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The second edition of a textbook always provides the opportunity to improve those parts of
the material that have been found in the classroom to fall short of the authors’ original
intent. So it is with this edition. Our intent of providing a teaching too! that features a
straightforward presentation of basic principles while having the depth and rigor to serve as
a basis for more advanced work has not changed. However, we have been listening to the
voices of those who have used this work as students and as teachers. In this new edition we
have attempted to address their main themes.

One major change is structural. We have separated the “superchapter” that was
Chapter 2 in the first edition into three new chapters with some added explanatory mater-
ial. This change is intended to ease the student’s progress into the more mathematical part
of the material. We have also removed the superscript notation for identifying reference
frames in situations where it is superfluous because multiple frames are not needed. This
means, for example, that the superscript notation is not used in the introductory chapter on
graphical analysis techniques that is the new Chapter 2. The superscript notation is
retained for those situations in which it is necessary to keep track of multiple moving ref-
erence frames, but it is introduced later after students should have gained some confidence
in their basic techniques.

The introduction to algebraic solution techniques, which now forms Chapter 5, has
been somewhat reorganized to provide a smoother progression into the topic. Once again,
the superscript notation for reference frames has been removed whenever it is not needed.

We have added a significant number of new problems and new worked examples
in selected locations in the text. The added problems include some open-ended design
problems.

Chapter 1 now contains sections on bearings and actuation that provide a stronger
link to practical engineering in which mechanisms must not only have the right dimensions,
but must move freely over long service lives, and must be driven.

We have expanded the design chapter (Chapter 6) to include two-position double-
rocker designs. Both graphical and analytical approaches are given. The section on path gen-
eration has also been expanded to include the design of eight-link mechanisms that guide a
coupler along a path in curvilinear motion. In addition, the section on crank-rocker designs
has been expanded.

We have upgraded the software provided on the CD that accompanies the book. The
CD includes a new set of programs based on Matlab’s graphical user interface (GUD).
These programs are easier to use than the original programs. In the rigid-body guidance
programs, we have also included a rectification feature that identifies solutions that have a
branch problem. This greatly improves the usability of the programs for design problems.
The cam design program also has been greatly improved. It is now possible to optimize
cam motion and to create displacement profiles that are made up of several different stan-
dard mathematical functions. As is the case with other GUI-based programs, the entire
process is interactive.
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PREFACE

Although the new programs are easier to use, writing them is beyond the scope of
what would normally be expected for students in an introductory level kinematics class.
Therefore, the original programs are also included on the CD. These programs are simpler
and could be written by many students at the junior and senior levels in mechanical engi-
neering. These can be used directly or modified by the students. We have included com-
ments so that an interested programmer can understand the flow of the programs.

The CD also contains animations of selected mechanisms generated using a solid
modeling program (SolidEdge). These illustrate most of the common single-loop mech-
anisms. In addition, a set of PowerPoint slides is included as a supplement for the lec-
tures. Some of these include step-by-step procedures for several of the figures given in
the book. While these do not cover all aspects of the book, they cover most of the topics
that would be included in an entry-level class. These can be easily tailored by the user for
specific lectures.

These are only the more visible changes. There are lesser improvements throughout.

The book is intended for courses ranging from an introduction to planar linkage
kinematics to more advanced courses that include spatial mechanisms. For example, an
introductory course might cover Chapters 1, 2, 4, 5, 6, 8, and 13. The gear chapters could
also be covered to some extent. A more advanced course might cover Chapters 1, 3,4, 7, 8,
9, 14, and 15. Again, the gear chapters could be covered or omitted. In most instances, there
are programs on the CD to augment the lecture material included in the book.

Although the book is intended mainly as a textbook, we have written it so that it can
serve also as a reference book for mechanism kinematics. For example, where appropriate,
we have summarized the equations developed in tables for easy access.

We trust that those who have used the work as a teaching tool will find that this new
edition better serves their needs and that they will continue to tell us about the strengths and
weaknesses they find in it. This is a topic of fundamental importance to mechanical engi-
neering, as it has been since the time of James Watt. We hope that we have contributed pos-
itively to the training of students and hence to the practice of this important and rewarding
field.

We would like to express our sincere thanks to the colleagues and students who have
contributed to the success of the second edition of this book. We especially acknowledge
Necip Berme for several of the examples and exercise problems in the book. A number of
these are based on class assignments that he has made during the years. We also thank
Yueh-Shao Chen, Sung-Lyul Park, and Michael Stevens who wrote the GUI-based pro-
grams that are included with this book. And finally, we would like to thank Edward Kinzel
who contributed to the new section on design for path generation.

Kenneth J. Waldron
Gary L. Kinzel
April 2003
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1.1 HISTORIC PERSPECTIVE

A mechanism is a machine composed of rigid members that are jointed together. The mem-
bers interact with one another by virtue of the joints. The joints are formed by portions of
the surfaces of the members joined that contact one another. The geometries of the contact-
ing surface segments determine the properties of each joint.

Mechanisms may be simple or complex. Figure 1.1 shows a walking machine that is
composed of dozens of mechanisms that must be coordinated through complex control sys-
tems. Other machines may involve only a single mechanism.

The design of mechanisms is a technical area that is unique to mechanical engineer-
ing. Its history stretches back to prehistoric times. Artisans such as blacksmiths and car-
penters also functioned as the designers of mechanisms. One of the original functions of
engineers was the design of mechanisms both for warfare and for peaceful uses. In Renais-
sance times, we find Leonardo da Vinci depicting a sophisticated variety of mechanisms,
mostly for military purposes. Sometime thereafter the distinction between civil engineering
and military engineering appeared. The modern era in mechanism design, along with the

FIGURE 1.1 The Adaptive
Suspension Vehicle. Each leg
is a planar pantograph mech-
anism hinged to the body
about an axis parallel to the
longitudinal axis of the
vehicle.




2 CHAPTER1 INTRODUCTION

history of mechanical engineering as a distinct discipline, can be viewed as starting with
James Watt.

That is not to say that the subject has remained static. In fact, there have been dra-
matic changes in the practice of mechanism design in recent years. Traditionally, machines
have been designed to be powered by a single “prime mover,” with all functions mechani-
cally coordinated. That tradition certainly predates Watt. Recent developments in computer
technology, coupled with improvements in electric motors and other actuators, have made
it possible to use a different approach. This is an approach in which machines are powered
by multiple actuators coordinated electronically. The resulting machines are simpler, less
expensive, more easily maintained, and more reliable. Another major change is in the tech-
niques used in mechanism design. The use of interactive computer graphics has had a dra-
matic impact on design practice. One of our motivations in producing this book, even when
a number of excellent texts are already available in mechanism kinematics, is to provide a
treatment that reflects these changes in practice.

1.2 KINEMATICS

Kinematics is the study of position and its time derivatives. Specifically, we are concerned
with the positions, velocities, and accelerations of points and with the angular positions,
angular velocities, and angular accelerations of solid bodies. Together these entities are suf-
ficient to describe the motions of solid bodies. The position of a body can be defined by the
position of a nominated point of that body combined with the angular position of the body.
In some circumstances we are also interested in the higher time derivatives of position and
angular position.

The subject of kinematics is a study of the geometry of motion. This is an accurate
title because kinematics is geometry with the element of time added. The bulk of the sub-
Jject matter of this book is often referred to as the kinematics of mechanisms. Our objective
is to present techniques that can be used to design mechanisms to meet specific motion
requirements. That is why the subject matter is approached from a mechanical designer’s
perspective.

1.3 DESIGN: ANALYSIS AND SYNTHESIS

The material in this book falls into two classifications. The first consists of techniques to
determine the positions, velocities, and accelerations of points in the members of mecha-
nisms and the angular positions, velocities, and accelerations of those members. These are
kinematic analysis techniques. The second type of material comprises methods for mathe-
matically determining the geometry of a mechanism to produce a desired set of positions
and/or velocities or accelerations. These are rational synthesis techniques.

The activity that distinguishes engineering from science is design. Science is the
study of what is; engineering is the creation of what is to be. This creative activity is design
or, more formally, synthesis. The rational synthesis techniques developed by kinematicians
offer a rather direct route to mechanism design that lends itself well to automation using
computer graphics workstations. However, these techniques do not represent the only way
to design mechanisms and they are relatively restrictive: Rational synthesis techniques exist
only for specific types of mechanism design problems, and many practical mechanism
design problems do not fit within the available class of solutions. An alternative is to use
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informal synthesis. This is a methodology used by engineers to solve design problems in
many technical areas, not just in mechanism design. The basic procedure is to “guess” a set
of dimensions and then use analysis to check the resulting performance. The dimensions are
then adjusted to attempt to match more closely the performance specifications, and the
mechanism is analyzed again. The process is repeated until an acceptably close match to the
specifications is achieved. Thus, a primary use of the analysis material is also in mechanism
design.

From an engineering point of view, it is not possible to treat mechanism design solely
in terms of kinematics. The motivation for performing an acceleration analysis is often to
enable inertia forces on the links to be calculated, allowing, in turn, computation of the
forces transferred between links and the internal forces, or stresses, within the links. Mech-
anisms must usually drive loads, as well as generate motions. Of course, as soon as we
introduce the concept of force, we leave the domain of pure kinematics and enter that of
kinetics. Insofar as the largest forces in many mechanisms are inertia forces created by
motion, it is convenient to study them within the general framework of kinematic tech-
niques. There is also an important symmetry between the geometry of the force distribution
and that of the velocity distribution that is particularly useful when working with spatial
mechanisms. Thus, it is entirely appropriate to treat mechanism statics or Kinetics within the
general geometry of motion framework constructed to study mechanism kinematics. Such
a treatment is presented in the later chapters of this book.

1.4 MECHANISMS

Mechanisms are assemblages of rigid members connected together by joints. Mechanisms
transfer motion and mechanical work from one or more actuators to one or more “output”
members. For the purposes of kinematic design, we idealize a mechanism to a kinematic
linkage in which all the members are assumed to be perfectly rigid and are connected by
kinematic joints. A kinematic joint is formed by direct contact between the surfaces of two
members. One of the earliest codifications of mechanism kinematics was that of Reuleaux
(1876),! and some of the basic terminology we use originated with him. He called a kine-
matic joint a “pair.” He further divided joints into “lower pairs” and “higher pairs.” A lower
pair joint is one in which contact between two rigid members occurs at every point of one
or more surface segments. A higher pair is one in which contact occurs only at isolated
points or along line segments. All other things being equal, a higher pair will produce higher
contact stresses than will a lower pair.

Joints are the most important aspect of a mechanism to examine during an analysis.
They permit relative motion in some directions while constraining motion in others. The
types of motion permitted are related to the number of degrees of freedom (dof) of the joint.
The number of degrees of freedom of the joint is equal to the number of independent coor-
dinates needed to specify uniquely the position of one link relative to the other constrained
by the joint.

Lower pair joints are necessarily restricted to a relatively small number of geometric
types, because the requirement that surface contact be maintained constrains the geometry
of the contacting surfaces. It can be shown that there are only six fundamentally different
types of lower pair joints, classified by the types of relative motion that they permit. There
is, in contrast, an infinite number of possible higher pair geometries. The lower pair joint
types are shown in Table 1.1. Some important examples of higher pair joints are shown in
Table 1.2.

! Reuleaux, F, The Kinematics of Machinery (Translated and edited by A. B. W. Kennedy), Dover Publica-
tions, Inc., New York, 1963.
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TABLE 1.1 Lower Pair Joints

Connectivity

{Number of

degrees of Letter

freedom) Names symbol Typical form Sketch symbol

1 Revolute R == %J
Hinge @’”’ \(\ ,{j
Turning pair

O (Planar) (Spatial)

1 Prismatic joint P -—
Slider
Sliding pair :Cﬂj 7 &R

(Planar) (Spatial)
1 Screw joint H
Helical joint \%\/
Helical pair s=ho
(Spatial)

Cylindrical pair

2 Cylindrical joint  C 3%&/

(Spatial)
U
3 Spherical joint S /O'!
Ball joint /d
Spherical pair
(Spatial)
3 Planar joint P, /'—g-;
Planar pair //'
E (Spatial)

Lower pair joints are frequently used in mechanism design practice. They give good
service because wear is spread out over the contact surface and because the narrow clear-
ance between the surfaces provides good conditions for lubrication and a tight constraint on
the motion. Changes in the geometric properties of the joint with wear occur slowly for a
lower pair. At least as important are the simple geometries of the relative motions that these
joints permit.

Higher pair joints that involve pure rolling contact, or that approximate that condition,
are also used frequently. In pure rolling contact, the points in one of the two joint surfaces
that are actually in contact with the other surface at any instant are at rest relative to that sur-
face. Hence there is no relative sliding of the surfaces and joint friction and wear are mini-
mized. Physically, the limitation of this kind of joint is the stress intensity that the material
of the contacting bodies can support. Stresses are necessarily high because of the very small
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TABLE 1.2 Some Higher Pair Joints

Connectivity

{Number of

degrees of

freedom) Names Typical form Comments

Roller rotates about this line at
this instant in its motion. Roller
does not slip on the surface on
which it rolls.

2 Cam pair g‘ Cam rolls and slides on follower.

1 Cylindrical roller

3 Rolling ball Ball rolls without slipping.

4 Ball in cylindar Ball can rotate about any axis

through its center and slide along
cylinder axis.

5 Spatial point contact Body can rotate about any axis
through the contact point and
slide in any direction in the
tangent plane.

contact areas. If the bodies were perfectly rigid, contact would occur only at discrete points
or along a line, the contact area would be zero, and the stresses would be locally infinite!

Lower pair joints such as revolute joints and cylindrical joints are also often simulated
by systems such as ball or roller bearings in which there are actually many elements acting
in parallel. The actual contact joints in a ball bearing are rolling contacts, which are higher
pairs. In this way, the low-friction properties of rolling contacts are exploited to obtain a
joint with lower friction and higher load and relative speed capabilities than would be pos-
sible with a plain revolute joint. At the same time, the simple overall relative motion geom-
etry of the revolute joint is retained. This is one example of a compound joint in which the
joint is actually’ a complex mechanism but is regarded as kinematically equivalent to a
simple revolute. Several examples of compound joints are shown in Table 1.3.

Conversely, higher pairs are sometimes replaced by equivalent lower pair joints
(Fig. 1.2). For example, a pin-in-a-slot joint becomes a combination of a revolute joint
and a prismatic joint. Note that this involves adding extra members to the mechanism. In
both the case in which a lower pair is replaced by a rolling contact bearing, or compound
joint, and this case, the two mechanisms are said to be kinematically equivalent. This
means that the relative motions that are permitted between the bodies in the two cases are
the same, even though the joint is physically quite different.

The number of degrees of freedom of a joint is the minimum number of independent
parameters required to define the positions of all points in one of the bodies it connects rel-
ative to a reference frame fixed to the other. The term connectivity is used to denote this
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freedom of the body, even though the “joint” may be something very elaborate such as the
antifriction bearing shown in Table 1.3 and Fig. 1.3. If motion is restricted to a plane, the
maximum number of degrees of freedom is three. In general spatial motion, the maximum
number is six. The connectivity or number of degrees of freedom for each joint is listed in
Tables 1.1, 1.2, and 1.3 in the first column.

TABLE 1.3 Some Examples of Compound Joints

Connectivity Name Form

1 Ball bearing
Antifriction bearing
Rolling contact friction

2 Universal joint
Hooke joint
Cardan joint

1 Roller slide [ y.ony =
Roller glide z &) 7

/> ,
Q0D = 2 s d
V4

FIGURE 1.2 Replacement of a higher pair joint by a kinematically equivalent combination of lower pair
joints,
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FIGURE 1.3 Various rolling-element and plain bearings.

1.5 PLANAR LINKAGES

A planar linkage is one in which the velocities of all points in all members are directed par-
allel to a plane, called the plane of motion. The only lower pair joints that are properly com-
patible with planar motion are revolute and prismatic joints. The axes of rotation of all
revolute joints must be normal to the plane of motion because points would not move in par-
allel planes otherwise. The directions of sliding of all prismatic joints must be parallel to the
plane of motion, since all points in a member connected to another by a prismatic joint
move on lines parallel to the sliding direction relative to the second member. Occasionally
other lower pair joints will appear in what is otherwise a planar linkage; however, they then
function only as revolute or prismatic joints. For example, a spherical joint may be substi-
tuted for a revolute joint, but if the linkage is functionally planar, that spherical joint will
operate as a revolute joint with rotation occurring only about the axis normal to the plane of
motion. This type of situation will be discussed in more detail in the context of degrees of
freedom and mobility.

A common schematic method of representing planar linkages is to represent revolute
joints by small circles, as shown in Table 1.1. Binary links—those that have two joints
mounted on them—are represented as lines joining those joints. Ternary links—those that
have three joints mounted on them—are represented as triangles with the joints at the ver-
tices, and so on. Examples of the resulting representations are shown in Figs. 1.4-1.6. The
link geometries may then be easily reproduced, giving an accurate view of the linkage in a
specified position. Alternatively, the schematic may be used conceptually without accurate
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geometric data to indicate the topology of the linkage. Topology is the branch of geometry
that deals with issues of connectedness without regard to shape. Links with three or more
joints should be shaded or crosshatched. Otherwise, the schematic for a quaternary link, one
with four joints, cannot be distinguished from the schematic for a four-bar linkage loop.

A kinematic chain is any assemblage of rigid links connected by kinematic joints. A
closed chain is one in which the links and joints form one or more closed circuits. Each
closed circuit is a loop in which each link is attached to at least two other links.

Prismatic joints are represented by means of a line in the direction of sliding, repre-
senting a slide, with a rectangular block placed on it. This produces linkage representations
such as those shown in Fig. 1.6.

A frame or base member is a link that is fixed. That is, it has zero degrees of freedom
relative to the fixed coordinate system. A linkage is a closed kinematic chain with one link
selected as the frame.

In cases in which it is necessary to distinguish the base member of a linkage, it is cus-
tomary not to show the base as a link in the normal manner but to indicate joints to base by
“mounts,” as shown in Figs. 1.7 and 1.8.

The term mechanism is somewhat interchangeable with linkage. In normal usage,
mechanism is a somewhat more generic term encompassing systems with higher pairs, or

=>‘ ‘=°——*’

(@

ey

(b)

FIGURE 1.4 Representations of links.
= (a) Binary links: those to which two joints are

mounted. (b) Ternary links and (c) Quaternary
links; these have three and four joints, respec-
© tively.

<7<

FIGURE 1.5  Conventional representations of planar linkages. Revolute joints are indicated by circles.
Binary links, those with two joints mounted on them, are represented by line segments. Ternary links, with
three joints, are represented by triangles, and so on.
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@ ®)

FIGURE 1.6 Representations of planar linkages with prismatic joints. (a) A four-bar slider-crank mecha-
nism. Note that the sliding “block” is a binary member of the mechanism with a revolyfe joint and a pris-
matic joint providing the connections to adjacent members in the loop. The fillets conhecting the block to a
binary member represented by a line in (b) represent a rigid connection. Thus, the combination is, in this
case, a binary member of the linkage.

combinations of lower and higher pair joints, whereas the term linkage tends to be restricted
to systems that have only lower pair joints. Mechanisms or linkages are generally repre-
sented by their links and joints. The links are numbered with the frame link usually taken as
link 1.

Simple, single-loop linkages are given a symbolic designation by a sequence of let-
ters denoting joint types written in clockwise order beginning and ending with the joints
mounted to the frame link as shown in Fig. 1.9. The letter designations for the different
joints are given in Table 1.1.

The profiles of the contacting surfaces of higher pairs, such as cams and followers,
are drawn in planar linkages producing representations such as that shown in Fig. 1.10.
Those surfaces must be general (not necessarily circular) cylinders whose straight-line gen-
erators are normal to the plane of motion. The profile drawn is, therefore, the generating
curve of the cylinder shown in Fig. 1.11. The cylinder is generated by translating that curve
along a straight line in the direction normal to its plane. The familiar cylinder with a circu-
lar generating curve is called a right circular cylinder.

1.6 VISUALIZATION

Because linkage motion is inextricably intertwined with geometry, it is always important to
the designer to visualize the motion. In this respect, planar linkages are relatively easy to
work with because their geometry and loci representing their motion can be drawn on a two-
dimensional surface. Nevertheless, it can be very difficult to visualize successive positions
of the links of a planar linkage from only a drawing of that linkage in a representative posi-
tion. Yet this succession of positions and the relative locations of all the links in each of the
positions are very important when trying to predict effects such as interference with each
other and with other machine parts. Mechanism designers have traditionally solved this
problem by constructing simple physical models with the links cut from cardboard and rev-
olute joints formed by pins or grommets. Cards cut from a manila folder with thumbtacks
for revolute joints provide an acceptable material for quick visualization models. Prototyp-
ing kits (Fig. 1.12) or even children’s construction toys (Fig. 1.13) provide an alternative
that requires more construction time but gives a more functional model.
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FIGURE 1.7 Sclection of a frame member converts
the chain of Fig. 1.6a into a linkage. This linkage is
known as a slider-crank linkage.

AN,

FIGURE 1.8 Representations of planar linkages with the base link not shown in the same form as the
other links. The page can be thought of as representing the base link. The joints to the base link are indicated
by hatched “mounts.”

5

2 AR
R ‘ RRRR Linkage (4R)
1
o v

-4

(a)

P R
2 ' P, RRRP Linkage (3R-P)
R, o S

(b)

FIGURE 1.9 Designation of single-loop linkages by means of their joints. The joints are taken in clock-
wise order around the loop, starting and finishing with a joint to frame.

When mechanisms are designed using computer graphics systems, animation on a
computer is often used to visualize the motion of the mechanism, rather than construction
of a physical model. Animation should be used with caution, however. As will be seen in
section 1.18 of this chapter, there are important interference effects that do not lend them-
selves to planar representation but which, if present, are immediately apparent in a physical
model.

Furthermore, adding realistic boundary profiles to the representations of links on
computer graphic systems is often time consuming and simply not worth the effort when
trying a variety of different alternative linkage configurations. Instead, quick physical visu-
alization models may be a more efficient alternative. The reader is urged to get into the habit
of constructing simple models to visualize the motions of linkages that are being designed
or analyzed, and to make use of computer animation when it is available.

Three-dimensional systems are much more difficult than planar systems to visualize
because the depths of the positions for points on the links are no longer constant. Construc-
tion of an adequate physical model is often a major effort requiring machining to shape
three-dimensional parts. In this case the most efficient solution is to use one of the solid
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FIGURE 1.10 Representation of a plate cam with a rocker follower.
797 Q The face of the follower is a plane, so it is represented by a line. The
cam is represented by its profile curve.

Generating line

FIGURE 1.11 General cylinder. The generating curve is a

plane curve. Its plane is normal to the generating line. The sur-

face may be considered to be generated by moving the generat-

ing curve so that a point on it moves along the generating line.

Alternatively, it may be generated by moving the generating line
Generating curve so that a point on it traverses the generating curve.

modeling software packages that support linkage joint representations and animation of the
linkage. Construction of the model involves a considerable effort since each link must be
described as a three-dimensional solid. Nevertheless, the effort is usually much less than
would be required for the construction of a physical model. Usually it is possible to change
the viewpoint from which the representation is projected. This allows the motion to be
viewed from several different directions. It also allows areas of interference to be identified
and corrected.

1.7 CONSTRAINT ANALYSIS

The number of degrees of freedom of a body is the number of independent coordinates
needed to specify uniquely the position of that body relative to a given reference frame.
Similarly, we call the minimum number of coordinates needed to specify uniquely the posi-
tions of all of the members of a system of rigid bodies the number of degrees of freedom of
that system. In fact, we will use the concept of the number of degrees of freedom in three
distinct but closely related ways. The first is the number of degrees of freedom of a body
relative to a specified reference frame, which is the definition just given. The second is the
number of degrees of freedom of a kinematic joint. The third is the number of degrees of
freedom of a linkage or mechanism.

Both because “number of degrees of freedom” is such a mouthful and because we are
using a distinct concept, we will refer to the number of degrees of freedom of a joint as its
connectivity. In addition, the term will apply to the number of relative freedoms between
two bodies. Likewise, we will refer to the number of degrees of freedom of a linkage as the
mobility of that linkage. These terms may be formally defined as follows:

If a kinematic joint is formed between two rigid bodies that are not otherwise con-
nected, the connectivity of that joint is the number of degrees of freedom of motion of
(either) one of the two bodies joined relative to the other.
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FIGURE 1.12 J. Woody Blockhead model.?

g g

FIGURE 1.13 Model made with LEGOS Technics.?

2Wood, G. A., and Torfason, L. E., Mechanism Modeling, Wood & Torfason, Lincoln, MA, 1975.
3LEGO Systems, Inc., 555 Taylor Road, Enfield, CT.
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The mobility of a mechanism is the minimum number of coordinates needed to spec-
ify the positions of all members of the mechanism relative to a particular member chosen as
the base or frame.

The mobility, or number of degrees of freedom of a linkage, is used to determine how
many pair variables must be specified before the positions of all of the points on all of the
members of the linkage can be located as a function of time. A linkage has a mobility of one
or more. Traditionally, almost all linkages had one degree of freedom. However, in modern
design practice, linkages with two or more degrees of freedom are becoming more common.
If the mobility is zero or negative, as determined by the constraint equations developed in the
following, the assemblage is a structure. If the mobility is zero, the structure is statically
determinate. If the mobility is negative, the structure is statically indeterminate.

To compute the mobility, let us consider the planar case first and then extend the
results to the spatial case. As indicated in Fig. 1.14, in the plane, a body moving freely has
three degrees of freedom. Suppose that in a given linkage there are » links. If they are all
free to move independently, the system has mobility 3#. If one link is chosen as the frame
link, it is fixed to the base reference frame and loses all of its degrees of freedom. Therefore
the total mobility of the system is 3(n — 1) with no joints formed between the members.

If a joint with connectivity f; (f; degrees of freedom) is formed between two bodies,
the mobility of the system is diminished since those two bodies originally had three degrees
of freedom of motion relative to one another. After formation of the joint, they have only f;
degrees of freedom of relative motion. Hence the reduction in the system mobility is 3 — f..
If joints continue to be formed until there are j joints, the loss of system mobility is

J J
(B-A)+(B-f)++(-1)=2B-£)=3/-2 1
i=1

i=1

Then the total mobility of the linkage will be
J J
M =3(n-1)- 3j—2f,.]=3(n-j-1)+2f,. W
i=1 i=1 .

Equation (1.1) is called a constraint criterion. There are many different-appearing ver-
sions of this relationship to be found in the literature. They all, in fact, are equivalent to one
another, except that some are restricted to a subset of the cases covered by Eq. (1.1).

A problem arises in some cases in which more than two members are apparently con-
nected by the same joint. Typically, three or more members are pinned together by the same
shaft and are free to rotate relative to one another about the same revolute axis. This diffi-
culty is readily resolved if we recall that a kinematic joint is formed by contact between the
surfaces of two rigid bodies. This is the reason for Reuleaux’s name “pair” for what we here
call a “joint.” Considering the present case, we see that there is not one joint but several
between the bodies. In fact, if p members are connected by a “common” joint, the connec-
tion is equivalent to p — 1 joints all of the same type. Inclusion of this number in j, and using
(p — 1)f; in the connectivity sum of Eq. (1.1) will ensure correct results. This is illustrated in
a later example (see Example 1.3).

Y, FIGURE 1.14 One set of three coordinates that can be used
o to describe planar motion. The number of degrees of freedom of
| a body is the number of independent coordinates needed to
X, ‘ specify its position. Therefore, a body moving freely in a plane
X has three degrees of freedom.
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EXAMPLE 1.1 Determine the mobility of the planar four-bar linkage shown in Fig. 1.15.
Degrees of
Freedom in a
Simple Four-Bar
Linkage
Solution 3 n=j=4
j
2 4 Y fi=ix1=4
i=1
M=3(4-4-1)+4=1 FIGURE 1.15 Mobility analysis of a planar four-bar
1 linkage.
EXAMPLE 1.2 Determine the mobility of the linkage shown in Fig. 1.16. The linkage is planar and all joints have
Degrees of connectivity one.
Freedom in a
Complex
Mechanism
n=7,j=8
j
Solution fi=jx1=8
)y
M=3(7-8-1)+8=2
FIGURE 1.16 Mobility analysis of a two-
loop planar linkage.
Notice that the base member must always be counted even when it is not shown in the same way as the
other members but just by a set of “bearing mounts.”
EXAMPLE 1.3 | Determine the mobility of the linkage shown in Fig. 1.17. The linkage is planar and all joints have
Degrees of | connectivity one. Links 3, 4, and 5 are connected at the same revolute joint axis.
Freedom When
Joints Are
Coincident
FIGURE 1.17 Mobility analysis of a linkage when
more than two members come together at a single point
location.
Solution n=6,j=17
J
Y fi=ix1=7

M=3(n—j—1)+iﬁ =3(6-7-1)+7=1

i=1



EXAMPLE 1.4
Degrees of
Freedom for a
Mechanism
Containing a
Higher Pair

Solution
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As indicated previously, when p members are connected at the same joint axis, then p — 1 joints are
associated with the same axis. Hence the location where links 3, 4, and 5 come together counts as two
revolute joints. As indicated in the figure, members 3 and 5 can be thought of as being connected to
link 4 by two separate revolute joints that have the same axis of rotation.

Determine the mobility of the linkage shown in Fig. 1.18. The linkage is planar and not all of the joints
have connectivity one.

FIGURE 1.18 Mobility analysis of a linkage with
various types of joints.

In this mechanism, there are three places where more than two links come together at the same revo-
lute joint location. In addition, there is a pin-in-a-slot joint that permits two degrees of freedom (con-
nectivity equals two). Therefore, the joints must be counted carefully. When this is done, we find » and
jtobe

n=11, j=14

and

J
Y £ =13x1+1x2=15

i=1

Then,
M=3(n—j—1)+if,. =3(11-14-1)+15=3

i=1

A special case that deserves attention occurs when the mobility in Eq. (1.1) is set to one and
all joints have connectivity one (f;= 1). Then, Eq. (1.1) gives

1=3(n—j-1)+j
or
4=3n-2j (1.2)

Because n and j are integers, n must be even because 4 and 2; are both even numbers. This
is an example of a Diophantine equation. That is one that admits only integral solutions.
Written as an expression for j in terms of n, the equation becomes

j=3n2-2
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Some of the possible solutions are listed in Table 1.4. In each case, the joints may be either
revolute or prismatic joints, since they are the only lower pair joints that can properly be
included in planar linkages.

Solution 1 gives the rather trivial case of two bodies connected by a single revolute or
slider joint. This is shown in Fig. 1.19a. Actually, this mechanism is very common. For
example, a door, its hinges, and the door frame form an open kinematic chain and a mech-
anism of this type.

Solution 2 gives a single, closed loop of four members with four joints. Two forms are
shown in Figs. 1.19b and 1.19c. The one in Fig. 1.19b is the planar four-bar linkage that
forms a major element in planar linkage theory. The one in Fig. 1.19c¢ is the slider-crank
linkage, which is also extensively studied.

Solution 3 presents two new features. First members with more than two joints
mounted on them appear. Second, even when only revolute joints are included, there are two
possible, topologically distinct, configurations of six members with seven joints. These are
respectively named the Watt and Stephenson six-bar chains and are shown in Fig. 1.20.

Solution 4 gives 16 possible different topological configurations, shown in Fig. 1.21,
and solution 5 gives 230. The number increases very rapidly with larger numbers of mem-
bers. For example, solution 6 gives 6856 configurations (Hunt, 1978).4

From this discussion, it should be apparent why we spend so much effort on the
design of four-link mechanisms. The four-link arrangement is the simplest possible non-
trivial linkage. It turns out that most design requirements can be met by four- or six-link
mechanisms.

Note that, in this discussion, the type of the joints was not specified. All that was
specified was that the joints have connectivity one and that the linkage is planar and has
mobility one. Although the joints pictured in Figs. 1.19~1.21 are all revolute, rolling con-
tact joints could be substituted for any of the joints, and prismatic joints could be substituted

TABLE 1.4 Different Integer Solutions to Eq. (1.2) for Mobility of One

Solution number n j Number of configurations
1 2 1 1

2 4 4 1

3 6 7 2

4 8 10 16

5 10 13 230

6 12 16 6856

N

(a) (b) (c)

FIGURE 1.19 Solutions of the planar mobility equation for M = 1 when n =2 and n = 4.

“Hunt, K. H., Kinematic Geometry of Mechanisms, Oxford University Press, Oxford, UK, p. 40, 1978.
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FIGURE 1.20 The two solutions of the
planar mobility equation for seven revolute
joints. M =1 and each kinematic chain has six
Watt Chain Stephenson Chain members.

FIGURE 1.21 The 16 solutions of the planar mobility equation for 10 revolute joints. M = 1 and each kine-
matic chain has eight members.

for some of them. Thus, even if the joints are confined to lower pairs, the four-link, four-
joint solution represents the four different chains shown in Fig. 1.22. The Scotch yoke,
based on the 2R-2P chain, is shown in Fig. 1.23.

Further, as discussed later in this chapter, the important concept of inversion gener-
ates several different linkages from any mechanism based on the 3R-P and 2R-2P chains.
An inversion is a different mechanism derived from a given mechanism or linkage by
changing the base member. “Different” means that the motion relative to the frame that can
be produced by the inversion is different from that provided in the original mechanism, that
is, the inversion produces a different general form for the paths of points on the different
links or a different input—output function.

A different inversion is produced for each choice of frame link. As a result, the 3R-P
chain produces four different mechanisms. In the basic slider-crank mechanism, the frame
member has one revolute and one prismatic joint mounted on it. We can also make the slider
the frame. The other two inversions are turning block linkages in which the base has two
revolutes mounted on it. The 2R-2P chain can produce three different mechanisms: The
Scotch yoke has one revolute and one prismatic joint mounted on the frame, the double
slider has two prismatic joints on the frame, and the third mechanism, the Oldham coupling,
has both revolutes mounted on the frame.
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ﬂ Q Eﬁl- FIGURE 1.22 Four
different forms of four-
4R 3R-P

2R-2P RPRP bar chains with combina-
tions of revolute and
prismatic joints.

]

FIGURE 1.23 The 2R-2P chain as a Scotch yoke mechanism.

1.8 CONSTRAINT ANALYSIS OF SPATIAL LINKAGES

In spatial motion, each body that moves freely has six degrees of freedom rather than three.
Using exactly the same reasoning as was used in the planar case, the constraint criterion
equation becomes

J

M=6(n-j-1)+Y /

il (1.3)
This is called the Kutzbach criterion. If only lower pair joints are involved, each with con-
nectivity one, the equations become

M=6(n—j-1)+j=6n-5j-6
If the linkage is required to have mobility one, this gives
6n=7+5j (1.4)

Equation (1.4) corresponds to Eq. (1.2) derived in the case of planar motion. Like that equa-
tion, it is a Diophantine equation that admits only integral values of the variables. Evidently,
J must be odd because 5/ must be odd to combine with the odd number 7 to produce the
even number 6z. The sum 7 + 5j must also be divisible by 3. Solutions to Eq. (1.4) are a little
harder to generate than those of Eq. (1.2). The simplest solution is given by j = 1 and n = 2.
This is exactly the same as the simplest solution in the planar case depicted in Fig. 1.19a.
The next allowable solution is j = 7 and n = 7. This is a single, closed loop with seven mem-
bers and seven joints. It bears the same relationship to general spatial linkage topologies
that the planar four-bar linkage does to planar ones. The next order solution is j = 13, n=12.
There are three distinct topological forms in this case. For spatial mechanisms, the com-
plexity increases with the number of members and joints even more rapidly than it does for
planar joints.
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Determine the mobility of the linkage shown in Fig. 1.24. The linkage is spatial. The joints are lower
pairs of the types labeled.

Note how the three-dimensional joints are drawn. There is no formalism that is more or less uni-
versally recognized for representing spatial mechanisms as there is for planar linkages; however, we
will follow the symbols shown in Table 1.1.

Revolute
Spherical

2

Spherical ),2 ! Cylindrica

FIGURE 1.24 A four-member, single-loop, spatial linkage.

n=j=4

/
Y fi=2x3+1x141x2=9

i=l

M=6("—j-1)+if,- =6(4—4—1)+9=3
i=1

Another way of looking at the constraint criterion is in terms of closures. Imagine
building up the linkage by starting with the base link and successively adding members and
joints, If a joint connects an additional member to the system, the number of degrees of
freedom is increased by f;, if f; is the connectivity of that joint, and the numbers of members
and joints are both increased by one. If a joint is made between two members that are
already part of the linkage, the total number of degrees of freedom is decreased by the
number of constraints imposed by that joint. The number of constraints imposed by a joint
is the number of degrees of freedom lost by the system when that joint is formed. For a spa-
tial mechanism, it is 6 — f; since two bodies have six degrees of freedom of motion relative
to one another when they are free of each other and only f; degrees of freedom of relative
motion after the joint is formed. Also, in this case, the formation of the joint results in the
formation of a closed loop of members and joints within the linkage. This is called a clo-
sure. Proceeding in this manner, we can express the mobility of the linkage as

M=iﬁ—6c
i=1

where ¢ is the number of closures. Now, when a closure is formed, the number of members
does not increase, whereas the number of joints increases by one. If there are no closures
(open kinematic chains), the number of link members is given by

n=j+1

the additional member being the base member. Therefore, if there are ¢ closures in the
linkage

c=j+1l-n
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Thus, substitution for ¢ in the expression for the mobility leads to Eq. (1.4). The relation-
ship among c, j, and # is illustrated in Fig. 1.25.

The reason for looking at the constraint criterion from this viewpoint is that it relates
to the position analysis of a spatial linkage. When a closure is formed, a set of six algebraic
equations called closure equations can be written. The formulation of these equations will
be briefly treated in Chapter 9, although their study lies largely beyond the scope of this
book. The quantity 6¢ = 6(j + 1 — n) is therefore the number of equations available for posi-
tion analysis of the mechanism. The variables in those equations are the joint parameters,
the variables needed to fix the relative positions of the bodies connected by each joint.
There are f; of these joint parameters for joint i. Therefore the total number of variables in

the linkage is
J
c= z fi
i=1

In this way, it may be seen that Eq. (1.4) expresses the mobility of the linkage as the number
of variables less the number of equations for the system.

Yet another viewpoint on the constraint criterion that it is productive to pursue is that
of static force analysis. Free body diagrams can be drawn for all members except the base.
Six static equilibrium equations can be written for each free body. Hence there are 6(n — 1)
equations describing the system. At each joint there is a number of reaction force and torque
components that is equal to the number of constraints of that joint. These force components
are the variables in a static force analysis. Since the number of constraints at joint i is 6 — f;,
the number of variables is

J J
2(6-f)=6i-2 1
i=1 i=l
Therefore, the difference between the number of variables and the number of equa-
tions is
J
6j- Y fi—6(n-1)=-M

i=1

Thus, the mobility is meaningful from the point of view of static force analysis also. If
M = 0, the linkage is not movable and is a structure. The position problem can be solved to
obtain the joint positions that cannot vary. The static equilibrium problem can be solved for
all of the reaction force and torque components. The structure is statically determinate since
there is a unique solution to the static equilibrium problem.

m=5,j=5 c=1 m=6, j=6, c=1
(@ (b)

FIGURE 1.25 The effect of adding a member to a linkage together with a joint (b) and of adding a joint
without an additional member (c). Adding a joint without a member always closes a loop within the linkage.
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If the mobility is —1, the number of equations for the position problem exceeds the
number of variables. Therefore, in general there is no solution to the position problem. For
a solution to exist it is necessary for the equations to be dependent. This means that the
geometry of the mechanism must satisfy the conditions needed for the equations to be
dependent. Physically, this means that, in general, it is not possible to assemble the linkage.
One or more of the closures cannot be made. However, if the link geometry is changed to
bring the surfaces for the closing joint into alignment, the linkage may be assembled.

From the viewpoint of force analysis, the mobility is the number of static equilibrium
equations less the number of force variables: the converse of the situation for position
analysis. Thus, if M = —1 there is one more force variable than the number of force equa-
tions. Therefore, in this case solutions of the system exist, but there is no unique solution.
The force problem cannot be solved without additional information relating the forces in
the system. The linkage is a statically indeterminate structure. If the links are modeled as
elastic rather than rigid solids, compatibility of their deflections under load provides the
necessary additional relationship.

Conversely, if the mobility is one or more, the number of position variables is greater
than the number of position equations. Solutions to the system exist, but there is no unique
solution. The number of force equations is greater than the number of force variables, so, in
general, no solution to the static force problem exists. In practice, application of an arbitrary
set of loads to the linkage would lead to rapid, uncontrolled acceleration, and the system
behavior could not be described without writing dynamic equations. However, this invali-
dates the assumption of a static model.

Specification of the value of a joint parameter is equivalent to fixing that joint. Phys-
ically, it might be done by putting an actuator on that joint that would hold it in position. The
Jjoint can now support a force, or torque. The effect is to increase the number of unknown
force variables by one. If a linkage has mobility one, fixing the position of a joint with con-
nectivity one converts it into a structure. It also converts the static force problem from one
in which there is one more equation than there are variables to one in which the number of
variables is the same as the number of equations. That is, it is statically determinate.

Fixing the torque applied about a revolute joint, or the force applied by an actuator at
a prismatic joint, has a quite different effect. It does not change the number of variables or
the number of equations in either the position or the force problem. This is because having
a passive joint is already equivalent to fixing the force or torque variable about that joint.
The torque applied at a passive revolute joint is fixed to zero. Changing it to any other value
does not affect the number of unknown variables. Of course, it does affect the values of the
unknown force variables. '

This effect is quite important in practical applications of multiply actuated mecha-
nisms. Consider the manipulator arm shown in Fig. 1.26. It has seven members (italic num-
bers) and six joints. The heavy dashed lines with bold numbers indicate the joint axes. Joints
1,2,4,5, and 6 are revolute joints. Joint 3 is a prismatic joint. The axes of joints 3 and 4 are
the same. Member 1 is the base member.

Applying the constraint criterion to this mechanism, we have n =7, j = 6, and 3f, = 6,
so

J
M=6(n-j-1)+ f,=6(7-6-1)+6=6
i=1
If we actuate all of the joints so that we can specify their positions, the position of the mech-
anism is uniquely specified.
Consider now what happens if the manipulator grips an object that is fixed relative to
the base member, as is shown in Fig. 1.27. It is assumed that the gripper grasps the object
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FIGURE 1.26 A robotic manipulator that is used to produce general spatial motions of its gripper. The
mechanism has seven members, indicated by the italic numbers, and six joints. Joints 1. 2, 4, 5, and 6 are rev-
olutes. Joint 3 is a prismatic joint. The heavy dashed lines indicate the joint axes. The axes of joints 3 and 4
are coincident.

tightly so that no relative motion is possible. The effect is to make link 7 a part of link 1.
Therefore, application of the constraint criterion gives n =6, j = 6, and 31, = 6, so

M=6(n—j—1)+zj:f,- =6(6-6-1)+6=0
i=1
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FIGURE 1.27 The robotic manipulator of Fig. 1.26 gripping a fixed object. If the gripper grasps the object
so that no relative motion is possible, the gripper becomes fixed to member one. This reduces the number of
members in the system to six and closes a loop.
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The mechanism is now a structure, and we do not have the liberty of setting the joint
variables to any value we wish. Attempting to control the mechanism by commanding joint
positions, as is done when the manipulator is moving freely, is not effective in this case.
Since most manipulator structures are very stiff, a small position error results in very large
forces on the actuators. The usual result is that the actuator controllers become unstable,
producing violent vibratory behavior. However, commanding the actuators to produce spec-
ified forces or torques eliminates the problem. The actuator torques and forces can be set to
any desired set of values. In this way it is possible to apply a specified force system to the
fixed object A4 by means of the manipulator. Notice that commanding forces and torques all
the time is not a solution. If actuator forces are commanded when the manipulator is moving
freely, the number of static equilibrium equations exceeds the number of variables by six
and the manipulator will perform rapid uncontrolled movements, violating the assumption
of static stability.

1.9 IDLE DEGREES OF FREEDOM

Equation (1.4) sometimes gives misleading results. There are several reasons for this. One
is the phenomenon of idle degrees of freedom. Consider the linkage shown in Fig. 1.28.
This linkage has four members and four joints. Two of the joints are revolutes. The other two
are spherical joints. This mechanism is quite often used in situations such as the steering
mechanisms of automobiles. Applying the constraint criterion, we have n = 4, j = 4, and
Xf,;=2 X 1+2 X 3=8. Therefore

M=6(n—j‘1)+§j:fi =6(4—-4-1)+8=2
i=1

Nevertheless, practical experience with this mechanism shows that there is a unique
value of the output joint angle, ¢, for any given value of the input angle, 8. How can this be
explained?

Examination of the mechanism reveals that the coupler member is free to spin about
the line through the centers of the two spherical joints. This motion—termed an idle degree
of freedom—can take place in any position of the linkage without affecting the values of the
input and output joint angles. That is, an idle degree of freedom is one that does not affect
the input-output relationship of the linkage.

The real problem here is that usually we are not really interested in the mobility of the
entire linkage, that is, of all of its links. Rather, we are interested in the connectivity that the
linkage provides as a joint between two of its members. This is a new use of the term con-
nectivity. Previously we applied it only to simple joints at which the members contact each
other directly. However, a mechanism constrains the number of degrees of freedom of rela-
tive motion of any two of its members. Therefore it can be regarded as forming a kinematic
Jjoint between any two of its members. We can define its connectivity as a joint between
those members and as the number of degrees of freedom of relative motion that it permits
between the members.

In the example of Fig. 1.28, the connectivity of the linkage as a joint between the input
and output members is one, even though the mobility of the linkage is two, and the connec-
tivity between links 3 and 1 is two. The mobility places an upper bound on the connectivity
of the mechanism as a joint between any two of its members. There is no simple method of
directly determining connectivity, so the mobility equation is used. If the mobility is one and
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FIGURE 1.28 A spatial four-member, four-joint
linkage. Two of the joints are revolutes. The other
two are spherical joints. 6 is the input-joint angle,
and ¢ is the output-joint angle. The linkage has an
idle degree of freedom since member 3 can spin
about the line joining the centers of the spherical
Jjoints without affecting the relationship between 6
and ¢.

the linkage is not overconstrained in some local region, there is no problem. The connectiv-
ity of the linkage as a joint between any two of its members is also one. If the mobility is
greater than one, strictly speaking, all that can be said is that the connectivity between any
given pair of members may be equal to the mobility or may be less than that number. Fortu-
nately, idle degrees of freedom usually can be identified by inspection.

Another example is shown in Fig. 1.29. This is one form of the so-called Stewart
platform mechanism. This mechanism is commonly used to produce general spatial
motions in aircraft simulators for training pilots. The output member is connected to the
base by six “limbs,” each of which has an actuated prismatic joint in the middle and two
spherical joints at either end. There are 14 members: 2 in each of the limbs plus the base
and output members. There are 18 joints: 6 prismatic joints and 12 spherical joints. Hence
3f;=6 X 1+12 X 3 =42, Therefore

M=6(n—j—l)+§j;f,- =6(14-18—1)+42=12
i=1

FIGURE 1.29 Stewart platform.
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However, it is easily seen that each limb is free to spin about the line joining the cen-
ters of its spherical joints without affecting the position of the output member relative to the
base. Therefore, the mechanism has six idle degrees of freedom, and its connectivity as a
joint between base and output member is

C=M-6=6

Therefore, by appropriately positioning the actuated prismatic joints, the output
member can be placed in any position within its working volume.

Although idle degrees of freedom are most common in spatial linkages, they can also
occur in planar linkages. Typically, this occurs when cam roller followers are involved. For
example, if the mobility of the linkage in Fig. 1.30 is computed, it will be found to be one if
there is rolling contact between the roller (link 5) and the cam (link 6) at point C. However,
if there is cam contact at C, the mobility will be two. The extra degree of freedom is associ-
ated with the free rotation of link § relative to the frame. Usually, this rotation will be of no
interest because the motion of all of the other links in the mechanism will be unaffected by
this rotation.

To locate the idle degrees of freedom, it is first necessary to identify the input link
and output link. Then one must check to determine if a single link or a combination of con-
nected links can move without altering the relative position of the input and output links.
Idle degrees of freedom are dependent both on geometry and on the choice of the input and
output. In some cases, idle degrees of freedom can exist for one choice of input and output
but not for a different choice.

FIGURE 1.30 Planar mechanism with an idle
degree of freedom.

1.10 OVERCONSTRAINED LINKAGES

A second reason why the constraint criteria {Egs. (1.1) and (1.4)] sometimes give mislead-
ing results is the phenomenon of overconstraint. A mechanism can be overconstrained
either locally or generally. If the mechanism is overconstrained locally, a portion of the
system may be a structure, but the entire mechanism can move. When this happens, we must
replace that portion of the linkage with a single rigid body and recompute the mobility of
the mechanism. An example is shown in the planar system of Fig. 1.31a.
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(b)

FIGURE 1.31 (a) A planar mechanism in which part of the mechanism is a structure, leading to a mislead-
ing value of mobility. All joints are revolutes. (b) The part of the mechanism that is a statically indeterminate
structure. (¢) A modified model of the linkage that gives the correct mobility value.

Here n=19,j=2 X 1+2 X 2+2 X 3 =12. Note that there are two joints at which
three members are connected and two at which four members are connected. 3f; = j — 12.
Hence

M=3(n—j—1)+ifi =3(9-12-1)+12=0
i=1

However, it can be observed that the portion of the linkage consisting of members 3, 5, 6, 7,
8, and 9 is a statically indeterminate structure. This portion is shown in Fig. 1.31b. Here
n = 6, and because three members are connected at each joint location, j =4 X 2 = 8. Also,
3f;=j = 8. Therefore,

M=3(n-j-1)+if,. =3(6-8-1)+8=-1
i=l1

revealing the statically indeterminate nature of the structure and the source of the error in
the mobility value. A portion of the linkage that is a statically determinate structure does not
cause an error in calculating mobility.

To compute a correct value of mobility, the linkage is remodeled as shown in Fig. 1.31¢
with the portion that is a structure replaced by a single, rigid member. The linkage is now
revealed to be a planar four-bar linkage for which the mobility is one.

Mechanisms, especially spatial mechanisms, can also be generally overconstrained.
Figure 1.32 shows a spatial linkage with four members and four revolute joints. It has a spe-
cial geometry. The opposite members are identical, and the normals to the pairs of axes in
the links intersect at the joint axes. The lengths of those normals (a and b) are related to the
angles between successive axes (a and 8) by the relationship

asinB=bsina

As was demonstrated approximately one hundred years ago by Bennett, this linkage has
mobility one. However, if we apply the constraint criterion with n = j = 4 and 3f, = 4, the
result is

M=6(n—j—1)+zj:fi =6(4-4-1)+4=-2
i=]

In this case, because of the special geometry, the position equations of the linkage turn out
to be dependent in all positions. For this reason, the effective number of equations is only
three, rather than the six that would be expected for a single closed loop. Because the con-
straint criterion calculates the difference between the number of position variables and the
number of available equations, it miscounts the mobility by three degrees of freedom. It
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FIGURE 1.32 The Bennett mechanism. The side lengths and twist angles obey the relationship
asin B=bhsina.

turns out that rather a large number of linkages have anomalous mobility like the Bennett
mechanism. They are called overconstrained linkages. Many of these are largely curiosities.
However, there are several very important families of overconstrained linkages that are
exceedingly common in engineering practice.

The most common example of overconstraint is the family of planar linkages. There
is no a priori reason why planar linkages should not obey the general spatial mobility crite-
rion. Nevertheless, they do not. Equation (1.3) gives a value for M that is always 3¢ less than
the correct value, where c is the number of independent closure equations for the linkage.
The fact that planar linkages obey Eq. (1.1), which has the same form as Eq. (1.3) but with
the coefficient 6 replaced by 3, indicates that only three of the six equations produced by
any closure are independent for a planar linkage.

Another common family of overconstrained linkages is the family of spherical link-
ages. These are linkages whose joints are all revolutes. The axes of those joints all pass
through a single point. Figure 1.33 shows a spherical four-bar linkage.

FIGURE 1.33  Spherical four-bar linkage.
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Spherical linkages obey the same form of constraint criterion as planar linkages and
the Bennett linkage. Thus, three of the equations resulting from each closure in a spherical
linkage are always dependent.

Compared with properly constrained linkages [those that obey Eq. (1.3)], overcon-
strained linkages have properties that are different in important and practical ways. They
tend to be much stiffer and stronger in supporting loads, particularly those orthogonal to the
direction of motion at the point of application. However, they are sensitive to dimensional
accuracy in their members. This requires manufacture to relatively tight tolerances, which
can increase cost. Conversely, properly constrained linkages are completely insensitive to
link geometry, as far as mobility is concerned. This means that, in lightly loaded situations,
they can absorb abuse that deforms links and still function, at least after a fashion. This is
an important property in situations such as the control linkages of agricultural machinery.
In heavily loaded situations, the design engineer will often deliberately increase the degree
of overconstraint to improve stiffness and strength. An example is the bucket support link-
age of a front-end loader. A photograph of the loader is shown in Fig. 1.34, and one of the
bucket support linkages is identified in Fig. 1.35.

In principle, only one of the two planar inverted, slider-crank linkages is needed to lift
or support the bucket. In this case, we would have n =j = 3f = 4 and

M=6(n—j—1)+if,. =6(4—4-1)+4=-2
i=1

Since the true mobility is 1, the degree of overconstraint is 1 — (— 2) = 3. However, the link-
age is doubled up with identical linkages supporting each end of the bucket. This gives
n=6andj=3f;=8. Thus

M=6(n—j—1)+ifi =6(6-8-1)+8=-10
i=1

FIGURE 1.34 Front-end loader. If analyzed using the planar mobility equations, the mechanism will be
found to have fewer than one degree of freedom. Parallel actuators are used on both sides of the machine to
balance the load and increase stiffness. The loader part of the machine has two degrees of freedom. (Courtesy
of Deere & Company, Moline, Iilinois.)
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FIGURE 1.35 Schematic of the right-side bucket support linkage for the front-end loader in Fig. 1.34.

Therefore, for the doubled linkage the degree of overconstraint is 1 — (— 10) = 11. The result
is a much stronger mechanism since the individual planar loops do not have to support the
large out-of-plane moments that a single linkage would have to support. The cost is that the
axes of the corresponding joints on either side must be collinear to a high degree of accu-
racy, requiring careful manufacturing.

1.11 USES OF THE MOBILITY CRITERION

The mobility criterion is most useful to the engineer when an unfamiliar mechanical system
is examined. It allows a quick check to determine whether the links, joints, and actuators
identified are consistent with system function. Inconsistency may indicate that some ele-
ments have been misidentified or that passive degrees of freedom are present. Of course, as
already discussed, overconstraint may also need to be considered. In particular, if the link-
age is planar or spherical, the appropriate form of the constraint equation should be used in
place of the general form.

It is possible to formulate expressions for the mobility that accommodate overcon-
strained closures of arbitrary type. These expressions are equivalent to the form

C J
M=)b+) f
;" z.‘ (15)

where ¢ = n —j— 1 is the number of closures of the linkage, and b, is the loop closure rank.
That is, it is the number of independent closure equations for that loop.

Unfortunately, unless the values of b, associated with the different closures can be
identified by inspection, such expressions have no value because the mobility equation gives
a quick check of the number of position variables and independent equations without the
need to develop those equations. However, the only way to verify an overconstrained closure
of a type not identifiable by inspection is to develop the closure equations and analyze them
for dependency. Therefore the quick-check advantage of the mobility equation disappears,
and there is no way to derive information about the linkage without performing a complete
position analysis.
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1.12 INVERSION

A commonly used tactic in studying mechanism kinematics is inversion. This is a change of
the fixed reference frame from one link to another that causes different characteristics of the
motion relative to the frame. For example, Fig. 1.36 shows the different inversions of a
slider-crank linkage, and Fig. 1.37 shows the inversions of a pin-in-a-slot mechanism. The
pin-in-a-slot inversions are often used as inexpensive substitutes for the slider-crank inver-
sions. The motion characteristics of the coupler links for each of the mechanisms are all
very different. Nevertheless, the linkage topology and the relative angular relationships
among the links are the same in all cases. Therefore, useful information obtained from the
study of the linkage in one inversion can be transferred to the study of other inversions.
Note that in Fig. 1.36, the relative positions of all of the joints are the same for the position
chosen. It is only when the mechanisms move that the different motion characteristics are
revealed.

