 is equivalent to log concavity
of f. �

A.15.a. Remark. Because X ≤lr X + C implies X ≤hr X + C, as
noted in (17), it follows from Example A.15 that if the density of X
is log concave, then X ≤hr X + C for all positive constants C. But ac-
cording to Example A.7, this is equivalent to the condition that X has
an increasing hazard rate.

Thus, if X has a log-concave density, then X has an increasing hazard
rate. The importance of this fact is noted in Proposition 4.B.8, and is
proved by more standard methods in Lemma 21.B.15.

There is a clear connection between the likelihood ratio ordering and
the theory of total positivity, which is briefly reviewed in Chapter 22.
In fact, some of the most interesting examples of the likelihood ratio
ordering come from parametric families of densities that are totally pos-
itive of order two in the argument and a parameter. The prime example
of this is the family of exponential distributions, but the property also
holds for the family of gamma distributions with fixed shape parameter.

Applications of the hazard rate ordering in reliability have been
discussed by Boland, El-Neweihi and Proschan (1994).
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d. Preservation Properties of Magnitude Orders

A.16. Monotone transformations. The condition

X ≤ Y if and only if φ(X) ≤ φ(Y )

for all increasing functions φ, holds when the order ≤ is stochastic order
≤st, hazard rate order ≤hr, or likelihood ratio order ≤lr.

For the hazard rate order, this result is given by Nanda and Shaked
(2001).

A.17. Residual life distribution. According to Definition 1.B.12,
the residual life distribution Ft of F at t is given for all t such that
F̄ (t) > 0 by

F̄t(x) = F̄ (x + t)/F̄ (t), x ≥ 0. (19)

An ordering ≤ of distribution functions is said to be closed under the
formation of residual life distributions if F ≤ G implies that the corre-
sponding residual life distributions Ft and Gt satisfy Ft ≤ Gt.

As has already been noted, the stochastic order ≤st is not preserved
under the formation of residual life distributions. Indeed, this fact was
used to motivate the introduction of the hazard rate order.

A.18. Proposition. Both the hazard rate order ≤hr and the likeli-
hood ratio order ≤lr are preserved under the formation of residual life
distributions.

Proof. Preservation of the hazard rate order follows from the fact that
the residual life distribution of Ft at u is just the residual life dis-
tribution of F at t + u. In case the hazard rate r of F exists, the
result is even more transparent because the hazard rate rt of Ft satis-
fies rt(u) = r(u + t).

Preservation of the likelihood ratio order follows from the fact that
for a < u < b,

F̄t(u) − F̄t(b)
F̄t(a) − F̄t(b)

=
F̄ (u + t) − F̄ (b + t)
F̄ (a + t) − F̄ (b + t)

. (20)

Divide both sides of (20) by b− u and take the limit as b → u to con-
clude that

ft(u)
F̄t(a) − F̄t(b)

=
f(u + t)

F̄ (a + t) − F̄ (b + t)
. (21)
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If (16a) holds, then

f(u + t)
g(u + t)

≥ f(v + t)
g(v + t)

for all u ≤ v;

use (21) and the corresponding relation for the distribution G to con-
clude that

ft(u)
gt(u)

≥ ft(v)
gt(v)

for all u ≤ v. �

A.19. Mixtures. Suppose that F = π1F1 + π2F2, where π1 and π2
are nonnegative weights that add to 1. Similarly, suppose that G =
π1G1 + π2G2. The ordering ≤ is said to be closed under the formation
of mixtures if F1 ≤ G1 and F2 ≤ G2 implies F ≤ G, for all π1 = 1 − π2
in [0, 1].

Stochastic order is clearly closed under the formation of mixtures.
On the other hand, neither the hazard rate order nor the likelihood
ratio order is preserved under mixtures, as is shown by the following
example.

A.20. Example. Suppose that F̄i(x) = exp {−λix} and that Ḡi(x) =
exp {−θix}, i = 1, 2. It is straightforward to check that if λi ≥ θi, i =
1, 2, then F1 ≤lr G1 and F2 ≤lr G2. But if λ2 > θ2 > λ1 = θ1 and λ2 is
large, then even the hazard rate order F ≤hr G fails to hold. To verify
this, considerable calculation is required.

A number of other magnitude orderings can be found in the liter-
ature. Of special note is the work of Lehmann and Rojo (1992), who
discuss modifications of the three orders introduced in this section.
Further related results are provided by Navarro, Belzunce and Ruiz
(1997).

B. Dispersion

It is noted at the beginning of this chapter that for distributions of
nonnegative random variables, magnitude and dispersion are closely
related. However, it is possible to separate the two concepts to a sub-
stantial degree.
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a. Convex Order

Recall that X ≤st Y if and only if Eφ(X) ≤ Eφ(Y ) for all increasing
functions φ for which the expectations exist. A number of comparisons
can be made that are similar in form to this, but with the class of
increasing functions φ replaced by some other class; such orders are
discussed in Section D, but the following important example belongs
in this section.

B.1. Definition. If

Eφ(X) ≤ Eφ(Y ) for all convex functions φ such that
the expectations exist, (1)

then X is said to be smaller in the convex order than Y . In this case, the
notation X ≤cx Y or F ≤cx G is used, where F and G, respectively, are
the distribution functions of X and Y. The convex order is sometimes
called “balayage order” (see, e.g., Meyer, 1966, p. 239). The French
word “balayage” means “sweeping,” and is used in the sense of spread-
ing out.

Another important order, closely related to the convex order, is
defined with concave functions replacing the convex functions of (1).
This replacement is equivalent to changing the sign in the inequality of
(1), and thus to reverse the order: X is less than Y in the convex order
if and only if X is greater than Y in the concave order, sometimes
denoted by X ≥cv Y . Because X ≤cx Y if and only if X ≥cv Y , a result
concerning one of these orders can be easily translated into a result
concerning the other order.

By considering the cases φ(x) = x and φ(x) = −x in (1), it is easy
to see that X ≤cx Y implies EX = EY . This means that comparisons
are made only between distributions that are equal in magnitude as
measured by the expectation.

The choice φ(x) = x2 leads to the conclusion that X ≤cx Y implies
Var X ≤ Var Y. Thus, the convex order is stronger than the more
familiar variance comparison, but it is restricted by the condition EX =
EY .

As noted above, X ≤cx Y implies Var X ≤ Var Y, so the corre-
sponding standard deviations are also ordered. Other measures d that
preserve the convex order (i.e., satisfy the condition X ≤cx Y implies
d(X) ≤ d(Y )) can be used to compare dispersions. Because convexity
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is all that is needed, such examples as E|X − EX|, the mean deviation
from the mean, come to mind.

The following proposition follows immediately from a somewhat
more general theorem due to Karamata (1932); see, for example,
Marshall and Olkin (1979, p. 449).

B.2. Proposition. The ordering X ≤cx Y is equivalent to the condi-
tions

(i) EX = EY ,

(ii)
∫ ∞

t
F̄ (x) dx ≤

∫ ∞

t
Ḡ(x) dx for all t.

Proof. Suppose that X ≤cx Y . Because the function (x− a)+ =
max [x− a, 0] is convex, it follows that E(X − t)+ ≤ E(Y − t)+, that
is, (ii) holds. It has already been noted that X ≤cx Y implies (i).

Next, suppose that (i) and (ii) hold. By Proposition 21.A.19, any
convex function can be approximated by linear combinations of the
functions −x, x, and (x− a)+, from which it follows that X ≤cx Y. �

B.3. Proposition. Suppose that X and Y are nonnegative random
variables. If EX = EY and if F̄ crosses Ḡ only once, and from above,
then X ≤cx Y .

Proof. According to 1.B(10b) the condition EX = EY can be rewritten
as

∫ ∞

0
F̄ (x) dx =

∫ ∞

0
Ḡ(x) dx;

This means that F̄ and Ḡ must cross at least once. Because F̄ crosses
Ḡ from above, (ii) of Proposition B.2 holds for all t above the crossing
point. The single crossing property insures that

∫ ∞

t
Ḡ(x) dx−

∫ ∞

t
F̄ (x) dx

is decreasing; because this difference is negative for large t and 0 for
t = 0, it must be less than or equal to 0 for all t.

A more formal proof can be obtained using total positivity. Suppose
that F (x) −G(x) has a single crossing, from + to − as x ranges from 0
to ∞. Let K(x, y) be defined as in 21.B(5), that is, K(x, y) = 0, if x < y,
and K(x, y) = 1, if x ≥ y,−∞ < x, y < ∞, then K is totally positive
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and its variation diminishing property Definition 21.B.12 insures that∫ ∞

0
[F̄ (x) − Ḡ(x)]K(x, t) dx =

∫ ∞

t
[F̄ (x) − Ḡ(x)] dx

has at most one sign change, from + to − if one occurs. Because equality
holds at t = 0, it follows that this integral is nonpositive, and (ii) of
Proposition B.2 holds. �

The fact that Proposition B.3 also holds without the condition that
the random variables are nonnegative is proved by Shaked and Shan-
thikumar (1994, p. 65, 66) by using different methods.

B.4. Example. A distribution F such that F (0−) = 0 is said to have
an increasing hazard rate average (IHRA) if its hazard function R sat-
isfies the condition that R(x)/x is increasing. According to Example
5.B.3, an IHRA survival function (defined in Section 5.B) can cross an
exponential survival function only from above. Thus, if Y has an expo-
nential distribution G,X has the IHRA distribution F, and EX = EY ,
then according to Proposition B.3, X ≤cx Y .

To more fully understand why the convex order deserves to be called
a “dispersion order,” first recall that by Jensen’s inequality,

φ(EY ) ≤ Eφ(Y )

for all convex functions φ such that the expectations exist. (see Propo-
sition 21.A.12.) This is a comparison like (1) but where X is a random
variable degenerate at EY, and so has no dispersion at all.

b. Convex Order and Majorization

It is well known that the convex order arises in the context of empirical
distributions. If X takes on the values x1, . . . , xn each with probability
1/n, and Y takes on the values y1, . . . , yn each with probability 1/n,
then (1) holds if and only if (x1, . . . , xn) is majorized by (y1, . . . , yn).
For this result and an introduction to the concept of majorization,
see Marshall and Olkin (1979, Section A, Chapter 1) or Ando (1989).
Majorization was carefully constructed to represent the idea that the
xi’s are “more nearly equal” than are the yi’s, and this would mean
that the random variable X is “less dispersed” than is the random
variable Y.

To generalize the idea of majorization, suppose that Mx(y) is a
distribution function in the real variable y, for each fixed x, and is
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measurable in the real variable x, for each fixed y. Suppose further that

FY (y) =
∫

Mx(y) dFX(x), (2)

x =
∫
y
dMx(y). (3)

Although relative dispersion relates to the distributions of X and Y and
is unrelated to their joint distribution, to better understand the ideas
here it may be helpful to think of Mx(y) as the conditional probability

Mx(y) = P{Y ≤ y | X = x}.

Then (2) is just the usual relation of unconditioning and (3) says that

E(Y | X = x) = x.

If (3) holds, then when X = x, either Y = X or Y takes on several
values, the mean of which is x. This makes Y “more dispersive” than
X. Now, make use of Jensen’s inequality for conditional expectations
(Proposition 21.A.13 and Example 21.A.13.a) and compute that

Eφ(Y ) = E[E(φ(Y ) | X)] ≥ E(φ(Y ) | X) = Eφ(X).

Thus, (2) and (3) together lead to the conclusion that Eφ(X) ≤ Eφ(Y )
for all convex functions φ, that is, X ≤cx Y . There is a converse to this
result: If X ≤cx Y , then there exists a function Mx(y) that satisfies (2)
and (3). This fact is a special case of Choquet’s theorem; see Meyer
(1966, p. 277) or Phelps (1966). A further discussion of this topic is
beyond the scope of this book.

c. Dispersive Order

Random variables are comparable in the convex order only if they
have equal expectations. The dispersive order discussed here avoids this
limitation.

B.5. Definition (Doksum, 1969). Let X be a random variable with
distribution function F and Y be a random variable with distribution
function G. If

F−1(q) − F−1(p) ≤ G−1(q) −G−1(p), 0 ≤ p ≤ q ≤ 1, (4)



SVNY289-Olkin April 13, 2007 7:52

66 2. Ordering Distributions: Descriptive Statistics

then X is said to be smaller than Y in the dispersive order, written
X ≤disp Y .

The following conditions are equivalent to (4):

(i) G−1F (x) − x is increasing in x such that 0 < F (x) < 1.
(ii) As x ranges over the interval for which 0 < F (x) < 1, for all real
c,G−1F (x) − x− c has at most one sign change, from − to + if one
occurs.
(iii) As x ranges over the interval for which 0 < F (x) < 1, for all real
c, F (x) −G(x + c) has at most one sign change, from − to + if one
occurs.
(iv) As x ranges over the interval for which 0 < F (x) < 1, for all real
c, F̄ (x) − Ḡ(x + c) has at most one sign change, from + to − if one
occurs.

Condition (iii) is to be compared with C.11(iv), where scale takes
the place of location.

B.6. Proposition.

X ≤disp Y if and only if X + c ≤disp Y for all real c,
X ≤disp aX for all a ≥ 1.

B.7. Proposition. If the supports of F and G have the same finite
left hand endpoint, that is, if F−1(0) = G−1(0) > −∞, then X ≤disp Y
implies X ≤st Y .

Proof. This follows directly from the definition by taking p = 0. �

Shaked and Shanthikumar (1994, p. 75; 2007, p. 154) obtain condi-
tions under which the conclusion of stochastic order in Proposition B.7
can be strengthened to hazard rate order, and they obtain other results
connecting these two orders. These results show the close connection
between orders relating to magnitude and dispersion for nonnegative
random variables.

Proposition B.7 exhibits a character of the dispersive order ≤disp
that is quite different from the convex order ≤cx because stochastic or-
der precludes the equality of expectations, a requirement of the convex
order. Nevertheless, there is a connection between the orders, as indi-
cated by the following proposition.
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B.8. Proposition (Shaked and Shanthikumar, 1994, 2007). If X and
Y are random variables with finite means and X ≤disp Y , then

(X − EX) ≤cx (Y − EY ).

Considerably more is known about the dispersive order (see Shaked
and Shanthikumar (1994, 2007) and the references contained there).
For connections with the total time on test transform, see Bartoszewicz
(1986, 1995).

B.9. Example. Suppose that Y has an exponential distribution, that
is, Ḡ(x) = e−λx, x ≥ 0. To consider condition (i) of B.5, first compute
that

G−1(z) = − 1
λ

log (1 − z).

Thus, G−1F (x) − x =
[
− 1

λ log F̄ (x)
]
− x is increasing in x such that

0 < F (x) < 1 if and only if

exp {G−1F (x) − x} = exp
{[

− 1
λ

log F̄ (x)
]
− x

}
=

e−x

[F̄ (x)]1/λ

is increasing in x such that 0 < F (x) < 1. Consequently, X ≤disp Y if
and only if e−λx/F̄ (x) is increasing in x such that 0 < F (x) < 1.

If F has a density, by differentiating, this condition can be recast
as the condition that r(x) ≥ λ, for all x such that 0 < F (x) < 1, where
the hazard rate r is the derivative of the hazard function R = − log F̄ .

C. Shape

MacGillivray and Blanda (1988) define distributions F and G to have
the same shape if for some a and b, F (x) = G(ax + b) for all x, i.e., F
and G are of the same type. Because this book is devoted to nonnegative
random variables, a slightly different definition is adopted.

C.1. Definition. Distribution functions F and G have the same shape
if either

(i) for some a and b, F (x) = G(ax + b) for all x,

or

(ii) F (x) = G(x) = 0 for all x < 0, and for some a > 0, F (x) = G(ax)
for all x.
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The orderings of this section all have the property that if F and G
have the same shape, then F ≤ G and G ≤ F . This means that shape
orders are preorders but not partial orders.

a. The Lorenz Order

Because magnitude, as reflected in a scale change, is intimately related
to dispersion, the convex order compares distributions only if their ex-
pectations are equal. A modification of the definition eliminates this
severe restriction by rescaling the two distributions before the condi-
tions of the convex order are applied.

C.2. Definition. Let X and Y be nonnegative random variables with
finite expectations. Then X is said to be smaller in the Lorenz order
than Y, written X ≤Lorenz Y , if

X/EX ≤cx Y/EY, (1)

that is,

Eφ(X/EX) ≤cx Eφ(Y/EY )

for all convex functions φ such that the expectations exist.

Clearly, the Lorenz order is a shape order that applies to nonnegative
random variables and compares dispersion after scale normalizations
to achieve unit expectations.

C.3. Proposition. Suppose that X and Y are nonnegative random
variables with equal finite expectations. Then, X ≤Lorenz Y if and only
if LX(p) ≥ LY (p), 0 ≤ p ≤ 1, where LX and LY are, respectively, the
Lorenz curves of the distributions of X and Y . See Definition 1.I.7.

For more complete discussions of the Lorenz order, see Arnold (1987,
Chapter 3), Kakwani (1980), Marshall and Olkin (1979), and Shaked
and Shanthikumar (1994, 2007). As with the convex order, the Lorenz
order has been used in economics to compare income distributions and
the risks associated with different prospects.

b. The Gini Index and the Coefficient of Variation

Measures of shape that preserve the Lorenz order are sometimes re-
garded as “scale-free measures of dispersion” even though this may be
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a contradiction of terms. In economics, a commonly used measure of
this kind is the Gini index (Definition 1.I.10).

C.4. Proposition. If X has the distribution function F and Y has
the distribution function G, and X ≤Lorenz Y , then Gini(F) ≤ Gini(G).

Proof. This fact follows directly from Proposition C.3 and Definition
1.I.10. �

C.5. Proposition. The Gini index is independent of scale. To state
this more precisely, suppose that the random variable X has the distri-
bution function F. Then X/λ, has a distribution function F ( · | λ) given
by F (x | λ) = F (λx), and the Gini index of F ( · | λ) is independent of λ.

Proof. According to 1.I.(12),

Gini(F (· | λ)) =

∫ ∞

0
F (λx) F̄ (λx) dx∫ ∞

0
F̄ (λx) dx

. (2)

With the change of variables y = λx in both numerator and denomi-
nator, the result follows. �

Another commonly used measure of shape in the sense of the Lorenz
order is the coefficient of variation

CV (X) = σ/μ (3)

defined in 1.C.3 for a random variable X with expectation μ and
standard deviation σ. This measure is independent of scale. Because
(x− μ)2 is convex, it follows that

X ≤Lorenz Y ⇒ CV (X) ≤ CV (Y ).

Because X ≤cx Y implies that EX = EY and again because (x− μ)2

is convex, it also follows that

X ≤cx Y ⇒ CV (X) ≤ CV (Y ).

On the other hand, the stochastic, hazard rate, or likelihood ratio or-
derings of Section A do not imply that the coefficients of variation are
ordered. Simple counterexamples are obtained by letting Y = X + c,
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c > 0. Then, CV (X) > CV (Y ) but X ≤st Y ;X ≤hr Y when X has an
increasing hazard rate and X ≤lr Y when X has a log-concave density.

c. Skewness and the Convex Transform Order

The notion of skewness is intended to represent departure of a density
from symmetry (or sometimes even departure from normality), where
one tail of the density is “stretched out” more than the other. Because
symmetry is most natural for distributions with support (−∞,∞), the
notions of asymmetry may be most natural in that case; but they also
have a place in describing distributions with support [0,∞).

The notion of skewness has been applied particularly to unimodal
densities. If the mode of such a density is to the left of “center” and the
right-hand tail is relatively long, then the density is said to be “skewed
to the right.” This is the kind of skewness most often encountered in
distributions with support [0,∞).

“Departure from symmetry” is a rather vague phrase, and the his-
torical approach to making it more precise was to define measures of
skewness; some of the various proposed measures are given in Sec-
tion C.e.

An alternative to measuring skewness is to find an ordering ≤ for
which “F ≤ G” captures the essence of what “F is less skewed than
G” should mean. Perhaps surprisingly, there is a relatively simple and
reasonable way to arrive at such an order.

If Y = ψ(X), what properties should ψ have in order that Y have a
distribution “more skewed” than X? To answer this question, imagine
that the density f of X is graphed on a sheet of rubber, a sheet that
becomes thinner and thinner toward the right, and thus more and more
easily stretched toward the right. Now, grasp the right-hand edge of the
rubber sheet, stretch it out, and watch the density change shape. If f
was symmetric and unimodal before stretching, then after stretching f
has become a new density g which is also unimodal, but which has a
relatively long right-hand tail; g is skewed to the right. The flexibility
requirement of the rubber sheet simply means that the horizontal axis
has been transformed by an increasing function ψ with increments in-
creasing as one moves to the right, i.e., ψ(x + Δ) − ψ(x) is increasing
in x. This means that ψ is convex. The following proposition is needed
to formalize these ideas.

C.6. Proposition. Suppose that Y = ψ(X), where ψ is strictly in-
creasing. Suppose further that X has distribution function F and Y
has distribution function G. Then, ψ = G−1F .
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Proof. Compute that

G(y) = P{ψ(X) ≤ y} = P{X ≤ ψ−1(y)} = F (ψ−1(y)),

so that

y = G−1F (ψ−1(y)).

This means that ψ = G−1F. �

Although the definition of ψ in Proposition C.6 is in terms of G−1F ,
it should be noted that according to 20.A(6),

G−1F = Ḡ−1F̄ . (4)

The above discussion together with Proposition C.6 motivates the
following ordering for skewness due to van Zwet (1964).

C.7. Definition. Suppose that X has distribution function F and Y
has distribution function G. Then, X is said to be smaller in the convex
transform order than Y, written X ≤c Y , if G−1F (x) is convex in x on
the support of X. The notation F ≤c G is also used to mean X ≤c Y .

The convex transform order is not to be confused with the convex
order discussed in Section B.

d. Geometric Interpretation of the Convex Transform Order

For consideration of the ≤c order, various equivalencies are sometimes
convenient. The following are given without proof because each step
should be clear.

The notation concerning crossings used in the following proposition
is described in Section 21.B.g.

C.8. Proposition. The following conditions are equivalent:

(i) Ḡ−1F̄ is convex.
(ii) For all real a, b, Ḡ−1F̄ (x) − (ax + b) has at most two changes of
sign; if there are two sign changes, they are in the order +, −, +.
(iii) For all real a, b, F̄ (x) − Ḡ(ax + b) has at most two changes of sign;
if there are two sign changes, they are in the order −, +, −.
(iv) For all real a, b, F̄ (ax + b) − Ḡ(x) has at most two changes of sign;
if there are two sign changes, they are in the order −, +, −.
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(v) For all real a, b, Ḡ(x) − F̄ (ax + b) has at most two changes of sign;
if there are two sign changes, they are in the order +, −, +.
(vi) For all real a, b, F̄−1Ḡ(x) − (ax + b) has at most two changes of
sign; if there are two sign changes, they are in the order −, +, −.

Note that the last condition states that F̄−1Ḡ(x) is concave; it is some-
times convenient to check concavity of F̄−1Ḡ rather than convexity of
Ḡ−1F̄ (see Proposition 21.A.7).

Note that above-mentioned consideration may as well be limited
to a > 0, for otherwise there can be only one crossing. So the convex
transform order is equivalent to the condition that G, or any distribu-
tion of the same type as G, has a survival function that crosses F̄ at
most twice, and if there are two crossings, F̄ has the smaller values in
the upper tail.

C.9. Proposition. If X ≤c Y , then aX + b ≤c Y and X ≤c aY + b
for all a > 0 and real b.

This proposition can be verified either directly from the definition
or from the geometric interpretation of the ordering. It indicates that
the order is a proper shape order under either condition of Definition
C.1, so it is useful for all random variables, nonnegative or not.

e. Measures of Skewness

It has been generally accepted (see, e.g., Arnold and Groeneveld, 1995)
that any measure γ of skewness should satisfy certain conditions. To
state these conditions, it is convenient to write γ(X) and γ(F ) inter-
changeably, it being understood that X has the distribution F.

γ(X) = γ(aX + b) for all a > 0 and all b. (5)
γ(X) = −γ(−X). (6)
If F ≤c G, then γ(F ) ≤ γ(G). (7)

Note that (7) implies

γ(F ) = 0, F is symmetric. (8)

Several well-known measures of skewness have been proposed. Early
on Sir Francis Galton proposed the measure

lower quartile + upper quartile − 2(median)
upper quartile− lower quartile

. (9)
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A measure of skewness proposed by Pearson (1895) for unimodal dis-
tributions is

[mean − mode]/[standard deviation]. (10)

Of course, this is 0 for symmetric unimodal distributions and invariant
under scale change. For a distribution of the random variable X, a more
commonly used measure of skewness, proposed by Edgeworth (1904)
and Charlier (1906), is

E(X − μ)3

σ3 =
E[X − E(X)]3

{E[X − EX]2}3/2 , (11)

which requires the existence of a third moment. This measure of skew-
ness is also zero for symmetric distributions and invariant under scale
change. It is not hard to show by example that either of these measures
can also be zero for distributions with nonsymmetric densities. The
measure (10) satisfies (5) to (8), but van Zwet (1964, p. 16) shows by a
counterexample that (9) fails to satisfy (7). See Oja (1981) and Arnold
and Groeneveld (1995) for these results and other measures of skewness.

f. The Star Order

The star order is defined in a fashion very similar to the convex trans-
form order, but replaces the convexity condition by the weaker star-
shaped condition (see Definition 21.A.8). Note the lack of symmetry in
the terminology that is entrenched in the literature; the star order is
closely related to the convex transform order, not the convex order as
the terminology might suggest.

Again, let X and Y be nonnegative random variables with respective
distribution functions F and G. Assume that the support of X is a
possibly infinite interval.

C.10. Definition. Suppose that X has distribution function F and
Y has distribution function G. Then X is said to be smaller in the
star order than Y, written X ≤∗ Y , if G−1F is starshaped in x, i.e.,
G−1F (x)/x is increasing in x ≥ 0. Similarly, write F ≤∗ G to mean that
X ≤∗ Y .

g. Geometric Interpretation of the Star Order

The order ≤∗ has an interpretation similar to that of the convex
transform order; the following proposition is to be compared with
Proposition C.8.
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C.11. Proposition. The following conditions are equivalent:

(i) G−1F = Ḡ−1F̄ is starshaped.
(ii) Ḡ−1F̄ (x)/x is increasing in x ≥ 0.
(iii) For all real a, [Ḡ−1F̄ (x)/x] − a has at most one sign change; if there
is a sign change, it is in the order −,+.
(iv) For all real a, F̄ (x) − Ḡ(ax) has at most one sign change; if there
is a sign change, it is in the order +,−.
(v) For all real a, F̄ (ax) − Ḡ(x) has at most one sign change; if there
is a sign change, it is in the order +,−.
(vi) For all real a, Ḡ(x) − F̄ (ax) has at most one sign change; if there
is a sign change, it is in the order −,+.
(vii) For all real a, F̄−1Ḡ(x) − ax has at most one sign change; if there
is a sign change, it is in the order +,−.
(viii) F−1G(x)/x is decreasing in x > 0.

Condition (iv) says that X ≤∗ Y if and only if F̄ crosses Ḡ at most
once, and only from above, no matter how Y is scaled; this is to be
compared with B.5(iii) where the change is in location rather than
scale. One can think of a collection of grid lines obtained by graphing
Ḡ with all possible scalings; then X ≤∗ Y if F̄ passes through the grid
by crossing grid lines only from above. That this is a shape order is the
content of the following proposition.

C.12. Proposition. If X ≤∗ Y , then aX ≤∗ Y , for all a > 0.

Proof. This result follows from the equivalence of (iv) and (vii). �

C.13. Proposition. Suppose that F ≤∗ G and that for a fixed r > 0,

∫ ∞

0
xr dF (x) =

∫ ∞

0
xr dG(x).

If ψ is an increasing function, then

∫ ∞

0
ψ(x)xr−1 F̄ (x) dx ≤

∫ ∞

0
ψ(x)xr−1 Ḡ(x) dx.

Proof. If F ≤∗ G, then F̄ crosses Ḡ at most once, and only from above.
Because the rth moments coincide, they must cross at least once (see
Section 21.B.f). Hence, F̄ must cross Ḡ exactly once and from above.
Let x0 be a solution of F̄ (x) = Ḡ(x). Then xr−1F̄ (x) crosses xr−1Ḡ(x)
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at x0, and from above. It follows with the aid of 1.C(4) that

∫ ∞

0
ψ(x)xr−1F̄ (x) dx−

∫ ∞

0
ψ(x)xr−1Ḡ(x) dx

=
∫ ∞

0
[ψ(x) − ψ(x0)][xr−1F̄ (x) − xr−1Ḡ(x)] dx.

Because the two factors of the integrand have opposite signs for all x,
the result follows. �

h. The Superadditive Order

C.14. Definition. Suppose that X has distribution function F and
Y has distribution function G. Then, X is said to be smaller in
the superadditive order than Y, written X ≤su Y , if G−1F = Ḡ−1F̄ is
superadditive in x, i.e., G−1F (x + y) ≥ G−1F (x) + G−1F (y), x, y ≥ 0.
Similarly, F ≤su G means X ≤su Y .

Note that the superadditive order is related to the convex transform
order, not the convex order as its name might suggest.

The superadditive order is perhaps less interesting than the star
order; in this book, there are few instances where the superaddi-
tive order is encountered. However, the convex transform order, the
star order, and the superadditive order, are all used in reliability theory,
with G taken to be an exponential distribution (see Chapter 4).

i. Some Order Relationships

It follows from Definition 21.A.10 that

X ≤c Y ⇒ X ≤∗ Y ⇒ X ≤su Y. (12)

Also it can be shown (Shaked and Shanthikumar, 1994, p. 107, 2007,
p. 231) that if X and Y are nonnegative random variables with finite
strictly positive expectations, then the star order implies the Lorenz
order.

j. Summary

X ≤c Y ⇒ X ≤∗ Y
⇒ X ≤su Y

⇒ X ≤Lorenz Y
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D. Cone Orders

The literature includes definitions and discussions of a bewildering ar-
ray of distribution orders, and this chapter cannot begin to review the
entire subject. Cone orders constitute one class of orders that needs to
be mentioned, if only briefly.

Both stochastic order ≤st and convex order ≤cx can be defined
in terms of expectations of functions in a specified class: X ≤ Y if
Eφ(X) ≤ Eφ(Y ) for all φ in the class. For stochastic order, the class
consists of all increasing functions for which the expectations exist; for
convex order, the class consists of all convex functions for which the ex-
pectations exist. Both classes of functions form convex cones; a class of
functions C forms a convex cone if φ1, φ2 ∈ C implies a1φ1 + a2φ2 ∈ C,
for all a1, a2 > 0.

D.1. Definition. Let C be a convex cone of measurable functions.
Write X ≤st

C Y to mean that

Eφ(X) ≤ Eφ(Y ), for all φ in C such that the expectations exist.

The order ≤st
C is called a cone order.

In addition to stochastic and convex order, a number of examples
of cone orders can be found in the literature.

D.2. Laplace transform order. For nonnegative random variables
X and Y, write X ≤Lt Y to mean that E exp {−sX} ≥ E exp {−sY },
for all s > 0, that is, −E exp {−sX} ≤ −E exp {−sY }. Here, the con-
vex cone consists of all functions the negative of which is completely
monotone, that is, of all mixtures of functions of the form φ(x) =
−exp {−sx}, s > 0 (see Definition 20.D.4 and Proposition 20.D.5). The
Laplace transform order is discussed, e.g., by Shaked and Shanthikumar
(1994, p. 95; 2007, Chapter 5). This order is weaker than stochastic or-
der because the condition A(2) is required for only a limited class of
increasing functions.

D.3. Increasing convex order. Let C be the class of convex increas-
ing functions, and denote the resulting cone order by ≤icx. The cone
here is a proper subset of the class of all convex functions, and conse-
quently X ≤cx Y implies X ≤icx Y . But the converse is false (see Shaked
and Shanthikumar, 2007, p. 184).

D.4. Increasing concave order: Second-order stochastic domi-
nance. Let C be the class of concave increasing functions, and denote
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the resulting cone order by ≤ssd. This order, called second-order stochas-
tic dominance, arises in economics and utility theory. In this context,
the usual stochastic order is called first-order stochastic dominance (see
Hong and Herk, 1996) for this application and for further references).
It can be shown with the aid of Proposition 21.A.19 that X ≤ssd Y if
and only if the corresponding distribution functions F and G satisfy
the condition

∫ x

−∞
F (z) dz ≥

∫ x

−∞
G(z) dz, for all x.

This inequality is often used as a definition of second-order stochastic
dominance.

A number of other examples, extensions to higher dimensions, and
theoretical results about cone orders are given by Marshall (1991).

The following display reviews the relationships between the orders
discussed in this section.

X ≤cx Y ⇒ X ≤icx Y

⇑
X ≤st Y ⇒ X ≤Lt Y
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Mixtures

It often happens that data from several populations is mixed and infor-
mation about which subpopulation gave rise to individual data points
is unavailable. For example, measurements of life lengths of a device
may be gathered without regard to the manufacturer, or data may be
gathered on humans without regard, say, to blood type. If the ignored
variable (manufacturer or blood type) has a bearing on the character-
istic being measured, then the data are said to come from a mixture.
In actuality, it is hard to find data that are not some kind of a mix-
ture, because there is almost always some relevant covariate that is not
observed. Mixture models arise in a number of applications and statis-
tical settings, many of which are discussed by Titterington, Smith and
Makov (1985). Important early work on mixtures was done by Teicher
(1960, 1962). For a general discussion of mixtures, see Lindsay (1995)
or Ord (1972).

Mixtures also play a central role in Bayesian statistics, not from
a physical mixing of several populations but from a lack of precise
knowledge of the exact distribution from which data is obtained. In
either case, the mathematics is much the same, although interpretations
of results may differ.

From a purely mathematical point of view, functions such as sums,
products, or ratios of independent random variables have distributions
that take on the form of a mixture.

Mixtures are defined and briefly discussed in Section 1.E, and can be
found throughout much of this book. Here, some basic general results
are given.
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A. Basic Ideas

Let F = {F (· | θ) : θ ∈ Θ} be a family of distributions indexed by a
parameter θ which takes values in a set Θ. When θ can be regarded as
a random variable with a distribution function G, then

F (x) =
∫

Θ
F (x | θ) dG(θ) (1)

is the mixture of F with respect to G, and G is called the mix-
ing distribution. Mixtures have sometimes been called “compound
distributions.”

Bayesian terminology is somewhat different. In this context, the
distribution F (· | θ) is sometimes called the model distribution, F is
called the predictive distribution, and G is the prior distribution. Both
the model distribution and the prior distribution may be conditioned
by additional information, which is suppressed here because statistical
considerations are not discussed in this book. For further discussions of
Bayesian analysis, see, for example, Barlow (1985), Harris and Singpur-
walla (1968), or Press (2003).

With the exception of degenerate distributions (distribution func-
tions taking only the values 0 and 1), all distributions have nontrivial
mixture representations, and such representations are not unique. In
applications, there is often at least one natural mixture representation,
the recognition of which is sometimes important or perhaps even essen-
tial for an understanding of the underlying random variable of interest.

It may be worth noting that the mixture (1) need not be proper
even though F (x | θ) is proper for all θ. For example, if F (x | θ) is
an exponential distribution with parameter θ and if G is a Poisson
distribution (defined in Section 20.E.c), then limx→∞ F (x) < 1.

Finite mixtures and, in particular, mixtures of but two distributions
are of special interest, and are relatively easy to understand. Such mix-
tures are discussed, e.g., by Titterington, Smith and Makov (1985).

Mixtures are used in later chapters to derive new parametric families
of distributions from old ones; this is done by using a mixing distribu-
tion G, which has a parameter; the mixture retains that parameter so
that it may yield a new parametric family. Sometimes, a mixture rep-
resentation is also helpful in theoretical studies, especially when the
components of the mixture are relatively simple to understand and
work with.
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If F is given by (1), then the corresponding survival function is given
by

F̄ (x) =
∫

Θ
F̄ (x | θ) dG(θ). (2)

If a density f(· | θ) of F (· | θ) exists for all θ and F is given by (1),
then F has the density f given by

f(x) =
∫

Θ
f(x | θ) dG(θ). (3)

But similar representations are not true for hazard functions, hazard
rates, or residual life distributions. If F has the representation (1), then
its residual life survival function F̄t is given by

F̄t(x) =

∫
Θ
F̄ (x + t | θ) dG(θ)∫
Θ
F̄ (t | θ) dG(θ)

, (4)

and when densities exist, the distribution F of (1) has hazard rate

r(x) =

∫
Θ
f(x | θ) dG(θ)∫

Θ
F̄ (x | θ) dG(θ)

. (5)

Thus, both the residual life distribution and the hazard rate are ratios
of mixtures. However, these ratios can be written as actual mixtures,
but with a mixing distribution that depends upon t in the case of (4)
or x in the case of (5); this observation, discussed further in Section
B, turns out to provide important insights into the behavior of the
mixture, most of which are well known in Bayesian analysis.

A.1. Proposition. Let r(x | θ) = f(x | θ)/F̄ (x | θ); if rl ≤ r(x | θ) ≤
ru for all θ in the support of G, then rl ≤ r(x) ≤ ru, where r(x) is
given by (5).

The proof of this straightforward consequence of (5) is omitted.
Results essentially equivalent to Proposition A.1 have been obtained
by Block and Joe (1997) and Badia, Berrade, Campos and Navascués
(2001).
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The special case in which G puts mass at but two points is suffi-
ciently important to examine in detail. Then F is the mixture of but
two distributions, say F1 and F2, and (1) takes the form

F (x) = πF1(x) + π̄F2(x), (6)

where π̄ = 1 − π.
Suppose that Xi has distribution Fi, i = 1, 2, and suppose that these

random variables are independent. Let I be a random variable inde-
pendent of the Xi, taking only the values 0 and 1, for which

P{I = 1} = π, P{I = 0} = π̄.

Then, the mixture

X = IX1 + (1 − I)X2 (7)

has the distribution function F of (6). Equation (7) shows explicitly
that X is sometimes X1 and sometimes X2.

When (6) holds, the hazard rate (5) becomes

r(x) =
πf1(x) + π̄f2(x)
πF̄1(x) + π̄F̄2(x)

= p(x)r1(x) + p̄(x)r2(x), (8)

where

p(x) =
πF̄1(x)

πF̄1(x) + π̄F̄2(x)
, p̄(x) = 1 − p(x), (9)

and ri is the hazard rate of Fi, i = 1, 2. Thus, (8) exhibits r in the
form of a mixture or average of r1(x) and r2(x), with weights that are
functions of the argument x. It follows that

min [r1(x), r2(x)] ≤ r(x) ≤ max [r1(x), r2(x)]. (10)

It should be intuitively clear that the weights p(x) or p̄(x) placed
on the smallest hazard rate are increasing, because as a device ages
without failure, the likelihood that the device came from a relatively
strong component of the mixture (small hazard rate) should increase.
This is the content of the following proposition.
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A.2. Proposition. Suppose that r is given by (8) and p is given
by (9). If r1(x) < r2(x), then d

dzp(z)|z=x ≥ 0, with strict inequality if
F̄1(x)F̄2(x) > 0.

First Proof. A direct differentiation of p(z) yields

d

dz
p(z) =

ππ̄F̄1(z)F̄2(z)[r2(z) − r1(z)]
[πF̄1(z) + π̄F̄2(z)]2

≥ 0,

and clearly strict inequality holds if F̄1(x)F̄2(x) > 0. �

Second Proof. Suppose that F̄1(x)F̄2(x) > 0; otherwise (9) simplifies
and the result is immediate. It follows from (9) that

p(z) =
π

π + π̄[F̄2(z)/F̄1(z)]
, (11)

so it is only necessary to show that F̄2(z)/F̄1(z) is strictly decreasing
in z at z = x. But

F̄2(z)/F̄1(z) = exp
{
−

∫ z

0
[r2(u) − r1(u)] du

}
(12)

and the result follows. �

A.3. Example. Suppose that F̄i(x) = exp{−λix}, i = 1, 2 are expo-
nential distributions, where λ1 < λ2, and let F (x) = πF1(x) + π̄F2(x).
Then (11) becomes

p(x) =
π

π + π̄e−(λ2−λ1)x
.

Because λ1 < λ2, p(x) is increasing in x. This case of Proposition A.2
is given by Mi (1998).

Results similar to Proposition A.2 are true more generally, and these
are the topic of Section B.

B. The Conditional Mixing Distribution

Equations A(4) and A(5) exhibit the residual life survival function and
the hazard rate of the distribution function F given by A(1). These
quantities are not exhibited as mixtures, but instead are written as
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ratios of mixtures. It is useful to write the ratios as true mixtures, but
with a mixing distribution that depends upon the age t. Note that if

dH(θ | t) =
F̄ (t | θ) dG(θ)∫
Θ
F̄ (t | ξ) dG(ξ)

, (1)

then

F̄t(x) =

∫
Θ
F̄ (x + t | θ) dG(θ)∫
Θ
F̄ (t | ξ) dG(ξ)

=

∫
Θ
F̄t(x | θ)F̄ (t | θ) dG(θ)∫

Θ
F̄ (t | ξ) dG(ξ)

=
∫

Θ
F̄t(x | θ) dH(θ | t) (2)

and

r(t) =

∫
Θ
f(t |θ) dG(θ)∫

Θ
F̄ (t |ξ) dG(ξ)

=

∫
Θ
r(t |θ)F̄ (t |θ) dG(θ)∫

Θ
F̄ (t |ξ) dG(ξ)

=
∫

Θ
r(t |θ) dH(θ | t).

(3)
When Θ = [0,∞), (1) can be replaced by the notationally simpler

H(θ | t) =

∫ θ

0
F̄ (t | ξ) dG(ξ)∫ ∞

0
F̄ (t | ξ) dG(ξ)

. (4)

The distribution H is called the conditional mixing distribution given
X > t. It is natural to expect that H depends upon t because survival to
time t indicates that the “luck of the draw” has yielded an item from
a relatively robust part of the mixture. Or, in the Bayesian context,
“survival to time t” is information which, when incorporated into the
prior distribution, shifts the prior toward more robust distributions. As
time passes, one may expect that the conditional mixing distribution
puts more and more of its weight on parts of the mixture with higher
survival probabilities (lower hazard rates). Recall that if rX(z) ≥ rY (z),
then X is said to be smaller in the hazard rate order than Y ; this is
a possible source of confusion that comes about because higher hazard
rates mean lower survival probabilities.
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B.1. Proposition. Suppose that F = {F (· | θ) : θ ≥ 0} is a family of
distributions with the property that

r(x | θ) is decreasing in θ for all x in an interval I. (5)

Then, the family {H(· | x) : x ≥ 0} of conditional mixing distributions
is hazard rate increasing in x ∈ I.

Proof. The hazard rate order of Definition 2.A.5 is equivalent to 2.A(6e)
when hazard rates exist, as is the case here. If G has the density g, then
H has the hazard rate rH given by

rH(θ | x) =
F̄ (x | θ)g(θ)∫ ∞

θ
F̄ (x | ξ) dG(ξ)

=
g(θ)∫ ∞

θ
[F̄ (x | ξ)/F̄ (x | θ)] dG(ξ)

.

(6)
In (6), ξ ≥ θ; it follows from (5) that in this case,

F̄ (x | ξ)/F̄ (x | θ) = exp
{
−

∫ x

0
[r(u | ξ) − r(u | θ)] du

}

is increasing in x, and from the second form of rH(θ | x) in (6) it is
apparent that rH(θ | x) is decreasing in x. �

The hypothesis (5) is stronger than necessary, and a more general
result can be obtained without the use of densities and hazard rates.
To this end, let H be given by (4) and let

H̄η(θ | x) = H̄(θ + η | x)/H̄(η | x), θ, η, x ≥ 0

be the residual survival function of H at η.

B.2. Proposition. If, for some fixed x and y,

F̄ (x | α)F̄ (y | β) ≥ F̄ (y | α)F̄ (x | β), 0 ≤ α < β, (7)

then

H̄η(θ | x) ≤ H̄η(θ | y) for all η, θ > 0, (8)

i.e., in the notation of Definition 2.A.5, H̄(· | x) ≤hr H̄(· | y).
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Proof. It follows from (7) that

∫ θ+η

η
F̄ (x | α) dG(α)

∫ ∞

θ+η
F̄ (y | β) dG(β)

≥
∫ θ+η

η
F̄ (y | α) dG(α)

∫ ∞

θ+η
F̄ (x | β) dG(β). (9)

Clearly,
∫ ∞

θ+η
F̄ (x | α) dG(α)

∫ ∞

θ+η
F̄ (y | β) dG(β)

=
∫ ∞

θ+η
F̄ (y | α) dG(α)

∫ ∞

θ+η
F̄ (x | β) dG(β); (10)

addition of (9) and (10) gives

∫ ∞

η
F̄ (x | α) dG(α)

∫ ∞

θ+η
F̄ (y | β) dG(β)

≥
∫ ∞

η
F̄ (y | α) dG(α)

∫ ∞

θ+η
F̄ (x | β) dG(β),

which is just a way of rewriting (8). �

Condition (7) would be a total positivity condition (see Section
21.B) if it were required to hold for all x ≤ y.

B.3. Corollary. If F̄ (z | θ) is totally positive of order 2 in θ and z ≥ 0,
then H̄(· | x) is hazard rate increasing in x ≥ 0.

Proof. This is immediate from Proposition B.2 because the total posi-
tivity condition is that (7) holds for all x < y. �

B.4. Alternative proof of Proposition B.1. When densities exist,
condition (5) is equivalent to the condition that F̄ (x | α)/F̄ (x | β) is
decreasing in x ∈ I whenever α < β. Thus, (7) holds for all x < y in I,
so the conclusion of Proposition B.1 follows from Proposition B.2. �

C. Limiting Hazard Rates

C.1. Proposition. Recall that the mixture F (x) = πF1(x) + π̄F2(x)
has the hazard rate r(x) = p(x)r1(x) + p̄(x)r2(x) given by A(8) and
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A(9). If the limits of r1(t), r2(t), and r(t) as t → ∞ all exist, then

limt→∞ r(t) = min{limt→∞ r1(t), limt→∞ r2(t)}.

Proof. Under the hypotheses of this proposition, it follows from A(11)
and A(12) that with p as defined in A(9),

limx→∞ p(x) = 1,

and so the result is immediate. �

C.1.a. Example. As in Example A.3, suppose that F̄i(x) =
exp {−λix}, i = 1, 2 are exponential distributions and λ1 < λ2. Then
according to A(8), F = πF1 + π̄F2 has the hazard rate

r(x) =
λ1π + λ2π̄ e−(λ2−λ1)x

π + π̄ e−(λ2 −λ1)x
.

This hazard rate is decreasing in x and limt→∞ r(t) = λ1.

Proposition C.1 is stated without proof by Vaupel and Yashin
(1985). It has the following intuitive content, recognizable as a
Bayesian interpretation. Consider an item with the mixture distribution
F = πF1 + π̄F2. As the item ages without failure, the conditional prob-
ability that the item came from the stronger of the two populations in-
creases. This stronger population is the one with the lower hazard rate.

In Proposition C.1, the limits limt→∞ r1(t) and limt→∞ r2(t) are
assumed to exist, but of course this is not always the case. More refined
results are obtained by Block and Joe (1997) that consider limiting
values of the ratio r(t)/r1(t).

Block, Li and Savits (2001) give an example in which limt→∞ r1(t)
and limt→∞ r2(t) both exist, but limt→∞ r(t) fails to exist; an essential
feature of this example is the property that limt→∞ r2(t) = ∞ suffi-
ciently fast that limt→∞ p̄(x)r2(x) > 0 (whereas limt→∞ p̄(x) = 0 be-
cause limx→∞ p(x) = 1) (see A(8)).

The following proposition is a variant of Theorem 4.1 of Block, Mi,
and Savits (1993). It can be viewed as an extension of Proposition C.1,
with the discrete mixing distribution replaced by a general distribution.
Proposition C.2 is more technically involved than most results in this
book. Additional results regarding limiting values of hazard rates of
mixtures are given by Block, Li and Savits (2003b).
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C.2. Proposition. Let F̄ (x) =
∫
Θ F̄ (x | θ) dG(θ). Suppose that

limt→∞ r(t) exists, where r given by A(5) is the hazard rate of F. Sup-
pose that r(x | θ) = f(x | θ)/F̄ (x | θ) is such that limx→∞ r(x | θ) = ρθ
exists uniformly, for all θ, and let ρ = inf{ρθ : θ ∈ Θ}. Suppose further
that r(x | θ) is measurable in θ, for all x, so that Aε = {θ : ρ ≤
ρθ ≤ ρ + ε} and their complements Ac

ε are measurable sets. If for every
ε > 0, P{θ : ρ ≤ ρθ ≤ ρ + ε} > 0, then limx→∞ r(x) = ρ.

Proof. Let π = P{Aε}. Then F can be written in the form A(6) where

F1(x) =

∫
Aε

F (x | θ) dG(θ)

π
and F2(x) =

∫
Ac

ε

F (x | θ) dG(θ)

π̄
.

By Proposition A.1 and the uniform convergence of r(x | θ) to ρθ, the
hazard rate of F1 has lim inf and lim sup in the interval [ρ, ρ + ε].
Because ε is arbitrary, this means that the limiting value of the hazard
rate of F1 exists and is ρ. By Proposition C.1 the limiting hazard rate
of F is also ρ. �

The following example shows that the uniform convergence required
in Proposition C.2 is essential. It is a rather striking example where all
components of a mixture have limiting hazard rates of infinity, whereas
the limiting hazard rate of the mixture is zero.

C.3. Example (Gupta and Gupta, 1996; Block, Li and Savits, 2001).
Let r(x | θ) = θγxγ−1, γ > 1, be the hazard rate of a Weibull distribu-
tion, and let G have the gamma density

g(θ) = λνθν−1 e−λθ, λ, ν, θ > 0.

Then, the mixture F̄ (x) =
∫ ∞
0 F̄ (x | θ) dG(θ) has the hazard

rate r(x) = (νγxγ−1)/(λ + xγ). Here, limx→∞ r(x) = 0 even though
limx→∞ r(x | θ) = ∞. But the convergence is not uniform.

For another example where the conclusions of Proposition C.2. fail
because convergence is not uniform, see Example 4.C.7.b and Sec-
tion 10.A.h.

D. Hazard Transforms of Mixtures

The hazard function of a mixture, determined by the hazard functions
ρθ of the components F (· | θ) together with the mixing distribution G,
is given explicitly by means of the hazard transform.
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It may be helpful to consider first the case that G is a finitely
discrete distribution with mass pi at the point θi, i = 1, . . . , n, where∑n

i=1 pi = 1. Let ρi(x) = −log F̄ (x | θi) be the hazard function of the
ith component of the mixture, i = 1, . . . , n. The hazard transform of
this mixture is given by

η(ρ1, . . . , ρn) = −log
n∑
i=1

pi e
−ρi . (1a)

This function gives the hazard function −log
∑n

i=1 piF̄ (x | θi) =
−log

∑n
i=1 pi e

−ρi(x) of the mixture
∑n

i=1 piF̄ (x | θi) in terms of the haz-
ard functions ρi of the components of the mixture. In (1a), the depen-
dency of η on the argument x and the pi are suppressed to simplify
notation.

Note that the hazard transform has n arguments because the mix-
ture has n components. This means that when the mixture has an
infinite number of components, the hazard transform has an infinite
number of arguments. For a mixture of the form

F̄ (x) =
∫

Θ
F̄ (x | θ) dG(θ),

it is necessary to replace the vector argument (ρ1, . . . , ρn) of (1a)
by a more general version, which is denoted here by the expression
〈ρθ, θ ∈ Θ〉. This reduces to a familiar vector only when Θ has a finite
number of points.

D.1. Definition. The function η defined by

η(〈ρθ, θ ∈ Θ〉) = −log
∫

Θ
e−ρθ dG(θ), 0 ≤ ρθ ≤ ∞ (1b)

is called the hazard transform η of the mixture A(1).

Note that the dependency of η on the distribution G has been sup-
pressed in this notation just as the dependency on the pi is suppressed
in (1a) to simplify the notation.

The usual set notation {ρθ, θ ∈ Θ} can be found in the literature in
place of 〈ρθ, θ ∈ Θ〉, but this is not quite correct because elements of a
set have no specified order as do the components of a vector. Clearly
in (1b), the subscript θ is not arbitrarily assigned, but must properly
match the argument of G.
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In what follows, the notation ρ = 〈ρθ, θ ∈ Θ〉 is sometimes used for
simplicity. Just as with vectors

αρ + ᾱρ∗ = 〈αρθ + ᾱρ∗θ, θ ∈ Θ〉,

where as usual, ᾱ = 1 − α.
The hazard transform has the property that the hazard function R

of the mixture A(1) is given by R(t) = η〈R(t | θ), θ ∈ Θ〉.
D.2. Proposition (Esary, Marshall and Proschan, 1970). The hazard
transform of a mixture is concave.

Proof. Let Z be a random variable taking values in Θ with distribution
G, and write

∫
Θ
e−ρθ dG(θ) = E e−ρz .

By Hölder’s inequality 24.B.5,

E e−αρz e−(1−α)ρ∗
z ≤ (E e−ρz)α(E e−ρ∗

z)1−α, 0 ≤ α ≤ 1,

which together with (1) yields

η(αρ + ᾱρ∗) ≥ αη(ρ) + ᾱη(ρ∗),

where ᾱ = 1 − α. �

D.3. Proposition. Suppose the hazard rate of F = πF1 + π̄F2 is given
by A(8). If r1 and r2 are differentiable at x, then

r′(x) ≤ max [r′1(x), r′2(x)]. (2)

First Proof. Write r in the form

r(x) =
πr1(x)F̄1(x) + π̄r2(x)F̄2(x)

πF̄1(x) + π̄F̄2(x)

and differentiate to conclude, with tedious but elementary algebra,
that

r′(x) = p(x)r1
′(x) + p̄(x)r2

′(x) − p(x)p̄(x)[r1(x) − r2(x)]2,
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where p(x) is as in A(9). This means that

r′(x) ≤ p(x)r1
′(x) + p̄(x)r2

′(x) ≤ max [r1
′(x), r2

′(x)]. �

Second Proof. The algebraic tedium of the first proof can be avoided by
using the notion of a hazard transform. Write R(x) = η(R1(x), R2(x)),
where η(u, v) = −log(π e−u + π̄ e−v) is the hazard transform of the mix-
ture A(6). Use subscripts on η to indicate partial derivatives and omit
the argument x for notational simplicity. Also for notational simplicity,
write ηi = ηi(R1, R2) and ηij = ηij(R1, R2), i, j = 1, 2. Then according
to 24.A.6,

R′ = η1R1
′ + η2R2

′

and

R′′ = η11(R1
′)2 + η22(R2

′)2 + 2η12R1
′R2

′ + η1R1
′′ + η2R2

′′.

Direct calculation shows that

η11(u, v) = η12(u, v) = η22(u, v) =
−ππ̄ e−(u+v)

(π e−u + π̄ e−v)2 ≤ 0.

Thus,

R′′ ≤ η1r
′
1 + η2r

′
2 ≤ max [r′1, r

′
2].

Here, the second inequality follows from the easily verified fact that
η1 + η2 = 1. �

Note that a counterpart lower bound for the derivative of r cannot
be given; for example, when both F1 and F2 are exponential distribu-
tions, the component hazard rates have zero derivatives everywhere,
but r has a strictly negative derivative.

D.4. Corollary. If all component distributions of a mixture have haz-
ard rates decreasing and differentiable at the point x, then the mixture
has a hazard rate decreasing at x.

Proof. For a mixture of two distributions, the result follows immediately
from Proposition D.3. From this fact, an induction argument shows
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that it holds for any mixture of a finite number of distributions, and
the proof is completed by a limiting argument. �

Corollary D.4 refers to monotonicity at a point, but that mono-
tonicity may extend to all points, in which case the hazard rates are
decreasing.

D.4.a. Corollary. If all component distributions of a mixture have
decreasing hazard rates, the mixture has a decreasing hazard rate.

D.4.b. Remark. This result appears again as Proposition 4.C.16. It
has important consequences in reliability theory and in other applica-
tions because it sometimes explains why decreasing hazard rates are
encountered unexpectedly by those who are not aware of this mixture
result. Corollary D.4.a shows, in particular, that a mixture of expo-
nential distributions has a decreasing hazard rate. Distributions with
decreasing hazard rate are further discussed in Section 4.C.

D.5. Proposition. If η is the hazard transform of a mixture and
〈ρθ, θ ∈ Θ〉, 〈ρ∗θ, θ ∈ Θ〉 are similarly ordered, i.e.,

(ρα − ρβ)(ρ∗α − ρ∗β) ≥ 0 for all α, β ∈ Θ,

then

η(ρ + ρ∗) ≤ η(ρ) + η(ρ∗). (3)

Proof. The proof uses Chebyshev’s “other” inequality 20.H.1; according
to this inequality,

E e−ρΘ e−ρ∗
Θ ≥ E e−ρΘE e−ρ∗

Θ ,

which upon taking logarithms yields the claim of the proposition. �

E. Mixtures and Minima

Suppose that X = min [X1, X2], where Xi has distribution Gi, i = 1, 2.
If X1 and X2 are independent, then the survival function F̄ of X is
given by

F̄ (x) = P{min [X1, X2] > x} = P{X1 > x,X2 > x} = Ḡ1(x)Ḡ2(x).
(1)

This is a simple version of the competing risk model discussed more
fully in Section 17.A. Here, the Xi can be regarded as potential waiting
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times for failures due to two different causes, and the actual failure
time is their minimum. Because there are two different possible causes
of failure, the distribution can be thought of as a mixture. In fact, the
equation

F̄ (x) = Ḡ1(x)Ḡ2(x) = πF̄1(x) + π̄F̄2(x) (2)

can be solved using ordinary algebra to obtain the solution

F̄1(x) =

∫ ∞

x
Ḡ2(z) dG1(z)∫ ∞

0
Ḡ2(z) dG1(z)

, F̄2(x) =

∫ ∞

x
Ḡ1(z) dG2(z)∫ ∞

0
Ḡ1(z) dG2(z)

, (3)

and

π =
∫ ∞

0
Ḡ2(z) dG1(z), π̄ = 1 − π =

∫ ∞

0
Ḡ1(z) dG2(z).

There is a partial converse proposition; if F̄ (x) = πF̄1(x) + π̄F̄2(x),
then (1) holds with

Ḡ1(x) = exp
{
−

∫ x

0

π

πF̄1(z) + π̄F̄2(z)
dF1(z)

}
,

Ḡ2(x) = exp
{
−

∫ x

0

π

πF̄1(z) + π̄F̄2(z)
dF2(z)

}
.

However, it may be that one of these survival functions is not proper;
i.e., it may be that either Ḡ1(∞) > 0 or Ḡ2(∞) > 0. But at least one
of these survival functions must be proper.

The above explanation shows that the models (1) and (2) are math-
ematically equivalent provided only that one of the variables X1 or X2
in (1) may take the value ∞ with positive probability. But of course,
motivations for (1) and (2) can be quite different.

E.1. Example. If F1 and F2 are exponential distributions with respec-
tive parameters λ1 and λ2, λ1 	= λ2, then (3) holds where

Ḡ1(x) = [π̄ + π e(λ2−λ1)x]λ1/(λ1−λ2), x ≥ 0,
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and G2 is obtained from G1 by interchanging λ1 and λ2 as well as π and
π̄. If λ1 < λ2, then G1 is proper and G2 is improper. These distributions
are related to the distributions of Section 7.D.

F. Preservation of Orders Under Mixtures

Suppose that X ≤ Y and U ≤ V for some order ≤. With the mixture
representation A(7) in mind, let I be a random variable, independent
of X,Y, U , and V such that P{I = 1} = 1 − P{I = 0} and let W =
IX + (1 − I)U,Z = IY + (1 − I)V . Is W ≤ Z in the same order?

F.1. Proposition. Suppose that (X,Y ), (U, V ), and I are mutually
independent. If X ≤st Y and U ≤st V , then W ≤st Z.

Proof. By using (4) of Proposition 2.A.2, it is possible to assume that
the stochastic orders are orderings that hold with probability 1. Then
the result is immediate. �

Proposition F.1 fails to hold if stochastic order is replaced by the
hazard rate order.

F.2. Example. Let rX , rY , rU , and rV be the hazard rates of X, Y, U,
and V, and let rW and rZ be the hazard rates of W = IX + (1 − I)U
and Z = IY + (1 − I)V . Retain the assumption of independence made
in Proposition F.1. If

rX(x) = 0, x < 1,
= ex, x ≤ 1,

rY (x) = ex, x ≥ 0,
rU (x) = rV (x) = λ, x ≥ 0,

then rW > rZ whenever λ < ee(ex − 1)/(e− 1).
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Nonparametric Families
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4

Nonparametric Families: Densities
and Hazard Rates

Chance, too, which seems to rush along with slack reins, is bridled and governed
by law.

Boethius (Anicius Manlius Severinus Boethius, 480–525),
The Consolation of Philosophy

A. Introduction

A number of nonparametric families of life distributions have been stud-
ied, particularly in the context of reliability theory; the most important
of these families are discussed in this chapter. Because the families are
defined by properties that have physically meaningful interpretations,
an assumption that a distribution lies in a particular family sometimes
can be justified by a physical understanding of the failure mechanism.
For these nonparametric families, many statistical procedures are avail-
able that can be regarded as standing between parametric and standard
distribution-free analyses.

Nonparametric families have received little attention in medical con-
texts, where analyses have tended to be based either on parametric
models or have used standard nonparametric methods. In fact, most
of the nonparametric families discussed in this chapter have at times
been rejected in medical contexts because it is thought that long-term
survival usually has a bathtub-shaped hazard rate. But the same criti-
cism can be leveled against the commonly used parametric families,
none of which exhibit such hazard rates (see Miller, 1981, p. 15).
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Bathtub-shaped hazard rates form the class of distributions discussed
in Section D of this chapter.

Apart from the usefulness of the nonparametric families for data
analyses, an understanding of their properties is quite useful when
studying particular parametric families because the members of these
families usually belong to at least one of the nonparametric families. An
understanding of the properties that define the nonparametric families
can play an important role in the choice of parametric family.

In the study of parametric families of distributions, only a few non-
parametric families are encountered repeatedly. Basic results for these
commonly encountered families are the subject of this chapter; addi-
tional details are given in Chapter 6.

A useful outline of the results of this chapter and of Chapter 5 has
been given by Hollander and Proschan (1984); these authors also dis-
cuss statistical procedures for the various nonparametric classes intro-
duced. A review of several classes has been given by Johnson, Kotz and
Balakrishnan (1995, pp. 663–680). Additional nonparametric classes
continue to appear in the literature, not always with clear motivation;
in this book, no attempt has been made for a complete discussion of
the topic.

B. Log-Concave and Log-Convex Densities

Log-concave and log-convex densities are important partly because they
are often encountered and partly because they have interesting prop-
erties. Results regarding unimodality, closure under convolutions or
mixtures, and hazard rate behavior are given below. For the purposes
of this book, log concavity of the density is important also because it
implies other properties with clear physical meanings, and because it is
often easier to verify than the sometimes more interesting but weaker
properties.

The importance of log-concave densities in statistics was perhaps
first recognized by Karlin and Rubin (1956). More recently, the concept
has played a role in economic theory (see An, 1998 and the references
therein).

B.1. Definition. If F is an absolutely continuous distribution func-
tion, with some version f of the density having the property that log f is
concave, then F is said to have a log-concave density. If f(x) = 0, x < 0,
and log f is convex on [0,∞), then F is said to have a log-convex
density.
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The reason for the lack of symmetry here with the requirement
that f(x) = 0, x < 0 only for the log convexity case is explained in
Remark B.9.a.

It follows directly from the definitions that f is log concave if and
only if f(x− y) is totally positive of order 2 in x and y, i.e., f is a
Pólya frequency function of order 2 (PF2). Similarly, f is log convex if
and only if f(x + y) is totally positive in x and y ≥ 0. These facts can
be quite useful because the theory of total positivity is well developed;
this theory is outlined in Chapter 21.

Examples of log-concave and log-convex densities are familiar; in-
deed, it is well known and readily verified that

(i) normal densities are log concave,
(ii) exponential densities are both log concave and log convex,
(iii) gamma densities are log concave if ν ≥ 1 and log convex if 0<ν ≤ 1,
(iv) Weibull densities are log concave if α ≥ 1 and log convex if 0 <

α ≤ 1.

a. Properties of Distributions with Log-Concave
and Log-Convex Densities

B.2. Proposition. Log-concave densities are unimodal, that is, they
are nondecreasing up to some point and nonincreasing beyond that
point.

Proof. To show that a density is unimodal, it is sufficient to show that
for any positive constant c, f(x) − c changes sign at most twice, and in
the order −,+,− if there are two sign changes (see Notation and Termi-
nology). But this holds if and only if log f(x) − d has for any constant
d, at most two sign changes, in the order −,+,− if there are two sign
changes. This sign change pattern holds because log f is concave. �

B.3. Proposition. If f and g are log-concave densities, then their con-
volution is log concave.

For an indication of proof, see 21.B.14 or 21.A.14.a.
Partly because of Propositions B.2 and B.3, a log-concave density

is sometimes said to be strongly unimodal. In general, the convolution
of two unimodal densities need not be unimodal; a counterexample is
given by Feller (1971, p. 168) who also indicates that another coun-
terexample is due to Kai Lai Chung. The fact that the convolution of
two symmetric unimodal densities is unimodal is attributed to Aurel
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Wintner (Feller, 1971, p. 167). Ibragimov (1956) shows that the convo-
lution of a log-concave density and a unimodal density is unimodal; of
course, this result is stronger than Proposition B.2.

It is not surprising that log-convex densities have properties quite
different from those of log-concave densities. A most important prop-
erty is their closure under mixtures.

B.4. Proposition. Let {fθ, θ ∈ A} be a family of log-convex densities
concentrated on the interval I and suppose that A is an open convex
set. If fθ(x) is a measurable function of θ for each fixed x in I, and if
G is a probability distribution function on A, then the mixture f(x) =∫
fθ(x) dG(θ) is a log-convex density.

For a proof, see Marshall and Olkin (1979, p. 452).

b. Completely Monotone Densities

Completely monotone densities form an important subclass of log-
convex densities; their properties are reviewed here. According to
Proposition 20.D.4, a function φ defined on (0,∞) is said to be
completely monotone if it possesses derivatives φ(n) of all orders n,
and

(−1)nφ(n)(x) ≥ 0, x > 0.

It follows from well-known results about Laplace transforms (see
Definition 20.D.5) that a survival function is completely monotone if
and only if for some distribution function H, it has the form

F̄ (x) =
∫ ∞

0
e−λx dH(λ), x ≥ 0. (1)

Thus, completely monotone survival functions are exactly those that
are mixtures of exponential survival functions. From this, or from the
definition of complete monotonicity, it follows that a survival function
is completely monotone if and only if it has a completely monotone
density f. Clearly,

f(x) =
∫ ∞

0
λ e−λx dH(λ), x > 0. (2)
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B.5. Example. When H itself is an exponential distribution, say, with
parameter 1/θ, then (1) becomes

F̄ (x) =
∫ ∞

0
e−λx θ−1 e−λ/θ dλ = 1/(1 + θx), x > 0.

This is a special kind of Pareto survival function, encountered in Chap-
ter 11. A more general mixture result is given in Proposition 11.D.3.

B.6. Proposition (Steutel, 1967, 1969). If F̄ is completely monotone
(or equivalently, if the corresponding density is completely monotone),
then it is infinitely divisible.

This result is stated also as Proposition 20.D.10.

B.7. Proposition. If F (0) = 0 and F̄ is completely monotone, then f
is log convex on [0,∞).

This result is an application of Proposition B.4 because exponential
distributions have densities log linear on [0,∞).

c. Comments About Log Concavity and Log Convexity

The following proposition has a meaning that is relatively easy to un-
derstand, but its proof requires some results concerning total positivity;
these results have been summarized in Section 21.B. Note that the cases
of log convexity and log concavity are not entirely parallel.

B.8. Proposition. If f is log concave, then both F̄ and F are log con-
cave. If f is log convex on [0,∞), then F̄ is log convex on [0,∞).

Proof. First suppose that log f is concave. As noted in Definition
21.B.8, this property is equivalent to the statement that f(x− y) is
totally positive of order 2. Let K be the indicator function given by
Example 21.B.6, i.e., K(y, z) = 1 if y ≤ z, and K(y, z) = 0 if y > z.
Compute that∫

f(x− y)K(y, z) dy =
∫ z

−∞
f(x− y) dy =

∫ ∞

x−z
f(u) du = F̄ (x− z).

(3)

Because the function K is totally positive, it follows from Theorem
19.B.11 that F̄ (x− z) is totally positive of order 2 in x and z ; that is,
F̄ is log concave. �
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To prove that F is log concave, use the same proof with K de-
fined in Example 21.B.6.a, i.e., K(y, z) = 0 if y < z, and K(y, z) = 1
if y ≥ z. The result concerning log convexity has a similar proof but
makes use of the fact that K(y, z) given by Example 21.B.6.a is totally
positive in nonnegative y and z, together with the fact that log f is
convex on [0,∞) if and only if f(x + y) is totally positive of order 2 in
x, y ≥ 0.

B.8.a. Proposition. If f is log concave, then the hazard rate r = f/F̄
of F is increasing, and the reverse hazard rate s = f/F of F is decreas-
ing. If f is log convex on [0,∞), then the hazard rate r is decreasing on
[0,∞).

Proof. If f is log concave, then it follows from Propositions B.8 and
21.B.15 that both log F̄ and logF have decreasing derivatives. This is
equivalent to the condition that r is increasing and s is decreasing. The
proof in case f is log convex on [0,∞) is similar. �

The following example shows that the converse of Proposition B.8.a
is false; it may be that a distribution has an increasing hazard rate and
a density that is not log concave.

B.8.b. Example. Suppose that r(x) = x + (1 + x)−1, x ≥ 0. It can
be verified by differentiation that r is increasing, and thus R(x) =∫ x
0 r(t) dt = 1

2x
2 + log(1 + x) is convex (see Proposition 21.A.3(iv)).

By 1.B(1), log F̄ (x) = −R(x), and consequently F̄ is log concave.

To show that f is neither log concave nor log convex, use the formula
log f(x) = log r(x) + log F̄ (x) to check that the second derivative of
log f(x) is positive at 0 and eventually becomes negative.

A somewhat more involved but similar calculation also shows that
logF (x) is neither convex nor concave.

B.9.a. Remark. The treatments of log concavity and log convexity
differ in that log concavity can be required on the whole line; if log f is
concave on [0,∞), and f(x) = 0 for x < 0, then by the convention that
log 0 is taken to be −∞, and −∞ + x = −∞, for all real x, it follows
that log f is concave on (−∞,∞). The same cannot be said for log
convexity.

According to Proposition B.8.a, if log f is convex on [0,∞), then F
has a hazard rate decreasing on [0,∞), and consequently, the density is
decreasing on [0,∞) (see Proposition C.13 for more details). Because a
density must integrate to 1 over the real line, it cannot be decreasing on
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the whole real line, and thus log convexity of a density on the whole real
line is not possible. In what follows, log convexity should be interpreted
to mean log convexity on [0,∞) unless some other interval is specified.

B.9.b. Remark. In the application of Theorem 21.B.11 to (3), where
log f is concave, the variables x, y, and z are allowed to take on all
values in (−∞,∞) in accordance with the above comments. Theorem
21.B.11 is consistent with the conventions stated in Remark B.9.a and
remains valid. Because log convexity of f on [0,∞) cannot be similarly
extended to log convexity on (−∞,∞), it is necessary to restrict the
range of arguments in the functions K when applying Theorem 21.B.11
to the log convexity. Because of this, it does not follow from log con-
vexity of f on [0,∞) that F is log convex. In fact, quite the opposite is
true.

B.10. Proposition. If f(x) = 0, x < 0, and log f is convex on [0,∞),
then log F is concave on (−∞,∞).

Proof. Under the stated hypotheses concerning f, it follows from
Proposition B.8.a that F has a decreasing hazard rate, and conse-
quently, f is decreasing (Proposition C.12). This means that F is
concave on [0,∞), and thus by Proposition 21.A.6, F is log concave
on [0,∞). The extension to log concavity on (−∞,∞) is explained in
Remark B.9.a. �

The conclusions of Proposition B.8 that log F̄ is convex or concave
are conditions discussed in some detail in Section C. The interest in
these properties stems from the fact that when a density exists, these
properties are equivalent to the hazard rate being decreasing or in-
creasing, as indicated in Proposition B.8.a. On the other hand, the log
convexity or log concavity of the distribution function is equivalent to
the reverse hazard rate being increasing or decreasing; these conditions
are of relatively little interest. For a summary of various consequences
of these properties, see Sengupta and Nanda (1999).

B.11. Proposition. If f is log concave [convex], then the residual life
density ft(x) = f(x + t)/F̄ (t) is log concave [convex] in x, for all t > 0.

C. Monotone Hazard Rates

It should not be surprising that the concept of a “monotone haz-
ard rate” stems from the condition that the hazard rate r = f/F̄



SVNY289-Olkin May 15, 2007 16:31

104 4. Nonparametric Families: Densities and Hazard Rates

is monotone, but this idea requires the existence of a density. The
concept can be defined in various ways, the best of which do not
require the existence of a density; such definitions usefully stretch
the meaning of the concept so the name should not be taken too
literally. The following definition is a useful working definition, but
it is not the best for explaining the meaning of the concept. That
meaning is more clearly revealed in the equivalent conditions that
follow.

C.1. Definition. Let F be a distribution such that F (x) = 0, x < 0.
Then F is said to have an increasing [decreasing] hazard rate if for all
x ≥ 0 and all t such that F (t) < 1,

[F (t + x) − F (t)]
1 − F (t)

=
[F̄ (t) − F̄ (t + x)]

F̄ (t)
(1)

is increasing in t and F (0+) = 0 [decreasing in t and F (0−) = 0].

This condition says that the probability of surviving for a time in-
terval of length x is decreasing [increasing] in the initial age.

The concept of an increasing hazard rate can be extended usefully
to distributions such as the normal distribution that have positive mass
on the interval (−∞, 0), but a distribution cannot have a decreasing
hazard rate in the entire interval (−∞,∞); the support of such dis-
tributions must have a finite left-hand endpoint, which in accordance
with standard usage has been taken to be 0.

Often, the abbreviation “F is IHR” is used in place of the more
complete “F has an increasing hazard rate.” Similarly, the abbrevi-
ation “F is DHR” is used to indicate that F has a decreasing haz-
ard rate. Particularly in the engineering literature where the term
“failure rate” is commonly encountered in place of “hazard rate,”
the abbreviations “IFR” and “DFR” are used in place of “IHR” and
“DHR.”

Two key results of this section are that convolutions of IHR distri-
butions are IHR and mixtures of DHR distributions are DHR.

a. Equivalent Conditions

The following proposition gives a condition for monotone hazard rate
that is usually more convenient to verify than the condition of the
definition.
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C.1.a. Proposition. A distribution F has an increasing [decreasing]
hazard rate if and only if for all t such that F̄ (t) > 0,

F̄t(x) =
F̄ (t + x)
F̄ (t)

is decreasing [increasing] in t for all x ≥ 0, (2)

i.e., the residual life distributions are stochastically decreasing
[increasing] in t.

Proof. For all x ≥ 0 and all t such that F (t) < 1,

F̄ (t) − F̄ (t + x)
F̄ (t)

= 1 − F̄ (t + x)
F̄ (t)

is increasing in t if and only if F̄ (t + x)/F̄ (t) is decreasing. �

C.1.b. Proposition. If F is a distribution such that F (x) = 0 for
x < 0, then F has an increasing [decreasing] hazard rate if and only if the
hazard function R = −log F̄ is convex where finite [concave on [0,∞)].

Proof. For all t such that F (t) < 1, (2) holds if and only if
log F̄ (t + x) − log F̄ (t) is decreasing in t such that F̄ (t) > 0. Accord-
ing to (iii) of Proposition 21.A.3, this is equivalent to the concavity of
log F̄ . But this means that R = −log F̄ is convex. The proof for the
DHR case is similar. �

As already noted, the condition that R is convex is equivalent to
the condition that F̄ is log concave. Log concavity of F̄ is convenient
and often used as a proxy for the statement that F has an increasing
hazard rate, and it is a condition that can be imposed without first
assuming that a density exists.

C.1.c. Proposition. Suppose that F (0−) = 0 and F has a density.
Then F has an increasing [decreasing] hazard rate if and if only there
is a version f of the density such that the corresponding hazard rate
r = f/F̄ is increasing [decreasing] on [0,∞).

Proof. This result follows from Proposition C.1.b by differentiating R =
−log F̄ and using (iv) of Proposition 21.A.3, which states that a differ-
entiable function is convex if and only if its derivative is increasing. �

Of course, Proposition C.1.c explains the terminology. But the defi-
nition used here extends the concept to cases that may not have a den-
sity. It is important to recall that in this book, the terms “increasing”
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and “decreasing” are not used in the strict sense, they are used here to
mean, respectively, “nondecreasing” and “nonincreasing.”

Ordinarily, the version of the density that can be used in Proposition
C.1.c is the derivative of the distribution function.

As noted in Section 1.B, the hazard rate is often interpreted intu-
itively through the equation

Δr(x) ≈ P{x < X ≤ x + Δ |X > x}.

The concept of an increasing hazard rate is attractive in an engineer-
ing context where it has often been likened to a mathematical rep-
resentation of “wearout,” although some problems with this idea are
encountered in Chapter 5. In an engineering context, the idea of a de-
creasing hazard rate has been associated with “work hardening” but it
can arise in a variety of other ways. In a medical context, the idea of a
decreasing hazard may be intuitively appealing for such waiting times
as hospitalization times, or times to illness relapse.

Proposition B.8.a shows that if F has a density f that is log concave,
then F has an increasing hazard rate; Example B.8.b shows that the
converse is false.

C.1.d. Proposition. The distribution function F has an increasing
hazard rate if and only if the determinant

∣∣∣∣∣
F̄ (t1 − s1) F̄ (t1 − s2)

F̄ (t2 − s1) F̄ (t2 − s2)

∣∣∣∣∣ ≥ 0,

where s1 ≤ s2, t1 ≤ t2, that is, F̄ is a Pólya frequency function of order
2 (see Definition 21.B.7).

The distribution function F has an decreasing hazard rate if and
only if the support of F is [0,∞) and the determinant

∣∣∣∣∣
F̄ (t1 + s1) F̄ (t1 + s2)

F̄ (t2 + s1) F̄ (t2 + s2)

∣∣∣∣∣ ≥ 0

whenever s1 ≤ s2, t1 ≤ t2 and s1 + t1 ≥ 0, i.e., F̄ (x + y) is totally posi-
tive in x and y, x + y ≥ 0 (see Definition 21.B.1).

Proof. This proposition can be viewed as a restatement of Proposition
C.1.e. �
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For a given distribution function F, odds ratios are defined in
Definition 1.B.11; the following proposition involves the odds ratio of
the residual life distribution Ft.

C.1.e. Proposition. A distribution F has an increasing [decreasing]
hazard rate if and only if for all x ≥ 0 and all t such that F̄ (x + t) > 0,
the odds ratio Ø−

t (x) = [F (x + t) − F (t)]/[F̄ (x + t)] of the residual life
distribution Ft is increasing [decreasing] in t.

Proof. It follows from Proposition C.1.a that F is IHR [DHR] if and
only if F̄t(x) is increasing [decreasing] in t. This is the statement of
Proposition C.1.e. �

The following proposition is a direct application of Definition C.1
and the fact that if G is an exponential distribution with parameter λ,
then Ḡ−1(z) = [−log z]/λ.

C.1.f. Proposition. The distribution F has an increasing [decreasing]
hazard rate if and only if a random variable with distribution F is
smaller [larger] than an exponentially distributed random variable in
the convex transform order ≤c of Definition 2.C.7. Here it is clearly
sufficient to take the parameter λ of the exponential distribution to be
equal to 1.

C.1.g. Proposition. A random variable X has an increasing [decreas-
ing] hazard rate if and only if there exists a continuous increasing con-
cave [convex] function ψ defined on [0,∞) such that ψ(Y ) has the
same distribution as X, where Y has an exponential distribution with
parameter 1.

It can be seen that the function ψ is the inverse of the hazard func-
tion R = −log F̄ of X. This proposition can be viewed as a restatement
of Proposition C.1.f; see Proposition 2.C.6 but note that according to
20.A(6), G−1F = Ḡ−1F̄ .

C.1.h. Proposition (Barlow and Campo, 1975). Suppose that
F (x) = 0, for all x < 0, and that F has a density. The following are
equivalent:

(i) F has an increasing [decreasing] hazard rate.
(ii) The total time on test transform is concave [convex] on [0, 1].
(iii) The total time on test transform distribution is convex [concave]
on its support.
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Proof. The equivalence of (i) and (ii) follows directly from Proposi-
tion C.1.c and Proposition 1.I.5. The equivalence of (ii) and (iii) is a
consequence of 21.A.7. �

The following somewhat technical but fundamental result is utilized
in C.8.b and in the proof of Proposition 5.D.6.

C.1.i. Proposition (Savits, 1985). The random variable X has an in-
creasing hazard rate if and only if E[h(t,X)] is log concave in t for all
functions h(t, x), which are defined and log concave in (t, x), t ≥ 0, x ≥
0, and are nondecreasing in x, for each fixed t.

Proof. First suppose that X has an increasing hazard rate. By Propo-
sition C.1.g, there exists a continuous increasing concave function ψ
defined on [0,∞) such that ψ(Y ) has the same distribution as X, where
Y has an exponential distribution with parameter 1. Thus,

E[h(t,X)] = E[h(t, ψ(Y ))] =
∫ ∞

0
h(t, ψ(y)) e−y dy.

It follows from 21.A.5.a that the composition h(t, ψ(y)) is log concave.
Hence, by Prékopa’s theorem 21.A.14, E[h(t,X)] is log concave. Next,
suppose that E[h(t,X)] is log concave for all functions h(t, x), which are
defined and log concave in (t, x), t ≥ 0, x ≥ 0, and are nondecreasing in
x, for each fixed t. Let h(t, x) = I(t,∞)(x) be the indicator function that
is 1 if x > t, and 0 otherwise. It follows that E[h(t,X)] =

∫ ∞
t dF (x) =

F̄ (t) is log concave. �

C.1.j. Proposition. Let X be a positive random variable with survival
function F̄ , and denote the distribution of 1/X by G. If log F̄ is concave
(F is IHR), then log G is concave (G has a decreasing reverse hazard
rate).

Proof. Because G(x) =P{1/X ≤x}=P{X ≥ 1/x}= F̄ (1/x), x> 0, log
G(x)= log F̄ (1/x) has the derivative

d

dx
logG(x) =

d

dx
log F̄ (1/x) =

f(1/x)
F̄ (1/x)

1
x2 .

If r(x) = f(x)/F̄ (x) is increasing, then r(1/x) is decreasing. Conse-
quently, r(1/x)/x2 is decreasing, and hence, logG has a decreasing
derivative. �
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b. Increasing Hazard Rates

The intuitive content of an increasing hazard rate stems from the in-
terpretation of r(t)dt as the conditional probability of failure in the
interval [t, t + dt] given survival up to time t. Thus, with an increasing
hazard rate, the probability of failure in the next instant of time in-
creases as the device or organism ages. In a very real sense this is a
mathematical translation of the intuitive concept of “adverse ageing,”
but it would be unfair to claim that it is the only mathematical trans-
lation of this concept.

c. Properties of Distributions with Increasing Hazard Rates

C.2. Proposition. If F has an increasing hazard rate, then F has a
density except possibly at the right-hand endpoint of its support, where
it may have positive mass.

This result is a consequence of the definition of log concavity. It
shows that the use of a definition not requiring the existence of a density
has not extended the idea very far. But still, it is a useful extension.

C.3. Proposition. Suppose that F has an increasing hazard rate.
Then F has finite moments of all finite positive orders.

This is an immediate consequence of Proposition 20.B.6. There are
also various other proofs of this fact; in particular, it follows from the
stronger results of Propositions 5.B.6 and 5.C.7.

d. Preservation Theorems

The following theorem states that the class of distributions with in-
creasing hazard rates is closed under convolutions. The elegant proof
given here and by Barlow, Marshall and Proschan (1963) is due to
Frank Proschan; it depends upon total positivity theory, which is con-
nected to hazard rate behavior by Proposition C.1.d. There is also a
critical integration by parts. No real elementary proof is known, but an
alternative proof is given in C.9.

The intuitive interpretation of the following theorem is: If each of
two devices wears out in the sense that they have an increasing hazard
rate, and if one of the devices is used as a spare for the other and put
into service at the time the first fails, then this system (a device and
its spare) wears out in the sense that it has an increasing hazard rate
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(assuming that the two life lengths are independent). The reader may
wish to interpret this theorem in other contexts such as medicine or
biology.

C.4. Theorem (Barlow, Marshall and Proschan, 1963). If F and G
have increasing hazard rates, then the convolution H = F ∗G has an
increasing hazard rate.

Proof. Assume that F has a density f and G has a density g. Recall
from Proposition C.1.d that the condition of increasing hazard rate can
be written in terms of a determinant. For t1 < t2, and u1 < u2, form
the determinant

D =

∣∣∣∣∣
H̄(t1 − u1) H̄(t1 − u2)

H̄(t2 − u1) H̄(t2 − u2)

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∫
F̄ (t1 − s) g(s− u1) ds

∫
F̄ (t1 − s) g(s− u2) ds∫

F̄ (t2 − s) g(s− u1) ds
∫

F̄ (t2 − s) g(s− u2) ds

∣∣∣∣∣∣∣∣
=

∫∫
s1<s2

∣∣∣∣∣
F̄ (t1 − s1) F̄ (t1 − s2)

F̄ (t2 − s1) F̄ (t2 − s2)

∣∣∣∣∣
∣∣∣∣∣g(s1 − u1) g(s1 − u2)

g(s2 − u1) g(s2 − u2)

∣∣∣∣∣ ds2 ds1;

the last equality is an application of the basic composition formula
21.B.10. Now integrate the inner integral by parts to obtain

D =
∫∫

s1<s2

∣∣∣∣∣
F̄ (t1 − s1) f(t1 − s2)

F̄ (t2 − s1) f(t2 − s2)

∣∣∣∣∣
∣∣∣∣∣
g(s1 − u1) g(s1 − u2)

Ḡ(s2 − u1) Ḡ(s2 − u2)

∣∣∣∣∣ ds2 ds1.

The sign of the first determinant is the same as that of

f(t2 − s2)F̄ (t2 − s2)
F̄ (t2 − s2)F̄ (t2 − s1)

− f(t1 − s2)F̄ (t1 − s2)
F̄ (t1 − s2)F̄ (t1 − s1)

,

assuming the denominators are nonzero. But

f(t2 − s2)
F̄ (t2 − s2)

≥ f(t1 − s2)
F̄ (t1 − s2)
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by hypothesis and

F̄ (t2 − s2)
F̄ (t2 − s1)

≥ F̄ (t1 − s2)
F̄ (t1 − s1)

by Proposition C.1.d. Thus, the first determinant is nonnegative. A
similar argument applies to show that the second determinant also is
nonnegative, so that D ≥ 0. By Proposition C.1.d, this shows that H
is IHR.

If the densities f and/or g do not exist, a limiting argument is
required to complete the proof. �

The following result has a clear intuitive meaning: If a device wears
adversely as it ages, then it wears adversely even if acquired in a used
but unfailed state after a known service time t. This is not an unex-
pected result.

C.5. Proposition. If F has an increasing hazard rate, then the resid-
ual life distribution Ft also has an increasing hazard rate.

Proposition C.5 can be verified directly.

Recall from 1.B(15) that if F has a first moment μ =
∫ ∞
0 F̄ (t) dt,

then F̄ /μ is a density. The interest of the following proposition lies
partly in the fact that the density f(1) = F̄ /μ arises in the study of
stationary renewal processes, where it is sometimes called the “equi-
librium distribution” or the “stationary renewal distribution” (see Sec-
tions 1.B.h and 20.F.b).

C.6. Proposition (Barlow, Marshall and Proschan, 1963). Suppose
that F has an increasing hazard rate and first moment μ. Then, the
distribution with density f(1)(x) = F̄ (x)/μ, x ≥ 0, has an increasing
hazard rate.

Proof. According to Proposition C.1.b, the distribution F has an in-
creasing hazard rate if and only if log F̄ (x) is concave, i.e., log f(1)(x)
is concave. According to Proposition B.8, this means that log F̄(1)(x) is
concave, that is, F̄(1) is IHR. �

C.6.a. Proposition. Let X be a random variable with distribution
F having a finite first moment and let Y have the density f(1) of
Proposition C.6. Then, F has an increasing hazard rate if and only if
X ≥lr Y .
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Proof. With the assumption that F has a density, this result can be
directly verified using Proposition 2.A.10. �

For more about the density f(1), see Section 20.B.c.

e. Mixtures of Distributions with Increasing Hazard Rates

Because the mixture of exponential distributions has a decreasing haz-
ard rate (see Propositions B.4 and B.8.a or Theorem C.15), it is clear
that the class of distributions with increasing hazard rate is not closed
under mixtures. Examples C.7.a and C.7.b show even more; mixtures
of distributions with strictly increasing hazard rates can have strictly
decreasing hazard rates. The possibility that mixtures of distributions
with increasing hazard rates may themselves have decreasing hazard
rates has important implications in applications, because nearly always
data can be regarded as coming from a mixture. This is the case, for
example, when there is an unobserved covariate.

C.7.a. Example. Suppose that r1(x) = 1 − e−bx and r2(x) = a +
r1(x). If a ≤ b < a2/4, for example, if a = b > 4, then the mixture
with equal weights of the corresponding distributions F1 and F2 has a
strictly decreasing hazard rate r even though both r1 and r2 are strictly
increasing.

To see this, note that the hazard rate r of the mixture (see 3.A(8))
is given by

r(x) =
f1(x)[1 + e−ax] + a e−axF̄1(x)

F̄1(x)[1 + e−ax]
= r1(x) + a

e−ax

1 + e−ax
.

From this, it follows that r′(x) < 0 for all x if and only if

r′1(x) < a2 e−ax/(e−ax + 1)2. (3)

Inequality (3) reduces to the condition

b(1 + e−ax)2 < a2 e(b−a)x.

The left-hand side of this inequality is strictly decreasing in x ≥ 0, and
because a ≤ b, the right-hand side of this inequality is increasing in x.
The inequality is satisfied at x = 0 if b < a2/4. Thus, the inequality is
satisfied, for all x ≥ 0, if a ≤ b < a2/4.
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In this example, limx→∞ r1(x) = 1, limx→∞ r2(x) = a + 1, and
limx→∞ r(x) = 1 is the minimum of limx→∞ r1(x) and limx→∞ r2(x);
this is in accordance with Proposition 3.C.1.

Note that one of the component distributions of the mixture of Ex-
ample C.7.a has hazard rate that is positive at 0, and the other hazard
rate is bounded above. These features are essential for the mixture to
have a decreasing hazard rate, as can be seen from Propositions 3.C.1
and 3.D.3 or from 3.A(8). With the assumption that the hazard rate
is differentiable, Gurland and Sethuraman (1995) give a necessary and
sufficient condition for the mixture of two distributions with increasing
hazard rates to have a decreasing hazard rate; however, in Example
C.7.a, a direct verification is simpler.

C.7.b. Example. Suppose that

F̄ (x | λ, ξ) = exp {−ξ(eλx − 1)}, x ≥ 0, ξ, λ > 0

is the survival function of a Gompertz distribution, the topic of Section
10.A. Treat the parameter ξ as a random variable with the exponential
survival function Ḡ(ξ) = e−γξ, ξ ≥ 0, and consider the mixture

H̄(x |λ, γ) =
∫ ∞

0
F̄ (x | λ, ξ) dG(ξ)

=
γ

eλx − γ̄
, x ≥ 0, λ > 0, γ > 0, γ = 1 − γ.

This survival function is discussed in Section 9.D, where it is termed
an exponential survival function with tilt parameter. The hazard rate

rH(x | λ, γ) =
λ eλx

eλx − γ̄

of such a mixture is strictly increasing when γ > 1 and it is strictly de-
creasing when γ < 1. In either case, limx→∞ rH(x | λ, γ) = λ, despite
the fact that the hazard rate r(x | λ, ξ) = ξλ eλx of the Gompertz distri-
bution is strictly increasing and has the limit ∞ at ∞. For a somewhat
more general case, see Example 5.M.7.b and Section 10.A.e.

It is of interest to examine the conditional distribution of ξ given
survival to time t. This distribution can be obtained from Equation
3.B(4) and is again an exponential distribution, but with parameter γ +
eλt − 1 in place of γ. Thus, the parameter is increasing exponentially, so
the conditional distribution of ξ given survival to time t very rapidly
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puts more and more mass on components of the mixture that have
lower hazard rates. This is what causes the hazard rate of the mixture
to have a finite limit and to be decreasing when γ < 1.

Another rather striking example is given by Gurland and Sethura-
man (1994); they consider a mixture of two distributions, one an expo-
nential distribution and the other a Gompertz distribution (see Section
10.A), which has the rapidly increasing hazard rate r(x | 1, a, 0) = a ex

as given in 10.A(3). Gurland and Sethuraman (1994) show that the
hazard rate of the mixture can be decreasing, except possibly for a
very short interval near the origin, even when the mixture gives little
weight to the exponential distribution. They investigate the mixture of
a variety of other distributions with an exponential distribution and
show that in many cases, the hazard rate is eventually decreasing. See
also Proposition 6.C.4.b, where the distribution of the random variable
Y is a mixture of two dependent random variables, one with an expo-
nential distribution and the other with a distribution having a strictly
increasing hazard rate; but still, Y has an exponential distribution.

Other examples given by Block, Li and Savits (2003b) show that a
mixture of distributions, each with increasing hazard rate, can have a
hazard rate that is increasing, bathtub shaped, inverted bathtub shaped
(see Section J for definitions), or may have a number of points where
the direction of monotonicity changes.

The above examples are not to be regarded as typical; the follow-
ing proposition gives some conditions under which a mixture of IHR
distributions is an IHR.

C.8.a. Proposition (Lynch, 1999). Let {F (x | θ), θ ∈ Θ} be a family
of distribution functions, indexed by a parameter θ ∈ Θ ⊂ Rn, for some
n. If G has a log-concave density g, and log F̄ (x | θ) is concave in the
pair (x, θ), then the mixture

F̄ (x) =
∫

Θ
F̄ (x | θ) dG(θ) =

∫
Θ
F̄ (x | θ) g(θ) dθ

is log concave; that is, F has an increasing hazard rate.

Proof. This proposition is an immediate application of Prékopa’s the-
orem 21.A.14. �

The requirement of Proposition C.8.a that G has a log-concave den-
sity is replaced in the following proposition by the weaker condition that
G has an increasing hazard rate.
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C.8.b. Proposition (Lynch, 1999). Let {F (x | θ), θ > 0} be a family
of distribution functions such that

log F̄ (x | θ) is concave in (x, θ), and increasing in θ for each fixed x.

(4)

If G is a distribution with increasing hazard rate and G(0) = 0, then
the mixture

H̄(x) =
∫ ∞

0
F̄ (x | θ) dG(θ) (5)

has an increasing hazard rate. Conversely, if H is IHR whenever (4) is
satisfied, then G is IHR.

Proof. (Block, Li and Savits, 2003a). Let G be the distribution of
Θ; by assumption, G is an IHR. In Proposition C.1.i, take h(t, θ) =
F̄ (t | θ) (with Θ in place of X ) to conclude that Eh(t,Θ) = H̄(t) is log
concave. �

For an application of Proposition C.8.b, see Proposition 7.D.10.

C.8.c. Example. As an example of a parametric family that sat-
isfies the conditions of Proposition C.8.b, suppose that F̄ (x | θ) =
[F̄ (x/θ)]θ, x, θ > 0, where F has the increasing hazard rate r. The re-
quired log concavity in (x, θ), that is, the convexity of −log F̄ (x | θ) =
−θ log F̄ (x/θ), can be verified using Proposition 21.A.3(vi). For this
function, the Hessian H is given by

H =

∣∣∣∣∣∣∣∣∣
−∂2 logF (x | θ)

∂x2 −∂2 logF (x | θ)
∂x∂θ

−∂2 logF (x | θ)
∂θ∂x

−∂2 logF (x | θ)
∂θ2

∣∣∣∣∣∣∣∣∣
= r′

(
x

θ

) ∣∣∣∣∣∣∣∣
1
θ

− x

θ2

− x

θ2

x2

θ3

∣∣∣∣∣∣∣∣
.

Because r′ ≥ 0, the diagonal elements of this matrix are nonnegative
and the determinant is 0. Consequently, the matrix is positive semidefi-
nite and − log F̄ (x | θ) is convex, that is, log F̄ (x | θ) is concave. Mono-
tonicity in θ follows from the fact that IHR distributions are IHRA
(see Section 5.B), and thus satisfy (iii) of Proposition D.3. This exam-
ple has been given by Block, Li and Savits (2003a) for the case that F
is a Gompertz distribution (see Chapter 8). For another example, see
Section 7.D.g.
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The following is an application of Proposition C.8.b.

C.8.d. Alternative proof of Theorem C.4. If F is a distribution
with increasing hazard rate and F̄ (x | θ) = F̄ (x− θ), then (3) is sat-
isfied. Let G be an IHR distribution function such that G(0−) = 0.
Then, the mixture (4) is the convolution of F with G, that is

H(x) =
∫ ∞

0
F (x | θ) dG(θ) =

∫ ∞

0
F (x− θ) dG(θ).

It follows from Proposition C.8.b that H is IHR. �

C.9. Remark. Is an IHR distribution unimodal? According to
Proposition B.2, log-concave densities are unimodal, and according
to Proposition B.8, distributions with log-concave densities are IHR.
Might the weaker condition that F is IHR also imply that the density
is unimodal? The answer to this question is no. In fact, if the hazard
rate is an increasing step function, then the density has a mode at
all points where the hazard function jumps. This means that an IHR
density can have even an infinite number of modes. However, many of
the IHR distributions encountered in later chapters have log-concave
densities, and these are unimodal.

f. Decreasing Hazard Rates

An item has a decreasing hazard rate if, as it ages, the chance of fail-
ure (death) in the next instant of time decreases. This is the opposite
of wearout, and might be called “wearin.” Humans might exhibit a
decreasing probability of failing at some particular job as they gain ex-
perience and practice. But mixtures may be the most important source
of distributions with decreasing hazard rates. Example C.7.a exhibits a
mixture of two distributions with strictly increasing hazard rates, but
still, the mixture has a strictly decreasing hazard rate. More interesting
for applications is the following fundamental proposition.

C.10. Proposition. If F̄ is a mixture of exponential survival func-
tions, then it has a decreasing hazard rate. More generally, if F̄ has a
log-convex density, then it has a decreasing hazard rate.

Proof. These results follow directly from Propositions B.4 and B.8.a. �

This proposition has sometimes been viewed as counter-intuitive or
paradoxical. To understand why mixtures of exponential distributions
have decreasing hazard rates, suppose that an item is selected randomly
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from a bin that contains items with exponential distributions having
various scale parameters. As the chosen item ages without failure, it
becomes increasingly likely that the selected item has a particularly
small hazard rate (large expectation). This idea, made more precise in
Propositions 3.A.2 and 3.B.1, leads to the realization that the proba-
bility of failure in the next instant of time is decreasing.

As noted in Chapter 3, Bayesian statisticians refer to the parametric
family (in this case the exponential distribution) as the model distribu-
tion. The mixture does not arise as described in the previous paragraph,
but from uncertainty about the parameter. With a prior distribution
on the parameter, the resulting “mixture” is called a predictive distri-
bution. The model may be a constant hazard rate, but the predictive
distribution, the mixture, is based on current information concerning
survival as expressed by the prior distribution (see Barlow, 1985; Lynn
and Singpurwalla, 1997).

Note that mixtures of exponential survival functions can be regarded
as Laplace transforms of the mixing (prior) distribution, restricted to
nonnegative arguments. As such, the survival functions must be com-
pletely monotone; see Proposition 20.D.5. This means, among other
conditions, that mixtures of exponential distributions have decreasing
convex densities; they are also infinitely divisible (Proposition B.6 or
20.D.10). As an example of how Laplace transforms can be regarded as
survival functions, compare the Laplace transform of the gamma distri-
bution, 9.A(5), with the survival function of the Pareto II distribution
11.B(1).

Mixtures of exponential distributions arise in applications and this
is an important source of distributions with decreasing hazard rate.
See Proschan (1963) for a well-known example involving failures of air
conditioning systems.

g. Properties of Distributions with Decreasing Hazard Rates

In this section, it is shown that distributions with decreasing hazard
rates have decreasing densities, and may have tails heavy enough to
preclude the existence of moments of positive order.

C.11. Proposition. Suppose that F (0−) = 0 and that F has a de-
creasing hazard rate. Then, F has a density except possibly for positive
mass at the origin. There is a version f of the density that is decreasing
and satisfies f(x) > 0, for all x > 0.
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Proof. A distribution F has a decreasing hazard rate when R = −log F̄
is concave on [0,∞). Consequently, R has a continuous derivative
except for countably many points (Proposition 21.A.4). Where this
derivative f = F ′ exists, it serves as a density; elsewhere, the density
can be defined using continuity. This means that R′ = f/F̄ is decreas-
ing (again by Proposition 21.A.4), and consequently, f is decreasing.

Should there be a point a < ∞ such that F̄ (a) = 0, then R(a) = ∞
and concavity of R would be violated. Also, if there were a point b > 0
such that F̄ (b) = 1, then R(b) = 0, and again concavity of R would be
violated unless R(x) = 0, for all x > 0, but then F is not a distribution
function. �

C.12. Proposition. Suppose that F has a decreasing hazard rate.
Then, F need not have finite moments of any positive order.

This fact can be shown using Proposition 20.B.6, and it is in contrast
to Proposition C.3. It stems from the fact that DHR survival functions,
being log convex, can have tails that decay more slowly than the tails
of any exponential distribution.

C.12.a. Example. If F̄ (x) = 1/(1 + x), x ≥ 0, then also r(x) =
1/(1 + x), x ≥ 0. This distribution is a special Pareto distribution with
decreasing hazard rate, and the first moment fails to exist. The haz-
ard rate of a more general Pareto distribution is given in 11.B(5),
namely

r(x) =
λαξ(λx)α−1

1 + (λx)α
, x ≥ 0;

this hazard rate is decreasing for α < 1. With ξ = 1, the rth moment
exists finitely only for −α < r < α (see 11.B(6)).

h. Preservation Theorems

C.13. Proposition. If F has a decreasing hazard rate, then the resid-
ual life distribution Ft also has a decreasing hazard rate.

This result is a parallel to Proposition C.5 with a similar proof and
intuitive meaning.

The following generalization of Proposition C.10, due to Frank
Proschan, is fundamental to the understanding of the origins of dis-
tributions with decreasing hazard rate.
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C.14. Theorem (Barlow, Marshall and Proschan, 1963). The family
of distributions with decreasing hazard rate is closed under the forma-
tion of mixtures.

Proof. Distributions with decreasing hazard rate have concave hazard
functions. In addition, mixtures have concave increasing hazard trans-
forms (Proposition 3.D.2). Thus, the result is an immediate conse-
quence of the fact that an increasing concave function of a concave
function is concave (Proposition 21.A.5). �

C.14.a. Remark. If the hazard rates of the mixture components are
differentiable, then Theorem C.14 is immediate from Corollary 3.D.4.a.

More complicated proofs of Theorem C.14 not involving the notion
of a hazard transform are given by Barlow, Marshall and Proschan
(1963) or Marshall and Olkin (1979, p. 452).

C.15. Proposition. Suppose that F has a decreasing hazard rate
and first moment μ. Then, the distribution with density f(1)(x) =
F̄ (x)/μ, x ≥ 0, has a decreasing hazard rate.

This fact, a parallel to Proposition C.6, is another special case of
Proposition B.8. However, here the assumption of a finite first moment
is critical because DHR distributions need not have finite moments
(Proposition C.12).

C.15.a. Proposition. Let X be a random variable with distribution
F and let Y have the density f(1) of Proposition C.15. Then, F has a
decreasing hazard rate if and only if X ≤lr Y .

Proof. With the assumption that F has a density, this result can be
directly verified using Proposition 2.A.10. �

C.16. Observation. If F and G have decreasing hazard rates, then the
convolution need not have a decreasing hazard rate. To see this, note
from Proposition C.4 that the convolution of two exponential distribu-
tions is IHR, but such a convolution is not exponential so it cannot also
be DHR. More generally, if F (·) = F (· | λ, v1) and G(·) = F (· | λ, v2)
are gamma distributions with densities given by 1.F(6) or 9.A(1) and if
v1 ≤ 1, v2 ≤ 1 while v1 + v2 > 1, then F and G have decreasing hazard
rates, but their convolution is a gamma distribution with parameters
λ and v1 + v2 and the hazard rate is strictly increasing (see 7.A(11)).

Recall that another characterization of DHR distributions is given
by Proposition C.l.f.
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C.17. Summary. Mixtures of DHR distributions are always DHR, but
mixtures of IHR distributions need not be IHR and can even be DHR;
convolutions of IHR distributions are always IHR, but convolutions of
DHR distributions can be IHR.

D. Bathtub Hazard Rates

D.1. Definition. A distribution is said to have a bathtub hazard rate
if for some 0 ≤ a ≤ b, the hazard rate r(t) is decreasing in t, 0 ≤ t ≤ a,
is constant in the interval a ≤ t ≤ b, and is increasing in t, t ≥ b.

From at least two points of view, distributions with a bathtub hazard
rate have considerable intuitive appeal. The first and most commonly
given idea is based upon the assumption that the device or organism
under consideration comes from a mixture of individuals of varying in-
herent strength. Those individuals with life threatening defects at birth
suffer a high rate of early mortality, but as a device ages without failure,
the conditional probability that a life-threatening defect is present di-
minishes and so the hazard rate decreases. There comes a time a when
deaths due to birth defects no longer occur and accidents become the
only significant cause of death, so the hazard rate becomes constant.
But eventually, at time b, the adverse effects of age begin to take their
toll and the hazard rate begins to rise. This concept of a mixture is
related to a Bayesian concept in which the mixture is not real, but
is treated mathematically as such due to uncertainty about the un-
derlying distribution. See Figure D.5 for a graph of a bathtub hazard
rate.

A second intuitive basis for bathtub hazard rates applies primarily
to biological organisms. When young, such organisms may have im-
mature immune systems, they may have difficulty competing for food,
and they may suffer from a number of other disadvantages that dimin-
ish as the organism grows and matures. During the period of matu-
ration, the hazard rate decreases. But eventually, the organism fully
matures and again, the adverse effects of age take effect and cause
the hazard rate to increase. This idea was already apparent in the
writings of Price (1771) who wrote that human life, from birth up-
wards, grows gradually stronger until the age of 10 years, then slowly
loses strength until the age of 50, then more rapidly loses strength
until, at 70 or 75, it is brought back to all the weakness of the first
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month. Bathtub hazard rates for human life lengths are explicitly dis-
cussed by Wittstein (1883) who based his ideas on studies of mortality
tables.

The just described origin of bathtub hazard rates for biological or-
ganisms has its counterpart for mechanical systems. A new system may
suffer from “bugs”, that is, from errors of design or of construction.
Moreover, the operators of the system may be initially inexperienced.
As the system ages, the potential for bugs or human error diminishes,
causing the hazard rate to decrease. But after a while, the effects of
aging cause the hazard rate to rise. As noted in the New York Times
Magazine, July 18, 2006, p. 56, David Lochbaum of the Union of Con-
cerned Scientists has pointed out that the bathtub curve applies to
the safety of nuclear power plants; they are most dangerous when first
brought on line, or at the end of their life cycle. More recent examples
where bathtub hazard rates were found useful for fitting data are given
by Rajarshi and Rajarshi (1988). For a survey of such hazard rates, see
Lai, Xie and Murthy (2001).

Bathtub hazard rates motivate a process called “burn-in” for man-
ufactured items. The idea is to place the device in a simulated service
(or more stressful) environment to discover defects before the device is
introduced into actual service. For a review of this common practice,
see Block and Savits (1997) and the references contained therein. From
a Bayesian point of view, burn-in is related to belief; see Lynn and
Singpurwalla (1997).

It is notable that none of the standard parametric families con-
tains life distributions with bathtub hazard rates (apart from the
case a = b = 0 of distributions with increasing hazard rate and the
case a = b = ∞ of distributions with decreasing hazard rates). How-
ever, especially with a = b, various constructions of such distribu-
tions are possible. Examples are given in this section and in Section
15.G. It is not surprising to find that the most interesting paramet-
ric families that allow for bathtub hazard rates have at least three
parameters.

It has been pointed out by Klutke, Keissler and Wortman (2003)
that an assumption of a bathtub hazard rate must be made with cau-
tion. View the hazard rate as the product of the density and the recip-
rocal of the survival function, that is,

r(x) = f(x)[F̄ (x)]−1.

Note that [F̄ (x)]−1 is an increasing function to conclude that
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(i) if the density is increasing in an interval, then the hazard rate is
increasing in that interval,

and consequently

(ii) if the hazard rate is decreasing in an interval, then the density is
decreasing in that interval (see also Proposition C.10).

From (ii), it follows that if F has a bathtub-shaped hazard rate as
described above, then the density of F is decreasing on the interval
[0, b]. This is not always a reasonable assumption.

a. Bathtub-Shaped Hazard Rates from Mixtures

Consider the first motivation supporting bathtub hazard rates de-
scribed above and let F1 and F2 be the distributions associated with
failures due to defects and those due to eventual wearout, respectively.
The survival function of the mixture has the form [πF̄1(x) + π̄F̄2(x)]. It
is often assumed that there is a time a after which deaths due to birth
defects do not occur and there is a time b before which deaths due to
wearout do not occur. If a < b, then the supports of F1 and F2 do not
overlap. When densities exist, the density of the mixture is 0 between a
and b. Such a density is unrealistic in practice because there is always
the possibility of failure due to an accident, no matter what the age of
the device is. The waiting time for an accident is usually assumed to
be exponentially distributed because the exponential distribution has
a constant hazard rate. So the actual time of failure is the minimum
of the waiting time for a death due to accident and those due to other
causes. Because the survival function of a minimum is the product of
individual survival functions, it is natural to consider the model

F̄ (x) = e−λx[πF̄1(x) + π̄F̄2(x)], (1)

where F1 has support [0, a] and F2 has support [b,∞), 0 < a ≤ b. Of
course, π represents the proportion of the population with birth defects.

It is easy to check that if F̄ is given by (1), then its hazard rate is
the sum of the hazard rates of the exponential part and the mixture
πF̄1(x) + π̄F̄2(x):

r(x) = λ +
πf1(x)

πF̄1(x) + π̄
, 0 ≤ x < a,

= λ, a ≤ x ≤ b,

= λ + r2(x), b < x. (2)
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Because the distribution F1 has support [0, a], it cannot have a de-
creasing hazard rate (Proposition C.12). But under certain conditions,
r itself can be decreasing on the interval [0, a).

Although the model (1) is often used to model a bathtub-shaped
hazard rate and explain its presence, additional conditions are required
if (2) is indeed to have a bathtub shape.

D.2.a. Proposition. Suppose that r is given by (2). A necessary (but
not sufficient) condition for r(x) to be decreasing in x on [0, a) is that
the density f1(x) is decreasing in x on [0, a).

Proof. To avoid the complications of a limiting argument, assume that
the density f1 is differentiable. Then r is differentiable on (0, a), and
this derivative is negative if and only if

(πF̄1(x) + π̄)f ′
1(x) + [f1(x)]2 < 0. (3)

This can happen only if f ′
1(x) < 0. �

D.2.b. Proposition. Suppose that r is given by (2). If r(x) is decreas-
ing in x on [0, a) and if π is replaced by a smaller value, then r(x) is
again decreasing in x on [0, a). Thus, there exists a π∗ ≥ 0 such that
r(x) is decreasing in x on [0, a) only when π ≤ π∗.

Proof. To obtain this result, make use of Proposition D.2.a; where r is
decreasing, f ′

1 ≤ 0, and with this, it can be checked that the expression
on the left-hand side of (3) is increasing in π. �

D.2.c. Remark. Proposition D.2.a is somewhat disturbing, because it
says that the most common intuitive idea behind the bathtub hazard
rate does not necessarily lead to a bathtub hazard rate; the requirement
that the density f1 is decreasing is a severe restriction that may not
be realistic. It may also be somewhat disturbing that a bathtub shape
may be lost if proportions in the mix of items with and without birth
defects are changed.

There is a possible further difficulty with this model; the hazard rate
(2) is discontinuous at a unless limx↑a f1(x) = 0, and this is another
substantial restriction for a density on [0, a].

D.3. Example. Suppose that the model (1) holds, where

F̄1(x) =
(

1 − x

a

)ξ

, 0 ≤ x ≤ a, ξ > 0.
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Fig. D.1. Hazard rates of Example D.3 (λ = 1, a = 1)

It follows from (2) that, for x ≤ a,

r(x) =
πξ(a− x)ξ−1

π(a− x)ξ + π̄aξ
+ λ.

It can be verified that this hazard rate is decreasing in x ≤ a if and
only if π ≤ (ξ − 1)/ξ = π∗. Moreover, the hazard rate (2) is continuous
at a if ξ > 1 and π < 1. See Figure D.1.

Because F2 has support bounded away from 0, the model (1) is appli-
cable only for devices that, in the absence of defects, have a guaranteed
period during which accidents are the only causes of failure. Such con-
ditions are often unrealistic and are not necessary for a mixture to have
a bathtub-shaped hazard rate.

Model (1) can be modified to take the simple form

F̄ (x) = πF̄1(x) + π̄F̄2(x), (4a)
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where, as before, F̄1 is the survival function of a defective component
and F̄2 is the survival function of a component without defects. Here,
the exponential component of (1) has been absorbed in F̄1 and/or F̄2,
so it is not explicitly present. In (4a), there is no requirement that
F̄1(a) = 0 or F̄2(b) = 1, as is the case with (1). But in accordance with
the idea of a defective device, it is natural to assume that F̄1(x) ≤ F̄2(x),
for all x. Clearly, F̄ has the hazard rate

r =
πf1 + π̄f2

πF̄1 + π̄F̄2
. (4b)

A slightly different view of this model can be described in terms of
random variables. Let X0 be the waiting time for failure due to some
flaw in a device (when present), and let X2 be the waiting time for
failure of a properly constructed device. Assume that X0 and X2 are
independent and let X1 = min(X0, X2). If π is the probability that a
flaw is present, then the lifetime of the device is given by

X = X1, with probability π

= X2, with probability π̄,

and (4a) holds. As above, denote the survival function, density, and
hazard rate of Xi, respectively, by F̄i = F̄i(x), fi = fi(x), and ri =
ri(x), i = 0, 1, 2. With the observation that the survival function of X1
is given by F̄1 = F̄0F̄2, it is straightforward to show that survival func-
tion of X is given by

F̄ = πF̄0F̄2 + π̄F̄2 = F̄2(πF̄0 + π̄) (5a)

and the hazard rate r of X is given by

r =
f2(πF̄0 + π̄) + πF̄2f0

F̄2(πF̄0 + π̄)
= r2 +

πf0

π̄ + πF̄0
= r2 +

πr0F̄0

π̄ + πF̄0
. (5b)

Because the third expression for r in (5b) is derived using the relation-
ships fi(x) = ri(x)F̄i(x), the quantity r0(x)F̄0(x) should be interpreted
as 0 when F̄0(x) = 0 even though r0(x) may be infinite.

The hazard rate (5b) can take various shapes.

D.4. Example. Suppose that F̄0(x) = exp{−xβ} and F̄2(x) =
exp{−(λx)α}, x ≥ 0, that is, F0 and F2 are Weibull distributions.
If α ≥ 2 and β ≤ 1, then the hazard rate (5b) is bathtub shaped
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Fig. D.2. Hazard rates of Example D.4 (λ = 1, α = 4, β = 0.5)

(and convex). Here, F0 has a decreasing hazard rate and F2 has an
increasing hazard rate; both hazard rates are convex. By differentiating
(5b) twice and keeping in mind that β ≤ 1, it can be shown that r is
convex. Also, it is necessary to check that r is not monotone because
limx→0 r

′(x) = −∞ and limx→∞ r′(x) = ∞.

Example D.4 includes conditions on α and β in order for the mixture
to have a bathtub shape. The shape of the hazard rate when these
conditions are violated has been investigated by Jiang and Murthy
(1998). See Figure D.2.