To determine the inversions of a mechanism, it is convenient to start with the chain
from which the mechanism is formed. A different linkage results whenever a different link
is selected as the frame.

() @

FIGURE 1.36 Inversions of the slider-crank linkage. The linkage in (a) is the original linkage and those in
(b), (c), and (d) are the inversions.
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Pin-in-Slot Chain

Toothbrush Mechanism, Walking Toy
Cleaner for Tape Heads Mechanism

FIGURE 1.37 Uses of inversions of a pin-in-a-slot linkage.
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1.13 REFERENCE FRAMES

It is necessary to be careful about reference frames when working with systems of many
bodies. A reference frame can be attached to each body, and we can express positions,
velocities, and accelerations relative to any or all of them.

As far as kinematics is concerned, there is no restriction on the use of reference
frames. All frames are equally viable. We can invert from one frame to another without
restriction.

It is only when we introduce forces and enter the realm of kinetics that a restriction
appears. It is then that Newton’s first and second laws, which relate motion properties to
force, are true only if all motion properties are referred to a common reference frame. This
common reference frame must be of a special type, called an inertial reference frame. For
the purposes of mechanism design the inertial reference frame is almost always fixed to
the earth. There are engineering problems, such as the design of mechanisms to be carried
on spacecraft, for which the primary inertial reference frame must be used. The primary
inertial reference frame is fixed relative to the “fixed” stars. A more complete discussion
of inertial reference frames can be found in most texts on rigid-body dynamics. Einstein
showed that in a space-time framework all reference frames are equally valid, thereby
removing the Newtonian distinction between inertial reference frames and others. How-
ever, in the domain in which mechanical engineers usually operate, Newtonian mechanics
provides a very accurate simplification of relativistic mechanics that is of great practical
utility.

It is important to remember that position and motion properties can be expressed only
relative to a reference frame. The habit of referring to a velocity or acceleration of a point
relative to another point has been commonplace in this subject. This will be found to be
convenient in some types of problems, particularly in graphical analysis, and there is no
harm in using it provided that it is clearly understood that it is a shorthand expression for
the velocity or acceleration of the first point relative to a reference frame in which the
second point is fixed. The identity of that reference frame should always be kept in mind.

In many discussions in the following, it will be convenient to have a notation that
explicitly states the reference frame in which a particular vector is expressed. A method that
is often used is to indicate the reference frame by means of a superscript placed in front of
the symbol for the vector. For example, !v, indicates the velocity of point A relative to ref-
erence frame 1, and 2w, indicates the angular velocity of member 3 relative to reference
frame 2.

Usually, we will associate one reference frame with each member of a linkage and
will number it to agree with the number of the linkage. Reference frame 1 will usually refer
to the fixed link. Unfortunately, the use of superscripts to indicate reference frames com-
plicates expressions and makes them more difficult to read. For this reason, the superscripts
will usually be dropped when all vectors are referred to reference frame 1.

1.14 MOTION LIMITS

A member of a linkage that is connected to the base by a revolute joint and that rotates com-
pletely as the linkage moves through its motion cycle is called a crank. Usually, there will
also be members in the linkage that look exactly like cranks because they are connected to
the base by a revolute, but these cannot rotate completely.
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FIGURE 1.38 Limiting positions of joint C of a four-bar linkage.

Consider the four-bar linkage shown in Fig. 1.38a in which the link 4B is a crank
rotating fully about the revolute joint A. It will be assumed to rotate continuously in the
counterclockwise direction. Complete revolution of this link requires that it pass through
the positions shown in Figs. 1.38b and 1.38c. Now consider the motion of the revolute joint
D. Prior to reaching the position of Fig. 1.38b link CD was rotating counterclockwise about
joint D. In the position of Fig. 1.38b further rotation of CD about D in the counterclockwise
direction is not possible. CD comes to rest and reverses its direction of motion. Similarly,
before entering the position of Fig. 1.38c, the link CD is rotating clockwise about the joint
D. In this position, further rotation in this direction is not possible and the link comes to rest
and then reverses direction. The positions shown in Figs. 1.38b and 1.38c are called motion
limit positions for the joint D. The link CD does not perform a full rotation but simply oscil-
lates between these positions. That is, it is not a crank but a rocker.

1.15 ACTUATION

At this point it is necessary to introduce some terminology to describe the different mem-
bers of a four-bar linkage. The fixed link, that is, the member to which the frame of refer-
ence is attached, is called the base or frame. The two members that are connected to the base
by revolute joints are called turning links. The link that is jointed to both turning links and
has no direct connection to the base is called the coupler. The turning links may be further
distinguished by the terms crank, for a link capable of complete revolution relative to the
base, and rocker, for a link that is only capable of oscillating between motion limits.

A linkage is actuated, or driven, by applying a force to one of its moving links or a
torque to one of the axes. This may be done in a variety of ways, as is evident from the
number of different types of commercial actuators (Fig. 1.39). It is frequently convenient
for that powered link to be connected to the base by a revolute joint. The linkage may then
be actuated by applying a torque to that link. In this case it is usually also preferable that the
link be continuously rotatable since it may then be actuated by means of a continuously
rotating motor. For this reason it is important to be able to identify four-bar linkages that
have continuously rotatable joints and to locate those joints. This may be done by means of
a simple set of rules called Grashof’s rules.



1.15 ACTUATION 33

FIGURE 1.39 Photograph of a variety of actuators.

Grashof distinguished two fundamentally different types of four-bar linkage by
means of the inequality

s+e<p+q (1.6)

where, as shown in Fig. 1.40, s is the length of the shortest side, £ is the length of the longest
side, and p and g are the lengths of the other two sides. Linkages that obey this inequality
(Grashof type 1 linkages) have two joints that perform complete rotations and two that
oscillate between motion limits. The two fully rotatable joints are those on either end of the
shortest link. Linkages that do not obey the inequality (Grashof type 2 linkages) have no
fully rotatable joints. All four joints then oscillate between motion limits.

The behavior of a linkage that obeys the Grashof inequality is strongly dependent on
the locations of the fully rotatable joints relative to the base link. That is, it is dependent on
the inversion of the linkage. The following additional rules distinguish three subtypes that
have different behaviors:

1. If the shortest link is jointed to the base, the linkage is a crank—rocker (Fig. 1.41). The
joint between the shortest link and the base is fully rotatable. Hence that link is a crank.

FIGURE 1.40 Nomenclature for Grashof’s inequality.
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FIGURE 1.41 Crank-rocker subtype of Grashof type 1 linkage. This link-
age type occurs when the shortest link is jointed to the base of the linkage.

The other fully rotatable joint connects that crank to the coupler. Hence the other joint
connected to the base is not fully rotatable, and the link it connects to base oscillates. It
is the rocker. A crank-rocker can be conveniently driven by the joint connecting the
crank to the base (or the joint connecting the crank to the coupler).

2. Ifthe shortest link is the base, both joints at the base are fully rotatable, and so both links
connected to the base are cranks (Fig. 1.42). The linkage is a double-crank, also known
as a drag-link. It may be conveniently actuated at either of the base joints.

3. Ifthe shortest link is the coupler, neither base joint is fully rotatable (Fig. 1.43). The link-
age is a type 1 double-rocker. Its behavior is different from that of type 2 double-rockers,
those that do not satisfy the inequality, because in the type 1 linkage the two floating joints
can rotate completely. The result is that the coupler tumbles, performing a complete rota-
tion relative to the base. Either joint attached to the coupler can be driven by a continuous
rotation motor. This mechanism is often used in oscillating fans. The angular motion of
the coupler of a type 2 double-rocker is an oscillation relative to the base.

The Grashof inequality may be proved as follows:

Consider the linkage shown in Fig. 1.44a. To perform a complete rotation it must pass
through the positions shown in Figs. 1.44b and 1.44c. Let a be the length 4B, b the length
BC, c the length CD, and d the length DA. It is assumed that

a<d

FIGURE 1.42 Double-crank subtype of Grashof type 1
linkage. This linkage type is also called a drag-link. It occurs
when the shortest link is the base.

FIGURE 1.43 Type 1 double-rocker. This subtype occurs when the shortest link is the
coupler.
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FIGURE 1.44 Extreme positions for a four-bar linkage.

The triangle inequality states that the sum of the lengths of any two sides of a triangle is
greater than that of the third. This inequality may be applied three times to Fig. 1.44b to give

a+d<b+c (a)
b<c+a+d (b)
c<bta+d (c)

It may also be applied three times to Fig. 1.44c to give

d—a<b+c (@
b<c+d-a (e)
c<b+d-a ®

Examination of these inequalities reveals that if (e) is true then (b) is certainly true, because
the right-hand side of (b) is that of (e) plus 2a. We say that Inequality (¢) is stronger than
Inequality (b). Hence Inequality (b) can be eliminated. Inequality (¢) can be written in the
form

at+tb<c+d (e)

by adding a to both sides of the inequality.
Similarly, Inequality (c) is certainly true if Inequality (f) is true. Once again, the right-
hand side of Inequality (c) is larger by 2a. Inequality (f) assumes the form

at+c<b+d )

if a is added to both sides.

Inequality (d) is certainly true if Inequality (a) is true, since its left-hand side is less
than that of Inequality (a) by 2a. Hence, the six inequalities are reduced to three: (a), ('),
and (f'). Addition of both sides of Inequalities (a) and (') gives

2a+b+d<2c+b+d
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so that
a<c
Likewise, addition of both sides of Inequalities (a) and (f') gives
2a+c+d<2b+c+d
so that
a<b

Since a has also been assumed to be less than d, it follows that a is the shortest link length.
Now, whichever of the inequalities (a), (¢”), and (f") has the longest link length on the left
added to a will be the strongest. That is, the left-hand side is largest and the right-hand side
is smallest. Whichever one this is assumes the form

stl<p+gq

where s = a is the shortest link length, € is the longest link length, and p and g are the two
remaining link lengths.

It must be remembered that we assumed that @ was less than 4. It is also necessary to
deal with the case in which a is larger than d. This can be handled by inverting the linkage
so that 4B becomes the base link and DB becomes the link jointed to it by the continuously
rotatable joint. Pursuing the application of the triangle inequality then results in d being the
shortest link length, and the Grashof inequality again results.

What we have shown so far is that the Grashof inequality is a necessary condition for
the presence of a fully rotatable joint, and that joint is always at one end of the shortest link.
Now, there can never be just one fully rotatable joint in a four-bar linkage. There must
always be at least two. If there were just one fully rotatable joint, a topological contradiction
would result when the rotations of 4B relative to the other links after one cycle were to be
considered. If that link were to perform a complete rotation about joint 4, and joints B, C,
and D were to oscillate back to their initial positions, 4B would have performed a complete
rotation relative to each of the other links. That is, it would have performed a complete rev-
olution relative to BC. However, joint B has not performed a complete revolution but, rather,
has performed zero net rotation. Hence there cannot be just one completely rotatable joint.
Since we have shown that any completely rotatable joint must be at one end of the shortest
link, it follows that there are two completely rotatable joints, and they are at either end of
the shortest link. This completes the proof of Grashof’s rules.

The shortest link of a type 1 linkage performs a complete revolution in each motion
cycle relative to the other members. The net rotations of the fully rotatable joints on either
end of that link cancel one another so that the net rotations of the remaining links relative to
one another are zero for a complete motion cycle.

Of course, sometimes it is not necessary for the mechanism to perform a complete
motion cycle. A restricted range of driving joint motion may be adequate. In that case linear
actuators, such as hydraulic or pneumatic cylinders acting across the driving joint, may be
used. However, it is still necessary that the driving joint not pass through a motion limit
within the necessary range of motion. Grashof’s rules are often useful in ensuring that this
does not happen.

Occasionally it is necessary to drive a crank-rocker linkage by oscillating the rocker
through a part of its motion range. In this case the linkage is usually referred to as a
rocker—crank.

The reasons associated with the use of type 2 double-rocker linkages, or with the use
of type 1 linkages driven by rockers rather than cranks, will be better understood after a dis-
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cussion of linkage synthesis. Often, a linkage that is synthesized to produce a specific
motion cannot be driven through that motion without the driving joint passing through a
motion limit position. In that case, a solution might be to drive the other base joint.

A special case arises when

s+tf=p+gq

This is called a transition linkage or Grashof neutral linkage. In this case the linkage can
assume a “flattened” configuration as shown in Fig. 1.45. When passing through this posi-
tion, it can change from one to the other of the two configurations in which the linkage can
be assembled with a given driving crank angle. In practice, this is often undesirable because
it leads to unpredictable behavior and possibly large loads on the members and joints.

0O w
3 >
0O
Oo

FIGURE 145  Grashof neutral linkage.
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1.16 COUPLER-DRIVEN LINKAGES

In some applications linkages are actuated not by applying a force or torque to one of the
links jointed to the base but rather by applying a force or torque to the coupler, the member
that has no direct connection to the base. Everyday examples are not uncommon. Polycen-
tric hinges for heavy doors or for automotive hood and trunk lids come to mind.

It is still important for a coupler-driven mechanism not to pass through a motion limit
within the desired motion range. The motion limit positions for a coupler drive are quite dif-
ferent from those for a crank drive. They are the positions in which the two rotating links
become parallel, as shown in Fig. 1.46. In these positions the angular motion of the coupler
ceases and must reverse if motion is to continue. Elimination of these motion limits pro-
duces a linkage whose coupler performs a complete revolution relative to the base link.
Because in a type 1 linkage the shortest link rotates completely relative to the remaining
links, that link must be either the coupler or the base. It follows that the Grashof subtypes
for which complete rotation of the coupler relative to the base is possible are the type 1
double-rocker and drag-link subtypes.

Parallel

FIGURE 1.46 Motion limit for the coupler.
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1.17 MOTION LIMITS FOR SLIDER-CRANK

MECHANISM

The limits for a slider-crank mechanism can be determined by considering the combina-
tions of link lengths that will cause the linkage to lock up. A typical slider-crank is shown
in Fig. 1.47.

The limit positions of the rotating link a (Fig. 1.47) are determined when the coupler
link is perpendicular to the direction of slider travel. The limiting assembly position occurs
for one of the four geometries shown in Fig. 1.48.

From the four limit positions shown in Fig. 1.48, it is apparent that the following rela-
tionships must be maintained to allow the slider-crank to be driven through a full 360° rota-
tion of the crank:

b>a
and
b—a>c
where

a = length of the crank
b = length of the coupler

¢ = offset distance from crank-ground pivot to slider pin (measured positive
upward)

o

FIGURE 1.47 General slider-crank mechanism with offset
dimension c.
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FIGURE 1.48 Positions for which the slider-crank mechanism cannot be assembled.
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Using Grashof’s
Equation

Solution
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In the Watt six-bar linkage shown in Fig. 1.49, the joint between links 5 and 6 must be placed on the
arc indicated. Using Grashof’s rule, determine the region for joint E that will allow full rotation of link
6. The critical dimensions are

AB=1.14in, BC=2261in, AD=1.74in

AF=2.00in, DE=2.68in, ¢c=1.09 in

Consider first the slider—crank mechanism (4BC) even though the crank 4B does not rotate 360°.
Clearly, if the crank 4B can rotate for 360°, it will not lock up in any intermediate position. Based on
the dimensions given,

BC> 4B
and BC — AB = 1.12. Therefore,
BC-A4AB>c¢
and the crank of the slider-crank mechanism can rotate a full 360°.

Locus for E

FIGURE 1.49 Mechanism for which point E is to be determined.

Locus for E

FIGURE 1.50 Allowable range for point E.



40

CHAPTER 1

INTRODUCTION

Next consider the crank-rocker mechanism (4DEF). For a crank—rocker, link 6 must be the crank,
which means that EF must be the shortest link. The longest link is DE. Therefore, based on Eq. (1.6),
for ADEF to be a crank-rocker mechanism,

EF+DE<AF+A4D
or
EF+268<2.00+1.74
or
EF<1.06in
The allowable range for E is shown in the Fig. 1.50.

1.18 INTERFERENCE

This is a topic that is often ignored in courses and texts on mechanism design. That is unfor-
tunate since a full-cycle-motion capability can be prevented by topological interference
even when Grashofs rules indicate that it is possible. An understanding of topological inter-
ference is particularly important at the present time, when linkages are often designed using
CAD systems and their functioning checked by animation rather than by construction of
physical models. It is very difficult to represent topological interference adequately on a
planar display. For this reason, the reader is urged to construct models using cardboard and
thumbtacks, or whatever other appropriate materials are available, when reading this sec-
tion. That is the best way to gain an understanding of the nature of topological interference.
There is also a tendency to regard interference as a result of the physical shape of the links
and as something that can be avoided if enough care is given to the design of the physical
link geometry. That is not what we are talking about here. Topological interference is a fun-
damental property of a linkage configuration in the same way that Grashof type is. It cannot
be avoided by simply reshaping the links.

Topological interference really affects only the capability of executing a complete
motion cycle using a rotary input. If oscillatory motion over a partial cycle is all that is
required, topological interference can usually be circumvented.

The topological and physical limitation that the links cannot pass through each other
creates difficulties in arranging for input and output motion transfer to and from type 1
linkages. When a simple, type 1 four-bar linkage is viewed as a three-dimensional structure
with revolute joint axes of finite length, there is only one way in which it can be assembled
to avoid any of the links or joint axes having to pass through each other. This is shown in
Fig. 1.51. The problem is the fully rotatable joints.

The oscillatory joints of a type 1 linkage never pass through positions in which their
joint angles ¢ and ¢, shown in Fig. 1.51, become either zero or 7. If either one did so, the
joint diagonally opposite it would be at a motion limit, preventing it from making a com-
plete rotation. Consequently, the axes of these joints never cross the lines of the links BC
and D4, so there is no interference. However, when joint 4 is fully rotated, the axis of joint
B must cross the line DA and, since AB is the shortest link, it must cross between D and A.
Likewise, when joint B is fully rotated, the axis of joint 4 will cross the line BC between B
and C. Viewing the linkage from a direction normal to the joint axes, it can be seen that, if
Jjoint B is on one side of the link 4B, the link D4 must be on the other side, otherwise the
link will cut the joint axis. Similarly, joint A must be on the opposite side of 4B to link BC.
It follows that, in the direction along the link axes, BC and DA are on either side of 4B and
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FIGURE 1.51 Assembly of type 1 linkage needed to avoid
interference.

CD. This may seem to be dependent on the physical realization of the links, but it is, in fact,
a fundamental topological property of the loop.

The simplest situation for motion transfer is when both input and output motions are
rotary. Motion can then be transferred into and out of the linkage by means of shafts
attached to the turning links. Interference constrains the arrangement of the input and
output shafts, as shown in Fig. 1.52. If the linkage is a crank-rocker, both shafts must enter
from the same side to avoid interference between the shafts and the coupler link. Notice that
the shafts must pass through the base link to get to the turning links, which are on the inside
of the linkage in this inversion. Physically, the shafts are supported in bearings mounted in
the base link.

If the linkage is a drag-link, the shafts may be attached directly to the turning links,
one on either side, since those links are on the outside of the linkage in this inversion. How-
ever, if this is done, the fixed bearings may be moved to the outside, essentially turning the

B Coupler

(a) (b)

FIGURE 1.52 Shaft drive of (a) crank-rocker and (b) drag-link linkages.
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base link inside out. The base link becomes a pair of fixed bearing mounts on either side of
the linkage, as shown in Fig. 1.52b. A drag-link linkage must always be mounted in this
manner to achieve full-cycle motion, regardless of the means of input or output, since oth-
erwise the coupler must pass through the base.

The discussion of rotary input and output to type I double-rocker linkage will be left
until later since it is not possible to achieve full-cycle motion with a crank drive in this type
of linkage.

A more complex case is that in which the input is rotary and motion must be trans-
ferred from a point on the coupler link. This is easy enough to arrange in the crank-rocker
case, as shown in Fig. 1.53, since the base and coupler are on the outside of the linkage.

Much more difficult is the case in which motion must be transferred from a point on
a crank or on the coupler of a drag-link. Because the coupler moves between the cranks
there is no way to avoid interference of a shaft coming off the coupler with those cranks in
full-cycle motion. Furthermore, because the two parts of the base are outside the cranks,
there is also a problem of interference with the base. This latter problem also affects the
transfer of motion to or from points on the cranks.

It is possible to circumvent the interference problem for motion transfer from points
on a crank by “doubling” the crank. This is shown in Fig. 1.54. The crank is essentially
duplicated on the outside of the base bearing. A shaft rigidly fixed to both the crank and the
duplicate passes through the bearing forming the base joint and ensures that both move
together. This effectively makes points on the crank available outside the base, where addi-
tional links can be attached at motion transfer joints. In this way, multiloop linkages such as
that shown in Fig. 1.55 can be built up and driven by the driving crank of the master drag-
link loop.

If the transfer point is reasonably close to the base joint of the crank, the result in
Fig. 1.54a can be achieved by using a bearing of sufficiently large diameter to encompass
the transfer point. This is shown in Fig. 1.54b.

There is no simple way to transfer motion from a point on the coupler of the drag-link
without preventing full-cycle mobility. It can be done by splitting one of the joints between
the crank and coupler, allowing the linkage loop to pass through itself. This requires the
addition of at least one auxiliary link, so the mechanism, strictly speaking, is no longer a
four-bar one. The yoke shown in Fig. 1.55 carries the two bearings that replace the simple
joint of the original linkage. It is undesirable to leave this link unconstrained, so it is usual
to add a second link connecting it to base, as shown in the figure. This allows the coupler to

ogu

X
‘ Base FIGURE 1.53 Transfer of motion from a point on the coupler of
In crank-rocker mechanism.
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FIGURE 1.54 Motion transfer from a point on the crank of a drag-link.

be moved outside the crank. However, it is still not possible to transfer motion directly from
a point on the coupler because of interference with the yoke. For this reason, the coupler is
doubled in the same way that the crank was in Fig. 1.54, producing the six-bar arrangement
shown. As can be seen, this is quite an extensive modification!

The situation for a coupler drive, in which the driving torque is applied to the coupler
link and the output motion is taken off that same link; is quite similar. The two linkage types
that can, in principle, perform complete motion cycles in the coupler drive mode are the
type 1 double-rocker and drag-link types. Both present a problem because the base and cou-
pler are inside the cranks in the basic loop. The type 1 double-rocker can be made to allow
full-cycle motion, without interference, by doubling the coupler.

FIGURE 1.55 Six-bar modification to achieve motion transfer from the coupler of a drag-link linkage.
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Once again, the drag-link presents additional problems because of the necessity of
splitting the base resulting in the base being outside the cranks. Coupler-driven full-cycle
motion of a simple drag-link is not possible because of interference. The six-bar arrange-
ment of Fig. 1.55 can be used for full-cycle motion that is identical to that of the drag-link
with coupler drive.

All of the foregoing discussion relates only to full-cycle motion, that is, to motion in
which the driving link performs a complete rotation. If oscillation through a partial motion
cycle is adequate for the application, interference can always be avoided by modifying the
physical shapes of the links. This is true even for the drag-link type. Type 2 linkages can also
be used in this mode. One only has to ensure that it is not necessary for such linkages to
pass through motion limit positions of the driving link when traversing the desired segment
of the motion cycle.

1.19 PRACTICAL DESIGN CONSIDERATIONS

1.19.1 Revolute Joints

A rubbing contact between two members, here called a kinematic joint, is also known as a
bearing. Design of bearings to perform satisfactorily for long periods under load is the focus
of the subject of tribology. Although an in-depth treatment of tribology is beyond the scope
of this book, it is necessary for the mechanism designer to be aware of the limitations that
may be placed on a design by the necessity of having bearings.

Revolute joints perform well under many conditions. As with all the lower pairs, the
distribution of contact ideally over a surface distributes and normally slows wear. The
closed geometry of the joint provides good conditions for trapping lubricant between the
joint surfaces.

A revolute joint that is in continuous, unidirectional rotation at relatively high speeds
can enter a regime called hydrodynamic lubrication in which the relative movement of the
bearing elements acts to entrain lubricant and maintain a separation between the solid jour-
nal elements. The entrainment action creates an area of elevated pressure in the lubricant
that supports the load on the bearing. The establishment of hydrodynamic action is often
assisted by pumping lubricant into the bearing. In principal, once hydrodynamic action is
established, there is no contact between the solid bearing elements, and hence there is no
wear. The effective friction is solely due to viscous resistance in the lubricant and is, there-
fore, low. Typically wear occurs only when the machine is started up and shut down. The
crankshaft support bearings and the bearings between the crankshaft and the connecting
rods of an automotive engine are typical examples of hydrodynamic bearings.

Another type of bearing that has some of the characteristics of a hydrodynamic bear-
ing, but is free of some of its limitations, is a hydrostatic bearing. Here the objective
remains the same, to carry the bearing load by a pressure differential in the lubricant and to
maintain separation between solid bearing journals at all times. However, in this case, the
pressure to support the bearing load is provided by pumping the lubricant into the bearing
on the loaded side at an elevated pressure. Hydrostatic bearings do not rely on continuous
rotation to maintain bearing action. Therefore, they can be used when the rotation speeds
are low, or when the direction of rotation reverses. They do tend to be expensive, because
close tolerances are needed to minimize lubricant leakage out of the bearing and because of
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the need for a relatively high-capacity lubricant pump. Hydrostatic bearings are usually
used for the main rotor bearings on large turbogenerator sets.

When the speed of rotation is slow, or reverses, a greased bushing or a solid contact
bearing may be used. These bearing types are geometrically similar and differ only in the
use of a liquid lubricant. Usually that lubricant will be a viscous grease. The high viscosity
both promotes some hydrodynamic action and diminishes leakage out the sides of the bear-
ing. Frequent lubrication is, nevertheless, necessary for this type of bearing. The materials
should also be chosen to provide adequate performance and wear resistance even in the
absence of lubricant.

Solid contact bearings rely on the choice of contacting materials to provide both low
friction and wear resistance. Teflon has a low coefficient of friction with most metals. It is
also relatively hard and highly temperature resistant for a plastic material. Consequently, it
is frequently chosen for one element of a bearing pair. Other plastic materials such as nylon
and delrin are also used. Note that the same material should never be used for both journal
members of a solid bearing pair because journals with similar materials can weld together
at small asperities when driven under load, resulting in high friction and rapid wear. This is
why bronze bushings are frequently partnered with steel journals for greased bearings. Gen-
erally harder materials wear better than softer ones. Hence steel is preferred to aluminum
for bearing journals. One final caution is that some materials should never be lubricated
with petroleum-based lubricants. Nylon tends to absorb oil and swell and fail. Solid lubri-
cants such as graphite or molybdenum disulphide can be used when petroleum-based lubri-
cants are not an option because of material or other constraints.

Yet another alternative for the support of rotary motion is provided by rolling element
bearings. Here the load is transferred between the journals by hardened steel balls or rollers
trapped between the journals. The contact between one of these rolling elements and the
journal is, of course, a higher pair joint. However, the combined effect of all the balls or
rollers rolling on the journals is kinematically equivalent to a revolute joint. Lubricants are
used, but the way in which they work is somewhat different from that of lubricants in other
types of joints. This kind of action is called boundary lubrication. The lubricant is squeezed
to very high pressures between the rolling element and journal and plays a role in distribut-
ing the load over both elements. The contact between a ball and journal is a point, if both
are perfectly rigid, and that between a roller and journal is a line. In either case the load is
ideally locally infinite. Of course, elastic deformation of the elements acts to distribute the
load over a local area. The boundary lubrication mechanism assists in this load distribution.

Because pure rolling contact does not involve sliding of one member over another,
wear, of the type found in other bearings, is not an issue for rolling contact bearings. Also,
the effective friction can be very low, and rolling element bearings work well with motion
cycles that stop or reverse. However, the very high contact stresses in the elements require
very hard, and very accurately manufactured, rolling elements and journals. Consequently,
rolling element bearings can be relatively expensive. They are also relatively bulky and are
not well suited to situations where space is limited. The principal failure mode of a rolling
element bearing is fatigue owing to the high contact, or Hertzian, stresses in the rolling ele-
ments and journals. This leads to subsurface cracking and eventual spalling, or breaking out
of pieces from the surface of a rolling element. Once this process starts, the bearing tends
to fail quite rapidly. The nature of the failure mode is such that all rolling elements have
finite life. Unfortunately that life is statistically distributed over a significant range, making
it relatively difficult to predict failure and apply preventive maintenance procedures to
change bearings before failure occurs.
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1.19.2 Prismatic Joints

Compared to revolute joints, prismatic joints are much more problematic in their applica-
tion. As will be shown, they are sensitive to the direction and manner of load application.
Also, a prismatic joint cannot be infinite in length so all prismatic joints experience motion
reversals, which precludes the use of fully established hydrodynamic lubrication.

If a sliding joint is loaded by a connecting rod, as in a slider-crank mechanism, the
loading force is applied along the line through the bearing center, as shown in Fig. 1.56a.
The friction force along the joint direction is proportional to the normal force. If the friction
force exceeds the component of the applied force along the slide direction the joint will jam.
That is, if the angle between the axis of the connecting rod and the normal to the joint direc-
tion is less than the friction angle

d=tan!

where u is the coefficient of friction, the joint will jam.

Figure 1.56b shows another effect that may lead to jamming of the slider. Applying a
load offset from the slider surfaces results in an applied moment that must be resisted by a
couple composed of normal forces, as shown in the figure. In a real prismatic joint, there
must be a small clearance between the members. The application of the offset force, F,
causes the block to angulate slightly relative to the shaft so that contact actually occurs only
at the ends of the joint. Thus, the block is subject to normal and friction forces at the loca-
tions shown in the figure. The joint will jam if

F<uN
However, for horizontal force and moment equilibrium
2uN=F and aF = bN
Therefore, the joint will jam if
b<2ua

Offset loads and loading directions at large angles to the joint direction also combine to pro-
duce jamming.
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FIGURE 1.56 Jamming in sliding joints. In (a), the slide will jam if the angle between the applied force F
and the direction of sliding becomes too great. The slider will jam when the angle ¢ is less than tan'u. In
(b), the slider will jam because of the offset force if 2ua < b.
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Jamming is best avoided by shunning designs that have sliding joints with poor load-
ing geometries. If such a geometry cannot be avoided, jamming caused by offset loading
may be alleviated by increasing the length of the prismatic joint, if space allows. Increasing
b until it is greater than any expected value of 2jua should avoid the problem. Of course,
reducing the effective coefficient of friction is effective in either case. That might be done
by lubrication, or by choice of a low-friction material combination. Lubrication as a solu-
tion may be problematic if jamming is a catastrophic failure mode. Sooner or later, the joint
is likely to have too little lubricant.

The best solution, in many cases, is to use a rolling contact joint to minimize the
effective coefficient of friction. Roller on rail configurations that are kinematically equiva-
lent to a prismatic joint are available. A ball bushing is a relatively inexpensive and compact
device. It must roll on a smooth, hardened steel shaft. A ball bushing does not provide any
restraint on twisting about the shaft axis. For this reason, when ball bushings are used, the
bushings and shafts are usually configured in parallel pairs.

1.19.3 Higher Pairs

Pure rolling contact may not require any lubrication, or special attention, as is the case of
the contact between a vehicle tire and the ground. Sliding contacts, however, can result in
very rapid wear, jamming, and failure unless they are carefully designed and lubricated.
Combined rolling and sliding, as in a gear mesh, also requires careful attention to lubrica-
tion at any but the lowest loads and speeds. Gears that carry significant loads and power
flows are normally enclosed in gearboxes to allow lubricant to be actively splashed or
pumped over them. The gearbox allows lubricant to run off the gears and collect in the
bottom of the box, or sump, for recycling.

Cam and follower pairs are particularly demanding with respect to lubrication, espe-
cially if flat-faced followers are used. The valve timing cams in an automotive engine are
housed in a sealed chamber so they can be bathed in lubricant. Oil is often pumped through
the rocker shaft to ports in the faces of the followers to ensure lubrication and some hydro-
dynamic action over the rubbing surfaces.

1.19.4 Cams vs. Linkages

As will be seen, both cams and linkages are used to generate irregular motions. As solutions
to design problems requiring irregular motions, they each have their strengths and weak-
nesses. Cams are usually easier to design geometrically but much harder to make work sat-
isfactorily. The lubrication issues involved in rubbing contact have already been referred to.
In low volumes, cams are expensive to manufacture. However, if the volume of parts needed
is high enough to justify manufacture of a die and production of the cams by near net shape
methods such as injection molding, die casting, forging, or powder metallurgy, cam mech-
anisms can be very economical. Cams are particularly convenient for timing mechanisms,
such as valve lifters. They are easily designed to dwell in a set position for a set portion of
the motion cycle.

Linkages are robust and inexpensive, particularly if only revolute joints are needed.
They are economical to manufacture in either large or small volumes. Lubrication is, rela-
tively speaking, very easy. However, linkages do not allow as much freedom to the designer
as cams. It is quite difficult to design a high-quality dwell mechanism using only linkages.
Also, linkages often consume more space than cam mechanisms.

Given an irregular motion generation problem, most experienced machine designers
will seek a linkage solution first, unless the problem is clearly better suited to a cam.
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1.19.5 Actuation

Introduction Linkages and mechanisms are used to transfer mechanical work from a
generating site to a site at which it produces a useful effect. An actuator is a motor or other
device that generates mechanical work in a controlled manner. Traditionally, machines for
complex operations involving many subfunctions, like printing or packaging, were powered
by a single motor, referred to as the prime mover, with all of the subfunctions being per-
formed by linkages of various types. The prime mover was sometimes a large electric
motor, but it could equally be an internal combustion engine, a steam engine, or a water tur-
bine. Once the system was tuned, timing was not an issue since everything was powered in
lockstep off the same power train. This type of machine can achieve rapid cycle rates and
hence high productivity. It is an appropriate design when motors are expensive and inflexi-
ble in their operation. It is still the best configuration for very high production rates such as
when producing beverage cans or loading tissues into a package.

Improvements in actuator technologies have resulted in relatively compact and inex-
pensive devices that can be controlled with precision. Combining these with digital control
technology has made it possible to replace mechanical coordination via linkages with digi-
tal coordination. This has several potential advantages. Production and other machines can
be much more flexible in their operation. It is no longer necessary to design and build a
machine especially to fill, cap, and label bottles of a particular shape. Rather, the same
machine can be reprogrammed to fill a different type of bottle. The only mechanical
changes needed are relatively minor tooling articles. Likewise, a production line can
accommodate several different models of automobile, and many options on each, by use of
digital reconfiguration for each model and option.

There is a large number of different actuator types available. We will review only the
three most commonly used types: electric actuators, hydraulic actuators, and pneumatic
actuators. In-depth discussion of these technologies is beyond the scope of this book.

Operational Stability A useful way of characterizing the behavior of an actuator is
to plot force, for a linear actuator, or torque, for a rotary actuator, against speed. The shape
of this characteristic curve and its relationship to the corresponding characteristic of the
load have important implications for the behavior of the actuator under load. Consider the
torque—speed curve shown on Fig. 1.57. The torque-speed demand curve of a typical load
is also shown. In many applications, but not all, load increases with speed. Since the actua-
tor torque is equal to the load at point 4, the system will tend to settle into that operating
point. If the speed increases above w,, the load torque will exceed the actuator torque and
the system will tend to decelerate back to speed w,. Conversely, if the speed decreases
below w,, the actuator torque will exceed the load torque and the system will tend to accel-
erate back to point 4. This is an example of stable operation. Note also that this actuator has

max

Load

Actuator

FIGURE 1.57 Torque-speed characteristics of actuator and load
@y @y @ for stable operation.
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a finite maximum speed, which is the speed w, at which the actuator torque drops to zero.
w, is called the no-load speed.

Consider now the situation depicted on Fig. 1.58. Here the actuator torque—speed
characteristic increases in torque with increasing speed. The load torque does not increase
as rapidly with speed. The operating point at which the actuator torque is equal to the load
is point B. If the system is operating at point B, and the speed fluctuates even slightly higher
than wp, the actuator torque will exceed the load torque and the system will accelerate to
even higher speed. Obviously the speed will continue to increase without bound and the
system will run away, possibly resulting in catastrophic failure. Conversely, if the speed
fluctuates even slightly below wj, the load torque will exceed the actuator torque and the
system will decelerate further. Very quickly the speed will drop to zero and the system will
stall. Tt is not possible for the system to operate at point B. This is an example of an unsta-
ble operating point.

Many actuators display torque—speed curves that climb to a peak and then decline to
zero with increasing speed. With a given load they may display both stable and unstable
operating points. An internal combustion engine is a good example. A change gearbox is
necessary in an automobile to keep the operating point on the declining side of the
torque-speed curve. If the operating point shifts to the opposite side of the peak of the char-
acteristic, the engine will stall. The torque T that the actuator produces at zero speed is
called the stall torque.

Electric Actuation There are a truly bewildering variety of electrical actuators on the
market today. The use of new technologies, such as solid-state power switching technolo-
gies, has allowed the introduction of new architectures and new uses for traditional archi-
tectures. New permanent magnet technologies have resulted in greatly improved
performance for some classes of electrical actuator.

Electric motors work by virtue of the force experienced by a conductor carrying a
current in the presence of a magnetic field. The magnetic field may be generated by a wind-
ing or by permanent magnets. The field interacts with the conductors in a second winding
to produce torque. The mechanically fixed structure is called the stator. The rotating struc-
ture is called the rotor. If the rotor carries windings it is also called an armature. To produce
a continuous torque, the electric field must typically rotate relative to the structure that gen-
erates it so that it maintains a fixed relationship to the magnetic field.

Electric machines actually produce a very modest torque or force in proportion to
their weight. However, an electric motor may operate at very high speeds. These character-
istics mean that, if reduction of weight or bulk is important, the output of the electric motor
must be reduced in speed, and proportionately increased in torque, by means of a mechani-
cal transmission. Alternatively, if motor size and weight are not a problem, a motor with a
very large frame size and a large number of poles may be used. The speed of an electric

Actuator

Load

FIGURE 1.58 Torque-speed characteristics of actuator and
wy I load resulting in unstable operation.
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motor is inversely proportional to the number of poles used in the field winding. It is easier
to accommodate a large number of poles in a larger frame size. Consequently, smaller
motors tend to have higher operating speeds.

Commutated Motors A commutator is a mechanical switch that is used to switch the
current-carrying coils in the motor armature so that the torque produced is always in the
same direction. The armature is the switched winding of the motor. Traditionally it was the
winding on the rotor: the part of the motor mounted on the rotating shaft. In some modern
motors the armature winding is in the stator: the part of the motor mounted to the fixed
housing. A mechanical commutator is formed of a number of conducting segments
mounted to form a cylindrical surface on the rotor, against which two or more “brushes”
bear. The current is passed between the brush and whatever segment with which it is in con-
tact. At one time the brushes consisted of bundles of fine brass wires (hence the name).
Now they are solid blocks of conducting material, usually carbon.

Brushes eventually wear out and must be replaced. There may also be arcing between
the brushes and the commutator segments producing radio interference and other problems.
Commutation may also be done by solid-state electronic switching. Hall effect sensors are
used to trigger the switches at the appropriate times. At the same time, the rotor and stator
are reversed, with the field being on the rotor. Use of permanent magnets rather than field
windings means that there is no need for any electrical connections to the rotor. The rotor
magnets are commonly made from rare-earth materials that can maintain higher field
strengths than traditional ferrous magnets. The result is a brushless direct current (DC)
motor that works like a commutated motor, but it is mechanically simpler and more rugged
and reliable.

Al electric motors that run off direct current are commutated, whether by mechani-
cal commutators or solid-state switches. Synchronous motors are an important class of
motors that run off alternating current and are also commutated. The speed of a synchro-
nous motor is locked to the frequency of the alternating current supply. This is useful in
applications in which it is desired that the motor run at constant speed. Such applications
range from electric clocks all the way up to large mill motors.

There are differences in the performance characteristics of mechanically commu-
tated DC motors depending on the connectivity relationship between the field and arma-
ture windings. The field may be excited by an external source, in which case the motor is
called externally excited. More often the field is excited by the same source as the current
in the armature. If the field and armature windings are connected in parallel, the motor is
called a shunt wound motor. If the torque produced by the motor is plotted against rotation
speed, a shunt wound motor will have a characteristic performance curve like that shown
in Fig. 1.59. It will have relatively constant torque over its typical operating range. The
torque will eventually decline with speed, and there will be a finite maximum speed at
which the torque becomes zero.

\ T

Compound

FIGURE 1.59 Torque-speed characteristics typical of DC motors
of the shunt wound, series wound, and compound types.
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If the field windings are connected in series with the armature windings, the machine
is called a series wound motor. This results in somewhat different performance characteris-
tics, as shown in Fig. 1.59. The torque at stall or low speed is very high, with a sharp initial
drop-off with increasing speed. Ideally the torque never drops to zero. The motor continues
to produce some torque even at very high speed. Consequently, operation is unstable at no
load. This can be very dangerous in practice if a series wound DC machine is allowed to run
with no load. What then happens is the motor “runs away,” continuing to accelerate until the
stresses produced by centrifugal forces reach the mechanical strength limits of the rotor
components. At that point the rotor explodes, with very destructive consequences. Despite
this risk, the characteristics of series wound motors are attractive for use as traction motors
in electrically powered vehicles, with the motor being directly coupled mechanically to the
load. In principle, a traction motor is never operated at no load.

What is often done, either to achieve series-machine-like behavior, but with a finite
maximum speed, or to otherwise optimize the performance characteristics for a given appli-
cation, is to use a hybrid configuration in which some of the field windings are in series
with the armature and some are in parallel. The result is called a compound wound motor.

At this point it should also be pointed out that most electric motors cannot be run con-
tinuously at stall, which is zero speed, or at very low speed. This is because in those cir-
cumstances the motor is producing little, if any, mechanical power, and the current through
the windings is limited only by their resistance. The power generated by passage of current
through the windings is converted entirely into heat. The current is high, because there is no
back emf to oppose its flow. The high current at stall is the reason for the high starting
torque, since torque is proportional to armature current in these machines. However, the
heat generated is the product of the square of the current and the winding resistance. If the
motor is held at, or near, stall for an appreciable length of time, heat will typically build up
until it damages the motor. This may happen by burning insulation, melting windings, or by
heating permanent magnets beyond their Curie point. If heated beyond the Curie tempera-
ture, a permanent magnet loses its magnetism, and the motor ceases to function.

The ability of the motor to operate near stall may be seen to be a matter of heat trans-
fer. If the motor is sufficiently well cooled to be able to dissipate the heat generated at stall
without a damaging rise in temperature, it may be operated in that regime. That is important
for some classes of machine, including industrial robots. Motors that can be operated at or
near stall are called torque motors.

Noncommutated Motors There are also several types of electric motor that do not
use commutators. The most commonly used type is the induction motor. In this type of alter-
nating current (AC) motor, the armature has a simple “squirrel cage” configuration. The
armature current necessary to produce torque is induced by the alternating current in the
stator winding. Induction motors have torque—speed characteristics like that shown in Fig.
1.60. For stable operation it is necessary to operate the motor on the high-speed side of the

Induction
motor,

FIGURE 1.60 Torque—speed characteristic of induction motors.
With the load characteristic shown, the motor will be self-starting and
will operate stably at point 4.
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hump in the torque-speed curve so that a decrease in speed produces an increase in torque.
In contrast to the other types of electric motor we have discussed, the torque is typically not
at its highest at stall. In some applications this may mean that the motor cannot be started
under load but must be started with reduced load and brought up to a speed above that at
which peak torque occurs before the load is applied. This may require use of a clutch to
unload the motor. More typically the load torque is also low at start-up, as shown in Fig. 1.60,
and the motor will start under load and reach a stable operating point. Induction motors are
very popular in industrial applications because they are simple, rugged, and relatively inex-
pensive. They are best suited to situations in which constant speed need only be approxi-
mated. The steep slope of the torque—speed curve on the high-speed side of the hump means
that speed will not change much, regardless of load fluctuations.

Another type of motor that does not use a commutator is commonly referred to as a
stepping motor. In this type of motor, the torque is generated magnetically, rather than elec-
tromagnetically, as in other types of motor. The motor has a number of discrete, equally
spaced stable positions. Feeding a voltage pulse to it causes it to rotate to the next stable
position. Consequently, stepping motors are very useful for indexing. It is not necessary to
provide a means of keeping track of position since the position of the motor is known
simply by counting the number of pulses supplied to it.

Solenoids A solenoid is a simple, cylindrical winding that when energized by a direct
current draws a ferromagnetic core into itself. Solenoids are used as simple, two-state,
linear actuators.

Solenoids are not suited to providing variable force or stroke. Electric linear actuators
for long or controllable stroke are compound devices using rotary motors in combination
with power screws, racks and pinions, or similar mechanisms.

Speed Control The advent of solid-state power-switching devices has revolutionized
electric actuator control. Pulse-width modulators and phase-controlled rectifiers make it
possible to control DC motors without the energy losses inherent in earlier methods, which
basically used potentiometer configurations. Variable frequency inverters that convert DC
into AC, or AC into AC with different frequencies, allow synchronous and induction
machines to be run as variable-speed devices.

DC devices typically respond to the average supply voltage. Pulse-width modulation
controls that average by chopping a constant-voltage DC input into a train of pulses with
controlled widths, thereby controlling the average voltage going to the motor. Phase-con-
trolled rectifiers work similarly with an AC supply by switching off the supply at a desig-
nated phase on each transmitted half-cycle. This kind of device rectifies AC into DC with a
controlled average voltage.

Inverters are devices that produce alternating current from direct current. Again,
modern, solid-state power electronics has permitted the design of rugged, efficient, compact
inverters that produce alternating current at variable, controlled frequencies. This allows AC
motors to be used as servomotors. Induction motors powered by variable-frequency inverter
drives are now used as traction drives in heavy mining machinery.

These developments have allowed controlled actuators, or servomotors, to be made
much simpler, more compact, and more rugged than in the past. However, the cost and com-
plexity have shifted to the control electronics from which the motor is supplied. When
selecting electric actuators it is important to remember that the power control unit may cost
as much, or more, than the motor.
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Hydraulic Actuation An alternative to electric actuation is the use of a fluid power
system. This term encompasses both hydraulic and pneumatic actuation systems.

In a hydraulic system energy is transmitted via a flowing liquid. Liquid at high pres-
sure is provided by a pump, which might be driven by an electric motor, as is the case in the
hydraulic actuation systems used on some industrial robots, or directly by the engine in the
case of the hydraulic systems used in construction machinery.

Hydraulic actuators provide much higher force or torque per unit weight than electric
actuators. For this reason they seldom require speed-reducing transmissions. Hydraulic
actuation is often the system type of choice in heavy-duty applications, particularly when
light weight and/or compactness are desired.

Hydraulic cylinders are widely used as linear actuators, particularly when loads are
large and strokes are long. Just as the construction types of many electric motors are sim-
ilar, if not identical to those of electric generators, hydraulic motors are very similar in
construction to hydraulic pumps. That said, there is a considerable variety of different con-
figurations available.

There are actually several different types of hydraulic power transmission systems in
use. One common type uses a pressure-regulated supply pump to provide a near-constant
supply pressure drop. The pressure to each of several actuators in the system is then tailored
to that needed to support the load by means of a control valve.

Another type of hydraulic transmission is a hydrostatic system in which the flow of
fluid to the actuator is controlled by means of a variable-displacement pump. This configu-
ration requires use of a separate, variable-displacement pump for each actuator. It is a much
more efficient type of system than the valve-controlled configuration, but it tends to be less
compact. However, a hydrostatic system does not require a large reservoir for heat rejection
like a valved system does.

Pneumatic Actuation The most common type of pneumatic actuator is a cylinder
that is very similar in construction to a hydraulic cylinder. A pneumatic system is supplied
by a compressor, rather than a pump. Some compressors are similar in construction to types
of hydraulic pump, but others are quite different. Control valves for pneumatic systems also
usually closely resemble their hydraulic counterparts.

Pneumatic actuation has been very popular for fixed automation equipment when
high power levels are not required, for example in “light automation.” The attraction is rel-
atively low cost and easy maintenance. However, pneumatic systems do not lend themselves
well to proportional control. The compressibility of air as a working fluid makes accurate
control very problematic. Traditional pneumatic actuator arrangements required only two or
a few discrete positions. This is acceptable for fixed automation in which the whole system
is designed around a single product but does not work well for flexible automation in which
the same machine or line may be reprogrammed to produce several different models or
products.

Pneumatic systems share some of the shortcomings of electrical systems in the form
of low force-to-weight ratios. This is because they are usually operated at supply pressures
an order of magnitude lower than those of hydraulic systems. The low supply pressure is
needed because the low viscosity of air compared to hydraulic oil makes it much harder to
design seals to contain it at high pressure. Air motors perform much the same function in a
pneumatic system that electric motors do in an electric system, providing a means of gen-
erating relatively high mechanical power by running a rotary device at high speed. As with
electric motors, air motors usually have to be geared down to provide useful torque—speed
characteristics. An air motor is basically a compressor running in reverse, so it is a much
more complex device than a simple pneumatic cylinder.
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PROBLEMS

EXERCISE PROBLEMS ON LINKAGE
STRUCTURE

1.1 Find a mechanism as an isolated device or in a machine and
make a realistic sketch of the mechanism. Then make a freehand
sketch of the kinematic schematics for the mechanism chosen.

1.2 Cabinet hinges use various types of linkages for the guiding
mechanism. Identify three types of cabinet hinges employing
more than a simple revolute joint and make a freehand sketch of
the kinematic mechanism used.

1.3 The drawings shown are pictorial representations of real
mechanisms that are commonly encountered. Make a freehand
sketch of the kinematic schematic representation of each
mechanism,

Pin in a Slot (Pin
Attached to Seat)

Water Pump

Folding Chair

C t Window Mech

1.4 Linkages are often used to guide devices such as computer
keyboards in and out of cabinets. Find three such devices, and
make a freehand sketch of the kinematic mechanisms used for
the devices.

1.5 Four-bar linkages are used in common devices found around
the home and at businesses. Locate six such devices and make a
freehand sketch of each device and describe its function.

EXERCISE PROBLEMS ON MECHANISM
MOBILITY FOR PLANAR MECHANISMS

1.6 Calculate the mobility, or number of degrees of freedom, of
each of the mechanisms in Problem 1.3.

1.7 Determine the number of members, number of joints, and
mobility of each of the planar linkages shown.

(a) (b)

(c)

1.8 Determine the number of members, number of joints, and
mobility of each of the planar linkages shown.

(c)
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1.9 Determine the mobility and the number of idle degrees of 1.12 Determine the mobility of each of the planar linkages
freedom of each of the planar linkages shown. Show the equa-  shown. Show the equations used to determine your answers.
tions used and identify the input and output links assumed when

L. Hydraulic cylinder
determlnmg your answers.

Hydraulic
cylinder

b
@ ® 1.13 Determine the mobility and the number of idle degrees of

freedom of each of the planar linkages shown. Show the equa-
tions used and identify any assumptions made when determining
your answers.

Pininslot —__\

1.10 Determine the mobility and the number of idle degrees of
freedom of the linkages shown. Show the equations used and
identify any assumptions made when determining your answers.

(©)

1.14 Determine the mobility and the number of idle degrees of
freedom of each of the planar linkages shown. Show the equa-
tions used to determine your answers.

)

1.11 Determine the mobility and the number of idle degrees of
freedom associated with the mechanism shown. Show the equa-
tions used and identify any assumptions made when determining
your answers.

L
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1.15 Determine the mobility and the number of idle degrees of
freedom of each of the planar linkages shown. Show the equa-
tions used and identify any assumptions made when determining
your answers.

1.16 If position information is available for all points in the
planar linkage shown, can all of the velocities be determined
uniquely if the value of w is given? Explain your answer.

1.17 Determine the mobility and the number of idle degrees of
freedom associated with each mechanism. Show the equations
used and identify any assumptions made when determining your
answers.

Cam Rolling joints

joints

(a

/Pin-in-slot joint
5 Slider

@ (e)

3 Problem courtesy of Joseph Davidson, Arizona State University.

1.18% Determine the mobility and the number of idle degrees of
freedom associated with the mechanism shown. The mechanism
is a side-dumping car that consists of body 2 and truck 3 con-
nected together by two six-bar linkages. ABCDEF and
AGHKLMN. Link NM is designed as a latch on its free end (see
left drawing). When jack 1 is operated. body 3 is lifted to the
dumping position shown in the right-hand drawing. Simultane-
ously, the six-bar linkage AGHKLMN opens the latch on link
NM and raises link GH. Linkage ABCDEF swings open side BC
and the load can be dumped at some distance from the car (see
right-hand drawing). Show the equations used to determine your

answers.

1.19 Determine the mobility and the number of idle degrees of
freedom associated with the mechanism shown. The round part
rolls without slipping on the pieces in contact with it that slide
on the fixed surfaces.

1.20 Determine the mobility and the number of idle degrees of
freedom for each of the mechanisms shown. Show the equations
used and identify any assumptions made when determining your
answers.

Pin in
/s slot

(b)



1.21 Determine the mobility and the number of idle degrees of
freedom for each of the mechanisms shown. Show the equations
used and identify any assumptions made when determining your
answers.

1.22% Determine the mobility and the number of idle degrees of
freedom associated with the mechanism shown. The figure is a
schematic of the entire linkage for a large power shovel used in
strip mining. It can cut into a bank 20-m high and can dump to a
height of 14.5 m. Link 7 is connected to link 8 with a revolute
joint. Show the equations used and identify any assumptions
made when determining your answers.

1.23 In the figure is a portion of the support mechanism for the
dipper on a large earth-moving machine used in removing over-
burden in strip-mining operations. The fixed centers for the por-
tion of the mechanism really move, but useful information can
be obtained by observing the dipper motion relative to the
“frame” as shown in the sketch. Both links 4 and 5 are mounted
at O,. Links 4 and 6 are parallel and of equal length. The dipper
is moved by a hydraulic cylinder driving crank 5 about its O,.
Determine the mobility of the mechanism.

% Problem courtesy of Joseph Davidson, Arizona State University.
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Dipper
3

EXERCISE PROBLEMS ON MECHANISM
MOBILITY FOR SPATIAL MECHANISMS

1.24 Determine the number of members, number of joints,
mobility, and the number of idle degrees of freedom of each of
the spatial linkages shown. For the idle degrees of freedom,
identify the input and output links assumed.

1.25 Determine the mobility and the number of idle degrees of
freedom of the spatial linkages shown. Show the equations used
to determine your answers. For the idle degrees of freedom,
identify the input and output links assumed.

\
7
@ ®)
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1.26 Determine the mobility and the number of idle degrees of
freedom of the spatial linkages shown. Show the equations used
to determine your answers. For the idle degrees of freedom,
identify the input and output links assumed.

V
@ @
(a) (®)

1.27 Determine the mobility and the number of idle degrees of
freedom for each of the mechanisms shown. Show the equations
used to determine your answers. For the idle degrees of freedom,
identify the input and output links assumed.

Pasie el

1.28 Determine the mobility and the number of idle degrees of
freedom associated with each mechanism.” Show the equations
used to determine your answers.

(c)

C C
C C
P
R
(a) (b) ©)
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1.29 Determine the mobility and the number of idle degrees of
freedom for each of the mechanisms shown. Show the equations
used to determine your answers. For the idle degrees of freedom,
identify the input and output links assumed.

e

EXERCISE PROBLEMS ON FOUR-BAR LINKAGE
TYPE (GRASHOF’S EQUATION)

1.30 Determine which (if either) of the following linkages can
be driven by a constant-velocity motor. For the linkage(s) that
can be driven by the motor, indicate the driver link.

52" 2.7

(a) (b)

1.31 Assume that you have a set of links of the following
lengths: 2 in, 4 in, 5 in, 6 in, and 9 in. Design a four-bar linkage
that can be driven with a continuous-rotation electric motor. Jus-
tify your answer with appropriate equations, and make a scaled
drawing of the linkage. Label the crank, frame, coupler, and
rocker (follower).

1.32 Assume that you have a set of links of the following
lengths: 20 mm, 30 mm, 45 mm, 56 mm, and 73 mm. Design a
four-bar linkage that can be driven with a continuous-rotation
electric motor. Justify your answer with appropriate equations.
and make a freehand sketch (labeled) of the resulting linkage.
Label the crank, frame, coupler, and rocker (follower).

1.33 For the four-bar linkages shown, indicate whether they are
Grashof type 1 or 2 and whether they are crank—rocker, double-
crank, or double-rocker mechanisms.

7 Problem based on paper entitled “A Number Synthesis Survey of Three-Dimensional Mechanisms” by L. Harnisberger, Trans. ASME, J. Eng.

Ind., pp. 213-220, May 1965.



1.34 You are given a set of three links with lengths 2.4 in,
7.2 in, and 3.4 in. Select the length of a fourth link and assemble
a linkage that can be driven by a continuous-rotation motor. Is
your linkage a Grashof type 1 or Grashof type 2 linkage? (Show
your work.) Is it a crank-rocker, double-rocker, or double-crank
linkage? Why?

1.35 You have available a set of eight links from which you are
to design a four-bar linkage. Choose the links such that the link-
age can be driven by a continuous-rotation motor. Sketch the
linkage and identify the type of four-bar mechanism resulting.
L,=2" L,=3", L,=4", L,=6", Ls="T", L;=9.5", L,=13",
and Lg=9"

1.36 Determine the number of fully rotating cranks in the
planar mechanisms shown. Show your calculations.

(a) (®)

1.37 If the link lengths of a four-bar linkage are L, = 1 mm,
L, =3 mm, L; =4 mm, and L, = 5 mm and link 1 is fixed, what
type of four-bar linkage is it? Also, is the linkage a Grashof type
1 or 2 linkage? Answer the same questions if L, =2 mm.
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1.38 You are given two sets of links. Select four links from each
set such that the coupler can rotate fully with respect to the
others. Sketch the linkage and identify the type of four-bar
mechanism in each case.

(a) Ll = 5”, LZ = 8”, L3 = 15", L4 = 19", and L5 =28".

ML, =5", L,=2", Ly=4", L,=3.5", and Ls=2.5".

1.39 The mechanisms shown are drawn to scale.

(a) Sketch kinematic schematics showing the relationships
between the members and joints.

(b) Determine the Grashof type of the four-bar linkage in each
mechanism.

= (b



CHAPTER 2

GRAPHICAL POSITION, VELOCITY, AND
ACCELERATION ANALYSIS FOR MECHANISMS
WITH REVOLUTE JOINTS OR FIXED SLIDES

2.1 INTRODUCTION

60

Historically, planar linkage analysis problems were solved graphically using drafting equip-
ment. In recent years computer techniques have offered a viable and attractive alternative.
Some teachers of the subject now prefer to concentrate their time on analytical approaches.
Nevertheless, there are still many situations in which graphical techniques offer the most
efficient solution, and the insight into the problem obtained by an understanding of the
graphical approach is, we feel, essential. For this reason we have chosen to present both
approaches. In Chapters 2—4, we present the graphical approach, and in Chapter 5, we pre-
sent the analytical approach.

We have separated the presentation of graphical analyses into three chapters. In this
chapter, we present the analysis of mechanisms with only revolute joints or sliders on fixed
slides. Such mechanisms constitute the majority of mechanisms found in the real world.
These mechanisms can also be analyzed using relatively simple equations derived from
basic physics. In Chapter 3, mechanisms involving higher pairs and moving slides will be
addressed. The approach to analyzing these mechanisms is more involved than that required
in Chapter 2 because moving coordinate systems must be considered directly.

In Chapter 4, we present a special graphical procedure based on instant centers of
velocity. When two laminae are moving relative to one another there exists, at every instant,
a point in one lamina that is at rest relative to the other, and vice versa. This is the instant
center of relative motion of those laminae. The technique of velocity analysis based on
instant centers presents advantages when solving certain types of problems. Therefore, it is
advantageous for the engineer to be familiar with this technique, as well as the vector poly-
gon technique. This is a very powerful procedure if only velocities are important, and the
graphical approach gives considerable insight into the design of planar mechanisms.

A purely analytical approach to kinematic analysis based on vector loop equations is
presented in Chapter 5. This procedure can be easily programmed, but, unless a program is
readily available, it is typically much more time consuming than a graphical analysis when
only one position of the mechanism is of interest.

There is a tendency to discard traditional graphical techniques in favor of numerical
solutions based on the analytical formulations presented in Chapter 5. However, there are
many situations in which graphical techniques are useful. For example, it is necessary to
check and debug computer programs. This is done most effectively by comparing the
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numerical solutions of sample problems with solutions to the same problems obtained using
completely different techniques. Graphical techniques are ideal for providing these alterna-
tive solutions. At other times, a quick answer to a problem is needed, and no suitable pro-
gram is available. Rather than writing and debugging a program specifically to solve the
problem, one often finds it to be more efficient to use the graphical approach. Most impor-
tant, insight into the kinematic geometry that governs all mechanism behavior is obtained
by an understanding of the graphical approach.

2.2 GRAPHICAL POSITION ANALYSIS

Regardless of what procedure is used for a linkage analysis, it is always necessary to deter-
mine the angular positions of the links before a velocity analysis can be performed. Like-
wise, it is necessary to know the link angular velocities before an acceleration analysis can
be performed. That is, the kinematic analysis of a linkage must always proceed in this
sequence: position analysis, then velocity analysis, then acceleration analysis. If the linkage
has one degree of freedom and the driver is a crank, the angular position, angular velocity,
and angular acceleration of a driving link must all be specified for a solution to be possible.
If the driving member is connected to the base by a prismatic joint, the linear position,
velocity, and acceleration of any point in that link must be specified.

When working graphically, the position analysis consists of simply drawing the link-
age to scale. Usually this is so straightforward that it tends to be forgotten as an important
step in the solution process. The representation used is a geometric skeleton of the linkage:
links with revolute joints are represented by the line, or lines, joining the joint axes. Pris-
matic joints are represented by lines in the direction of sliding. Revolute joints are usually
represented only by the points that are the intersections of their axes with the plane of
motion. The way the method works in the analysis of a simple linkage is illustrated in the
examples. (See, for example, Fig. 2.8.) Note that this is different from the linkage skeleton
representation used in Chapter 1. However, it is sometimes useful to indicate revolute joints
by small circles centered on the joint axes and prismatic joints by sliding blocks. If this is
done, the present representation becomes a geometrically accurate equivalent of the linkage
skeleton.

As will be shown in Chapter 5, the position equations for mechanisms are inherently
nonlinear. In many cases, the mechanism can be assembled (or drawn) in two possible con-
figurations. It is necessary to know before the analysis is conducted which solution is
desired. This will be illustrated in the examples that will be discussed after the equations for
velocity and acceleration are developed.

We will begin the analysis of velocities and accelerations with a relatively simple case
involving two points fixed to the same rigid link. The equations for this case are commonly
developed in courses in mechanics using the procedure we shall use here. The equations
developed will be directly applicable to mechanisms with revolute joints and/or sliders on
fixed lines. We will illustrate the use of the procedure with several examples.

For more complex joints, a more rigorous and general approach will be used to
develop the velocity and acceleration equations. This will entail identifying the coordinate
systems relative to which each of the vectors is described and relative to that for which the
time derivatives are desired. It will be shown that the velocity and acceleration equations
developed for the case of two points on a rigid link are special cases of the more general
equations. This procedure will be given in Chapter 3.
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2.3 PLANAR VELOCITY POLYGONS

Velocity analysis is the determination of the angular velocities of different links in a mech-
anism and of the velocities of points on the links, given either the angular velocity of some
member or the velocity of some point on the link designated as the input. The vector poly-
gon technique will be used here to solve the velocity and acceleration equations. The
method facilitates the solution of a large variety of velocity and acceleration problems and
also has the advantage that the acceleration polygon solution has a strong similarity to that
of the velocity polygon, which makes it relatively straightforward to learn and remember.
Almost all practical problems can be solved by this approach.

In theory, however, the technique is not general. It is possible to formulate problems
that cannot be solved by the methods presented here. Special techniques have been devel-
oped that allow treatment of some of the simpler cases that are not amenable to the vector
polygon method; nonetheless, it is possible to formulate problems that cannot be solved by
even these embellished techniques. The reader is referred to books by Hirschhorn,! Hall,?2
and Holowenko? for the auxiliary-point technique and other methods of handling more gen-
eral mechanisms. It should be emphasized, however, that problems that cannot be solved by
the methods presented in this chapter are rarely encountered in practice.

The key to the graphical velocity analysis of most linkages is the relationship between
the velocities of any two points embedded in a rigid body. This relationship is

V=V, +@XTry, 2.1

where 4 and B are points fixed in a moving lamina (rigid body) as shown in Fig. 2.1, v 1,v,and
vp are the respective velocities relative to the frame of those points, r is the vector AB and

w is the angular velocity of the lamina relative to the frame. Basically, if we draw a line on
the lamina, e is the time rate of change of the angular orientation of that line with respect
to time.

For Eq. (2.1) to be valid, it is important that points 4 and B be fixed to the same rigid
link. If one of the points is attached to a different link, the equation is incomplete. This case
is covered in Chapter 3. In the examples, we will use subscripts on the point letters (e.g., 4,)
to identify the link to which each point is attached to ensure that the proper points are being
considered when using the equation. When developing the equations here, however, sub-
scripts will not be used because only one link is being considered.

To prove this relationship, consider the two points 4 and B fixed in the lamina shown
in Fig. 2.1. The lamina is moving with general planar motion. Let the position JomtA rel-
ative to a fixed reference frame be r,, and let that of point B be r;. The vector 4B is r, , and
is pointed from A4 to B. Therefore

rg =r,+rgy 22
Differentiating Eq. (2.2) with respect to time gives
Vp :VA + drB/A/dt

Now, since points 4 and B are fixed in the moving lamina, vector ry,, is fixed in that lamina
and moves with it. It has constant length, so only its direction changes. Let the change in

1 leschhom, J., Kinematics and Dynamics of Plane Mechanisms, McGraw-Hill Book Co., New York, 1962.
Hall A., Kinematics and Linkage Design, Balt Publishers, West Lafayette, IN, 1966.
3 Holowenko A. R., Dynamics of Machinery, John Wiley & Sons, Inc., New York, 1955.
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rg

7

FIGURE 2.1 Position relationships of two points embed-
ded in a moving lamina.

direction in a small time interval 8¢ be 86, as shown in Fig. 2.2. The magnitude of the
change in rg/, is

or =rg/,86

As 8t and hence 88 approach zero, the angle between the vectors érp/, and ry,, approaches
90°. If w is the magnitude of the angular velocity of the lamina,

86 = wdt
Therefore
8r/ S8t =rg/w
50, in the limit as 8¢ approaches zero,
ldry [dt|=rg 0

If w is considered to be a vector normal to the plane of motion, clockwise (CW) if directed
away from the observer and counterclockwise (CCW) if directed toward the observer, the
direction of dry,,/dt is normal to @ and to 7y, and obeys the right-hand screw rule with
respect to those vectors. Therefore dry,/dt can be represented by the expression

dry/4 /dt =wXrg, (2.3)

What we have actually derived here is a general expression for the derivative of a vector of
constant magnitude (rz,,) embedded in a lamina in planar motion, for which e is the angu-
lar velocity relative to a fixed reference frame. We will make use of this expression in Chap-
ter 3 and elsewhere.

Thus

Vvp =V, t@Xrg, 2.D

As will be shown in Chapter 3, this expression is actually valid for general spatial motion,
although the derivation here applies only to planar motion.

FIGURE 2.2 Successive positions of the lamina separated by a small time
interval, &¢.
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It is convenient to write Eq. (2.1) in the form
Vg =V, +vpy 24
where
Vg4 =@ XTg, (2.5)

The vector v, is usually called the velocity of B relative to 4, although, strictly speaking,
it is meaningless to talk of a velocity relative to a point. Velocities are vectors and are mea-
sured relative to reference frames. Therefore, v, would be the velocity of point B relative
to a reference frame that has its origin at point 4 and that moves so as to be always parallel
to the fixed frame.

If only one letter is used as a subscript (e.g., v5), the resulting velocity is called an
absolute velocity. This means that it is the derivative of a position vector that has its tail
fixed to a point that has zero velocity. From Eq (2.4) it is clear that vz = v, , if v, = 0. Note
that point 4 need not be absolutely fixed; it might have a velocity that is only momentarily
Zero.

The basic technique used in a graphical linkage analysis is to work from one or more
points with known velocity to one of unknown velocity using the relationship in Eq. (2.1)
between the velocities of two points fixed in the same lamina. The intersections of the axes
of revolute joints with the plane of motion form transfer points because they are actually
coincident points fixed in two different links. Thus, the velocity of a revolute joint can be
obtained by considering it to be a point in one of the links it connects. That information can
then be used by considering the point to be fixed in the other link.

Equation 2.4 can be represented graphically as the vector triangle shown in Fig. 2.3.
This triangle can always be solved given the direction and magnitude of one of the three
vectors and the directions of the remaining two. This is the normal situation in planar veloc-
ity analysis. Again, the way in which this works will be illustrated in several examples after
all of the necessary equations have been developed.

Based on Eq. (2.5), to find the angular velocity e for a given link, we must compute
the relative velocity between two points on the link, and the velocity must be given relative
to the desired reference frame. For example, the relative velocity relationship for points B
and A4 can be written as

VB/A =w><rB/A (26)

The vectors in Eq. (2.6) will be mutually orthogonal, as indicated schematically in Fig. 2.4.
Because we will know the lines along which each of the vectors must lie, the main problem
is to determine the directions along the lines and the magnitudes of each of the vectors.
Given any two of the vector directions, we can find the direction of the third by observing
the directions given by the right-hand screw rule. Two examples are shown in Fig. 2.4.
Notice that v, and ry,, are always perpendicular to each other. Also, visually, we can
determine the direction of v, by rotating r,, 90° in the direction of w. Similarly, if we

a

FIGURE 2.3 Velocities of two points embedded in a lamina.
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VBi4 /4

Tpi4
v
B FIGURE 2.4 The direction relationship
among the vectors V4, @, and rg,, for
planar motion.

w w

know the directions of rg,, and v/, we can determine the direction of w by visualizing the
direction in which we must rotate rg,, to obtain the direction of vz,,.
Because the three vectors in Eq. (2.5) are orthogonal, their magnitudes are related by

Vo] =|eofrasa] @.7)

Given any two of the three magnitudes in Eq. (2.7), we can easily solve for the third
magnitude.

2.4 GRAPHICAL ACCELERATION ANALYSIS

Just as was the case for velocity analysis, the key to most graphical acceleration analyses is
the relationship between the accelerations of two points fixed in the same rigid lamina or
link. This relationship can be derived by differentiating the velocity relationship with
respect to time. Rewriting Eq. (2.1) we obtain

V=V, +@Xrg, (2.1)
Differentiating gives
ap = a4+ (dw/dt)xXry, +wx(dry, [dt)
As was shown in Section 2.3,
drg/s /a't =@Xrg),
Also, angular acceleration e is defined to be dw/dt. Hence
ap=a,+aXrg, +wx(w><rB/A) (2.8)

As will be demonstrated in Chapter 3, this expression is generally valid for three-dimen-
sional motion, although it has been derived here only in the planar motion context. For
planar motion, it is possible to simplify the expression by noting that, in this case, @ and 7,
are orthogonal, as shown in Fig. 2.5. Also, @ X r3,, has the magnitude w r,, and is normal
to both @ and r,, in the sense given by the right-hand screw rule. Then, @ X (@ X r,,) has
the magnitude w7y, and is orthogonal to both w and @ X ry,. Applying the right-hand
screw rule, it can be seen that this vector @ X (@ X ry,,) is always in the negative ry,, direc-
tion. Therefore it can be written as — w?ry,,, and the relationship between the accelerations
of points 4 and B is

It is usual to write

al’

B4 ='w2"3jA and a;/A = Xrp/y (2.10)

with a%,, called the radial component of the acceleration of B relative to 4 and a%,, called
the tangential component of the acceleration of B relative to 4. As was noted in the case of
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FIGURE 2.5 The derivation of the
relationship w X (@ X r) = — w?r, which
is valid for planar motion.

velocities, it is not really proper to talk about the velocity or acceleration of one point rela-
tive to another point. The vector ag, is really the acceleration of point B relative to a refer-
ence frame with origin at 4 and moves so that it is always parallel to the fixed frame.

The vector polygon corresponding to Eq. (2.8) is shown schematically in Fig. 2.6. If
a velocity analysis of the linkage has been performed, the angular velocities of all the links
are known, and so the radial component a%,, = — w?r;,, can always be calculated and plot-
ted. Hence, if one of the other vectors is also known, and the directions of the remaining two
are also known, the polygon can be solved in very much the same way as the vector trian-
gle was used in the velocity analysis. This is the normal procedure for a graphical accelera-
tion analysis.

The angular acceleration for a given link is obtained in the same manner as the angu-
lar velocity except that the tangential component of relative acceleration is used instead of
the linear velocity. To find a value of @, we must know the tangential component of the rel-
ative acceleration between any two points on the link. For example, the relative tangential
acceleration relationship for points B and 4 can be written as

“Z/A SaXrpy (2.11)
Because we will know the lines along which the vectors must lie, the main problem again is
to determine the directions along the lines and the magnitude of each of the vectors. Given
any two of the vector directions, we can find the direction of the third by observing the direc-
tions given by the right-hand screw rule. Two examples are shown schematically in Fig. 2.7.

Notice that these relationships are exactly the same as for the velocity expressions if
o is replaced by a and vy, is replaced by a%,,. In particular, notice that a';,, and rg,, are
always perpendicular to each other. Also, we can determine the direction of @', , by visually
rotating ry,, 90° in the direction of a. Similarly, if we know the directions of r,, and ay,,,
we can determine the direction of @ by visualizing the direction in which we must rotate Ty

a'

AY

s

T4

FIGURE 2.6 Accelerations of two points embedded in a moving lamina.
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FIGURE 2.7 The direction relationship among

a .
a the vectors aj,,, e, and ry,, for planar motion.

to obtain the direction of a%,.
Because the three vectors in Eq. (2.10) are orthogonal, their magnitudes are related by

@b = e 2.12)

Given any two of the three magnitudes in Eq. (2.12), we can easily solve for the third
magnitude.

2.5 GRAPHICAL ANALYSIS OF A FOUR-BAR

MECHANISM

EXAMPLE 2.1
Graphical
Analysis of a
Four-Bar
Mechanism

Solution

Having derived the basic equations for relative velocities and accelerations between two
points on a rigid link, we will illustrate the use of the equations for the graphical analysis of
several mechanisms. The first example involves the position, velocity, and acceleration
analysis of the four-bar mechanism given in Fig. 2.8. The analysis for this example will be
conducted in detail, but in subsequent examples, less detail will be given. In all of the exam-
ples, subscripts will be used to identify the links to which the points are attached. This is
necessary because the equations derived in Sections 2.3 and 2.4 apply only when the points
(A and B) are fixed to the same link or lamina.

Determine the angular positions, angular velocities, and angular accelerations of all members of the
linkage shown in Fig. 2.8 when link AB is at 60° to the horizontal. Also find the position, velocity, and
acceleration of point E in the coupler member of the linkage. Link 4B is driven at a constant angular
velocity of 10 rad/s CCW.

(a) Position Analysis

We will first address the graphical determination of the link positions. The first step is to choose a
scale. The larger the scale, the more accurate the results. Therefore, it is best to use a drawing table
with a drafting machine and B- or C-sized drawing paper if accurate results are desired. A CAD
system that supports the construction of lines and arcs and locates intersections of lines and arcs may
also be used. In the present case, we want to fit the figure onto a regular book page, so the construc-
tion will be described when it is drawn at half-scale (1 in on the drawing corresponds to 2 in on the
actual mechanism). The reader is encouraged to draw the figures in this, and following examples, at
full scale when working through them.

The construction is shown in the position diagram in Fig. 2.9. A horizontal line representing the
base link is drawn first, and the two points bounding an interval of 2 in (half-scale) are marked to
represent 4 and D. Next locate point B, which is where the driver link (link 2) is joined to the cou-
pler (link 3). A line through point 4 at an angle of 120° to AD is drawn, and a point on that line at a
distance of 1.25 in is marked to represent point B. Next locate point C, which is where the coupler is
joined to the rocker (link 4).
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FIGURE 2.8 The four-bar linkage of Example 2.1.
(Note that the figure has been reduced in size for
printing.)

To locate point C, a compass is set to a radius of 3.0 in, and an arc is drawn with center point B. The
compass is then reset to a 2.0-in radius, and a second arc is drawn with center D. C is at the intersec-
tion of the two arcs. Actually, there are two possible intersection points corresponding to the two
assembly modes of the mechanism. This is a common situation with many mechanisms, and it is nec-
essary for the designer to know which assembly mode is desired. In the present case, the correct one
is easily located by referring to Fig. 2.8.

10 in/sec

t r
g, 9g o,

FIGURE 2.9 Position, velocity, and acceleration polygons for the four-bar linkage of Fig. 2.8. Note that
the position solution is necessary to draw the velocity polygon, and the velocity polygon is needed to draw
the acceleration polygon. (Note also that the size of the figure has been reduced in the printing process. )
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Point E can now be located in a similar manner to that used for C because we know the distance from
point E to point B and to point C. The compass is set to a radius of 1.5 in (the scaled distance from E
to B), and an arc is drawn with center B. The compass is reset to a radius of 2.0 in (the scaled distance
from E to C), and an arc is drawn with center C. E is at an intersection of the two arcs. Once again two
intersections are possible (one below BC and one above BC), and the correct intersection can be iden-
tified by referring to Fig. 2.8.

This completes the construction of the scale drawing of the linkage and hence completes the solu-
tion of the position analysis problem. The resulting construction is shown in Fig. 2.9. The angular
positions of the links may be measured from the drawing. Likewise, the position of point E can be
measured and the coordinates can be multiplied by the scale factor of 2. In practice, if the position
analysis is being performed solely as a preliminary step to a velocity analysis, the angular positions of
the links and the position of point C would not need to be measured directly. Rather, the angular infor-
mation would be directly transferred to the velocity diagram using a drawing machine or drafting tri-
angles to construct normal or parallel lines. For the acceleration analysis, however, the linear distances
would be required.

(b) Velocity Analysis

In the velocity analysis, we will typically use the same points in the same order that we used for the
position analysis. We will first compute the velocity of point B, then the velocity of C, and finally the
velocity of E. Location B is the location of two points, B, and B;, and to be rigorous, we need to iden-
tify which of the points we are considering. Start with B,, which is the point on driver link 2. We want
to compute vp , which is the absolute velocity of point B,.

This absolute velocity can be expressed as the relative velocity between B, and any point that has
zero velocity. The point we shall use is 4,. It has zero velocity because it is always coincident with 4,,
which is fixed to frame 1. All points in frame 1 have zero velocity. Then the velocity expression in
Eq. (2.1) can be written as

Vg, =V, tVg [y =) XTIy,

because points 4, and B, are both on the same link or lamina (link 2). Note that we do not need to
identify the link associated with 4 and B in rg/, because all of the 4’s have the same coordinates, and
all of the B’s also have the same coordinates.

Note also that we know the directions and magnitudes for both @, and rz/,, and we know that the
two vectors are orthogonal to each other. Therefore, by the cross product, the velocity vg /4, Will be
orthogonal to @, and r,,, and the direction will be given by the right-hand screw rule. The relation-
ship among the three vectors is represented by a diagram similar to that shown in Fig. 2.5. We can
compute the magnitude of the velocity of B, from an equation similar to Eq. (2.6). The magnitude is
given by

s s, | = |arssa| = (10 rad /s)(2.5 in) = 25 s

The direction for vp,,4, is given by using the right-hand rule or by rotating r;,, 90° in the direction
of w,.

It is now necessary to select a scale to plot vy ,/4,- We used a scale of 10 in/s to 1 in in the velocity
diagram shown in Fig. 2.9. This scale is based on the input velocity. We are assuming that all of the
vectors will be of about the same order of magnitude. If the polygon began to move off of the page,
we would need to select a new scale and redraw the vectors.

We must also select a starting point for drawing the velocity polygon. This starting point is labeled
with a lower case o for origin. It is also called the velocity pole. Obviously, this starting point will also
influence whether or not the velocity polygon will fit on the page. Therefore, the velocity pole and
scale are selected together.

__The direction of v 4, may be obtained by placing one of the orthogonal edges of a triangle along
AB’. and drawing a line along the other edge, since vy /4, 1 normal to rg/4 or AB . Two points, o and
b,, separated by an interval of 2.5 in are marked as shown in Fig. 2.9. On the polygon, ob2 may be
labeled as the vector vp,/4,- Here we are using the convention of labeling points on the velocity poly-
gon with lower case letters and the corresponding points on the position polygon with upper case let-
ters. Thus, the absolute velocity of point B, given here by v 4, would be represented on the velocity
polygon by obz or azbz
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Next we want to compute the velocity of point C. We know that B, and B, are permanently pinned
together so that

Vg, =Vp =25in/s
in the direction shown in Fig. 2.9. Similarly, C; and C, are permanently pinned together. Therefore,

Ve, =V,

Because B; and C; are both fixed to link 3, we can write a relative velocity equation similar to
Eq. (2.1). That is,

Ve, =Vg +Vc /b, (2.13)

In Eq. (2.13), the vector v, is entirely known. Also, because B; and C; are on the same rigid link, we
know that Veys, is given by

Ve,/p, = @3 XTc/p

Therefore, we know that the vector vc, s, is perpendicular to r¢p or E We can construct a line
through point b; on the velocity polygon in a direction perpendicular to BC on the position diagram.
This is easily done with the help of drafting triangles. This defines one locus of ¢;. To find another
locus for c;, we need to find the direction of the vector vc,. We know that v¢, = v(,, and we can iden-
tify the direction of the velocity of C, by inspection (C can only move on a circle about point D, and
therefore, v, must be perpendicular to the line DC) or we can write a relative velocity equation for v,
Again, the velocity v, is an absolute velocity, and it can be expressed as the relative velocity between
C, and any point that has zero velocity. If we choose D, as that point, the velocity equation becomes

Ve, =Vp, t¥c,/p, = Vc,/p, = @4 XTc/p 2.14)

Because of the cross product, it is clear that v¢, must be perpendicular to r;p, or the line DC.To locate
c4 on the velocity polygon, draw a line through the origin point o in a direction perpendicular to DCon
the position diagram. Once again, this is most easily done with drafting triangles. Because ¢; and c,
are located at the same point, this gives a second locus for c; that can be determined as shown in Fig.
2.9. The vectors vp,, vc,, and vc, s, are as shown. The magnitude of w; may be found from the expres-
sion for the relative velocity v 5,. Then,

e | =l

or

joos| = ve, /s, | /e

To get veys,, measure the length of b3c3 on the velocity polygon and multiply by the scale factor. In
the present case,? b3c3 =1.65 in, so veys, = =1.65 X 10=16.5 in/s. Then

joos| =|ve. /s, |/ 15| = 16.5/6.0 = 275 radss

To get the direction, visualize the direction in which we would have to rotate r, to obtain the direc-
tion of v¢, .. This is the CCW direction.

Next compute the angular velocity @, from Eq. (2.14). The magnitude can be found from an expres-
sion for the relative velocity ve, p,- Then,

re.jo.| = foulrerol

4 The distances identified refer to the original drawings developed for this book. Because the drawings were
reduced when the book was printed, the distances reported here cannot be measured directly from the book
pages. However, the results can be verified by making measurements from the drawings and using the small
scales included with each of the drawings.
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or

!“’4| = |"c,./D. / ’C/D|
To obtain the velocity V¢ p,, Measure the distance c,d, on the velocity polygon and multiply by the
scale factor. In the present case, c,d, =2.69 in, so v¢, p, =2.69 X 10=26.9 in/s. Then

s =P /o, |/ Ire/p| = 26.9/4.0 = 6.73 radss

To get the direction, visualize the direction in which we would have to rotate r,, to obtain the direc-
tion of v, . The direction is CCW.

The velocity of point £; may be obtained by considering first the point pair £; and B; and then the
pair E, and C;. Both pairs are fixed to member 3. The relative velocity expressions are

Vg, =Vp Vg [p =Vp +@;XIg/g (2.15)
and
Ve, =Vc, + Vg Jo, =V, T @3 XI5/ (2.16)

The velocities v¢, and v are known and have been plotted as ob, and E’ on the velocity polygon.
‘We can compute |sz] two different ways as implied by Egs. (2.15) and (2.16). One way is to compute
the cross product in Eq. (2.15) and add the resulting vector to [vg, |. We could make similar calculations
using Eq. (2.16). A second way is to solve both equations simultaneously. Using Eq. (2.15), we know
that |vg | lies on a line through b; on the velocity diagram and is perpendicular to EB on the position
diagram. Similarly, [vg,| lies on a line through c; on the velocity diagram and is perpendicular to EC
on the position diagram. The point e; lies on the intersection of the two lines, and {an| is the vector
from o to the point e;.

The magnitude of |vz,| can be obtained by measuring o—e3' and multiplying by the scale factor. The
distance oe; =2.93 in, so |v53| =29.3 in/s. Its direction may be measured from the diagram with a pro-
tractor. The direction is —164.9° with the zero angle reference being horizontal and positive to the
right. This completes the velocity analysis of the linkage.

(c) Acceleration Analysis

The acceleration analysis can be conducted using the points that were used in the velocity analysis. In
fact, usually the acceleration analysis can be conducted simply by differentiating the velocity equa-
tions. We will first compute the acceleration of point B, (and B;), then the acceleration of C; (and C,),
and finally the acceleration of E;. The acceleration of B, can be expressed as the absolute acceleration
between B, and 4,. Because two points on the same rigid link are involved, an acceleration expression
similar to Eq. (2.8) can be written as

r

BZ / AZ

Note that we know the directions and magnitudes for w,, «,, and rg/,, and therefore we can compute
each of the vectors in the equation. Because of the cross product, the acceleration at&/Az will be
orthogonal to e, and rg,,, and the direction will be given by the right-hand screw rule. The direction
of a's 4, will be opposite to the direction of ry,,. We can compute the magnitude of ath/Az from an
equation similar to Eq. (2.10). The magnitude is given by

= et Jro/a| = (0)(2.5 1m) =0

The magnitude of the radial component can be computed by using Eq. (2.8). Then,

— — _ .t
ap =a, +ap |, =0 Xrp/, +@, X(w2 xr‘.,/A)—-aBZ/Az +a

t
a
Bz/Az

a =@, X (wz X g/ 4 ) = |¢o2 |2 IrB/A |= 102(2.5) =250 in/s’

BZ / AZ
and the direction is opposite to that of rz/,. The direction of a' /4, 18 therefore 60° below the horizon-
tal (down and to the right). It is now necessary to choose a scale and starting point (acceleration pole)

and plot the acceleration of point B,. We will use a scale of 50 in/s? to 1 in to ensure that_th_e diagram
will fit on a quarto-sized page. The acceleration ag 4, = a‘BZ/AZ is plotted in Fig. 2.9 as 0'b, . Here we
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are using the convention that a lower case letter with a prime (') indicates the acceleration of the cor-
responding point on the position diagram. The most convenient way t_oplot a line parallel to AB isto
place a drafting tnangle with one of the two orthogonal sides along ob, on the velocity diagram, and
draw a line through o' along the other side of the triangle. Since obz is normal to 4B , this results in
a line parallel to AB’. Once again, 0'b,’ is directed down and to the right because it is in the minus 4B~
direction.

Next we want to compute the acceleration of point C. Recall that B, and B, are permanently pinned
together. Therefore,

a, =a, =250 in/s’
in the direction shown in Fig. 2.9. Similarly, C; and C, are permanently pinned together. Therefore,

ac =ac

2

Because B; and C, are both fixed to link 3, we can write the following relative acceleration equation:
_ _ r t
acs _an +aC3/BA _a33 -*-aCJ/JB3 +aC3/B3 (217)

In Eq. (2.17), the vector ap_is entirely known. Also, the radial component of the acceleration that is a
function of position and velocity only can be computed directly from the following:

r _—
. 15, = ><(w3 er/B)

From the velocity analysis, we computed the magnitude of the angular velocity to be || =2.75 rad’s.
The radial acceleration is a vector from C to B on the position diagram (opposite 7(3), and the mag-
nitude is given by
=y |re/s| = 275 (6) = 45.4 inis®

3| [fc/8 : .

r
a
Cy/8y

A convenient way to draw a line parallel to BC is, again, to place a triangle with one of the orthogo-
nal sides along b;c; on the velocity polygon and draw a line along the other orthogonal side through
point '3. The direction is down and to the left because this component is in the minus r¢5 direction.
The tangential component ”tc3/53 is given by
alc,/a =a; X1/

The magnitude of aC 3, 1s unknown because a; is unknown. However, this vector will be normal to
BC . Hence a line is drawn through the tip of the a" cyB, vector to represent this direction. This defines
one locus of ¢. To find another locus for ¢, we need to find another equation for the vector ac,. We
know that ac, = ac,, and we can write an equation for the acceleration of C,. Again, the acceleratlon
ac, is an absolute acceleratlon and it can be expressed as the relative acceleration between C, and any
point that has zero acceleration. If we choose D, as that point, the acceleration equation becomes

a. =a =a’ +a'
¢, ~4%,/p, =% /p c,/p,
4 4 4 4

The radial component of the acceleration is a function of position and velocity only and can be com-
puted directly from the following:

r
=w, X X )
ac./p, = @a ("’4 Te/p

From the velocity analysis, we computed the magnitude of the angular velocity to be |w,| = 6.73 rad/s.
The radial acceleration is a vector from C to D on the position diagram (opposite (), and the mag-
nitude is given by

| c./o, }“’ ’ ]’c/o|—673 ( )—181.2 in/s’

This vector is plotted from o' in Fig. 2.9.
The tangential component a'C‘,D4 is given by

a' =a, X1,
c,/p, ~ %4 c/D
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The magnitude of a‘C“,D4 is unknown because a, is unknown. However, this vector will be normal to
BD . Hence a line is drawn through the tip of the a'¢pp, vector to represent this direction. This defines
a second locus for ¢y and ¢’; The points ¢’ and ¢, are located where the two loci intersect as shown in
Fig. 2.9. The vectors aC 1Dy aC4/D4 and a’C“/D‘ are as shown. The magnitude of a; may be found from
the expression for the tangent1a1 component of the relative acceleration between C; and B;. Then,

t -_—
|ac3 /8, l Ia3 ||r c/ Bl

el

To get |a" cy,l» measure the length of the vector on the acceleration polygon and multiply by the scale
factor. On the acceleration polygon, the length of the line corresponding to |at cyB,| 1 0.847 in. There-
fore, |a! c3/53| 0.847 X 50 =42.2 in/s?. Then

/ Ire/s|=42.2/6.0 = 7.06 radss’

or

t
|a3| - aq /B,

;| =a

t
CJ/BS

To get the direction, visualize the direction in which we would have to rotate r5 to obtain the direc-
tion of |a'c. 5 |. The direction is CCW.

Next compute the angular acceleration a,. The magnitude can be found from an expression for the
tangential component of the relative acceleration @', . Then,

= |"4 ||'C/ D |

/sl

To obtain the magnitude of the tangential component of acceleration, measure |a' /D, | on the acceler-
ation diagram and multiply by the scale factor. From Fig. 2.9, |a! c,p, =1.816 X 50 90 8 in/s2. Then

t
a
CA/Da

or

t
o |=a
| 4 c,/p,

o, | =1a. /D / Ire/o|=90.8/4.0=22.7 radss’
4 4
To get the direction, visualize the direction that we would have to rotate rp, to obtain the direction of
|a'c,p,}- The direction is CW.
The acceleration of point £, may be obtained by considering first the point pair £; and B, and then
the pair E; and C;. Both pairs are fixed to member 3. The relative acceleration expressions are

— _ r t _
aE3 —aB3 +aE3/53 —a53 +aE]/E3 +aE3/33 —aB3 +w, X((o3 ><rE/B)+a3 XrE/B (2.18)
and
aE3 =aC3 +aEs/C; ac +aE /C +aE /C —aC3 +w3X(w3XrE/C)+a4><rE/C (2.19)

The accelerations ag, and ac, are known and have been plotted as 5_'7)—’; and m on the acceleration
polygon. As in the corresponding case of velocities, we can compute az_two different ways as implied
by Eqs. (2.18) and (2.19). One way is to compute the cross products in Eq. (2.18) and add the result-
ing vectors to ag. We could also make similar calculations using Eq. (2.19). A second way is to solve
both equations simultaneously as was done in the velocity analysis. We will use the first procedure
here. To determine a £, using Eq. (2.18), we must compute af /5, and a‘EJ 8, The direction of the radial
component is opposite to that of rz 5, and the magnitude is given by

= [ |re/| = 2.75°(3) = 22.7 imis®

e/,
This vector is added to a in Fig. 2.9.

The direction of a'E 8, is found using the right-hand screw rule or by turning rz/z 90° in the direc-
tion of a;. Recall that a; is CCW. The magnitude of a',; ,3, 1S given by

@, 1o | = lelre/s| = 7.06(3) = 21.2 inss?
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This vector is plotted in Fig. 2.9. The point e’; is located at the tip of 0'53/33- The acceleration of Ej is
located by the vector from o’ to e’; on the acceleration diagram. To determine the magnitude, measure

o'e'y and multiply by the scale factor. The result is

lag, |=4.85%50 = 24215 inss

The vector is pointed in a direction that is 67° below the horizontal and to the right. A much more effi-
cient way to locate point e'; will be presented later in this chapter.

2.6 GRAPHICAL ANALYSIS OF A SLIDER-CRANK

MECHANISM

EXAMPLE 2.2
Graphical Analysis
of a Slider-Crank
Mechanism

Solution

The analysis of a slider-crank mechanism depends on whether the crank or the slider is the
driver. If the crank is the driver, we need to know the angular position, velocity, and accel-
eration of the crank. If the slider is the driver, we need to know the position, velocity, and
acceleration of some point on the slider. Note that each point on the slider will have a
unique position, but all points will have the same velocity and the same acceleration.

We will analyze the slider-crank mechanism shown in Fig. 2.10, where the crank is
the driver. As was the case for the four-bar linkage, the key to the acceleration analysis of
this mechanism is the relationship between the velocities and accelerations of two points on
the same rigid body.

Find a and w; for the slider—crank linkage in the position shown in Fig. 2.10. The crank 4B (link 2)
is driven at a constant angular velocity of 10 rad/s CCW. C is the axis of the revolute joint connecting
the connecting rod, link 3, to the slider, link 4. In the position shown, 4B is at 45° to AC, and the link
lengths are shown on the drawing.

(a) Position Analysis

The linkage is first drawn to scale to establish the direction of member BC. To do this, first locate the
horizontal line through 4 and on which C lies. Next, draw member AB to scale. Then draw an arc
scaled to represent 8 in and centered at B. The arc intersects the horizontal line through 4 at two loca-
tions. The desired location is to the right of A as indicated in Fig. 2.10. The scaled drawing is shown
in Fig. 2.11.

FIGURE 2.10 The slider—crank linkage to be analyzed in Example 2.2.
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(b) Velocity Polygon
The basic equation to be solved is

vcl =v83 +vC3/BS =vBZ +vc3/83 :vB2/A? +vC3/BB

From the given data, we have

Vg, T Vg /4 T XTI/, =10x5=50 in/s (normal to rg/ , )

2

The direction for the velocity of C; must be horizontal. This lets us solve the basic velocity equation
as shown in Fig. 2.11. By measurement in Fig. 2.11, we obtain

[vc./5,| =1.98%20=39.6 inss

Then

Joos| = ve. /s, | /Irey| = 396 /8 = 4.95 radss

in the CW direction.

'y
3’b2

FIGURE 2.11 Velocity and acceleration polygons for Example 2.2.
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and

Then

10.

(¢) Acceleration Polygon
The basic acceleration equation to be solved is

_ _.r t r t
ac, =8p, /4, tAc /3, _aB:/A: +aBZ/AZ +ac,/x, +acl/3;

From the given data, we have

= ko, ['[ry [ = 10*(5) = 500 ins?

ar
8,/4,

“Jo = 0] =0

t
5, /4,

Using information from the velocity analysis, we obtain

= loos[/[re /| = 4.95 (8) = 196 s

ar
C}/Bx

The direction for the acceleration of C; must be horizontal, and the basic acceleration equation can
now be solved for the acceleration of Cj, as shown in Fig. 2.11. By measurement in Fig. 2.11, we get

lac, | =3.98(100) = 398 inss’

=2.98%100 = 298 in/s’

t
a
/8,

Jers| = a5 / Ires] = % =373 radfs®

in the CCW direction.
The steps for the total analysis are summarized in the following, and the results are shown in
Fig. 2.11.

1.

Draw the linkage to scale.

2. Construct the velocity polygon and compute w;.
3.
4

. Choose a suitable scale and plot @' , 4, OPposite to g/, Put the tail of the vector at the accelera-

Compute the magnitudes of a’BZ, Ay a' 8,4, and a‘C}.,g3 and identify their directions.

tion pole, o'.

Plot a‘Bz/A2 (zero in this case) normal to rg/, and through the tip of @’s4,- The tip of a‘BZ, 4, Bives
the point &',. Here, the direction for ag,4,1s in the direction of — r,.

6. Plot vector a'c, 5, opposite to r¢/p with its tail at point &',
7. Draw a line through the tip of vector a'c g, normal to line BC.

8. Draw a line through o’ parallel to line AC . The intersection of the lines drawn in steps 7 and 8

gives point ¢’3.
Measure the magnitude a¢ as o’c’; and note its direction.

Measure atc3/33 and compute a; = Ia‘C‘,.. 8,/Irc/pl- Note that the sense of a3 is found by visualizing
C rotating about B so that C moves in the a' /B, direction.

2.7 THE VELOCITY IMAGE THEOREM

To conduct a graphical analysis of a linkage with more than one loop, it is necessary to obtain
the velocities of additional points on a rigid link once the kinematic properties of the first two
points are known. After the velocity and acceleration of two points are known, the angular
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velocity of the body can be determined. Knowing the velocity of a point and the angular
velocity of the body, the velocity of any other point on the rigid body can be computed
using Eqgs. (2.4) and (2.5). Similarly, if the velocity analysis has been conducted, and the
acceleration of a point and the angular acceleration of the body are known, the acceleration
of any other point on the body can be found using Eq. (2.9). An alternative method for
determining the velocity and acceleration of a third point on a rigid body is to use the con-
cept of velocity and acceleration image. The velocity image theorem will be discussed first.

Notation As indicated previously, a convenient means of labeling the velocity polygon
is to use a lower case letter to identify the absolute velocity of each point on the position dia-
gram. A vector from the velocity pole to the point will then represent the absolute velocity
of the point. A vector between any two points will correspond to the relative velocity
between the points. For example, in Fig. 2.12, v 3= bc .

Consider the triangle POR formed by three points (P, O, and R) all fixed to the same
rigid body. The velocity image theorem states that given the triangle POR in a rigid body,
the triangle pgr in the velocity diagram will be similar to triangle PQR, rotated from POR
by 90° in the positive @ direction, and magnified by the factor w. This theorem, stated here
for triangles, can be extended to apply to any polygon, because any polygon can be broken
down into triangles, or indeed to any shape, since any shape can be approximated by a poly-
gon to any desired degree of accuracy. Thus, the velocity image of any geometric shape is
similar to that geometric shape, rotated relative to that shape through 90° in the positive @
direction, and is magnified by a factor w.

The proof of the theorem can be developed using Fig. 2.13. In that figure, the position
diagram for the rigid link is PQR and the velocity diagram is pgr. Using v,» as an example,
we get

Velg =@ XTpjo

Therefore, vy, is normal to @ and has the magnitude wPQ. Hence p? has magni-
tude wPQ and is rotated 90° in the e direction. Similarly gr = @RP and is rotated 90° in the
w direction. Hence, triangle pqr is similar to triangle POR, is rotated from triangle POR
through 90° in the @ direction, and is magnified over triangle POR by a factor w.

Note that the velocity image can be used to determine directly the velocity of any
point in the rigid body given the position of the point and the velocity diagram. Conversely,
the location of a point with a given velocity can be found by mapping points in the velocity
diagram to points in the position diagram.

The manner in which the velocity image is used to analyze multiloop linkages is illus-
trated in Example 2.3 involving a six-bar linkage.

FIGURE 2.12 Notation used on
velocity polygon to facilitate velocity

B ¢ image. The lowercase letters on the
velocity polygon correspond to the
letters on the linkage. vy = ob,

@ Ve = oc, and Vg = ab . The point o
A D corresponds to all fixed points. That

is, 4 and D both map into point o.
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EXAMPLE 2.3
Graphical Velocity
Analysis of Six-Bar
Linkage

Solution

2.7 THE VELOCITY IMAGE THEOREM

FIGURE 2.13 Link POR and its velocity image
in the velocity polygon. Triangle pgr is similar to
triangle POR and is rotated from it by 90° in the @
direction.

Develop a procedure for finding the angular velocities of links 3, 5, and 6 and the velocity of point B
of the linkage shown in Fig. 2.14.

The polygons for the analysis are shown in Fig. 2.14. The velocity analysis starts with the slider—crank
part of the mechanism. The equations involved and the order in which they are solved are given in the
following:

Ve, =Vp, =Vg, /4, =@, XTy/p
and
vC} = vB‘ + vC}/BJ
Next we will find the velocity of point D; by image. Then the dyad (links 5 and 6) can be analyzed
using
Ve, =V,

Vg, =Vp, +vE5/D5 =Vp, +@s Xrg/p
vEe =va +v56/,_.° =w6er/F
Steps

1. Draw the linkage to scale in the position given.

2. Select a suitable scale and plot vz =vp 4, = ob normal to line AB . Point o represents the points
on the fixed frame and all other points with zero velocity. That is, all points with zero velocity in
the linkage map into point o, and all points at o map to the linkage as points with zero velocity.

3. Draw a line through point o parallel to line AC . The velocity of C; must lie on this line.

4. Draw a line through point by normal to line BC . The intersection of the lines drawn in steps 3
and 4 gives point c;.

5. Now find the velocity image of D;. Start by drawing a line through point b; normal to line BD.

6. Draw a line through point ¢; normal to line CD . The intersection of the lines drawn in steps 5
and 6 is point ds.

7. Next locate es (and e). Start by drawing a line through point d; normal to line DE.

8. Draw a line through point o normal to line EF . The intersection of the lines drawn in steps 7 and
8 is point es.

9. Compute w; from |w;] = |vC3,33]/ |rc/5- Note that the sense is CCW. This is inferred by noting that
C; must rotate CCW about B; to move in the direction of veys,,
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10. Compute ws from |@s| = [vp, /g |/|rp/el. The sense is CCW, since Ds must rotate CCW about £
to move in the direction of vp_z..

11. Compute wg from || = [vg,r,|/| re/rl- The sense is CW, since Eq must move CW about Dg to
move in the direction of vg ..

FIGURE 2.14 The linkage and velocity poly-
gon of Example 2.3. The velocity image theorem
is used to locate point ds.

The velocity image theorem is very useful for finding the velocity of a point on the
coupler of a linkage at which an additional joint is placed. It is important to notice that the
shape of any velocity polygon (i.e., all angles within it) is determined only by the dimen-
sions of the linkage. See, for instance, Fig. 2.14. Further, the speed at which the linkage is
operated can affect only the size, or scale, of the polygon and not the shape. This property
will play a pivotal role in later sections (e.g., Section 2.9).

2.8 THE ACCELERATION IMAGE THEOREM

As was the case in the velocity analysis, an acceleration image theorem provides an easy
way to obtain accelerations of additional points on a rigid body when the accelerations of
two points are already known. This is useful when multiple loops are involved in the link-
age. In the acceleration diagram we will use primed lower case letters to indicate the
absolute accelerations of various points. Thus ay, =p'q’ , ag, =a'b’ , etc. Once again, o'
on the acceleration diagram corresponds to the pole where all points with zero acceleration
map.

The acceleration image theorem states that, if POR is a triangle fixed in a rigid link in
motion relative to the fixed frame, then triangle p'q’#’ is similar to triangle POR.

Triangle p'q’r’ is magnified by a factor that is a function of @ and w and is rotated
from triangle POR by an angle that is also a function of & and w.
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Proof To prove the acceleration image theorem, we will use Fig. 2.15. Then
’ 2 ,
ag/p=p'q’=~w’ryp +alrypln

where n’ is normal to ry,. Therefore the magnitude of the relative acceleration vector is

given by
Similarly

47 = 0RVw* +?
and

EI — RPV o + a2

Hence triangle p’q’r’ is similar to triangle PQR. The magnification factor is

/Rp= /Qsz /PQ =vw*+a® . Referring to Fig. 2.15, we see that the
angle of rotation is

—
r'p’

—|
qlr/

9=m— tan'l(aéjp/aéﬂ’)

or
0=m— tan_](a/wz)

Once again, this result can be extended to cover members of any shape by noting that any
polygon may be broken down into triangles, and any area bounded by a plane curve may be
approximated by a polygon as closely as desired.

Because the angle of rotation in the acceleration image is not usually 90°, similar tri-
angles must be constructed by making corresponding angles equal.

FIGURE 2.15 The acceleration image
theorem. The example used is the same
as for the velocity image in Fig. 2.13. Tri-
angle p’q’r’ is similar to triangle PQR in
the original lamina. Hence it is also simi-
lar to triangle pgr, which is the velocity
image of POR. If a, is plotted, together
with the radial and transverse compo-
nents of the acceleration of R relative to
P (app) to locate points p’ and 7', ¢’ can
be located from the image to give a,,.




EXAMPLE 2.4
Graphical
Acceleration
Analysis of a
Six-Bar Linkage
Solution
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Given the dimensions of the linkage shown in Fig. 2.16, find a. and a; if @, = 60 rpm CW and
a, = 0.

The results of the analysis are shown in Fig. 2.17. The scales for position, velocity, and acceleration
are shown with the polygons. The velocity analysis follows the procedure developed in Example 2.3.
The initial equation to be solved is for the slider-crank mechanism. That is,

Ve, =Vg Ve /3,
where
Vg, =Vp, =Vp, [4, =Wy X1y [,
Next we will find the velocity of point D; by image. Then the dyad (links 5 and 6) can be analyzed
using

vES - vDS +vES/DS = vEG =vF;> +VES/F6

Steps
1. Draw the linkage to scale.
2. Compute the magnitude of v = vy ,, and identify its direction. Plot it as the vector ob .
w, =60x27/60 = 6.283 rad/s
vy =6.283x 1.5 = 9.42 in/s normal to 4B

3. Draw a line through point b normal to line BC.

4. Draw a line through o parallel to AC’. The intersection of this line with that plotted in step 3
gives point ¢; (and ¢,).

5. Construct triangle bcd similar to triangle BCD, thereby locating point d3. This step is a use of the
velocity image theorem.

6. Draw a line through point d normal to line DE.

7. Draw a line through point 0 normal to EF . The intersection of this line with that drawn in step
6 gives point e5 (and eg).

AB=15in BD=0.75 in
BC=275in DE=225in
DC=275in EF=30in
F has coordinates (3.75, 0.75) in
w, =60 rpm CW

YA

FIGURE 2.16 Problem statement for
1 Example 2.4
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FIGURE 2.17 Position, velocity, and
acceleration polygons for Example 2.4.

—_—

8. Measure the magnitudes of veys, = c3bs, Veyp, = €sds , and Ve, =fees
Ve, /s, =5.34 8, vp p =5.82infs, vy =3.4lin/s
9. Compute |a;] = |vC]/B3|/ Ircspl, levs| = |"Ds/£5|/ Irp/el, and || = I"EG/FJ/ Ire/e:

@; =5.34/2.75 = 1.94 rad/s in the CCW direction, w; = 5.82/2.25 = 2.59 rad/s in the CW direction
w, =3.41/3.0 = 1.137 rad/s in the CCW direction

1

This completes the velocity analysis of the linkage.

10. For the acceleration analysis, we must solve the equation

T t T t
ac, _aB:/A: 'HIBZ/A3 +acx/3‘ +ac‘/3,

Next we will find the acceleration of point D; (and Ds) by image. Then the dyad can be analyzed
using

r

t T t
= = = -+
ag, =ap, +a55/05 "'aiss/os ar, =4, aEO/Fo +“E°/F°



EXAMPLE 2.5
Using Velocity and
Acceleration
Images

11.

12.
13.

14.

15.

16.
17.
18.
19.

20.

21.
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First compute ag, = a‘BZ, 4, and plot as the vectorm:

a5, =1.5 X 6.2832=59.2 in/s? in the BA_direction

Compute the magnitudes of vectors a'c,/s3a a'ES,DS, ary and identify their directions:
a5, = 2.75 X 1.94=10.35 in/s? in the BC direction

& p, =225 X 2.59% = 15.09 in/s? in the ED' direction

a'; 5, =3.0 X 11372 =3.87 in/s? in the EF direction

Plot vector a'c p, in the CB direction with its tail at b’

Draw a line normal to line CB through the tip of vector a z..

Draw a line through o' parallel to line AC . The intersection of this line with that drawn in step
13 gives point ¢'5.

Construct triangle b’c’d’ similar to triangle BCD to locate point d';. This step is a use of the
acceleration image theorem.

Plot a'; p, in the ED’ direction with its tail at point d’.
Draw a line normal to ED through the tip of vector a%p,:
Plot a'; ¢, in the EF direction with its tail at o'.

Draw a line normal to EF through the tip of vector a‘,gﬁ,,:é. The intersection of this line with that
drawn in step 17 gives the point e’ (and '¢).

Measure the magnitudes of ac, and a% - :
lac,|=13.9 ins”, |a!

p— 1 2
asé/ﬁ, =40 in/s

Compute ag = |a's r |/rpl:

a, =40/3.0=133 rad /s in the CCW direction

22. The sense of a is obtained by visualizing E rotating about F'so as to move in the a‘EG,F6 direction.

The mechanism in Fig. 2.18 is drawn to scale. Also given is the velocity polygon for the slider—crank
linkage, and the acceleration of point B on the round link is shown on the acceleration polygon. Use
the image technique to determine the velocity and acceleration of point D,. Then determine the veloc-
ity and acceleration images of link 4.

v4=101in/s
2 (constant)
—_—

ay FIGURE 2,18 Figure for
Example 2.5.
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Solution

2.9 SOLUTION BY INVERSION

To solve the problem, we need only find the image of point D, on both the velocity and acceleration
diagrams. The images of link 4 will both be circles with centers at d and &', respectively, and with radii
of bd and b'd’, respectively. We find the velocity image of D, by constructing triangle bdc similar to
BDC to locate 4 and drawing the circle centered at d and with radius bd. Similarly, the acceleration
image is found by constructing the triangle 5’d’c’ similar to BDC and drawing the circle centered at
d' and with radius b'd’. The solution is shown in Fig. 2.19.

v, =10in/s
2 (constant)

Acceleration Image of Link 4
FIGURE 2.19 Solution to
Velocity Image of Link 4 Example 2.5.

2.9 SOLUTION BY INVERSION

In general, if we have a linkage where the driver link is not part of a four-bar loop that con-
tains the frame as one of the members, it is not possible to analyze the linkage directly using
the vector polygon approach. The Stephenson six-bar linkage shown in Fig. 2.20 can be
solved using the techniques in the previous sections provided the driving crank is 0,4 or
OpB. However, if the linkage is driven by crank OC, the linkage cannot be analyzed using
the techniques developed so far. This is because O~C does not form a part of any four-bar
loop in the linkage. Consequently, plotting the velocity, or acceleration, of point C does not
provide enough information to close a velocity or acceleration polygon.

If the position of the linkage is known, however, a velocity solution can be achieved
recognizing that all of the velocities in the linkage are linearly related to the velocity of the
input member. Therefore, we can solve the velocity problem indirectly by first assuming the
linkage to be driven by 0,4, rotating at 1 rad/s in a specified direction. The velocity poly-
gon is completed and the angular velocity of OC is found. A scaling factor is then com-
puted. It is the ratio of the actual angular velocity of O.C to that calculated. It also carries a
sign that is positive if both angular velocities are in the same direction and negative if they
are opposed. All velocities and angular velocities are then multiplied by that scaling factor
to complete the solution.