D.5. Example. Suppose that F̄0(x) = (1 − x)4, 0 ≤ x ≤ 1, F̄2(x) =
exp {−x2}, x ≥ 0, and π = 1/2 in (5a). Then, the hazard rate (5b)
becomes

r(x) = 2x +
4(1 − x)3

1 + (1 − x)4 , 0 ≤ x < 1,

= 2x, x ≥ 1.
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Fig. D.3. Hazard rates of Example D.5

Elementary but tedious calculations can be used to show that this
hazard rate is bathtub shaped, although in this case, the hazard rate
is not convex. See Figure D.3.

It might be expected that a mixture of a distribution with decreas-
ing hazard rate and a distribution with an increasing hazard rate would
lead to a bathtub hazard rate; Example D.6 shows that this need not
hold. Hazard rates of mixtures are not mixtures of hazard rates, and
in the upper tail, the distribution with a decreasing hazard rate some-
times dominates the mixture, forcing the hazard rate of the mixture to
eventually decrease (see Proposition 3.C.1).

D.6. Example. Consider the mixture (4a) where π = 1/2, F̄1(x) =
1/(1 + x), x ≥ 0, and F̄2(x) = exp{−x2}, x ≥ 0. Here, F2 has an in-
creasing hazard rate and F1 has a decreasing hazard rate. The hazard
rate

r(x) =
2x(1 + x)2 + ex

2

(1 + x)2 + (1 + x)ex2 , x ≥ 0,
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Fig. D.4. Hazard rate of Example D.6

of this mixture is initially increasing and eventually decreasing. See
Figure D.4.

The phenomenon illustrated in Example D.6 does not occur when
the decreasing hazard rate stays above the increasing hazard rate, as
is the case with gamma distributions having the same scale parameter.
Mixtures of two gamma distributions one with decreasing hazard rate
and one with increasing hazard rate have been discussed by Glaser
(1980); they have a bathtub-shaped hazard rate, but the limiting value
of this hazard rate is finite. For more discussion of these issues, see
Block and Joe (1997).

b. Bathtub-Shaped Hazard Rates from Minima

Another origin for bathtub hazard rates arises from minima; accord-
ing to Section 3.E, this derivation is mathematically equivalent to the
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mixture model, but it is conceptually different. Suppose that

X = min (U, V,W ), (6)

where U, V , and W are independent, U has a decreasing hazard rate
r1, V has an increasing hazard rate r2, and W has an exponential dis-
tribution with parameter λ. Then, the hazard rate of X is r1 + r2 + λ.
Because it is the sum of a decreasing and an increasing function, this
hazard rate can be bathtub shaped. If the hazard rates r1 and r2 are
both convex, then r1 + r2 + λ must be convex, and hence monotone or
bathtub shaped (possibly with a = b). According to this model, there
is no parameter like the mixing proportion of previous models, and
even though there is flexibility in choosing r1 and r2, the matter is still
delicate if the hazard rate is to be bathtub shaped. Of course, in this
model, W can be easily dispensed with if convenient; just replace V
by min(V,W ), and then r2 is replaced by r2 + λ. Several examples of
(6) are given in Section 15.G.

The form (6) calls to mind the concept of competing risks (see Chap-
ter 17), because the device is subject to the risk of death due to a birth
defect, to wearout or old age, as well as to an accident.

D.7. Example. Suppose that r is the bathtub hazard rate graphed in
Figure D.5 and given by

r(x) =
1

2
√
x
− 1

2
√
a

+ λ, x ≤ a,

= λ, a ≤ x ≤ b,

= λx2/b2, x ≥ b. (7)

Recall that the survival function corresponding to (7) can be ob-
tained using 1.B(3). That (7) is indeed the hazard rate of a proper
distribution follows from the fact that it is nonnegative and that its in-
tegral over the interval (0, t) is finite for finite t and infinite for t = ∞.

The hazard rate (7) can arise in a variety of ways. In particular, if
λ ≥ 1/[2

√
a ], it is the hazard rate of

X = min (U, V ),

where U has the hazard rate

r1(x) = 1/[2
√
x], x > 0,
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Fig. D.5. Hazard rates of Example D.7 (λ = 1, a = 0.5, b = 1)

i.e., U has a Weibull distribution with shape parameter 1/2 and V has
the hazard rate r2 given by

r2(x) = λ− 1/[2
√
a], x ≤ a,

= λ− 1/[2
√
x], a ≤ x ≤ b,

= λx2/b2 − 1/[2
√
x], x ≥ b.

This example also arises from (1) with

F̄1(x) =
exp{−

√
x + (x/(2

√
a)} − {exp{−

√
a/2}

1 − exp{−
√
a/2} , 0 ≤ x ≤ a,

F̄2(x) = exp{λ(x− b) − λ(x− b)3/3b2}, x ≥ b,

and

π = 1 − exp{−
√
a/2}.
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Other somewhat similar examples are given by Rajarshi and
Rajarshi (1988). The hazard rates 10.C(4) and 10.C(15) are, in terms of
random variables, of the form (6) and may have bathtub hazard rates.

According to Propositions C.5 and 5.D.2, the mean residual life is
decreasing whenever the hazard rate is increasing. There are related
result for bathtub hazard rates.

D.8. Proposition (Mi, 1995). Suppose that F has a bathtub hazard
rate that first achieves a minimum at the point a. Then, the mean
residual life has an inverted bathtub shape with a maximum at a point
a∗. Moreover, a∗ ≤ a.

c. Delayed Bathtub Hazard Rates

The condition that a density must be decreasing wherever the haz-
ard rate is decreasing is a severe limitation that limits the applica-
bility of bathtub hazard rates. However, many more examples can be
encompassed if the concept of a bathtub hazard rate is modified to
allow an initial period in which the hazard rate may be increasing
before assuming a true bathtub shape. Such hazard rates might be
termed “delayed bathtub hazard rates.” In model (1), with the as-
sumption that the hazard rate has a delayed bathtub shape, the den-
sity f1 need not be initially decreasing, and may be 0 at the origin.
Delayed bathtub hazard rates have not received much attention in
the literature, although examples are known (see Jiang and Murthy,
1998).

d. Inverted Bathtub Hazard Rates

In contrast with the bathtub hazard rate, there are a number of well-
known parametric families of life distributions with inverted bathtub
(unimodal) hazard rates.

D.9. Definition. A distribution is said to have an inverted bathtub
hazard rate if for some 0 ≤ a ≤ b, the hazard rate r(t) is increasing in
t, 0 ≤ t ≤ a, is constant in the interval a ≤ t ≤ b, and is decreasing in
t, t ≥ b. Alternatively, such hazard rates are said to be unimodal.

In the past, inverted bathtub hazard rates have not attracted much
interest, at least in reliability theory, perhaps because the bathtub
hazard rates have been a focus of attention. But there are good reasons
for giving consideration to inverted bathtub hazard rates.
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Fig. D.6. Hazard rates for the maximum of two exponentially distributed random
variables (λ2 = 1)

D.10. Example. Let X1 and X2 be independent exponentially dis-
tributed life lengths having respective parameters λ1 and λ2. Then,
max(X1, X2) has survival function

F̄ (x) = e−λ1x + e−λ2x − e−(λ1+λ2)x,

and hazard rate r given by

r(x) = [λ1 e
λ2x + λ2 e

λ1x − 1]/[eλ2x + eλ1x − 1]. (8)

This hazard rate is graphed in Figure D.6.

In Example D.10, the hazard rate is inverted bathtub shaped, as
is apparent from Figure D.6. This example is examined again in Sec-
tion 5.A, where an intuitive explanation for the shape of the hazard
rate is offered.
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This example does not explain why distributions with inverted bath-
tub hazard rates arise naturally in such examples as the Pareto (IV)
distribution of Section 11.B, the generalized F distribution of Section
11.C, the lognormal distribution of Section 12.B, or the log logistic dis-
tribution of Section 12.C. These examples stand in contrast to the case
of a bathtub hazard rate which is possessed by few, if any, examples
known to arise naturally.

The explanation for at least some of these inverted bathtub hazard
rates lies in their representations as mixtures. Mixtures sometimes have
eventually decreasing hazard rates, as is apparent from Examples C.7.a,
C.7.b, and D.6. This fact and numerous other examples are discussed in
detail by Gurland and Sethuraman (1995). The tendency for mixtures
to produce decreasing hazard rates sometimes becomes stronger as one
moves into the right-hand tail of the distribution. Where a mixture is
involved, an inverted bathtub hazard rate should not come as a surprise.
See Block and Joe (1997) for a careful study of these issues.

Inverted bathtub hazard rates have been encountered as first pas-
sage time distributions by Aalen and Gjessing (2001). A well-known
example of this phenomenon is the inverse Gaussian distribution, dis-
cussed in Chapter 13.

E. Determination of Hazard Rate Shape

Sometimes a distribution is defined in terms of its density but the distri-
bution function and survival function cannot be given in closed form.
In addition to the normal distribution, examples include the gamma
and lognormal distributions introduced in Chapter 1. When neither
the survival function nor the hazard rate can be given in closed form, a
direct study of hazard rate behavior may not be particularly easy. The
purpose of this section is to provide some methods for the determina-
tion of hazard rate behavior useful in later chapters where parametric
families of distributions are studied.

It can be seen directly from the definition of the hazard rate that

(i) if the density f is increasing at x = x0, then the hazard rate r is
increasing at x = x0;

(ii) if the hazard rate r is decreasing at x = x0, then the density f is
decreasing at x = x0.

These observations can often be useful.
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The essential fact to be exploited in the following is that the behav-
ior of the hazard rate is related to the behavior of the derivative of the
logarithm of the density, namely,

ρ(x) = −d log f(x)
dx

= −f ′(x)
f(x)

, x > x0. (1)

Of course, this requires the density to be differentiable, an implicit
assumption in what follows.

E.1. Lemma. Let f be a density strictly positive and differentiable on
(x0,∞) such that limx→∞ f(x) = 0. Denote the hazard rate of f by r
and suppose that ρ(x) − c has k sign changes in x > x0. Then,

(i) r(x) − c has at most k sign changes in x > x0 and
(ii) if r(x) − c has k sign changes in x > x0, then they are in the same
order as those of ρ(x) − c.

Proof. Let H(x, t) = 1 if x ≥ t, and H(x, t) = 0 if x < t. This function
is defined in Example 19.B(5) and noted there to be totally positive of
order ∞. Let g(x) = 0, x < x0, and g(x) = f(x), x ≥ x0. Observe that
the sign change pattern of ρ(x) − c in x > x0 is the same as that of
−f ′(x) − cf(x) in x > x0. By the variation diminishing property The-
orem 21.B.13 of totally positive functions,

∫ ∞

−∞
[−g′(x) − cg(x)]H(x, t) dx = f(t+) − cF̄ (t), t ≥ x0,

= f(x0+) − cF̄ (x0), t < x0

has at most k sign changes in t > x0 (here, f(z+) = limx↓z f(x)). If
f(x) − cF̄ (x) has k sign changes in x ≥ x0, then the sign changes occur
in the same order as those of −g′(x) − cg(x), that is, of −f ′(x) − cf(x)
in x ≥ x0. But the sign change pattern of f(x) − cF̄ (x) is the same as
the sign change pattern of r(x) − c. �

E.2. Theorem. Let f be a density function satisfying the conditions
of Lemma E.1 with x0 = 0.

(a) If ρ is increasing, then r is increasing.
(b) If ρ is decreasing, then r is decreasing.
(c) If there exists x1 for which ρ is decreasing in x ≤ x1 and increasing
in x ≥ x1, then there exists x2, 0 ≤ x2 < x1, such that r is decreasing
in x ≤ x2 and increasing in x ≥ x2.
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(d) If there exists x1 for which ρ is increasing in x ≤ x1 and decreasing
in x ≥ x1, then there exists x2, 0 ≤ x2 ≤ x1, such that r is increasing in
x ≤ x2 and decreasing in x ≥ x2.

Proof. If ρ is monotone, it follows directly from Lemma E.1 that r
is monotone in the same direction. If there exists x1 for which ρ is
decreasing in x ≤ x1 and increasing in x ≥ x1, then for every positive
constant c, ρ(x) − c has at most two sign changes, in the order +,−,+
if there are two changes. By Lemma E.1, this means that r(x) − c
has at most two sign changes, in the order +,−,+ if there are two
changes. Consequently, there exists x2 such that r is decreasing in x ≤
x2 and increasing in x ≥ x2. Because ρ is increasing in x ≥ x1, it follows
similarly from Lemma E.1 that r is increasing in x ≥ x1. This means
that 0 ≤ x2 ≤ x1.

The proof of (d) is similar. �

The proof of Theorem E.2 uses mathematical theory beyond that of
ordinary calculus because it depends upon Lemma E.l. A result very
similar to that of Theorem E.2 has been obtained by Glaser (1980)
using basic calculus, but his proof is somewhat more computationally
involved than the one given here.

E.3. Proposition (Glaser, 1980).
(i) Suppose that ρ satisfies the conditions of (c) of Theorem E.2. If

limx→0 f(x) = ∞, then x2 > 0; if, limx→0 f(x) = 0, then x2 = 0.
(ii) Suppose that ρ satisfies the conditions of (d) of Theorem E.2. If

limx→0 f(x) = ∞, then x2 = ∞; if, limx→∞ f(x) = 0, then x2 < ∞.

Proof. These results are obtained from the fact that f(0) = r(0). If (i)
and limx→0 f(x) = ∞, then r must initially decrease so x1 > 0; on the
other hand, if limx→0 f(x) = 0, then r must initially increase, so x1 = 0.
The situation in case (ii) is similar. �

E.4. Example. Consider the lognormal distribution with density
given in the form 1.F(12b). To show that this distribution has an in-
verted bathtub hazard rate, first compute ρ(x) = [1 + α2 log (λx)]/x.
By setting the derivative of ρ equal to 0, it can be determined that ρ
is increasing in x ≤ [exp {1 − α−2}/λ] = x0 and decreasing in x ≥ x0.
It follows that r(x) is increasing in x ≤ x1 and decreasing in x ≥ x1,
where x1 ≤ x0. Here x1 > 0 because f(0) = 0.

To fully appreciate the utility of Theorem E.2, it is helpful to try
to analytically determine the hazard rate behavior of the lognormal
distribution directly without its aid.
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Glaser’s Proposition E.3 has been extended by Gupta and Warren
(2001) to more fully cover the case that a hazard rate has multiple
changes in direction. Their clever proof depends only on basic ideas of
calculus.

E.5. Proposition (Gupta and Warren, 2001). Let f be a twice differ-
entiable density concentrated on the interval (0,∞) such that f(x) > 0,
for all x > 0. Retain the notation introduced above and suppose that
the equation ρ′(x) = 0 has n solutions, say x1, . . . , xn, where 0 = x0 <
x1 < · · · < xn. Then, the equation r′(x) = 0 has at most one solution
in the closed interval [xk−1, xk], k = 1, 2, . . . , n.

Proof. Let g(t) = 1/r(t) and let

s(t) = g′(t)f(t) = F̄ (t)[ρ(t) − r(t)]; (2)

consequently,

s′(t) = ρ′(t)F̄ (t).

Thus, s′ and ρ′ have a common sign and common zeros. Because ρ
is monotonic on [xk−1, xk], so s is also monotonic on that interval;
consequently, it has at most one zero in that interval. From (2) it follows
that s(t) = 0 if and only if g′(t) = 0; because g′ and r′ have common
zeros, it follows that s(t) = 0 if and only if r′(t) = 0. �
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5

Nonparametric Families: Origins
in Reliability Theory

If there is a 50-50 chance that something can go wrong, then 9 times out of 10
it will.

Paul Harvey News, Fall, 1979

As mentioned in the introduction of Chapter 4, nonparametric families
of distributions have mostly been studied in the context of reliabil-
ity theory. The theory that has been developed for these families has
thus involved the notion of components and systems, which might be
mechanical, electrical, or hydraulic. But the same ideas often can be
applied to biological systems also.

This chapter begins with a discussion of a class of systems called
“coherent systems.” The study of such systems, together with addi-
tional ideas that originated in reliability theory, helps to explain the
origins and importance of the nonparametric families discussed in this
chapter. Also in this chapter are additional results for the basic families
introduced in Chapter 4.

Readers should feel free to move on to later chapters before read-
ing this chapter. However, occasional references to this chapter will be
encountered.

A. Coherent Systems

Coherent systems were introduced in a classic paper by Birnbaum,
Esary and Saunders (1961). This paper, written under the auspices
of the Boeing Scientific Research Laboratories, was the beginning of
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a long series of papers giving results about coherent systems. Only a
brief introduction to the theory of coherent systems is given here.

Coherent systems are a fundamental concept in reliability theory
even though they may appear to be of limited usefulness. They are
based upon the idea that components and systems have but two states,
functioning and failed; in practice, it is more often the case that compo-
nents and systems have a multitude of possible states. But ordinarily,
some criterion is imposed to classify the various system states as “func-
tioning” or “failed.” Fortunately, it is very often possible to classify the
components as “functioning” or “failed” in such a way that the state
of the system is determined by the state of the components. Then the
notion of a coherent system is useful.

a. Structure Functions

The principal idea is the premise that if the system is “coherent,” then
the repair of a failed component would not cause the system to fail.
Consequently, the function φ that indicates the state of the system in
terms of the component states would be increasing (nondecreasing).
One would not expect the system to work when all components have
failed and would not even be interested in a system that did not func-
tion when all components function. These ideas are the basis of the
following definition.

A.1. Definition. A binary function φ of n binary variables is called a
coherent system (of order n), or a coherent structure function if

(i) φ (0, . . ., 0) = 0,
(ii) φ (1, . . ., 1) = 1,
(iii) φ is increasing in each of its arguments.

The intent here is to assume that the components of the system have
been labeled by the numbers 1, 2, . . . , n, and for the ith argument xi
to indicate whether the ith component of the system is functioning
(xi = 1) or failed (xi = 0). The value of φ indicates in the same way
whether the system is functioning or failed.

A.2. Notation. For any vector x = (x1, . . . , xn), let (0i,x) be the vec-
tor x altered by placement of 0 in the ith place; let (1i,x) be the vector
x altered by placement of 1 in the ith place. With this notation, it is
easy to see that

φ(x) = xiφ(1i,x) + (1 − xi)φ(0i,x). (1)
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... (n units)

Fig. A.1. Diagram of a series system

This representation is frequently used in proving results about coherent
structure functions using induction of the order n.

It is often required of a coherent system that each component is rele-
vant ; that is, for each i, there exists x such that φ(0i,x) = 0, φ(1i,x) =
1. That requirement is not imposed in Definition A.1, and indeed it is
sometimes useful not to impose even the properties (i) and (ii) of that
definition. The reason for this is that the systems φ(1i,x) and φ(0i,x)
of n− 1 components need not be coherent when these properties are
required. Then proofs by induction on the order of the system using (1)
become awkward. The issue is one of semantics rather than substance.

The two simplest coherent systems are the series system with

φ(x1, . . . , xn) = min (x1, . . . , xn) = Πn
i=1xi

and the parallel system with

φ(x1, . . . , xn) = max (x1, . . . , xn) = 1 − Πn
i=1(1 − xi).

In a human, two eyes or two lungs might be considered to form paral-
lel systems, but two legs would be considered to form a series system
because both are needed for walking. It is not hard to show that any
coherent system is bounded below by the series system (which works
only if all components are working), and is bounded above by the par-
allel system (which works as long as at least one component works). See
Figures A.1 and A.2. For reliability, parallel systems are used because
they provide redundancy to increase system life length.

(n units)

...

Fig. A.2. Diagram of a parallel system
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A more general kind of system is the k-out-of-n system, which func-
tions if and only if at least k of the n components function. A series
system is an n-out-of-n system and a parallel system is a one-out-of-n-
system. A three-engine airplane that can fly on any two of it engines
would constitute a 2-out-of-3 system; such a system has the structure
function

φ(x1, x2, x3) = 1 − (1 − x1x2)(1 − x1x3)(1 − x2x3)
= x1x2 + x1x3 + x2x3 − 2x1x2x3. (2)

Note that the structure function is symmetric (invariant under per-
mutations of its arguments) and φ(0, 0, 0) = φ(1, 0, 0) = 0, φ(1, 1, 0) =
φ(1, 1, 1) = 1.

If φ is a coherent structure function, then φD(x1, . . . , xn) = 1 −
φ(1 − x1, . . . , 1 − xn) defines another coherent structure function called
the dual of φ. This terminology is appropriate because φ is the dual
of φD, that is, (φD)D = φ. It is intuively clear, and can be shown that
series and parallel systems are dual.

b. Path and Cut Sets

As indicated above, it is assumed that the components of a coher-
ent system have been labeled by the numbers 1, 2, . . ., n; consequently,
any subset of components can be represented by a subset of the set
{1, 2, . . . , n}. A subset P is called a path set of the coherent structure
φ if φ(x) = 1 whenever xi = 1, for all i ∈ P . Similarly, a subset C is
called a cut set of the coherent structure φ if φ(x) = 0 whenever xi = 0,
for all i ∈ C. The path set P is called a minimal path set if no proper
subset of P is a path set; a cut set C is called a minimal cut set if no
proper subset of C is a cut set.

A coherent system can be represented by placing the components
of each minimal path in series and then placing these series systems
in parallel. Alternatively, the system can be represented by placing the
components of each minimal cut in parallel and placing these parallel
systems in series. These representations are given by

φ(x) = maxP mini∈Pj
xi = minC maxi∈Cj

xi, (3)

where P is the set of all path sets and C is the set of all cut
sets. In these forms, the structure function (2) of a 2-out-of-3 system



SVNY289-Olkin April 17, 2007 20:0

A. Coherent Systems 141

1 2
 

3

Fig. A.3.a. The diagram of Example A.3 in terms of path sets

1 2

3 3

Fig. A.3.b. The diagram of Example A.3 in terms of cut sets

becomes

φ(x) = max [min (x1, x2),min (x1, x3),min (x2, x3)]
= min [max (x1, x2),max (x1, x3),max (x2, x3)]. (4)

The similarity of these forms is due to the unusual fact that for the
2-out-of-3 system, the minimal path and minimal cut sets coincide.

A.3. Example. Suppose that the minimal path sets are {1, 2} and
{3}; the minimal cut sets are {1, 3} and {2, 3}. Equation (3) becomes

φ(x) = max {min [x1, x2], x3} = min {max [x1, x3],max [x2, x3]}.

The first form of this structure function is illustrated in Figure A.3.a.
The second form is illustrated in Figure A.3.b, where the component 3
appears twice because it is a member of two minimal cut sets.

c. Reliability Functions

In applications, the state of components of a coherent system are
random, and are represented by random variables Xi with Bernoulli
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distributions. Let Pi = P{Xi = 1} = 1 − P{Xi = 0} = EXi. When the
arguments of a coherent structure function are random, its expected
value is a function of the pi, and this function is important.

A.4. Definition. The reliability function h of a coherent system φ is
defined as

h(P1, . . . , Pn) = Eφ(X1, . . . , Xn), 0 ≤ pi ≤ 1, i = 1, 2, . . . , n,

where X1, . . . , Xn are assumed to be independent.

Reliability functions play an important role in the theory of co-
herent systems. The reliability function of a series system is given
by h(p1, . . . , pn) = Πpi, the reliability function of a parallel system is
h(p1, . . . , pn) = 1 − Π(1 − pi), and the reliability function of a 2-out-of
3 system is h(p1, p2, p3) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

When all component life lengths are independent and identically
distributed, the reliability function can be written as a function of the
common value of the pi. In this case, the reliability function of a k -out-
of-n system is

h(p) =
n∑

i=k

(
n

i

)
pi(1 − p)n−i =

∫ p

0

tk−1(1 − t)n−k

B(k, n− k + 1)
dt, 0 ≤ p ≤ 1, (5)

where B is the beta function and the integral comes from 23.B(8).
As an aside, readers familiar with the vector ordering of majorization

may note that the reliability function of a series system is Schur-concave
and the reliability function of a parallel system is Schur-convex. (See,
for example, Marshall and Olkin (1979) for definitions and discussions.)
This means that with

∑
pi fixed, a series system has a maximum reli-

ability when all of the pi are equal but under this condition a parallel
system has a minimum reliability. Even without the mathematics to
prove these results, they may be intuitively reasonable.

Suppose that Xi = 0 or 1, as the random variable Ti ≤ t or Ti > t,
i.e., Ti is below or above the threshold t ; suppose also that the Ti

are independent with common distribution F. Then H̄k(t) = h(F̄ (t)) is
the survival function of the (n− k + 1)th order statistic of a random
sample of size n from F. Thus, k -out-of-n systems have interest outside
the realm of reliability theory.
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The following lemma is restated with a different notation as Propo-
sition A.9. In its restated form, it provides the basis for the proof of
Theorem B.8.

A.5. Lemma (Esary, Marshall and Proschan, 1970). If h is the relia-
bility function of a coherent system, then

h(pθ1, . . . , p
θ
n) ≥ [h(p1, . . . , pn)]θ, 0 ≤ θ ≤ 1. (6)

To prove this lemma some simplifying notation is useful. For compact-
ness, write

pθ = (pθ1, . . ., p
θ
n) and in case θ = 1, p = (p1, . . . , pn).

Proof of Lemma A.5. (Barlow and Proschan, 1975). To prove (6) by
induction on n it is convenient to prove the result for the class of
reliability functions of coherent systems augmented by the functions
identically 0 or 1.

The lemma is trivially true for n = 1, because then h(p) is either
identically 0, identically 1, or identically p. Now, assume that the result
is true for the augmented class of order n− 1. This means that

h(1n,pθ) ≥ [h(1n,p)]θ and h(0n,pθ) ≥ [h(0n,p)]θ. (7)

But from (1), it follows that

h(pθ) = pθnh(1n,pθ) + (1 − pθn)h(0n,pθ). (8)

Together, (7) and (8) yield

h(pθ) ≥ pθn[h(1n,p)]θ + (1 − pθn)[h(0n,p)]θ. (9)

It remains to show that the right-hand side of (9) is greater than or
equal to

[h(p1, . . . , pn)]θ = [pnh(1n,p) + (1 − pn)h(0n,p)]θ, 0 ≤ θ ≤ 1.

With the notation h(1n,p) = x, h(0n,p) = y, this means that it is nec-
essary to show that for 0 ≤ pn ≤ 1 and 0 ≤ θ ≤ 1,

pθnx
θ + (1 − pθn)yθ − (pnx + (1 − pn)y)θ ≥ 0, x ≥ y ≥ 0 . (10)
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Fix y and regard the left-hand side of (10) as a function g(x) of x. Note
that g(y) = 0, and that because θ ≤ 1, g′(x) ≥ 0 when x ≥ y. �

d. Consideration of Time: Coherent Life Functions

In the discussion of coherent systems, the concept of time was intro-
duced for identically distributed components to show the connection
between k -out-of-n systems and order statistics. More generally, it is
convenient to introduce the notion of “performance processes” for both
components and systems.

Let X(t) = 0 or 1 according to whether the device is failed or func-
tioning at time t. If there exists a time T such that X(t) = 1, for t < T ,
and X(t) = 0, for t > T , then the life length T of the device is well de-
fined, and the device does not operate on an intermittent basis. The
definition of the performance process X(T ) at the time T of failure is
arbitrary, but when the process is chosen to be right continuous, then

P{X(t) = 1} = F̄ (t),

where F̄ is the survival function of T.
If Xi(t), i = 1, . . . , n, are the performance processes of the compo-

nents of a coherent system of order n, then X(t) = φ(X1(t), . . . , Xn(t))
is the performance process of the system. If component i has the life
Ti, i = 1, . . . , n (the performance processes Xi are decreasing), then be-
cause φ is monotone, X(t) is decreasing. This means that the system
has a life, say T. When the life lengths are independent, the survival
function F̄ of T is given in terms of the survival functions F̄i of the
component life lengths Ti by the formula

F̄ (t) = h(F̄1(t), . . . , F̄n(t)). (11)

When each component has a well-defined life, there exists a func-
tion τ such that T = τ(T1, . . . , Tn). This result is noted by Esary and
Marshall (1964), who also note that converses are false; it is possible
that a coherent system has a life even though none of the components
has a life. For example, a 2-out-of-3 system has a life when components
operate intermittently for a period of time, just so long as components
remain in a failed state once the system first fails. Moreover, a system
and its components can have lives even though the system is not co-
herent. For example, the system φ(x1, x2, x3) = max [x1(1 − x2), x3] is
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not coherent because φ(1, 0, 0) = 1 > φ(1, 1, 0) = 0, but it has a life if
the third component always lives longer than the second.

A.6. Definition. The life function τ of a coherent system gives the
life length of the system as a function of the component lives. More pre-
cisely, τ is a nonnegative function defined on [0,∞)n with the property
that t = τ(t1, . . . , tn) is the life length of the coherent system of order
n when t1, . . . , tn are the life lengths of the components.

It is apparent that a coherent life function τ is an extension of the
underlying structure function φ, i.e.,

τ(x1, . . . , xn) = φ(x1, . . . , xn), each xi = 0 or 1.

Of course, reliability functions also are extensions of the structure func-
tion, but of a different kind.

Coherent life functions have been characterized and studied by
Esary and Marshall (1970). They show that a coherent life function
τ has the following properties:

(i) τ is increasing,
(ii) τ is homogeneous, i.e., τ(ct1, . . ., ctn) = cτ(t1, . . ., tn) for all c ≥ 0
and all (t1, . . ., tn) in [0,∞)n,
(iii) τ(t1 + δ, . . . , tn + δ) = τ(t1, . . . , tn) + δ for all δ ≥ 0,
(iv) τ(δ, . . . , δ) = δ,
(v) τ is continuous,
(vi) If φ(x) = maxP mini∈pj

xi = minC maxi∈Cj
xi is the minimal path

and minimal cut representations (3) of the coherent structure, then

τ(t1, . . . , tn) = maxP mini∈Pj
ti = minC maxi∈Cj

ti. (12)

It is a well-known engineering principle that parallel redundancy at
the component level is better than parallel redundancy at the system
level. That is, if all components of a system are available in duplicate, it
is better to put these component pairs in parallel than it is to build two
identical systems and place the systems in parallel. As noted by Boland
and El-Neweihi (1995), this principle regarding parallel redundancy
does not necessarily apply to spare (standby) redundancy; Example
A.7 provides an illustration of the fact that keeping a spare for each
component to be used for replacement upon failure may not be as good
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as building a spare system with the spare components for replacement
upon system failure.

With parallel redundancy, the device and spare are placed in paral-
lel, and the engineering principle says that

τ(max (t1, u1), . . . ,max (tn, un)) ≥ max (τ(t1, . . . , tn), τ(u1, . . . , un))
for all ti, ui ≥ 0. (13)

This fact can be verified by noticing that because τ is increasing,

τ(max (t1, u1), . . . ,max (tn, un)) ≥ τ(t1, . . . , tn)

and similarly,

τ(max (t1, u1), . . . ,max (tn, un)) ≥ τ(u1, . . . , un).

Boland and El-Neweihi (1995) note that because of (13),

τ(max (T1, U1), . . . ,max (Tn, Un)) ≥ max (τ(T1, . . . , Tn), τ(U1, . . ., Un))

whatever the (random) life lengths Ti, Ui are, and consequently, the
pointwise order can be replaced by stochastic order. But they show
that the hazard rate order need not hold.

As noted above, spare (standby) redundancy at the component level
may not be as good as spare redundancy at the system level. Intuitively,
the reason for this is that, except for series systems, it may not be neces-
sary for a component to be immediately replaced upon failure in order
to insure that the system continues to function. But when the com-
ponent is replaced, the replacement is immediately subject to failure,
and if the replacement component fails before it is needed to maintain
the system in a functioning state, then the replacement component has
served no useful purpose.

A.7. Example. Consider a system consisting of two components in
parallel. Denote the component life lengths by X1 and X2. Suppose that
spares for each component are available, with respective life lengths Y1
and Y2. With standby redundancy at the component level, the system
life length is given by

U = max (X1 + Y1, X2 + Y2).
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With the standby redundancy at the system level, the system life length
is

V = max (X1, X2) + max (Y1, Y2).

Clearly, V ≥ X1 + Y1 and V ≥ X2 + Y2; thus V ≥ U . It can be shown
that the strict inequality V > U holds unless the vectors (X1, Y1) and
(X2, Y2) are similarly ordered, that is, unless

(X1 − Y1)(X2 − Y2) ≥ 0

with probability one.
For additional discussions regarding comparisons of coherent sys-

tems, see Kochar, Mukerjee and Samaniego (1999) and the references
contained there.

e. Hazard Transforms of Coherent Systems

Another useful tool in working with coherent systems is the hazard
transform, which gives the hazard rate of the system in terms of the
hazard transform of the components, still under the assumption that
the component life lengths are independent.

A.8. Definition. The function η which gives the system hazard func-
tion in terms of the component hazard functions is called the hazard
transform of the coherent system. More precisely, η is defined by

η(ρ1, . . . , ρn) = − log h(e−ρ1 , . . . , e−ρn), 0 ≤ ρi ≤ ∞.

With the notation ρ = (ρ1, . . ., ρn), Lemma A.5 can be restated com-
pactly in terms of the hazard transform.

A.9. Proposition (Esary, Marshall and Proschan, 1970). The haz-
ard transform η of a coherent system is starshaped on its extended
domain; i.e.,

η(aρ) ≤ aη(ρ) for 0 ≤ a ≤ 1 and 0 ≤ ρi ≤ ∞, i = 1, 2, . . . , n.
(14)

The following proposition states that the hazard transform of a co-
herent system is superadditive (see Proposition 21.A.10). According to
Proposition 21.A.11, in one dimension a starshaped function must be
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superadditive. However, this result does not extend to higher dimen-
sions, so the following proposition does not follow from Proposition A.9.
Although it may be somewhat obscure in meaning, it is an important
tool in proving Proposition C.10.

A.10. Proposition (Esary, Marshall and Proschan, 1970). The haz-
ard transform η of a coherent system is superadditive; i.e.,

η(u) + η(v) ≥ η(u + v), (15)

for all u = (u1, . . ., un),v = (v1, . . ., vn) such that ui, vi ≥ 0,
i = 1, 2, . . ., n.

Proof. Let φ be the structure function of a coherent system, h be
its reliability function, and η be its hazard transform. Make use
of the notation x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn), and x × y =
(x1y1, x2y2, . . . , xnyn). (For matrices, x × y is called the Schur or
Hadamard product, and is sometimes denoted x ◦ y.) Because φ is in-
creasing and takes only the values 0 and 1, it follows that

φ(x × y) ≤ φ(x)φ(y). (16)

Next, note that

h(p × q) ≤ h(p)h(q), (17)

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn). Inequality (17) fol-
lows from (16) and the fact that

h(p)h(q) − h(p × q) =
∑
x,y

[φ(x)φ(y) − φ(x × y)]P{X = x}P{Y = y},

where the vectors X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) have indepen-
dent binary random components such that P{Xk = xi} = pi and
P{Yk = yi} = qi, i, k = 1, . . . , n. But (17) is just a restatement of (15),
as can be seen from Definition A.8. �

f. Wearout

The notion of an increasing hazard rate was initially introduced pri-
marily because of its intuitive appeal as a mathematical representation
of “wearout.” More about this can be found in Section B.
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A.11. Example. Let X1 and X2 be independent exponentially dis-
tributed life lengths having respective parameters λ1 and λ2. The par-
allel system with components X1 and X2 has survival function

F̄ (x) = e−λ1x + e−λ2x − e−(λ1+λ2)x

and hazard rate r given by

r(x) = [λ1 eλ2x + λ2 eλ1x − 1]/[eλ2x + eλ1x − 1]. (18)

This is a repeat of Example 4.D.10, because the life of a parallel sys-
tem is the maximum of the component life lengths. It can be verified by
differentiation that if λ1 = λ2 = λ (the components are identically dis-
tributed), then the hazard rate (18) is increasing in x. But if λ1 �= λ2,
then the hazard rate (18) is not increasing in x, for example, when
λ1 > λ2 > 0 and x is large (see Figure 4.D.6).

More generally, suppose that the two components in parallel have
life lengths X and Y, and distributions FX and FY . Then, the system
life Z = max (X,Y ) has the survival function F̄Z(x) = 1 − FX(x)FY (x)
and hazard rate

rZ(x) = rX(x)
F̄X(x)FY (x)

1 − FX(x)FY (x)

+ rY (x)
FX(x)F̄Y (x)

1 − FX(x)FY (x)
+ 0

F̄X(x)F̄Y (x)
1 − FX(x)FY (x)

. (19)

Here, the coefficients of rX(x), rY (x), and 0 add to 1. They represent,
respectively, the conditional probabilities, given that the system is alive
at time x, that the system consists only of the first component, only
of the second component, or of both components in parallel. The be-
havior of the hazard rates in Figure 4.D.6 stems from the fact that
these probabilities change with x. It can be verified that as x tends
to ∞, the coefficient of 0 tends to 0, the coefficient of rX(x) tends to
limx→∞ F̄X(x)/[F̄X(x) + F̄Y (x)], and the coefficient of rY (x) tends to
limx→∞ F̄Y (x)/[F̄X(x) + F̄Y (x)].

In case X and Y are identically distributed, say with distribution
F and hazard rate r, then (19) becomes

rZ(x) = 2r(x)
F (x)

1 + F (x)
; (20)
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if r is increasing, then rZ is increasing. A more general statement can
be made.

A.12. Proposition. If all components of a k -out-of-n system are iden-
tically distributed, independent, and have an increasing hazard rate,
then the system has an increasing hazard rate.

Proof. Denote the survival function of the system by H̄. Monotonicity
of the hazard rate is demonstrated here by showing that the derivative
of log H̄(t) is decreasing. To this end, it is convenient to first show that
the reliability function h of a k -out-of-n system has the property that
ph′(p)/h(p) is decreasing in p. Use the second form of equation A(5) to
write

ph′(p)
h(p)

=

[∫ 1

0
uk−1

(
1 − pu

1 − p

)n−k

du

]−1

,

and differentiate the integrand on the right with respect to p. Next, let
F be the common life distribution of the components of a k -out-of-n
system and H be the distribution of the system life length. Then,

d log H̄(t)
dt

=
d log h(F̄ (t))

dt
= −

[
F̄ (t)h′(F̄ (t))

h(F̄ (t))

]
f(t)
F̄ (t)

. (21)

The first factor on the right of (21) is increasing because both F̄ (t) and
ph′(p)/h(p) are decreasing. The second factor on the right of (21) is
also increasing because F̄ is log concave. Thus, (21) is decreasing in t
because it is the negative of a product of two nonnegative increasing
functions. �

Proposition A.12 has been given by Barlow and Proschan (1975)
and further discussed by Samaniego (1985).

A.12.a. Remark. Example A.11 shows that the class of distributions
with increasing hazard rate is not closed under the formation of co-
herent systems. That is, a coherent system can have components with
independent life lengths that are all IHR, but that does not mean that
the system life length is IHR. Proposition A.12 has been given by Bar-
low and Proschan (1975). Special conditions under which a system with
IHR components is IHR are given by Samaniego (1985).
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g. More About Ordering Coherent Systems

Because reliability functions are increasing, it follows that if Fi ≤st Gi,
i = 1, 2, . . . , n, then

h(F̄1, . . . , F̄n) ≤st h(Ḡ1, . . . , Ḡn);

that is, stochastic order is preserved under the formation of coher-
ent systems. The same cannot be said about the hazard rate order.
However, hazard rate order is preserved under the formation of series
systems because the hazard rate of a series system is the sum of the
hazard rates of its components. Even two parallel systems with cor-
responding components ordered by the hazard rate order need not be
hazard rate ordered. On the other hand, k -out-of-n systems are hazard
rate ordered if all components are identically distributed. See Boland,
El-Neweihi and Proschan (1994) and Nanda and Shaked (2001) for dis-
cussions of these issues.

B. Monotone Hazard Rate Averages

A class of distributions is said to be closed under the formation of co-
herent systems if, when all components of the system have life lengths
belonging to the class, so does the system life. As illustrated by Ex-
ample A.11, the class of IHR distributions is not closed under the for-
mation of coherent systems. What is the smallest class of distributions
that contains the IHR distributions and is closed under the formation
of coherent systems? To answer this question, Birnbaum, Esary, and
Marshall (1966) introduced the class of distributions with increasing
hazard rate average. This class is closed under the formation of coher-
ent systems; it is the smallest such class that contains the exponential
distributions and is closed under weak limits.

B.1. Definition. A distribution F satisfying F (0) = 0 is said to have
an increasing hazard rate average (IHRA) if the hazard function R =
− log F̄ of F (Definition 1.B.3) satisfies

R(t)/t is increasing in t > 0. (1a)

Similarly, F is said to have a decreasing hazard rate average (DHRA)
if

R(t)/t is decreasing in t > 0. (1b)
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The terminology of Definition B.1 comes from the fact that if a
hazard rate r exists, then

R(t)
t

=
1
t

∫ t

0
r(z) dz

is the average of r over the interval [0, t].
Condition (1a) is the condition that R is starshaped. Starshaped

functions are defined in Definition 19.A.8, and the geometric meaning
of (1a) is discussed in Chapter 21.

B.2. Example. If

F̄ (x) = e−rx, 0 ≤ x < 1,
= e−sx, x ≥ 1,

then F is IHRA whenever r ≤ s. When r < s, this piecewise exponential
distribution has a discrete part, with mass at 1, and F is not IHR.

Example A.11 exhibits another IHRA distribution that is not IHR,
an example where the hazard rate is inverted bathtub shaped (uni-
modal). Examples of parametric families of IHRA distributions that
are not IHR are mostly contrived. This may be partially due to the
fact that the IHRA condition is often difficult to check analytically, es-
pecially in examples where the survival function does not take a simple
form.

a. Characterizations of IHRA Distributions

B.3. Proposition. The following are equivalent:

(i) F is IHRA.
(ii) F̄ can cross the survival function of any exponential distribution at
most once, and only from above.
(iii) [F̄ (x)]1/x is decreasing in x ≥ 0, or equivalently,

F̄ (ax) ≥ [F̄ (x)]a for all a in [0, 1] and x ≥ 0, (2a)

that is,

R(ax) ≤ aR(x) for all a in [0, 1] and x ≥ 0, (2b)
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where R is the hazard function of F.
(iv) F is less than G in the star ordering ≤∗ of Definition 2.C.10, where
G is an exponential distribution (that is, Ḡ−1F̄ is starshaped, where
Ḡ(x) = e−x, x ≥ 0).

Proof. Condition (iii) is clearly a restatement of the definition. Condi-
tion (ii) is most easily seen by restating the result in terms of the hazard
function: The hazard function of an IHRA distribution can cross a ray
emanating from the origin at most once and only from below. Verifica-
tion of (iv) is similar to the verification of Proposition 4.C.1.f. �

B.3.a. Proposition. If F has a density, the following are equivalent:

(i) F is IHRA,
(ii) r(x) ≥ R(x)/x, x > 0.
(iii) F̄ (x) ≥ e−xr(x), x ≥ 0.

Proof. Condition (ii) comes from (1a) and is the condition that R(x)/x
has a nonnegative derivative. Condition (iii) comes from (ii) by expo-
nentiation, using the fact that R(x) = − log F̄ (x). �

The following fundamental lemma gives yet another characterization
of IHRA distributions. It has a rather technical proof requiring some
theory of the Lebesgue integral; it is used in the proof of Proposition
B.9. However, the meaning of Proposition B.9 is easy to understand
without the following lemma and its proof.

B.4. Lemma (Block and Savits, 1976). The distribution F of the ran-
dom variable X is IHRA if and only if for all nonnegative increasing
functions φ and a ∈ (0, 1),

Eφ(X) ≤ (Eφ(X/a))1/a, (3)

that is,

∫
φ(z) dF (z) ≤

{∫
[φ(z/a)]a dF (z)

}1/a
.

Proof. First, suppose that (3) holds and take φ to be the indicator func-
tion I(x,∞) of the set (x,∞), that is, φ(z) = 1 if z > x, and φ(z) = 0
otherwise. Then (3) reduces to (2a), so (3) implies that F is IHRA.
Next, suppose that F is IHRA. It follows directly from (2a) that
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for 0 < a < 1,

∫
I(x,∞)(z) dF (z) ≤

{∫
[I(x,∞)(z/a)]a dF (z)

}1/a
. (4)

Now, let φ(z) =
∑n

i=1 ciI(xi,∞)(z), where each ci ≥ 0, and get from (4)
that

∫
φ(z) dF (z) ≤

n∑
i=1

{∫
[ciI(xi,∞)(z/a)]a dF (z)

}1/a
.

But according to Minkowski’s inequality for α ≤ 1 (see, e.g., Marshall
and Olkin, 1979, 16.D.1.g, p. 460),

n∑
i=1

{∫
[ciI(xi,∞)(z/a)]a dF (z)

}1/a
≤

{∫ [
n∑
i=1

[ciI(xi,∞)(z/a) ]a dF (z)

}1/α

,

and this proves the lemma for finite positive combinations of indicator
functions. The proof is completed using Lebesgue’s monotone conver-
gence theorem (see 24.B.2). �

Another characterization of distributions with monotone hazard
rate average has been given by Rojo (1995); this characterization in-
volves slowly varying functions and is beyond the scope of this book.

b. Basic Properties

If F has an IHRA distribution, then F has an absolutely continuous
part because R, and hence F, must be strictly increasing if (1a) is to
hold. But F can also have a discrete part. In fact, IHRA distributions
can have any countable number of discontinuities.

B.5. Example. If 0 ≤ x1 < x2 < · · ·, λi > 0, i = 1, 2, . . . , and F̄ (x) =
exp {−(λ1 + λ2 + · · · + λi)x}, for xi−1 ≤ x < xi, i = 1, 2, . . ., then each
xi is a point of discontinuity of F, but F is IHRA.

B.6. Proposition. If F is an IHRA distribution, then F has finite
moments of all positive finite orders.

Proof. If F is degenerate, the result clearly holds. If F is not degener-
ate, then there exists t0 such that 0 < F (t0) < 1. Let λ = R(t0)/t0, so
that F̄ (t0) = exp {−λt0}. Then from (ii) of Proposition B.3, it follows
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that F̄ (t) ≤ exp {−λt} for all t ≥ t0. From this, from 1.C(4), and the
fact that exponential distributions have finite moments of all orders, it
follows that

EXr = r

∫ ∞

0
F̄ (x)xr−1 dx = r

∫ t0

0
F̄ (x)xr−1 dx + r

∫ ∞

t0
F̄ (x)xr−1 dx

≤ r

∫ t0

0
F̄ (x)xr−1 dx + r

∫ ∞

t0
e−λx xr−1 dx < ∞. �

B.6.a. Proposition. If F is an IHRA distribution with hazard rate r,
then

lim infx→∞ r(x) > 0.

Proof. This result follows directly from (ii) of Proposition B.3.a and
the fact that R(x)/x is increasing. �

In case F has a density (and consequently a hazard rate), Proposi-
tion B.6 follows from Proposition B.6.a and Proposition 20.B.6. Note
that the proof of Proposition 20.B.6 is not unlike the proof of Proposi-
tion B.6.

The following proposition can be useful in verifying the IHRA prop-
erty because total time on test data plots tend to look like total time
on test transforms.

B.7. Proposition (Barlow and Campo, 1975). If F is an IHRA
[DHRA] distribution, then the normalized total time on test transform
K−1

F of 1.I(10) has the property that [K−1
F (p)]/p is decreasing [increas-

ing] in p ∈ [0, 1]. Moreover, K−1
F (p) ≥ p.

c. Preservation Properties

As already mentioned in Remark A.12.a, a mathematical characteriza-
tion or definition of “wear out” is somewhat elusive. One might require
of such a definition the property that if the components of a coher-
ent system “wear out” in the adopted sense, then the system would
“wear out” in the same sense. Imposition of this property conflicts
with the commonly assumed idea that an increasing hazard represents
“wear out.” To face this disconcerting fact, first adopt the view that
exponential distributions represent the case of no “wear”; this is gener-
ally accepted and hard to escape because of 1.F(4), which says that for
an exponential F, F̄ (x + t)/F̄ (t) = F̄ (x). This question then presents
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itself: What distributions can possibly arise as life distributions of co-
herent systems with exponentially distributed components? According
to the following theorem, the answer to this question is essentially the
distributions with increasing hazard rate average.

B.8. Theorem (Birnbaum, Esary and Marshall, 1966). The class of
IHRA distributions is closed under the formation of coherent systems.
Moreover, it is the smallest such class containing the exponential dis-
tributions that is closed both under formation of coherent systems and
limits in distribution.

The proof of this result given by Birnbaum, Esary and Marshall
(1966) is not particularly simple. Esary, Marshall and Proschan (1970)
gave a new proof of the closure of the IHRA class which utilizes Propo-
sition A.10, but their proof of Proposition A.10 was not simple. For-
tunately, that proof was simplified by Ross (1979). A generalization of
Theorem B.8 was obtained by Marshall (1994).

Proof of Closure. Let R be the hazard function of a coherent system
with hazard transform η, and suppose that the components have hazard
functions Ri, i = 1, 2, . . . , n. To prove closure, it is sufficient to show
that R satisfies (2b). Write R(x) = (R1(x), . . . , Rn(x)). Because η is
increasing and the Ri are starshaped,

R(ax) = η(R(ax)) ≤ η(aR(x)), 0 ≤ a ≤ 1. (5)

By Proposition A.8, η is starshaped, so again, for 0 ≤ a ≤ 1,

η(aR(x)) ≤ aη(R(x)) = aR(x). (6)

By combining (5) and (6), (2b) is obtained. �

To complete the proof of Theorem B.8, it remains to show that
the class of IHRA distributions is the smallest class of life distribu-
tions containing the exponential distributions, which is also closed
under limits in distribution. The idea of the proof, given in de-
tail by Birnbaum, Esary and Marshall (1966), is to show first that
degenerate distributions can be obtained as limits in distribution
of coherent systems with exponentially distributed components. The
next step is to show that IHRA distributions can be approximated
by distributions having the form of Example B.5 (see Figure B.1).
Such distributions arise as life distributions of coherent systems
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Fig. B.1. Piecewise exponential approximation to an IHRA survival probability

with components having exponential or degenerate distributions (see
Figure B.2).

Is the class of IHRA distributions closed under convolutions? This
question remained unsettled at the time the classic book of Barlow
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Fig. B.2. Coherent system with piecewise exponential distribution

and Proschan (1975) was first published, and it is posed as an open
problem on page 101 of that book. A short time later, separate and
quite different proofs were found independently by Block and Savits
(1976). One of the proofs is given below.

B.9. Proposition (Block and Savits, 1976). The class of IHRA dis-
tributions is closed under convolutions.

Proof. Let F and G be IHRA distributions and H = F ∗G be their
convolution. For 0 < a < 1 and any nonnegative increasing function φ,
it follows from Lemma B.4 that∫

φ(z) dH(z) =
∫ ∫

φ(x + y) dF (x) dG(y)

≤
∫ {∫ [

φ

(
x + y

a

)]a
dF (x)

}1/a

dG(y).

But the inner integral on the right-hand side is an increasing function
of y, and so another application of Lemma B.4 shows that

∫ {∫ [
φ

(
x+y

a

)]a
dF (x)

}1/a

dG(y)

≤
{∫ ∫ [

φ

(
x+y

a

)]a
dF (x) dG(y)

}1/a

=
{∫

[φ(z/a)]a dH(z)
}1/a

.

A combination of these inequalities yields

∫
φ(z) dH(z) ≤

{∫
[φ(z/a)]a dH(z)

}1/α
,

which, again by Lemma B.4, shows that H is IHRA. �

B.10. Proposition. Suppose that the residual life distribution Ft of
F has an IHRA survival function for all t ≥ 0. Then F is IHR.
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This proposition may be a disappointment, because if the IHRA
property represents “wearout,” then intuition would expect that the
residual life distribution of an IHRA distribution to be IHRA, but this
is not the case. This apparent conflict appears to have no resolution.

B.11. Observation. The class of IHRA distributions is not closed un-
der mixtures. This is a consequence of the fact that mixtures of expo-
nential distributions are DHR.

B.12. Proposition (Block, Li and Savits, 2003a). Let {F (x | θ),
θ ≥ 0} be a family of distribution functions such that F̄ (x | θ) is in-
creasing in θ for each t ≥ 0. Suppose further that

F̄ (ax | aθ) ≥ [F̄ (x | θ)]a for all a ∈ (0, 1), x ≥ 0, θ ≥ 0. (7)

If G is an IHRA distribution, then the mixture

H̄(x) =
∫ ∞

0
F̄ (x | θ) dG(θ)

is IHRA. Conversely, if H is IHRA whenever (7) is satisfied, then G is
IHRA.

Proof. First make use of (7) and then apply Lemma B.4 with θ in place
of z and with φ(θ) = F̄ (x | θ). In this way, it follows that

H̄(ax) =
∫ ∞

0
F̄ (ax | θ) dG(θ) ≥

∫ ∞

0
[F̄ (x | θ/a)]a dG(θ)

≥
[∫ ∞

0
F̄ (x | θ) dG(θ)

]a
= [H̄(x)]a.

According to Lemma B.4, this means that F is IHRA.
To prove the converse, in (7) take F to be the distribution degenerate

at θ, that is, F (x) = 0, x < θ, and F (x) = 1, x ≥ θ. �

B.12.a. Example. If F is an IHRA distribution, then by (2a),
F̄ (ax) ≥ [F̄ (x)]a, for all a in [0, 1] and x ≥ 0. If F (x | θ) = F (x− θ),
then it is straightforward to verify that for this parametric family, (7)
is satisfied.

B.13. Alternative proof of B.12. If F̄ (x | θ) = F̄ (x− θ) for some
IHRA distribution F, then according to Example B.12.a, (7) is satis-
fied. But in this case, the distribution H of Proposition B.12 is the
convolution of F and G, and is IHRA by Proposition B.9. �
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d. Decreasing Hazard Rate Average

Because the importance of DHRA distributions has never become clear,
only a limited discussion of these distributions is offered here. The
following is an analog of Proposition B.3.

B.14. Proposition. The following are equivalent:

(i) F is DHRA.
(ii) F̄ can cross the survival function of any exponential distribution at
most once, and only from below.
(iii) [F̄ (x)]1/x is increasing in x ≥ 0, or equivalently,

F̄ (ax) ≤ [F̄ (x)]a for all a in [0, 1] and x ≥ 0, (8a)

that is,

R(ax) ≥ aR(x) for all a in [0, 1] and x ≥ 0, (8b)

where R is the hazard function of F.
(iv) F is greater than G in the star ordering ≤∗ of Definition 2.C.7,
where G is an exponential distribution (that is, F̄−1Ḡ is starshaped,
where Ḡ(x) = e−x, x ≥ 0).

Because the exponential distribution is both IHRA and DHRA, and
the class of IHRA distributions is closed under both convolutions and
formation of coherent systems, the class of DHRA distributions cannot
be closed under these operations. However, the class is closed under the
formation of mixtures.

The proof of the following proposition makes use of the concept
of a hazard transform of a mixture, which is defined and discussed in
Section 3.D.

B.15. Proposition. The class of DHRA distributions is closed under
the formation of mixtures.

Proof. According to Proposition 3.D.2, the hazard transform h of a
mixture is concave; thus,

η(〈aR(x | θ), θ ∈ Θ〉) ≥ η(〈R(x | θ), θ ∈ Θ〉), 0 ≤ a ≤ 1. (9)

By hypothesis,

R(ax | θ) ≥ aR(x | θ), 0 ≤ a ≤ 1. (10)
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Because η is an increasing function, it follows from (9) and (10) that

R(ax) = η(〈R(ax | θ), θ ∈ Θ〉) ≥ η(〈aR(x | θ), θ ∈ Θ〉)

≥ aη(〈R(x | θ), θ ∈ Θ〉) = aR(x), 0 ≤ a ≤ 1.

Thus, F is DHRA. �

This proof is given by Barlow and Proschan (1975). Note that it is
analogous to the proof of Theorem B.8, but uses the concavity of the
hazard transform of a mixture in place of the starshapedness of the
hazard transform of a coherent system. Another proof of Proposition
B.15 has been given by Badia, Berrade, Campos and Navascués (2001).

C. New Better (Worse) Than Used Distributions

As might be expected from their name, new better than used distri-
butions were introduced in the context of replacement policy theory.
To maintain complex systems where in-service failure has serious con-
sequences, components are sometimes replaced by new ones accord-
ing to some predetermined schedule. Such replacement policies are not
necessarily helpful, but depend upon properties of the underlying life
distribution; these issues are discussed in Section I.

C.1. Definition. A distribution F such that F (0) = 0 is said to be
new better than used (NBU) if

F̄ (x + t) ≤ F̄ (x)F̄ (t) for all x, t ≥ 0, (1a)

that is,

R(x + t) ≤ R(x) + R(t) for all x, t ≥ 0. (1b)

If the inequalities (1a) and (1b) are reversed, then F is said to be new
worse than used (NWU).

In case F̄ (t) > 0, (1a) can be rewritten as

F̄ (x) ≥ F̄ (x + t)
F̄ (t)

= F̄t(x) for all x, t ≥ 0,

that is, a new item has a stochastically greater life than does an unfailed
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used one (in the stochastic ordering of Definition 2.A.1). This explains
the names given to the NBU and NWU properties.

a. Equivalent Conditions

C.2. Proposition (Kirmani and Gupta, 2001). Let F be a distribu-
tion such that F(0) = 0. Then F is NBU if and only if, in the notation
of Proposition 4.C.1.e,

Ø−
t (x) ≥ Ø(x) for all x, t ≥ 0 ;

the odds ratio of the residual life distribution dominates the odds ratio
of the underlying distribution. The distribution is NWU if and only if
this odds ratio inequality is reversed.

C.3. Proposition. The distribution F is NBU (NWU) if and only
if a random variable with distribution F is smaller (larger) than an
exponentially distributed random variable in the superadditive order
≤su of Definition 2.C.15. Here it is clearly enough to take λ = 1.

C.4. Proposition (Block, Li and Savits, 2003a). The distribution F
is NBU if and only if

∫
g(αx)h(ᾱx) dF (x) ≤

∫
g(x) dF (x)

∫
h(x) dF (x) (2)

for all nonnegative increasing functions g and h and all α ∈ (0, 1). As
usual, ᾱ = 1 − α.

Proof. First, note that for α ∈ (0, 1),

a + b ≤ max
(
a

α
,
b

ᾱ

)
; (3)

to verify (3), let c = a/α, d = b/ᾱ, and write (3) in the familiar form
αc + ᾱd ≤ max (c, d).

Assume that F is NBU. Because of (3) and because F is NBU, it
follows that

F̄ (max(a/α, b/ᾱ)) ≤ F̄ (a + b) ≤ F̄ (a)F̄ (b);

this is (2) when g and h are the indicator functions g = I(a,∞) and
h = I(b,∞). It can also be shown, for example, by using the Lebesgue
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dominated convergence Theorem 24.B.3, that (2) holds when g = I[a,∞)
and/or h = I[b,∞). Further, it can be shown that (2) holds when g and
h are finite positive linear combinations of such indicator functions;
by multiplying out the resulting expressions and making appropriate
term by term comparisons inequality (2) is obtained. Consequently it
follows from the Lebesgue dominated or Lebesgue monotone conver-
gence theorem that (2) holds for all nonnegative increasing functions g
and h. �

For another characterization of the class of NBU distributions that
involves slowly varying functions, see Rojo (1995).

b. Basic Properties

C.5. Proposition. If F is NBU, then

F̄ (kt) ≤ [F (t)]k for all k = 1, 2, . . . , and t ≥ 0, (4a)

or equivalently,

F̄ (s/k) ≥ [F (s)]1/k for all k = 1, 2, . . . , and s ≥ 0. (4b)

This proposition is verified by taking x = t in (1a), then iterating, or
by using induction. Note the comparison of (4b) with the corresponding
inequality B(2a), which holds for IHRA distributions, namely, F̄ (αt) ≥
[F̄ (t)]α, for all α in [0, 1] and t ≥ 0.

If F is NBU, then F need not have an absolutely continuous part;
the following example shows that F can be a discrete distribution.

C.6. Example. Suppose that

F̄ (x) = pi, i ≤ x < i + 1, i = 0, 1, . . . , where 0 < p < 1.

To see that this distribution is NBU, note first that if i ≤ x < i + 1 and
j ≤ t < j + 1, then i + j ≤ x + t < i + j + 2. Thus, F̄ (x + t) = pi+j or
F̄ (x + t) = pi+j+1, according as i + j ≤ x + t < i + j + 1 or i + j + 1 ≤
x + t < i + j + 2. In either case, F̄ (x + t) ≤ F̄ (x)F̄ (t) with equality if
and only if i + j ≤ x + t < i + j + 1.

C.7. Proposition. If F is NBU, then it has finite moments of all pos-
itive orders.



SVNY289-Olkin April 17, 2007 20:0

164 5. Nonparametric Families: Origins in Reliability Theory

Proof. Choose t < ∞ such that F̄ (t) < 1. Because F̄ is monotone and
(4a) holds, it follows that if x and k satisfy kt ≤ x < (k + 1)t, then

F̄ (x) ≤ F̄ (kt) ≤ [F̄ (t)]k ≤ [F̄ (t)](x/t)−1. (5)

With the use of successive values of k, (5) yields

F̄ (x) ≤ [F̄ (t)](x/t)−1, x ≥ t. (6)

From 1.C.(4) and (6), it follows that with λ = − log F̄ (t) > 0,

EXr = r

∫ ∞

0
F̄ (x)xr−1 dx ≤ r

∫ t

0
xr−1 dx + r

∫ ∞

t
xr−1[F̄ (t)](x/t)−1 dx.

(7)

With λ = − log F̄ (t) > 0, the right-hand side of (7) is equal to

tr + rtr eλ
∫ ∞

1
ur−1 e−λu du < tr + r tr eλ

∫ ∞

0
ur−1 e−λu du

= tr[1 + r eλΓ(r)] < ∞. �

Summary. According to Proposition C.7, NBU distributions have fi-
nite moments of all orders. This is stronger than Proposition B.6, which
states that IHRA distributions have finite moments of all positive or-
ders. In turn, Proposition B.6 is stronger than Proposition 4.B.3 which
gives the same conclusion for the still smaller class of IHR distributions.

C.8. Proposition. If F is NBU and has a density, then the hazard
rate satisfies the inequality

r(x) ≥ r(0). (8)

The inequality (8) is reversed if F is NWU.

Proof. From (1b), it follows that

R(x + t) −R(x)
t

≤ R(t) −R(0)
t

, x, t > 0.

The result follows upon by letting t → 0. �

Proposition C.8 is a rather weak result that is to be contrasted with
(ii) of Proposition B.3.a.
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Recall from Definition 1.B.16 that for a distribution function F, the
odds ratios Ø+(x) = F̄ (x)/F (x) and Ø−(x) = F (x)/F̄ (x) are defined
for values of x for which the denominators are positive.

C.9. Proposition (Kirmani and Gupta, 2001). If F is NBU, that is,
F̄ (x + t) ≤ F̄ (x)F̄ (t), x, t ≥ 0, then

Ø+(x + t) ≤ Ø+(x)Ø+(t), x, t ≥ 0.

Proof. First, note that for numbers a and b between 0 and 1, a + b ≥
2
√
ab ≥ 2ab. Consequently, if F is NBU, it follows that F (x + t) ≥

F (x) + F (t) − F (x)F (t) ≥ F (x)F (t), x, t ≥ 0, which together with
the NBU property yields the result. �

c. Preservation Properties

C.10. Proposition (Esary, Marshall and Proschan, 1970). If each
component of a coherent system has an NBU distribution, then the
system life distribution is NBU.

Proof. The fact that components have NBU distributions can be trans-
lated to the statement that the component hazard functions Ri are
superadditive, i.e., they satisfy (1b). The hazard transform of a coher-
ent system is increasing, and by Proposition A.10 it is superadditive.
It follows that the system hazard function satisfies

R(s + t) = η(R1(s + t), . . . , Rn(s + t))
≤ η(R1(s), . . . , Rn(s)) + η(R1(t), . . . , Rn(t)) = R(s) + R(t),

which is the statement that the system has an NBU distribution. �

C.11. Proposition (Marshall and Proschan, 1972a). If F and G are
NBU distributions, then their convolution H is NBU.

Proof. It is required to show that H̄(x + y) ≤ H̄(x)H̄(y) for all x, y ≥ 0,
where

H(t) =
∫ t

0
F (t− z) dG(z).

Note that

H̄(t) = 1 −H(t) =
∫ t

0
dG(z) +

∫ ∞

t
dG(z) −

∫ t

0
F (t− z) dG(z)

=
∫ t

0
F̄ (t− z) dG(z) + Ḡ(t).



SVNY289-Olkin April 17, 2007 20:0

166 5. Nonparametric Families: Origins in Reliability Theory

Suppose first that F and G have densities f and g. Write H̄(x + y) =
I1 + I2, where

I1 =
∫ x

0
F̄ (x + y − z) g(z) dz and I2 =

∫ ∞

0
F̄ (y − z) g(x + z) dz.

Because F is NBU,

I1 ≤ F̄ (y)
∫ x

0
F̄ (x− z) g(z) dz = F̄ (y)[H̄(x) − Ḡ(x)].

With an integration by parts and the fact that G is NBU, it follows
that

I2 = F̄ (y)Ḡ(x) +
∫ ∞

0
Ḡ(x + z)f(y − z) dz ≤ F̄ (y)Ḡ(x)

+ Ḡ(x)
∫ ∞

0
Ḡ(z)f(y− z) dz = F̄ (y)Ḡ(x) + Ḡ(x)[H̄(y) − F̄ (y)].

Thus,

H̄(x + y) ≤ F̄ (y)H̄(x) + Ḡ(x)H̄(y) − Ḡ(x)F̄ (y)

= H̄(x)H̄(y) − [H̄(x) − Ḡ(x)][H̄(y) − F̄ (y)] ≤ H̄(x)H̄(y).

The case that densities do not exist poses only notational difficulties:
Write “dzG(x + z)” in place of “g(x + z) dz.” �

An alternative proof of Proposition C.11 is given in Example C.16,
using Proposition C.15.

C.12. Proposition. The residual life distribution Ft of F is NBU for
all t if and only if F is IHR. Thus, the residual life distributions of NBU
distributions need not be NBU.

This result can be verified in a straightforward way so the proof is
omitted. Note that it is a stronger result than Proposition B.10, which
concludes that F is IHR from the assumption that Ft is IHRA for all
t.

C.13. Proposition. If F is the mixture of NWU distributions, no two
of which cross, then F is NWU.

Proof. This result is a consequence of Proposition 3.D.5, the fact that
hazard transforms of mixtures are increasing functions, and the fact
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that NBU distributions are characterized by having hazard functions
R satisfying (1b), that is, R(x + t) ≤ R(x) + R(t) for all x, t ≥ 0. �

An example is given by Barlow and Proschan (1975, p. 187) to show
that the no-crossing provision of Proposition C.8 cannot be dispensed
with.

A consequence of Proposition C.13 is that a mixture of NWU dis-
tributions with proportional hazard functions is NWU (for a discussion
of proportional hazards, see Section 7.E). Also, if NWU distributions
differ only by a scale parameter, it follows that their mixture is NWU.

The following proposition considers the sum of a random number of
random variables each with an NBU distribution.

C.14. Proposition. If X1, X2, . . . is a sequence of independent non-
negative random variables each with NBU distributions, and N is a
random variable independent of the Xi taking values on the positive
integers, then SN = X1 + · · · + XN has an NBU distribution.

Proof. The first of the following inequalities follows from Proposition
C.11. The second inequality follows from the fact that the covariance
of two increasing functions of the same random variable is nonnegative
(Proposition 18.H.1). Thus,

P{SN > x + t}
=

∑∞
n=1

P{Sn > x + t}P{N = n}

≥
∑∞

n=1
P{Sn > x}P{Sn > t}P{N = n}

≥
∑∞

n=1
P{Sn > x}P{N = n}

∑∞
n=1

P{Sn > t}P{N = n}

= P{SN > x}P{SN > t}.
�

Sums of the form considered in Proposition C.14 arise most often
when N has a geometric distribution, and they are of interest when the
Xi are not necessarily NBU. See Gertsbakh (1984) and Brown (1990)
for further discussion.

Although a mixture of NBU distributions is in general not NBU,
there are conditions under which a mixture of NBU distributions is
NBU.

C.15. Proposition (Block, Li and Savits, 2003a). Suppose that
F̄ (x | θ), θ ≥ 0 is a parametric family of survival functions such that
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F̄ (x | θ) is increasing in θ for each fixed x. Suppose further that

F̄ (x | θ) ≤ F̄ (αx | αθ)F̄ (ᾱx | ᾱθ)
for all α ∈ (0, 1) and all x, θ ≥ 0. (9)

If G is NBU, then the mixture H̄(x) =
∫ ∞
0 F̄ (x | θ) dG(θ) is NBU.

Proof. First from (9) and then from Proposition C.4, it follows that

H̄(x) =
∫ ∞

0
F̄ (x | θ) dG(θ) ≤

∫ ∞

0
F̄ (αx | αθ)F̄ (ᾱx | ᾱθ) dG(θ)

≤
∫ ∞

0
F̄ (αx | θ) dG(θ)

∫ ∞

0
F̄ (ᾱx | θ) dG(θ)

= H̄(αx) H̄(ᾱx).
�

There is a converse to the above proposition: If H̄ is NBU when-
ever F̄ (· | θ) satisfies the conditions of the proposition, then G is
NBU.

C.16. Example. If F̄ (x | θ) = F̄ (x− θ) for some distribution F that
is NBU, then (9) is satisfied, so H is NBU. In this case, H is the
convolution of F and G, and Proposition C.15 yields Proposition C.11.

C.17. Example. Suppose that F̄ (x | θ) = [F̄ (x)]θ for some underlying
survival function F̄ . Then for all α ∈ (0, 1),

F̄ (x | θ) = [F̄ (x)]αθ[F̄ (x)]ᾱθ ≤ [F̄ (αx)]αθ[F̄ (ᾱx)]ᾱθ

= F̄ (αx | αθ)F̄ (ᾱx | ᾱθ),

so (9) is satisfied.

C.18. Remark. Proposition C.15 is an example of the following
generic problem. Let

ψ(x) =
∫

s(x | θ) t(θ) dθ.

For a given class C, what conditions on s(· | θ) are sufficient (or neces-
sary and sufficient) to insure that t ∈ C implies ψ ∈ C? In addition to
Proposition C.15, Theorem 21.B.13 is a result of this kind.
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D. Decreasing Mean Residual Life Distributions

According to Proposition 4.C.1.a, the notion of an IHR distribution
F can be defined in terms of the residual life distributions Ft by the
condition that these distributions be stochastically decreasing in t. A
weaker condition is that these residual life distributions have decreasing
expectations.

For reasons not entirely clear, this class of distributions has not
been studied as extensively as those introduced in Sections B and C.
Distributions with increasing mean residual life (IMRL) have received
even less attention, but see Brown (1981, 1983), and Chen, Hollander
and Langberg (1983).

D.1. Definition. A distribution F with finite mean is said to have a
decreasing mean residual life (F is DMRL) if the mean

m(t) =
∫ ∞

0
F̄t(x) dx is decreasing in t ≥ 0, (1)

where F̄t(x) = F̄ (x + t)/F̄ (t) is the residual life distribution at t. Sim-
ilarly, F has an increasing mean residual life (F is IMRL) if m(t) is
increasing in t ≥ 0.

D.2. Proposition. If F has an increasing hazard rate, then F has a
decreasing mean residual life.

Proof. Denote the expectation (mean) of F by μ. According to
20.B(15),

m(t) = 1/r(1)(t), (2)

where r(1) is the hazard rate of the equilibrium distribution, i.e., the
distribution with density f(1)(t) = F̄ (t)/μ, t > 0. It follows that F has
a decreasing mean residual life if and only if the corresponding equi-
librium distribution has an increasing hazard rate; this is a conse-
quence of the assumption that F is IHR (see Propositions 4.C.6 and
4.C.6.a). �

A statement similar to Proposition D.2 holds for the IMRL case; if
the expectation required to define f(1) is finite and F has a decreasing
hazard rate, then F is IMRL.

Proposition D.2 has been given by Rolski (1975) and by Gupta
(1979).
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D.2.a. Proposition. Let X have distribution F with finite first mo-
ment, and let Y have the density f(1). Then, F is DMRL if and only if
X ≥hr Y .

Proof. Assume that F has a density; then the result can be obtained
by differentiating m(t) =

∫ ∞
t F̄ (x)/F̄ (t) dx with respect to t. �

Proposition D.2.a and a number of related results have been given
by Bassan, Rinott and Vardi (2002). It is to be compared with Propo-
sitions 4.C.6.a and 4.C.16.a, where the likelihood ratio ordering occurs
rather than the hazard rate ordering.

D.2.b. Proposition. The distribution F is DMRL (IMRL) if and only
if the hazard rate r(1) of the equilibrium distribution is increasing
(decreasing).

D.2.c. Proposition. Let X be a random variable with the distribution
F that has a finite first moment. Then, F is DMRL (IMRL) if and only
if E[φ(X − t) | X > t] is decreasing (increasing) in t ≥ 0 for all convex
increasing functions φ.

Proof. With an integration by parts, it can be verified that

E[φ(X − t) | X > t] =
1

F̄ (t)

∫ ∞

t
φ(z − t) dF (z)

= φ(0 +) +
1

F̄ (t)

∫ ∞

t
F̄ (z)φ′(z − t) dz. (3)

Let Y be a random variable with the equilibrium distribution F(1).
Compute

E(X − t | X > t) =
∫ ∞

t

F̄ (x + t)
F (t)

dx, (4)

and

E[φ′(Y − t) | Y > t] =

∫ ∞

t
φ′(z − t)F̄ (z) dz∫ ∞

t
F̄ (z) dz

=

∫ ∞

t
φ′(z − t) dF(1)(z)

F̄(1)t
=

∫ ∞

t
φ′(z)f(1)(z + t) dz

F̄(1)t
. (5)
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From these quantities, it can be determined that

E[φ(X − t) |X>t] = φ(0 +) + E(X− t |X>t)E[φ′(Y − t) |Y >t]. (6)

Suppose that F is DMRL. Then by hypothesis, E(X − t | X > t)
is decreasing in t ≥ 0, and furthermore, by Proposition D.2.b, F̄(1) is
IHR. This means that the distributions

F̄(1)(z + t)
F̄(1)(t)

, z ≥ 0

that appear in (5) are stochastically decreasing in t (Proposition
4.C.1.a). Because φ is convex, φ′ is increasing. By Proposition 2.A.2,
this means that E[φ′(Y − t) | Y > t] is decreasing in t ≥ 0, and conse-
quently, E[φ(X − t) | X > t] is decreasing in t ≥ 0.

Next, suppose that E[φ(X − t) | X > t] is decreasing in t ≥ 0 for all
convex increasing functions φ. Because the function φ(x) = x is convex
and increasing, it follows that E(X − t | X > t) is increasing in t ≥ 0,
that is, F is DMRL.

The proof for the IMRL case is similar. �

Proposition D.2.c and the given proof is essentially due to Brown
(1981), although he treats only the IMRL case and omits the trivial
converse.

D.3. Proposition. If
∫ ∞
t F̄ (x) dx is log concave, then F is DMRL.

Proof. The assumed log concavity is equivalent to the assumption that
the equilibrium distribution F(1) is IHR. Consequently, the result fol-
lows from (2). �

D.4. Proposition (Klefsjö, 1982a). If F is a distribution function
with mean μ and normalized total time on test transform K−1

F , then F
is DMRL [IMRL] if and only if

μ[1 −K−1
F (p)]

1 − p
is decreasing [increasing] in p, 0 < p < 1. (7)

Proof. Recall from 1.I(10) and 1.I(4) that K−1
F (p) = H−1

F (p)/μ where
H−1

F (p) =
∫ F−1(p)
0 F̄ (x) dx. From 1.B(11) and 1.B(10b) it follows that
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the mean residual life at t is

∫ ∞

t
F̄ (x) dx

F̄ (t)
=

μ−
∫ t

0
F̄ (x) dx

F̄ (t)
. (8)

In (8), let t = F (z) to obtain that the mean residual life (8) is decreasing
[increasing] if and only if (7) holds. �

For another characterization of the class of DMRL distributions that
involves slowly varying functions, see Rojo (1995).

D.5. Proposition (Haines and Singpurwalla, 1974). If the mixture of
IMRL distributions has a finite mean, then it is IMRL. Thus, with the
qualification of finite means, the class of distributions with IMRL is
closed under mixtures.

Proof. Suppose that

H̄(x) =
∫

Θ
F̄ (x | θ) dG(θ),

where for each θ, F (· | θ) is IMRL. The definition of IMRL requires that
the integrals

μ(θ) =
∫ ∞

0
F̄ (x | θ) dx

exist finitely for all θ. Note that H has the mean

μH =
∫ ∞

0
H̄(x) dx =

∫
Θ
μ(θ) dG(θ).

Now, let

h(1)(x) =
H̄(x)
μH

=
∫

Θ

F̄ (x | θ)
μ(θ)

μ(θ)
μH

dG(θ) =
∫

Θ
f(1)(x | θ) dG∗(θ),

where G∗(θ) = μ(θ)G(θ)/μH . Because F (· | θ) is IMRL, it follows that
f(1)(· | θ) is the density of a DHR distribution. From Theorem 4.C.15,
it follows that h(1) is the density of a DHR distribution; according to
(1b), this means that H is a DMRL distribution. �
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In general, the class of DMRL distributions is not closed under mix-
tures. However, closure can be obtained in special cases.

D.6. Proposition (Block, Li and Savits, 2003a). If (i) F̄ (x | θ), θ ≥ 0,
is increasing in θ for each x ≥ 0, (ii)

∫ ∞
t F̄ (x | θ) dx is log concave in

(t, θ), and (iii) G is IHR, then the mixture

H̄(x) =
∫ ∞

0
F̄ (x | θ) dG(θ)

is DMRL.

Proof. Make use of Proposition D.3 and compute that

∫ ∞

t
H̄(x) dx =

∫ ∞

t

∫ ∞

0
F̄ (x | θ) dG(θ) dx =

∫ ∞

0

∫ ∞

t
F̄ (x | θ) dx dG(θ).

To complete the proof, apply Proposition 4.C.1.i. �

E. New Better (Worse) Than Used in
Expectation Distributions

The comparison F̄ (x) ≥ F̄ (x + t)/F̄ (t) = F̄t(x) for all x, t ≥ 0, required
of NBU distributions is a stochastic ordering between a distribution
and a residual life distribution. When stochastic order is too strong,
the weaker condition that the expectations of these distributions are
ordered may be of interest.

E.1. Definition. A life distribution F is said to be new better than
used in expectation (NBUE) if it has a finite mean μ that is at least as
large as the mean residual life length at time t, for all t ≥ 0, i.e.,

μ ≥
∫ ∞

0
F̄t(x) dx =

∫ ∞

0
F̄ (x + t) dx/F̄ (t)

for t ≥ 0 such that F̄ (t) > 0. (1a)

The distribution F is new worse than used in expectation (NWUE) if
the inequality of (1a) is reversed.

The NBUE condition is the condition that a used device of any age
has a mean residual life smaller than the mean life of a new device of
the same kind.
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Inequality (1a) can be rewritten in the form

F̄ (t) ≥
∫ ∞

t
[F̄ (x)/μ] dx, t ≥ 0; (1b)

inequality (1b) states that the distribution F(1) with density f(1)(x) =
F̄ (x)/μ, x > 0, is stochastically less than F, that is,

F̄ (t) ≥ F̄(1)(t), t ≥ 0. (1c)

Recall that the distribution F(1) was encountered in Propositions 4.C.6
and D.3 and is called the “equilibrium distribution” in Sections 1.B.j
and 20.B.c. The inequality (1b) can again be rewritten in the form

r(1)(0) ≤ r(1)(t), t ≥ 0, (1d)

where

r(1)(t) = F̄ (t)/
∫ ∞

t
F̄ (x) dx

is the hazard rate of the equilibrium distribution F(1).
By assumption, an NBUE distribution has finite first moment. The

fact that these distributions have finite moments of all positive orders
follows from Proposition 6.A.6.

E.2. Proposition (Bergman, 1979, Klefsjö (1982a)). A distribution
F such that F (x) = 0, x < 0, is NBUE if and only if the normalized
total time on test transform K−1

F satisfies the inequality

K−1
F (p) ≥ p, 0 ≤ p ≤ 1.

The inequality is reversed if F is NWUE.

Proof. Denote the mean of F by μ. The condition K−1
F (p) ≥ p, 0 ≤ p ≤

1, is the condition that
∫ z
0 F̄ (x) dx ≥ F (z)μF . Subtraction of both sides

of this inequality from the identity
∫ ∞
0 F (x) dx = [F (z) + F̄ (z)]μ yields

the inequality (1a). The proof for the NWUE case is similar. �

a. Preservation Properties

The following example shows that an NBUE distribution need not be
NBU; it also shows that the class of NBUE distributions is not closed
under the formation of coherent systems.
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E.3. Example. Suppose that F places mass 1/2 at 1 and mass 1/2 at
3. Then, F has mean μ = 2 and

∫ ∞

0
F̄t(x) dx ≤ 2, t ≥ 0.

Thus, F is NBUE. Now consider a series system consisting of two com-
ponents each having the distribution of this example. The mean life of
this system when new is

∫ 3
0 F̄ 2(x) dx = 3/2, whereas the mean life of a

system of age one is two. Thus, the system life is not NBUE. Because of
Proposition C.10, this means that F cannot be NBU. Second, it shows
that the class of NBUE distributions is not closed under the formation
of coherent systems.

E.4. Proposition (Marshall and Proschan, 1972a). If F and G are
NBUE distributions, then their convolution H = F ∗G is NBUE.

Proof. Because

H̄(t + x) =
∫ t

u=0
F̄ (t + x− u) dG(u) +

∫ ∞

u=t
F̄ (t + x− u) dG(u),

it follows that

∫ ∞

0
H̄(t + x) dx =

∫ ∞

x=0

[∫ t

u=0
F̄ (t + x− u) dG(u)

]
dx

+
∫ ∞

x=0

[∫ ∞

u=t
F̄ (t + x− u) dG(u)

]
dx.

Denote the means of F and G, respectively, by μF and μG. Because F
is NBUE,

∫ ∞

0
F̄ (t + x− u) dx ≤ μF F̄ (t− u), u ≤ t.

Thus, with a change in the order of integration,

∫ ∞

x=0

[∫ t

u=0
F̄ (t + x− u) dG(u)

]
dx

≤ μF

∫ t

u=0
F (t−u) dG(u) =μF [H̄(t)− Ḡ(t)].
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For u > t,∫ ∞

x=0

[∫ ∞

u=t
F̄ (t + x− u) dG(u)

]
dx =

∫ ∞

u=t
(u− t + μF ) dG(u).

In the right-hand side, let w = u− t. Then,
∫ ∞

u=t
(u− t + μF ) dG(u)

=μF Ḡ(t) +
∫ ∞

u=0
Ḡ(w + t) dw ≤ μF Ḡ(t) + μG Ḡ(t).

By combining these results, it follows that
∫ ∞

0
H̄(t + x) dx ≤ μF [H̄(t) − Ḡ(t)] + (μF + μG)Ḡ(t)

= μF H̄(t) + μGḠ(t) ≤ (μF + μG)H̄(t). �

E.5. Proposition (Marshall and Proschan, 1972a). If F is the mix-
ture of NWUE distributions, no two of which cross, then F is NWUE.

Proof. Suppose that

F (t) =
∫

F (t | θ) dG(θ)

is a mixture of NWUE distributions F (· | θ). Denote the mean of F by
μ and the mean of F (· | θ) by μθ. Because no two of the F (· | θ) cross,
it follows that for fixed t, F̄ (t | θ) and μθ are similarly ordered in θ.
Consequently, by Chebyshev’s inequality for similarly ordered functions
(Proposition 18.G.1),

μF̄ (t) =
∫

μθ dG(θ)
∫

F̄ (t | θ) dG(θ) ≤
∫

μθF̄ (t | θ) dG(θ).

By using first the NWUE property and then Fubini’s theorem (22.B.1),
it follows that∫

μθF̄ (t | θ) dG(θ) ≤
∫∫

F̄ (t + x | θ) dx dG(θ)

=
∫∫

F̄ (t + x | θ) dG(θ) dx =
∫

F̄ (t + x) dx.

Thus, F is NWUE. �
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b. Some Additional Inequalities

Denote the mean of F by μ, and let f(1) = F̄ /μ, the density that appears
in (1b). Similarly, denote by F̄(1) and r(1) the corresponding survival
function and hazard rate.

E.6. Proposition (Marshall and Proschan, 1972a). If F is NBUE and
has mean μ, then

∫ ∞

t

F̄ (x)
μ

dx = F̄(1)(t) ≤ e−t/μ. (2)

Proof. From (1b), it follows that F̄(1)(x) ≤ μF̄ (x)/μ = μf(1)(x), that is,
r(1)(x) ≥ 1/μ. Integrate both sides of this inequality on x from 0 to t
to conclude that −R(1)(t) ≥ −t/μ; this, when exponentiated, completes
the proof because F̄(1)(t) = e−R(t). �

Inequality (2) has also been obtained by Brown and Ge (1984), who
show that the inequality is reversed when F is NWUE.

Inequality (2) has been used as a definition of another class of distri-
butions called harmonic new better than used in expectation (HNBUE).
If (2) is reversed, then F is said to be harmonic new worse than used in
expectation. As indicated by Proposition E.6, this condition is weaker
than NBUE. These distributions do not play a big role in this book.
For a survey of these classes, see Klefsjö (1982b) or Johnson, Kotz and
Balakrishnan (1995, p. 664). For a shock model derivation, see Klefsjö
(1981).

E.7. Proposition (Shaked and Shanthikumar, 1994). If F is NBUE,
then in the convex order ≤cx of Definition 2.B.1, F is less than the
exponential distribution with the same mean as F.

Proof. This result follows from Propositions E.6 and 2.B.2. �

F. Additional Nonparametric Families
of Distributions

A number of nonparametric families of distributions have been in-
troduced in the literature that have not been discussed in previous
sections; see Johnson, Kotz and Balakrishnan (1995, p. 664) for def-
initions and references. A few additional classes are discussed in this
section.
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a. Concave Distribution Functions (Decreasing Densities)

Suppose that F is a distribution function such that F (0−) = 0. Sup-
pose further that F has a density except possibly for positive mass at
the origin and that the density is decreasing on (0,∞). Such distribu-
tion functions are concave on [0,∞) and are referred to here simply as
concave distributions. According to Proposition 4.C.12, the class of all
such distributions includes the DHR distributions, and the exponential
distributions are a prime example. It also includes the distribution of
random variables |X|, where X has a density with unique mode at 0.
But the class includes many other distributions as well.

F.1. Preservation properties.

(i) The class of concave distributions is closed under the formation of
mixtures.
(ii) The class of concave distributions is not closed under formation of
coherent systems or under convolution.

Lack of closure under the formation of coherent systems can be
seen by reference to Example A.11. Lack of closure under convolutions
can be seen from the fact that the convolution of an exponential
distribution with itself is a gamma distribution with shape parame-
ter 2; this distribution has a unimodal density but not a decreasing
density.
(iii) The residual life distribution of a concave distribution is concave.

b. Decreasing Reverse Hazard Rate

For distributions F that have a density f, the ratio

s(x) = f(x)/F (x)

is called a reverse hazard rate for F (See Definition 1.B.10). The con-
cept of a monotone reverse hazard rate can be defined in various ways,
analogous to the various equivalent ways of defining a monotone haz-
ard rate given in Section 4.C. Here only one of the possible forms is
given.

F.2. Definition. A distribution F is said to have a decreasing re-
verse hazard rate (DRHR) if the corresponding reverse hazard function
S(x) = logF (x) is concave; similarly, F is said to have an increasing
reverse hazard rate (IRHR) if S(x) is convex where finite.
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F.3. Observation. The reverse hazard rate of X is the hazard rate of
−X. By using this observation, some results regarding hazard rates can
be converted to results about reverse hazard rates.

F.4. Proposition. Suppose that F has a density. Then, F has a de-
creasing [increasing] reverse hazard rate if and only if there is a version
f of the density such that s = f/F is decreasing [increasing].

F.5. Proposition (Block, Savits and Singh, 1998). If F has an in-
creasing reverse hazard rate, then there exists a real number a < ∞
such that f(x) > 0, x < a, f(x) = 0, x > a.

This proposition follows from Proposition 4.C.12 and Observation
F.3.

F.6. Remark. According to Proposition F.5, nonnegative random
variables cannot have distributions with increasing reverse hazard
rate; consequently, these distributions are not further discussed in this
book.

F.7. Proposition. Suppose that the distribution function F is con-
cave. Then, log F is concave. If F has a density, then F is
DRHR.

Proof. This proposition follows immediately from the definition and
Proposition 21.A.5. �

F.8. Proposition. If F has a log-concave density, then F is DRHR.

This proposition is a special case of Proposition 4.B.8.a.
The DRHR property is not discussed in more detail in this book,

though some interesting distributions possess the property by virtue of
one or another of the propositions mentioned above.

c. Closure Properties of DRHR Distributions

F.9. Proposition (Barlow, Marshall and Proschan, 1963). If F and
G are DRHR, then the convolution H = F ∗G is DRHR.

This result can be obtained from Theorem 4.C.4 and the observation
that the reverse hazard rate of the random variable X is the hazard
rate of −X. For another proof, see Shaked and Shanthikumar (1994,
Corollary 1.B.33).

F.10. Example. To see that the class of DRHR distributions is not
closed under mixtures, consider the mixture F (x) = [F1(x) + F2(x)]/2,
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where, for i = 1, 2,

Fi(x) = 0, x < 0,
= eλix/2, 0 ≤ x < (log 2)/λi,

= 1, x ≥ (log 2)/λi.

When λ1 > λ2 > 0, this mixture has a reverse hazard rate that is in-
creasing on the interval 0 < x < log 2/λ1.

F.11. Proposition. If F is a DRHR distribution, then the residual life
distributions Ft of F are DRHR.

Proof. Note that the residual life distribution of F is given by Ft(x) =
[F (t + x) − F (t)]/F̄ (t); assume that F has a density f such that f/F
is decreasing. Then, logFt(x) is convex (has a decreasing derivative) if

f(t + x)
F (t + x)

1
1 − [F (t)/F (t + x)]

is decreasing. But both of these factors are decreasing. �

Because the product of log-concave functions is log concave, the
class of DRHR distributions is closed under the formation of parallel
systems. Whether or not the class is closed under the formation of
coherent systems is not known.

F.12. Remark. According to Proposition F.8, if F has a log-concave
density, then F is DRHR. It is natural to ask if the weaker condition
that F is IHR implies that F is DRHR. That this is not the case is
demonstrated by the following example.

F.13. Example. Suppose that

F̄ (x) = e−x, 0 ≤ x < 1,
= 0, x ≥ 1.

Although F puts positive mass at 1, it is IHR, but not DRHR.

G. Summary of Relationships and Closure Properties

A summary of abbreviations, orderings, relationships, and closures are
provided below.
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a. Summary of Abbreviations

Abbreviation Full name Definition
IHR Increasing hazard rate 4.C.1.a
DHR Decreasing hazard rate 4.C.1.a
IHRA Increasing hazard rate average B.1
DHRA Decreasing hazard rate average B.1
NBU New better than used C.1
NWU New worse than used C.1
DMRL Decreasing mean residual life D.1
IMRL Increasing mean residual life F.1
NBUE New better than used in expectation E.1
NWUE New worse than used in expectation E.1
HNBUE Harmonic new better than used in

expectation
E.7

HNWUE Harmonic new worse than used in
expectation

E.7

DRHR Decreasing reverse hazard rate F.2
IRHR Increasing reverse hazard rate F.2

b. Summary of Relationships

c. Order Conditions

Let Y be a random variable with the exponential survival function
Ḡ(x) = exp {−x}, x ≥ 0. Let X be a random variable with survival
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function F̄ . Equivalences involving F and G are as follows:

F is IHR ⇔ G−1F is convex, i.e., X ≤c Y

F is IHRA ⇔ G−1F is starshaped, i.e., X ≤∗ Y

F is NBU ⇔ G−1F is superadditive, i.e., X ≤su Y

F is DHR ⇔ G−1F is concave, i.e., X ≥c Y

F is DHRA ⇔ −G−1F is starshaped, i.e., X ≥∗ Y

F is NWU ⇔ G−1F is subadditive, i.e., X ≥su Y

d. Summary of Closure Properties

Formation Mixtures of Residual
Class of of Coherent General noncrossing life
Distribution systems Convolution Mixtures distributions distribution

log-concave
density not closed closed not closed not closed closed
IHR not closed closed not closed not closed closed
IHRA closed closed not closed not closed not closed
NBU closed closed not closed not closed not closed
DMRL not closed not closed not closed not closed closed
NBUE not closed closed not closed not closed not closed

log-convex
density not closed not closed closed closed closed
DHR not closed not closed closed closed closed
DHRA not closed not closed closed closed not closed
NWU not closed not closed not closed closed not closed
IMRL not closed not closed closed closed closed
NWUE not closed not closed closed closed not closed

Concave
distribution not closed not closed closed closed closed
DRHR ? closed not closed not closed closed

H. Shock Models

With the exception of the exponential distribution, which is charac-
terized by 1.F(4), residual life distributions of items change over time,
whether they be of devices or systems, biological or not. This change
in the residual life distribution reflects a change either within the item
or in the environment where it is living. A number of authors have
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considered the state of an item to be characterized by a real number,
and have proposed models representing the item state as it changes over
time by a stochastic process. The item is considered to have “failed”
or “died” when the process first crosses a specified threshold. A prime
example of this kind of process is Brownian motion with drift, where
the waiting time to cross a threshold has an inverse Gaussian distribu-
tion (see Chapter 13). Various other models are reviewed by Aalen and
Gjessing (2001), all of which allow for only very simple state spaces.
A model allowing the state of an item to be represented in very gen-
eral terms has been proposed by Marshall (1994), who also considered
stochastic processes taking values in such state spaces. The item is
considered to have failed when the process first enters a specified set of
“failed” states.

A related notion has been introduced by Kotz and Singpurwalla
(1999). They note that if X is the life length of a device with hazard
function R, then Z = R(X) is a random variable such that

P{X > t} = P{R(t) < Z}, t ≥ 0.

One can think of R as a stochastic process with but one sample path,
and Z as a random threshold; Kotz and Singpurwalla (1999) call R the
hazard potential.

Shock models such as those discussed in this section, particu-
larly the cumulative damage threshold models discussed later, are
threshold models for the process of item deterioration, represented
as a real function of time. Models of various kinds and complexity
have been proposed and studied primarily because of their intuitive
appeal.

Suppose that the process {N(t), t ≥ 0} counts the number of shocks
to a device in the interval [0, t]. Let P̄k be the probability that the
device survives k shocks, k = 0, 1, . . . . Then, the survival function of
the device has the form

H̄(x) =
∞∑
k=0

P̄k P{N(x) = k}, x ≥ 0.

The case that N is a Poisson process has been studied by Esary,
Marshall and Proschan (1973) and the cases that N is a nonhomo-
geneous Poisson process and a birth process have been studied by
A-Hameed and Proschan (1973, 1975). Various versions of this model
have been studied by a number of other authors.



SVNY289-Olkin April 17, 2007 20:0

184 5. Nonparametric Families: Origins in Reliability Theory

In this section, the case that N is a Poisson process is briefly de-
scribed. For more complete details and additional references, see Esary,
Marshall and Proschan (1973), the source of all the results of this sec-
tion. The Poisson process is introduced in Section 20.F.a.

Because P̄k is the probability of surviving k shocks, it is assumed
that 1 ≥ P̄0 ≥ P̄1 ≥ . . . , so that

pk = P̄k−1 − P̄k ≥ 0, k = 1, 2, . . . .

For the Poisson process,

H̄(x) =
∞∑
k=0

P̄k e
−λx(λx)k/k!, x ≥ 0; (1)

if P0 = 0, then H has density

h(x) = λ
∞∑
k=1

pk e
−λx(λx)k−1/(k − 1)!, x ≥ 0. (2)

The hazard rate r can be obtained, but does not take a particularly
nice form; because the chance of failure in an interval (t, t + Δ) cannot
be greater than the chance of a shock in that interval, r ≤ λ.

H.1. Example. If P̄k = 1, k = 0, 1, . . . , n, P̄k = 0, k > n, then (1) is
the survival function of a gamma distribution. See 9.A(2) and Section
9.A.b(i).

In spite of the apparently limited scope of (1), an important fact is
that any survival function on [0,∞) can be approximated by survival
functions of the form (1). More precisely, if H̄ is a survival function of
a nonnegative random variable, then

H̄(x) = limλ→∞

∞∑
k=0

H̄(k/λ) e−λx(λx)k/k!

at continuity points x of H (see Feller, 1968, p. 219). Because of this
fact, interesting properties of H can be expected only with restrictions
on the P̄k.
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H.2. Theorem. Suppose (1) and P̄0 = 1. Then, with the notation
pk = P̄k−1 − P̄k ≥ 0, k = 1, 2, . . . ,

H has a log-concave density if pk+1/pk

is decreasing in k = 1, 2, . . . ; (3)
H is IHR if P̄k/P̄k−1 is decreasing in k = 1, 2, . . . ; (4)

H is IHRA if P̄ 1/k
k is decreasing in k = 1, 2, . . . ; (5)

H is NBU if P̄jP̄k ≥ P̄j+k, j, k = 0, 1, . . . . (6)

Analogous conditions can also be given for a number of other classes
of distributions.

The results (3) to (5) can be proved using the variation diminishing
property stated in Theorem 19.B.13 and the total positivity of xk stated
in 19.B.5.a. To illustrate this technique, consider condition (5). Because
P̄

1/k
k is decreasing in k, P̄k − ζk(0 ≤ ζ ≤ 1) has, as a function of k, at

most one sign change, from + to − if one occurs. Hence,

H̄(x) − e−(1−ζ)λx =
∞∑
k=0

(P̄k − ζk) e−λx(λx)k/k!

has at most one sign change, from + to − if one occurs. By (ii) of
Proposition B.3, this means that H is IHRA.

a. Cumulative Damage Threshold Models

Suppose that the ith shock to an item causes a random damage Xi.
Damages accumulate additively, and the kth shock is survived by the
item if X1 + · · · + Xk ≤ z, where z is the capacity or threshold of the
item. If the Xi are independent and identically distributed, then

P̄k = F k∗(z), k = 1, 2, . . . ,

where F k∗ is the k fold convolution of F with itself.

H.3. Lemma. If F is a distribution function satisfying F (0−) = 0,
then

[F k∗(z)]1/k is decreasing in k = 1, 2, . . . .



SVNY289-Olkin April 17, 2007 20:0

186 5. Nonparametric Families: Origins in Reliability Theory

H.4. Lemma. Let X1, X2, . . . be nonnegative random variables with a
joint distribution satisfying

P{Xk ≤ u | X1, . . . , Xk−1} depends on X1, . . . , Xk−1

only via their sum Sk−1, (7)
P{Xk ≤ u | Sk−1 = s} is decreasing in s ≥ 0, (8)
P{Xk ≤ u | Sk−1 = s} ≥ P{Xk+1 ≤ u | Sk = s}, s ≥ 0, k = 1, 2, . . . ,

where S0 = 0. (9)

Then,

[P{X1 + · · · + Xk ≤ z]1/k is decreasing in k = 1, 2, . . . .

The proofs of these lemmas are obtained by induction, and are omitted
(see Esary, Marshall, and Proschan 1973 for details).

H.5. Corollary. If P̄k = P{X1 + · · · + Xk ≤ z}, k = 1, 2, . . . , and if
the Xi are identically distributed and independent, or the condi-
tions of Lemma H.3 are satisfied, then the survival function (1) is
IHRA.

b. Random Threshold

Suppose that in the cumulative damage model with independent iden-
tically distributed damages, the threshold z is random, say with distri-
bution G such that G(0) = 0. For convenience, assume that F and G
have no common points of discontinuity. Then, one can write

P̄k =
∫ ∞

0
F k∗(z) dG(z) = EG(X1 + · · · + Xk), k = 0, 1, . . . . (10)

H.6. Proposition. The survival function (1) with the P̄k given by
(10) is exponential for all F if and only if G is exponential. If G is IHR,
then the distribution H defined by (1) is IHRA; conversely, if P̄1/k

k is
decreasing in k = 1, 2, . . . , then G is IHRA.

The proof of Proposition H.6 is rather lengthy, and is omitted, but
see Esary, Marshall, and Proschan (1973).

Some multivariate extensions of the results of this section are given
by Esary and Marshall (1974).
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I. Replacement Policies: Renewal Theory

The notions of NBU and NWU have intuitive appeal, but it was the
results of this section that motivated the introduction of these distri-
butions by Marshall and Proschan (1972a).

a. Planned Replacements

When it is important to sustain the functioning of a component or
system, it is a common practice to employ a maintenance policy that
calls for replacement upon failure. Light bulbs in domestic use pro-
vide a simple and familiar example. If in-service failures are particu-
larly serious, or where unscheduled maintenance (due to a failure) is
costly, planned replacements are often scheduled to reduce the number
of replacements due to failure. Thus, it is sometimes advantageous to
schedule the replacement of an unfailed component or system when it
reaches a certain age. On the other hand, planned replacements can be
scheduled at regular intervals of time, regardless of their age.

A policy that calls for replacement of an item upon failure or at
age T, whichever comes first, is called an age replacement policy. A
policy that calls for replacement upon failure and at specified times
T, 2T, 3T, . . ., is called a block replacement policy. Block policies re-
quire less record keeping than age policies, and they allow repairs to
follow a fixed schedule, but they are intuitively less efficient than an age
policy.

For comparison of maintenance policies, the following quantities are
of interest:

N(t) = number of failures (renewals) in [0, t] with no planned re-
placements. N(t) is an ordinary renewal process, as briefly discussed in
Section 20.F.b.

NA(t, T ) = number of in-service failures in [0, t] under an age re-
placement policy that calls for replacement at failure or age T.

NB(t, T ) = number of in-service failures in [0, t] under a block re-
placement policy with replacement interval T.

Note that the second two quantities do not count planned replace-
ments, but only in-service failures that do not coincide with a planned
replacement. Contrary to a common practice in renewal theory, e.g., in
the book of Feller (1971), these quantities do not count the origin as a
renewal point.
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It is often assumed that planned replacements reduce the num-
ber of in-service failures; this is not always true, and it involves an
assumption about the life distribution of the device under consider-
ation. Likewise, it is often assumed that an age replacement policy
calling for replacement at a younger age is better, but this also is true
only for a restricted class of life distributions. Specific results here con-
tribute to the understanding of the various classes considered, and they
identify conditions under which age and block replacement policies re-
duce the frequency of in-service failures. It was in this context that
Marshall and Proschan (1972a) introduced the NBU and NWU families
of distributions. The following propositions characterize these classes of
distributions.

I.1. Proposition (Marshall and Proschan, 1972a). The comparison
N(t) ≥st NA(t, T ) holds for all t and T > 0 if and only if F is NBU.
The inequality is reversed if and only if F is NWU.

I.2. Proposition (Marshall and Proschan, 1972a).
The comparisonN(t) ≥st NB(t, T ) holds for all t and T > 0 if
and only if F is NBU. The inequality is reversed if and only if F is
NWU.

A characterization of IHR [DHR] distributions in the context of
maintenance policies shows the validity of the intuition behind the def-
inition.

I.3. Proposition (Marshall and Proschan, 1972a). NA(t, T ) is sto-
chastically increasing in T > 0 for each fixed t if an only if F is IHR.
The stochastic monotonicity is reversed if and only if F is DHR.

The proofs of these propositions are somewhat involved and are
given, respectively, in Propositions I.5, I.8, and I.9. It is convenient to
begin with more notation. Let Yi denote the length of time between the
(i− 1)th and the ith failure when no planned replacements are made,
i.e.,

Yi = inf {t : N(t) ≥ i} − inf {t : N(t) ≥ i− 1}.

Similarly, define Yi,A and Yi,B, i = 1, 2, . . . for the respective processes
NA(t, T ) and NB(t, T ).

I.4. Proposition (Marshall and Proschan, 1972a). The comparison
Yi ≤st Yi,A holds for all T > 0, i = 1, 2, . . . if and only if F is NBU. The
stochastic order is reversed if and only if F is NWU.
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Proof. First note that Yi and Yi,A have distributions independent of i
and

P{Y1 > t} = F̄ (t),
P{Y1,A > t} = [F̄ (T )]jF̄ (t− jT ), jT ≤ t < (j + 1)T, j = 0, 1, . . . .

If F is NBU, then by repeated application of the definition, it follows
that

F̄ (t) ≤ [F̄ (T )]jF̄ (t− jT ), jT ≤ t < (j + 1)T, j = 0, 1, . . . ,

and consequently, Yi ≤st Yi,A.
If Yi ≤st Yi,A, that is, P{Yi > t} ≤ P{Yi,A > t} for all t, T , take T =

max (x, y), t− T = min (x, y) to conclude that F̄ (x + y) ≤ F̄ (x)F̄ (y).
The proof for the NWU case is essentially the same, but with the
inequalities reversed. �

I.5. Proof of Proposition I.1. If F is NBU, then since Y1, Y2, Y3, . . .
are independent and Y1,A, Y2,A, Y3,A, . . . are independent, it follows from
Proposition I.4 that

P{N(t) ≥ n} = P{Y1 + · · · + Yn ≤ t} ≥ P{Y1,A + · · · + Yn,A ≤ t}
= P{NA(t, T ) ≥ n}.

If N(t) ≥st NA(t, T ), for all t and T > 0, then

P{Y1 > t} = P{N(t) = 0} ≤ P{NA(t, T ) = 0} = P{Y1,A > t},

and hence F is NBU by Proposition I.4. Again, the proof for the NWU
case is analogous. �

The process NB(t, T ) has more dependencies than the process
NA(t, T ), and consequently, results for block replacement are not as
easily obtained as those for age replacement. The following lemma is
required.

I.6. Lemma. Let planned replacements occur at fixed time points 0 <
t1 < t2 < · · · under Policy 1 and at these and the additional time t0
under Policy 2. Let Ni(t) be the number of failures in [0, t] under Policy
i, i = 1, 2. Then, N1(t) ≥st N2(t), for all t > 0, if and only if F is NBU.
The stochastic order is reversed if and only if F is NWU.
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Proof. Suppose first that F is NBU. For t < t0, N1(t) and N2(t) have
the same distribution. Next, assume that t0 ≤ t ≤ tk, where tk is the
smallest tj > t0. Take tk = ∞ if t0 > tj , for all j > 0. Let Z be the age
of the unit in operation at time t0 (if there is no replacement at the
time), and let Z be the age of the unit being replaced at time t0 (if
there is such a replacement). Call this the age of the unit at time t0−.
The distribution of Z does not depend upon the policy. Let τi denote
the interval between t0 and the time of first failure subsequent to t0−
under Policy i, i = 1, 2. Because F is NBU,

P{τ1 > t | Z} ≤ P{τ2 > t | Z}, for all t ≥ 0.

Let Ui be the number of failures in [t0, t] under policy i, i = 1, 2. If
X1, X2, . . . are independent and have distribution F, then

P{U1 ≥ n | Z}=P{t0 + τ1 +X1 + · · · +Xn−1 ≤ t | Z}
≥P{t0 + τ2 +X1 + · · · +Xn−1 ≤ t | Z}=P{U2 ≥n | Z},

n = 1, 2, . . . . Thus, N1 ≥st N2.
Finally, assume that t > tk. Let Ni(tk, t) denote the number of

failures in the interval (tk, t] under policy i, i = 1, 2. Then, Ni(tk) +
Ni(tk, t) = Ni(t), with Ni(tk) and Ni(tk, t) independent, i = 1, 2.
Because N1(tk) ≥st N2(tk) and N1(tk, t) =st N2(tk, t), that is, both ≤st
and ≥st hold, it follows that if F is NBU, then N1(t) ≥st N2(t).

Next, suppose that N1(t) ≥st N2(t) for all t and all t0, t1, . . . . For
0 < t0 < t1,

F̄ (t1) = P{N1(t1) = 0} ≤ P{N2(t1) = 0} = F̄ (t0)F̄ (t1 − t0).

Thus, F is NBU. �

I.7. Proposition. The comparison Yi ≤st Yi,B(T ) holds, for all T >
0, i = 1, 2, . . . , if and only if F is NBU. The stochastic order is reversed
if and only if F is NWU.

Proof. Let Si−1,B = Y1,B(T ) + · · · + Yi−1,B(T ), and let k be the small-
est integer for which kT ≥ Si−1,B. Then P{Yi,B(T ) > t | Si−1,B} =
P{Y ∗

1 > t}, where Y ∗
1 is the first failure when planned replacements

are made at kT − Si−1,B = δ, δ + T, δ + 2T, . . . .



SVNY289-Olkin April 17, 2007 20:0

I. Replacement Policies: Renewal Theory 191

If F is NBU, apply Lemma I.6 to compare successive pairs of a se-
quence of replacement policies in which the ith policy calls for planned
replacement at time points 0, δ, δ + T, δ + 2T, . . . , δ + iT . This compar-
ison yields

F̄ (t) = P{Yi > t} = P{Y1 > t} ≤ P{Y ∗
1 > t} for all t ≥ 0,

and by unconditioning, it follows that Yi ≤st Yi,B(T ). The converse fol-
lows from Proposition I.4, since Y1,B(T ) and Y1,A(T ) have the same
distribution.

The proof for the NWU case is analogous, but with inequalities
reversed. �

I.8. Proof of Proposition I.2. If F is NBU, then use Lemma I.6 to
compare successive pairs of a sequence of replacement policies in which
the j th policy calls for planned replacement at time points 0, T, . . . ,
(j − 1)T . The converse follows as in the converse of Proposition I.1
with i = 1. �

I.9. Proof of Proposition I.3. For fixed T > 0, {NA(t, T ), t ≥ 0} is
a renewal process with underlying distribution

ST (x) = 1 − [F̄ (T )]nF̄ (x− nT ), nT ≤ x < (n + 1)T, n = 0, 1, . . . .

Under the assumption that F has a density, it follows by differentiating
ST (x) with respect to T that ST (x) is increasing in T > 0 for fixed x ≥
0 if and only if F is IHR; if F does not have a density, then a limiting
argument is required. It follows that the nth convolution Sn∗

T (x) =
P{NA(t, T ) ≥ n} is increasing in T > 0 for fixed t ≥ 0 if and only if F
is IHR. �

b. Summary of Stochastic Comparisons

F is IHR if and only if NA(t, T ) is stochastically increasing in T > 0
for each fixed t.

The following are equivalent:

(i) F is NBU.
(ii) N(t) ≥st NA(t, T ) holds for all t and T > 0.
(iii) N(t) ≥st NB(t, T ) holds for all t and T > 0.
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(iv) Yi ≤st Yi,A holds for all T > 0, i = 1, 2, . . ..
(v) Yi ≤st Yi,B(T ) holds for all T > 0, i = 1, 2, . . ..

Here Yi = inf {t : N(t) ≥ i} − inf {t : N(t) ≥ i− 1} and Yi,A and
Yi,B, i = 1, 2, . . . , are defined similarly, but for the respective processes
NA(t, T ) and NB(t, T ).

J. Some Additional Families

Wang, Hossain and Zimmer (2003) have proposed some families of
life distributions with some similarities to the families of IHR, IHRA,
and NBU distributions, as well as the DHR, DHRA, and NWU fam-
ilies. These families are based upon the logarithm of the odds ratio
Ø−(x) = F (x)/F̄ (x), introduced in 1.B(17b). In particular, they con-
sider properties of the function

Q(x) = log Ø−(ex),

From 1.B(18), it follows that F̄ (x) = 1/[1 + Ø−(ex)], so that F is
determined by the corresponding log-odds ratio:

F̄ (x) =
1

1 + Ø−(ex)
.

Wang, Hossain and Zimmer (2003) successively consider the condi-
tions that Q is convex, starshaped, and superadditive. These conditions
parallel the same conditions imposed upon the hazard function R; con-
vexity, starshapedness, and superadditivity of R are, respectively, the
conditions that F is IHR, IHRA, and NBU.

Assuming differentiability, the hazard function R is determined by
its derivative r ; when integrating r to obtain R, the constant of inte-
gration is determined by the condition that R(0) = 0. However, such is
not the case with the function Q. It is determined only up to a constant
by its derivative. This means that for families defined in terms of Q, the
derivative of Q cannot play a role parallel to the role that the hazard
rate plays for families defined in terms of R, as noted in the following
examples.
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J.1. Example. Let F̄ (x) = 1/[1 + λx], x ≥ 0, λ > 0; this is the Pareto
distribution of 11.A(1). Direct computations show that in this case,
Q(x) = x + log λ. This linear function has the derivative 1 and is inde-
pendent of λ.

J.2. Example. The survival function F̄ (x | γ) = γF̄ (x)/(1 − γ̄F̄ (x)),
γ, x > 0 is discussed in Section 7.F. Here, the derivative Q′(x) =
r(x)/F (x), where r is the hazard rate of F. This derivative is inde-
pendent of the parameter γ.
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6

Nonparametric Families: Inequalities for
Moments and Survival Functions

I collected statistics, I worked out the golden mean, and never understood that
extremes join hands, that the man who goes to bed late meets the man who gets
up very early, and he who chooses to take his seat on the golden mean, risks
falling between two stools.

André Gide, Prometheus Misbound

A. Results Concerning Moments

With the notation of 1.C(3), let λr = μr/Γ(r + 1), r ≥ 0, denote the
normalized moments of the distribution F. An interesting fact is that,
when they exist, these normalized moments satisfy inequalities that
mimic the properties of the density or survival function for many
of the classes of distributions described in Chapters 4 and 5. Even
when moments do not all exist, the inequalities hold with natural
interpretations.

The proofs of Propositions A.1, A.2, and A.3 are given by Marshall
and Olkin (1979, p. 494); these proofs, which are somewhat technical
and depend upon total positivity theory, are not reproduced here.

A.1. Proposition (Karlin, Proschan and Barlow, 1961). If F (0) = 0
and if f(x) is log concave [convex] in x ≥ 0, then λr is log concave
[convex] in r ≥ 0.

A.2. Proposition (Barlow, Marshall and Proschan, 1963). If F (0) =
0 and F is IHR (DHR), then λr is log concave [convex] in r ≥ 1.

A.3. Proposition. If f is a completely monotone density, then λr is
log convex in r > −1.
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A.4. Proposition. If F is an IHRA (DHRA) distribution, then λ
1/r
r

is decreasing (increasing) in r ≥ 0.

Proof. According to (iv) of Proposition 5.B.3, F is IHRA if and only
if Ḡ−1F̄ is starshaped, where G is an exponential distribution. Recall
from Definition 2.C.10 that this means X ≤∗ Y , where X has the dis-
tribution F and Y has the distribution G. According to Proposition
2.C.12, this means that aX ≤∗ Y , for all a > 0; consequently, the pa-
rameter of the exponential distribution is not relevant and can be of
the form Ḡ(x) = exp {−x/λ

1/r
r }. Now, make use of 1.C(4), that is, of

the formula

μr = r

∫ ∞

0
xr−1F̄ (x) dx

and apply Proposition 2.C.13 with ψ(x) = xs−r, where r ≤ s. This
yields

λs =
∫ ∞

0

sxs−1F̄ (x)
Γ(s + 1)

dx ≤
∫ ∞

0

sxs−1 exp{−x/λ
1/r
r }

Γ(s+1)
dx = λs/r

r .

The proof for the DHRA case is similar. �

According to Proposition 5.C.7, NBU distributions have finite mo-
ments of all positive orders. As would be expected, these moments
satisfy special inequalities.

A.5. Proposition. If F is NBU, then

λr+s ≤ λrλs, r, s,≥ 0. (1)

If F is NWU and the moments are finite, then the inequality (1) is
reversed.

Proof. If F is NBU, then F̄ (x + y) ≤ F̄ (x)F̄ (y) so that

xr−1

Γ(r)
ys−1

Γ(s)
F̄ (x + y) ≤ xr−1

Γ(r)
F̄ (x)

ys−1

Γ(s)
F̄ (y), x, y ≥ 0.