This solution technique is an example of inversion. The driving and driven cranks are
interchanged to perform the solution. That is, the linkage is inverted by having the driver
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FIGURE 2.20 A simple linkage that can be ana-
lyzed using the techniques of the preceding sec-
tions if it is driven by crank O,4, or by crank OB,
but not by crank O.C.

moved to a different location. This may seem different from inversion as described in
Chapter 1, in which the base link is changed. However, it is closely related, as will be seen
later when we deal with the case in which the mechanism is driven via a floating link. A
detailed discussion of the issues involved in inversion is also given by Goodman.’

A serious situation arises in most problems requiring inversion. It was assumed ear-
lier that the position of the linkage was known. Normally, that is not the case, and it is first
necessary to determine the angular positions of all links by drawing the linkage to scale.
Consideration of Fig. 2.20 reveals, however, that this is not straightforward when the posi-
tion of crank O.C is given. Again, the problem is that this crank does not form part of a
four-bar loop but appears only in loops with five members. Therefore it is not possible to
complete the loop when only the position of that crank is given.

One approach to the solution of this problem is to note that when the angular position
of crank OC is specified, point D can lie anywhere on a circle with center point C and
radius length CD. The position of point D is also constrained by the four-bar linkage
0,ABOg to lie on a unique curve, called a coupler curve. If the coupler curve is plotted, its
intersection with the circle gives the location of point D. Unfortunately, the coupler curve is
a complicated planar curve of degree six. The only reasonably efficient way to plot it is to
construct successive positions of the linkage O,4BOj as the angular position of the crank
0,4 is incremented. Also, there may be as many as six intersections between the coupler
curve and the circle, giving up to six different possible positions of the linkage with crank
0C in the specified position. Each gives an acceptable assembly configuration for the link-
age, so the designer must choose the proper one for a given application.

Another approach to the problem is to iterate for the location of the dyad made up of
links D and C; this technique works well when the linkage is drawn using a computer graph-
ics package. For this approach, assume a position for link 0,4, draw the rest of the linkage,
and note the position of link O.C. If the position of link O.C is not correct, select a differ-
ent position for link 0,4 and reconstruct the linkage again. Measure the position of link
O.C and continue changing 0,4 and measuring the position of O.C until OC is in the
desired orientation. This may take a number of iterations; however, once the proper position
for 0,4 is bounded, the procedure will converge fairly rapidly.

If the entire range of motion for the linkage is of interest, then accurately locating the
position of O.C in specific positions is not necessarily an issue. Link 0,4 can be located in

5 Goodman, T.P, “An Indirect Method for Determining Accelerations in Complex Mechanisms.” Trans.
ASME, Nov., 1958, pp. 1676-1682.
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EXAMPLE 2.6
Velocity Analysis
by Inversion

Solution

representative positions in its range of motion and the analysis can be conducted for each
position. Smooth curves can then be drawn through the results.

A procedure for the solution of problems that can be approached by inversion is
detailed in Example 2.6.

The linkage shown in Fig. 2.21 is driven by crank O.C. Find the angular velocities of all members of
the linkage for the position in which 8- is 135°. The angular velocity of O-Cis 10 rad/s CCW. 0,4 =
2in, AB=3.51in, OB =3.25in, CD=2.5 in, O-C=2.75in,and AD = BD = 2.0 in. With origin at
0y, Op is the point (3.0, 0) and O is the point (4.5, —0.5).

'\\” € FIGURE2.21 The linkage of Example 2.6. This
0 : is an example of a linkage that cannot be solved
graphically without the use of inversion techniques.

We must conduct the analysis by starting with the position analysis.

(a) Position

It is first necessary to construct the linkage in the specified position. The intersection of the coupler
curve generated by point D with the circular locus of D centered on C is shown in Fig. 2.22. The cou-
pler curve is plotted by constructing the four-bar 0 ,4BOj in successive positions with equal incre-
ments of the angle of the crank 0,44 and plotting the corresponding positions of point D. This process
is not shown on the figure, but the basic steps are as follows:

. Plot O4, O, and O

Select the angle 03044 and plot 0,44 .

With center 4 and radius 4B, draw an arc.

With center Op and radius OB draw an arc. Its intersection with the arc from step 3 is point B.

Construct the triangle 4BD on line AB to locate point D.

Increment angle O30 44 and repeat steps 1-5.

N R e

. Plot the coupler curve, that is, the locus of the successive positions of point D. The comma-
shaped curve shown in Fig. 2.22 is the resulting coupler curve.

The configuration of the linkage can now be constructed as follows:

8. OcC s drawn at the specified angle and a circle is drawn with center C and radius CD. Its inter-
sections with the coupler curve give possible positions of point D for the specified value of bc.
Notice that there are two possible positions for D in this case. (There may be as many as six.) We
choose the position of D that gives the linkage configuration closest to that shown in Fig. 2.21.
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Oc FIGURE 2.22 Position solution of
the linkage of Example 2.6.

Once D is located, point A4 is located as follows:

9. Set radius O A and strike an arc centered on O,
10. Setradius DA and strike an arc centered on D. The intersection with the arc of step 9 is point 4.
11. Construct triangle ABD on DA to locate point B. The linkage can now be drawn in the specified
position.

(b) Velocities

The procedure for solving for the velocities is to draw the velocity polygon with the angular velocity
of link 2 assumed to be {2, = 1 rad/s. The value of the angular velocity of link 6, {2, is found for this
assumption and a scaling factor is calculated to scale {2, to the specified value of wg = 10 rad/s. The
same scaling factor is then applied to all other velocities and angular velocities to give their correct
values when w, = 10 rad/s. This is a solution by inversion because it is necessary first to solve the
problem with link 2 assumed to be the driving crank rather than working directly with the actual dri-
ving crank, which is link 6. The solution with the assumed value of w, is inverted to that with the
required value of wg by scaling it.

For the velocity analysis, the basic equations that we will solve are

Vg =Vylo, =@ X0,

Vg =V, +V8/A

Vp =V Vi =V TV

Ve =Vp tV¢/p = Vejo,
The steps are as follows:

1. Compute the value of v, with the assumption that £2, =1 rad/s CCW, and plot v, (as oa ) normal
to 044 as shown in Fig. 2.23:

v;=2.0X 1=2rad/s
2. Draw a line through a normal to AB .
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10.

Draw a line through o normal to Op4 . The intersection of this line with that of step 2 gives
point b.

. Draw a line through a normal to 4D .

5. Draw a line through b normal to BD . The intersection of this line with that from step 4 gives

point d (velocity image).

6. Draw a line through d normal to CD .

7. Draw a line through o normal to OC . The intersection of this line with that from step 6 gives

point c.
Measure v = oc and compute Qg
ve=12141in/s
Qs=vc/ OLC=1214/2.75 = 0.441 rad/s
Compute the scaling factor o = wg / {24, where w is the specified angular velocity of link 6:
0 =10/0.441=22.7

Since both the calculated and specified values of w, are CCW, o is positive. If they had been in
opposite directions, o would be negative.

Compute the angular velocities £2,, {25, £2,, and £ and scale the results:

®, =0 X2 =1x22.7=22.7 rad/s in the CCW direction

@, =0 X =0Xv,, [AB=22.7x1.09/3.5=17.05 rad’s CCW
@, =0 x4 =0xv,[0,B=227x1.62/3.25=11.32 radls CCW
w5 =0 x4k =0 X Vg, [CD =22.7x0.42/2.5=3.73 rad/s CCW

This completes the velocity analysis.

FIGURE 2.23 Velocity solution for
Example 2.6.
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EXERCISE PROBLEMS INVOLVING THE
VELOCITY AND ACCELERATION ANALYSIS
OF SINGLE-LOOP MECHANISMS

2.1 In the mechanism shown, link 2 is rotating CCW at the con-
stant rate of 2 rad/s. In the position shown, link 2 is horizontal
and link 4 is vertical. Write the appropriate vector equations,
solve them using vector polygons, and

(a) determine v¢,, @3, and wy;
(b) determine ac,, a3, and ay.
Link lengths: AB =75 mm, CD = 100 mm.

2.2 In the mechanism shown, link 2 is rotating CCW at the con-
stant rate of 500 rad/s. In the position shown, link 2 is vertical.
Write the appropriate vector equations, solve them using vector
polygons, and

(a) determine v, @ws, and wy;

(b) determine ac,, a3, and a;.

Link lengths; AB=1.2in, BC=2.42in, CD=2 in.

2.3 In the mechanism shown, link 2 is rotating CW at the con-
stant rate of 10 rad/s. In the position shown, link 4 is vertical.
Write the appropriate vector equations, solve them using vector
polygons, and

(a) determine Ve, @3 and wy;

(b) determine ac,, a3, and ay.

Link lengths: 4B = 100 mm, BC = 260 mm, CD = 180 mm.

2.4 In the mechanism shown, link 2 is rotating CW at the con-
stant rate of 4 rad/s. In the position shown, 8 is 53°. Write the
appropriate vector equations, solve them using vector polygons,
and

(a) determine v, @3, and wy;

(b) determine ac,, a;, and ay.

Link lengths: AB = 100 mm, BC = 160 mm, CD = 200 mm.

2.5 Inthe mechanism shown, link 2 is rotating CCW at the con-
stant rate of 4 rad/s. In the position shown, link 2 is horizontal.
Write the appropriate vector equations, solve them using vector
polygons, and

(a) determine v, @3, and wy;
(b) determine a, a;, and @,
Link lengths: 4B =1.25in, BC=2.5in, CD=2.5 in.

QY
1.6 in

l

kg
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2.6 In the mechanism shown, link 2 is rotating CW at the con-
stant rate of 100 rad/s. In the position shown, link 2 is horizon-
tal. Write the appropriate vector equations, solve them using
vector polygons, and

(a) determine Ve, 03
(b) determine ac,, 3.
Link lengths: AB = 60 mm, BC = 200 mm.

120 mm 3

2.7 In the mechanism shown, link 4 is moving to the left at the
constant rate of 4 ft/s. Write the appropriate vector equations,
solve them using vector polygons, and

(a) determine w; and wy;
(b) determine a3 and av,.
Link lengths: 4B =10 ft, BC =20 ft.

}
i

< —d.

2.8 In the mechanism shown, link 4 is moving to the right at the
constant rate of 20 in/s. Write the appropriate vector equations,
solve them using vector polygons, and

(a) determine w; and w,;
(b) determine a; and av,.
Link lengths: AB =5 in, BC =5 in.

CHAPTER2 GRAPHICAL ANALYSIS OF MECHANISMS WITH REVOLUTES AND FIXED SLIDES

2.9 In the mechanism shown, link 4 is moving to the left at the
constant rate of 0.6 ft/s. Write the appropriate vector equations,
solve them using vector polygons, and determine the velocity
and acceleration of point 4.

Link lengths: 4B =5 in, BC=5 in.

%,
SR EE

4\0 C - V(-J

2.10 In the mechanism shown, link 4 moves to the right with a
constant velocity of 75 ft/s. Write the appropriate vector equa-
tions, solve them using vector polygons, and

(a) determine Vg, VG, 0, W3;

(b) determine ag ag, @) and a;.
Link lengths: AB=4.8 in, BC = 16.0 in, BG = 6.0 in.

2.11 For the four-bar linkage, assume that e- = 50 rad/s CW
and @, = 1600 rad/s> CW. Write the appropriate vector equa-
tions, solve them using vector polygons, and

(a) determine VB, Ve, Vi, @3, and @y;

(b) determine a; , a cy 4, a3, and a,,




2.12 Re-solve Problem 2.11 if w, =50 rad/s CCW and @, = 0.
2.13 In the mechanism shown, link 2 is rotating CW at the rate
of 180 rad/s. Write the appropriate vector equations, solve them
using vector polygons, and

(a) determine v, vc,, Vg, @3, and wy;

(b) determine ap, a ¢, ap, @;, and ay.

Link lengths: 4B = 4.6 in, BC = 12.0 in, AD = 15.2 in,
CD=9.2in, EB=8.0in, CE=5.48 in.

2.14 The accelerations of points 4 and B in the coupler shown
are as given. Determine the acceleration of the center of mass G
and the angular acceleration of the body. Draw the vector repre-
senting a; from G.

a,= 7000 in/s®
ay= 7000 in/s”
AG=15"

BG=1.5"
AB=238"

2.15 Crank 2 of the push-link mechanism shown in the figure
is driven at a constant angular velocity w, = 60 rad/s (CW). Find
the velocity and acceleration of point F and the angular velocity
and acceleration of links 3 and 4.
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AB=15cm
BC=29.5cm
CD=30.1cm
AD=75cm
BE=14.75 cm
EF=75cm

B
2.16 For the straight-line mechanism shown in the figure, w, =
20 rad/s (CW) and &, = 140 rad/s? (CW). Determine the veloc-
ity and acceleration of point B and the angular acceleration of
link 3.

2.17 For the data given in the figure below, find the velocity
and acceleration of points B and C. Assume v, =20 ft/sand a4 =
400 fi/s? in the directions specified in the drawing. w, =24 rad/s
(CW) and a, = 160 rad/s? (CCW).

C AB=4.05"
AC=25"
BC=2.0"

2.18 In the mechanism shown, link 2 is turning CCW at the
constant rate of 10 rad/s. Draw the velocity and acceleration
polygons for the mechanism, and determine ag, and ay.
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2.19 If @, = 100 rad/s CCW (constant) find the velocity and
acceleration of point E.

@,

AB=1.0"
BC=175"
CD=2.0"
DE=0.8"
AD=3.0"

EXERCISE PROBLEMS INVOLVING THE
VELOCITY AND ACCELERATION ANALYSIS
OF MULTILOOP MECHANISMS

2.20 Draw the velocity polygon to determine the velocity of
link 6. Points 4, C, and E have the same vertical coordinate.

AB =180
BC=195"
CD=0.75"
DE=210"

4

\Q | £O ¢

c

2.21 Link 2 of the linkage shown in the figure has an angular
velocity of 10 rad/s CCW. Find the angular velocity of link 6 and
the velocities of points B, C, and D.

AE=07in
AB=25in
AC=10in
BC=20in
EF=20in
CD=10in
DF=15in
8,=135°

2.22 The linkage shown is used to raise the fabric roof on con-
vertible automobiles. The dimensions are given as shown. Link
2 is driven by a DC motor through a gear reduction. If the angu-
lar velocity w, = 2 rad/s CCW), determine the linear velocity of
point J, which is the point where the linkage connects to the
automobile near the windshield.
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Detail of link 3
H c p AB=3.5"
J O F 3 —0—0 AC=1537"
L K BD=16"
CD=3"
E CE=362

EG=13.94"
GF=3.62"
HF=3"
FC=13.62"
HI=3.12"
GI=3.62"
HL=.5"
KC=.19"
JH=1T7"

2.23 In the mechanism shown, determine the sliding velocity of
link 6 and the angular velocities of links 3 and 5.

AB=12.5" w,=374
BC=224"
DC=279"
CE=1280"
DF=215" 4

20" 6 v J E
+ £

29.5"

2.24 In the mechanism shown, v, , = 15 m/s with direction
downward. Draw the velocity polygon, and determine the veloc-
ity of point D on link 6 and the angular velocity of link 5.




2.25 In the mechanism shown, points E and B have the same
vertical coordinate. Find the velocities of points B, C, and D of
the double-slider mechanism shown in the figure if crank 2
rotates at 42 rad/s CCW.

EA=055"
AB=25"
AC=1.0"
CB=175"
CD=2.05"

DE=19"
CD=145"
BC=11"
AD=3.5"
AC=23"

2.27 Ifv,, =10 cm/s as shown, find vc,.

DA =0.95"
DF=245"
AB=1.45"
BF=18"

BE=085"

EG=22" G
EC=12"

CcG=125"

1.9"
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2.28 1If v, = 10 in/s as shown, find the angular velocity of
link 6.

2.29 The angular velocity of link 2 of the mechanism shown is
20 rad/s, and the angular acceleration is 100 rad/s? at the instant
being considered. Determine the linear velocity and acceleration
of point Fi.

EF=25"
CD=0.95"
AB=0.5"
BC=2.0"
CE=24"
BE=1.8"

2.30 In the drag-link mechanism shown, link 2 is turning CW
at the rate of 130 rpm. Construct the velocity and acceleration
polygons and compute the following: g, ar, and the angular
acceleration of link 5.

AB=18
BC=3.75"
E CD=3.75




24

2.31 The figure shows the mechanism used in a two-cylinder
60-degree V-engine consisting, in part, of an articulated con-
necting rod. Crank 2 rotates at 2000 rpm CW. Find the velocities
and acceleration of points B, C, and D and the angular accelera-
tion of links 3 and 5.

EA=1.0"
AB=3.0"
BC=3.0"
AC=1.0"
CD=2.55"

EXERCISE PROBLEMS INVOLVING THE
VELOCITY AND ACCELERATION IMAGE

2.32 In the mechanism shown, w, = 4 rad/s CCW (constant).
Write the appropriate vector equations, solve them using vector
polygons, and

(a) determine VE, Vi, @3;

(b) determine a, a;, a;.

Also find the point in link 3 that has zero acceleration for the
position given.

2.33 In the mechanism shown, point A4 lies on the X axis. Draw
the basic velocity and acceleration polygons and use the image
technique to determine the velocity and acceleration of point D,.
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Then determine the velocity and acceleration images of link 4.
Draw the images on the velocity and acceleration polygons.

FE=135"
ED=1.5"

AB=130" Square

vy, = 10in/s
(constant)
—_—

A

F(-1.0",-0.75")

2.34 In the mechanism shown, the velocity of 4, is 10 in/s to
the right and is constant. Draw the velocity and acceleration
polygons for the mechanism, and record values for angular
velocity and acceleration of link 6. Use the image technique to
determine the velocity of points D; and E;, and locate the point
in link 3 that has zero velocity.

CF=1.95"
FE=145"
ED=1.5"
CD=1.0"

BC=145"
BD=1.05"
AB=3.0"

2.35 The instant center of acceleration of a link can be defined
as that point in the link that has zero acceleration. If the acceler-
ations of points 4 and B are as given in the rigid body shown,
find the point C in that link at which the acceleration is zero.

AB=3.75"
a,=1500 in/s’

ag= 1500 in/s’



2.36 The following are given for the mechanism shown in the
figure:

w, =65 rad/s (CCW), a, = 40 rad/s” (CCW)

Draw the velocity polygon, and locate the velocity of point E
using the image technique.

c@2", 1.1

AB=DE=10in
BC=20in
CD=15in

2.37 In the mechanism shown, find wq and a3. Also, determine
the acceleration of D; by image.

Y AB=3.0"
CD=1.0"
BD=1.05"
BC=145"
ED=15"
FE=14"

v,, = 10in/s
(constant)

Q F(-1.0",-0.75")

2.38 In the mechanism shown, w, = 1 rad/s (CCW) and @, =
0 rad/s”. Find ws, as, v, and ag_ for the position given. Also
find the point in link 5 that has zero acceleration for the position
given.

0.52m
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2.39 Part of an eight-link mechanism is shown in the figure.
The velocity and acceleration of point D, are given. Find w- and
a;, for the position given. Also find the velocity of G, by image.

by

DE=1.5"
DG=0.7"
GE =1.65"

vp, = 5.0(320° in/s

ap,=40/260° in/s?

2.40 In the mechanism shown, link 2 is rotating CW at the con-
stant rate of 3 rad/s. In the position shown, link 2 is horizontal.
Write the appropriate vector equations, solve them using vector
polygons, and

(a) determine v, v, @3, and wy;

(b) determine ac,, ar,, a3, and ay.

Link lengths: 4B=3 in, BC=BE=CE=5in, CD=3in.

2.41 Part of a 10-link mechanism is shown in the figure. The
velocity and acceleration of points D, and Fj are given. Find wg
and a for the position given. Also find the velocity of G; by
image.

by
DE=15"
EF=145"
DG=0.7" - X
EG=1.65" 8
F(1.8",-1.05")
9

vp, =6.0 [353° infs ap, =40 [235° in/s’

vp, =7.5 [54° /s a, =30 [305° in/s’



H ROLLING AND SLIDING
) JOINTS ON MOVING SLIDERS

3.1 INTRODUCTION

The methods introduced in Chapter 2 are straightforward and are perfectly adequate for
analysis of linkages that have only revolute joints or sliding joints on fixed slides. However,
to analyze linkages with other types of joints, including those with moving sliding joints, it
is necessary to base the analysis on a more complex theory. The problem arises from dif-
ferentiation of vector quantities that are referred to moving reference frames.

As was discussed in Chapter 1, a kinematic joint is formed by any contact between
two bodies. The methods discussed in Chapter 2 apply only to linkages in which all the
joints have the very specialized, surface-of-revolution geometry of revolute joints, or, in rel-
atively few cases, the equally special generalized cylindrical surface geometry of prismatic
joints. There are many other possible types of kinematic joints, a number of which are of
great practical importance. In this chapter we provide the basic analysis tools needed to deal
with linkages that include these more general joint types.

Many mechanisms include rolling contacts and contacts with irregularly shaped
bodies. A cam mechanism will often include a cylindrical follower rolling on the irregularly
shaped cam. Any wheeled vehicle makes use of rolling contact with the terrain over which
it travels. When two bodies are in rolling contact the point in one body that contacts the
other body is instantaneously at rest relative to that body. That is, its velocity relative to that
body is zero. However, after an infinitesimally small time interval, that point will have sep-
arated from the body and will no longer be at rest relative to it. Thus, although the velocity
of the contacting point relative to the body contacted is zero, its acceleration is not zero and
is, in fact, directed along the contact normal away from the contacted body.

Other commonly used mechanisms have sliding joints that are not fixed relative to the
base, but rotate. The Coriolis component of acceleration, which governs the direction of
rotation of cyclonic weather systems, can also lead to significant internal loads in mecha-
nisms. This is particularly relevant to mechanisms that have rotating sliding joints.

To address problems involving linkages of these types it is necessary first to think
about what we mean by a reference frame and the implications of relative motion of two ref-
erence frames for velocity and acceleration analysis.

3.2 REFERENCE FRAMES

If a linkage involves only revolute joints or sliders on fixed lines, the equations developed
in Sections 2.3 and 2.4 are sufficient for conducting the kinematic analysis. However, for

96
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other types of joints, the equations become more complex, and it is necessary to use more
than one reference frame for the velocities and accelerations. In general, each link must be
assumed to have a reference frame attached to it. In fact, when each link is manufactured,
the machine tool that is used to form the link geometry will be guided relative to the local
coordinate system or reference frame fixed to the link.

As is shown in Fig. 3.1, the position of a given point (Q) can be quite different when
it is measured relative to a different reference frame. Further, as will be demonstrated in the
following, the velocity of a point relative to the fixed frame R depends not only on its veloc-
ity relative to a moving reference frame, such as frame M, but also on the velocity and angu-
lar velocity of frame M relative to frame R.

When it is important to distinguish the reference frames to which positions, velocities,
and accelerations are referred, we will use a superscript before the vector symbol to identify
the relevant reference frame. Typically, we will use the link number or letter as the reference
frame for that link. That is the notation used on Fig. 3.1. Thus, MO is the origin of the refer-
ence frame fixed to lamina M, and Mr,, is the position of point Q relative to frame M.

Typically, we will use the link number or letter as the reference frame for that link.
Thus, if B is a general link that is moving relative to another link R, R is the angular
velocity of the moving body B, relative to frame R. Then w; = — Ry is the angular veloc-
ity of frame R relative to body B. ®v, is the absolute velocity of point Q relative to frame R,
and BrQ is the position of point Q relative to the reference frame fixed to body B. a is the
angular acceleration of member 3 relative to the reference frame fixed in member 2.

The vector Ry, is usually called the velocity of B relative to 4 in reference frame R.
However, as discussed earlier, this terminology is technically incorrect. Vectors must be
measured relative to reference frames. Therefore, Rv,,,would be the velocity of point B rel-
ative to a reference frame R that has its origin at point 4 and moves so as always to be par-
allel to the fixed frame. Similarly, one would call %r, the position of Q relative to a
reference frame, with origin at P, that remains at all times parallel to the frame R. The com-
plexity of this statement explains the widespread use of the term “position of Q relative to
P for Rrpp.

Often, when all vectors are referred to the same reference frame R, we will drop the
superscript R to simplify the notation. That is, @; = Rwj. This was the case in Chapter 2
when the fixed frame (link 1) was understood to be the reference frame for all vectors.

The basis of the velocity analysis of planar linkages is the relationship between the
velocities of two different points when something about the motion of the two points is
known relative to a moving coordinate system. To derive this relationship in a form suit-
able for the formulation of a velocity polygon, let us consider the points P and Q shown in

FIGURE 3.1 Position of a
point relative to three different
reference frames. The position
of point Q relative to frame M
is Mr,. This vector is quite dif-
ferent from that of the position
of point Q relative to the refer-
ence frame fixed to lamina

L: Lr, or from that to the posi-
tion of the same point relative
to lamina R: &r,.
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Fig. 3.2. If Rr, is the absolute position of point P relative to reference frame R, RrQ is the
absolute position of Q relative to reference frame R, and BrQ/P is the vector from point P to
point Q defined relative to the moving reference system B, then we can write

R _R B
=Tt Ty/p (3.1)

Note that Eq. (3.1) is the same as Eq. (2.2) with superscripts added to aid in keeping track
of the reference frames. As indicated before, the vector BrQ/p is called the position of Q rel-
ative to P when the observer is fixed relative to reference system B.

Although P and Q may be fixed to body B, Eq. (3.1) is valid regardless of the link to
which points P and Q are fixed (i.e., P and Q may be fixed to link B or some other link).
To obtain the velocities, we must differentiate Eq. (3.1) when the observer is in reference
frame R.

Note that, in the position considered, the coordinate axes for systems B and R must be
parallel. This condition will be assumed in all future developments requiring multiple coor-
dinate systems. Otherwise we cannot add vector components as implied in Eq. (3.1). If the
nominal coordinate systems attached to the two links are not parallel, we must use another
set of coordinate systems that are momentarily parallel. The two coordinate systems fixed
to a given link would be related by a simple coordinate transformation.

3.3 GENERAL VELOCITY AND ACCELERATION

EQUATIONS

3.3.1 Velocity Equations

When we differentiate Eq. (3.1) with the observer in the reference system R, we get

R R R
)=o)+ o) 62)

The derivatives of the position vectors defined relative to reference system R can be repre-
sented in a straightforward manner as velocities relative to reference system R because the
reference axes relative to which the vectors are defined are fixed to R and do not move with
time. Therefore, Eq. (3.1) becomes

by
R
VY

R,
@y

B FIGURE 3.2 Positions of two points in the
ro moving lamina, B. rp and r,, are the respective
positions of points P and Q relative to the
fixed reference frame R. wy, is the angular
velocity of B relative to R. Note that this figure
o) >~ is similar to Fig. 2.1.

p
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R, _R d (s
Vo="vp +E( rQ/P)

3.3)
However, note that Zrs is a vector defined relative to the coordinate system fixed to body
B, and the reference axes of body B rotate relatjve to those of reference system R with an
angular velocity Re;. Therefore the derivative ?‘f(BrQ/p) must account for this rotation. In
particular, the derivative involves two terms, one associated with the change in magnitude
of the vector and one associated with the change in direction. This is apparent if we repre-
sent the vector BrQ/P as a general three-dimensional vector in terms of its components and
unit vectors. Then,

BrQ/P =x8i +y8j +ZBk

and
R R
d(p _d( . B, B
E—( rQ/P)— Z (x i+yj+z k)
R R R R B, R B; R;B
= Ji—£‘9i+ﬂﬁj+——fi—z-”k +|x d'+y 43 ., 9%
dt dt dt dt dt dt (.4)

In the first term, the derivatives of the components correspond to the change in the length
of the vector, and this is defined relative to the coordinate system fixed to body B. There-
fore, this is just the velocity defined relative to body B. The second term accounts for the
rotation of the coordinate axes of B relative to the reference frame R.

Because Zi, Bj, and Bk are unit vectors, only their directions can change with time. We
can determine how to evaluate the derivatives if we look at an infinitesimal angular dis-
placement 86 of body B relative to R during an infinitesimal time increment 8t.

Because infinitesimal angular rotations are involved, we can treat 6 as a vector with
x, y, z components (i.e., 80 = 80,%i = 80ij = 860,Rk) and determine how each component
changes the directions of the unit vectors. The angular velocity will be the change in the
angular position during the infinitesimal time increment &¢. That is,

_ Rsp, _ "6, _ %50,

, @ ,
8t Yo 8t ‘6t

and
Fop =0, fi+w, "+, %k (3.5)

To identify the trend, consider the effect of the angular components about the X axis. For the
x direction (unit vector 2i), the change in the unit vector is represented in Fig. 3.3. From the

figure,
%d(*i) =1"jdo, ~1" kds, 3.6)

The change takes place during the time increment 8¢. Therefore, dividing Eq. (3.6) by
St we get

& R Rj Ry
—‘E-(Bi) =R, ~ Rkwy =Rwpx®i = |w, 0, o,
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Y Rah) = 1%8 6. -1°k56,
Vg /\59
‘IR" 86, FIGURE 3.3 Change in i owing to a rotation about the X,
z Y, and Z axes fixed to R.
Similarly,
R
d(p.\ _=r B.
E( 1) = wpX'J
R
d(a R B
—\ %k} = "wyx"k
dt ) B
Therefore,
R ;B; R B, R ;B
di a’j d R B:, R B:,_R B
x + +z =X" WX i +y WX j+z wyx"k
di y a dt B Y @wpX]j B
=Rw3 x(xgi +yBj +sz)=RwaBrQ/P
Then,
R R R R R ;B; R ;B; R B
d(B ) dxg, “dyp. ‘dzg d’i d’j d’k
—|\ e |=| —"i+—"j+—"k |+| x + +z
ar\ )T g a 1 ar ar Y ar dt

B R B
= vQ/P+ WpX ro/p (.7)
Now, Eq. (3.3) can be written as
R R, B R B

Before proceeding to the development of the acceleration equations, it is interesting to note
that Eq. (3.7) is quite general. We could have derived a similar expression for the derivative
of any vector that is defined relative to a moving coordinate system. For example, if s is any
vector (e.g., position, velocity, or acceleration) and if U and W are any two different coor-
dinate systems,

U W
28 ) 2 1 ot 75 o

Note that angular velocity is a property of a body and linear velocity is a property of a point.
In both cases, it is necessary to specify, or at least understand, which reference frame is used
to define the quantity. Also note that if the vector is defined in the coordinate system in
which the observer stands, the term involving the angular velocity will be zero. That is,

UwU=0
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3.3.2 Acceleration Equations

The acceleration equations will involve the derivative of each angular velocity. In general,
angular acceleration can be written as

RaB - %( RwB)

where again B is the moving body and R is the reference system. As in the case of the angu-
lar velocity, the angular acceleration is a property of the entire body. It is a vector and has a
magnitude and direction.

If a velocity vector is defined in the coordinate system in which the observer is
located, the corresponding acceleration can be expressed simply. For example, if the veloc-
ity vector is given by RvQ, then the acceleration is given by

R“Q=%(R”Q)

To obtain the linear acceleration relationship for the points P and Q in Fig. 3.2, we can dif-
ferentiate Eq. (3.8). Differentiating term by term with the observer in reference system R
gives
R R R R
R, _ _d(r \__d(r B d(r B
aQ = '—E‘( VQ) = ;( vP)+—d_;( VQ/P)'FE( wpX rQ/P)

Considering each term and recognizing that vectors BvQ/P amd BrQ/P are both defined rela-
tive to the moving coordinate system (B), we get, after differentiation,
B
R _R d(p R. _B R, B R B R. B
aQ= aP + E‘( vQ/P)+ wa vQ/P+ aBX rQ/P+ wB X( vQ/P+ wa rQ/P)

and collecting terms gives

RaQ=RaP+ BaQ/P +2 RwaBvQ/P+RanBrQ/P+RwB X(RwaBrQ/P) (3.10)
Note that in the last term, the operation (Rwj X BrQ/P) must be carried out before the oper-
ation Ry X (Rewp X Brpp). Obviously, (@ X @) X r # @ X (@ X r).

The term 28wy X By, is called the Coriolis term and is a function of velocities
only. The term Rarz X Brp is the transverse or tangential component of acceleration iden-
tified before. This component of acceleration is perpendicular to the radius vector. The
term Rw, X (Rwy X Bryp) is the radial component of acceleration. In planar motion, but
not in general, it points in the direction opposite to the radius vector. The term BaQ/P is the
acceleration of Q relative to P when the observer is in the moving body B.

3.3.3 Chain Rule for Positions, Velocities, and
Accelerations

When dealing with mechanisms with a relatively large number of members, it is helpful to
have relationships between the relative velocities and accelerations of several points and
between the relative angular velocities and angular accelerations of several members.
These relationships are particularly relevant to the spatial chain mechanisms discussed in
Chapter 9.
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Positions, Velocities, and Accelerations of Points Let 4, B, C, D, and E
be any arbitrary points moving with respect to the reference frame R as shown in Fig. 3.4.
Then a position equation can be written as

R R R R R
Te/pt Tpjct To/pt rp1a = Tgjy 3.1

This type of equation is just a simple expression of vector addition, and it applies regardless
of the number of points involved. For velocities, we can differentiate Eq. (3.11) with the
observer in system R. Then,

R R R R R
Ve/pt Vpiet Ve/pt Vi = Vi (3.12)
and the acceleration equation becomes
R R R R R
@p/pt @p/ct acipt g, ="ag), (3.13)

Equations (3.11) through (3.13) are applicable to any set of points, and they are especially
useful when determining the kinematic information for points on mechanisms after the
basic kinematic information associated with each link is known. They are also useful when
analyzing manipulators and robots.

The relationship among three arbitrary points (4, B, C) is

R"C/A =R"C/B+R"B/A
Then,
R R R
Tc/= Tc/a— Ta/a (3.19)

Because 4 is arbitrary, Eq. (3.14) indicates that we can find the relative position between
two points by subtracting the relative position vectors between the two points and the same
third point. Similarly, for velocities and accelerations,

R R
R"C/B= Vc/a = VBla (3.15)
and
R
RaC/B=RaC/A 7 (3.16)

Note the positions of 4, B, and C in each of the expressions.

Relative Angular Velocities A chain rule for angular velocities works the same
way as for linear velocities except that now reference systems are involved instead of points,
as shown in Fig. 3.5. Consider three coordinate systems (1, 2, and 3) that are momentarily
parallel. Then,

FIGURE 3.4 Relationship among the positions of a series of points.
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FIGURE 3.5 Relationship among the angular velocities for three links.

'w;='w, +w, (3.17)

and
2, 1L 1. 1. .2
W= W3~ 0, = W3+ 0, (3.18)

This means we can find the relative angular velocity between any two bodies by computing
the angular velocity difference between each of the bodies and the same third body (in this
case body 1).

For n bodies, the relative angular velocities are related by

"=t eyt oy 4+ e, o,

Relative Angular Accelerations For relative accelerations, we can differentiate
the relative velocity equation, Eq. (3.17):

1 1 !
i) =)+ () 619

The first two terms are straightforward because the derivatives are both taken with respect
to the reference system in which each vector is defined. That is,

:%(1103):1“3’ %(lwz):lQZ

The third term is a vector described in the second coordinate system (superscript 2). There-
fore using Eq. (3.9), this term can be written as

4

2

2 )_ d(z )1 2 2 1.2
%@ )= — w0, [+, X, ="y + w, X w
dt( 3)7 @3 @ X @y = sty X

The relative angular acceleration expression in Eq. (3.19) can then be written as
la,=lo, 2oy +w, X,
This expression can be extended to n bodies using
la,='a, +"a,+'0, ¥ o,
Then,
la, =la, 2y Fa, + -+, Ho, oo o, H e o+ e, X e,

Note that, in the plane, all of the w’s will be parallel, making the cross products all zero.
Thus in planar problems, the chain rule for angular accelerations reduces to:



104 CHAPTER 3 LINKAGES WITH ROLLING AND SLIDING CONTACTS AND JOINTS ON MOVING SLIDERS

1“;, =‘a2 +2a3 +3a4 +-- -+"‘1a,, (planar problems)

Note that this equation could be treated as a scalar equation if signs are applied to the mag-
nitudes of the angular accelerations according to some rule (say + for CCW and — for CW).

3.4 SPECIAL CASES FOR THE VELOCITY AND
ACCELERATION EQUATIONS

Equations (3.8) and (3.10) are the most general forms for the relative velocity and acceler-
ation equations for points that we will encounter in the kinematic analysis of linkages. In
most practical problems, some of the terms in the expressions are zero. Three special cases
often occur, and these will be discussed separately in the following.

3.4.1 Points P and Q fixed to B

This is the most common situation that exists in the analysis of mechanisms. If P and Q are
both fixed to B, as shown in Fig. 3.6, we have

B _B _
Vo,/py = g, /p, =0 (3.20)

because P and Q do not have any motion relative to an observer in the moving body B.
When Eq. (3.20) is used to simplify Egs. (3.8) and (3.10), the results are

R, _R
vo="vp+Rep x 1y p (3.21)
which can be recognized as being the same as Eq. (2.1), and
R R
RangaP+RanrQ/P+ Wp X( Wp XrQ/P) (322)

which is the same as Eq. (2.8).

Here we have dropped the superscript on 7y, because all coordinate systems are
assumed to be parallel, and r,,» will have the same coordinates in all coordinate systems.
Note also that we could have rewritten Egs. (3.8) and (3.10) relative to any other link; how-
ever, only the choice of the link (B) to which Q and P are attached simplifies the equation.
Using the radial and tangential notation, we can also rewrite Eq. (3.22) as

R__R R r R _t
aQ— ap+ aQ/P+ aQ/P

where

R _t _R
Go/p= @B XTo/p (3.23)

FIGURE 3.6 Two points fixed to the same link.
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and
R r _R R
8/p= "’Bx( "’BX’Q/P) (3.24)

We will use the radial and tangential notation extensively in mechanism analyses. For planar
mechanisms, Rat,» and Ra'y, will be orthogonal to each other because R and Rery are
both orthogonal to ryp. In spatial mechanisms, however, this will not always be the case.

3.4.2 P and Q Are Coincident

A second special case in kinematics is that in which P and Q belong to different bodies but
are momentarily coincident. This case is shown in Fig. 3.7. Then, r5/, is momentarily zero,
and Egs. (3.8) and (3.10) reduce to

R _R B
Vo= vpt Vo/p (3.25)

If Egs. (3.25) and (3.8) are considered carefully, it is apparent that the equation for the rel-
ative velocity remains the same regardless of the body chosen as the moving body. This
means that the relative velocity term BvQ,P is independent of the coordinate system chosen
for the “moving” body. Therefore,

i B R
Yo /p="Vo/p= Yo/p

where i and B are any systems.
The acceleration equation, Eq. (3.10), simplifies to

R R B R B
ap="apt-agp +2 “wg X Vo/p (3.26)

Here, the Coriolis term is a function of velocities, so it can be computed as soon as the
velocity analysis is completed. Only BaQ,P involves new information not available from the
velocity analysis.

3.4.3 P and Q Are Coincident and in Rolling Contact

If points P and Q are not only momentarily coincident but also in rolling contact, Egs. (3.25)
and (3.26) can be simplified still further. This condition is shown in Fig. 3.8. If two points are
in rolling contact, they have the same velocity and their relative velocity must be zero. This
means that

PO
Body B

X
Tpio»
Body R ’Q/O\
4]

®)

FIGURE 3.7 Condition when two separate points (a) become momentarily coincident (b).
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FIGURE 3.8 Condition for rolling contact.

and
R R B
aQ= aP+ an,/P

Using logic similar to that used with Eq. (3.25), it is apparent that although the relative
acceleration 8 ay,p is not usually zero, it is independent of whatever coordinate system is
used for reference. This means that the relative acceleration will be the same when observed
from any of the links in the mechanism.

We will examine examples of the special cases in the following. To simplify the equa-
tions and the nomenclature, we will use a superscript to identify the coordinate system only
when the coordinate system is different from 1. Therefore, if no superscript is indicated as
was done in Chapter 2, the frame coordinate system is automatically implied.

3.5 LINKAGES WITH ROTATING SLIDING JOINTS

Mechanisms in this class can have either a slider that slides on a line that is rotating or a pin-
in-a-slot joint where the slot is straight and rotating. These cases are shown in Fig. 3.9,
where the link numbers have been chosen arbitrarily.

Mechanisms with sliders that rotate are common in practice. Typical examples are
door closers, the hydraulic cylinders on power shovels, and the power cylinders on some
robots. The pin-in-slot joints, often with a free-spinning roller centered on the pin, are typ-
ically used as inexpensive substitutes for slider joints. They function where the transmitted
loads are low. Examples where they appear are electric toothbrush mechanisms, audiotape
cleaners, and walking-toy mechanisms.

The analysis of these mechanisms can be approached using the special case in sec-
tion 3.4.2 for relative velocities and accelerations of coincident points. The resulting veloc-
ity and acceleration equations for two coincident points P and Q are given by Egs. (3.25)
and (3.26). Dropping the superscript R for the frame, we get

B
VQ =VP+ VQ/P

B B
ag =ap+-ayp +2wz X" vy p

<\w4, s

PB’P4'P5

FIGURE 3.9 Joints that can be analyzed as rotating sliding
joints. (a) Pin in straight slot, (b) rotating slider. The link num-
bers have been chosen arbitrarily.

®



EXAMPLE 3.1
Velocity and
Acceleration
Analysis of a
Quick-Return
Mechanism
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When the points are coincident, P and Q will share the same coordinates, and they will usu-
ally be designated by the same letter with a subscript identifying the link to which they are
attached. For example, if 3 and 4 are the links to which the coincident points are attached, if
body B corresponds to link 5, and if the frame is 1, the velocity and acceleration equations
can be written as

— 5
vPs -vP4+ vps/p“ (3.27)

and
_ s s
ap, =ap +ap jp +205XVp p, (3.28)

Once again, ap p, 18 called the acceleration of P; relative to P, when the observer is
in system 5. The term 2(«)5 x5 vp/p,1s the Coriolis component of acceleration, and it can be
written as a§ pyp, EQ. (3.28) can then be written as

ap, = ap + ap /p, + aP /P,
for graphical analyses.

In planar motion, the Coriolis component is normal to 3 vp,p, and has the magnitude
2(ws) vpyp,|- Its sense is obtained by imagining vp 2 to be rotatmg about its tail in the w;
dlrectlon The direction of movement of the head of vp,p, gives the sense. To illustrate the
manner in which Egs. (3.27) and (3.28) are used in graphlcal linkage analysis, consider the
following example.

Find the sliding velocities of the slide, the angular accelerations of links 3 and 4, and the acceleration
of slide 5 for the quick-return mechanism of Fig. 3.10. The dimensions are as shown. Link 2 is driven
with a constant angular velocity of 10 rpm CCW.

12.5"

BC =10"
0,8 =130"
=10"

FIGURE 3.10 The quick return linkage to be analyzed in
Example 3.1.
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Solution

Link 2 is the driver, so we will begin the analysis with point 4,. We must conduct the velocity analy-
sis first. If that analysis is done carefully, we can proceed with the same points for the acceleration
analysis. As in the previous examples, we will develop the basic equations first and then give the
graphical procedure for solving them. The velocity of point 4, is given by

Va, TV, /0, = @2 X1y o,

In the analysis of mechanisms of this type, it is important to identify the link in which the observer is
located. Therefore, the left superscripts will be maintained when the coordinate system is different
from 1. We must now use the coincident point 4; to be able to develop an equation relating a point on
link 2 to a point on link 3. We can write the relative velocity equation in one of two ways:

_ _ 3
Vi, = Va F Ve =V F Y (3.29)

or

_ _ 2
Vi, =Va, tVaja, SV, F Va f, (3.30)

To solve the problem, we must be able to recognize the direction of the relative velocity defined in the
moving coordinate system. Referring to the mechanism in Fig. 3.10, we see that if the observer is
fixed to link 2, it is not possible to identify directly the direction of the veloc1ty Vi) ; however, if the
observer is in link 3, it is possible to identify the direction of the velocity 3 Vi, because the pm at A
is constrained to move along the straight slot in link 3. Therefore, the direction of the velocity 3 Vi,

must be along the slot. Because we can determine the direction of 3vA 1, by inspection, Eq. (3. 29) 1s
more useful than Eq. (3.30).

In problems such as this, it is important to identify clearly the links relative to which the velocity
directions can be identified. The same links can be used for the subsequent acceleration analysis, and
it is usually much easier to visualize velocities than it is to visualize accelerations.

After Eq. (3.29) is solved for the unknowns, V4 will be known. Then v, can be found from the
velocity image of link 3 using O, 4,, and B;. Knowmg v, which is the same as v, , We can write the
following equation for the velocity of C,:

vcﬂ - vBﬂ + vCJ/84

(3.31)

Because the directions of v, and v¢, 5, are known, we can solve Eq. (3.31) for the unknowns. After
Egs. (3.29) and (3.31) are solved, we can compute the angular velocities of links 3 and 4 from

Va,jop =@3XTg Jo,

and
Ve, /s, = @Ws X T [,
For the acceleration analysis, we need only differentiate Eqgs. (3.29) and (3.31). The results are
aAZ = aA\ + aAZI/A\
and

ac, =@, tac /p,

Expanding the equations in terms of vectors relative to moving coordinate systems, we obtain

r t N t 3 3
aAZ/OA +aAz/o.4 _aAs/Os +aAs/03 * aAz/A" +2(w3x vA3/A3) (332)
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and

— T t
aca _aBs/os +ac,/B4 +aC,,/B,‘

(3.33)

where

@ j0,= I 0,05 from 4 o O,

@0, = @; X 140, perpendicular to 40,

@ 0,= T4 0,03 from 4 to O

@y j0, = @3 X Iy o, (@3 is unknown but the result is perpendicular to E )

3a 41,/4, has a magnitude that is unknown but its direction is along the slot in link 3
2(w; X 3v,,,) is the Coriolis acceleration perpendicular to 3v, ;.

ac, is along the slider path of link 5

a3 o, is found by acceleration image of link 3

a5, =1 503 from Cto B

at 5 = a, X r¢ g has a magnitude that is unknown but a direction
44 474 —_—
that is perpendicular to CB

Based on the position and velocity analyses, there will be only two unknown magnitudes in
Egs. (3.31) and (3.33). All of the directions will be known. Therefore, the equations can be solved.

Steps
1. Draw linkage to scale as shown in Fig. 3.11.
2. Compute Va, and plot Vs, normal to T,,/f as @) .
@, =10 X 27/60 = 1.0472 rad/s CCW
Ve, =@y X Ty X 10 = 10.472 in/s perpendicular to 4O, in the direction shown in Fig. 3.11.
3. Draw a line through a, parallel to OB .
4. Draw a line through o normal toT,A3'. The intersection with the line from step 3 gives point a;.
5. Locate b, using the velocity image g%i— = %ﬁ%
ob; =7.26 X (30/26.48)=8.22 in/s
6. Draw a line through b, normal to BC.

7. Draw a line through o parallel to the slide. Its intersection with the line drawn in step 6 gives
point c,.

8. Measure v¢, = oc,, Vaya, = Ka; and Veys, =m‘
ve, = 11.06 infs, v, 1, = 5.09 infs, v, 5, = 2.823 in/s
9. Compute @;=v,40./7 4.0, a0d @4 =V p [T p,
w, =(9.07)/(26.37) = 0344 radfs CCW
w, =2.823/5=0.565 rad/s CCW



110

CHAPTER3 LINKAGES WITH ROLLING AND SLIDING CONTACTS AND JOINTS ON MOVING SLIDERS

10.

11.

12.

13.

FIGURE 3.11 Solution for Example 3.1.

Get the senses of w; and w, by looking at the directions of rotation of r, ,, and r 5 needed to
3 g Y08 CyBy
get the respective relative velocity directions.

Compute a,, and plotitaso’a’ .

|¢.z,2|2 =10x1.0472% =10.97 in/s’

aAZ = rAZ/OA

Compute a(jz, 4y = 2(w3)(vA2/ A}) and get the sense of agz/ Ay by rotating (v 4y4,) 90° in the w; direc-
tion. Plot it with the tip at a’,.

aSj, =2X5.09%x0344=3.50 in/s?

Draw a line normal to a,,,, and through the tail of ¢ . This line corresponds to 3a 44, that is
along the slot.



14.

15.

16.

17.

18.

19.

20.

21.

22,
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Compute @), o, and plot it from o’ in the 4,05 direction.

o jou|Jos|| =2637x0.3447 =312 inf6®

ar
45/0,

Draw a line through the tip of &, ,, normal to OpA4; . This vector corresponds to a§3/08~ Its inter-
section with the line drawn in step 13 gives point a';.

Locate point ’; using the acceleration image 9-,-!)—,3- = O—BBi.
o'a’s Opd

o'b; =3.62%(30/26.37)=4.12 in/s?

Plot a5, from point b'; parallel to CB.

e, /.| jos| = 5x0.608% =1.85 in/s’

a T
C./3,
Draw a line through the tip of at, 5, normal to CB.
This vector corresponds to atC.z/Bi

Draw a line through o’ parallel to the slide. Its intersection with the line generated in step 18
gives point ¢’,.

Measure a; ;o and acs,

@' 1o, =1.870 in/s® and al |, =3.197 in/s?

t t
/0y acys,

a',
Compute oy =7, 0 and a, = 73

4

and get the senses of these angular accelerations by con-
sidering the directions of rotation needed to rotate the position vectors in the directions of a§43/08
and af; 5 , respectively.
o, =1.870/(26.37) = 0.071 rad/s® CW
a, =3.197/5=0.640 rad/s> CCW
Measure ac,.
ac, = 0.7986 in/s? directed to the right

One of the useful features of the quick-return linkage is a long range of motion with

relatively uniform velocity on the forward stroke. The small value of a, is indicative of this
property.

3.6 ROLLING CONTACT

Rolling contact is quite often used in practical linkages. In addition to the obvious case of a
wheel rolling on a surface or a rail, rolling contact between a cam and a roller follower is a
common example. Also, the pitch cylinders of spur and helical gear pairs and the pitch
cones of bevel gear pairs can be considered to be in pure rolling contact. In that case,
although the actual physical contact between the gear teeth is a general combination of
rolling and sliding, the gear pair can be modeled as a pair of simple elements in pure rolling
contact from the point of view of investigating gross kinematic properties.

Rolling contact can be approached in two different ways, depending on the level of

detail desired. If the velocities and accelerations of the rolling elements themselves are
immaterial, it is possible to solve for the velocities and accelerations of the other links in a
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rolling-contact problem by replacing the actual linkage with a virtual linkage in which the
rolling elements are replaced by a single link with length equal to the sum of their radii of
curvature. If the velocities and accelerations of all the links are important, then one or more
additional relative velocity (or angular velocity) relations are necessary to obtain the angu-
lar velocities of one or more rolling links. Both approaches will be discussed.

3.6.1 Basic Kinematic Relationships for Rolling Contact

Figure 3.12 shows two rigid bodies in rolling contact. The bodies are arbitrarily taken to be
links 2 and 4. The contact location is B, and the centers of curvature of the two bodies cor-
responding to B, and B, are O, and O,, respectively. At the point of contact for two bodies
rolling on each other, there is no relative sliding between the two points (B, and B,) at the
location of contact. Because B, and B, are not only momentarily coincident but also in
rolling contact, they have the same velocity, and their relative velocity must be zero. This
means that

vBZ = vB“
and

4 =4 —
sz/B-z_ sz/Ba_ sz =0

Note that this is exactly the same velocity condition as that for a revolute joint. There-
fore, for velocities only, the point of rolling contact can be treated as a revolute joint. How-
ever, this is not true for accelerations.

The relative acceleration a5, is usually not zero, but it is independent of the coordi-
nate system. Therefore,

4 4
a,/8,= 98,/B,= 9, (3.34)

From Eq. (3.34), it is apparent that the direction of 1a,, 5, 1S the same as the direction
of 4 ap, which is the absolute acceleration of point B, observed from link 4. Therefore, it is
usefu] to determine the path that B, traces on 4 (or B, traces on 2) to determine the direction
of the acceleration of 4aB2. To do this, first imagine that link 2 is a circle and link 4 is a
straight line.

From experience (for example, from looking at a bicycle tire reflector at night) we
know that the path of B, will look as shown in Fig. 3.13. That is, the path forms a cusp at the
contact location. The cusp will approach the contact point in a direction that is tangent to
the normal to the contacting surfaces at the contact point, and the cusp will also leave the
contact point in a direction that is tangent to the common normal. This means that the accel-

FIGURE 3.12 Two links in rolling contact.
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Common Nomal at B

@y

~Path of B, on Link 4

FIGURE 3.13 Path of motion of B relative to link 4.

eration must be along the common normal at the point of contact. The same kind of rela-
tionship also applies for general bodies.

To conduct an acceleration analysis of mechanisms involving rolling contact, it is
necessary to determine both the magnitude and direction of the relative acceleration
between the two contact points. Because we know that the direction of the relative accel-
erations will be along the common normal at the point of contact, we need only determine
the magnitude.

To do this, first consider a general rigid body R. If the contour of the rigid body is
known at any given point on the contour, which must be the case for a kinematic analysis,
the center of curvature, O, for that body can be found. If a circle of radius OgB is drawn,
that circle will be tangent to the contour at B, and it will share three points (separated by
infinitesimal distances) with the curve R. This circle is called the osculating circle to the
curve at point B, and the circle is a unique property of the curve for the point considered.
An example is shown in Fig. 3.14.

If we consider two general links (2 and 4) in rolling contact, we can draw the osculat-
ing circle for each curve. As the two bodies roll together, the three points shared by the
osculating circles will be in contact with each other. Therefore, for two differentially sepa-
rated time periods, the curves could be replaced by their osculating circles. Because only
two differentially separated time periods must be considered for accelerations, we can
replace the original curves with their osculating circles, and the kinematic results for posi-
tion, velocity, and acceleration will remain unchanged. If higher derivatives than accelera-
tions are desired, however, we cannot replace the original surfaces with their osculating
circles. Obviously, a different osculating circle may be required for each contact position if
the surface of body R is general. However, for a kinematic analysis to be conducted, the
geometry of the surface must be known, and therefore the osculating circle corresponding
to each point on the periphery can be identified.

Osculating Circle at B

/

Center of curvature
corresponding to B

FIGURE 3.14 Osculating circle.
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The replacement of the general surface with osculating circles is extremely useful in
kinematics whenever higher pairs are involved. The special properties of circles make it rel-
atively simple to analyze linkages with rolling and cam joints using this approach.

Because we can replace the two curves with their osculating circles, we can connect
the two centers of curvature by a virtual link pinned to the two bodies at the centers of cur-
vature, and the two bodies can still move relative to each other. This is precisely the condi-
tion existing when two gears in a standard transmission are meshed. For the sake of
discussion, let the two bodies again be links 2 and 4 and let the virtual link be designated as
x, as shown in Fig. 3.15. With this arrangement, we are now in a position to compute the rel-
ative acceleration 4‘132/54- To do this, we will use Eq. (3.34) and compute a5, which is
equal to *ag .

As with any planar vector, the acceleration ag 5, can be resolved into two orthogonal
components. It is convenient to resolve the vector into one component along the common
normal to the two curves at B and another along the common tangent. That is,

_ _n t
5,/8, = %,/8, T %, /3,

However, we know from our earlier discussion that the relative acceleration must lie
along the common normal. Therefore, the tangential component must be zero, and the total
relative acceleration between B, and B, can be represented as

N
aBz/BA - aBZ,/B,,

We can compute the normal acceleration by writing the relative accelerations among
the points B,, B,, O,, and O,. That is,

" n n
4s,/8, =9, )0, +a(oz)x/(o,)x +4./8,

Now consider individually each term on the right-hand side of the equation. Each
term will be a function of velocities and can be computed in a variety of ways. For example,

2
v
B,/0,

a;‘;z Jo, = "“’%’B/oz = |w2v B0, |n n (from B towards 02)

|rB/02

Virtual link pinned to links 2
and 4 at the centers of curvature
corresponding to B

FIGURE 3.15 Virtual link pinned at the centers
of curvature of the two bodies in rolling
contact.
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and
2
2 0,/B.
a& /8, = @40, /B, =|w4v04 /B,{n= By (ﬁom O, towards B)
'0,/B,
Similarly,
V2
a’ =—w’r, =—|w,vp, /o, I8 = - 9% . (from 0, towards O
o = <F bl | :
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(3.35)

To evaluate the first two expressions on the right-hand side of Eq. (3.35), we need to
develop an expression for w,. To do this, we can derive relative velocity expressions among

B,, B,, O,, and O,. Considering links 2, 4, and x, we have

sz = vOZ + szfOz = vOZ +(02 X rB/OZ

de = v04 + v84/‘04 = v04 +w4 X rBf/OA

vOZ = VO4 + vOzi!04 = VO4 +(0x X r02/04
Combining these equations and recognizing that vy = vy, we get

W, X1y, /o, = Yo, ~Vo, =V0,/0, =W XIgjo, —Wy XTIpjp,

Recognizing that rg, = — o 5, We can also write Eq. (3.36) as

W, X fo,/0, = @4 X 3/0, +w, X fo,/B

The magnitude of @, is given by

10,/0, 10,/8 t 18j0,

If the direction is of interest, it can be determined from the vectors in Eq. (3.37).

(3.36)

(3.37)

To summarize, in rolling contact problems, we know that the two contact points (e.g.,
B, and B,) have the same velocity. Also, given the acceleration of one of the points, say B,,

the acceleration of the other point can be computed from

- n
ag, =ag, +aBZ/B4

where @} 5, can be computed using any of the following:

2 2 2
v v v
B /0, _ 0,/0, + 0,/B, n

fo, /3,

n
a =
B,/B,

s, /0,| [fo,/0,

or

+w

2
- w

n - 2
aBz /Bs ~ (wz |rBf/ 2 fo, /0, "o,/B I)n

or

(3.38)

(3.39)
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EXAMPLE 3.2
Analysis of
Linkage with a
Rolling-Contact
Joint

Solution

n -
aBZ /34 = (|w2vB/02 vaO: /04 + |w4v04 /Bl)n

(3.40)
If one of the rolling surfaces is flat, the radius of curvature will approach infinity, and the
corresponding acceleration term will become zero. For example, if the rolling surface for
link 2 is flat, then O, is at infinity, and the acceleration expressions reduce to
V(z) B
ag, /B, = Ir“#n = wﬁrm /B = |w4v04 /B, |n (from 0, towards B)
04 /BA

In the linkage shown in Fig. 3.16, link 4 is a gear, pivoted at Oj. Link 3 is a gear meshing with 4 and
has a lever fixed to it that is hinged to link 2 at 4. Link 2 is driven at a constant angular velocity of
10 rad/s CCW. Find the angular acceleration of gear 4.

40, =10in
40" =3250in
PQ =0875in
0 =1125in
0,0, =4.0in

FIGURE 3.16 The linkage of Example 3.2.
This is an example of a geared five-bar link-
age. Geared five-bar and six-bar linkages are
used quite frequently as alternatives to four-
bar linkages. They allow more flexibility in
synthesis than four-bar linkages because they
have more dimensions that can be varied.

In this instance we cannot ignore the acceleration of either of the two contacting bodies. The angular
acceleration of gear 3 is the same as that of arm 4Q to which it is rigidly affixed. The angular accel-
eration of gear 4 is the quantity to be found.

For the velocity analysis, the equations to be solved are

vAZ/Ol =w2 Xr42/04
vPA/OB =vAl +v1)\/A\

For the acceleration analysis, the corresponding equations are
a =a , +a'
Az/o‘ - AZ/O.J AZ/OJ
r t r t n
a +a =a +a +a +a
rfo, " “pjo, 4,/0, P, /4, P, /4, p/P,

Here the unknowns are the magnitudes of the two transverse components, a‘ps,‘,h and a‘p“/oa.

Steps
1. Draw the linkage to scale as shown in Fig. 3.17. To do this, first draw link 2 and locate point A.
Next find the center O, knowing that it is on a circle of radius 4Q centered at A and also on a
circle of radius QO centered at Oj. After locating Q, draw the line 4Q and the circles corre-
sponding to the pitch circles of the two gears.

2. Compute V4, and plot as oa.

V4, =@y X100 =10in0/s, v, is normalto 0,4 .
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FIGURE 3.17 The graphical solution of Example 3.2.

3. Draw a line through o normal to OgP .
4. Draw line AP .

5. Draw a line through a5, a; normal to AP . The intersection of this line with the line generated in
step 3 gives the point P. Notice that since the barE is rigidly fixed to gear 3, line AP is fixed
in member 3. Although at any instant, the point at P; is fixed to member 3, a different P (and dif-
ferent point) is involved for each position of the linkage.

. Draw a line through a; normal to E . The intersection of this line with the line generated in
step 3 gives the point g;. Point g; could also have been located from points a; and p; by using
the velocity image theorem.

. Compute w; = vp}/,,}/rpz/,.,3 and w,=vp 4/05/"0 »p and find the senses needed to give the directions
of vp, 4, and vp . Because of the pure rolling condition of the pitch circles of the gears, the

velocity of point P is the same regardless of whether it is considered to be in member 3 or
member 4.

w;=6.85/3.258 =2.10 rad/s CW
w,=38.32/1.125 = 7.39 rad/s CCW
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8. Compute a, = ajj, 0, and plotas o’a’ .
2 .
a, =1, 1 Xw; =1x10° =100 in/s’

9. Compute and plot a;3/,,] in the P4 direction from pointa’.

ap 4y, = APXw; =3258x2.10° =14.39 in/s?

10. Compute app, using the equation form given in Eq. (3.54). Then,

2

an —_ ’vPA/OB
P4/P3 -

2 2
. 1%, /o] X Ivo./s,| N E . lo.54f . 1.92f
Yo, o, %, /0, o./P, 1.125 2 0.875
(PtoO5) (05100;) (Qst0R) (PtoOp) (Opto ;) (Qst0 P)
By arbitrarily taking direction }TO; as positive, the signs of the individual terms can be identi-
fied. Then,
app,=61.53 -21.38 =421 =44.36 in/s?

Note also that app,=—ap p, and has the direction from the center of wheel 3 toward the center
of wheel 4. Plot a, , from the tip of a'p g

11. Draw a line through the tip of vector ap p normal to AP.
12. Compute ap,0, and plot ap 0, from o' in the POy direction.
ah o, = 7o jo, X'Vi = 1125 % 7.30° = 61.4 in/s’
13. Draw a line through the tip of vector aj 0, normal to OpP . The intersection of this line with that
drawn in step 11 gives p',.
14. Compute oy = a},4,03/r,>4/05 and find the sense needed to give the direction of ab o,
a,=74.25/1.125 = 66.0 rad/s2 CCW

Note that this construction, with the vectors in the order shown, gives the correct position for p’,
but not for p';. This does not matter for the present purpose. However, if the correct position of p’,
were required, either to get the absolute acceleration or to construct the acceleration image, it would
be obtained by plotting ap,p, from p’, as shown in Fig. 3.17.

Although the acceleration of the contacting point in one body relative to that in the
other has been worked out assuming circular contacting profiles, it can also be used if the
profiles are not circular. The radius of the circular profile is simply replaced with the oscu-
lating circle of the profile at the point of contact.

3.6.2 Modeling Rolling Contact Using a Virtual Linkage

As a second example of rolling contact, we will consider the plate cam with roller follower
shown in Fig. 3.18. In this mechanism, we are given the angular velocity and acceleration of
link 2, and we wish only to know the angular velocity and acceleration of link 4. We are not
interested in the velocity and acceleration of link 3. When this is the case, we can model the
linkage with a virtual link between the centers of curvature of links 2 and 3 corresponding
to the contact point P. The cam—follower mechanism can then be analyzed as the virtual
four-bar linkage O,4BO;. Line O,4 is fixed to link 2, so the angular velocity and accelera-
tion of 0,4 will be the angular velocity and acceleration for link 2.



EXAMPLE 3.3
Analysis of a
Geared Linkage—
Rolling

Contact

Solution
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Find the angular velocity and angular acceleration of the arm (link 4) of the linkage in Fig. 3.18 for
0 = 90° when the cam, 2, is rotated CCW with constant angular velocity 1000 rpm. The following
basic dimensions are given for the mechanism:

0,0;=4.01n, OzB=425in, r,=05in, r,=2.5in, 0,4 =1.153 in, 4B=0.901 in

FIGURE 3.18 A plate cam with
roller follower. For given angular
velocity and acceleration of cam 2,
the angular velocity and angular
acceleration of the arm 4 can be
found by replacing the linkage with
the virtual four-bar linkage O,4BO;.
Here point 4 is the center of curva-
ture of the cam profile at the contact
point P.

The steps to analyzing this mechanism are the same as those required for the four-bar linkage in
Example 2.1. The velocity equations that must be solved graphically are

Va,fo, = @2 X T4, fo,
de/OB =VAZ/OA +v85/‘45

where the virtual link is designated as link 5. The acceleration equations that must be solved are

r t
Q,/o, =, Jo, + aAz/o,

r
=a

r t
a +a
4,/0,

t r t
+a +a +a
B,/O,, Ba/oﬂ A:/ /As

OA BS B5 /AS

Steps
1. Draw the mechanism to scale as shown in Fig. 3.19. Note that, for this analysis, we need draw
only the virtual mechanism.

2, Compute w,
w, = 1000 X 27/60 = 104.75 rad/s

3. Compute and plot v, o .

Vi jo, = Xy o, =10472x1.153 =120.74 in/s normalto 044

4. Solve the velocity equation graphically and measure V8,0, and VByd,:
vBS/oB =38.95 m/S, vBS/AS =108.2 in/s
5. Compute ws and @, and determine their senses.
Ws =V 14, [75, /4, =108.2/0.901=120.1 rads CW
@, =Vy /o, |75, j0, =38.95/425=9.16 rads CCW
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.
a
4,0,

t

a
B0y

a
5%

FIGURE 3.19 The velocity and acceleration polygons for Example 3.3.

Notice that ws is the angular velocity of a virtual link containing the line 4B.
6. Compute and plot a 4,00, = a,',Z,OA.

@0, =raj0, X @2 =1.153 X 104.72 = 12,640 in/s? in the 40, direction
7. Compute and plot a} ;o from point o’ and ap, 4, from pointa’.

@} j0, =50, X @42 =425 X 9.162 =356.6 in/s? in the BO, direction

a5, =rp. X ws2=0.901 X 120.12 = 13,000 in/s? in the B4 direction

55 575

8. Measure aj o,

a0, = 25,290 in/s?

9. Compute a, and determine its sense.
@, =a's, /o, [rsjo, = 25,290/4.25 = 4440rad)s’ CW

Notice that the reason this relatively simple approach can be used is that we are not interested in the
angular acceleration of the roller, link 3. This is definitely not equal to the angular acceleration of the
line AB, which, for convenience, was called the virtual link 5.
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3.7 CAM CONTACT

The analysis of mechanisms with cam joints can be conducted either directly or through the
use of equivalent linkages. We will look at the direct approach first.

3.7.1 Direct Approach to the Analysis of Cam Contact

In the general case of cam contact, there will be both rolling and sliding at the contact point,
and this is probably the most typical type of higher pair contact between two bodies. If we
look at two arbitrary bodies (e.g., 2 and 4 in Fig. 3.20) at the contact location B, we know B,
and B, have the same coordinates:

Ts, =73,
However,

Vs, * Vg,
or

Vg, ¥ 0

We can obtain some information on v,z by recognizing that coincident points are involved
and

—4 —4
Ve, = VByB, = VB,

Therefore, to analyze the velocity of B, relative to B, or link 4, it is convenient to represent
the velocity in terms of components in the tangential (t) and normal (n) directions relative
to the tangent at the contact point as shown in Fig. 3.20. Then,

_4 _4.n ,4 t
Vs, /B, = VB, /B~ vB2+ sz

If the two bodies are rigid, there can be no component of velocity in the normal direction or
the bodies would either penetrate each other or separate. Therefore, the normal component
of the relative velocity must be zero, and the relative velocity direction must be along the
common tangent to the two bodies at the point of contact. That is,

4‘,1)192:0

and

At _ .t
VB, /B, = Vg, =V, /3,

FIGURE 3.20 Cam contact.
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EXAMPLE 3.4
Analysis of
Mechanism with a
Cam Joint

Solution

We cannot determine anything more about “vt, ,8,; however, knowing the direction for the
relative velocity usually provides sufficient information to conduct a velocity analysis.

We cannot determine anything about ag 3, directly; however, if we expand ag p, into
normal and tangential components, we can compute additional information about it. Then

_.n t
@p,/B, =98,/8, * 4,8,

Note that there is no Coriolis term because the acceleration is defined in link 1 and
not link 4. This is directly analogous to the case of rolling contact except that now the tan-
gential component is not zero. However, by definition, we know the direction of the tan-
gential component.

Using the same nomenclature as in the case of rolling contact (see Fig. 3.15), the
normal component of relative acceleration is given by Egs. (3.38), (3.39), or (3.40). For
example,

2 2

2
n - |sz /02
B,/B,

+ |"04/84

T8, /o, "o, /0, 10,/8,
(Bto 0O,) (0, 1004) (0,toB)

\4
Io/o
a 2

If one of the rolling surfaces is flat, the relative position vector corresponding to the
center of curvature will approach infinity, and the corresponding acceleration term will
become zero. For example, if the surface for link 2 is flat, then O, is at infinity, and the
expression for the normal component of acceleration reduces to

2
& = "’04/34
BZ/B¢

from O, to B,
Yo, /8,

Find the velocity and acceleration of the cam follower (link 3) given in Fig. 3.21 if the cam is rotating
at a constant angular velocity of 100 rad/s CCW.

FIGURE 3.21 Cam and flat-faced follower.

To analyze the problem, we can determine the velocity and acceleration of any point on link 3 because
all points on link 3 have the same velocity and the same acceleration. The point to choose is the con-
tact point Cs. To solve for the velocity and acceleration of Cs, first find the velocity of point C,. Then
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write the relative velocity expression between points C, and C; and solve for the velocity of C;. The
relevant equations are

Ve, =V, /4, = @2 XTc/y
and
vc3 = vCZ + vC‘ /CZ

Next solve for the velocity of B, either directly or by image. This will be needed for the acceleration
analysis. The acceleration equations that must be solved are

ac. =a =a’ , +a
G~ Cz/Az Cz/"tz CZ/A2

t n
+a
/e,

= + = +
acs acz acx /Cz acz aC3 /CZ Cy

and

|"33/cz

where D, is the center of curvature of the cam follower surface and is located at infinity. The steps in
solving the equations are given in the following.

2 2

2 2
v, \4 v \4

_l,n n n _| CS/Dsl | D, /8, | Bz/czl _l Bz/czl

“l"cs/Dl +ap, /8, +aBz/C21_ ] + = + =

Ts/c Ts/c

Steps
1. Draw the mechanism to scale as shown in Fig. 3.22. To do this, draw the cam circle centered at
B. Next locate point 4 at 0.5 in below B. Then construct a line through A4 at an angle of 45°. This
locates the direction of travel of the flat-faced follower. Finally, draw a line perpendicular to the
45° line and tangent to the cam. This locates point C.

2. Compute v¢, = @y X reyy.
ve, = 100(1.52) = 152 in/s perpendicular to AC and in the direction shown in Fig. 3.22.
This will locate c,.

3. Draw a line from o at an angle of 45° with the horizontal. Point c; will be on this line.

4. Draw a line through the tip of ¢, and perpendicular to the line at 45°. The intersection of this line
with that drawn in step 3 locates c;.

ve, =35 in/s in the direction shown.
5. Locate b, by image.
6. Compute and plot aca, = 8Cya,
at.,, = AC X ®,2=1.52 X 1002 = 15,200 in/s? in the C4 direction
7. Draw a line from o’ at an angle of 45° with the horizontal. Point ¢'3 will be on this line.

8. Compute a, ,, determine its direction, and plot the resulting vector through the tip of at.
2 2
poje| _f2g
o] e

9. Draw a line through the tip of at,c,and perpendicular to it. The intersection of this line with the
line drawn in step 7 will be the point c}.

=11,480in/s* from Bto C

a’ , =
CJ/CZ

10. Measure ac,.

ac, = 3250 in/s? in the direction shown
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. 5,000 in/sec’

FIGURE 3.22 Position, velocity, and acceleration polygons for Example 3.4.

3.7.2 Analysis of Cam Contact Using Equivalent Linkages

Another approach to determining the velocities and accelerations is to use the concept of
equivalent linkages. For this we represent the two cam surfaces by their osculating circles
and attach a binary link from one center of curvature to the other using revolute joints. As
in the case of rolling contact, this technique can be used for velocities and accelerations, but
it will not give correct results for higher derivatives. In Fig. 3.23, link 6 is a virtual link that
usually changes length with each finife change in position. (It is constant for differential
changes in position, however.)

The use of equivalent linkages usually simplifies the velocity and acceleration analy-
ses because the equivalent linkages are usually standard four-bar linkages or one of the
inversions of the common slider-crank mechanism. For example, a simple three-link cam
mechanism becomes a four-bar linkage when replaced by its equivalent linkage as shown in
Fig. 3.24. In the example in Fig. 3.24, the kinematic information for link 4 (virtual link) can
be computed; however, this is usually of no interest. It is important to remember that the
equivalent linkage is valid for one position only. The length of the virtual link usually
changes with each position of interest.
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Link 6 is a virtual link pinned to links 2
and 4 at the centers of curvature
corresponding to B

/) FIGURE 3.23 Virtual link pinned at the
centers of curvature of the two bodies in
cam contact.

FIGURE 3.24 Equivalent linkage
for cam mechanism with curved cam
surfaces and revolute joints between
the cams and the frame.

If one of the surfaces is flat, the virtual link becomes infinitely long, and the move-
ment of the virtual link can be represented by a slider. An example of this is shown in Fig.
3.25. The slider need not “slide” on the face of the flat cam surface through B. The only
restriction is that it slide on a line that is parallel to the cam face.

The equivalent linkage is analyzed as any other linkage with pin and slider joints
would be. The kinematic properties computed for links 2 and 3 will be the same for both the
equivalent linkage and the actual linkage. The equivalent linkages for the other two types of
three-bar cam linkages are given in Fig. 3.26.

FIGURE 3.25 Equivalent linkage for cam
mechanism with one flat-faced cam and
revolute joints between the cams and the
frame. The slider can slide on any line that
is parallel to the cam face and fixed to

link 3.

O;at
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EXAMPLE 3.5
Mechanism
Analysis Using
an Equivalent
Linkage

Solution

Block moves on any line in this
4 direction and fixed to link 1

®

FIGURE 3.26 Equivalent linkage for cam mechanism. (a) Sliding joint between link 3 and frame. (b) Slid-
ing between links 2 and 3 and between link 3 and frame.

Use equivalent linkages to compute the velocity and acceleration of the cam follower (link 3) in
Fig. 3.21 if the cam is rotating at a constant angular velocity of 100 rad/s CCW.

The mechanism in Fig. 3.21 is of the type represented in Fig. 3.26b. Therefore, link 3, the follower,
will have a sliding joint with the frame and with the virtual link (link 4). The resulting equivalent
linkage is shown in Fig. 3.27. Notice that the location of the line on which link 4 must slide relative
to link 3 is arbitrary as long as the line is fixed to link 3 and is parallel to the face of link 3. There-
fore, the line that passes through B is chosen for simplicity. Similarly, the location of the line on
which link 3 slides relative to the frame is arbitrary as long as the line is inclined at an angle of 45°.

FIGURE 3.27 Position, velocity, and acceleration polygons for Example 3.5.
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For the equivalent linkage, we need only find the velocity and acceleration of point B,. The veloc-
ity and acceleration of B; can then be found using the procedure given in Section 3.5. The velocity
equations that must be solved are

Vg, =Vp, /4, =@ XTp/y
and

Vs, = Vs, T Vs, /s, (3.41)

Here we have written the velocity equation in terms of the velocity of B, relative to Bj rather than vice
versa because we can easily identify the direction of the velocity of B, relative to B;. We also know the
direction for the velocity and acceleration of B;. The acceleration equations that must be solved are

— — T t
@p, =4p, /4, —aBZ/Az +aBZ/A2

c 3
aBz —aBz +aBz/Ba _aBa +aBZ/B,+ aBz/Bs
and

< _ 3 _
@y /s, =2w;X"vg 5 =0

The Coriolis term is a function of velocities only and can be computed; however, links 3 and 4 simply
translate, making w, = 0. Therefore, the acceleration expression becomes

_ 3
aBz - aB] + aBz /Bs

By geometry, 3ay /5, MUSt move in the direction parallel to the face of the cam follower. Therefore, the
equation has only two unknowns (once @z, is computed), and the equation can be solved for a5, and

3“32/53-
Steps
1. Draw the mechanism to scale using the procedure given in Example 3.4. Then draw the equiva-
lent mechanism.

2. Compute vz =@, Xrg.

vp, = (wz)(rgz,,,z) =100(0.5) = 50 in/s perpendicular to AB and pointed in the direction shown in
Fig. 3.27.

This will locate b,.
3. Draw a line from o at an angle of 45° with the horizontal. Point b, will be on this line.

4. Draw a line through the tip of b, and perpendicular to the line at 45°. The intersection of this line
with that drawn in step 3 locates b;.

vg, =35 in/s in the direction shown
5. Compute and plot g4, = Ay 14,
@ 14, = AB X @,2=0.5% 1002 = 5000 in/s?; in the BA_ direction
6. Draw a line from o’ at an angle of 45° with the horizontal. Point 5’5 will be on this line.

7. Draw a line through the tip of g4, and parallel to the face of the cam follower (link 3). This is the
direction of 3a32,33. The intersection of this line with the line drawn in step 7 will be the point b'.
8. Measure g B,
ap = 3250 in/s” in the direction shown

This is the acceleration of link 3. Note that this is the same solution as obtained in Example 3.4.
All points in link 3 have the same velocity and the same accelerations. Therefore, points B; and C,
have the same velocity and the same acceleration. Also note that considerably less work is required to
obtain the final result when equivalent linkages are used.
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EXAMPLE 3.6
Analysis of Sliding
Velocity in a Cam
Mechanism

Solution

When equivalent linkages are used, no information is used about the relative motion
at the contact point. If the relative motions between the coincident points at contact are of
interest, these can be computed directly after the basic analysis is completed. This velocity
might be of interest for lubrication considerations.

Find the sliding velocity at the point of contact for the mechanism in Example 3.5.

The sliding velocity at the point of contact is the relative velocity between points C, and C,. This
velocity can be computed from

Ve,/c, Ve, TV, (3.42)
Because
vC = v33

we need only solve for for v, to determine veye, in Eq. (3.42). From Example 3.4, v. =@, X rc,, and it
is perpendicular to AC as shown in Fig. 3. 22’ The vector Vcyc, is shown in Fig. 3. 28. Measurement of
the vector gives Ve c, = 148 in/s, in the direction shown in the figure.

FIGURE 3.28 Calculation of the relative velocity veyey

3.8 GENERAL COINCIDENT POINTS

In mechanisms, pin-in-slot joints are common, and occasionally the slots will be curved
paths. Also, occasionally, sliders will be used on circular paths that rotate. Mechanisms
employing these types of joints can be analyzed using general coincident points. In general,
we can use any coincident points to help in a kinematic analysis if we can recognize the path
that one of the points traces on the other link. For this, we must “stand” in one link and
watch the coincident point on the other link move.

For the analysis, we need the center of curvature of the path and the corresponding
tangent to the path. The tangent is normal to the line from the coincident points to the center
of curvature of the path. For illustration, assume that the two bodies in question are links 3
and 7, and the coincident points are located at P as shown in Fig. 3.29. Then for any coinci-
dent points,

_7 _ _ 3
Ye/p,= YR/P, = ~VR/p, =" Vp /P,
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Two paths will be traced, and these can be designated as path Py/P, and path P,/P;. The
paths will share a common tangent vector, and the normal to the paths will contain the two
coincident points and the two centers of curvature as shown in Fig. 3.29. The path that P,
traces on link 7 will be fixed to link 7, and the path P,/P; will be fixed to link 3.

To solve problems involving general coincident points, we must be able to recognize
one of the relative paths by inspection. This means that we must be able to determine the
center of curvature of the path. Sometimes, we can recognize one of the relative paths but
not the other. This is still useful because of the relationships

- 7
Ve /P, = T Vpy/P,

and

v = --3v
PP PP

This means that if we can recognize one of the paths, we can always rewrite the kinematic
equations so that the information will appear in the correct form. Some examples of paths
that are obvious are given in Fig. 3.30.

Path Normal

Path That P, Traces
Op i, on Link 7
Path Tangent
Paﬂ:,m:f;mes FIGURE 3.29 Geometric properties of relative paths

traced by coincident points.

Path P,/P, (Center of curvature at %)
(Path P./P, s not obvious)

Path P,/P, ‘ a
Path Py/P, w
= 1 \

(@ ©®)

Path P,/P, (Center of curvature at A)
(Path P,/P, is not obvious)

3
P

Path P,/P, (Center of curvature at ©)
(Path P,/P, is not obvious)

(e) @

FIGURE 3.30 Obvious relative paths of general coincident points.
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3.8.1 Velocity Analyses Involving General Coincident
Points

The velocity analysis of mechanisms that involve general coincident points will generally
require that the direction for the relative velocity vector (vp,p, OF vp_p ) be known. This
direction can be determined by using the same technique as was used in the analyses using
cam pairs. For this, we replace the path P;/P, by its osculating circle at P. Recall that we can
do this without compromising the accuracy of the solution as long as we are interested in
only velocities and accelerations. Next connect P; to the center of curvature O of the path
P3/P; by a virtual link x. The geometry is represented schematically in Fig. 3.31.

The motion of P; relative to link 7 will be the same as for P, relative to link 7 if the
two points are considered to be pinned together. The relative velocity between P; and P, can
then be written as

_7 _7 7 7 7
VR/R=VR/R=VR/pt VP jo,F Vo, /0,* Vo,/P, (3.43)

or because points P; and P, and O, and O, are considered to be pinned together, and the last
term involves the motion of two points in system 7 as observed from system 7,

7 _7
Ve /B= VR /p,= VP o, (3.44)

Because two points on the same rigid link are involved, the term on the right-hand
side of Eq. (3.44) can be written as

7 _7 x
Ve /P, = VR /p= @ X'Ip jo

This vector is perpendicular to the line from the point P to the center of curvature of
the path P3/P;, and it is therefore along the direction of the tangent to the path. Therefore,
when the direction for the relative velocity is required, we need only determine the center of
curvature of the path P;/P, and draw a line perpendicular to it.

The magnitude of the angular velocity term will be required for the acceleration
analysis, and it can be written as

3.8.2 Acceleration Analyses Involving General Coincident
Points

The acceleration analysis is slightly more complex than the velocity analysis when general
coincident points are involved. For the relative acceleration, again assume that the path that
P, traces on link 7 is known. This means that the center of curvature of the path is also

Pyand P,

I~

Path P/P,

Virtual Link x

!
I
I
! 31 i irtual link int Py t
o) Center of curvature of path PP, FIGURE 3.31 Connecting a virtual link from point P; to

\
\
I
I
]
‘=" Point O is attached to link 7. center of curvature of path that P, traces on link 7.

o
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known. The development of the relative acceleration expression is similar to that used for
the case of a rotating slider, and the relative acceleration expression can be written as

_7 7
ap/p,=@ap/p, + 2w, X Vp/p, T @1 x(w7 xr&/P7)+a7 X7Tp,/p,
Because 75 p, = 0 at the moment considered,
ap p,="ap p, +200 XVp p (3.45)

The second term in the expression is the Coriolis term, which is a function of position and
velocity only. Therefore, it can be computed as soon as the velocity analysis is completed.
The direction of the Coriolis term is given by the cross product. Graphically, we can get the
direction by rotating 7VP3/1=7 (which equals v, 5 ) 90° in the direction of w.

The first term in Eq. (3.45) is simply the acceleration of P; as observed from system 7.
This term can be written as

7 _7 7
al’3 /B~ aP3 /any point in system 7 ™ ai"3 (3 46)

Unlike the case of the rotating slider, the direction for this acceleration component is
not immediately obvious. However, by using the technique begun in the velocity analysis,
we can determine a vector expression for this component that involves only one unknown.

To begin, replace the path P+/P; by its osculating circle at P and rewrite the accelera-
tion expression in Eq. (3.46) in terms of the virtual link x and the center of curvature of the
path of P,/P,. This is similar to what was done with velocities in Eq. (3.43). The relative
acceleration between P; and P, can then be written as

7 _7
ap=@ap/p= Tap, i +ap jo, +'ag, o, + a0, p,

or because points P; and P, and O, and O, are pinned together, and the last term involves
the motion of two points in system 7 as observed from system 7,

7 7 _7
@p, = ap/p,= @p o, (3.47)

Because two points on the same rigid link are involved, the term on the right-hand
side of Eq. (3.63) can be written as

7 7.1 t
a =a +a
r./0.= %o, ™ “r /o,
The radial component is a function of velocities and position only and can be written as
2 2
e

ol

Tat VP /o,

P/O

="w, x *¥p jo. = (from P to O)

|'P,/0,

The magnitude of the vector "ab, 0, cannot be computed directly; however, we know that the
direction is perpendicular to the line from the point P to the center of curvature of the path
Py/P;, and it is therefore along the direction of the tangent to the path. The total acceleration
can now be represented as

2 7
ap p="ay 1 +'ap o +20:X 7V,
or in terms of the original subscripts,

7
ap /p,= P}/P +7 a P/P, +2w, X Ve, /P,



132 CHAPTER3 LINKAGES WITH ROLLING AND SLIDING CONTACTS AND JOINTS ON MOVING SLIDERS

EXAMPLE 3.7
Analysis of
Mechanism with
a Pin-in-Slot Joint

Solution

relative acceleration between P; and P.

Of the three vectors on the right-hand side of the equation, only the magnitude of
atpa/p7 will be unknown after the velocity analysis. The directions for the individual terms
are summarized in Fig. 3.32. Note that the radial and Coriolis terms are both normal to the
tangent of the path of P;/P,; however, only the radial component always points from P to the
center of curvature of the path of Py/P,. The direction of the Coriolis term will depend on

7

the directions of both e, and v, ..
¥y

In the mechanism shown in Fig. 3.33, point B, moves on a curved slot in link 3. The radius of the
slot is 3 m. Points C, B, and D are collinear, and the other distances between points are as given in
Fig. 3.33. Link 2 rotates with an angular velocity of 2 rad/s CCW and an angular acceleration of 3

rad/s?> CCW. For the position shown, find the following:

1. w3, a3, vD37 and aD3;

2. The center of curvature of the path that B, traces on link 2.
E

CD=70m
AB=50m
AC=50m B
BE=30m
DE=36m
CE=58m
CF=335m

FIGURE 3.33 Mechanism for Example 3.7.

Once the position of the linkage is drawn, the following vector quantities can be measured:
rg/y =5£60°
ry/c =5£120°
Tojc = 7£120°

For the velocity analysis, we can first compute the velocity of point B,, which is

vEZ =vBZ/AZ =w2 XrB2/A2

FIGURE 3.32 Acceleration components associated with the
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Next go to point B; on link 3 to get

3
Vg, =Vg [c, = @3 X rgjc L BC

3

Because w, is unknown, this term cannot be computed without another equation. Consider the two
coincident points B, and B;. Then,

vB) - vBZ +vBJ/BI

This equation is technically correct; however, we cannot recognize the path that B traces on link 2.
Consequently, the equation cannot be differentiated to help us in the acceleration analysis. Therefore,
write the equation in terms of v . Then,

vBZ - vB] +vBZ/BJ

This equation is useful because we can pick out the path that B, traces on link 3 by inspection. This
equation can be solved, although there are two unknown directions on the right-hand side. This is han-
dled by beginning one vector at the velocity pole and ending the other vector at the end of v, .

After the velocity polygon is drawn, we can measure v, and determine v, by image. We can also
measure vg g, which will be required for the acceleration analysis.

The velocity analysis uses two basic equations:

vEZ = vBZ/AZ
and
vB2 = vBB/CL +vB2/Bl

and these two equations show the solution path for the accelerations. Again start at B,. Then,

_ .t T - 2 2
@y =8p ), =@y, Ty, =X Ty, +@,X vy,
Now differentiate the velocity expression involving B; to get

— T _ .t 3 n 3t
aBz _aBs/Cz +aBz/Ba —aaa/cz _aB3/C3+ aBz/33+ agz/Bz +2w3 vaZ/BJ

3 3 3 4
=W, X vBJ/CJ + @y X I'B”,’C3 + a";z/33 + (182/‘,33 +2w3 X vl_.;z/y3 (3.48)
This equation has only two unknowns and can be solved. We can compute the acceleration of D; using
the acceleration image.

To find the center of curvature of the path that B, traces on link 2, we must find an expression that
involves the radius of curvature of the path. This term is 2a‘,‘,s,Bl, and it can be evaluated from the
following:

aBZ/BS = —aB}/BZ

Therefore,
a' =—a
BI/‘BS B}/BZ
and
n n
a =—qa
82/83 BJ/BZ
Also,

3 n _ _2.n _
@, /g, +2@3 X Vp |5 = —@p 5 —20, XV /g,
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and
2
2 n ’VB;/Bz '
a =
B,/8, ’,B /G|
or 2
e,
s/ =1,
aEl/BZ

where G gives the location of the center of curvature of the path that B; traces on link 2. The location
of G on the proper side of B is found by the direction of 24':';3/32, because it points from B to the center
of curvature of the path.

Steps
1. Select a scale and draw link 2 at a scaled distance of 5 m at an angle of 60° to the horizontal.
This will locate point B as shown in Fig. 3.34. Draw an arc of radius BE centered at B. Then
draw a second arc centered at C of length CE. The intersection of this arc with the first will
locate point E. Next draw the arc centered at E and of radius BE. Draw a line from point C
through point B of length CD.

FIGURE 334 Solution to Example 3.7.



3.8 GENERAL COINCIDENT POINTS 135

Compute vp =vg /4, = @, X Fg 4 and draw the vector from o in the direction perpendicular to
BA.The sense of vy is determined by rotation of rp ,  90° in the direction of @,. This will locate
bz-

Vg, /4, =@y X¥g /4 =(2)(5) L BA

3. Draw a line through o in the direction perpendicular to CB.

Draw a line through b, in the direction tangent to the path that B, traces on link 3 (perpendicu-
lar to the radius BE). The intersection of this line with that drawn in step 3 will locate point b,.
Locate the arrowheads on the velocity polygon to conform with Eq. (3.48).

Locate point d; by image.

od; = % ob;. Then we get vy, =7.0 m/s at an angle of 210° to the horizontal.

6. Measure vz 5, = 8.7 mv/s at an angle of 120° to the horizontal.

7. Measure vg,c, =5.0 m/s at an angle of 210° to the horizontal and compute w;. Get the sense of

w; by rotating ry c, 90° in the direction of w; to the direction of v c..

w, = |———| =2 =1rad/s, w,is CCW

. Compute a}gzM2 and ap /4, and, starting from o’, draw the resulting vectors after scaling.

ap 14, =@ Xvg, =2(10)=20 m/s2 opposite r;
a};z 4, =0 XTg = 3(5)=15 m/s2 perpendicular to /4 in the direction given by
rotating r, 90° in the direction of a, .

This vector is added to a} ,,_as shown in Fig. 3.34.
272

. Compute aj ¢, 3a‘}32,53, and af 5. All of these accelerations are functions of the velocity and

10.

11

12.

13.

14.

position data.

@ jc, =@, XV o, =1(5)=5m/s’ from Bto C

2
a —————8__2523 /2 3 n fr BtoE
Bz/Bs—i = =2523m/s", "ag sp from 5 to

a5 J5, =25 X vy /5 =2(1)8.7) =174 m/s’ from Eto B

Note that 3“%2/33 and af p, are in opposite directions. Therefore, determine the resultant before
plotting.

0} ), 4, =2523-174=7.83 m/s> from B to E

Starting from o’, add the vectors aj,c, and 30‘};2,33 +a§ p, as shown in Fig. 3.34.

Draw a line through the tip of % 5, + a5 5, in the direction perpendicular to 3a} 5, + a5, 5, and

to rg/z (i.e., perpendicular to the tangent to the path that B, traces on link 3).

Draw a line through the tip of a}_,_ in the direction perpendicular to r¢5. The intersection of this
S e - B4y . 4

line with that from step 12 will give 3a},2,‘,,3 and “tB3/C3‘ The locations of the arrowheads (direc-

tions) are given by Eq. (3.48).

Measure a§;3,63 and compute the magnitude of the angular acceleration, a;,.

t
a
322
a; = Iaje|_322 1 1.2rad/s2
5
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The sense is given by a§3/c3 and rz c,- Namely, we rotate r,.c, 90° in the direction of a; to get
the direction of @} .. The direction is CCW.

15. Locate the acceleration of D; by acceleration image. To do this, determine the absolute acceler-
ation of B. This is done by adding a} . to @} ¢ to locate b’;. Then find d'; using
33 33

CD
o'd];=——0b;
CB
This gives ap, =45.9 m/s? in the direction shown in Fig. 3.34.

16. Compute %a} , =— Cal s, + 205 X Vas, + 20, X vy 5 ). Arbitrarily select the direction 7, 5as
positive. Then,

‘a) 1, =~(2523-17.4+348) = 42.63m/s’

The minus sign means that the direction of the center of curvature of the path is opposite r;; or
in the ry/; direction.

17. Compute the radius of curvature by locating G, using

2 2
r _ |vBJ/Bz _ (87) =1.78m
897w T 4263
BJ BZ

The center of curvature is shown in Fig. 3.34.

PROBLEMS

EXERCISE PROBLEMS INVOLVING ROTATING 3.2 If w, =10 rad/s CCW, find the velocity of point B;.
SLIDERS

3.1 Inthe figure, points 4 and C have the same horizontal coor-
dinate, and w; = 30 rad/s in the direction shown. Draw and
dimension the velocity polygon. Identify the sliding velocity
between the block and the slide, and find the angular velocity of
link 2.




3.3 If w,=100rad/s CCW, find Vg,

AD=18"
CD=0.75"
AE=0.7T"
CF=045"
FG=1.75"
CB=10"
DB =1.65"

125°

BC=CD y N
BD=3.06" SN
N
N
300N
2 o\
150° >«
C \\\
50° w2
e TRo ] —

3.5 Determine the velocity and acceleration of point B on
link 2.

; 3in ————————»
| 2
Y 3 /O B
w, = 1rad/s
a,=0
30°

PROBLEMS

3.6 If w,=100rad/s CCW, find w.

E(2.0",6.0")

AB=12"
BC=6.0"
CD=3.0"
AD=40"
BF=13.0"

137

AB=1.16"
BC=0.70"
CD=145"
DE=1.16"
AD=1.30"
DF=1.30"
EG=220"
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3.9 In the mechanism below, w, = 10 rad/s CCW. Write the
velocity equations and determine the following: Vp,, @y, Vi, and
we.

G(-5.6,2.65)

3.10 Ifthe velocity of point A on link 2 is 10 in/s as shown, find
the velocity of point C on link 5.

F(3.15", 1.9")

DE=25"
AD=0.75"
AB=1.75"
BE=1.5"
GF=15"

3.11 In the clamping device shown, links 3 and 4 are an air
cylinder. If the opening rate of the air cylinder is 5 cm/s and the
opening acceleration of the cylinder is 2 cm/s?, find the angular
velocity and acceleration of link 2 and the linear velocity and
acceleration of point D on link 2.

s= 35cm
AB=17 cm
AC=30cm
BD=10cm

AB LBD

3.12 In the mechanism shown, link 4 moves to the left with a
velocity of 8 in/s and the acceleration is 80 in/s? to the left. Draw
the velocity and acceleration polygons and solve for the angular
velocity and acceleration of link 2.

CHAPTER3 LINKAGES WITH ROLLING AND SLIDING CONTACTS AND JOINTS ON MOVING SLIDERS

3.13 In the mechanism shown, the angular velocity of link 2 is
2 rad/s CCW and the angular acceleration is 5 rad/s2 CW, Deter-
mine the following: Vs, Vb, @4, dp,, Ap, and a,.

D

AC= 52in
AB= 60in
CD=10.0in

@,

3.14 Re-solve Problem 3.13 if w, = 2 rad/s CCW (constant).

3.15 In the mechanism shown, the velocity and acceleration of
point B are given. Determine the angular velocity and accelera-
tion of links 3 and 4. On the velocity and acceleration diagrams,
locate the velocity and acceleration of point E on link 3.

AB= 3.8" wp=23/-55° in/sec
AC= 52" _ a0 i 2
BD=120" 98=150/50°in/sec
DE= 34" E



3.16 In the figure, @, = 500 rad/s CCW (constant). Find w,,
2(04, w3, 6‘051 3‘05’ Vp, @y, 2“49 as, GaSs and ap.

3.17 In the mechanism shown, the angular velocity of link 2 is
60 rpm CCW (constant). Determine the acceleration of point C4
and the angular velocity of link 6.

B AB= 361t

3.18 In the position shown 4B is horizontal. Draw the velocity
diagram to determine the sliding velocity of link 6. Determine a
new position for point C (between B and D) so that the velocity
of link 6 would be equal and opposite to the one calculated for
the original position of point C.

@,= 5 rad/s

3.19 The scotch-yoke mechanism is driven by crank 2 at
w, =36 rad/s (CCW). Link 4 slides horizontally. Find the veloc-
ity of point B on link 4.
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PROBLEMS

EXERCISE PROBLEMS INVOLVING ROLLING
CONTACT

3.20 The circular cam shown is driven at an angular velocity
w, = 15 rad/s (CW) and a, = 100 rad/s, (CW). There is rolling
contact between the cam and the roller, link 3. Find the angular
velocity and angular acceleration of the oscillating follower,
link 4.

E (3.0",3.07)

AB=1.22"
DE =3.50"
BC=2.00"
CD=0.50"

3.21 For the mechanism shown, assume that link 2 rolls on the
frame (link 1) and link 4 rolls on Link 3. Assume that link 2 is
rotating CW with a constant angular velocity of 100 rad/s.
Determine the angular acceleration of link 3 and link 4.
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3.22 For the mechanism shown, assume that link 4 rolls on the
frame (link 1). If link 2 is rotating CW with a constant angular
velocity of 10 rad/s, determine the angular accelerations of

links 3 and 4 and the acceleration of point £ on link 3.

AB=0.95"
BC= 325"

=12"

X BE=12
EC=3.75"

245"

acl.

Cam Contact w‘

FC=1.0"
FE=22"
FD=0.75"
DE=24"

©
!

L7

3.24 In the figure shown, points 4, B, and C are collinear. If

vy, = 10 in/s (constant) downward, find ve, and ac,.

Cam Contact \/

Rolling Contact

0.35"1

0.45"

Rolling Contact

3.25 Part of an eight-link mechanism is shown in the figure.
There is rolling contact at location B and the velocity and accel-
eration of points 4¢ and Cj are as shown. Find wg and - for the
position given. Also find the velocity of £, by image.

ve, =10 [0°_ins
v, =10/60° in's
ac =100270° in/s?
a, =10[180° in/s?

AD=225"
DB=10"
AC=285"

3.26 In the mechanism shown, link 2 is turning CW at the rate
of 20 rad/s, and link 3 rolls on link 2. Draw the velocity and

acceleration polygons for the mechanism, and determine ac and
;.

AB= 40"
BE= 28"
EC= 40"
CD=10"

3.27 In the mechanism shown, link 2 is turning CW at the rate
of 200 rpm. Draw the velocity polygon for the mechanism, and
determine ve, and w;

AB=1.0"
BE=0.7"
EC=1.0"
CD=25"




3.28 Assume that link 7 rolls on link 3 without slipping and
find w-.

AB=18"
BG=0.85"
GF=17"
BD=3.9"
DE=3.25"
AE=12.0"

F (=20, 0.95")

w, =2rad/s

3.29 In the two-degree-of-freedom mechanism shown, @, is
given as 10 rad/s CCW. What should the linear velocity of link
6 be so that w, = 5 rad/s CCW?

E Pin in slot
w, =10 rad/s
X
AB= 0.5"
CB=1.0"
CD=08"
DE= 165"
2 ol 1.25" —

EXERCISE PROBLEMS INVOLVING CAM
CONTACT

3.30 In the mechanism shown, @, = 10 rad/s CW. Determine
veye, and v, using two approaches: (a) equivalent linkages and
(b) coincident points at C.

225"\0‘2 | J
g o

A

C

AB=05"
— AC=1.0"

3.31 In the mechanism shown, w, = 20 rad/s CCW. At the
instant shown, point D, the center of curvature of link 3, lies
directly above point E, and point B lies directly above point 4.
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Determine v JC, and w; using: (a) equivalent linkages and (b)
coincident points at C.

4B=075"
BC=15" /

3.32 In the mechanism shown, @, = 100 rad/s CCW and a, =
20,000 rad/s2 CCW. In the position shown, find the velocity and
acceleration of link 3 using: (a) equivalent linkages and (b) coin-
cident points at C.

3.33 Locate ali of the instant centers in the mechanism shown.
If the cam (link 2) is turning CW at the rate of 900 rpm, deter-
mine the linear velocity of the follower.
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3.34 In the mechanism shown, v4, = 20 in/s upward. Find e
and 3w, Indicate on link 4 the point that has zero velocity. In the

. . 2
drawing, H and G are the centers of curvature of links 4 and 5, D_,.//
respectively, corresponding to location D. F is the center of cur- BC=20"
vature of link 3 corresponding to C. Also, point G lies exactly AD=2384"
above point E. c

1 +
- 092"
CF=0.7" "
BF = 0.84" 17
AF= 185"
BH=1.88"
DH=1.14"
DG=1" Y
EG=0.6"
3.38 In the mechanism shown, w, = 10 rad/s CW (constant).
40 J Determine the angular acceleration of link 3.

EXERCISE PROBLEMS INVOLVING GENERAL
COINCIDENT POINTS

3.35 On the mechanism shown, link 4 slides on link 1, and
link 3 slides on link 4 around the circle arc. Link 2 is pinned to
links 1 and 3 as shown. Determine the location of the center of
curvature of the path that point P, traces on link 2. Assume
@, =10 rad/s CW and a, = 100 rad/s> CW.

r= 10"

ap=075"
Il// A ac=04"
Voo

) ] 3.39 In the mechanism shown, slotted links 2 and 3 are inde-
3.36 For the mechanism shown, find w,, a,, Vsp @5, YDy @p;;  pendently driven at angular velocities of 30 and 20 rad/s CW and
and the location of the center of curvature of the path that point have angular accelerations of 900 and 400 rad/s? CW, respec-
Bj traces on link 2. Assume 4B = ?C =10 cm, CD = 14 c¢m, tively. Determine the acceleration of point B, the center of the
w; = 1 rad/s CCW, and @; = 1 rad/s*> CW. pin carried at the intersection of the two slots.

3.37 If w,=10rad/s CCW (constant), find Vg, Vp, 4, and ac,.

c ", -1")



3.40 For the mechanism shown, find w;, a;, ag, and the loca-
tion of the center of curvature of the path that point B; traces on
link 2.

| AC=9in
\ AB=2in

w, =50 rad/s
a,=0

3.41 For the mechanism shown, points C, B, and D are
collinear. Point B, moves in a curved slot on link 3. For the posi-
tion given, find w;, a3, vz, 4z, vp,, ap,, and the location of the
center of curvature of the path that point B, traces on Link 2.
Assume

AB=AC=5m, CD=Tm, CE=5.7m
, =2 rad/s CCW, a, =3 rad/s? CCW
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3.42 If the mechanism shown is drawn full scale, find w;, a3,
and the location of the center of curvature of the path that point
B, traces on link 2. Assume that link 2 is driven at constant
velocity.

1.25"
@, =200 rad/s

(constant)

3.43 If @, =20 rad/s (constant) CCW, find w;, a3, and the
center of curvature of the path that C; traces on link 2.

CD=0.6" Center of Curvature

AD= 40" of Slot

R= 135" T~ B

AB=322" Y

e

/Pin in Slot

3.44 If w,=10rad/s CW (constant), find ;.

AC=10.5cm
BC=13.0cm
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3.45 For the linkage shown, w, = 10 rad/s CCW and @, = 3.46 If w,=10rad/s CW (constant), find
100 rad/s? CCW. Determine e, and av;.

(a) w3s
210° (b) the center of curvature of the path that B, traces on link 3
s “v %2 (show on drawing),
(c) the center of curvature of the path that B, traces on link 2
(show on drawing).
AB=1.8"
AC=1.0"
BD=DC=2.0"




4.1 INTRODUCTION

4.2 DEFINITION

At every instant during the motion of a rigid body in a plane, there exists a point that is
instantaneously at rest. This point is called the instant center. The concept of an instant center
of velocity for two bodies with planar motion was first discovered by Johann Bernoulli in
1742. This concept was later extended by Chasles in 1830 to include general spatial motion
using the instantaneous screw axis concept.

The instant center technique for velocity analysis is particularly useful when only two
or three velocities, or angular velocities, are of interest. It can be a very efficient technique,
for example, for finding input-output velocity relationships of very complex mechanisms.
When combined with virtual work, or conservation of energy (Chapter 13), it provides an
efficient way to obtain input-output force or torque relationships. Instant centers are also
very helpful when analyzing mechanisms with higher pairs, such as cam mechanisms, or
gear trains. In principle, the instant center and velocity polygon techniques are alternative
methods for solving the same set of problems. However, they are quite different techniques,
and each is better suited to some situations than to others. Some experience is necessary to
easily identify the most applicable technique for a particular problem.

It should be emphasized that instant centers of velocity are applicable to velocities
only and are usually of little help if accelerations are ultimately of interest. If an accelera-
tion analysis must be performed, then the velocity analysis should be conducted using one
of the previously discussed traditional procedures based on vector methods.

Although the instant center of velocity has proved to be very useful in general mech-
anism velocity analysis, the corresponding instant center of acceleration has found little
use. This is because, in general, more calculations are required to find the acceleration
center than would be required to find the accelerations of interest using methods previously
outlined. Therefore, only instant centers of velocity will be considered here.

Given two bodies B and C moving with planar motion relative to each other in a reference
frame R, there is, in general, only one location P in the plane of motion where the coinci-
dent points at a given instant have the same velocity with respect to the reference frame R.
One coincident point is fixed to body B and the other is fixed to body C. This location is
called the instant center of velocity for bodies B and C and is represented by /- or I If P
is the instant center, then

145



146 CHAPTER 4 INSTANT CENTERS OF VELOCITY

R _R
Ve, = Ve
or
R _R _
Ve, /P = Vp./p, =0

If the points are permanently attached to each other, they are called permanent instant cen-
ters. If the points are only momentarily coincident, the instant centers are called instanta-
neous instant centers.

4.3 EXISTENCE PROOF

The existence of an instant center between arbitrary links B and R may be inferred, and its
location found, by the use of the relationship between the velocities of two points in body B.
In the following, all velocities are defined in system R, so the left superscript designating
the coordinate system will be omitted for simplicity. Then,

an = vPB +0)B er/P
Now, assume that Q is the instant center Izz. Then, vg, =0=v, and
_vPB =wWp er,fP (41)

From Section 2.4, we know that the radial component of the relative acceleration
between two points P and Q on the same rigid link B is

Therefore, cross multiplication of both sides of Eq. (4.1) by w, gives
2
wB X (wB X rQ/P) = -wB X vPE = —ﬁ)BrQ/};

or
Wy XVp
Tojp=—"5
Wp
In planar motion wyz X Vp, is normal to vp, and may be written (wB)(vps)n, where n is a unit
vector normal to Vp, with the sense given by visualizing Ve, rotating about its tail in the w,
direction. Hence

ry/p = Yh n
p=
o/ ©

Thus, the distance, 75, in Fig. 4.1 from the instant center, /g, to point P is Vp /g and the
line IP is normal to vp,. Its sense is such that rotation of r;/ about 7 in the w; direction
produces v, .

If more than one location in the plane of motion is found to be an instant center for
two bodies, then those two bodies, for velocity analysis purposes, can be considered to be
instantaneously fixed to each other. That is, if more than one location is an instant center,
then all locations are instant centers.
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FIGURE 4.1 Proof of the existence of an instant center of
velocity in planar motion.

However, if no finite location can be found that qualifies as an instant center of rela-
tive motion of two bodies, then the two bodies are translating with planar motion with
respect to each other. In this case, the instant center can be considered to be located at infin-
ity and reached by a line drawn perpendicular to the relative velocity vector between two
arbitrary coincident points in the two bodies considered.

Instant centers are useful because they permit velocities to be computed easily. For
example, if we know the velocity of point P, by analysis, we know the velocity of Pp
directly.

4.4 LOCATION OF AN INSTANT CENTER FROM THE
DIRECTIONS OF TWO VELOCITIES

Assume that we know the velocities of two points (P and Q) in body C where the velocities
are defined relative to the coordinate system in a second body B. This condition is shown in
Fig. 4.2. We can then search for some point in C that has zero velocity relative to body B.
The location of this point is the instant center designated by I, or, in the development here,
it can be represented simply as /. To find the instant center location, let I be the point in
body B and - be the coincident point in body C. We can write relative velocity expressions
for points P and Q as follows:
BvPC =BvPC/IB =BvPC/IC +BvlC/IB

and
B _B _B B
Vo = Yoo /1,7 Yoo /1. T Vi1,

However, by definition of the instant center,

B _B. _
vIC!/iﬂ_ VIC —0

so that

B _B _B
Ve [1,= VR [1.= @c XTp [I,

and

B B _B
YO /1y= Voc/Ic = @c XTg /1.
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By definition of the cross product, vac,.,C must be perpendicular to r, 1 and BvQ /i Tust
be perpendicular to r, i1~ The location of the instant center (I,¢) is given by the intersec-
tion of the two perpendicular lines as shown in Fig. 4.2.

FIGURE 4.2 Location of the instant
center given the directions of the velocities
of two points.

4.5 INSTANT CENTER AT A REVOLUTE JOINT

The center of rotation at a revolute joint, /4, has the same velocity whether it is considered
to be part of link B or link C. Therefore, it qualifies as a permanent instant center. This is
indicated in Fig. 4.3.

[BC’ ICB
\ Body C

+

Body B FIGURE 4.3 Permanent instant center.

4.6 INSTANT CENTER OF A CURVED SLIDER

If body B is a block moving on a circular arc on body C as shown in Fig. 4.4, then the center
of the arc is a stationary location common to both bodies. Therefore, this location qualifies
as a permanent instant center. If the curve is not circular at the location of interest, the curve
can be replaced by its osculating circle (for velocities and accelerations) and the center of
the osculating circle or center of curvature of the path at the given point would be the instant
center. Actually, a circular slider is kinematically equivalent to a revolute joint. The center
of the equivalent revolute is the center of curvature. That is, it is the instant center. A non-
circular slide is realizable only as a higher pair, and the center of curvature is not a perma-
nent instant center.

4.7 INSTANT CENTER OF A PRISMATIC JOINT

If the radius of curvature, p, in the case of the curved slider is allowed to become very large,
the arc will approach a straight line. Also, the location of the instant center will tend toward
infinity. However, the velocity of P relative to system B will still remain perpendicular to
the line from P to the instant center. Therefore, if we know the direction of the velocity of
any point P relative to system B, we can find one locus for the instant center; that is, it must
lie on a line perpendicular to the velocity vector as shown in Fig. 4.5.
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Isc Icp FIGURE 4.4 Instant center of a curved slide.

Body C FIGURE 4.5 Instant center of a prismatic joint.

Note that the location of the line to infinity is unimportant; only the direction is
defined by the velocity direction. This can be thought of as being the parallax phenomenon
in which the direction to a distant object appears to remain the same, regardless of the
motion of the observer.

4.8 INSTANT CENTER OF A ROLLING CONTACT PAIR

The instant center of pure rolling contact between two rigid bodies B and C is located at the
point of contact of the two bodies as shown in Fig. 4.6. This is a direct consequence of the
rolling condition that the two points in contact be at rest relative to one another. The instant
center for the relative motion of involute spur gears is at the pitch point: the point of rolling
contact between their pitch circles.