It follows that∫ ∞

0

∫ ∞

0

xr−1

Γ(r)
ys−1

Γ(s)
F̄ (x + y) dx dy

≤
∫ ∞

0

xr−1

Γ(r)
F̄ (x) dx

∫ ∞

0

ys−1

Γ(s)
F̄ (y) dy = λrλs. (2a)



SVNY289-Olkin May 15, 2007 16:33

A. Results Concerning Moments 197

In the left-hand member of this inequality, first let x + y = z, so that
y = z − x, and then make use of 23.B.1 and 23.B.5 to obtain

∫ ∞

0
F̄ (z)

∫ z

0

xr−1

Γ(r)
(z − x)s−1

Γ(s)
dx dz =

∫ ∞

0
F̄ (z)

zr+s−1

Γ(r + s)
dz = λr+s.

(2b)

If F is NWU, the proof given above can be modified by reversing
the inequalities to show that inequality (1) is reversed. �

A.6. Proposition. If F is NBUE, then

λr+1 ≤ λrλ1, r > 0. (3)

If F is NWUE and the moments exist, then the inequality (3) is re-
versed.

Proof. If F is NBUE, then according to Definition 5.E.1,∫ ∞

t
F̄ (x) dx =

∫ ∞

0
F̄ (x + t) dx ≤ μ1F̄ (t).

Consequently,

∫ ∞

0

tr−1

Γ(r)

∫ ∞

t
F̄ (x) dx dt ≤ μ1

Γ(r)

∫ ∞

0
tr−1F̄ (t) dt = λ1λr.

By interchanging the order of integration, the left side of the inequality
becomes

1
Γ(r)

∫ ∞

0
F̄ (x)

∫ x

0
tr−1 dt dx =

μr+1

r(r + 1)Γ(r)
= λr+1.

If F is NWUE, then the proof must be modified by reversing all of the
inequalities. �

Note that with r = 1, (3) yields the inequality μ2 ≤ 2μ2
1; this is to be

compared with the inequality μ2 ≥ μ2
1, which holds for all distributions.

The first of these inequalities can be restated in terms of the coefficient
of variation CV(F ) = σ/μ1.

A.7. Corollary. Denote by μ and σ2, respectively, the mean and vari-
ance of the distribution F. If F is NBUE, then

CV (F ) =
σ

μ
≤ 1.
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If F is NWUE, then

CV (F ) =
σ

μ
≥ 1.

The coefficient of variation is sometimes used as a measure of nor-
malized dispersion of a distribution, normalized so as to be scale in-
variant. It is also used to compare normalized dispersion with that of
the exponential distribution, for which the coefficient of variation is
1. By examining the proof of Proposition A.6, it is possible to con-
clude that among the family of NBUE and NWUE distributions, the
exponential distribution is unique in having a coefficient of variation
equal to 1.

B. Bounds for Survival Functions

As usual, let

F̄ (x−) = limε→0 F̄ (x− ε)

so that if the random variable X has the distribution F, then

F̄ (x−) = P{X ≥ x}.

If the distribution function F satisfies F (0−) = 0 and has rth moment
μr < ∞, where r > 0, then according to Markov’s inequality,

0 ≤ F̄ (t−) ≤ μr/t
r, t ≥ μr,

≤ 1, t ≤ μr. (1)

These inequalities are known to be sharp; indeed, for each positive r
and t and for each of the inequalities of (1), there exists a distribution
satisfying the conditions of (1) and attaining equality. Markov’s in-
equality, although best possible without stronger hypotheses, is useful
in proving the weak law of large numbers, but is not very useful for
many other purposes.

A number of improvements of Markov’s bound have been obtained
with stronger hypotheses. Indeed, there is a better bound due to Gauss
(1823), which predates the work of Markov (1898) and depends upon
the assumption that F̄ is convex on [0,∞). This section offers a brief
introduction to some improvements of Markov’s inequality for some of
the classes of distributions discussed in earlier sections of this chapter.
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A number of additional inequalities have been given by Barlow and
Marshall (1964), some of which depend upon additional information
such as bounds on the hazard rate, or on the value of a Laplace
transform at one point. Bounds on interval probabilities, densities, and
hazard rates are given by Barlow and Marshall (1967) with various
hypotheses.

The methods used in what follows ensure that the inequalities are
“sharp,” meaning that they cannot be improved without stronger hy-
potheses. Indeed, there is a distribution satisfying the hypotheses that
achieves the bound—that is, the inequality becomes an equality. In
most cases, the idea is to first identify a family of “extremal” dis-
tributions and then find the most extreme of that family satisfying
the stated hypotheses. For example, to obtain an upper bound on
F̄ (t), the method calls for the identification of an extremal distribu-
tion G for which F̄ (t) ≤ Ḡ(t) whenever F satisfies the specified condi-
tions. The existence of the distribution G ensures that the inequality is
sharp.

Summary of upper bounds for survival functions
Assumptions Proposition
F̄ convex, μr given B.1
f unimodal, μ given B.1.a
F IHRA, μr given B.2
F DHR, μr given B.3
Log F concave, μ given B.4
F NWUE, μ given B.5

Summary of lower bounds for survival functions
Assumptions Proposition
F IHR, μr given B.6
F IHRA, μr given B.7
F NBUE, μ given B.8

a. Improvements of Markov’s Inequality Under
Various Conditions

The following proposition was partially obtained by Camp (1922) and
Meidell (1922) and was obtained by Fréchet (1950). The case r = 2
is essentially equivalent to the result of Gauss (1823) who used the
method of proof offered below.
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B.1. Proposition. If F (0−) = 0, F̄ is convex on [0,∞), and F has rth
moment μr, r > 0, then

F̄ (t) ≤ 1 − t

(r + 1)1/rμ
1/r
r

, t ≤ t0, (2)

≤ μr

tr

[
r

r + 1

]r
, t ≥ t0,

where t0 = rμ
1/r
r /(r + 1)1−1/r. The inequality is sharp.

Proof. Because F̄ is convex on [0,∞), F̄ has a supporting line at t,
and consequently, for some a ∈ (0, 1] and b > 0, F̄ (x) ≥ Ḡ(x), x ≥ 0,
and F̄ (t) = Ḡ(t), where

Ḡ(x) = a− bx, 0 ≤ x ≤ a/b, Ḡ(x) = 0, x ≥ a/b.

See Figure B.1. Because F̄ (t) = Ḡ(t), it must be that b = [a− F̄ (t)/t.
Because F̄ (x) ≥ Ḡ(x), x ≥ 0, it follows from 1.C(4) that

μr ≥ r

∫ ∞

0
xr−1Ḡ(x) dx =

ar+1

(r + 1)br
=

ar+1tr

(r + 1)[a− F̄ (t)]r
.

a/b

a

F(x)

G(x)

xt

Fig. B.1. The survival functions F̄ and Ḡ
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This means that for some a ∈ (0, 1],

F̄ (t) ≤ a− [a(r+1)/rt]/(r + 1)1/rμ1/r
r .

Maximization of the bound subject to a ∈ (0, 1] yields (2). Here, the
maximum occurs at a = rμ

1/r
r /t(r + 1)(r−1)/r if t ≥ t0, and at 1 if t ≤ t0.

Equality is attained in (2) when t ≤ t0 by the distribution

F (x) = x/[(r + 1)μr]1/r, 0 ≤ x ≤ [(r + 1)μr]1/r;

when t ≥ t0, equality is attained with

F̄ (x) =
rrμr

(r + 1)r−1tr

[
1 − rx

(r + 1)t

]
, 0 ≤ x ≤ (r + 1)t

r
. �

The above inequality depends upon the knowledge that F̄ is convex;
when a density exists, this is equivalent to the assumption that the
density is decreasing, i.e., the density is unimodal with mode at 0.
The following inequality due to Colin Mallows (private communication)
assumes that the density is unimodal, but the location of the mode is
unknown.

B.1.a. Proposition. If f is a unimodal density with μ1 = 1 and if
F (0−) = 0, then

F̄ (t) ≤ 1, 0 ≤ t ≤ 1,
≤ (2/t) − 1, 1 ≤ t ≤ 3/2,
≤ 1/2t, t ≤ 3/2.

The proof of this inequality makes use of the methods provided by
Mallows (1963), and is omitted.

B.2. Proposition. Suppose that F is IHRA and has rth moment μr

where r > 0. Then,

F̄ (t−) ≤ 1, t ≤ μ1/r
r ,

≤ e−wt, t > μ1/r
r , (3a)

where w is determined by the equation
∫ t

0
rzr−1 e−wz dz = μr. (3b)
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(Note that the left-hand side of (3b) is decreasing from tr at w = 0 to
0 at w = ∞, and consequently crosses the value μr at one point.) The
bound is sharp and cannot be improved even with the assumption that
F is IHR.

Proof. Let Ḡ(z) = e−wz, z < t, Ḡ(z) = 0, z ≥ t, and choose w so that
G has the same rth moment as F. Because e−wz can cross F̄ (z) at most
once, and only from below, it must be that Ḡ(t) ≥ F̄ (t) for otherwise F
and G would not cross at all and could not have the same rth moment.
Sharpness is obtained because the distribution G attains the bound
when it is not trivial. When only the trivial upper bound 1 is given,
the distribution degenerate at μ

1/r
r attains the bound. �

This bound has been tabulated for r = 1 by Barlow and Marshall
(1965). When r = 1, (3a) takes the particularly simple form 1 − wμ =
e−wt. Because the left-hand side of this equation is linear and the right-
hand side is convex, the equation has a unique positive solution.

B.3. Proposition. If F is DHR and has rth moment μr < ∞, where
r > 0 and λr = μr/Γ(r + 1), then

F̄ (t−) ≤ exp {−t/λ1/r
r }, t ≤ rλ1/r

r ,

≤ rrλr e
−r/tr, t ≥ rλ1/r

r .

This inequality is sharp.

For a proof of this inequality, see Barlow and Marshall (1964).

B.4. Proposition. Suppose that F (0−) = 0, logF is concave (F is
DRHR), and F has first moment μ. Then,

F̄ (t) ≤ 1 −
(

w

w − 1

)w−1
e−1, w =

t

μ
> 1, (4)

≤ 1, w ≥ 1.

The bound is sharp.

Proof. Because logF is concave, this function has a supporting line at t ;
thus, for some a ≥ 0 and log c > 0, logF (x) ≤ ax− log c with equality
at x = t. Consequently, a = log cF (t)/t > 0 and

F (x) ≤ [cF (t)]x/t

c
, 0 ≤ x ≤ t log c

log cF (t)
= x0,

≤ 1, x ≥ x0.
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It follows from this and from 1.C(4) that

μ ≥
∫ x0

0

[
1 − [cF (t)]x/t

c

]
dx =

t

log cF (t)

[
1
c
− 1 + log c

]
.

This means that for some c > 1,

logF (t) ≥ t

μ

[
1
c
− 1 + log c

]
− log c.

Minimization of the lower bound with respect to c leads to the inequal-
ity (4). Equality is attained when

F (x) = 0, x < 0,

=
(

w

w − 1

)(wx/t)−1
e−x/t, 0 ≤ x ≤ x1,

= 1, x > x1,

where x1 =
[
t log w

w−1

]/[
w

(
log w

w−1

)
− 1

]
. �

B.5. Proposition (Brown, 2001). If F is NBU and has first moment
μ, then

F̄ (t−) ≤ (μ/t)2, t ≥ μ,

≤ 1, t < μ. (5)

Brown (2001) obtains this bound from general results concerning
submultiplicative functions due to Phillips (1954). The bound (5) is
not sharp, and for large t, the bound (6) of the following proposition
is better. To be more explicit, let s = t/μ. When 2 log s = s− 1, the
bounds of (5) and (6) are equal. For s > c ≈ 3.51286, the bound (6) of
the following proposition is better.

B.6. Proposition (Brown, 2001). If F is NBUE and has first moment
μ, then

F̄ (t−) ≤ exp
{
−

(
t

μ
− 1

)}
, t ≥ μ. (6)

This bound is likely not sharp, but no better bound is known; the
proof is omitted. This bound is to be compared with 5.E(2) which
provides a bound for the equilibrium survival function F̄(1)(t).
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B.7. Proposition. If F is NWUE and has first moment μ, then

F̄ (t−) ≤ μ/(μ + t), t ≥ 0. (7)

This inequality is sharp and cannot be improved even with the assump-
tion that F is NWU.

Proof. The condition that F is NWUE can be written in the form

μF̄ (t) ≤
∫ ∞

t
F̄ (z) dz, t ≥ 0;

because
∫ ∞

t
F̄ (z) dz = μ−

∫ t

0
F̄ (z) dz and

∫ t

0
F̄ (z) dz ≥ tF̄ (t),

it follows that

μF (t) ≥ tF̄ (t),

and consequently, F̄ (t) ≤ μ/(μ + t). The proof of (7) is completed by
the limiting argument

F̄ (t−) = limε→0 F̄ (t− ε) ≤ limε→0 μ/(μ + t− ε) = μ/(μ + t).

Equality in (7) is attained by the distribution G given by

Ḡ(x) = pi+1, ix ≤ x < (i + 1)x, i = 0, 1, 2, . . . ,

where p = μ/(μ + t). This distribution is NWU and has first moment
μ; consequently, (7) cannot be improved with the stronger hypothesis
that F is NWU. �

For a comparison of upper bounds for F̄ (t−) under various condi-
tions see Figures B.2 and B.3, both with μ = 1.

b. Reversals of Markov’s Inequality

Markov’s inequality provides an upper bound in the survival function,
but in general, no nontrivial lower bound can be given in terms of one
moment. On the other hand, such bounds are possible with additional
assumptions.
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Fig. B.2. Upper bounds for the survival function under various conditions (μ = 1)
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Fig. B.3. Upper bounds for the survival function under various conditions (μ = 1)
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B.8. Proposition (Barlow and Marshall, 1964). Suppose that F is
IHR and λr = μr/Γ(r + 1), where r ≥ 1. Then,

F̄ (t) ≥ exp {−t/λ1/r
r }, t < μ1/r

r , (8)

≥ 0, t ≥ μ1/r
r .

The bound is sharp.

This result is due to Richard E. Barlow. A more general result is given
by Barlow and Marshall (1964), and another generalization is given by
Barlow and Proschan (1975).

B.9. Proposition (Barlow and Marshall, 1967). Suppose that F is
IHRA and has rth moment μr, where r > 0. Then,

F̄ (t) ≥ min [e−bt, e−ct], t < μ1/r
r , (9a)

≥ 0, t ≥ μ1/r
r ,

where c = 1/λ1/r
r and b = b(t) is determined as the unique solution of

the equation

tr(1 − e−bt) +
∫ ∞

t
zrb e−bz dz = μr. (9b)

For a proof, see Barlow and Marshall (1967, p. 248). For r = 1,
this bound is tabulated by Barlow and Proschan (1975, p. 117)
(see Figure B.4). In case r = 1, (9a) takes the relatively simple form

b(μ− t) = e−bt. (9c)

B.10. Proposition. If F is NBUE and has first moment μ, then

F̄ (t) ≥ 1 − t

μ
, t ≤ μ,

≥ 0, t > μ, (10)

This inequality is sharp. Moreover, it cannot be improved even with
the stronger hypothesis that F is NBU.

Proof. If F is NBUE, then, for all t ≥ 0,

μF (t) ≤
∫ t

0
F̄ (z) dz.
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Fig. B.4. Lower bounds for IFR and IFRA survival functions (μ = 1)

But trivially, the integral is less than t. This proves the inequality. To
show that it cannot be improved even with the assumption that F is
NBU, first consider the case that x ≤ μ and compute that if the hazard
function

R(z) = −i log p, ix ≤ z < (i + 1)x with 1 − p = t/μ,

then F has expectation μ and achieves equality in (10). This distribu-
tion is that of Example 5.C.6. For the case that t > μ, the distribution
degenerate at μ achieves equality. �

With only the first moment known, nontrivial lower bounds on F̄
cannot be given under the assumption that F is DHR (or any weaker as-
sumption). To see this note that F̄ (x) = a exp {−ax/μ}, x > 0, defines
a DHR distribution with mean μ and lima→0 F̄ (x) = 0, for all x > 0.
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c. Bounds with Two Moments Given

The above-mentioned bounds all depend upon only one moment, and
they can be substantially improved if two moments, say the first and
second, are known.

B.11. Proposition (Chebyshev, 1874). Let F be a distribution such
that F (0−) = 0. If μ1 = 1 and μ2 is known, then

F̄ (t) ≥ (1 − t)2/[(μ2 − 1) + (1 − t)2], 0 ≤ t ≤ 1,
≥ 0, t ≥ 1;

F̄ (t) ≤ 1, 0 ≤ t ≤ 1,
≤ 1/t, 1 < t < μ2,

≤ (μ2 − 1)/[μ2 − 1 + (t− 1)2], t ≥ μ2.

B.12. Proposition (Royden, 1953). Let F be a distribution concave
on [0,∞) such that F (0−) = 0. If μ1 = 1 and μ2 is known, then

F̄ (t) ≥ (2 − t)2/(3μ2 − 2t), 0 ≤ t ≤ 2,
≥ 0, t ≥ 2;

F̄ (t) ≤ 4(3μ2 − 2t)/9μ2
2, 3μ2/4 ≤ t ≤ μ2,

≤ (3μ2 − 4)/[4(3α2 − 4α) + 3μ2], t ≥ μ2,

where α is the unique root ≥ t/2 of

t = [16α2(α− 1)]/[4(3α2 − 4α) + 3μ2].

For IHR distributions, sharp bounds of this kind have been obtained
by Barlow and Marshall (1964), but unfortunately, they are mostly
given implicitly as solutions of transcendental equations that have to
be solved numerically. This has been done in a number of cases; see
Barlow and Marshall (1965). Proofs of these results mostly involve
studies of extremal distributions and in spirit are similar to the proof
of Proposition B.2 given earlier. They make use of the fact that as
functions of r, moments μr from two distributions can cross no more
times than the survival functions cross (see 21.B.12 for an indication
of the proof of this fact). The tightness of the bounds based upon two
moments is evidenced by the proximity of upper and lower bounds.

Figures B.5, B.6, B.7, and B.8 illustrate the bounds in special cases,
and show the improvement resulting the IHR or DHR assumption by
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Fig. B.5. Upper and lower bounds for the survival function (μ1 = 1 and μ2 = 1.2)
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Fig. B.6. Upper and lower bounds for the survival function (μ1 = 1 and μ2 = 1.5)
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Fig. B.7. Upper and lower bounds for the survival function (μ1 = 1 and μ2 = 1.8)
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Fig. B.8. Upper and lower bounds for the survival function (μ1 = 1 and μ2 = 3)
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comparison with more standard Chebyshev bounds. Note the proximity
of upper and lower bounds when μ1 = 1 and μ2 is close to 2. This is
due to the fact that IHR distributions with μ1 = 1 and μ2 = 2 must be
exponential distributions.

d. Bounds Based on Percentiles

In the previous sections, bounds are based on knowledge of moments.
In some applications, there may instead be knowledge of percentiles; for
example, the median may be known but not the mean. The following
propositions show how to obtain bounds on the survival function in
such cases.

B.13. Proposition. Suppose that F is IHRA, and it is known that
F̄ (x0) = p0. Let Ḡ(x) = p

x/x0
0 , x ≥ 0. Then,

F̄ (x) ≥ Ḡ(x), 0 ≤ x ≤ x0, and F̄ (x) ≤ Ḡ(x), x ≥ x0.

The bounds are sharp and connot be improved by assuming that F is
IHR.

Proof. Because F is IHRA, [F̄ (x)]1/x is decreasing in x > 0. Because
F̄ (x0) = Ḡ(x0) and [Ḡ(x)]1/x is a constant, the result follows. This is
just another way of saying that an IHRA survival function can cross an
exponential survival function at most once, and only from above (see
Proposition 5.B.3(ii)). �

B.14. Proposition. Suppose that F is IHRA, and it is known that
F̄ (x0) = p0, F̄ (x1) = p1, where x0 < x1. Let Ḡ0(x) = p0

x/x0 , x ≥ 0, and
Ḡ1(x) = p

x/x1
1 , x ≥ 0. Then,

F̄ (x) ≥ Ḡ0(x), 0 ≤ x ≤ x0,

Ḡ0(x) ≥ F̄ (x) ≥ Ḡ1(x), x0 ≤ x ≤ x1,

F̄ (x) ≤ Ḡ1(x), x ≥ x1.

Proof. The proof of these inequalities is similar to the proof of Propo-
sition B.13, in that they all follow from the fact that an IHRA sur-
vival function can cross an exponential survival function at most once,
and only from above. The fact that the inequalities are sharp can
be demonstrated by constructing an IHRA survival function that is
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made up of segments of the Ḡi, equal to the bounds on appropriate
intervals. �

B.15. Proposition. Suppose that F is IHR, and it is known that
F̄ (x0) = p0, F̄ (x1) = p1, where x0 < x1. Let Ḡ0 and Ḡ1 be as in Propo-
sition B.14, and let

Ḡ2(x) = 1, 0 ≤ x ≤ a

= p
(x1−x)/(x1−x0)
0 p

(x−x0)/(x1−x0)
1 , x ≥ a,

where

a =
x0 log p1 − x1 log p0

log p1 − log p0
.

Then,

F̄ (x) ≥ Ḡ0(x), x ≤ x0,

≥ Ḡ2(x), x0 < x ≤ x1,

and

F̄ (x) ≤ Ḡ2(x), a ≤ x ≤ x0,

≤ Ḡ0(x), x0 ≤ x ≤ x1,

≤ Ḡ1(x), x ≥ x1.

These bounds are sharp.

Proof. Because F is IHR, [F̄ (x)]1/x is decreasing in x > 0; this means
that p0

1/x0 ≥ p1
1/x1 and consequently, a > 0. Because F is IHR,

log F̄ (x) is a concave function of x. On the other hand, log Ḡi(x) is
linear in x ≥ 0, i = 0, 1, and log Ḡ2(x) is linear in x ≥ a. Consequently
the inequalities can be read directly from Figure B.9. The fact that the
inequalities are sharp can be demonstrated by constructing IHR sur-
vival functions that are piecewise exponential and made up of segments
of the Ḡi, equal to the bounds on appropriate intervals. �

The above-mentioned inequalities can be easily extended to the case
that any finite number of percentiles are given.
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Fig. B.9. The bounds of Proposition B.14

e. Related Bounds

The inequalities considered above provide bounds for distributions or
survival functions at a fixed point, say t. The bound is regarded as
being “sharp” or best possible if there exists a distribution satisfying
the hypotheses that achieves equality. Bounds that apply for all values
of t can also be obtained.

For distributions in the various classes discussed in this chapter, the
exponential distribution plays a central role; for example, if F is both
IHR and DHR or both DMRL and IMRL, then it is an exponential dis-
tribution. How far can such distributions deviate from an exponential
distribution with the same first moment μ? Recall that the coefficient
of variation of an exponential distribution is 1.

To interpret the following proposition, recall that as a consequence
of Proposition A.6, F is NBUE implies μ2 ≤ 2μ2

1; consequently this
moment inequality holds under the stronger condition that F is IHR.
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This moment inequality is reversed when F is NWUE, and consequently
is reversed if F is IMRL.

B.16.a. Proposition (Brown, 1987). If F has an increasing hazard
rate, then

supt |F̄ (t) − e−t/μ| ≤ 1 − [CV (F )]2 = 2
(

1 − μ2

2μ2
1

)
,

where CV (F ) is the coefficient of variation of F.

B.16.b. Proposition (Brown, 1983). If F has an increasing mean
residual life, then

supt |F̄ (t) − e−t/μ| ≤ [CV (F )]2 − 1
[CV (F )]2 + 1

= 1 − 2μ2
1

μ2
.

Similar results for NBUE and NWUE distributions have been obtained
by Brown and Ge (1984).
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Semiparametric Families

A family is a unit composed not only of children, but of men, women, an occa-
sional animal, and the common cold.

Ogden Nash

A. Introduction

Ordinarily, parameters of a distribution are thought of as being real
or possibly vector-valued. In this chapter, families of distributions are
discussed, which are distinguished by having a parameter that is itself a
distribution function. These families also have a real-valued parameter
and consequently are said to be semiparametric.

A possible procedure making use of a semiparametric model is to
first select the parameter that is a distribution function. This distribu-
tion function is called the underlying distribution. In effect, the choice of
an underlying distribution leads to the selection of a parametric model,
but with the selection limited to families having the structure of the
semiparametric model. Alternatively, the distribution function-valued
parameter can be restricted to some nonparametric families such as
those discussed in Chapter 4 or 5.

It may be that the underlying distribution F itself already has a
parameter or even several parameters; then a semiparametric family
may provide a way to add a new parameter θ and thereby to extend
the family from which F came. The standard families of gamma distri-
butions and Weibull distributions can be thought of as coming from the
exponential distribution by way of semiparametric families that add a
second parameter. By the same method, it is possible to find a three-
parameter family that includes both the gamma and Weibull families
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as special cases. So the study of semiparametric families is useful for
two purposes: It provides a new understanding of standard families of
distributions, and it provides methods of extending families for added
flexibility in fitting data.

The various semiparametric families discussed in Sections B through
K include many families that can be found in the literature, implicitly
or explicitly. Certainly these 10 examples do not exhaust all possibil-
ities (several more examples are noted in Section O), but the intent
is to include the most commonly encountered and the most important
semiparametric families.

a. Summary/Preview

Table A.1 can be regarded as a summary or preview of what follows
in more detail. Here, the name of various kinds of parameters is intro-
duced; the notation is discussed in Section b; it is far from ideal, and the
reader is cautioned to note that F̄ (x|λ), F̄ (x|α), F̄ (x | ξ), F̄ (x | γ), and

Table A.1. Summary of some semiparametric families

Location parameter b: F (x | b) = F (x− b), −∞ < b < ∞
Scale parameter λ > 0: F (x |λ) = F (λx)
Power parameter α > 0: F (x |α) =F (xα), x ≥ 0, F (0−) = 0
Frailty parameter ξ > 0 F̄ (x | ξ) = [F̄ (x)]ξ

Resilience parameter η > 0 F (x | η) = [F (x)]η

Tilt parameter γ > 0 F̄ (x | γ) = γF̄ (x)/[F (x) + γF̄ (x)]
Hazard power parameter ζ > 0 F̄ (x | ζ) = exp{−[R(x)]ζ},

where R(x) = − log F̄ (x)

Moment parameter β F̄ (x |β) =
1
μβ

∫ ∞

x

zβ dF (z), x ≥ 0,

where μβ is the βth moment of F

Laplace transform parameter s F̄ (x | s) =
1

φ(s)

∫ ∞

x

e−sz dF (z),

where φ(s) =
∫

e−sx dF (x)

Convolution parameter ν φ(s | ν) = [φ(s)]ν ,

where φ(s) =
∫

e−sx dF (x)

(may require F to be infinitely divisible, depending upon the range of ν)
Age parameter τ F (x | τ ) = F̄ (τ + x)/F (τ )
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so on, mean different things. Consequently, an expression like F̄ (x | 2)
has meaning only in terms of the context where it arises. Note that in
some cases, the definition is stated most simply in terms of F , in some
cases it is most easily stated in terms of F̄ , and in other cases there is
no difference in simplicity.

b. Comments About Notation

There are two ways to view the semiparametric families discussed in
this chapter. As described above, such a family has two parameters, a
real-valued parameter, say θ, and a distribution-valued parameter, say
F . Then a member of the family might be denoted as H(· | θ, F ).

When survival functions are more convenient to work with than dis-
tribution functions, the survival function can serve as the parameter in
place of the distribution function. Then, a member of the family of sur-
vival functions and the underlying survival function might be denoted
as H̄(· | θ, F̄ ). For example, it might be that H̄(· | θ, F̄ ) = [F̄ (·)]θ.

From another point of view, H(· | θ, F ) is the result of adding a
parameter to the underlying distribution F to generate from F a para-
metric family. As in Table A.1, a member of this parametric family
may also be naturally denoted by Fθ or by F (· | θ) as an alternative to
H̄(· | θ, F̄ ). Then, F (· | θ) can be distinguished from F (·) by carrying in
some way the label θ. These notations carry over to other functions such
as survival functions, densities, hazard rates, and Laplace transforms.

In this book, notation of the form F (· | θ) = H(· | θ, F ) is used for
many different kinds of parameters θ including location, scale, and all
of the other kinds of parameters that appear in Table A.1. The notation
F (· | θ) alone does not imply anything about the structure of the para-
metric family. However, as much as possible, a distinctive letter in place
of the generic θ is given to each kind of parameter that appears in Table
A.1 and is further discussed in this chapter. The notation is intended
to indicate the type of family.

c. Criteria for Semiparametric Families

The semiparametric families discussed in this book have two important
properties imposed as minimal criteria for judging a family worthy of
study.

A.1. Example (Scale parameters). Suppose that H̄(x | θ, F̄ ) =
F̄ (θx), θ > 0, and take the underlying distribution to have the sur-
vival function F̄ (x) = e−x, x ≥ 0. Then, H̄(x | θ, F̄ ) = e−θx. Because
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H̄(· | 1, F̄ ) = F̄ (·), the underlying distribution is a member of the
parametric family.

Criterion 1. The underlying distribution is a member of the paramet-
ric family. That is, for some value θ∗ of the parameter θ,

H̄(· | θ∗, F̄ ) = F̄ (·).

This means that the semiparametric families include all distributions
(or in some cases, only all life distributions) unless the distribution
function-valued parameter is restricted.

A.1.a. Continuation of Example A.1. As noted above, if
H̄(x | θ, F̄ ) = F̄ (θx) and F̄ (x) = e−x, it follows that F̄ (x | θ) = e−θx,
x ≥ 0, θ > 0. If a member F̄ (x) = e−ρx of this family is taken as
the underlying survival function and the same semiparametric fam-
ily H̄(x | θ, F̄ ) = F̄ (θx) is used, the result is H̄(x | θ, F̄ ) = e−θρx. This
family is indexed by θρ, but reapplication of the construction has not
enlarged the family.

Criterion 2. Suppose that the semiparametric family is used to add
a parameter to an underlying distribution F , yielding the family of
survival functions of the form H̄(· | θ, F̄ ). Now suppose that the same
semiparametric family is used with H̄(· | ρ, F̄ ) in place of F̄ as the
underlying survival function. This reuse of the same semiparametric
family may reparameterize the family, but it should fail to again add a
new parameter. That is, the result of reusing the semiparametric family
yields survival functions of the form H̄(· | θ, F̄ ) but with θ replaced by
some function h of ρ and θ. The notation becomes cumbersome, but
symbolically, this criterion can be written as

H̄(· | θ, H̄(· | ρ, F̄ )) = H̄(· |h(ρ, θ), F̄ )

for some function h. This is a kind of stability property discussed fur-
ther, particularly in Section M and in Chapter 19.

B. Location Parameters

a. Definition and Basic Properties

B.1. Definition. Suppose that F (· | b) is defined in terms of the dis-
tribution function F by the formula

F (x | b) = F (x− b). (1)
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Then b is called a location parameter and {F (· | b)} is a location param-
eter family with underlying distribution F .

Clearly, F (· | 0) = F (·).
B.2. Proposition. A parametric family {F (· | b)} is a location param-
eter family if and only if

F (x | b) = F (x− b | 0) for all x and all b. (2)

B.3. Observation. If F has a density f and hazard rate r, then F (· | b)
has the density f(· | b) given by

f(x | b) = f(x− b) (3a)

and hazard rate r(· | b) given by

r(x | b) = r(x− b). (3b)

B.4. Observation. If the random variable X has the distribution F ,
and Y = X + b, then F (· | b) given by (1) is the distribution function
of Y . Thus, increasing the parameter b by an amount, say Δb, shifts
all probability in the underlying distribution to the right by an amount
Δb.

For many random variables, location parameters are of considerable
importance, and are often taken to be the expected value; the normal
distribution is a prime example. But if there is a known smallest pos-
sible value for a random variable, that smallest value is the natural
point from which to measure the random variable; thus, the smallest
value becomes the origin, and it is the origin that serves to locate the
distribution. For such nonnegative random variables, the introduction
of another location parameter may be inappropriate. This is the reason
why none of the parametric families introduced in Section 1.F has a
location parameter.

In relatively rare applications, an unknown smallest value of a ran-
dom variable exists; then the introduction of a location parameter may
be necessary. Such parameters act to replace the origin as a starting
point for the support by a new origin b, and the nonnegativity of the
random variable can be lost if b < 0. The parameter b is often estimated
by the smallest observation; this maximum likelihood estimator is pos-
itively biased and not very good for predicting future observations.
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There is no doubt that the addition of a location parameter in-
creases flexibility for fitting data. But there is a disturbing aspect of
the process: In cases where a rationale is used to derive a distribution,
the introduction of a location parameter may not be consistent with
the rationale. For example, the lack of memory property

F̄ (x + t)
F̄ (t)

= F̄ (x), x, t ≥ 0 (4)

characterizes the exponential distribution (Chapter 8); it is a funda-
mental property that forms the basis for understanding the exponen-
tial distribution, and is often used to justify an assumption of expo-
nentiality. But this property characterizes the exponential distribution
without a location parameter; once a location parameter is introduced,
the lack of memory property is lost. So the procedure of adding a lo-
cation parameter may be useful for fitting data, but not always helpful
in understanding underlying structures.

Location parameters are sometimes introduced in the exponential,
gamma, Weibull, and lognormal families to yield what are often called
“two-parameter” exponential, or “three-parameter” gamma, Weibull,
and lognormal distributions; sometimes, the location parameter is re-
quired to be positive so as to yield a life distribution. In all of these
examples, the case b = 0 gives the usual form of the density.

The exponential distribution with location parameter is encountered
in Proposition 18.B.15 as the solution to a functional equation. The
physical meaning of this functional equation is not readily apparent,
but arises as a condition for coincidence of two semiparametric families.

b. Location Parameter Examples

B.5. Two-parameter exponential distribution. The “two-
parameter exponential distribution” has density

f(x |λ, b) = λ e−λ(x−b), x ≥ b, λ > 0. (5)

As noted above, this density possesses the lack of memory property (4)
only when b = 0.

B.6. Three-parameter gamma distribution. The term “three-
parameter gamma distribution” most often is used to mean the
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distribution with density

f(x |β, λ, b) = λβ(x− b)β−1 e−λ(x−b)/Γ(β), x ≥ b, λ, β > 0. (6)

B.7. Three-parameter Weibull density. Here the density and sur-
vival functions are given by

f(x |α, λ, b) = αλ[λ(x− b)]α−1 exp {−[λ(x− b)]α},
x ≥ b, α, λ > 0, (7)

F̄ (x, λ, b) = exp {−[λ(x− b)]α}, x ≥ b. (8)

B.8. Three-parameter lognormal distribution. The density of
this distribution is readily obtained from 1.F(12a), and is given by

f(x |μ, σ, b) =
1√

2π σ(x− b)
exp{−[log(x− b) − μ]2/2σ2},

x > b, σ > 0. (9)

Other forms of this density can also be written directly from 1.F(12b)
or 1.F(12c).

c. Inverse Distribution and Total Time on Test Transform
for Location Parameter Families

If Fb(x) = F (x− b), x ≥ b then

F−1
b (p) = F−1(p) + b, 0 ≤ p ≤ 1. (10)

The total time on test transform is given by

ψFb
(p) =

∫ F
−1(p)+b

0
F̄ (x− b) dx =

∫ F−1(p)

−b
F̄ (x) dx = ψF (p) + b. (11)

From Observation B.4, and the fact that the total time on test trans-
form is a limit of total time on test statistics (Proposition 1.I.4), equa-
tion (11) is to be expected.
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d. Ordering Location Parameter Families

It is clear from Observation B.4 that if b1 ≤ b2, then F (· | b1) ≤st
F (· | b2); that is, in the usual stochastic ordering, location families are
increasing in the location parameter.

Orders stronger than stochastic order require conditions on the un-
derlying distribution F .

B.9. Proposition. Suppose that F has a density f . In the hazard rate
ordering, the family {F (x | b)} is increasing (decreasing) in b if and only
if the hazard rate of F is decreasing (increasing). The family {F (x | b)}
is increasing (decreasing) in the likelihood ratio order if and only if the
density is log convex (log concave).

Proof. These results can be obtained using Observation B.3. �

It can be seen from the linearity in (10) that all distributions in a
location parameter family are equal in the convex transform order of
Definition 2.C.7. This is to be expected for an ordering that reflects the
shape of a distribution.

C. Scale Parameters

a. Definition and Basic Properties

For distributions of nonnegative random variables, the most natural
and important parameter is a scale parameter ; such parameters are es-
sential if there is to be freedom in choosing the scale of measurement
of the underlying random variable. That is, the flexibility to measure
survival times in months, years, or in other time scales requires the
presence of a scale parameter. Most of the parametric families of prac-
tical importance have a scale parameter.

In this book, the term “scale parameter” is used in the sense of
the following definition to avoid confusion with the reciprocal of the
parameter, which is also called a “scale parameter”.

C.1. Definition. Suppose that F (· |λ) is defined in terms of the dis-
tribution function F by the formula

F (x |λ) = F (λx), λ > 0. (1)

Then, λ is called a scale parameter and {F (· |λ), λ > 0} is a scale pa-
rameter family with underlying distribution F .

Clearly, F (· | 1) = F (·).
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The alternative definition. According to Definition C.1, λ is a scale
parameter if the distribution F depends upon λ and x only through
their product λx. This definition is common and convenient in disci-
plines such as reliability theory and survival analysis where the expo-
nential distribution plays a prominent or even dominant role. See, e.g.,
Barlow and Proschan (1975, p. 73), Kalbfleisch and Prentice (2002,
p. 31). But it is also common and correct to call 1/λ a scale parameter.
This is especially natural in parts of statistical theory where the normal
distribution plays the central role, in which case the alternative defini-
tion is necessary to make the standard deviation σ a scale parameter.
When 1/λ is regarded as a scale parameter, the distribution F depends
upon λ and x only through their ratio x/λ. This book is focused on
distributions of nonnegative random variables, and Definition C.1 has
been adopted because it simplifies many statements and notation. For
a further comment, see Definition 20.C.3.

C.2. Proposition. A parametric family {F (· |λ), λ > 0} is a scale pa-
rameter family if and only if

F (x |λ) = F (λx | 1) for all x and all λ > 0. (2)

C.3. Proposition. If F has a density f and hazard rate r, then for
λ > 0, F (· |λ) has the density f(· |λ) given by

f(x |λ) = λf(λx) (3a)

and hazard rate r(· |λ) given by

r(x |λ) = λ r(λx). (3b)

As semiparametric families, families of the form (1) are sometimes
termed “accelerated life” models because in the application to life
lengths, the scale parameter acts to control the rate at which time
passes. Such models are discussed in Chapter 16.

C.4. Observation. If the random variable X has the distribution F ,
and Y = X/λ, where λ > 0, then F (· |λ) given by (1) is the distribution
function of Y .

b. Inverse Distribution and Total Time on Test Transform
for Scale Parameter Families

Here it is convenient to use the notation Fλ(x) in place of F (x |λ), x ≥
0. Because Fλ(x) = F (λx), it is clear that F1(x) = F (x). In this
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case,

F−1
λ (p) = [F−1(p)]/λ, 0 ≤ p ≤ 1. (4)

From (4), it follows that the total time on test transform for a scale
parameter family is

ψFλ
(p) =

∫ [F−1(p)]/λ

0
F̄ (λu) du =

∫ F−1(p)

0
F̄ (z)

dz

λ
=

ψF (p)
λ

. (5)

c. Ordering Scale Parameter Families

Scale parameters clearly affect magnitude, and as such, it is to be ex-
pected that distributions are ordered in a scale parameter according to
one of the magnitude orders of Section 2.A.

C.5. Observation. For any fixed life distribution F, F̄ (x |λ) is de-
creasing in λ; that is, in the usual stochastic ordering, scale families
are decreasing in the scale parameter.

Stronger orderings depend upon properties of F . Propositions C.6
and C.8 are cases where the cautionary note 1.B.2.c applies. There, the
nonuniqueness of densities is discussed.

C.6. Proposition. Suppose that F has hazard rate r. In the hazard
rate ordering, the family {F (x |λ)} is decreasing in λ if and only if
xr(x) is increasing in x > 0.

Proof. This result follows directly from (3b). �

Proposition C.6 is essentially a restatement of Example 2.A.6. When
derivatives exist, the condition that xr(x) is increasing in x > 0 can
be written in the form xr′(x) + r(x) ≥ 0. From this, it is clear that r
increasing is a sufficient but not necessary condition for xr(x) to be
increasing.

C.6.a. Proposition (Ma, 1999). In the hazard rate order, the family
{F (x |λ)} is decreasing in λ if and only if log F̄ (ex) is concave.

Unlike Proposition C.6, Ma’s result does not require the existence
of a density. In case a density does exist, the condition that xr(x) is
increasing in x > 0 is equivalent to the condition that log F̄ (ex) has a
decreasing derivative.

C.7. Example. The survival function F̄ (x) = 1/(1 + λx), x > 0, is
a special form of the Pareto survival function 11.B(1); it has the
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decreasing hazard rate r(x) = λ/(1 + λx), x > 0, but xr(x) is increas-
ing in x > 0.

C.8. Proposition. Suppose that F has the density f . In the likelihood
ratio ordering, the family {F (x |λ)} is decreasing in λ if and only if
f(x)/f(x/a) is decreasing in x > 0 for all a > 1.

Proof. This result can be obtained by directly verifying the condition
2.A(11). �

C.8.a. Proposition (Hu, Nanda, Xie and Zhu, 2004). Suppose that
F has the density f . In the likelihood ratio ordering, the family
{F (x |λ)} is decreasing in λ if and only if log f(ex) is concave.

Proof. With the assumption that f is differentiable, it can be seen that
the derivative of f(ex) is decreasing in x ∈ (−∞,∞) if and only if f
satisfies the condition f(y)/f(y/a) is decreasing in y > 0 of Proposition
C.8. Alternatively, the result can be obtained by using Example 19.B.7
and Proposition 2.A.11. �

Because the likelihood ratio order implies the hazard rate order,
it must be that the condition of Proposition C.8.a that log f(ex) is
concave implies the condition of Proposition C.6.a that log F̄ (ex) is
concave. A direct proof of this implication can be obtained with a
slight modification of the proof of Proposition 21.B.8. First note that
log f(ex) is concave if and only if log exf(ex) is concave. According
to Proposition 21.B.8, this is equivalent to the total positivity of order
2 in x and y of the function log ey−xf(ey−x). Let K be the indicator
function defined in 21.B(4), and compute that

∫ ∞

−∞
ey−xf(ey−x)K(x, z) dy =

∫ z

−∞
ey−xf(ey−x) dy = F̄ (ex−z).

But again by 21.B.8, this is equivalent to the log concavity of F̄ (ex).

d. Order Preservation with Introduction of a Scale Parameter

Suppose that F ≤∗ G, where ≤∗ is any one of the following orders:
stochastic order, hazard rate order, likelihood ratio order, convex or-
der, dispersive order, Lorenz order, convex transform order, star order,
or superadditive order (defined and discussed in Chapter 2). Then,
in the same order, the distributions F (· |λ) and G(· |λ) obtained
from F and G by the introduction of a scale parameter λ satisfy
F (· |λ) ≤∗ G(· |λ), for all λ > 0. These facts can be regarded both as a
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property of scale parameters and as essential properties of the various
orders.

The proofs of these results consist of direct verifications of the defi-
nitions, and are omitted. For the last three orders listed (convex trans-
form, star, and superadditive), formula (4) is required.

D. Power Parameters

Power parameter families are easily defined, but some motivation and
understanding of their function can be gleaned from their appearance
with logarithmic transformations.

a. Parameter Relationships Under Logarithmic Transformations

Consider for a moment the case of a distribution such as the normal
distribution, which has support (−∞,∞). For such distributions, lo-
cation and scale are quite natural parameters and are nearly always
introduced. Thus, starting with a distribution function F having sup-
port (−∞,∞), the relationship F (x |μ, α) = F (α(x− μ)),−∞ < x <
∞, defines a semiparametric family with a real location parameter μ
and positive scale parameter α. Now, let X be a random variable with
the distribution F (· |μ, α), and let Y = eX so that Y has support [0,∞).
With the notation μ = − log λ, it follows that

P{Y ≤ y} = F (α(log y − μ)) = F (log (λy)α).

Note that under the log transform, the location parameter μ is re-
placed by a scale parameter λ, and the scale parameter α has be-
come what is here called a “power parameter.” Because of this change,
it is not surprising to find that scale and power parameters are of-
ten encountered in families of distributions for nonnegative random
variables.

Logarithmic transformations are discussed further in Chapter 12.

b. Definitions and Basic Properties

D.1. Definition. Let F be a distribution function such that F (0−) =
0. Suppose that F (· |α) is defined in terms of F by the formula

F (x |α) = F (xα), α > 0. (1)
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Then, α is called a power parameter and {F (· |α), α > 0} is a power
parameter family with underlying distribution F .

Clearly, for a power parameter family, F (· | 1) = F (·).
The family of Weibull distributions is the prime example of a power

parameter family. For this example, the underlying distribution is an
exponential distribution.

D.2. Proposition. A parametric family {F (· |α), α > 0} is a power
parameter family if and only if

F (x |α) = F (xα | 1) for all x and all α > 0. (2)

D.3. Proposition. If F has a density f and hazard rate r, then for
α > 0, F (· |α) has the density

f(x |α) = αxα−1f(xa) (3)

and hazard rate

r(x |α) = αxα−1r(xα). (4)

D.4. Observation. If the nonnegative random variable X has the dis-
tribution F , and Y = X1/α, where α > 0, then F (· |α) given by (1) is
the distribution function of Y .

It is possible to introduce power parameters without the condition
that X is nonnegative; this can be done by letting Y = X1/α, when X ≥
0, and letting Y = − |X | 1/α, when X < 0. However, this possibility is
not pursued in this book, which is devoted primarily to distributions
of nonnegative random variables.

c. Inverse Distribution and Total Time on Test Transform
for Power Parameter Families

If F (x |α) = F (xα), x ≥ 0, then

F−1
α (p) = [F−1(p)]1/α, 0 ≤ p ≤ 1. (5)

From (5) and Definition 1.I.2, it follows that

ψFα
(p) =

∫ [F−1(p)]1/α

0
F̄ (uα) du =

∫ F−1(p)

0
F̄ (z)

1
α
z(1/α)−1 dz. (6)
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d. Ordering Power Parameter Families

D.5. Proposition. Suppose that F (x |α) = F (xα). If X has distribu-
tion F (· |α) and Y has distribution F (· |β) = F (xβ), where α < β, then
X is greater than Y in the convex transform order.

Proof. The proof is a straightforward verification of the condition of
the definition. With the aid of (5) and the notation F (· |α) = Fα(·),
compute that F̄−1

α F̄β(x) = xβ/α. But this is convex because α < β. �

Proposition D.5 shows that a power parameter is indeed appropri-
ately called a “shape parameter,” as defined in Chapter 3.

The random variables X and Y of Proposition D.5 are not stochas-
tically ordered because Xβ/α has the same distribution as Y and
xβ/α > x when x > 1, xβ/α < x when x < 1. Consequently, the tail
probabilities of X and Y are not ordered.

e. Order Preservation with Introduction of a Power Parameter

Suppose that in some ordering, F is less than G. For what orderings
is it true that Fα is less than Gα for all values or some values of the
power parameter α?

D.6. Proposition.
(i) Stochastic order: If F ≤st G, then Fα ≤st Gα.
(ii) Hazard rate order: If F ≤hr G and α ≥ 1, then Fα ≤hr Gα.
(iii) Convex transform order: If F ≤c G and 0 < α ≤ 1, then Fα ≤c Gα.
(iv) Star order: If F ≤∗ G, then Fα ≤∗ Gα.

Proof. The implication (i) is an immediate consequence of the definition
of Fα, and (ii) follows directly from (4). The proofs of (iii) and (iv)
make use of (5); these results follow from Propositions 21.A.15 and
21.A.16. �

f. Properties Preserved with The Introduction
of a Power Parameter

Again, suppose that X has distribution F , and Y = X1/α, where α > 0.
What properties of F are inherited by the distribution F (· |α) of Y ?
At least in part, the answer to this question depends upon α. For the
abbreviations used below, see Section 4.B.

D.7. Proposition. If X is IHR and α ≥ 1, then Y is IHR; if X is
DHR and 0 < α ≤ 1, then Y is DHR.
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Proof. Suppose first that X is IHR, i.e., − log F̄ is convex (and increas-
ing) and α ≥ 1. Because an increasing convex function of a convex
function is convex (see Proposition 21.A.5), − log F̄ (xα) is a convex
function of x. But this is the condition that the survival function of Y
is log concave, i.e., Y is IHR. The proof of the DHR case is similar,
with concavity replacing convexity. �

In the context of the Weibull distribution, the above-mentioned
proposition is well known. For the Weibull distribution, X has an ex-
ponential distribution, which is both IHR and DHR; so the hazard rate
of the Weibull distribution is increasing for α ≥ 1 and decreasing for
0 < α ≤ 1.

Note. The fact that the introduction of a power parameter does not
preserve hazard rate monotonicity is important for its utility in gener-
ating new hazard rate shapes.

D.8. Proposition. If X is IHRA and α ≥ 1, then Y = X1/α is IHRA;
if X is DHRA and 0 < α ≤ 1, then Y is DHRA.

Proof. This result follows immediately from the fact that

[logF (x |α)]/x = xα−1[logF (xα)]/xα. �

D.9. Proposition. If X is NBU and α ≥ 1, then Y = X1/α is NBU;
if X is NWU and α ≤ 1, then Y is NWU.

Proof. According to a very special case of Minkowski’s inequality,

(x + t)α ≥ xα + tα for x, t ≥ 0 and α ≥ 1; (7)

this result can also be obtained from the fact that xα is a convex func-
tion of x, for α ≥ 1, and according to Proposition 19.A.11, this implies
that xα is superadditive. More directly, (7) can be obtained from the
fact that (

∑
ari )

1/r is decreasing in r > 0; see Hardy, Littlewood and
Pólya (1952, p. 28).

First because F̄ is decreasing and then because of (7), it follows that
if X is NBU and α ≥ 1, then F̄ ((x + t)α) ≤ F̄ (xα + tα) ≤ F̄ (xα)F̄ (tα).
This proves the result for the NBU case and the proof for the NWU
case is similar, but uses the fact that the inequality (7) is reversed for
α ≤ 1. �
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g. Scale Mixtures of Distributions with a Power Parameter

D.10. Proposition. If F and G have increasing hazard rates and α ≥
1, the mixture

H̄(x) =
∫ ∞

0
F̄ (xα/θα−1) dG(θ)

has an increasing hazard rate.

Proof. This result is an application of Proposition 4.C.8.b. To apply this
proposition, it is necessary to show that the function log F̄ (xα/θα−1)
is concave. According to Example 21.A.3.a, xα/θα−1 is convex in the
pair x, θ when both variables are positive and α ≥ 1. An application
of Proposition 21.A.6 yields the desired conclusion, because − log F̄ is
convex by virtue of F having an increasing hazard rate. �

Block, Li and Savits (2003a) offer as examples three special cases of
Proposition D.10. They note that the conclusion applies when F is

(i) a Weibull distribution, in which case F̄ (x) = exp (−xα/θα−1);
(ii) a Gompertz distribution with power parameter (Section 10.C.d),
in which case

F̄ (x) = exp {−ξ[exp (xα/θα−1) − 1]};

(iii) a generalized gamma distribution (Section 9.E), in which case the
density is

f(x) =
αxαβ−1

Γ(β)θ(α−1)β exp
(
− xα

θα−1

)
.

E. Frailty and Resilience Parameters: Proportional
Hazards and Reverse Hazards

a. Background and Definitions

Just as linear transformations of random variables lead to the intro-
duction of location and scale parameters, linear transformations of a
hazard rate can also introduce parameters.

With ξ > 0 and b > 0, it is possible to replace a hazard rate r by
ξr + b and thereby introduce the parameters ξ and b. For the family
of exponential distributions, this procedure yields nothing new, since
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in this case the hazard rate r is constant. But the procedure may be
useful in some contexts; with ξ = 1, it gives rise to the Makeham gener-
alization of the Gompertz distribution discussed in Section 10.B. Nev-
ertheless, we do not consider b to be a fundamental parameter for the
following reason. If X is a random variable with hazard rate r, if Y has
an exponential distribution with hazard rate b, and if X and Y are in-
dependent, then Z = min (X,Y ) is a random variable with hazard rate
r + b. Generalizations of this kind, where hazard rates have natural ex-
pressions as sums of other hazard rates, are discussed in Section 15.G.

With b = 0, the hazard rate ξr + b becomes simply ξr. If r is the
hazard rate of the distribution F , then for all ξ > 0, ξr is also a hazard
rate, and the corresponding survival function is F̄ (· | ξ) = [F̄ (·)]ξ.
E.1. Definition. Let F be a distribution function with hazard func-
tion R = − log F̄ . Suppose that F (· | ξ) is defined in terms of F by the
formula

F̄ (x | ξ) = [F̄ (x)]ξ = e−ξR(x), ξ > 0. (1)

Then, ξ is called a frailty parameter and {F (· | ξ), ξ > 0} is a frailty
parameter family, or alternatively, a proportional hazards family, with
underlying distribution F .

Clearly, for a proportional hazards family, F (· | 1) = F (·).
E.2. Proposition. A parametric family {F (· | ξ), ξ > 0} is a frailty pa-
rameter family if and only if

F̄ (x | ξ) = [F̄ (x | 1)]ξ for all x and all ξ > 0. (2)

As noted above, for a proportional hazards family, the hazard rates
are also proportional. These survival functions are powers of the sur-
vival function F with hazard rate r. Models in which ξ is regarded as a
random variable are much used in survival analysis and are often called
“Cox models” or “frailty models” in the literature of medical survival
analysis, e.g., Vaupel, Manton, and Stallard (1979), Hougard (1984),
or Oakes (1989). This is the reason for calling ξ a “frailty parameter.”
See Section 16.B.b, and in particular, 16.B.5.

When ξ is an integer, (1) has an interpretation familiar in reliability
theory; it is the survival function of a series system of ξ independent
components each with survival function F̄ (see Figure 5.A.1). Of course,
series systems like this become more vulnerable to failure as the number
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of components increases, so the term “frailty” is appropriate from this
point of view.

E.3. Proposition. If F has a density f and hazard rate r, then for
ξ > 0, F (· | ξ) has the density f(· | ξ) given by

f(x | ξ) = ξf(x)[F̄ (x)]ξ−1, (3a)

and hazard rate r(· | ξ) given by

r(x | ξ) = ξr(x). (3b)

For exponential and Weibull distributions, introducing powers of
the survival function does not introduce a new parameter because these
families are already proportional hazards families. But for a number of
other families a new parameter is introduced.

There is a parallel semiparametric family obtained by raising not
the survival function but the distribution function to a power to obtain
the distribution function F (· | η) = [F (·)]η.
E.4. Definition. Suppose that F (· | η) is defined in terms of the dis-
tribution function F by the formula

F (x | η) = [F (x)]η, η > 0. (4)

Then, η is called a resilience parameter and {F (· | η), η > 0} is a re-
silience parameter family or alternatively, a proportional reverse haz-
ards family, with underlying distribution F .

For a resilience parameter family, F (· | 1) = F (·).
E.5. Proposition. A parametric family {F (· | η), η > 0} is a resilience
parameter family if and only if

F (x | η) = [F (x | 1)]η, for all x and all η > 0. (5)

In the literature, resilience parameters have received less attention
than have frailty parameters just as reverse hazard functions have re-
ceived less attention than hazard functions.

When η is an integer, the distribution function (4) is the distri-
bution function of a parallel system with η independent components
all having the survival function F̄ (see Figure 5.A.2). Because of their
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redundancy, parallel systems become less prone to failure as the num-
ber of components increases, and hence the term “resilience.”

E.6. Proposition. If the underlying distribution F has a density f
and hazard rate r, then for η > 0, F (· | η) has the density f(· | η) given
by

f(x | η) = η[F (x)]η−1f(x), (6a)

hazard rate r(· | η) given by

r(x | η) =
η[F (x)]η−1f(x)

1 − [F (x)]η
, (6b)

and reverse hazard rate s(· | η) given by

s(x | η) = ηs(x). (6c)

Of course, (6c) is the reason for calling {F (· | ξ), ξ > 0} a propor-
tional reverse hazards family.

Because of Proposition 4.E.2, it is also useful to record that when
f is differentiable,

ρ(x | η) = −f ′(x | η)
f(x | η) = −(η − 1)

f(x)
F (x)

− f ′(x)
f(x)

. (7)

Resilience and frailty parameter families have the stability property
Criterion 2 of Section A; once a resilience or frailty parameter has been
introduced, the reintroduction of the same kind of parameter does not
expand the family.

For those with ideas from reliability theory in mind, seeing both se-
ries and parallel systems arise will suggest consideration of the so-called
“k-out-of-n” systems (see Section 5.A). Parametric families related to
such systems can be generated, but they do not have the stability prop-
erty unless k = 1 or k = n.

b. Duality of Frailty and Resilience

Note the parallelism between (3b) and (6c). To see the duality of frailty
and resilience in another way, note that the survival function defined



SVNY289-Olkin April 13, 2007 11:56

236 7. Semiparametric Families

in (1) can be written in the form

[F̄ (·)]ξ = H(F̄ (·) | ξ), where H(z | ξ) = zξ, 0 ≤ z ≤ 1. (8)

Note that H is a distribution function with support [0, 1]. In Chapter
14, the dual of such a distribution function H is defined as

HD(z) = 1 −H(1 − z), 0 ≤ z ≤ 1. (9)

This distribution is called the “dual” of H because the dual of HD is
H; that is, (HD)D = H. If H is replaced by HD in (8), the equation

HD(F (·) | ξ) = 1 − [1 − F (·)]ξ = 1 − [F̄ (·)]ξ (10)

is obtained. This replacement has caused the parameter to become a
resilience parameter; to conform to notation previously introduced, ξ
needs to be relabeled as η.

Frailty and resilience are also dual in the following sense. Suppose
that X is a random variable with distribution in the frailty family (1),
so that for some ξ > 0,

P{X > x} = [F̄ (x)]ξ, x > 0.

Then, Y = 1/X has the distribution function

P{Y ≤ y} = [F̄ (1/y)]ξ, y > 0.

Thus, the parameter that had been a frailty parameter is transformed to
a resilience parameter. Of course, if X has a distribution with resilience
parameter, then Y has a distribution with frailty parameter.

Furthermore, frailty and resilience are also dual in still another
sense. If ξ and η are integers, then [F̄ (·)]ξ is the survival function
of a series system with independent components all having the dis-
tribution F , and [F (·)]η is the distribution of a parallel system with
independent components all having the distribution F . As noted in
Section 5.A.a, series and parallel systems are, as coherent structures,
dual.
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c. Product Families

Families of the form F (· | ξ) = [F̄ (·)]ξ or F (· | η) = [F (·)]η belong to
slightly more general classes of families.

E.7. Definition. Let F = {F (· | θ) : θ ∈ A} be an indexed family of
distributions with index set A satisfying

α ∈ A, β ∈ A ⇒ α + β ∈ A. (11)

F is said to be a survival product family if

F̄ (· |α)F̄ (· |β) = F̄ (· |α + β), α, β ∈ A; (12)

F is said to be a distribution product family if

F (· |α)F (· |β) = F (· |α + β), α, β ∈ A. (13)

In the following, only survival product families are discussed, but
parallel results can be obtained for distribution product families.

E.8. Lemma. A survival product family of distributions indexed by
A = (0,∞) must be a proportional hazards family, i.e., the index ξ is a
frailty parameter and (2) holds.

Proof. Fix x and let ψ(ξ) = F̄ (x | ξ). From (12), it follows that

ψ(α + β) = ψ(α)ψ(β), α, β > 0.

Because ψ is bounded, it follows from Proposition 22.A.2 that this func-
tional equation has, for some real number γ, the solution ψ(α) = e−γα,
i.e., ψ(α) = [ψ(1)]α. But this is the family F̄ (x | ξ) = [F̄ (x | 1)]ξ. �

E.9. Proposition. Let F̄ (· | θ), θ ∈ A ⊂ (0,∞) be a parametric fam-
ily of distribution functions and suppose that if X and Y are random
variables with distributions in the family, then min (X,Y ) has a dis-
tribution in the family. Then, the parameter set A can be extended to
become (0,∞) and the family is a proportional hazards family, i.e., θ
is a frailty parameter.

Proof. This proposition is essentially a restatement of Lemma E.8. That
min (X,Y ) must have a distribution in the family means that the family
is a survival product family. �
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A similar result has been given by Castillo and Ruiz-Cobo (1992,
p. 132), but they treat the analogous case of closure under maximums.

d. Frailty and Resilience in Consort

A survival function F̄ ξ with an integer-valued frailty parameter ξ is
the survival function of the smallest observation in a random sample
of size ξ; similarly, the distribution F η is the distribution of the largest
observation in a random sample of size η. In general, the kth order
statistic can be considered in place of the largest or smallest observa-
tion. In a sample of size n from a distribution with density f , the kth
order statistic has the density

fk,n(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1f(x)[F̄ (x)]n−k

=
[F (x)]k−1[F̄ (x)]n−k

B(k, n− k + 1)
f(x), (14)

where B is the beta function defined in Section 23.B. For a discussion
of order statistics, see, for example, Balakrishnan and Cohen (1991);
David and Nagaraja (2003).

The density can be extended to noninteger n and k using a technique
that Ahuja and Nash (1967) use in interesting special cases. Let g be
the beta density of 14.C(1) with parameters η and ξ, i.e.,

g(u | η, ξ) =
uη−1(1 − u)ξ−1

B(η, ξ)
, 0 ≤ u ≤ 1, η, ξ > 0. (15)

With the change of variables u = F (x), (15) becomes

f(x | η, ξ) =
[F (x)]η−1[F̄ (x)]ξ−1

B(η, ξ)
f(x), η, ξ > 0. (16)

Note that (16) is the same as (14) when η = k, ξ = n− k + 1.
When η = 1, (16) becomes the density f with frailty parameter ξ,

and when ξ = 1, it is the density f with a resilience parameter η. So
in a sense, the ideas of both frailty and resilience are embodied in the
density (16). However, except in the special cases η = 1 or ξ = 1, the
parameters are not actually frailty or resilience parameters.
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e. Inverse Distributions and Total Time on Test Transforms

With the notation F̄ξ(x) = [F̄ (x)]ξ, x ≥ 0,

F̄−1
ξ (p) = F̄−1(p1/ξ),

F−1
ξ (1 − p) = F−1(1 − p1/ξ), 0 ≤ p ≤ 1. (17)

Similarly, if Fη(x) = [F (x)]η, x ≥ 0, then

F−1
η (p) = F−1(p1/η), 0 ≤ p ≤ 1. (18)

For these families, there is no significant simplification of the total time
on test transform.

f. Ordering Proportional Hazards Families

Because members of a proportional hazards family have the form
F̄ (x | ξ) = [F̄ (x)]ξ, they are clearly ordered (decreasing in their param-
eters) according to the usual stochastic order; this means that frailty
parameters relate to magnitude. Similarly, powers of the distribution
function are decreasing in the power, so in the usual stochastic order,
the families are increasing in the resilience parameter. But stronger
statements can be made which, unlike the case of a scale parameter
(Proposition C.8), require no assumptions on F .

E.10. Proposition. If F = {F (· | ξ) : ξ > 0} is a proportional hazards
family, then F (· | ξ) is, in the likelihood ratio order, decreasing in ξ. If
F = {F (· | η) : η > 0} is a resilience parameter family, then F (· | η) is,
in the likelihood ratio order, increasing in η.

These results are direct consequences of the definitions, particularly
if densities are assumed to exist.

E.10.a. Example. For the exponential survival function F̄ (x) =
exp{−λx}, x ≥ 0, the parameter λ can be regarded as either a scale
parameter or a frailty parameter. When viewed as a frailty parameter,
it follows from Proposition E.10 that in the likelihood ratio order, the
family is decreasing in λ. This fact is recorded in Section 8.C.d.

g. Order Preservation with Introduction of a
Frailty or Resilience Parameter

Recall that survival functions of frailty families have the form F̄ (x | ξ) =
[F̄ (x)]ξ for some distribution function F , and distribution functions of
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resilience families have the form F (x | η) = [F (x)]η for some distribution
function F .

E.11. Proposition.
(i) Stochastic order: If F ≤st G, then F (· | ξ) ≤st G(· | ξ).
(ii) Hazard rate order: If F ≤hr G, then F (· | ξ) ≤hr G(· | ξ).
(iii) Convex transform order: If F ≤c G, then F (· | ξ) ≤c G(· | ξ).
(iv) Star order: If F ≤∗ G, then F (· | ξ) ≤∗ G(· | ξ).
The same statements hold with the frailty parameter replaced by a
resilience parameter.

Proof. Both (i) and (ii) are readily verified from the definitions. Both
(iii) and (iv) follow from the fact that the quantity G−1F does not
change when the same frailty or resilience parameter is introduced to
both F and G. �

h. Gini Index for Frailty and Resilience Parameter Families

The Gini index is defined in 1.I(12) as

Gini(F ) = μ−1
∫ ∞

0
F (x)F̄ (x) dx.

To compute this for a frailty parameter family, rewrite the Gini index
in the form

Gini(F ) = μ−1
{∫ ∞

0
F̄ (x) dx−

∫ ∞

0
[F̄ (x)]2 dx

}
, (19)

and use 1.C(4) to obtain

Gini(F (· | ξ)) = 1 − μ(2ξ)
μ(ξ)

, (20)

where μ(ξ) is the first moment of the distribution F (· | ξ) with frailty
parameter ξ.

To compute the Gini index for a resilience parameter family, write
the Gini index in the form

Gini(F ) = μ−1
{∫ ∞

0
[1 − (F (x))2] dx−

∫ ∞

0
[1 − F (x)] dx

}
,

but here the integrals are not moments.
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i. Mixing Frailty and Resilience Parameter Families

Suppose first that F̄ (x | ξ) = [F̄ (x)]ξ; let R = − log F̄ be the hazard
function of F and consider the mixture

H̄(x) =
∫ ∞

0
F̄ (x | ξ) dG(ξ) =

∫ ∞

0
[F̄ (x)]ξ dG(ξ) =

∫ ∞

0
e−ξR(x) dG(ξ).

(21)

Because the Laplace transform of G is given by φ(s) =
∫ ∞

0
e−sξ dG(ξ),

it follows that

H̄(x) = φ(R(x)). (22)

This formula is sometimes convenient. With G a gamma distribution,
(22) was obtained by Dubey (1968) who offered several examples in-
cluding Proposition 11.B.1.

When the distribution G has a parameter, say θ, then (22) can be
written in the form

H̄(x | θ) = φθ(R(x)); (23)

with choices of specific Laplace transforms φθ and hazard functions R,
this formula can lead to a variety of semiparametric families. Example
4.C.7.b is a special case of (23), where G is an exponential distribution.
In this case,

H̄(x | θ) =
θ

R(x) + θ
, (24)

where θ is the scale parameter of the exponential distribution. Another
example is given in Section F.c; (23) is examined in more detail in
Section M.b. For more about mixtures of the form (21), see Sections
M.b and M.d.

Next, suppose that F (x | η) = [F (x)]η, so that η is a resilience pa-
rameter. Let S = logF be the reverse hazard function of F . Consider
the mixture

H(x) =
∫ ∞

0
eηS(x) dG(η) =

∫ ∞

0
[F (x)]η dG(η). (25)
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In this case, (22) is replaced by

H(x) = mgf(S(x)) = φ(−(S(x)), (26)

where mgf is the moment generating function of G and φ is its Laplace
transform.

It can be seen from (26) that if G has a convolution parameter
(Section J), then that parameter becomes a resilience parameter for H.

j. A Majorization Result

Reorder the components of the n-dimensional vectors x and y to obtain
x(1) ≤ · · · ≤ x(n), y(1) ≤ · · · ≤ y(n). Write x ≺w y to mean that

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, . . . , n.

This relationship is called weak super majorization by Marshall and
Olkin (1979, p. 10).

E.12. Proposition. Let {F (· | ξ), ξ > 0} be a family of distributions
with frailty parameter ξ. Let U1, . . . , Un be independent random
variables such that Ui has the distribution F (· | ξi), i = 1, . . . , n. Let
V1, . . . , Vn be independent random variables such that Vi has the dis-
tribution F (· | θi), i = 1, . . . , n. If (ξ1, . . . , ξn) ≺w (θ1, . . . , θn), then for
all increasing functions h defined on [0,∞)n,

h(U1, . . . , Un) ≤st h(V1, . . . , Vn).

For a proof of this result, see Marshall and Olkin (1979, p. 368).

F. Tilt Parameters: Proportional Odds Ratios,
Extreme Stable Families

All of the semiparametric families described in previous sections have
been broadly used, and well-known examples are readily found. In this
section, yet another kind of semiparametric family is introduced, a kind
hinted at by Clayton (1974) and discussed by Bennett (1983), Marshall
and Olkin (1997), and Kirmani and Gupta (2001). This semiparametric
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family is not so well known. In contrast to Section E, where propor-
tional hazards are considered, the family discussed in this section is
characterized by having proportional odds ratios.

a. Definitions, Basic Properties, and First Derivation:
Proportional Odds

F.1. Definition. Suppose that F (· | γ) is defined in terms of the un-
derlying distribution F by the formula

F (x | γ)
F̄ (x | γ)

=
1
γ

F (x)
F̄ (x)

, −∞ < x < ∞, γ > 0, (1)

that is,

F̄ (x | γ) =
γF̄ (x)

F (x) + γF̄ (x)
=

γF̄ (x)
1 − γ̄F̄ (x)

, −∞ < x < ∞, γ > 0. (2)

Then, γ is called a tilt parameter and the family {F (· | γ), γ > 0} is said
to be a proportional odds family, a tilt parameter family, or alternatively
an extreme stable family.

Clearly, F (· | 1) = F (·).
F.2. Proposition. If F has a density f and hazard rate r, then for
γ > 0, the distribution F (· | γ) given by (2) has the density f(· | γ) given
by

f(x | γ) =
γf(x)

[1 − γ̄F̄ (x)]2
(3a)

and hazard rate r(· | γ) given by

r(x | γ) =
1

[1 − γ̄ F̄ (x)]
r(x), −∞ < x < ∞, γ > 0. (3b)

Proposition F.2. can be verified by differentiating (2) with respect to x.
It follows from (3b) that

lim
x→−∞

r(x | γ) = lim
x→−∞

r(x)/γ
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and

lim
x→∞

r(x | γ) = lim
x→∞

r(x).

Note that when F (0) = 0, the hazard rate r(0 | γ) at the origin
behaves quite differently than it does for the families of gamma and
Weibull distributions, introduced in Sections 1.F.b and 1.F.c; for both
these families, either the distribution is an exponential distribution, or
r(0) = 0, or r(0) = ∞ (see 9.A(12) and 9.B(3)), so that r(0) is discon-
tinuous in the shape parameter.

It follows from (3b) that

r(x)/γ ≤ r(x | γ) ≤ r(x), −∞ < x < ∞, γ ≥ 1, (4a)

r(x) ≤ r(x | γ) ≤ r(x)/γ, −∞ < x < ∞, 0 < γ ≤ 1. (4b)

These inequalities indicate that the hazard rate for the proportional
odds family is shifted below (γ ≥ 1) or above (0 < γ ≤ 1) the hazard
rate of the underlying distribution by a limited amount; they form the
basis for calling γ a “tilt parameter.”

Using (4a) and (4b) with 1.B(3) yields

F̄ (x) ≤ F̄ (x | γ) ≤ [F̄ (x)]1/γ , −∞ < x < ∞, γ ≥ 1, (5a)

[F̄ (x)]1/γ ≤ F̄ (x | γ) ≤ F̄ (x), −∞ < x < ∞, 0 < γ ≤ 1. (5b)

Proportional odds ratios were studied by McCullagh (1980) primar-
ily with ordinal data in mind. The idea was developed by Bennett
(1983) for survival data, and further studied by Kirmani and Gupta
(2001).

As noted by Bennett (1983), comparison with proportional hazards
discussed in Section D is appropriate. Note from (3b) that

r(x | γ)
r(x)

=
1

[1 − γ̄F̄ (x)]
(6)

is increasing in x, for γ ≥ 1, and decreasing in x, for 0 < γ ≤ 1; the limit
of this ratio as x goes to ∞ is 1. By contrast, with proportional hazards,
the ratio of hazard rates is constant. Proportional odds ratios may be
appropriate when the effects of differing treatments, say, diminish with
time.
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The following more complicated derivation offers a different insight,
with the geometric distribution playing a key role.

b. Second Derivation: Geometric-Extreme Stability

Extreme value distributions are briefly discussed in Section 20.G. The
rationale for considering these distributions is that a life length may be
regarded as the extreme of a large number of independent identically
distributed random variables. Usually this is an approximation to the
actual situation; more often a random variable is the extreme of a finite
number of independent identically distributed random variables, and
the finite number may be random. Here, it is assumed that the random
number has a geometric distribution.

Suppose that X1, X2, . . . , is a sequence of independent random vari-
ables with a common distribution F and N is a random variable inde-
pendent of the Xi’s with the geometric (p) distribution P{N = n} =
(1 − p)n−1p, n = 1, 2, . . ., of 18.E(4). Let

U = min (X1, . . . , XN ), V = max (X1, . . . , XN ). (7)

F.3. Definition. If F ∈ F implies that the distribution of U is in F ,
then F is said to be geometric-minimum stable. Similarly, if F ∈ F im-
plies that the distribution of V is in F , then F is said to be geometric-
maximum stable. If F is both geometric-minimum and geometric-
maximum stable, then F is said to be geometric-extreme stable.

F.3.a. Remark. The term “max-geometric stable” has been used by
Rachev and Resnick (1991) to describe a related but more restricted
concept. They apply the term not to families of distributions but to in-
dividual distributions; in their sense, a distribution is “max-geometric
stable” if the location-scale parameter family generated by the distri-
bution is geometric-max stable in our sense. The two ideas essentially
coincide for families F that are parameterized by location and scale.
Most of the families considered here are not of that form, a notable
exception being the logistic distribution.

F.3.b. Remark. Here, U and V are, respectively, the minimum and
maximum of a geometric number of independent identically distributed
random variables. The case where the sum takes the place of the min-
imum or maximum is also of considerable interest, though it is not
treated here. See, for example, Feller (1971, Section XI.6) and Brown
(1990) for further results and references.
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F.4. Example. The family of logistic distributions, with survival func-
tions of the form

F̄ (x) =
1

1 + θ eλx
, −∞ < x < ∞, θ, λ > 0,

is an example of a geometric-extreme stable family; indeed, distribu-
tions in this family are geometric-extreme stable even in the sense of
Rachev and Resnick (1991). The fact that this family is a geometric-
minimum stable family was utilized by Arnold (1989) to construct a
stationary process with logistic marginals.

For the random variable U of (7),

F̄ (x | p) = P{U > x} =
∞∑
n=1

[F̄ (x)]n(1 − p)n−1p (8)

=
pF̄ (x)

1 − (1 − p)F̄ (x)
, −∞ < x < ∞.

From this derivation, it is apparent that the survival function F̄ (· | p)
is a mixture of survival functions [F (·)]n; moreover,

F̄ (· | p) = φ(R(x) | p),

where φ(s | p) = p e−s[1 − e−s(1 − p)]−1 is the Laplace transform
20.E(6a), of the geometric distribution of 20.E(4) and R = − log F̄ .
Thus, the distribution is an example of E(23).

F.5. Proposition. The parametric family of distributions of the form
(8) is geometric-minimum stable.

Proof. If Y1, Y2, . . . is a sequence of independent random variables with
a common survival function F̄ (· | p) given by (8) and if M is a random
variable independent of the Yi’s with a geometric (q) distribution, then
U = min (Y1, . . . , YM ) has a distribution of the form (8) but with p
replaced by pq. To see this, write

Yi = min (Xi1, . . . , XiNi
), i = 1, 2, . . . ,

where Xij and Ni are all independent, all the Xij have the distribution
F and Ni have a geometric (p) distribution. Then,

min (Y1, . . . , YM )
= min (X11, . . . , X1N1 , X21, . . . , X2N2 , . . . , XM1, . . . , XMNM

). (9)
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By re-indexing the Xij , this can be rewritten as

U = min (Y1, . . . , YM ) = min (X1, X2, . . . , XN1 + · · · + NM
).

It is well known that N1 + · · · + NM has a geometric (pq) distribution
(see Proposition 18.E.1), so it is immediate that U has the survival
function (8) with pq in place of p. �

Arguments similar to those used above show that the distribution
function H of the random variable V = max (X1, . . . , XN ) of (7) is given
by

H(x) =
∞∑
n=1

[F (x)]n(1 − p)n−1p =
pF (x)

1 − (1 − p)F (x)
, −∞ < x < ∞.

(9a)

This distribution can be thought of as a mixture of the distributions
[F (·)]n, and H has the form

H(x) = φ(−S(x)),

where S = logF is the reverse hazard function of F and φ is the Laplace
transform 20.E(6a) of the geometric distribution. This distribution is
an example of E(26).

From (9a), it follows that

H̄(x) =
F̄ (x)

p + (1 − p)F̄ (x)
, −∞ < x < ∞. (9b)

F.6. Proposition. The parametric family given by (9a) or (9b) is
geometric-maximum stable.

This result has a proof similar to that of Proposition F.5.

The families given by (8) and (9b) nicely combine to form a single
parametric family G = G(F ) = {F (· | γ), γ > 0}, where

F̄ (x | γ) =
γF̄ (x)

1 − γ̄F̄ (x)
=

γF̄ (x)
F (x) + γF̄ (x)

= 1 − F (x)
F (x) + γF̄ (x)

,

−∞ < x < ∞, 0 < γ < ∞, (10)
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and γ̄ = 1 − γ; in (8), 0 < γ = p ≤ 1, and in (9b), γ = 1/p ≥ 1. As pre-
viously noted, F̄ (x | 1) = F̄ (x), so F ∈ G. Note that (10) is the same
as (2).

F.7. Proposition. The parametric family G of distributions of the
form (2) is geometric-extreme stable. That is, the family G satisfies
Criterion 2 of Section A.

Proof. To verify the proposition, it is sufficient to verify closure of G
under a kind of composition, as follows. Suppose that

H̄(x) =
ξF̄ (x | γ)

[1 − (1 − ξ)F̄ (x | γ)]
,

where F (x | γ) is given by (2). Then,

H̄(x) =
ξγF̄ (x)

[1 − (1 − ξγ)F̄ (x)]
.

This shows that H ∈ G, and consequently, G has both geometric max-
imum and geometric-minimum stability. �

The proof of Proposition F.7 also shows that if F is replaced by any
other distribution in G, then that distribution will also generate G.

c. Introduction of Tilt Parameters by Way of Mixtures

As noted in Section E.i, the mixture

H̄(x | γ) =
∫ ∞

0
[F̄ (x)]ξ dG(ξ | γ) =

∫ ∞

0
e−ξR(x) dG(ξ | γ)

can be written in the form

H̄(x | γ) = φγ(R(x)), (11a)

where φγ is the Laplace transform of G(· | γ). Let K be the distri-
bution function of a nonnegative random variable and suppose that
R(x) = Ø−(x) = K(x)/K̄(x); this odds ratio has the properties re-
quired of a hazard function. If G(· | γ) is an exponential distribution
with parameter γ, the Laplace transform φγ is given in 8.A(11), and in
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this case, (11a) takes the form

H̄(x | γ) =
∫ ∞

0
[F̄ (x)]ξ γ e−γξ dξ = φγ

(
K(x)
K̄(x)

)
=

γK̄(x)
1 − γ̄K̄(x)

, x ≥ 0.

(11b)

This is the survival function given in (2) and (10), with K in place of
F . This change of notation was made here to conform to the notation
used elsewhere in the context of mixtures.

The mixture representation of (11b) is not unique; a further discus-
sion of this issue can be found in Section M. In particular, see Examples
M.4.c, M.5.a, and M.5.b. If the exponential density in (11b) is replaced
by the density 1.F(6) of a gamma distribution with parameters γ and ν,
then the integral can similarly be obtained from the Laplace transform
9.A(5) of the gamma distribution and is given by

∫ ∞

0
[F̄ (x)]ξ

γνξν−1 e−γξ

Γ(ν)
dξ =

[
φ

(
K(x)
K̄(x)

)]ν
=

(
γK̄(x)

1 − γ̄K̄(x)

)ν

, x ≥ 0.

(11c)

Here, the parameter ν of the gamma distribution is called a convolution
parameter (see Section J). Note that because ξ is a frailty parameter
of F (· | ξ) = [F̄ (·)]ξ, the convolution parameter ν of the gamma density
has become a frailty parameter, but in (11c) γ is no longer a tilt param-
eter; a different survival function would be obtained if first a frailty and
then a tilt parameter is introduced in K. It is not unusual to find that
when two different kinds of parameters are introduced successively, the
order in which they are introduced is important. See Section 19.B for
more discussion of this issue.

d. The Inverse Distribution and the Total Time
on Test Transform

It is easy to verify with the notation

F̄γ = F̄ (· | γ) = γF̄ (·)/[1 − γ̄F̄ (·)],

that

F−1
γ (p) = F−1

(
γp

1 − γ̄p

)
and F̄−1

γ (p) = F̄−1
(

p

γ + γ̄p

)
. (12)
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From these results, it follows that Fγ has the total time on test trans-
form

ψFγ
(p) =

∫ F−1(γ/(1−γ̄p))

0

γF̄ (x)
1 − γ̄F̄ (x)

dx =
∫ p

0
(1 − y) dF−1

(
γy

1 − γ̄y

)

=
∫ γp/(1−γ̄p)

0

γ(1 − z)
γ + γ̄z

dF−1(z). (13)

See 1.I for a discussion of uses of the total time on test transform.

e. Ordering Tilt Parameter Families

Consider the extreme stable family with survival functions of the form
F̄ (x | γ) = γF̄ (x)/[1 − γ̄F̄ (x)] for some fixed underlying distribution
function F . It can easily be checked that F (· | γ) is stochastically de-
creasing in γ, but a stronger statement can be made.

F.8. Proposition. In the likelihood ratio order, the distribution
F (· | γ) is increasing in γ. Consequently, F (· | γ) is increasing in γ in
the hazard rate order and stochastic order.

Proof. This can be verified directly using (3a) and the characterization
3.A(11) of the likelihood ratio order in terms of densities. �

f. Order Preservation with the Introduction of a Tilt Parameter

F.9. Lemma. If Ḡi(x | γ) = [γF̄i(x)]/[1 − γ̄F̄i(x)], i = 1, 2, then

G−1
2 G1(x) = F−1

2 F1(x) for all x.

Proof. This result can be obtained using the assumed form of G2 to-
gether with G−1

1 , which is obtainable from (12). Because the result is
independent of γ, the Lemma follows. �

F.10. Proposition (Kirmani and Gupta, 2001). Suppose that Xi has
the distribution Fi and Yi has the distribution Fi(· | γ), i = 1, 2. Then,
X1 ≤ X2 implies Y1 ≤ Y2 when ≤ is any of the following orders: stochas-
tic order ≤st hazard rate order ≤hr, convex transform order ≤c, star
order ≤∗, and superadditive order ≤su.

Proof. For stochastic and hazard rate orders, the results are obtainable
directly from (2) and (3b). For the other orders, the results follow from
Lemma F.9. �
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g. Preservation of Distribution Properties with the Introduction
of a Tilt Parameter

Because of notational difficulties, it is convenient in this section to use
the notation G = F (· | γ).

F.11. Proposition (Kirmani and Gupta, 2001). If F is IHR and γ ≥
1, then G is IHR. The same preservation result holds for IHRA and
NBU. If F is DHR and γ ≤ 1, then G is DHR. The same preservation
result holds for DHRA and NWU.

Proof. Suppose first that F is IHR and γ ≥ 1. If Y has an exponential
distribution, then by Proposition 4.C.1.f, it follows that X ≤c Y . By
Proposition F.10, Xγ ≤c Yγ where Xγ and Yγ , respectively, have the
distributions of X and Y with the tilt parameter γ introduced. But
Yγ ≤c Y , and consequently, Yγ , or its distribution G, is IHR. The cases
of IHRA and NBU have similar proofs, but use 5.B.3(iv) and 5.C.3.

Next, assume that F is DHR and γ ≤ 1. Then the arguments for
IHR and IHRA follow through with little alteration, except that they
use Yγ ≥c Y or Yγ ≥∗ Y , which holds because γ ≤ 1. It follows from the
definition of NWU that F is NWU if and only if

Ḡ−1F̄ (x + t) ≤ Ḡ−1F̄ (x) + Ḡ−1F̄ (t),

where G is an exponential distribution with parameter λ = 1, in which
case G−1(x) = − log x. Apply the operator F̄−1Ḡ to both sides of this
inequality, then let Ḡ−1F̄ (x) = u and Ḡ−1F̄ (t) = v to conclude that

F̄−1Ḡ(u + v) ≥ Ḡ−1Ḡ(u) + Ḡ−1Ḡ(v).

The preservation property for NWU follows as before, using Lemma
F.9. �

The clever idea of using the orders of Proposition F.10 in the above-
mentioned proof is due to Kirmani and Gupta (2001).

h. More Properties of Tilt Parameter Families

A number of facts concerning geometric-extreme stable families are ev-
ident and may be worth noting; the same properties hold for geometric-
minimum and geometric-maximum stable families.
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(i) If F1 and F2 are geometric-extreme stable families, then F1 ∪ F2
and F1 ∩ F2 are geometric-extreme stable families. (The empty set is
vacuously such a family.)
(ii) Every distribution F determines a geometric-extreme stable family
F(F ). If G ∈ F(F ), then F(G) = F(F ). Thus, the minimal geometric-
extreme stable families form a partition of the set of all distributions
into a set of equivalence classes.
(iii) If F and G differ only by a scale (location) parameter, then F(G)
can be obtained from F(F ) by a common scale (location) change.
(iv) Suppose that F ∈ F implies that F̄ (0) > 0, and define F+ by

F̄+(x) = F̄ (x)/F̄ (0), x ≥ 0.

If F is geometric-extreme stable, then {F+ : F ∈ F} is geometric-
extreme stable.
(v) Let F be a family of distribution functions and

Fθ,δ = {G : G(x) = [F (x− δ)]θ for some F in F}.

If F is geometric-extreme stable, then Fθ,δ is geometric-extreme stable,
for all θ > 0 and all real δ.

i. Why the Geometric Distribution?

The geometric-extreme stability property of G = G(F ) is rather remark-
able, and it depends upon the fact that a geometric sum of indepen-
dent identically distributed geometric random variables has a geometric
distribution (Proposition 18.E.1). This partially explains why random-
minimum stability cannot be expected if the geometric distribution is
replaced by some other distribution on {1, 2, . . .}. Thus, if the above
development is repeated, e.g., with the assumption that N − 1 has a
Poisson distribution, then G would be replaced by a family that would
not be Poisson-extreme stable.

The following proposition provides a characterization of the geomet-
ric distribution.

F.12. Proposition. Suppose that {H(· | θ) : 0 < θ ≤ 1} is a paramet-
ric family of distributions supported by the positive integers and param-
eterized in such a way that H has expected value μ(θ) = 1/θ. Denote
the corresponding probability mass function by pn(θ), n = 1, 2, . . . .
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Suppose further that the pn are differentiable and that either

lim
θ→0

p′n(θ) = a > 0, n = 1, 2, . . . , (14)

or

lim
θ→1

p′1(θ) = 1, lim
θ→1

p′2(θ) = −1, lim
θ→1

p′n(θ) = 0, n = 3, 4, . . . .

(15)

If F is a distribution function and

F̄ (x | θ) =
∞∑
n=1

[F̄ (x)]npn(θ) (16)

has the stability property

∞∑
n=1

[F̄ (x | θ)]n pn(α) =
∞∑
n=1

[F̄ (x)]n(x) pn(ξ) for some ξ = ξ(θ, α),

(17)

then pn(θ) = (1 − θ)n−1θ, n = 1, 2, . . . , i.e., H is a geometric distribu-
tion.

F.13. Remark. If H has expected value
∑∞

n=1 npn(θ) = μ(θ) < ∞,
and μ has an inverse, then a reparameterization is possible to achieve
μ(θ) = 1/θ. Because of Proposition F.12, it follows that either (14) and
(15) both hold or both fail; it is not possible to have one condition
without the other.

Proof of Proposition F.12. Let F̄ (x) = z and rewrite (17) as

∞∑
n=1

[ ∞∑
m=1

zmpm(θ)

]n

pn(α) =
∞∑
n=1

znpn(ξ), 0 ≤ z ≤ 1, (18)

where ξ is a function of α and θ. Let

φ(z |α) =
∞∑
n=1

znpn(α) = Eαz
N , (19)

where N has mass function pn(α), n = 1, 2, . . . . Then (18) yields the
functional equation

φ(φ(z | θ) |α) = φ(z | ξ), 0 ≤ z ≤ 1, (20)
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where φ satisfies the conditions φ(1;α) = 1, φ(0;α) = 0, and φ(z;α) is
increasing in z.

To determine ξ as a function of α and θ, differentiate in (19) with
respect to z to obtain

φ′(z |α) =
∞∑
n=1

nzn−1pn(α),

from which it follows that

φ′(1 |α) =
∞∑
n=1

npn(α) = μ(α). (21)

Now differentiate with respect to z in (20) to obtain

φ′(φ(z | θ) |α)φ′(z | θ) = φ′(z | ξ). (22)

With z = 1 and the fact that φ(1 | θ) = 1, (22) becomes μ(α)μ(θ) =
μ(ξ); by assumption, μ(θ) = 1/θ, and hence

αθ = ξ. (23)

Consequently, (20) becomes

φ(φ(z | θ) |α) = φ(z |αθ), 0 ≤ z ≤ 1. (24)

Write φ2(z |α) = ∂φ(z |α)/∂α, that is,

φ2(z |α) =
∞∑
n=1

znp′n(α). (25)

From (24), it follows that

φ2(φ(z | θ) |α) = θφ2(z |αθ). (26)

At this point, the proof must follow two paths assuming that (14)
or (15) holds. Suppose first that (14) holds.

From (25), (14), and the fact that
∑∞

n=1 z
n = z/(1 − z), it follows

that φ2(z | 0) = az/(1 − z), and then (26) yields

φ(z | θ)
1 − φ(z | θ) =

θz

1 − z
. (27)
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Equation (27) can be solved for φ to yield

φ(z | θ) =
θz

1 − z(1 − θ)
, (28)

the generating function of the geometric distribution.
Now, instead of (14), assume that (15) holds. Then with (15), (26)

yields

φ2(z | 1) = z − z2, (29)

which together with (26) gives

φ(z | θ) − φ2(z | θ) = θφ2 (z | θ). (30)

To solve this differential equation (in θ for z fixed), let h(θ) = φ(z | θ)
and rewrite the equation in the form

d

dθ

θ

h(θ)
= 1. This can be solved

to show that φ(z | θ) = θ/(c + θ) for some constant c here depending
upon z. Consequently, φ2 (z | 1) = c/(c + 1)2, which upon substitution
in (29), yields the quadratic equation

c/(c + 1)2 = z − z2.

Only one root c(z) = (1 − z)/z satisfies φ(1 | θ) = 1, and that root again
gives (28). �

F.14. Remark. The general solution to the functional equation (20)
is given by Proposition 22.C.2. However, a solution here is required that
is a probability generating function. To sort out the probability gener-
ating functions from the set of general solutions given by Proposition
22.C.2 does not appear to be an easy problem.

j. More General Models

Dabrowska and Doksum (1988) consider a two-parameter proportional
odds model in which

F (x | γ)
F̄ (x | γ)

=
1
γ

F (x)
F̄ (x)

, −∞ < x < ∞, γ > 0, (31)
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is replaced for some c > 0, by

1 − [F̄ (x | γ)]c

[F̄ (x | γ)]c
=

1 − [F̄ (x)]c

γ[F̄ (x)]c
. (32)

This yields the semiparametric family

F̄ (x | γ, c) =

(
γ[F̄ (x)]c

1 − γ̄[F̄ (x)]c

)1/c

, −∞ < x < ∞. (33)

With c = 1, this reduces to (2).

A further generalization is obtained by replacing c on the left-hand
side of (32) by d. Then, (33) is replaced by

F̄ (x | γ, c, d) =

(
γ[F̄ (x)]c

1 − γ̄[F̄ (x)]c

)1/d

. (34)

It should be noted, however, that the survival function (34) satisfies
Criterion 2 of Section A.c only if d = 1.

Sankaran and Jayakumar (2006) propose tilt parameter families
with added resilience and frailty parameters, and they extend the idea
of proportional odds ratios to the bivariate case.

G. Hazard Power Parameters

According to the Definition 1.B.5, a distribution F and its correspond-
ing hazard function R are related via the formula

F̄ (x) = exp {−R(x)}

for all x. Thus, a function R is the hazard function for some proper
distribution function if and only if R is an increasing function and

lim
x→−∞

R(x) = 0 and lim
x→∞

R(x) = ∞.

It follows that if R is a hazard function, then Rζ is a hazard function
for all ζ > 0. Thus,

F̄ (x | ζ) = exp {−[R(x)]ζ} (1)
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defines a survival function for all ζ > 0, and {F̄ (· | ζ) : ζ > 0} is a semi-
parametric family. The parameter ζ is called a hazard power parameter
and the family is called a hazard power parameter family.

It is possible to define a reverse hazard power parameter by the
equation

F (x | ζ) = exp {−[S(x)]ζ},

where S(x) = − logF is the reverse hazard function defined in 1.B(4).
This parameter arises in an occasional example, but it is not investi-
gated in any detail in this book.

With F̄ (x | ζ) given by (1), F̄ (· | 1) = F̄ (·), so that the underlying
distribution is a member of the family {F̄ (· | ζ) : ζ > 0}. If a hazard
power parameter α is introduced using the underlying survival function
F̄ (· | ζ), the resulting survival function is (̄F )(· | ζ + α); thus the family
has the stability property of Criterion 2 (Section A).

Hazard power parameters were considered by Bradley, Bradley and
Naftel (1984).

G.1. Example. Suppose that F̄ is the survival function of an expo-
nential distribution with scale parameter λ. Then,

F̄ (x | ζ) = exp {−(λx)ζ}

is the survival function of a Weibull distribution with power parame-
ter ζ and scale parameter λ. In this example, ζ can be regarded not
only as a hazard power parameter but also as a power parameter (see
Proposition 18.B.12).

a. Properties of Hazard Power Parameter Families

If the underlying distribution F has hazard rate r, then by differenti-
ating (1), it can be determined that F (· | ζ) has hazard rate

r(x | ζ) = ζ[R(x)]ζ−1r(x). (2)

It follows that if r is increasing and ζ ≥ 1, then r(· | ζ) is increasing; if
r is decreasing and 0 < ζ ≤ 1, then r(· | ζ) is decreasing.

If the underlying distribution F has an increasing hazard rate aver-
age (IHRA) and ζ ≥ 1, then from (2) it follows that F (· | ζ) is IHRA; if
F has a decreasing hazard rate average (DHRA) and 0 < ζ ≤ 1, then
F (· | ζ) is DHRA.
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Furthermore, if F is new better than used (NBU) and ζ ≥ 1, then
F (· | ζ) is NBU; if F is new worse than used (NWU) and 0 < ζ ≤ 1,
then F (· | ζ) is NWU. These results follow from Proposition 19.A.11
and the fact that the function φ(x) = xζ is convex, for ζ ≥ 1 (hence
superadditive), and concave, for ζ ≤ 1 (hence subadditive).

G.1.a. Example G.1 continued. The exponential distribution is
both IHR and DHR. It follows from the above comments that the
Weibull distribution is IHR when ζ ≥ 1 and DHR when ζ ≤ 1. This is
a familiar fact.

b. The Inverse Distribution and the Total Time
on Test Transform

If F̄ζ(x) = exp {−[R(x)]ζ}, x ≥ 0, then

F̄−1
ζ (p) = R−1([− log p]1/ζ), 0 < p ≤ 1. (3)

Here, the total time on test transform can be written as

ψFζ
(p) =

∫ − log(1−p)

0

exp {−uζ}
r(R−1(u))

du. (4)

c. Ordering Hazard Power Parameter Families

No general results are known about ordering hazard power parame-
ter families. Some results can be obtained for specific underlying dis-
tributions; for example, the hazard power parameter of the Weibull
distribution is also a power parameter, so results of Section D apply.
Specifically when the underlying distribution is Weibull, F (· | ξ) is, in
the convex transform order, increasing in ξ.

H. Moment Parameters

Suppose that F is a distribution function with support in [0,∞), and
finite positive βth moment μβ for all β in the set B. Then, the function
F̄ (· |β) defined by

F̄ (x |β) =
1
μβ

∫ ∞

x
zβ dF (z), x ≥ 0, (1)
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is a survival function with a parameter β, called a moment parameter.
The semiparametric family {F (· |β) : β ∈ B} of distribution functions
is called a moment parameter family. If F has a density f , then F (· |β)
has the density

f(x |β) =
xβf(x)
μβ

, x ≥ 0.

Cearly, the support of {f(· |β) : β ∈ B} is the same as the support of
f .

It is always the case that 0 ∈ B, and F (· | 0) = F (·) so F is a member
of the family {F (· |β) : β ∈ B}. Stability of the family is easily checked.
In fact, if F (· |β0) is used as an underlying distribution and a new
moment parameter β1 is introduced, then the resulting distribution is
F (· |β0 + β1).

H.1. Remark. It is possible to introduce moment parameters in distri-
butions not supported on [0,∞) if absolute moments are used. Because
this book is primarily focused on distributions of nonnegative random
variables, this extension is not considered. But note that a moment
parameter cannot be introduced with an underlying distribution de-
generate at 0 because all moments of this distribution are 0.

H.2. Example. Suppose that f is the density of an exponential distri-
bution with scale parameter λ. Here, B = (−1,∞), so that β > −1 and
f(· |β) is the density of a gamma distribution with shape parameter
ν = β + 1.

a. Inverse Distributions: Total Time on Test Transforms

The inverse of a general distribution with moment parameter cannot
be given in closed form. Consequently, the total time on test transform
cannot be given in closed form, and must be computed numerically and
individually for each underlying distribution.

b. Ordering Moment Parameter Families

H.3. Proposition. In the likelihood ratio order, moment parameter
families are increasing in the parameter.

Proof. Because the function e−sx is totally positive in s and x
(see 19.B.5), the likelihood ratio ordering follows from Proposition
2.A.10. �
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c. The Case β = 1

The density

f(x | 1) =
xf(x)
μ

, x ≥ 0,

is of particular interest because it is the density of the length of the
interval covering a fixed point in a stationary renewal process. Accord-
ing to Proposition H.3, such an interval is longer in the likelihood ratio
order than an interval with the interarrival time density. This is not
surprising because long intervals are more likely to cover fixed points.
The density f(· | 1) has been studied in some detail by Brown (2001).
See Section 20.B.c.

I. Laplace Transform Parameters

Denote by I the interval for which the Laplace transform φ(s) =∫
e−sxdF (x) of the distribution function F is finite. Clearly, [0,∞) ⊂ I.

The function F (· | s), defined for all s in the interval I by

F̄ (x | s) =
1

φ(s)

∫ ∞

x
e−sz dF (z), (1)

is a survival function with a parameter s called a Laplace trans-
form parameter. The semiparametric family {F (· | s) : s ∈ I} is called
a Laplace transform parameter family.

Because F (·) = F (· | 0), the underlying distribution is a member of
the parametric family, and it is easily checked that if a new Laplace
transform parameter t is introduced in F (· | s), then the result is
F (· | s + t); this demonstrates stability.

The process of introducing a Laplace transform parameter parallels
that of the moment parameter, but with xβ = eβ log x replaced by e−sx.

If F has a density f , then F (· | s) has the density

f(x | s) =
e−sxf(x)

φ(s)
.

This is perhaps the most natural setting in which to introduce a Laplace
transform parameter.
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a. Inverse Distributions and Total Time on Test Transforms

As with moment parameters, nothing general is known about inverse
distributions or total time on test transforms for Laplace transform
parameters.

b. Ordering Laplace Transform Parameter Families

I.1. Proposition. Laplace transform parameter families are, in the
likelihood ratio order, decreasing in the parameter.

Proof. Because the function e−sx is totally positive in −s and x (see
Example 21.B.5), the likelihood ratio ordering follows from Proposi-
tion 2.A.9. �

J. Convolution Parameters

For any distribution function F , one can consider the family of ν-fold
convolutions of F , where ν is any positive integer. These convolutions
have Laplace transforms that are positive integer powers of the Laplace
transform of F . In case F is infinitely divisible, any positive power, inte-
ger or not, of the Laplace transform of F is again a Laplace transform,
so a family indexed by (0,∞) can be defined. When applied to the ex-
ponential distribution, known to be infinitely divisible, this procedure
yields the family of gamma distributions. Other examples are given in
Chapter 13.

Convolution families have long been of interest, particularly in the
study of infinitely divisible distributions. Several results for these fam-
ilies have been given by Marshall and Olkin (1990) for multivariate as
well as univariate distributions.

Recall that a distribution F with Laplace transform φ is infinitely
divisible if φν is a Laplace transform, for all ν > 0. Denote the corre-
sponding distribution by F ν∗. For a discussion of infinitely divisible
distributions, see Section 20.D.a. For more general discussions, see,
e.g., Feller (1971) or Gut (2005).

J.1. Definition. Let F = {F (· | ν) : ν ∈ A} be an indexed family of
distributions with index set A satisfying

α ∈ A, β ∈ A ⇒ α + β ∈ A. (1)

F is said to be a convolution family if the parameters add under the
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convolution operation, i.e., if

F (· |α) ∗ F (· |β) = F (· |α + β), α, β ∈ A. (2)

In this case, the parameter is called a convolution parameter.

Several well-known families of distributions form convolution fam-
ilies; for example, the binomial, negative binomial, Poisson, gamma,
normal, and the inverse Gaussian families are all convolution families.

a. Infinite Divisibility in Convolution Families

J.2. Proposition. If {F (· | ν) : ν > 0} is a convolution family, then
F (· | 1) is infinitely divisible and

F (· | ν) = F ν∗(· | 1).

Proof. Let φ(· | ν) be the Laplace transform of F (· | ν), ν > 0. From (2)
it follows that

φ(· | θ) φ(· | ν) = φ(· | θ + ν), θ, ν > 0. (3)

This functional equation has the solution φ(· | ν) = [φ(· | 1)]ν (Proposi-
tion 22.A.2). �

J.3. Example. The gamma distribution, with density f(· |λ, ν) given
by 9.A(1) is a convolution family. The Laplace transform of the gamma
distribution is given by

E e−sX = [λ/(λ + s)]ν , s > −λ. (4)

See 9.A(5). Clearly this Laplace transform satisfies (3).

For a discussion of mixtures involving convolution families, see Sec-
tion M.c.

b. Ordering Convolution Families

J.4. Proposition. If X and Y have distributions in a convolution fam-
ily with respective parameters α and β where α ≤ β, then X is less than
Y in the stochastic order.
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Proof. The random variable Y has the same distribution as X + Z,
where Z is independent of X and has the distribution in the con-
volution family with parameter β − α. Consequently, the result is
immediate. �

J.5. Example. If X has a gamma distribution with parameters λ
and ν1, and Y has a gamma distribution with parameters λ and ν2,
where ν1 < ν2, then Y has the same distribution as X + Z, where
Z is independent of X and has a gamma distribution with param-
eters λ and ν2 − ν1. This observation can be obtained with the aid
of (4).

As noted in Section 20.B.b, the binomial distribution has Laplace
transform given by

φ(s | p, n) = [(1 − p) + p e−s]n.

It follows that n = 1, 2, . . . is a convolution parameter. Because a ran-
dom variable with a binomial distribution represents the number of
successes in n independent trials, it is clear that the distribution is, in
the stochastic order, increasing in n; the number of successes can only
increase as the number of trials increases.

Proposition J.4 shows that the parameter of a convolution family
orders the family in magnitude. But its role in ordering the family
according to shape is much more important.

J.6. Proposition. Suppose that X and Y have distributions in a con-
volution family with respective parameters α and β. If α ≤ β, then
X ≥Lorenz Y , i.e., X/EX ≥cx Y/EY .

Proof. The proof of this proposition makes use of a result of Marshall
and Olkin (1979, 11.B.2.b, p. 288) which states that if φ is a real con-
tinuous convex function of a real variable and X1, X2, . . . is a sequence
of independent identically distributed random variables, then

Eφ

(
n∑
i=1

Xi/n

)
is nonincreasing inn = 1, 2, . . . .

To make use of this monotonicity, assume first that there exists γ > 0
such that α and β are both multiples of γ. Then, the Lorenz ordering
follows directly. Otherwise a limiting argument is required. �
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K. Age Parameters: Residual Life Families

If F is a distribution function such that F̄ (t) > 0, then the residual life
distribution at time t is defined as

F̄t(x) = F̄ (t + x)/F̄ (t), x ≥ 0,
= 1, x < 0.

These residual life distributions form a parametric family with the new
parameter τ = t, called an age parameter. Clearly F̄0 = F̄ .

In this book, age parameters are introduced only when the underly-
ing distribution F satisfies F (x) = 0, x < 0, i.e., F is the distribution of
a nonnegative random variable. Only in this case is F itself a member
of the parametric family (obtained with t = 0).

Age parameters are of interest primarily for distributions such that
F̄ (x) > 0 for all x ≥ 0, although this restriction is not essential. Age
parameters are of particular interest when the survival function F̄ has
a nice form, as illustrated by application to the Weibull distribution in
Section 9.G. Note that if F has hazard rate r, then the hazard rate rτ
of Fτ is given by

rτ (x) = r(τ + x). (1)

Properties of the semiparametric family {Fτ , τ ≥ 0} are essentially
all dependent upon properties of F ; the nature of the family’s con-
struction by itself does not impart properties to the family. However,
see Proposition K.1.

The introduction of an age parameter can be thought of in a some-
what different manner. Suppose that X has the distribution F , and
let Y = X − τ . With probability 1, X ≥ 0, and consequently Y ≥ −τ .
To obtain a life distribution from the distribution of Y , truncate it
at 0 and renormalize. In this way, the residual life distribution is
obtained.

a. The Inverse Distribution and the Total Time
on Test Transform

If F̄τ (x) = F̄ (x + τ)/F̄ (τ), x ≥ 0, then the inverse is

F̄−1
τ (p) = F̄−1(pF̄ (τ)) − τ, 0 ≤ p ≤ 1. (2)
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It follows with the aid of 1.I(2) that the total time on test transform is

ψFτ (p) =
∫ F−1(1−p̄ F̄ (τ ))−τ

0

F̄ (u + τ)
F̄ (τ)

du,

and consequently

ψFτ (p) =
ψF (1 − p̄ F̄ (τ)) − ψF (F (τ))

F̄ (τ)
. (3)

b. Ordering Residual Life Families

The following proposition gives conditions for residual life families to
be decreasing in the stochastic order and hazard rate order.

K.1. Proposition. (i) If F has an increasing hazard rate (IHR), then
in the hazard rate order, the distributions Fτ are stochastically decreas-
ing in τ . Conversely, if the distributions F̄ (τ + x)/F̄ (τ) are stochasti-
cally decreasing in τ , then F is IHR. (ii) In the likelihood ratio order,
the distributions Fτ are decreasing in τ if and only if F has a density
that is log concave.

The proof of these results use (1) and the fact that F is IHR if and
only if Fτ is decreasing in t for all x > 0.

L. Successive Additions of Parameters

Successive applications of methods to add parameters may or may not
commute; i.e., the order in which the parameters are added may or may
not matter. To illustrate this, consider first scale and power parameters.

Suppose that a scale parameter is first introduced in the underly-
ing distribution F , ahead of the introduction of a power parameter.
Then after the first step, the distribution F (· |λ) given by F (x |λ) =
F (λx) is obtained. The introduction next of the power parameter
yields

F (x |λ, α) = F (xα |λ) = F (λxα) for all x and all α > 0. (1a)

This can be written schematically as

F̄ (x) −−→
scale

F̄ (λx) −−−→
power

F̄ (λxα).
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However, if the power parameter is introduced first, then the distribu-
tion is given by

F (x |λ, α) = F ((λx)α) for all x and all α > 0. (1b)

Schematically, this can be written as

F̄ (x)−−−→
power

F̄ (xα)−−−→
scale

F̄ (λαxα).

Because the end results differ only in their parameterization, the oper-
ations of adding scale and power parameters can be said to commute;
regardless of the order in which the parameters are introduced, the
same family is obtained. In what follows, the parameterization (1b) is
used to insure that λ remains a scale parameter.

A well-known example is the Weibull distribution, which is obtained
by adding a power parameter to an exponential distribution so that

F̄ (x |λ, α) = exp {−(λx)α}, x ≥ 0.

Other examples appear in Chapters 11, 12, and 13.
Now consider frailty and resilience parameters. Here, with the same

symbolic notation,

F̄ (x)−−−→
frailty

[F̄ (x)]ξ −−−−−→
resilience

1 − {1 − [F̄ (x)]ξ}η, (2)

whereas

F̄ (x) −−−−−→
resilience

1 − [F (x)]η −−−→
frailty

{1 − [F (x)]η}ξ. (3)

Here the resulting families differ. Because these operations do not com-
mute, it means that in the case of (2), the end result is a family that
does not have a frailty parameter, so that the family can be expanded
by the reintroduction of such a parameter. The result will be a family
without a resilience parameter, so the process does not come to a forced
end. This is why it is of interest to identify the methods of introducing
parameters that commute and those that do not.

Parameter additions of location, scale, and power all result from
making parametric transformations of the underlying random variable.
These parameters commute with parameters that are obtained from
transformations of a survival function such as frailty, resilience, and tilt
parameters. Further general statements can be made, but they are not
very informative. Consider the parameters discussed in earlier sections,
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i.e., scale, power, frailty, resilience, tilt, hazard power, moment, Laplace
transform, convolution, and age parameters. Scale parameters commute
with all of the others in this list; power parameters commute with
all but age and convolution. Frailty parameters commute with hazard
power and age parameters. Laplace transform parameters commute
with moment and convolution parameters. No other pairs commute.

M. Mixing Semiparametric Families

Mixtures of the form

H(x) =
∫

F (x |ψ) dG(ψ)

are discussed in Chapter 3 and are encountered in Sections 7.D.g and
7.E.i. A more involved case arises in Section 7.F.c, where G itself has
a parameter. Mixtures of this kind are the subject of this section.

Start with a semiparametric family of distributions {F (· |ψ), ψ ∈ Ψ}
and treat the parameter ψ as a random variable with a distribution
taken from a semiparametric family {G(· | θ), θ ∈ Θ}. The resulting
mixture

H(x | θ) =
∫

F (x |ψ) dG(ψ | θ) (1)

can then be regarded as a member of the semiparametric family
{H(· | θ), θ ∈ Θ}.

a. Mixtures of Scale Parameter Families

M.1. Proposition. Consider two scale parameter families F (x |ψ) =
F (ψx | 1), for x, ψ > 0, and G(ψ |λ) = G(λψ | 1), for ψ, λ > 0. The mix-
ture, given by

H(x |λ) =
∫

F (x |ψ) dG(ψ |λ) or H̄(x |λ) =
∫

F̄ (x |ψ) dG(ψ |λ),

is a scale parameter family with scale parameter 1/λ.

Proof. For scale parameter families,

H(x |λ) =
∫

F (x |ψ) dG(ψ |λ) =
∫

F (ψx | 1) dGψ(λψ | 1)

=
∫

F (θx/λ | 1) dG(θ | 1) = H(x/λ | 1). �
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b. Mixtures of Product and Frailty Parameter Families

The following Lemma shows that convolving mixing distributions leads
to a product of mixtures.

M.2. Lemma. If H̄i(x) =
∫
[F̄ (x)]ξ dGi(ξ), i = 1, 2, then

H̄1(x)H̄2(x) =
∫

[F̄ (x)]ξ d(G1 ∗G2)(ξ).

Proof. Write [F̄ (x)]ξ = exp {−ξR(x)}, where R(x) = − log F̄ (x). Then,
the result can be recognized as a reflection of the fact (see Proposition
20.D.6) that the Laplace transform of a convolution is the product of
Laplace transforms. �

M.3. Proposition. Let {G(· | θ) : θ ∈ B} be a convolution family of
distributions such that for each θ,G(· | θ) has support contained in A.
Let {F (· | ξ) : ξ ∈ A} be a survival product family of distributions such
that F (x | ξ) is measurable in ξ for each fixed x. If

H̄(x |α) =
∫

F̄ (x | ξ) dG(ξ |α), α ∈ B,

then

H̄(x |α)H̄(x |β) = H̄(x |α + β), α, β ∈ B.

Proof. This result is an immediate consequence of Lemma M.2. �

If B = (0,∞), then by Lemma E.8, the family H̄(· |α), α ∈ (0,∞),
is a proportional hazards (frailty parameter) family. To see this more
clearly, let {F (· | ξ), ξ > 0} be a frailty parameter family with underly-
ing survival function F̄ , so that F̄ (· | ξ) = [F̄ (·)]ξ. Let R(·) = − log F̄ (·)
be the hazard function of F , and denote the Laplace transform of
G(· | θ) by φθ. As in Sections E.i and F.c, equation (1) can be rewritten
in the form

H̄(x | θ) =
∫

[F̄ (x)]ξ dG(ξ | θ)

=
∫

e−ξR(x) dG(ξ | θ) = φθ(R(x)), θ ∈ Θ. (2)

The hazard rate rH(· | θ) of H(· | θ) is given by

rH(x | θ) =
φ′
θ(R(x))

φθ(R(x))
r(x),
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where r(x) = R′(x) is the hazard rate of the distribution F . Because
φθ is a Laplace transform, it is log concave (Corollary 18.D.5.a), that
is, φ′

θ(z)/φθ(z) is decreasing in z. Thus, rH(x | θ) is decreasing in x
whenever r(x) is decreasing in x.

With specific choices of the functions φθ and R, various parametric
families emerge from (2). However, if the Criteria 1 and 2 of Section A.c
are to be satisfied, much of the apparent freedom of choice is an illusion.
Requirements imposed by Criterion 2 are examined in detail and more
generally in Section 19.C.a; here, two very special but important cases
are considered.

M.4.a. Proposition. Suppose that H̄(· | θ) is given by (2) and that,
for some distribution function K of a nonnegative random variable,
R(·) = K(·)/K̄(·). Then,

H̄(x | θ) = φθ(K(x)/K̄(x)), θ ∈ Θ. (2a)

Regard K as the underlying distribution of the family {H̄(· | θ), θ ∈ Θ}
and suppose further that φθ has the form φθ(s) = φ(s/θ), as is the case
when θ is a scale parameter for G(· | θ). Then the semiparametric family
(2a) satisfies criterion 2 of Section A.c if and only if φ is the Laplace
transform of an exponential distribution. In this case, Criterion 1 of
A.c is also satisfied.

Proof. If Criterion 2 is satisfied, then it must be that when the survival
function K̄ in (2a) is replaced by one of the form H̄(· | θ̃), the result
retains the form of H̄(· | θ), but with a parameter λ that is a function
of θ and θ̃. This means that for some λ = λ(θ, θ̃),

φ

(
1
θ

[
1 − φ

(
z

θ̃

)])

φ

(
z

θ̃

) = φ

(
z

λ

)
. (3a)

where z = K(x)/K̄(x). Note that the arguments of φ on both sides of
(3a) must be equal. That is,

1
θ

[
1 − φ

(
z

θ̃

)] /
φ

(
z

θ̃

)
=

z

λ
;

it follows that

φ(s) = 1
/ (

1 +
θθ̃

λ
s

)
.
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This is the Laplace transform of an exponential distribution with pa-
rameter λ/θθ̃, and the underlying distribution is retrieved with λ = θθ̃
so that Criterion 1 is satisfied. �

M.4.b. Proposition. Suppose that H̄(· | θ) is given by (2) and that,
for some distribution function F of a nonnegative random variable,
R(·) = − log F̄ (·). Then,

H̄(x | θ) = φθ(− log F̄ ), θ ∈ Θ. (2b)

Regard F as the underlying distribution and suppose that φθ has the
form φθ(s) = φ(s/θ). Then the semiparametric family (2b) satisfies Cri-
terion 2 of Section A.c if and only if φ is the Laplace transform of a
distribution degenerate at some point, say 1. In this case, Criterion 1
is satisfied, and the underlying distribution is retrieved with θ = 1.