FIGURE 4.6 Instant center of a rolling contact.

4.9 INSTANT CENTER OF A GENERAL CAM-PAIR
CONTACT

When two planar bodies (B and C in Fig. 4.7) are held in general cam contact, it is assumed
that the bodies will neither penetrate each other nor separate. In general, the bodies both roll
on each other and slide on each other. If sliding is involved, the direction of relative sliding
must be along the common tangent of the profiles of the two bodies, as shown in Fig. 4.7.
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If P is the contact point location, then the velocity of point P, relative to body B as well as
the velocity of point Py relative to body C will lie along the common tangent. Therefore, the
instant center must be located on a line perpendicular to the common tangent at the contact
point P. This means that the instant center must lie on a line through the centers of curva-
ture (O and Op) corresponding to P in each of the two bodies.

To locate precisely the position of I~ some further information about the relative
motion of bodies B and C is required. For example, assume that body B is link 2 and body C
is link 3 and that links 2 and 3 are both connected to the frame by revolute joints as shown in
Fig. 4.8.

IBC’ ICB

FIGURE 4.7 Relationship between instant cen-
ters and sliding velocity in cam contact.

LV,
sz"\_ e

Vo —
Iy

Only point where both
velocities have the same

direction FIGURE 4.8 The instant center
location between two frame-
mounted cams.

Body 1 (Frame)

If we arbitrarily pick the point 4 as a candidate for the instant center, we see that the
velocities v, and v, cannot be equal because they are not in the same direction. The only
location where they can be equal in direction is at the point Q on a line through the two
pivots. Note that the two fixed pivots are the instant centers /,, and /5.

4.10 CENTRODES

As two bodies, B and C, move relative to each other, /- traces a path on each of the bodies
(path BC on body B and BC on body C). These paths are the centrodes for the two bodies.
At any instant, the two paths will be in contact with each other at the instant center where
there is zero relative velocity between the two bodies and therefore between the two cen-
trodes. That is, the instant center acts as a point of rolling contact between the two cen-
trodes. This means that, as the two bodies move, the two centrodes will roll on each other.
Conversely, the relative motion of the two bodies can be faithfully reproduced by rolling one
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centrode on the other no matter how the original motion was produced. Therefore, the
analysis of the relative motion of two bodies moving with planar motion can always be trans-
formed to the study of two bodies rolling on each other. Note that as the two centrodes for
links 2 and 3 roll on each other, the contact point (/) and the instant centers /,, and /,; will
be collinear, as illustrated in Fig. 4.8.

These concepts can be extended into spatial motion in which the instant center
becomes an instantaneous screw axis (ISA), and the loci of the ISAs in the two bodies are
ruled surfaces called axodes. These axodes roll on each other in a direction perpendicular
to their generating instantaneous screw axes as well as sliding relative to each other along
their instantaneous screw axes.

An example of the fixed and moving centrodes associated with the coupler of a four-
bar linkage is shown in Fig. 4.9. This shows the centrodes generated by instant center /5.
The centrodes in Fig. 4.9 are very simple, but this is not the typical case. For crank-rocker
mechanisms, the centrodes will extend to infinity (when the crank and rocker are parallel)
in two directions, and for drag-link mechanisms, the centrodes can form multiple loops.
Typical examples are shown in Figs. 4.10 and 4.11. These centrodes were generated with the
MATLARB program centrodes.m included on the disk with this book.

FIGURE 4.9 Centrodes associated with instant center
1,5 for a simple four-bar linkage.

FIGURE 4.10 Centrodes associated with instant
center /5 for a crank-rocker four-bar linkage.
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FIGURE 4.11 Centrodes associated with instant center
3002 - 0 1 2 3 1,5 for a drag-link four-bar linkage.

Another example of centrodes is shown in the model in Fig. 4.12. The mechanism
model is a six-bar linkage, and the noncircular gears attached to the two frame-mounted
links correspond to the centrodes of relative motion of those links. The motion of the two
links attached to the gears is the same relative to the frame and to each other whether the
linkage is present without the gears or with the gears present but without the linkage.

FIGURE 4.12 Six-bar linkage model with centrodes represented by noncircular gears. The gears roll on
each other at the pitch points, and the pitch point is the instant center between the two frame-mounted cranks.
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4.11 THE KENNEDY-ARONHOLDT THEOREM

If we have n bodies and we take them two at a time such that 7,5 = I, then the total number
of instant centers is given by
n(n - 1)

c— 2

Because of the large number of instant centers (ICs) occurring in a mechanism with
a large number of links, it is desirable to develop a procedure that helps to identify the loca-
tions of the instant centers in a systematic manner. This can be done using the results of the
Kennedy—Aronholdt theorem.

In the late 19th century, Kennedy (England) and Aronholdt (Germany) greatly
extended the usefulness of instant centers by discovering independently the theorem of
three centers. The theorem is stated as follows:

If three bodies are in relative planar motion (or two bodies moving relative to each other
and to the fixed reference frame), there are three instant centers pertaining to the relative
motion of pairs of those bodies. Those three instant centers are collinear.

Thus, in Fig. 4.13, given three bodies 4, B, and C moving with planar motion in ref-
erence frame R, the three instant centers I3, /,c, and I all lie on the same straight line in
the plane. To prove the theorem, it is necessary to recognize that the instant center is really
two coincident points. One of these two points is embedded in each of the two laminae for
which the instant center describes the relative motion. Hence, in Fig. 4.13:

L, is two points common to 4 and B.
Ic1s two points common to 4 and C.

Ipcis two points common to B and C.

Also,

R _R
Vi), ™ YLis),
R _R
Nae), ™ M),
R _R
v(IBc)B— v(’ac)c

Assume that we know the locations of 1,; and I, and we want to find I,.. Relative to link
A, we can first write
4 _4
Ytse), = M(ise),
or

A _A4 A _A
Mtsc)y = Misc)y /(o) = Pltsc), )y = B> Miac)/(Ln)

Also,

el = Vtse), (1), = V) (1se), =P X M) (1)
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EXAMPLE 4.1
Locating Instant
Centers for a
Four-Bar Linkage

or equating the two relationships, we get
4 _4
@c XTI, 11, = @ X1,

Since B is parallel to 4ew;, then the r’s must also be parallel to make the cross products
equal. Because both of the r’s pass through I, they must be collinear. This can happen only
if 1,5, 14, and I all lie on the same line.

The Kennedy—Aronholdt theorem can be used in the following way to find instant
centers. Assume that we have two groups of three links such that two links are common to
both groups. For example, as shown in Fig. 4.14, if we have ;s and I,; and I35 and I3, links
5 and 7 are common to both groups. We know that I;; must lie on a line through /5, and 1,
and it must also lie on the line through /55 and I3;. The location is defined by the intersec-
tion of the two lines.

Therefore, by selecting two pairs of appropriate instant centers, we can locate the
instant center that is common to the two groups of links. A way in which the
Kennedy—Aronholdt theorem can be used is illustrated by the following example.

I must be on this line.
Reference Frame R

FIGURE 4.13 The Kennedy—Aronholdt theorem.

L

137

FIGURE 4.14 Triplets of instant centers.

Locate all instant centers of the four-bar linkage in the position shown in Fig. 4.15.

FIGURE 4.15 Application of the Kennedy—
Aronholdt theorem to the location of all instant cen-
ters of a four-bar linkage.
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Solution By inspection, [}, is at 4, I,; at B, I, at C, and [, at D. Thus, four of the six instant centers are already -
identified. To locate [}5, note that it is collinear with /|, and I,; and also with /;, and /.. Thus it is at
the intersection of BC and AD. Similarly, to locate 7,4, note that it is collinear with 7,; and [5, and also
with 7, and [},

A set of three collinear instant centers always shares the same three subscripts, each
subscript appearing on two instant centers. Given two instant centers with a common sub-
script, the third center, which completes the collinear set, has the two subscripts that are not
common to the other two centers.

4.12 CIRCLE DIAGRAM AS A STRATEGY FOR FINDING
INSTANT CENTERS

When the number of bodies is large, it is helpful to use some kind of bookkeeping method
to help find all of the instant centers. One such method is the circle method, which is based
directly on the Kennedy—Aronholdt theorem. The procedure is illustrated on the four-bar
linkage in Fig. 4.16 as follows:

1. Draw the kinematic diagram for the mechanism to be analyzed.

2. Draw a circle of arbitrary radius and place tick marks representing all of the mechanism
member symbols approximately equally spaced around the perimeter of the circle.

3. By inspection, determine as many instant centers as possible, and draw a straight line
between the corresponding numbers on the circle. For example, if /,, is known, then a
line is drawn between symbols 1 and 2.

4. If a line can be drawn between two points on the circle such that the line is the only
unknown side of two triangles, the instant center represented by that line lies at the inter-
section of the two lines drawn through the instant center pairs that are identified by the
two known sides of each triangle. Once the instant center is located, the appropriate two
points on the circle diagram are connected.

5. Repeat the procedure in step 4 until all of the instant centers of interest are found.

As a second example, consider the slider-crank mechanism shown in Fig. 4.17. Again,
the instant centers to be found are ,, and /,;. These can be found directly; however, it is nec-
essary to note that /), is located at infinity along a line perpendicular to the slider velocity
direction given.

FIGURE 4.16 Use of the circle
diagram when locating instant
centers.
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FIGURE 4.17 The instant centers of a slider-crank linkage.

4.13 USING INSTANT CENTERS:
THE ROTATING-RADIUS METHOD

Once the proper instant centers are found, these can be used to find the velocities of
selected points in a rigid body. This can be done analytically; however, graphical methods
are generally much faster to use. An especially useful method for finding velocities is the
rotating-radius method. To develop the method, assume we have an arbitrary link moving
relative to the reference system. For the sake of illustration, assume that the link is 3 and
the reference link is the frame (link 1). Let points P and Q be any points fixed to link 3 as
shown in Fig. 4.18. Then, we can write

Ve [y = @3 XTp o, =Vp, ~ Vo,
and this is perpendicular to the line from P to Q. If point Q5 has zero velocity relative to link 1,
then
vP} / Q} = VP 2

However, the only point in link 3 that has zero velocity relative to the frame is /5.
Therefore,
Ve, = @3 XTIy,

Because point P was any arbitrary point in link 3, this equation holds for al/ points in link 3.
Therefore, if we know the angular velocity of the link and the instant center relative to the

1 FIGURE 4.18 The rotating-radius method.
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frame, we can compute the absolute velocity of any point in the body. Furthermore, the direc-
tion of the absolute velocity is perpendicular to the line from the point to the instant center.

For other points, only the vector 7, . will change as P changes. Considering the mag-
nitude of the velocity, we have

’vP3|=|w3|rP3/113’

Because w;, is the same for all points in the link, the magnitude of the velocity for any
other point S is given by

s =l i,

Therefore, dividing the two equations gives

|"P;| ’1’3/1.31

|v33

TS, /1

or

rSB/IB

|vs3 = iv”z I

’P;/IBI

This magnitude applies to any point that is the same distance from the instant center.
The magnitude of the velocity is directly proportional to its distance from the instant center.
Hence if two points in the rigid body have the same |51, they will have the same magni-
tude of velocity |vg,[; however, the directions of their velocities will differ because the veloc-
ity is perpendicular to the line from the point to the instant center. This is illustrated by S
and §' in Fig. 4.19. The actual direction of the velocity is obtained by recognizing that all
points will appear to rotate about the instant center relative to the frame.

This theory is the basis for the rotating-radius method. The basic procedure is to find
the magnitude of the velocity of one point in the rigid body and draw that velocity vector to
scale on the link. The velocity of any other point on the body can then be found by recog-
nizing that the magnitude of the velocity relative to the frame is proportional to the distance
from the instant center. Proportional triangles can be drawn by using the line from the orig-
inal point to the instant center as a baseline. Alternately, the line from the new point to the
instant center can be used as a baseline.

[
- I Tpyns l !
e |

\4,—/ i \‘,_/ I TSy,

FIGURE 4.19 The rotating-radius method
of obtaining the velocity of a point in a body
relative to a reference frame (or another
body) given the location of the instant center
of the body and the velocity of some other
point in the body relative to that frame.
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EXAMPLE 4.2
Using the
Rotating-Radius
Method for
Velocities

Solution

Given the compound linkage shown in Fig. 4.20, the velocity of point 4 is given as shown. Find the
velocity of point B.

v

FIGURE 4.20 Compound linkage for
Example 4.2.

The first step in the procedure is to determine the instant centers that are needed. This can be done by
rewriting the given and desired information in terms of the link numbers and frame number. That is,
we are given the velocity v, and we want to find vz . Here we see that the reference system is 1 and
the two links involved are 2 and 5. In this problem and in general problems using instant centers, we
will need to locate three instant centers:

1. I),, the instant center between the reference frame and the link where the input information is
given,

2. I;s, the instant center between the reference frame and the link where the velocity is to be found,
and

3. I, the instant center between the link where a velocity is specified and the link where the veloc-
ity is to be found.

When the linkage is analyzed, it is apparent that /,, can be found by inspection. Therefore, only /,5 and
I;5need to be constructed. This is done by first locating /5 using /|, and I,5, and 7,4 and /3,. Next, /5
is found using /;; and /5, and /¢ and . Finally, I, is found using /|5 and /,, and 1,5 and /5. The con-
struction lines are shown in Fig. 4.21.

FIGURE 4.21 Use of the rotating-radius method in a compound linkage.



EXAMPLE 4.3
Using Instant
Centers to Analyze
a Stephenson-il
Six Bar Linkage

Solution
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After I5 is located, the velocity of I, is found by rotating the triangle formed by the sides v 4, and

11,4 about I, onto the baseline through /;, and I,5. The velocity of L is then found using proportional

triangles. Next, the triangle defined by sides v;,, and I;s/s is rotated about /,5 onto the baseline
through 7,5 and B. The velocity of B is then determined using proportional triangles. Note that when
the velocity of 5 is found, the instant center is treated as a point in link 2, that is, (/,5),y However,
when the velocity of Bs is to be found, the instant center is treated as a point in link 5. This illustrates
the fact that the instant center location defines the location of two points, one in link 2 and the other
in link 5; however, both points have the same velocity.

Consider the Stephenson-II six-bar linkage in Fig. 4.22. Assume that , is given and we want to find
;. This linkage has the characteristics of those described in Section 2.9; that is, the driving link is not
included in any four-link loop. The following solution method should be compared to the inversion
method in Section 2.9.

FIGURE 4.22 Stephenson-II six-bar linkage for
Example 4.3.

The use of instant centers to solve this problem is especially interesting because the linkage cannot be
analyzed using the usual vector polygon approach described earlier.

Again, we need to determine which instant centers are required to solve the problem. Looking at
the information that is given and that is to be found, we see that three links (1, 2, 5) are identified.
Therefore, we need to find 7,5, /5, and I5. Of this set, only Z,5 cannot be determined by inspection.
However, it can be found relatively easily from the instant centers that are available by inspection. First
using Iy and I and 54 and Is, I35 can be located. Then using L5 and 5 and [, and 1,5, L5 can be
located. The resulting instant centers are shown in Fig. 4.23. The velocity of the coincident points at
1,5 is given by

v(lzﬁ)z =, x rlzs/llz = v(’zs)S

= X
@5 rlzs/lls

[36

o

1 Vs

FIGURE 4.23 The instant center method applied to a Stephenson-II six-bar linkage.
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EXAMPLE 4.4
Finding Instant
Centers for a
Quick-Return
Mechanism

Solution

Therefore, the magnitudes of the vectors are related by

=lwalri, /i, = vy, | = sl

v(IZS)z v(’:s )5

and

ol =l
125/115

This gives the magnitude of w;. We can get the direction by determining the sense of the velocity
of Vi Because the vector is generally downward, the angular velocity must be CCW to satisfy the
cross product sign convention.

Find all the instant centers for the quick-return linkage shown in Fig. 4.24. The linkage is driven by
the crank 2 rotating about the fixed revolute at point O,. A pin fixed to link 2 at 4 slides in a slot in
link 3. Link 3 rotates about a fixed revolute at point Oj. It is hinged at point B to the connecting link,
4. Link 4 connects to the horizontally sliding block, 5, via a revolute at point C. This type of linkage
is used extensively in some machine tools (planers and shapers) because it generates a relatively slow
and uniform forward, or cutting, stroke and a considerably quicker return stroke. The ratio of the dura-
tions of the two strokes can be determined by considering the angles through which the drive crank 2
rotates between the extreme positions of the rocker arm 3. The extreme positions are those in which
0,4 is normal to OB.

4 oC5

FIGURE 4.24 The linkage for Example 4.4.

The instant centers are shown in Fig. 4.25. In practice, it is seldom necessary to locate all instant cen-
ters. The great advantage of the instant center technique is its ease of use for complicated linkages,
particularly when only the angular velocity of one member or the velocity of one point is to be found.
For this problem only three instant centers are needed, although others may be needed in the process
of locating them. The three instant centers needed are the set for the input link, output link, and base
link. Here, the input link is the link whose angular velocity is given, or which contains a point whose
velocity is given. The output link is the link whose angular velocity is sought, or which contains the
point whose linear velocity is sought.



EXAMPLE 4.5
Finding Instant
Centers of a
Quick-Return
Mechanism in a
Singular Position
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Isate»

FIGURE 4.25 Location of instant centers for Example 4.4.

Find all the instant centers of the quick-return linkage in Example 4.4 when point C is collinear with
O, and Oy. This is shown in Fig. 4.26.

FIGURE 4.26 The linkage for Example 4.5.
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Solution

If an attempt is made to find the instant centers with the procedure used in Example 4.4, it will be pos-
sible to find I,; and ;5 directly, as shown in Fig. 4.27. However, it is not possible to find the locations
of the remaining instant centers by simple construction because all of the remaining instant centers
are located on the line defined by /;, and /,;. To determine the location of the remaining instant cen-
ters, let point C be moved slightly off of the line defined by 7, and /;; and locate the instant centers.
The location of the instant centers in the true position can then be determined by visualizing their
movement as C approaches its actual position. This is shown in Figs. 4.28 and 4.29. Note that as C
moves toward the vertical position, /;5 becomes coincident with /s, 1, becomes coincident with 7,5,
and /,5 and I,, become coincident with 7.

FIGURE 4.27 Location of /,; and /;5 in Example 4.5.

FIGURE 4.28 Instant centers when C is not in line with /35 in
0, Example 4.5.



EXAMPLE 4.6
Using Instant
Centers to Analyze
a Gear Mechanism

Solution
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C

5
Ly 4 _—I—O
B s bs

T D3 D s

04

Op FIGURE 4.29 Actual location of L4, I5s, and 1), in Example 4.5.

Find the velocity of point C in Fig. 4.30 given that the angular velocity of gear 2 is 10 rad/s CW. B is
a hinge connecting links 4 and 5 and does not connect to gear 3. Point 4 is a pin in link 3 that engages
aslotin link 4.

FIGURE 4.30 The linkage of
Example 4.6.

To find the velocity of point C, considered as a point in link 5, from the angular velocity of link 2
relative to link 1, the instant centers /},, I;s, and I,5 are needed. These may be located as shown in
Fig. 4.31.

Then,

W5 = W, X (112125)/(115125) =10 X 0.940/7.261=1.29 rad/s CW

ve, = @5 X (1) = 1.29 X 4.653 = 6.00 in’s to the left

Notice that the instant center method is extremely efficient for simple input-output problems, such
as this one, in which only two links are of interest.
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1L = 0.940"
Iishs=7261"
1,sC =4.653"

FIGURE 4.31 Location of instant centers for Example 4.6.

4.14 FINDING INSTANT CENTERS USING DRAFTING

PROGRAMS

In this chapter, we have implied that the instant-center approach to velocity analysis is a
purely graphical method. However, this does not mean that the actual drawings must be
done on a drawing board. A better approach is to use one of the many drafting programs
available on computers. The drafting package can be used to

1. draw the basic linkage to scale,

2. find the instant centers,

3. find appropriate distances using available dimension routines, and

4. determine the desired velocities by using calculators available on computers.

This procedure is relatively fast and accurate, especially if the drafting package will
allow the user to draw parallel and perpendicular lines accurately. The results can be easily
imported into reports and other documents. This environment also allows the user to
explore other design alternatives to obtain desired velocity results. From the examples in

this chapter, it is clear that significant changes in the velocity can be made by small alter-
ations in the link lengths or pivot locations.
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4.1 Locate all of the instant centers in the mechanism shown.

. 4 4
5.0 cm
1

AB=1.5" _

AB=8.0cm

. . . . AC=45cm

4.2 Find all of the instant centers of velocity for the mechanism BD=13.0cm

shown.

DE=29cm

velocity of points C and E using instant centers.

AD=338"
AB=12"
BC=3.0"
CD=23"
CE=135"
EB=2.05"

4.5 Locate all of the instant centers in the mechanism shown. If
link 2 is turning CW at the rate of 60 rad/s, determine the linear

\ 4.6 Locate all of the instant centers in the mechanism shown. If

- gg: 13?' 3 J the cam (link 2) is turning CW at the rate of 900 rpm, determine
DE=0.9" the linear velocity of the follower using instant centers.
BC=0.9"

" CF=2.0"

4.4 Find all of the instant centers of velocity for the mechanism
shown.
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4.7 Locate all of the instant centers in the mechanism shown. If
link 2 is turning CW at the rate of 36 rad/s, determine the linear
velocity of point B, by use of instant centers. Determine the
angular velocity of link 4 in rad/s and indicate the direction.
Points C and E have the same vertical coordinate, and points 4
and C have the same horizontal coordinate.

AB= 11"
AC=09"
oF 4 CD=15"
DE= 325"

4.8 Using the instant-center method, find the angular velocity
of link 6 if link 2 is rotating at 50 rpm CCW.

E

4.9 In the operation of this mechanism, link 3 strikes and trips
link 5, which is initially at rest. High wear has been observed at
the point of contact between links 3 and 5. As an engineer, you
are asked to correct this situation. Therefore, you decide to do
the following:

(a) Determine the direction of the velocity of point C on link 3
at the moment of contact.

(b) Relocate the ground pivot of link 4 to make the direction of
the velocity of point C perpendicular to link 5 (hence less rub-
bing at the point of contact) when contact occurs.

Driving Link

AE=0.79"
BD=0.69"
ED=0.74"
CD=0.59"

r=0.125"

A(0,1.37")

Compression Spring

B (0.7", 0)
[l ——Stop

O|F(0.75", 072"y 5

& Is

4.10 For the linkage given, w, = 1 rad/s CCW. Find /,; using the
circle-diagram method. Using v, and I, determine the magni-
tude and direction of v, using the rotating-radius method.

AC =14"
AE= 3.15"
DF=1.6"
BF= 125" B
BD=108"

F(3.6",1.45")

4.11 Find the velocity of point C given that the angular veloc-
ity of gear 2 is 10 rad/s CW. B is a pin joint connecting links 4
and 5. Point 4 is a pin in link 3 that engages a slot in link 4.

AE=0.85"
BD=1.65"




4,12 If w, =5 rad/s CCW, find ws using instant centers.

4.13 If w, = 1rad/s CCW, find the velocity of point 4 on link 6
using the instant-center method. Show v, on the drawing.

AC=BC =14"
BE=3.15"
DF=16" bt
2

O]
F(3.6", 145"

4.14 Ifv, =10 in/s as shown, find v; using the instant-center
method.

AC=195"
Y AD=2.0"
DE=1.1"
BD=0.9"
BE=1.9"

Va2

59

Q C(3.35",0.3")

> X
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4.15 If v, =10 in/s as shown, find v, using the instant-center
method.

416 Ifv, =10 in/s as shown, determine the velocity vector
(direction and magnitude) for point B on link 3 using the instant-
center method.

CD=08"
C4=0.6"
ED=185"
EF=FG=135"
GH=15"
HI=0.95"
Ccr=2.1"
CF=0.65"

E

4.17 In the mechanism shown, @, is 20 rad/s CCW. Find /, and
use it to find the angular velocity of link 6.

B AB=15"

BC=49"

CE=43"

EF=1.2"
(X, Yp) = (0.95, -4.45)
Xp Yp)=(2.5,-4.85)
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4.18 If vz, = 10 in/s as shown, determine the velocity vector
(direction and magnitude) of point C, using the instant-center
method.

AB=0.75"
BE=34"
EF=16"
FD=28s5"
CD=135"

F(4.7,0.75)

4.19 If the velocity of 4, is 10 in/s to the right, find w using
instant centers.

D

AB=1.75"
BC=1"
BD=3"
ED=225"
CE=145"

4.20 Crank 2 of the push-link mechanism shown in the figure
is driven at @, = 60 rad/s (CW). Find the velocity of points B
and C and the angular velocity of links 3 and 4 using the instant-
center method.

B Y
0,A=15cm AD =1475cm
0,B=30.1cm DC = 75cm
3 4 AB =295cm 0,0,= 75cm

A

4.21 The circular cam shown is driven at an angular velocity
w, = 15 rad/s (CW). There is rolling contact between the cam
and roller, link 3. Using the instant-center method, find the
angular velocity of the oscillating follower, link 4.

E(1.5",1.57)

AB=1.22"
DE =3.50"
BC=2.00"
CD=0.50"

- X

4.22 If w; =1 rad/s CCW, find the velocity of points E and F
using the instant-center method. Show the velocity vectors Vi,
and v, on the figure.

w3/ F
torr |04

AB=1.65"
BC=10.88"
CD=0.85"

4.23 In the eight-link mechanism, most of the linkage is con-
tained in the black box and some of the instant centers are
located as shown. The velocity of point B is 100 in/s in the direc-
tion shown. Compute the velocity of point Dg and determine the
angular velocity of link 2.

Y +l (2.46,1.74) AB =130"
v:\ 147 4 (040, 1.48) 58 AE =425"
? c EC =1.30"
Q ED =0.86"

e
E Xx

Ly 4 (1.07,-0.45)
I, 4 (1.85,-0.78)

Ig7 4 (3.58, 0.50)

4.24 Ifthe velocity of point 4 on link 2 is 10 in/s as shown, use
the instant-center method to find the velocity of point C on
link 5.

F(3.15",1.9")

DE=25"
AD=0.75"
AB=1.75"
BE=15"
GF=15"
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4.25 Assume that link 7 rolls on link 3 without slipping, and  4.28 If w, =100 rad/s CCW, find the velocity of point E using

find the following instant centers: /3, /5, and I;. For the given  the instant-center method. Show the velocity vector v;, on the
value for @,, find @, using instant centers. figure.

AB=18"
BG=0.85"
GF=1.7"
BD=3.9"
DE=3.25"
AE=2.0"

D *

AB =1.0"
BC=175"
cD=20"
DE=0.8"
AD=3.0"

4.26 Ifv, =10 in/s as shown, find v, using the instant-center
method.

DA=095"  BE=085"
DF =2.45" EG=22"
AB=145" EC=12"
BF=1.8" CG=1.25"

VAZ

1.9"

4.30 If w, = 100 rad/s CCW, find v, using instant centers and
the rotating-radius method.

4.27 If w, = 10 rad/s CCW, find the velocity of point B using

the instant-center method. Show the velocity vector Vs, On the ’égz :)§5
figure. AE =0.7"

CF =045" 125

FG=175"
CB=10"
DB =1.65"

C4 =1.5"
DE=25"
CD=4.0"
AB =1.6"
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4.31 Ifv, =10 in/s as shown, find the angular velocity (w¢) of
link 6 using the instant-center method.

AB=1.0"
AD=20"

AD=095"

CE=2.0"

EF=125"
BF=3.385"

4.32 If w, = 50 rad/s CCW, find the velocity of point G using
the instant-center method. Show the velocity vector VG, on the

figure.

«;

B

CHAPTER 4
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AB =1.16"
BC=0.70"
CD=1.4s"
DE=1.16"
AD=1.30"
DF=1.30"
EG=220"

4.33 If w, =100 rad/s CCW, find w.

AB=12"
BC=6.0"
CD=3.0"
AD=4.0"
BF =3.0"

E(2.0",6.0M




5.1 INTRODUCTION

In Chapters 2 and 3, graphical techniques for position, velocity, and acceleration analysis of
linkages were presented. However, as was pointed out, there are circumstances in which it
is preferable to use analytical solution techniques that can be conveniently programmed on
a digital computer. In any circumstance in which repetitive or extensive analyses are
required, the use of computer software is highly desirable. In the present chapter, the equa-
tions used to construct analysis software are developed in detail.

The geometric constraints associated with mechanisms can be formulated using
vector displacement, velocity, and acceleration closure equations. The displacement closure
equations are based on the observation that there are two different but equivalent paths con-
necting points on the same vector loop. For example, in the four-bar linkage shown in Fig. 5.1,
one can reach point C from point 4 either by way of point B or point D.

It is convenient to represent the terms in the closure equations by vectors, and the pro-
cedures developed in this chapter work especially well for planar problems. It is also possi-
ble to apply the same general approach to spatial linkages. Another popular method for
planar mechanisms, which involves slightly more computational work, is the complex
number approach, in which the Cartesian vector components are expressed in terms of the
real and imaginary parts of a complex number. The use of complex numbers is advanta-
geous in some types of problem; however, the direct vector approach is preferred here. The
complex number approach is outlined briefly at the end of this chapter.

There are also specialized techniques for forming closure equations for spatial mech-
anisms. The general trend is to work with coordinate transformation operators. For this a set
of body-fixed coordinates is established at each joint, and the product of a series of joint-to-
joint coordinate transformation operators is taken. When this product is continued around
the entire mechanism loop, it must be equal to the identity operator. The resulting operator
equation can then be manipulated, if required, and corresponding elements can be equated.
The types of operators that have been used include dual complex number 2 X 2 matrices,
dual quaternions, real number 4 X 4 matrices, and dual number 3 X 3 matrices. A discus-
sion of the mathematics of these operators is beyond the scope of this text. The description
of spatial linkages using matrix transformations is discussed in Chapter 9.

FIGURE 5.1 Closure of a four-bar linkage.

171
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5.2 POSITION, VELOCITY,
AND ACCELERATION REPRESENTATIONS

5.2.1 Position Representation

For the purpose of developing an analytical model, we can define the relative locations of a
chain of points by a chain of vectors. The points will be associated with the links of a mech-
anism in some manner, but they do not have to be attached to specific links. An example is
given in Fig. 5.2.

The position of point Q in the fixed reference frame is

p=h+n+n 5.1

Here, we will represent each vector by a length 7, and an angle 6, as shown in Fig. 5.3. All
angles are measured counterclockwise from a line that remains parallel to the fixed x axis
attached to the reference frame.

With this notation, we can resolve each of the vectors in Eq. (5.1) into x and y com-
ponents making use of the unit vectors i and j as follows:

K= rl(coseli +sin Blj)

n=r (cos@zi + sinezj)

B=n (cosO3i +sin 93j) (5.2)
or

r = nk(c030ki+sin0kj),k =1,2,3 (5.3)

5.2.2 Velocity Representation
To determine the velocity of point Q, 7, can be differentiated. Then,

Y r o]
P
03
o
J
n 6
3 s
\91 i x  FIGURES.2 Representation of a chain of points
T ———
by a set of vectors.

FIGURE 5.3 Notation used for vectors.
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where
dr,

=" (5.5)
Note that, in general, both the magnitude and direction of r; can change. When we differ-
entiate Eq. (5.3) using the chain rule of calculus, we obtain
Fy = iy (O8O, +5in B j) + (6, sin 6 + 6, cos 6 j) (5.6)
or
F, = (ik cosb;, — .6, sinb, )i + (ik sin6, + 7,0, cos, ) j 6.7

If we compare the vector components indicated in Eq. (5.6) with the equations developed in
Section 3.3, we will notice a similarity between corresponding terms. In particular, if 7, is
the vector defining the relative position between two points P and Q, and body B is moving
relative to the reference frame R as shown in Fig. 5.4, then

’.‘k (cosﬂki +Sin0kj)=BVQ/P (58)
and
rkék (—sin@ki+cos(9kj)=w5 Xro/p (5.9)

Equation (5.8) can be verified by recognizing that it gives the component of the velocity
associated with changing the magnitude of the vector between the two points. This compo-
nent is clearly in the direction of the vector ;. The second term can be verified by comput-
ing the cross product. Recognizing that

@p = f}kk
and
ro/p =t = rk(cosoki + sinokj)
We then have,
Wz Xry/p = O,k %7, (cosﬂki+sin0kj) =01, (cos()kk X i+sinf kX j)
=10, (— sinfi +cosf, j)

Equation (5.4) can also be expressed as

w

Vo= ;i‘k(cosﬂki + Sinekj)"' T (‘ék sin i + 0y cosBkj) (5.10)

or

3
VQ = Z(i‘k COSOk —rkek Sinok)i+(i'k Sin@k + rk0k Cosok)j
k=1 (5.11)

FIGURE 54 Position vector between two points.
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5.2.3 Acceleration Representation

To obtain the acceleration expression, we need only to differentiate the velocity expression
(Eq. 5.4). Symbolically, this is

aQ=i"Q=i",+i"2+i‘3 (5.12)
where
. d’n
"=
dt

Because the vectors have been defined in a consistent manner (Fig. 5.3), the form for
the derivatives for all of the vectors will be the same. Therefore, we can develop the expres-
sion with a general vector r,.

Note again that, in general, both the magnitude and direction of r, can change. When
we differentiate Eq. (5.6) using the chain rule of calculus, we obtain

K =¥ (cos 0,i +sin Bkj) +1,6, (— sin@,i + cosﬂkj) -6} (cos 0,i +sin ij)

or
r,= [(;-'k -r6? )cosOk - (r,,ék +25,6, )sin 0, ]i

+[('r;c - rké,f)sin 0, — (b +27,6, ) cos, ] j 514

As in the case of the velocity equations, we can compare the vector components indi-
cated in Eq. (5.13) with the acceleration equations developed in Section 3.3. Using the same
nomenclature as before (Fig. 5.4), we get

Fi (cosyi +siny j)="ag (5.15)
rkék(—sinoki+cos8kj)=aBer/P (5.16)
52 fcing 2\ o
—rk()k(cosekt+51n0k])—w3x(wg er/p) (5.17)
and
kaék(—sineki+cosﬂkj)=2wBXBvQ/P (518)

These can be verified by direct calculation.
If we add the individual components, we can obtain the acceleration of point Q. Then
Eq. (5.12) can be expressed as

3| % (cos 0,1 +sin ij) +1,6, (—sin 0i +cos ij)
ap = . .
¢ k=1 —rkf),f (cosOki + sinokj) +2r'k0k(—sin0,,i + cosBkj) (5.19)

or
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3 [(Fk - rké,f )cosﬂk - (rkék +27,0, ) sing, ]i
ag = . 2\ . .. . .
k=1 +[(rk -0 )smé?,c + (rkek +2r.6, ) cosf, ]]

(5.20)

5.2.4 Special Cases

Equations (5.6) and (5.13) or (5.7) and (5.14) are the most general forms of the velocity and
acceleration equations. However, in most mechanisms usually some of the terms will be
zero because of the special conditions associated with the way in which the vectors are
defined. It is possible for any of the terms involved in the velocity and acceleration equa-
tions to be zero; however, a common case is to have the magnitude of a given position vector
be constant. This is the case when the vector defines the relative positions of two points on
arigid link. When this happens, 7 and 7 are zero. Then the velocity and acceleration expres-
sions become

F =10, (— sin@,i + cosij) (5.21)
. - . . . ) . . .

v, =nb, (— sinf,i + cosek;) s/ (cosekt + s1n0k1) (5.22)
or

K= [—rké,f cosf, — 7,6, sin6, ]i +[—rké,f sin, + 8, cosb, ] j (5.23)

5.2.5 Mechanisms to Be Considered

There are six commonly used single-loop chains with revolute and slider joints. We will look
at three of these in detail to illustrate how the equations can be developed in each case. Then
we will present the results for the remaining three cases. We will then discuss more complex
mechanisms that require several vector loops and mechanisms that contain higher pairs.

5.3 ANALYTICAL CLOSURE EQUATIONS FOR
FOUR-BAR LINKAGES

We will first give an overview of the development of the equations for the four-bar linkage
using the general nomenclature just discussed. The procedures used to solve the equations
for the four-bar linkage are similar to the procedures required for solving the equations
associated with most other simple mechanisms.

The closure condition simply expresses the condition that a loop of a linkage closes
on itself. For the four-bar linkage shown in Fig. 5.5, the closure equations would be

tpb=hH+rB=K+r, (5.24)
or
o (cos 0,i +sin (92j) +n (cos 05i +sin 03j) =n (cos()li +sin Olj) + r4(cos 0,1 +sin 04j) (5.25)
Rewriting Eq. (5.25) in its component equations, one gets

¥, €080, +1r; cosy = cosb, +r, cosb, (5.26)
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FIGURE 5.5 Vector closure condition for a four-bar loop. The
position of point P obtained by adding the vectors r- and r; must
always be the same as that obtained by adding vectors r, and r,.
Note that r| is a constant vector that describes the base member
of the linkage. Correspondingly, 6, is a constant angle

1, 8inf, +r;sin6; =4 sinf, +r,sinf, (5.27)

Equations (5.26) and (5.27) are the closure equations, and they must be satisfied throughout
the motion of the linkage. The base vector will be constant, so r, and 6, are constants. If 8, is
given, that is, if crank OQ is a driving crank, it is necessary to solve Egs. (5.26) and (5.27) for
65 and 6, in terms of §,. Once these expressions are obtained 65 6, 6, and 6, can be obtained
in terms of 8, 6, and 6, by differentiation. Velocities and accelerations of points in the mech-
anism can then be obtained from equations like Egs. (5.11) and (5.19), recognizing that all of
the vector magnitudes are constant (r =7 = 0).

When 6, is given, the coupler is the driver, and we must solve Egs. (5.26) and (5.27)
for 0, and 8, in terms of 6. The procedure for doing this is very similar to that used when
0, is the input. Therefore, we will first reconsider briefly the case in which 6, is the input.

5.3.1 Solution of Closure Equations for Four-Bar Linkages
When Link 2 Is the Driver

The analytical solution procedure follows the same major steps as in the graphical solu-
tion. That is, a position analysis must first be performed, then a velocity analysis, and
finally an acceleration analysis. The position analysis, for a closed-loop linkage, comprises
the solution of the closure equations for the joint angles or link orientations. Once this
solution is obtained, the velocity and acceleration states are quickly obtainable using the
differentiated equations. It will be seen, however, that the position analysis, which is so
easily performed graphically by construction of a drawing to scale, is a complex matter
when performed analytically.

For all of the simple mechanisms that we will consider initially, the first step in solv-
ing the position equations is to identify the variable to be determined first. When the posi-
tion equations involve two angles as unknowns, the solution procedure is to isolate the
trigonometric function involving the angle to be eliminated on the left-hand side of the
equation. To eliminate 65 in the linkage shown in Fig. 5.5, first isolate it on one side of
Eqgs. (5.26) and (5.27) as follows:

r; cos; = cosf, +r,cosb, —r, cosb, (5.28)

rysinfy =r sinf, +r,sinf, —r, sinf, (5.29)

Notice that the angle 6, is a known constant. Now square both sides of both equations,
add, and simplify the result using the trigonometric identity sin@ + cos26 = 1. This gives
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r32 = r12 + r22 + r42 +2n7, (cosﬂl cosf, +sind, sin 64)
-2nn, (cos 6, cos®, +sinf, sinb, ) + 2r2r4(cos 6, cosf, +sin#, sin 04) (5.30)

Equation (5.30) gives 8, in terms of the given angle 8, (and the constant angle ;) but not
explicitly. To obtain an explicit expression, simplify Eq. (5.30) by combining the coeffi-
cients of cos@, and sind, as follows:

ACOSO4 +BSil‘104 +C=0 (5.31)
where

A=2rr,cosb —2r,r, cosb,
B= 2r1r4 sin 01 - 2r2r4 Sin02
C=r+1f +1} -1} —2nn, (cosBl cosf, +sinf, sin02) (5.32)

To solve Eq. (5.31), use the standard trigonometric identities for half angles given in the
following:

sinfy = ——————=~
1+ tan? L2y
2 (5.33)
1-tan? (6—4]
2
cosf, = ———=
1+ tan? (0—“)
2 (5.34)

After substitution and simplification, we get
(C-4)* +2Bt+(4+C)=0

2
Solving for ¢ gives

—ZB+0'\/4BZ —4(C-4)(C+4) B —B+oVNB —C? + 42

2(C-4) - C-4

where

t=

(5.35)
and
_ -1
0,=2tan" ¢ (5.36)
where o = %1 is a sign variable identifying the assembly mode. Note that tan — ! has a valid
range of —7/2 < tan ~'¢ < 71/2. Therefore, 6, will have the range — 7 < 6, < 7. Unless the
linkage is a Grashof type II linkage in one of the extreme positions of its motion range, there
are two solutions for 8, corresponding to the two values of o, and they are both valid. These
correspond to two assembly modes or branches for the linkage. Once we pick the value for
o corresponding to the desired mode, the sign normally stays the same for any value of ,.
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Because of the square root in Eq. (5.35), the variable ¢ can be complex [(42 + B?) < C2].
If this happens, the mechanism cannot be assembled in the position specified. The assem-
bly configurations would then appear as shown in Fig. 5.6.

After 6, is known, equations (5.28) and (5.29) can now be solved for 6. Dividing
Eq. (5.29) by Eq. (5.28) and solving for 8, gives

6. = tan-!| sin, +r,sinf, —r, sin6,

} ¥ cosf, +r,cosf, —r, cosb, (5.37)
Note that in Eq. (5.37), it is essential that the sign of the numerator and denominator be
maintained to determine the quadrant in which the angle 8, lies. This can be done directly
in MATLAB by using the ATAN2 function. The form of this function is

ATAN2(sing;, cos6;) = tan“[%}
cosf; (5.38)

Equations (5.35) - (5.37) give a complete and consistent solution to the position prob-
lem. As indicated before, for any value of 6,, there are typically two values of 6; and 6,,
given by substituting o=+ 1 and — 1, respectively, in Eq. (5.35). These two different solu-
tions are shown in Fig. 5.7. The two solutions correspond to an assembly ambiguity that also
appears in the graphical construction.

Note that the positions of r; and r, are symmetric about the line QR. Therefore, the
angle y = 6, — 0 has the same magnitude, but opposite sign, in each of the two positions.
The sign of vy provides a useful indicator as to which of the solution branches has been
drawn, from the graphical point of view.

3 FIGURE 5.6 Grashof type II
linkages cannot be placed in

4 positions that are transitions
between solution branches.
The variable 7 would be com-
plex in these cases

FIGURE 5.7 The two possible positions (P and P’) of the
point P for a given value of 8,. Note that QP'R is the mirror
image of QPR about the line QR. Notice that there are two dif-
ferent possible values of 8; and two different values of 8, cor-
responding to the two possible positions of point P. The sign
of the angle RPQ () is reversed in the second solution,
although the magnitude of RP’Q is the same. The sign of yis a
N useful graphical indicator of which solution is being examined
(see Section 6.3.6).
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Once all of the angular quantities are known, it is relatively straightforward to com-
pute the coordinates of any point of the vector loops used in the closure equations. In par-
ticular, the coordinates of O, P, and R are given by

rp=n= rz(cosozi + sinGZj) (5.39)

rp=r+n=r (cosezi +sin02j) + r3(00503i + sin03j)

=n+n= rl(coseli +sin01j) + r4(cos()4i +sin 04j) (5.40)

and

rR=n =r,(cosf)1i+sin01j) (5.41)

5.3.2 Analysis When the Coupler (Link 3) Is the Driving Link

The analytical procedure just given when one of the frame-mounted links (link 2) in Fig. 5.5
is the driver is very similar to the graphical procedure. However, if the coupler is the driver,
it is difficult to analyze the linkage graphically. The analytical procedure, in contrast, is very
straightforward and no more difficult to conduct than when one of the frame-mounted links
is the driver. The details follow exactly the same procedure as that given in Section 5.3.1.
Therefore, we will simply outline the procedure and tabulate the results.

In the procedure, we can assume that in Fig. 5.5 that 8,, 6, 6;, and 6, are known, and
0,, 92, ('9'2, 0, 6,, and @, are to be found. All of the link lengths and 6, are constants. For the
position analysis, again begin with Egs. (5.26) and (5.27) and isolate the terms with either
0, or 0, It is advantageous to select 6, for reasons that will become apparent. The resulting
equations are

r, cosB, = r,cosf, +r,cos0, —r; cosb, (5.42)
r,sinf, =nsinf; +r,sinf, —rysinb, (5.43)

A comparison of Egs. (5.42) and (5.43) with Egs. (5.28) and (5.29) indicates that they are of
exactly the same form except that the indices 2 and 3 are interchanged. Therefore, we can use
directly the position solution derived in Section 5.3.1 if we interchange the indices 2 and 3.

When the coupler is the driver, there is an assembly-mode ambiguity similar to that
when link 2 is the driver. This is illustrated in Fig. 5.8. It is necessary to know the appropri-
ate mode before the analysis is begun; however, once the assembly mode is selected, it is the
same for any position of the input link unless the linkage is a type 2 linkage, and passes
through a singular position.

The motion of the coupler in a coupler-driven four-bar linkage will be less than 360°
unless the linkage is of type 1 with the coupler or base as the shortest link. When the link-
age reaches its motion limits, links 2 and 4 will be parallel.

5.3.3 Velocity Equations for Four-Bar Linkages

The analytical form of the velocity equations for the four-bar linkage of Fig. 5.5 can be
developed by differentiating Eq. (5.24). The result is
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FIGURE 5.8 The two possible positions
(P and P’) of the point P for a given value
of 6;. There are two different possible
values of 8, and two different values of 6,

corresponding to the two possible posi-
tions of point P.

When this equation is written in component form, the result is the same as that of differen-
tiating Eqs. (5.26) and (5.27). Recognizing that all of the link lengths are constant as is 6,
we have the resulting component equations

1,0, sin 0, + r393 sin@, = r,0,sinf, (5.45)

rzéz cosf, + r393 cosf; = r494 cosf, (5.46)

If §, is known, the only new unknowns are 65 and 6, and if 6, is known, the only new
unknowns are 6, and 6,. In either case, the equations can be solved most easily using a
linear equation solver. In matrix form, Eqgs. (5.45) and (5.46) can be rearranged and

rewritten as

-r;sinf, r,sinf, éj _ FyOpr 500,

—r;cosf; rycosb, 64 rMéM cosf,,
where M =2 andJ =3 for 6, as the input, and M =3 and J = 2 for 6, as the input. The terms
in the matrix and vector on the right-hand side of the equation will be known. The equation
can therefore be solved manually, on a programmable calculator, or with the matrix solvers
in programs such as MATLAB.

Once the angular velocities are known, it is a simple matter to compute the linear

velocities of any of the points on the vector loop. The velocities of points Q and P are given
by

(5.47)

Fp =, =y, (~sin6,i +cos6, j) (5.48)

and

Fp=F +F= (—rzéz sinf, — r;6; sin 6, )i + (r292 cosf, + 0, cosb, ) j

=+, = -1,y sin6, )i + (ryf, cos6,)j (5.49)



5.3 ANALYTICAL CLOSURE EQUATIONS FOR FOUR-BAR LINKAGES 181

5.3.4 Acceleration Equations for Four-Bar Linkages

The analytical form of the acceleration equations for the linkage of Fig. 5.5 can be devel-
oped by differentiating Eq. (5.44). The result is

When this equation is written in component form, the result is the same as differentiating
Egs. (5.45) and (5.46). The resulting component equations are

rzéz sin@, + r2é§ cosf, + 7'353 sinf; + r3932 costy = r4é4 sinf, + r,ﬁf cosf, (5.51)

1,0, cosf, — rb2 sing, + r353 cosf; —r,; sinf; = r,0, cosf, + 7,02 sin6, (5.52)
When 6, is known along with all of the position and velocity terms, the only new unknowns
are 6; and 6,, and when 6, is known along with all of the position and velocity terms, the
only new unknowns are 6, and 6, Again, because a linear problem is involved, these can be
solved for most easily using a linear equation solver. In matrix form, Eqgs. (5.51) and (5.52)
can be rearranged and rewritten as

—r;sin@, rysind, ([0, | _ |ry 0, sinby, +r,02, cosby, +r,05 cosd, - 7,07 cosé,
—rycosf; rycosf, |6, a0y €080y, —rMO,%{ sinf,, — r103 sinf; — r4(§f sinf,

(5.53)

where M =2 and J = 3 for 6, as the input, and M = 3 and J = 2 for 6, as the input. The terms
in the matrix and vector on the right-hand side of the equation will be known. The equation
can therefore be solved manually, on a programmable calculator, or with the matrix solvers
in programs such as MATLAB. Notice that the coefficient matrix is the same for both the
velocities (Eq. 5.47) and the accelerations (Eq. 5.53).

Once the angular accelerations are known, it is a simple matter to compute the linear
accelerations of any of the points in the linkage. The accelerations of points Q and P are

given by
rp=r= (—"262 sinf, — r,62 cosb, )i + (rzéz cos 6, —r,03 siné, ) j (5.54)
and
Fp=F+H= —(rzéz sin6, + 1,02 cosb, + r,b; sin; + 67 cosb, )i
+(r252 cosf, — rzé§ sinf, + r353 cosf; — rﬁf sin 03) j
=K +r= —(r454 sinf, + 7,62 cosé, )i + (r454 cosf, —r,02 sin 04) j (5.55)

Now that the equations have been developed, it is relatively simple to write a computer
program for the analysis of a four-bar linkage. To aid in this, the equations required are
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summarized in Table 5.1. The authors have found that MATLAB is a very convenient lan-
guage for solving simple kinematic equations, and this program runs on a variety of plat-
forms. MATLAB routines for analyzing four-bar linkages are contained on the disk
provided with this book.

TABLE 5.1 Summary of Position, Velocity, and Acceleration Equations for a Four-Bar
Linkage. Link 2 Is the Input Link When M = 2 and J = 3. Link 3 Is the Input Link When
M =3 and J = 2. Link 1 Is Assumed to Be the Frame. The Link Numbers and Points Are
Defined in Fig. 5.5

Position

A=2nr,cos0, —2ry 1y cos,,
B =2nrysinf, —2ry, 7, sin,,

C= V12 + rﬁ, +r42 —rJ2 —ZrIr,‘,,(cose1 cosfy, +sinf, sinGM)

| =-B+oVB*-C?+ 4% |

Cc-4

0, =2tan"

6 = tan-!| [ sinf, +r,sinf, —ry, sinb,, :l
;=

1 €080, +r, cosy —ry, cosby,

fh=h="r (cosf)zi + sinBZj)

rp=n+r= rz(cos()zi +sin sz) + r3(cos¢93i +sin93j)

=H+r= rl(coseli +sin Olj) + r4(c0504i+ sin 04j)

rR=H= rl(cos(?]i+sin01j)

Velocity

—r,sinf, r,siné, |[6, B ryOy sind,,
—-rycosf; rycosf, 64 rMéMcosﬂM

rg=r= r2(§2(—sin02i + cos62j)

Fp= (—r4é4 sin 04)1’ + (r494 cos 04)j

Acceleration

—rysinf, r,;sing, ||6, _ )by sinby, + rybis cosy + 1,65 cosB, — r,03 cosf,
—rycost;, r,cosb, |6, FyyOys €080y, — 1,03 Sin 6y, — 1,05 sin6, + r,02 sin 6,

rp=h= (—rzt§2 sinf, — .67 cosf, )i + (rzlf)'2 cosb, — .03 sinf, ) j

Fp = —(r4é4 sinf, + 1,62 cos 04)i + (r4(§4 cosf, —r,0; sin 04) j




EXAMPLE 5.1
Position Analysis
of a Four-Bar
Linkage

Solution
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For the linkage with r, = 1, r, =2, r; = 3.5, 7, = 4, and 8, = 0 shown in Fig. 5.9, compute the corre-
sponding values of 6, and 8, for each of the solution branches when the driving crank is in the posi-
tions 8,= 0, 7/2, 7, and — 7r/2. Units for the lengths are not explicitly given in this example because
the angular results are independent of the units for the lengths.

FIGURE 5.9 The linkage for Example 5.1, 5.2, and 5.3.

The solution procedure is to use the equations in Table 5.1. First compute 4, B, and C for each value
of 8, and then select o. Next compute 6, and then 6. The calculations for 8, = 0 are as follows:

A=2r7, cosb, —2r,r, cosf, =2(1)(4)-2(2)(4) =-8
B=2nr,sin6, —-2r,r,sinb, =0

C=rf +1} +1i —r} —2nr5(c0s6, cos6, +sinf; sinf, )= 1> +2° +47 =357 -2(1)(2) = 4.75

o _Zm_l{-mmlaz -c? +A2:‘
, =

C-4

-0 ,/02 ~4.75" +(-8)
—2tn| — +(9) =2tan"'(0.5049) = 53.58°

475+8

_| rsin®, +7,sinf, -7, sinb
6, = tan 1[ 1 17 a=h 2
r,cos, +r, cosb, —r, cosb, |

_ tan—l{ 4sm(53.58°) :l _ tarl_1|:3.2187] - tan_l(2.3412) — 66.87°
1+ 4cos(53.58°) -2 1.3748

The remainder of the solution is summarized in Table 5.2.

TABLE 5.2 Summary of Results for Example 5.1

0, i A B c 0, 0,
0 1 -8 0 4.75 53.568° 66.87°
-1 -53.58° - 66.87°
/2 1 87 -16 8.75 177.28° —143.85°
-1 55.85° 21.98°
T 1 24 0 12.75 - 122.09° -75.62°
-1 122.09° 75.562°
-m/21 1 8 16 8.75 - 55.85° -21.98°

-1 - 177.28° 148.85°
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The arithmetic may also be checked by comparing y = 8, — 8; for o = +1. One value should be
minus the other if both values are in the range — 7 <y ” 7. It may be necessary to add or subtract 27
to either value to bring vy into the range - w < y” 7.

EXAMPLE 5.2 If, for the linkage in Example 5.1 (Fig. 5.9), 6, = 10 rad/s and 6, = 0, compute 656, 65 6, in the first

Velocity and | of the four positions (6, = 0).
Acceleration
Analysis of a Four-
Bar Linkage with
Crank Input

Solution Using the equations in Table 5.1, we write the velocity expression as
-rsing, r,sing, |6, _ 7,6, sin 0,
-r,cos8; 1, cosb, ||6, rzéz cos 8,
-3.5sin(66.87°)  4sin(53.58°) |(4,] [2(10)sin(0°)] [-3.2187 3.2187](6,] [0
" [-35005(66.87°) 4cos(53.58°) |4,/  |2(10)cos(0°)] | -1.3749 237486, |20

Solving the linear set of equations gives 6, = 20 rad/s and 6,=20.0 rad/s. Both values are positive, so
the corresponding angular velocities are counterclockwise. The acceleration expression is

l:—r3 sinf, 7, sinf, jH%} _ rzéz sinf, + r29§ cosf, + r36§ cosf; — rgéf cos b,
—r, cos@; 1, cosb, ||6, nb, cos8, — 1,63 sin6, — 67 sin6, — r,07 sin 6,

[—3.2187 3.2187:| {(’9'3} _ J0+2(10)" +3.5(20)’ cos(66.879) ~ 4(20)" cos( 53.589) | _ {—20040265}
-1.3749 2.3748 (6, 0-0-3.5(20)’ sin(66.87°) + 4(20)" sin( 53.589) -0.0363

Solving the linear set of equations gives 6; = 147.5634 rad/s? and 6, = 85.4150 rad/s>. Again, both
values are positive, so the corresponding angular accelerations are counterclockwise.

5.4 ANALYTICAL EQUATIONS FOR A RIGID
BODY AFTER THE KINEMATIC PROPERTIES OF
TWO POINTS ARE KNOWN

The equations presented so far will permit the kinematic properties of the points on the
vector loop to be computed directly. However, often we need to compute the position, veloc-
ity, and acceleration of points that are not directly on the vector loops. In general, given the
kinematic properties of one point on a rigid body and the angular position, angular veloc-
ity, and angular acceleration of the body, we can compute the position, velocity, and accel-
eration of any defined point on the rigid body.