Proof. If Criterion 2 is satisfied, then it must be that if the survival
function F̄ in (2b) is replaced by one of the form H̄(· | θ̃), the result
retains the form of H̄(· | θ), but with a parameter λ that is a function
of θ and θ̃. This means that for some λ = λ(θ, θ̃),

φ(−θ log [φ(−θ̃ log F̄ )] = φ(−λ log F̄ ). (3b)

With the notation R = − log F̄ , it follows from (3b) that

−θ log φ(θ̃R) = λR;

consequently, φ(s) = exp {−[λ(θ, θ̃)/θθ̃]s}, and the underlying distribu-
tion is retrieved when λ(θ, θ̃) = θθ̃. �

M.4.c. Example. If Ḡ(x | θ) = e−θx, x, θ > 0, is an exponential distri-
bution, then

φθ(s) =
θ

θ + s
, s > −θ,

and (2) yields

H̄(x | θ) =
θ

θ + R(x)
, x, θ > 0. (4)
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If R(x) = K(x)/K̄(x) for some distribution K concentrated on
[0,∞), then (4) becomes

H̄(x | θ) =
θK̄(x)

θK̄(x) + K(x)
=

θK̄(x)
1 − θ̃K̄(x)

, x, θ > 0. (5a)

This is the tilt parameter family of Section F.

If R(x) = − log F̄ (x) for some distribution F concentrated on [0,∞),
(4) becomes

H̄(x | θ) =
θ

θ − log F̄ (x)
, x, θ > 0. (5b)

This defines a semiparametric family of survival functions, but neither
Criterion 1 nor Criterion 2 of Section A.c is satisfied.

Mixture representations of the form (2) are not unique. Indeed,
the distribution G can be replaced by any other distribution G1
with support (0,∞), so long as the hazard function R is replaced
by an appropriately chosen hazard function R1. To see this, solve the
equation

H̄(x) = φ(R(x)) = φ1(R1(x))

to find that

φ−1
1 φ(R(x)) = R1(x). (6)

With this definition, R1 is a hazard rate and

H̄(x) =
∫ ∞

0
e−ξR(x) dG(ξ) =

∫ ∞

0
e−ξR1(x) dG1(ξ). (7)

M.5.a. Example. First, suppose that in (2), G is a gamma distri-
bution with scale parameter λ and shape parameter ν. According to
9.A(6), this distribution has the Laplace transform

φλ,ν(s) =
[

λ

λ + s

]ν
, s > −λ.
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As in Proposition M.4.a., take R(·) = K(·)/K̄(·) in (2) to obtain the
survival function

H̄(x |λ, ν) = φλ,ν

(
K(x)
K̄(x)

)
=

[
λK̄(x)

λK̄(x) + K(x)

]ν

=

[
λK̄(x)

1 − λ̄K̄(x)

]ν

, x, λ, ν > 0. (8)

This is (11c) of Section F.

M.5.b. Example. Replace the gamma distribution used to derive (8)
by an inverse Gaussian distribution (Chapter 13). According to 13.A(4),
this distribution has the Laplace transform

φIG(s) = exp

{
ν

[
1 −

(
1 +

2s
λ

)1/2
]}

.

By setting

φIG(R1(x)) = φλ,ν

(
K(x)
K̄(x)

)
,

it follows that

R1(x) =
λ

2

⎧⎨
⎩

[
1 − log

λK̄(x)
1 − λ̄K̄(x)

]2

− 1

⎫⎬
⎭ ,

and consequently

φIG(R1(x)) =

[
λK̄(x)

1 − λ̄K̄(x)

]ν

. (8a)

This does not yield a very convenient mixture representation to replace
(8), but it illustrates the lack of uniqueness of the mixture representa-
tion. However, in this case it is crucial that the gamma density with its
convolution parameter be replaced by another distribution with a con-
volution parameter. For the inverse Gaussian distribution, this require-
ment is fulfilled because ν appears as a power in its Laplace transform.

Examples M.5.a and M.5.b illustrate the following proposition.
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M.6. Proposition. If Θ = (0,∞), then (2) takes the form

H̄(x | θ) = φθ(R(x)), x, θ > 0. (9)

In this case, the parameter θ is a frailty parameter for H(· | θ) if and
only if it is a convolution parameter for G(· | θ).
Proof. Suppose first that θ is a convolution parameter for G(· | θ). Then,
(9) can be written in the form

H̄(x | θ) = [φ(R(x))]θ, (10)

where φ is the Laplace transform of G(· | 1). Consequently, θ is a frailty
parameter for H(· | θ).

Next, suppose that θ is a frailty parameter for H(· | θ), and let φ(· | θ)
denote the Laplace transform of G(· | θ). It follows that

H̄(x | θ) = [H̄(x | 1)]θ = [φ(R(x) | 1)]θ,

that is, φ(z | θ) = [φ(z | 1)]θ; this means that θ is a convolution param-
eter for G(· | θ). �

M.6.a. Example. In Example M.5.a, consider the case that
R(x | ξ, α) = ξxα is the hazard function of a Weibull distribution and
φ is the Laplace transform of an exponential distribution. Then,

H̄(x |α, θ) = [λ/(λ + xα)]θ, α, θ > 0.

Because gamma distributions form a convolution family, and Weibull
distributions form a survival product (frailty parameter) family, the
outcome here is another frailty parameter family. This family is a form
of what is sometimes called Burr’s distribution (see Johnson, Kotz and
Balakrishnan, 1994, p. 54). It is also a form of what Arnold (1983,
p. 1) calls a Pareto Type IV distribution (see Section 11.B).

Another special case of Example M.5.a is treated in Section 10.A.h.

The following proposition is a consequence of Proposition M.6, but
is important enough to warrant repeating.
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M.6.b. Proposition. Let {G(· | ν), ν > 0} be a convolution family
and suppose that (2) holds (with ν in place of θ). Then,

H̄(x | ν) = [H̄(x)]ν , ν, x > 0. (11)

Proof. Because {G(· | ν), ν > 0} is a convolution parameter family
φν(·) = [φ(·)]ν and consequently (10) yields

H̄(x | ν) = [φ1(φ−1
1 H̄(x))]ν = [H̄(x)]ν . �

Equation (11), derived from (2), is independent of the convolution
family {G(· | ν), ν > 0}; in this respect, convolution families are an ex-
ceptional case. In general, the mixture (2) does indeed depend upon the
mixing distribution G(· | θ). Consequently, it is sometimes convenient
to rewrite (2) in such a manner as to relate the hazard function R(·)
to H̄(· | θ0) for some specific value θ0 of θ. To this end, fix θ0 ∈ Θ and
regard G(· | θ0) as the underlying distribution for the semiparametric
family {G(· | θ), θ ∈ Θ}. Write H̄(·) in place of H̄(· | θ0) and write φ in
place of φθ0 . With this notation, it follows from (2) that

R(x) = φ−1(H̄(x)).

Thus, (2) can be rewritten as

H̄(x | θ) = φθφ
−1H̄(x), x > 0, θ ∈ Θ. (12)

In this form, {H̄(· | θ), θ ∈ Θ} is a semiparametric family of survival
functions with underlying survival function H̄(·) = H̄(· | θ0). In the fol-
lowing examples, θ0 is conveniently taken to be 0 or 1.

The form (2) is used above as a step toward the derivation of (12),
which clearly exhibits a semiparametric family. But (12) is of interest
also because it is suggestive of different examples.

M.7. Proposition. Let {G(· |λ), λ > 0} be a scale parameter family
with underlying distribution G(·) = G(· | 1) such that G(x) = 0, x <
0. Denote the Laplace transform of G by φ. Then (12) takes the
form

H̄(x |λ) = φ

(
φ−1H̄(x)

λ

)
, x, λ > 0. (13)
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Proof. Because G(· |λ) has the Laplace transform φ(s |λ) = φ(s/λ),
(13) follows directly from (12). �

Note that for each underlying distribution G (Laplace transform
φ), (13) defines a semiparametric family. This is a contrast to Propo-
sition M.6.b where the family (11) is independent of the convolution
parameter family {G(· | ν), ν > 0}.

Remark. It can be verified that any semiparametric family obtained
from (13) by choice of φ will satisfy Criteria 1 and 2 of Section A.c.

M.7.a. Example. If G is degenerate at 1, that is, G(x) = 0, x <
1, G(x) = 1, x ≥ 1, then φ(s) = e−s, and (13) yields H̄(x |λ) =
[H̄(x)]1/λ, λ, x > 0. In this case, 1/λ is a frailty parameter. Although
λ is introduced in Proposition M.7 as a scale parameter, in this ex-
ample, 1/λ also acts as a convolution parameter, which accords with
Proposition M.6.

M.7.b. Example. If Ḡ(x) = e−x, x ≥ 0, is an exponential survival
function, then

φ(s) =
1

1 + s
, s > −1, and φ−1(u) =

1
u
− 1. (14)

In this case, (13) yields

H̄(x |λ) =
λH̄(x)

1 − λ̄H̄(x)
, λ, x > 0;

this is the tilt parameter family of Section F and is also encountered in
Example M.4.c.

M.7.c. Example. If G is an inverse Gaussian distribution (Chapter
13) with unit parameters, then

φ(s) = exp {1 − (1 + 2s)1/2}, s > −1
2
, and

φ−1(u) =
1
2
[(1 − log u)2 − 1], u ≤ 1. (15)
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Here, (13) becomes

H̄(x |λ) = exp

⎧⎨
⎩1 −

[
1 +

(1 − log H̄(x))2 − 1
λ

]1/2
⎫⎬
⎭ , x, λ > 0. (16)

This semiparametric family is neither familiar nor attractive. When
H̄(x) = e−x, x ≥ 0, (16) becomes

H̄(x |λ) = exp

⎧⎨
⎩1 −

[
1 +

2x + x2

λ

]1/2
⎫⎬
⎭ , x, λ > 0.

It can be verified that this distribution is DHR.

M.8. Proposition. Let G be a distribution with density g concen-
trated on [0,∞), and let I be the interval on which the Laplace trans-
form φ of G is finite. Denote by {G(· | s), s ∈ I} the Laplace transform
family with underlying distribution G. In (12), take θ0 = 0 and write
H̄(x) = H̄(x | 0) to obtain

H̄(x | s) =
φ(s + φ−1H̄(x | 0))

φ(s)
, s ∈ I. (17)

Proof. Here, φθ0 = φ and G(· | s) has the density

g(x | s) =
e−sx

φ(s)
g(x), s ∈ I.

Thus, G(· | s) has the Laplace transform

φs(t) =
∫

e−tx e
−sx

φ(s)
g(x) dx =

φ(s + t)
φ(s)

,

and (12) yields (17). �

Proposition M.8 can also easily be proved directly from (2).

For any distribution G concentrated on [0,∞), (17) leads to a semi-
parametric family {H(· | s), s ∈ I}. Such families satisfy Criterion 1 of
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Section A.c, with the underlying distribution H(· | 0). However, these
families need not satisfy Criterion 2 of Section A.c.

M.8.a. Example. If G is an exponential distribution as in Example
M.4.c, then (17) becomes

H̄(x | s) =
(s + 1)H̄(x | 0)
1 + sH̄(x | 0)

, s > −1, x > 0.

This is the tilt parameter family of Example M.4.c, but with λ replaced
by s + 1.

By way of explanation, note that for the exponential distribution,
the introduction of a Laplace transform parameter leads to the same
parametric family as the introduction of a scale parameter.

M.8.b. Example. Equation (15) gives the Laplace transform of an
inverse Gaussian distribution G with unit parameters. In this case,
(17) becomes

H̄(x | s) = exp {(2s + 1)1/2− [2s + (1− log H̄(x | 0))2]1/2},

s > −1
2
, x > 0. (18)

Clearly, this semiparametric family is quite unattractive.

With H̄(x | 0) an exponential survival function with unit parameter,
(18) becomes

H̄(x | s) = exp {(2s + 1)1/2 − [2s + (1 + x)2]1/2},

s > −1
2
, x > 0. (19)

an unfamiliar extension of the exponential survival function H̄(x | 0).
It can be verified that the survival function (19) is DHR, for s < 0, and
is IHR, for s > 0.

c. Mixtures of Resilience Parameter Families

With the underlying distribution F , let F (· | η) = [F (·)]η, η > 0, define
a resilience parameter family, and let S(·) = logF (·) be the reverse
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hazard function of F . Then (1) takes the form

H(x | θ) =
∫

[F (x)]η dG(η | θ) =
∫

eηS(x) dG(η | θ)

= φθ(−S(x)), θ ∈ Θ, (20)

where φθ is the Laplace transform of G(· | θ).
Caution. Here, the function S is not to be confused with s, often used
to denote a Laplace transform parameter.

Because of the similarity of (20) and (2), the propositions and ex-
amples of Section M.b all have counterparts for this section. Some of
these are given here.

M.9. Example. If Ḡ(x | θ) = e−θx, x, θ > 0, as in Example M.5.a, then
(20) becomes

H(x | θ) =
θ

θ − S(x)
, θ, x > 0. (21)

If

S(x) =
K̄(x)
K(x)

,

for some distribution K concentrated on [0,∞) then (21) yields

H(x | θ) =
θK(x)

θK(x) + K̄(x)
=

θK(x)
1 − θ̄K(x)

, θ, x > 0, (22)

which is the distribution defined in terms of the survival function in
(5a), but with θ replaced by 1/θ.

As in Section M.b, suppose that {G(· | θ), θ ∈ Θ} is a semiparametric
family with underlying distribution G(· | θ0). Write H(·) in place of
H(· | θ0) and φ in place of φθ0 . With θ = θ0 in (20), it follows that

S(x) = φθ(φ−1H(x)). (23)

M.10. Proposition. In a mixture of the form (20), θ is a resilience pa-
rameter for {H(· | θ), θ > 0} if and only if it is a convolution parameter
for {G(· | θ), θ > 0}.
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The proof of this result is analogous to the proof of Proposition M.6.

M.10.a. Proposition. Let {G(· | ν), ν > 0} be a convolution param-
eter family and suppose that (20) holds. With the notation H(·) =
H(· | 1), it follows that

H(x | ν) = [H(x | 1)]ν , ν, x > 0. (24)

This is the general form for a resilience parameter family, and the result
is independent of {G(· | ν), ν > 0}.

M.11. Proposition. Let {G(· |λ), λ > 0} be a scale parameter family
with underlying distribution G(·) = G(· | 1), and let φ be the Laplace
transform of G. Suppose that G(x) = 0, for all x < 0. If (20) holds and
H(·) = H(· | 1), then

H(x |λ) = φ

(
φ−1H(x)

λ

)
, x, λ > 0. (25)

The proof of this proposition is analogous to that of Proposi-
tion M.7 and is omitted. For any choice of G (Laplace transform φ),
(25) yields a semiparametric family that satisfies Criteria 1 and 2 of
Section A.c.

M.11.a. Example. As in Example M.7.a, let Ḡ(x) = e−x, x > 0;

then φ(s) =
1

1 + s
and φ−1(u) =

1
u
− 1. In this case, (25) yields the

family

H(x |λ) =
λH(x)

1 − λ̄H(x)
, λ > 0,

or with λ = 1/γ and a change in notation,

H(x | γ) =
H(x)

γ + γ̄H(x)
, γ > 0.

It can be verified directly that H̄(· | γ) is the tilt parameter family of
Example M.8.a. See also F(10).
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If G is replaced by a gamma distribution with Laplace transform
φ(s | ν) = (1 + s)−ν , ν > 0, then (25) yields the family

H(x | γ, ν) =
(

H(x)
γ + γ̄H(x)

)ν

, γ, ν > 0.

This is a tilt parameter family with added resilience parameter ν.

d. Mixtures of Convolution Families

Mixtures of convolution parameter families can more easily be studied
in terms of Laplace transforms than in terms of distribution or survival
functions. If {F (· | ν), ν > 0} is a convolution parameter family, then
according to Proposition J.2, F (· | 1) is infinitely divisible. Denote the
Laplace transform of F (· | 1) by φ, so that φν is the Laplace transform of
F (· | ν). Let {G(· | θ), θ ∈ Θ} be a semiparametric family of distribution
with mass concentrated on (0,∞), and denote the Laplace transform
of G(· | θ) by φθ. Then the mixture

H(x | θ) =
∫

F (x | ν) dG(ν | θ) (26)

has the Laplace transform

φH(s | θ) =
∫

[φ(s)]ν dG(ν | θ) =
∫

e−ν(log φ(s)) dG(ν | θ)

= φθ(− log φ(s)). (27)

This equation is similar to (9), but with the survival function F̄ and
H̄(· | θ) of (9) replaced by the corresponding Laplace transforms. Con-
sequently, the equations have parallel special cases.

The following lemma, to be compared with Lemma M.2, states that
for convolution families, convolutions of mixtures are mixtures of con-
volutions. This fact is useful in Bayesian statistical analysis, and it is
used here to show that a convolution family mixed by a convolution
family yields a convolution family.
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M.12. Lemma (Keilson and Steutel, 1974, p. 116). Suppose that
{F (· | θ) : θ ∈ A} is a convolution parameter family and

Hi(x) =
∫

F (x | θ) dGi(θ), i = 1, 2.

Then

(H1 ∗H2)(x) =
∫

F (x | θ) d(G1 ∗G2)(θ).

Proof. For convolution parameter families,

(H1 ∗H2)(x) =
∫

H1(x− z) dH2(z) =
∫
z

∫
θ
F1(x− z) dG1(θ) dH2(z)

=
∫
θ

∫
z
F1(x− z | θ) dH2(z) dG1(θ)

=
∫
θ

∫
z
H2(x− z) dF1(z | θ) dG1(θ)

=
∫
θ

∫
z

∫
η
F2(x− z | η) dG2(η) dF1(z | θ) dG1(θ)

=
∫
θ

∫
z
F (x | θ + η) dG2(η) dG1(θ). �

M.13. Proposition. If {F (· | θ) : θ ∈ A} and {G(· |α) : α ∈ B} are
convolution families, and if

H(x |α) =
∫

F (x | θ) dG(θ |α), α ∈ B, (28)

then {H(· |α) : α ∈ B} is a convolution family.

Proof. This is immediate from Lemma M.12. �

An early important result is that a convolution family mixed by an
infinitely divisible distribution is infinitely divisible.

M.14. Proposition (Feller, 1971, p. 538; Kent, 1981). If the family
{F (· | θ) : θ ∈ A} is a convolution family and G is infinitely divisible,
then the mixture H given by (28) is infinitely divisible. Moreover,

Hα∗(x) =
∫

F (x | θ) dGα∗(θ), α ∈ B. (29)
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Proof. Suppose that for some positive integer m,α = 1/m so that
(Gα∗)m∗ = G. If Hα∗ is defined by (29), then by Lemma M.12,
(Hα∗)m∗ = H. This proves that H is infinitely divisible and (29) is sat-
isfied for α = 1/m,m = 1, 2,. . . . Again from Lemma M.12, it follows
immediately that (29) holds for rational α, and the proof is completed
by a limiting argument. �

Multivariate versions of the above results have been given by Mar-
shall and Olkin (1990).

M.15. Proposition. If {G(· |λ), λ > 0} is a scale parameter family
and φλ is the Laplace transform of G(· |λ), then φλ(s) = φ1(s/λ), and
(27) takes the form

φH(s |λ) = φ1

(− log φ(s)
λ

)
= φ1

(
φ−1

1 φH(s | 1)
λ

)
,

where H is given by (26).

M.15.a. Example. If φ1(s) = 1/(1 + s), it follows that φH(s |λ) =
λ/(λ− log φ(s)). If also, φ(s) = 1/(1 + s), then

φH(s |λ) = λ/(λ + log(1 + s)).

M.16. Proposition. Let G be a distribution with density g and
Laplace transform φG that is finite on the interval I, and let
{G(· | θ), θ ∈ I} be the Laplace transform family with underlying dis-
tribution G. Thus, G(· | θ) has the density

g(· | θ) =
e−θx

θG(θ)
g(x), x > 0, θ ∈ I.

If (27) holds, it follows that

φH(s | θ) =
∫

e−ν(− log φ(s)) e−θν

φG(θ)
g(ν) dν =

φG(θ − log φ(s))
φG(θ)

=
φG(θ + φ−1

G φH(s | θ))
φG(θ)

.
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For each distribution G, this defines a semiparametric family with un-
derlying distribution having the Laplace transform φH(· | θ).

N. Summary of Order Properties

In the following summary, only the strongest order known to hold is
noted. For example, if a likelihood ratio order is noted, then the hazard
rate and stochastic orders also hold.

Scale
F (x |λ) = F (λx), λ > 0 stochastic order ≤st decreasing

in λ
Power

F (x |α) = F (xα), α > 0 convex transform order ≤cx
decreasing in α

Frailty
F̄ (x | ξ) = [F̄ (x)]ξ, ξ > 0 likelihood ratio order ≤lr

decreasing in ξ
Resilience

F (x | η) = [F (x)]η, η > 0 likelihood ratio order ≤lr
increasing in η

Tilt

F̄ (x | γ) =
γF̄ (x)

1 − γ̄F̄ (x)
, γ > 0 likelihood ratio order ≤lr

decreasing in γ
Hazard power

F̄ (x | ζ) = exp{−[R(x)]ζ}, ζ > 0 no general results known about
orders

Moment
F̄ (x |β) = 1

μβ

∫ ∞
x zβ dF (z) likelihood ratio order ≤lr

increasing in β
Laplace transform

F̄ (x | s) = 1
φ(s)

∫ ∞
x e−sz dF (z) likelihood ratio order ≤lr

decreasing in s
Convolution

F (x | ν) = F ν∗(x), ν > 0 stochastic order ≤st increasing
in ν

Age
F̄t(x) = F̄ (t + x)/F̄ (t), t ≥ 0 if F is IHR, hazard rate order

≤hr decreasing in t
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O. Additional Semiparametric Families

The various semiparametric families discussed in earlier sections of this
chapter certainly do not exhaust the interesting possibilities. To em-
phasize this point, some additional families are briefly mentioned here.

O.1. Example. As discussed in Section F·j, Dabrowska and Doksum
(1988) study the family with hazard function

R(x | θ) =
1 − [F̄ (x)]θ

θ[F̄ (x)]θ
, θ > 0

= − log F̄ (x), θ = 0. (1)

This example is motivated when θ is a positive integer by the fact that
F̄ θ is the survival function of a series system of θ components all with
survival function F̄ . Then, θR(x | θ) is the odds ratio of system failure
by time x. This example satisfies Criterion 1 stated at the beginning
of this chapter, but fails to satisfy Criterion 2. That is, if − log F̄ has
the form of (1) but with some survival function Ḡ in place of F̄ , then
the resulting hazard function would not be of the form as (1).

O.2. Example. Equilibrium distributions are defined and briefly dis-
cussed in Section 20.B.c. These distributions lead to the parametric
family with density f(s) given by

f(s)(x) =
∫ ∞

−∞
[γ(s)(t)/λs]f(x− t) dt, s > 0,

= f(x), s = 0. (2)

Here λs = μs/Γ(s + 1) is the normalized sth moment of f and

γ(s)(t) = (−t)s−1/Γ(s), t ≤ 0, (3a)
= 0, t > 0.

In particular,

f(1)(x) = F̄ (x)/μ. (3b)

This parametric family clearly satisfies Criterion 1 stated at the begin-
ning of this chapter. That Criterion 2 is satisfied follows from 20.B(13).
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Of course the range of possible values for s depends upon the existence
of moments.

O.3. Example. According to 1.C(4), if F is the distribution of a non-
negative random variable, then the rth moment μr of F is given by

μr = r

∫ ∞

0
F̄ (x)xr−1 dx.

Consequently.

f(x | r) =
rxr−1F̄ (x)

μr
, x ≥ 0, (4)

is a density for all r such that μr is finite. This density can be obtained
by introducing a moment parameter in the equilibrium distribution f(1)
given by (2a). It fails to satisfy Criterion 1, but it may be of interest
in some circumstances.

O.4. Example. Suppose that the underlying distribution has hazard
function R, and consider the hazard function

R(x | θ) = R(x) eθx, θ ≥ 0. (5)

This semiparametric family satisfies Criterion 1, that the underlying
distribution is a member of the parametric family, because R(x | 0) =
R(x). Moreover, Criterion 2 is satisfied; reuse of the same parametric
family does not add a new parameter. More explicitly, if R(x | ρ) =
R(x) eρx is used in place of R in (5), then the result is the hazard
function R(x | ρ + θ), and this is a reparameterization of the family
(5).

This example has been proposed by Murthy, Xie and Jiang (2004,
pp. 24, 134) for the case that R(x) = (λx)α is the hazard function of a
Weibull distribution.

P. Distributions not Admitting Parameters

In Section A.a, the notion of a semiparametric family is introduced,
where there are two parameters; one parameter is real and the other
parameter is a survival function. A survival function in this semipara-
metric family is denoted there with the notation by H̄(· | θ, F̄ ).
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For each of the semiparametric families discussed above there is
some underlying distribution F such that

H̄(· | θ, F̄ ) = F̄ , for all θ. (1)

For example, if the parameter θ is a frailty parameter, that is, if

H̄(· | θ, F̄ ) = [F (·)]θ, θ > 0,

and if F is a degenerate distribution (taking on only the values 0 and
1), then (1) is satisfied. The introduction of a frailty parameter does not
alter a degenerate distribution. In cases of this kind, the semiparametric
family cannot be used to introduce a parameter into the distribution
F . In most cases, the distributions F with this very stringent property
are degenerate, as in the frailty parameter example. In each of the
following, it is assumed that F is a proper distribution, i.e., it puts
mass 1 on (−∞,∞).

P.1. Scale parameters. F (λx) = F (x) for all λ > 0 if and only if F
is degenerate at 0.

P.2. Power parameters. F̄ (xα) = F̄ (x) for all, α > 0 if and only if
F is a Bernoulli distribution, i.e., F puts mass only at 0 and/or 1.

P.3. Frailty parameters. [F̄ (x)]η = F̄ (x) for all η, x > 0 if and only
if F is degenerate at some point.

P.4. Resilience parameters. [F (x)]ξ = F (x) for all ξ, x > 0 if and
only if F is degenerate at some point.

P.5. Tilt parameters.
γF̄ (x)

1 − γ̄F̄ (x)
= F̄ (x) for all γ, x > 0 if and only

if F is degenerate at some point.

P.6. Hazard power parameters. exp {−[R(x)]ζ} = F̄ (x) for all
ζ, x > 0 if and only if F̄ (x) takes only the values 0, e−1, and 1. This
means that either F is degenerate at some point, or F has mass at
only two points; this mass must be e−1 at the larger of the two points.
This results from the fact that R(x) can take on any of the values ∞, 1,
or 0.

P.7. Moment parameters.
∫ ∞
x (zβ/μβ) dF (z) = F̄ (x) for all β, x > 0

if and only if F is degenerate at some point.
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P.8. Laplace transform parameters.
∫ ∞
x (e−sz/φ(s)) dF (z) = F̄ (x)

for all s, x > 0 if and only if F is degenerate at some point.

P.9. Convolution parameters. [φ(s)]ν = φ(s) for all s, ν > 0 if and
only if F is degenerate at 0.

P.10. Age parameters. F̄ (x + t)/F̄ (t) = F̄ (x) for all x, t > 0 if and
only if F is an exponential distribution.
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8

The Exponential Distribution

“That’s not the regular rule: you invented it just now.” “It’s the oldest rule in
the book” said the King. “Then it ought to be Number One.” said Alice.

Lewis Carroll, Alice in Wonderland

The most important one parameter family of life distributions is the
family of exponential distributions. This importance is partly due to
the fact that several of the most commonly used families of life dis-
tributions are two- or three-parameter extensions of the exponential
distributions. But the exponential distributions, with their constant
hazard rates, form a baseline for evaluating other families. Because
they have only one parameter, they are quite simple to describe and
are exceptionally amenable to statistical analyses. A path-breaking pa-
per of Epstein and Sobel (1953) brought new attention to the uses of
the exponential distribution.

Because of their remarkable properties, exponential distributions
arise naturally in theoretical settings. They have many characteriza-
tions of both theoretical and practical importance. It is not surpris-
ing, then, that exponential distributions have been overused in applica-
tions; but that does not diminish their importance. Some of the reasons
why exponential distributions play a central role within the class of all
life distributions are discussed in this chapter. See also Balakrishnan
and Basu (1995), Johnson, Kotz and Balakrishnan (1994, Chapter 19),
Mann, Schafer and Singpurwalla (1974), and Nelson (2004). For char-
acterizations of the exponential distribution, see Azlarov and Volodin
(1986) or Galambos and Kotz (1978).



SVNY289-Olkin April 16, 2007 14:24

292 8. Exponential Distribution

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

x

f
(x

)

l = 10

l = 2

l = 1

l = 0.5

Fig. A.1. Densities of the exponential distribution

A. Defining Functions

The survival function F̄ , density f , and hazard rate r of the exponential
distribution (also given in Section 1.F.a) are, respectively,

F̄ (x) = e−λx, x ≥ 0, (1)

f(x) = λ e−λx, x ≥ 0, (2)

r(x) = λ, x ≥ 0, (3)

where the parameter λ > 0 acts both as a scale parameter and a frailty
parameter. See Figure A.1.

Because so many life distributions are related to the exponential dis-
tribution, the expression (1) partially explains why survival functions
often take a more convenient form than distribution functions. Clearly,
(1) can be rewritten in the form

F (x) = 1 − e−λx, x ≥ 0. (4)
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This relatively awkward expression becomes even more awkward in
some of the two-parameter extensions discussed in Chapter 9.

For exponential distributions, it is easy to verify that the residual
life distribution at t is independent of t. In fact, this characterizes the
exponential distributions, as is shown in Section B. As a consequence,
the mean residual life of exponential distributions is independent of the
age t, another characterizing property.

Singpurwalla (2003) makes extensive use of the fact that for any
life distribution G with the hazard function R, Ḡ(x) = exp {−R(x)} =
P{X > R(x)}, where X has an exponential distribution with parame-
ter 1. From this point of view, it is to be expected that the exponential
distribution will play a central role.

Because the survival function has a simple form, it is straightforward
to write down the odds ratio

Ø(x) =
F̄ (x)
F (x)

=
1

eλx − 1
.

To find the total time on test transform, it is first necessary to verify
that

F−1(p) = [− log (1 − p)]/λ, 0 ≤ p ≤ 1. (5)

From (5) it follows that the total time on test transform of Definition
1.I.2 is given by the simple form

ψ(p) = p/λ, 0 ≤ p ≤ 1. (6)

It is verified in Section 1.F.a that the mean of the exponential distri-
bution (1) is 1/λ, so that the normalized total time on test transform
ψ̃ = ψ/μ is given by ψ̃(p) = p, 0 ≤ p ≤ 1.

Direct computations show that the Lorenz curve (Definition 1.I.7)
for exponential distributions is given by

L(p) = p + (1 − p) log (1 − p), 0 ≤ p ≤ 1,

and that the Gini index is 1/2.
See Figures A.2 and A.3 for graphs of the inverse and Lorenz curves

for the exponential distribution.
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Fig. A.2. Inverse of the exponential distribution function

a. Moments

If X has an exponential distribution with parameter λ, then for
r > −1,

μr = EXr =
∫ ∞

0
xrλ e−λx dx = Γ(r + 1)/λr, (7)

where Γ is the usual gamma function discussed in Section 23.A. Thus,
exponential distributions have finite moments of all orders greater than
−1 and they take a simple form. The normalized moments

λr = μr/Γ(r + 1) = 1/λr (8)

have an even simpler form. Recall that the normalized moments play
a special role in Section 6.A.
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Fig. A.3. The Lorenz curve for the exponential distribution

From (7), it follows that X has the variance

σ2 = Var (X) = 1/λ2 = μ2
1. (9)

This means that X has coefficient of variation (see 1.C(7))

CV(X) = μ/σ = 1. (10)

Thus, for the exponential distribution, the standard deviation and the
mean are equal; this is in stark contrast to the normal distribution,
where these quantities are quite unrelated. This might be expected from
the fact that the normal distribution has more than one parameter.

A direct computation shows that the Laplace transform φ of X is
given by

φ(s) = E e−sX =
λ

λ + s
, s > −λ. (11)
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B. Characterizations of the Exponential Distribution

Some of the many characterizations of the exponential distribution are
important for the purposes of this book, and are described in this
section. For additional characterizations, see, e.g., Arnold and Huang
(1975), Azlarov and Volodin (1986) or Galambos and Kotz (1978).

Perhaps the best known characterization of the exponential distri-
bution is the so-called “lack of memory” property.

B.1. Proposition (Lack of memory property). A distribution F
is exponential if and only if

F̄ (x + t) = F̄ (x)F̄ (t) for all x, t ≥ 0. (1)

Equation (1) is known as the “lack of memory” property of the
exponential distribution primarily because when F̄ (t) > 0, it can be
rewritten in the form

F̄t(x) =
F̄ (x + t)
F̄ (t)

= F̄ (x) for all x, t ≥ 0. (2)

The obvious interpretation of (2) is that the conditional probability of
survival for an additional time x given survival up to time t is inde-
pendent of the age t, and is the same as the unconditional probability
of survival for a time x. This interpretation is most helpful in under-
standing the exponential distribution.

Equation (1) is a classical functional equation to which Cauchy’s
name is associated. This equation, discussed more fully in Proposition
22.A.2, is known to have a number of solutions, but the only bounded
measurable solutions are exponential survival functions. A simple proof
of Proposition B.1, which depends on the assumption of a finite expec-
tation, is given in B.4. Here is another simple proof.

B.1.a. Proof of Proposition B.1. Rewrite (1) in the form

R(x + t) −R(t) = R(x) for all x, t ≥ 0, (1a)

and set x = 0 to see that R(0) = 0. Thus, (la) can be written as

R(x + t) −R(t)
x

=
R(x) −R(0)

x
, t ≥ 0, x > 0. (1b)
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Because R is monotone, it is differentiable almost everywhere; if it is
differentiable at t, then by (1b), it is differentiable at 0, and from (1b),
it follows that R is differentiable everywhere. Let x → 0 in (1b) to con-
clude that r(t) = r(0), that is, r is a constant. The proof is completed
by Proposition B.2. �

B.1.b. Comment. A common interpretation of Proposition B.1 is
that an item with an exponential distribution does not “wear out.”
Indeed, the term “lack of memory” may come from this idea. But an
exponential distribution can arise as a mixture of distributions that are
not exponential. For example, if

F̄ (x | θ) = 1, x < θ,

= 0, x ≥ θ,

then ∫ ∞

0
F̄ (x | θ) g(θ) dθ = Ḡ(x),

and if G is an exponential distribution, then this mixture is an expo-
nential distribution, and exponential distributions can arise in other
ways as mixtures. If an item is selected from the mixture of the above
example, the item has a degenerate distribution, and consequently, it
degrades with time. See Evans (2000) for a thoughtful discussion of this
issue.

B.2. Proposition. A distribution has a constant hazard rate if and
only if it is an exponential distribution.

Proof. That the exponential distribution given by A(1) has the constant
hazard rate λ follows easily from A(1) and A(2). From 1.B(3), that is,
from the formula

F̄ (x) = exp
{
−

∫ x

0
r(z) dz

}
,

it follows that any distribution with constant hazard rate must be an
exponential distribution. �

The intuitive content of Proposition B.2 is as follows: The condi-
tional probability of failure (death) in the interval (t, t + Δt) given sur-
vival up to time t is independent of the age t. Sometimes this property,
or the property (2), is described by saying that “there is no premium
for waiting,” in accordance with the following example.
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B.3. Example. Suppose that you go out on a pier to fish and find
someone fishing with the same equipment and bait that you plan to use.
You drop your line into the water and begin to fish. Measured from the
time you drop your hook into the water, does your waiting time to catch
a fish have the same distribution as that of the fisher who has already
been fishing for a while? Or does he receive some premium or penalty
for waiting? If the waiting time distributions are the same however long
the fisher has been fishing, then because of Propositions B.1 or B.2, the
waiting time distribution must be an exponential distribution.

If there is a premium for waiting, then the distribution is NBU; if
there is a penalty for waiting, then the distribution is NWU.

B.4. Proposition. A distribution F has a mean residual life indepen-
dent of age if and only if it is an exponential distribution.

Proof. If F is an exponential distribution, then (1) holds. But (1) states
that the residual life distribution at t is independent of t, and conse-
quently the mean residual life is independent of t. To prove the converse,
suppose that the mean residual life is independent of age. This means
that F must have a finite expectation μ, and moreover,

∫ ∞

t
F̄ (x) dx = μF̄ (t) for all t ≥ 0. (3)

Now, the left side of (3) is differentiable with respect to t, and conse-
quently the right side must also be differentiable. Perform this differ-
entiation to obtain

f(t)
F̄ (t)

=
1
μ
.

Thus, the hazard rate is a constant, and by Proposition B.2, the dis-
tribution must be exponential. �

An alternative proof of Proposition B.4 can be obtained from
1.B(13), which relates the hazard rate to the mean residual life m via
the equation

r(t) =
m′(t) + 1
m(t)

.

If m is constant, then m′(t) = 0, and consequently r is constant and F
is an exponential distribution.
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Here is another less well-known origin of the family of exponential
distributions; it says that if a residual life distribution has a limit as the
age t goes to ∞, then that limit must be an exponential distribution.

B.5. Proposition. If

lim
t→∞

F̄t(x) = lim
t→∞

F̄ (x + t)
F̄ (t)

= ψ(x)

exists for all x ≥ 0, then for some λ, 0 ≤ λ ≤ ∞, ψ(x) = exp {−λx}.
Proof. For x, y ≥ 0,

ψ(x + y) = lim
t→∞

F̄t(x + y) = lim
t→∞

F̄ (x + y + t)
F̄ (t)

(4)

= lim
t→∞

F̄ (x + y + t)
F̄ (y + t)

F̄ (y + t)
F̄ (t)

= lim
t→∞

F̄ (x + y + t)
F̄ (y + t)

lim
t→∞

F̄ (y + t)
F̄ (t)

= ψ(x)ψ(y).

Equation (4) is the Cauchy functional equation of Proposition 22.A.2.
Because ψ(0) = 1 and ψ is decreasing, it follows from Proposition
22.A.2 that ψ is the survival function of a possibly improper expo-
nential distribution. The possibility that λ is 0 or ∞ stems from the
fact that no assumption was made here that ψ is a survival function. �

The following is a variant of Proposition B.5.

B.6. Proposition. If the hazard rate r of F has a finite positive limit
limt→∞ r(t) = λ, then Ft converges in distribution to an exponential
distribution with parameter λ as t → ∞.

Proof. From 1.B(3), it follows that

− log F̄t(x) = − log F̄ (x + t) + log F̄ (t) =
∫ t+x

t
r(z) dz → λx. �

A stronger result than Proposition B.5 can be proved using the
following lemma concerning regular variation which is given by Feller
(1971, p. 275). This lemma is closely related to the functional equation
of Pexider given in Proposition 22.B.1.
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B.7. Lemma. If U is a positive monotone function defined on (0,∞)
such that

lim
v→∞

U(uv)/U(v) = ψ(u) ≤ ∞

on a dense set A of points, then ψ(u) = uρ, where −∞ ≤ ρ ≤ ∞.

B.8. Proposition. If limt→∞ F̄t(x) = limt→∞ F̄ (t + x)/F̄ (t) exists on
a dense set, then on (0,∞), the limit is identically 0, identically 1, or
is the survival function of an exponential distribution.

Proof. With et = u, ex = v, this result follows directly from Lemma
B.7. �

Because their hazard rates are constant, exponential distributions
belong to all of the various nonparametric classes discussed in Chapters
4 and 5. This fact leads to several additional characterizations.

B.9. Proposition. A distribution F is an exponential distribution if
and only if any one of the following holds:

(i) F has support [0,∞) and has a density that is both log concave and
log convex on its support.
(ii) F is in the intersection of the classes of IHR and DHR distributions.
(iii) F is in the intersection of the classes of IHRA and DHRA distri-
butions.
(iv) F is in the intersection of the classes of NBU and NWU distribu-
tions.
(v) F is in the intersection of the classes of NBUE and NWUE distri-
butions.

There are two parts to the characterizations (i) to (v): That only expo-
nential distributions lie in the intersection of corresponding classes in
each case follows from the inclusion relations of 5.G.b, if it is shown to
hold for the NBUE and NWUE classes. That all exponential distribu-
tions lie in these intersections follows from the fact that they lie in the
intersection of the classes with log-concave and log-convex densities.
This latter fact is immediate because the density is log linear.

B.10. Proof of B.9. that only exponential distributions are
both NBUE and NWUE. A distribution that is NBUE or NWUE
must have a finite expectation μ, and to be both NBUE and NWUE,
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the distribution must satisfy (3). According to Proposition B.4, this
means that F is an exponential distribution. �

Note: Condition (v) of Proposition B.9 (F is both NBUE and NWUE)
would clearly imply condition (iv) of Proposition B.9 (F is both NBU
and NWU) if it were not for the fact that the concepts of NBUE and
NWUE are defined with the assumption that F has a finite expecta-
tion. In fact, NBU distributions must have finite expectations (Propo-
sition 5.C.7), and consequently, condition (v) implies condition (iv). Of
course, Proposition B.9 shows that the conditions are equivalent.

Note that (3) can be obtained from (1) by integrating (1) on x from
0 to ∞. Thus, the proof given in Proposition B.4 is an alternative to
the functional equation approach to proving Proposition B.1; but it
depends upon the knowledge that NBU distributions must have finite
expectations.

Equation (1), which says that F̄ (x + t) = F̄ (x)F̄ (t) for all x, t ≥ 0,
can be expanded by iteration as follows:

F̄ (x + t1 + t2 + · · · + tk) = F̄ (x + t1 + t2 + · · · + tk−1)F̄ (tk)

= F̄ (x + t1 + t2 + · · · + tk−2)F̄ (tk−1)F̄ (tk)

= . . . = F̄ (x)Πk
i−1F̄ (ti), x, ti ≥ 0, (5)

i = 1, . . . , k. An inductive argument shows that if (1), then (5) holds
for k = 1, . . . . In particular, if ti = x, for all i, it follows that

[F̄ (x)]k = F̄ (kx), k = 1, 2, . . . , x ≥ 0. (6)

This leads to another characterization of the exponential distribution,
related to the lack of memory property (1) but with a somewhat differ-
ent interpretation. This characterization is based upon the assumption
that min {X1, . . . , Xk} has the same distribution as X/k, k = 1, 2, . . . ,
where X1, X2, . . . , Xk are independent and distributed as X.

B.11. Proposition (Desu, 1971). A distribution F is exponential if
and only if (6) holds.

Proposition B.11 says that in Proposition B.1, equation (1) can be
replaced by the apparently weaker equation (6). The solution to the
functional equation (6) is given in Proposition 22.A.5, and this yields
a proof of Proposition B.11.
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a. Additional Characterizations

In addition to Proposition B.11, there are a several characterizations
of the exponential distribution that involve order statistics. Here is an
important example.

B.12. Proposition (Ferguson, 1965). Let X1 and X2 be independent
random variables with common absolutely continuous distributions,
and let X(1) ≤ X(2) be obtained by ordering the Xi. Then, X(1) and
X(2) −X(1) are independent if and only if X1 and X2 have a common
exponential distribution with a location parameter.

The above result has led to a variety of characterizations involving
independence properties of order statistics. For other results on charac-
terizations, see also Basu (1965), Crawford (1966), and Galambos and
Kotz (1978).

C. Some Basic Properties of Exponential Distributions

a. Closure Under Minima

C.1. Proposition. If X1 and X2 have exponential distributions with
respective parameters λ1 and λ2, and if X1 and X2 are independent,
then Z = min {X1, X2} has an exponential distribution with parameter
λ1 + λ2.

This fundamental observation is easy to verify because the survival
function of Z is the product of the survival functions of X1 and X2; it is
used by Marshall and Olkin (1967) in the construction of a multivariate
exponential distribution.

Proposition C.1 is sometimes viewed as a kind of parallel to the well-
known fact that the sum of independent normally distributed random
variables has a normal distribution, but here, the sum is replaced by
the minimum.

Note that Proposition C.1 holds as a consequence of the fact that the
parameter λ is a frailty parameter; see Definition 7.E.1 and note that
a survival product family is a parametric family closed under the for-
mation of minima with the parametric structure that leads to Lemma
5.E.8.

b. Infinite Divisibility

C.2. Proposition. The exponential distribution is infinitely divisible.

Proof. To prove this result, Proposition 20.D.8, a proposition stated
without proof, has been used here. According to that proposition, a
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function φ is the Laplace transform of an infinitely divisible distribu-
tion if and only if φ = e−ψ, where ψ(0) = 0 and ψ has a completely
monotone derivative (Definition 18.D.5). The Laplace transform φ of
the exponential distribution, given by A(11), is

φ(s) = E e−sX =
λ

λ + s
, s > −λ,

and in this case,

ψ(s) = log (λ + s) − log λ.

Because ψ′(s) = 1/(λ + s) = φ(s)/λ, it is sufficient to show that φ is
completely monotone. It can easily be verified using induction that the
nth derivative φ(n) of φ is

φ(n)(s) =
(−1)nn!λ
(λ + s)n+1 .

Because (−1)nφ(n)(s) ≥ 0, s > 0, it follows that the exponential distri-
bution is infinitely divisible. �

c. The Poisson Process

A brief introduction to the Poisson process is given in Section 20.F.a.
Note that the waiting time X to the first event in a Poisson process
with rate λ can easily be obtained from the relationship P{X > t} =
P{N(t) = 0} = e−λt, i.e., X has an exponential distribution with pa-
rameter λ. From the derivation of the process as a renewal process, it
can be seen that the waiting times between jumps in a Poisson process
are all independent and all have an exponential distribution with pa-
rameter λ. The fact that the waiting times between events in a Poisson
process have exponential distributions is a prime origin of the exponen-
tial distribution in applications, and the main reason for introducing
the process here. Events may be accidents or episodes that occur at a
constant rate λ, and the waiting time to the first such event has an
exponential distribution with parameter λ, as do the waiting times be-
tween successive events. Thus, in mechanical or electrical devices, the
time to failure (age at “death” or life length) has an exponential distri-
bution when deaths are the result of accidents occurring as a Poisson
process.
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d. Ordering Exponential Distributions

It is easy to verify that if X1 and X2 have exponential distributions
with respective parameters λ1 and λ2, and if λ1 > λ2, then X1 ≤lr X2;
consequently, X1 ≤hr X2 and X1 ≤st X2. However, the convex order is
not applicable because it compares only distributions with equal ex-
pectations; the Lorenz order is not of interest because exponentially
distributed random variables divided by their expectations are all ex-
ponentially distributed with expectation 1. In the convex transform
and star orders, exponential distributions with different parameters are
equivalent, i.e., they are ordered in both directions.

e. Connections Between Exponential and Geometric Distributions

C.3. Exponential distribution as a weak limit. In a Bernoulli
process where trials are made at times 1, 2, . . . , the waiting times be-
tween successes have a geometric distribution (see Sections 20.E and
20.F). Because rescaled Bernoulli processes can have a Poisson process
as a limit, it is not surprising that a sequence of rescaled geometric
distributions can have an exponential distribution as a limit.

For n ≥ λ, let Yn have the geometric distribution 20.E(4) with pa-
rameter p = λ/n. Denote the integer part of z (greatest integer ≤ z)
by [z]. Then,

F̄n(x) = P

{
Yn
n

> x

}
=

(
1 − λ

n

)[nx]

, x ≥ 0.

Clearly,

lim
n→∞

F̄n(x) = e−λx, x ≥ 0.

So the exponential distribution has been obtained as a limit of rescaled
geometric distributions.

The derivation of the exponential distribution as a limit of geo-
metric distributions has considerable intuitive appeal, at least in some
contexts. Indeed, it is the basis of a derivation used to introduce
the distribution by Gertsbakh and Kordonsky (1969) and Gertsbakh
(1989).

In C.3, the exponential distribution is obtained from a geometric
distribution, but it is also possible to go in the other direction to obtain
the geometric distribution from an exponential distribution.
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C.4. Proposition. Denote the smallest integer not less than x by 〈x〉.
If X has an exponential distribution with parameter λ, then 〈X〉 has a
geometric distribution with parameter 1 − p = e−λ.

There is a converse to C.4 due to Bosch (1977); if 〈αX〉 has a geomet-
ric distribution for all α > 0, then X has an exponential distribution.

f. Random Sums

As already noted, Proposition C.1 has been used by Marshall and Olkin
(1967) to construct multivariate exponential distributions. Several mul-
tivariate exponential distributions have been constructed with the aid
of other univariate results. The following proposition is of particular
interest for its use in the construction of multivariate exponential dis-
tributions. Such constructions are outside the scope of this book, but
see, for example, Arnold (1975).

C.5.a. Proposition. Let X1, X2 . . . be a sequence of independent ran-
dom variables having a common exponential distribution with parame-
ter λ. If N is independent of the Xi and has the geometric distribution
20.E(4) with parameter p and support {1, 2, . . .}, then

Z = X1 + X2 + · · · + XN (1)

has an exponential distribution with parameter λp.

Proof. The Laplace transform of each Xi is φ(t) = λ/(λ + t), t > −λ.
Consequently, the Laplace transform of Z is

∞∑
n=1

[
λ

λ + t

]n
p(1 − p)n−1 =

λp

λp + t
. �

Proposition C.5.a shows that even though the sum of a fixed number
of independent exponentially distributed random variables does not
have an exponential distribution, the sum of a random number of such
variables can be exponentially distributed. For a related result, see
Proposition 5.C.14.

The next proposition is closely related to Proposition C.5.a; it too
has been used to construct multivariate exponential distributions. See
Lawrance and Lewis (1977, 1980, 1983); Raftery (1984); O’Cinneide
and Raftery (1989); Hutchinson and Lai (1990).
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C.5.b. Proposition. Suppose that X has an exponential distribution
with parameter λ, I has a Bernoulli distribution with parameter 1 − p,
and Z has an exponential distribution with parameter λp. If X,Y , and
I are independent, then

Y = X + IZ (2)

has an exponential distribution with parameter λp.

Proof. Consider the representation of Z in Proposition C.5.a; there Z =
X1 with probability p, and is X1 + Z∗ with probability (1 − p), where
Z∗ is independent of X1 and has the same distribution as Z. So this
proposition follows directly from Proposition C.5.a. �

Alternative Proof. The distribution of Y can be regarded as a mixture
of two distributions: If I = 1, then Y = X + Z; if I = 0, then Y = X.
By convolving the densities of X and Z, it can be determined that the
density g of X + Z is given by

g(x) = λp[e−λpx − e−λx]/[1 − p], x ≥ 0,

whereas X has the density f(x) = λ exp {−λx}, x ≥ 0. It is straight-
forward to verify that

pf(x) + (1 − p)g(x) = λp e−λpx. (3)

�

Note that the component f of the mixture (3) has a constant hazard
rate, and the component g has a strictly increasing hazard rate (as can
be verified directly, but also see Theorem 4.C.4), yet the mixture has
a constant hazard rate. Because of (1), the density of (2) can also be
represented as a mixture of a countably infinite number of gamma den-
sities, all convolutions of some integer order of the exponential density
f , and all having increasing hazard rates.

C.6. Proposition (Esary and Marshall 1973). Let Y,Z1, Z2, . . . be a
sequence of independent random variables, where the Zi are identi-
cally distributed and nonnegative but not degenerate at 0. If Y has an
exponential distribution, then

N = min {k : Z1 + · · · + Zk ≥ Y }

has a geometric distribution on the positive integers 1, 2, . . . .
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Proof. Compute

P{N > j} = P{Z1 + · · · + Zj < Y }
= EP{z1 + · · · + zj < Y |Zi = zi, i = 1, . . . , j}

= E

⎧⎨
⎩exp

⎡
⎣− j∑

i=1

zi

⎤
⎦ |Zi = zi, i = 1, . . . , j

⎫⎬
⎭ = [Ee−Z ]j . �

The Zi can be viewed as damages due to shocks that accumulate ad-
ditively over time. If a device has an exponentially distributed threshold
of damage that can be withstood without failure, then N is the num-
ber of shocks required to cause failure. Shock models are discussed in
Section 5.H.

Proposition C.6 has been used to develop bivariate geometric dis-
tributions which, in conjunction with Propositions C.3 and C.4, have
been used to develop models for bivariate exponential distributions. See
Esary and Marshall (1974); Marshall and Olkin (1985).
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Parametric Extensions of the
Exponential Distribution

According to the classical theory the ultimate strength of a material is deter-
mined by the internal stresses in a point . . . . . Experimental measurements give
many results which may hardly be brought to agree with this theory . . . . . by
taking the elementary laws of probability as a starting-point, a theory may be
developed, whose formulae may be readily brought to agree with the measuring
results inconsistent with the classical theory.

W. Weibull (1939a)

The exponential distribution has a single parameter that serves both as
a scale and as a frailty parameter. Moreover, if an age parameter or a
Laplace transform parameter is introduced, the distribution remains an
exponential distribution and only the parameter is changed. This means
that of the various parameters discussed in Chapter 7, only power,
convolution, moment, tilt, and resilience can be used to generate two
parameter extensions of the exponential distribution. It is shown below
that the introduction of moment and convolution parameters both lead
to the gamma family, and consequently only four of these extensions
are distinct. These four extensions with two parameters are discussed
in this chapter along with their further extensions to three-parameter
families.

The following diagram illustrates the build-up of families by suc-
cessive introductions of parameters starting with a basic exponential
distribution.
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−→power {Weibull} −→
moment{generalized

gamma}F̄ (x) = e−x, −→
scale

{exp} −→
convolution

{gamma} −→power
or momentx ≥ 0

−→
resilience

F̄ (x) = 1 − (1 − e−λx)η

−→
tilt

{exponentials −→power {Weibull}
with tilt} with tilt}

A. The Gamma Distribution

The gamma distribution has the density

f(x | λ, ν) =
λνxν−1 e−λx

Γ(ν)
, x ≥ 0, (1)

but the survival function can be given in closed form only when ν is an
integer. In that case,

F̄ (x | λ, ν}) =
ν−1∑
k=0

e−λx(λx)k/k!. (2)

Clearly, the hazard rate of the gamma distribution does not take a con-
venient form even when ν is an integer. The parameter ν is sometimes
called a “shape parameter,” but it is also known as the “index” of the
distribution. As can be seen from (1) or (2), λ is a scale parameter. See
Figure A.1 for graphs of the density.

a. Moments

A.1. Proposition. If F is a gamma distribution with density (1), then

EXr =
Γ(r + ν)
Γ(ν)λr

, r > −ν. (3)

This result can be obtained directly from the definition of the
gamma function as an integral, or from the fact that the density (1)
integrates to one.
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Fig. A.1. Densities of the gamma distribution (λ = 1)

From (3), it follows that

EX = ν/λ and Var X = ν/λ2, (4)

so that the coefficient of variation is CV(X) =
√

Var X/EX = 1/
√
ν.

In a similar manner, it can be verified that F has the Laplace trans-
form

E e−sX = [λ/(λ + s)]ν , s > −λ. (5)

b. Derivations

There are several ways to derive the gamma distribution, and each is
instructive in its own way. All of those described here are based in some
way upon the exponential distribution.

(i) From a Poisson process. A standard derivation of the gamma
distribution is via a Poisson process. Let X be the waiting time for the
νth jump in the Poisson process {N(t), t ≥ 0} with parameter λ (see
20.E for a brief review). The survival function of X can be obtained
directly:

P{X > x} = P{N(x) < ν} =
ν−1∑
k=0

e−λx(λx)k/k!;
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that is, X has the survival function (2). Here, λ > 0 and ν is a positive
integer.
(ii) By introduction of a moment parameter. The simplest
derivation of the gamma distribution via the exponential distribution
seems to be by the introduction of a moment parameter β in the ex-
ponential density 8.A(2). This is straightforward because the moments
of the exponential distribution, given by 8.C(1) have the simple form
μr = Γ(r + 1)/λr. When this is done, the resulting density

f(x | λ, β) =
λβ+1xβ e−λx

Γ(β + 1)
, x ≥ 0, λ > 0, β > −1, (1a)

is obtained. By setting β = ν − 1, the density (1) is obtained. Thus,
ν − 1 in (1) is a moment parameter.
(iii) By introduction of a convolution parameter. The Laplace
transform φ of the exponential distribution is given in 8.A(11) as

φ(s) =
λ

λ + s
, s > −λ.

Because the exponential distribution is infinitely divisible (Proposition
8.C.2), it follows that

φ(s | ν) = [φ(s)]ν =
(

λ

λ + s

)ν

, s > −λ (6)

is a Laplace transform, for all ν > 0. In this construction, ν is a convo-
lution parameter. Inversion formulas (beyond the scope of this book)
can be used to obtain from (6) the corresponding density; alterna-
tively, the inversion can be obtained from a table of Laplace trans-
forms. Here, these approaches are unnecessary. Because Laplace trans-
forms are unique (Proposition 20.D.2), it is already clear from (5) that
inversion would yield (1).
(iv) As a mixture. For ν < 1, the density (1) arises as a mixture of
exponential distributions. The following representation is due to Gleser
(1989):

f(x | λ, ν) =
∫

θ e−θxg(θ | λ, ν) dθ, 0 < ν < 1, (7)
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where

g(θ | λ, ν) =
(θ − λ)−νλν

θΓ(1 − ν)Γ(ν)
, θ ≥ λ,

= 0, otherwise. (8)

If g given by (8) is the density of the random variable Θ, then the
density of Θ − λ is a special form of the F distribution; see 11.C(3).

The gamma density (1) has no representation as a mixture of ex-
ponential distributions when ν > 1 because such mixtures have a de-
creasing hazard rate (Proposition 4.C.10), and it is shown below that
the hazard rate of (1) is increasing when ν > 1.

When ν is a positive integer, the gamma distribution is sometimes
called the Erlang distribution. This distribution was derived by Agner
Krarup Erlang (1878–1929) while working for the Copenhagen Tele-
phone Company (see Erlang (1920); see also Brockmeyer, Halstrøm
and Jensen (1960) for a history of Erlang’s work).

From the above derivation of the survival function of the Erlang dis-
tribution and the fact that the Poisson process is a renewal process, it
follows that the Erlang distribution is the convolution of the exponen-
tial distribution with itself ν times. From the Laplace transform (5), it
follows that ν > 0 is a convolution parameter, ν is also known as the
“index” of the distribution.

When ν is a half integer and λ = 1/2, the gamma distribution is
known as a chi-square distribution; this distribution is discussed in
Section A.i.

The gamma density (1) was obtained by Pearson (1895) and is
known as a Type III Pearson curve. Pearson derived the density from a
differential equation; see Johnson, Kotz and Balakrishnan (1994, Chap-
ter 12). If X has the gamma density (1), then it can be shown that 1/X
has the density g given by

g(x) =
λν

Γ(ν)xν−1 e−λ/x, x > 0. (9)

This density was also obtained by Pearson (1895) and is known as a
Type V Pearson curve. For further discussion of the Pearson curves,
see also Elderton and Johnson (1969) or Kendall and Stuart (1963).
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c. Density Properties

A.2. Proposition. The density (1) of the gamma distribution is

(i) completely monotone, log convex, and decreasing, for 0 < ν ≤ 1,
(ii) log concave and unimodal, for ν ≥ 1, with mode at the point

x = (ν − 1)/λ.

Proof. For 0 < ν ≤ 1, the fact that the density is decreasing can be
verified directly by showing that log f(· | λ, ν) has a negative derivative;
convexity follows by showing that the second derivative of log f(· | λ, ν)
is positive. Complete monotonicity of the density (1) can be verified
directly using the conditions of Definition 20.D.4; or for ν < 1, it can
be obtained from Proposition 18.D.5 and the mixture representation
(7). It follows from Proposition 4.B.7 and the complete monotonicity
of the density that the density is log convex, and by Propositions 4.B.2,
4.B.8.a, and 4.C.11, this means that the density is decreasing.

For ν ≥ 1, the log concavity can be checked directly using the fact
that the function log x is concave. By Proposition 4.B.2, this means that
the density is unimodal. By setting the derivative of the density or its
logarithm equal to 0, the location of the mode is easily determined. �

d. Distribution and Survival Function Properties

In general, neither the distribution function nor the survival function of
the gamma distribution has a simple expression; they can be given only
in terms of the incomplete gamma function when ν is not an integer.
However, properties of these functions can still be determined.

A.3. Proposition. The survival function F̄ corresponding to the
gamma density (1) is log concave, for ν ≥ 1, and log convex on [0,∞),
for ν ≤ 1. The gamma distribution function F is log concave, for all ν.

Proof. The properties of the survival function follow from Proposition
A.2 and Proposition 4.B.8. The log concavity of the distribution func-
tion, noted by Bondesson (1992), follows from Proposition 4B.10. �

See Figure A.2 for graphs of the survival function.

e. The Hazard Rate

Because the survival function of the gamma distribution can be given
only in terms of the incomplete gamma function when ν is not an
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Fig. A.2. Survival functions of the gamma distribution (λ = 1)

integer, neither the hazard rate nor the reverse hazard rate can be
expressed in closed form. Even so, a form of the hazard rate can be
given that is useful for the identification of its properties. Following
the approach of Barlow and Proschan (1975, p. 74), write the survival
function as an integral of the density to obtain

1
r(x)

=
∫ ∞

x

(
z

x

)ν−1
e−λ(z−x) dz =

∫ ∞

0

[
1 +

u

x

]ν−1
e−λu du, (10)

where the second integral is obtained from the first by the change of
variable u = z − x. Now it is clear that

r(x) is increasing in x ≥ 0 when ν > 1,
r(x) is the constant λ when ν = 1, and
r(x) is decreasing in x ≥ 0 when 0 < ν < 1. (11)

The hazard rate results (11) also follow directly from the log concavity
and log-convexity of the survival function given in Proposition A.3.

From (10), it follows directly that

lim
x→0

r(x) = 0, for ν > 1,

= λ, for ν = 1,
= ∞, for 0 < ν < 1. (12)
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Fig. A.3. Hazard rates of the gamma distribution (λ = 1)

From the second form of r(x) in (10), it follows directly that

lim
x→∞

r(x) = λ for all ν > 0. (13)

Note that for fixed λ, the hazard rate at any fixed x is decreasing in
ν; this is a consequence of the fact that ν is a convolution parameter
(see Figure A.3).

Because the gamma distribution function F is log concave, the
derivative of log F is decreasing; this means that the reverse hazard
rate is decreasing for all values of ν. This fact stands in contrast to the
hazard rate properties that depend upon whether ν ≥ 1 or ν ≤ 1.

f. Residual Life Distribution

A.4. Proposition. If F is a gamma distribution with density (1),
then for all ν, the residual life survival function F̄τ (x) = F̄ (x + τ)/F̄ (τ)
satisfies

lim
τ→∞

F̄τ (x) = e−λx.

Proof. According to Proposition 8.B.b, a residual life distribution con-
verges in distribution to an exponential distribution whenever the haz-
ard rate has a finite positive limit. According to (13), this condition
holds. Alternatively, by writing the residual life survival function as a
ratio of integrals of the density, the proposition can be verified directly
using l’Hospital’s rule. �

For a more general result, see also Proposition 8.B.8.
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Fig. A.4. Total time on test transform for the gamma distribution (λ = 1)

g. Convolutions and Infinite Divisibility

It has already been noted that ν is a convolution parameter, a fact
that follows directly from (5). Consequently, gamma distributions are
infinitely divisible (see Definition 20.D.7 and Remark 18.D.9.a). For
ν < 1, infinite divisibility also follows from the representation (7) and
Proposition 20.D.10.

If X and Y are independent, have gamma distributions with com-
mon scale parameter λ, and have respective shape parameters ν and
γ, then X + Y has a gamma distribution with scale parameter λ and
shape parameter ν + γ.

h. Total Time on Test Transform

The total time on test transform for the gamma distribution can be
obtained numerically and is given in Figure A.4.

i. The Chi-Square Distribution

The chi-square distribution has a long and illustrious history during the
50-year period 1835–1885 primarily because of its importance in
statistics. This history has been surveyed by Lancaster (1966; 1969,
pp. 1–16); see also Johnson, Kotz and Balakrishnan (1994, p. 415).

A.5. Definition. A chi-square distribution with n degrees of freedom
is a gamma distribution with scale parameter 1/2 and shape parame-
ter n/2. More explicitly, the chi-square distribution with n degrees of
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freedom has density

f(x) =
1

2Γ(n/2)

(
x

2

)(n/2)−1
e−x/2. (14)

Because the shape parameter ν of the gamma distribution is a con-
volution parameter, it follows that if X and Y are independent, have
chi-square distributions with common scale parameter λ, and respective
degrees of freedom n and m, then X + Y has a chi-square distribution
with scale parameter λ and n + m degrees of freedom. This fact, central
in statistics, can also be obtained from the following proposition.

A.6. Proposition. If X1, . . . , Xn are independent random variables
having a common normal distribution with 0 expectation and unit vari-
ance, then

X2
1 + · · · + X2

n

has a chi-square distribution with n degrees of freedom.
With n = 1 in Proposition A.6, it follows that the square of a ran-

dom variable with a standard normal distribution has a chi-square dis-
tribution with one degree of freedom. Directly from the definition, it
follows that with n = 2, the chi-square distribution is an exponential
distribution.

Ratios of random variables with chi-square or gamma distributions
are discussed in Section 11.D.f.

j. A Characterization of the Gamma Distribution

A.7. Proposition (Lukacs, 1955). Suppose that X1 and X2 are inde-
pendent, positive nondegenerate random variables. Then X1 + X2 and
X1/X2 are independent if and only if X1 and X2 have gamma distri-
butions with the same scale parameter.

For a relatively simple proof of this fact, see Findeisen (1978) or
Marsaglia (1989). Marsaglia (1974, 1989) shows that without the as-
sumption that X1 and X2 are positive, the independence implies that
either X1 and X2 or −X1 and −X2 have gamma distributions with the
same scale parameter.

k. Ordering Gamma Distributions

A.8. Proposition. In the likelihood ratio order, the gamma distribu-
tion is increasing in the shape parameter ν and decreasing in the scale
parameter λ.
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These facts can be verified using 2.A(11). As a consequence, the
same monotonicity holds for the hazard rate ordering and the usual
stochastic ordering. The hazard rate ordering can be checked directly
from (10).

A.9. Proposition (van Zwet, 1964). Suppose that X and Y have
gamma distributions with respective shape parameters θ and γ. If
θ ≤ γ, then in the convex transform order, X is greater than Y, or
symbolically, X ≥c Y.

The proof of this result is omitted; it is complicated by the fact that
the survival functions of X and Y do not have simple forms.

As noted in Section 2.C.j (without proof), the convex transform
order is stronger than the Lorenz order. It follows that under the con-
ditions of Proposition A.9,

X ≥Lorenz Y,

that is,

X/EX ≥cx Y/EY.

The fact that X ≥Lorenz Y is a result of Taillie (1981).

l. Limits of Gamma Distributions

It is interesting to determine the limit of the survival function as the
shape parameter ν tends to ∞.

A.10. Proposition.

lim
ν→∞

F̄

(
νx

λ
| λ, ν

)
= 1, x < 1,

= 0, x > 1.

Of course, this states that there is convergence in distribution to the
distribution degenerate at 1. To prove Proposition A.10, use (5) to show
convergence of the Laplace transform of X/EX to e−s, the Laplace
transform of the distribution degenerate at 1. Alternatively, this result
can be proved using the weak law of large numbers 18.C.6.b and the
fact that ν is a convolution parameter.

A.11. Proposition. If Y = (X − (ν/λ))/(
√
ν/λ), then the limiting

distribution of Y as ν → ∞ is a normal distribution with mean 0 and
variance 1.



SVNY289-Olkin May 15, 2007 16:39

320 9. Parametric Extensions of the Exponential Distribution

With (4) and the fact that ν is a convolution parameter, it can be
seen that this proposition is a special case of the central limit theorem
20.C.8. More direct proofs can be obtained by the use of Laplace trans-
forms, or by taking the limit of the density of Y.

m. Convolutions of Scaled Exponential Distributions

Suppose that X1, X2, . . . , Xn are independent random variables all with
the same exponential survival function Ḡ(x) = e−λx, x ≥ 0. As previ-
ously noted and easily verified from (5), the random variable

X =
n∑
i=1

Xi

has a gamma distribution with shape parameter n. Sums of independent
exponentially distributed random variables with different parameters
arise in the study of birth and death processes. It has been shown by
Palm (1946), Good (1955), McGill and Gibbon (1965), and by Likeš
(1967) that if ai > 0, i = 1, 2, . . . , n, and ai �= aj , i �= j, then the survival
function F̄ of the random variable

X =
n∑
i=1

aiXi

is given by

F̄ (x) =
n∑
i=1

Ai exp
{−λx

ai

}
, x ≥ 0 (15)

where

Ai =
an−1
i

n∏
k=1
k �=i

(ai − ak)
.

Note that X =
∑n

i=1 Yi, where Yi has an exponential distribution with
parameter λi = λ/ai. With this notation, (15) can be rewritten as

F̄ (x) =
n∑
i=1

λn−1
k∏

k �=i(λk − λi)
e−λix =

n∑
i=1

∏
k �=i

λk

λk − λi
e−λix. (15a)

The removal of the condition that the λi be distinct requires a more
complex analysis, and is beyond the scope of this book.
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Fig. B.1. Densities of the Weibull distribution (λ = 1)

B. The Weibull Distribution

With the introduction of a power parameter α, the exponential survival
function becomes

F̄ (x | λ, α) = exp{−(λx)α}, λ, α, x ≥ 0; (1)

this is the survival function of the Weibull distribution.
From (1), it follows directly that the density f and hazard rate r of

the Weibull distribution are given by

f(x | λ, α) = αλ(λx)α−1 exp{−(λx)α}, x ≥ 0, (2)

r(x | λ, α) = αλ(λx)α−1, x ≥ 0. (3)

See Figures B.1, B.2, and B.3 for graphs of the density, survival function
and hazard rate. For this distribution, the power parameter α is usually
referred to as the “shape parameter.” Unfortunately, no parameteriza-
tion of the Weibull family has been standardized; some authors write
λ in place of λα. Various parameterizations of the Weibull distribution
are discussed in a review paper by Hallinan (1993).

An early mention of the Weibull distribution was made by Thiele
(1872) quoting Oppermann from the Insurance Record of 11 Feb, 1870.
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Fig. B.2. Survival functions of the Weibull distribution (λ = 1)

Oppermann proposed using

r(x) = r(x | λ1, 1/2) + r(x | λ2, 1) + r(x | λ3, 3/2)

as the hazard rate of young people, up to age 20. This sum of three
Weibull hazard rates produces a survival function that is the product of
three survival functions of the form (1). In a similar context, Makeham
(1890) derived the Weibull distribution with power parameter 2.
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Fig. B.3. Hazard rates for the Weibull distribution (λ = 1)
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The Weibull distribution was encountered by Fisher and Tippett
(1928) as an extreme value distribution, a derivation discussed below
and in Section 20.G. In a study of the particle size distribution in
powdered coal, it was again derived by Rosin and Rammler (1933) using
entirely different methods. The Weibull distribution was proposed by
Weibull (1939a,b) in the context of strength of materials and ruptures
in solids. But later, in more accessible papers (Weibull, 1951, 1952), he
promoted the distribution for use in analyzing a much greater variety
of data. In those papers, he starts by saying, in effect, that a hazard
function can be any nonnegative, increasing function, 0 at the left-
hand endpoint of the support of the distribution. Then, he proposes the
hazard function R(x) = (λx)α as the simplest such function. Further,
he gives a number of data sets, and for each is able to obtain a good fit
with this distribution. However, these data sets are all rather small, and
it is only with large data sets that poor fits can be detected. For a more
detailed history, see Hallinan (1993) or Johnson, Kotz and Balakrishnan
(1994, p. 628).

The Weibull distribution has been used extensively in medical stud-
ies, and it has gained considerable popularity as a model in several other
fields, including forestry and engineering; a number of papers employ-
ing the Weibull distribution in a wide variety of applications is listed
by Murthy, Xie and Jiang (2004, pp. 13, 174, 175, 189). Because of
its rather pervasive popularity, articles warning against indiscriminate
use of the Weibull distribution have appeared (see, e.g., Gorski, 1968;
Evans, 1990). For a detailed and comprehensive study of the Weibull
and related distributions see Murthy, Xie and Jiang (2004).

a. Extreme Value Distributions

The Weibull distribution was derived by Fisher and Tippett (1928) and
again by Gnedenko (1943) as an extreme value distribution; this is per-
haps the most important theoretical justification for the distribution,
and it provides some intuitive guidance to its applicability. Extreme
value distributions are reviewed in Section 20.G; for a more thorough
survey, see Kotz and Nadarajah (2000). Extreme value distributions
(for minima) are the possible nondegenerate limiting distributions for
sequences

an min (X1, . . . , Xn) + bn,

where X1, X2, . . . are independent identically distributed random vari-
ables, and {an}, {bn} are sequences of real numbers. Of the three such
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limiting distributions, the Weibull distribution is the only one that
has, or can be made by a change in location and scale, to have support
[0,∞). This explains a number of applications of the Weibull distribu-
tion; one example of Weibull (1951) has to do with the strength of a
chain. The distribution is widely used in hydrology with a clear mo-
tivation. The reasons for its wide use in forestry is less obvious, and
some usage there may be due simply to the facts that the distribution is
amenable to statistical analyses and has been found to provide a good
fit to data.

b. Density and Hazard Rate Behavior

From (2), it follows directly that

log f is convex for 0<α<1, linear for α=1, and concave for α>1.
(4)

By Proposition 4.B.6, (4) implies that

r(x) is increasing in x ≥ 0 when α > 1,
r(x) is the constant λ when α = 1, and
r(x) is decreasing in x ≥ 0 when 0 < α < 1.

Of course, these results are also easy to see from (3).
For α ≥ 1, it follows from Proposition 4.B.2 and (4) that f is uni-

modal; by differentiating the density (or more simply, by differentiating
the logarithm of the density), it can be determined that the mode m is
given by

m =
1
λ

(
1 − 1

α

)1/α
.

For α < 1, the hazard rate is decreasing, and hence the density is de-
creasing; that is, there is a unique mode at 0.

It follows directly from (3) that

lim
x→∞

r(x) = 0 for α < 1, and lim
x→∞

r(x) = ∞ for α > 1.

Clearly, the hazard rate at 0 is ∞ for 0 < α < 1; it is equal to λ for
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α = 1, and it is equal to 0 for α > 1. Thus, for the Weibull distribution
there is a curious lack of flexibility in choosing the hazard rate at 0.

Note also from (3) that the hazard rate is concave when 1 ≤ α ≤ 2
and is otherwise convex. Use is made of this fact in Example 15.G.3
where a distribution of Hjorth (1980) is discussed.

c. Moments

B.1. Observations. If Y has an exponential distribution with pa-
rameter 1, then X = Y 1/α/λ has a Weibull distribution with shape
parameter α and scale parameter λ.

This observation is straightforward to verify. Because of Observation
B.1, the moments of the Weibull distribution can be easily retrieved
from the moments of the exponential distribution given in 8.A(7). Thus,
if X has a Weibull distribution,

EXr =
Γ

(
r
α + 1

)
λr

, r > −α, (5)

and in particular, the first moment is

EX =
Γ

( 1
α + 1

)
λ

.

The variance of a Weibull distribution does not take a particularly
convenient form even though it can be explicitly expressed in terms of
gamma functions using (5) and the definition 1.C(6):

Var (X) =
Γ

( 2
α + 1

)
− Γ2 ( 1

α + 1
)

λ2 .

With the scale parameter λ = 1 and large values of the power pa-
rameter α, McEwen and Parresol (1991) have shown that

EX ≈ 1 − γ

α
+

γ2 + π/6
2α2 , Var (X) ≈ π2

6α2 ,

where γ ≈ .577256649 is Euler’s constant. Approximations are also
known for small values of α. In particular, if α is small, then

EX ≈
√

2π e−1/αα−(1/α)−(1/2);

see Abramowitz and Stegun (1964, p. 257).
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Fig. B.4. Total time on test transforms for Weibull distributions (λ = 1)

d. Total Time on Test Transform

For the Weibull survival function (1), the total time on test transform
cannot be expressed in closed form, but it can be expressed in terms
of the incomplete gamma function. It can be verified directly that for
this survival function,

F−1(p) =
[− log (1 − p)]1/α

λ
, 0 ≤ p < 1. (6)

See Figure B.4 for a graph of the total time on test transform. From
(6), the total time on test transform ψ, defined in Definition 1.I.2, can
be calculated as:

ψ(p) =
∫ F−1(p)

0
F̄ (x) dx =

∫ F−1(p)

0
exp {−(λx)α} dx

=
∫ F−1(p)

0
z(1/α)−1e−z dz. (7a)

Now, make the change of variables (λx)α = z and for notational con-
venience, write F−1(p) = b. Then, ψ takes the form of the incomplete
gamma function (see 23.A.c):

ψ(p) =
1
λα

ΓF−1(p)

(
1
α

)
=

1
λα

∫ (λb)α

0
e−zz(1/α)−1dz. (7b)
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From (5) and (7b), it follows that the normalized total time on test
transform ψ̃ of 1.I(9) is given by

ψ̃(p) = [ΓF−1(p)(1/α)]/αΓ(1/α). (8)

Of course, this function cannot be given in closed form but can be
obtained numerically.

e. The Gini Index and Coefficient of Variation

First, let λα = ξ and rewrite the survival function (1) in the form

F̄ (x) = exp {−ξxα}, x ≥ 0.

Here, ξ is a frailty parameter, and it follows from 5.E(20) that the
Gini index for the Weibull distribution can be written in terms of the
moments. Using this fact and (5), the Gini index as a function of α can
be determined to be

Gini(α) = 1 − 1
21/α .

The Gini index can also be obtained by a straightforward integration
using 1.I(12)

For the Weibull distribution, the coefficient of variation (the ratio
of standard deviation to mean) can be determined directly from (5) to
be

CV(F ) =
[
2α

γ(2/α)
Γ2(1/α)

− 1
]1/2

=
[

2α
B(1/α, 1/α)

− 1
]1/2

,

where B(a, b) is the beta function (see 23.B).

f. Ordering Weibull Distributions

B.2. Proposition. In the likelihood ratio order, the Weibull distribu-
tion is decreasing in the scale parameter λ for each fixed power param-
eter α.

Unlike the gamma distribution, the Weibull distribution is not like-
lihood ratio ordered in the shape parameter; in fact, it is not even
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stochastically ordered in the shape parameter (see the comment fol-
lowing Proposition 7.D.5.

B.3. Proposition (Chandra and Singpurwalla, 1981). In the convex
transform order ≤c of Definition 2.C.7, the Weibull distribution is de-
creasing in the power parameter α.

Proof. This result is a special case of Proposition 7.D.5. Or, to directly
verify the conditions of the Definition 2.C.7, obtain from (1) that

F̄−1(z) = [− log z]1/α/λ, 0 < z ≤ 1.

The result follows from the fact that the function xr is convex for
r ≥ 1. �

From the summary 2.C.j, it is seen that other orderings follow from
Proposition B.3. Propositions B.2 and B.3 together show that λ is a
magnitude parameter and α is a power parameter that could be called
a skewness parameter. Thus, the parameters complement each other in
their actions on the distribution.

g. Infinite Divisibility

The Weibull distribution is a special case of the extended gamma–
Weibull distribution introduced in Section E.a. As such, it is known to
be infinitely divisible, as noted in Section E.b.

h. The Rayleigh Distribution

Suppose that X and Y are normally distributed random variables with
mean 0 and variance σ2 (so that X2 and Y 2 have chi-square distribu-
tions with 1 degree of freedom), and let

Z = [X2 + Y 2]1/2.

This random variable is of special interest in electrical engineering;
other areas of application are outlined by Johnson, Kotz and Balakr-
ishnan (1994, p. 456). From Proposition A.6, it follows that Z2 has an
exponential distribution with scale parameter 1/(2σ2). Consequently,
Z has a Weibull distribution with scale parameter 1/

√
2σ2 and shape

parameter 2. This distribution was derived by Rayleigh (1880) as a
distribution of amplitudes, and has come to be known as the Rayleigh
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distribution. It has survival function F̄ , density f, and linear hazard
rate r given by

F̄ (x) = exp

{
− x2

2σ2

}
, x ≥ 0, (9)

f(x) =
x

σ2 exp

{
− x2

2σ2

}
, x ≥ 0, (10)

r(x) =
x

σ2 , x ≥ 0. (11)

Rayleigh (1919) discussed the more general distribution than the
one that now bears his name. In particular, he obtained the density

f(x) =
2xn−1

(2σ2)n/2Γ(n/2)
exp

{
− x2

2σ2

}
. (12)

For a random variable X with this density, Rayleigh (1919) found
that

EXr =
2r/2σrΓ

(
n + r

2

)

Γ
(
n

2

) .

The density is unimodal with mode at
√
n− 1σ.

Special cases of (12) include

n = 1: this is a “folded” Gaussian or “half normal” (a normal distribu-
tion truncated at 0);

n = 2: this is the Rayleigh distribution with density (10);
n = 3: this case is known as the Maxwell-Boltzman distribution.

Both of the cases n = 2 and n = 3 are of particular interest in physics.
It can be shown with the aid of Eq. 23.A(2) that the parameter n of

the density (11) need not be an integer. With the notation λ = 1/
√

2σ,
the resulting density is

f(x | λ, θ) =
2

Γ(θ/2)
λ(λx)θ−1e−(λx)2

.
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i. Characterizations of the Weibull Distribution

If X has a Weibull distribution with power parameter α, then Xα

has an exponential distribution. This fact can be used to trans-
late any characterization of the exponential distribution to a char-
acterization of the Weibull distribution with fixed power parameter.
For example, Wang (1976) has shown that a random variable X
satisfies

P{X > α
√
xα + yα | X > y} = P{X > x}, x, y > 0, (13)

if and only if X has a Weibull distribution with power parameter α.
To prove this, rewrite (13) in the form

P{Xα > xα + yα | Xα > yα} = P{Xα > xα}, x, y > 0;

this form of the “lack of memory” property leads to the conclusion
(Proposition 8.B.1) that Xa has an exponential distribution.

For another characterization of the Weibull distribution, see Arnold
and Isaacson (1976).

j. A Mixture Representation

Walker and Stephens (1999) have observed that if

g(x | u) =
αxα−1

u
, 0 < x < u1/α,

is the density of a uniform distribution on [0, u1/α] with a power pa-
rameter (see 14.B.1), and if

h(u) = c2u e−cu, u > 0

is a gamma density with shape parameter 2, then the mixture

f(x) =
∫ ∞

xα

g(x | u)h(u) du

is a Weibull density; with c = λα; this density is given by (2).
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k. Mixtures of Weibull Distributions

Mixtures of Weibull distributions have been used in a variety of appli-
cations, a large number of which are listed by Murthy, Xie and Jiang
(2004, p. 174). Hazard rates of even the mixture of two Weibull distri-
butions can take a variety of shapes; these hazard rates can have up to
four relative maxima and minima. For a catalog of these hazard rates,
see Jiang and Murthy (1998).

If X has a Weibull distribution with α = 2 and Y has an exponen-
tial distribution, then min (X,Y ) has an increasing linear hazard rate.
Mixtures of distributions with such hazard rates can have a variety of
hazard rate shapes; for a detailed study of such mixtures, see Block,
Savits and Wondmagegnehu (2003).

l. Inverse and Generalized Weibull Distributions

If X has a Weibull distribution, then the distribution of 1/X is some-
times called an inverse Weibull distribution. A direct calculation shows
that if X has the survival function (1), then 1/X has the distribution
function

W ∗
2 (x) = exp{−(θx)−α}, θ, α > 0, x > 0.

This extreme value distribution for maxima, given here in the notation
of Section 20.G, was found already by Fréchet (1927).

The density (2) of the Weibull distribution and the density of W ∗
2

combine nicely to form what might be called the density of an extended
Weibull family. For this purpose, it is convenient to reparameterize W ∗

2
by replacing θ by λ (not 1/λ), and replace α by −α, so that α < 0.
Then, W ∗

2 takes the form

F (x | λ, α) = exp {−(λx)α}, a < 0, λ > 0, x > 0. (14)

This distribution has the density, say f, which combines with (2) to
become

f(x | λ, α) = |α|λ(λx)α−1 exp {−(λx)α}, λ > 0, α �= 0, x > 0.
(15)
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For α < 0, this density is unimodal, with mode at the point

x =
1
λ

(
α− 1
α

)1/α
;

this can easily be checked by setting the derivative of the logarithm of
the density equal to 0.

When α < 0 the hazard rate

r(x | λ, α) =
|α|λ(λx)α−1 exp {−(λx)α}

1 − exp {−(λx)α} , x > 0, (16)

satisfies

lim
x→∞

r(x | λ, α) = lim
x→0

r(x | λ, α) = 0.

It can be seen from Theorem 4.F.2 that when α < 0, the hazard rate
r of (16) has a unique mode; that is, r has an inverted bathtub shape.
This distribution has been studied by Jiang, Murthy and Ji (2001, p.
115), who determine that the mode of the hazard rate is given by the
solution of the equation

z(t) =
(

1 − 1
α

) (
1 − e−z(t)

)
(17)

where z(t) = (λt)α. Because the left side of (17) is linear in z(t) and
the right side is increasing and convex in z(t), there is but one positive
solution.

m. The Weibull Residual Life Distribution

The Weibull residual life distribution has survival function

F̄t(x) = exp {−[λ(x + t)]α + (λt)α}, x, α, λ > 0, (18)

and hazard rate

rt(x) = αλ(x + t)α−1, x, α, λ > 0. (19)

Note that this hazard rate satisfies (4), but that unlike the hazard rate
of the Weibull distribution, rt(0) = αλtα−1 can take on values other
than 0 and ∞.
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Note that for α > 1, F̄t(x) < F̄ (x), that is,

F̄ (x + t) < F̄ (x)F̄ (t), x, t > 0,

so that F is NBU. This inequality is reversed if α < 1, and then F is
NWU. These results can be obtained easily from the fact that for posi-
tive numbers a1, . . . , an, (

∑n
i=1 a

r
i )

1/r is decreasing in r > 0. See Hardy,
Littlewood and Pólya (1934, 1952, p. 28).

C. Exponential Distributions with a
Resilience Parameter

The two parameter family obtained from the exponential distribu-
tion by introducing a resilience parameter has not received much at-
tention in the literature for reasons that are not entirely clear. Al-
though the distribution appears to be without a name, it may be
appropriate to call it the Verhulst distribution, because it was dis-
cussed by Verhulst (1838, 1845). A discussion of this and some re-
lated distributions has been given by Ahuja and Nash (1967). The haz-
ard rates and the survival functions have explicit expressions, so that
these distributions can provide useful models for cases where data are
missing.

a. Distribution Function, Density, and Hazard Rate

The exponential distribution with resilience parameter has the distri-
bution function

F (x) = (1 − e−λx)η, η, λ, x > 0; (1)

the density is given by

f(x) = λη e−λx(1 − e−λx)η−1, x > 0, (2)

and consequently, the hazard rate is

r(x) =
ληe−λx(1 − e−λx)η−1

1 − (1 − e−λx)η
, x > 0. (3a)
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Fig. C.1. Densities of the exponential distribution with resilience paremeter (λ = 1)

The hazard rate is somewhat more complicated than that of the Weibull
distribution primarily because here it is the distribution function that
has a simple form, not the survival function. For the same reason, the
reverse hazard rate s does take a simple form, namely,

s(x) = λη/(eλx − 1), x > 0. (3b)

See Figures C.1, C.2, C.3, and C.4 for graphs of the density, distri-
bution function, and hazard rate of the exponential distribution with
a resilience parameter.

Note that when η is an integer (1) is the distribution of the maximum
in a sample of size η from an exponential distribution with parameter λ.

C.1. Example. Suppose that X1, X2, . . . , Xn are independent and all
have the exponential distribution 8.A(4). Let

W = max {X1, X2, . . . , Xn} − min{X1, X2, . . . , Xn}.
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Then W, called the range of X1, X2, . . . , Xn, has the density (2) and
distribution function (1) with η = n− 1.

C.2. Proposition. The density (2) is log concave for η ≥ 1 and log
convex for η ≤ 1.

Proof. From (2) it follows that

d2

dx2 log f(x) = −(η − 1)λ eλx

(eλx − 1)2 , (4)

which is negative, for η > 1, and positive, for η < 1. �

Among the consequences of Proposition C.2 is the fact that the
density f is decreasing when η ≤ 1 and is unimodal when η > 1. If
η > 1, the mode xm = [log η]/λ can be found by setting the expressions
in (4) equal to 0.
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It is easy to see that when η > 1, limx→0 f(x) = 0, whereas when
η < 1, limx→0 f(x) = ∞. Of course, f(0) = λ when η = 1.

In case η > 1, it can be found using (4) that

lim
x→0

f ′(x) = lim
x→0

λ

[
(η − 1) e−λx

1 − e−λx
− 1

]
f(x) (5)

= lim
x→0

λ2η(η − 1)(1 − e−λx)η−2.

This limit is infinite for 1 < η < 2; it is equal to 2λ2 for η = 2; and
equal to 0 for η > 2.

According to Proposition 4.B.8.a, another consequence of Proposi-
tion C.2 is that the hazard rate r is increasing for η ≥ 1, and decreasing
for η ≤ 1. This fact can also be obtained by differentiating the hazard
rate. In this way, it can be shown after algebraic simplification that the
hazard rate is increasing if

(1 − e−λx)η ≥ 1 − η e−λx, (6)

and decreasing if (6) is reversed. But (6) can be written in the form

(1 − p)η ≥ 1 − ηp, 0 ≤ p ≤ 1; (7)

this is a well-known inequality which requires η ≥ 1, and which is re-
versed if η ≤ 1. Inequality (7) can be easily verified by noting that
g(p) = (1 − p)η − 1 + ηp has the properties that g(0) = 0 and g is in-
creasing if η > 1, decreasing if 0 < η < 1. See Beckenbach and Bellman
(1961, p. 12, Section 14) for a discussion of this inequality and its use
in proving the arithmetic–geometric mean inequality.

Other interesting properties of the hazard rate (3a) are worth noting.

C.3. Proposition.

(i) For a η > 0, limx→∞ r(x) = λ.
(ii) For 0 < η < 1, limx→0 r(x) = ∞.
(iii) For η > 1, limx→0 r(x) = 0, and limx→0 r

′(x) = limx→0 f
′(x), so

that the limit of the hazard rate derivative at 0 is given by (5).

Proof. That the limiting value of r at ∞ is λ can be verified
by a direct computation of the limit using l’Hospital’s rule. The
value of the hazard rate at 0 is straightforward to compute. To see
that limx→0 r

′(x) = limx→0 f
′(x) when f(0) = 0, note that this means
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r(0) = 0 and check that

r′(x) =
f ′(x)
F̄ (x)

+ r2(x).

One consequence of Proposition C.3 is that the limiting residual life
distribution limt→∞ F̄ (x + t)/F (t) = e−λx is an exponential distribu-
tion; this follows from Proposition 1.B.13.

D. Exponential Distributions with a Tilt Parameter

When F̄ (x) = exp {−λx}, the two parameter family

F̄ (x |λ, γ) =
γ

eλx − γ̄
, x ≥ 0, λ > 0, γ > 0, γ̄ = 1 − γ, (1)

is obtained from the semiparametric family 7.F(2) with tilt parameter
γ. The case γ = 1 is the exponential distribution.

The survival function (1) has been investigated by Marshall and
Olkin (1997), and by Adamidis and Loukas (1998) for the case that
0 < γ ≤ 1. It has also been encountered in Example 4.C.7.b as the
mixture ∫ ∞

0
F̄ ∗(x |λ, ξ) dG(ξ) = F̄ (x |λ, γ),

where

F̄ ∗(x |λ, ξ) = exp {−ξ(eλx − 1)}, x ≥ 0, ξ, λ > 0,

is a Gompertz survival function (see Chapter 10), and

Ḡ(ξ) = e−γξ, ξ ≥ 0

is an exponential survival function.

In case 0 < γ ≤ 1, there is also another mixture representation.
When γ = 1, (1) is encountered as the Laplace transform of a geomet-
ric distribution in 20.E(6a); when γ �= 1, it is the Laplace transform
of a geometric distribution altered by the introduction of a scale pa-
rameter. As a scaled geometric mixture of exponential distributions, it
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follows that (1) is infinitely divisible when 0 < γ ≤ 1 (see Proposition
20.D.10).

For analyses of failure time data, the parametric family (1) may
sometimes be a competitor to the families of two-parameter Weibull
and gamma distributions. In this section, some of the properties of the
distribution given by (1) are enumerated.

As special cases of 7.F(3a), it follows that F (· |λ, γ) has the density
f(· |λ, γ) given by

f(x |λ, γ) =
γλ e−λx

(1 − γ̄ e−λx)2 =
γλ eλx

(eλx − γ̄)2 , x > 0, λ > 0, γ > 0; (2)

either directly or from 7.F(3b) it follows that the hazard rate r is given
by

r(x |λ, γ) =
λ

1 − γ̄ e−λx
=

λ eλx

eλx − γ̄
, x > 0, λ > 0, γ > 0. (3)

See Figures D.1, D.2, and D.3 for the case γ ≥ 1, and Figures D.4,
D.5, and D.6 for the case γ ≤ 1. Note that r(x |λ, 1) = λ, and that
r(x |λ, γ) is decreasing in x for 0 < γ ≤ 1, and r(x |λ, γ) is increasing
in x for γ ≥ 1.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f
(x

⏐1
,g

)

g = 10
g = 2

g = 1

Fig. D.1. Densities of exponential distributions with tilt parameter (λ = 1, γ ≥ 1)
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Fig. D.2. Survival functions of exponential distributions with tilt parameter (λ = 1,
γ ≥ 1)

From 7.F(4a), 7.F(4b), 7.F(5a), and 7.F(5b), it follows that

λ/γ ≤ r(x |λ, γ) ≤ λ, −∞ < x < ∞, γ ≥ 1, (4a)

λ ≤ r(x |λ, γ) ≤ λ/α, −∞ < x < ∞, 0 ≤ γ ≤ 1, (4b)

e−λx ≤ F̄ (x |λ, γ) ≤ e−λx/γ , −∞ < x < ∞, γ ≥ 1, (5a)

e−λx/γ ≤ F̄ (x |λ, γ) ≤ e−λx, −∞ < x < ∞, 0 ≤ γ ≤ 1. (5b)
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Fig. D.3. Hazard rates of exponential distributions with tilt parameter (λ = 1, γ ≥ 1)
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D.1. Proposition. The function log f(· |λ, γ) is convex, for 0 < γ ≤ 1,
and concave, for γ ≥ 1.

This result can be verified by differentiating log f(x |λ, γ) with re-
spect to x. Of course, this means that for γ ≤ 1, f(· |λ, γ) is decreasing,
and for γ ≥ 1, f(· |λ, γ) is unimodal. By solving d log f(· |λ, γ)/dx = 0,
it is readily verified that a random variable X with density f(· |λ, γ)
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Fig. D.5. Survival functions of exponential distributions with tilt parameter
(λ = 1, γ ≤ 1)
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Fig. D.6. Hazard rates of exponential distributions with tilt parameter (λ = 1, γ ≤ 1)

has the mode

mode(X) = 0, γ ≤ 2; mode(X) = λ−1 log(γ − 1), γ ≥ 2. (6)

It follows from (5a) and (5b) that F (· |λ, γ) has finite moments of
all positive orders. Direct computations show that if X has distribution
F (· |λ, γ), then

EX = −γ log γ
λγ̄

, γ �= 1, γ > 0; EX = 1/λ, γ = 1. (7)

Note that this quantity is always positive. More generally, for r > −1,

EXr = r

∫ ∞

0
F̄ (x |λ, γ)xr−1 dx = rγ

∫ ∞

0

xr−1 e−λx

1 − γ̄ e−λx
dx (8)

=
rγ

λr

∫ 1

0

(− log y)r−1

1 − γ̄y
dy.

For r = 1, this yields (7).
The Laplace transform of f(· |λ, γ) is given by

E e−sX =
∫ 1

0

[
γys/λ

(1 − γ̄y)2

]
dy. (9)



SVNY289-Olkin May 15, 2007 16:39

D. Exponential Distributions with a Tilt Parameter 343

0  1  2 3 4 5

0  

0.4

0.8

1.2

1.6

2  

g

V
ar

(X
)
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Both (8) and (9) can be expressed as infinite series when |γ̄| ≤ 1. Then,
the integrands of (8) and (9) can be expanded in a power series and
the result integrated term by term to yield

EXr =
rγ

λr

∫ ∞

0
xr−1 e−x

∞∑
j=0

γ̄j e−jx dx =
rγΓ(r)
λr

∞∑
j=0

γ̄j

(j + 1)r
, |γ̄| ≤ 1.

(10)

Ee−sX = γ

∫ 1

0
ys

∞∑
j=0

(j + 1)yj γ̄j dy = γ
∞∑
j=0

γ̄j
j + 1

s + j + 1
, |γ̄| ≤ 1. (11)

For numerical evaluation, (8) may be preferable to (10). A numerical
evaluation of the variance (with the scale parameter λ = 1) as a func-
tion of γ is provided in Figure D.7.
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Because of Proposition D.1, total positivity properties yield mo-
ment inequalities that are not true in general; see Proposition 6.A.1.
In particular, the coefficient of variation σ/μ is less than 1 for γ ≥ 1,
and is greater than 1 for γ ≤ 1. The pth percentile xp of F (· |λ, γ) is
obtained by solving the equation F (x |λ, γ) = p, and is given by

xp =
1
λ

log
p̄ + γp

p̄
, p̄ = 1 − p. (12)

In particular, the median (fiftieth percentile) of X is given by

med(X) =
1
λ

log(1 + γ). (13)

It is easy to see that med(X),mode(X), and EX are all increasing in
γ and decreasing in the scale parameter λ. From the monotonicity of
log x and the fact that log x ≤ x− 1, x > 0, it follows that

mode(X) ≤ med(X) ≤ γ/λ ≤ EX, (14)

but note that

lim
γ→∞

mode(X)/EX = 1.

a. Residual Life Distribution of an Exponential
Distribution with Tilt Parameter

If F (· |λ, γ) is given by (1), then the residual life distribution at t has
the survival function

F̄t(x |λ, γ) =
eλt − γ̄

eλ(x+t) − γ̄
=

θ

eλx − θ̄
,

where θ = θ(t) = 1 − γ̄ e−λt. Thus, the residual life distribution is an-
other exponential distribution with tilt parameter depending upon t.
The limit distribution as t → ∞ is an ordinary exponential distribution
because the limit of θ(t) is 1.

It can be verified by direct calculations that F̄t(x |λ, γ) > F̄ (x |λ, γ)
when γ < 1 (F is NWU), and this inequality is reversed when γ > 1
(F is NBU).



SVNY289-Olkin May 15, 2007 16:39

D. Exponential Distributions with a Tilt Parameter 345

b. A Connection with the Logistic Distribution

The logistic distribution is a distribution with support (−∞,∞) and so
is beyond the scope of this book, but it is introduced briefly in Section
12.C. It is of some interest to note that the exponential distribution
with tilt parameter is the conditional distribution of a random variable
Z with a logistic distribution given that Z > 0.

The logistic distribution can be derived as the solution of the dif-
ferential equation

dF (x)
dx

= cF (x)F̄ (x),

which is known as the logistic law of growth. This differential equation
has clear biological meaning, but its meaning in the context of proba-
bility is a mystery discussed briefly by Feller (1971, p. 52). However, a
number of other derivations of the logistic distribution have been given
(see, e.g., Johnson, Kotz and Balakrishnan, 1995).

The logistic distribution may have been found to be useful in part
because it has a survival function that can be expressed in closed form.
Specifically, the survival function is given by

F̄ (x) =
1

1 + c eλx
, λ, c > 0, −∞ < x < ∞. (15)

This survival function truncated at 0 becomes

F̄ (x) =
1 + c

1 + c eλx
, λ, c > 0, 0 < x < ∞. (16)

Alternatively, (16) can be thought of as the conditional distribution of
a random variable X having the distribution (15), given that X > 0.
With the identification γ = (c + 1)/c, (16) becomes (1). Thus, the
exponential distribution with tilt parameter is a truncated logistic
distribution.

c. Ordering Distributions with Tilt Parameter

The distributions F (· |λ, γ) of (1) are, for fixed λ, likelihood ratio de-
creasing in γ as a special case of Proposition 7.F.8. They are clearly
stochastically ordered in λ for all γ. Tedious but routine calculus shows
that these distributions are also likelihood ratio ordered in λ for fixed
γ ≤ 2, but not ordered in λ even in the hazard rate order for fixed
γ > 2.
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In the convex transform order, the distributions F (· |λ, γ) are
decreasing in γ for all fixed λ. As usual, this order can be established
by directly verifying the conditions of the definition. Of course, this
means that the distributions are ordered in the Lorenz order and have
a coefficient of variation decreasing in γ.

The above-mentioned discussion shows that the scale parameter of
(1) is a magnitude parameter, as expected, but only in the relatively
weak sense of stochastic order when γ > 2. The tilt parameter γ is a
shape parameter that orders the distributions according to skewness,
but it is like the shape parameter of the gamma distribution in that it
also orders the distributions according to the likelihood ratio order, a
magnitude order.

d. Limits

Suppose that F (· |λ, γ) is the survival function given by (1), and let
λ = γδ. Then, using L’Hospital’s rule it can be determined that

lim
γ→0

F̄ (x | δγ, γ) = lim
γ→0

γ

eδγx − γ̄
= lim

γ→0

1
δxeδγx + 1

=
1

1 + δx

is the survival function of a Pareto II distribution 11.B(1) with frailty
parameter 1. Thus, this basic Pareto distribution is a weak limit of
distributions that are exponential distributions with tilt parameter.

If EX is fixed, say EX = 1, then λ = −(γ log γ)/γ̄. One can verify
that, with this value of λ,

lim
γ→∞

F̄ (x |λ, γ) = 1, x < 1,

= 1/2, x = 1,
= 0, x > 1;

this shows that distributions degenerate at the point μ = EX > 0 are
weak limits of distributions of the form (1). A further computation
shows that

lim
γ→0

F̄ (x |λ, γ) = 1, x ≤ 0,

= 0, x > 0,

so the distribution degenerate at 0 is a weak limit of distributions of
the form (1) with unit expectation (and decreasing hazard rate).
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e. Comparisons with the Weibull and Gamma Families

For analyses of failure time data, exponential distributions with a tilt
parameter may be a competitor to the families of two parameter gamma
and Weibull distributions. These families share certain similarities; for
example, all have monotone hazard rates: A gamma distribution is IHR
if ν > 1 and DHR if ν < 1; a Weibull distribution is IHR if α > 1 and
DHR if α < 1; an exponential distrtibution with tilt is IHR if γ > 1 and
DHR if γ < 1. In each case, if the parameter is 1, then the distribution
is exponential.

A comparison of the gamma, Weibull, and exponential distribu-
tions with tilt using simulations is made by Marshall, Meza, and Olkin
(2001). Here are some theoretical comparisons.

First, note from (3) that r(0 |λ, γ) = λγ, so that at the origin this
hazard rate varies continuously with the parameters. This is in contrast
with the family of Weibull or gamma distributions; for both of those
families, either the distribution is an exponential distribution, or r(0) =
0, or r(0) = ∞, so that r(0) is discontinuous in the shape parameter,
and neither family allows real choice for r(0). Of course, for all of these
families, r(0) = f(0), so these comments also apply to the density at 0.

For exponential distributions with tilt parameter,

lim
x→∞

r(x |λ, γ) = λ

is bounded and continuous in the parameters, like the gamma distri-
bution but unlike the Weibull distribution.

f. An Alternative Derivation

Suppose that X has the Pareto II distribution 11.B(1), i.e., X has the
survival function

F̄X(x) = [1 + (λx)]−ξ, x ≥ 0, λ, ξ > 0.

If X = eY − 1, then Y has the survival function

F̄Y (y) = [1 + λ(ey − 1)]−ξ, y ≥ 0, λ, ξ > 0. (17a)

Now, λ is no longer a scale parameter; let λ = 1/γ, and rewrite (17a) as

F̄Y (y) =
1

[1 + γ−1(ey − 1)]ξ
=

(
γ e−y

1 − γ̄ e−y

)ξ

, y ≥ 0, γ, ξ > 0.

(17b)
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If a scale parameter is introduced in (17b), the result is the survival
function

F̄ (y |λ, γ, ξ) =
1

[1 + γ−1(eλy − 1)]ξ
=

(
γ e−λy

1 − γ̄ e−λy

)ξ

,

y ≥ 0, λ, γ, ξ > 0. (17c)

For comparison with (17c), rewrite (1) in the form

F̄ (x |λ, γ) = [1 + γ−1(eλx − 1)]−1, x > 0, λ > 0, γ > 0,

to see that (17c) is an exponential distribution with both tilt and frailty
parameters.

There are no other two-parameter extensions of the exponential dis-
tribution obtainable using the parameters discussed in Chapter 7. But
of course there are other two-parameter extensions, an example being
the density fY of 15.E.1. The remainder of this chapter is devoted to
three-parameter extensions of the exponential distribution obtainable
using the parameters of Chapter 7. Three-parameter families may serve
as an umbrella for several two-parameter families, and results for them
specialize to the two-parameter subfamilies. From a statistical point
of view, estimation with a three-parameter family may lead to the de-
termination that some particular two-parameter subfamily provides an
appropriate model.

E. Generalized Gamma
(Gamma–Weibull) Distribution

Recall that the Weibull distribution can be obtained from the exponen-
tial distribution by a power transformation of the underlying random
variable. A similar transformation can be applied to a random variable
with a gamma distribution to obtain a three-parameter generalization
of both the Weibull and the gamma distribution, sometimes called the
“generalized gamma distribution” or the “Stacy distribution.” This dis-
tribution, with density (2a), was introduced by Amoroso (1925) and
studied by Stacy (1962). It is also the subject of a substantial study by
Bondesson (1992).

Alternatively, the gamma–Weibull distribution can be obtained by
introducing a moment parameter in the Weibull distribution, although
this derivation results in a different parameterization, given in (2b).
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Suppose that the random variable Y has a gamma distribution with
unit scale parameter and convolution parameter ν, and let

X = Y 1/α/λ. (1)

Then X has density f given by

f(x |λ, α, ν) =
λα(λx)να−1 exp {−(λx)α}

Γ(ν)
, x > 0, (2a)

where λ, α, ν > 0. Here, it should be noted that ν started as a con-
volution parameter, but does not retain that identity after the in-
troduction of a power parameter because convolution parameters and
power parameters do not commute (see Section 5.L). Consequently,
another parameterization of (2a) is desirable. With β = α(ν − 1), (2a)
becomes

f(x |λ, α, β) =
λα(λx)α+β−1 exp {−(λx)α}

Γ((β/α) + 1)
, x > 0, (2b)

where λ, α > 0 and β > −α.
Here, β is a moment parameter. The case that β = 1 is called a

“pseudo-Weibull distribution” by Voda (1989).
Recall that the gamma distribution can be obtained from the ex-

ponential distribution by introducing a moment parameter; because
moment parameters and power parameters commute, the possibility of
parameterizing the generalized gamma distribution with scale, power,
and moment parameters is apparent. The progression from the expo-
nential distribution with scale parameter is indicated in the following
diagram:

−→ gamma [λ, β] −→
moment power

exp[λ] generalized gamma [λ, α, β]
−→ Weibull [λ, α] −→

power moment

Following Voda (1989), the special case that β = 1 has been called
a “pseudo-Weibull distribution” by Murthy, Xie and Jiang (2004,
pp. 23, 122). These authors derive the distribution as though they were



SVNY289-Olkin May 15, 2007 16:39

350 9. Parametric Extensions of the Exponential Distribution

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

x

r(
x
)

a = 2, n = 1

a = 1.2, n = 1

a = 1.2, n = 2

a = 2, 
n =

 2

Fig. E.1. Hazard rates of the gamma–Weibull distribution (α ≥ 1, αν ≥ 1)

introducing a moment parameter β in the Weibull distribution, but
they allow only the value β = 1.

As would be expected, the three-parameter family of densities (2b)
offers considerable flexibility for fitting data. Moreover, a variety of
hazard rate shapes are possible. Although the hazard rate cannot in
general be expressed in closed form, the shape of the hazard rate can be
determined using Proposition 4.E.2. Essentially this was done by Glaser
(1980) and again by McDonald and Richards (1987), who determined
that the hazard rate r of the density (2a) is

(i) increasing if α ≥ 1 and να ≥ 1,
(ii) decreasing if α ≤ 1 and να ≤ 1,
(iii) bathtub shaped if α > 1 and να < 1,
(iv) inverted bathtub shaped if α < 1 and να > 1.

See Figures E.1, E.2, E.3, and E.4. Prior knowledge of the hazard rate
shape can be reflected as a limitation on the parameter values of in-
terest. For example, if it is known that the hazard rate is increasing,
parameter estimation would be done with the constraints that α ≥ 1
and να ≥ 1.

Clearly, f is a gamma density when α = 1, and a Weibull density
when ν = 1; what is less clear is that the limiting density as ν → ∞ is
a lognormal distribution (see Section 12.B).
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By using (1) and A(6), the moments of the generalized gamma dis-
tribution can be obtained directly; if X has the density (2a), then

EXr =
Γ

(
r

α
+ ν

)
λrΓ(ν)

, r > −αν. (3)
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Thus,

EX =
Γ

(
1
α

+ ν

)
λΓ(ν)

,

and

Var(X) =
Γ(

2
α

+ ν)

λ2Γ(ν)
−

[
Γ

(
1
α

+ ν

)/
λΓ(ν)

]2
.

a. Extended Gamma–Weibull Distribution

The density B(15) is an extension of the usual Weibull distribution with
the shape parameter allowed to be negative. A similar extension of the
gamma–Weibull distribution is possible. Such an extension would have
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a density of the form

f(x |λ, ν, α) =
λ |α | (λx)να−1 exp {−(λx)α}

Γ(ν)
, x>0, λ, ν>0, α �= 0.

(4)

b. Infinite Divisibility

The extended gamma–Weibull distribution was conjectured to be in-
finitely divisible by Bondesson (1978), who proved the result for some
special cases. Infinite divisibility for the general case is due to Thorin
(1978), who showed that the extended gamma–Weibull distribution is
a generalized gamma convolution, discussed in Section I.

F. Weibull Distribution with a Resilience Parameter

A special case of the Weibull distribution (shape parameter 2) with
resilience parameter was introduced by Burr (1942) as his Type X dis-
tribution. The general Weibull distribution with resilience has been
introduced and studied under the name “exponentiated Weibull fam-
ily” by Mudholkar and Srivastava (1993), Mudholkar, Srivastava and
Freimer (1995), and Mudholkar and Hutson (1996). This family has
distribution functions of the form

F (x |λ, α, η) = [1 − exp {−(λx)α}]η, λ, α, η > 0, x ≥ 0, (1)

and for λ, α, η > 0, x ≥ 0, densities given by

f(x |λ, α, η) = λαη(λx)α−1[1 − exp {−(λx)α}]η−1[exp {−(λx)α}]. (2)

Mudholkar and Hutson (1996) show that this density is decreasing if
αη ≤ 1, and is unimodal if αη > 1. These results can be verified by
examining the derivative of log f(x |λ, α, η).

From (1) and (2) it follows directly that the hazard rate is

r(x |λ, α, η) =
λαη(λx)α−1[1 − exp {−(λx)α}]η−1[exp {−(λx)α}]

1 − [1 − exp {−(λx)α}]η ,

λ, α, η > 0, x ≥ 0. (3)

This hazard rate is not particularly simple primarily because there is no
cancellation when the ratio of density to survival function is formed.
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Fig. F.1. Hazard rates of the Weibull distribution with resilience (i) (α = 3, η = 0.5);
(ii) (α = 0.5, η = 0.5); (iii) (α = 3, η = 0.1); (iv) (α = 0.5, η = 3)

This is the price paid for the introduction of a resilience parameter,
and the reward is that the hazard rate takes on a variety of forms. In
particular, Mudholkar and Hutson (1996) show that the hazard rate is

(i) increasing for α ≥ 1 and αη ≥ 1,
(ii) decreasing for α ≤ 1 and αη ≤ 1,
(iii) bathtub shaped for α > 1 and αη < 1,
(iv) Inverted bathtub shaped (unimodal) for α < 1 and αη > 1.

See Figure F.1.

When η is an integer, (1) can be regarded as a product of η identical
Weibull distributions. The case that the component Weibull distribu-
tions are not identical has been studied by Jiang, Murthy and Ji (2001).
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G. Residual Life of the Weibull Distribution

If F is a Weibull distribution, the residual life distribution has survival
function, density, and hazard rate given by

F̄t(x) = exp {−[λ(x + t)]α + [λt]α}, (1)

ft(x) = F̄t(x)λ[αλ(x + t)]α−1, (2)

rt(x) = λ[αλ(x + t)]α−1. (3)

This distribution has not found a place in the literature, and its
importance is unclear. But here, there is new flexibility in choosing
the hazard rate at 0, so in some circumstances, the distribution may
be a competitor to other three-parameter extensions of the Weibull
distribution. These residual life distributions have monotone hazard
rates, and of course, these hazard rates are just those of the Weibull
distribution but with the origin moved to t.

If the random variable X has the survival function of (1), then
Y = log [1 + (X/t)] has a Gompertz survival function

Ḡ(y) = exp {−ξ(eαy − 1)}, y ≥ 0,

where ξ = (λt)α. The Gompertz distribution is discussed in Chapter
10.

G.1. Proposition. In the convex transform order, the residual life
distribution (1) is decreasing in t for α ≤ 1, and increasing in t for
α ≥ 1, the parameters α and λ being fixed.

Proof. Using the fact that

F̄−1
t (z) = {[(λt)α − log z]1/α/λ} − t,

the convexity required can be verified by differentiation. �

H. Weibull Distribution with a Tilt Parameter

When F is a Weibull distribution function, then 7.F(2) yields the
geometric-extreme stable extension of the Weibull distribution with
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Fig. H.1. Hazard rates of the Weibull distribution with tilt parameter (λ = 1, γ =
0.5)

survival function

F̄ (x |λ, γ, α) =
γ exp [−(λx)α]

1 − γ̄ exp [−(λx)α]
, x ≥ 0, λ, α, γ > 0. (1)

The density and hazard rate of the distribution given by (1) can be
obtained directly from 7.F(3a) and 7.F(3b). In particular, the hazard
rate is

r(x |λ, α, γ) =
λα(λx)α−1

1 − γ̄ exp [−(λx)α]
, x ≥ 0, λ, α, γ > 0. (2)

This function is graphed in Figures H.1, H.2, and H.3.
It can be verified using elementary methods that this hazard rate

is increasing if γ ≥ 1, α ≥ 1, and decreasing if γ ≤ 1, α ≤ 1. If α > 1
and γ < 1, then the hazard rate is initially increasing and eventually
increasing, but there may be one interval where it is decreasing. Sim-
ilarly, if α < 1 and γ > 1, then the hazard rate is initially decreasing
and eventually decreasing, but there may be one interval where it is
increasing.

If Y has an exponential distribution with parameter 1, then X =
Y 1/α/λ has the survival function B(1) of the Weibull distribution.
Similarly, if Y has the survival function D(1) with λ = 1, then X =
Y 1/α/λ has the survival function (1). Consequently, moments of (1)
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Fig. H.2. Hazard rates of the Weibull distribution with tilt parameter (λ = 1, γ = 1)

can be obtained from (noninteger) moments of D(1) given by D(10)
using EXr = [EY r/α]/λr. Thus, if X has the survival function (1),
then

EXr =
rγ

αλr

∞∑
j=0

γ̄j

(j + 1)r/α
Γ

(
r

α

)
, | γ̄ | ≤ 1. (3)
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Fig. H.3. Hazard rates of the Weibull distribution with tilt parameter (λ = 1, γ = 2)
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Table H.1. Expected values of X when X has a Weibull distribution with tilt
parameter γ and λ = 1

γ 0.2 0.5 1.0 1.5 2.0 10 20α

0.2 24.68 61.01 120.0 177.4 233.3 1014 1828
0.3 2.046 4.897 9.261 13.28 17.03 61.14 99.29
0.4 0.807 1.844 3.323 4.609 5.764 17.54 26.38
0.5 0.537 1.164 2.000 2.690 3.290 8.779 12.48
0.6 0.446 0.915 1.505 1.971 2.365 5.681 7.739
0.7 0.410 0.801 1.266 1.621 1.913 4.222 5.563
0.8 0.398 0.742 1.133 1.422 1.657 3.408 4.373
0.9 0.397 0.710 1.052 1.299 1.495 2.900 3.641
1 0.402 0.693 1.000 1.216 1.386 2.558 3.153
2 0.518 0.714 0.886 0.994 1.072 1.522 1.710
5 0.725 0.835 0.918 0.966 0.999 1.165 1.225

10 0.842 0.906 0.951 0.977 0.994 1.076 1.105
100 0.982 0.989 0.994 0.997 0.999 1.007 1.010

However, moments cannot be given in closed form; thus, even the first
moment of (1) must be obtained numerically. For λ = 1, Table H.1
shows values of the first moment for various combinations of α and γ.

Note that for fixed α, the expected value is increasing in γ, this
is a consequence of Proposition 7.F.8 and the fact that a stochastic
ordering implies the ordering of expectations.

By writing

EXs =
∫ ∞

0
sxs−1F̄ (x |λ, γ, α) dx, s > 0,

it can be shown with the change of variables y = (λx)α in (1) and an
integration by parts that

lim
α→∞

EXs = λ−s, s > 0.

These are the moments of a random variable degenerate at 1/λ. It can
also be verified that the limit of the survival function (1) as α → ∞ is
degenerate.
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I. Generalized Gamma Convolutions

Thorin (1977a) gives a representation for the Laplace transform of dis-
tributions that are limits of convolutions of gamma distributions. This
large class of infinitely divisible distributions includes the extended
gamma–Weibull distributions and a number of other distributions en-
countered in later chapters.

The study of generalized gamma convolutions involves complex vari-
able theory and is beyond the scope of this book. What follows is but a
brief introduction; for a more complete discussion of generalized gamma
convolutions, see Bondesson (1992).

I.1. Definition (Thorin, 1977a). A distribution F is said to be a gen-
eralized gamma convolution if its Laplace transform φ has the form

φ(s) = exp {−
∫ ∞

0
log

[
1 +

s

z

]
dU(z)}, (1)

where U is a nondecreasing function such that U(0) = 0,

∫ 1

0
| log z | dU(z) < ∞ and

∫ ∞

1

1
z
dU(z) < ∞.

Thorin (1977a) shows that these distributions comprise all limits of
convolutions of gamma distributions. The proof is obtained by first
assuming that U is a step function, in which case (1) becomes a product
of Laplace transforms of the form A(6).

I.1.a. Remark. Thorin (1977a) gives the name “generalized gamma
convolution” to a somewhat larger class of distributions that includes
translations of those defined above. This extension of the definition is
not adopted here. Thorin (1977b) shows that the representation (1) is
unique, and that the class of distributions is closed under weak limits.

I.2. Proposition (Thorin, 1977a,b). Generalized gamma convolu-
tions can be written as mixtures of exponential distributions, and they
are infinitely divisible.

Because of Proposition 20.D.10, the infinite divisibility follows from
the mixture representation. Proposition I.2 has been used by Thorin
and Bondesson to prove infinite divisibility of a number of distribu-
tions, including the extended gamma–Weibull distribution as indicated
in Section E.
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I.3. Proposition (Bondesson, 1992, p. 53). If the density f is a mix-
ture

f(x) =
∫

λ e−λxg(λ) dλ, x > 0,

of exponential densities where zg(z) is log concave, then f is a gener-
alized gamma convolution.

I.4. Example (Bondesson, 1979). All densities f of the form

f(x) = cxβ−1 M
Π
j=1

1
[1 + cj1xaj1 + · · · + cjNj

xajNj ]γj
, x > 0,

or

f(x) = cxβ−1 exp {−c1x
a1 − c2x

a2 − · · · − cNxaN}, x > 0,

are generalized gamma convolutions.

J. Summary of Distributions and Hazard Rates

Gamma

[r(x |λ, ν)]−1 =
∫ ∞

x

(
z

x

)ν−1
e−λ(z−x) dz =

∫ ∞

0
[1 +

u

x
]ν−1 e−λu du,

x, λ, ν > 0.

Weibull

r(x |λ, α) = αλ(λx)α−1, x, λ, α > 0.

Generalized Weibull

r(x |λ, α) =
|α|λ(λx)α−1 exp {−(λx)−α}

1 − exp {−(λx)α} , x, λ > 0, α �= 0.

Exponential with resilience

r(x |λ, η) =
λη e−λx(1 − e−λx)η−1

1 − (1 − e−λx)η
, x, λ, η > 0.
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Exponential with tilt

r(x |λ, γ) =
λ

1 − γ̄ e−λx
=

λ eλx

eλx − γ̄
, x, λ, γ > 0.

Weibull with resilience

r(x |λ, α, η) =
λαη(λx)α−1[1 − exp {−(λx)α}]η−1[exp {−(λx)α}]

1 − [1 − exp {−(λx)α}]η ,

x, λ, α, η > 0.

Weibull with tilt

r(x |λ, α, γ) =
λα(λx)α−1

1 − γ̄ exp [−(λx)α]
, x, λ, α, γ > 0.
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10

Gompertz and Gompertz–Makeham
Distributions

Methods of smoothing mortality tables have long been of interest to
actuaries. Early methods were primarily nonparametric, although de
Moivre (1724) found a uniform distribution to be useful over short time
periods and other parametric methods were occasionally suggested. The
first parametric family to gain wide attention was that of Gompertz
(1825). This family was extended with the addition of a parameter
by Makeham (1860), and subsequently by various other authors. An
historical review of considerable interest has been given by Ogborn
(1953).

For a time, the work of Gompertz was not well recognized. This was
noted by Gray (1858), who wrote as follows:

“Although long before the public, it is far from being so well known as it
deserves to be. This may have arisen from various causes. The work containing
it is not very accessible; the form in which the investigation of it is given is
rendered forbidding by the employment of the obsolete fluxional (ed. derivative)
notation, and a degree of brevity which renders it difficult to be followed; while
the whole of the paper containing it is so disfigured by typographical errors as
to be in many places almost unintelligible.”

The Gompertz distribution was discussed by Edmonds (1832), who
claimed credit for its discovery. A rather spirited exchange concern-
ing priority appeared in the Assurance Magazine and Journal of the
Institute of Actuaries. This exchange involved De Morgan (1861a,b),
Edmonds (1861a,b), Gompertz (1861), and Sprague (1861); Edmonds
had no supporters, whereas both De Morgan and Sprague strongly de-
fended the priority of Gompertz.
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Outside the actuarial community, the Gompertz distribution con-
tinues to receive minimal attention; Johnson, Kotz and Balakrishnan
(1994, pp. 25, 640) note that the Gompertz distribution is a truncated
extreme value distribution.

The applicability of the Gompertz distribution remains a topic of
interest. Particularly in the right-hand tail of a distribution, available
data becomes thin and consequently any proposed model would be
difficult to evaluate. For a recent discussion of this issue as it relates to
the Gompertz distribution, see Wang, Müller and Capra (1998).

Gompertz distributions can be viewed as extensions of the expo-
nential distributions because exponential distributions are limits of se-
quences of Gompertz distributions. Of course, the gamma and Weibull
distributions discussed in Chapter 9 are more readily recognized as
extensions of the exponential distribution because the exponential dis-
tribution is obtained from them by choice of parameter.

A. The Gompertz Distribution

a. The Derivation of Gompertz

Gompertz (1825) investigated the consequences of supposing that “the
average exhaustion of a man’s power to avoid death be such that at
the end of infinitely small intervals of time he lost equal proportions of
his remaining power to oppose destruction which he had at the com-
mencement of these intervals.” It is apparent that Gompertz regarded
the hazard rate r(t) as a representation of vulnerability to death at
time t. Consequently, the supposition of Gompertz can be formalized
by the differential equation

dr(t)
dt

= λr(t), t > 0. (1)

Gompertz assumed that λ > 0 and this led him to the conclusion that
the “intensity of mortality” (i.e., the hazard rate) increases in geomet-
rical progression, or in other words,

r(x |λ, ξ) = ξλ eλx, ξ, λ > 0, x ≥ 0. (2)

The case that λ = 0 in (1) leads to the exponential distribution, and
the case that λ < 0 and ξ < 0 in (2) leads to the negative Gompertz
distribution discussed in Section A.c.
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Fig. A.1. Densities of the Gompertz distribution (λ = 1)

With the aid of the fundamental formula 1.B(3) the hazard rate (2)
yields the survival function

F̄ (x |λ, ξ) = exp
{
−

∫ x

0
r(t |λ, ξ) dt

}
= exp {−ξ(eλx − 1)},

x ≥ 0, ξ, λ > 0 (3)

of the Gompertz distribution (Gompertz, 1825), and the corresponding
density is

f(x |λ, ξ)] = λξ exp {λx− ξ(eλx − 1)}, x, λ, ξ > 0. (4)

See Figures A.1, A.2 and A.3.
Having derived (3) from a physical rationale, Gompertz proceeded

to check it against available data. In this, the degree of success might
not satisfy a present day statistician because Gompertz found that to
obtain a good fit, it was necessary to divide mortality tables into three
age groups and to use different values of the parameters in each group.
This might be regarded as an admission of model inadequacy, but it
could also be regarded as anticipating the development of covariate
models by 150 years (see Chapter 16).

The applicability of the Gompertz distribution has continued to
be questioned, and was the motivation for Makeham’s investigations
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Fig. A.2. Survival functions of the Gompertz distribution (λ = 1)

described in Section B. For more recent investigations of this issue,
see Wang, Müller and Carpa (1998) and the references contained
therein.

The hazard rate (2) of the Gompertz distribution is convex and
more strongly increasing than any other example considered in this
book. Clearly, the Gompertz distribution has a scale parameter λ and
a frailty parameter ξ.
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Fig. A.3. Hazard rates of the Gompertz distribution (λ = 1)
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With θ = ξλ, (2) can be replaced by

r(x |λ, θ) = θ eλx,

and in this form, it can be seen that the exponential distribution is
the special case λ = 0. Alternatively the exponential distribution can
be obtained directly from (2) by letting λ → 0, ξ → ∞ while θ = ξλ
is fixed. As noted above, the Gompertz distribution can be regarded,
along with the distributions of Chapter 9, as an extension of the expo-
nential distribution.

b. Moments

Because the hazard rate of the Gompertz distribution is increasing,
it follows from Proposition 4.C.3 that the positive moments of the
Gompertz distribution are finite. Unfortunately, neither these finite
moments nor the Laplace transform can be given in closed form. The
expected value, variance, and coefficient of variation are graphed, re-
spectively, in Figures A.4, A.5, and A.6 with the scale parameter λ = 1.
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Fig. A.4. Mean of the Gompertz distribution (λ = 1)
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c. The Negative Gompertz Distribution: λ<0

If ξ and λ are replaced, respectively, by −ξ and −λ in (3), the resulting
hazard rate is given by

r(x |λ, ξ) = ξλ e−λx, x, λ, ξ > 0; (5)

the distribution with this hazard rate is termed the negative Gompertz
distribution. The integral over [0,∞) of this decreasing function is finite,
and consequently, the corresponding survival function

F̄ (x |λ, ξ) = exp
{
−

∫ x

0
r(t |λ, ξ) dt

}

= exp {ξ(e−λx − 1)}, x, λ, ξ > 0, (6)

is not proper. If F̄ is given by (6), then F̄ (0/λ, ξ) = 1, and F̄ is
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Fig. A.6. Coefficient of variation of the Gompertz distribution (λ = 1)

decreasing, but

lim
x→∞

F̄ (x |λ, ξ) = e−ξ > 0.

This improper distribution has been used by Lomax (1954) to fit certain
data on business failures. In this application, the mass that F places
at ∞ is the probability that the business does not fail. Additional ap-
plications of the negative Gompertz are given below.

Note that the survival function (6) is also a Laplace trasform; when
λ = 1, it is the Laplace transform of a Poisson distribution with pa-
rameter ξ (see Section 20.E.c).

d. Functional Equations

In the mid-nineteenth century, a number of years after Gompertz pro-
posed his distribution, some derivations via functional equations were
found. In particular, De Morgan (1860) and Woolhouse (1863) gave the
derivations presented here.
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Suppose that two items have identical distributions F at age zero.
Suppose further that the items are unfailed at respective ages x and
y, and are then placed in series. Under what conditions does this new
series system (of aged components) have the same life distribution as
a single component of some age z = z(x, y) depending upon x and y?
The requirement of this rather curious question can be written in terms
of the functional equation

F̄ (x + t)
F̄ (x)

F̄ (y + t)
F̄ (y)

=
F̄ (z(x, y) + t)
F̄ (z(x, y))

for all x, y, t ≥ 0. (7)

If the common distribution of the items is a Gompertz distribution
with scale parameter λ and if z(x, y) = eλx + eλy, then it can be verified
that (7) is satisfied. With some additional qualitative conditions on F ,
there are no other solutions to (7). This is the content of the following
proposition.

A.1. Proposition (De Morgan, 1860; Aczél, 1999). Suppose that F
is an absolutely continuous distribution with a strictly increasing haz-
ard rate such that F (0) = 0. If the survival function F̄ satisfies (7)
where the function z = z(x, y) does not depend upon t, then F is a
Gompertz distribution.

Proof. Take logarithms in (7) and differentiate with respect to t to
obtain

r(x + t) + r(y + t) = r(z(x, y) + t). (8)

Now, set t = 0 in (8) to obtain

z(x, y) = r−1(r(x) + r(y)). (9)

With r(x) = u, r(y) = v, substitution of z from (9) into (8) yields

r(r−1(u) + t) + r(r−1(v) + t) = r(r−1(u + v) + t).

This equation has the form

φt(u) + φt(v) = φt(u + v), u, v ≥ 0, (10)

of Cauchy’s functional equation 22.A(1) where φt(u) = r(r−1(u) + t).
It follows from Proposition 22.A.1 that for some function c of t, φt(u) =
r(r−1(u) + t) = uc(t), u, t ≥ 0. Set r−1(u) = w and rewrite the equation
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r(r−1(u) + t) = uc(t) as

r(w + t) = r(w)c(t), w, t ≥ 0. (11)

Equation (11) is the Pexider equation 22.B(2b), and it follows that r
has the form (2) for some ξ, λ ≥ 0. �

A.1.a. Remark. If in Proposition A.1 the hypothesis that r is strictly
increasing is replaced by the hypothesis that r is strictly monotone
(increasing or decreasing), then the negative Gompertz distribution is
also a solution of (7).

Comment. Proposition A.1 was stated by De Morgan (1860) with-
out the hypothesis that r is monotone. De Morgan writes that “I do
not think it right to occupy space by a very full development of the
demonstration: the following will be enough for anyone who has an
ordinary acquaintance with functional algebra and the differential cal-
culus.” The details of De Morgan’s proof are elusive; the proof given
above and missing hypothesis were supplied by J. Aczél (1999).

The following proposition suggests that there is a close relationship
between the Gompertz and the exponential distributions. This rela-
tionship is further illuminated in Proposition A.3.

A.2. Proposition (Woolhouse, 1863). Suppose that F is a proper ab-
solutely continuous distribution such that F (0) = 0. If the survival
function F̄ satisfies the equation

F̄ (x + t)
F̄ (x)

=

[
F̄ (x + 1)
F̄ (x)

]φ(t)

for all x, t > 0, (12)

where the function φ = φ(t) is positive and does not depend upon x,
then either F is an exponential distribution, a Gompertz distribution,
or a negative Gompertz distribution.

Proof. Take logarithms in (12) to obtain

R(x + t) −R(x) = φ(t)[R(x + 1) −R(x)]. (13)

Next, differentiate (13) with respect to x and set x = 0 to obtain

r(t) − r(0) = φ(t)[r(1) − r(0)]. (14)

If r(1) − r(0) �= 0, then (14) yields

φ(t) =
r(t) − r(0)
r(1) − r(0)

.
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Substitute this in (13) with x = 0, and use R(0) = 0 to obtain

R(t) = φ(t)R(1) =
r(t) − r(0)
r(1) − r(0)

R(1). (15)

Because the left side of (15) is differentiable with respect to t, so is the
right side; this differentiation yields

[r′(t)/r(t)] = λ (16)

for some constant λ; this is the differential equation (1) of Gompertz,
and consequently, either F is an exponential distribution, a Gompertz
distribution, or a negative Gompertz distribution.

It remains to consider the case that r(1) − r(0) = 0. In this case, it
follows from (14) that r(t) − r(0) = 0, for all t > 0, and consequently
F is an exponential distribution. �

In equation (13), the function φ is given by φ(t) = t if F is an ex-
ponential distribution, and by φ(t) = (eλt − 1)/(eλ − 1) if F is a Gom-
pertz distribution.

The following functional equation (17) requires that the residual
life distribution at age t be the same as the underlying distribution
raised to a power depending only on t. A more restrictive requirement
is imposed by the lack of memory property of the exponential distribu-
tion displayed in 8.B(2), namely that the power depending upon t be
identically one. Here, more solutions can be expected.

A.3. Proposition (Kaminsky, 1983). Suppose that F is an absloutely
continuous distribution function such that F (0) = 0. The survival func-
tion F̄ satisfies the equation

F̄ (x + t)
F̄ (t)

= [F̄ (x)]φ(t), x, t > 0, (17)

for some function φ that does not depend on x if and only if either

(i) F is an exponential distribution and φ(t) = 1, t > 0,
(ii) F is a Gompertz distribution and φ(t) = eλt for some λ, t > 0, or
(iii) F is a negative Gompertz distribution and φ(t) = e−λt for some

λ, t > 0.
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Proof. By taking logarithms in (17) and by interchanging x and t, it
follows that

R(x + t) = R(t) + φ(t)R(x) = R(x) + φ(x)R(t),

and consequently

R(x + t) = R(x)[1 − φ(t)], t, x ≥ 0. (18)

It follows from Proposition 22.B.2.b that

r(x) = r(0) eλx and φ(t) = r(t)/r(0) (19)

for some λ. If λ = 0, F is an exponential distribution; if λ > 0, F is a
Gompertz distribution, and if λ < 0, F is a negative Gompertz distri-
bution. �

Note F̄t(x) ≤ F̄ (x) if φ(t) > 1, and F̄t(x) ≥ F̄ (x) if φ(t) < 1.

e. A Derivation of the Gompertz Distribution
Based on an Odds Ratio

For any distribution function K concentrated on (0,∞), the odds ratio
Ø−(x) = K(x)/K̄(x) has all the properties of a hazard function. Thus,

F̄ (x | ξ) = e−ξK(x)/K̄(x), x ≥ 0, (20)

is a survival function with frailty parameter ξ. If K̄(x) = e−λx, x ≥
0, is an exponential survival function, then (20) yields the Gompertz
survival function (3). The fact that Ø−(x) can be regarded as a hazard
function is used in 1.B(21) and in Example 7.M.4.a.

f. A Derivation of the Gompertz Distribution Based on an
Exponential Distribution with Tilt and Frailty Parameters

As noted in Section a, if in the Gompertz distribution, ξλ is set equal to
θ, then the limit as λ → 0 is an exponential distribution with parameter
θ. This fact is easily seen through the hazard rate r(x) = ξλ eλx. On
the other hand, the Gompertz distribution can be obtained from limits
based upon the exponential distribution.

Start with an exponential distribution; add first a tilt parameter γ,
and then add a frailty parameter θ to obtain from 9.D(1) the survival
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function

F̄ (x |λ, γ, θ)=
(

γ e−λx

1 − γ̄ e−λx

)θ

=
(

γ

eλx − 1 + γ

)θ

=

(
eλx − 1

γ
+ 1

)−θ

.

Note: This survival function also appears as 9.D(17c), but with a dif-
ferent parameterization. Now, set θ = γξ, fix ξ, and compute

lim
γ→∞

(
eλx − 1

γ
+ 1

)−γξ

= exp {−ξ(eλx − 1)}, x ≥ 0.

This shows that the Gompertz distribution is a limit of exponential dis-
tributions with tilt and frailty parameters. Because an exponential dis-
tribution with tilt parameter is a truncated logistic distribution (7.D.b),
this also exhibits the Gompertz distribution as a limit of truncated lo-
gistic distributions with frailty parameter.

g. Ordering Gompertz Distributions

Gompertz distributions are ordered in several ways.

Hazard rate order: It is clear from (2) that in the hazard rate order,
the Gompertz distribution is decreasing in λ and ξ.
Likelihood ratio order: A tedious but straightforward calculation,
using 2.A(11) with logarithms, shows that the Gompertz distribution
is decreasing in λ when ξ ≤ 1 is fixed.
Convex transform order: The Gompertz survival function has the
inverse

F̄−1(z) =
1
λ

log
(

1 − log z
ξ

)
, 0 < z < 1,

and the simplicity of this form makes it possible to verify from the
definition that the Gompertz family is, in the convex transform order,
increasing in ξ, with λ being fixed.

h. A Mixture of Gompertz Distributions

In Section 7.F.c, mixtures of the form H̄(x | θ) =
∫
F̄ (x | ξ) dG(ξ | θ) are

considered, where ξ is a frailty parameter for F̄ (· | ξ) and G is a gamma
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distribution with scale and convolution parameters denoted, respec-
tively, by � and θ. The case that F̄ (· | ξ) is a Gompertz distribution is
of interest; see, for example, Yashin (2004) and the references therein.
This mixture takes the form

H̄(x | θ) =
∫

exp {−ξ(eλx − 1)} dG(ξ | �, θ) =
(

�

� + eλx − 1

)θ

of an exponential distribution with tilt parameter � and added frailty
parameter θ. By differentiating the hazard rate

rH(x) =
θλ eλx

� + eλx − 1
,

it can be seen that rH is increasing when � > 1, constant when � = 1,
and is strictly decreasing when � < 1. This provides another example
of a parametric family of distributions with strictly increasing hazard
rates, the mixture of which has a strictly decreasing hazard rate.

B. The Extensions of Makeham

Gompertz (1825) writes that

“It is possible that death may be the consequence of two generally
coexisting causes; the one, chance, without previous disposition
to death or deterioration; the other, a deterioration, or increased
inability to withstand destruction.”

The distribution of Gompertz described in Section A is derived by con-
sideration alone of death due to deterioration. In addition, Gompertz
separately considered deaths due to diseases that affect young and old
alike, and he recognized that this kind of cause leads to a constant
hazard rate. However, he did not put the two causes of death together.
In effect, this is what Makeham (1860) did, although Makeham’s mo-
tivation was somewhat different.

Makeham (1860) wrote as follows:

“It seems to be generally admitted, that the theoretical law of
mortality propounded by Mr. Gompertz, although by no means
a perfect representation of the actual law, at the same time is
so nearly borne out by the facts, as to render it highly probable
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that further progress in the investigation will be made in the tract
thus opened up; in other words, that practical improvements in
the construction of mortality tables may be looked for in some
modification of Mr. Gompertz’s formula.”

Makeham (1860) examined the fit to actuarial data provided by
the Gompertz distribution and observed with specific examples that
he could improve the fit with the modification now known as the
Gompertz–Makeham distribution. The notation of Makeham (1860)
is not sufficiently developed to give the hazard rate of the Gompertz–
Makeham distribution explicitly, but is given by Makeham (1867, 1890).
This hazard rate is

r(x) = ζ + ξλ eλx, ζ ≥ 0, ξ, λ > 0, (1)

or with ζ = ξλθ,

r(x) = r(x |λ, ξ, θ) = ξθλ + ξλ eλx, λ, ξ > 0, x, θ ≥ 0. (2)

Thus, the survival function is given by

F̄ (x |λ, ξ, θ) = exp{−ξ(eλx − 1) − ξθλx}, λ, ξ > 0, x, θ ≥ 0, (3)

and the density is

f(x |λ, ξ, θ) = (ξθλ + ξλ eλx) F̄ (x |λ, ξ, θ), x ≥ 0. (4)

See Figures B.1, B.2, and B.3. The parameterization of (2), (3), and (4)
can be simplified, but it is constructed to insure that λ remains a scale
parameter and ξ remains a frailty parameter. However, this parame-
terization does not immediately yield the exponential distribution as a
special case. To obtain the exponential distribution, let λ → 0, ξ → ∞,
while λξ is a positive constant; this is the same process that was used
above to obtain the exponential distribution as a limit of Gompertz
distributions.

If X and Y are independent random variables, where X has the
Gompertz distribution A(3) and Y has an exponential distribution with
parameter ξλθ, then min (X,Y ) has the Gompertz–Makeham distribu-
tion (3). As noted above, this derivation is implicitly suggested by the
writings of Gompertz but not pursued by him, or initially by Make-
ham (1860). Again in the context of explicit numerical data, Makeham
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(1867, 1890) subsequently explored the idea of competing risks, which
was earlier suggested by Gompertz (1825).

Although the practice of the period was to work with differences
rather than derivatives, Makeham (1890) makes it clear that his ap-
proach to finding a suitable modification of “Mr. Gompertz’s formula”
was essentially to replace A(1) by the differential equation

d2

dt2
r(t) = λ

d

dt
r(t), t, λ > 0. (5)

With the condition that F̄ (0) = 1, this equation leads to the hazard
rate (1).

B.1. Proposition. The density (4) of the Gompertz–Makeham dis-
tribution is log concave. That is, f is a Pólya frequency function of
order 2.

Proof. This can be directly verified by checking that the second deriva-
tive of log f is negative. �

a. Moments

Although all of the positive moments of the Gompertz–Makeham dis-
tribution are finite, but like the Gompertz distribution, they cannot be
given in closed form. The expected value, variance, and coefficient of
variation are given for selected values of the parameters in Figures B.4,
B.5, and B.6.
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Fig. B.6. Coefficient of variation of the Gompertz–Makeham distribution (λ = 1)

b. Extended Parameter Range for the
Gompertz–Makeham Distribution

The parameter range of the Gompertz–Makeham distribution can be
extended beyond λ, ξ > 0, θ ≥ 0. In fact, (3) is a survival function in all
of the following cases:

(i) λ, ξ > 0, θ ≥ 0; this is the usual Gompertz–Makeham distribution.
The case θ = 0 yields the Gompertz distribution.
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(ii) −1 ≤ θ < 0, λ, ξ > 0; this is similar to the Gompertz–Makeham dis-
tribution, but it does not arise as the distribution of min (X,Y ), where
X has a Gompertz distribution and Y has an exponential distribution,
X and Y independent.
(iii) θ ≥ 0, λ, ξ < 0.
(iv) θ ≤ −1, λ < 0, ξ > 0.

The last two cases here deserve to be spelled out in more detail. In
each case, the sign of the negative parameters has been changed.

Case (iii): θ ≥ 0, λ, ξ < 0.

F̄ (x |λ, ξ, θ) = exp{ξ(e−λx − 1) − ξθλx},
λ, ξ > 0, x, θ ≥ 0, (6)

r(x |λ, ξ, θ) = ξθλ + ξλe−λx. (7)

The survival function (6) is the survival function of Z = min (X,Y ),
where X and Y are independent, X has a negative Gompertz distri-
bution, and Y has an exponential distribution; this proper distribution
might be called the negative Gompertz–Makeham distribution. Here, r
is decreasing to the positive limit ξθλ. This means that even with this
extended parameter space, all moments are finite.

Case (iv): Because the negative parameters of this case can be con-
fusing, their signs have been changed in (8) and (9). For λ > 0, ξ > 0,
θ ≥ 1,

F̄ (x |λ, ξ, θ) = exp{ξ(1 − e−λx) + ξθλx}, x ≥ 0, (8)
r(x |λ, ξ, θ) = ξθλ− ξλ e−λx, x ≥ 0. (9)

Case (iv) of λ < 0 and θ < 0 in (2) (or alternatively, the survival
function (8)) has not received much attention in the literature, but
is included by Lee (1992), though her treatment excludes the frailty
parameter.

In the context of kidney transplantation, Bailey and Homer (1977)
and Bailey, Homer and Summe (1977) make use of the three parameter
hazard rate (7); see Example 16.C.1.

It is likely that case (iv) has appeared in the literature, but the au-
thors have encountered it only as a solution to the functional equation
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(11) below. In this case, the hazard rate is increasing, but only to the
finite limit ξθλ.

B.2. Proposition. Suppose that X0, X1, X2, . . . is a sequence of ex-
ponentially distributed random variables, X0 with parameter δ, and
X1, X2, . . . each with parameter λ. Suppose that N is a random vari-
able with a Poisson distribution with parameter ξ. If all of these random
variables are independent, then the random variable

Y = Min (X0, X1, . . . , XN )

has the Gompertz–Makeham distribution with survival function

F̄ (x) = exp {−δx + ξ(e−λx − 1)}, λ, δ, ξ > 0, x ≥ 0.

Proof. For x ≥ 0, P{Min(X0, X1, . . . , Xk) > x} = e−(δ+λk)x and conse-
quently

F̄ (x) =
∞∑
k=0

e−(δ+λkx) e−ξ ξk

k!
= exp {−δx + ξ(e−λx − 1)}. (10)

�

With λ = δ, equation (10) was given by Seal (1969); in this case, (10)
is essentially the Laplace transform of a Poisson distribution, given in
Section 20.E.c.

B.3. Corollary. The survival function of the Gompertz–Makeham
distribution (6) of case (iii) is completely monotone.

Proof. From (10) with δ = 0, it follows that the survival function (6)
of the Gompertz–Makeham distribution with λ < 0 and ξθλ = 0 is the
Laplace transform of a random variable Z with a Poisson distribution
with parameter ξ. The factor e−ξθλx in (6) is the Laplace transform of
a random variable degenerate at ξθλ. Because the product of Laplace
transforms is a Laplace transform (see the comments following Propo-
sition 20.D.6), it follows that (6) is a Laplace transform. According to
Proposition 20.D.5 this means that F̄ is completely monotone. �

According to Proposition 4.B.7, it follows from Corollary C.3 that
the density f of the Gompertz–Makeham distribution (6) is log convex.
This is in contrast to the log concavity of the density of B(4) given in
Proposition B.1. The log convexity of the density of (6) is easily verified
directly by showing that the logarithm of f has an increasing derivative.
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c. A Functional Equation

Two functional equations for the Gompertz distribution were offered
by Govan (1899); one of these is stronger than that of De Morgan
(1860), and the other one, given in the following proposition, turns
out to have somewhat more general solutions than those found by
Govan.

B.4. Proposition. Let F be an absolutely continuous distribution
function with strictly monotone hazard rate. If the survival function
satisfies the functional equation

F̄ (x + t)
F̄ (x)

F̄ (y + t)
F̄ (y)

=

[
F̄ (w(x, y) + t)
F̄ (w(x, y))

]2

, x, y, t ≥ 0, (11)

for some nonnegative function w = w(x, y) not depending on t, then
either the hazard rate r has the form (2) with the extended parameter
range ξ, λ > 0, θ ≥ −1, that is,

r(x) = r(x |λ, ξ, θ) = ξθλ + ξλ eλx, λ, ξ > 0, θ ≥ −1, x ≥ 0, (12a)

or it has the form (7), that is,

r(x |λ, ξ, θ) = ξθλ + ξλ e−λx, λ, ξ > 0, θ ≥ 0, x ≥ 0, (12b)

or it has the form (9), that is,

r(x |λ, ξ, θ) = ξθλ− ξλ e−λx, λ, ξ,> 0, θ ≥ 1, x ≥ 0. (12c)

Proof. Take logarithms in (11) and differentiate with respect to t to
obtain

r(x + t) + r(y + t) = 2r(w(x, y) + t). (13)

With t = 0 in (13), it follows that

w(x, y) = r−1
(
r(x) + r(y)

2

)
.
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Now, substitute u = r(x), v = r(y) in (13) to obtain

r(r−1(u) + t) + r(r−1(v) + t) = 2r
(
r−1

(
u + v

2

)
+ t

)
.

With φt(u) = r(r−1(u) + t), this equation has the form

φt(u) + φt(v)
2

= φt

(
u + v

2

)
,

so that φt is linear (Proposition 22.A.1.a), and thus for some functions
a(t), b(t),

φt(u) = ua(t) + b(t);

with x = r−1(u), this gives

r(x + t) = a(t)r(x) + b(t). (14)

This functional equation is discussed in Proposition 22.B.4.a where it
is shown that with the notation g(x) = r(x) − r(0),

g(x + t) = a(t)g(x) + g(t). (15)

The solutions of the functional equation (15) are provided in Proposi-
tion 22.B.4; either

(i) g(x) = α(1 − eax), x ≥ 0,
(ii) g(x) = eax, x ≥ 0,
(iii) g(x) = α �= 0, or
(iv) g(x) = 0.

Cases (ii) and (iii) are not possible because they violate the condition
that g(0) = 0. Case (iv) can be subsumed by case (i).

Case (i) gives

r(x) = r(0) + α(1 − eax), x ≥ 0. (16)

This takes the form of (12a), (12b), or (12c); the constraints on the
parameters come from the requirement that r(x) ≥ 0. �



SVNY289-Olkin May 15, 2007 16:42

386 10. Gompertz and Gompertz–Makeham Distributions

Remarks. (a) The increasing hazard rate (12c) is encountered in Sec-
tion C.b. (b) The functional equation (11) is adapted from an equation
of Govan (1899). Govan’s equation is given by

n∏
i=1

F̄ (xi + t)
F̄ (xi)

=

[
F̄ (w + t)
F̄ (w)

]n

, t, x1, . . . , xn ≥ 0, n = 1, 2, . . . ,

(17)

where w = w(x1, x2 . . . , xn) is a function independent of t. It can be
verified that the solutions of (11) coincide with the solutions of (17).

d. Residual Life Distribution

Both the Gompertz distribution A(1) and the Gompertz–Makeham dis-
tribution (1) have residual life distributions Ft that remain in their
respective family, but with the parameter ξ replaced by ξeλt. More
explicitly, the residual survival function of the Gompertz–Makeham
distribution has hazard function Rt given by

Rt(x) = ξ eλt(eλx − 1) + ξθλx.

Clearly, limt→∞Rt(x) = ∞, and consequently limt→∞ F̄t(x) = 0 for all
x > 0. This means that as t → ∞, all of the probability is “piling up”
at the origin. However, if the scale is expanded (stretched out) at the
right rate as t → ∞, a nondegenerate limit can be obtained. By using
l’Hospital’s rule, it can be determined that

lim
t→∞

Rt(x e−λt) = ξλx,

and thus, the limiting residual life distribution can be approximated
by an exponential distribution (see Proposition 6.B.6). If λ < 0 and
ξθλ > 0, then limt→∞Rt(x) = ξθλx, so the limiting residual life distri-
bution is exponential.

Because both the Gompertz and the Gompertz–Makeham distribu-
tions have increasing hazard rates, they are NBU, that is, F̄t(x) ≤ F̄ (x)
for all x, t ≥ 0.

e. Ordering Gompertz–Makeham Distributions

As with the Gompertz distribution, several orderings of the Gompertz–
Makeham distribution are known.
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Hazard rate order: It is apparent from (2) that the Gompertz–
Makeham distribution is decreasing in λ, ξ, and θ when these parame-
ters are nonnegative.
Likelihood ratio order: A tedious but straightforward calculation
using 2.A(11) with logarithms shows that the Gompertz distribution is
decreasing in λ when ξ ≥ 1 and ξλ > 0.
Convex transform order: The inverse of the Gompertz–Makeham
survival function cannot be expressed in closed form (there is a tran-
scendental equation to solve). Consequently, nothing is known about
the convex transform ordering beyond that given in Section A.g for the
Gompertz distribution.

f. The Second Extension of Makeham

Gompertz derived his distribution with the assumption that the haz-
ard rate is “in geometrical progression”; that is, he made use of the
differential equation

d

dt
r(t) = λr(t)

of A(1).
The Gompertz–Makeham distribution can be derived from the as-

sumption that the derivative of the hazard rate is “in geometrical pro-
gression.” In effect, Makeham (1890) replaced the Gompertz differential
equation by

d2

dt2
r(t) = λ

d

dt
r(t), t > 0, λ > 0,

to obtain his first extension (3) of the Gompertz distribution. Makeham
(1890) also proposed further modifications based on the assumption
that higher order derivatives are “in geometrical progression.” Work-
ing with differences rather than derivatives, Makeham (1890) found
that third differences of empirical hazard functions were much closer
to being in geometrical progression than were second differences. This
assumption leads to the differential equation

d3

dt3
r(t) = λ

d2

dt2
r(t), t > 0, λ > 0,
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With the condition that R(0) = 0, this equation has the solution

r(x) = ξλ eλx + ξθλ + 2ξαλ2x, λ, ξ, θ, α > 0, x > 0, (18)

so that

F̄ (x |λ, ξ, θ, α) = exp {−ξ(eλx − 1) − ξθλx− ξα(λx)2},
λ, ξ, θ, α > 0, x ≥ 0. (19)

This is Makeham’s second extension of the Gompertz distribution.
Note that if X = min (U, V,W ) where U has a Gompertz distribu-

tion, V has an exponential distribution, and W has a Weibull distri-
bution with shape parameter 2, then X has the survival function (19).
This is an early appearance of the Rayleigh distribution (Weibull dis-
tribution with shape parameter 2).

g. Extended Parameter Range for the Second
Gompertz–Makeham Distribution

Makeham’s second extension (19) of the Gompertz distribution can
also have an extended parameter range. The allowable range can be
determined by finding conditions required for the hazard rate

r(x) = ξλ eλx + ξθλ + 2ξαλ2x = ξλ(eλx + θ + 2αλx), x > 0, (20)

to be nonnegative.
The following three cases are considered here:

Case (i): λ > 0, ξ > 0, θ > −1 and if α < −1/2, then also

−2α[1 − log (−2α)] + θ ≥ 0; (21)

Case (ii): λ < 0, ξ > 0, α ≥ 0, and θ ≤ −1;
Case (iii): λ < 0, ξ < 0, α ≤ 0, θ ≥ −1, and if α > −1/2, then also (21).

To examine these cases, it is convenient to note that the hazard rate
(20) has the derivatives

r′(x |λ, ξ, θ, α) = ξλ2 eλx + 2αξλ2, (22)

and

r′′(x |λ, ξ, θ, α) = ξλ3 eλx. (23)
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Fig. B.7. Hazard rate r(x) = 8 e−x + 1 + x

(i) If λ > 0, then because the exponential term in (20) dominates for
large x, it must be that ξ > 0 and it follows from (23) that r is convex.
For nonnegativity at x = 0, it must be that θ ≥ −1. If α ≥ −1/2, the
hazard rate is increasing and no additional conditions are required. But
if α < −1/2, then the hazard rate is bathtub shaped with minimum at
x0 = [log(−2α)]/λ. To insure that r(x0) ≥ 0, α and θ must satisfy (21)
(ii) If λ < 0, ξ > 0, then in order that r(0) ≥ 0 it must be that θ ≤ −1;
in order that r(x) > 0 for large x, it must be that α ≥ 0. In this case,
r is concave and increasing.
(iii) If λ < 0, ξ < 0, then r is convex. Because r(0) > 0, it must be
that θ ≥ −1, and if r(x) > 0 for large x, it must be that α ≤ 0. When
α ≤ −1/2, r is increasing but when α > −1/2, r is bathtub shaped and
as in case (i), it is necessary that (22) hold.

The case that λ = −1, ξ = −8, θ = 1/8, and α = −1/16 is graphed
in Figure B.7.
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C. Further Extensions of the Gompertz Distribution

A number of extensions and variations that have been made to the
Gompertz distribution are collected in this section.

a. Modified Negative Gompertz Distribution

The improper survival function A(5) can be modified to yield the proper
survival function

Ḡ(x |λ, ξ) =
F̄ (x |λ, ξ) − e−ξ

1 − e−ξ
=

exp {ξe−λx} − 1
eξ − 1

,

ξ, λ > 0, x ≥ 0. (1)

This survival function has been proposed by Dahiya and Hossain (1996)
in the context of software reliability. The hazard rate corresponding to
(1) is

rG(x) =
ξλ e−λx exp {ξ e−λx}

exp {ξ e−λx} − 1
, ξ, λ > 0, x ≥ 0, (2)

and the density is

g(x) =
ξλ e−λx exp {ξ e−λx}

eξ − 1
, ξ, λ > 0, x ≥ 0. (3)

Because e−λx is a convex function, it is easy to verify that g is log
convex. Consequently, the hazard rate is decreasing. According to
Proposition 4.C.13, this means that the residual life distributions of G
all have a decreasing hazard rate, a result verified directly by Dahiya
and Hossain (1996). Note that limx→∞ r(x) = λ, so that the limiting
residual life distribution is exponential with scale parameter λ.

b. The Negative–Positive Gompertz Distribution

If X has the Gompertz survival function A(3) and Y has the neg-
ative Gompertz survival function A(6) then the distribution of Z =
min (X,Y ) is called a negative–positive Gompertz distribution. This dis-
tribution has the hazard rate

r(x |λ1, λ2, ξ1, ξ2) = λ1ξ1 e
λ1x + λ2ξ2 e

−λ2x,

ξ1, ξ2, λ1, λ2 ≥ 0, λ1 + λ2 > 0, x ≥ 0, (4)
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Fig. C.1. Hazard rate of a positive/negative Gompertz (λ1 = λ2 = 1, ξ1 = 0.01,
ξ2 = 1)

and survival function

F̄ (x |λ1, λ2, ξ1, ξ2) = exp {−ξ1(eλ1x − 1) + ξ2(e−λ2x − 1)}, (5)
ξ1, ξ2, λ1, λ2 ≥ 0, λ1 + λ2 > 0, x ≥ 0.

The hazard rate (4) is increasing and convex when λ2
1ξ1 ≥ λ2

2ξ2, and
otherwise is bathtub shaped with a minimum at

x0 =
1

λ1 + λ2
log

λ2
2ξ2

λ2
1ξ1

. (6)

It follows from (4) that the shape of the hazard rate depends upon
the parameters ξ1 and ξ2 through their ratio. Figure C.1 shows a bath-
tub hazard rate.

The Gompertz distribution has been applied to human mortality
tables only for deaths at ages greater than 18 or 20 because infant
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mortality can be high, leading to an initially decreasing hazard rate.
The survival function (5) with bathtub hazard rate may sometimes be
useful in this regard.

Clearly, a negative–positive Gompertz–Makeham distribution can
be defined, that is, in terms of the hazard rates B(12a), and B(12c).

c. The Extension of Perks

Perks (1932) proposed the four-parameter extension of the Gompertz–
Makeham distribution that has hazard rate of the form

r(x) =
A + B eλx

K e−λx + 1 + D eλx
, x > 0. (7)

The choice K = D = 0 yields the Gompertz–Makeham hazard rate.
It appears that Perks intended the parameters of (7) to be nonnega-

tive. In case 4KD < 1 and D > 0, (7) is the hazard rate of the survival
function

F̄ (x) =

(
α e−λx

1 − ᾱ e−λx

)ξ (
β e−λx

1 − β̄ e−λx

)θ

=
(

α

eλx − ᾱ

)ξ (
β

eλx − β̄

)θ

,

α, β > 0, ξ + θ ≥ 0, αθ + βξ ≥ 0, x ≥ 0, (8)

where

α− 1 =
1 +

√
1 − 4KD

2D
, β − 1 =

1 −
√

1 − 4KD

2D
,

ξ =
B[

√
1 − 4KD − 2AD + 1]
2D

√
1 − 4KD

, θ =
B[

√
1 − 4KD + 2AD − 1]
2D

√
1 − 4KD

.

It is not possible to take D = 0 in (8). However, to obtain the
Gompertz–Makeham distribution from (8), first take K = 0 so that
α− 1 = 1/D, β − 1 = 0 and replace ξ by αξ. Next, take the limit as
D → 0, that is, α → ∞.

Note that if ξ, θ > 0, then (8) is a product of two exponential sur-
vival functions with tilt and frailty parameters. Of course, products of
survival functions arise as survival functions of minima of independent
random variables.
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d. Gompertz Distribution with Power Parameter

The Gompertz distribution with power parameter has survival function

F̄ (x |λ, ξ, α) = exp {−ξ(e(λx)α − 1)}, x ≥ 0, λ, ξ, α > 0, (9)

hazard rate

r(x |λ, ξ, α) = ξλα(λx)α−1 e(λx)α , ξ, λ, α > 0, x > 0, (10)

and density

f(x |λ, ξ, α) = ξλα(λx)α−1 e(λx)α exp {−ξ(e(λx)α − 1)}. (11)

With the frailty parameter ξ = 1, this distribution is discussed by
Dhillon (1981), Leemis (1986), and Kunitz (1989). With λ = 1, the dis-
tribution is proposed by Chen (2000); the general case has been called
a “modified Weibull extension” and is studied by Xie, Goh and Tang
(2002) as well as by Murthy, Xie and Jiang (2004, pp. 151–154). The
various authors note that the hazard rate of this distribution is bathtub
shaped when α < 1. In this case, the hazard rate has a minimum at
the point

x0 =
1
λ

(
1 − α

α

)1/α
.

When α ≥ 1, the hazard rate is increasing. The hazard rate is convex for
all α > 0, as can be seen by computing its second derivative. However,
the stronger result of log convexity fails to hold. See Figure C.2.

As noted in Section A, the Gompertz distribution has a limiting ex-
ponential distribution; similarly, the Gompertz distribution with power
parameter has a limiting Weibull distribution. This is most easily seen
by considering the hazard rate (10). Set ξλα = θα−1, and let λ → 0
to obtain the limiting hazard rate α(θx)α−1, the hazard rate of the
Weibull distribution; moreover, this convergence is monotone. It fol-
lows from the Lebesgue Monotone Convergence Theorem 24.B.2 that
the corresponding hazard functions converge to the hazard function
of the Weibull distribution, and hence the survival functions converge.
Because of this convergence, the Gompertz distribution with power
parameter is called a “Weibull extension” by Murthy, Xie, and Jiang
(2004, p 151).
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Fig. C.2. Hazard rates of the Gompertz distribution with power parameter (λ = 1)

e. Gompertz Distribution with Hazard Power Parameter

The Gompertz distribution with hazard power parameter has survival
function

F̄ (x |λ, ξ, ζ) = exp{−ξ(eλx − 1)ζ}, λ, ξ, ζ > 0, x ≥ 0, (12)

and hazard rate

r(x |λ, ξ, ζ) = λξζ eλx(eλx − 1)ζ−1, λ, ξ, ζ > 0, x > 0. (13)

See Figures C.3, C.4, and C.5. By differentiation, it can be verified that
this hazard rate is convex. It is increasing when ζ ≥ 1, and when ζ < 1
the hazard rate has a minimum at x = [− log ζ]/λ.

The improper distribution obtained by changing the signs of λ and
ξ in (12) has been discussed by Bradley, Bradley and Naftel (1984)
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Fig. C.3. Densities of the Gompertz distribution with hazard power (λ = 1)

with negative λ and ξ as part of a generalization of Makeham’s second
extension of the Gompertz distribution which is discussed below.

For a derivation of the survival function (12) as a transformed ex-
treme value survival function, see Example 12.G.1.

f. Second Gompertz–Makeham Distribution with
Gompertz Power Parameter

The survival function

F̄ (x |λ, ξ, θ, α) = exp{−ξ(1 − e−λx)ζ − ξθλx− ξα(λx)2},
λ, ξ, θ, α, ζ > 0, x ≥ 0, (14)

was introduced by Bradley, Bradley and Naftel (1984). This survival
function will be recognized as a product; the first factor is a negative
Gompertz survival function with a hazard power parameter ζ. The
second factor is the survival function of an exponential distribution,
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Fig. C.4. Survival functions of the Gompertz distribution with hazard power (λ = 1)

and the third factor is the survival function of a Rayleigh distribution,
i.e., a Weibull distribution with shape parameter 2. As noted in Section
A.a, the negative Gompertz survival function is an improper survival
function in that its limit as x → ∞ is not 0. Bradley, Bradley and Naftel
(1984) call the survival function (14) a “Gompertz–Rayleigh” survival
function.

The hazard rate corresponding to (14) is

r(x |λ, ξ, θ, α) = ξζλ(1 − e−λx)ζ−1 e−λx + ξθλ + 2ξαλ2x,

λ, ξ, θ, α, ζ > 0, x > 0. (15)

D. Summary of Distributions and Hazard Rates

Gompertz

r(x |λ, ξ) = ξλ eλx, ξ, λ > 0, x > 0.
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Fig. C.5. Hazard rates of the Gompertz distribution with hazard power (λ = 1)

Gompertz–Makeham (1)

r(x) = r(x |λ, ξ, θ) = ξθλ + ξλ eλx, λ, ξ, θ > 0, x > 0,
or more generally, ξ, λ > 0, θ ≥ −1.

Gompertz–Makeham (2)

r(x) = ξλ eλx + ξθλ + 2ξαλ2x, λ, ξ, θ, α > 0, x > 0.

Negative Gompertz

r(x |λ, ξ) = ξλe−λx, ξ, λ > 0, x > 0.

Negative Gompertz–Makeham

r(x |λ, ξ, θ) = ξθλ + ξλ e−λx, λ, ξ > 0, θ ≥ 0, x ≥ 0, or
r(x |λ, ξ, θ) = ξθλ− ξλ e−λx, λ, ξ > 0, θ ≥ 1, x ≥ 0.
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Negative–positive Gompertz

r(x |λ1, λ2, ξ1, ξ2) = λ1ξ1 e
λ1x + λ2ξ2 e

−λ2x, ξ1, ξ2, λ1, λ2 > 0, x > 0.

Perks’ extension

r(x) =
A + B eλx

K e−λx + 1 + D eλx
, x > 0.

Gompertz with power parameter

r(x |λ, ξ, α) = ξλα(λx)α−1 e(λx)α , ξ, λ, α > 0, x > 0.

Gompertz with hazard power parameter

r(x |λ, ξ, ζ) = λξζ eλx(eλx − 1)ζ−1, λ, ξ, ζ > 0, x > 0.

Gompertz–Makeham with Gompertz power parameter

r(x |λ, ξ, θ, α) = ξζλ(1 − e−λx)ζ−1 e−λx + ξθλ + 2ξαλ2x,

λ, ξ, θ, α, ζ > 0, x > 0.
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Parametric Families
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11

The Pareto and F Distributions and
Their Parametric Extensions

A. Introduction

Extensions of the exponential distribution are obtained in Chapter 9
through use of the various semiparametric families discussed in Chapter
7. Here, the approach is to again start with the exponential distribution
having parameter θ, but now let the parameter be random, with another
exponential distribution G(· | 1/λ) having parameter 1/λ. This way, the
survival function

F̄ (x |λ) =
∫ ∞

0
e−θx dG(θ | 1/λ) =

∫ ∞

0
e−θx 1

λ
e−θ/λ dθ =

1
1 + λx

, x ≥ 0,

(1)

is obtained. The focus of this chapter is to see what emerges from (1)
with the addition of other parameters discussed in Chapter 7, and to
examine the properties of the distributions.

Because (1) is a mixture of exponential survival functions, it follows
from Proposition 4.C.10 that the hazard rate is decreasing. This fact
suggests a “heavy right tail,” and indeed, because the mixture includes
distributions with arbitrarily small hazard rates, the right tail of (1)
is “heavier” than that of any exponential distribution. Distributions
with heavy tails are of particular interest in economics, and it is in
this context that distributions related to (1) were proposed by Vilfredo
Pareto (1897). In fact, Pareto’s name is attached to several distributions
related to (1); these are defined in this chapter using the terminology of
Arnold (1983), whose book is devoted to Pareto distributions. Pareto



SVNY289-Olkin May 15, 2007 17:40

400 11. Pareto and F Distributions and Their Parametric Extensions

was interested in describing income distributions, and the distributions
also arise from economic models. See Cirillo (1979). But the results can
be regarded as life distributions. As such, translation parameters are
of little interest, and are generally omitted in what follows.

The F distribution and the generalized F distribution are gener-
alizations of particular kinds of Pareto distributions obtained by the
introduction of a moment parameter; this origin of the F distribution
is the reason for its inclusion in this chapter. But the F distribution is
much better known as the distribution of the ratio of two independent
chi-square distributed random variables normalized by their degrees of
freedom; in this context, it was named in honor of Sir Ronald Aylmer
Fisher by Snedecor (1934). The name “F distribution” is well en-
trenched in the statistical literature, but the distribution is also known
as a beta distribution of the second kind, and as a Pearson Type VI
distribution. Several origins of the F distribution are discussed in this
chapter.

B. Pareto Distributions

a. Basic Definitions

Several variations of the Pareto distribution are discussed in detail by
Arnold (1983). In Arnold’s terminology, the Pareto I distribution has
survival function

F̄ (x) = 1, x ≤ 1/λ,
= 1/λx, x ≥ 1/λ.

Note that if X has the distribution F, then 1/X has a distribution
uniform on (0, λ). The Pareto I distribution is encountered with scale
parameter λ = 1 in Proposition 18.B.9 as a special log Weibull distribu-
tion (b = c = 1 in 18.B(42b)). Because the support of this distribution
is bounded away from 0, as it stands it may be of minimal interest
as a life distribution. However, if the left-hand endpoint 1/λ of its
support is translated to the origin, the more natural life distribution
F̄ (x |λ) = (1 + λx)−1, x > 0, of A(1), is obtained. This distribution al-
ready has a scale parameter, and other parameters can be introduced.

The Pareto II distribution has survival function

F̄ (x |λ, ξ) = [1 + (λx)]−ξ, x ≥ 0, λ, ξ > 0, (1)

and is obtained by introducing a frailty parameter in the survival
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function A(1). This distribution has the density

f(x |λ, ξ) =
λξ

(1 + λx)ξ+1 , x ≥ 0, λ, ξ > 0. (1a)

It was used by Lomax (1954) to fit data in business failure, and has
sometimes been called the “Lomax” distribution. This distribution has
been identified by Pickands (1975) as one of the three distributions that
can approximate residual life distributions (see Proposition 20.G.4).
The Pareto II distribution is also encountered in Proposition 18.B.8.

By introducing a power parameter in the basic survival function (1),
the survival function

F̄ (x |λ, α) = [1 + (λx)α]−1, x ≥ 0, α, λ > 0, (2)

of the Pareto III distribution is obtained. The corresponding density
is

f(x |λ, α) =
αλ(λx)α−1

[1 + (λx)α]2
, x ≥ 0, λ, α > 0. (2a)

This distribution is discussed by Fisk (1961) and has at times been
called the “Fisk” distribution. It is also discussed by Kalbfleisch and
Prentice (2002, p. 37), and it is the generalization of A(1) encountered
in Proposition 18.B.3.

The more general three-parameter Pareto IV distribution, obtained
by introducing both a frailty and a power parameter in A(1), has the
survival function

F̄ (x |λ, α, ξ) = [1 + (λx)α]−ξ, x ≥ 0, λ, α, ξ > 0, (3)

and density

f(x |λ, α, ξ) =
λαξ(λx)α−1

[1 + (λx)α]ξ+1 , x ≥ 0, λ, α, ξ > 0. (3a)

This distribution is also known as Burr’s distribution, and is called
Burr’s Type XII distribution by Johnson, and Kotz (1970a, p. 31) or
Johnson, Kotz and Balakrishnan (1994, p. 54). The case α = 1 in (3a)
yields the density (1a) of the Pareto II distribution, and the case ξ = 1
in (3a) yields the density (2a) of the Pareto III distribution.



SVNY289-Olkin May 15, 2007 17:40

402 11. Pareto and F Distributions and Their Parametric Extensions

Another extension of the Pareto III distribution, obtained by intro-
ducing a resilience parameter, is given by

F (x |λ, α, η) =
(

(λx)α

1 + (λx)α

)η

. (4)

This distribution, sometimes called a Burr Type 3 distribution, has
received less attention in the literature than has the Pareto IV distri-
bution. As expected from the duality of resilience and frailty param-
eters as discussed in Section 7.E.b, the survival function (3) is, after
replacing λ by 1/λ, the survival function of 1/X, where X has the
distribution (4).

b. The Hierarchy of Pareto and Related Distributions

The most basic Pareto distribution is obtained from (1) with the param-
eters set to 1. Then, the introduction of certain parameters discussed
in Chapter 7 shows clearly how some of these families are connected.
The descendants of the basic Pareto distribution are illustrated in the
following diagram.

Descendants of a basic Pareto distribution

scale

power

power

frailty

frailty resilience

moment

moment

moment
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c. The Pareto IV Distribution

The Pareto IV distribution, with survival function (3), includes both
the Pareto II and Pareto III distributions as special cases so details for
these distributions are not given separately.

By differentiation of the Pareto IV density (3a) or its logarithm,
it can be determined that if α ≤ 1, this density is decreasing and log
convex on [0,∞); if α > 1, this density is unimodal with mode at

x = [(α− 1)/(1 + ξα)]1/α/λ.

The hazard rate

r(x) = λαξ(λx)α−1[1 + (λx)α]−1 (5)

is increasing in x ≤ (α− 1)1/α/λ and decreasing in x ≥ (α− 1)1/α/λ
when α > 1, and hence the hazard rate has an inverted bathtub shape.
For α ≤ 1, the hazard rate is decreasing. These results follow from
computation of the hazard rate derivative. For α ≤ 1, the result also
follows from the log convexity of the density (Proposition 4.C.11).

Note that r(0) = 0, for α > 1, r(0) = λαξ for α = 1, and r(0) = ∞
for α < 1. For all values of α, limx→∞ r(x) = 0.

See Figure B.1.
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Fig. B.1. Hazard rates of the Pareto IV distribution (λ = ξ = 1)
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d. Moments and Moment Parameters of the
Pareto IV Distribution

It follows directly from Proposition 23.B.3 that the rth moment of the
Pareto IV distribution (3) with density (4) is given by

μr =
ξ

λr
B

(
r

α
+ 1, ξ − r

α

)
, −α < r < αξ, (6)

where B(a, b) is the beta function defined and discussed in Section
23.B. Outside the interval −α < r < αξ, the rth moment fails to exist
finitely. Thus, the mean (first moment) fails to exist when αξ ≤ 1.

e. The Total Time on Test Transform

Direct computation shows that the Pareto IV distribution function has
inverse

F−1(p) =
1
λ

(
1

(1 − p)1/ξ − 1
)1/α

, 0 ≤ p ≤ 1. (7)

From this, the normalized total time on test transform as defined in
1.I(10) can be determined to be

K−1
F (p) = IF−1(p)

(
1
α

+ 1, ξ − 1
α

)
, α, ξ > 1,

where Ix is the incomplete beta function defined in 23.B(4).
Some numerical evaluations of the total time on test transform are

given in Figure B.2.

f. The Gini Index and Coefficient of Variation

Because the Pareto IV distribution has a frailty parameter ξ, the Gini
index can be written in terms of moments using 7.E(20) as

Gini(F ) = 1 − μ(2ξ)
μ(ξ)

,

where μ(ξ) is the first moment when the frailty parameter is ξ. From
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Fig. B.2. Total time on test transform of the Pareto IV distribution
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this and (6), it follows that

Gini(F ) = 1 − 2
Γ(ξ + 1) Γ(2ξ − α−1)
Γ(2ξ + 1) Γ(ξ − α−1)

= 1 − Γ(ξ) Γ(2ξ − α−1)
Γ(2ξ) Γ(ξ − α−1)

= 1 − B(α−1, 2ξ − α−1)
B(α−1, ξ − α−1)

, αξ > 1.

It also follows from (6) that the coefficient of variation of F is given
by

CV (F ) =

[
2α

Γ(2α−1) Γ(ξ − 2α−1) Γ(ξ)
Γ2(α−1) Γ2(ξ − α−1)

− 1

]1/2

= 2α
B(2α−1, ξ − 2α−1)
B2(α−1, ξ − α−1)

, αξ > 2.
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g. Residual Life Distribution

The residual life survival function of the Pareto IV distribution is given
by

F̄t(x) =
[1 + (λt)α]ξ

{1 + [λ(x + t)]α}ξ , x, t ≥ 0, λ, α, ξ > 0; (8)

clearly, limt→∞ F̄t(x) = 1 for all x > 0. This means that in the limit,
all of the mass has escaped to t → ∞. However, by shrinking the scale
of the axis at an appropriate rate as t → ∞, this mass can be retained,
and a proper limiting distribution can be obtained. To do this, replace
x by tx in (8) and compute

lim
t→∞

F̄t(tx) = lim
t→∞

{1 + (λt)α}ξ
{1 + [λ(tx + t)]α}ξ =

1
(1 + x)αξ

, x ≥ 0. (9)

This limiting distribution is a Pareto II distribution (see Section
20.G.b).

h. Pareto IV Distribution from Mixtures

A basic Pareto distribution was derived as a mixture of exponential
distributions in Section A. More general Pareto distributions also arise
as mixtures.

B.1. Proposition (Dubey, 1968; Harris and Singpurwalla, 1968;
Thyrion, 1964). The Pareto IV distribution is a gamma mixture of
Weibull distributions. More precisely,

∫ ∞

0
exp {−z(λx)α}z

ξ−1e−z

Γ(ξ)
dz =

1
[1 + (λx)α]ξ

.

This fact is a direct consequence of 9.A(5). The result for α = 1 is
due to Thyrion (1964); the extension to general α was given by Dubey
(1968) and by Harris and Singpurwalla (1968) (see also Gurland and
Sethuraman (1994)).

Because of the uniqueness of the Laplace transform (Proposition
20.D.2), the gamma distribution here cannot be replaced by any other
distribution. This proposition is an application of 7.M.6a.
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i. Infinite Divisibility

Proposition B.1 shows that the Pareto II distribution is a mixture of
exponential distributions. It follows from Proposition 20.D.10 that the
Pareto II distribution is infinitely divisible. This fact and the method
of proof was given by Thorin (1977a). As noted by Thorin (1977a),
the infinite divisibility of the Pareto II distribution may have been
first obtained by Steutel (1969) using Propositions 20.D.5 and 20.D.8,
making the explicit representation of Proposition B.1 unnecessary.

j. Pareto Distributions as Limiting Distributions

The Pareto IV distribution can be obtained as a limit, given in the
following proposition.

B.2. Proposition (Canfield and Borgman, 1975). Suppose that Y1,
Y2, . . . is a sequence of independent identically distributed random
variables with limiting extreme value survival function W̄1(x) =
exp{−xb}, x ≥ 0, given by 20.G(2) with parameter α = b. To state this
more precisely, suppose that the common distribution F of the Yi has
the property that, for x ≥ 0,

limn→∞[F̄ (anx + bn)]n = exp{−xb}

for appropriate norming sequences an and bn.

Let N have a negative binomial distribution 20.E(7) with parame-
ters p and r = α, so that EN = α(1 − p)/p = αθ, where θ = (1 − p)/p.
Let

Xθ = min(Y1, . . . , YN ) if N > 0,
= 0 if N = 0.

Then as θ tends to 0, the distribution of (Xθ − bθ)/aθ converges weakly
(i.e., in distribution) to the Pareto IV distribution (3) with λ = 1 as
θ → ∞ through integer values.

Canfield and Borgman (1975) actually give a more general result
than the one quoted here (but take care to correct the typographical
errors when reading that paper).

k. Limits of Pareto Distributions

Suppose that F is a Pareto IV distribution with scale parameter λ and
frailty parameter ξ = (δ/λ)α. Then, the limit of F as λ → 0, ξ → ∞
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(δ fixed) is a Weibull distribution with scale parameter δ. To see this,
use the well known fact that limx→∞(1 + a

x)x = ea.
If F is a Pareto III distribution with added resilience parame-

ter η, then in a similar manner, it can be shown that the inverse
Weibull distribution, defined in Section 9.B.l, is a limiting distribution
of F.

l. The Pareto Distribution with a Hazard Power Parameter

Other extensions of Pareto distributions have appeared in the litera-
ture. In particular, Dhillon (1981) introduced a hazard power parameter
in the Pareto distribution A(1) to obtain the survival function

F̄ (x |λ, ζ) = exp{−[log(λx + 1)]ζ}, x ≥ 0, λ, ζ > 0. (10)

This distribution has the hazard rate

r(x |λ, ζ) =
λζ

λx + 1
[log(λx + 1)]ζ−1, x ≥ 0, λ, ζ > 0, (11)

which is clearly decreasing for ζ ≤ 1. For ζ > 1, it can be verified by
setting the derivative of (11) equal to zero that the hazard rate is
unimodal with mode at (eζ−1)/λ. See Figure B.3 for graphs of the
hazard rates.

Of course, various other parameters can be introduced in (10), or
alternatively a hazard power parameter can be introduced in any Pareto
distribution that extends A(1).

m. Transformations and Pareto Distributions

Exponential transforms. Suppose that the random variables X and
Y satisfy X = eY − 1. Direct calculations show that X has the survival
function in the left-hand column of Table B.1 whenever Y has the
survival function in the right-hand column of the table.

Table B.1 shows that through the transformation X = eY − 1 or
Y = log (X + 1), the Pareto distribution with frailty parameter is re-
lated to the exponential distribution, the Pareto distribution with scale
parameter is related to the exponential distribution with tilt parameter,
and the Pareto distribution with hazard power parameter is related to
the Weibull distribution.

It is shown in Section 12.C that the Pareto III distribution is a log
logistic distribution.
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Fig. B.3. Hazard rates of the Pareto distribution with hazard power parameter
(λ = 1)

Table B.1. Correspondence between the Pareto and
exponential types

X Y

F̄ (x) = 1/(1 + x)λ Ḡ(x) = e−λx

F̄ (x) = 1/(1 + λx) Ḡ(x) =
γ

ex − γ
, γ = 1/λ

F̄ (x) = exp{−[log (1 + x)]α} Ḡ(x) = exp{−xα}

n. Pareto Distributions with Tilt Parameter

If a tilt parameter is introduced in the survival function A(2) of a Pareto
III distribution, say by way of 7.F(2), then a new Pareto III distribution
is obtained. This new distribution has an unchanged power parameter,
but the scale parameter is replaced by λ/γ1/α. Such a result is to be
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expected because of Proposition 18.B.3. Note also that Example 7.F.4
shows that the logistic distribution is geometric-extreme stable, and
that the Pareto III distribution is a log logistic distribution (see Section
12.C).

The Pareto II distribution with tilt parameter is introduced by Ghi-
tany, Al-Awadhi and Khalfan (2006); they study this three-parameter
distribution in considerable detail. Among their results is the mixture
representation that can be obtained from Example 7.M.4.c by taking
K to be a Pareto II distribution.

o. Another Connection with the Exponential Distribution

Equation (1), that is,

F̄ (x |λ) =
∫ ∞

0
e−θx 1

λ
e−θ/λ dθ =

1
1 + λx

, x ≥ 0, (12)

exhibits a basic Pareto distribution as a mixture of exponential distri-
butions. Now, start with the survival function (12), and consider the
survival function H̄(x) = e−F (x)/F̄ (x) of 1.B(21). A simple calculation
shows that in this case, H̄(x) = e−λx, x ≥ 0, so that the exponential
distribution is retrieved from the Pareto distribution.

C. Generalized F Distribution

The generalized F distribution is a four-parameter family, and thereby
subsumes several distributions as special cases. As the name indicates,
one special case is the F distribution, which is well known and of
considerable importance in statistical contexts. Although the gener-
alized F distribution is not nearly as well known or important, it
can be studied nearly as easily as the F distribution. To avoid rep-
etition of arguments, results for the generalized F distribution are
given below, with the F distribution following as a special case in
Section D.

The term “generalized F distribution” as used here refers to one
specific generalization of the F distribution. The noncentral F distri-
bution of Section 15.B is a generalization of a very different kind.

From B(6), it follows that a moment parameter β can be introduced
in the density B(3a) of the Pareto IV distribution provided −α < β <
αξ. Replace ξ by ρ in B(3a), and introduce the moment parameter β
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to obtain the density

f(x) =
λα(λx)α+β−1

B
(
β
α + 1, ρ− β

α

)
[1 + (λx)α]ρ+1

, x ≥ 0,−α < β < αρ. (1)

This density has four parameters, the form of which is not particularly
convenient. In (1), make the parameter change

θ = 1 +
β

α
, ξ = ρ− β

α
,

so that the conditions −α < β < αρ become simply ξ, θ > 0. Then (1)
becomes

f(x |λ, α, ξ, θ) =
λα(λx)αθ−1

B(ξ, θ)[1 + (λx)α]ξ+θ
, x ≥ 0, λ, α, ξ, θ > 0. (2)

This is the density of the generalized F distribution (see Kalbfleisch and
Prentice, 1980, p. 28); the distribution is also called the “Feller–Pareto
distribution” (Arnold, 1983). The special case of (2) where θ = 1, or of
(1) where β = 0, is the Pareto IV density B(3a).

In the Pareto IV density B(3a), ξ is a frailty parameter. But in (2),
without θ = 1, ξ is no longer a frailty parameter because the introduc-
tion of frailty and moment parameters do not commute (see Section
7.L). In (2), α is a power parameter only if θ = 1 because the introduc-
tion of a moment parameter and a power parameter do not commute
(again, see Section 7.L). Only λ retains its nature as a scale parameter.
So the parameterization of (2) is simple and conventional, but not very
illuminating.

The case α = 1 in (2) is the density

f(x |λ, ξ, θ) =
λ(λx)θ−1

B(ξ, θ)[1 + (λx)]ξ+θ
, x ≥ 0, λ, ξ, θ > 0, (3)

of the F distribution, which is discussed in Section D.

a. Density Characteristics

C.1. Proposition. When αθ < 1, the density (2) of the generalized F
distribution is decreasing. When αθ > 1, the density is unimodal with
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mode at

x =
1
λ

(
αθ − 1
αξ + 1

)1/α

.

When α ≤ 1 and αθ < 1, the density is log convex. Under no conditions
is log f concave.

These results can be obtained by differentiating f and log f. It follows
from the log convexity of f and Proposition 4.B.8.a (or Proposition
4.C.1.c) that the hazard rate is decreasing when α ≤ 1 and αθ ≤ 1.

b. Moments

The moments of the generalized F distribution (2) can be determined
from the fact that (2) is a density whenever the parameters are positive.
This leads to the conclusion that

EXr =
B

(
ξ − r

α , θ + r
α

)
λrB(ξ, θ)

, −θα < r < αξ. (4)

c. The Distribution Function

The distribution function of the generalized F distribution cannot be
given in closed form, but can be expressed in terms of the incomplete
beta function Ix (see 23.B(4)):

F (x) = Ih(x)(ξ, θ), where h(x) = (λx)α[1 + (λx)α]. (5)

For the case α = 1 of the F distribution, (5) does not significantly
simplify.

d. The Hazard Rate

Because the survival functions of the F and generalized F distribu-
tions cannot be written in closed form, the same is true of the hazard
rates; this makes the hazard rates troublesome to study. However, if
the survival function is written as an integral, the hazard rate of the
generalized F distribution can be obtained in the form

r(x |λ, α, ξ, θ) =

[
(1 + λx)ξ+θ

αλ(λx)αθ−1

∫ ∞

(λx)α

zθ−1

(1 + z)ξ+θ
dz

]−1

, ξ, θ > 0, x ≥ 0.

(6)
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This in turn leads to the forms

r(x |λ, α, ξ, θ)

=

[
1
αλ

∫ ∞

0

[w + (λx)α]θ−1

(λx)αθ−1

(
1 +

w

1 + (λx)α

)−(θ+ξ)
dw

]−1

=

[
1

α(λx)α−1

∫ ∞

0

(
1 +

λt

(λx)α

)θ−1 (
1 +

λt

1 + (λx)α

)−(θ+ξ)

dt

]−1

,

x ≥ 0. (7)

See Figure C.1.

C.2. Proposition.

limx→0 r(x |λ, α, ξ, θ) = 0 if αθ > 1,
= αλ/B(θ, ξ) if αθ = 1,
= ∞ if αθ < 1.
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Fig. C.1a. Hazard rates of the generalized F distribution (θ = 2, ξ = 1.5)
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Fig. C.1b. Hazard rates of the generalized F distribution (θ = 0.5, ξ = 0.1)

Proof. These limits can be obtained directly from (6), with the aid of
Proposition 23.B.3. �

C.3. Proposition. limx→∞ r(x |λ, α, ξ, θ) = 0.

Proof. In the second form of (7), let z = λt/(λx)α to obtain

[r(x)]−1 =
1

α(λx)α−1

∫ ∞

0
(1 + z)θ−1

(
1 +

z

1 + (λx)−α

)−θ−ξ (λx)α

λ
dz.

Because

lim
x→∞

∫ ∞

0
(1 + z)θ−1

(
1 +

z

1 + (λx)−α

)−θ−ξ

dz =
∫ ∞

0
(1 + z)−ξ−1 dz,

it follows that

lim
x→∞

[r(x)]−1 = lim
x→∞

x

α

∫ ∞

0
(1 + z)−ξ−1 dz = ∞. �
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It is noted above that the hazard rate is decreasing when α ≤ 1 and
αθ ≤ 1. A more detailed examination of the hazard rate behavior is
given in the following proposition.

C.4. Proposition. In (6), reparameterize to replace α, θ, and ξ by
a, b, and c, where

a = −(1 + αξ),
b = α2(θ + ξ) + α(θ − ξ) − 2 = 2(αθ − 1) + α(α− 1)(θ + ξ), and
c = αθ − 1,

so that

b2 − 4ac = α2(θ + ξ)[4(αθ − 1) + (α− 1)2(θ + ξ)].

(i) If c > 0, or c = 0 and b > 0, then the hazard rate (6) of the gener-
alized F distribution is umimodal.
(ii) If c ≤ 0 and b2 − 4ac < 0, or if c ≤ 0, b2 − 4ac > 0, and b ≤ 0, then
the hazard rate is decreasing.
(iii) If c < 0, b2 − 4ac > 0, and b > 0, then the hazard rate is initially
decreasing and eventually decreasing, but there may be one interval in
which the hazard rate is increasing.

Proof. In the notation of Theorem 4.E.2, if ρ(x) = −d log f(x)/dx and
f is given by (2), then

ρ(x) =
αθ − 1

x
+

(ξ + θ)αλ(λx)α−1

1 + (λx)α
. (8)

The sign of the derivative of ρ is the sign of the quadratic form
q(z) = az2 + bz + c, where z = (λx)α; because a < 0, q is negative for
large z, and consequently, ρ is eventually decreasing; if q(z) = 0 has no
positive roots, then ρ is decreasing and that means r is decreasing. If
q(z) = 0 has but one positive solution, then by Theorem 4.E.2(d), r is
unimodal. If q(z) = 0 has two positive solutions, then the hazard rate r
may change from decreasing to increasing to decreasing (it must even-
tually decrease), but according to Lemma 4.E.1, r can have at most
two changes of direction. �
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From (7), it follows that the hazard rate of the usual F distribution
is given by

r(x |λ, ξ, θ) =

[∫ ∞

0

(
1 +

z

x

)θ−1 (
1 +

λz

1 + λx

)−(ξ+θ)

dz

]−1

, x ≥ 0.

(9)

Here, for θ > 1, limx→0 r(x) = limx→∞ r(x) = 0, and r is unimodal.

e. The Generalized F Distribution from Mixtures

C.5. Proposition. The generalized F -distribution is a gamma mix-
ture of generalized gamma distributions. That is, with

f(x | z1/α, λ, θ, α) =
αz1/αλ(z1/αλx)αθ−1

Γ(θ)
exp{−(z1/αλx)α}

given by 9.E(2a) and

g(x | 1, ξ) =
zξ−1e−z

Γ(ξ)

given by 9.A(1),

∫ ∞

0
f(x | z1/αλ, θ, α) g(z | 1, θ) dz =

λα(λx)αθ−1

B(ξ, θ)[1 + (λx)α]ξ+θ
,

which is the density (2).

f. Ratios of Generalized Gamma Variates

The generalized F density (2) is also the density of a ratio; in fact,
if X = U/V where U and V have generalized gamma distributions
(Section 9.E) with the same power parameter α, then X has the density
(2). This is the content of the following proposition. See Malik (1967).

C.6. Proposition. Let X = U/V , where U and V are independent
and have respective generalized gamma densities f(· |λ1, α, ν1) and
f(· |λ2, α, ν2) defined by

f(x |λ, α, ν) = λα(λx)να−1 exp{−(λx)α}/Γ(ν), x > 0, λ, α, ν > 0,



SVNY289-Olkin May 15, 2007 17:40

418 11. Pareto and F Distributions and Their Parametric Extensions

as in 9.E(2a). Then, X has the generalized F distribution (2) with
parameters λ = λ1/λ2, θ = ν1, and ξ = ν2.

Proof. By hypotheses, the densities of U and V are generalized gamma
densities obtained from usual gamma densities of the form 7.A(1)
by inserting the same power parameter. Because X1/α = (U/V )1/α =
U 1/α/V 1/α, it is convenient to prove the theorem without the power
parameter, then insert the power parameter at the end.

In forming the ratio X = U/V , division by the shape parameters of
the gamma distributions is superfluous because that would only affect
the scale parameter of the ratio, which is already arbitrary.

The distribution H of X is given by

H(x) =
∫ ∞

0
P{U ≤ xz |V = z}f(z |λ2, ν2) dz

=
∫ ∞

0
F (xz |λ1, ν1)f(z |λ2, ν2) dz

and density h given by

h(x |λ, ξ, θ) =
∫ θ

0
f(xz |λ1, ν1)f(z |λ2, ν2)z dz =

λθxθ−1

B(ξ, θ)(1 + λx)ξ+θ
,

(10)

where λ = λ1/λ2, θ = ν1, and ξ = ν2. This is the density (3a), and the
proof is completed by the insertion of the power parameter α. �

g. Limits of Generalized F Distributions

It is apparent from Proposition C.6 that the generalized gamma distri-
bution is a limit of generalized F distributions. This can be verified by
setting λαξ = δα in (2) and letting ξ → ∞, λ → 0.

D. The F Distribution

The case α = 1 in C(2),

f(x |λ, ξ, θ) =
λ(λx)θ−1

B(ξ, θ)(1 + λx)ξ+θ
, x ≥ 0, λ, ξ, θ > 0, (1)
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is called the F density in this book, although statisticians usually re-
serve that term for the special case θ = k1/2, ξ = k2/2, and λ = k1/k2,
where k1 and k2 are integers called the degrees of freedom. Because of
its importance, the F density is treated in some detail here. The results
are obtained as specializations of the generalized F distribution with
α = 1.

The F density can be obtained directly by introducing a moment
parameter in a Pareto II density. The density C(2) is an F density
with power parameter α as well as a Pareto IV density with moment
parameter θ (see Section D.f for further details).

a. Density Characteristics

D.1. Proposition. When θ ≤ 1, the density (1) of the F distribution
is decreasing. When θ > 1, the density is unimodal with mode at

x =
1
λ

(
θ − 1
ξ + 1

)
.

When θ ≤ 1, the density is log convex. Under no conditions on the
parameters λ, ξ, θ is log f concave.

These results can be obtained from Proposition C.1 by taking α = 1.

b. Moments

With α = 1, the expression C(4) simplifies somewhat. Thus, for the F
distribution (1),

EXr = B(ξ − r, θ + r)/λrB(ξ, θ), −θ < r < ξ. (2)

By taking r = 1 and r = 2 in (2), by using the fact 21.A.2.a that
zΓ(z) = Γ(z + 1) it follows that

EX = θ/λ(ξ − 1), ξ > 1. (3)

Var(X) =
θ(ξ + θ − 1)

λ2(ξ − 1)2(ξ − 2)
, ξ > 2. (4)
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c. The Distribution Function

The distribution function of the F distribution is, in terms of the in-
complete beta function Ix (see 23.B(4)), given by

F (x) = Ih(x)(ξ, θ), where h(x) = (λx)/[1 + (λx)]. (5)

d. The Hazard Rate

If the survival function of the F distribution is written as an integral,
the hazard rate takes the form

r(x |λ, ξ, θ) =

[∫ ∞

0

(
1 +

t

x

)θ−1 (
1 +

λt

1 + λx

)−(θ+ξ)

dt

]−1

, x ≥ 0.

(6)

See Figure D.1.

D.2. Proposition. If θ > 1, the hazard rate is unimodal; if θ ≤ 1, the
hazard rate is decreasing. Moreover,

(i) limx→0 r(x) = 0 if θ > 1,
= λ/B(θ, ξ) if θ = 1,
= ∞ if θ < 1.

(ii) limx→∞ r(x) = 0.

e. The F Distribution from Mixtures

D.3. Proposition. The F -distribution is a gamma mixture of gamma
distributions. That is, with f and g given by 9.A(1),

∫ ∞

0
f(x | zλ, θ, α)g(z | 1, θ) dz =

∫ ∞

0

(
zλ(zλx)θ−1e−zλx

Γ(θ)

) (
zξ−1e−z

Γ(ξ)

)
dz

=
λ(λx)θ−1

B(ξ, θ)(1 + λx)ξ+θ
,

which is the density (1).

f. Ratios of Gamma Variates

Consider two independent random variables U and V, each with a chi-
square distribution having respective degrees of freedom m and n. It is
well known in statistical theory that the ratio

X =
U/m

V/n
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has the density f given by

f(x) =
(m/n)m/2

B(m/2, n/2)
x(m/2)−1

[1 + (m/n)x](m+n)/2 , x ≥ 0. (7)

In this context, the density (7) is called an F density with m, n degrees
of freedom.

More generally, ratios of independent gamma distributed variates
also have an F distribution, as is proved in Proposition C.6.

g. Waiting Times in the Pólya Process

The wear or degradation of a device at time t can sometimes be thought
of as a stochastic process {X(t), t > 0}. If the device “fails” when the
degradation exceeds a threshold, then the time of failure is the time
that the process first exceeds the threshold. Such first passage times
have been encountered in the derivation of the exponential and gamma
distributions (where the process is a Poisson process); the inverse Gaus-
sian distribution is similarly a first passage time for Brownian motion.

The Pólya process, introduced in Section 20.F.c, results from the
sampling scheme known as Pólya’s urn scheme. This model, introduced
by Eggenberger and Pólya (1923) as a model for contagion, leads to the
Pólya process. The Pólya process also arises as a Poisson process with
a random parameter that has a gamma distribution.

The probability mass function of N(t), where N(t), t ≥ 0, is a Pólya
process, is derived in Section 20.F.c and is given by

g+(k | ξ, β, x) =
∫ ∞

0

(λx)k

k!
e−λxβ

ξλξ−1

Γ(ξ)
e−βλdλ.

Let X be the waiting time for the θth jump in a Pólya process
{N(t), t ≥ 0} with parameters λ, β, and x. The survival function of X
can be written down quite directly:

P{X > x} = P{N(x) < θ} =
θ−1∑
k=0

g+(k | ξ, β, x)

=
∫ ∞

0

θ−1∑
k=0

(λx)k

k!
e−λxβ

ξλξ−1

Γ(ξ)
e−βλdλ

=
∫ ∞

0
Ḡ(x |λ, θ)β

ξλξ−1

Γ(ξ)
e−βλdλ,
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where Ḡ(· |λ, θ) is the survival function of a gamma distribution. But
this yields the density (9) of the F distribution with λ = 1/β.

E. Ordering Pareto and F Distributions

E.1. Proposition. The generalized F density of C(2) is, in the likeli-
hood ratio order, decreasing in λ and ξ and increasing in θ, the other
parameters being fixed. Thus, the Pareto IV density B(3) is, in the
likelihood ratio order, decreasing in λ and ξ.

Proof. By using C(2), the condition of 2.A(11) for likelihood ratio order
can be directly verified. For the Pareto IV distribution, the monotonic-
ity in the parameter ξ follows from Proposition 5.E.10 because ξ is a
frailty parameter. �

Recall that the likelihood ratio order appearing in Proposition E.1 is
a magnitude order. The following Propositions E.2 and E.3 involve the
convex transform order, which can be regarded as a skewness order.
Implications of the convex transform ordering ≤c are summarized in
Section 2.C.j.

E.2. Proposition. The generalized F density is, in the convex trans-
form order, decreasing in α, the other parameters being fixed.

This Proposition is a special case of Proposition 7.D.2.

E.3. Proposition. Pareto IV distributions are, in the convex trans-
form order, decreasing in ξ when α ≤ 1 and λ are fixed.

Proof. From D(3) and the relationship F̄−1(p) = F−1(1 − p), it follows
that

F̄−1(p) =
1
λ

(
1

p1/ξ − 1
)1/α

.

First, fix α and λ. Then,

F̄−1(F̄ (x |λ, α, ξ∗) |λ, α, ξ) =
1
λ
{[1 + (λx)α]ρ − 1}1/α, (1)

where ρ = ξ∗/ξ. To show that this is convex when ρ ≥ 1 and α ≤ 1,
it is sufficient to take λ = 1; then the result follows from Proposition
21.A.15.
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Next compute

F̄−1(F̄ (x |λ, α∗, ξ |λ, α, ξ) = (λx)α
∗/α/λ; (2)

this is clearly convex when α∗ ≥ α. �

For the case that α > 1, the convex transform ordering in ξ is not
resolved. The ordering in α is given by Arnold and Groeneveld (1995)
for the case that ξ = 1, that is, for the Pareto III distribution.

E.4. Proposition. Pareto IV distributions are, in the star order, de-
creasing in ξ when α and λ are fixed.

Proof. Use (1) to obtain

F̄−1(F̄ (x |λ∗, α, ξ) |λ, α, ξ)/x = {[1 + (λx)α]α − 1}1/α/λx.

Differentiate with respect to x to find that, when ρ ≥ 1, this expression
is increasing in x if and only if

ρy(1 + y)ρ−1 − (1 + y)ρ + 1 ≥ 0, y ≥ 0. (3)

Here, y = xα. The left-hand side of (3) is 0 at y = 0, and can be seen
to be increasing in y by noting that its derivative ρ(ρ− 1)y(y + 1)ρ−2

is nonnegative. �

The various orderings are summarized in the following diagram.

Order Pareto IV Distribution

Likelihood ratio decreasing in λ, ξ
Convex transform decreasing in ξ if α ≤ 1 and λ is fixed
Star decreasing in ξ if α, λ are fixed

F. Another Generalization of the Pareto Distribution

The density of the Pareto III distribution can be written in the form

f(x |λ, α) =
α

x[(λx)α + 2 + (λx)−α]
.
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For fitting income distributions, Champernowne (1937, 1952) proposed
a generalization with added parameter δ.

f(x |λ, α, δ) =
c(δ) α

x[(λx)α + 2δ + (λx)−α]
, (1)

where c(δ) is a normalizing constant depending upon δ. This distribu-
tion is discussed by Fisk (1961).

For −1 < δ < 1, c(δ) = 1/θ where cos θ = δ, and

F̄ (x |λ, α, δ) =
1
θ

tan−1
(

sin θ

cos θ + (λx)α

)
, x ≥ 0. (2)

For δ = 1, the survival function is the Pareto III survival function and
c(δ) = 1. For δ > 1, c(δ) = (θ − θ−1)/2 log θ where θ = δ +

√
δ2 − 1,

and

F̄ (x |λ, α, θ) =
1

2 log θ
log

(λx)α + θ

(λx)α + θ−1 , θ > 1, x ≥ 0. (3)
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Logarithmic Distributions

A. Introduction

The lognormal distribution, introduced in Chapter 1, can be obtained
from the normal distribution by means of a transformation. Specifically,
if Y = logX has a normal distribution, then X = eY has a lognormal
distribution.

Besides the normal distribution, there are several other standard
distributions with support (−∞,∞) that arise from natural consid-
erations; the same transformation yields a random variable with sup-
port (0,∞) for these other distributions as well. The procedure al-
lows the generation of life distributions from distributions with support
(−∞,∞). It is perhaps surprising that distributions for nonnegative
random variables X = eY that arise in a seemingly arbitrary manner
are often interesting. Distributions of this kind are here termed loga-
rithmic distributions.

Among the various logarithmic distributions, the lognormal occupies
a special place. Discussion of the lognormal distribution is deferred to
Section B; this section is devoted to a general discussion of logarithmic
distributions. As discussed in Section B, the lognormal distribution
has a direct derivation of its own that is quite as convincing as the
derivation of the normal distribution via the central limit theorem.

Denote the distribution function of X by F and the distribution
function of Y = logX by H. If densities exist, denote them, respec-
tively, by f and h and use subscripts to distinguish the hazard rates.
It is straightforward to verify that

F (x) = H(log x), f(x) = x−1h(log x),
rF (x) = x−1 rH(log x), x>0. (1)
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The following proposition follows immediately from (1).

A.1. Proposition. Suppose that the random variable Y has a density
h. Then X = eY has the density f given by (1). Moreover,

(i) If f(x) is increasing at x = x0, then h(x) is increasing at x = ex0 .
(ii) If h(x) is decreasing at x = ex0 , then f(x) is decreasing at x = x0.
(iii) If rF (x) is increasing at x = x0, then rH(x) is increasing at x = ex0 .
(iv) If rH(x) is decreasing at x = ex0 , then rF (x) is decreasing at x = x0.

In case Y is a nonnegative random variable, the transformation
X = eY leads to a random variable that is always greater than or equal
to one; such distributions are discussed in Section 15.D. More generally,
if the support of Y is bounded below, say by x0, then the exponential
transformation will not lead to a distribution with 0 as the left-hand
endpoint of support. However, a simple modification of the transfor-
mation removes this difficulty. Specifically if

X = exp {Y } − exp {x0}, (2)

then the support of X has left-hand endpoint 0.

a. Parameter Changes Under a Log Transformation

For distributions on (−∞,∞), location and scale are often the appro-
priate parameters. For the transformed distributions on (0,∞), these
parameters become, respectively, scale and power parameters, as indi-
cated in the following proposition.

A.2. Proposition. Suppose that {H(· |μ, σ),−∞ < μ < ∞, σ > 0} is
the family of distributions of the form H(x |μ, σ) = G((x− μ)/σ) for
some underlying basic distribution G that has support (−∞,∞). If
X has the distribution H(· |μ, σ), then Y = eX has the distribution
F (· |λ, α), where λ = e−μ, α = 1/σ, and

F (x |λ, α) = H(log x | − log λ, 1/α) = G(log(λx)α). (3)

Thus, λ is a scale parameter and α is a power parameter for the trans-
formed distribution. Note that in the above notation,

G((x− μ)/σ) = H((x− μ)/σ | 0, 1).
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A.3. Proposition. If Y has the distribution (3), then for θ, ζ > 0,
(θY )ζ has the distribution

F

(
x | λ

θ
,
α

ζ

)
= G

(
α

ζ
log

λx

θ

)
.

This fact is straightforward to verify; it depends not on G, but only on
the way G is parameterized.

From (3), it follows that if G has a density g, then F has a density
f given by

f(x |λ, α) =
α

x
g(α log(λx)). (4)

Moreover, the hazard rate rF of F is given in terms of the hazard rate
rG of G by

rF (x |λ, α) = (α/x) rG(α log(λx)). (5)

To express the moments of F (· |λ, α) in terms of the moment gen-
erating function of G, note that with a change of variables it follows
from (3) that whenever the integrals exist,

∫ ∞

0
xs dF (x |λ, α) = λ−s

∫ ∞

−∞
exp

{
sy

α

}
dG(y). (6)

In view of (6), it is of interest to see what happens if, instead of
location and scale parameters, a Laplace transform parameter s is in-
troduced in G. When this is done, the parametric family

H(x | s) =
1

φ(s)

∫ x

−∞
e−sz dG(z) (7)

is obtained, and exists for all s such that the Laplace transform φ of G
exists.

A.4. Proposition. If X has the distribution H(· | s) given by (7), then
Y = eX has the distribution F (· | s) given by

F (x | s) =
1

φ(s)

∫ x

0
y−s dF (y), (8)

where F (x) = G(log x). Thus, −s has become a moment parameter.
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b. Negative Logarithmic Distributions

For a nonnegative random variable Y , the random variable Z = e−Y

takes values in [0, 1]. Distributions of such random variables are termed
negative logarithmic distributions, examples of which are discussed in
15.D. Of course, the distribution of Z = e−Y can also be regarded as a
logarithmic distribution based upon the random variable −Y . In this
case, it can be easily verified that the random variable Z has the dis-
tribution function F given by

F (x) = Ḡ(− log x), 0 ≤ x ≤ 1.

Suppose that the random variable Y takes values in [0,∞) and has
the distribution function G. It can be verified that in the negative log
distribution obtained from (7), it is the Laplace transform parameter
s that becomes a moment parameter rather than −s as in Proposi-
tion A.4.

c. A Common Distribution for a Random
Variable and Its Reciprocal

In some applications, it is natural to impose the condition that X and
1/X have the same distribution. Clearly, this condition is preserved
when scale and power parameters are introduced; that is, if X and
1/X have the same distribution, then (λX)α and 1/(λX)α have the
same distribution, λ, α > 0.

A.5. Proposition. The distribution of X and 1/X are the same if and
only if Y = logX has a distribution symmetric about 0. More generally,
X/em and em/X have the same distribution if and only if Y = logX
has a distribution symmetric about m.

Proof. Consider first the case of symmetry about 0. From the relation
Y = logX, it follows that −Y = log (1/X). But Y and −Y have the
same distribution if and only if Y has a distribution symmetric about
0. The general case follows by applying the special case to the random
variable X/em. �

d. Monotone Hazard Rates Under Logarithmic Transformations

The following proposition is closely related to Proposition A.1 but does
not depend upon the existence of a density.



SVNY289-Olkin April 17, 2007 7:2

B. The Lognormal Distribution 431

A.6. Proposition. Suppose that Y = logX, and denote the survival
functions of X and Y by F̄X and F̄Y .

(i) If F̄X is IHR, then F̄Y is IHR.
(ii) If F̄Y is DHR, then F̄X is DHR.

The converses of these statements are false.

Proof. As noted in (1),

log F̄Y (y) = log F̄X(ey).

From Proposition 21.A.5(iii), it follows that log concavity of F̄X implies
the log concavity of F̄Y . This is the first statement of Proposition A.6.
The second statement follows similarly from Proposition 21.A.5(iv). �

Because the converses of Proposition A.6 are false, it is to be ex-
pected that the lognormal distribution may not be IHR even though
the normal distribution has a log concave survival function. Similar
statements can be made about other logarithmic distributions.

B. The Lognormal Distribution

Certainly, the most important logarithmic distribution is the lognormal
distribution. This distribution has been extensively studied by many
authors, the landmark study being that of Aitchison and Brown (1957).
A history and genesis of the lognormal distribution is given by Shimizu
and Crow (1988). The collection of papers edited by Crow and Shimizu
(1988) is also devoted to the subject; see also Johnson, Kotz and Balakr-
ishnan (1994, Chapter 14). All of these books give extensive historical
accounts and bibliographies.

a. Appropriate Physical Models

Additive models are addressed by the central limit theorem and lead to
the normal distribution. In some circumstances, multiplicative models
are more appropriate. Nevertheless, multiplicative models have been
overshadowed by additive models just as the geometric mean is often
neglected in favor of the arithmetic mean. Concern about this and an
interest in multiplicative models seem to have prompted Galton (1879)
to have encouraged McAlister (1879) to undertake the first detailed
study of the lognormal distribution in a paper entitled “The law of
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the geometric mean.” For a more detailed account, see Aitchison and
Brown (1957).

Multiplicative models are versions of what, in an economic context,
was called the “law of proportional effects” by Gibrat (1930, 1931).
Because of Gibrat’s work, the lognormal distribution has sometimes
been called “Gibrat’s distribution.”

Because multiplicative models can be transformed to additive mod-
els by use of the logarithm, the theory of multiplicative models can be
obtained from that of additive models, and of course, the reverse is also
true.

a.1. Growth Models

In both economics and biology, models of growth of the form

Xi −Xi−1 = ZiXi−1, or equivalently, Xi = Xi−1(1 + Zi)

arise from the idea that growth is proportional to size. These models
lead to the conclusion that

Xn = X0

n∏
i=1

(1 + Zi).

When the Zi are all independent and nonnegative and the individual
increments Xi −Xi−1 are small, the normalized Xn will, for large n,
be approximately lognormally distributed. For further details of these
models, see Cramér (1946, p. 220), Crow and Shimizu (1988, p. 4), or
Johnson, Kotz and Balakrishnan (1994, p. 210).

a.2. Breakage Theory

The following breakage model can be regarded as an analog of the
growth model. A particle is subjected to a series of breakages, where
at the ith breakage it suffers a loss of a random proportion Ti of its
mass. Thus, if X0 is the initial mass, the mass after n breakages is
Xn = X0

∏n
i=1 Ti. If the random proportions are independent and iden-

tically distributed, then the limiting distribution of Xn is, under mild
conditions, a lognormal distribution. For some history of this model
and results, see Aitchison and Brown (1957, p. 26).

a.3. Physics of Failure

Arguments have been made concerning the failure mechanism of solid
state devices that lead to the lognormal distribution as the distribution
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of life length. Such arguments are beyond the scope of this book, but
see Joyce and Anthony (1988).

There are a large number of papers in which the lognormal distri-
bution has been used to fit data without reference to physical models
such as those mentioned here. The success of many of these fits for the
most part has not been judged by comparison with possible fits of other
distribution families. An exception to this is the application of the log-
normal distribution to air pollutant concentration; Bencala and Seinfeld
(1976) have compared fits using several other standard distributions,
and found that in general the lognormal distribution provided a best
fit to their data. Such statistical applications of the lognormal distribu-
tion are not discussed here, but can be found in the books by Aitchison
and Brown (1957) and Johnson, Kotz and Balakrishnan (1994). The
lognormal distribution is often used in settings where there may be
extremes in the right-hand tail, for example with data about wealth.

b. Mathematical Derivation

Because the normal distribution arises as a limiting distribution for
sums, the lognormal distribution arises as a limiting distribution for
products. More explicitly, suppose that U1, U2, . . . is a sequence of in-
dependent identically distributed random variables with finite expec-
tation μ and variance σ2. Then according to the central limit theorem
20.C.8, [U1 + U2 + · · · + Un − nμ]/

√
nσ has a limiting standard normal

distribution. If Vi = exp{Ui}, i = 1, 2, . . ., it follows that [Πn
i Vi]1/

√
n has

what is termed a limiting “standard lognormal distribution.” This was
the motivation of Galton (1879) and McAlister (1879).

c. Survival Function

If Y is normally distributed with expectation μ and variance σ2, then
X = eY has the survival function

F̄ (x) = Φ̄
(

log x− μ

σ

)
= Φ̄(log(λx)α) = Φ̄

(
(α log x) −

(
β

α

))
, (1)

where Φ is the standard normal distribution function, −∞ < μ, β < ∞,
x, λ, σ, α > 0, and

μ = − log λ, σ = 1/α, and β = α2μ = μ/σ2. (2)
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From (1), it is clear that λ is a scale parameter and α is a power
parameter.

d. Density

Three useful ways to parameterize the lognormal distribution are noted
here. The densities are given subscripts to indicate differing parame-
terizations, but are all representations of the same density. When no
confusion is possible, the subscripts are omitted.

The density f corresponding to the survival function (1) is given by

f(x) =
1
σx

φ

(
log x− μ

σ

)
=

α

x
φ (log (λx)α)

=
α

x
φ

(
α log x− β

α

)
, x > 0, (3)

where φ is the density of the standard normal distribution. More ex-
plicitly, for x > 0, with parameters related by (2),

f1(x |μ, σ) =
1

σx
√

2π
exp{−(log x− μ)2/2σ2}

= f2(x |λ, α) =
α

x
√

2π
exp{−[log(λx)α]2/2}

= f3(x |α, β) = xβ exp{−β2/2α2} α

x
√

2π
exp{−[log xα]2/2}

= xβ exp{−β2/2α2}f2(x | 1, α). (4)

The form of the distribution that appears to be standard in books is
f1 with parameters μ and σ. These parameters are inherited from the
normal distribution, but for the lognormal distribution, their meaning
is less clear. As noted above, it can be seen from (1) or (4) that in the
parameterization of f2, λ is a scale parameter. With the parameteriza-
tion of f3, it follows from (4) that β is a moment parameter, but α is
no longer a power parameter because of its connection with β in (2). It
is demonstrated in Proposition 18.B.5 that the lognormal distribution
is the only distribution that can be parameterized by either a scale
parameter or a moment parameter. See Figures B.1 and B.2.

At both 0 and ∞, the density of the lognormal distribution tends
to 0 faster than any power of x. This fact may partially explain the
usefulness of the distribution in fitting some types of data.
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B.1. Proposition. For any real θ,

(i) lim
x→∞

xθf(x) = lim
x→0

xθf(x) = 0.

Moreover, the kth derivative f (k) of f satisfies

(ii) lim
x→0

xθf (k)(x) = 0.

Proof. The proofs of the results concerning f itself can be accomplished
by making the change of variables z = log x, and then finding the limit
of the logarithm of the transformed xθf(x). Alternatively, the result
can be obtained from the form f3 of the density in (4) once it is known
for θ = 1. For the results concerning derivatives, make use of (i) with
θ replaced by θ + k + 1, that is,

lim
x→∞

xθ+k+1f(x) = lim
x→0

xθ+k+1f(x) = 0,

and apply l’Hospital’s rule k times. �

B.2. Proposition. The lognormal density is unimodal, with mode at
the point

Mode = exp{μ− σ2} = λ−1 exp{−1/α2} = exp{(β − 1)/α2}. (5)

This result can be verified by differentiating the density.

e. Hazard Rate

The hazard rate of the lognormal distribution cannot be expressed in
closed form because the survival function of the normal distribution
does not have a closed form. This makes the study of the lognormal
hazard rate somewhat troublesome, and the first careful study of it
appears to be that of Sweet (1990). As has long been noted from nu-
merical work, the hazard rate is zero at both 0 and ∞, and it has a
unique mode. See Figure B.3.

The hazard rate r of the lognormal distribution can be written in
terms of the hazard rate rN = φ/Φ̄ of the standard normal distribution
as follows:

r(x) =
rN (w)

σ
exp{−σw − μ}, (6)

where w = ((log x) − μ)/σ.
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Fig. B.3. Hazard rates of the lognormal distribution (λ = 1)

B.3. Proposition. For all real θ, limx→0 x
θr(x) = 0. Moreover, the

kth derivative r(k) of the hazard rate r satisfies limx→0 x
θr(k)(x) = 0.

Additionally, limx→∞ r(x) = 0.

Proof. The first part of this proposition follows directly from Proposi-
tion B.1. The limit at infinity can be computed directly with the aid
of l’Hospital’s rule. �

A proof of unimodality is somewhat more troublesome, but can be
accomplished with the aid of the following lemma.

B.4. Lemma. The hazard rate rN of the standard normal distribution
is log concave.

Proof. The concavity of log rN can be demonstrated by showing that
it has a negative second derivative, i.e., that r′′N (x)rN (x) ≤ [r′N (x)]2.
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By definition, rN = φ/Φ̄, and so log rN = log φ− log Φ̄ and

r′N (x)
rN (x)

=
d log rN (x)

dx
= −xφ(x)

φ(x)
+

φ(x)
Φ̄(x)

= −x + rN (x).

This yields the equality r′N (x) = rN (x)[rN (x) − x]. Further,

r′′N (x) = 2rN (x)r′N (x) − xr′N (x) − rN (x)
= rN (x)[2r2

N (x) − 3xrN (x) + x2 − 1].

With these derivatives, the condition r′′N (x)rN (x) ≤ [r′N (x)]2 for log
concavity can be rewritten as

rN (x) < [x +
√
x2 + 4]/2. (6a)

But this inequality is a result of Birnbaum (1942) which gives a bound
for the hazard rate of the normal distribution. �

B.5. Proposition. The hazard rate of the lognormal distribution is
unimodal, with mode at exp{σz + μ}, where z is the unique solution
of the equation

rN (z) = z + σ. (6b)

This solution is less than exp{1 + μ− σ2}.
Proof. The proof follows a sequence of steps. First, with w =
((log x) − μ)/σ, write the hazard rate r of the lognormal distribution
in terms of the hazard rate of the normal distribution as in (6b); that
is,

r(x) = e−σwrN (w)/σeμ = e−σw−μrN (w)/σ, 0 < x < ∞.

From this it follows that

r′(x) =
dr(x)
dx

=
e−σw−μ

σ
[rN ′(w) − σrN (w)]

dw

dx
, 0 < x < ∞.

Consequently, r′(x) = 0 if and only if

r′N (w)/rN (w) = σ. (7)
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By Lemma B.4, the ratio r′N (w)/rN (w) is decreasing in w, and ranges
from ∞ to −∞ as w ranges from −∞ to ∞ (x ranges from 0 to ∞).
Thus, (7) must have one and only one solution say w = z. From the
proof of Lemma B.4, r′N (z) = rN (z)[rN (z) − z], so that (6b) follows
from (7).

To show that the hazard rate mode is less than exp{1 + μ− σ2}, it
is necessary to show that exp{σz + μ} < exp{1 + μ− σ2}, that is,

z < (1 − σ2)/σ.

According to (6a) and (6b),

σ = rN (z) − z < (
√
z2 + 4 − z)/2,

which reduces to the required inequality z < (1 − σ2)/σ. �

An alternative proof of the unimodality of the hazard rate of the
lognormal distribution can be obtained using Theorem 4.E.2.

The fact that the hazard rate of the lognormal distribution is even-
tually decreasing may not be of practical significance. Gottfried (1990)
comments on that “the relationship between a statistical model and
the real world almost always becomes tenuous in the tails.” He points
out that the mode of the lognormal hazard rate may be well out in the
right-hand tail of the distribution.

f. Moments and Related Characteristics

In the above discussion, μ and σ2 are, respectively, the mean and vari-
ance of the normally distributed random variable Y = logX, and this
notation is retained here. To distinguish between the moments of X and
Y , the rth moment of the lognormally distributed random variable X
is denoted below by μr even when r = 1.

A number of characteristics of the lognormal distribution can be
expressed in several ways using the various related parameters that
appear in the three forms of the density. It has already been observed
that moments of f(· | 1, α) can be obtained directly from the form (3) of
the density. It follows that the rth moment EXr = μr of the lognormal
distribution is given by

μr =
1
λr

exp

{
r2

2α2

}
= exp

{
rβ

α2 +
r2

2α2

}
= exp

{
rμ +

r2σ2

2

}
. (8)
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The moments can also be obtained from the moment generating func-
tion of the normal distribution, as indicated by A(6).

In particular, it follows from (8) that the expected value μ1, variance
Var X, and coefficient of variation CV(X) are given by

μ1 =
1
λ

exp
{

1
2α2

}
= exp

{
β

α2 +
1

2α2

}
= exp

{
μ +

σ2

2

}
, (9)

Var X = exp{2μ1 + σ2}[eσ2 − 1] = e1/α2
(1 − e1/α2

)/λ2

= exp{(1 − 2β)/α2}[e1/α2 − 1], (10)

CV(X) = [eσ
2 − 1]1/2 = [e1/α2 − 1]1/2. (11)

Feller (1971, p. 227) notes that the lognormal distribution is not
determined by its moments. He gives an example of another density
with exactly the same moments as the lognormal distribution, with
credit to C. C. Heyde. This example is the density

fα(x) =
1

x
√

2π
exp

{
−1

2
(log x)2

}
[1 + α sin(2π log x],

− 1 ≤ α ≤ 1, x ≥ 0.

As noted in Proposition B.2, the lognormal distribution is unimodal
with mode exp{μ− σ2} given by (5). Because the median of the nor-
mal distribution is μ, it follows that the median Med of the lognormal
distribution is

Med = eμ = 1/λ. (12)

From (5), (9), and (12), it can be seen that for the lognormal distribu-
tion,

Mode < Med < Mean.

This indicates that the density is “stretched to the right,” or in other
words, has a long right tail.

g. Infinite Divisibility

The lognormal distribution was shown to be infinitely divisible by
Thorin (1977b). Thorin’s methods, involving Laplace transforms, are
involved and are beyond the scope of this book.
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h. Ordering Lognormal Distributions

Because λ is a scale parameter, it follows from Observation 7.C.5 that
lognormal distributions are, in the usual stochastic ordering, decreasing
in the scale parameter λ. However, these distributions are not decreas-
ing in the hazard rate order because the hazard rates are not decreasing.
Of course, this means that the likelihood ratio order also does not order
lognormal distributions.

Because the parameter α in (4) is a power parameter, it follows
from Proposition 7.D.5 that lognormal distributions are in the convex
transform order, decreasing in the parameter α.

C. Log Logistic Distributions

The standard logistic distribution has distribution and survival func-
tions given by

H(x) = [1 + exp {−(x− a)/b}]−1, H̄(x) = [1 + exp {(x− a)/b}]−1,

−∞ < x < ∞. (1)

This distribution is briefly discussed in Section 9.D.b, and extensive
studies of it are reviewed by Johnson, Kotz and Balakrishnan (1995,
Chapter 23).

If Y has the distribution (1) and X = eY , then with λ = e−a, α =
1/b, it follows in a straightforward way that X has the Pareto III dis-
tribution F given by

F̄ (x) = 1/[1 + (λx)α], x > 0. (2)

See Section 11.B for a discussion of this distribution.
The form of the distribution function and survival function of the

logistic distribution make the introduction of frailty and resilience pa-
rameters inviting. The case of a resilience parameter was studied by
Ahuja and Nash (1967) and Dubey (1968). This extension is called the
Type I generalized logistic distribution by Johnson and Kotz (1970b,
p. 140). They call the extension with frailty parameter a Type II gen-
eralized logistic distribution. The logarithmic Type I and Type II gen-
eralized logistic distributions are obtained from (2) by adding, respec-
tively, resilience and frailty parameters. These logarithmic distributions
are introduced in Section 11.B.a.
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Another generalization of the logistic distribution has the density

h(y | p, q) =
epy

B(p, q)(1 + ey)p+q
, −∞ < y < ∞, p, q > 0,

the logarithmic form of which is the F distribution of Section 11.D.

D. Log Extreme Value Distributions

Extreme value distributions are discussed in Section 20.G. Two of
these distributions, G and H, have support (−∞,∞) and are defined,
respectively, by

G(y) = exp{−e−(y−a)/b}, −∞ < y < ∞, (1)

and

H̄(y) = exp{−e−(y−a)/b}, −∞ < y < ∞. (2)

The first of these distributions is an extreme value distribution for
a maximum, and the second is an extreme value distribution for a
minimum. They are closely related; if Y has the distribution (1), then
Z = 2a− Y has the survival function (2). If Y has distribution G, then
X = eY has the log extreme value distribution F+ of the form

F+(x) = exp {−1/(λx)α}, x ≥ 0, (3)

and on the other hand, X = e−Y has the negative log extreme value
distribution F̄− of the form

F̄−(x) = exp {−(λx)α}, x ≥ 0. (4)

Of course, F− is a Weibull distribution and F+ is the distribution of a
variable with reciprocal having a Weibull distribution. Because of the
relationship between G and H, similar results are obtained by starting
with (2) rather than with (1). Only in this case, the log and negative
log distributions are interchanged.

As noted by Johnson and Kotz (1970b, p. 3), the distribution (1)
has been called a “log Weibull distribution.” However, in this book,
the pattern set by the long entrenched terminology for the lognormal
distribution has been followed.
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E. The Log Cauchy Distribution

The log Cauchy distribution is an unusual distribution, perhaps more
curious than useful; no moments apart from the zero-th moment are
finite. The basic log Cauchy distribution (without parameters) is given
by

f(x) = {πx[1 + (log x)2]}−1, F̄ (x) =
1
2
− 1

π
tan−1 log x, x > 0. (1)

From (1), it follows that the hazard rate is

r(x) =
{
πx[1 + (log x)2]

[
1
2
− 1

π
tan−1 log x

]}−1
. (2)

See Figure E.1.
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Fig. E.1. Density, survival function and hazard rate of the log Cauchy distribution
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E.1. Proposition. The log Cauchy distribution has a decreasing den-
sity, and a hazard rate that is initially decreasing, eventually decreasing,
but may increase on some interval.

Proof. The density f has a derivative given by

f ′(x) = − (1 + log x)2

πx[1 + (log x)2]
, (3)

from which it is easy to see that f is decreasing. To determine the
nature of the hazard rate, it is convenient to compute

ρ(x) = −f ′(x)/f(x)
= (1 + log x)2/x[1 + (log x)2],

and consequently,

ρ′(x) = (1 + log x)[1 − 3 log x− (log x)2 − (log x)3]/x2[1 + (log x)2]2.

The equation ρ′(x) = 0 has the root x = 1/e. It also has one real
root from the factor z3 + z2 + 3z − 1 = 0, where z = log x (see, e.g.,
Abramowitz and Stegun (1964, Paragraph 3.8.2, p. 17). The conclu-
sion follows from Theorem 4.E.2 �

E.2. Proposition. If X has a log Cauchy distribution then EXr exists
finitely if and only if r = 0.

Proof. Rewrite EXr in the form

EXr =
∫ ∞

−∞

erx

π(1 + x2)
dx;

if r < 0, then the integrand has the limit ∞ at −∞, and if r > 0,
the integrand has the limit ∞ at ∞. Thus, the integral cannot be
finite. �

The results of the above propositions do not change if a scale pa-
rameter is introduced in the distribution (1). On the other hand, the
behavior of the density and hazard rate may change with the introduc-
tion of a power parameter.
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F. The Log Student’s t Distribution

The generally unfamiliar log t distribution can be regarded as a gen-
eralization of the lognormal distribution. In its simplest form, this dis-
tribution has the density

f(x | ν) =

⎡
⎣√νB

(
1
2
,
ν

2

) (
1 +

(log x)2

ν

)(ν+1)/2

x

⎤
⎦
−1

, x, ν > 0. (1)

Because the normal distribution is the limit of Student’s t distribution
when ν → ∞, it follows that the lognormal distribution is the limit of
the log t distribution. For full generality, this requires the introduction
of additional parameters in (1), as can be done by introducing a location
and scale parameter in the t distribution.

The hazard rates of the log t distributions do not take particularly
nice forms.

G. Alternatives for the Logarithm Function

In the relationship F (x) = H(log x) of A(1), the logarithm plays a key
role in transforming distributions with support (−∞,∞) to distribu-
tions concentrated on [0,∞). The essential properties of the logarithm
function for this change of support is that the logarithm is a strictly
increasing function, and

lim
x→0

log x = −∞, lim
x→∞

log x = ∞.

Any other function, say w, can be substituted for the logarithm pro-
viding only that

(i) w(x) is strictly increasing in x > 0,

and

(ii) limx→0 w(x) = −∞, limx→∞w(x) = ∞.

This idea is embedded in the work of Slymen and Lachenbruch (1984),
who in addition to the logarithm, consider the three functions

w1(x | θ) =
xθ − x−θ

2θ
, θ > 0, (1)

w2(x |λ) = log(eλx − 1), λ > 0, (2)

w3(x |λ, α) = log log[1 + (λt)α], λ, α > 0. (3)
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Note that these functions satisfy (i) and (ii).
For any function w satisfying (i) and (ii), cw + d satisfies these con-

ditions providing only that c > 0. This offers a way to introduce more
parameters in the transformed distribution.

Because

lim
θ→0

w1(x | θ) = log x,

the results of employing w1 in place of the logarithm can be interpreted
as generalizing the logarithmic distributions through the introduction
of the additional parameter θ.

G.1. Example. Transformed extreme value distributions
(modified Weibull distributions) (Slymen and Lachenbruch, 1984).
As noted in Section D, the logarithmically transformed extreme value
distribution H of D(2) is a Weibull distribution.

If the log function is replaced by w1, the survival function

F̄ (x) = H̄(w1(x)) = exp

{
− exp

[
xθ − x−θ

θb
− a

b

]}
, x, θ > 0, (4)

is obtained. This survival function has been called the modified Weibull
survival function by Slymen and Lachenbruch (1984). For most values
of the parameters, this distribution has a hazard rate that is a delayed
bathtub shape. See Figures G.1, G.2, G.3a, and G.3b.

If the log function is replaced by ζw2 + log ξ, the survival function
10.C(12) of a Gompertz distribution with hazard power parameter is
obtained.

If the log function is replaced by w3 and a = 0, b = 1 in D(2), the
resulting survival function is

F̄ (x) = {1 + log [1 + (λx)α]}−1, x > 0 (5)

This survival function has a decreasing hazard rate.

G.2. Example (Slymen and Lachenbruch, 1984). As noted in Section
C, the log logistic distribution is a Pareto III distribution. If the log
function used in Section C to transform the logistic distribution is re-
placed by w2, the resulting survival function is

F̄ (x) = H̄(w2(x | θ)), x > 0,
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Fig. G.1. Densities of the modified Weibull distribution (a = 0, b = 1)
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Fig. G.3b. Hazard rates of the modified Weibull distribution (a = 0, b = 1) in the
neighborhood of the origin
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where H̄ is given by C(1). This survival function is somewhat awkward.
However, when the parameters of H̄ are a = 0 and b = 1/θ, then

F̄ (x) = [1 + (eλx − 1)θ]−1, λ, θ > 0, x > 0. (6)

Here is another two-parameter extension of the exponential distribution
which is obtained with θ = 1.

If the log function used in Section C to transform the logistic distri-
bution is replaced by w1, the resulting distribution is called the modified
log-logistic distribution by Slymen and Lachenbruch (1984). The sur-
vival function of this distribution is given by

F̄ (x) = H̄(w1(x | θ)), x > 0,

where H̄ is given by C(1). This survival function does not take a par-
ticularly attractive form. However, the hazard rate has been plotted by
Slymen and Lachenbruch (1984) and found to take a variety of shapes.