Consider the rigid body represented in Fig. 5.10. Assume that 4 and B are two points
attached to an arbitrary link, say link 5, and a third point is defined relative to the line
between points 4 and B by the angle B8 and the distance r,, which is represented in
Fig. 5.10 as r¢. Then the linear position, velocity, and acceleration of point C can be com-
puted directly if the following are known: r,, 7, 7, 85, 65, and 6s.

The position of point C is given as

rc=rA+r6

or
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[}
Y
Ts P 8 = B
A 0,
L re
FIGURE 5.10 Calculation of the kinematic properties of a point
on a link after the kinematic properties of one point and the angu-
lar velocity and acceleration of the link are known.
rc=ry+r (cosBGi + sin06j) (5.56)
where
b =P +05 (5.57)
Recognizing that B is a constant, we see that the velocity of point C is given by
fo =¥y +r695(—-sin06i+00806j) (5.58)
and the acceleration is given by
¥ =F, + s (— sinfgi + cos06j) — 02 (cos()(,i +sin 06j) (5.59)

Note that we have assumed here that 85, 65, and 65 are known. Often, we will know the kine-
matic information for two points on a rigid link instead of these angular quantities. If we
know the position, velocity, and acceleration of two points (say 4 and B), we can compute
8s, 65, and 6; and proceed as before. The angle can be computed from the x and y compo-
nents of the position vectors for 4 and B using

Te, ~ T4
05=tan ! — e
er —rAx

The angular velocity can be computed by rewriting Eq. (5.58) in terms of points 4 and B.
That is,

Fg=F,+ rsés(—sinﬂsi + cosﬁsj)
Therefore,

er _rAx —_ rB)’ _rA."

é = - =
5 .
rssinfs  rscosfs

Similarly, the angular acceleration can be computed by rewriting Eq. (5.59) in terms of 4
and B. That is,

Fp =Fy +rsbs (— sin@si + cosfs j) A (cos&5i +5in 6 j)
Therefore,

o o Y - o 2.
é _ (er —Fy )+ r595 00595 (rBy - rAy )+ r505 sSin 05
5 = —

¥s sin 05 rs5 c0s s

These equations are summarized in Table 5.3, and a MATLAB function routine for the cal-
culations is included on the disk with this book.
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TABLE 5.3 Summary of Position, Velocity, and Acceleration Equations for an Arbi-
trary Point on a Rigid Body. The Vectors and Points Are Defined in Fig. 5.10

If r, and r; are given instead of 4, 95, and 55, first compute 6, és, and 55 using the following:

1l B, T 74,
05=tan ! 2 s
er —rAx

fg, = T4 "B, ~T4

05 == N = ) s
rssinfs 75 cosfs
. ('B, Ty ) + r5652 cosbs (’B_, T4 ) + 1565 sin 6
05 = - =
¥s sin 6 rs cos bs

Position

rc=ryt+ r6(cos06i + sinBGj)

06 = B + 05
Velocity

re=rg+ rGéS(—sin O + cosBGj)

Acceleration

P = Fy + 1505 (—sin 01 + cose6j) - r6é§(c0566i +sin 06j)

EXAMPLE 5.3 For the linkage in Examples 5.1 and 5.2 shown in Fig. 5.9, compute the velocity and acceleration
Velocity and of point E; when 6, = 0, 8, = 10 rad/s, 8, = 0, and o = 1. Assume that the lengths are given in

Acceleration | ccntmeters.
Analysis of a
Coupler Point

Solution First compute the angle 8 between the line 4B and the line AE. The angle is given by
af 1
B = tan ](5] =26.565°

and the length AFE is given by
rg = AE = 2.0/cos(26.565°) =2.236 cm

Then the velocity of E; is given by
rg, = r6, (— sin6,i + cos 02]') +1,0, (—sin96:‘ + cosﬂéj)
Substitution of 8, = 0, 6; = 66.87°, 6, = 10.0 rad/s, and 6, = 20.0 rad/s from Example 5.2 gives
0, =0, + B = 66.87° +26.565° = 93.435°
and
7, =2(10)(0i + j) +2.236(20.0)(- sin(93.435°)i + cos(93.435°) )
=20/ — 44.640i - 2.679 j = —44.64i +17.32j cm/s
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The acceleration of E; is given by

rg, =10, (— sin6,i + cosﬂzj) -r,6; (cos()zi +sin 02j)
41 (~sin6gi + cosBy ) - b (cosbii +sinb j)

Substitution of 8, = 0, 6, = 66.87°, §, = 10.0 rad/s, 6, = 0 rad/s?, 6, = 20.0 rad/s, and 8, = 147.56 rad/s?
gives

F,, =0-2(10) (i +0j) +2.236(147.56) - sin(93.435°)i + cos(93.435°),]

2.236(20.0)"[cos(93.435°)i + sin(93.435°) j| = ~475.76i — 912.56 j omjk?

5.5 ANALYTICAL EQUATIONS FOR
SLIDER-CRANK MECHANISMS

Next to the four-bar linkage, the slider-crank is probably the most commonly used mecha-
nism. It appears in all internal combustion engines (Fig. 5.11) and in numerous industrial
(Fig. 5.12) and household devices (Fig. 5.13). A general slider-crank mechanism is repre-
sented in Fig. 5.14. To develop the closure equations, locate vectors r, and r; as was done in
the regular four-bar linkage. To form the other part of the closure equation, draw two vec-
tors, one in the direction of the slider velocity and one perpendicular to the velocity direc-
tion. The variables associated with the problem are then located as shown in Fig. 5.14. The
loop closure equation is then the same as that for the regular four-bar linkage:

rp=r+B=KtH (5.60)
or

rz(cosﬁ2i + sin02j)+ r3(cos03i+sin03j) = rl(coseli +sin01j) + r4(cos04i + sin04j) (5.61)

where
6,=6,+m/2 (5.62)
Because 8, is constant, 8, is also constant.
Rewriting Eq. (5.61) into its component equations gives
r, cosf, +r; cosf; =1, cosf +r,cosb, (5.63)
r, sinf, +rysin@; = sinf, +r,sinb, (5.64)

Equations (5.62)—(5.64) must be satisfied throughout the motion of the linkage. The base
vector, r,, will vary in magnitude but be constant in direction. The vector r, will be con-
stant. Therefore, r,, 15, 14, 8,, and 8, are constants. If @, is given, it is necessary to solve
Egs. (5.63) and (5.64) for 6; and r, in terms of 6,. If r, is given, it is necessary to solve the
same equations for 8, and 6;. And finally, if 6 is given, it is necessary to solve the equations
for 6, and r,. Once these expressions are obtained, the unknown velocities and accelerations
can be computed in terms of the knowns by differentiation.
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FIGURE 5.11 Internal combustion engine. An example of a slider-crank mechanism where the crank is
the output link. (Courtesy of Caterpillar, Inc., Peoria, Illinois.)
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FIGURE 5.12 Hydraulic shaft puller. An example of a slider-crank mechanism where the slider is the
input link. (Courtesy of Power Team, Owatonna, Minnesota.)

FIGURE 5.13  Ping-Pong table linkage. An example of a slider-crank mechanism where the coupler is the
input link.
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FIGURE 5.14 Vector closure condition for a slider-crank mechanism. The position of point P obtained by
adding the vectors r, and r, is the same as that obtained by adding vectors r) and r,.

5.5.1 Solution to Position Equations When 6, is Input

The analytical solution procedure follows the same major steps as in the four-bar linkage
case. To eliminate 6, first isolate it in Egs. (5.63) and (5.64) as follows:

r; cosb; =1 cosf, +r,cosb, —r, cosb, (5.65)

£} Sin93 =rlsin01 +r4 Sin94—r2 Sin92 (566)

Notice that in Fig. 5.14, the angles 6, and 6, are known constants, but 7 varies and is
unknown. Now square both sides of both equations and add. This gives

. 2 . . . 2
rf(cos2 0; + sin’ 03) = (r1 cosf, +rycos0, —r, cos02) + (r1 sinf, +r,sinf, —r, sin 62)
Expansion and simplification using the trigonometric identity sin%6 + cos?0 = 1 gives

r32 =rl+rl+ri + 2r,r4(cos 6, cos@, +sin@, sin 64)

-2nn (cos 6, cosf, +sinf, sinf, ) - 2r2r4(cos62 cos, +sin@, sin 64) (5.67)

Equation (5.67) gives #, in a quadratic expression involving 6, and the other known
variables. To obtain a solution, collect together the coefficients of the different powers of 7,
as follows:

n+An+B=0 (5.68)
where
A= 2r4(cos 6, cosf, +sinf, sin 94) —2r (cosﬂ1 cos6, +siné, sin 02)

B=r+rl—rl =2nr, (cos 0, cosf, +sinf, sin 04) (5.69)

Solving for r, gives
. —d+o\A> 4B
! 2 (5.70)

where o = 1 is a sign variable identifying the assembly mode. There are two assembly
modes corresponding to the two configurations shown in Fig. 5.15.
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FIGURE 5.15 The two possible positions (P and P’) of the point P for a given value of 8, in a slider-crank
mechanism.

As in the case of the four-bar linkage, once we pick the value for o corresponding to
the desired mode, the sign in an actual linkage stays the same for any value of 6,.

Because of the square root in Eq. (5.70), the variable 7, can be complex (42 < 4B). If
this happens, the mechanism cannot be assembled in the position specified. The assembly
would then appear as one of the configurations shown in Fig. 5.15.

Once a value for 7, is determined, Eqs. (5.65) and (5.66) can be solved for ;. Divid-
ing Eq. (5.66) by Eq. (5.65) and solving for 6, gives

_1[: rsinf, +r,sinf, —r, sind, }
03 =tan

r,cos6, +r, cosf, —r, cosb, 5.71)
As in the case of the four-bar linkage, it is essential that the signs of the numerator and denom-
inator in Eq. (5.71) be maintained to determine the quadrant in which the angle 6, lies.

Once all of the angular quantities are known, it is relatively straightforward to com-
pute the coordinates of any point on the vector loops used in the closure equations. In par-
ticular, the coordinates of Q and P are given by

o=t =r2(cosezi+sin92j) .72)
and

rp=n+r= t'z(cos02i+sin02j)+ r3(cos()3i+ sin 03j) (5.73)

T

Q

FIGURE 5.16 Configurations giving complex solutions for slider-crank position problem.
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5.5.2 Solution to Position Equations When r, Is Input

The analytical solution procedure follows the same major steps as in the previous case.
Referring to Fig. 5.14, we again start by eliminating 6, from Egs. (5.63) and (5.64) to get
Eq. (5.67). Then we simplify Eq. (5.67) as follows:

Acos@, + Bsinf, +C =0

(5.74)
where
A=-2nr,cos6, —2rr, cosl,
B =-2#r,sinf, —2r,r,sinb,
2.2 22 . .
C=nr+r +ry—-n + 2r1r4(c0591 cosf, +sin6, sm64) (5.75)

To solve Eq. (5.74), the trigonometric half-angle identities given in Egs. (5.33-5.34) can be
used. Using these identities in Eq. (5.74) and simplifying gives

A(l—t2)+B(2t)+C(l+t2)=0

t= tan(e—zj
2

(C-4)? +2Bt+(4+C)=0

where

Further simplification gives

Solving for ¢ gives

2B+o 4B~ 4C-A)C+4) _pio(B_Cte s

= 2(c-4) - Cc-4

(5.76)
and

6, =2tan"'¢ (5.77)
where o = *1 is a sign variable identifying the assembly mode. Once again, because tan™ ! ¢
has a valid range of values — 77/2 < tan™ ! t < /2, 6, will have the range - 7 < 8, < 7. Typ-
ically, there are two solutions for §, corresponding to the two values of ¢, and they are both

valid. These correspond to the two assembly modes shown in Fig. 5.17. Once we pick the

FIGURE 5.17 Two possible assembly modes when the position 7, of the slider is given as an input.



5.5 ANALYTICAL EQUATIONS FOR SLIDER-CRANK MECHANISMS 193

value for o corresponding to the desired mode, the sign in an actual linkage stays the same
for any value of 7,.

Because of the square root in Eq. (5.76), the variable 7 can be complex [(42 + B?) <
C?]. If this happens, the mechanism cannot be assembled for the specified value of 7,. The
assembly configurations would then appear as shown in Fig. 5.18.

Knowing r|, equations (5.65) and (5.66) can now be solved for @;. The resulting equa-
tion is Eq. (5.71). As in the previous cases, it is essential that the signs of the numerator and
denominator in Eq. (5.71) be maintained to determine the quadrant in which the angle 6,
lies. Note that the positions of r, and r; are symmetric about the line OP.

Once all of the angular quantities are known, it is relatively straightforward to com-
pute the coordinates of any point on the vector loops used in the closure equations. The
coordinates of Q and P are again given by Egs. (5.72) and (5.73).

5.5.3 Solution to Position Equations When 0; Is Input

When the coupler of the linkage in Fig. 5.14 is the input link, values for 6, and its deriva-
tives will be known. The analytical procedure for solving the position equations follows the
same major steps as when 0, is the input. Therefore, we will simply outline the procedure
and tabulate the results.

In the procedure, we can assume that 6, 6, 6, 6,, and 6, are known and 9, 6, 6, ry,
r1, and 7, are to be found. The link lengths , and r, and the angles 6, and 6, are constants.
For the position analysis, again begin with Egs. (5.63) and (5.64) and isolate the terms with
either 8, or 0,. It is advantageous to select 6, because the resulting equations will be simi-
lar to those derived earlier. The resulting equations are

¥, cos8, =71, cosb, +r, cosf, —r; cosbs (5.78)
¥, sin6, = r;sinf; +r,sinf, —r; sinb, (5.79)

A comparison of Egs. (5.78) and (5.79) with Egs. (5.65) and (5.66) indicates that they
are of the same form except that the indices 2 and 3 are interchanged. Therefore, we can use
directly the position solution derived in Section 5.5.1 if we interchange the indices 2 and 3.

When the coupler is the driver, there is an assembly-mode ambiguity similar to that
observed when link 2 is the driver. This is illustrated in Fig. 5.19. It is necessary to know the
appropriate mode before the analysis can be completed; however, once the assembly mode
is selected, it is the same for all positions of the input.

FIGURE 5.18  Slider-crank mechanisms that cannot be assembled in the position chosen for r,. The vari-
able ¢ would be complex in these cases.
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FIGURE 5.19 Two possible assembly modes when the coupler is the input link.

5.5.4 Velocity Equations for Slider-Crank Mechanism

The analytical form of the velocity equations for the linkage of Fig. 5.14 can be developed
by differentiating Eq. (5.60). The result is
When this equation is written in component form, the result is the same as differentiating
Eqgs. (5.63) and (5.64). Recognizing that r,, r3, 4, 6,, and 6, are constants, we see the result-
ing component equations are

—rzéz Sin02 —"303 sin 93 = rl cose] (5 81)
1,8, cos6, +1r0; cosb; = Fsinb, (5.82)

The solution procedure depends on whether 7, 65, or 65 is known. If 6, (or 6,) is input, then
r, and 6, (or 6,) will be unknown. Therefore, the matrix equation to be solved is

[cos(u’1 r;sind; ]{ A } _ {—rMéM sinOM}

Sin01 —rJ COSOJ 0J rMBM COSgM (583)
where M =2 and J =3 for link 2 as the input, and M =3 and J = 2 for link 3 as the input. If
7, is input, then 6, and 6, will be unknown. The matrix equation to be solved then is

l:—rz sinfl, —r;sinf; Héz} _ {r’l cosﬁl}

r,cos6, rcosby ||| |Fsing

2 2 B 3 Y3 1 1 (5.84)
The terms in the matrix and in the vector on the right-hand sides of Egs. (5.83) and (5.84)
will be known. The equation can therefore be solved manually, on a programmable calcula-
tor, or numerically with the matrix solvers in programs such as MATLAB.

Once the angular velocities are known, it is a simple matter to compute the linear
velocities of any of the points on the vector loop. The velocities of points Q and P are given
by

':Q =i'2 =r2éz(—sin02i+cosozj) (5 85)
and

Fp=h+rH= (—rzé,_ sinf, — r3é3 sin 03)1' +(r21'§2 cosf, + r3é3 cos03)j (5.86)
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5.5.5 Acceleration Equations for Slider-Crank Mechanism

The analytical form of the acceleration equations for the linkage of Fig. 5.14 can be devel-
oped by differentiating Eq. (5.80). The result is

fp=h+h=FH+F

When this equation is written in component form, the result is the same as differentiating
Eqgs. (5.81) and (5.82). The resulting component equations are

—rzéz sinf, ~ rzéf cosf, — r3§3 sin@; — r3,032 cosf; =# cosb, (5.87)

10, cos 8, —r,02 sinf, + 1,05 cos8, — ;07 sin 0; =K sin6, (5.88)
As was the case for velocities, the solution procedure depends on whether 6, 8, or # is
known. If 6, (or 65) is input, then 7, and 65 (or 8,) will be unknown, and the matrix equation
to be solved is

cos, r;sind; || A _ ~74Byy SinBy, — 13,03 cOs6,, —r,6% cosb,

sinf, -r;cosé, ||6; FaOys cOSOy — 1y 0% sin@,, —r,6%sin6, (5.89)
If 7, is input, then 8, and 6§, will be unknown, and the matrix equation to be solved then
is

“'r2 Sin 02 _r3 Sln 03 62 - r20.22 00892 '(" 6632 COS 03 + rl CoSs 61
rcosf, rycosb; |6, 1,02 sinb, +r,07 sin b, + 7 sin 6, (5.90)
The terms in the matrix and in the vector on the right-hand sides of Egs. (5.89) and (5.90)
will be known. The equation can therefore be solved manually, on a programmable calcula-
tor, or with the matrix solvers in programs such as MATLAB. Notice again that the coeffi-
cient matrix is the same for both the velocities (Eqgs. (5.83) and (5.84) and for the
accelerations (Egs. (5.89) and (5.90)).
Once the angular accelerations are known, it is a simple matter to compute the linear
acceleration of any point on the vector loop. The accelerations of points Q and P are given

by
Py =ty = (Vzéz sin@, —r,62 cos, )i +(r2§2 cos, —r,67 sin 6, ) j (5.91)
and
Fp=F+H= —(r2§2 sinf, + 7,02 cosd, +r6; sinf; + K62 cosb, )i
+(r202 cosf, — rﬁ% sinf, + ?‘353 cosf; — "3‘932 sin 6, )j (5.92)

Now that the equations have been developed, it is relatively simple to write a computer pro-
gram for the analysis of a slider-crank linkage. To aid in this, the equations required are
summarized in Tables 5.4 and 5.5. MATLAB programs for analyzing slider-crank linkages
are included on the disk with this book.
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TABLE 5.4 Summary of Position, Velocity, and Acceleration Equations for a Slider-
Crank Mechanism When Either the Crank or the Coupler is the Input. Link 2 Is the
Input Link When M = 2 and J = 3. Link 3 Is the Input Link When M= 3 and J = 2. The
Link Numbers and Points Are Defined in Fig. 5.14

Position
A= 2r4(cos(7?1 cosf, +siné, sin64)—2rM(0056I cosfy, +sinf, sin()M)
B=ri +r2 - s —2er4(cos0M cosf, +sinf,, sin04)
—A+aV4' -4B
n=—— o=%I1
2
-1| 1 siné, +r,sin@, —ry, sind
9, =tan~!| 1 177,810y — Py M
r,cosB, +r, cosf, —ry cosly,
Ip=r=n (cos()zi +sin sz)
rp=r+n=r (cosﬂzi +sin 02j)+r3(cosﬂ3i +sin03j)
Velocity

cosby r;sinf, ||/ | ~ry By SIn B
sing, —r,cosb, ||6, rMéM cosf,,
7y = 16y (—sinb,i +cos6, )

fp = (—r292 sin@, +r;0; sin 6, )i + (rzéz cos, + 0, cosb, )j

Acceleration

cosf  rysin; || B | _ |-ryby sinby —ry 05 cosby, —r,05 cosd,
sinf, —r;cosf; |6, ryBys €088y, — 11,03, sinb,, —r 07 sind,

Iy = (rzé?_ sinf, — r,63 cosf, )i + (rzéz cosf, —r,0% sin, ) j

+(r252 cosf, — r2é22 siné, + r3(')'3 cosf; — r3é§ sin 6, )j
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TABLE 6.5 Summary of Position, Velocity, and Acceleration Equations for a Slider-
Crank Mechanism When the Slider (Link 4) Is the Input Link. The Link Numbers and
Points Are Defined in Fig. 5.14

Position
A=2nr, cos8, —2rr, cosb,
B=2nr,sin6, —2nr,sin,
2,22 2 . .
C=n+r +r, —n —2r,r4(c0501 cosf, +sin6, 51n04)
| —B+oVB* -C?+ 4
6, =2tan™! . o=+l
C-4
1| #siné; +r,sin6, —r, siné,
8, = tan~!| 117,804 — 5 sngG,
r cosf, +7,cosf, —r, cosb,
rp =1, =r,(cos,i +sin6, j)
rh=r+p =rz(cosﬁzi+sin02j)+r3(cosé)3i+sin03j)
Velocity

—rysinf, -rysiné; |[6, _ |ricosé,
rycosf, rcosby 93 #sin@,
rp= 7,0, (— sin6,i + cosf)zj)

"‘P = (_rzéz Sin 92 "7‘393 Sin03 )i +(rzéz COS02 + r3é3 COs 03 )j

Acceleration

~rsing, —rsind, ||6, _ 1,03 cosf, + r3932 cos@; +# cosf, | .
r,cosb, rcosb, 1,03 sinf, + 1,62 sin 0; + # sin 6,

b3
o= (—rzéz sinf, —r,03 cosé, )i + (rzéz cosb, — 1,03 sinb, ) j

Fp = —(r202 sin@, + 1,67 cos 6, +r,f; sin b, + 763 cos6, )i

+(r252 cos 02 - r2022 Sin 02 + 7'363 00593 - r3é32 sin 03 )j
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EXAMPLE 5.4 | Inthe slider-crank mechanism shown in Fig. 5.20, 6, = 45°, 6, = 10 rad/s, and 6, = 0.The link lengths
Kinematic 7, and ry are as shown, and the line of motion of point Cj is along the line AC. Find the position, veloc-

Analysis of a Slider- ity, and acceleration of C, and the angular velocity and acceleration of link 3.
Crank Mechanism
with Crank Input

Solution For this problem, the crank is the input, and the analysis can be conducted using the equations in Table 5.4
with M=2 and J=3. The known input information is

,=0°, 6,=45°, 6,=10rads, 6,=0

r, =5in, r, =8in, r,=0in

FIGURE 5.20 The slider-crank linkage to be
analyzed in Example 5.4.

Start with the position analysis, and first compute the constants 4 and B from Eq. (5.69):
A=2r,(cos, cos8, +sinb, sind,)—2r,(cos, cos6, +siné, sinb, )
= —2(5)(cos(0°) cos(45°) + sin(0°) sin(45°)) = 7.70711
B=r] +1, —r} —2n1,(cos, cos6, +sinb, sinf, )
=(5)" -(8) =-39

The desired configuration of the linkage corresponds to the position of the slider with the larger x
coordinate. Therefore, o = +1. Then,

cdroat—ap  —(770711)+ \/(7.7071 1)’ -4(-39)
n= =
2 2
Then 0, is given by

6, = tan-!| sinf, +r,sinf, —r, sinb, - tan"" =5 sin(45°) _ _26.228°
r,cosf, +r, cos, —r, cosb, 10.712 -5 cos(45°)

=10.712 in

For the velocities, solve the linear set of velocity equations

cos§, nrsindy |[#]| _[-nb,sin6, o ! 8sin(-26.228°) |[#] [-5(10)sin(45°)
. = . T . =
sing, -r;cos6,|(6,) | nb,cost, 0 -8cos(-26.228°) |(6,] | 5(10)cos(45°)

Then
1 -3.5355||# _ -35.3553 or 14 _ -52.774
0 -7.1764 93 35.3553 93 —4.927

Therefore, 1:1 =52.774 in/s and é3 =—-4.927 rad/s CCW or 4.927 rad/s CW.




EXAMPLE 5.5
Kinematic
Analysis of a
Slider-Crank
Mechanism with a
Slider Input

Solution
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For the accelerations, solve the linear set of acceleration equations
|:cos 0, rsinb, ]{rl } _|-r,6, sin@, —r,67 cosb, —r,62 cos 03}
sing, -, cosé, ||6, 1,0, cos8, —r,6; sind, —r,67 sinf,
or

[1 —3.5355}{&; } _ | -5(10)" cos(45°) - 8(~4.9266)" cos(~26.228°)( _ {—527.7366}

0 -7.1764 |8, —5(10)2 sin(45°) — 8(—4.9266)" sin(-26.228°) | -267.7395

Then

7| [-395.83
6, 37.309
Therefore, 7, =— 395.83 in/s? and 6, = 37.30 rad/s2 CCW. The results can be checked with the graph-

ical analysis in Example 5.2.

Reanalyze the slider-crank mechanism shown in Fig. 5.20 when r, = 10.75 in, 7, = 50 in/s, and
¥\ = 400 in/s2. The link lengths r, and r; are the same as in Example 5.4, and again the line of action

of point C, is along the line AC. Find the position, angular velocity, and angular acceleration of link 2
and of link 3.

This is essentially the same problem as in Example 5.4 except that now the slider is the input link, and
link 2 is the output. The analysis can be conducted using the equations in Table 5.5. The known input
information is

6,=0°, £ =1075in, 7 =50ink,  # =400 in/s>
r =5in, rn,=8in, r,=0in

Start with the position analysis, and first compute constants 4, B, and C:

A=2n7, c0s6, - 2,1, cosB, =—2(10.75)(5) = -107.5

B =2rnr,sin6, - 2r,r, sinf, =0
C=r +r] +r} =1 - 2n7,(cos6, cos6, +sin6, sin, ) = (10.75)" +(5)° - (8)° = 76.56

For the configuration in Fig. 5.20, o = 1. Then,

1-B+oVB -C*+ £ . +1\/—(76.56)2 +(-1075)’

0, =2tan" =2tan = 44.5850°
Cc-4 76.56 — (~107.5)
and
6. — tan-'| 1 sin@, +7,sin6, —r,sinf, | _ tan~! —5sin(44.585°) — 26.02°
’ r, cos6, +r, cos, —r, cosf, 10.75-5 cos(44.585°) '

For the velocities, solve the linear set of velocity equations

-rsing, -nsing, |[6,] [# cosé, -5sin(44.585°) -8sin(-26.02°)](6,] (50
. = or . =
rcos@, rcosd; |6, r, sin 6, 5 cos(44.585°) 8cos(—26.02°) 6, 0
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Then
-3.5098 3.5098|(6,] (50 6,| [-9.527
. = or . =
3.5610  7.189 || 6, 0 0, 4,719
Therefore, 6, =~ 9.527 rad/s CCW or 9.527 rad/s CW and 6, = 4.719 rad/s CCW. For the accelera-
tions, solve the linear set of acceleration equations

) i .. - - .
-r,sinf, —r;sing, ||6, _ r,0; cosf, +r,0; cosf; +F cosh,
r,cos,  rycosf; |6, r,60; sinf, + r34932 sinf; + ¥ sin6,

or

{—3.5098 3.5098]{9’2} _ {5(9.527)2 cos(44.585°) +8(4.719)" cos(~26.02°) + 400} ~ {883.309}

3.5610  7.189 ||@ 5(9.527)" sin(44.585°) + 8(4.719)’ sin(-26.02°) 240.381

03
6,| |-145.933
6, 105.726

Therefore, 6, = — 145.933 rad/s? CCW or 145.933 rad/s> CW and 6, = 105.726 rad/s2 CCW.

Then

5.6 ANALYTICAL EQUATIONS FOR
THE SLIDER-CRANK INVERSION

The slider-crank inversion is a common mechanism when linear actuators are involved
(e.g., Figs. 1.35 and 5.21). It is also used in various pump mechanisms. As discussed in
Chapter 1, for low-load conditions, the slider is often replaced by a pin-in-a-slot joint. The
resulting mechanisms can be analyzed using the equations developed in this section by
modeling the pin-in-a-slot joint as a revolute joint and slider joint connected by a link. A

L4

G omte o

FIGURE 5.21 Backhoe. Each joint is actuated by an inversion of the slider-crank mechanism. (Courtesy
of Deere & Co., Moline, Ilinois.)
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device that could be analyzed using this procedure is the walking toy shown in Fig. 5.22. To
develop the closure equations, first locate vectors r, and r| as was done in the previous link-
age. To form the other part of the closure equation, draw two vectors, one (r3) in the direc-
tion of the slider velocity from P to Q and one (r,) perpendicular to the velocity direction.
The variables associated with the problem are then located as shown in Fig. 5.23, and the
loop closure equation is given by

tp=Hh=rHtHK+r (5.93)
or
” (cos 6,i +sin 02]') = rl(cos 6, +sin B,j) + r3(cos 85i +sin 03j) + r4(cos 04i +sinf, j (5.94)
where
64=06;~m/2 (5.95)
Note that 8, is now a variable and that r, can be negative.
Rewriting Eq. (5.94) into its component equations gives
r, €080, =1, cosf; +r; cosd; +7,cosb, (5.96)

FIGURE 5.22 Walking toy. The pin-in-a-slot joints can be modeled as a separate revolute and slider joint
connected by a link. The resulting mechanism can be analyzed using the equations developed in this section.

FIGURE 5.23 Vector closure condition

for the slider-crank inversion. The position
X of point Q indicated by r, + r; is the same

as that obtained by adding vectors r + r,.
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Equations (5.95)~(5.97) must be satisfied throughout the motion of the linkage. The
base vector r, will be constant in direction and magnitude. The vectors r, and r, will be con-
stant in magnitude, and r; will vary in both magnitude and direction. Therefore, r,, 75, 74,
8,, and 8, are constants.

If 6, is given, it is necessary to solve Egs. (5.95)+5.97) for 8, and r; in terms of 6,,
and if 65 is given, it is necessary to solve Egs. (5.95)(5.97) for 8, and r; in terms of 6,. If r
is given, it is necessary to solve the same equations for 6, and ;. Once the position equa-
tions are solved, the equations for the unknown velocities and accelerations can be estab-
lished in terms of the knowns by differentiation.

5.6.1 Solution to Position Equations When 6, Is Input

The analytical solution procedure is slightly different from that used in the previous cases
because 8, is a function of 8;. Therefore, 6, cannot be eliminated without first considering
8. To proceed, first eliminate 6, from Egs. (5.96) and (5.97) by using Eq. (5.95) and isolate
the terms containing 6; on the right-hand side of the equations. Then,

¥, €088, —r cos =r; cosb; +r,sin b, (5.98)

1, sinf, —rsinf; = r;sinf; —r, cos (5.99)

Now square both sides of both equations and add. After simplifying using the trigonomet-
ric identity, sin®6 + cos?6 = 1, and solving for 73, we get the resulting equation

r= \/rzz +rt -2 —2r1r2(cost91 cosf, +siné, sinez) (5.100)

To solve for 65, replace cos 65 and sin 8, in Eq. (5.98) by using the trigonometric half-angle
identities in Eqgs. (5.33-5.34). Equation (5.98) then becomes

A(1+t2)-r3(1—t2)—r4(2t)=0 5100

where
A=r, cosb, —r, cosb,

t= tan[gzlj
2

Collecting terms in Eqgs. (5.101) gives

and

(A+r3)t2 —2r4t+(A—r3)=0

This equation will give two roots for 7, but one root is extraneous in this problem. The roots
are
n+B r42—A2+r32

(4+n) (5.102)
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where 8 = +1. To determine the correct value of B for the problem, we must first compute
a value of 8, for each value of ¢ using

6, =2tan"'z.

Next substitute both values of 8, into Eq. (5.99). The correct value of 8 will correspond to
the value of 6, satisfying Eq. (5.99). The value of 8 must be computed for each value of 8,
if more than one position is analyzed.

Because of the square root in Eq. (5.100), the value of r; can be complex [r3 + 77—
r3 — 2riry(cosd,cosh, + sinf,sind,) < 0]. If this happens, the mechanism cannot be assem-
bled for the value of 8, specified and for the given values of the link lengths. The results are
summarized in Table 5.6.

TABLE 5.6 Summary of Position, Velocity, and Acceleration Equations for an Inverted
Slider-Crank Mechanism When 0, Is the Input Variable. The Link Numbers and Points
Are Defined in Fig. 5.23

Position

n= \/rzz +rl—r? —2r1r2(cosl91 cos 6, +sinf, sin02)

A=r,cosl, —r,cosb,

-1 r4+B r42—A2+r32 i
(A+r3)

03 =2tan

0,=0,—m/2
rp=n=n (cosBzi + sinezj)
p=hn+tn= rl(cos(),i + sinB,j) + r4(cose4i + sin04j)
Velocity
[cos 0; -rsinf; —r,sin Q,]{ig } _ {—rzéz sin 02}
sinf; r;cos@; +r,cosl, |6, 1,0, cosb,

"'P = rz = rzéz(—sin92i+00892j)

rQ = r, + "'4 = r4é3(—sin94i +00304j)
Acceleration
cosfy —rsinf; —r,sinb, || 7
Sin 03 n COoS 03 + Ty 00864 63
_ —r2§2 Sin 02 - rzég 00802 + r3é32 Ccos 03 +2"‘3é3 Sin 03 + r40‘32 COSO4
10, cos8, — 1,02 sinb, +r,07 sin 6, — 2,6, cosb, +r,07 sin6,

rP = ;2 = —'(r202 Sin 02 + rzég 00802 )i +(r2é2 C0502 bl rzég Sin02 )j

;Q = i:l +i'4 = —(r463 Sin04 +r4é§ 00804)1'-\‘-(7‘453 C0804 _r4é32 Sln04)j
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5.6.2 Solution to Position Equations When 6; Is Input

When the coupler angle is the input variable for the linkage of Fig. 5.23, values for 85 and its
derivatives will be known. The analytical procedure for solving the position equations follows
the same steps as when 6, is the input, although the form of the equations is slightly different.

For the position analysis, again begin with Egs. (5.63) and (5.64) and isolate the terms
with 6,. The resulting equations are

¥, €080, =1 cosO| +r; cos; +7,5inb;, (5.103)

rsinf, =7 sinf, + 1, siny —r, cosb, (5.104)

These equations can be solved first for r; and then for 6, using the procedures given in the
previous sections. Two solutions are obtained corresponding to the two values of the sign
variable 8. The assembly positions are shown in Fig. 5.24. The results are summarized in
Table 5.7.

5.6.3 Solution to Position Equations When r; Is Input

When r; is input in Fig. 5.23, we can eliminate 6, from the component equations as was
done previously to obtain Eq. (5.91). We can solve for 6, and then for 6. Once again there
are two possible solutions corresponding to the two values of the sign variable 8. The
assembly positions are shown in Fig. 5.25. The results are summarized in Table 5.8.

FIGURE 5.24 Two possible assembly modes for
link 2 in Fig. 5.23 if 6, is given.

FIGURE 5.25 Two possible configurations for
line PR in Fig. 5.23 if r; is given.
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TABLE 5.7 Summary of Position, Velocity, and Acceleration Equations for an Inverted
Slider-Crank Mechanism When 0; Is the Input Variable. The Link Numbers and Points
Are Defined in Fig. 5.23

Position
n= %[—B+Bw/32 —4c}; B=tl1

B= 2r1(cos 6, cos6; +sinf, sin03)

C= "12 —r22 +r42 = 2;‘1;«4(cos()1 sinf; —sing, 00503)

02 - tan_l 51 Sinel + £} Sin03 —¥ 00593
¥, €086, +r; co86; +7,5in6;

0, =0, —7/2
rp=h=r (00502i + sin92j)
p=n+trn= rl(cosﬂli +sin Blj) +r4(cos04i +sin 041')
Velocity
l:—r2 sing, —cos6; :HOZ} - {—r3é3 sinf; —r,0; sin 04}
rcosf, —sinb; || 7 1,0, cosf; + 740, cosb,

o =F =10, (— sin@,i +cos6, j)

fg=Hh+r,= 740 (— sinf,i +cosf, j)
Acceleration
-ry8inf, —cosb, 6,
r,cosf, —sin; || 5
_ r20§ cos 02 - r3é3 sin 83 - r3é32 00563 —2"'30.3 sin 03 - r4é3 sin 04 - r40‘§ cos 04
72022 Sin 02 + r3.03 c0563 - r3é32 Sin 63 + 2r3é3 Cos 03 + r463 CcoSs 04 - r4é32 Sin 04

Fpo=h = —(r2§2 sin@, +r,63 cosb, )i + (rzéf2 cos, —r,03 sin6, ) j

rg=F+i= —(r4§3 sin@, +r,0? cos04)i + (r4é3 cos, —r,0% sin6, ) Jj

5.6.4 Velocity Equations for the Slider-Crank Inversion

The analytical form of the velocity equations for the linkage of Fig. 5.23 can be developed
by differentiating Eq. (5.93). The result is
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TABLE 5.8 Summary of Position, Velocity, and Acceleration Equations for Slider-
Crank Inversion When r; is the Input Variable. The Link Numbers and Points Are
Defined in Fig. 5.23

Position

A= —2"]7'2 COSOI
B=-2nr,sinb,

C=r22+r12—r42—r32

I 2_ 2, 02
6, =2tan™! B+BVB -C +4" | B=+1
A=r,cos6, —r, cosb,
[ / 2_ 42,2
rytoyr, —A° +r
6, =2tan"!| 2 4 L o=+l
(A+r3)

o is constant for a given linkage and is determined by the sign of angle PQR.
0,=0,—m/2
rp=r=r (cos92i +sin 02]')

rp=n+r= r,(coseli+sin Blj)+ r4(cos04i+sin04j)

Velocity

-1, 8inb, rsinb; +r,sind, |[6, _ | costy
l: r,cos, -rcos;—r, cosﬂj{@} - {r3 sinf, }
o =Fy =10, (—sin 0,50 + cos02j)
rp=H+F= 7,05 (— sinf,i + cos¢94j)
Acceleration

o) sin 02 €] sin 03 + r4 Sin 04 92
r,cos8, —rycosfy—r,cosé, 53

_ 7,03 cosb, -163 cosb, ~2#0;sin6; + 7 cosb; — 1,67 cosb,
1,03 sin 8, —r,0% sin 05 +2£30; cosO; + 7 sin@; ~ r,07 sin6,

i'}) = ;2 = —("262 sin 02 + rzézz COSOZ )i"l'(rzéz COSOZ “”rzézz sin 02 )j

Tp=H+¥= —(r453 sin@, +r,67 cos 04)1’ + (r4§3 cosf, —r,62 sin 64) j
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When this equation is written in component form, the result is the same as differentiating
Egs. (5.96) and (5.97). Recognizing that r,, r,, r4, and 6, are constants, and that from
Eq. (5.95) 6;= 6, we see that the resulting component equations are

.—rzéz sin 92 = —}‘393 sin 03 + r":; 00563 +r4é3 sin 94 (5 106)

10, cosy =1, cos; + 7 sinf; + 746, cosd, (5.107)

The solution procedure depends on whether 6, 6; or #, is known. If 6, is input, then 7, and
6, will be unknown. Therefore, the matrix equation to be solved is

cos; -rysinf; —rysinf, ||| —r,0, sind,
sinf; r;cosfy +r,cos6, 6, 1,0, cos,
If 6, is input, then #; and 6, will be unknown, and the matrix equation to be solved is
-r,sinf, -—cosf; 6, _ —r0, sin; — 740, sin6,
rcosf, —sinb, || 5 1,65 cosb; + 1,0, cosb,
If #, is input, then 6, and 6; will be unknown. The matrix equation to be solved then is
[—rz sinf, rsind; +r4sinf, ]{02} B {i@ cos 03}
rcosh, —r3cosl;—r,cosb, ||6; F; sinf; (5.110)
The terms in the matrix and vector on the right-hand sides of Eqs. (5.108)~(5.110) will be
known. The equation can therefore be solved manually, on a programmable calculator, or
with the matrix solvers in programs such as MATLAB.
Once the angular velocities are known, it is a simple matter to compute the linear

velocities of any of the points on the vector loop. The velocities of points Q and P are given
by

(5.108)

(5.109)

fp=h = r282(—sin02i+cos()2j) (5.111)

and

iQ =i‘,+)"4=r493(—sin04i+cose4j) (5112)

5.6.5 Acceleration Equations for the Slider-Crank Inversion

The analytical form of the acceleration equations for the linkage of Fig. 5.23 can be devel-

oped by differentiating Eq. (5.105). The result is
Pp=h=F+h+F, (5.113)

When this equation is written in component form, the result is the same as differentiating
Egs. (5.106) and (5.107). The resulting component equations are

—r0, sin6, - 163 cos6,
= —r3§3 sin@; — r3é§ cos@; +#; cosl, —2;‘393 sinf; — r453 sinf, — r4é§ cosf, (5.114)
—1,6, cosb, — 1,63 sin6,

= —r3§3 cosf; — r;,é% sin@; + #sinf; + 2r'3é3 cosf; + r453 cos B, —r,03 sin, (5.115)
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In a manner similar to that in the case of velocities, the solution procedure depends on
whether 7; or 6, is known. If 6, is input, then # F3 and 65 will be unknown. Therefore, the matrix
equation to be solved is

Ccos 03 —7'3 Sin 03 - r4 Sin 04 ;3
sinf; 7 cos6; +r, cosf, 53
_ —rzéz sin@, — rzézz cosf, + 73332 cosf, +2i'3,é3 sinf; + r4é32 cosf,
1,0, cosf, ~ 1,62 sin 8, +r,6? sin 0y — 25,0, cos 6, +r,07 sinf, (5.116)

If 6, is input, then 7, and 6, will be unknown, and the matrix equation to be solved
is

-rsinf, —cosb, 52
rcos®, —sinb, || #

_ "20‘22 Cos 02 - r:;é} Sin 03 - r:;ég COs 03 - 2'.'30'3 Sin03 - r4é3 sin 04 - r40'§ Cos 64
r2é22 sinf6, + r3§3 cosf; — r3é§ sin@; + 2i3é3 cosé; + r4§3 cosf, — r4é§ sinf, (5.117)

If 7, is input, then 6, and 6; will be unknown. The matrix equation to be solved is
then

o) sin 02 r sin 03 + 7] sin 04 62
r,cosf, —r;cosf; —r,cosl, 53

_ |83 cos, — r6% cosf, — 27,0, sinb, + 7 cos; —r,0% cosh,
1,03 sin8, — 1,63 sin6; +27,0; cosb, + 7, sin6; — r,62 sin6,

(5.118)

The terms in the matrix and vector on the right-hand sides of Egs. (5.116-5.118) will be
known. The equation can therefore be solved manually, numerically on a programmable cal-
culator, or with the matrix solvers in programs such as MATLAB. Notice again that the
coefficient matrix is the same for both the velocities (Egs. (5.108) and (5.110) and for the
accelerations (Egs. (5.116)—(5.118)).

Once the angular accelerations are known, it is a simple matter to compute the linear
accelerations of any of the points on the vector loop. The accelerations of points P and Qare
given by

Fo=F = _(rzéz siné, + r20.22 cosf, )i + (rzé2 cosf, —r2922 sin6, ) j (.119)

and

rp=rh+p= —(r4§3 sin@, +r,02 cos 04)1' + (r4é3 cosf, —r,6% sin6, ) Jj

(5.120)
Now that the equations have been developed, it is a relatively simple matter to write a com-
puter program for the analysis of an inverted slider-crank linkage. To aid in this, the equa-
tions required are summarized in Tables 5.6, 5.7, and 5.8. A MATLAB program for
analyzing an inverted slider-crank linkage is included on the disk that accompanies this
book.
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The foot pump shown in Fig. 5.26 is to be analyzed in one position (6, = 60°) as an inverted slider-
crank linkage. Dimensions for the mechanism are given in Fig. 5.27, and the vector diagram for the
analysis is given in Fig. 5.28. Assume that the angular velocity of the driver (link 2) is constant at 2.5
rad/s CW. Conduct a position, velocity, and acceleration analysis to determine, respectively, the com-
bined length of links 3 and 4, the angular velocity and acceleration of link 3 (or link 4), and the veloc-
ity and acceleration of point B observed from link 3. This information can be used to study the
pumping action between links 3 and 4.

FIGURE 5.26 Foot-pump mechanism.

FIGURE 5.27 Kinematic model of foot-pump mecha-
nism used in Example 5.6.

FIGURE 5.28 Position polygon for Example 5.6.
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Solution

The analysis can be conducted using the equations in Table 5.6. The known input information is as

follows:
rh =20 cm, 6,=0

% =8.5 cm, 6, = 60°, éz =-25 rad/s, éz =0,
rn =0, 8, = 60, 6, =0, 6,=0

The unknown information is: 7y, 85, 65, and 6.
From Table 5.6, r; is given by

22 2 i i
,-3=\/r2 +r - —2rlr2(cos(91 cos 0, +sin 6, smoz)

= Js.sz +20” -2(20)(8.5) cos(60°) =+/302.2 =17.38 cm

Next compute 8. Start with the value of 4:
A=1,cos6, —r, cos 6, =8.5cos(60°) - 20 = -15.75 cm

To determine 6;, we need to specify 8. Often, we need to compute both values of 6, to determine the
proper value for 8. Thus

Y Ir“z R oy /3\/—(—15.75)2+(17.38)2

(4+n) (-15.75+17.38)

=2 m_'[—ﬂ ((71 '236)] = +154.98°

6, =2 tan

For this problem, 8 =+1.
For the velocity analysis, we can use Eq. (5.108). Then,

cos; —rysinb, —r,siné, || 7, -8, sinf,
sinf;  r;cosf; +7, cosé, 93 rzéz cos#f,
or

0,

l:cos(154.99) -17.38 sin(154.99):| {r'} } ~ {~8.5(—2.5)sin(60°)}

sin(154.99)  17.38 cos(154.99) | 8.5(-2.5) cos(60°)
or
—0.9059 -7.3612 (|7 | _ | 18.403 - i |2L171 cm/s
04234 -15.750|6,] |-10.625 6] 10.1055 rad/s>
For the acceleration analysis, we can use Eq. (5.117). Then,
cosf; -—rysinf; —r,sinb, (|7
sind;  r,cosé, +r, cosb, ||6,
_ {—rzéz sin@, — rzézz cosf, +r,67 cos 6, + 27,0, sinf, + #,03 cos 04}

.. . . . .
r,8, cosf, —r,6; sind, + r3032 sinf; — 21,0, cosf; +r,6; siné,
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or
-0.9059 -7.3612][#
04234 -15.750 |6,
~(8.5)(-2.5)" cos(60°) +17.38(0.1055) cos(154.99°) +2(~21.171)(0.1055)sin(154.99°)
~(8.5)(<2.5)" sin(60°) +17.38(0.1055)’ sin(154.99°) + 2(~21.171)(0.1055) cos(154.99°)

251851 _ [#] _ [4777 em/s®
426038 |6,  |2.833 rad/s>

The velocity and acceleration of point B when observed from link 4 are 7 and 3, respectively. Note
that r, is negative when 6, is CW.

5.7 ANALYTICAL EQUATIONS FOR
AN RPRP MECHANISM

A schematic drawing of the RPRP mechanism is shown in Fig. 5.29. In the mechanism
shown, link 2 is connected to the frame by a revolute joint and to the coupler by a prismatic
joint. Link 4 is connected to the frame through a prismatic joint and to the coupler by a rev-
olute joint. This is a less common mechanism than the various four-bar linkages and slider
cranks; however, it does occur in industrial machinery. For example, one variation of it, the
Rapson slide, is used in marine steering gear.

When there is a slider joint between two links, the actual location of the slider does
not matter from a kinematic standpoint. Therefore, for simplicity, we can analyze the mech-
anism as if both sliders were at point P. The resulting mechanism then appears as shown in
Fig. 5.30. In Fig. 5.30, the angles are not indicated for simplicity. The angles are again
always measured counterclockwise from the horizontal as shown in Fig. 5.3. To develop the
closure equations, locate vectors r, through r, as shown in Fig. 5.30. By locating point P

W, @)

FIGURE 5.29 Schematic diagram of an RPRP mechanism.

FIGURE 5.30 Vector closure condition for an RPRP mecha-
nism. The position of point P obtained by the vectors r, and r; is
the same as that obtained by adding vectors r, and r,.
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using two different sets of vectors, the loop closure equation is then seen to be the same as
that for the regular four-bar linkage. Namely,

rp=r+r=n+r, (5.121)
or
r (cos@zi + sin02j) +n (cos03i +sin 03]') = rl(coseli + sinB,j) + r4(cos()4i +sin 04j) (5.122)
Rewriting Eq. (5.122) in its component equations gives
ry cosf, +r; cosf; =r cosh, +r,cosl, (5.123)
r,sin, +r;sinf; =1 siné, +r,sinf, (5.124)

Before solving the equations, it is necessary to identify the magnitudes and directions that
are constants. There are eight quantities to identify: r, and 6,, r, and 8,, r; and 65, and r, and
6,. From the diagram in Fig. 5.30, the following are constants: r,, 6,, r,, and 6,. Further-
more, we know that

0, =0, +m/2 (5.125)

and
0,=6,+7/2 (5.126)
The variables are r, 8,, r,, and ;. For a one-degree-of-freedom mechanism, one of the vari-
ables must be an input (i.¢., known) variable. Therefore, there are a total of three unknowns.
Because we have three equations (5.123), (5.124), and (5.125) involving the unknowns, we
can solve for them.

Once all of the position variables are obtained, the unknown velocities and accelera-
tions can be obtained by differentiating Egs. (5.123), (5.124), and (5.125) and solving the
resulting set of linear equations for the unknowns.

Before solving the equations for the unknowns, it is necessary to select an input vari-
able. Any of r3, 6,, r4, or 8; could be chosen. Because 6, and 6, are related by Eq. (5.125),
there is no practical difference between specifying one or the other as the input. Therefore,
the choices for inputs reduce to 6, (or 65) and r, (or r;). The procedure for developing the
equations is the same as that in Sections 5.4-5.6. Therefore, the detailed development of
the equations will not be given here. Rather, an overview of each case will be given and the
results will be summarized in a table.

5.7.1 Solution of Closure Equations When 6, Is Known

The analytical solution procedure for the linkage of Fig. 5.30 follows the same major steps
as in the previous cases. That is, a position analysis must be performed first, then a velocity
analysis, and finally the acceleration analysis. The case in which 8, is an input is especially
simple because 6; can be computed from Eq. (5.125), and Egs. (5.123) and (5.124) then
become linear in the unknowns 7, and ,. The equations to be solved are

r; €088, ~r, cosf, = r, cosf, —r, cosh, (5.127)

rysinf; —rysinf, =7 sinh, — r, sin b, (5.128)
or in matrix form
{cos% —cos(){l{@} - {r, cost) —r, 00802}
sinf, —sind, ||, rsinf, —r, siné, (5.129)
The terms in the matrix and in the vector on the right-hand side of the equation will

be known. The matrix equation can therefore be solved manually, on a programmable cal-
culator, or with the matrix solvers in programs such as MATLAB.
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Once the position equations are solved, the coordinates of points £, Q, and R can be
computed directly. The equations are given in Table 5.9.

5.7.2 Solution of Closure Equations When r; Is Known

When r, is known for the linkage of Fig. 5.30, we must determine 6,, 6, and r;. Of these
unknowns, 8, and 6, are related in a trivial manner through Eq. (5.125). Therefore, the principal
unknowns are 6, and r5. The equations to be solved are Eqgs. (5.123) and (5.124). In general, there
are two solutions for 73, and they are both valid. The two assembly modes are represented in
Fig. 5.31. The equations from the position analysis are summarized as part of Table 5.10. The dif-
ferent assembly modes are identified by selecting values of o in Table 5.10 as either + 1 or— 1.
TABLE 5.9 Summary of Position, Velocity, and Acceleration Equations for an RPRP

Mechanism When 0, Is the Input Variable. The Link Numbers and Points Are Defined
in Fig. 5.30

Position
03 = 02 + 7T/2
0,=6,+m/2

cosf; —cosby ||n 1, cos, —r, cosb,
sinf, —sin, ||ry 1 sin@, —r, sinf,

rP = r2 + r3 = (rz 00802 +r3 00883)1'4'("2 Sin02 +r3 Sin63)j

=ntr= (rl cosf; +r, cos(i,)i+(rl sinf, +r, sin04)j
p=n= (r2 cosf, )i + (r2 sinez)j
rR=n =(r, cosf)l)i+(r1 sinel)j

Velocity

6, =6,
{cos 6; —cos 04]{7"3} _ { 10, sinb, + 1,6, sinf; }
sinf; —sinby ||7 —#,8, cosf, —r,0; cos b,
Fp=h+n= (—rzé2 sin@, — r;0, sin 6, + 75 cos b, )i + (rzé2 cosf, + 7,0, cosb; +7; sin, ) Jj
=F= (i'4 cos 94)i + (i'4 sin94) Jj
fg=rh= (—rzé2 siné, )i + (rzéz cosf, ) j

Acceleration

63 = 52

Ccos 03 —Cos 04 i'}, _ r2§2 Sin62 + r2622 00892 + 2i'30.3 sin 03 + r3é3 sin 03 + 73632 Ccos 03
sinf, -—sinf, ||#, —1B, cos, + 1,03 sinb, — 27,6, cosf; — 1,65 cos b, + 1,67 sin 6,
Fp=¥= (?4 cos04)i + (5‘4 sin04)j

FQ = ;2 = ("‘"252 sin 92 - ’}é% 00862)i + (rzéz 00502 - r2é§ Sin02 )j
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FIGURE 5.31 Two assembly modes when 7, is input.

TABLE 5.10 Summary of Position, Velocity, and Acceleration Equations for a RPRP

Mechanism When r, Is the Input Variable. The Link Numbers and Points Are Defined
in Fig. 5.30

Position

r =0'\[r42 +r12 —r22; o=x%1
4l 7
=N
$)

B=tan™! 7 sinf, +r,siné,
rycost +r,cosb,

6,=B-b, 6,=0,+7/2, 6,=6,+m/2
Ip=n+rn= (rz cosf, +n, cos03)i+(r2 sinf, +r sin63)j
=1 +1, =(1; c0s6, +7, cos, )i +(r; sinb, +7, sinf, ) j
rg =1, =(r, cos8, )i +(r, sin6, ) j
Velocity

cosf, —(r3 sinf; +r, sin 02) {r‘3 } _ {r‘4 cos84}

sin 6y (r3 cosf; +r, cos 82) 0, F4sinf,

é3 = éz
Fp=Fk+h= (—rzéz sin@, —r,6; sin 0; +r;cos 6, )i +(r292 cos, +r,0; cosby + F;siné, ) j
=1y = (7, cosB, )i + (7, sin6,)j

rp=r= (—rzéz siné, )i + (rzéz cos#f, )j
Acceleration

cos b, —(’3 sin@; +r, sin 92) 7% | _ |#ycosb, + 1,03 cosb, +27,6; sinb, +r,62 cos,
sin6, (r3 cosf; +r, cos 02) 0, #,5in@, + 1,67 sinf, — 2#,6; cos b, + 1,62 sin6,
6; = bz

Fp = Fy = (Fy cos8, )i + (7 sin6, ) j

i'Q = i'.2 = (—rzéz sin 02 - r20‘22 00502 )i + (rzéz 00802 —rzézz Sin02 )j
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It is also possible to specify a value for 7, that will prevent the mechanism from being
assembled. This is indicated when the argument of the square root in Table 5.10 is negative.

Once both 5 and 7, are known, we can find 8, (and ;) using simple geometry. First
compute the angles ¢ and 8 shown in Fig. 5.31 using

¥
=tan| 2
¢ [’2)
(5.130)
and
B =tan™ ’p, _tan_l(rlsin&l+r4sin04j
p 1 cosf; +r, cosb, (5.131)
Then
0,=B-¢ (5.132)
and
6, =0, +7/2 (5.133)

Equation (5.132) is valid for both the plus and minus values for 7; because the sign of ¢ will
be positive when r, is positive and negative when r; is negative.