If the log function used in Section C to transform the logistic dis-
tribution is replaced by w3, the result is a Pareto III distribution.

Box and Cox (1964) introduced the transformation

w(x) = (xλ − 1)/λ, x, λ > 0,
= log x, x > 0, λ = 0.

This can be viewed as a parametric extension of the logarithm.
See also MacGillivray (1992) for other transformations of the normal

distribution.
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The Inverse Gaussian Distribution

The inverse Gaussian distribution was derived by Schrödinger (1915)
and Smoluchowski (1915) as the first passage time distribution of Brow-
nian motion with a drift. The distribution subsequently arose in the
related contexts of population growth studies by Hadwiger (1940), in
an early application to clinical trials by Tweedie (1941), and in the
context of the sequential analysis by Wald (1947); all of these are in
the context of Brownian motion. The distribution has also been called
the “Wald distribution.” The inverse Gaussian distribution is the sub-
ject of books by Chhikara and Folks (1989) and Seshadri (1993, 1999).
Saunders (2007) offers a relatively brief, but inciteful treatment. For
a review of the inverse Gaussian distribution, see Folks and Chhikara
(1978). A particularly interesting history of the distribution and its
close relatives is given by Seshadri (1993). Some of the essential defini-
tions and properties are presented in Section A.

The inverse Gaussian distribution has two parameters that come
from the drift parameter and the variance of the Brownian motion.
Etienne Halphen proposed a three-parameter distribution for fitting
hydrological data. As noted by Seshadri (1993, p. 2), because of anti-
Jewish regulations imposed by the Nazis, Halphen’s work was published
under the name “Dugué” (1941). Halphen’s three-parameter distribu-
tion, later named the “generalized inverse Gaussian distribution” by
Barndorff-Nielsen and Halgreen (1977), can be obtained from the in-
verse Gaussian distribution through the introduction of a moment pa-
rameter. However, Halphen arrived at the generalized inverse Gaus-
sian distribution through a two-parameter special case different from
the usual two-parameter inverse Gaussian distribution. The generalized
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inverse Gaussian distribution has been extensively studied by Jørgensen
(1982).

The term “inverse Gaussian” is due to Tweedie (1945, 1956), and is
based upon a relationship between the cumulant generating functions
of the Gaussian and inverse Gaussian distributions. The Gaussian and
inverse Gaussian distributions have several similarities; both families
are closed under convolutions and have similar characterizations (see
Chhikara and Folks, 1989, Section 4.4; Seshadri, 1993, Chapter 3).

A. The Inverse Gaussian Distribution

a. The Density Function

The inverse Gaussian distribution is, like the gamma distribution, most
easily defined in terms of the density because the survival function
cannot be expressed in closed form. With the usual parameterization,
the density is given by

fa(x) =

√
θ√

2πx3
exp

{
−θ(x−m)2

2m2x

}

=

√
θ√

2πx3
eθ/m exp

{
−θ

2

(
x

m2 +
1
x

)}
, x, θ,m > 0. (1a)

The distribution with this density is sometimes labeled the “IG(m, θ)
distribution,” and is the form used by Tweedie (1945, 1956).

The density (1a) is sometimes given with the alternative parame-
terization m = β, θ = β/α2. Then, (1a) can be written in the form

fb(x) =
√
β

α
√

2πx3
exp

{
− 1
α2

}
exp

{
− 1

2α2

(
x

β
+

β

x

)}
; (1b)

it is with this parameterization and this form of the density that Wald’s
name is associated.

Yet another parameterization of the inverse Gaussian distribution
is of interest. With α = (λχ)−1/4 and β = (χ/λ)1/2, (1b) becomes

fc(x) =
λ√

2π(λx)3
exp {

√
λχ} exp

{
−1

2

(
λx +

χ

x

)}
. (1c)
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Fig. A.1. Densities of the inverse Gaussian distribution (λ = 1)

The roles of the parameters θ,m, α, and β are not entirely transpar-
ent, so let m = β = η/λ and θ = β/α2 = ν2/λ; then ν = θ/m = 1/α2

and λ = θ/m2 = 1/α2β. With this parameterization, the density (1b)
takes the form

f(x |λ, ν) =
λν√

2π(λx)3
exp

{
−(λx− ν)2

2λx

}
, x, λ, ν > 0. (2)

Now it is clear that λ is a scale parameter, and consequently

f(x |λ, ν) = λ f(λx | 1, ν). (3)

See Figure A.1.
To understand the role of the parameter ν, it is helpful to com-

pute the Laplace transform of f . The following can be derived with
some algebra to complete the square in the exponent of the density;
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alternatively, it can be directly verified using (2) that

φ(s) = E e−sX =
∫ ∞

0
e−sxf(x |λ, ν) dx

= exp

{
ν

[
1 −

(
1 +

2s
λ

)1/2
]}∫ ∞

0
f

(
x |λ + 2s, ν

(
1 +

2s
λ

)1/2
)
dx

= exp

{
ν

[
1 −

(
1 +

2s
λ

)1/2
]}

. (4)

Note that ν appears as an exponent in this transform; this means that
ν is a convolution parameter, and the following proposition is a conse-
quence.

A.1. Proposition. The density f of (2) is infinitely divisible and
moreover,

∫
f(x− t |λ, ν1)f(t |λ, ν2) dt = f(x |λ, ν1 + ν2). (5)

By differentiating the logarithm of density (2), it is straightforward
to verify that the density is unimodal with

mode = [−3 + (9 + 4ν2)1/2]/2λ. (6)

With r > 0, successive applications of l’Hospital’s rule yield

lim
x→0

f(x)/xr = lim
x→∞

xrf(x) = 0. (7)

b. The Survival Function

The survival function F corresponding to the density (2) can be given
in two different forms. First, in terms of the distribution function Φ of
the standard normal distribution,

F̄ (x |λ, ν) = Φ̄
(
λx− ν√

λx

)
− e2νΦ

(
−λx + ν√

λx

)
; (8)

second, in terms of the survival function

Ḡ(z) =
∫ ∞

z
(2πt)−1/2 exp

{−t

2

}
dt
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Fig. A.2. Survival functions of the inverse Gaussian distribution (λ = 1)

of a chi-squared distribution with one degree of freedom (a gamma
distribution with scale parameter 1/2 and shape parameter 1/2),

F̄ (x |λ, ν)

= 1 − 1
2
Ḡ

(
(λx− ν)2

λx

)
− 1

2
e2νḠ

(
(λx + ν)2

λx

)
, 0 ≤ x ≤ ν/λ,

=
1
2
Ḡ

(
(λx− ν)2

λx

)
− 1

2
e2νḠ

(
(λx + ν)2

λx

)
, x ≥ ν/λ. (9)

The form (9) follows from (8), but derivations of (8) and (9) are rather
involved and are not given here. The form (8) was found independently
by Zigangirov (1962) and Shuster (1968), but see Seshadri (1993, Sec-
tion 2.9) for further elucidation. Fortunately, a relatively straightfor-
ward differentiation of (8) or (9) can be carried out to yield (2), so
(8) and (9) can be verified even if they are not easy to derive. See
Figure A.2.
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c. The Hazard Rate

The hazard rate of the inverse Gaussian distribution is the ratio of the
density (2) to the survival function (8), but the resulting expression
is somewhat awkward. Fortunately some properties of the hazard rate
can be found without direct examination of any analytical expression
for it. See Figure A.3.

The goal of the following is to show that the hazard rate starts
off at 0 and increases to a unique maximum, and then decreases to
a limiting value λ/2. Also, some bounds are obtained for the hazard
rate mode. These results are all obtained by Chhikara and Folks (1977,
1989) with an ingenious but very involved use of elementary calculus
and algebra. Here, a derivation is given that is simpler and more direct,
but it makes use of Theorem 4.E.2, and thus it depends on some theory
of total positivity.

To apply Theorem 4.E.2, first compute

ρ(x) = −f ′(x)
f(x)

= −d log f(x)
dx

=
3
2x

+
λ

2
− ν2

2λx2 . (10)
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As indicated by (7), limx→∞ f(x) = limx→0 f(x) = 0; thus,
limx→0 r(x) = 0. By using the definition of r, then l’Hospital’s rule, and
finally (10), it follows that

lim
x→∞

r(x) = lim
x→∞

f(x)
F̄ (x)

= lim
x→∞

−f ′(x)
f(x)

=
λ

2
.

By computing dρ(x)/dx = (2ν2 − 3λx)/2λx3, it can be seen that ρ(x)
is increasing for x ≤ 2ν2/3λ = x0 and decreasing for x ≥ x0. Thus, by
Theorem 4.E.2, there exists x1 ≤ x0 such that the hazard rate r(x)
is increasing x ≤ x1 and decreasing in x ≥ x1. The actual hazard rate
mode is the solution to the equation

r(x) =
3
2x

+
λ

2
− ν2

2λx2 , that is, r(x) = ρ(x).

d. Moments

The moment generating function mgf(s) = φ(−s) of the inverse Gaus-
sian distribution can be obtained directly from (4). By differentiating
this moment generating function r times and setting s = 0, the integer
moments of the inverse Gaussian distribution can be obtained.

Specifically,

EXr =
νr

λr

r−1∑
j=0

(r − 1 + j)!
j!(r − 1 − j)!

(2ν)−j

=
νr

λr

r−1∑
j=0

Γ(r + j)
Γ(r − j)

(2ν)−j

j!
, r = 1, 2, . . . . (11)

In particular,

EX =
ν

λ
= μ and Var(X) =

ν

λ2 =
μ3

θ
.

Thus, it is apparent that the parameter m in (1a) is the first moment
μ, and the coefficient of variation is

CV(X) =
√

Var(X)
EX

=
1√
ν

=
√

μ

θ
.

Note that the mode of the density, given by (6), is less than the expected
value.



SVNY289-Olkin May 15, 2007 16:48

458 13. Inverse Gaussian Distribution

There is a simple relationship between positive and negative mo-
ments given by

E

(
λX

ν

)−r

= E

(
λX

ν

)r+1

, r = 1, 2, . . . .

This relationship can be obtained from the integral
∫ ∞
0 (λx/ν)−rf(x) dx

with the change of variables y = ν/λx (for details see Chhikara and
Folks (1977, 1989) or Seshadri 1993, p. 52).

e. Ordering Inverse Gaussian Distributions

Because the parameter λ in the density (2) is a scale parameter, the
corresponding distribution is, in the sense of the usual stochastic or-
der, decreasing in λ; in fact, the stronger likelihood ratio ordering
also holds. This result follows from a straightforward but somewhat
tedious verification of condition 2.A(11). That condition can here be
written as

f(x |λ1, ν)
f(x |λ2, ν)

≤ f(y |λ1, ν)
f(y |λ2, ν)

, x < y, λ1 < λ2,

which reduces to (y − x)(λ2 − λ1)(ν2 + λ1λ2xy) ≥ 0.
From Proposition A.1, it follows that ν is a convolution parame-

ter, and consequently (from Propositions 7.J.4) the inverse Gaussian
distribution is increasing in ν in the sense of stochastic order. How-
ever, condition 2.A(11) can again be used to show the stronger re-
sult that the inverse Gaussian distribution is likelihood ratio increasing
in ν.

Because ν is a convolution parameter, it follows from Proposition
7.J.6 the inverse Gaussian distribution is increasing in ν in the sense
of Lorenz order.

f. Limiting Normal Distribution

Because ν is a convolution parameter, it follows from the central
limit theorem 20.C.8 that if X has the inverse Gaussian density (2),
then (X − EX)/

√
Var(X) = (X − (ν/λ))/

√
ν/λ has a limiting stan-

dard normal distribution as ν → ∞. This result is given by Whitmore
and Yalovsky (1978), who note that the convergence is quite slow.
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g. A Relationship with the Chi-Square Distribution

It is shown by Shuster (1968) that if X has the inverse Gaussian dis-
tribution, then

W = (λX − ν)2/λX

has a chi-square distribution with one degree of freedom. Shuster’s proof
involves a two-step transformation, first to Y = min (X, ν2/λ2X), and
then to Z = (λY − ν)2/λY . This avoids consideration separately of the
cases λY ≤ ν and λY > ν.

h. Density of the Reciprocal Inverse Gaussian Variate

As indicated in the next section, the density of 1/X, where X has
an inverse Gaussian distribution is sometimes of interest. This density
is a special case of the generalized inverse Gaussian distribution of
Section B.

If X has the density (1), then a straightforward calculation shows
that the density g of Y = 1/X is given by

g(y) =

√
θ√

2πy
exp

{
−θ(my − 1)2

2m2y

}
. (12)

Similarly, with the parameterization of (2), Y has the density

g(y |λ, ν) =
ν√

2πλy
exp

{
−(νy − λ)2

2λy

}
. (13)

B. The Generalized Inverse Gaussian Distribution

Halphen, publishing through Dugué (1941), proposed a density of the
form

f(x) = Cx−1 exp
{
−ax− b

x

}
, x > 0, (1)

which he called the “harmonic type.” Halphen, who had developed
this density for use in hydrology, remarked that this distribution can
be generalized in many ways, but he stated that the most interesting
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generalization is of the form

f(x) = C1x
α−1 exp

{
−ax− b

x

}
, (2)

where C1 = C1(a, b, α) depends upon a, b, and α. Note that (2) not only
generalizes (1) but it also generalizes A(1), the density of the inverse
Gaussian distribution. The density (2) was named the “generalized in-
verse Gaussian” distribution by Barndorff-Nielsen and Halgreen (1977).

It is clear that (2) can be obtained from either (1) or A(2) by the
introduction of a moment parameter and appropriate change of param-
eters. To be more specific, introduce a moment parameter β in A(2) to
obtain the density

f(x) =
C2(λx)β√

(λx)3
exp

{
−(λx− ν)2

2λx

}
, x, λ, ν > 0, −∞ < β < ∞,

(3)

where the norming constant C2 = C2(λ, ν, β) depends upon the three-
parameters. This density is not yet in a particularly convenient form,
but with θ = β − (1/2), it can be rewritten as

f(x) =
C3

λ
(λx)θ−1 exp

{
−1

2

(
λx +

ν2

λx

)}
, x, λ, ν > 0, −∞ < θ < ∞,

(4)

and C3 = C3(λ, ν, θ). This density has the scale parameter λ, and θ can
still be regarded as a moment parameter. [Note: the parameter θ here is
not related to the parameter θ of Section A.] With the introduction of a
moment parameter, ν is no longer a convolution parameter because the
actions of introducing a moment parameter and convolution parameter
do not commute (see Section 7.L).

There is a standard parameterization of the density (4) that is ob-
tained from (4) by setting ν2/λ = χ. With this change and an evalua-
tion of the norming constant for all parameter values where it exists,
(4) takes the form

f(x |λ, χ, θ) = C0x
θ−1 exp

{
−1

2

(
λx +

χ

x

)}
, x > 0, (5)

where the normalizing constant C0 = C0(λ, χ, θ). The distribution
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Fig. B.1. Densities of the generalized inverse Gaussian distribution (λ = 1)

with this density is sometimes denoted in shorthand notation as the
“GIG(λ, χ, θ) distribution.” See Figures B.1 and B.2.

a. Evaluation of the Normalizing Constants

First, consider the normalizing constant C0 of (5). In terms of the
modified Bessel function Kθ of the third kind (also called Macdonald’s
function, and even the “modified Bessel function of the second kind”
in the statistical literature) C0 can be written as

C0 =
(λ/χ)θ/2

2Kθ(
√
λχ)

if χ, λ > 0, −∞ < θ < ∞ (6)

=
λθ

2θΓ(θ)
if χ = 0, λ, θ > 0,

=
2θ

χθΓ(−θ)
if χ > 0, λ = 0, θ < 0.
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Fig. B.2. Survival functions of the generalized inverse Gaussian distribution (λ = 1)

The Bessel function Kθ can be defined in several equivalent forms; see
24.B.4.

The constant C0 for χ or λ = 0 is obtained from the facts that

Kθ(z) ≈ Γ(θ)2θ−1z−θ as z ↓ 0, θ > 0 ,

and Kθ(z) = K−θ(z).
Bessel functions have played an important role in classical anal-

ysis, where they arise as solutions to certain differential equations.
These functions possess a number of very convenient properties; see,
e.g., Erdélyi, Magnus, Oberhettinger, and Tricomi (1953, vol. 2);
Gradshteyn and Ryzhik (1994, Sections 8.4, 8.5).

It can be verified directly that

C1 = C0(2a, 2b, α).

C2 = λ
3
2−βe−νC0(λ, ν2/λ, β − 1

2), and

C3 = λ2−θC0(λ, ν2/λ, θ).
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b. Special Cases of the Generalized Inverse Gaussian Distribution

Four special cases of the density (5) of the GIG(λ, χ, θ) distribution are
worth noting:

(i) If χ = 0, then the generalized inverse Gaussian density (5) reduces
to the gamma density. The shape parameter of this gamma distribution
was introduced here as a moment parameter but it is shown in Propo-
sition 18.B.20 that the gamma (and only the gamma distribution) has
a parameter that is simultaneously both a convolution and a moment
parameter. Because of this special case, (5) is a three-parameter ex-
tension of the exponential distribution, an extension not discussed in
Chapter 9. If both χ = 0 and θ = 1, (5) is the density of an exponential
distribution.
(ii) If λ = 0, then (5) becomes the distribution of the reciprocal of a
gamma variate.
(iii) With θ = −1/2, the generalized inverse Gaussian distribution re-
duces to the nongeneralized case of Section A. This is most clearly seen
using the parameterization of A(1c), using the fact that

K−1/2(z) =
√
π√
2z

e−z. (7)

(iv) The case θ = 1/2 is also of particular interest, and arises in
Section C, and is the distribution of the reciprocal of a random vari-
able with an inverse Gaussian distribution. With (7) and the fact that
Kθ(z) = K−θ(z), it can be shown that

f(x |λ, χ, 1/2) =
λ√

2πλx
e
√

λχ exp
{
−1

2

(
λx +

χ

x

)}

=
λ√

2πλx
exp

{
−1

2

(√
λx−

√
χ/x

)2
}
, x > 0. (8)

c. The Hazard Rate

The hazard rate of the generalized inverse Gaussian distribution has
properties that can be determined in the same manner as those of the
nongeneralized case, using Theorem 4.E.2. Here, direct computations
show that

ρ(x) = −d log f(x)
dx

=
λ

2
− θ − 1

x
− χ

2x2 .



SVNY289-Olkin May 15, 2007 16:48

464 13. Inverse Gaussian Distribution

0 10 20 30

0

0.1

0.2

0.3

0.4

0.5

r
(x

)

x

c = 1

c = 5

c = 10

Fig. B.3. Hazard rates of the generalized inverse Gaussian distribution (λ = 1)

For θ ≥ 1, ρ(x) is increasing, and so the hazard rate is also increasing.
For θ < 1, ρ(x) is increasing in x ≤ x1 = χ/(1 − θ) and decreasing in
x ≥ x1. This means that there exists x2, 0 ≤ x2 ≤ x1, such that the
hazard rate r(x) is increasing in x ≤ x2 and decreasing in x ≥ x2. See
Figure B.3.

d. Moments and Laplace Transform

As with any density having a moment parameter, the moments are
easily obtained from the norming constant, which is a function of the
moment parameter. Thus, it follows with the aid of (6) that if X has
the density (5), then

EXr =
Kθ+r(

√
λχ)

Kθ(
√
λχ)

(
χ

λ

)r/2
=

Kθ+r(ν)
Kθ(ν)

(
ν

λ

)r

, λ, χ > 0. (9)

For this distribution, moments of all orders, positive and negative, exist.
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The Laplace transform can be determined in a similar manner to
be given by

E e−sX =
(

λ

λ + 2s

)θ/2 Kθ(
√

(λ + 2s)χ)
Kθ(

√
λχ)

=
(

λ

λ + 2s

)θ/2 Kθ(ν
√

1 + (2s/λ))
Kθ(ν)

. (10)

The moments (9) of the generalized inverse Gaussian distribution
are ratios involving Bessel functions and are not easy to study. With a
considerable amount of calculations that are beyond the scope of this
book, Nguyen, Chen and Gupta (2003) have shown that for any real
θ and positive λ, χ, the skewness measure E(X − μ)3/σ3 of the gen-
eralized inverse Gaussian distribution is positive. For comments about
skewness, see Section 2.C.e.

e. Ordering Generalized Inverse Gaussian Distributions

The introduction of a moment parameter does not affect the likelihood
ratio order; because the inverse Gaussian distribution is decreasing in
the scale parameter λ in the sense of the likelihood ratio order, the same
is true for the generalized inverse Gaussian distribution. But the intro-
duction of a moment parameter changes the character of the parameter
ν; it does not remain a convolution parameter. It is not known how ν
orders the generalized Gaussian distribution.

f. Convolutions

Although the generalized inverse Gaussian distribution does not have
a convolution parameter, several convolution results were given by
Barndorff-Nielsen (1978). See also Jørgensen (1982). These results can
be compactly written by denoting the distribution with density (5) by
GIG(θ, χ, λ) and by using the symbol ∗ to denote convolution. The
results are as follows:

GIG
(
− 1

2 , χ1, λ
)
∗ GIG

(
− 1

2 , χ2, λ
)

= GIG
(
− 1

2 , (
√
χ1 +

√
χ2)2, λ

)
, (11)

GIG
(
− 1

2 , χ1, λ
)
∗ GIG

( 1
2 , χ2, λ

)
= GIG

(
1
2 , (

√
χ1 +

√
χ2)2, λ

)
, (12)

GIG(−θ, χ, λ) ∗ GIG(θ, 0, λ) = GIG(θ, χλ), (13)

GIG(θ1, 0, λ) ∗ GIG(θ2, 0, λ) = GIG(θ1 + θ2, 0, λ). (14)
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The last of these results is just a statement about the gamma distribu-
tion.

g. Infinite Divisibility

The fact that the inverse Gaussian distribution is infinitely divisible
follows from the fact that the distribution has a convolution parame-
ter. But the generalized inverse Gaussian distribution does not have a
convolution parameter and infinite divisibility is not so transparent.

Barndorff-Nielsen and Halgreen (1977) have determined that the
generalized inverse Gaussian distribution is infinitely divisible by using
Proposition 20.D.8. This theorem asserts that a distribution is infinitely
divisible if and only if − logE e−sX has a completely monotone deriva-
tive. By using the formulas (see, e.g., Erdélyi, Magnus, Oberhettinger,
and Tricomi, 1953)

Kθ(z) = K−θ(z),
Kθ+1(z) = 2(θ/z)Kθ(z) + Kθ−1(z),
Kθ−1(z) + Kθ+1(z) = −2Kθ(z).

Barndorff-Nielsen and Halgreen (1977) compute

d

ds
(− logE e−sX) =

2θ
λ + 2s

+ Qθ(χ(λ + 2s)), θ ≥ 0,

= χQ−θ(χ(λ + 2s)), θ ≤ 0,

where

Qν(z) =
Kν−1(

√
z)√

zKν(
√
z)

, ν ≥ 0, z > 0.

The desired result follows from the fact (Grosswald, 1976) that Qν is
completely monotone for all ν ≥ 0, 2θ/(λ + 2s) is completely monotone,
and the sum of completely monotone functions is completely monotone.

C. The Birnbaum–Saunders Distribution

a. General Description

The Birnbaum–Saunders distribution has appeared in several contexts,
with various derivations. It was given by Fletcher (1911), and according
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to Schrödinger (1915) it was obtained by Konstantinowsky (1914). Sub-
sequently, it was obtained by Freudenthal and Shinozuka (1961), but
it was the derivation of Birnbaum and Saunders (1969) that brought
the usefulness of the distribution into clear focus. The distribution is
included here because it is a mixture of an inverse Gaussian distribu-
tion and a generalized inverse Gaussian distribution. For a comparison
of the Birnbaum–Saunders distribution and the inverse Gaussian dis-
tribution, see Bhattacharya and Fries (1982).

Birnbaum and Saunders (1969) introduced the distribution that has
come to bear their names specifically for the purpose of modeling fa-
tigue life of metals subject to periodic stress; consequently, the distri-
bution is sometimes called the fatigue–life distribution. Birnbaum and
Saunders apply the central limit theorem to the crack-growth process
and approximate the number of stress cycles to failure by a continuous
random variable. The distribution function of the Birnbaum–Saunders
distribution is given by

F (x |λ, α) = Φ(α−1h(λx)), x > 0, (1)

where λ, α > 0, and Φ is the standard normal distribution function and

h(x) = x1/2 − x−1/2. (2)

The form of this distribution function bears considerable resem-
blance to the lognormal distribution function which can be written as
(1) but with h(x) replaced by log x. Both h(x) and log x are increas-
ing and concave functions that map (0,∞) onto the interval (−∞,∞).
However, for the Birnbaum–Saunders distribution, the shape parame-
ter α is not any of the standard parameters discussed in Chapter 7.

By differentiating the distribution function (1), the corresponding
density f can be found:

f(x |λ, α)

=
λ

2α
√

2π

[
1√
λx

(
1 +

1
λx

)]
exp

{
− 1

2α2

(
λx− 2 +

1
λx

)}

=

[ √
λ

2α
√

2πx
+

1
2α

√
2πλx3

]
exp

{
− 1

2α2

(
λx− 2 +

1
λx

)}
. (3)

See Figures C.1, C.2, and C.3.
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Fig. C.1. Densities of the Birnbaum-Saunders distribution (λ = 1)
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Fig. C.2. Survival functions of the Birnbaum-Saunders distribution (λ = 1)
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Fig. C.3. Hazard rates of the Birnbaum-Saunders distribution (λ = 1)

To see that (3) is a mixture of inverse Gaussian and generalized
inverse Gaussian distributions, let

λ =
√

/χ, and α = 1/[
χ]1/4;

with this new parameterization, the density (3) can be written in the
form

1
2
f

(
x | 
, χ,− 1

2

)
+

1
2
f

(
x | 
, χ, 1

2

)
, (4)

where f(x | 
, χ, θ) is given by B(5), that is,

f(x | 
, χ, θ) = C2(
, χ, θ) xθ−1 exp
{
−1

2

(

x +

χ

x

)}
, x > 0.

The mixture representation (4) was given in a slightly different form
by Desmond (1986).
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The mixture of the form (4), but with general mixing weights in
place of 1/2 is called Schrödinger’s distribution by Saunders (2007); a
still more general distribution is studied by Jørgensen, Seshadri and
Whitmore (1991).

The moments and moment generating function of the Birnbaum–
Saunders distribution have been found by Rieck (1999) in terms of
Bessel functions. The particular cases of the mean and variance take
a simple form: If X is a random variable with the density f(· |λ, α) of
(3), then

EX =
1
λ

(
1 +

α2

2

)
,Var(X) =

(
α

λ

)2 (
1 +

5
6
α2

)
. (5)

b. Derivation of the Birnbaum–Saunders Distribution

Recall the shock model of Section 5.H, but suppose that the shocks
occur not as events in a Poisson process, but rather at regular inter-
vals, say at times Δ, 2Δ, . . . . As with the cumulative damage model of
Section 5.H.a, suppose that the ith shock to an item causes a random
damage Xi. Suppose further that the Xi are identically distributed,
mutually independent, and EXi = μΔ,Var(Xi) = Δσ2 < ∞. Damages
accumulate additively, and the kth shock is survived by the item if
Sk = X1 + · · · + Xk ≤ z, where z is the capacity or threshold of the
item. With this model, the time TΔ of failure of the item undergoing
shocks has the survival function P{TΔ > kΔ} = P{Sk ≤ z}. With the
intent of letting Δ → 0, set kΔ = t to obtain

P{TΔ > t} = P{Sk ≤ z} = P

{
St/Δ − μt

√
tσ

≤ z − μt√
tσ

}
. (6)

Set α = σ/
√
μz and recall from (2) that h(x) = x1/2 − x−1/2. Let λ =

μ/z and make use of the fact that

1
α
h

(
z

μt

)
=

z − μt

α
√
zμt

=
z − μt

σ
√
t

to rewrite (6) in the form

P{TΔ > t} = P

{
St/Δ − μt

√
tσ

≤ 1
α
h

(
z

μt

)}

= P

{
St/Δ − μt

√
tσ

≤ 1
α
h

(
1
λt

)}
. (7)
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Let Δ → 0, and apply the central limit theorem 20.C.8 to conclude that

P{T > t} = lim
Δ→0

P{TΔ > t}

= lim
Δ→0

P

{
St/Δ − μt

√
tσ

≤ 1
α
ξh

(
1
λt

)}
= Φ

(
1
α
h

(
1
λt

))
.

Because Φ is symmetric about 0 and because h(x) = −h(1/x), it follows
that

P{T ≤ t} = 1 − Φ
(

1
α
h

(
1
λt

))
= Φ

(
− 1
α
h

(
1
λt

))
= Φ

(
1
α
ξh(λt)

)
,

which is (1). For an additional discussion of fatigue life and the
Birnbaum–Saunders distribution, see Desmond (1985).



SVNY289-Olkin May 15, 2007 20:57

14

Distributions with Bounded Support

A. Introduction

Distributions that have support contained in a known finite interval
can be translated using scale and location parameters so that the sup-
port of the distribution is contained in the interval [0, 1], but in no
closed subinterval of [0, 1]. More precisely, these are distributions F
of nonnegative random variables X that can take values arbitrarily
close to 0 and 1, but have the property that P{0 ≤ X ≤ 1} = 1. Such
distributions are identified by the conditions

F (0−) = 0, 0 < F (x) < 1 for 0 < x < 1, and F (1) = 1. (1)

Sections B, C, and D deal with distributions that satisfy (1). Section
E is concerned with the introduction of a scale parameter λ and the
resulting distributions which have support [0, θ], where θ = 1/λ.

Parametric families of distributions that satisfy (1) cannot have lo-
cation or scale parameters because such parameters alter the support
of the distribution. But these families can have any of the other pa-
rameters discussed in Chapter 7.

The most familiar and basic distributions satisfying (1) include the
distribution uniform on [0, 1] and its two-parameter extension, the
beta distribution. Occasionally, a distribution with bounded support
will be found in the literature that is obtained by truncating some
distribution. In addition, the distribution of the sample correlation
coefficient for a sample from a bivariate normal distribution is well
known; of course this distribution has support [−1, 1]. The distribution
of the squared multiple correlation coefficient has support [0, 1]. Other
distributions with bounded support are not commonly found in the
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literature. Nevertheless, there are a number of one- or two-parameter
families of distributions with support [0, 1], and there are several meth-
ods for deriving them.

One method for deriving distributions with support [0, 1] is to obtain
the distribution of the random variable X/(1 + X) when the distribu-
tion of X has support [0,∞). By this procedure, the beta distribution
defined in Section C can be obtained from the F distribution with den-
sity 11.C(1). But this derivation does not seem to have many interesting
examples.

a. Duality

To every distribution F with support [0, 1], there corresponds a dual
distribution FD.

A.1. Definition. The distribution FD defined by

FD(x) = F̄ (1 − x) (2)

is called the dual of F .

If X has the distribution F , then 1 −X has the distribution FD. Thus,
the term “dual” is justified by the fact that FDD(x) = F (x). A distri-
bution with support [0, 1] is self-dual, i.e., FD = F if and only if it is
symmetric about the point 1/2. The notion of duality arises whatever
method is used to derive a distribution, and consequently, it arises in
each of the sections that follow.

b. Moments

Necessary and sufficient conditions for a sequence {μn, n = 0, 1, 2, . . .}
to be moments of a distribution with support [0, 1] are given in
Proposition 20.B.10. It can be verified directly that if X is a random
variable for which 0 ≤ X ≤ 1 with probability 1, then X2 ≤ X with
probability 1, and consequently,

EX 2 ≤ EX. (3)

Thus, the variance of X satisfies the inequalities

0 ≤ Var(X) =EX 2 − (EX)2 ≤ EX− (EX)2 =EX(1 − EX) ≤ 1/4. (4)

The last inequality holds because the function h(μ) = μ(1 − μ) has the
maximum of 1/4 at μ = 1/2.
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Fig. A.1. Possible μ1, μ2 pairs (shaded region)

Equality holds in (3), that is, Var(X) = EX − (EX)2 if and only
if P{X = 0 or X = 1} = 1; Var(X) = 1/4 if and only if P{X = 0} =
P{X = 1} = 1/2, and Var(X) = 0 if and only if P{X = EX} = 1.

Figure A.1 shows the points in the (μ1, μ2) = (EX,EX 2) plane that
can be the first two moments of a random variable X that satisfies
P{0 ≤ X ≤ 1} = 1. Figure A.2 shows the possible values in the (μ1, σ

2)
plane. The areas shaded in these figures are often referred to as “mo-
ment spaces.” As noted above, points on the boundaries of these spaces
are achieved only by discrete distributions.

B. The Uniform Distribution and
One-Parameter Extensions

The uniform distribution

F (x) = x, 0 ≤ x ≤ 1, (1)

plays a central role in the class of distributions with support [0, 1]. It
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arises naturally in a variety of contexts; for example, it is the distri-
bution of F (X), where X is a random variable with strictly increasing
distribution function F .

With the exception of a convolution parameter, the parameters
discussed in Chapter 7 can all be introduced using the uniform dis-
tribution as the underlying distribution. For each type of param-
eter other than location and scale, this procedure yields a one-
parameter family of distributions on [0, 1], which contains the uniform
distribution.

B.1. Power, resilience, and moment parameters. With a power
or resilience parameter α, the distribution (1) becomes

F (x |α) = xα, 0 ≤ x ≤ 1, α > 0. (2)

Because F (· |α) has the density f(x |α) = αxα−1, 0 ≤ x ≤ 1, it is clear
that β = α− 1 in (2) is a moment parameter.
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Fig. B.1. Hazard rates of the uniform distribution with introduced frailty parameter

The case where power and resilience parameter families coincide is
determined in Proposition 18.B.10; the case where power and moment
parameters coincide is determined in Proposition 18.B.13; and the case
where resilience and moment parameters coincide is determined in
Proposition 18.B.17. Each of these coincidences include the distribu-
tion (2).

B.2. Frailty parameter. With the introduction of a frailty parame-
ter, the survival function corresponding to (1) becomes

F̄ (x | ξ) = (1 − x)ξ, 0 ≤ x ≤ 1, ξ > 0. (3)

Note that this is the dual of (2). This distribution has been identified
by Pickands (1975) as one of the possible limits of residual life distri-
butions, and it remains a possible limit if a scale parameter is added
(see Proposition 20.G.4).
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B.3. Tilt parameter. If a tilt parameter is introduced in (1), the
distribution

F̄ (x | γ) =
γ(1 − x)

1 − γ̄(1 − x)
=

γ(1 − x)
γ + γ̄x

=
1 − x

1 − δx
, 0 ≤ x ≤ 1, γ > 0, δ = γ̄/γ, (4a)

is obtained. This somewhat unfamiliar distribution has the dual
F̄D(x | γ) = F̄ (x | γ−1) and the density

f(x | γ) =
1 + δ

(1 + δx)2 , 0 ≤ x ≤ 1, δ = γ̄/γ. (4b)

B.4. Hazard power parameter. With a hazard power parameter,
(1) becomes

F̄ (x | ζ) = exp {−[− log (1 − x)]ζ}, 0 ≤ x ≤ 1, ζ > 0. (5a)
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Fig. B.2. Hazard rates of the uniform distribution with hazard power parameter
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This distribution has the dual

FD(x | ζ) = exp {−[− log x]ζ}, 0 ≤ x ≤ 1, ζ > 0, (5b)

which, like (2), is a special case of the two-parameter distribution en-
countered in Proposition 18.B.10. The distribution (5b) is obtained
directly from (1) by the introduction of a reverse hazard power param-
eter (defined in Section 7.G).

B.5. Laplace transform parameter. The distribution (1) has the
Laplace transform

φ(s) = (1 − e−s)/s,

and with the introduction of a Laplace transform parameter, (1) yields

F (x | s) =
1 − e−sx

1 − e−s
, 0 ≤ x ≤ 1. (6)

This truncated exponential distribution has the dual FD(x | s) =
F (x | −s).

C. The Beta Distribution

The family of beta distributions is the best known and most widely used
two-parameter family with support [0, 1]. It has several derivations, a
number of desirable properties, and the density takes on a variety of
shapes. It is often used in Bayesian statistical analysis as the prior
distribution for the parameter of the binomial distribution.

a. Defining Functions

The two-parameter family of beta distributions is defined in terms of
the density

f(x | a, b) =
xa−1(1 − x)b−1

B(a, b)
, 0 ≤ x ≤ 1, a, b > 0. (1)

The corresponding distribution function

F (x | a, b) = Bx(a, b)/B(a, b) (2)
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involves the incomplete beta function Bx(a, b), defined in Section
23.B.a. It cannot be written in closed form and consequently, neither it,
the hazard rate, nor the total time on test transform have particularly
simple forms. See Figures C.1 and C.2.

b. Special Cases

When a = 1, (1) is the density of the distribution with survival function
B(3). With b = 1, the density of the distribution B(2) is obtained. When
a = b = 1, the beta distribution is a uniform distribution.

The dual of f(x | a, b) is f(1 − x | a, b). But note that f(x | a, b) =
f(1 − x | b, a), thus when a = b, the density is symmetric about 1/2;
consequently, it is self-dual.

When a is an integer, the survival function F̄ of f can be given
explicitly as a finite sum; see 23.B(9).

c. Shape of the Beta Density

In terms of monotonicity and convexity, the shape of the beta density
(1) is determined using standard methods of calculus. The results of
this somewhat tedious investigation are summarized here.

The shape of the beta density (1) is identical to the shape of

g(x | a, b) = B(a, b)f(x | a, b) = xa−1(1 − x)b−1, 0 ≤ x ≤ 1.

To determine this shape, it is convenient to start by computing

g′(x | a, b) = xa−2(1 − x)b−2[(a− 1) − x(a + b− 2)],

g′′(x | a, b) = xa−3(1 − x)b−3[(a− 1)(a− 2)
− 2(a− 1)(a + b− 3)x + (a + b− 2)(a + b− 3)x2].

Thus, g′(x | a, b) = 0 at the point

x0 =
a− 1

a + b− 2
,

whereas g′′(x | a, b) = 0 at the points

x− =
(a− 1)(a + b− 3) −

√
(a− 1)(b− 1)(a + b− 3)

(a + b− 2)(a + b− 3)
,
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Fig. C.1. Densities of the beta distribution (b = 2)
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and

x+ =
(a− 1)(a + b− 3) +

√
(a− 1)(b− 1)(a + b− 3)

(a + b− 2)(a + b− 3)
.

Depending upon the values of a and b, x0, x−, and x+ may or may not
lie in the interval (0, 1). Additionally, x− and x+ may or may not be
real.

Because g′(x | a, b) = 0 for at most one point in (0, 1), it changes
sign at most once in the interval (0, 1). Because there are at most two
points in (0, 1) where g′′(x | a, b) = 0, there are at most two points in
(0, 1) where it changes sign.

Case: a ≤ 1, b ≤ 1. In this case, x− and x+ are not real so g′′ is of
one sign, which can easily be seen to be positive because it is positive
for x near 0. Moreover, x0 ∈ (0, 1). Thus, g is decreasing in (0, x0),
increasing in (x0, 1), and convex on [0, 1]. In this case, the convexity is
also easily obtained by observing that log g is convex, and hence g is
convex (Proposition 21.A.5). In this case, f(0 | a, b) = f(1 | a, b) = ∞.

Case: a ≥ 1, b ≥ 1. In this case, it follows from the above discus-
sion that f(x | a, b) is unimodal with mode at x0. Alternatively, when
a ≥ 1, b ≥ 1, it follows from the concavity of the logarithm function
that log f(x | a, b) is concave. By Proposition 4.B.2, the log concavity
implies that f is unimodal. In this case, it is clear that f(0 | a, b) =
f(1 | a, b) = 0.

Case: a ≤ 1, b ≥ 1. Using similar methods, it can be determined that
the density (1) is decreasing. If 1 < b < 2, the density is first concave,
then convex; if b ≥ 2, then the density is convex.

Case: a ≥ 1, b ≤ 1. As in the previous case, it can be determined
that the density (1) is increasing. If 1 < a < 2, then the density is first
concave then convex; if a ≥ 2, the density is convex.

d. Hazard Rate Behavior

For a ≥ 1, b ≥ 1, it follows from the log concavity of f(x | a, b) and
Proposition 4.B.8.a that the hazard rate r(x | a, b) is increasing. If
a ≥ 1, b ≤ 1, then again the hazard rate is increasing because the
density is increasing. However, if a < 1, then f(0 | a, b) = ∞, and so
r(0 | a, b) = ∞. Thus, when a < 1, the hazard rate is initially decreas-
ing, but when x0 = (a− 1)/(a + b− 2) < 1, r(x | a, b) is increasing in
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the interval x0 < x < 1 because f(x | a, b) is increasing in the same in-
terval. By using Theorem 4.E.2, it can be verified that the hazard rate
derivative has at most one sign change. It is possible to draw some of
these conclusions directly by writing the hazard rate in the form

r(x | a, b) =

[∫ 1

x

(
t

x

)a−1 (
1 − t

1 − x

)b−1
dt

]−1

=

[∫ 1−x

0

(
1 +

z

x

)a−1 (
1 − z

1 − x

)b−1
dz

]−1

.

(3)

This representation can be obtained by writing the survival function
as an integral; the second form follows with a change of variables.

e. Moments of the Beta Distribution

For notational purposes, let X be a random variable with the density
f(· | a, b). Because it is known that the density of the beta distribution
integrates to 1, it is easy to determine that f(· | a, b) has the rth moment

EXr = μr = B(a + r, b)/B(a, b).

Thus,

μ1 =
a

a + b
, μ2 =

a(a + 1)
(a + b)(a + b + 1)

, and

Var(X) =
ab

(a + b)2(a + b + 1)
.

Because X takes on only values in [0, 1], it follows from A(3) that

0 ≤ Var (X) =
μ1(1 − μ1)
a + b + 1

≤ μ1(1 − μ1).

By fixing μ1 = a/(a + b) and letting a → 0, b → 0 together, the upper
bound for the variance is approached; by letting a → ∞, b → ∞, the
lower bound for the variance is approached. Thus, the beta distri-
bution allows for all pairs (μ1, σ

2) possible under the constraint that
P{0 ≤ X ≤ 1} = 1 apart from those values on the boundary which are
achieved only by discrete distributions.
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f. Residual Life Distribution

The residual life distribution of the beta distribution can be written in
the form

F̄t(x) =
F̄ (x + t)
F̄ (t)

=

∫ 1

x+t
za−1(1 − z)b−1 dz∫ 1

t
za−1(1 − z)b−1 dz

=
1 − Ix+t(a, b)
1 − It(a, b)

, 0 ≤ x ≤ 1 − t,

where Ix(a, b) is the incomplete beta function defined in Section 23.B.a.
By rescaling the distribution F̄t to have support [0, 1], the survival
function becomes

Ḡt(x) = F̄t(x(1 − t)) =

∫ 1

x(1−t)+t
za−1(1 − z)b−1 dz

∫ 1

t
za−1(1 − z)b−1 dz

, 0 ≤ x ≤ 1. (4)

The limit of this survival function as t → 0 is the beta survival function,
and the limit as t → 1 is given by

lim
t↑1

F̄t(x(1 − t)) = (1 − x)b, 0 ≤ x ≤ 1. (5)

This limiting distribution is a uniform distribution with frailty param-
eter (see B(3) and 21.G.b).

g. Derivations of the Family of Beta Distributions

C.1. Uniform distribution with added parameters. The distri-
bution B(3) was obtained from the uniform distribution by introducing
a frailty parameter. This distribution has the βth moment

μβ =
∫ 1

0
xβξ(1 − x)ξ−1 dx = ξB(β + 1, ξ),

where B is the beta function. With an added moment parameter, B(3)
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becomes

f(x | ξ, β) =
xβ(1 − x)ξ−1

B(β + 1, ξ)
, 0 ≤ x ≤ 1, ξ > 0, β > −1. (6)

Now make the change of parameters β = a− 1, ξ = b to rewrite (6) as
(1), the density of a standard beta distribution.

C.2. Ratios of random variables. Suppose that U and V are inde-
pendent random variables having the gamma distributions f(· |λ, ν1)
and f(· |λ, ν2) given by 9.A(1). If

X =
V

U + V
=

1
1 + (U/V )

, (7)

then X has a beta distribution of (4) with parameters a = ν2 and b = ν1.
One way to see this is to use the results of Section 11.D.f to conclude
that U/V has the F density 11.D(1) with λ = 1.

Proposition C.2 can be recast as follows: Suppose that X has the F
density 11.D(1) with λ = 1, θ = a, and ξ = b, then 1/(1 + X) has the
beta density (1).

C.3. Waiting times in a Pólya process. The Pólya process is a
counting process that arises as a limit of an urn process as discussed
in Section 20.F.c. The waiting time for the kth jump in the process is
derived in Section 20.F.c; the case s < 0 leads to the beta distribution
with parameters a = k, b = θ − k + 1, and having a scale parameter
β. This is not the general case of a beta distribution because in this
derivation, a must be an integer.

h. Ordering Beta Distributions

It follows directly from C.2 that the beta distribution is stochastically
increasing in a and decreasing in b. However, a stronger result can be
obtained using 2.A(11).

C.4. Proposition. In the likelihood ratio order, the beta distribution
is increasing in a and decreasing in b.

i. The Generalized Beta Distribution

As noted in Section 11.C.f, random variables that are ratios of gen-
eralized gamma distributed random variables have a generalized F
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distribution. Suppose that (7) holds, but that U and V have gener-
alized gamma densities so that U/V has the density 11.C(2), of the
generalized F distribution. Then, X has the density

f(x | ξ, θ, λ, α) =
λαxαξ−1[λ(1−x)]αθ−1

B(ξ, θ)[xα+λα(1−x)α]ξ+θ
,

0 ≤ x ≤ 1, α, λ, ξ, θ > 0. (8)

This is the density of the four-parameter generalized beta distribution.
With α = λ = 1, ξ = a, and θ = b, the density reduces to the standard
beta density. Other special cases with fewer parameters may also be of
interest.

Suppose that X has the density (1) of the standard beta distribution
(with ξ = a, θ = b) and let

Y =
λX1/α

(1 −X)1/α + λX1/α .

Then Y has the distribution (8) of the generalized beta distribution.
This change of variables introduces two new parameters in the standard
beta distribution using the method described in Section 19.A.a. Of
course, the parameters λ and α are not, respectively, scale and power
parameters as they are in the generalized F distribution from which
(8) was derived.

A straightforward calculation shows that in the dual of the density
(8) the roles of θ and ξ are interchanged

fD(· | ξ, θ, λ, α) = f(· | θ, ξ, 1/λ, α);

thus, the distribution is self-dual when λ = 1. This can easily be ob-
tained directly from (8).

j. Generalized Gamma Distribution as a Limit
of the Generalized Beta Distribution

Suppose that X has the density (6), and let Y = θ1/αX. Then the
density of Y is

fY (x) = θ−1/αf(θ−1/αx) | ξ, θ, λ, α), 0 ≤ x ≤ θ1/α. (9)
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A direct computation using the approximation 23.A(5) and the fact
that limz→∞(1 + (a/z))z = ea shows that the limit as θ → ∞ of the
density (9) is given by 9.E(2a) with ξ in place of ν and 1/λ in place of
λ. Thus, the generalized gamma distribution is a limit of the general-
ized beta distribution. Of course, this means that the ordinary gamma
distribution is a limit of the ordinary rescaled beta distribution. This
is related to the fact that the Poisson distribution is a limit of binomial
distributions (see 20.E.c).

k. Beta Distribution with Power Parameter

If a power parameter is introduced in the density (1), the density

f(x | a, b, α) =
αxaα−1(1 − xα)b−1

B(a, b)
, 0 ≤ x ≤ 1, a, b, α > 0, (10)

is obtained. This density can also be obtained from (8) by setting
λ = 1 (with ξ = a, θ = b). The density (10) with an added scale pa-
rameter has been discussed by McDonald and Richards (1987), who
call it a “generalized beta type I density” and investigate the hazard
rate behavior using the version of Theorem 4.E.2 offered by Glaser
(1980).

D. Additional Two-Parameter Extensions of the
Uniform Distribution

The uniform distribution can be extended to two-parameter families
by the successive application of the methods introduced in Chapter 7.

D.1. Frailty parameter then moment parameter. This is the pro-
cedure used in C.1 to derive the beta distribution.

D.2. Moment parameter then frailty parameter. As noted in
Section 7.L, the results of introducing these two-parameters depends
upon the order in which they are introduced. If first a moment param-
eter (or equivalently, a power parameter) and then a frailty parameter
are introduced in (1), the result is the survival function

F̄ (x |β, ξ) = (1 − xβ+1)ξ, 0 ≤ x ≤ 1, ξ > 0, β > −1. (1)
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Fig. D.1a. Densities of the generalized beta distribution (α = 1, ξ = 1)
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Fig. D.1b. Densities of the generalized beta distribution (θ = 1, ξ = 1)
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Fig. D.2a. Survival functions of the generalized beta distribution (α = 1, ξ = 1)
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This distribution does not have a moment parameter because the in-
troduction of the frailty parameter ξ changes the character of β, but
β + 1 is still a power parameter.

If (1) is rewritten in the more familiar form

F̄ (x |α, ξ) = (1 − xα)ξ, 0 ≤ x ≤ 1, ξ > 0, α > 0, (2)

then the corresponding hazard rate is

r(x) = ξ
αxα−1

1 − xα
, 0 < x < 1. (3)

It can be determined by differentiating r that when a ≥ 1, this hazard
rate is increasing, but when α < 1, the hazard rate is bathtub shaped,
with a minimum at the point x = (1 − α)1/α.

D.3. Reverse hazard power then power parameter. The intro-
duction of a power parameter in B(5b) yields the distribution

F (x | ζ, α) = exp {−[− log xα]ζ}, 0 ≤ x ≤ 1, α, ζ > 0. (4)

Because the operations of introducing a reverse hazard power param-
eter and a power parameter commute (see Section 7.L), the same dis-
tribution is obtained if the power parameter is introduced first.

E. Introduction of a Scale Parameter

It is noted in Section 7.L that the scale parameters commute with all
the other parameter types discussed in Chapter 7. This means that a
scale parameter λ can be introduced in all the distributions appearing
above, and the result is the same as would have been obtained if the
scale parameter was first introduced.

When F (x |λ) = F (λx) where F satisfies A(1), the interval [0, 1]
is replaced by the interval [0, 1/λ]. To avoid this awkward typography,
the notation

θ = 1/λ

is used in what follows.
The notion of duality is still viable for a distribution with support

[0, θ], and the following definition can be regarded as a more general
version of Definition A.1.
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E.1. Definition. Let F be a distribution with support [0, 1] and define
F (· |λ) by F (x |λ) = F (λx). The distribution FD(· |λ) defined by

FD(x |λ) = 1 − F (θ − x |λ) = 1 − F (1 − λx) (1)

is called the dual of F .

The dual of F is the distribution of θ −X, where X has the dis-
tribution F . Note that FD(x |λ) = FD(λx), so that the operations of
taking the dual and introducing a scale parameter commute.

Because the introduction of a scale parameter in any of the densities
given above is straightforward, details are provided here only for the
beta distribution.

E.2. Beta distribution with scale. The introduction of a scale pa-
rameter in the beta density C(1) yields the density

f(x | a, b, λ) =
λ(λx)a−1(1 − λx)b−1

B(a, b)
, 0 ≤ x ≤ θ, a, b, λ > 0. (2)

The case a = 1 in (2) is B(3) with a scale parameter.

F. Algebraic Structure of the Distributions on [0, 1]

The class F of distributions F such that F (0−) = 0, 0 < F (x) < 1 for
0 < x < 1, and F (1) = 1 has interesting properties unique to the class.
In particular, if F ∈ F , then its inverse F−1 ∈ F . Also, the class is
closed under composition; similarly, the composition to two survival
functions is in F whenever the corresponding distributions are in F .
This section can be considered a diversion allowed by the above facts;
it may have appeal to some readers with a background in algebra.

Two binary operations on F × F → F are of interest: The composi-
tion F •G = F (G) and the composition F •̄G = F̄ (Ḡ). Note that this
composition is a distribution function, not a survival function. Under
the • operation F forms a group; the operation is associative. The dis-
tribution uniform on [0, 1] is the identity, and the usual inverse F−1 is
the inverse of F .

The situation is somewhat different under the •̄ operation because
this operation is not associative; it can be verified that

F •̄ (G •̄H) = F̄ (G •̄H) = F̄ (G(H̄))

�= (F •̄G) •̄H = [F̄ (Ḡ)]•̄H = [F̄ (Ḡ)](H̄) = F (Ḡ(H̄)).
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Under the binary •̄ operation the distribution U uniform on [0, 1] is
a left identity, i.e., U •̄F = F , but U is not a right identity because
F •̄U = FD. It can be shown that U is the unique left identity. It is eas-
ily checked that if G = 1 − F−1(1 − F ), then F •̄G = F , but of course,
G is not a right identity because it depends upon F ; no right identity
exists for this binary operation.

Under the •̄ operation there is a left inverse of F , but it is not the
usual inverse F−1. (Here, it is important to recognize that F̄

−1
, the

inverse of F̄ , is not the same as 1 − F−1 = F−1 .) To show that the left
inverse of F is F−1

D , the notation F̄D = 1 − FD is used in place of the
more accurate but typographically awkward FD.

F.1. Proposition. (F−1)D = (FD)−1 and (F̄−1)D = (F̄D)−1.

Thus, the expression F−1
D can be written without ambiguity.

F.2. Proposition. Under the •̄ operation, the inverse of F is F−1
D .

That is,

F̄ (1 − F−1
D (x)) = F̄−1

D (1 − F (x)) = U(x) = x,

and U is the left identity.

By interchanging F and FD, Proposition F.2 can be rewritten as
follows.

F.3. Proposition. F−1 = (F̄D)−1.

F.4. Example. If F (x | a) = xa, then

F−1(x | a) = x1/a,

F̄D(x | a) = (1 − x)a, and

F̄−1
D (x | a) = 1 − x1/a = F−1(x | a).
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Additional Parametric Families

The purpose of models is not to fit data but to sharpen the questions.
Samuel Karlin

In this chapter, several distributions are discussed which, although well-
known, are not often encountered as life distributions. These distribu-
tions may have survival functions that arise as products of those from
earlier chapters, or they can be obtained by introducing a new param-
eter in a better-known distribution.

A. Noncentral Chi-Square Distributions

The central chi-square distribution with k degrees of freedom arises in
statistics as the distribution of

∑k
i=1 X

2
i , where X1, X2, . . . , Xk are in-

dependent random variables having a normal distribution with mean
0 and variance 1. If the means are not 0, but rather EXi = μi, i =
1, . . . , k, then

∑k
i=1 X

2
i has a noncentral chi-square distribution. This

distribution depends upon the μi only through δ = (
∑k

i=1 μ
2
i )/2. This

quantity is called the noncentrality parameter (the term has not been
standardized, and sometimes is applied to

√
δ or 2δ). The noncentral

chi-square distribution is a Poisson mixture of central chi-square dis-
tributions, and has the density

f(x | δ, k) =
∞∑
j=0

e−δδj

j!
x(k/2)+j−1e−x/2

2(k/2)+jΓ((k/2) + j)
, x > 0, δ ≥ 0, k = 1, 2, . . .

(1)
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The density (1) is a special case of the noncentral gamma distribu-
tion, which has the density, denoted with the usual abuse of notation
again by f , and given by

f(x |λ, δ, ν) =
∞∑
j=0

e−δδj

j!
λ(λx)ν+j−1 e−λx

Γ(ν + j)
, x, ν > 0, δ ≥ 0. (2)

This density can be written in the form of a mixture;

f(x |λ, δ, ν) =
∞∑
j=0

g(δ, j)h(j, x |λ, ν) , (3)

where

g(δ, j) =
e−δδj

j!
, h(j, x |λ, ν) =

λ(λx)ν+j−1 e−λx

Γ(ν + j)
,

x, ν > 0, δ ≥ 0, j = 0, 1, 2, . . . .

a. Laplace Transform and Moments

It follows from 9.A(5) and the representation (3) that (2) has the
Laplace transform

φ(s |λ, δ, ν) =
∞∑
j=0

g(δ, j)
(

λ

λ + s

)ν+j

=
(

λ

λ + s

)ν

exp
{
− s

λ + s
δ

}
. (4)

The moments can also be obtained from (3) and the moments 9.A(3)
of the gamma distribution. In particular,

EX = (δ + ν)/λ, V ar(X) = (ν + 2δ)/λ2.

b. Log Concavity and Unimodality

The following propositions concerning log concavity and unimodality
of the density (3) have rather technical proofs based on the theory
of total positivity. It is possible to prove unimodality directly without
using log concavity, but the proof is similar in method and complexity
to the proof of log concavity.
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According to Proposition 21.A.3(iv), a differentiable density f is log
concave if f ′(x)/f(x) is decreasing in x, that is, if for every constant c,

f ′(x)
f(x)

− c

has at most one sign change, + to − if one occurs. Equivalently, f is
log concave if f ′(x) − cf(x) has at most one sign change, + to − if one
occurs.

A.1. Proposition. The noncentral gamma density (2) is log concave
when ν ≥ 1.

Proof. For notational simplicity here, write f(x) in place of f(x |λ, δ, ν).
Moreover, it is sufficient and notationally convenient to prove the the-
orem with the scale parameter λ = 1. The condition ν ≥ 1 is required
in the following to insure that Γ(ν − 1) is positive; for the case that
ν = 1, take 1/Γ(0) = 0. Use

∑∞
j=0 bj =

∑∞
j=1 bj−1 to compute

f ′(x) − cf(x)

=
∞∑
j=0

e−δδj

j!
xν+j−2

Γ(ν + j − 1)
e−x − (c + 1)

∞∑
j=0

e−δδj

j!
xν+j−1

Γ(ν + j)
e−x

=
∞∑
j=0

e−δδj−1

j!
xν+j−2

Γ(ν + j − 1)
e−x − (c + 1)

∞∑
j=1

e−δδj−1

(j − 1)!
xν+j−2

Γ(ν + j − 1)
e−x

= e−δ xν−2

Γ(ν − 1)
e−x +

∞∑
j=1

[
e−δδj

j!
− (c + 1)

e−δδj−1

(j − 1)!

]
xν+j−2

Γ(ν + j − 1)
e−x

=
∞∑
j=0

aj
e−ν+j−2e−x

Γ(ν + j − 1)
,

where

a0 = e−δ, aj =
e−δδj−1

(j − 1)!

[
δ

j
− (c + 1)

]
, j = 1, 2, . . . .

Because a0 > 0 and aj is decreasing in j, it follows that the sequence
{aj}∞j=0 can have at most one sign change, + to − if one occurs. When
ν > 1, it has such a sign change because a0 > 0 and aj < 0 for large j.
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Furthermore, the function

xν+j−2e−x

Γ(ν + j − 1)

is totally positive of order ∞ in x and j (Propositions 21.B.2 and
21.B.5.a), and hence it follows from Theorem 21.B.13 that f ′(x) −
cf(x) has at most one sign change, + to − if one occurs. �

A.2. Proposition. The noncentral gamma distribution has an in-
creasing hazard rate and a unimodal density (2), with mode at the
unique solution of the equation

f(x |λ, δ, ν) = f(x |λ, δ, ν − 1). (5)

Proof. The monotonicity of the hazard rate and unimodality of the
density follow immediately from Propositions A.1, 4.B.8.a, and 4.B.2.
Because the density is unimodal and not constant over any interval,
the equation df(x)/dx = 0 has a unique solution; this equation can be
written as (5). �

c. Ordering Noncentral Gamma Distributions

A.3. Proposition. The noncentral gamma distribution with density
(2) is, in the likelihood ratio ordering, increasing in δ.

Proof. Equation (3) exhibits the noncentral gamma distribution as a
convolution of g and h; g is totally positive of order ∞ in δ and j, h is
totally positive of order ∞ in j and x. It follows from Theorem 21.B.11
that the noncentral gamma density is totally positive of order ∞ in δ
and x. The likelihood ratio ordering follows from this via Proposition
2.A.11. �

It follows from Proposition A.3 and the implications 2.A(6f) and
2.A(17) that the noncentral gamma distribution is, in the hazard rate
ordering, and also the usual stochastic ordering, increasing in δ.

A.4. Proposition. The noncentral gamma distribution with density
(2) is, in stochastic ordering, increasing in ν and decreasing in λ.

Proof. The stochastic ordering in ν follows from the fact that each cen-
tral gamma distribution is stochastically increasing in ν, and stochastic
ordering is preserved under mixtures (Proposition 3.F.1). The ordering
in λ follows directly from the fact that λ is a scale parameter. �
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The stochastic ordering in ν was proved by Ghosh (1973) and the
stochastic ordering in both ν and δ was proved by Ruben (1974).

B. Noncentral F Distributions

The noncentral F distribution arises in statistics as the distribution of a
ratio of independent random variables, the numerator with a noncentral
chi-square distribution having k1 degrees of freedom and noncentrality
parameter δ, and the denominator having a central chi-square distri-
bution with k2 degrees of freedom. From this origin, it can be shown
that the noncentral F distribution with k1 and k2 degrees of freedom
and noncentrality parameter δ has the density

f(x | δ, k1, k2) =
∞∑
j=0

e−δδj

j!
x(k1/2)+j−1

(1 + x)[(k1+k2)/2]+jB((k1/2) + j, k2/2)
,

x > 0, δ ≥ 0, k1, k2 = 1, 2, . . . . (1)

A note of caution: in the statistical literature, the term “F distribution”
is used to denote the distribution of the ratio of chi-square distributed
random variables normalized by their degrees of freedom. Here, as in
Section 11.D, that normalization has been omitted.

If the chi-square distributed random variables are replaced by
gamma-distributed random variables in forming the ratio that leads
to (1), then the resulting density is given by

f(x | δ; ν1, ν2) =
∞∑
j=0

e−δδj

j!
xν1+j−1

(1 + x)ν1+ν2+jB(ν1 + j, ν2)
,

x > 0, δ ≥ 0, ν1, ν2 > 0. (2)

a. Moments

The rth moment of the density (2) is finite for r < ν2 and can be
obtained from 11.D(2) and (2); these moments are

μr =
∞∑
j=0

e−δδj

j!
B(ν2 − r, ν1 + r + j)

B(ν1 + j, ν2)
.

Alternatively, the moments can be obtained using the origin of (2) as
the ratio of two independent random variables with noncentral and
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gamma distributions. In either way, it can be verified that if X has the
density (2), then for ν2 > 2,

EX =
ν1 + δ

ν2 − 1
, Var(X) =

(ν1 + δ)2 + (ν1 + 2δ)(ν2 − 1)
(ν2 − 1)2(ν2 − 2)

.

b. Unimodality

The following proof that the noncentral F density is unimodal is very
similar to the proof of Proposition A.1 that the noncentral gamma den-
sity is log concave. The noncentral F density cannot be expected to be
log concave because the central F density does not have that property.

B.1. Proposition. For ν1 > 1, the noncentral F density (2) is uni-
modal; if 0 < ν2 ≤ 1 and δ < 1, then the density is decreasing.

Proof. Assume ν2 > 1. For notational simplicity write f(x) in place of
f(x | δ; ν1, ν2). The idea of this proof is to show that the derivative f ′

of f changes sign at most once, from + to − if a sign change occurs.
Use

∑∞
j=0 bj =

∑∞
j=1 bj−1 compute

f ′(x) =
∞∑
j=0

e−δδjΓ(ν1 + ν2 + j)
j!Γ(ν1 + j)Γ(ν2)

xν1+j−2

(1 − x)ν1+ν2+j+1

× [(1 + x)(ν1 + j − 1) − x(ν1 + ν2 + j)]

=
∞∑
j=0

e−δδjΓ(ν1 + ν2 + j)
j!Γ(ν1 + j − 1)Γ(ν2)

xν1+j−2

(1 + x)ν1+ν2+j

−
∞∑
j=0

e−δδjΓ(ν1 + ν2 + j + 1)
j!Γ(ν1 + j)Γ(ν2)

xν1+j−1

(1 + x)ν1+ν2+j+1

=
e−δΓ(ν1 + ν2)
Γ(ν1 − 1)Γ(ν2)

xν1−2

(1 + x)ν1+ν2

+
∞∑
j=1

[
e−δδjΓ(ν1 + ν2 + j)
j!Γ(ν1 + j − 1)Γ(ν2)

− e−δδj−1Γ(ν1 + ν2 + j)
(j − 1)!Γ(ν1 + j − 1)Γ(ν2)

]

× xν1+j−2

(1 − x)ν1+ν2+j

=
∞∑
j=0

aj
xν1+j−2

(1 − x)ν1+ν2+j
,
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where

a0 =
e−δΓ(ν1 + ν2)
Γ(ν1 − 1)Γ(ν2)

=
e−δΓ(ν1 + ν2)(ν1 − 1)

Γ(ν1)Γ(ν2)
≥ 0

and for j = 1, 2, . . .,

aj =
e−δδjΓ(ν1 + ν2 + j)
j!Γ(ν1 + j − 1)Γ(ν2)

− e−δδj−1Γ(ν1 + ν2 + j)
(j − 1)!Γ(ν1 + j − 1)Γ(ν2)

=
e−δδj−1Γ(ν1 + ν2 + j)

(j − 1)!Γ(ν1 + j − 1)Γ(ν2)

[
δ

j
− 1

]
.

Note that the sequence {aj}∞j=0 has exactly one sign change, from +
to −. Moreover, by 21.B.3 and 21.B.5.a, the function [x/(1 + x)]j is
totally positive in x and j. From the variation diminishing property of
totally positive functions (Theorem 19.B.13) it follows that f ′ has at
most one sign change, from + to − if one occurs.

If 0 < ν1 ≤ 1 and δ < 1, then aj ≤ 0, for all j, and consequently, the
noncentral F density is decreasing. �

c. Ordering Noncentral F Distributions

B.2. Proposition. In the likelihood ratio ordering, the noncentral F
distribution is increasing in δ. In the stochastic ordering, the noncentral
F distribution is increasing in ν1 and decreasing in both λ and ν2.

Proof. The proof of the likelihood ratio order is similar to the proof
of Proposition A.2, but uses the total positivity of [x/(1 + x)]j in x
and j. The stochastic ordering follows from Proposition 11.E.1 and the
fact that the stochastic order is preserved under mixtures (Proposition
3.F.1). �

d. Doubly Noncentral F Distribution

The doubly noncentral F distribution is discussed by Johnson, Kotz
and Balakrishnan (1995, p. 499). Here only a brief discussion is given.

The noncentral F density (2) is the density of a ratio of inde-
pendent random variables, the numerator with a noncentral gamma
distribution having shape parameter ν1 and noncentrality parameter
δ, and the denominator having a central gamma distribution with ν2
degrees of freedom. For the doubly noncentral F , both numerator and
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denominator have noncentral distributions, and the resulting density is
given by

f(x | δ1, δ2; ν1, ν2)

=
∞∑
i=0

∞∑
j=0

e−δ1δi1
i!

e−δ2δj2
j!

xν1+i−1

(1 + x)ν1+ν2+i+jB(ν1 + i, ν2 + j)
,

δ1, δ2 ≥ 0, ν1, ν2 > 0, x > 0. (3)

This somewhat formidable looking density could be further generalized
by using a bivariate Poisson distribution in place of the two independent
Poisson distributions present in (3); e.g., [e−δ1δi1/i!][e

−δ2δj2/j!] in (4) can
be replaced by

min(x,y)∑
i=0

δx−i
1 δy−i

2 δi12

(x− i)!(y − i)!i!
e−(δ1+δ2+δ12);

similarly, other bivariate distributions with Poisson marginals could be
used.

C. A Noncentral Beta Distribution and the Noncentral
Squared Multiple Correlation Distribution

The noncentral beta distribution and the noncentral squared multi-
ple correlation distribution arise in quite different contexts, but they
are treated here together because they are quite similar in form and
consequently have similar properties.

a. The Noncentral Beta Distribution

If X has the noncentral F density B(2), then Y = X/(1 + X) has the
density

f(x | δ, ν1, ν2) =
∞∑
j=0

e−δδj

j!
xν1+j−1(1 − x)ν2−1

B(ν1 + j, ν2)
,

δ, ν1, ν2 > 0, 0 < x < 1; (1)

this is the density of the noncentral beta distribution. The noncentral
beta density has the form

f(x | δ; ν1, ν2) =
∞∑
j=0

g(j | δ)h(x | ν1 + j, ν2), 0 < x < 1,
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where

g(j | δ) = e−δ δ
j

j!
, δ > 0, j = 0, 1, 2, . . . (2)

is a Poisson mass function and

h(x | ν1 + j, ν2) =
xν1+j−1(1 − x)ν2−1

B(ν1 + j, ν2)
, 0 < x < 1, ν1, ν2 > 0. (3)

is a beta distribution of the form 14.C(1).

b. The Noncentral Squared Multiple Correlation Distribution

The noncentral squared multiple correlation distribution arises as fol-
lows. Let Y,X1, X2, . . . , Xp have a multivariate normal distribution
with mean vector 0 and covariance matrix

∑
=

(
σ00 σ01

σ′
01 Σ11

)
;

if X = (X1, X2, . . . , Xp), then σ00 = Var Y, σ01 is the p-dimensional vec-
tor Cov (Y,X), and Σ11 is the p× p covariance matrix of X. With the
notation a = (a1, a2, . . . , ap), the multiple correlation coefficient ρ is de-
fined by

ρ = Max
a

Corr(Y, aX ′) = Max
a

aσ′
01√

σ00 aΣ11a′
.

For a sample of size n, and sample covariance S, the sample multiple
correlation is

R = Max
a

as′01√
s00 aS11a′

,

where S is partitioned as was Σ. Because of invariance under linear
transformations, it can be shown that the distribution of R depends
only on ρ.

Set θ = ρ2, κ = p/2, and ν = (n− 1)/2 and assume that ρ �= 0. With
the usual overuse of the letter “f” to denote a density, the noncentral
squared multiple correlation distribution has the density

f(x | θ, κ, ν) =
∞∑
j=0

g(j | θ, ν)h(x |κ + j, ν − κ),

0 < x < 1, 0 ≤ θ ≤ 1, ν > κ > 0, (4)
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where

g(j | θ, ν) = θj(1 − θ)ν
Γ(ν + j)
j!Γ(ν)

, 0 ≤ θ ≤ 1, ν > 0, j = 0, 1, 2, . . . ,

(5)
is a negative binomial probability mass function, and

h(x |κ + j, ν − κ) =
xκ+j−1(1 − x)ν−κ−1

B(κ + j, ν − κ)
, 0 < x < 1, ν > κ > 0, (6)

is again a beta density of the form 14.C(1). The densities (1) and (4)
are both mixtures of beta densities, one mixed using the Poisson distri-
bution and the other mixed using the negative binomial distribution.

c. Unimodality

C.1. Proposition. The noncentral beta density (1) is unimodal when
ν1 > 1.

Proof. The derivative f ′(x | δ, ν1, ν2) of the noncentral beta density is
given by

f ′(x | δ, ν1, ν2) =
∞∑
j=0

e−δδj

j!B(ν1 + j, ν2)
q(x, j | ν1, ν2), (7)

where

q(x, j | ν1, ν2) = (ν1 + j − 1)xν1+j−2(1 − x)ν2−1

− (ν2 − 1)xν1+j−1(1 − x)ν2−2

= (ν1 + j − 1)xν1+j−2(1 − x)ν2−2(1 − x)
− (ν2 − 1)xν1+j−1(1 − x)ν2−2

= (ν1 + j − 1)xν1+j−2(1 − x)ν2−2

− (ν1 + ν2 + j− 2)xν1+j−1(1 − x)ν2−2. (8)

Thus,

f ′(x | δ, ν1, ν1)

=
∞∑
j=0

e−δδj

j!

[
Γ(ν1 + ν2 + j)
Γ(ν1 + j)Γ(ν2)

(ν1 + j − 1)xν1+j−2(1 − x)ν2−2

− Γ(ν1 + ν2 + j)
Γ(ν1 + j)Γ(ν2)

(ν1 + ν2 + j − 2)xν1+j−1(1 − x)ν2−2
]
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= e−δ Γ(ν1 + ν2)
Γ(ν1)Γ(ν2)

(ν1 − 1)xν1−2(1 − x)ν2−2

+
∞∑
j=1

e−δδj

j!
Γ(ν1 + ν2 + j)

Γ(ν1 + j − 1)Γ(ν2)

−
∞∑
j=0

e−δδj

j!
Γ(ν1 + ν2 + j)(ν1 + ν2 + j − 2)

Γ(ν1 + j)Γ(ν2)
xν1+j−1(1 − x)ν2−2

= e−δ Γ(ν1 + ν2)
Γ(ν1)Γ(ν2)

(ν1 − 1)xν1−2(1 − x)ν2−2

+
∞∑
j=1

e−δδj

j!
Γ(ν1 + ν2 + j)

Γ(ν1 + j − 1)Γ(ν2)
xν1+j−2(1 − x)ν2−2

−
∞∑
j=1

e−δδj−1

(j − 1)!
Γ(ν1 + ν2 + j − 1)(ν1 + ν2 + j − 3)

Γ(ν1 + j − 1)Γ(ν2)
xν1+j−2(1 − x)ν2−2

=
∞∑
j=0

ajx
ν1+j−2(1 − x)ν2−2,

where a0 = e−δ Γ(ν1 + ν2)
Γ(ν1)Γ(ν2)

(ν1 − 1), and for j = 1, 2, . . .,

aj =
e−δδj−1

(j − 1)!
Γ(ν1 + ν2 + j − 1)
Γ(ν1 + j − 1)Γ(ν2)

[
(ν1 + ν2 + j)δ

j
− (ν1 + ν2 + j − 3)

]
.

It can be shown that aj < 0 implies aj+1 < 0 by verifying that the
function

φ(z) =
(ν1 + ν2 + z)δ

z
− (ν1 + ν2 + z − 3)

has the derivative φ′(z) = −δ(ν1 + ν2)
z2 − 1 < 0. Because ν1 > 1, a0 > 0

and thus the sequence {aj}∞j=0 has at most one sign change, from + to −
if one occurs. With the aid of Theorem 21.B.13, the proposition follows
from the fact that K(j, x) = xν1+j−2(1 − x)ν2−2 is totally positive in j
and x. �

C.2. Proposition. The noncentral squared multiple correlation den-
sity (4) is unimodal when κ ≥ 1.
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Proof. Compute

f ′(x | θ, κ, ν) =
∞∑
j=0

θj(1 − θ)ν
[Γ(ν + j)]2

j!Γ(ν)Γ(j + κ)Γ(ν − κ)
q(x, j |κ, ν),

where apart from parameterization q is the same as q given by (8).
As in the proof of Proposition C.1, it can be determined that

f ′(x | θ, κ, ν) =
∞∑
j=0

ajx
κ+j−1(1 − x)ν+κ−2,

where

a0 =
(1 − θ)Γ(ν)(κ− 1)

Γ(κ)Γ(ν − κ)
,

and for j = 1, 2, . . .,

aj =
θj(1 − θ)ν [Γ(ν + j − 1)]2

(j − 1)!Γ(κ)Γ(ν − κ)

[
θ(ν + j − 1)2

j
− (j + ν − 3)

]
.

Because κ ≥ 1, a0 ≥ 0. As in the proof of Proposition C.1, it can be
shown that the function

φ(z) =
θ(ν + z − 1)2

z
− (z + ν − 3)

has a negative derivative, and consequently aj < 0 implies aj+1 < 0.
Thus, the sequence {aj}∞j=0 changes sign at most once, from + to − if
a sign change occurs. Moreover, the function xκ+j−1(1 − x)ν+κ−2 is to-
tally positive in x and j. Consequently, it follows from Theorem 21.C.13
that f ′(x | θ, κ, ν) can change sign at most once, from + to − if a sign
change occurs. �

d. Doubly Noncentral Beta Distribution

The doubly noncentral beta distribution is discussed by Johnson, Kotz
and Balakrishnan (1995, p. 499). In the same way that the noncentral
beta density (1) can be derived from the noncentral F density B(1),
so a doubly noncentral beta density can be derived from the doubly
noncentral F density B(3), this density is

f(x | δ1, δ2; ν1, ν2) =
∞∑
i=0

∞∑
j=0

e−δ1δi1
i!

e−δ2δj2
j!

xν1+i−1(1 − x)ν2+j−1

B(ν1 + i, ν2 + j)
, (9)

δ1, δ2, ν1, ν1 > 0, 0 < x < 1.
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e. Ordering Noncentral Beta Distributions and Noncentral
Multiple Squared Correlation Distributions

Because the noncentral beta density (1) is a Poisson mixture of beta
densities, it has total positivity properties that can be obtained using
Theorem 21.B.11. In particular, the density is totally positive in the
pairs δ and x, ν1 and x, and ν2 and −x. According to Proposition 2.A.11,
this means that noncentral beta distributions are likelihood ratio in-
creasing in δ. A random variable Y with a noncentral beta distribution
has the representation Y = X/(1 + X), where X has the noncentral F
density. Because the noncentral F distribution is stochastically increas-
ing in ν1 and stochastically decreasing ν2, it follows that the noncentral
beta distribution is ordered in the same way. The same conclusion can
be obtained from 14.C.2.

It follows from a similar argument that the noncentral multiple
squared correlation density is totally positive in θ and x, and so these
distributions are likelihood ratio increasing in θ. From 14.C.2, it follows
that the beta distribution (6) is stochastically increasing in κ when
ν − κ is fixed, and stochastically decreasing in ν.

D. Log Distributions from Nonnegative
Random Variables

As mentioned in Section 12.A, for a distribution with support [0,∞]
the logarithmic version has support [1,∞); that is to say, if Y is a non-
negative random variable, then X = eY takes on values in [1,∞). On
the other hand, negative logarithmic distributions that arise from the
transformation X = e−Y have support [0, 1]. Several such distributions
are mentioned here.

a. The Log Gamma Distribution

The log gamma distribution has support [1,∞] and the density

f(x |λ, ν) = λν(log x)ν−1x−(λ+1)/Γ(ν), x > 1, λ, ν > 0. (1)

This rather unfamiliar density is encountered in Proposition 18.B.13.
See Figure D.1.

By computing the derivative f ′, it can be determined that when
ν > 1, f is unimodal with mode at x = exp{(ν − 1)/(λ + 1)}. When



SVNY289-Olkin May 15, 2007 17:10

510 15. Additional Parametric Families

181410
x

62

0

0.04

0.08

0.12

f
(x

)

λ = 2.5

λ = 2

λ = 1

λ = 0.7

Fig. D.1a-1. Densities of the log gamma distribution (ν = 5)

2515
x

5
0

0.04

0.08

0.12

0.16

r
(x

)

λ = 2.5

λ = 2

λ = 1

λ = 0.7

Fig. D.1a-2. Hazard rates of the log gamma distribution (ν = 5)



SVNY289-Olkin May 15, 2007 17:10

D. Log Distributions from Nonnegative Random Variables 511

1  2  3  4  5

0  

0.4

0.8

1.2

f
(x

)

x

λ = 0.5

λ = 1

λ = 2

λ = 4

Fig. D.1b-1. Densities of the log gamma distribution (ν = 2)

2 6 10 14 18
0  

0.4

0.8

1.2

1.6

r
(x

)

x

λ = 0.5

λ = 1

λ = 2

λ = 4

Fig. D.1b-2. Hazard rates of the log gamma distribution (ν = 2)



SVNY289-Olkin May 15, 2007 17:10

512 15. Additional Parametric Families

2 4 6 8 10 12

0   

0.04

0.08

0.12

f
(x

)

x

λ = 2.5
λ = 2

λ = 1 λ = 0.7

Fig. D.1c-1. Densities of the log gamma distribution (ν = 0.5)

1 3 5 7 9 
0

2

4

6

r
(x

)

x

λ = 2.5

λ = 2

λ = 1

λ = 0.7

Fig. D.1c-2. Hazard rates of the log gamma distribution (ν = 0.5)



SVNY289-Olkin May 15, 2007 17:10

D. Log Distributions from Nonnegative Random Variables 513

ν ≤ 1, the density is decreasing. For this distribution the moments are

μr =
(

λ

λ− r

)ν

, λ > r.

Neither the survival function nor the hazard rate of the log gamma
distribution can be written in closed form.

b. The Hazard Rate of the Log Gamma Distribution

To obtain the shape of the hazard rate of the log gamma distribution,
note from 12.A.1(iv) that because the hazard rate of the gamma dis-
tribution is decreasing for ν < 1, the same is true for the hazard rate
of the log gamma distribution. When ν > 1, the hazard rate shape can
be examined using Lemma 4.E.1. To do this, it is necessary first to
compute, for the density (1), that

ρ(x) = −d log f(x)
dx

=
λ + 1
x

− ν − 1
x log x

, x > 1.

For ν > 1, the equation ρ′(x) = 0 is quadratic with one negative root.
Because ρ′(x) > 0 for x just larger than 1 and ρ′(x) < 0 for large x,
it follows that ρ(x) = 0 has exactly one root > 1 and moreover, ρ(x)
is initially increasing to a unique maximum, say at x = z, and then
is decreasing. It follows from Lemma 4.E.1 that when ν > 1, the log
gamma distribution has either a decreasing hazard rate or a unimodal
hazard rate with mode at some point in the interval (0, z]. When ν > 1,
the hazard rate of the gamma distribution has the limiting value 1/λ as
x → ∞. It follows from 12.A(5) that the hazard rate of the log gamma
distribution behaves like 1/λ for large x.

c. Negative Log Gamma Distribution

If Y has a gamma distribution with density 9.A(1), then X = e−Y has
the density

f(x |α, ν) =
αν−1xα−1(− log x)ν−1

Γ(ν)

=
xα−1(− log xα)ν−1

Γ(ν)
, 0 < x < 1, ν, α > 0; (2)
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here, the parameter λ has been changed to α because the log trans-
formation has changed the scale parameter to a power parameter.
This is the density of the negative log gamma distribution, which is
encountered in Proposition 18.B.13. When α, ν > 1, this density is
unimodal with mode at z = exp{−(ν − 1)/(α− 1)}. When α, ν < 1,
the density is U-shaped with a minimum at z. When α < 1, ν >
1, the density is decreasing, and when α > 1, ν < 1, the density is
increasing.

The special case ν = 1 is the density 14.B(2a), so the density (2) can
be regarded as a two-parameter extension of the uniform distribution,
but it is not any of those encountered in Chapter 14.

d. The Log Weibull and Negative Log Weibull Distributions

The log Weibull distribution has survival function

F̄ (x) = exp{−(α log x)ζ} = exp{−(log xα)ζ}, x ≥ 1, ζ, α > 0,
= 1, x < 1; (3)

here the parameter λ of the Weibull distribution has been replaced by
α because the log transformation has changed the scale parameter into
a power parameter. Likewise, the power parameter α of the Weibull
distribution has been replaced by ζ because it has become a hazard
power parameter.

The hazard rate of the log Weibull distribution is

r(x) =
ζαζ(log x)ζ−1

x
, x > 1. (4)

See Figure D.2. With ζ = 1, this survival function reduces to F̄ (x) =
x−α, x ≥ 1, which is the survival function of a Pareto I distribution
with unit scale and a power parameter λ (see Section 11.B).

The negative log Weibull distribution has the distribution func-
tion

F (x) = exp {−(−α log x)ζ}, 0 < x < 1, α, ζ > 0, (5)

which is 18.B(44b) apart from parameterization.
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e. The Log Gompertz Distribution

The log Gompertz distribution function is given by

F̄ (x |α, ξ) = exp {−ξ(xα − 1)}, x > 1, α, ξ > 0, (6)

and density

f(x |α, ξ) = αξxα−1 exp {−ξ(xα − 1)}, x > 1. (7)

If X has a log Gompertz distribution and Y = X − 1, then Y has the
survival function

F̄ (x |α, ξ) = exp {−ξ[(x + 1)α − 1]}, x > 0, α, ξ > 0; (8)

note that α is no longer a power parameter.
It can be verified that the survival function (8) has the hazard rate

r(x) = ξα(x + 1)α−1, x > 0, α, ξ > 0. (9)

Apart from parameterization, this is the hazard rate 9.B(19) of the
Weibull residual life distribution Ft with t = 1. See Figure D.3.

The negative log Gompertz distribution has survival function

F̄ (x |α, ξ) = exp {−ξ(x−α − 1)}, 0 < x < 1, α, ξ > 0. (10)

For negative logarithmic distributions such as (10), a connection be-
tween moment and Laplace transform parameters is discussed in Sec-
tion 12.A.b.

E. Another Extension of the Exponential Distribution

In Sections D.c and D.d, several distributions having support [0, 1] are
derived from distributions having support [0,∞] through use of the
transformation of the random variables X = e−Y of the correspond-
ing random variables. The following uses the inverse of this trans-
formation to obtain a distribution with support [0,∞] from the beta
distribution.
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E.1. Transformed beta distribution. Suppose that X has the beta
distribution of Section 12.C, i.e., X has the density

fX(x) = xa−1(1 − x)b−1/B(a, b), 0 ≤ x ≤ 1.

If Y = − logX, then Y has the density

fY (y) = e−ay(1 − e−y)b−1/B(a, b), y > 0.

The exponential density is the case b = 1. If b < 1, then log f is convex,
and hence f has a decreasing hazard rate; if b > 1, then log f is concave,
and hence f is unimodal and the distribution has an increasing hazard
rate.
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F. Weibull–Pareto–Beta Distribution

A distribution that includes the Pareto IV distribution, the Weibull dis-
tribution, and the uniform distribution with power and frailty param-
eters has been proposed by Mudholkar and Kollia (1994), and further
discussed by Mudholkar, Srivastava and Kollia (1996) and Mudholkar
and Sarkar (1999). These authors call the distribution the “generalized
Weibull distribution.” This three-parameter distribution offers flexibil-
ity in fitting data when the proper choice of a more specialized model
is unclear. Such an approach was taken by Prentice (1975) with a four-
parameter distribution for random variables taking values on (−∞,∞).

Start with a distribution uniform on [0, 1]. Then add successively a
scale, power, and frailty parameter to obtain the survival function

Ḡ(x |λ, α, ξ) = [1 − (λx)α]ξ, 0 ≤ x ≤ 1/λ, α > 0, θ > 0.

Mudholkar and Kollia (1994) make the following clever reparameter-
ization: Replace ξ by 1/θ and replace λ by λθ1/α. Then the survival
function

F̄ (x |λ, α, θ) = [1 − θ(λx)α]1/θ, 0 < x < 1/(θ1/αλ), α > 0, θ > 0,
(1a)

is obtained, and the limiting form of this survival function as θ → 0 is
given by

F̄ (x |λ, α, θ) = exp{−(λx)α}, x > 0, α > 0, θ = 0, (1b)

which is the familiar survival function of a Weibull distribution.
Finally, observe that if θ < 0, the survival function (1a) remains a

survival function but the support becomes [0,∞); that is,

F̄ (x |λ, α, θ) = [1 − θ(λx)α]1/θ, x > 0, α > 0, θ < 0. (1c)

Together, (1a) to (1c) constitute what Mudholkar and Kollia (1994)
call the “generalized Weibull distribution.”

The generalized Weibull distribution has the hazard rate

r(x |λ, α, θ) =
αλ(λx)α−1

1 − θ(λx)α
, (2)

this holds for x > 0 when θ ≤ 0, and it holds for 0 < x < θ−1/α when
θ > 0. See Figures D.4a,b,c.
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a. Hazard Rate Shape

(i) When θ < 0, the hazard rate (2) becomes, with a straightforward
reparameterization, the hazard rate 11.B(5), and so is an inverted-
bathtub (unimodal) shape for α > 1, and otherwise is decreasing.
(ii) When θ = 0, this hazard rate is the hazard rate 9.B(3) of a Weibull
distribution, and as such is increasing or decreasing according to α ≥ 1
or α ≤ 1.
(iii) When θ > 0, the distribution is a rescaled uniform distribution with
power and frailty parameters as discussed in Paragraph 14.D.2. This
distribution has an increasing hazard rate when α ≥ 1, but a bathtub
shape when α < 1.

The conclusion is that the generalized Weibull distribution has
hazard rates that are increasing when α ≥ 1, θ ≥ 0, decreasing when
α < 1, θ > 0, bathtub shaped when α < 1, θ > 0, and inverted bathtub
shape when α > 1, θ < 0. However, all shapes of the hazard rate are
not attainable without mixing the cases of bounded and unbounded
support. See Figure F.1.

0  0.4 0.8 1.2 1.6 2

0  

0.4

0.8

1.2

1.6

r
(x

)

x

θ = −0.5

θ = −1

θ = −2

θ = −4

Fig. F.1a. Hazard rates of the Weibull-Pareto-Beta distribution (α = 0.5, λ = 1)



SVNY289-Olkin May 15, 2007 17:10

522 15. Additional Parametric Families

0 2 4 6 8 10

0  

0.4

0.8

r
(x

)

x

θ = −0.5

θ = −1

θ = −2

θ = −4

Fig. F.1b. Hazard rates of the Weibull-Pareto-Beta distribution (α = 1, λ = 1)

10864
x

20

0

2

4

θ = −0.5

θ = −1

θ = −2

θ = −4

6

r
(x

)

Fig. F.1c. Hazard rates of the Weibull-Pareto-Beta distribution (α = 5, λ = 1)



SVNY289-Olkin May 15, 2007 17:10

G. Composite Distributions 523

b. A Further Extension

The generalized Weibull distribution was derived starting with a uni-
form distribution; it can be further extended by starting with the beta
density 14.C(1). Addition of a scale and power parameters leads to the
density

f(x | a, b, λ, α) =
αλ(λx)αa−1[1 − (λx)α]b−1

B(a, b)
, 0 ≤ x ≤ 1/λ. (3)

Now, follow the lead of Mudholkar and Kollia (1994) and replace b by
1/θ and λ by λθ1/α to obtain the density

f(x | a, θ, λ, α) =
αλθa(λx)αa−1[1 − θ(λx)α](1/θ)−1

B(a, 1/θ)
, 0 ≤ x ≤ 1/(θ1/αλ).

(4)

Here, the parameters are positive, but the change of scale allows θ to be
negative if the normalizing constants are appropriately changed. When
this is done and δ = −θ, the resulting density is

f(x | a, δ, λ, α) =
αλδa(λx)αa−1

B(a, δ−1 − a + 1)[1 + δ(λx)a](1/δ)+1 , 0 ≤ x < ∞.

(5)

Here, it is necessary that δ−1 − a + 1 > 0, a condition that reduces to
δ > 0 when a = 1. In both cases (4) and (5), as θ or δ approaches 0 the
limiting distribution is a Weibull distribution with moment parameter.
An alternate derivation of these densities is to introduce a moment
parameter in the generalized Weibull distribution of Mudholkar and
Kollia (1994).

G. Composite Distributions

A number of survival functions have been constructed that are prod-
ucts of two or more other survival functions. These products might be
called composite survival functions. When U and V are independent,
the survival function of X = min(U, V ) is a composite, the product of
the survival functions of U and V .

The hazard rate of X is the sum of the hazard rates of U and V .
Thus, if U has an increasing hazard rate and V has a decreasing hazard
rate, it is not surprising to find that in many special cases, X has a
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monotone or bathtub-shaped hazard rate, depending upon the param-
eters. The construction of families of distributions with such a variety
of hazard rate behaviors has sometimes been the motivation for in-
troducing composite distributions. Distributions that have been used
by various authors to construct composite distributions often include
the exponential, Weibull, and/or Pareto distributions. Composite dis-
tributions also arise when there are independent competing risks (see
Chapter 17).

a. Weibull, Pareto II, and Exponential Components

Suppose that

r(x) = r1(x) + r2(x) + r3(x), (1)

where for x > 0,

r1(x |λ1, ξ) =
λ1ξ

1 + λ1x
(2)

is the hazard rate (11.B(5) with α = 1) of a Pareto II distribution,

r2(x |λ2, α) = λ2α(λ2x)α−1 (3)

is the hazard rate 9.B(3) of a Weibull distribution, and

r3(x |λ3) = λ3 (4)

is the constant hazard rate of an exponential distribution. Because of
the additive nature of (1), the corresponding survival function is the
product

F̄ (x) = F̄1(x)F̄2(x)F̄3(x), (5)

where F̄i has the hazard rate ri, i = 1, 2, 3.
The distribution (5) has five parameters, which may be excessive for

many purposes, and various special cases have been discussed in the
literature. Special cases of (1) include r1(x) = 0, r2(x) = 0, and r3(x) =
0, so long as the three hazard rates are not all 0.
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G.1. Example (Ljubo, 1965). Suppose that the Weibull component
of (1) is omitted, and

r(x) = r1(x |λ, θξ) + r3(x |λξ). (6)

The corresponding survival function is given by

F̄ (x) = [e−λx/(1 + λx)θ]ξ, x ≥ 0, λ, ξ, θ > 0. (7)

An interesting feature of this survival function is that the presence of
the exponential factor allows an expansion of the range of θ beyond
what is allowed in the Pareto distribution; (7) is a survival function
whenever θ ≥ −1; then, the hazard rate is decreasing for θ ≥ 0 and
increasing for −1 ≤ θ ≤ 0. The parameterization here is such that λ is
a scale parameter and ξ is a frailty parameter. The survival function (7)
has been used by Davis and Feldstein (1979) to model some censored
survival data.

G.2. Example. Murthy, Swartz, and Yuen (1973) study the hazard
rate

r(x) =
λ1

1 + λ1x
+ αλ2(λ2x)α−1, x ≥ 0, λ1, λ2, α > 0

which is (1) with λ3 = 0. The resulting survival function is the product

F̄ (x) =
1

(1 + λ1x)ξ
exp {−(λ2x)α)}, x ≥ 0, λ1, λ2, α, ξ > 0 (8)

of Pareto and Weibull survival functions. Here, the hazard rate is con-
vex and decreasing for α ≤ 1, is an inverted bathtub for 1 < α < 2,
is increasing and convex for α = 2, and is bathtub shaped for α > 2.
These results can be obtained by examining the hazard rate together
with its derivative.
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G.3. Example. Gaver and Acar (1979) considered the hazard rate
(1) with r1 given by (2), r2 = r2(x |

√
δ/2, 2) = δx given by (3), and r3

given by (4); Hjorth (1980) studied the same hazard rate with r2 = 0. In
either case, the hazard rates have the same qualitative behavior. With
the notation λ1 = θ, Hjorth’s distribution has the survival function

F̄ (x) = e−δx2/2/(1 + θx)ξ, x, δ, θ, ξ ≥ 0, but either δ > 0 or θξ > 0,
(9)

and hazard rate

r(x) = δx +
ξθ

1 + θx
. (10)

The parameter ξ is a frailty parameter of the Pareto II part, but ceases
to be a frailty parameter in the composite. Because each of the compo-
nents of the hazard rate (10) is convex, the hazard rate is convex. It is
increasing if δ ≥ ξθ2; otherwise, it is bathtub shaped with a minimum
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at the point x = [θ
√
ξ/δ − 1]/θ. However, in the bathtub case, there is

no interval over which the hazard rate is constant.

Further details concerning this distribution are given by Hjorth
(1980).

The following example is another composite which is constructed in
a manner similar to that of Example G.1, and has many of the same
features.

G.4. Example (Two Weibull distributions). Let

F̄ (x) = exp{−(λx)α − (λx)β}, x ≥ 0, α, β, λ > 0. (11)

This survival function is the product of two Weibull survival functions,
and has the hazard rate

r(x) = αλ(λx)α−1 + βλ(λx)β−1. (12)

When
α, β ≤ 1, then r is decreasing and convex;
α < 1 < β < 2, then r is bathtub shaped but not convex;
α ≤ 1 and 2 ≤ β, then r is bathtub shaped and convex;
1 ≤ α, β ≤ 2, then r is increasing and concave;
1 < α < 2 < β, then r is increasing but not convex;
α, β ≥ 1, then r is increasing and convex.

Motivated by a competing risk model, Canfield and Borgman (1975)
consider the more general product of K different Weibull survival func-
tions; this more general case is also discussed by Murthy, Xie and Jiang
(2004).

The case that β = 1 in (11) is particularly interesting; this arises
when F is the distribution of min[X,Y ], where X has a Weibull dis-
tribution and Y has an exponential distribution. The random variable
X can be thought of as the waiting time to death due to wearout or
other internal causes, and Y can be thought of as the waiting time for
death due to an accident. The resulting distribution function modifies
the Weibull distribution in the same way that the Gompertz–Makeham
distribution modified the Gompertz distribution. This important spe-
cial case has been studied in detail by Bertholon, Bousquet and Celeux
(2004).
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G.5. Example (Quadratic hazard rate). Hall and Wang (2006)
have investigated the hazard rate (1) with r1(x) = λ1, r2(x) = 2λ2x,
and r3(x) = 3λ3x

2
2. This yields the survival function

F̄ (x) = exp{−λ1x− λ2x
2 − λ3x

3}, x ≥ 0, (13)

which is the product of an exponential survival function and two
Weibull survival functions. This survival function is similar to the
second Gompertz–Makeham distribution of Section 10.C.e, but the
Gompertz component is replaced by the Weibull survival function hav-
ing shape parameter 3.

For survival data studied by Hall and Wang (2006), (13) provided a
better fit than did the Gompertz–Makeham survival function 10.B(3),
and the process of finding the best fit was simpler. Consequently, (13)
can be regarded as a serious competitor to the Gompertz–Makeham
distribution.

b. Gompertz–Makeham Distribution

The Gompertz–Makeham distribution discussed in Chapter 10 is a com-
posite distribution with a Gompertz and an exponential component. Its
hazard rate 10.B(1) is the sum of the hazard rate of the Gompertz dis-
tribution and a constant.

H. Stable Distributions

Although stable distributions (see Definition 20.D.11) can be regarded
as a natural extension of the normal distribution, some of these distri-
butions have support [0,∞), which makes them quite unlike the normal
distribution. The best known example is the case that the stable dis-
tribution with index (characteristic exponent) α = 1/2. This strictly
stable distribution takes the form

F (x |λ) = 2[1 − Φ((λx)−1/2)], x ≥ 0, (1)

and has the density

f(x |λ) =
1√
2π

λ√
(λx)3

exp {−1/(2λx)}, x ≥ 0. (2)
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From the distribution function or density, it is clear that λ is a scale
parameter. Note also that directly from the definition it follows that
stable distributions remain stable if a scale parameter is introduced.

The density (2) is unimodal, as can be verified by setting the deriva-
tive of log f equal to 0. The resulting equation has but one solution in
(0,∞). This solution, 1/(3λ), is the location of the mode.

From the derivative of log f , the function ρ of Theorem 4.E.2 is
immediately obtained. From this theorem, it follows that the hazard
rate of the distribution (1) has an inverted bathtub shape, with mode
in the interval [0, 2/3λ].

It is known that stable distributions with support [0,∞) have an
exponent α in the interval (0, 1]. Moreover, their Laplace transforms,
apart from scale parameters, are given by

L(s |α) = exp(−sα). (3)

These distributions have densities

f(x |α) = − 1
πx

∞∑
k=1

Γ(αk + 1)
k!

(−x−α)k sin (αkπ), x > 0; (4)

see Feller (1971, p. 538).
It has been shown by Gawronski (1984) that these densities are all

unimodal.
Hougaard (1986) adds scale and Laplace transform parameters to

the density (4). He shows that the resulting family is infinitely divisible
and closed under convolution, and finds other properties.
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Models Involving Several Variables
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Covariate Models

The cause is hidden, but the result is known.
Ovid (Publius Ovidius Naso, 43 B.C.–17A.D.)

A. Introduction

In many populations, factors can be recognized the presence of which
increases the population heterogeneity. Especially when the factors are
categorical (say, male/female or species of trees), it is common to break
the population into subpopulations. But for factors such as blood pres-
sure or age, the consideration of subpopulations may not be practical,
and an alternative approach is to make use of covariate models. The
use of these models can lead to more homogeneity, and to much im-
proved understanding of characteristics of interest in the population.
More precisely, variables z may exist that directly or indirectly affect
the distribution of a random variable X. When the value of z can be
determined, this information can be used to better predict that value
of X. Stress variables such as temperature may be introduced as a part
of an experiment. Alternatively, z may measure some intrinsic prop-
erty of a device or individual such as the factory of origin of the device
or the blood chemistry of an individual. The variable z is variously
called a covariate, a concomitant variable, a regressor variable, or an
explanatory variable. Some covariates can be controlled or chosen by
an experimenter, and other covariates are random; they may or may
not be time dependent.

These models have been called covariate models or regression mod-
els. When the covariates are categorical, the term “subgroup anal-
ysis” is sometimes used, especially in a medical context. Often, a
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covariate model will contain a combination of continuous and cate-
gorical variables. The long history of covariate models is summarized
by Kalbfleisch and Prentice (1980, p. 68).

There do not appear to be underlying principles that would lead to
procedures for constructing models that take into account the observed
or controlled values of covariates. Particularly when z is not time de-
pendent, the distribution of the random variable X can usefully be
regarded as a mixture, with components of the mixture indexed by z.
In statistical problems, the commonly used method is to assume that
the conditional survival function of X, given z has the form

P{X > x | z} = F̄ (x | θ(z)), (1)

where F̄ (· | θ), θ ∈ Θ, is a parametric family that may or may not be
entirely specified. The basic procedure is rather simple, with the param-
eter θ treated in regression format as a function θ(z) of the covariates
z = (z1, z2, . . . zk).

Two most commonly used covariate functions are the linear

θ(z) = β1z1 + β2z2 + · · · + βkzk (2)

and the log linear

θ(z) = exp{β1z1 + β2z2 + · · · + βkzk} (3)

models. For nonnegative parameters θ, the form (3) is often used. How-
ever, the β’s can be positive or negative.

For parameters lying between 0 and 1, an appropriate form is

θ(z) =
g(z)

1 + g(z)
, g > 0. (4)

Here, g may take the form of θ as given by (3), which insures nonneg-
ativity.

In these models, there is no constraint on how the covariates
z1, z2, . . . , zk are or are not functionally related. For example, it could
be that k = 3 and z3 = z1z2 or z3 = log z1z2. Of course, the model that
results from a function θ(z) depends on how the family {F̄ (· | θ), θ ∈ Θ}
is parameterized. The freedom in parameterization and in defining the
covariates makes the models quite flexible. But there is an art to choos-
ing a model for any specific application.
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Covariates are sometimes classified as “internal” or “external.” A
somewhat loose definition of these notions is given by Kalbfleisch and
Prentice (2002, Section 6.3) together with a number of examples. The
more precise definition suggested by Singpurwalla and Wilson (1995)
is as follows. Suppose that a lifetime T has an absolutely continuous
distribution. If the conditional distribution of T given the covariate is
absolutely continuous, then the covariate is said to be external. Other-
wise, the covariate is said to be internal.

Covariate models are often used when the relationship between vari-
ables is of particular interest. In this context, the danger of ignoring
a covariate related to both another covariate and the primary variable
of interest has been well documented, and can lead to what is called
“Simpson’s paradox.”

Early recognition of this problem was made in the context of correla-
tions. Suppose that a covariate z can take only the values 0 and 1. Then,
it is possible for the correlation Corr(X,Y ) of two random variables to
be quite high whereas Corr(X,Y | z = 0) and Corr(X,Y | z = 1) are
low. Or, Corr(X,Y ) can be quite low whereas Corr(X,Y | z = 0) and
Corr(X,Y | z = 1) are high. These facts are disturbing in a statistical
analysis in which there are high correlations for men and women, but
not in the combined population; similarly there may be low correlations
for men and women, but high correlations in the combined population.

Example 4.C.7.a is a case in which a random variable has a
decreasing hazard rate, but comes from two subpopulations each with
an increasing hazard rate; ignoring a covariate that indicates the
subpopulation can result in a misleading conclusion. Appleton, French
and Vanderpump (1996) offer another particularly striking example.
They discuss a study and follow-up that found nonsmokers dying at a
higher rate than smokers. The ignored covariate was age; in the group
studied, nonsmokers were significantly older than the smokers.

Regression models provide a wide scope for statistical analysis of
the parameters. The aim of this analysis is to estimate regression coef-
ficients in θ(z) as well as any other parameters from a random sample
(xi, θ(z1i, z2i, . . . , zki)), i = 1, . . . n. Various estimation methods such as
least squares, maximum likelihood, or Bayesian methods can be used,
but estimation is often complicated by data being censored. With pa-
rameter estimates, it is possible to assess the importance of the various
covariates and eliminate the unimportant ones, and to obtain a better
understanding of the hazard rate and the factors affecting it.

In addition to the choice of an estimation method, the choice of
a model is a critical step, and the goodness-of-fit issue is important.
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These issues form the bulk of research on covariate models. Further
discussion of statistical issues are beyond the scope of this book, but
see, for example, Andersen, Borgan, Gill, and Keiding (1993), Ansell
and Phillips (1994), Cox and Oakes (1984), Crowder, Kimber, Smith
and Sweeting (1991), Hosmer and Lemeshow (1999), Kalbfleisch and
Prentice (2002), Lawless (1982), or Nelson (1990).

A number of quite complex models can be found in the literature,
with complexity compounded in the case that time dependencies are
incorporated. A number of these models are reviewed and compared
by O’Quigley and Stare (2002). Other issues arise in applications. For
example, the variable of interest may be the waiting time for a disease
to reoccur after a treatment; but if the treatment has effected a cure,
that waiting time is meaningless. For a discussion of this, see Li and
Taylor (2002) or Frankel and Longmate (2002). In this chapter, only
the more basic models are discussed.

B. Some Regression Models

a. Scale Parameter Regression Models: Accelerated Life Models

Normally, life testing must be completed under time constraints; prac-
tical considerations may require that the testing be carried out with
stress levels greater than that would normally be encountered. In this
way, relatively early failures can be observed. In these circumstances,
it is a common practice to assume that a scale parameter is present
that is a function of the stress levels, the idea being that time has in
effect been accelerated in a specified way. Clearly, accelerated testing
is subject to pitfalls, a number of which have been itemized by Meeker
and Escobar (1998).

Regression models in which a scale parameter is assumed to be a
function of covariates are often called accelerated life models regardless
of the context they arise in. For a survival function F̄ with density f and
hazard rate r, the introduction of a scale parameter depending upon
covariates z leads to the survival function F̄ (x |λ(z)) = F̄ (λ(z)x), the
density f(x |λ(z)) = λ(z)f(λ(z)x), and the hazard rate r(x |λ(z)) =
λ(z)f(λ(z)x)/F̄ (λ(z)x). Most often in these models, θ = 1/λ is taken
to be the log linear function A(3) of the covariates.

B.1. Example. Zelen (1959) studied the lifetimes of glass capacitors
under different levels of temperatures and voltages. He assumed that
the lifetime X of a capacitor has an exponential distribution of the
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form

F̄ (x | θ) = e−x/θ, (1)

where θ = θ(zi,j) = exp{β0 +
∑

i,j βijzij}. Here, the zij are indicator
variables with subscripts indicating the level of temperature and volt-
age. The choice of parameterization is natural because θ is the expec-
tation of X.

B.2. Example. Feigl and Zelen (1965) studied the survival times of
patients with acute myelogenous leukemia using white blood count as
a covariate, the exponential survival function (1), and the covariate
function θ(z) = β0 + β1z. Other possible covariate functions mentioned
are θ(z) = [β0 + β1z]−1 and θ(z) = a e−bz.

Note that in Example B.1, the covariates were controlled by the
experimenter, but in Example B.2, the covariates are observed random
variables. In either case, the goal is to use the covariates to improve
the prediction of X, or to understand how the covariates and X are
related.

B.3. Example. Lawless (1982, p. 304) provides an analysis of survival
data on advanced lung cancer patients with an assumed Weibull dis-
tribution and the reciprocal of the scale parameter being a log-linear
function of seven covariates; these covariates describe the tumor type.
Other examples of applications with an assumed Weibull distribution
are reviewed by Smith (1991).

B.4. Example. Kalbfleisch and Prentice (2002, p. 85) consider the
lognormal distribution (Section 12.B), the Pareto III (log logistic)
distribution (Section 10.C), and the generalized gamma distribution
(Section 9.E), and investigate the case that the reciprocal of the scale
parameter is a log linear function of covariates.

b. Proportional Hazard Regression Models

The proportional hazards model, introduced by Cox (1972), is a semi-
parametric model with a frailty parameter that is taken to be a function
of the covariates. To further describe this model, let F̄ be a survival
function with a corresponding hazard function R = − log F̄ and hazard
rate r = R′. If a frailty parameter is now introduced, the resulting para-
metric family has survival function given by F̄ (x | ξ) = [F̄ (x)]ξ, hazard
function R(x | ξ) = ξR(x), and hazard rate r(x | ξ) = ξr(x). With the
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frailty parameter taken to be a function ξ = ξ(z1, z2, . . . zk) of covari-
ates, the resulting model is

r(x | ξ(z)) = r(x)ξ(z1, z2, . . . zk). (2)

When ξ = ξ(z1, z2, . . . zk) has the form A(3), the resulting model is
often called the “Cox Model.” Other functions of the covariates are
sometimes used, but they must be positive.

The Cox model has been found by statisticians to be both flexi-
ble and tractable; consequently, it has reached a high level of impor-
tance and usage in practical applications, especially in medical research
(see, e.g., Andersen, 1991). As of this writing, there are “17” papers
in print discussing the Cox model, and the number is growing with-
out an upper bound (we have borrowed this expression from William
Feller, who often used “17” in his lectures to represent a large generic
integer).

The model (1) is designed to take an account of observed covariates.
Related models have been used to account for random heterogeneity,
often due to the presence of unobserved covariates. Such a model might
take the form

r(x |Z) = Zr(x), (3)

where Z is a random variable. The models (1) and (2) are sometimes
combined (see Keiding (2001); Vaupel, Manton and Stallard (1979)).

c. Proportional Odds Regression Models

In a social science context, McCullagh (1980) proposes a proportional
odds model and obtains estimates using maximum likelihood. This
model was further investigated in a medical context by Bennett (1983).
The model is also discussed by Crowder (2001), along with accel-
erated life and proportional hazards models. This model takes the
form

F̄ (x | γ)
F (x | γ)

= γ
F̄ (x)
F (x)

,

where γ = γ(z) is a function of covariates z. As discussed in Section 7.F,
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this model leads to a survival function with a tilt parameter, that is,

F̄ (x | γ) =
γF̄ (x)

1 − γF̄ (x)
. (4)

Bennett (1983) proposes using the log-linear model γ(z) = exp{β1z1 +
β2z2 + · · · + βkzk} of A(3). As an explicit example, he considers the case
that in a study of lung cancer, there are two covariates performance
status as measured in a scale of 0 to 100 and the type of tumor as large,
adeno, small, or squamous.

For nonnegative random variables, the hazard rate r(· | γ) of the
survival function (4) is given by

r(x | γ) =
1

[1 − γ̄F̄ (x)]
r(x), 0 < x < ∞, γ > 0.

In their discussion of proportional odds regression models,
Sankaran and Jayakumar (2006) point out that limx→∞ r(x |λ) =
limx→∞ r(x), γ > 0 (see also Section 7.F.a). This is to be contrasted
with the case of the proportional hazards model of Section B.b, where
the relationship r(x | ξ) = ξr(x) is obtained.

In some applications, the effects of covariates diminishes with time;
for such covariates, a proportional odds regression model may be more
appropriate than a proportional hazards model. However, the propor-
tional odds model has not yet been extensively used in applications.

d. Coincidence of the Models

B.5. Accelerated life and proportional hazards models. It is
well known that the accelerated life model and the proportional haz-
ards model coincide when the underlying distribution F is a Weibull
distribution and the scale (frailty) parameter is a function of the co-
variates. In fact, this is the only distribution for which the models
coincide (Kalbfleisch and Prentice, 2002); see Proposition 18.B.1). In
these models, the Weibull distribution has been used extensively.

B.6. Accelerated life and proportional odds ratios models. It is
shown in Proposition 18.B.3 that when the underlying random variables
are nonnegative, these two models coincide if and only if the underlying
distribution is a Pareto III distribution.

B.7. Proportional hazards and proportional odds ratios
models. It is shown in Proposition 18.C.3 that these models coincide
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if and only if the underlying distribution places mass on at most two
points. This means that for practical purposes, the models are distinct.

C. Regression Models for Other Parameters

Note that each of the three models discussed in Section B lead to the
assumption that a particular kind of parameter is a function of covari-
ates; for accelerated life models it is a scale parameter, for proportional
hazards it is a frailty parameter, and for proportional odds it is a tilt
parameter that is introduced and made a function of the covariates.
Other examples exist in the literature; indeed, any of the parameters
discussed in Chapter 7 can be used in conjunction with covariates.

C.1. Example. In the context of kidney transplantation, Bailey and
Homer (1977) and Bailey, Homer, and Summe (1977) assume that the
underlying hazard rate has the form

r(x) = α e−λx + δ, α, λ, δ > 0. (1)

With α = ξλ and δ = ξθλ, the hazard rate (1) becomes the hazard rate
10.B(7), a relative of the Gompertz distribution that has a decreasing
hazard rate. Here λ is a scale parameter and ξ is a frailty parameter.
Bailey and Homer (1977) and Bailey, Homer, and Summe (1977) make
use of two covariates, sex and age, and use the log-linear covariate
model A(3) for their parameters.
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Several Types of Failure: Competing Risks

The causes of events are ever more interesting than the events themselves.
Cisero, Epitolae ad atticun, Book IX, Section 5

When vaccination against smallpox became practical in the middle of
the eighteenth century, Bernoulli (1760) became interested in the ques-
tion of how life tables would be affected if deaths from smallpox were
eliminated through mandatory vaccination. At the time, various life
tables were available; these tables were based upon data from which it
was possible to determine not just the age at death, but also whether
death was due to smallpox or some other cause. Thus, Bernoulli consid-
ered individuals as facing two “competing” risks of death: death from
smallpox or some other cause. His goal was to determine how the dis-
tribution of life length X of an individual would be changed if the risk
of death from smallpox were eliminated by vaccination. The issue of
risk removal has not received much attention in recent literature on
competing risks, but see Karn (1931, 1933) or Seal (1977) for early
history.

Related problems involving competing risks arise in a variety of
circumstances.

Biology. Bernoulli’s interest in smallpox is but one example of a large
class of problems. More generally, an organism can die from a number
of causes, each of which is a competing risk.
Life Testing. In life testing situations, data is often “censored”; that
is, individuals are removed from a study before the event of interest
can occur. The censoring event is a competing risk, and the object of
interest is the life distribution with this risk eliminated.
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Multiple decrement lifetimes. In certain circumstances, groups of
several people are considered to survive as long as all members of the
group survive. This is the case when a life insurance policy is issued
that is payable at the time of first death within the group. Typi-
cally, the group may consist of husband and wife. From the insurance
company’s point of view, each member of the group is a competing
risk.
Reliability. Mechanical, electrical, and hydraulic systems usually have
a number of components. There are one or more minimal subsets
of components (called minimal cut sets) with the property that fail-
ure of all components in the minimal subset will cause the equip-
ment to fail. Each minimal cut set can be regarded as a mode of
failure or a competing risk (see Section 5A.b for a discussion of cut
sets).
Economics. Flinn and Heckman (1983) apply competing risk the-
ory in a study of unemployed workers, where the length of the un-
employment period is studied, and “risks” indicate the reason for
leaving unemployment—getting a job or dropping out of the work
force.

There is a substantial literature devoted to the theory of competing
risks, and this chapter offers only a brief introduction. Books on the
subject include those of Crowder (2001) and David and Moeschberger
(1978). An excellent survey of the subject is provided by Birnbaum
(1979) (see also Chiang, 1968, Chapter 11).

A. Definitions and Notation

With k competing risks, it is natural to introduce the random variables

Xi = the hypothetical time to failure from the ith cause of failure
in the absence of other risks, i = 1, 2, . . . , k. (1)

In this way, multivariate theory unavoidably enters even though this
book is concerned with univariate models. A review of the few basics of
multivariate theory that are required in the remainder of the chapter
can be found in Section 20.I.

As noted below, the terminology used in this field has not been well
standardized, and consequently, concepts can have several names.
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a. Latent Lives and Survival Functions

The hypothetical random variable Xi defined in (1) is called the latent
life for risk i. These hypothetical random variables are also called “net
lives” or “latent variables.” Without further comment, it is assumed
throughout this chapter that the latent variables are positive.

Let

F̄ (x1, . . . , xk) = P{X1 > x1, . . . , Xk > xk}

denote the joint survival function of X1, X2, . . . , Xk. The correspond-
ing distribution function is sometimes called the “multiple decrement
function.” The distribution function F (or the survival function F̄ ) is
fundamental because it determines the distribution of all the random
variables of interest that arise in the theory of competing risks.

For i = 1, 2, . . . , k, the marginal survival function F̄i of Xi is some-
times called the “net survival function” for risk i ; in the actuarial liter-
ature, the corresponding distribution function is sometimes called the
ith decrement function. Of course,

F̄i(xi) = F̄ (0, . . . , 0, xi, 0, . . . , 0),

where xi is in the ith place.
Let

U = the life length of interest,

so that

U = min (X1, . . . , Xk);

denote the survival function of U by Q̄; that is,

Q̄(t) = P{min (X1, . . . , Xk) > t} = F̄ (t, . . . , t).

Much of what follows can be regarded as directed to finding useful
expressions for Q̄.

With the assumption that

P{Xi = Xj} = 0, for all i �= j, (2)
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it is possible to define uniquely the random variable

J = the index of the smallest of the Xi.

Thus, J = j means that the j th cause is the culprit, and

Xj < Xi, for all i �= j, j = 1, 2, . . . , k.

Denote the probability that J = j by πj , j = 1, 2, . . . , k. In applications,
it is generally true that only U and J can be observed, by which it is
meant that only the life length of the item and the cause of death or
failure can be determined.

Applications are occasionally encountered in which assumption (2)
does not hold because there are multiple causes. Methods for handling
these applications are not discussed here, but see Tai, White, Gebski
and Machin (2002).

b. Conditional and Sub-survival Functions

Three probabilistic quantities are central to the analysis of competing
risks. For j = 1, . . . , k, let

Q̄(t | j) = P{U > t |J = j} =
P{t < Xj < mini�=j Xi}
P{Xj < mini�=j Xi}

, t > 0, (3)

Q̄(t, j) = P{U > t, J = j} = P{t < Xj < min
i�=j

Xi}, t > 0, (4)

πj = Q̄(0, j) = P{J = j} = P{Xj < min
i�=j

Xi}. (5)

The function Q̄(· | j) is called the conditional survival function of
U, given J = j. This function is also sometimes called “crude survival
function” or the “cause specific survival function” for the risk j.

The function Q̄(·, j) satisfies

Q̄(t, j) = πjQ̄(t | j), j = 1, . . . , k, t ≥ 0,

and is called the sub-survival function for the risk j in recognition of
the fact that it is not a proper survival function. The corresponding
distribution function

Q(t, j) = P{U ≤ t, J = j} = P{t ≥ Xj < min
i�=j

Xi}, t > 0,
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satisfies the relationship Q(·, j) = πj − Q̄(·, j). The function Q̄(·, j) is
also called the “crude survival function” or “pseudo survival function”
for risk j. It follows directly from the definitions that the probability
P{X1 > t,X2 > t, . . . ,Xk > t} is given by

Q̄(t) = F̄ (t, . . . , t) =
k∑

j=1

Q̄(t, j) = 1 −
k∑

j=1

Q(t, j)

=
k∑

j=1

πjQ̄(t | j), t ≥ 0. (6)

c. Densities and Hazard Rates

The assumption (2) that P{Xi = Xj} = 0, for all i �= j, has already
been made, but consider the stronger assumption that the distribution
function F has a density f obtained by differentiating F. Then, the
distribution Q of U has the density

q(t) = − d

dt
Q̄(t)

and hazard rate

r(t) = q(t)/Q̄(t).

Useful expressions for these quantities can be obtained by first observ-
ing that because F has a density, both Q̄(t, j) and Q̄(t | j) are differen-
tiable.

To determine q(·), other quantities are useful that are also of interest
in their own right:

q(t | j) = − d

dt
Q̄(t | j) is the conditional density of U given J = j;

for example, q(· | j) is the density for the life length of patients who, in
the face of multiple risks of death, die from the j th cause, say, kidney
failure.

Although q(· | j) has been normalized to be a proper density, the
quantity without normalization is also of interest:

q(t, j) = − d

dt
Q̄(t, j) is the jth sub-density function.
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From (6), it follows that

q(t) =
k∑

j=1

q(t, j) =
k∑

j=1

πjq(t | j),

and

r(t) =
k∑

j=1

q(t, j)
Q̄(t)

=
k∑

j=1

h(t, j),

where

h(t, j) =
q(t, j)
Q̄(t)

. (6a)

The function h(t, j) is sometimes called the j th sub-hazard rate, but it
should not be confused with the ratio q(t, j)/Q̄(t, j).

The following proposition shows how to determine the sub-density
functions from the joint survival function of the latent lives.

A.1. Proposition (Tsiatis, 1974, 1975). If F has a density f, then for
each j = 1, . . . , k,

q(t, j) = − ∂

∂xj
F̄ (x1, x2, . . . , xk)|x1=x2=···=xk=t. (7)

Proof. It is sufficient and notationally convenient to prove the proposi-
tion for j = 1. Because

Q̄(t, 1) =
∫ ∞

t

[∫ ∞

x1

· · ·
∫ ∞

x1

f(x1, x2, . . . , xk) dxk · · · dx2

]
dx1, t > 0,

it follows by differentiation with respect to t that

q(t, 1) = −
∫ ∞

t
. . .

∫ ∞

t
f(t, x2, . . . , xk) dxk . . . dx2, t > 0. (8)

Because

F̄ (x1, . . . , xk) =
∫ ∞

x1

. . .

∫ ∞

xk

f(z1, . . . , zk) dzk . . . dz1,
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it follows that

∂

∂x1
F̄ (x1, x2, . . . , xk) |x1=x2=···=xk=t

= −
∫ ∞

x2

. . .

∫ ∞

xk

f(x1, z2, . . . , zk) dzk . . . dz2|x1=x2=···=xk=t. (9)

Together, (8) and (9) yield (7). �

See Arnold and Brockett (1983) for a generalization of the above-
mentioned proposition.

B. The Problem of Identifiability

As noted above, it is generally true that in applications, only U =
min (X1, . . . , Xk) and the index J of the smallest of the latent lives Xi

can be observed. For example, in a biological setting, only the time of
death and cause of death can be observed. Is such data sufficient to
estimate the joint survival function F̄? Sometimes, the answer to this
question is “yes,” but in general, F̄ cannot be estimated from such data.
This is the essence of the problem of identifiability that is discussed in
this section.

With observations of U and J, it is possible to estimate only Q̄(· | j)
and πj , together with quantities such as Q̄(·, j) that they determine;
other quantities of interest may not be estimable from the available ob-
servations. The fact that Q̄(· | j) and πj , j = 1, . . . , k, together do not
determine the survival function F̄ is called the problem of identifiabil-
ity. Even when its parametric form is known, F may or may not be
identifiable, that is, the parameter values may not be determined by
the joint distribution of U and J ; examples are given in Sections D
and E.

To what extent or under what conditions do Q̄(· | j) and πj deter-
mine the joint survival function F̄ or the marginal survival functions?
This question is important because once F̄ is known, all quantities of
interest in the context of competing risks can be computed. In par-
ticular, it is possible to determine from F̄ how the distribution of U
changes when a risk is eliminated.
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a. Bounds for the Joint Survival Function

The extent to which the Q̄(· | j), πj determine F̄ can in two dimensions
be answered to some extent by inequalities. The case of two dimensions
is particularly important because in practice it is often the case that just
one of the competing risks, say X1, is of particular interest. Then, the
other competing risks X2, . . . , Xk can be replaced by min (X2, . . . , Xk),
effectively reducing the problem to two dimensions.

The following proposition provides bounds for the joint survival
function; these in turn yield bounds for the marginal survival functions.

B.1. Proposition (Peterson, 1976). Suppose that the random vari-
ables X1, . . . , Xk have survival function F̄ and P{Xi = Xj} = 0, i �= j.
For x1, . . . , xk ≥ 0,

k∑
i=1

Q̄(max1≤j≤k xj , i) ≤ F̄ (x1, . . . , xk) ≤
k∑

i=1

Q̄(xi, i), (1)

k∑
i=1

Q̄(xj , i) ≤ F̄j(xj) ≤ Q̄(xj , j) + (1 − πj), j = 1, . . . , k. (2)

Proof. Because (2) follows from (1) by taking xi = 0, i �= j, it is only
necessary to prove (1). Let

A = {(z1, . . . , zk) : zi > max
1≤j≤k

xj , i = 1, . . . , k},

B = {(z1, . . . , zk) : zi > xi, i = 1, . . . , k}, and

C =
k
∪
i=1

{(z1, . . . , zk) : xi < zi ≤ min
j �=i

zj}.

Clearly, A ⊂ B. To see that B ⊂ C, suppose that (z1, . . . , zk) ∈ B.
For notational simplicity, suppose also that zi ≤ minj �=i zj . Because
(z1, . . . , zk) ∈ B, zi > xi, and consequently, (z1, . . . , zk) ∈ C. Because of
these inclusions, it follows that

P{(X1, . . . , Xk)∈A} ≤ P{(X1, . . . , Xk) ∈ B} ≤ P{(X1, . . . , Xk) ∈ C};

but this is (1). �

B.2. Proposition (Peterson, 1976). Suppose that k = 2. If nothing is
known about F̄ except the quantities Q̄(· | j) and πj , j = 1, 2, then the
inequalities (1) cannot be improved.
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Proof. It can be verified that the lower bound of (1) is itself a survival
function with mass confined to the line x1 = x2. Random variables with
this survival function achieve the lower bound of (1) with equality,
but they violate A(2). To show that the lower bound of (1) cannot
be improved, it is sufficient to show that the lower bound is a limit of
survival functions that place no mass on the line x1 = x2 and possess the
assumed values of Q̄(· | j), πj , j = 1, 2. For δ ≥ 0, let H̄δ be the survival
function that places mass π1 on the line x2 − x1 = δ in such a way that
P{X1 > x1 | X1 < X2} = Q̄(x1, 1), x1 ≥ 0. Similarly, H̄δ places mass π2
on the line x1 − x2 = δ in such a way that P{X2 > x2 | X2 < X1} =
Q̄2(x2, 2), x2 ≥ 0. Then H̄δ is a survival function possessing the assumed
values of Q̄(· | j) and πj , j = 1, 2, and the lower bound of (1) is the
limiting survival function of the H̄δ as δ → 0.

The upper bound of (1) is itself not a survival function but a limit
of the survival functions H̄δ as δ → ∞. In this limit, all probability
“escapes to infinity,” and this is why the upper bound is not a survival
function. �

B.3. Remarks. The straight lines that comprise the support of H̄δ

can be replaced by any pair of increasing lines which do not cross
the line x1 = x2. Mixtures of various survival functions of this kind
all satisfy the conditions of Proposition B.1. Such mixtures pro-
vide examples of various survival functions that yield the prescribed
Q̄(· | j) and πj , j = 1, 2. These mixtures can have a variety of marginal
distributions.

C. Assumption of Independence

In some applications, it may be possible to infer from physical con-
siderations that the latent variables X1, X2, . . . , Xk are independent.
The question of how assumptions of independence affect the problem
of identifiability is the subject of this section.

a. The Case of Independent Latent Variables

C.1. Proposition (Berman, 1963). If the latent variables Xi, i =
1, . . . , k, are mutually independent, then the sub-survival functions
Q̄(·, j) determine the distributions of the latent lives. More precisely,
when densities exist, the hazard rate rj of the j th latent life Xj is given
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by rj(t) = h(t, j), i.e.,

rj(t) =
q(t, j)

k∑
i=1

Q̄(t, i)
=

q(t, j)
Q̄(t)

, j = 1, . . . , k. (1)

Proof. Denote the distribution of Xi by Fi. When the latent vari-
ables are independent their joint survival function is the product
F̄ (x1, . . . , xk) = Πk

i=1F̄i(xi). It follows from A(4) and A(6) that

Q̄(t, j) =
∫ ∞

t

Πk
i=1F̄i(x)
F̄j(x)

dFj(x) = −
∫ ∞

t
F̄ (x, x, . . . , x) d log F̄j(x)

= −
∫ ∞

t
Q̄(x) d log F̄j(x) =

∫ ∞

t
Q̄(x)

fj(x)
F̄j(x)

dx. (2)

Differentiation of (2) with respect to t yields (1). �

Alternative Proof. Again use the fact that when the latent vari-
ables are independent, their joint survival function is the product
F̄ (x1, . . . , xk) = Πk

i=1F̄i(xi). Differentiation with respect to xj yields the
equation

∂

∂xj
F̄ (x1, . . . , xk) = −fj(xj)

k∏
i=1,i�=j

F̄i(xi) = −rj(xi)
k∏

i=1

F̄i(xi).

It follows from Proposition A.1 that

q(t, j) = − ∂

∂xj
F̄ (x1, x2, . . . , xk)|x1=x2=...=xk=t, j = 1, . . . , k,

and consequently,

q(t, j) = rj(t)
k∏

i=1

F̄i(t),

and because Πk
i=1F̄i(t) = Q(t), this is (1). �

Various extensions of Propositions A.1 and C.1 are known that
either weaken some hypotheses about differentiability (Miller, 1977),
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about independence (Desu and Narula, 1977), or actually extend the
model (Langberg, Proschan, and Quinzi, 1978).

C.2. Remarks (Rose, 1973). The equality (1) can hold even when the
latent variables are not independent. To see this, take k = 2, 0 < d ≤ 1,
and suppose that the joint density f of the latent variables is given by

f(x1, x2) = 0 if 0 < x1 < d/2 and 1 − (d/2) < x2 < 1,
or if d/2 < x1 < d and 1 − d < x2 < 1 − (d/2),

= 2 if 0 < x1 < d/2 and 1 − d < x2 < 1 − (d/2),
or if d/2 < x1 < d and 1 − (d/2) < x2 < 1,

= 1 elsewhere that 0 < x1, x2 < 1,

= 0 if 0 < x1, x2 < 1 does not hold. (3)

See Figure C.1. This density has uniform marginals and satisfies (1)
but is not the case of independence. �

1 1 1 0

0 2 1 0

2 0 1 0

0 0 0 0

x2

0 d/2 d 1
x1

1

1−d/2

1−d

0

Fig. C.1. The density (3) with dependent latent variables
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C.3. Example. The bivariate exponential distribution of Marshall
and Olkin (1967) is the distribution of X1 = min (V1, Z), X2 =
min (V2, Z), where V1, V2, and Z are independent random variables with
exponential distributions. In this example, P{X1 = X2} �= 0 and the in-
dex J of the smallest of X1 and X2 is not defined. However, in this ex-
ample it is possible to observe U = min (X1, X2) = min (V1, V2, Z) and
J∗, the index of the smallest of V1, V2, and Z. Because, V1, V2, and Z
are independent, Proposition C.1 applies to show that the distributions
of V1, V2, and Z are determined by the joint distribution of U and J∗.
This means that the joint distribution of X1 and X2 can be determined.
This conclusion does not depend upon the assumption that V1, V2, and
Z have exponential distributions.

For discussions of Example C.3, see Basu and Ghosh (1978) and
Arnold and Brockett (1983).

b. Independence of U and J

C.4. Proposition. Suppose that the latent variables Xi, i = 1, . . . , k,
are mutually independent. Then, U and J are independent if and only
if there exist positive real constants β2, . . . , βk such that

F̄i(t) = [F̄1(t)]βi , i = 2, 3, . . . , k. (4)

That is, the variables U and J are independent if and only if the latent
variables have hazard functions that are proportional.

The condition that Xi, i = 1, . . . , k, are mutually independent is not
easily verified; see Section D for a discussion of this important issue.

Proposition C.4 is given by Kochar and Proschan (1991), who at-
tribute it to Armitage (1959), Allen (1963), and Sethuraman (1965).
Proposition C.4 is a direct consequence of Proposition C.5.

C.5. Proposition (Kochar and Proschan, 1991). The random vari-
ables U and J are independent if and only if there exist positive real
constants β2, . . . , βk such that in the notation of A(6a),

h(t, j) = βjh(t, 1), j = 2, . . . , k. (5)

Proof. The random variables U and J are independent if and only if
Q(t, j) = Q(t)πj , j = 1, . . . , k, i.e.,

q(t, j) = q(t)πj , j = 1, . . . , k. (6)
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Thus, if U and J are independent, then

h(t, j)
h(t, 1)

=
q(t, j)
q(t, 1)

=
πj
π1

, j = 2, . . . , k,

which yields (5) with βj = πj/π1, j = 2, . . . , k.
It remains to show that if (5), then U and J are independent. Mul-

tiplication of (5) by Q̄(t) gives

q(t, j) = βjq(t, 1), j = 2, . . . , k. (7)

Integration of (7) on t from 0 to ∞ yields the conclusion that βj =
πj/π1, j = 2, . . . , k. Finally, summation on j in (7) gives

q(t) = q(t, 1) +
k∑

j=2

βjq(t, 1) = q(t, 1) +
k∑

j=2

[πj/π1]q(t, 1),

that is q(t, 1) = q(t)π1, j = 1, . . . , k. Combined with (7), this yields
(6). �

To obtain Proposition C.4 from Proposition C.5, combine (6) with
(1) to conclude that

rj(t) = βjq(t, 1)/Q̄(t), j = 2, . . . , k.

With the aid of 1.B(3), (4) follows.

C.6. Example (Kochar and Proschan, 1991). The multivariate expo-
nential distribution of Example C.3 is not absolutely continuous, be-
cause P{X1 = X2} > 0. The absolutely continuous component of this
distribution has been studied by Block and Basu (1974), and shown to
have the density function

f(x1, x2)
= [λλ1(λ2 + λ12)/(λ1 + λ2)] exp{−λ1x1 − (λ2 + λ12)x2}, x1 < x2,

= [λλ2(λ1 + λ12)/(λ1 + λ2)] exp{−(λ1 + λ12)x1 − λ2x2}, x1 > x2,

(8)



SVNY289-Olkin April 17, 2007 7:35

554 17. Several Types of Failure: Competing Risks

where λ1, λ2, λ12 > 0 and λ = λ1 + λ2 + λ12. It can be shown that here
the joint density of U and J is given by

f(u, j) = λ exp {−λu}[λj/(λ1 + λ2)], j = 1, 2, u > 0. (9)

This joint density is a product of the densities of U and J, showing
that these variables are independent.

D. Verifiability of Independence

As noted by Cox (1959, p. 414) for the case of two risks, observations
of U and J cannot yield information inconsistent with the assumption
that the latent lives are independent. This important result has been
studied and extended by several authors. Here, a proof is given under
the assumption that F̄ has continuous partial derivatives with respect
to all of its arguments. Peterson (1975) and Miller (1977) have replaced
that condition with the condition that conditional survival functions
Q̄(· | j) have no common discontinuities. More general results have been
obtained by Langberg, Proschan and Quinzi (1978). Crowder (1991)
has shown that even if the marginal survival functions F̄i of the latent
lives Xi are known, observations of U and J do not determine their
joint survival function F̄ .

D.1. Proposition (Tsiatis, 1975). Let F̄ be the joint survival func-
tion of the latent variables X1, . . . , Xk and suppose that P{Xi = Xj} =
0, for all i �= j. Let U = min (X1, . . . , Xk) and let J be the index of the
smallest of the Xi. Suppose that the survival function F̄ has continu-
ous partial derivatives with respect to all of its arguments. Then, there
exist independent random variables T1, . . . , Tk with joint survival func-
tion H̄, which has the same conditional and sub-survival distributions
as F̄ . That is, if V = min (T1, . . . , Tk) and L is the index of the smallest
of the Ti, then V and L have the same joint distribution as U and J.

Proof. To define the survival function of Tj , let rj(t) = q(t, j)/Q̄(t),
where q(t, j) and Q̄(t) are determined from the joint distribution of U
and J. From this hazard rate, use 1.B(3) to define

H̄j(x) = exp
{
−

∫ x

0
rj(t) dt

}
.

With H̄(x1, . . . , xk) = Πk
j=0H̄j(xj), it follows from Proposition C.1 that

the joint distribution of V,L is the same as that of U, J . �
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E. Known Copula

Assume that k = 2, so there are only two competing risks. In case
the net lives X1 and X2 are independent, the joint distribution of
the net lives is identifiable. The assumption of independence is equiv-
alent to the assumption that the copula C of X1 and X2 has the
form

C(u, v) = uv, 0 ≤ u, v ≤ 1.

(See Section 20.I.d for a discussion of copulas.) Consequently, it is nat-
ural to ask if the joint distribution is identifiable when the copula is
known, but may be of some other form.

E.1. Proposition (Zheng and Klein, 1995). Suppose that the margi-
nal distributions of X1 and X2 are continuous and strictly increasing
on (0,∞), and the copula C of X1 and X2 is known. If

(a) C has a density that is strictly positive on the interior of the unit
square, or more generally if
(b) as a measure on the unit square, C places positive mass on every
open subset of the unit square,

then the joint distribution of X1 and X2 is determined by the functions
Q̄(·, 1) and Q̄(·, 2).

The proof of this proposition is beyond the scope of this book, and
is omitted.

E.2. Example. Archimedean copulas are defined in Example 20.I.23
and shown to be positive quadrant dependent. These copulas also sat-
isfy the conditions of Proposition E.1.

A number of other examples of copulas are provided by Nelsen (2006,
pp. 116–119).

a. Known Parametric Family

A word of caution is in order. Proposition E.1 requires the knowledge
of the copula; knowing that the copula is a member of a paramet-
ric family of copulas may not be enough. Rose (1973) has pointed
out that for indentifiability, it is also necessary that the parame-
ters of the distribution be determined by the joint distribution of U
and J.
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E.3. Example (Basu and Ghosh, 1978). For the distribution of Ex-
ample C.6, the joint density of U and J is given by C(9). This den-
sity depends upon λ1, λ2, and λ12 only through the quantities λ and
λj/(λ1 + λ2)], j = 1, 2. But these quantities alone do not determine the
parameters λ1, λ2, and λ12. Consequently, the distribution with density
C(8) is not identifiable.

E.4. Example (Basu and Ghosh, 1978; Arnold and Brockett, 1983).
As noted in Example C.3, the bivariate exponential distribution of
Marshall and Olkin (1967) is identifiable when the index J is suitably
defined. This distribution is constructed as the joint distribution of
X = min (V1, Z), Y = min (V2, Z), where V1, V2, and Z are independent
random variables with exponential distributions.

Arnold and Brockett (1983) obtain a bivariate Gompertz–Makeham
distribution using a similar construction; they consider the joint distri-
bution of

S = min (X,W1) = min (V1, Z,W1), T = min (Y,W2) = min (V2, Z,W2),

where X,Y, V1, V2, and Z are independent random variables and W1,W2
have Gompertz distributions (W1,W2, V1, V2, and Z are mutually inde-
pendent). They show that the joint distribution of S and T is identifi-
able. In this example, it is the structure of the underlying copula that
leads to identifiability.

E.5. Example (Arnold and Brockett, 1983). Suppose that X1, . . . ,
Xk have the joint survival function

F̄ (x1, . . . , xk) =
∫ ∞

0
exp

{
−

k∑
i=1

wxai

i

}
dG(w). (1)

If G has a finite moment of some positive order, then F is identifi-
able.

According to Proposition 11.B.1, the Pareto IV distribution is a
gamma mixture of Weibull distributions. Arnold and Brockett (1983)
use this fact with (1) to generate an identifiable multivariate Pareto IV
distribution with survival function

F̄ (x1, . . . , xk) = [1 +
k∑

i=1

(λixi)αi ]−ξ, xi > 0, i = 1, . . . , k.
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E.6. Further examples. Additional examples of identifiable multi-
variate distributions are given by Arnold and Brockett (1983). Exam-
ples with exponential marginals are given by Basu and Ghosh (1978),
and other examples are given by Crowder (2001).

F. Positively Dependent Latent Variables

In many applications, it is not realistic to assume that the Xi are
independent, and the copula of their joint distribution is unknown.
However, it may be that some kind of positive dependence is a natural
assumption.

F.1. Example. As noted previously, insurance companies sometimes
issue policies written on several lives, most commonly on the lives of
a husband and wife. Such a policy pays a benefit to the survivor at
the time of first death. From the insurance company’s point of view,
the time of death is the minimum of two life lengths, which represent
competing risks. Husbands and wives share many risks jointly; they
normally share common living conditions, ride in cars together, eat
a similar diet, etc. Consequently, their life lengths are in some sense
positively dependent.

F.2. Example. The components of complex equipment usually share
a common environment. Electrical equipment may share voltage surges,
and if packaged together, may be subject to the same hard shocks. This
means that the components of the equipment have positively dependent
life lengths.

F.3. Example. The bivariate exponential distribution of Example C.3
is associated because the corresponding random variables are increas-
ing functions of independent random variables. Association is a strong
sense of positive dependence that implies a positive correlation; see
Section 20.I.c.

F.4. Proposition. Suppose that a device is subject to k compet-
ing risks, with respective latent variables X1, . . . , Xk. Denote the life
length of the device by U = min (X1, . . . , Xk). If the latent variables are
associated, or more generally if they are positive upper quadrant depen-
dent, that is, if their joint survival function satisfies 20.I(14), namely,
the inequality

F̄ (x1, . . . , xk) ≥
k∏

i=1

F̄i(xi),
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then the assumption of independence leads to a pessimistic assessment
of the survival function of U. That is,

P{U > t} ≥
k∏

i=1

P{Xi > t}. (1)

Proof. This is a direct consequence of Proposition 20.I.12. �

F.4.a. Proposition. If the latent variables are negative upper quad-
rant dependent, then inequality (1) is reversed.

If the kth risk is removed, then clearly the life length of the device
is increased, and consequently the probability that U exceeds t is in-
creased. According to the following proposition, the increase is less if
the latent variables are associated than if the removed latent variable
is independent of the other variables. Intuitively, associated random
variables tend to act in consort so that the removed variable is to some
degree redundant; its removal does not affect the life length as does the
removal of an independent variable.

F.5. Proposition. Suppose that X1, . . . , Xk are associated, or more
generally that Uk−1 = min (X1, . . . , Xk−1) and Xk are positively quad-
rant dependent. Then,

P{min (X1, . . . , Xk−1) > t} − P{min (X1, . . . , Xk) > t}
≤ P{min (X1, . . . , Xk−1) > t}[1 − P{Xk > t}], (2)

or equivalently,

P{Xk > t} ≤ P{Xk > t | Uk−1 > t}. (3)

Proof. The fact that Uk−1 = min (X1, . . . , Xk−1) and Xk are positively
quadrant dependent whenever X1, . . . , Xk are associated is a direct
consequence of Proposition 20.I.12.

The assumption of association yields directly the inequality

P{Xk > t}P{Uk−1 > t} ≤ P{Xk > t, Uk−1 > t}; (4)

divide through by P{Uk−1 > t} to obtain (3).
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To obtain (2), rewrite (3) in the form

1 − P{Xk > t, Uk−1 > t}
P{Uk−1 > t} ≤ 1 − P{Xk > t};

this is (2). �

a. Dependence from Presence of Covariates

Dependence in competing risk models is often introduced when covari-
ates are present. Models of this kind, and the question of their identifia-
bility have been introduced and studied, for example, by Heckman and
Honoré (1989), Carling and Jacobson (1996), and Slud and Kopylev
(1996).
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More About Semi-parametric Families
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Characterizations Through Coincidences
of Semiparametric Families

If a scale parameter λ is introduced in the underlying survival function
F̄ (x) = exp{−x}, the family {F̄ (x |λ) = exp {−λx} : λ > 0} of expo-
nential distributions is obtained. On the other hand, if a frailty parame-
ter ξ is introduced in the underlying survival function F̄ (x) = exp {−x},
the family {F̄ (x | ξ) = [exp {−x}]ξ = exp {−ξx} : ξ > 0} is obtained.
Clearly, these families coincide. Because scale parameter families and
frailty parameter families do not in general coincide, it is natural to ask
if there are underlying distributions other than an exponential distri-
bution for which the introduction of scale and frailty parameters lead
to the same family.

Indeed, it often happens that two semiparametric families of the
form {H̄(· | θ, F̄ )} coincide for some choice or choices of the underly-
ing distribution F. In this chapter, pairs of the semiparametric families
discussed in Chapter 7 are examined to determine the underlying dis-
tributions (assumed to be proper) for which there is coincidence. Even
though location parameters are not considered here, there are still 10
families to be compared, and this means there are 45 comparisons. The
underlying distributions that lead to coincidence are not known for all
these pairs.

It is interesting to discover that for many of the pairs of parameters,
the families of distributions generated coincide only when the underly-
ing distribution is a member of a familiar family. In the following, pa-
rameter pairs are found with the Weibull, lognormal, gamma, Pareto,
and Gompertz families as the only underlying distribution leading to
coincidence. Thus, the results of this chapter provide characterizations
of these distributions.
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A. Introduction

It is important to remember that families can coincide but have differ-
ent parameterizations. For example, it has already been noted that fam-
ilies obtained by introducing a frailty or scale parameter with the under-
lying survival function F̄ (x) = exp {−x} constitute the usual family of
exponential survival functions. However, if a Laplace transform param-
eter is introduced, then the family {F̄ (x) = exp {−(s + 1)x} : s > −1}
is obtained; this is again the family of exponential survival functions,
though it is not parameterized in the usual way.

Two families of distributions or survival functions can coincide even
though they are generated by different underlying distributions. How-
ever, several of the semiparametric families introduced in Chapter 7
have an interesting property relating to this issue. Let F̄ (x |λ0) be
a specific member of a scale parameter family, and use this as an
underlying distribution to generate a new scale parameter family. Of
course, the resulting family is not new, it is just the original scale fam-
ily from which F (x |λ0) came. A similar result is not true if F (x | τ0)
is a specific member of an age parameter family. Unless t0 = 0, the
age parameter family generated with F (x | τ0) as the underlying dis-
tribution is only a subfamily of the family from which F (x | τ0) came.
Those families that are generated by any member of the family as an
underlying distribution include the families with scale, power, frailty,
resilience, tilt, hazard exponent, and convolution. For coincidences in-
volving one of these families, it is always possible to assume that the
underlying distributions are the same. The coincidences studied involv-
ing pairs chosen from moment, Laplace transform, and age parameter
families are all for identical underlying distributions, but in these cases,
other coincidences may exist in which the underlying distributions are
different.

In the following sections, coincidences are mostly determined by
solving a functional equation, and the proofs involve a reduction
of the functional equation to a functional equation with known so-
lution. Other proofs involve solving a differential or an integral
equation.

As discussed in Section 7.P, there are underlying distributions for
which the introduction of a parameter of some kind does not really
generate a parametric family. In particular, a distribution degenerate at
0 is not altered by the introduction of any of the parameters introduced
in Chapter 7. Distributions degenerate at some point other than 0 can
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be given a scale parameter but not frailty or tilt parameters. One might
say of the degenerate distributions not admitting parameters that the
“families” they generate coincide, but this is ruled out of consideration
in this chapter except in Section C.b.

a. A Method of Proof

Consider the two parametric families

F = {F (· | θ), θ ∈ Θ}, G = {G(· |ω), ω ∈ Ω},

where

F (· | θ1) �= F (· | θ2) whenever θ1 �= θ2 and θ1, θ2 ∈ Θ;

that is, distinct parameters lead to distinct distributions. Assume that
G also has this property. To show that the families F and G coincide,
a first step can be to show that there exists a function ω( · ) defined on
Θ and taking values in Ω such that

F (· | θ) = G(· |ω(θ)), θ ∈ Θ. (1)

That is to say, for every θ ∈ Θ, there is an ω = ω(θ) ∈ Ω such that (1)
holds. This insures only that F ⊂ G. To complete a proof that F = G,F
and G can be interchanged in the above process to show that G ⊂ F .
But it is sufficient and usually simpler to show that for all ω0 ∈ Ω, there
is a θ ∈ Θ such that ω(θ) = ω0. In this case, ω( · ) maps Θ onto Ω, or
in other words, Ω is the range of ω( · ).

In summary, a proof that F = G can be accomplished by showing
that there exists a function ω( · ) with domain Θ and range Ω that
satisfies (1).

Because distinct parameters identify distinct distributions in both F
and G, it must be that ω(θ1) �= ω(θ2) whenever θ1 �= θ2, θ1, θ2 ∈ Θ. Thus,
ω( · ) is a one-to-one mapping of Θ onto Ω. Consequently, ω( · ) has an
inverse; this inverse plays the role of ω( · ) if F and G are interchanged
in the above development.

With specific choice of F and G, equation (1) becomes a func-
tional equation. In most cases, (1) can be reduced to a well-studied
functional equation, one with a known solution that is discussed in
Chapter 22.
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b. Summary of Coincidences

Pair of parameters Family Proposition No.

Scale and power degenerate at 0 C.8
Scale and frailty Weibull or negative

Weibull
B.1

Scale and resilience Reciprocal of positive
or negative Weibull

B.2

Scale and tilt Pareto III or its
negative reciprocal

B.3

Scale and hazard power Extreme value for
minimum on
(−∞,∞), possibly
truncated at 0

B.4

Scale and moment lognormal B.5
Scale and Laplace

transform
gamma B.6

Scale and convolution strictly stable B.7
Scale and age Pareto II or uniform

with frailty
B.8

Power and frailty log Weibull B.9
Power and resilience negative log Weibull B.10
Power and tilt negative log Pareto B.11
Power and hazard

power
unnamed B.12

Power and moment negative log gamma B.13
Power and Laplace

transform
unresolved

Power and convolution unresolved
Power and age unresolved

Frailty and resilience 2-point distribution C.2
Frailty and tilt degenerate C.3
Frailty and hazard

power
degenerate C.4

Frailty and moment Pareto I B.14
Frailty and Laplace

transform
exponential with

location parameter
B.15

Frailty and convolution unresolved
Frailty and age Gompertz B.16
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Pair of parameters Family Proposition No.

Resilience and tilt 2-point distribution C.5
Resilience and

hazard power
degenerate C.9

Resilience and
moment

uniform with frailty &
scale

B.17

Resilience and
Laplace transform

a−X,X with exponential
distribution

B.18

Resilience and
convolution

unresolved

Resilience and age unresolved

Tilt and hazard
power

2-point distribution C.6

Tilt and moment degenerate C.11
Tilt and Laplace

transform
degenerate C.10

Tilt and convolution unresolved
Tilt and age exponential with tilt B.19

Hazard power and
moment

unresolved

Hazard power and
Laplace transform

unresolved

Hazard power and
convolution

unresolved

Hazard power and
age

unresolved

Moment and Laplace
transform

2-point distribution C.7

Moment and
convolution

gamma B.20

Moment and age unresolved

Laplace transform
and convolution

Poisson with scale C.1

Laplace transform
and age

unresolved
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B. Coincidences Leading to Continuous Distributions

As is apparent from the summary, coincidences of semiparametric fam-
ilies lead to several families of distributions that are well known, such
as the Weibull, gamma, lognormal, Gompertz, and Pareto families. A
few less well-known distributions also arise, such as the log Weibull and
log gamma distributions.

In several of the coincidences discussed in this section, the distri-
bution degenerate at 0 might be added to the given solutions. But, as
indicated above, the distribution degenerate at 0 is disregarded in this
chapter except in Section C.b.

a. Coincidences Involving Scale Parameter Families

The case of coincidence between scale and frailty families has been of
particular statistical interest. For positive random variables, the fol-
lowing result has been given by Kalbfleisch and Prentice (2002, Section
2.4); it is the only coincidence result we are aware of that is currently in
the literature. The result has appeared in the books by Lawless (1986)
and Cox and Oakes (1984, p. 71).

B.1. Proposition (Scale and Frailty). With the underlying distri-
bution F, scale and frailty parameter families coincide if and only if
there exists a function ξ( · ) with domain and range (0,∞) such that

F̄ (λx) = [F̄ (x)]ξ(λ) for all λ > 0 and all x. (1)

From the functional equation (1), it follows that F is either a Weibull
distribution, that is,

F̄ (x) = exp {−(λx)α}, λ, α > 0, x > 0, (2a)
= 1, λ, α > 0, x ≤ 0,

or it is a negative Weibull distribution, that is,

F̄ (x) = exp {−(−λx)−α}, λ, α > 0, x < 0, (2b)
= 0, x ≥ 0.

Note that both of these distributions are extreme-value distributions
for minima, given, respectively, by 20.G(2) and 20.G(3), but with added
scale parameter.
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Proof. Because ξ(λ) can be any positive number, it follows from (1)
with x = 0 that either F̄ (0) = 0 or F̄ (0) = 1.

Case 1. F̄ (0) = 1 (in which case, F̄ (x) = 1 for all x < 0). Upon taking
logarithms, (1) takes the form

R(λx) = ξ(λ)R(x), x, λ > 0. (3a)

According to Proposition 22.B.1.a, this means that for some real con-
stant α, ξ(z) = zα and R(x) = (λx)α. Because R is increasing and non-
negative, it follows that λ and α are positive.

Case 2. F̄ (0) = 0 (in which case, F̄ (x) = 0 for all x > 0). Let

T (x) = R(−x), x > 0;

again take logarithms in (1) and rewrite to obtain the following analog
of (3a):

T (λx) = ξ(λ)T (x), x, λ > 0. (3b)

Again from Proposition 22.B.1.a and the fact that F̄ is a survival func-
tion, it follows that (2b) holds.

Because ξ(z) = zα, it is clear that the full range of each parameter
is achieved as the other parameter takes on all values in its range. It is
straightforward to verify that both the Weibull distribution (2a) and
the distribution given by (2b) satisfy (1). �

Kalbfleisch and Prentice (2002) prove Proposition B.1 under the
assumption that F̄ (0) = 1 (case 1) and that F has a density. In this
case, they are able to start with the functional equation

r(λx) =
ξ(λ)
λ

r(x), x, λ > 0.

This equation can be obtained from (3a) by differentiating; from a
functional equation point of view, it has the same form as equation
(3a), and its solution is also given by Proposition 22.B.1.a.

B.2. Proposition (Scale and Resilience). With the underlying
distribution F, scale and resilience parameter families coincide if and
only if there exists a function η( · ) with domain and range (0,∞) such
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that

F (λx) = [F (x)]η(λ) for all λ > 0 and all x. (4)

It follows that F is either of the form

F (x) = exp {−(λx)−α}, x, λ, α > 0,
= 0, x ≤ 0,

or it is of the form

F (x) = exp {−(−λx)−α}, x < 0, α, λ > 0,
= 1, x ≥ 0.

Note: These distribution functions are the extreme-value distributions
for maxima given by 18.G(3a) and 18.G(2a), respectively.

Proof. Equation (4) can be solved by the methods analogous to those
used in the proof of Proposition B.1 but with the reverse hazard rate S
playing the role that R does there. As in Proposition B.1, the sign of the
parameters is determined by the requirement that F be a distribution
function. �

B.3. Proposition (Scale and Tilt). With the underlying distribu-
tion F, scale and tilt parameter families coincide if and only if there
exists a function γ( · ) with domain and range (0,∞) such that

F̄ (λx) =
γ(λ)F̄ (x)

1 − γ̄(λ)F̄ (x)
for all λ > 0 and all x ≥ 0. (5)

It follows that for some λ, α > 0, either

F̄ (x) =
1

1 + (λx)α
, x ≥ 0,

= 1, x ≤ 0, (6)

or

F̄ (x) =
(−λx)α

1 + (−λx)α
, x ≤ 0,

= 0, x ≥ 0. (7)



SVNY289-Olkin May 15, 2007 17:13

B. Coincidences Leading to Continuous Distributions 571

Here, the first distribution is a Pareto III distribution, defined and
discussed in Section 11.B. The second distribution is the distribution
of 1/(−Y ), where Y has a Pareto III distribution.

Proof. Set x = 0 in (5) to obtain γ̄(λ){F̄ (0) − [F̄ (0)]2} = 0. Because
γ can take any positive value, F̄ (0) − [F̄ (0)]2 = 0, and hence either
F̄ (0) = 1 or F̄ (0) = 0.

Case 1. F̄ (0) = 1, so that F̄ (x) = 1, x < 0. Such a survival function
satisfies (6) for all x < 0. For x ≥ 0, rewrite (5) in the form

F̄ (λx)
F (λx)

= γ(λ)
F̄ (x)
F (x)

, x, λ > 0. (8)

In terms of the odds ratio Ø+(x) = F̄ (x)/F (x), equation (8) becomes
Ø+(λx) = γ(λ)Ø+(x); this equation has the form of 22.B(1a) and can
be solved using Proposition 22.B.1.a. According to that proposition,
there are constants b and c such that

F̄ (x)
F (x)

= bxc, x > 0, and γ(λ) = λc.

This means that

F̄ (x) =
bxc

1 + bxc
, x > 0.

Because F̄ is nonnegative, b > 0, and because F̄ is decreasing, c < 0.
With the change of parameters c = −a, b = λ−α, the survival function
(6) is obtained. Because γ(λ) = λc, each parameter takes on all values
in (0,∞) as the other parameter ranges over the same interval.

Case 2. F̄ (0) = 0, so that F̄ (x) = 0 for all x ≥ 0. This assures that (5)
is satisfied for all x ≥ 0. For the interval x < 0, let y = −x, and rewrite
(5) in the form

F̄ (−λy)
F (−λy)

= γ(λ)
F̄ (−y)
F (−y)

, y, λ > 0.

This equation is of the form 22.B(1a) and can be solved in the manner
that (8) is solved; in this way, (7) is obtained.

It can be verified directly that the distributions defined by (6) and
(7) satisfy (5). �
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B.4. Proposition (Scale and Hazard Power). With the underly-
ing distribution F having hazard function R, scale and hazard power
parameter families coincide if and only if there exists a function ζ( · )
with domain and range (0,∞) such that

exp {−[R(x)]ζ(λ)} = F̄ (λx) = exp {−R(λx)},

that is,

[R(x)]ζ(λ) = R(λx) for all λ > 0 and all x ≥ 0. (9)

It follows that either F̄ is of the form

F̄ (x) = exp {− exp (λx)α}, x > 0, (10)

or it is of the form

F̄ (x) = 0, x > 0, (11)

and either

F̄ (x) = exp {− exp [−(ν |x | )β]}, x < 0, (12)

or

F̄ (x) = 1, x < 0. (13)

Here, λ, α, β, and ν are positive constants.

Proof. Note that from a functional equation point of view, (9) and (2)
are the same equation. Because the scale parameter λ and the hazard
power parameter ζ can take any finite positive values, it follows from
(9) that

R(x) < ∞ for all x > 0, or R(x) = ∞ for all x > 0,

and

R(x) > 0 for all x < 0, or R(x) = 0 for all x < 0.
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But R(x) = ∞ for all x > 0, means that F̄ (x) = 0 for all x > 0, and
R(x) = 0 for all x < 0 means that F̄ (x) = 1 for all x < 0. This estab-
lishes (11) and (13).

Consider now the case that R(x) < ∞ all x > 0, If R(x) = 0 for
some x > 0, then it follows from (9) that R(x) = 0 for all x > 0, and
this is not possible. Consequently, R(x) > 0 for all x > 0 and (9) can
be rewritten as

ζ(λ) logR(x) = logR(λx), λ, x > 0. (14)

From Proposition 22.B.1a, it follows from (14) that for some constants b
and c,

R(x) = exp {bxc} and θ(λ) = λc.

This means that

F̄ (x) = exp {− exp bxc}, x > 0. (15)

Because F̄ is a decreasing function, either both b and c are positive
or both are negative. If both are positive, then an obvious change of
parameters transforms (15) to (10). If both b and c are negative, then
(15) fails to be a proper survival function because then F̄ (∞) = e−1.
Because c �= 0, the value of ζ(λ) ranges over (0,∞) as λ takes on all
positive values.

It remains to consider the case that R(x) > 0 for all x < 0. Again,
it follows from Proposition 22.B.1.a that

F̄ (x) = exp {− exp b |x | c}, x < 0.

Because F̄ is decreasing, and |x | is decreasing in x < 0, it follows that
b and c have opposite signs. If b > 0, c < 0, then limx→−∞ F̄ (x) = e−1,
which would mean that F̄ is not a proper survival function. Conse-
quently, b < 0, c > 0, and a reparameterization yields (12). �

Note that both (10) and (12) give the value F̄ (0) = e−1. This means
that solutions (10) and (12) can be paired up in any way to provide
a solution to (9). The special case that λ = ν and α = β yields in this
way the survival function

F̄ (x) = exp {− exp [(sgn x)(λ |x | )α]}, −∞ < x < ∞,
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where sgn x is the sign of x. If α = 1, this is the extreme value distri-
bution for minima with support (−∞,∞) given by 20.G(4), but with
an added scale parameter.

The following proposition involves a moment parameter, and con-
sequently, there is a tacit assumption that the underlying distribution
F satisfies F (x) = 0, x < 0.

B.5. Proposition (Scale and Moment). Denote by B the set of all
β for which the βth moment μβ of the underlying distribution F is
finite. Scale and a moment parameter families coincide if and only if
there exists a function β( · ) with domain (0,∞) and range B such
that

1
μβ

∫ x

0
zβdF (z) = F (λx), x > 0, λ > 0. (16)

Equation (16) is satisfied if and only if F is a lognormal distribution;
then, the family is the family of lognormal distributions.

Proof. To solve (16), the first step is to show that (16) implies that F
is everywhere differentiable, with density that satisfies the functional
equation

xβ(λ)f(x)
μβ(λ)

= λf(λx), x > 0. (17)

The second step is to convert (17) to a standard functional equation
with known solution.

To show that (16) implies that F is differentiable, note that for
β ≥ 0,Δ > 0,

xβ[F (x+Δ) − F (x)] ≤
∫ x+Δ

x
zβ dF (z)

≤ (x + Δ)β[F (x + Δ) − F (x)]. (18a)

According to (16),

∫ x+Δ

x
zβ dF (z) = F (λ(x + Δ)) − F (λx),
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and thus, (18a) can be rewritten as

xβ

μβ

[F (x + Δ) − F (x)]
Δ

≤ λ
F (λ(x + Δ)) − F (λx)

λΔ

≤ (x + Δ)β

μβ

[F (x + Δ) − F (x)]
Δ

. (18b)

Because F is increasing, it is differentiable almost everywhere. If
it is differentiable at x, it follows from (18b) that it is differentiable
at λx (hence differentiable everywhere). By taking limits in (18b), the
functional equation (17) is obtained.

Because f(1) = 0 implies f(λ) = 0 for all λ > 0, it follows that
f(1) �= 0. With x = 1, it follows from (17) that

μβ(λ) = f(1)/λf(λ);

use this to rewrite (17) in the form

xβ(λ) f(x)
f(1)

f(λ) = f(λx), x > 0. (19)

With the notation g(x) = f(x)/f(1), (19) can be rewritten in the form

xβ(λ)g(x)g(λ) = g(xλ). (20)

It follows from Proposition 22.B.3.a that g has the form

g(x) = xbc exp {c(log x)2/2},

that is,

f(x) = f(1)xbc exp {c(log x)2/2}. (21)

If this is to be a density function, then c < 0; set c = −1/σ2. Next,
make the change of parameters bc = (μ/σ2) − 1. Determine f(1) by
the condition that the density integrates to 1; this is possible because
as is shown above, a distribution satisfying (16) has everywhere a fi-
nite derivative. According to Proposition 20.A.1, this means that the
distribution cannot have a singular part.
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By these means, (21) is reduced to

f(x) =
1√

2πσx
exp {−[(log x) − μ2]/2σ2}, (22)

which is the density of a lognormal distribution.
Because β(λ) = c log λ and λ(β) = exp {β/c}, it follows that the

full range of each parameter is achieved as the other parameter ranges
over its allowable values. Further it can be verified that the lognormal
distribution satisfies (16). �

B.5.a. Remark. Motivated by a question arising in renewal theory,
Vardi, Shepp and Logan (1981) consider a functional equation related
to (16). They take β = 1 and identify the class of distributions for
which

1
μ

∫ x

0
z dF(z) = F (λx) (16a)

holds for some λ. The survival function on the left side of (16a) arises
as the limiting distribution of the residual life in a renewal process (see
Section 20.F.b), and (16a) asks for the class of underlying distribu-
tions for which the residual life distribution is a rescaled version of the
underlying distribution. Another related question is also addressed by
Vardi, Shepp and Logan (1981); for what underlying distributions is the
limiting total lifetime distribution a rescaled version of the underlying
distribution. Again, see Section 20.F.b for definitions.

B.6. Proposition (Scale and Laplace Transform). Denote by
(−c,∞) the values of s for which the Laplace transform
φ(s) =

∫ ∞
−∞ e−sz dF (z) of the underlying distribution F is finite.

Scale and Laplace transform parameter families coincide if and only
if there exists a function s( · ) with domain (0,∞) and range (−c,∞)
such that

1
φ(s(λ))

∫ x

−∞
e−s(λ)z dF (z) = F (λx) for all λ > 0 and all x. (23)

Consequently, scale and Laplace transform parameter families coincide
if and only if F is either a gamma distribution or the distribution of
−X, where X has a gamma distribution.
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Proof. From (23) it follows that for all Δ > 0,

I =
∫ x+Δ

x
e−sz dF (z) = φ(s)[F (λ(x + Δ)) − F (λx)]. (24)

Because the integrand of I is monotone, I itself admits simple bounds,
which are also bounds on the right side of (24); in case x ≥ 0,

e−s(x+Δ)[F (x + Δ) − F (x)] ≤ φ(s)[F (λ(x + Δ)) − F (λx)]

≤ e−sx[F (x + Δ) − F (x)], (25)

whereas the inequalities (25) are reversed if x + Δ < 0. Because F is
increasing, it is differentiable almost everywhere; suppose it is differ-
entiable at x ≥ 0 and denote the derivative by f. Then, after dividing
(25) by Δ > 0, it follows that

e−sxf(x) ≤ λφ(s) lim
Δ→0

F (λ(x + Δ)) − F (λx)
λΔ

≤ e−sxf(x). (26)

Consequently, the limit in (26) exists, F is differentiable at λx, and
hence is differentiable for all x ≥ 0 and it follows that

e−sxf(x) = λφ(s)f(λx), 0 ≤ x < ∞. (27)

The argument for x < 0 is similar with the same conclusion, so (27)
holds for all x.

Because (27) must hold for all λ > 0, it follows that if f(x) > 0 for
some x > 0, then it must be that f(x) > 0 for all x > 0. Similarly, if
f(x) > 0 for some x < 0, then it must be that f(x) > 0 for all x < 0.
If f is identically 0, then F is a constant and not a proper distribution
function, so either f(x) > 0 for all x > 0 or f(x) > 0 for all x < 0, or
both.

Case 1. f(x) > 0 for all x > 0. Set x = 1 in (27) to obtain

φ(s(λ)) = e−s(λ)f(1)/λf(λ).

Substitute φ(s) = φ(s(λ)) from this in (27) to obtain

f(λx) = f(x)f(λ) e−xs(λ) es(λ)/f(1). (28)
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With the interchange of λ and x, the left-hand side of (28) is unchanged,
and consequently, the same is true of the right-hand side of (28). With
this interchange, it follows that (x− 1)s(λ) = (λ− 1)s(x); this means
that s(λ)/(λ− 1) is a constant, say c. With this notation, (28) can be
rewritten as

ec(λx−1) f(λx)
f(1)

=
[
ec(x−1) f(x)

f(1)

] [
ec(λ−1) f(λ)

f(1)

]
. (29)

Let h(x) = ec(x−1)f(x)/f(1) and rewrite (29) as

h(λx) = h(λ)h(x), x, λ > 0.

According to Proposition 22.A.3, this means that h(x) = xα for some
constant α. Thus,

f(x) = [f(1) ec]xα e−cx, x > 0. (30)

This function has a finite integral if c > 0 and α > −1, which can be
obtained from the fact that∫ ∞

0
xa e−cx dx = [Γ(a + 1)]/ca+1; (31)

see Definition 23.A.1. Thus, (30) is the density of a gamma distribution.
Note that s(λ) ranges over the interval (−c,∞) as λ ranges over (0,∞);
this is just the interval over which the Laplace transform of (30) is finite.

Case 2. f(x) > 0 for all x < 0. An argument similar to the above leads
to the conclusion that

f(x) = [f(−1) eδ] |x | β e−δx; (32)

If β > −1 and δ < 0, then f has a finite integral over the interval
(−∞, 0), which again can be obtained from (31). By reparameteriz-
ing, it follows that because f satisfies (27), it must be that for some π
and π̄ = 1 − π in the interval [0, 1],

f(x) = π
λα+1xα e−λx

Γ(α + 1)
, x > 0, λ > 0, α > −1,

= π̄
δβ+1xβ e−δx

Γ(β + 1)
, x < 0, δ < 0, β > −1. (33)



SVNY289-Olkin May 15, 2007 17:13

B. Coincidences Leading to Continuous Distributions 579

With the aid of 9.A(5), it can be directly verified that the density (33)
has Laplace transform

φ(s) = π

(
λ

λ + s

)α+1

+ π̄

(
δ

δ − s

)β+1

, −λ < s < −δ.

By using this expression for φ(s), it can be verified that (33) satisfies
(27) if and only if π = 0 or 1. As in the proof of Proposition B.5, it can
be shown that F can have no singular part. �

B.7. Proposition (Scale and convolution). Suppose that the un-
derlying distribution F satisfies F (x) = 0, x < 0, and denote the
Laplace transform of F by φ. With this underlying distribution, scale
and convolution parameter families coincide if and only if F is strictly
stable (see Definition 20.D.14).

Proof. Denote the Laplace transform of the underlying distribution F
by φ. Scale parameter and a convolution parameter families coincide if
and only if

φ(s/λ) = [φ(s)]ν (34)

for some ν = ν(λ), λ > 0, and some λ = λ(ν), ν > 0. Because (34) must
hold for positive integer values of ν, F is strictly stable.

Next, suppose that F is strictly stable. Then, for each n = 1, 2, . . . ,
there exists cn > 0 such that φ(cns) = [φ(s)]n, and similarly φ(cms) =
[φ(s)]m,m = 1, 2, . . . . By solving the second of these equations for φ
and substituting in the first, it follows that

[φ(s)]n/m = φ(cms/cn). (35)

Now take limits as n/m approaches ν; then, the left side of (35) has
the limit [φ(s)]ν , and so the right side of (35) must also have a limit.
Because φ is continuous and strictly decreasing, it follows that cm/cn
also has a limit depending on ν, say λ(ν). Consequently, (35) yields
(34). This shows that for each ν there exists λ = λ(ν) such that (34)
holds.

To show that for each λ > 0 there exists ν = ν(λ) such that (34)
holds, solve (34) for ν to obtain

ν = [log φ(s/λ)]/[log φ(s)].



SVNY289-Olkin May 15, 2007 17:13

580 18. Coincidences of Semiparametric Families

Although this value of ν need not be rational, it can be approximated
to any desired degree of accuracy by a rational number n/m; because
φ is continuous, it follows that (35) holds with (cm/cn) ≈ λ. �

Remark. The hypothesis that F is the distribution of a nonnegative
random variable is used to insure that the Laplace transform is de-
creasing, so the right side of (35) has a limit. There may be other ways
to insure this. A similar argument can be carried out for distributions
of nonpositive random variables.

Recall from Section 7.K that in this book, age parameters are in-
troduced only when the underlying distribution is a distribution of a
nonnegative random variable.

B.8. Proposition (Scale and Age). With the underlying distribu-
tion F, scale and age parameter families cannot coincide; the age pa-
rameter family is a subset of the scale parameter family if and only if
there exists a function θ( · ) with domain (0,∞) and range contained
in (0,∞) such that

F̄ (x + t)
F̄ (t)

= F̄ (θ(t)x) for all t > 0 and all x. (36)

From (36), it follows that F has the form

F̄ (x) = (1 + λx)−ξ, ξ, x > 0, (37)

or it has the form

F̄ (x) = (1 − λx)ξ, ξ > 0, 0 ≤ x ≤ λ−1,

= 0, x ≥ λ−1. (38)

The first of these distributions is a Pareto II distribution
(Section 9.B) and the second of these distributions is a distribution
uniform on (0, λ−1) with frailty parameter ξ.

Proof. Set x = 0 to find that F̄ (0) = 1, that is, R(0) = 0. Upon taking
logarithms, the functional equation (36) becomes

R(x + t) = R(t) + R(θ(t)x). (36a)
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Because R is increasing, it is differentiable almost everywhere. Rewrite
(36a) in the form

R(x + t) −R(t)
x

=
R(θ(t)x) −R(0)

θ(t)x
θ(t)

and let x → 0 to conclude that R is differentiable at t if and only if it is
differentiable at 0; consequently, R is differentiable everywhere. Because
R is differentiable, it also follows from (36a) that θ is differentiable.
Differentiate (36a) with respect to t, set t = 0 and use θ(0) = 1 to obtain

r(x) =
r(0)

1 − xθ′(0)
. (39)

Three cases arise:

Case 1: θ′(0) < 0. Then, r′(0) < 0 and

r(x) = r(0)/[1 + λx], where λ = −θ′(0) > 0. (40)

By integrating (40) to obtain R, (37) follows with ξ = r(0)/λ. By dif-
ferentiating (36a) with respect to x and using (40), it follows that
θ(t) = (1 + λt)−1.

Note that 0 < θ(t) ≤ 1 for t ≥ 0, so the full range for θ is not
achieved. Consequently, the age parameter yields a smaller family than
the scale parameter.

Case 2: θ′(0) > 0. Here, r(x) = r(0)/[1 − λx], where λ = θ′(0) > 0.
This together with an integration to obtain R yields (38), again with
ξ = r(0)/λ. With the same procedure as in Case 1, it follows that
θ(t) = (1 − λt)−1, and consequently θ(t) ≥ 1. Moreover, an age param-
eter t for the survival function (38) is defined only for 0 < t < 1/λ,
a condition also necessary for θ(t) to be nonnegative. Again, the full
range (0,∞) for θ is not achieved.

Case 3: θ′(0) = 0. In this case, it follows from (39) that r is a constant.
Differentiate (36a) with respect to x and set x = 0 to see that this
means that θ is also a constant, and this is not possible because θ > 0
is a free parameter.

By using the values of θ(t) obtained above in cases 1 and 2, it can
be verified that the solutions (37) and (38) satisfy (36). �
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b. Coincidences Involving Power Parameter Families

Recall that power parameters can be introduced only for nonnegative
random variables, and consequently, in the following several propo-
sitions that deal with power parameters, it is tacitly assumed that
F̄ (0−) = 1.

Note that in the distributions displayed below, parameters are not
indicated by their usual letters. This avoids the problem of confusing
parameters already in the underlying distribution and the parameters
to be introduced.

B.9. Proposition (Power and Frailty). With the underlying dis-
tribution F, frailty and power parameter families coincide if and only
if there exists a function ξ( · ) with domain and range (0,∞) such that

[F̄ (x)]ξ(α) = F̄ (xα) for all α > 0 and all x ≥ 0. (41)

From (41), it follows that F either has the form

F̄ (x) = exp {−b(− log x)−c}, 0 ≤ x ≤ 1, b ≥ 0, c > 0,
= 0, x > 1, (42a)

or

F̄ (x) = exp {−b(log x)c}, x ≥ 1, b > 0, c > 0,
= 1, x ≤ 1, (42b)

or

F̄ (x) = 1, x < 1,
= 0, x ≥ 1. (42c)

The survival function (42b) is the survival function of eX , where X
has Weibull distribution. This rather unfamiliar distribution is called
the log Weibull distribution and is discussed in Section 15.D.d. The
case b = c = 1 is a Pareto I survival function (see Section 11.B). The
survival function (42c) is the distribution degenerate at 1; the case
b = 0 in (42a) is the distribution degenerate at 0.

Proof. The solutions of the functional equation (41) are provided by
Proposition 22.B.1.c. As indicated in the proof of that proposition, two
cases must be treated separately.



SVNY289-Olkin May 15, 2007 17:13

B. Coincidences Leading to Continuous Distributions 583

Case 1: 0 < x < 1. Either F̄ (x) = 0, F̄ (x) = 1, or

F̄ (x) = exp {−b(− log x)−c} and ξ(α) = αc. (43a)

Because F̄ is decreasing, it must be that b and c have the same sign.
To insure that F̄ is a (proper) survival function, b, c > 0. Note that ξ
takes all values in (0,∞) as α ranges over (0,∞).

Case 2: x ≥ 1. In this case, either F̄ (x) = 0 or

F̄ (x) = exp {b′(log x)c
′} and ξ(α) = αc′ . (43b)

for some constants b′ and c′. In order that F̄ be decreasing, it must
be that these constants have opposite signs, that is, b = −b′ and c = c′

have the same sign. To insure that F̄ is a proper survival function,
b, c > 0. �

B.10. Proposition (Power and Resilience). With the underlying
distribution F, resilience and power parameter families coincide if and
only if F either has the form

F (x) = exp {−b(log x)−c}, b ≥ 0, c > 0, x ≥ 1,
= 0, x < 1, (44a)

or

F (x) = exp {−b(− log x)c}, b, c > 0, 0 ≤ x ≤ 1,
= 1, x ≥ 1, (44b)

or

F (x) = 0, x < 1,
= 1, x ≥ 1. (44c)

Proof. The distribution of X has frailty and power parameters if and
only if the distribution of 1/X has resilience and power parameters.
From Proposition B.9, it follows that the coincidence of resilience and
power parameter families occurs for, and only for, the distribution of
1/X where X has the survival function (42a), (42b), or (42c). �

The distribution (44a) is not encountered elsewhere in this book.
The distribution (44b) is a negative log Weibull distribution (15.D(5));
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it is a uniform distribution with a hazard power parameter c and a
parameter b that can be regarded either as a resilience or power pa-
rameter.

B.11. Proposition (Power and Tilt). With the underlying distri-
bution F, tilt and power parameter families coincide if and only if there
exists a function γ( · ) with domain and range (0,∞) such that

F̄ (xα) =
γ(α)F̄ (x)

1 − γ̄(α)F̄ (x)
for all α > 0 and all x ≥ 0. (45)

It follows that tilt and power parameter families coincide if and only if
F has one of the following three forms:

F is degenerate at 0 or 1, (46a)

F (x) = [1 + b(− log x)c]−1, b, c > 0, 0 ≤ x ≤ 1, (46b)
= 1, x ≥ 1,

or

F̄ (x) = [1 + b(log x)c]−1, b, c > 0, x ≥ 1, (46c)
= 1, x < 1.

The distribution (46b) is the distribution of e−X , where X has a Pareto
III distribution of 11.B(2). The survival function (46c) is the survival
function of eX , where X has a Pareto III distribution.

Proof. To solve (45), the cases x < 1 and x ≥ 1 must be considered
separately; they are not connected by (45).

Case 1: 0 < x < 1. Either F (x) = 0 for all x < 1, or F (x) > 0 for all
x < 1; in the latter case, (45) can be rewritten in terms of the odds
ratio Ø+(x) = F̄ (x)/F (x) as

Ø+(xα) = γ(α)Ø+(x), 0 < x < 1, α > 0.

According to Proposition 22.B.1.d, the possible solutions to this func-
tional equation are (46a), that is,

F̄ (x) = 0, 0 < x < 1,
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or for some constants b and c,

Ø+(x) = b(− log x)c and γ(α) = αc.

This leads to (46b), with b, c > 0 because (46b) must be a survival
function.

Case 2: x ≥ 1. Either F̄ (x) = 0 for all x ≥ 1 (the case F̄ (x) = 1 for
all x ≥ 1 is rejected because it is an improper survival function), or it
follows from Proposition 22.B.1.d and (45) with x ≥ 1 that for some
constants b and c,

Ø+(x) = b(log x)c and γ(α) = αc.

This leads to (46c), with b, c > 0 because (46c) must be a survival
function.

In all cases, the range of one parameter allows full range of the other
parameter, so the same family is generated in each case. �

There are a number of underlying distributions for which the in-
troduction of a power parameter and a hazard power parameter lead
to the same family. Solutions are all related but include a degener-
ate distribution, a Bernoulli distribution, distributions with both an
absolutely continuous and a discrete part, and absolutely continuous
distributions.

B.12. Proposition (Power and Hazard Power). With the under-
lying distribution F, power and hazard power parameter families coin-
cide if and only if there exists a function θ( · ) with domain and range
(0,∞) such that

F̄ (xα) = exp {−[R(x)]θ(α)} for all α > 0 and all x ≥ 0. (47a)

It follows that F has one of the following forms:
For 0 ≤ x ≤ 1,

F̄ (x) = exp {−e−b(− log x)c}, bc > 0, (48a)
F̄ (x) = 1, (48b)
F̄ (x) = exp {−1}, or (48c)
F̄ (x) = 0. (48d)
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For x ≥ 1,

F̄ (x) = exp {−eb
′(log x)c

′

}, b′c′ > 0, or (49a)
F̄ (x) = 0. (49b)

Because the introduction of a power parameter involves the assump-
tion that F is the distribution of a nonnegative random variable,

F̄ (x) = 1, x < 0.

The solutions (48a,b,c,d) and (49a,b) can be paired in any way that
yields monotonicity.

The only absolutely continuous distribution with no discrete part is
obtained with the pairing

(48a) with (49a), b, c, b′, c′ > 0;

this absolutely continuous distribution is concentrated on [0,∞). In
particular, the Weibull distribution is obtained from (48a) and (49a)
with b = b′ = α and c = c′ = 1.

Pairings that yield distributions degenerate at 0 include

(48d) with (49b).

Pairings that lead to degeneracy at 1 include

(48b) with (49b).

The pairing (48c) with (49b) leads to the Bernoulli distribution
with mass e−1 at 1.

The pairing of

(48c) with (49a), b′, c′ > 0

yields a distribution with mass at 0 and an absolutely continuous part
concentrated on [1,∞).
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Pairing

(48b) with (49a), b, c > 0

yields a distribution with mass at 1 and an absolutely continuous part
concentrated on [1,∞).

The pairing

(48a), b, c > 0,with (49b)

yields a distribution with mass at 1 and absolutely continuous part
concentrated on (0, 1), whereas pairing

(48a), b, c < 0,with (49b)

yields a distribution with mass at 0 and an absolutely continuous part
concentrated on [0, 1].

Proof. Equation (47a) can be rewritten in the form

R(xα) = [R(x)]θ(α), x > 0. (47b)

Because xα ≥ 1 if and only if x ≥ 1, (47b) provides no link between
values of R on (0, 1) with those on [1,∞), and it is necessary to treat
the cases x < 1 and x > 1 separately.

Case 1: x < 1. There are three trivial solutions of (47b): If R(x) = 1
for all x < 1, then (48c) holds. If R(x) = 0 for all x < 1, then (48b) is
obtained. If R(x) = ∞, then (48d) follows. Otherwise, it follows from
Proposition 22.B.1.c that for some constants b and c,

R(x) = exp {b(− log x)c} and θ(α) = αc. (50)

Because R is an increasing function, b and c must have the same sign.
This yields (48a).

Case 2: x ≥ 1. Here, the trivial solutions R(x) = 0 and R(x) = 1 lead
to an improper distribution, and consequently, they are rejected. How-
ever, the trivial solution F̄ (x) = 0, that is, R(x) = ∞, x ≥ 1, is allow-
able and yields (49b). Otherwise, it follows from Proposition 22.B.1.c
that

R(x) = exp {b′(log x)c
′} and θ(α) = αc′ . (51)
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Again, the fact that R is increasing must be considered, and this again
leads to the conclusion that b′ and c′ must be of the same sign.

The various solutions in Cases 1 and 2 can pair up in any fash-
ion that yields a survival function, as listed in the statement of the
proposition.

It can easily be verified that in both Cases 1 and 2, the range of
the power parameter allows the full range of the hazard power param-
eter, and similarly the range of the hazard power parameter allows full
range of the power parameter. Thus, the introduction of one of these
parameters yields the same family as the introduction of the other
parameter. �

The following proposition gives rise to both log gamma and nega-
tive log gamma distributions. These rather unfamiliar distributions are
discussed in Section 15.D.

B.13. Proposition (Power and Moment). Suppose that the un-
derlying distribution F has a twice differentiable density, and denote
by B be the set of all β for which the βth moment μβ of F is finite.
Then, power and moment parameter families coincide if and only if
there exists a function β( · ) with domain (0,∞) and range B such that

xβ(α)f(x)/μβ(α) = αxα−1f(xα), x ≥ 0, α > 0. (52)

It follows that F is either a log gamma distribution 15.D(1) or a neg-
ative log gamma distribution 15.D(2).

Proof. Because f is a density, it is not identically zero, and in fact,
f(x0) > 0 for some x0 �= 0 or 1.

Case 1: x0 > 1. According to (52), f(x0) > 0 means that f(xα0 ) > 0
for all α > 0, and consequently, it follows that f(x) > 0 for all x ≥ 1.
Let φ(u) = log f(eu), u > 0. Because f is twice differentiable, so φ is
twice differentiable, and from the logarithm of (52) it follows that
φ′′(u) = α2φ′′(αu), u > 0. Fix u0 > 0, and let αu0 = z to conclude that
φ′′(z) = u2

0φ
′′(u0)/z2. This equation can be solved by integration to

conclude that f has the form

f1(x) = a(log x)ν−1x−λ, x > 1, (53)

where λ, ν > 0 and a = λ/Γ(ν) because f must be a density (see
15.D(1)).
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Case 2: x0 < 1. With the argument used in Case 1, it follows that
x0 < 1 implies f(x) > 0, for all x in [0, 1]. Set φ(u) = log f(e−u), u > 0,
and follow the argument of Case 1 to conclude that f has the form

f2(x) = a(− log x)ν−1xλ−1, 0 < x < 1, (54)

where λ, ν > 0 and a = λν−1/Γ(ν) so that f2 is a density (see 15.D(2)).

Let f in (52) be the log gamma density 15.D(1) to conclude that
β = λ(1 − α). This shows that β ranges over (−∞, λ) as α ranges over
(0,∞); with the negative log gamma density 15.D(2) in (52), it follows
that β = λ(α− 1) and β ranges over (−λ,∞) as α ranges over (0,∞).
In each case, the full range of each parameter is achieved. �

c. More Coincidences Involving Frailty Parameter
(Proportional Hazards) Families

Propositions B.1 and B.9 give results regarding the coincidences of scale
and frailty parameter families and power and frailty parameter families.
Here, other coincidences involving frailty parameter families are given.

B.14. Proposition (Frailty and moment). Suppose that the un-
derlying distribution F has the density f, and denote by B the set of all
β such that the βth moment μβ of F is finite. Then, frailty and moment
parameter families coincide if and only if there exists a function β( · )
with domain (0,∞) and range B such that

ξf(x)[F̄ (x)]ξ−1 = xβ(ξ)f(x)/μβ(ξ), x ≥ 0, ξ > 0. (55)

It follows from (55) that F is a Pareto I distribution.

Proof. From (55), it follows that either f(x) = 0 or

ξ[F̄ (x)]ξ−1 = xβ(ξ)/μβ(ξ),

that is,

F̄ (x) =
xβ(ξ)/(ξ−1)

(ξμβ(ξ))1/(ξ−1) . (56)

Because F̄ is decreasing, β(ξ)/(ξ − 1) < 0, and because F̄ (x) ≤ 1, (56)
can hold only for x ≥ (ξμβ(ξ))1/β(ξ). It follows that the set where
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f(x) = 0 is the set {x : x < (ξμβ(ξ))1/β(ξ)}. But (56) is the survival func-
tion of a Pareto I distribution.

Now, suppose that the underlying distribution is a Pareto I distri-
bution, say with density

f(x) = αcα/xα+1, x ≥ c > 0, α > 0,
= 0, x ≤ c. (57)

This density has βth moment μβ = αcβ/(α− β), β < α. The introduc-
tion of a moment parameter β < α in (57) leads to the density

fβ(x) =
cα−β(α− β)

xα−β+1 , x > c,

= 0, x ≤ c, (58)

whereas the introduction of a frailty parameter ξ in the density (57)
leads to the density (58) with αξ = α− β. This shows that β takes
on all values less than α as ξ takes on all positive values. Thus, the
introduction of a moment parameter and the introduction of a frailty
parameter lead to the same family. �

Remark. The assumption that a density exists is essential in Propo-
sition B.14; there are discrete distributions for which the introduction
of a moment and a frailty parameter lead to the same family (includ-
ing the trivial cases of degenerate distributions), but the class of such
distributions has not been identified.

B.15. Proposition (Frailty and Laplace Transform). Suppose
that the underlying distribution F has a density f and Laplace
transform φ, finite on the interval (−s0,∞). Then, frailty parameter
and Laplace transform parameter families coincide if and only if there
exists a function ξ( · ) with domain (−s0,∞) and range (0,∞) such
that

e−sxf(x)/φ(s) = ξ(s)[F̄ (x)]ξ(s)−1f(x) for all x and s > −s0. (59)

From (59), it follows that F is an exponential distribution with a loca-
tion parameter.
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Proof. From (59), it follows that either f(x) = 0, or for ξ(s) �= 1,

F̄ (x) =

[
e−sx

ξ(s)φ(s)

]1/(ξ(s)−1)

= c e−dx, (59a)

where c = [ξ(s)φ(s)]−1/[ξ(s)−1] > 0 and d = s/[ξ(s) − 1]. Because
F̄ (x) ≤ 1 for all x, (59a) can hold only for x ≥ (log c)/d. But because it
has been assumed that F has a density, F is continuous, and so (59a)
must hold for all x ≥ (log c)/d; thus, (59a) is the survival function of
an exponential distribution with location parameter (log c)/d.

Because the Laplace transform of the survival function (59a) is finite
on the interval (−d,∞), it follows that s0 = d = s/[ξ(s) − 1], that is,

ξ(s) = 1 +
s

s0
, s > −s0.

This function has the required domain and range. Moreover, the case
excluded above that ξ(s) = 1 satisfies (59a) with s = 0. �

B.16. Proposition (Frailty and Age). There is no underlying dis-
tribution for which frailty and age parameter families coincide. The
resulting families can partially coincide, with the age parameter family
a subset of the frailty parameter family, if and only if

F̄ (x + t)
F̄ (t)

= [F̄ (x)]ξ(t), x, t ≥ 0, (60)

for some function ξ mapping (0,∞) into (0,∞). Equation (60) holds if
and only if F is a Gompertz distribution (Proposition 10.A.3).

Proof. It is convenient to rewrite (60) in terms of the hazard function
R of F by taking logarithms and changing sign to obtain

R(x + t) −R(t) = ξ(t)R(x), x, t ≥ 0. (61)

Because ξ is not a constant function, it follows from Propositions 22.B.4
and 22.A.2 that

R(x) = θ(eλx − 1), ξ(t) = eλt (62)

for some constants θ, λ, which must be positive in order that R be
a hazard function. Conversely, it can be verified directly that the
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Gompertz distribution satisfies (60). Inserting the Gompertz distribu-
tion F̄ (x) = exp {−a(ebx − 1) into (60) leads to the conclusion that
ξ(t) = ebt. But for positive t, ebt ≥ 1. This means that the family gen-
erated by the introduction of an age parameter is a subfamily of the
one generated by the frailty parameter. �

d. Remaining Coincidences Involving Resilience
Parameter Families

B.17. Proposition (Resilience and Moment). Suppose that the
underlying distribution F has a density f and βth moment finite on
the set B. Then, resilience parameter and moment families coincide if
and only if there exists a function β( · ) with domain (0,∞) and range
B such that

ηf(x)[F (x)]η−1 =
xβ(η)f(x)
μβ(η)

for all x and η > 0. (63)

The functional equation (63) is satisfied if and only if F is a uniform
distribution with scale and power (resilience) parameters (see 14.B.1).
That is, for some positive constants c and d,

F (x) = (x/d)c, 0 ≤ x ≤ d. (64)

Proof. Equation (63) can be solved in the same manner as equation
(55). The requirement that F be a distribution function determines the
sign of the constants, and the support of the distribution. Note that
for the distribution (64), μβ = cdβ/(c + β), where c + β > 0. From this
fact, and (63), it follows that B = (−c,∞) and

β(η) = c(η − 1).

Consequently, β( · ) has the required range. �

B.18. Proposition (Resilience and Laplace Transform). Sup-
pose that the underlying distribution F has a density f and a Laplace
transform φ, finite on the set S. Then, resilience parameter and
Laplace transform parameter families coincide if and only if there
exists a function η( · ) with domain S and range (0,∞) such that

η(s)[F (x)]η(s)−1f(x) = e−sxf(x)/φ(s) for all x and all s ∈ S. (65)
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Equation (65) is satisfied if and only if F is the distribution of a random
variable of the form a−X, where X has an exponential distribution.
That is,

F (x) = ec(x−a), −∞ < x ≤ a,

= 1, x > a, (66)

for some constant a and positive constant c.

Proof. Equation (65) is satisfied for all x such that f(x) = 0. If f(x) �= 0
and η(s) = 1, it follows from (65) that φ(s) = e−sx for all x such that
f(x) �= 0; this means that s = 0. If η(s) �= 1, then (65) can be rewritten
in the form

F (x) =

(
e−sx

η(s)φ(s)

)1/[η(s)−1]

. (67)

Because F is increasing and F (x) ≤ 1, it must be that c =
−s/(η(s) − 1) > 0; thus (67) can be rewritten in the form of (66), where
the constants a and c are functions of s.

Direct calculations show that the Laplace transform of (66) is finite
for s < c, that is, S = (−∞, c). Because η(s) = (c− s)/c both when
η(s) = 1 and η(s) �= 1, it follows that η( · ) has the required range. �

Remark. As in the case of frailty and Laplace transform parameters,
the condition that F has a density was essential to the above proof;
there are distributions F that do not have densities for which the in-
troduction of a resilience and a Laplace transform lead to the same
family. In particular, any distribution that places mass at only two
points provides an example. It is not known if other examples exist.

e. Remaining Coincidences Involving Tilt Parameter Families

The solution of the functional equation in the following proposition is
due to Aczél (1999). Recall that age parameters are introduced only
when the underlying distribution is a distribution of a nonnegative
random variable.

B.19. Proposition (Tilt and age). With the underlying distribu-
tion F, age parameter and tilt parameter families coincide if and
only if there exists a function γ( · ) with domain and range (0,∞)
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such that

F̄ (x + t)
F̄ (t)

=
γ(t)F̄ (x)

1 − γ̄(t)F̄ (x)
for all x and all t > 0. (68)

It follows that F is an exponential distribution with tilt parameter as
described in Section 9.D.

The Pareto II distribution with unit frailty parameter also satisfies
(68), but in this case the function γ( · ) has a range that is a proper
subset of (0,∞), and consequently, the age parameter family a proper
subset of the tilt parameter family. There is no other underlying dis-
tribution for which partial coincidence occurs.

Proof. Rewrite (68) as

F̄ (x)F̄ (t)
F̄ (x + t)

=
1

γ(t)
−

(
1

γ(t)
− 1

)
F̄ (x) = F̄ (x) +

F (x)
γ(t)

. (69)

Because the left-hand side of (69) is symmetric in x and t, so is the
right side, and consequently,

F̄ (x) +
F (x)
γ(t)

= F̄ (t) +
F (t)
γ(x)

. (70)

The solutions F̄ (x) = 1 and F̄ (x) = 0 for all x of (70) are rejected
because they are not proper survival functions. Consequently, there
exists x0 such that F̄ (x0) < 1. With x = x0, (70) yields

1/γ(t) = aF̄ (t) + b, (71)

where

a =
1 − [1/γ(x0)]

F (x0)
and b =

[1/γ(x0)] − F̄ (x0)
F (x0)

.

With the substitution of (71) in (70), it follows that

F̄ (x)(1 − a− b) = F̄ (t)(1 − a− b).
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Because F̄ is not a constant, it must be that 1 − a− b = 0, and conse-
quently, (71) yields

1/γ(t) = aF̄ (t) + (1 − a). (72)

In order to determine γ( · ), begin by defining the function U by

U(x) = 1/F̄ (x),

and conclude from (69) and (72) that

U(x + t) = a[U(x) + U(t) − 1] + (1 − a)[U(x)U(t)]. (73)

Case 1: a = 1. In this case, (73) takes the form

U(x + t) − 1 = U(x) − 1 + U(t) − 1,

and in this case it follows from Proposition 22.A.1 that for some con-
stant c, U(x) − 1 = cx so that

F̄ (x) =
1

1 + cx
, x ≥ 0.

Because F̄ is a survival function, c > 0, and F is a Pareto II distribution
with unit frailty parameter.

Here, γ(t) = 1 + ct ≥ 1, so the age parameter does not generate the
entire family generated by the tilt parameter.

Case 2: a �= 1. In this case, it follows from Proposition 22.C.4.a that
for some constants c �= 0, d, and λ �= 0,

U(x) = c eλx + d,

and consequently,

F̄ (x) =
1

c eλx + d
.

From (68) with x = 0, it follows that F̄ (0) = 1, and this means that
c + d = 1. Because F̄ is decreasing, c and λ are of the same sign, and
in fact must be positive, for otherwise F̄ is not a proper survival func-
tion. Consequently, F̄ is an exponential distribution with tilt parameter
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given by 9.D(1) with 1/c = γ. In this case, unlike Case 1, γ ranges over
(0,∞) as a ranges over the same interval. �

f. Another Coincidence Involving Moment Parameter Families

B.20. Proposition (Moment and Convolution). Denote by B
the set of all β such that the βth moment μβ of the underlying dis-
tribution F is finite. Because of the uniqueness of Laplace transforms
(Proposition 20.D.2), moment parameter and convolution parameter
families coincide if and only if there exists a function ν( · ) with domain
B and range (0,∞) such that
∫
e−sxxβ dF (x)

μβ
=

[∫
e−sx dF (x)

]ν(β)
for all x and all β ∈ B. (74)

Equation (74) is satisfied if and only if F is a gamma distribution. The
introduction of either parameter generates the entire family of gamma
distributions.

Proof. By differentiating (74) with respect to s and then setting s = 0,
it can be determined that ν(β) = μβ+1/μ1μβ. This means (Proposition
20.B.8), in particular, that ν(1) ≥ 1, with equality only for a degenerate
distribution. Because degenerate distributions fail to satisfy (74), it
follows that ν(1) > 1. With β = 1, rewrite (74) in the form

−φ′(s)/μ1 = [φ(s)]ν(1), (75)

where φ is the Laplace transform of F. The differential equation (75) has
the solution φ(s) = 1/[c + μ1(ν − 1)s]1/(ν−1), where c is a constant and
ν = ν(1). The condition φ(0) = 1 shows that c = 1. Consequently, this
is the Laplace transform of a gamma distribution with scale parameter
λ = 1/[μ1(ν − 1)] and shape parameter 1/(ν − 1).

For the gamma distribution with shape parameter θ, it follows from
9.A(9) that ν(β) = μβ+1/μ1μβ = (β + θ)/θ and μβ is finite for β > −θ.
Thus, ν ranges over the interval (0,∞) as the moment parameter ranges
over B. �

C. Coincidences Leading to Discrete Distributions

There are a number of coincidences that lead to distributions concen-
trating on one or two points. These somewhat negative results are not
always easily proved, but they at least settle some questions.
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Here is a more interesting result; it is a counterpart to Proposition
B.20, where moment and convolution parameter families are found to
coincide for the gamma distribution. Propositions B.20 and C.1 display
another connection between the families of gamma distributions and
Poisson distributions.

C.1. Proposition (Laplace Transform and Convolution). De-
note the Laplace transform of the underlying distribution F by φ.
Laplace transform parameter and convolution parameter families
coincide if and only if

∫ ∞

0
e−ux e

−sx

φ(s)
dF (x) =

[∫ ∞

0
e−ux dF (x)

]ν(s)

for all u > 0 and all s ∈ S, (1)

where S is the set where φ is finite. Equation (1) is satisfied if and only
if F is a Poisson distribution on some lattice 0, a, 2a, 3a, . . . .

Proof. Because a distribution is uniquely determined by its Laplace
transform (Proposition 20.D.2), (1) is necessary and sufficient for
Laplace transform parameter and convolution parameter families to
coincide. Rewrite (1) in the form φ(s + u) = φ(s)[φ(u)]ν(s) and take
logarithms to obtain

ψ(s + u) = ψ(s) + ν(s)ψ(u),

where ψ(s) = log φ(s). According to Proposition 22.B.4, the general
solution of this functional equation is

ψ(s) = α− α ebs and ν(s) = ebs

for some constants α and b. In order for φ(s) = exp {ψ(s)} to be a
Laplace transform, it must have a negative first derivative and a pos-
itive second derivative (Proposition 20.D.5); from this, it follows that
α < 0 and b < 0. In this case, φ is the Laplace transform of a random
variable X such that

P{X = ak} = e−λλk/k!, k = 0, 1, 2, . . . .

where a = −b.
Because the Laplace transform of the Poisson distribution exists for

all real s, ν(s) = ebs takes on all positive values, the full parameter range
of a convolution parameter. Consequently, the two families coincide. �
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a. Two-Point Distributions

C.2. Proposition (Frailty and Resilience). With the underlying
distribution F, frailty parameter and resilience parameter families co-
incide if and only if

[F̄ (x)]ξ = 1 − [1 − F̄ (x)]η, −∞ < x < ∞ (2)

for some

ξ = ξ(η) > 0 defined for all η > 0 (3)

and some

η = η(ξ) > 0 defined for all ξ > 0. (4)

It follows that F places mass on at most two points.

Proof. Rewrite (2) in the form

uξ = 1 − [1 − u]η (5)

for all u such that u = F̄ (x) for some x, and both (3) and (4) must
hold. Whatever ξ and η may be, (5) holds for u = 0 and u = 1. If u �= 0
and u �= 1, then from (5) it follows that

ξ(η) =
− log [1 − (1 − u)η]

− log u
,

and

η(ξ) =
− log (1 − uξ)
− log (1 − u)

.

Both of these quantities satisfy the nonnegativity requirement, but they
can hold independently of u if and only if u is fixed. This means that
F̄ (x) can take on only one value different from 0 and 1. On the other
hand, if F̄ (x) can take on only one value between 0 and 1, then (2) to
(4) are satisfied. �

C.3. Proposition (Frailty and Tilt). With the underlying distri-
bution F, frailty parameter and tilt parameter families coincide if and
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only if

[F̄ (x)]ξ =
γF̄ (x)

1 − γ̄F̄ (x)
, −∞ < x < ∞ (6)

for some

ξ = ξ(γ) > 0 defined for all γ > 0 (7)

and some

γ = γ(ξ) > 0 defined for all ξ > 0. (8)

It follows that frailty parameter and tilt parameter families coincide if
and only if F places mass on at most two points.

Proof. From (6), it follows that

uξ =
γu

1 − γ̄u
(9)

for all u such that u = F̄ (x) for some x and both (7) and (8) must hold.
Whatever ξ and γ may be, (9) holds for u = 0 and u = 1. If u �= 0 and
u �= 1, then from (9) it follows that

ξ(γ) =
log γu− log(1 − γ̄u)

log u
.

Because ζ(γ) cannot depend upon u, u can take on at most one value
in the interval (0, 1). Whenever 0 < u < 1, ζ(γ) is positive, for all
γ > 0, and each parameter takes on all values in (0,∞) as does the
other parameter. Thus, the two families coincide whenever F̄ (x) takes
on only the values 0, 1 and one intermediate value. �

C.4. Proposition (Frailty and Hazard Power). With the under-
lying distribution F, frailty parameter and hazard exponent parameter
families coincide if and only if

[F̄ (x)]ξ = exp {−[R(x)]ζ}, −∞ < x < ∞ (10)

for some

ξ = ξ(ζ) > 0 defined for all ζ > 0 (11)
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and some

ζ = ζ(ξ) > 0 defined for all ξ > 0. (12)

It follows that F is degenerate; in this case, the introduction of either
parameter fails to change the distribution and generate a parametric
family (see 7.P.3 and 7.P.6). If F is not degenerate, then it places
positive mass on two points and the hazard power parameter family is
a proper subfamily of the frailty parameter family.

Proof. Trivially with a degenerate underlying distribution, the intro-
duction of a frailty and a hazard power parameter leads to the same
family which consists only of the underlying distribution.

Suppose that the underlying distribution F is not degenerate. When
F̄ (x) is either 0 or 1, (10) is independent of the parameters. If F̄ (x) is
neither 0 nor 1, then 0 < R(x) < ∞, and it follows from (10) that

ζ(ξ) = log ξR(x)/ logR(x) = 1 + [(log ξ)]/ logR(x)]. (13)

Because ζ(ξ) must be independent of x, (13) can hold only for one
value of x, say x = x0. Let c = R(x0). If c ≤ 1, then because ζ(ξ) is
positive, it must be that ξ ≤ 1/c; if c ≥ 1, then for the same reason,
ξ ≥ 1/c. Consequently, the family generated by the introduction of a
hazard power parameter is a proper subset of the family generated by
the introduction of a frailty parameter. �

C.5. Proposition (Resilience and Tilt). With the underlying dis-
tribution F, resilience parameter and tilt parameter families coincide if
and only if

1 − [F (x)]η =
γF̄ (x)

1 − γ̄F̄ (x)
, −∞ < x < ∞, (14)

for some

η = η(γ) > 0 defined for all γ > 0 (15)

and some

γ = γ(η) > 0 defined for all η > 0. (16)

It follows that F is concentrated on at most two points.
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Proof. It follows from (14) that either F̄ (x) = 0, F̄ (x) = 1, or

1 − (1 − u)η =
γu

1 − γ̄u
(17)

for all u such that u = F̄ (x) for some x, and both (15) and (16) must
hold. If u �= 0 and u �= 1, then from (17) it follows that

η = η(γ) = 1 − log (1 − γ̄u)
log (1 − u)

.

This value for η must be independent of u ∈ (0, 1), and therefore can
hold for only one value of u, say u = u0. Because γ > 0, it follows that
η ≥ 0. Moreover, η ranges from 0 to ∞ as γ does the same. This means
that F̄ (x) can take on the values 0, 1 and one intermediate value, that
is, it can have only two “jump” points. �

C.6. Proposition (Tilt and Hazard Power). With the nondegen-
erate underlying distribution F, tilt and hazard power parameter fam-
ilies cannot coincide. The families partially coincide if and only if

exp {−(− log u)ζ} = γu/(1 − γ̄u) (18)

for all values of u such that u = F̄ (x) for some x, and for some

γ = γ(ζ) > 0 defined for all ζ > 0,

and for some

ζ = ζ(γ) > 0 defined for all γ > 0.

It follows that F places positive mass on at most two points, in which
case the hazard power parameter family is a proper subfamily of the
tilt parameter family.

Proof. Trivially, (18) is satisfied for u = 0 and u = 1; this means that
the families coincide when the underlying distribution is degenerate. If
u �= 0 and u �= 1, then from (18) it follows that

γ(ζ) =
exp {−(− log u)ζ}

1 − exp {−(− log y)ζ}

(
1 − u

u

)
(19)
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and

ζ(γ) =
log {− log[γu/(1 − γ̄u)]}

log (− log u)
. (20)

These quantities must be independent of u, and consequently can hold
only for one value of u ∈ (0, 1), say u = u0. This means that F̄ (x) can
take on only the values 0, u0, and 1. If u0 = e−1, the introduction of a
hazard power parameter ζ does not change the distribution (see Propo-
sition 7.M.6), which corresponds to γ = 1. If u0 < e−1, then the family
generated by the introduction of a hazard power parameter is the same
family generated by the introduction of a tilt parameter restricted to
the interval

0 ≤ γ ≤
(

e−1

1 − e−1

) (
1 − u0

u0

)
.

If u0 > e−1, then the family generated by the introduction of a hazard
power parameter is the same family generated by the introduction of a
tilt parameter restricted to the interval

γ ≥
(

e−1

1 − e−1

) (
1 − u0

u0

)
.

For values of γ outside of the indicated intervals, (20) gives a negative
value for ζ, and this is not possible. �

C.7. Proposition (Moment and Laplace Transform). With the
underlying distribution F, moment parameter and Laplace transform
parameter families coincide if and only if

∫ ∞

t

xβ

μβ
dF (x) =

∫ ∞

t

e−sx

φ(s)
dF (x) (21)

for some β = β(s) and some s = s(β). It follows that the underlying
distribution places mass on at most two points.

Proof. The integrands of (21) are equal, that is,

xβ

μβ
=

e−sx

φ(s)
(21a)
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if and only if

β log x + sx− logμβ + log φ(s) = 0.

Because the left-hand side of this equation is a concave function of x,
(21a) can have at most two solutions. Let

A = {x : xβ/μβ > e−st/φ(s)}, B = {x : xβ/μβ < e−st/φ(s)}.

Because of (21),

∫
A

[
xβ

μβ
− e−st

φ(s)

]
dF (x) =

∫
B

[
xβ

μβ
− e−st

φ(s)

]
dF (x) = 0,

and this means that the support of F is confined to the set where the
integrands of (21) are equal.

Now, suppose that the support of F has at most two points; say F
puts mass p on the point a and mass p = 1 − p on the point b, where
a < b. Then, (21) holds for all t < a and all t ≥ b, so consider the case
that a ≤ t < b. Here, (21) can be rewritten in the form

paβ

paβ + pbβ
=

pe−sa

pe−sa + pe−sb

so that (a/b)β = es(b−a). From this, the functions β = β(s) and s = s(β)
can be obtained. Here the range of both parameters is (−∞,∞). �

b. Degenerate Distributions

The remainder of the coincident results given here may be of less inter-
est than those above because they lead only to degenerate distributions.
Here, the “families” generated consist of nothing more the underlying
distribution (see Section 7.P). Nevertheless, these results are not al-
ways easy to obtain, in part because the distributions need not have
densities. They can be interpreted as saying that the families never
coincide in a meaningful way.

C.8. Proposition (Scale and Power). If scale and power parame-
ter families coincide, the underlying distribution must be degenerate
at 0.
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Proof. First, recall that a power parameter cannot be introduced un-
less the underlying random variable is nonnegative. If, with the under-
lying distribution F, scale and power families coincide, then F̄ (λx) =
F̄ (xα(λ)), x, λ > 0 for some α = α(λ) > 0. With x = 1, it follows that
F̄ (λ) = F̄ (1), λ > 0, and if F is a proper distribution, this means
F̄ (λ) = F̄ (1) = 0, λ > 0. �

C.9. Proposition (Resilience and Hazard Power). With the un-
derlying distribution F, resilience parameter and hazard power
parameter families coincide if and only if the underlying distribution is
degenerate.

Proof. For notational simplicity, let F̄ (x) = u. The introduction of a
resilience and a hazard power parameter leads to the same family of
distributions if and only if

exp {−(− log u)ζ} = 1 − (1 − u)η (22)

for some

η = η(ζ) > 0 defined for all ζ > 0 (23)

and some

ζ = ζ(η) > 0 defined for all η > 0. (24)

It follows from (22) that either u = 0, u = 1, or

η = η(ζ) =
log [1 − exp {−(− log u)ζ ]

log (1 − u)

and

ζ = ζ(η) =
log [− log [1 − (1 − u)η]

log (− log u)
.

There is no value of u in (0, 1) for which ζ is positive for all η and con-
sequently the range of η must be restricted (to an interval depending
upon whether u > e−1 or u < e−1). But then, η does not take on all
values in (0,∞). Consequently, neither family is a subset of the other.
Although for certain values of the parameters, the generated families
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may have common members when the underlying distribution puts pos-
itive mass at two points, the families coincide only when the underlying
distribution is degenerate. �

C.10. Proposition (Tilt and Laplace Transform). With the un-
derlying distribution F, tilt parameter and Laplace transform parame-
ter families coincide if and only if F is degenerate.

Proof. The introduction of these two parameters leads to the same fam-
ily if and only if

1
φ(s)

∫ ∞

x
e−sz dF (z) =

γF̄ (x)
1 − γ̄F̄ (x)

for all x (25)

and some γ = γ(s). Consequently, for every Δ > 0,

1
φ(s)

∫ x+Δ

x
e−sz dF (z) =

γF̄ (x)
1 − γ̄F̄ (x)

− γF̄ (x + Δ)
1 − γ̄F̄ (x + Δ)

. (26)

Assume that s > 0. Because the integrand is monotone, the left hand
side of (26) is bounded above by

e−sx

φ(s)

∫ x+Δ

x
dF (z) =

e−sx

φ(s)
[F̄ (x) − F̄ (x + Δ)],

and bounded below by

e−s(x+Δ)

φ(s)

∫ x+Δ

x
dF (z) =

e−s(x+Δ)

φ(s)
[F̄ (x) − F̄ (x + Δ)].

Consequently, with the two fractions on the right side of (26) combined,
it follows from (26) that

e−s(x+Δ)

φ(s)
[F̄ (x) − F̄ (x + Δ)] ≤ γ[F̄ (x) − F̄ (x + Δ)]

[1 − γ̄F̄ (x)][1 − γ̄F̄ (x + Δ)]

≤ e−sx

φ(s)
[F̄ (x) − F̄ (x + Δ)]. (27)
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Suppose that there exists a sequence x1, x2, x3, . . . tending to ∞ such
that

[F̄ (xi) − F̄ (xi + Δ)] > 0 for all i. (28)

From (28) it follows that

e−s(xi+Δ)

φ(s)
≤ γ

[1 − γ̄F̄ (xi)][1 − γ̄F̄ (xi + Δ)]
≤ e−sxi

φ(s)
. (29)

Now let i → ∞ and obtain from the right hand inequality of (28) that

γ(s) ≤ 0,

a contradiction. Consequently, for every Δ > 0,

xU (Δ) = sup{x : [F̄ (x) − F̄ (x + Δ)] > 0} < ∞.

Next, suppose that the sequence x1, x2, x3, . . . tends to −∞ and
satisfies (28). Take limits in (29) focusing on the left-hand inequality
to find that ∞ < 1/γ(s), another contradiction. Consequently, for every
Δ > 0,

xL(Δ) = inf{x : [F̄ (x− Δ) − F̄ (x)] > 0} > −∞.

By putting these facts together, it follows that

e−s[xU (Δ)+Δ]

φ(s)
≤ 1

γ
≤ e−sxU (Δ)

φ(s)

and

e−sxL(Δ)

φ(s)
≤ γ ≤ e−s[xL(Δ)−Δ]

φ(s)
.

Multiply these inequalities and take square roots to conclude that

exp
{
−s

2
[xL(Δ) + xU (Δ) + Δ]

}
≤ φ(s) ≤ exp

{
−s

2
[xL(Δ) + xU (Δ)−Δ]

}
.

(30)
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Because xL = xL(Δ) and xU = xU (Δ) must be, respectively, the left
and right hand endpoints of the support of F, they are independent of
Δ. Consequently, it follows by letting Δ → 0 in (30) that

φ(s) = exp
{
−s

xL + xU
2

}

is the Laplace transform of a distribution degenerate at (xL̄ + xŪ )/2. In
case s < 0, the inequalities above are reversed, but the same conclusion
follows. �

C.11. Proposition (Tilt and Moment). With the underlying dis-
tribution F, tilt parameter and moment parameter families coincide if
and only if F is degenerate.

Proof. The proof of this proposition follows the proof of the preceding
proposition, but with

1
μβ

∫ x+Δ

x
zβ dF (z) =

γF̄ (x)
1 − γ̄F̄ (x)

− γF̄ (x + Δ)
1 − γ̄F̄ (x + Δ)

.

in place of (26). The conclusion is that F is degenerate at the geometric
mean of xL and xU rather than at the arithmetic mean. �

D. Unresolved Coincidences

D.1. Power and Laplace Transform. With the underlying distri-
bution F, power and Laplace transform parameter families coincide if
and only if F satisfies

F̄ (xα) =
∫ ∞

x

e−sz

φ(s)
dF (z), (1)

for some s = s(α) and some α = α(s).

D.2. Power and Age. With the underlying distribution F, power and
age parameter families coincide if and only if the hazard function R
satisfies

R(xα) = R(t + x) −R(t), (2)

for some α = α(t) and some t = t(α).
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D.3. Resilience and Age. With the underlying distribution F, re-
silience and age parameter families coincide if and only if F satisfies

1 − [F (x)]η =
F̄ (x + t)
F̄ (t)

, (3)

for some η = η(t) and some t = t(η).

D.4. Hazard Power and Moment. With the underlying distribu-
tion F, hazard power and moment parameter families coincide if and
only if F satisfies

exp {−[R(x)]ξ} =
∫ ∞

x

zβ

μβ
dF (z), (4)

for some ξ = ξ(β) and some β = β(ξ).

D.5. Hazard Power and Laplace Transform. With the underlying
distribution F, hazard power and Laplace transform parameter families
coincide if and only if F satisfies

exp {−[R(x)]ξ} =
∫ ∞

x

e−sz

φ(s)
dF (z), (5)

for some ξ = ξ(s) and some s = s(ξ).

D.6. Hazard Power and Age. With the underlying distribution F,
hazard power and age parameter families coincide if and only if F
satisfies

exp {−[R(x)]ξ} =
F̄ (x + t)
F̄ (t)

, (6)

that is,

[R(x)]ζ = R(t + x) −R(t), (6a)

for some t = t(ξ) and some ξ = ξ(t).

Note the similarity between (6a) and (2).
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D.7. Moment and Age. With the underlying distribution F, moment
and age parameter families coincide if and only if F satisfies

∫ ∞

x

zβ

μβ
dF (z) =

F̄ (t + x)
F̄ (t)

, (7)

for some t = t(β) and some β = β(t).

D.8. Laplace Transform and Age. With the underlying distribu-
tion F, Laplace transform and age parameter families coincide if and
only if F satisfies

∫ ∞

x

e−sz

φ(s)
dF (z) =

F̄ (t + x)
F̄ (t)

(8)

for some t = t(s) and some s = s(t).
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19

More About Semiparametric Families

Several topics are addressed in this chapter. Criteria for semiparametric
families, classification, and derivation of families are discussed. Finally,
some orderings generated by semiparametric families are introduced.

A. Introduction: Stability Criteria

The semiparametric families discussed in Chapter 7 all provide methods
for generating a parametric family from an underlying baseline survival
function. Clearly, the underlying survival function can already have
parameters.

Two important criteria for judging semiparametric families are listed
in Section 7.A.c. These properties are repeated here.

If the goal is to add a parameter to enrich a family or to generate
a family containing a given distribution, then it must be that the un-
derlying distribution is a member of the generated parametric family.
Thus, if F̄ is the underlying survival function and a frailty parameter
is introduced, the survival function F̄ (· | ξ) = [F̄ (·)]ξ is obtained; the
underlying survival function is retrieved by taking ξ = 1. The following
condition formalizes this requirement.

Criterion 1. The underlying distribution is a member of the paramet-
ric family. That is, for some value θ∗ of the parameter θ,

H̄(· | θ∗, F̄ ) = F̄ (·),

where H̄(· | θ, F̄ ) is the survival function of the semiparametric family
with the real-valued parameter θ and distribution-valued parameter F



SVNY289-Olkin April 17, 2007 7:38

612 19. Stability of Semiparametric Families

(the underlying distribution). For a note about this possibly confusing
notation, see Section 7.A.b.

Criterion 2. Once the semiparametric family is used to add a param-
eter, its reuse may reparameterize the family, but it should fail to again
add a new parameter. That is, if H̄(· | ρ, F̄ ) is taken to be the under-
lying survival function, the result is of the form H̄(· | θ, F̄ ) but with θ
replaced by some function h of ρ and θ. More formally,

H̄(· | θ, H̄(· | ρ, F̄ )) = H̄(· | h(q, ρ), F̄ )

for some function h. This is a kind of stability property.

In this chapter, the stability property is investigated so as to gain
some understanding of the kinds of parameters (other than those in-
troduced in Chapter 7) that would have the stability property. How
extensive is the set of such parameters?

B. Classification of Parameters

The parameters discussed in Chapter 7 can be classified according to
their method of introduction, and these classifications are discussed in
this section. The extent of the applicability of the various classifica-
tions can be determined in some cases by solving a functional equation
that arises from the requirement of stability. In particular, functional
equations play a role.

a. Functions of a Random Variable

Let X be a random variable with distribution function F, ψ be a func-
tion of two real variables, and

Xθ = ψ(X, θ).

Then, the distribution of Xθ has a parameter θ. Of course, the function
ψ must have appropriate properties. First, it must be defined on a set
S × Θ where the set S includes all possible values of X, and Θ is some
parameter space. Here, it is assumed that S is an interval [c, d], which
may be finite or infinite (in case c or d is not finite, then the endpoint
of the interval must be excluded, but this technicality should not be
troublesome). For the purposes of this chapter, the case S = [0,∞) is of
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primary interest, but [0, 1] and (−∞,∞) are also of interest. Moreover,
it is assumed that ψ(x, θ) is strictly increasing in x for each fixed θ, with
inverse ψ−1(·, θ), denoted by ψ−1

θ (·). Then, in terms of the underlying
survival function F̄ of X, the survival function of Xθ can be written in
the form

F̄ (x | θ) = F̄ (ψ−1(x, θ)).

In order that F̄ (· | θ) be a survival function, it is necessary that

lim
x↓c

F̄ (ψ−1(x, θ)) = 1, lim
x↑d

F̄ (ψ−1(x, θ)) = 0.

This means that

lim
x↓c

ψ−1(x, θ) = c, lim
x↑d

ψ−1(x, θ) = d,

which yields the conditions

ψ(c, θ) = c, ψ(d, θ) = d. (1)

Additional conditions are imposed by Criteria 1 and 2.

Criterion 1: In order that F belong to the parametric family of
distributions of Xθ, it is sufficient to assume that for some θ0 in
Θ, ψ(z, θ0) = z.

Criterion 2: To verify the requirements of this stability property, sup-
pose that the function ψ is reapplied to yield

Z = ψ(Xθ, ρ) = ψ(ψ(X, θ), ρ).

If the stability property is to hold, i.e., if Z has a distribution in the
same parametric family as Xθ, then it must be that for some function
h,

ψ(ψ(x, θ), ρ) = ψ(x, h(ρ, θ)). (2)

The requirement for stability has led to this functional equation, which
can now be investigated to determine the constraints it imposes upon
the function ψ. With the assumption that ψ is invertible in each variable
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separately, the general solution to (2) is given in Proposition 22.C.2.
That solution has the form

ψ(x, θ) = u−1(u(x) + v(θ)), h(ρ, θ) = v−1(v(ρ) + v(θ)), (3)

where u and v are continuous and strictly monotonic functions. Then,

ψ−1(x, θ) = u−1(u(x) − v(θ)). (4)

The requirements (1) lead to the condition

u−1(u(c) + v(θ)) = c, u−1(u(d) + v(θ)) = d,

that is,

u(c) + v(θ) = u(c), u(d) + v(θ) = u(d).

Because v(θ) is not identically 0, this means that

u(c) = ±∞ and u(d) = ±∞; (5)

because u strictly is monotone, it follows from (5) that either

u(c) = −∞ and u(d) = ∞, or u(c) = ∞ and u(d) = −∞. (5a)

It is always possible to reparameterize the family {F̄ (· | θ), θ ∈ Θ}
in such a way that the function h satisfies h(ρ, θ) = ρθ. All that is
necessary is to take θ∗ = ev(θ), where v is the function determining h in
Proposition 22.C.2. To see this, let s(θ) = ev(θ) and note from 22.C(6)
that

h(ρ, θ) = v−1(v(ρ) + v(θ)) = s−1(elog s(ρ)+log s(θ)) = s−1(s(ρ)s(θ)),

so that s(h(ρ, θ)) = s(ρ)s(θ). Although this does not always lead to
the most natural parameterization of the family, the assumption that
h(ρ, θ) = ρθ sometimes simplifies the theory.

In C(13) an alternative representation for ψ(·, θ) is given for the
case h(ρ, θ) = ρθ, but with a different notation.
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B.1. Location parameter. Let ψ be defined on (−∞,∞) × (−∞,∞)
by

ψ(x, b) = x− b.

Then, the parameter b is a location parameter. This example is dis-
cussed in Section 7.B.

Here, (2) is satisfied with h(ρ, θ) = ρ + θ. In the representation (3),
one can take u(x) = −x, v(x) = x, and b = θ. The representation (6) is
obtained with g(x) = ex and b = log θ.

B.2. Scale parameter. Let ψ be defined on [0,∞) × (0,∞) by

ψ(x, λ) = x/λ.

Then λ is a scale parameter; this case is discussed in Section 7.C.
Here, (2) is satisfied with h(ρ, θ) = ρθ and in the representation

(3) one can take u(x) = − log x and v(x) = log x. Take g(x) = x and
λ = 1/θ to obtain the form (6).

The case that ψ is defined on (−∞,∞) × (0,∞) is somewhat more
complicated because it is not invertible at x = 0. This kind of compli-
cation is dealt with in B.3.

B.3. Power parameter. Let ψ be defined on [0,∞) × (0,∞) by

ψ(x, α) = xα.

Then α is a power parameter; this example is discussed in Section 7.D.
In this case, (2) is satisfied with h(ρ, θ) = ρθ, and in the repre-

sentation (3), one can take u(x) = log (− log x), for 0 < x < 1, u(x) =
log log x, for x > 1, and v(x) = log x. The differing forms of u come
about because ψ is not invertible when x = 1; to apply Proposition
22.C.2, it is necessary to break the problem into the two parts 0 < x < 1
and x > 1.

B.4. Example. Let ψ be defined on [0,∞) × [0,∞) by

ψ(x, θ) = eθx − 1.

This example fails to satisfy ψ(x, θ0) = x for some θ0 in Θ. Moreover,
(2) fails.
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b. Functions of a Survival Function

Let F̄ be a survival function and ψ(x, θ) be a function defined on [0, 1] ×
Θ. Suppose that for each fixed θ in Θ, ψ has range [0, 1] and is increasing
in x. Then,

F̄ (· | θ) = ψ(F̄ (·), θ)

is a survival function with parameter θ. If for some θ0 in Θ, ψ(x, θ0) = x,
then F̄ is a member of the family {F̄ (· | θ), θ ∈ Θ}. In what follows, it
is often convenient to use the notation F̄ (· | θ) = F̄θ(·).

A connection with the uniform distribution. The conditions im-
posed upon the function ψ are the conditions that {ψ(·, θ), θ ∈ Θ} is
a family of distribution functions with support in [0, 1]. The condi-
tion that ψ(x, θ0) = x for some θ0 in Θ is the case that the uniform
distribution belongs to the family.

Now, suppose that the function ψ is reapplied to yield

Ḡ = ψ(F̄θ, ρ) = ψ(ψ(F̄ , θ), ρ)).

If the stability property is to hold, i.e., if Ḡ = F̄h(ρ,θ) for some function
h, then it must be that for some function h, (2) is again satisfied. This
means that solutions are again provided by (3) and Proposition 22.C.2.

B.5. Frailty parameter. Let ψ be defined on (0, 1) × (0,∞) by

ψ(x, ξ) = xξ.

Then, ξ is a frailty parameter. This parameter is discussed in
Section 7.E. Note that ψ is a uniform distribution function with re-
silience parameter.

Here, (2) is satisfied by h(ρ, θ) = ρθ and the representation (3) is
the same as in B.3, except that the case x > 1 does not arise.

B.6. Resilience parameter. Let ψ be defined on [0, 1] × (0,∞) by

ψ(x, η) = 1 − (1 − x)η.

Then η is a resilience parameter; this parameter is discussed in Section
7.E in conjunction with frailty parameters. Note that ψ is a uniform
distribution function with frailty parameter.
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Here, (2) is satisfied by h(ρ, θ) = ρθ, and for the representation (3),
u(x) = − log (− log (1 − x)) and v(x) = log x.

B.7. Tilt parameter. Let ψ be defined on (0, 1) × (0,∞) by

ψ(x, γ) =
γx

1 − γ̄x
,

where γ̄ = 1 − γ and the parameter γ is the tilt parameter discussed in
Section 7.F.

Here, (2) is satisfied with h(ρ, θ) = ρθ, and in the representation (3),
u(x) = log (x/(1 − x)) and v(x) = log x.

B.8. Hazard power parameter. Let ψ be defined on (0, 1) × (0,∞)
by

ψ(x, ζ) = exp {−(− log x)ζ}.

The parameter ζ is a hazard power parameter, but as cautioned in
Chapter 7, take care not to confuse it with a power parameter. This
parameter, discussed in Section 7.G, satisfies (2), again with h(ρ, θ) =
ρθ.

The representation of ψ from equation (3) is complicated by the
fact that this ψ fails to be invertible when log x = 1; it is necessary to
consider separately the cases log x < 1 and log x > 1. For log x < 1,
one can take u(x) = log (− log (− log x)), and for log x > 1, u(x) =
log log (− log x). In either case, v(x) = log x.

Duality. If H is a distribution function supported by [0, 1], the dual
of H is defined by

HD(x) = 1 −H(1 − x).

See Section 14.A.a for further discussions of duality. As noted above,
semiparametric families of the form {F̄θ = H(F̄ , θ)} are just composi-
tions of a distribution function H supported by [0, 1] with an underlying
survival function. This suggests consideration also of the composition
using HD in place of H. Frailty and resilience families are connected in
this way by duality. The dual of the tilt parameter family only reparam-
eterizes the family and so gives nothing new. The dual of the hazard
power family might be called a reverse hazard power family; it has
received little attention in this book or elsewhere.
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c. Density Modification

Suppose that F is a distribution function with support [0,∞) and den-
sity f. Let ψ be a nonnegative function defined on (0,∞) × Θ, where Θ
is a parameter space, ordinarily an interval. If

c(θ) =
[∫ ∞

0
ψ(x, θ)f(x) dx

]−1
< ∞,

then c(θ)ψ(x, θ)f(x) is a density, with parameter θ. If there exists a
function h defined on Θ × Θ such that

ψ(x, ρ)ψ(x, θ) = ψ(x, h(ρ, θ)), (6)

then the stability property (Criterion 2) holds; reintroduction of the
parameter does not enlarge the parametric family.

It is possible to introduce density modification parameters even
when F does not have a density. This is done by defining

c(θ) =
[∫ ∞

0
ψ(x, θ) dF (x)

]−1
< ∞,

and by defining

Fθ(x) = c(θ)
∫ x

0
ψ(z, θ) dF (z) < ∞.

Equation (6) is the functional equation 22.C(7); under reasonable reg-
ularity conditions, ψ must have the form ψ(z, θ) = [φ(z)]g(θ), where g is
monotonic. So with a change of parameterization, the only possibilities
are of the form ψ(z, θ) = [φ(z)]θ. Two such cases are considered.

B.9. Moment parameter. Let ψ be defined on the support of F ×
Θ by ψ(z, β) = zβ. Then, c−1 = μβ is the βth moment of F, and the
parameter space Θ (which depends upon F ) is the set for which μβ is
finite. Clearly, (6) is satisfied with h(u, v) = u + v.

B.10. Laplace transform parameter. Let ψ be defined on the sup-
port of F × Θ by ψ(z, s) = e−sz. As in B.9, Θ depends upon F, but
always [0,∞) ⊂ Θ. Here, c−1 is the Laplace transform of F, hence the
name for this parameter.
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d. Functions of a Laplace Transform

A nonnegative random variable X with distribution function F has a
Laplace transform φ(s) = E e−sX that is finite at least for nonnegative
s. Under some conditions, it is possible to introduce a parameter in a
manner similar to that used in B.1 and B.2 by taking a function ψ of φ
and a parameter. However, for this procedure to be valid, the resulting
functional value must again be a Laplace transform. This may depend
upon F, as in the following special case.

B.11. Convolution parameter. Let ψ be defined on (0,∞) × (0,∞)
by

ψ(x, ν) = xν .

If F is infinitely divisible (see Definition 20.D.7), then ψ(φ(s), ν) de-
fines a Laplace transform for all ν > 0. The corresponding distribution
function has the convolution parameter ν. Convolution parameters are
discussed in Section 7.J. These parameters have the stability property
because (1) is satisfied with ψ(x, ν) = xν .

A convolution parameter can be introduced without infinite divisi-
bility, but because the parameter must be restricted to positive integer
values, it is of limited interest.

B.12. Age parameters. Age parameters do not arise as an applica-
tion of any of the preceding methods. Moreover, they do not seem to
suggest another class of parameters.

C. Derivation of Families

In this section, a more formal approach to semiparametric families is
considered using notation different from that of the previous section.
Nevertheless, the notation and results are closely related to those of
that section. The results are in Section D.

Suppose that S is the class of all distribution functions with support
I, where typically I = (−∞,∞) or [0,∞), and let

F = {H̄(· | θ, F̄ ) : F ∈ S, θ ∈ Θ} (1)

be a semiparametric family of survival functions with support I, with
a real parameter θ and also an underlying survival function F̄ as a
parameter. For some function Φ, survival functions in F can be written
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in the form

H̄(· | θ, F̄ ) = ΦθF̄ (·);

the set Φ = {Φθ, θ ∈ Θ} can be regarded as a set of operators mapping
S to S. Several properties of families (1) or the set Φ are of interest.

In accordance with criterion 1 of Section A, the family {H̄(· | θ, F̄ ) :
θ ∈ Θ} is intended to represent a parametric extension of the sur-
vival function F̄ (which may already have parameters) to a parametric
family with a new parameter θ; thus it is natural to require that for
some θ0,Φθ0F̄ = F̄ . Then, the survival function F̄ is in the family and
Criterion 1 is satisfied. To simplify notation, write θ0 = ι. This leads to
the property

There exists ι ∈ Θ such that Φι F̄ = F̄ for all F̄ ∈ S. (2)

This property says that Φ has an identity operator Φι. Note that this
property is stronger than Criterion 1 of Section A, because here, θ0 is
independent of F.

Criterion 2 of Section A, the stability property, requires that Φ be
closed under the binary operation of composition; i.e.,

ΦρΦθF̄ = Φh(ρ,θ)F̄ (3)

for some function h mapping Θ × Θ onto Θ (that might depend upon
F ). Suppose further that

for every θ ∈ Θ, there exists a θ∗ such that
Φθ∗ΦθF̄ = ΦιF̄ for all F̄ ∈ S. (4)

Here, Φθ∗ is an inverse of Φθ; with property (4), Φ = {Φθ, θ ∈ Θ} forms
a group with respect to the operation of composition. If in addition,

ΦθΦρF̄ = ΦρΦθF̄ for all F̄ ∈ S, (5)

then the group is commutative.

C.1. Proposition. Suppose that Φ = {Φθ, θ ∈ Θ} is a commutative
group under the operation of composition. If for some F̄ ∈ S,ΦρF̄ =
ΦθF̄ implies ρ = θ, then the function h of (3) is independent of F.
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Proof. Let F̄ξ = ΦξF̄ , let h satisfy (3), and let hξ satisfy ΦρΦθF̄ξ =
Φhξ(ρ,θ)F̄ξ. Then,

ΦξΦhξ(ρ,θ)F̄ = Φhξ(ρ,θ)ΦξF̄ = Φhξ(ρ,θ)F̄ξ = ΦρΦθF̄ξ

= ΦξΦρΦθF̄ = ΦξΦh(ρ,θ)F̄ .

Now, apply Φξ∗ to both sides of the equation to conclude that
hξ = h. �

C.2. Proposition. If Φ = {Φθ, θ ∈ Θ} is a commutative group and
F̄ξ = ΦξF̄ = F̄ (· | ξ, F̄ ) is any fixed member of the family generated
from Φ with F̄ as the underlying survival function, then the same family
is generated from Φ with F̄ξ as the underlying survival function; i.e.,

{ΦθF̄ , θ ∈ Θ} = {ΦθF̄ξ, θ ∈ Θ}.

Proof. Denote the inverse of Φξ by Φξ∗ , so that Φξ∗Φξ = Φι is the iden-
tity. It follows from Proposition C.1 that ΦθΦξ∗ = Φh(θ,ξ∗) for some
h(θ, ξ∗) in Θ. Thus,

ΦθF̄ = ΦθΦξ∗ΦξF̄ = ΦθΦξ∗F̄ξ = Φh(θ,ξ∗)F̄ξ.

This says that an arbitrary member of {ΦθF̄ , θ ∈ Θ} is also a member
of {ΦθF̄ξ, θ ∈ Θ}. �

Under the conditions of Proposition C.2, families of the form
{ΦθF̄ , θ ∈ Θ} generated with a single underlying distribution F form
a partition of the set of all distributions for which ΦθF̄ is defined into
a set of equivalence classes.

C.3.a. Example. Of the families considered in Chapter 7, those that
introduce scale, power, frailty, resilience, hazard, power, and convolu-
tion parameters all form commutative groups, with I = [0,∞). In these
cases, Θ = (0,∞) and ι = 1 is the index of the identity; the inverse Φθ∗

of Φθ is obtained with θ∗ = 1/θ. Power parameter families are an excep-
tional case because they are defined only for underlying distributions
having support contained in [0,∞).

C.3.b. Example. The families considered in Chapter 7 that intro-
duce moment or Laplace transform parameters do not form groups,
but only commutative semigroups. These families do not really fit the
above format because the set Θ = Θ(F ) of θ for which F̄ (· | θ, F̄ ) is
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defined depends upon F̄ . For moment parameter families, 0 ∈ Θ for all
F, and 0 is the identity. For Laplace transform parameter families with
underlying distribution having support in [0,∞), [0,∞) ⊂ Θ and again,
0 is the identity.

Any given member F̄ (· | θ0, F̄ ) of a moment parameter family,
when used as an underlying distribution to generate a new mo-
ment parameter family, will generate exactly the family from which
it came. Consequently, it might seem that such a family forms a
group in the sense defined above, but there is a problem; the param-
eter of the new family which retrieves F̄ may not be a member of
Θ = Θ(F ). Similar comments apply to Laplace transform parameter
families.

C.3.c. Example. For age parameter families, Θ = [0,∞) and 0 is the
identity. Here, inverses do not exist; given F̄ (· | θ0, F̄ ) for θ0 > 0, none
of the distributions F̄ (· | θ, F̄ ) for θ < θ0 can be retrieved.

C.4. Remark. There are interesting examples for which the param-
eter θ can take on any nonnegative value including 0, and then it
may be natural to take Φ0 to be the identity operator rather than
Φ1 as in Example C.3.a, where scale, power, frailty, resilience, haz-
ard power, and convolution parameters are discussed. A noteworthy
example where it is natural to take Φ0 to be the identity operator is
the family of residual life distributions obtained by introducing an age
parameter.

It is desirable for some purposes that the operators Φθ be monotone
in the sense that

F̄ (x) ≤ Ḡ(x) for all x ⇒ (ΦθF̄ )(x) ≤ (ΦθḠ)(x) for all θ > 0. (6)

When F and G have support [0,∞), with the exception of Laplace
transform and age parameter families, this is the case for all the pa-
rameters introduced in Chapter 7. For Laplace transform parameter
families, the second inequality in (6) is reversed.

a. Stability

To formalize the notion of stability introduced at the beginning of this
chapter as Criterion 2, a definition is useful.
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C.5. Definition. A semiparametric family {H̄(· | θ, F̄ ) : θ ∈ Θ} =
{ΦθF̄ (·) : θ ∈ Θ} is stable if

{ΦθF̄ (·) : θ ∈ Θ} = {ΦρΦθF̄ (·) : θ, ρ ∈ Θ}. (7)

The set {Φθ : θ ∈ Θ} is stable with respect to S if (7) holds for all
F ∈ S.

If {Φθ : θ ∈ Θ} is a semigroup under composition, then for a fixed
underlying survival function F̄ , the family {ΦθF̄ (·) : θ ∈ Θ} is stable if
and only if for some function h mapping Θ × Θ to Θ, (3) holds, that
is, ΦρΦθF̄ = Φh(ρ,θ)F̄ .

C.6. Proposition. Suppose that {Φθ : θ ∈ Θ} is a commutative
group, (2), (3), and (4) are satisfied, and Θ is an interval (open, half-
open, or closed). If h(ρ, θ) is continuous in ρ for fixed θ and continuous
in θ for fixed ρ, then for some function g with domain (−∞,∞) and
range Θ,

h(ρ, θ) = g(g−1(ρ) + g−1(θ)). (8)

Proof. By applying Φξ to both sides of (4), it follows that

h(ξ, h(ρ, θ)) = h(h(ξ, ρ), θ). (9)

Equation (9) is a well-studied functional equation called the “associa-
tivity equation.” Because of (2), (3), and the continuity conditions,
Proposition 22.C.1 can be applied to conclude that (8) holds. �

A prime example is the case g(x) = ex, in which case (8) becomes

h(ρ, θ) = ρθ. (10)

In what follows, it is assumed that (10) holds.
The functional equation (3) with h given by (10) is solved in the

two special cases described in Section B.a and B.b. Results of Section
B can all be recast in the notation of this section.

b. Transformations of the Underlying Random Variable

Suppose that for some function φθ

ΦθF̄ (x) = F̄ (φθ(x)), θ ∈ Θ, F ∈ S. (11)
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Note that φθ(x) = ψ−1(x, θ), the cumbersone notation of Section B.a.
In order that F̄ (φθ(·)) be a survival function, φθ must be an increasing
function, with range [0,∞) when S consists of distribution functions
having support [0,∞). Here, familiar examples include the scale and
power parameter families, obtained, respectively, with φθ(x) = θx and
φθ(x) = xθ.

With (10) and (11), the functional equation (3) becomes

φρφθ(x) = φρθ(x), x > 0. (12)

Equation (12) is a form of a well-known functional equation called the
“translation equation” discussed in Proposition 22.C.2, but standard
techniques can be applied to directly solve (12).

C.7. Proposition. Suppose that (12) holds for all ρ, θ > 0, and that
φθ has range [0,∞). Suppose also that φθ(x) is strictly increasing in
θ for some x = x0 > 0. Then, there is a strictly increasing function g
defined on some interval I with range (0,∞) such that

φθ(x) = g(θg−1(x)), θ, x > 0. (13)

Proof. Let g(θ) = φθ(x0). With x = x0 in (12), it follows that
φρ(g(θ)) = g(ρθ); but g is strictly increasing, so it has an inverse and
(13) follows. �

The function g of this proof is defined on (0,∞), but functions
defined on other intervals can also be used in (13). The representation
(13) is not unique; different functions g can lead to the same φθ. In
fact, g1(θg−1

1 (x) = g2(θg−1
2 (x), x, θ > 0, if and only if the composition

g−1
2 g1 is homogeneous, i.e.,

g−1
2 g1(θx) = θg−1

2 g1(x). (14)

Condition (14) insures that the families generated through (13) with g1
and g2 are the same. Perhaps more interesting is the requirement that
the families (ΦθF̄ )(·), θ > 0, generated by g1 and g2 be the same. This
requirement leads to a condition weaker than (14), namely,

g−1
2 g1(θx) = a(θ)g−1

2 g1(x) (15)

for some monotone transformation a of the parameter space.
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The lack of uniqueness in the representation (13) makes it difficult
to solve (13) for g when φθ is given. However, the lack of uniqueness
makes it easier to find a g that satisfies the equation.

C.8.a. Example (Scale parameter families). Let g(x) = x, x > 0.
Here φθ(x) = g(θg−1(x)) = θx, and the parameter introduced is a scale
parameter. Any function of the form g(x) = cx, x > 0, c > 0, would
work just as well. But more generally, (15) is satisfied if g1 and g2
are powers of x.

C.8.b. Example (Power parameter families). Let g(x) = ex,
−∞ < x < ∞. Then, φθ(x) = g(θg−1(x)) = xθ, and the parameter
introduced is a power parameter.

C.8.c. Example. If g(x) = ex − 1, x > 0, then φθ(x) = (x + 1)θ − 1, a
variant of Example C.8.b.

C.8.d. Example. With the rather simple function g(x) = log (1 + x),
the relatively complicated function φθ(x) = log [θ(ex − 1) + 1] is
obtained. With the underlying baseline survival function F̄ (x) =
e−λx, x > 0, this example leads to the survival function

F̄θ(x) = [θex − θ̄]−λ, x > 0.

This distribution is an exponential distribution with tilt parameter
θ = 1/γ, added frailty parameter λ, and unit scale parameter. The dis-
tribution has a monotone hazard rate, increasing from λθ to λ if θ < 1,
and decreasing from λθ to λ if θ > 1 (see Section 9.D, where the case
with unit frailty parameter is discussed in more detail).

Note that a different distribution is obtained if, starting with an
exponential distribution, a frailty parameter is added before the tilt
parameter.

c. Transformations of the Survival Function

As in Section B.b, suppose that with the notation ψθ(·) in place of
ψ(·, θ)

ΦθF̄ (x) = ψθ(F̄ (x)), θ, x > 0. (16)

Here the functions ψθ map [0, 1] onto [0, 1]. The most familiar example
of this form of transformation is ψθ(x) = xθ, θ > 0, 0 ≤ x ≤ 1, which
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leads to a frailty parameter, and the family obtained is a proportional
hazards family.

In this case, the functional equation (3) again becomes (12), but
with the modification that the domain and range of ψθ are both [0, 1].

C.9. Proposition. Suppose that (12) holds for all p, θ > 0, and x in
the interval (0, 1). Suppose also that ψθ(x) is strictly increasing in θ for
some x = x0 > 0. Then, there is a strictly increasing function g defined
either on (−∞,∞), (−∞, 0) or [0,∞) with corresponding range (0, 1),
(0, 1], or [0, 1) such that

ψθ(x) = g(θg−1(x)), θ > 0, 0 ≤ x ≤ 1. (17)

The proof of Proposition C.9 is essentially the same as the proof of
Proposition C.7. Note that (17) looks the same as (13), but the range
of x is different.

C.10.a. Example. Let g(x) = ex,−∞ < x ≤ 0. Then, ψθ(x) =
g(θg−1(x)) = xθ, so that F̄θ(x) = [F̄ (x)]θ and the parameter intro-
duced is a frailty parameter.

C.10.b. Example. If g(x) = 1 − e−x, x ≥ 0, it follows that ψθ(x) =
1 − (1 − x)θ, so that Fθ(x) = [F (x)]θ and θ is a resilience parameter.

C.10.c. Example. If g(x) = x/(1 + x), x ≥ 0, it follows that ψθ(x) =
θx/[1 − θ̄x] and F̄θ(x) = θF̄ (x)/[1 − θ̄F̄ (x)]. This is the geometric-
extreme stable extension of F, i.e., the family obtained from F by
introducing a tilt parameter.

C.10.d. Example. If g(x) = exp {−e−x},−∞<x<∞, then ψθ(x) =
exp {−(− log x)θ}, F̄θ(x) = exp {−[R(x)]θ}, and a hazard exponent
parameter has been introduced.

D. Orderings Generated by Semiparametric Families

There are a number of properties of real functions ψ of a real variable
that can be defined in terms of crossings of a “grid.” In its most general
form, a grid is a collection G of functions with the same domain as
ψ. The common domain ordinarily is an interval, and the property is
defined by conditions on the manner in which ψ crosses functions in G.
Here are some familiar examples.

D.1.a. Example. Suppose that G consists of all the constant func-
tions. Then, ψ crosses functions in G only from below (above) if and
only if ψ is increasing (decreasing).
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D.1.b. Example. Suppose that G consists of all linear functions.
Then, the following conditions are equivalent:

(i) ψ crosses functions in G at most twice. If there are two crossings, ψ
crosses first from above and then from below and
(ii) ψ is convex.

D.1.c. Example. Suppose that G consists of the survival functions
of exponential distributions, and ψ is a survival function. Then, the
condition that ψ crosses functions in G only from above is the condition
that ψ has an increasing hazard rate average (see Section 5.B).

Semiparametric families can be used to define grids, and under ap-
propriate conditions, the properties they define can be extended to
define orderings of distributions. For example, suppose that the grid
consists of the survival functions {ΦθH̄ : θ ∈ Θ} and that Ḡ crosses
such survival functions only from above. Now, consider a second grid,
one consisting of the survival functions in {ΦθḠ : θ ∈ Θ}, and suppose
that F̄ crosses such survival functions only from above. Under appropri-
ate conditions, this implies that F̄ crosses functions in {ΦθH̄ : θ ∈ Θ}
only from above. Then there is a basis for defining an ordering based
upon the semiparametric family {Φθ(·) : θ ∈ Θ}; say F̄ ≤ Ḡ if F̄ crosses
functions in {ΦθḠ : θ ∈ Θ} only from above. Of course, a key ingredient
is transitivity.

It is apparent from (iv) of Proposition 2.C.11 that the the star
ordering (Definition 2.C.10) is a grid ordering. Similarly, the convex
ordering (Definition 2.C.7) can be regarded as a grid ordering as is
apparent from (iii) of Proposition 2.C.8, though this involves not just
a single crossing of the grid, but two crossings, as in Example D.1.b.

The discussion here is limited to orderings based upon a single cross-
ing; most of these orderings have not been previously considered.

A function g is said to cross the function h at most once, and only
from above if either g − h is of one sign (they do not cross at all) or if
there exists x0 such that

g(x) ≥ h(x), x ≤ x0 and g(x) ≤ h(x), x ≥ x0. (1)

A convenient shorthand notation, that takes the form

g(x) − h(x) : +,−, (2)

is discussed in Section 21.B.g.
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D.2. Definition. For a fixed set {Φθ, θ ∈ Θ} of operators defining a
semiparametric family as in Section C, write F̄ ≤ Ḡ if for all θ ∈ Θ, F̄
crosses ΦθḠ at most once, and only from above.

D.3. Proposition. Suppose that {Φθ, θ ∈ Θ} forms a group under
composition and that Θ ⊂ (0,∞). Let I ⊂ (0,∞) be an interval and
suppose further that for all distributions F and G with support I,

θ < ρ ⇒ ΦθF̄ (x) ≤ ΦρF̄ (x) for all x ∈ I, (3)

F̄ (x) − Ḡ(x) : +,− implies ΦθF̄ (x) − ΦθḠ(x) : +,− for all θ ∈ Θ. (4)

Suppose further that for all p in (0, 1), all continuous distribu-
tion functions F with support I and all x0 ∈ I, there exists θ0 such
that

Φθ0F̄ (x0) = p. (5)

Then, restricted to survival functions F̄ and Ḡ that are continuous and
have support I, the ordering of Definition D.2 is reflexive and transitive,
i.e., F̄ ≤ F̄ and F̄ ≤ Ḡ ≤ H̄ implies F̄ ≤ H̄.

Proof. First, consider reflexivity. Let Φt be the identity of the group
{Φθ, θ ∈ Θ}. Because of (3), θ > ι implies F̄ (x) ≤ ΦθF̄ (x), x ∈ I, and
the inequality is reversed for θ < ι. Thus, the survival functions do not
cross, so almost vacuously, F̄ ≤ F̄ .

To show reflexivity, suppose that for some x0 ∈ I, F̄ (x0) =
Φθ0H̄(x0). Then because of (5), there exists θ0 such that F̄ (x0) =
Φθ0Ḡ(x0). Because F̄ ≤ Ḡ and Ḡ ≤ H̄, it follows with the aid of (5)
that

F̄ (x) ≥ Φθ0Ḡ(x), x < x0; F̄ (x) ≤ Φθ0Ḡ(x), x > x0, (6)

and

Φθ0Ḡ(x) ≥ ΦθH̄(x), x < x0; Φθ0Ḡ(x) ≤ ΦθH̄(x), x > x0. (7)

But (6) and (7) together show that F̄ can cross ΦθH̄ only from
above. �
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a. Transformations of the Underlying Random Variable

Suppose that C(11) holds and that ψθ is an increasing function with
range I. Moreover, because of (3), it follows that χx(θ) = ψθ(x) is in-
creasing in θ and has an increasing inverse.

Suppose that F̄ ≤ Ḡ that is, F̄ (x) − Ḡ(ψθ(x)) : +,− for all θ ∈ Θ.
Thus, Ḡ−1F̄ (x) − χx(θ) : −,+ for all θ ∈ Θ, or χ−1

x Ḡ−1F̄ (x) − θ : −,+
for all θ ∈ Θ. It follows that in this ordering,

F̄ ≤ Ḡ if and only if χ−1
x Ḡ−1F̄ (x) is increasing in x. (8)

D.3.a. Example. If φθ(x) = θx as in Example C.8.a and I = [0,∞),
then the ordering (8) is the star ordering

Ḡ−1F̄ (x)/x is increasing in x > 0. (9)

D.3.b. Example. If ψθ(x) = xθ as in Example C.8.b, then the con-
ditions for (8) fail, in particular, (4) fails, and (8) does not yield an
ordering.

b. Transformations of the Survival Function

Suppose that C(16) holds, i.e., ΦθF̄ (x) = ψθ(F̄ (x)), θ, x > 0, in which
case the functions ψθ map [0, 1] onto [0, 1]. As for transformations of
random variables (Section B.a), χx(θ) = ψθ(x) is increasing in θ and
has an increasing inverse.

Suppose that F̄ ≤ Ḡ, that is, F̄ (x) − ψθ(Ḡ(x)) : +,− for all θ ∈ Θ.
It follows in Section B.a that in this ordering,

F̄ ≤ Ḡ if and only if χ−1
x Ḡ−1F̄ (x) is increasing in x, 0 < x < 1.

(10)

D.4.a. Example. Suppose that ψθ(x) = xθ as in Example C.8.b, the
case of scale parameter families, and suppose that I = [0,∞). Then the
ordering (10) is the ordering

[log F̄ (x)]/[log Ḡ(x)] is increasing in x > 0. (11)

D.4.b. Example. If ψθ(x) = 1 − (1 − x)θ as in Example C.10.b, the
case of power parameter families, and if I = [0,∞), then the ordering
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(10) is the ordering

[logF (x)]/[logG(x)] is increasing in x > 0. (12)

D.4.c. Example. If ψθ(x) = θx/[1 − θ̄x] and I = [0,∞), then the or-
dering (10) is the ordering

(1 − x)F̄ Ḡ−1(x)
x(1 − F̄ Ḡ−1(x))

is increasing in x > 0. (13)

E. Related Stronger Orders

The orderings of Section D are all of the form F̄ ≤ Ḡ if for all θ ∈
Θ, F̄ crosses ΦθḠ at most once, and only from above. For notational
simplicity, let ΦθḠ = Ḡθ and rewrite the condition for F̄ ≤ Ḡ as

F̄ (x) − Ḡθ(x) : +,− for all θ ∈ Θ. (1)

Let R be the hazard function of F and let − log Ḡθ(x) = Rθ(x) be the
hazard function of Gθ. Then (1) is equivalent to

R(x) −Rθ(x) : −,+ for all θ ∈ Θ. (2)

Now consider a new relationship.

E.1. Definition. Write F̄ ≤r Ḡ to mean that

r(x) − rθ(x) : −,+ for all θ ∈ Θ (3)

where r and rθ are the hazard rates, respectively, of F and Gθ.

E.2. Proposition. If F̄ ≤r Ḡ, then F̄ ≤ Ḡ in the sense of Definition
D.2.

Proof. The indicator function K(x, y) = 0 if x < y, and K(x, y) = 1
if x ≥ y,−∞ < x, y < ∞, is totally positive of order ∞ (see 22.B.5).
Consequently, by the variation diminishing property of such functions,

∫ ∞

0
[r(x) − rθ(x)]K(x, y) dx =

∫ ∞

y
[r(x) − rθ(x)] dx = R(x) −Rθ(x)
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has at most one sign change, in the order −,+ if there is a sign change.
But this is another way of saying (2) holds, i.e., F̄ ≤ Ḡ. �

E.3. Example. If rθ(x) = θ for all x, θ > 0, then condition (3) is the
condition that r is increasing. The corresponding weaker condition (2)
is the condition that the corresponding survival function has an in-
creasing hazard rate average.

Conditions of the form (3) are sometimes reflexive and transitive,
and so they can be used to define orderings; but the distributions that
can be so ordered may be somewhat restricted.

E.4. Example. Let RF and RG be the hazard functions, respectively,
of the distribution functions F and G. The ordering of Example D.4.a
is the ordering (2) with Rθ(x) = θRG(x), x, θ > 0. With the respective
hazard rates of F and G denoted by rF and rG, condition (3) becomes
the condition that

rF (x)/rG(x) is increasing in x > 0. (4)

This condition clearly defines a reflexive and transitive ordering.
If F and G are Weibull distributions with respective parameters

λ, α1 and λ, α2, then (4) becomes

rF (x)/rG(x) = [α1λ(λx)α1−1]/[α2λ(λx)α2−1] = α1(λx)α1−α2/α2,

which is increasing for α1 ≥ α2. Thus, the ordering of (4) orders the
family of Weibull distributions for fixed scale parameter λ.
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Complementary Topics
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Fréchet, Maurice (1951). Sur les tableaux de corrélation dont les marges sont
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for distribution classes, 181

accelerated life models, 536
age parameter families, 264–265

and stability, 619
inverse distributions of, 264
ordering, 265
TTT transforms of, 265

Archimedean copula, 685
associated random variables, 558,

680–683
associativity equation, 712

balayage, 62
basic composition formula, 696
bathtub hazard rates, 120–133

delayed, 131
from minima, 128
from mixtures, 122
inverted, 131

Bernoulli distribution, 658
Bernoulli process, 304
Bessel functions, modified, 461, 732
beta distribution, 479–489

and log concavity, 484
bivariate, 682
density shape, 480
derivation of, 486
generalized, 488

limits of, 488
hazard rate of, 484
moments of, 485

ordering of, 487
residual life of, 486
transformed, 521

beta function, 722
incomplete, 724

Binet-Cauchy formula, 696
binomial distribution, 658

tail of, 725
Birnbaum-Saunders

distribution, 466–471
derivation of, 470

bivariate
beta distribution, 682
distribution, bounds for, 678
exponential distribution, 552, 553,

556
F distribution, 682
gamma distribution, 682
Gompertz-Makeham

distribution, 556
Box-Cox transformation, 449
Brownian motion and

inverse Gaussian, 451
burn-in, 121
Burr distribution, 401

Cauchy equations, 701
variants of, 704

cause specific survival function, 544
central limit theorem, 652
characteristic exponent

of stable distribution, 657
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characterization by coincidence,
563–609

summary of, 566
Chebyshev covariance inequality,

673
Chebyshev inequality

application of, 652
for nonnegetive variables, 208

chi-square distributions, 317–318
and inverse Gaussian, 459
noncentral, 497

Choquet’s theorem, 65
closure properties of nonparametric

families, summary of, 182
coefficient of variation, 24, 69

for exponential distributions, 295
for NBUE, NWUE, 197

coherent life functions, 144
coherent structure functions, 138
coherent systems, 137–151

ordering, 151
with IHRA components, 156
with NBU components, 165

coincidence of
regression models, 539
semiparametric families, 563, 609

summary of, 566
unresolved, 607

commutative semigroups, 621
competing risks, 541–559
completely monotone densities, 100
completely monotone functions, 654
component distribution of a mixture,

91
composite distributions, 523
composition formula, basic, 696
compound distributions, 27, 80
compound Poisson distribution, 657
concave distributions,

bounds for, 208
preservation properties of, 178

concave functions, 687
concomitant variables, 533
conditional

mixing distributions, 84
survival functions, 544

cone orders, 76
contagion, 422, 667

convergence
almost surely, 652
in distribution, 650
in probability, 651
weak, 650

convex cone, 76
convex functions, 687–694

composition of, 689
equivalent conditions for, 689
inverse of, 690
preservation properties, 693

convex order, 62
equivalent conditions for, 63

convex transform order, 71
equivalent conditions for, 71

convolution, 35, 655
of IHR, 110
of IHRA, 158
of NBU, 165
of NBUE, 175

convolution parameter families,
261–263

and infinite divisibility, 262,
281

mixtures of, 268, 280
ordering, 262
stability in, 619

copulas, 684
and competing risks, 555
and Fréchet bounds, 685
and Laplace transforms, 685
Archimedean, 685

correlation, 676
counting process, 663
covariance, 676

formulas for, 676
covariate models, 533
crossings of distributions, 627, 698

notation for, 699
crude survival function, 544
cumulative hazard functions, 11
cut set, 140

damage threshold models, 185
decreasing hazard rate average

(see DHRA)
decreasing mean residual life

(see DMRL)



SVNY289-Olkin May 15, 2007 18:25

Subject Index 773

decreasing reverse hazard rate
(see DRHR)

decrement function, 543
densities

completely monotone, 100
decreasing, 178
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log convex, 31

DHR distributions, 31, 116–120
bounds for, 202
conditions for, 105
equilibrium distributions of, 119
mixtures of, 119
moment inequalities for, 195
properties of, 117, 118

DHRA distributions, 151, 160
bounds for, 201
equivalent conditions for, 160
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moment inequalities for, 196

differentiation
chain rule for, 729
of an inverse, 730
of integrals, 730

Dirichlet integral, 726
dispersive order, 65

equivalent conditions for, 66
distributions

absolutely continuous, 9
algebraic structure of, 494
classification of, 637
composite, 523
compound, 80
concave, 178
conditional mixing, 84
crossings of, 699
equilibrium, 170, 649

DHR for, 119
function, 6, 7, 637
inverse, 20
lattice, 638
log-concave, 101
mixing, 80
model, 80
multivariate, 674
not admitting parameters, 285
of same type, 25, 651
prior, 80

predictive, 80
product family, 237
shape of, 67
stable, 529, 657

characterization of, 579
support of, 9
TTT transform of, 172
underlying, 217
with bounded support

moments of, 474
DMRL distributions, 169–173

and hazard rate order, 170
mixtures of, 173

domain of attraction, 670
DRHR distributions, 178–180

bounds for, 202
closure properties of, 179
mixtures of, 179
residual life distribution of, 179

duality
of frailty and resilience, 235
of distributions, 474

duplication formula, 719

empirical distributions, 39
equilibrium distributions, 18, 284,

649
and DHR, 119
and IHR, 111
hazard rate of, 650

Erlang distribution, 313
excess function, 17
expected value, 15
exponential distributions, 28, 291–307

and DHR, DHRA, IHR, IHRA,
NBU, NBUE, NWU, NWUE,
300

and mixtures, 306
as a limit, 300, 304
as approximation, 214
bivariate, 552, 553, 556
characterization of, 296–298, 300,

301, 302
closure under minima, 302
coefficient of variation of, 295
convergence of, 299
density of, 292
functional equation for, 301
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geometric distribution

relationship, 304
Gini Index of, 293
hazard rate of, 292
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Laplace transform of, 295, 303
limits for, 299
location parameter added

characterization of, 590
Lorenz curve of, 293
mean residual life of, 298
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moments of, 28, 294
multivariate, 683
odds ratio, 293
order statistics of, 302
ordering for, 304
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connection, 663
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tilt parameter added, 113, 338

characterization of, 594
ordering, 345

TTT transform of, 293
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extreme value distributions, 323, 669

transformed, 445
characterization of, 570
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power parameter added,

characterization of, 572

F distribution
bivariate, 682
density of, 422
moments of, 419
generalized, 411–418

density of, 412
from mixtures, 417
from ratios, 417
hazard rates of, 417
limits of, 418
ordering of, 423

failure rate (see hazard rate)
fatigue-life distribution, 467
Feller–Pareto distribution, 412
first-order stochastic dominance, 77
Fisher information, 648
Fisk distribution, 401
force of mortality, 11
frailty and resilience

in consort, 238
frailty models, multivariate

positive quadrant dependence of,
679

frailty parameter families, 233–242
Gini index of, 240
hazard rates of, 234
inverse distribution of, 239
majorization in, 242
mixing, 241
mixture of, 268
order preservation in, 240
ordering, 239
stability of, 616
TTT transform of, 239

Fréchet-Hoeffding bounds, 678
and copulas, 685

Fubini’s theorem, 731
functional equations, 701–715

addition equations, 714
associativity equation, 712
Cauchy, 701
Pexider, 705
Simcov, 710
transformation equation, 713

gamma distribution, 29, 310–321
bivariate, 682
characterizations of, 576, 596
convolution parameter in, 312
density properties, 31, 314
derivation of, 311
generalized, 348, 417

hazard rates of, 350
infinite divisibility of, 656

hazard rate of, 315
Laplace transform of, 311
limits of, 319
mixture representation, 312
ordering, 318
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TTT transform of, 317

gamma function, 717
characterization of, 718
incomplete, 720
total positivity of, 720

gamma-Weibull distribution
infinite divisibility of, 353

Gauss duplication formula, 719
generalized beta distribution, 488

limits of, 488
generalized gamma convolutions

infinite divisibility of, 359
limits of, 359
mixtures of, 359

generalized gamma distributions
(see gamma distributions,
generalized

generalized negative binomial
distribution, 662

generalized Pareto distribution, 671
generalized Weibull distribution,

extended, 523
geometric distribution, 660

and tilt parameter families, 252
geometric-extreme stable, 245
Gibrat distribution

law of proportional effects, 432
Gini index, 69
Glivenko-Cantelli theorem, 40
Gompertz distribution, 364–375

coincidence characterization, 591
differential equation for, 364
functional equations for, 369–373
generalized exponential form, 373
hazard power parameter extension,

394
mixtures of, 113, 374
modified negative, 390
moments of, 367
negative, 368
negative-positive, 390
odds ratio derivation, 373
ordering, 374
Perks extension, 392
power parameter extension, 393
summary of extensions, 396

Gompertz-Makeham distribution,
375–389

bivariate, 556
complete monotonicity of, 383
differential equation for, 380
extended parameter range, 381
functional equations for, 384–386
moments of, 380
ordering, 386
random minimun derivation, 383
residual life distribution of, 386
second Makeham extension

differential equation for, 387
extended parameter range, 388
power parameter extension,

395
Gompertz-Rayleigh distribution,

396

Hamburger moment problem, 647
harmonic new better than used

in expectation (see HNBUE)
harmonic new worse than used in

expectation (see HNWUE)
Hausdorff moment problem, 647
hazard functions, 10

reverse, 13
hazard potential, 11, 183
hazard power parameter family,

256–258
hazard rates of, 257
inverse distribution, 258
ordering, 258
properties of, 257
TTT transform of, 258

hazard rates,
bathtub, 10, 97, 120–133
for location parameters, 221
for scale parameter family, 225
limiting, 87
monotone, 31, 104–120
of equilibrium distribution, 650
of mixtures, 27, 81, 125
reverse, 13
sum of, 524
unimodal, 131

hazard rate averages
monotone, 151–161
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hazard rate order, 52–55
and DMRL, 170
equivalent conditions for, 52

hazard rate shape
determination of, 133
of coherent systems, 147
of mixtures, 89

hazard transforms
of coherent system, 147
of mixtures, 89

heavy tail distribution, 399
Hessian matrix

and convexity, 688
HNBUE, 177
HNWUE, 177
Hoeffding-Fréchet bound, 678
hypergeometric function, 721
Hölder’s inequality, 732

IFR (see IHR)
IHR distributions, 31, 104–116

bounds for, 212
conditions for, 105
equivalent conditions for, 107
hazard function convexity, 105
mixtures of, 111
moment inequalities for, 195
moments of, 109
odds ratio characterization, 107
PF2 characterization, 106
preservation theorems for, 109
residual life distribution of, 111
TTT transform of, 107
unimodality for, 116

IHRA distributions, 151–161
and crossings, 64
bounds for, 201, 206, 211
characterization of, 152
closure under coherent systems,

156
convolutions of, 158
equivalent conditions for, 152
mixtures of, 159
moment inequalities for, 196
moments of, 154
properties of, 154
residual life distributions of,

158

IMRL distributions, 169–173
mixtures of, 172

incomplete beta function, 724
incomplete gamma function, 720

and concavity, 722
increasing hazard rate average

(see IHRA)
increasing mean residual life

(see IMRL)
infinite divisibility, 261, 656

and convolution families, 281
exponential distribution, 656
inverse Gaussian, 454
Weibull distribution, 328

integration by parts, 729
inverse,

derivative of, 730
distribution of reciprocal

random variable, 32
inverse distribution functions, 20, 35
inverse Gaussian distributions,

451–466
and Brownian motion, 451
chi-square distribution

relationship, 459
coefficient of variation, 457
density of, 452
generalized, 459

convolutions of, 465
hazard rate of, 463
infinite divisibility of, 466
Laplace transform of, 464
moments of, 464
ordering, 465

hazard rate of, 456
infinite divisibility of, 454
Laplace transform of, 464
moments of, 457
normal limit, 458
norming constants and Bessel

functions, 461
ordering, 458
reciprocal of, 459

inverse survival function, 36
inverted bathtub hazard rate, 131

Jensen’s inequality, 65, 692
joint distribution, conditional, 683
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joint distribution function, 674
bounds for, 548

k-out-of-n system, 139
Kolmogorov inequality, 652

lack of memory property, 222, 230,
296

Laplace transforms, 25, 653–658
continuity of, 654
convolutions, 655
function of, 619
uniqueness of, 653

Laplace transform order, 76
Laplace transform parameter

families, 260, 618
inverse distribution of, 261
ordering, 261
TTT transform of, 261

latent lives, 543, 549
positive dependence of, 557

lattice distribution, 638
law of large numbers, 652
Lebesgue dominated convergence,

731
Lebesgue monotone convergence,

731
L’Hospital’s rule, 729
life functions, coherent, 144
likelihood ratio order, 56–59
Liouville-Dirichlet integral, 726
location, measures of, 24
location parameter families, 220–224

hazard rate of, 221
inverse distribution of, 223
ordering, 224
stability of, 615
TTT transform, 223

log Cauchy distribution
hazard rate of, 443
moments of, 444

log concave densities, 31, 98–103
convolution of, 698
hazard rate of, 102
moment inequalities for, 195
residual life of, 103
reverse hazard rate of, 102
unimodality of, 99

log concave distributions, 101,
103–116

mixture of, 114, 115
log concave functions, 689
log convex densities, 31, 98
log convex functions, 689
log extreme value distribution,

442
log gamma distributions, 509–514

characterization of, 588
hazard rate of, 513

log Gompertz distribution, 518
log logistic distribution, 441
log Student’s t distribution, 445

negative, 514
log Weibull distribution, 442,

514–517
characterization of, 582
hazard rate of, 514
negative, 514

logarithmic distributions,
427–449

monotone hazard rate of, 430
negative, 430
properties of, 428

logistic distribution, 345
differential equation for, 345
stability for, 246

logistic law of growth, 345
lognormal distribution, 30, 427,

431–441
characterization of, 574
coefficient of variation of, 440
density of, 434
derivation of, 433
growth models, 432
hazard rate of, 135, 436
infinite divisibility of, 440
median of, 440
mode of, 440
moments of, 439
ordering, 441
physical models for, 431
unimodality of, 436

Lomax distribution, 401
Lorenz curve, 42
Lorenz order, 68
Lyapunov inequality, 646
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Macdonald’s function, 732
maintenance policies, 187
majorization for proportional

hazards, 242
marginal distribution function, 674
Markov’s inequality, 198

improvements of, 200
reversals of, 204

maxima, distribution of, 33
Maxwell-Boltzman distribution, 329
mean residual life function, 15
Mellin transform, 25
Mills’ ratio, 11
minimal cut sets, 682
minimum, distribution of, 32
mixing distribution, 80
mixtures, 79–94, 267–283

and minima, 92
closure under, 61
hazard rates for, 81
introduction of, 26
of nonparametric families

DHRA distributions, 160
DMRL distributions, 173
DRHR distributions, 179
IHRA distributions, 159
IMRL distributions, 172
NBU distributions, 168
NWU distributions, 166
NWUE distributions, 176

of semiparametric families,
267–283

convolution parameter families,
280

power parameter families, 232
product and frailty

parameter famailies, 268
resilience parameter families,

277
scale parameter families, 267

preservation of orders under, 94
model distribution, 80
moments, 22, 644–648

existence of, 646
formulas for, 645
inequalities for, 195–198
normalized, 23, 195, 294
of IHR distributions, 109

of IHRA distributions, 196
of NBU distributions, 196
of NBUE distributions, 197

moment crossings, 699
moment generating function, 23, 653
moment parameter family, 258–260

and stability, 618
inverse distribution, 259
ordering, 259
TTT transform, 259

moment problems
Hamburger, 647
Hausdorff, 647
Stieltjes, 647

mortality law and graduation, 5
multiple correlation distribution

noncentral, 505
unimodality of, 506

multiple decrement function, 543
mutual independence, 675

NBU distributions, 161–168
bounds for, 203
coherent systems of, 165
convolution of, 165
equivalent conditions for, 162
moments of, 163, 196
normalized moments of, 196
odds ratio for, 165
properties of, 163
random sums of, 167
replacement policy

characterizations, 187
residual life of, 166

NBU ordering, 386
NBUE distributions, 173–177

bounds for, 203, 206
coefficient of variation, 197
convolutions of, 175
inequalities for, 177
normalized moments, 197
preservation of, 174
TTT transform of, 174

negative binomial distribution
tail of, 726

negative log gamma distribution,
513

characterization of, 588
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negative Weibull distribution
characterization of, 568

net survival function, 543
new better than used distributions

(see NBU)
new better than used in expectation

(see NBUE)
new worse than used distributions

(see NWU)
new worse than used in expectation

(see NWUE)
noncentral F distribution, 501

doubly, 503
moments of, 501
ordering of, 503
unimodality of, 502

noncentral beta distribution, 504
doubly, 508
ordering of, 509

noncentral chi-square distribution,
497

log-concavity of, 498
unimodality of, 498

noncentral gamma distribution, 498
Laplace transform of, 498
ordering, 500

noncentral multiple correlation, 509
normal distribution as limit, 653
normalized moments, 23, 294
NWU distributions, 161–168

bounds for, 203
equivalent conditions for, 162
moment inequalities, 196
mixtures of, 166

NWUE distributions, 173–177
bounds for, 204
coefficient of variation, 197
mixture of, 176
normalized moments, 197
replacement policy

characterizations, 187
TTT transform of, 174

odds ratio, 19
and IHR, 107
and NBU, 165
and nonparametric families, 192

order statistics, 682

ordering coherent systems, 151
ordering semiparametric families

age parameter, 265
convolution parameter, 262
frailty parameter, 239
hazard power parameter, 258
Laplace transform parameter,

261
location parameter, 224
moment parameter, 259
power parameter, 230
resilience parameter, 239
scale parameter, 226
tilt parameter, 250

orderings
and crossings, 630
generated by semiparametric

families, 626
orders

cone, 76
equivalences for classes

of distributions, 182
of distributions, 47–77

convex, 62
convex transform, 70
dispersive, 65
hazard rate, 52
Laplace transform, 76
likelihood ratio, 56
Lorenz, 68
preservation properties of, 60
star, 73
stochastic, 47
superadditive, 75
summary of relationships, 75,

77
partial, 49
preservation

under mixtures, 94
with frailty parameters, 230
with power parameters, 230
with resilience parameters, 230
with scale parameters, 227
with tilt parameters, 250

properties for semiparametric
families, summary of, 283

reflexitivity of, 48
transitivity of, 48
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parallel system, 139
parameters

classification of, 612
successive addition of, 265

Pareto distributions, 399–411
descendants of, 402
from exponential mixtures, 411
ordering of, 423

Pareto I distribution, 400
characterization of, 589

Pareto II distribution, 400
characterization of, 580, 594
density, 401
infinite divisibility of, 408
with tilt parameter, 411

Pareto III distribution, 401
and exponential with tilt, 410
and log logistic distribution, 441
characterization of, 570, 584
density, 401
generalization of, 424
with resilience parameter, 402

Pareto IV distribution, 401
as a limit, 408
density, 401
mixture representation, 407
ordering, 424
residual life distribution of, 407

partial orders, 49
path set, 140
peakedness, 47
percentiles, bounds for, 211
Pexider equation, 299, 371
planned replacements, 187
Poisson distributions, 659

characterization of, 597
compound, 657
tail of, 721

Poisson mixture, 497
Poisson process, 303, 304, 663
Pólya frequency function, 696

of order 2 (see PF2), 99
Pólya process, 663, 666

waiting time in, 422, 487
Pólya urn models, 422
Pólya-Eggenberger distribution,

666
positive quadrant dependence, 678

power parameter families, 228–232
and stability, 615
hazard rates of, 230
mixtures of, 232
ordering, 230
TTT transform of, 229

predictive distribution, 80
preorder, 49
prior distribution, 80
probability foundations, 635–643
probability density, 8
probability integral transform,

643
probability mass functions, 8
product families, 237

mixtures of, 268
survival function, 7

proportional hazards families,
233–242

and majorization, 242
Gini index of, 240
hazard rates of, 234
inverse distribution of, 239
mixtures of, 268
ordering, 239
TTT transform of, 239

proportional hazards regression
models, 537

proportional odds family
(see tilt parameter families)

proportional odds regression models,
538

proportional reverse hazards family,
234

hazard rates of, 235
Prékopa’s theorem, 693
pseudo survival function, 545
pseudo-Weibull distribution, 349

quantile, 35

random variables, 636
functions of, 612
independence of, 637
indicator, 658
transformations of, 629

rates of mortality, 5
Rayleigh distribution, 328
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regression models, 533–540
accelerated life, 536
proportional hazards, 537
proportional odds, 538

regressor variables, 533
reliability function, 142
renewal distribution

stationary, 18, 111
renewal process, 664

stationary, 665
renewal theory, 187–192, 663
replacement policies, 187–192

age and block, 187
and monotone hazard rate, 188
and NBU, 187
and NWU, 187
and stochastic orders, 191

residual life distributions, 14
and IHRA, 158
convergence of, 15
of a mixture, 84
order closure under, 60

residual life family
(see age parameter families)

resilience parameter families, 234
frailty parameters and, 238
Gini index for, 240
mixing, 241, 278
order preservation with, 240
ordering, 239
stability of, 616

reverse hazard function, 13
reverse hazard power parameter, 257
reverse hazard rate, 13
reverse hazard rate order, 53, 58

scale parameter families, 26, 224
hazard rates of, 225
inverse distributions of, 225
mixing, 267
order perservation with, 227
ordering, 226
stability of, 615
TTT transaform of, 225

second-order stochastic dominance,
77

semiparametric families, 217–287,
611–631

coincidences of, 563–609
criteria for, 219, 611, 622
derivation of, 619
summary of, 218
summary of order properties, 283

series system, 139
shock models, 182
similarly ordered, 673
Simpson’s paradox, 535
skewness, 70

measures of, 72
spread

measures of, 24
stability of semiparametric families,

219, 611, 622
stable distributions, 529, 657

characterization of, 579
index of, 529

Stacy’s distribution, 348
standard deviation, 24
star order, 73

equivalent conditions for, 74
starshaped functions, 690

hazard transforms, 147
starshapedness, preservation of, 693
stationary renewal distribution

(see equilibrium distribution)
stationary renewal process, 665
Stieltjes moment problem, 647
Stirling’s formula, 719
stochastic dominance

first-order, 77
second-order, 77

stochastic order, 47, 50
equivalent conditions for, 50

stochastic comparisions
summary of, 191

structure function, 138
subadditive function, 691
sub-density function, 545
sub-survival function, 544
summaries for nonparametric

families
of abbreviations, 181
of closure properties, 182
of relationships, 181
of stochastic comparisons, 191

sums, distribution of, 34
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superadditive function, 691
superadditive order, 75
superadditive order

and NBU, NWU, 162
superadditivity, preservation of, 693
survival functions, 7

alternatives for determination, 21
inequalities for, 198–214
log-concavity of, 101
products of, 523
transformations of, 616, 625, 629

survivor function, 8

threshold models
cumulative damage, 185
random, 186

tilt parameter families, 242–256
derivation from

geometric extreme stability,
245

mixtures, 248
proportional odds, 243

generalizations of, 255
inverse distributions of, 249
order preservation with

introduction of, 250
ordering, 250
properties of, 251, 252
TTT transform of, 250
with underlying exponential

distributions, 113
total lifetime, 665
total positivity, 694–700

and logconcavity, 698
multivariate, 683

totally positive functions
composition of, 697

TTT statistic, 39
TTT transforms, 36

and hazard rates, 40
convergence of, 40
for location parameter families,

223

for power parameter families,
229

uniform distribution
and IHR, 116
and log-concavity, 99
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21

Convexity and Total Positivity

A. Convex Functions

Convexity is a fundamental analytic tool and the concept appears
in many contexts. For more extensive discussions, see, for example,
Roberts and Varberg (1973), Rockafeller (1970), van Tiel (1984), or
Webster (1994).

In the following, the notation ᾱ = 1 − α is used. The natural domain
of a convex function, defined below, is a convex set.

A.1. Definition. A subset A of Rn is said to be convex if x, y ∈ A
implies αx + ᾱy ∈ A for all α ∈ [0, 1].

A.2. Definition. A real-valued function φ defined on a convex subset
A of Rn is said to be convex if

φ(αx + ᾱy) ≤ αφ(x) + ᾱφ(y) (1)

for all x, y ∈ A and all α ∈ [0, 1]. If the inequality (1) is reversed, then φ
is said to be concave. In other words, a function φ is concave if and only
if −φ is convex. In the following, conditions are given only for convexity
because corresponding conditions for concavity can be obtained with a
sign change.

A.3. Proposition.
(i) A function φ defined on A is convex if and only if

g(α) = φ(αx + ᾱy) is a convex function of α ∈ [0, 1]
for all x, y ∈ A.
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(ii) In case n = 1 and A = I is an interval, φ is convex if and only if

φ(y1) − φ(x1)
y1 − x1

≤ φ(y2) − φ(x2)
y2 − x2

whenever x1 < y1 ≤ y2, x1 ≤ x2 < y2.

(iii) In case n = 1 and A = I is an interval, φ is convex if and only if

φ(x + Δ) − φ(x) is increasing in x for all Δ > 0;x, x + Δ ∈ I.

(iv) If n = 1,A = (a, b) is an open interval and φ is differentiable on
(a, b), then φ is convex if and only if the derivative φ′ of φ is increasing
on (a, b).
(v) If n = 1,A = (a, b) is an open interval and φ is twice differentiable
on (a, b), then φ is convex if and only if the second derivative φ′′ of φ
is nonnegative.
(vi) The matrix H = H(x1, . . . , xn) = (hij(x1, . . . , xn)), where

hij(x1, . . . , xn) =
∂2φ(x1, . . . , xn)

∂xi∂xj
,

is called the Hessian matrix. If A ∈ Rn is an open convex set and φ is
twice differentiable, then φ is convex on A if and only if the Hessian
matrix H is positive semidefinite on A.

Proof of (iii). Add the inequality (1) to the inequality obtained from
(1) by interchanging α and ᾱ to obtain the inequality

φ(αx + ᾱy) − φ(x) ≤ φ(y) − φ(ᾱx + αy).

Assume that x < y and take Δ = ᾱ(y − x) to obtain (iii). �

For a proof of the remaining and related results, see, for example,
Marshall and Olkin (1979, Chapter 16), Roberts and Varberg (1973),
or Rockafeller (1970).

A.3.a. Example. The function h(x, θ) = xα/θβ has the Hessian
matrix H given by

H(x, θ) =

⎛
⎜⎜⎝
α(α− 1)tα−2

θβ
−αβtα−1

θβ+1

−αβtα−1

θβ+1

β(α + 1)tα

θβ+2

⎞
⎟⎟⎠ .
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Thus, h is convex in (x, θ) ∈ (0,∞) × (0,∞) when α(α− 1) ≥ 0,
β(β + 1) ≥ 0, and αβ(α− β − 1) ≥ 0. In particular, h is convex in
x, θ > 0 when β = α− 1 ≥ 0. A direct proof of these results, without
computing the Hessian matrix, would be possible but considerably more
intricate.

a. Differentiability of Convex Functions

In (iii) of Proposition A.3, the function φ is differentiable by assump-
tion. In some applications, it is desirable to avoid this assumption.

A.4. Proposition. Let φ be a finite convex function defined on an
open interval I of the real line. Then, φ is differentiable except possibly
on a countable subset of I. Moreover, φ′ is continuous and increasing
relative to the dense subset D of I where φ is differentiable.

For a proof of this proposition, see Rockafellar (1970, p. 244).

b. Compositions of Convex Functions

A.5. Proposition. If φ1, φ2, . . . , φk are convex functions defined on
the convex set A ∈ Rn and h is an increasing convex function defined on
Rk, then ψ(x) = h(φ1(x), φ2(x), . . . , φk(x)) is convex on A. Similarly,
if φ1, φ2, . . . , φk are concave functions defined in the convex set A ∈ Rn

and h is an increasing concave function defined on Rk, then ψ(x) =
h(φ1(x), φ2(x), . . . , φk(x)) is concave on A.

In particular, when k = n = 1 and A = R it follows that

(i) if φ is convex and h is both increasing and convex, then h(φ( · )) is
convex;
(ii) if φ is concave and h is both increasing and concave, then h(φ( · ))
is concave;
(iii) if φ is convex and h is both decreasing and concave, then h(φ( · ))
is concave;
(iv) if φ is concave and h is both decreasing and convex, then h(φ( · ))
is convex.

A.5.a. Observation. If in (i) to (iv), the hypotheses concerning con-
vexity (concavity) of h are replaced by log convexity (log concavity),
then the composition hφ is log convex (concave).

A.5.b. The sum of convex functions is convex and the sum of concave
functions is concave. The product of log convex functions is log convex
and the product of log concave functions is log concave.
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A.6. Proposition. (i) If φ is a positive function and log φ is convex,
then φ is convex. (ii) If φ is a positive concave function, then log φ is
concave.

It is not unusual to encounter functions φ for which log φ takes a
simpler form than φ itself. Then, (i) may be useful for proving that φ
is convex.

c. Inverse of a Monotone Convex Function

A.7. Proposition. If φ is a strictly increasing convex function defined
on a possibly infinite interval (a, b), then the inverse φ−1 of φ is strictly
increasing and concave.

Proof. Because φ is increasing and convex,

αx + ᾱy = φ−1φ(αx + ᾱy) ≤ φ−1(αφ(x) + ᾱφ(y)). (2)

Let u = φ(x), v = φ(y), so that x = φ−1(u), y = φ−1(v) and substitute
in (2) to obtain

αφ−1(u) + ᾱφ−1(v) ≤ φ−1(αu + ᾱv).

Thus, φ−1 is concave. The monotonicity of φ−1 is well known. �

If φ is differentiable, an alternative proof of Proposition A.7. can be
given using derivatives. From 24.A.4.a, it follows that

dφ−1(x)
dx

=
1

φ′φ(x)
;

By hypothesis, φ′ and φ are both increasing, and consequently, their
composition is increasing. This means that 1/φ′φ(x) is decreasing, and
consequently, φ−1 is concave.

d. Starshaped and Superadditive Functions

A.8. Definition. A real-valued function φ defined on [0,∞)n is said
to be starshaped if

φ(αx) ≤ αφ(x) for all α ∈ [0, 1] and all x ∈ [0,∞)n.

Starshaped functions are sometimes called “[0, 1]—subhomo-
geneous” functions. See, for example, Burai and Száz (2005).
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0
0

Fig. A.1. Example of a starshaped function

A.9. Proposition. A real-valued function φ defined on [0,∞) is
starshaped if and only if φ(0) ≤ 0 and φ(x)/x is increasing in
x > 0.

To understand the geometric meaning of starshapedness, picture an
observer located at the origin; the function φ is starshaped if and only
if none of the area above the graph of φ is hidden from the observer
by the graph itself. Starshapedness is weaker than convexity, which
requires all area above the graph to be visible to an observer situated
anywhere on the graph.

See Figure A.1 for the graph of a star-shaped finction.

A.10. Definition. A real-valued function φ defined on a subset A of
Rn is said to be superadditive if x, y ∈ A implies x + y ∈ A and

φ(x + y) ≥ φ(x) + φ(y).

If −φ is superadditive, then φ is said to be subadditive.
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A.11. Proposition. Let φ be a real-valued function defined on [0,∞).
(i) If φ(0) ≤ 0 and φ is convex, then φ is starshaped. (ii) If φ is star-
shaped, then it is superadditive.

Proof. (i) If φ(0) ≤ 0 and φ is convex, then by taking y = 0 in (1) it
follows that φ is starshaped. (ii) If φ is starshaped, then

φ(α(x + y)) ≤ αφ(x + y); (3)

by successively taking α = x/(x + y), then α = y/(x + y) in (3) and
adding the results, it follows that φ is superadditive. �

e. Jensen’s Inequality

A.12. Proposition. Suppose that φ is a convex function defined on
the open convex subset A of Rn, and suppose that X is a random
variable taking values in A with a finite expectation. Then,

Eφ(X) ≥ φ(EX). (4)

This fundamental inequality of Jensen has a version for conditional
expectations, which can be properly stated only with measure–theoretic
language (see, for example, Gut (2005, p. 477)).

A.13. Proposition. Suppose that φ is a convex function defined on
the open convex subset A of Rn and X is a random variable de-
fined on the probability space (Ω,B, P ) taking values in A. Let F ⊂ B
be a σ-algebra such that E(X | F) exists finitely almost everywhere
(P ), that is, except possibly on a set of probability 0. Then with
probability 1,

E[φ(X) | F ] ≥ φ(E[X | F ]). (5)

A.13.a. Example. When B is the smallest σ-algebra for which the
random variable Y is measurable, then (5) takes the more familiar
form

E[φ(X) |Y ] ≥ φ(E[X |Y ]) with probability 1.
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f. Prékopa’s Theorem

A.14. Theorem (Prékopa, 1971). Suppose that φ is a nonnegative
function defined and log concave on Rm ×Rn. If the function

h(x) =
∫
Rn

φ(x, z) dz

is finite for all x, then h is log concave on Rm. When m = 1 and mild
regularity conditions are satisfied, this can be written in the form

∫
Rn

φ(x, z) dz

∫
Rn

∂2φ(x, z)
∂x2 dz ≤

[∫
Rn

∂φ(x, z)
∂x

dz

]2

.

For a proof of Prékopa’s theorem, see Brascamp and Lieb (1975).

A.14.a. Example. If f and g are log-concave densities, then accord-
ing to Proposition 4.B.3, their convolution is log concave. To prove this
using Theorem A.14, observe that because f and g are log concave it
follows that φ(x, z) = f(x− z)g(z) is log concave. It follows from The-
orem A.14 that the convolution h(x) =

∫
f(x− z)g(z) dz is log concave.

For another application of Theorem A.14, see Proposition 4.C.1.i.

g. Preservation of Convexity, Starshapedness,
and Superadditivity

The following propositions are sometimes useful in proving convexity
or starshapedness, but first some notation is required. For any function
φ mapping [0,∞) into [0,∞] such that φ(0) = 0, let

gα(x) = [φ(x1/α)]α, α �= 0.

A.15. Proposition (Marshall and Proschan, 1972b). Let C be the
class of increasing convex functions φ defined on [0,∞) with φ(0) = 0.
Then, gα is in C whenever φ is in C if and only if α ≥ 1.

The proof of this result is rather lengthy, and is not reproduced here.

A.16. Proposition (Marshall and Proschan, 1972b). Let C be the
class of increasing starshaped functions φ defined on [0,∞) with
φ(0) = 0. Then, gα is in C whenever α �= 0.

Proof. As a consequence of the definition of starshapedness, gα is in C
if and only if φ(0) = 0 and, on (0,∞), φ(x) = xζ(x) for some increasing
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nonnegative function ζ. Thus, gα(0) = 0, and gα(x) = x[ζ(x1/α)]α,
x > 0. Because [ζ(x1/α)]α is increasing and nonnegative on (0,∞), it
follows that gα is in C. �

A.17. Proposition. The pointwise limit of convex functions, all de-
fined on the same set, is a convex function. Similar statements can be
made about concavity, starshapedness, and superadditivity.

This proposition follows directly from the fact that the inequal-
ities defining the various properties are preserved under pointwise
limits.

A.18. Proposition. The set of convex functions forms a convex cone;
that is, the sum of convex functions is convex, and every positive
multiple of a convex function is convex. The same statement can
be made about the sets of concave, starshaped, and superadditive
functions.

A.19. Proposition (Hardy, Littlewood and Pólya, 1929). A convex
function φ defined on a finite interval can be approximated uniformly
by finite linear combinations of linear functions and functions of the
form φ(a)(x), where φ(a)(x) = 0, x ≤ a, φ(a)(x) = x− a, x ≥ a.

See also Marshall and Olkin (1979, p. 448) for further details.

B. Total Positivity

Total positivity is an indispensable tool in several places in this book.
Although the theory of total positivity was already well advanced in the
early 1950s, it is not as well known as it deserves to be. A brief outline
is offered here (digested from a brief survey of Marshall and Olkin
(1979)). The most complete discussion of the field currently available
is that of Karlin (1968), who did much to advance the field (see also
Gantmakher and Krein, 1961). A more recent collection of papers on
the subject has been edited by Garsca and Micchelli (1996). A survey of
the subject is offered by Barlow and Proschan (1965). Both Barlow and
Proschan (1965) and Marshall and Olkin (1979) offer brief comments
about the history of the subject, and interesting historical details not
well known are given by Pinkus (1996).

B.1. Definition. Let A and B be subsets of the real line. A function
K defined on A×B is said to be totally positive of order k, denoted
TPk, if for all x1 < · · · < xm, y1 < · · · < ym, (xi ∈ A, yi ∈ B), and for
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all m, 1 ≤ m ≤ k

K

(
x1, . . . , xm
y1, . . . , ym

)
≡ det

⎡
⎢⎣
K(x1, y1) . . . K(x1, ym)

...
...

K(xm, y1) . . . K(xm, ym)

⎤
⎥⎦ ≥ 0. (1)

When the inequalities (1) are all strict, K is said to be strictly totally
positive of order k (STPk). If K is TPk (STPk) for all k = 1, 2, . . . ,
then it is said to be totally positive (strictly totally positive) of order
∞, written TP∞ (STP∞).

Some consequences of the definition are as follows.

B.2. If g and h are nonnegative functions defined on A and B, re-
spectively, and if K is TPk on A×B, then g(x)h(y)K(x, y) is TPk on
A×B.

B.3. If g and h are increasing functions defined, respectively, on A
and B, and if K is TPk on g(A) × h(B), then K(g(x), h(y)) is TPk on
A×B.

B.4. If K is TPk on A×B and A0 ⊂ A,B0 ⊂ B, then K is TPk on
A0 ×B0.

a. Examples

With the aid of B.2 and B.3, many examples of totally positive functions
are obtainable from a few relatively basic examples.

B.5. Example. The function

K(x, y) = exy, −∞ < x, y < ∞, is STP∞. (2)

In this case, the positivity of the relevant determinants is well known be-
cause they are generalized Vandermonde determinants. See, e.g., Pólya
and Szegö (1972, p. 46, Problem 76) for a discussion of these determi-
nants.

B.5.a. Example. The function

K(x, y) = xy, 0 ≤ x < ∞, −∞ < y < ∞, is STP∞.

B.5.b. Example. The function

K(x, y) = e−(x−y)2
, −∞ < x, y < ∞, (3)

is STP∞.
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B.6. Example. The indicator function

K(x, y) = 1 if x ≤ y, (4)
= 0 if x > y, −∞ < x, y < ∞,

is TP∞.

B.6.a. Example. The indicator function

K(x, y) = 0 if x < y,

= 1 if x ≥ y, −∞ < x, y < ∞, (5)

is TP∞.

B.7. Definition. A real-valued function f defined on (−∞,∞) is said
to be a Pólya frequency function of order k (PFk) if the function
K(x, y) = f(y − x),−∞ < x, y < ∞, is totally positive of order k.

Note that the term frequency function in this context does not re-
quire that f be a density, though with k = 1, total positivity requires
that f be nonnegative.

B.8. Proposition (Schoenberg, 1951). The function

K(x, y) = f(y − x), −∞ < x, y < ∞,

is TP2 if and only if f is nonnegative and log f is concave on (−∞,∞).
Thus, f is log concave on (−∞,∞) if and only if f is PF2.

This important fact is often useful.

B.9. Proposition. The function

K(x, y) = f(y + x), 0 ≤ x, y < ∞,

is TP2 in x, y ≥ 0 if and only if f is nonnegative and log f is convex on
[0,∞).

b. The Basic Composition Formula

The following lemma is called the basic composition formula; it will be
recognized as a generalization of the well-known Binet–Cauchy formula
of matrix theory.

B.10. Lemma (Andréief, 1883; Pólya and Szegö, 1925, 1972, p. 61,
Problem 68). If σ is a σ−finite measure and the integral M(x, y) =∫
K(x, z)L(z, y) dσ(z) converges absolutely, then with the notation
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introduced in (1),

M

(
x1, . . . , xm
y1, . . . , ym

)
=

∫
· · ·

∫
z1<...<zm

K

(
x1, . . . , xm
z1, . . . , zm

)
L

(
z1, . . . , zm
y1, . . . , ym

)
dσ(z1) . . . dσ(zm).

A proof of this result is outlined by Karlin (1968, p. 17).

A consequence of the basic composition formula is the following
theorem, one of the most basic and useful properties of totally positive
functions.

B.11. Theorem. If K is TPm on A×B,L is TPn on B × C, and σ
is a sigma finite measure, then

M(x, y) =
∫

K(x, z)L(z, y) dσ(z)

is TPmin(m,n) on A× C.

B.11.a. Example. Here is an application of Theorem B.11. According
to Example B.5.a, the function K(x, r) = xr is totally positive in x and
r. From Theorem B.11, it follows that

μr+s =
∫ ∞

0
xrxs dF (x)

is totally positive in r and s for all r, s such that the moments exist.
This result is to be compared with Proposition 20.B.8.

c. The Variation Diminishing Property

To a considerable degree, the interest of totally positive functions
is due to their variation diminishing property investigated early by
Schoenberg (1930). To describe this property, the following definition
is useful.

B.12. Definition. If f : B → (−∞,∞), where B is a subset of (−∞,
∞), then the number of sign changes of f on B is the supremum of
the numbers of sign changes in sequences of the form f(x1), . . . , f(xm)
where m is finite, x1, . . . , xm are points in B, x1 < · · · < xm, and zero
values in the sequence are discarded.

B.13. Theorem. Let K: A×B → (−∞,∞) be Borel-measurable and
TPk. Let σ be a regular σ-finite measure on B, and f : B → (−∞,∞)
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be a bounded measurable function such that the integral

g(x) =
∫
B
K(x, y)f(y) dσ(y)

converges absolutely. If f changes sign at most j ≤ k − 1 times on B,
then g changes sign at most j times on A. Moreover, if g changes sign
j times, then it must have the same arrangement of signs as does f.

d. Log Concavity

B.14. Proof of Proposition 4.B.3. Proposition 4.B.3 states that if
f and g are log-concave densities, then their convolution

h(x) =
∫

f(x− z)g(z) dz

is log concave. To prove this result, first use B.7 to restate the log-
concavity in terms of total positivity of order 2, and then use B.11. �

B.15. Proof of Proposition 4.B.8. To show that F̄ is log concave
whenever f is log concave, write

F̄ (x− z) =
∫ ∞

0
K(x, y) f(y − z) dy,

where K, given by (4), is the indicator function of the set {x ≤ y}. By
B.7, f(y − z) is TP2 and because K is TP∞, it follows from B.11 that
F̄ is TP2. Again from B.7, it follows that F̄ is log concave. To show
that F is log concave, use K as defined in (5).

To show that F̄ is log convex whenever f is log convex, replace
f(y − z) by f(y + z) in the above proof. �

e. Crossings of Distributions and Moments

Let F and G be distributions with corresponding rth moments μr(F )
and μr(G). As noted in 1.C(4), if F (x) = 0, x < 0, then

μr(F ) = r

∫ ∞

0
F̄ (x)xr−1 dx,

and a similar formula holds for μr(G). It can be seen directly from this
formula that if μr(F ) = μr(G), then it cannot be that F (x) ≤ G(x) for
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all x unless equality holds for all x. That is to say, F and G must cross
at least once. The following result makes a stronger statement.

B.16. Moment crossings. Suppose that F and G are distribution
functions with support [0,∞) and corresponding moments μr(F ) and
μr(G). If F crosses G k times, then μr(F ) crosses μr(G) at most k
times (as functions of r).

Proof. Use equation 1.B(4) to write

μr(F ) − μr(G) = r

∫ ∞

0
xr−1[F̄ (x) − Ḡ(x)] dx.

Now, the results follow from Theorem B.13 and the fact (Example
B.5.a) that xr−1 is totally positive in x and r. �

The noncentral distributions discussed in the first three sections of
Chapter 15 are represented as mixtures; the densities are infinite series.
The following proposition, a direct application of Theorem B.13, is
useful in determining the shape of these densities.

B.17. Proposition. If the sequence {aj}∞j=1 has at most k − 1 sign
changes in j, and if K(j, x) is TPk in x ≥ 0 and j = 0, 1, . . ., then

g(x) =
∞∑
j=0

ajK(j, x)

has at most k − 1 sign changes in x ≥ 0. If g has k − 1 sign changes,
then they must be in the same order as the sign changes of aj .

f. Crossing Shorthand Notation

Sign changes are defined in Definition B.12; the term “crossing” is
often used in reference to a sign change. A function g is said to cross
the function h at most once, and only from above if either g − h is of
one sign (they do not cross at all), or if there exists x0 such that

g(x) ≥ h(x), x < x0, g(x) ≤ h(x), x > x0. (6)

It is sometimes convenient to indicate this property with the short-
hand notation

g(x) − h(x) : +,−, (7)
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which can be thought of as saying that g(x) − h(x) can go only from
+ to − as x increases, with the possibility that no sign change occurs.

There is kind of a calculus that goes with the shorthand notation
(7) that depends upon the fact that if ζ is a function strictly increasing
and continuous on the range of g and h, then (6) is equivalent to

ζ(g(x)) − ζ(h(x)) : +,−. (8)

As a consequence of (8), it follows that (7) can be easily transformed
to various equivalent conditions such as

cg(x) − ch(x) : +,−, where c is a positive constant,
(g(x) + a) − (h(x) + a) : +,−, where a is a constant,
log g(x) − log h(x) : +,−.

In fact, if h itself is strictly increasing and continuous, then the inverse
h−1 is a possible choice for ζ so that (7) is equivalent to

h−1g(x) − x : +,−.
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Some Functional Equations

A number of functional equations are encountered in the earlier chap-
ters of this book, especially in Chapter 18. The solutions to these equa-
tions are not as widely known as they might be, and are reviewed here.

An extensive discussion of functional equations has been provided
by Aczél (1966), who traces the subject to papers of 1747–1750 by
D’Alembert, papers of 1755–1770 by Euler, and especially to a paper
of 1821 by Cauchy. A more recent book on the subject with a number of
applications in probability, statistics, and economics has been written
by Castillo and Ruiz-Cobo (1992). Functional equations have been used
extensively to characterize distributions by Lukacs and Laha (1964),
Kagan, Linnik and Rao (1973), and Azlarov and Volodin (1986). Func-
tional equations and applications to information theory are discussed
by Aczél and Daróczy (1975).

A. Cauchy’s Equations

The following closely related equations bear the name of Cauchy:

f(x + y) = f(x) + f(y), (1)
f(x + y) = f(x)f(y), (2)
f(xy) = f(x)f(y), (3)
f(xy) = f(x) + f(y). (4)

Several of these equations are encountered in this book. Also, vari-
ants arise, which can be reduced to one of these equations; these are
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discussed later. Propositions A.1, A.2, A.3, and A.4 relate, respectively,
to equations (1), (2), (3), and (4).

A.1. Proposition. If the function f is continuous at a point or
bounded in some interval, and if (1) holds for all real x, y, then there
exists a constant c such that

f(x) = cx for all x. (5)

If (1) holds for all nonnegative (positive) x and y, then (5) holds for all
nonnegative (positive) x.

See Aczél (1966, Chapter 2) or Castillo and Ruiz-Cobo (1992,
Chapter 1) for a discussion of equation (1). Proposition A.1 can also
be obtained from Proposition A.2 by taking logarithms; a proof of
Proposition A.2 is offered after Proposition A.5.

A.1.a. Proposition. If the function f satisfies the equation

f

(
x + y

2

)
=

f(x) + f(y)
2

for all real x, y, (1a)

then f(x) + f(0) satisfies (1). Hence, if f satisfies the conditions of
Proposition A.1, then f is a linear function.

Proof. Following Aczél (1966, p. 43), let y = 0 in (la) to obtain

f

(
x

2

)
=

f(x) + f(0)
2

. (1b)

Replace x by x + y in (1b) to obtain

f(x) + f(y)
2

= f

(
x + y

2

)
=

f(x + y)f(0)
2

.

This equation gives (1) with f(x) + f(0) in place of f(x). �

A.2. Proposition. Suppose that the function f is continuous at a
point or bounded in some interval. If f satisfies the functional equation
(2) for all x, y, then either f(x) = 0 for all x, or there exists a constant
a such that

f(x) = exp {ax}. (6)
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If (2) holds for all nonnegative (positive) x, y, then (6) holds for all
nonnegative (positive) x.

A.3. Proposition. Suppose that the function f is continuous at a
point or bounded in some interval. If f is a positive function and (3)
holds for all x, y > 0, that is, if

f(xy) = f(x)f(y) for all x, y > 0,

then for some constant c,

f(x) = xc, x > 0. (7)

If (3) holds for all real x, y, then there are several possibilities. For some
constant c, and for all x,

(i) f(x) = |x|c, (ii) f(x) = |x|c sgn x,

(iii) f(x) = sgn x, (iv) f(x) = 0, (v) f(x) = 1. (8)

Proof. For the solution when x, y > 0, let g(z) = f(ez) and apply
Proposition A.2. For the case that (3) holds for all real x, y, see Aczél
(1966, Theorem 3, p. 41) or Castillo and Ruiz-Cobo (1992, Theorem
2.4.5, p. 30). �

A.4. Proposition. Suppose that the function f is continuous at a
point or bounded in some interval. If f is a positive function and (4)
holds for all x, y > 0, then for some constant c,

f(x) = c log x, x > 0. (9)

If (4) holds for all real x, y, then f(x) = 0 for all x.

If (2) holds, then by iteration, it follows that f(x1 + x2 + · · · + xk) =
Πk

i=1f(xi), and if all of the xi are equal, it follows that

[f(x)]k = f(kx), k = 1, 2, . . . . (10)

Thus, (10) is a weaker equation than (2), and as such, it possibly could
have more solutions.

A.5. Proposition. Suppose that f satisfies the regularity conditions
of Proposition A.1. If (10) holds for all x and for all positive integers
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k, then there exist constants a,b such that

f(x) = eax, x ≥ 0, f(x) = ebx, x ≤ 0. (11)

If (10) holds for all nonnegative (positive) x, then (11) holds for all
nonnegative (positive) x.

Proof Assuming Continuity. Let x ≥ 0 and y = kx to obtain from (10)
the equation

[f(y)]1/k = f(y/k), y > 0. (12)

This means that (10) holds for k = 1, 1/2, 1/3, . . . . With mx = 1 in
(10), it follows that

[f(1/m)]k = f(k/m) and f(1) = [f(1/m)]m;

thus,

f(k/m) = [f(1/m)]k = [f(1)]k/m. (13)

By using the assumption of continuity and letting k/m → x ≥ 0 in (13),
(11) follows, where f(1) = ea. For the case that x ≤ 0, the argument is
similar, and f(−1) = eb. �

To prove Proposition A.2 under the assumption of continuity, use
Proposition A.5 and (2) with x = −y. A simple proof of Proposition
A.2 under the assumption that f is bounded in some interval is given by
Feller (1968, p. 459). Because continuity at some point implies bound-
edness in some interval, Feller’s proof covers both regularity conditions
stated in Proposition A.2. The ideas of his proof can easily be adapted
to prove Proposition A.5. A thorough discussion of Proposition A.2, its
various relatives, and its history are given by Aczél (1966, Chapter 2).

B. Variants of Cauchy’s Equations

A number of variations and generalizations of Cauchy’s functional equa-
tions have been discussed in the literature, and in particular by Aczél
(1966). Some of these functional equations are encountered in this book
and are briefly discussed here.
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a. Transformations

The functional equation

f((xα + yα)1/α) = f(x)f(y)

can be rewritten in the form

g(xα + yα) = g(xα)g(yα),

where g(x) = f(x1/α). Thus, g satisfies the functional equation A(2),
and with continuity, it follows that f(x) = exp {cxα} for some real
constant c and all x. The essential property here is that the function
φ(x) = xα is continuous and strictly monotone in x ≥ 0, so that it has
a continuous inverse. Variants of Cauchy’s equation can be found with
any such function.

b. Pexider Equations

Pexider equations are similar to the basic equations of Cauchy, but
they involve more than one function. Two forms of these equations
are discussed here together with some special cases. These forms
are

f(xy) = g(x)h(y), (1)
f(x + y) = g(x)h(y). (2)

The particularly simple special case that f = h in (1) arises repeat-
edly in Chapter 18, and is spelled out in detail in Proposition B.1a.
But first, the general case is considered.

B.1. Proposition. Suppose that f, g, and h are real functions defined
on (0,∞) and that f is continuous at some point. If (1) holds for all
x, y > 0, then for some constants a, b, c, either

f(x) = abxc, g(x) = axc, h(x) = bxc, x > 0,

or

f(x) = g(x) = 0 and h is arbitrary,
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or

f(x) = h(x) = 0 and g is arbitrary.

For a proof of this result, see Aczél (1966, Theorem 4, p. 144).

B.1.a. Proposition. Suppose that f and g are real functions defined
on (0,∞) and that f is continuous at some point. If

f(xy) = g(x)f(y) for all x, y > 0, (1a)

then either

f(x) = bxc, g(x) = xc, x > 0,

for some constants b and c, or

f(x) = 0, for all x > 0, and g is arbitrary.

Equation (1a) is easily transformed to Cauchy’s equation A(3) as
follows: Set y = 1 in (1a) to conclude that either f(x) = 0 for all x or
g(x) = f(x)/f(1). With this, (1a) takes the form

f(xy)
f(1)

=
f(x)
f(1)

f(y)
f(1)

.

Another variant of Proposition B.1.a that arises several times in
Chapter 18 is the following.

B.1.b. Proposition. Suppose that φ is a positive function and g is a
real function, both defined on (0,∞). If

φ(xy) = [φ(x)]g(y), x, y > 0, (1b)

then g(y) = yc for some real c and φ(x) = exp {bxc} for some real b.

Proof. Take logarithms in (1b) and let f(x) = log φ(x) to transform
(1b) to (1a). �

B.1.c. Proposition. Suppose that φ and g are positive functions de-
fined on (0,∞) that satisfy the functional equation

φ(xy) = [φ(x)]g(y), x, y > 0. (1c)
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Because xy ≥ 1 if and only if x ≥ 1, (1c) provides no link between the
values of φ in (0, 1) and on [1,∞). Consequently, these cases must be
treated separately.

Case 1: x < 1. Either

φ(x) = exp {b(− log x)c} and g(y) = yc

for some constants b and c, or

φ(x) = 0 for all x < 1, and g is arbitrary,

or

φ(x) = 0 for all x < 1, and g is arbitrary.

Case 2: x ≥ 1. Either

φ(x) = exp {b′(log x)c
′} and g(y) = yc

′

for some constants b′ and c′, or

φ(z) = 0 for all x ≥ 1, and g is arbitrary,

or

φ(z) = 1 for all x ≥ 1, and g is arbitrary.

Proof. Let x = eu, that is, u = log x, and let f(u) = log φ(eu). Then,
(1c) becomes (1a) and the results follows from Proposition B.1.a. �

B.1.d. Proposition. Let ψ be a real-valued function and g be a pos-
itive function, each defined on (0,∞). If

ψ(xy) = g(y)ψ(x), x, y > 0, (1d)

then for x < 1, either

ψ(x) = b(− log x)c and g(y) = yc
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for some constants b and c, or

ψ(x) = 0.

For x ≥ 1, either

ψ(x) = b′(log x)c
′

and g(y) = yc
′
,

for some constants b′ and c′, or

ψ(x) = 0.

Proof. This result follows immediately from Proposition B.1.c. �

B.2. Proposition. Suppose that f, g, and h are real functions defined
on (−∞,∞) and f is continuous at some point. If

f(x + y) = g(x)h(y) for all real x, y, (2)

then either

f(z) = ab ecz, g(z) = a ecz, h(z) = b ecz, −∞ < z < ∞

for some constants a, b, and c, or

f(z) = g(z) = 0 and h is arbitrary,

or

f(z) = g(z) = 0 and g is arbitrary.

Proof. In (2), let x = eu, y = ev to obtain this from Proposition B.1. �

B.2.a. Proposition. Suppose that f and g are real functions defined
on (−∞,∞) and f is continuous at some point. If

f(x + y) = g(x)f(y) for all real x, y, (2a)

then either

f(x) = b ecx, g(x) = ecx, −∞ < x < ∞
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for some constants b and c, or

f(x) = 0 and g is arbitrary.

Proof. This is an immediate consequence of Proposition B.2. �

The following proposition is similar to Proposition B.2.a; only the
domain of the functions has been changed. This modified proposition
does not follow directly from Proposition B.2.

B.2.b. Proposition. Suppose that f and g are real functions defined
on [0,∞) and f is continuous at some point. If

f(x + y) = g(x)f(y) for all x, y ≥ 0, (2b)

then either

f(x) = b ecx, g(x) = ecx, 0 ≤ x < ∞

for some constants b,c, or

f(x) = 0 and g is arbitrary.

Proof. In (2b), set y = 0 to conclude that f(x) = g(x)f(0). If f(0) = 0,
then f(x) = 0 for all x > 0. If f(0) �= 0, it follows that g(x) = f(x)/b,
where b = f(0). Then, (2b) can be rewritten in the form

f(x + y) =
f(x)
b

f(y) for all x, y ≥ 0,

that is,

f(x + y)
b

=
f(x)
b

f(y)
b

for all x, y ≥ 0.

It follows from Proposition A.2 that

f(x)
b

= ecx, x ≥ 0,

for some constant c, and the result follows. �



SVNY289-Olkin March 15, 2007 16:59

710 22. Some Functional Equations

c. Sincov’s Equation

The following proposition is discussed by Aczél (1966, p. 64) and at-
tributed to D.M. Sincov.

B.3. Proposition. If a > 0 and for all x, y,

f(x + y) = axyf(x)f(y), (3)

then f(x) = ax
2/2g(x), where g is an arbitrary solution to the functional

equation A(2). Thus, under reasonable regularity conditions, solutions
of (3) have the form f(x) = a(x2/2)+cx.

B.3.a. Proposition. If φ and h are nonnegative functions defined on
[0,∞) such that

φ(xy) = xh(y)φ(x)φ(y), (4)

then under regularity conditions such as continuity at a point, for some
constants b, c,

φ(x) = xbc exp {c(log x)2/2}, h(x) = c log x. (5)

Proof. With x and y interchanged in (4), it follows that xh(y) = yh(x).
This means that h(y) log x = h(x) log y, and so (log z)/h(z) is a con-
stant. Consequently, for some constant b, h(z) = b log z. It follows that
(4) can be written in the form

exp {b (log x) (log y)}φ(x)φ(y) = φ(xy). (6)

Let u = log x, v = log y, and f(u) = φ(eu) to obtain from (6) the func-
tional equation

f(u + v) = auvf(u)f(v), −∞ < u, v < ∞, (7)

where a = eb. The solution of (7), given by Proposition B.3, has the
form

f(x) = cxax
2/2 = cx exp {bx2/2}, x > 0.
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In terms of φ, this solution becomes

φ(x) = xbc exp {c(log x)2/2}.

�

B.4. Proposition. Suppose that f and g are real functions defined on
[0,∞) and that

f(x + y) = f(x)g(y) + f(y) for all x, y ≥ 0. (8)

Let f0 be an arbitrary solution of A(2) and let f1 be an arbitrary
solution of A(1). The most general solutions of (8) have the form

(i) f(x) = α[1 − f0(x)], g(x) = f0(x), x ≥ 0,
(ii) f(x) = f1(x), g(x) = 1, x ≥ 0,
(iii) f(x) = a �= 0, g(x) = 0, x ≥ 0,
or
(iv) f(x) = 0, x ≥ 0, g arbitrary.

This proposition is a special case of Theorem 1 of Aczél (1966,
p. 150); see also Castillo and Ruiz-Cobo (1992, p. 49).

Proof Assuming f is Differentiable. Differentiate (8) with respect to x
to obtain

f ′(x + y) = f ′(x)g(y). (9)

If f ′(0) = 0, then it follows from (9) that f ′(z) = 0 for all z ≥ 0 and
either (iii) or (iv) hold. Suppose that f ′(y) �= 0. From (9) it follows that
g(y) = f ′(y)/f ′(0) and (9) can be written in the form

g(x + y) = g(x)g(y). (10)

From Proposition A.2, it follows that g(x) = eax for some constant a. If
a = 0, then (ii) holds; if a �= 0, then because g(y) = f ′(y)/f ′(0) = eay, f
has the form f(x) = ξeax + c for some constant c, which must be −ξ
to satisfy (8). �

B.4.a. Proposition. The function f satisfies the equation

f(x + y) = f(x)g(y) + h(y) (11)
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if and only if f is a constant, or (8) holds with f(x) − f(0) in place of
f(x) and h(y) = f(y) − f(0)g(y).

Proof. With y = 0 in (11), it follows that either f is a constant or
g(0) = 1 and h(0) = 0. Suppose that f is not a constant. In (11), set
x = 0 to obtain h(y) = f(y) − f(0)g(y). With this value inserted, (11)
becomes

f(x + y) − f(0) = [f(x) − f(0)]g(y) + [f(y) − f(0)]. �

C. Some Additional Functional Equations

a. The Associativity Equation

The equation

F [F (x, y)z] = F [x, F (y, z)] (1)

is called the associativity equation. This equation has been studied ex-
tensively in quite general contexts; see Aczél (1966, Section 6.2) and
the references therein or Castillo and Ruiz-Cobo (1992, p. 94). But in
this book the interest is in the case that the F is a real-valued function
of real variables.

C.1. Proposition. Let I be an interval of the real line, and suppose
that F maps I × I to I. If F satisfies (1), is continuous in each argument
the other being fixed, and if there exist numbers e and x−1 ∈ I such
that

F (e, x) = x, (2)

F (x−1, x) = e, (3)

then and only then, there exists a continuous and strictly monotonic
function f defined on (−∞,∞) with range I such that

F (x, y) = f [f−1(x) + f−1(y)]. (4)

Equation (1) can hold for functions F continuous in each argument and
satisfying (2), (3) only if the interval I is open. A function g satisfies
(4) if and only if for some constant a, g(x) = f(ax).
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The proof of this result is beyond the scope of this book, but see
Aczél (1966, p. 254), or Castillo and Ruiz-Cobo (1992, p. 94).

b. The Transformation Equation and a Relative

The transformation equation arises in equation 7.F(24), where a par-
ticular solution is found.

For the following, see Aczél (1966, p. 316) or Castillo and Ruiz-Cobo
(1992, p. 101).

C.2. Proposition. Let ψ be a continuous function defined on a real
rectangle. Suppose that ψ is invertible in each variable, i.e., the equation
ψ(x, y) = c can be solved uniquely for x when y is fixed, and uniquely
for y when x is fixed. The general solution to the functional equation

ψ(ψ(x, y), z) = ψ(x, h(y, z)) (5)

can be written in the form

ψ(x, y) = u−1(u(x) + v(y)), h(x, y) = v−1(v(x) + v(y)), (6)

where u and v are continuous and strictly monotonic functions. The
representation (6) is not unique: u(x) and v(x) can be replaced by
u∗(x) = u(ax + b), v∗(x) = av(x), where a and b are constants.

If h(x, y) = xy, then by taking g(x) = eu(x), ψ can be written in the
form

ψ(x, y) = g−1(yg(x)),

where g is strictly monotone.
If ψ is defined on (0, 1) × (0, 1), u(x) = log[x/(1 − x)], v(x) = log x,

then the particular solution to equation (5) is h(x, y) = xy, ψ(x, y) =
xy/[1 − x(1 − y)]. This is the solution found in the proof of Proposition
7.F.12 where the additional requirement of ψ is that it be a probability
generating function for some random variable taking on positive integer
values. Whether other probability generating functions satisfy (5) is not
known.

Equation (5) can be regarded as a special case of the more general
functional equation

F (G(x, y), z) = H(M(x, z), N(y, z)).
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Another special case is given in the following proposition.

C.3. Proposition. Let F be a real function defined on A×B and G
be a function that maps A×B → A, where A and B are intervals of
the real line. Suppose that

(i) F (x, y) has continuous partial derivatives F1, F2;
(ii) for some constant c, F2(c, y) �= 0;
(iii) for some constant a, F (a, y) is constant;
(iv) F (c, y) = z has a unique solution (c �= 0);
(v) F �= G,F (x, y) �= xy.

Then every solution of the equation

F (w,G(x, y)) = F (w, x)F (w, y) (7)

has the form

F (x, y) = f(x)g(y), (8)

where f and g are strictly monotonic and differentiable.

Equation (8) is discussed by Castillo and Ruiz-Cobo (1992, p. 132).

c. Addition Equations

Equations of the form

f(x + y) = Φ(f(x), f(y)) (9)

are called addition equations.

C.4. Proposition. If Φ is a polynomial, the general solutions of (9)
that are continuous at a point have the form

f(x) = ax + b or f(x) = aecx + b.

See Aczél (1966, p. 61) or Castillo and Ruiz-Cobo (1992, p. 33) for
further discussion of this result.
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C.4.a. Proposition. The most general solution of the polynomial ad-
dition equation

f(x + y) = af(x)f(y) + bf(x) + bf(y) + c, x, y > 0, (10)

where a > 0 and c = (b2 − b)/a has the form

f(x) =
eθx − b

a
. (11)

Proof. (Aczél, 1966, p. 60). Rewrite (10) as

af(x + y) + b = [af(x) + b][af(y) + b], x, y > 0,

which with h(x) = af(x) + b can be rewritten as

h(x + y) = h(x)h(y), x, y > 0.

It follows from Proposition A.2 that for some θ, h(x) = eθx, and thus
(11) holds. �
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Gamma and Beta Functions

A. The Gamma Function

The gamma function Γ is variously known as “Euler’s integral of the
second kind,” “Euler’s integral,” or as the “factorial function” because
Γ(n) = (n− 1)! for every positive integer n. The gamma function can
be viewed as a continuous extension of the factorial function.

A.1. Definition. The integral

Γ(z) =
∫ ∞

0
tz−1 e−t dt, (1)

defined for z > 0, is called the gamma function.

The gamma function can also be defined and is finite on much of
the complex plane, including noninteger negative values, but apart from
Proposition A.2.b, the restrictive definition given here is adequate for
the purposes of this book. See Erdélyi, Magnus, Oberhettinger, and
Tricomi (1953) or Abramowitz and Stegun (1964); for a more detailed
account of the gamma function, see Artin (1931, 1964).

For a graph of the gamma function see Figure A.1.

A.2.a. Proposition. Γ(z + 1) = zΓ(z), 0 < z < ∞.

Proof. This result can be proved through an integration by parts. Al-
ternatively, it can be shown using Fubini’s theorem 24.B.1 concerning
the interchange of order of integration:

Γ(z + 1) =
∫ ∞

0
tz e−t dt =

∫ ∞

t=0
e−t

∫ t

s=0
zsz−1 ds dt

= z

∫ ∞

s=0
sz−1

∫ ∞

t=s
e−t dt ds = z

∫ ∞

s=0
sz−1 e−s ds = zΓ(z). �
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Fig. A.1. Graph of the gamma function for positive argument

A.2.b. Proposition (Artin, 1931, 1964; Bohr and Mollerup, 1922).
Let f be a function with domain that includes (0,∞). If

(i) f(x + 1) = xf(x),
(ii) f is logarithmically convex on (0,∞), and
(iii) f(1) = 1,

then, on its domain, f is identical with the gamma function.

A.2.c. Proposition. Γ(n + 1) = n!, n = 0, 1, 2, . . . .

Proof. By definition, 0! = 1, and a straightforward integration yields
that Γ(1) = 1. Consequently, this result follows from Proposition A.2
via an induction argument. �

By making the change of variables u =
√
t in (1), it follows that

Γ(z) = 2
∫ ∞

0
u2z−1 e−u2

du. (2)

This form of the function is sometimes more convenient than (1).
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A.3. Proposition. Γ(1/2) =
√
π.

Proof. From (2), with z = 1/2, it follows that

Γ(1/2) = 2
∫ ∞

0
e−u2

du =
√
π.

The last equality here is familiar because it states that the density of
the normal distribution with mean 0 and variance 1/2 integrates to
unity. It is proved by writing

[Γ(1/2)]2 = 4
∫ ∞

0

∫ ∞

0
e−u2−v2

du dv,

and integrating after a change to polar coordinates. �

A.4. Proposition.

Γ(2z) =
22z− 1

2
√

2π
Γ(z)Γ

(
z +

1
2

)
. (3)

More generally,

Γ(nz) = (2π)(1−n)/2 nnz− 1
2

n−1∏
k=0

Γ
(
z +

k

n

)
. (4)

Although the formula (3) is known as the Gauss duplication formula
(see Abramowitz and Stegun, 1964, p. 256), it is in fact due to Legendre.
The more general result (4) is due to Gauss (see Artin, 1931, 1964).

Proof of (3). (See Webster, 1994). Make use of the fact (A.8.a) that log
Γ(x) is convex in x > 0. Let

f(x) =
2x−1
√
π

Γ
(
x

2

)
Γ

(
x + 1

2

)
;

because f is the product of log-convex functions, it is log convex. Fur-
thermore, (i) and (iii) of Proposition A.2.b are satisfied, and conse-
quently it follows from that proposition that f(x) = Γ(x). �

a. Stirling’s Formula

A.5. Proposition. limt→∞
Γ(t + 1)

e−ttt+(1/2)
√

2π
= 1.
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The approximation

Γ(t + 1) ∼ e−ttt+(1/2)
√

2π

for large t is known as Stirling’s formula. It is given here for reference
without proof.

From Stirling’s formula, it can be deduced that for large z,

Γ(az + b) ∼
√

2π e−az(az)az+b− 1
2 . (5)

From (5), it follows that for large z,

Γ(az + b + c)
Γ(az + b)

∼ (az)c (6)

(see Abramowitz and Stegun, 1964, p. 257).

A.5.a. limz→0 Γ(z) = ∞, limz→0 zΓ(z) = 0. These results can be ob-
tained using (5).

b. Total Positivity

A.6. Proposition. The function Γ(x + y) is totally positive in x and
y > 0.

First Proof. Because Γ(r) is the (r − 1)th moment of an exponential
distribution, this result is a special case of Example 21.B.11.a. �

Second Proof. According to Example 21.B.5.a, the function tx is to-
tally positive in t > 0 and all x. Write Γ(x + y) in the form Γ(x + y) =∫ ∞
0 txty−1 e−t dt and apply Theorem 21.B.11 to complete the proof. �

c. The Incomplete Gamma Function: Tail of a
Poisson Distribution

Introduce the notation

Γx(z) =
∫ x

0
tz−1 e−t dt, x ≥ 0. (7)

The notation Γx(z) = γ(x, z) is also found in the literature.
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A.7. Definition. The function

Ix(z) = Γx(z)/Γ(z) (8)

is called the incomplete gamma function.

The term “incomplete gamma function” is also sometimes applied to
Γx itself, without the normalizing denominator. The name was also ap-
plied by Pearson (1934, 1968) to the ratio I(u, z − 1) = Γu

√
z(z)/Γ(z),

which he tabulated extensively.
By expanding the exponential factor of the integrand of (7) in a

power series and integrating term by term, it can be shown that

Γx(z) =
∞∑
j=0

(−1)j

j!
xz+j

(z + j)
.

Other expansions of Γx can be given in terms of hypergeometric func-
tions. In particular,

Ix(z) = xz e−x
∞∑
j=0

xj

Γ(z + 1 + j)
(9)

=
xz e−x

Γ(z + 1) 1F1(1; z + 1;x),

where

1F1(a; b;x) =
∞∑
j=0

Γ(a + j)
Γ(a)

Γ(b)
Γ(b + j)

xj

j!

is the confluent hypergeometric function; see Abramowitz and Stegun
(1964, Chapters 6, 13); these authors use the notation 1F1(a; b;x) =
M(a, b, x).

When z is an integer, (9) can be rewritten as

∞∑
j=z

xj

j!
e−x =

1
Γ(z)

∫ x

0
tz−1 e−t dt = Ix(z). (10)

This is a well-known formula for the upper tail of a Poisson distribution.
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d. Convexity and Concavity Results

A.8. Proposition. For fixed x, the incomplete gamma function Γx(z)
is logarithmically convex in z > 0, hence convex. The reciprocal 1/Γx(z)
of the incomplete gamma function is logarithmically concave in z > 0.

Proof. With the aid of Hölders inequality (Proposition 24.B.5), it
follows that

Γx(αu + ᾱv) =
∫ x

0
tαu+ᾱv−1 e−t dt =

∫ x

0
(tu−1 e−t)α(tv−1e−t)ᾱ dt

≤
[∫ x

0
tu−1 e−t dt

]α [∫ x

0
tv−1e−t dt

]ᾱ
= [Γx(u)]α[Γx(v)]α.

Logarithmic convexity implies convexity (Proposition 21.A.5), and
it also implies that − log Γx(z) = log[1/Γx(z)] is concave. �

A.8.a. Because Γ(z) = limx→∞ Γx(z), it follows that the gamma func-
tion has the same convexity and concavity properties as does the in-
complete gamma function. The log convexity of the gamma function
can also be directly obtained from the representation (Abramowitz and
Stegun (1964, p. 258)

log Γ(z) =
∫ ∞

0

[
(z − 1) e−t − e−t − e−zt

1 − e−t

]
1
t
dt,

because the integrand is a convex function of z.
Log convexity and log concavity are total positivity statements (see

21.B.7 and 21.B.9), and this fact can be used to obtain inequalities for
the gamma and incomplete gamma function.

For additional results related to Proposition A.8.a, see Marshall and
Olkin (1979, pp. 73–75).

B. The Beta Function

B.1. Definition. The function

B(u, v) =
∫ 1

0
tu−1(1 − t)v−1dt (1)

is called the beta function.
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It can be shown that the integral (1) is finite for 0 < u, v < ∞.
Although the domain of the beta function can be extended, it is this
domain that is relevant for the applications in this book.

B.2. Proposition. B(u, v) = B(v, u).

Replacement of t by 1 − t in (1) is all that is required to prove this
result. It also follows directly from Proposition B.5.

B.3. Proposition. The beta function (1) has the representation

B(u, v) =
∫ ∞

0

zu−1

(1 + z)u+v
dz, 0 < u, v < ∞.

To prove this result, make the change of variables t = z/(1 + z)
in (1).

B.4. Proposition. B(u + 1, v) =
u

u + v
B(u, v), 0 < u, v < ∞.

Proof. Use Proposition B.3 and Fubini’s theorem 24.B.1 to write

B(u + 1, v) =
∫ ∞

0

zu

(1 + z)u+v+1 dz =
∫ ∞

t=0

∫ t

z=0
uzu−1 dz

1
(1 + t)u+v+1 dt

=
∫ ∞

z=0

∫ ∞

t=z
uzu−1 1

(1 + t)u+v+1 dt dz

=
∫ ∞

z=0

u

u + v

zu−1

(1 + t)u+v
dz =

u

u + v
B(u, v). �

B.5. Proposition. B(u, v) =
Γ(u)Γ(v)
Γ(u + v)

, 0 < u, v < ∞.

Proof (See Webster, 1994). Define

f(u, v) =
Γ(u + v)

Γ(v)
B(u, v);

for fixed v, it follows from A.8.a and B.7 that f(u, v) is a product of
functions log convex in u > 0, and consequently, f(u, v) is log convex
in u > 0. Additionally,

f(1, v) =
Γ(1 + v)

Γ(v)
B(1, v) = vB(1, v) = v

∫ 1

0
(1 − z)v−1 dz = 1,
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and (using Proposition B.4)

f(u + 1, v) =
Γ(u + 1 + v)

Γ(v)
B(u + 1, v) =

(u + v)Γ(u + v)
Γ(v)

u

u + v
B(u, v)

= u
Γ(u + v)

Γ(v)
B(u, v) = uf(u, v).

It follows from Proposition A.2.b that f(u, v) = Γ(u). �

Alternatively, Proposition B.5 can be proved by using A(2)
to rewrite the numerator Γ(u)Γ(v), and then changing to polar
coordinates.

a. The Incomplete Beta Function

B.6. Definition. Let

Bx(u, v) =
∫ x

0
tu−1(1 − t)v−1dt, 0 < u, v < ∞, 0 ≤ x ≤ 1. (2)

As with Proposition B.3, Bx can be rewritten in the form

Bx(u, v) =
∫ x/(1−x)

0

zu−1

(1 + z)u+v
dz. (3)

The ratio

Ix(u, v) =
Bx(u, v)
B(u, v)

(4)

is called the incomplete beta function. Some caution is required
here because the same term is sometimes applied to the function
Bx.

The incomplete beta function is tabulated by Pearson (1968). It has
a series representation in terms of the Gauss hypergeometric function
F defined by the series

F (a; b; c;x) =
∞∑
j=0

Γ(a + j)
Γ(a)

Γ(b + j)
Γ(b)

Γ(c)
Γ(c + j)

xj

j!
, (5)

another commonly used notation is F (a, b; c;x) = 2F1(a, b; c;x). This
function is discussed by Abramowitz and Stegun (1964, Chapter 15).
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According to Abramowitz and Stegun (1964, Formulas 26.5.23 and
15.3.3),

Bx(u, v) =
xu

u
F (u, 1 − v;u + 1;x) =

xu(1 − x)v

u
F (1, u + v;u + 1;x).

(6)

Considerable simplification occurs in (5) when b = c and 0 < x < 1.
Then, the series is independent of b, and can be summed to yield

F (a, b; b;x) =
∞∑
j=0

Γ(a + j)
Γ(a)

xj

j!
=

1
(1 − x)a

. (7)

See, e.g., Abramowitz and Stegun, (1964, Formula 15.1.8).

B.7. Proposition. For each fixed x and v, logBx(u, v) is convex in
u > 0. In particular, logB(u, v) is convex in u > 0 for fixed u.

Proof. By Hölders inequality (24.B.5) it follows that

Bx(αs + ᾱt, v) =
∫ x

0
[zs−1(1 − z)v−1]α[zt−1(1 − z)v−1]ᾱdz

≤
[∫ x

0
zs−1(1 − z)v−1dz

]α [∫ x

0
zt−1(1 − z)v−1dz

]ᾱ
= [Bx(s, v)]α[Bx(t, v)]ᾱ. �

b. Tail of a Binomial Distribution

The formula

n∑
j=k

(
n
j

)
pj(1 − p)n−j =

∫ p

0
tk−1(1 − t)n−kdt

B(k, n− k + 1)
= Ip(k, n− k + 1) (8)

gives a well-known and often useful connection between the upper tail
of a binomial distribution and the incomplete beta function. See, e.g.,
Abramowitz and Stegun (1964, Formula 26.5.24).

Formula (8) is equivalent to

k−1∑
j=0

(
n
j

)
pj(1 − p)n−j =

∫ 1

p
tk−1(1 − t)n−kdt

B(k, n− k + 1)
, (9)
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and this formula can be extended to the case of noninteger n;

k−1∑
j=0

Γ(η + 1)
j!Γ(η − j + 1)

pj(1 − p)η−j =

∫ p

0
tk−1(1 − t)η−kdt

B(k, η − k + 1)
, (10)

where η − k + 1 > 0. This formula can be proved by induction on k
using an integration by parts (see Marshall and Olkin, 1993).

Equation (8) gives the tail of a binomial distribution in terms of an
incomplete beta function. Just as the Poisson distribution can be ob-
tained from the binomial distribution, the tail of a Poisson distribution
can be obtained from (8) by setting p = λ/n and then letting n → ∞.

c. Tail of a Negative Binomial Distribution

The following formula, a counterpart to (8), gives the tail of a negative
binomial distribution in terms of the incomplete beta function:

k−1∑
j=s

Γ(r + j)
Γ(r)j!

pj(1 − p)r =
1

B(r, s)

∫ p/(1−p)

0

ts−1

(1 + t)r+s
dt

=
1

B(r, s)

∫ p

0
ts−1(1 − t)r−1 dt. (11)

This relationship is discussed by Rider (1962).
From (8) and (11), Morris (1963) noted that

n−k∑
j=0

(
k + j − 1

j

)
pk(1 − p)j =

n∑
j=k

(
j − 1
k − 1

)
pk(1 − p)j−k. (12)

d. The Liouville–Dirichlet Integral

Although this book does not deal with multivariate distributions, multi-
variate extension of the beta integral (1) is given here for completeness.
Dirichlet’s extension of the beta integral is

∫
. . .

∫
0≤xi,Σxi<1

k∏
1

xai−1
i

(
1 −

∑k

1
xi

)a0−1 k∏
1

dxi

=
∏k

0 Γ(ai)
Γ(

∑k
0 ai)

, ai > 0, i = 0, 1, . . . , k, (13)
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which is often denoted B(a0, a1, . . . , ak). When k = 1, this is the beta
function of Definition B.1. Its usefulness stems in part from the fact that
tails of the multinomial distribution are equal to incomplete Dirichlet
distributions (see Olkin and Sobel, 1965; Olkin, 1972).

Liouville generalized (13) by substituting f(
∑

xi) for (1 − ∑
xi)a0−1

to obtain

∫ ∞

0
· · ·

∫ ∞

0

∏
xai−1
i∏

Γ(ai)
f

(∑
xi

) ∏
dxi =

∫ ∞

0

za0−1

Γ(
∑

ai)
f(z) dz, (14)

where a0 =
∑

ai.
For further discussions of the history of the Dirichlet distribution

and its applications, see Sobel, Uppuluri and Frankowski (1980).
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Some Topics from Analysis

The facts outlined in this chapter are included only for reference and
are stated without proof. Primes are used to indicate derivatives.

A. Basic Results from Calculus

A.1. Integration by parts. If f and g are absolutely continuous func-
tions defined on [a, b], then

∫ b

a
f(t)g′(t) dt = f(t)g(t)|ba −

∫ b

a
f ′(t)g(t) dt. (1)

A.2. L’Hospital’s rule. If f and g have continuous derivatives and
f(a) = g(a) = 0, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

, (2)

whether or not that limit is finite.

A.3. Exponential function as a limit.

lim
z→∞

(
1 +

x

z

)z

= ex. (3)

A.4. Chain rule for differentiation. Let f be a differentiable func-
tion defined on the interval (a, b) and g be a differentiable function
taking values in (a, b). Then, the composition h = f(g) is a differen-
tiable function with derivative h′(x) = f ′(g(x))g′(x).
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A.4.a. Derivative of an inverse. If F is a strictly increasing function
with derivative f, inverse F−1, and corresponding survival function F̄ =
1 − F , then

d

dz
f−1(z) =

1
fF−1(z)

and
d

dz
F̄−1(z) = − 1

fF̄−1(z)
.

Proof. Write FF−1(z) = z; differentiate using the chain rule. The
derivative of F̄−1 is similarly obtained. �

A.4.b. If F and G are strictly increasing distribution functions with
derivatives f and g, then

d

dz
G−1F (z) =

f(z)
gG−1F (z)

,
d

dz
Ḡ−1F̄ (z) =

f(z)
gḠ−1F̄ (z)

,

d

dp
FG−1(p) =

fG−1(p)
gG−1(p)

,
d

dp
F̄ Ḡ−1(p) =

fḠ−1(p)
gḠ−1(p)

.

A.5. Differentiation of integrals. If

Φ(x) =
∫ ψ2(x)

ψ2(x)
φ(x, y) dy,

where ψ1 and ψ2 have derivatives continuous in a closed interval
[x0, x1], φ(x, y) and ∂φ(x, y)/∂x are continuous in the region x0 ≤ x ≤
x1, ψ1(x) ≤ y ≤ ψ2(x), then the derivative Φ′ of Φ with respect to x is
given by

Φ′(x) =
∫ ψ2(x)

ψ1(x)

∂

∂x
φ(x, y) dy − ψ′

1(x)φ(x, ψ(x)) + ψ′
2(x)φ(x, ψ2(x)).

A.6. Let h be a differentiable function of two real variables, and let

h1(u, v) =
∂h(u, v)

∂u
, h2(u, v) =

∂h(u, v)
∂v

.

If φ and ψ are differentiable real-valued functions of a real variable,
then

d

dx
h(φ(x), ψ(x)) = h1(φ(x), ψ(x))φ′(x) + h2(φ(x), ψ(x))ψ′(x).
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B. Some Results Concerning Lebesgue Integrals

B.1. Interchange of order of integration: Fubini’s theorem.
Interchanging the order of integration in multiple integrals has been
carried out with little comment in this book. Such interchanges are
justified by the following simplified version of Fubini’s theorem.

If either of the integrals∫
y∈B

∫
x∈A

|φ(x, y)| dF (x) dG(y) or
∫
x∈A

∫
y∈B

|φ(x, y)| dG(y) dF (x)

exist, then both of these integrals of φ exist and∫
y∈B

∫
x∈A

φ(x, y) dF (x) dG(y) =
∫
x∈A

∫
y∈B

φ(x, y) dG(y) dF (x).

For a further discussion of Fubini’s theorem, see for example,
Billingsley (1995, p. 233) or Gut (2005, p. 65).

B.2. Interchange of a limit and an integral: Lebesgue mono-
tone convergence theorem. The interchange of a limit and an in-
tegration can be justified in several ways, and a paticularly useful way
is by using the Lebesgue monotone convergence theorem. The follow-
ing somewhat simplified version of that theorem is sufficient for the
purposes of this book.

Let φn, n = 1, 2, . . ., be a nondecreasing sequence of nonnegative
functions such that limn→∞ φn = φ0. If

∫
A |φn(x)| dF (x) < ∞, n =

1, 2, . . ., and limn→∞
∫
A φn(x) dF (x) < ∞, then

∫
A |φ(x)| dF (x) < ∞

and limn→∞
∫
A φn(x) dF (x) =

∫
A φ0(x) dF (x).

See Billingsley (1995, p. 208) or Gut (2005, p. 55).

B.3. Interchange of a limit and an integral: Lebesgue dom-
inated convergence theorem. Another classical theorem allowing
for interchange of a limit and an integration is the Lebesgue domi-
nated convergence theorem; this theorem is discussed, for example, by
Billingsley (1995), p. 209) and Gut (2005, p. 57). Again, a somewhat
simplified version is stated here that serves the purpose of this book.

Let φn, n = 1, 2 . . ., be a sequence of measurable functions such that
limn→∞ φn = φ0 except possibly on a set of probability 0. Suppose there
exists a measurable function g such that

(i)
∫
|g(x)| dF (x) < ∞, and

(ii) |φ| ≤ |g| except possibly on a set of probability 0.
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Then, limn→∞
∫
φn(x) dF (x) exists and limn→∞

∫
φn(x) dF (x) =∫

limn→∞ φn(x) dF (x).

B.4. Modified Bessel function Kθ of the third kind. The modi-
fied Bessel function Kθ of the third kind (also called Macdonald’s func-
tion, and even the “modified Bessel function of the second kind” in the
statistical literature) can be defined in several equivalent forms by

Kθ(z) =
1
2

∫ ∞

0
yθ−1 exp

{
−z

2

(
y +

1
y

)}
dy

=
1
2

∫ ∞

0

1
yθ+1 exp

{
−z

2

(
y +

1
y

)}
dy

=
1
2

(
z

2

)θ ∫ ∞

0

1
tθ+1 exp

{
−t− z2

4t

}
dt.

The second form here is obtained from the first when y is replaced by
1/y; the equivalence of these forms shows that Kθ(z) = K−θ(z). The
third form is obtained by letting t = yz/2.

For θ > −1/2,

Kθ(z) =
(
z

2

)θ √
π

Γ(θ + (1/2))

∫ ∞

1
e−zt(t2 − 1)θ−(1/2) dt.

Modified Bessel functions arise in Section 13.B.a.

B.5. Hölder’s inequality. Let fi be nonnegative functions, and let
qi ≥ 0, i = 1, . . . , n, be numbers such that Σn

i=1qi = 1. With the assump-
tion that the integrals on the right side of the following inequality exist
finitely,

∫ n∏
i=1

f qi
i dμ ≤

n∏
i=1

(∫
fi dμ

)qi

.

For a proof of this result, see, for example, Marshall and Olkin (1979,
p. 457).
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Karlin, Samuel (1968). Total Positivity, Vol. I. Stanford, California: Stanford
Univ. Press.

Karlin, Samuel, Frank Proschan, and Richard E. Barlow (1961). Moment in-
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Schoenberg, I.J. (1951). On Pólya frequency functions, I. The totally positive
functions and their Laplace transforms. Journal d’Analyse Mathematique
59, 199–230.

Schrödinger, E. (1915). Zür Theorie der Fall-und Steigversuche an Teilchenn
mit Brownscher Bewegung. Physikalische Zeitschrift 16, 289–295.

Seal, Hilary L. (1969). Stochastic Theory of Risk in Business. New York: John
Wiley & Sons.

Seal, Hilary L. (1977). Studies in the history of probability and statistics.
XXXV. Multiple decrements or competing risks. Biometrika 64, 429–439.

Sengupta, Debasis and Asok K. Nanda (1999). Log-concave and concave dis-
tributions in reliability. Naval Research Logistics 46, 419–433.

Seshadri, V. (1993). The Inverse Gaussian Distribution. Oxford, U.K.: Claren-
don Press.

Seshadri, V. (1999). The Inverse Gaussian Distribution. Statistical Theory
and Applications. New York: Springer-Verlag.

Sethuraman, J. (1965). On the characterization of the three limiting types of
the extreme. Sankhyā 27, 357–364.
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Çinlar, Erhan 738
Cirillo, R. 400, 740
Clayton, D.G. 242, 740
Cohen, A. Clifford 238, 735
Cox, D.R. 17, 449, 536, 537, 554,

568, 665, 738, 740
Cramér, Harald 6, 432, 652, 740
Crawford, Gordon B. 302, 740
Crow, Edwin L. 431, 432, 740, 758
Crowder, Martin J. 536, 538, 542,

554, 557, 740
Csörgo, M. 746

Dabrowska, Dorota M. 255, 285,
740

Dahiya, Ram C. 390, 740
D’Alembert, Jean le Rond 701
Daley, Daryl J. 759
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reverse hazard rate, 13
reverse hazard rate order, 53, 58

scale parameter families, 26, 224
hazard rates of, 225
inverse distributions of, 225
mixing, 267
order perservation with, 227
ordering, 226
stability of, 615
TTT transaform of, 225

second-order stochastic dominance,
77

semiparametric families, 217–287,
611–631

coincidences of, 563–609
criteria for, 219, 611, 622
derivation of, 619
summary of, 218
summary of order properties, 283

series system, 139
shock models, 182
similarly ordered, 673
Simpson’s paradox, 535
skewness, 70

measures of, 72
spread

measures of, 24
stability of semiparametric families,

219, 611, 622
stable distributions, 529, 657

characterization of, 579
index of, 529

Stacy’s distribution, 348
standard deviation, 24
star order, 73

equivalent conditions for, 74
starshaped functions, 690

hazard transforms, 147
starshapedness, preservation of, 693
stationary renewal distribution

(see equilibrium distribution)
stationary renewal process, 665
Stieltjes moment problem, 647
Stirling’s formula, 719
stochastic dominance

first-order, 77
second-order, 77

stochastic order, 47, 50
equivalent conditions for, 50

stochastic comparisions
summary of, 191

structure function, 138
subadditive function, 691
sub-density function, 545
sub-survival function, 544
summaries for nonparametric

families
of abbreviations, 181
of closure properties, 182
of relationships, 181
of stochastic comparisons, 191

sums, distribution of, 34
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superadditive function, 691
superadditive order, 75
superadditive order

and NBU, NWU, 162
superadditivity, preservation of, 693
survival functions, 7

alternatives for determination, 21
inequalities for, 198–214
log-concavity of, 101
products of, 523
transformations of, 616, 625, 629

survivor function, 8

threshold models
cumulative damage, 185
random, 186

tilt parameter families, 242–256
derivation from

geometric extreme stability,
245

mixtures, 248
proportional odds, 243

generalizations of, 255
inverse distributions of, 249
order preservation with

introduction of, 250
ordering, 250
properties of, 251, 252
TTT transform of, 250
with underlying exponential

distributions, 113
total lifetime, 665
total positivity, 694–700

and logconcavity, 698
multivariate, 683

totally positive functions
composition of, 697

TTT statistic, 39
TTT transforms, 36

and hazard rates, 40
convergence of, 40
for location parameter families,

223

for power parameter families,
229

uniform distribution
and IHR, 116
and log-concavity, 99
and stability, 616
dual of, 493
with added parameters, 489
with frailty parameter,

characterization of, 580
with one added parameter,

475–479
unimodality, 10, 639

strong, 99
unimodal hazard rates, 131
upper quadrant dependence, 558
urn models, 665

variation diminishing property,
697

Verhulst distribution, 332

wearout, 148
Weibull distributions, 29, 321–333

characterization of, 330, 568
coefficient of variation, 327
density of, and concavity, 31
extended family, 331
generalized, 331, 521

hazard rate for, 522
Gini index of, 327
hazard rate properties, 324
infinite divisibility of, 328
inverse, 331
mixture representation of, 330
mixtures of, 331
moments of, 325
ordering, 327
residual life of, 332, 355
TTT transform of, 326
with resilience parameter, 353
with tilt parameter, 355



SVNY289-Olkin April 22, 2007 10:52

Springer Series in Statistics (Continued from page ii)

Knottnerus: Sample Survey Theory: Some Pythagorean Perspectives
Konishi: Information Criteria and Statistical Modeling
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