5.7.3 Solution of Closure Equations When r; Is Known

When r; is known, we must determine 8,, 65, and r,. Of these unknowns, 6, and 6; are
related in a trivial manner through Eq. (5.125). Therefore, the principal unknowns are 6,
and r,. The procedure for solving the position equations is very similar to that when r, was
input. In general, there are two solutions for 7,, and they are both valid. The equations from
the position analysis are summarized as part of Table 5.11. Note that it is possible to spec-
ify a value for , that will prevent the mechanism from being assembled. This is indicated
when the argument of the square root in Table 5.11 is negative.

TABLE 5.11 Summary of Position, Velocity, and Acceleration Equations for an RPRP
Mechanism When r; Is the Input Variable. The Link Numbers and Points Are Defined
in Fig. 5.30

Position

¥y =0"[r32 —rlz +r22; oc=11

—tan-l| B
¢ =tan [VZJ

151 Sinel + Ya Sin04
1, cosf, +r,cosb,

B= tan'l[

6, =B—¢, O,=0,+m/2, 8,=6,+m/2

Bb=h+h= (r2 cost, +r cost93)i+(r2 sinf, +n, sin03)j
=n+r= (rl cosf, +7, 00594)i+(r1 sinf, +7, sin64)j

rp=r= (r2 cos 02 )l + (7'2 sin 92 )]

(continued)
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TABLE 5.11 continued

Velocity

cosf, (r3 sinf; + r, sin 02) Fa | _ |Fcosfy
sin g, —(r3 cosf; +r, cos 02) éz r; sin 6,

és = éz

Bo=h+h= (—rzt‘j2 sin@, — 16, sin 6, + F; cos 6y )i + (rzé2 cosb, + rb; cosb; + 7, Sin 6 )j
= £, = (7 cos6, )i + (7, sing, ) j

rQ = '.'2 = ("'rzéz sin 02 )i + (rzéz Ccos 02 )j

Acceleration

cos b, (”3 sinf +r, sin 92) 7| _ |-n63 cos8, - 276, sin b, — r,6? cosé, + 7 cos by
sinf, —(r3 cosfy +r 00802) 0, -1, sin6, +2F6; cosb, — 183 sinf; + 7 sin 0y
53 = 52

Fp =¥ = (i; cosé, )i +(i:'¢ sin 6, )j

i:Q = i'.z = (_rzéz Sin92 - "2922 00502 )i + ("292 00592 - rzézz sin 02 )j

5.7.4 Velocity and Acceleration Equations for an RPRP
Mechanism

EXAMPLE 5.7
Kinematic

Analysis of an
RPRP Mechanism

Solution

The analytical form of the velocity equations can be developed by differentiating the posi-
tion equations and solving the resulting linear set of equations for the unknowns as done in
the previous examples. The acceleration equations are developed by differentiating the
velocity equations. The acceleration equations are also linear and can easily be solved. The
results for the RPRP mechanism are given in Tables 5.9, 5.10, and 5.11. These equations
can easily be programmed, and MATLAB programs for solving the equations in the three
tables are given on the disk with this book.

In the mechanism shown in Fig. 5.32, link 3 slides on link 2, and link 4 is pinned to link 3; link 4 also
slides on the frame (link 1). If @, = 10 rad/s CCW and is constant, determine the velocity and accel-
eration of link 4 for the position defined by 8, = 60°.

Using the nomenclature developed earlier, the basic vector closure diagram is as shown in Fig. 5.33.
Note that in this example, 7, = 0. From Figs. 5.32 and 5.33, the following geometric quantities can be
determined:

r =0, n=10
6,=90°, 6, =60 6, = 60°, 6, = 180°

The geometric unknowns are r; and r,. Because 6, = 6, is the input variable, we can compute the
results using the equations in Table 5.9. To solve for r; and r,, solve
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Y
3 /~[
=0 4 |
B
10" 2
4 6,
l e | X FIGURE 5.32 Mechanism for Example 5.7.
r, 3 /[ va

FIGURE 5.33 Vector closure diagram for Example 5.7.
cosb; —cosb, (|ry| _ |r cos —r,cosb,
sin@, -siné, ||, 7, sin 6, —r, sin 6,
cos60° —cos180° ||n _ J10cos 90° -0
sin60° —sin180° {|7, 1 10sin 90°-0
0.5 L _Jo0
0.8660 0 |7, 10
r| _J11.547
7 -5.774

The negative sign for r, means that it is pointing in the opposite direction to that given by 6, = 180°,
Clearly, the geometry in Fig. 5.33 could have been solved directly using geometry; however, the more
general equations are used here to illustrate the procedure.

For the velocities, the unknowns are 7; and 7,. From the problem statement, éz = (53 =10 rad/s
CCW. Therefore, from Table 5.9,

cos, —cosé, ||# 10, sin 6, +rd, sin 6,

sinf; —siné, ||# ~1,6, cos 6, — 1,0, cos b,
Note that the coefficient matrix on the left-hand side of the velocity equation is the same as the cor-
responding position matrix.

or

Simplifying gives

and solving then yields
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Substituting the known quantities into the matrix equation gives

05 1|[#] [0+11.547(10)sin60° 100
0.8660 0|7 ] [0-11.547(10)cos60°| ~ |-57.74

K| [-66.67
] 133.33

Note that the positive value for 7, means that r, is increasing with time. Because 7, is negative when
it points in the positive x direction (6, = 180°), a positive sign for 7, means that r, is increasing or
becoming less negative with time. This means that link 4 is moving in the — x direction.

For the acceleration analysis, the unknowns are #; and #,. From the problem statement, 6, =6, =0,
and from Table 5.9,

or

[cos 6; —cos6, Hg} _ { 1,0, sin 8, +r,6; cos, +256, sinb, + 18, sin 6, + r,6; cosé, }

sinf; —sing, [|7 —1, cos b, + r6, sinb, — 270, cos b, — 16; cosb; + b sin b,

Note again that the coefficient matrix on the left-hand side of the acceleration equation is the same as
the corresponding position matrix. Substituting the known quantities into the matrix equation gives

05 1% [-5774
0.8660 0|7 | |1666.7
Al [ 19245
Bl -1539.6

Again, the positive value for 7, means the slider is accelerating in the positive r, direction, that is, to
the left.

or

5.8 ANALYTICAL EQUATIONS FOR AN RRPP

MECHANISM

A schematic drawing of the RRPP mechanism is shown in Fig. 5.34. In the mechanism
shown, link 2 is connected to the frame and to the coupler (link 3) by revolute joints. The
coupler is connected to link 4 by a prismatic joint, and link 4 is connected to the frame
through a prismatic joint. This mechanism occurs frequently in industrial machinery and
household appliances. A common version of it is the Scotch yoke, which is a compact
mechanism for converting rotary motion to reciprocating motion.

To analyze the mechanism using vector closure equations, we must align vectors in
the directions of the slider motions as shown in Fig. 5.35. Only three vectors are required to
model the motion. Vector r, is fixed at an angle 6, and of variable length. This vector begins
at point O and ends at point O, where Q is the intersection of a line through O and in the
direction of the velocity of link 4 relative to link 1 and a second line through P in the direc-
tion of the velocity of link 3 relative to link 4. The two lines intersect at an angle 8. Vector
r, is the crank and of fixed length but variable orientation. Vector r; is measured from point
Q and gives the displacement of slider 3 relative to link 4.

To develop the closure equations, locate point P with vector r, and with vectors r, +
r; as shown in Fig. 5.35. Then the vector closure equation is
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FIGURE 5.34 Schematic diagram of an RRPP mechanism.

X
FIGURE 5.35 Vector closure diagram of an RRPP mechanism.

h=hHh=KR+n (5.134)
or

r (cos 6,i +sin 92j) = rl(cos 6ji +sin Blj) + r3(cos 04i +sin 03j) (5.135)
Rewriting the components in Eq. (5.134) as separate equations gives

r, cost, =17 cosb, +r, cosbs (5.136)

r, sin@, =7 sinf, +r; sin b, (5.137)

Equations (5.136) and (5.137) must be satisfied throughout the motion of the linkage. There
are six quantities to identify: r, and 8,, , and 8,, and 7, and ;. From the diagram in Fig. 5.35,
8,, r», and 6, are constants. Furthermore, we know that

=6 +B (5.138)
where 3 is a constant.

The variables are r,, 8,, and r;. For a one-degree-of-freedom mechanism, one of the
variables must be an input (i.e., a known) variable. Therefore, there are two unknowns, and
we can solve for them using the two equations (5.136) and (5.137) involving the unknowns.

Once all of the position variables are obtained, the unknown velocities and accelera-
tions can be obtained by differentiating Eqgs. (5.136) and (5.137) and solving the resulting
sets of linear equations for the unknowns.

Before solving the equations for the unknowns, it is necessary to select an input vari-
able. Any of the variables r,, 8,, or r; could be chosen, and the equations have been devel-
oped for each case. Again, we will not give a detailed development of the solution
procedure because it is similar to the examples discussed before. An overview of each case
is given in the following, and the results are summarized in tables.

5.8.1 Solution When 6, Is Known

The case in which 6, is an input is especially simple because Eqgs. (5.136) and (5.137) then
become linear in the unknowns r, and r;. Only one assembly mode is possible, and if 7, is
nonzero, there are no positions in which the mechanism cannot be assembled. The velocity
and acceleration equations are obtained by differentiation. The solution for this case is given
in Table 5.12, and a MATLAB program for solving the equations is given on the disk with
this book.
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TABLE5.12 Summary of Position, Velocity, and Acceleration Equations for an RRPP
Mechanism When 4, Is the Input Variable. The Link Numbers and Points Are Defined
in Fig. 5.34

Position

6,=6+p

cosf cosb; ||r| |r,cosb,
sinf, sin6, ||n r, sinf,

=t =(r2 cos02)i+(r2 sinBz)j

ry=n= (r1 cosﬂl)i + (r1 sin91)f

Velocity

cosf cosfy ||| _ -r8, sin 0,
sinf, sin6, ||{A rzéz cos b,

Fp = by = (=16, sin 6, )i + (16, cos6, )j

I =Hh =(r} cos@l)i+(r'l sinBl)j

Acceleration
cosfy cosby ||A| _|-rb,sin6, — 62 cos 6,
sinf, sin6, [|A 10, cosby — 1,62 sinf,

o =F = (—r252 siné, — r2922 cosé, )i + (552 cosf, — r2é22 siné, )j

iy = = cos6, )i + (7 sinf, ) j

5.8.2 Solution When r, Is Known

When r, is known, we must solve Egs. (5.136) and (5.137) for 8, and r;. The solution is sim-
ilar to that for the slider-crank inversion. In general, there are two solutions for r;, corre-
sponding to the two assembly modes or branches for the linkage represented in Fig. 5.36.
Also, it is possible to specify a value for 7, that will prevent the mechanism from being
assembled. After the position equations are solved, the velocity and acceleration equations
are obtained by differentiation. The results are summarized in Table 5.13 and a MATLAB
program for solving the equations is given on the disk with this book.

FIGURE 5.36 Two configurations possible when r, is input.
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TABLE 5.13 Summary of Position, Velocity, and Acceleration Equations for an RRPP
Mechanism When Either r, or r; is the input Variable. When r, Is the Input, M = 1 and

J = 3. When r; Is the Input, M = 3 and J = 1. The Link Numbers and Points Are Defined
in Fig. 5.34

Position

6, =6+B
B= rM(coseM cosf; +sinby, sinQ,)
C=(rA24 —r22)

rJ=—B+0'\/BZ—C; o=tl

-1 i siné +r;sinb,

02 =tan
7, cos6; +r, cosb,

rh=n= (r2 cosé, )i + (r2 sinﬂz)i

rp=h= (r1 cosel)i + (r1 sinGl)j

Velocity

—r,sin@, —cosd, |[6, _ | ny cosby,
rz COSOZ —Sinej 7"] ;'M SinoM

fp=h = (—rzéz sind, )i +(r§92 cos@z)j

p=h= (r"l cosol)i+(i', sinel)j

Acceleration
-rysin6, —cosb; ||6,| _|#, cosb,, +nrb2 cosh,
r»cos@, —sinb; ||F #,y Sinfy, + 1,03 sin 6,

o= = (—rzéz siné, — rzfg cosb, )i + (r252 cosf, — rzézz siné, )j

iy = i =(# cos8, )i +(# sin6, ) j

5.8.3 Solution When r; Is Known

When r; is known, we must solve Egs. (5.136) and (5.137) for 8, and r,. The solution is
almost identical to that for the case in which r, is known. We need only switch the indices

for 1 and 3, and the results are otherwise the same. This is indicated in Table 5.13. This case
is also included in a MATLAB routine on the disk with this book.
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In the Scotch yoke mechanism shown in Fig. 5.37, the angular velocity of link 2 relative to the frame
is 1 rad/s CCW (constant) when the angle 6, is 60°. Also, the length OP = 2 in. Determine the veloc-
ity and acceleration of link 4.

Using the nomenclature developed earlier, we can draw the basic vector closure diagram as shown in
Fig. 3.38. From Figs. 5.37 and 5.38, the following geometry quantities can be determined:

n=2
6, =0°, 6, =60°, B=90°, 6, =90°
6, =1, 6, =0

Because the crank (link 2) is the driving link, we can use the equations in Table 5.12 to solve the prob-
lem. The geometric unknowns are 7, and r;. To determine r, and #;, solve

cos cosb, ||| |rcos,
sinf, sin6, ||r 7, sin 6,
or
1 0|fn| _|rcos,
0 1]jln r, sin 6,
Then
r =r, cos,
and

ry =r,siné,

Notice that the motion of the slider is a sinusoidal function of the input rotation. This is one of the ben-
efits of the Scotch yoke and is one of the reasons that it is used. For the given input values (r, = 2 and
6, =60°) it is clear that », = 1.0 and r, = 1.732.

For the velocities, the unknowns are 7, and 7;. These can be determined from the matrix equation

cosf, cosb, ||A -n8, sin 6,
sinf, siné, ||# - 18, cos 6,

1 o](#] [-2(1)sin60°] [-1.732
o 1jls] |2(1)cos60° [ | 1

# =-1.732 in/s

or

and
=1 in/s

The negative sign means that r, is decreasing in length with increasing time.
For the accelerations, the unknowns are 7, and ;. These can be determined by solving

cosf, cosé, {r] _ -1, sin6, - 1,62 cosh,
sin, siné, ||# 1,6, cos 6, — 163 sin6,

Substituting into the equation the known values, we get

[(1) (I)J{Z}z 0-2(1)" cos 60° ={ -1 }

0-2(1)"sin60° | [(-1.732
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FIGURE 5.37 Scotch yoke mechanism.

— FIGURE 5.38 Vector diagram for Scotch yoke mechanism.

or

. . 2
H=-1 1n/s

and

#=-1732 infs’

5.9 ANALYTICAL EQUATIONS FOR
ELLIPTIC TRAMMEL

The elliptic trammel is an inversion of the RRPP mechanism, and a schematic drawing of this
mechanism is shown in Fig. 5.39. In the mechanism, links 2 and 4 are connected to the frame
by prismatic joints and to the coupler by revolute joints. A significant feature of this mechanism
is that coupler points trace ellipses on the frame, and it is used in machine tools for this purpose.

To analyze the mechanism using vector closure equations, we must again align vec-
tors in the directions of the slider motions as shown in Fig. 5.40. As in the case of the RRPP
mechanism, only three vectors are required to model the motion. Vector r, is fixed at an

2 e 3 £
& O
v FIGURE 5.39 Schematic diagram of elliptic

trammel.
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Y 0,
5 ry 3 /P 4

. %
n B
! X FIGURE 5.40 Vector closure diagram for elliptic
O trammel mechanism.

angle 8, and of variable length. This vector begins at point O and ends at point O, where O
is the intersection of a line through Q and in the direction of the velocity of link 2 relative
to link 1 and a second line through P in the direction of the velocity of link 4 relative to link
1. Point O is the origin of the frame coordinate system. The two lines intersect at an angle
B, measured from r, to r,. Vector r, is fixed at an angle 6, and of variable length. Vector r,
is measured from point P to point Q.

As shown in Fig. 5.40, to develop the closure equations, locate point O with vector r,
and with vectors r, + r;. Then the vector closure equation is

h=h=ntn (5.139)
or
rl(cos 6)i +sin Olj) =r (cos 60,i +sin 02j) + r3(cos(93i +sin 03j) (5.140)
Rewriting the components in Eq. (5.139) as separate equations gives
ricosf =r, cosf, +r; cosb, (5.141)
K sinf =r, sinf, + r;sinb; (5.142)

Equations (5.141) and (5.142) must be satisfied throughout the motion of the linkage. As in
the case of the RRPP mechanism, there are six quantities to identify: r, and 6, », and 8,,
and r; and 8,. From the diagram in Fig. 5.40, the following are constants: 8,, 75, and 8,. Fur-
thermore, we know that

0,=06,+p (5.143)
where B is a constant.

The variables are ry, 6, and r,. For a one-degree-of-freedom mechanism, one of the
variables must be an input (i.e., known) variable. Therefore, there are a total of two
unknowns, and we can solve for them using the two equations (5.141) and (5.142) involv-
ing the unknowns. Once all of the position variables are obtained, the unknown velocities
and accelerations can be found by differentiating Eqgs. (5.141) and (5.142) and solving the
resulting set of linear equations for the unknowns.

Before solving the equations for the unknowns it is necessary to select an input vari-
able from r;, 8;, and r,. Because of the symmetry of the mechanism, choosing r, or r, will
give a similar set of equations. That is, if we establish the input—output relationships for r,
as the input, we can derive the relationships for r, as the input by simply interchanging the
subscripts 1 and 2 in the relationships derived for r, as the driver. Therefore, we need to con-
sider only the cases for 65 and r, as input variables.

5.9.1 Analysis When 6; Is Known

The analytical solution procedure follows the same major steps as were followed in the case
of the RRPP mechanism. When 6; is an input, Egs. (5.141) and (5.142) become linear in the
unknowns r; and r,, and the equations for position, velocity, and acceleration can be solved
easily. The resulting equations are summarized in Table 5.14.
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TABLE 5.14 Summary of Position, Velocity, and Acceleration Equations for an Ellip-
tic Trammel Mechanism When 6; Is the Input Variable. The Link Numbers and Points
Are Defined in Fig. 5.40

Position

6,=6,+8
cosh —cosb, ||| _|rcosb;
sinf, —sinb, ||n rsinf;

rp=n= (r2 cosb, )i +(r2 sinoz)j

p=nr= (rl cosol)i+(r1 sinel)j

Velocity

cos —cosb, |[7| _ —r8; sin 6,
sinf, —sinb, |5 76, cosb,

fp=F =(r'2 cosﬂz)i+(r'2 sinaz)j

Ip=h= (rl cos()l)i +(r", sinBl)j

Acceleration
cosfy —cosb, ||# | _ |-r6,sin6, — 167 cosé,
sind, -—siné, ||% 10, cos8; — ;62 sin;

#p =, =(F cos, )i +(# sin6, ) j

B=#H= (rl cosﬂl)i + (rl Sine])j

5.9.2 Analysis When r, Is Known

When r, is known, we must determine 8, and r,. Two solutions result corresponding to the
assembly modes shown in Fig. 5.41. It is also possible to specify values for | for which
the mechanism cannot be assembled. The analytical form of the velocity and acceleration

FIGURE 541 Two configurations possi-
ble for elliptic trammel when r, is input.




226

CHAPTERS5 ANALYTICAL LINKAGE ANALYSIS

equations can be developed by differentiating the position equations and solving the result-
ing linear equations for the unknowns. The results for 7, as the input are summarized in

Table 5.15.

TABLE 5.15 Summary of Position, Velocity, and Acceleration Equations for an Ellip-
tic Trammel Meochanism When r, Is the Input. The Link Numbers and Points Are

Defined in Fig. 5.40

Position

Velocity

B= —rl(cose1 cosf, +sin, sin 92)
C=(r12 —r32)

r =-B+oVB*-C

-1 % siné —r, sinb,

03 =tan
r,cosf; —r, cosb,

rh=r = (r2 cos 6, )i+(7‘2 sin92)j

rp=n= (rl cosﬂ,)i+(r1 Sinel)j

Acceleration

cos#h -—rsinby ||r | |7 cosh
sinf, rcos; ||6; 7 sin 6,
Fp = F, =, cost, )i + (7 sin6, ) j

Fy = = cos6, )i + (7 sin8, ) j

cosy -—rsinb; ||% | |7 cosf +r8} cosb,
7 in @, + 1,07 sin 6,

sinf, rcosf; |6,

Pp =, = cost, )i +(# sing, ) j

iy =k = (% cos6) )i + (7 sinf, ) j
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In the elliptic trammel mechanism shown in Fig. 5.42a, the angular velocity of link 3 relative to the
frame is 10 rad/s CCW (constant). Also, the length QP = 10 cm and QR is 20 cm. Determine the posi-
tion of point R and the velocity and acceleration of point P for a full rotation of the coupler.

Using the nomenclature developed earlier, the basic vector closure diagram for the linkage is as shown
in Fig. 5.42a. From Figs. 5.41 and 5.42, the following geometric quantities can be determined:

=10
8,=90°, 6,=0°, B=90°
6, =10, 6,=0

Because we are interested in the behavior of the mechanism for its full range of motion, we must solve
the position, velocity, and acceleration equations in terms of 6;. The vector diagram establishing the
quantities involved is shown in Fig. 5.42b.

The position of R; is given by
ry, =r ot
or, in component form,

Iy, = (r1 cosf, +r, cosb, )i + (r1 sin6, +r, sin 6, )j (5.144)
From Fig. 5.42b, 64= 6 + 7. Therefore, Eq. (5.144) becomes
rz, = (r, cosf, —r, cosb, ):’ + (r, sin 6, — r, sin 03)1' (5.145)

To solve for the position, velocity, and acceleration of P;, we must determine the corresponding values
for r,. From Table 5.14, the equations to be solved are

B M s

1 0|ln] |nsine, (5.146)
s A preb

10 ls) | nb,coss, (5.147)

and

0 -1|J#]| _J-nb;sin6, - né; coso,
1 0]l5 10, cos 6, — r,6; sin 6,

(5.148)
From Egs. (5.146)(5.148),
r =rsinf, (5.149)
7 = 1f; cos by (5.150)
and
A =r353 00503—r3é32 sin 6, (5.151)

FIGURE 5.42 Elliptic trammel mechanism (a) and vector diagram (b) for Example 5.9.
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Equations (5.149)«5.151) can be combined with Eq. (5.145) to solve for the position of R; and for
the velocity and acceleration of P; as a function of ;. The equations can be computed easily, and
the results are plotted in Fig. 5.43. The MATLAB program used to generate the curves is included on
the disk with this book. Notice that the path of R; is an ellipse.
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FIGURE 5.43 Results for Example 5.9.

5.10 ANALYTICAL EQUATIONS FOR THE OLDHAM
MECHANISM

The Oldham (RPPR) mechanism is another inversion of the RRPP mechanism, and a
schematic drawing of this mechanism is shown in Fig. 5.44. In the mechanism, links 2 and
4 are connected to the frame by revolute joints and to the coupler by prismatic joints. There-
fore, the angle B between links 2 and 4 is fixed.

To analyze the mechanism using vector closure equations, we must again align vec-
tors in the directions of the slider motions as shown in Fig. 5.45. As in the case of the ellip-
tic trammel, only three vectors are required to model the motion. Vector r, is fixed at an
angle 6, and of constant length. Point O is the origin of the frame coordinate system. Links

FIGURE 5.44 Schematic diagram of Oldham mechanism.
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FIGURE 5.45 Two assembly modes for Oldham mecha-
nism when r, is the input variable.

2 and 4 intersect at an angle 3, where B is measured from r, to r,. Vector r, is at an angle 6,
with respect to a horizontal line and is of variable length. Vector r, is at an angle 6, with
respect to a horizontal line and of variable length.

As shown in Fig. 5.44, to develop the closure equations, locate point P with vector r,
and with vectors r, + r,. Then the vector closure equation is

Ih=hK=n+r, (5.152)
or
r (cos 0,i +sin 02j) = rl(cosf)li + sinﬂlj) +7 (COS 0,i +sin 94j) (5.153)
Rewriting the components in Eq. (5.153) as separate equations gives
r, €086, =7, cos 6, +r, cosb, (5.154)
r sin@, =#sinb, + 7, sinb, (5.155)

As was the case for the other RRPP mechanisms, there are six quantities to identify: », and 8,,
r, and @, and , and 6,. From Fig. 5.44, 0, and r, are constants. Furthermore, we know that

0, =0,+B (5.156)
where f3 is a constant.

The variables are 6,, 6, r,, and r,. For a one-degree-of-freedom mechanism, one of
the variables must be an input (i.e., known) variable, and there are three unknowns. We can
solve for them using the three equations (5.154)—(5.156) involving the unknowns. Once all
of the position variables are obtained, the unknown velocities and accelerations can be
found by differentiating Egs. (5.154)—(5.156) and solving the resulting set of linear equa-
tions for the unknowns.

Before solving the equations for the unknowns, it is necessary to select an input vari-
able from among r,, r,, 8, and 6,. The equations will be similar when either 7, or 7, is
selected, and when either 6, and 8, are selected. Therefore, we will consider only the two
cases when r;, is a variable and when 6, is a variable.

5.10.1 Analysis When 0, Is Known

When 6, is the input variable, Egs. (5.154) and (5.155) become linear in the unknowns r,
and r,, and the equations for position, velocity, and acceleration can be easily solved. The
resulting equations are summarized in Table 5.16. The equations can be programmed easily,
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TABLE 5.16 Summary of Position, Velocity, and Acceleration Equations for an

Oldham Mechanism When 6, Is the Input Variable. The Link Numbers and Points Are
Defined in Fig. 5.44

Position

0,=6,+p
cosf, —cosb, ||r| _|ncosb
sin@, —sinb, ||n 1 sin 6,
rp=n= (r2 cosf)z)i+(r2 sin02)j

Ip=h= (r1 cosf)l)i+(r1 sinﬁl)j

Velocity

é4 = 0.2
COS 02 —CoS 04 ’;2 _ rzéz Sin 92 - r4éz Sin 94
sing, —sinf, |7 —rzéz cosf, + qéz cosf,
Ip, = (—rzéz sin @, )i + (rzéz cosé, )j

fp, = (r2 cosf, — rzéz sin 6, )i+(r’2 siné, +r292 cosez)j

Acceleration

cosf, —cosb, (|7
sinf, —sinb, ||

(rzéz +2"‘20.2)Sin 02 - (r462 +2i‘40’2)sin64 + 7‘20’% 00502 - rhézz C0S94

—(rzéz + 2r"292 ) cosf, + (r452 +27,6, ) cos 6, + 1,02 sinb, —r,62 sin6,

Fp, = (—rzé2 sin6, ~ ;*2022 cosf, )i +(r2(‘9'2 cosf, — r2¢922 sin6, )j

Fp, = (;2 cosB, ~ 25,0, sinf, — r,6, sinb, — r2022 cosB2)i

+(i"2 sin @, + 25,6, cos6, + 1,6, cosé, —rzézz sin02)j

and a MATLAB program for analyzing the mechanism when 6, is the driver is included on
the disk with this book.

5.10.2 Analysis When r; Is Known

When r, is known, we must determine 6,, 6, and r,, and the equations required for the
analysis are given in Table 5.17. Two solutions corresponding to the assembly modes shown
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TABLE 5.17 Summary of Position, Velocity, and Acceleration Equations for an
Oldham Mechanism When r, Is the Input Variable. The Link Numbers and Points Are
Defined in Fig. 5.44

Position

1= cos[3+a'\jr22(cos2 B—1)+r12; o=1=1
A=rsiné —r,sinf
B= —2(r2 -1 cosB)
C =r,sinB+rsinf,

| -B+yVB? =C* + 42

)

6, =2tan ; ¥ =+1or —1; valid value satisfies Eq. (5.153)

0, =6, +p
r=r =(r2 cos6, )i+(r2 sin02)j

n=n= (rl cosol)i+ (rl sinel)j

Velocity
94 = éz
—r,sin@, +7,sin6, —cosb, |[6, _|-r, cosb,
r, cos, —r, cosf, —sinb, ||7 —#, sin 6,

tp, = (=126, sin 8, )i + (6, cos6, )

Fp, = (r2 cosf, — rzéz sin 6, )i + (rz sinf, + rzéz cos6, )j

Acceleration

=5 sin 02 + I Sin 04 —COos 04 52
r cos, —r cost, ~sinb, ||#
_ 2r'202. sin@, — 27,6, sin 6, + r,0? cosf, —# cosf, — r4(§22 cosf,
—27,0, cosb, + 27,0, cos b, + .0 sinb, — 7, sin b, — 7,62 sin8,
Ip, = (—rzéz sinf, — 1,62 cos 0, )i + (rzéz cosf, + 62 sinb, ) j
Ip, = (r2 cosb, —2#,8, sinf, — 8, sinb, — r,6; cosb, )i

+(F2 sind, +2i~292 cosd, + rzéz cosb, — 62 sin 6, )j
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EXAMPLE 5.10
Kinematic
Analysis of

the Oldham
Mechanism

Solution

in Fig. 5.45 result. Note that in one assembly mode, B is positive, and in the other, 8 is neg-
ative. If the sign of 8 must be positive, the solution corresponding to a minus angle would
be discarded. The value of vy that is valid is the one satisfying Eqgs. (5.154) and (5.155). It is
also possible to specify values for », for which the mechanism cannot be assembled. The
analytical form of the velocity and acceleration equations can be developed by differentiat-
ing the position equations and solving the resulting linear equations for the unknowns.
Again, the equations can be easily programmed, and a MATLAB program for analyzing the
mechanism when r, is the driver is included on the disk with this book.

In the Oldham mechanism shown in Fig. 5.46a, the angular velocity of link 2 relative to the frame is
10 rad/s CCW and the angular acceleration is 100 rad/s> CCW. Also, the length OQ = 10 cm and the
angle 8 is 45°. Determine the position of point P and the velocity and acceleration of points P, and P,
in the position given.

Using the nomenclature developed earlier, we can draw the basic vector closure diagram for the link-
age shown in Fig. 5.46b. From Fig. 5.46, the following geometry quantities can be determined:

6, =0°, 8, =60°, 6, =105°
rn, =10 cm

To perform the analysis, we can use the equations in Table 5.16. For the position analysis, we need to
solve

cosf, -—cosb, ||n r, cos 6, cos(60° ) - cos(105°) r 10cos0°
= or =
sin@, —sind, [(r 7, sin 6, sin(60°)  —sin(105°) | % 10sin 0°
0.500  0.2588 ||r, | _ [10 - n| _ J13.6603
0.8660 —0.9659 ||r, 0 r, 12.2474

The positions of P and Q are given by
rp =(r, cosd, )i +(r, sin 6, ) j = 6.8301i +11.8301

or

and
ry =(ricos6, )i +(r, sin6, )j = 10i

For the velocity analysis, solve

cosf, —cosd, |[# 1,8, sinb, —r,6, siné, 0.500 02588 |(# 0
= . X = =
sin@, —sind, [(r, —r,0, cosf, +r,6, cosé, 0.8660 —0.9659 ||7, -100

or

FIGURE 5.46 Oldham mechanism (a) and
vector diagram (b) for Example 5.10.
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7y ~36.6025
R
The velocities of points P, and P, are
# = (=10, sin6, )i +(n6, cos6, )j = ~118.3031i +68.3013
and
#p, = (i cos B, — 1,0, sin6, )i + (7, sin6, + b, cosh, )j = ~136.6025i + 36.6025 j
For the acceleration analysis, solve
cosf, —cosh, |[#
[sin 6, -—sing, :Hr;‘ }
_ { (r'zl;2 + 27"2(92) sin@, - (qéz +2,0, )sin 0, + 1,63 cos6, — 1,67 cosé, }

—(rzé2 +21‘Zéz)cos 0, +(;;,éz +2i4(§2)cos 8, + 1,63 sin6, — gé§ sin 6,

or
0.500  0.2588 ||7 _ j-1000
0.8660 -0.9659 ||7y| [-1000
Then,
Hl_[-17321
¥y -517.6
Also,
Fp = (—rzé2 sin6, — 62 cos6, )i + (1‘252 cos b, +r,0 sinb, )j = -1866i — 500
and

. s - N N2 .
B = (r2 cos 8, —2r,0, sin, — r,6, sinh, — r,0; cos b, )l

+{7, sin, +256, cosb, +rf, cos6, 62 sin, )i =-2098.1i - 2366 j

5.11 CLOSURE OR LOOP-EQUATION APPROACH FOR
COMPOUND MECHANISMS

As in the case of simple, single-loop mechanisms, each vector is represented by a length r,
and an angle 6,. All angles are measured counterclockwise from a fixed line parallel to the
x axis attached to the frame as shown in Fig. 5.47.

To illustrate the method for compound mechanisms, consider the kinematic diagram
of the mechanism given in Fig. 5.47. Each member is represented by a directed length and
an angle. The formulation of the analytical procedure based on vector loops for compound
mechanisms is straightforward, but it requires a system if results are to be meaningful. A
procedure will be outlined in the following and illustrated on the mechanism in Fig. 5.47. It
will be noted that the procedure presented is a generalization of that used for the single-loop
mechanisms. In the mechanism shown, assume that 8,, w,, and @, are known values.
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FIGURE 5.47 Example of formulation of solution procedure using vector loops.

Procedure

1.

7.

Draw a kinematic sketch of the mechanism. The sketch need not be to scale; however, it
must be sufficiently accurate that the assembly mode can be determined by inspection.

. Establish a global coordinate system for the mechanism. This will establish the horizon-

tal axis from which all angles will be measured and identify the system from which all
global coordinates will be determined.

. Represent the link between adjacent joints by a vector r; defined by a directed line and

an angle measured positive CCW from the x axis (or a line parallel to the x axis):
r=nrs6

. If sliders are involved, locate the slider by two vectors, one in the direction of the relative

velocity between the slider and the slide and the second in a direction perpendicular to
the direction of the velocity (see r; and rg in Fig. 5.47).

. Note which lengths and angles are fixed and which are variable. In the mechanism

above, r; is the only variable length and 6,, 8-, 65, and B are the only fixed angles.
If the vectors are properly defined, they will all be expressible as

rL=r (coso,.i+sin0,~j)

The cosine term will always go with i and the sine term will go with j. Some angles may
be functions of others. For example, 65=0,- .

Identify all of the joints on the linkage, and be sure that each one is located at the end of
one of the vectors. Then identify all of the independent vector loops in the linkage, and
write a vector equation for each loop. For the mechanism in Fig. 5.47, there are two obvi-
ous vector loops represented by the following equations:

rtr,=rntrn (5.157)

rstro=r,trg (5.158)
Write the x, y scalar equations for each vector equation. Notice that the form of the equa-
tions is consistent, and once the basic vector equations are given (e.g., Egs. (5.157) and
(5.158)), it is not even necessary to look at the mechanism to be able to write the com-
ponent equations.
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10.

11.
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x => K cosb +r, cosfly =r, cosh, +r cosb, (5.159)
y =>risin6, +r,sin6, =r, sinb, + r, sin b, (5.160)
X => 15 ¢0805 + 15 cosfg =15 cosB, + r; cosby (5.161)
y = rssinfs + 7 sinfg = 1, sinh; + 1 sin b (5.162)

Identify any constraints among the lengths or angles that are not identified by the vector
loops. In the mechanism in Fig. 5.47, 6, is related to 65 by 71/2, and 6, is related to 6,
through B. Therefore, the extra constraint equations are

05 =6, +7/2 (5.163)
and
b6 =06, - B (5.164)
Count the total number of variables in the component equations and the extra constraint
equations. If » is the total number of equations and fis the number of degrees of freedom
for the mechanism, the total number of unknowns should be »n + f. If the number of
unknowns is larger than this, it is necessary to identify additional constraints or to refor-
mulate the loop closure equations. In the mechanism in Fig. 5.47, the total number of
unknowns is seven (0, 83, 8,, 05, 0, 05, and r;), and the mechanism has only one degree
of freedom. Therefore, n + =7, which indicates that the problem should be solvable.
Note that the number of unknowns and the number of variables are not necessarily the
same. In this mechanism, 65 is a constant but initially unknown. It must be computed
using Eq. (5.163). Equations (5.159)—(5.164) are nonlinear in the unknowns (6,, 8;, 6,,
05, 8¢, and r-), and most of the analysis difficulties are concentrated here.

For velocities, differentiate the position equations (x and y components) term by term. In
the example case, the velocity equations are

(5.165)
K+ =0 +5 (5.166)
and recognizing which terms are constants and which are variables, one gets

= —r4é4 sinf, = —r2(§2 sin@, — r3é3 sin 6, (5.167)

y= r4(§4 cosf, = r20'2 cosé, + r36:’3 cosf, (5.168)

05 = b, (5.169)

x = ~r3fs sin b — 750 sin @ = F; cos 0, (5.170)

y = 165 cos s + 1,0 cos b =7, sinf, (5.171)

Note that once we have solved the position equations, only the angle and length deriva-
tives will be unknown. Hence the equations are linear in the unknowns and can be easily
solved. There are five linear equations in five unknowns (65 64, 65 6 r;). These can be
solved directly by Gaussian elimination, by using a programmable calculator, or by using
a matrix solver such as MATLAB.

For accelerations, differentiate the velocity equations (x and y components) term by
term. In the example case, the acceleration equations are

R+l =0 +h (5.172)
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FE+i=F+k (5.173)
and, in terms of components,

x= —r‘,é‘; sinf, — r4é;°' cosf, = —rzéz sing, — r4922 cosé, — r3§3 sinf; — r3(§32 cos b, (5.174)

y= r4§4 cosf, — r(;éf sing, = r21'9'2 cosf, — r4922 sin6, + 553 cosf; — r3932 sin 6, (5.175)

b6 = 0, (5.176)
X = —r6s sin 05 — ;62 cos s — 10 sin 65 — ry62 cosb = 7, cos o, (5.177)
y = rsés COSOS - r5é52 Sin05 + réés 00506 - rséé Sin66 = ;':, sin 07 (5 178)

Note that once we have solved the position and velocity equations, only the derivatives
of velocity will be unknown. Hence, the equations are linear in the unknowns and can be
easily solved. There are five linear equations in five unknowns 6, 6,, 6s, 6, and 7,. Once
again, these can be solved directly by Gaussian elimination, by using a programmable
calculator, or by using a matrix solver such as MATLAB.

5.11.1 Handling Points Not on the Vector Loops

The solution procedure outlined in the preceding section will give the position, velocity, and
acceleration of each point at a vertex of a vector loop in addition to the angular velocity and
acceleration of each link. The angular velocities and accelerations are the 6; and 6, terms,
respectively. In general,

and

Once the basic analysis is completed by solving the vector loop equations, we will be able
to locate at least one point on each rigid body (link) as a function of time. We will also be
able to determine the orientation of each rigid body as a function of time, that is, 8,, w;, and
a; will be known or can be determined for each link.

Points that are not vertices of the vector loops must be associated with one of the rigid
bodies in the mechanism. To determine the kinematic properties of a given point, we simply
identify the point by a vector in terms of the known quantities, determine the x, y compo-
nents of the vector, and differentiate. For example, assume that we want to know the kine-
matic properties of a point Q on link 3 as shown in Fig. 5.48. Then,

X FIGURE 548 Determination of velocity and acceleration
of a point Q that is not a vertex of a vector loop.
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rQ3/A2 =n tK
or
./, =h (cos 6,i +sin sz) +5 [cos(A +6; )i + sin(A +6, )1]
= [rz cosb, +ry cos(A +6; )]t + [r2 sinf, + 7, sin(A +0; )] Jj (5.179)

All terms on the right-hand side of Eq. (5.179) will be known. Therefore, the position vector
can be computed directly. The velocity is given by

vQ}/A2 =r2 +r9

and
Vo,/4, = %0, (— sin6,i + cose2j) + r963[— sin(A +6, )i + cos(A +6, )]]

= {16, sin 6, + 1,0, sin(A + 6, )|i + |10, cos@, + r,6; cos(A + 6, )|/

[22 2 T H03 ( 3)]’ [22 2 T 1903 ( 3)]] (5.180)
Again, all quantities on the right-hand side of Eq. (5.180) are known, and so the velocity of
point Q can be computed without difficulty. For the acceleration, differentiate the velocity
expression. Then,

aQ3/A2 =r2 +r9

and

ag. /4, = rzéz (— sin 6, + cos6, j) -n (02 )2 (cos 6,i +sin6, j)
+;§53[— sin(A + 0, )i + cos(A +0; )}] - r9(é3 )2 [cos(A + 0, )i + sin(A + 0, )]]
= l:—rzé'z sinf, — r9§3 sin(A + 93) -n (02 )2 cosf, rg(ég, )2 cos(A +6, )]l

. . .2 VI
+[r292 cos6, + b, cos(A + 03) -n (02 ) sinf, —r, (63) sm(A +0, )} J
(5.181)
Again, all quantities on the right-hand side of Eq. (5.181) are known and so the acceleration
of point Q can be computed without difficulty. Note that this procedure is simply a varia-
tion on the rigid-body analysis given in Section 5.4.

5.11.2 Solving the Position Equations

A review of the analysis just developed shows that only the position equations are nonlinear
in the unknowns. Therefore specialized techniques are required to solve them. If a numeri-
cal solution is chosen, then an initial guess for the variables is required. This is best obtained
by sketching the mechanism to scale. A numerical iteration method such as the
Newton—Rapson method can be used to obtain refined values. If a series of input angles is
to be investigated, then the final variable values for the previous input value can be used as
the initial estimates of the variables for the next input value provided that the input angle
increments are relatively small (i.e., within about 10° of each other).

Another numerical approach that is computationally more efficient than using
Newton’s method, but sometimes has convergence problems at end-of-travel positions, is to
numerically integrate the velocity equations after a precise set of values for the variables is
obtained by Newton’s method. The input step size for this integration should not exceed 2°.
This method is very convenient if a numerical integration is already needed for dynamic
problems in which the equations of motion are required.



238  CHAPTER5 ANALYTICAL LINKAGE ANALYSIS

EXAMPLE 5.11
Kinematic
Analysis of a
Compound Linkage
Mechanism

Solution

When it is possible, it is preferable to solve the displacement equations analytically
This method eliminates the numerical instability problems present in both Newton’s method
and numerical integration. In general, it is always possible to solve the equations analyti-
cally if the mechanism can be analyzed by hand using traditional graphical methods with
vector polygons as presented in Chapters 2 and 3. When it is possible to do this, the position
equations can be solved in sets of two equations in two unknowns as was done in Sections
5.3-5.10. If it is not possible to reduce the equations to a series of two equations in two
unknowns, the equations must be solved iteratively using a numerical procedure such as
Newton’s method.

When it is possible to solve the position equations algebraically, one of two situations
will usually occur. In the first situation, the compound mechanism can be treated as a series
of simple mechanisms. In the second situation, the compound mechanism cannot be repre-
sented as a series of simple mechanisms; however, the equations can be partitioned into a
sequential set of two equations in two unknowns. These two situations will be presented
separately.

Compound Linkage as a Series of Simple Mechanisms When the com-
pound linkage is a series of simple mechanisms, we can analyze each mechanism in
sequence. The output for one mechanism is the input to the next mechanism. If we have
computer routines to analyze the single-loop mechanisms, the routines can be concatenated
to analyze the entire linkage. This is the case that exists in the mechanism of Fig. 5.47.
When we examine the mechanism, we find that the first linkage is a four-bar linkage
defined by vectors r, r, r; and r,. This mechanism can be analyzed using the equations
developed in Section 5.3. The four-bar loop drives link 4. Therefore, once the position,
velocity, and acceleration for r, are known, the corresponding values for r can be found
using rigid-body conditions (Section 5.4). Link 4 is the input for the slider-crank mecha-
nism defined by rs rs r; and rg. This mechanism can be analyzed using the equations in
Section 5.5 to determine the kinematic properties of the slider.

Determine the angular position, velocity, and acceleration of link 6 in the mechanism in Fig. 5.49 if
the slider is moving at 10 c/s (constant) to the right. The following dimensions are known:

AB=227cm, CD=75cm, EF =10.6 cm
BC =106 cm, CF =14.6 cm
AC =28cm, DE =114 cm

We will analyze the mechanism as three linkage systems in series. First we will analyze the slider-
crank mechanism using the equations in Table 5.5. Next we will compute the position of CD from
rigid-body conditions (Table 5.3). Last, the four-bar linkage (CDEF) can be analyzed using Table 5.1.
The actual numerical calculations can be made using the MATLAB routines included on the disk with
this book.

To facilitate the analysis, the mechanism in Fig. 5.49 is represented by the vectors indicated in Fig. 5.50.

v, =10in/s 6
(constant)
——

4

FIGURE 5.49 Mechanism for Example 5.11.
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FIGURE 5.50 Vectors representing mechanism in Fig. 5.49.

For the slider-crank part of the mechanism, the following magnitudes and directions are known:
n=28 6 =180°, £ =10, #=0
r =10.6
r, =227

The unknowns are: 6,, 92, éz, 0, 03, 53. For this set of values, the equations in Table 5.5 can be used.
The value of o is — 1 for the geometry given, and the results are

6, =180°, 6, =0 radfs, 6,=0 rad/s2
6,=129.94°, 6, =-09314 rad/s, 6, =0.5005 rad/s’
0, =—159.02°, 6, =0299 radfs, 6, =-0459 rad/s>
The orientation of the vector r, will be related to that of the vector r, through the equation
0,=6,-45°
Therefore, the magnitudes and directions for the vectors defining the four-bar linkage are
n=175 0,=8494°, 6, =-09314 radfs, 6, =0.5005 rad/s’
r, =114,
r, = 10.6,
r,=14.6, 6,=0°

The unknowns are: 65, 95, 55, Os, 96, 56. For this set of values, the equations in Table 5.1 can be used.
The value of o is again — 1 for the geometry given, and the results are

9, =8494°, 6, =—-09314 radfs, &, =0.5005 rad/s>

6, =13.87°, 0, =02175 radfs, 6, =0.0536 rad/s
9, =105.7146°, 6, =—0.6237 radfs, 6, =0.5978 rad/s>
6, =0°, 67 =0 radfs, 6,=0 rad/s2

General Cases In Which Two Equations in Two Unknowns Result For
simple lower pair mechanisms with one vector loop, the position analysis will reduce to two
scalar equations in two unknowns, and it is relatively easy to develop closed-form equations
for the unknown variables. However, when analyzing more complex lower pair mechanisms
with n loop equations, the number of equations and the number of variable unknowns are
both 27, and the solution can become much more complicated. However, not all the pair
variables appear in each of the equations. Fortunately, it is often possible to group the equa-
tions into smaller sets that can be solved independently in a serial fashion.
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If a given lower pair mechanism can be analyzed using the traditional vector-polygon
approach, it is always possible to group the position equations in such a way that no more
than two equations in two unknowns must be solved at any one time. For such mechanisms,
the position equations can always be solved in closed form, and these types of mechanisms
form the vast majority of the linkages that an engineer might design. For complex mecha-
nisms that cannot be analyzed entirely using closed-form equations, it is often possible to
analyze a part of the mechanism with closed-form equations after other parts are analyzed
numerically.

For simplicity, the vector form of the loop closure equation for each loop will be rep-
resented in homogeneous form as

k
201, =0
i=1

where o; = +1. This equation can be divided into x and y components, and the correspond-
ing component equations are

k

Za'iri cosf, =0

i=1 (5.182)
k

Z(r,-r,- sing; =0

i=1 (5.183)

where r; is the length of vector i, 6, is the angle (measured CCW) between link i and a hor-
izontal line, and £ is the number of vectors in a given loop. Equations (5.182) and (5.183)
are written for each closure loop of the mechanism, and for » loops there will be 2»n equa-
tions and 2» unknowns. When the links contain more than two joints, there will also be aux-
iliary equations that relate joint angles. As shown in Fig. 5.51, these auxiliary equations can
generally be written as

9= (5.184)

where A is a constant. When such equations are necessary, the equations can be written such
that 6, is solved first so that it is a trivial matter to solve for 6,. Note that Eq. (5.184) is
linear.

When all of the equations of the forms given by Eqgs. (5.182)«5.184) are considered
as a set, it is usually possible to separate the 2z nonlinear equations into smaller groups that
can be solved serially, and in most cases the nonlinear equations can be grouped into sets of
two equations and two unknowns of the following form:

p-l m-1 k
O, 1, €080, + 0,1, cosb, +ZU,-r,~ cosf; + 2 o;r; cosf; + z o1, cosf; =0
i=1 i=p+l i=m+l (5.185)
p-1 m—1 k
O, 1, sinb, +0,1, sing, +20'ir;- sinf; + z o;r; sinf; + Z o;rsinf; =0
i=1 i=p+l i=m+l (5.186)

FIGURE 5.51 Geometry described by auxiliary equations.
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where o, = 0,,, and all variables in the summation terms are known.

Then,
r, €086, +1, cosf, =C, (5.187)
r,sind, +r, sinf,, =C, (5.188)
where

-1 m-1 k
1 (2
C = o 0,1, cosb; + E o, cosf; + E 0,1, cos b,
m

i=1 i=p+l i=m+1

and

~1 m-1 k
1 (] . . :
)3 =—a—[20,~ri sinf; + z o7 sinf; + 2 o;1; sin 6,

m A\ i=1 i=p+l i=m+1

In Egs. (5.187) and (5.188), two of the four variables 7, 6,, r,,, and 8,, can be unknown,
resulting in six possible combinations; however, only four of these six combinations are
unique. The four cases that must be considered are 1. r, and 6, or r,, and 6,, are the
unknowns, 2. 7, and 8,, or r,, and 6,, are the unknowns, 3. r, and r,, are the unknowns, and 4.
6, and 8,, are the unknowns. The rest of the variables in the four cases are known for each
position of the mechanism. When solving each of the cases, the three trigonometric identi-
ties discussed earlier for sind, cos@, and tang are used:

cos® 6 +sin” 6 =1 (5.189)
()
2
cosf=——>%
1+tan2[2J
2 (5.190)
and
m[ﬁ]
) 2
sinf=——+<_
1+tan2(g)
(5.191)

The equations for calculating the unknown variables in each of these cases are developed in
the following:

Case 1: r, and 6, Unknown To solve this case, the terms r, cosf), and r,, sinf, are
first isolated on the left-hand side of Eqs. (5.187) and (5.188).

r, cos8, =C, —r, cosb, (5.192)

r,siné, =C, —r, siné, (5.193)

Equation (5.193) is then divided by Eq. (5.192) to provide the solution for 6,. Next the two
equations are squared, added together, and simplified using Eq. (5.189) to obtain a solution
for r,. The resulting expressions for 7, and 6, are
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2 2 :
Y= \/C1 +C22 +r, —2Cyr,,, cos,, —2C,r,, siné,, (5.194)
C, —r, sin6,, }

6, = tan™
C,-r, cosf,

(5.195)

Case 2: r, and 0,, Unknown To solve for the two unknown variables, r,and 6,,
the terms r,, cosé,, and r,, sinf,, are first isolated on the left-hand side of Egs. (5.187)
and (5.188).

tm €086, =C; —r, cosb, (5.196)

twSing, =C, —r,sing, (5.197)

Equations (5.196) and (5.197) are then squared, added together, and simplified using
Eq. (5.189) to give a quadratic equation in the variable r,. The solution to the resulting

equation is
, _—b+yb —4c

r 2 (5.198)
where

b=-2C,cosb, -2C, sin6,
and
c=Cl+Cj ~r?
The angle 6,, is found by dividing Eq. (5.197) by Eq. (5.196) and solving for 6,

. tqum@+q]
m = an | ———————"
~p COSOP +Cl (5.199)

Equations (5.198) and (5.199) each have two solutions corresponding to the two assembly
modes of this part of the linkage. The proper mode must be specified at the time of the
analysis. This can be done directly or by providing an initial estimate of the position of the
mechanism and determining which solution is closest to that indicated by the initial esti-
mate. In practice, the initial estimate of the position of the mechanism could be provided by
an approximate sketch drawn on a computer screen.

Case 3: r, and r,, Unknown To solve for 7,, Eq. (5.187) is first multiplied by siné,,
and the result is then simplified. Equation (5.188) is then multiplied by cos6,, and the result-
ing equations from the two operations are subtracted. After simplification, the expression
forr,is

p

_ Cysinf,, —C, cosf,,

,
» sin(ﬁ,,l - 9p) (5.200)

After r, is known, Eqs. (5.187) and (5.188) can be solved directly for 7,

_ C;—r,cos6, _ G, —r,siné,

cosf, sinf,,

(5.201)
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Case 4: 6, and 0,, Unknown To solve for 6,,, Egs. (5.192) and (5.193) are squared,
added together, and simplified with the aid of Egs. (5.189)(5.191) to give a quadratic equa-
tion in the variable tan(@,,/2). The resulting solution is

6. =2 tan-! —C, £/C2 —4C,Cs

26,

(5.202)
where

C= rj —C12 —C22 —r,s -2GCr,

C, =4GCyr,,
and

Cs=r; -Cl - C} -r} +2Cyr,
Given 6, an expression for 8, can be found by dividing Eq. (5.193) by Eq. (5.192) and
simplifying,

-1(C2 —, sin6,, J

C, —r, cosb,, (5.203)

Equations (5.202) and (5.203) each have two solutions, corresponding to the two assembly
modes of this part of the linkage. As with case 2, the proper assembly mode must be iden-
tified before the analysis can be conducted.

5.12 CLOSURE EQUATIONS FOR
MECHANISMS WITH HIGHER PAIRS

The closure equation approach can also be used for mechanisms with higher pairs if we use
the centers of curvature of the contact surfaces corresponding to the contact points. This is
exactly the approach employed when equivalent mechanisms are used, and, in fact, we could
represent the higher pair mechanisms by their equivalent lower pair mechanism and deter-
mine the kinematic properties by analyzing the corresponding lower pair mechanism. By
using the centers of curvature, however, we can also approach the problem without using
equivalent mechanisms directly.

The approach using centers of curvature can be applied directly to mechanisms with
cam joints and to mechanisms with rolling joints if the contact points (and the correspond-
ing centers of curvature) are known. With rolling contact, locating the contact point as a
function of the input motion requires that we know the initial contact point when the mech-
anism begins to move. Subsequent contact points are then located by enforcing the con-
straint that there is no slipping at the contacting surfaces. If circle arcs are involved, the
resulting constraint equations are simple; however, if general surfaces are involved, the con-
straint equations require that the arc length on each contacting surface be determined by
integration. For simplicity, we will limit the discussions here to cases in which the contact
point either is known or can be determined simply.

For higher pair mechanisms, the vector closure diagrams are set up using the same
procedure as would be used when the mechanism is drawn. In general, the same points and
vectors will be used. The procedure will be illustrated with three examples.



244  CHAPTER5 ANALYTICAL LINKAGE ANALYSIS

EXAMPLE 5.12
Kinematic
Analysis of

a Mechanism with
Cam Contact

Solution

In the mechanism shown in Fig. 5.52, @, = 10 rad/s CW and is constant. Determine vc,c,, Ve,, dcyic,
and ac, using vector closure equations.

To solve the problem, set up four vectors as shown in Fig. 5.53. The vector r, is from point B to point
A, the center of curvature of link 2 corresponding to the contact point at C. Vector r, is from point 4
to point C, the contact location. The vector r, is constant in both direction and magnitude. Vector r; is
from point B to the face of the cam follower. The direction of r; is constant, but the magnitude varies.
Because r; is measured from a fixed point on the frame (point B) to the face of the cam follower, the
first and second derivatives of r; correspond to the velocity and acceleration, respectively, of the cam
follower. Vector r, is measured from the contact point to a line through B and in the direction of travel
of the cam.
The vector closure equation for the mechanism is

np=rn+rn+rn (5204)
and the corresponding velocity and acceleration expressions are given by

By =h+Hh+F, (5.205)
and

B=F+F+7, (5.206)

Before actually solving the equations, we can summarize the variables that are known and unknown.
These are

n=10in, 6,=0°, 6 =0radss, 6 =0
r=05in, 6,=225°, @, =-10 rad/s, 6,=0
n=1 0,=0°, 6,=0radfs, 6,=0
=7, 6,=90°, 6,=0rads, 6,=0

FIGURE 5.52 Figure for Example 5.12.

FIGURE 5.53 Vector closure for Example 5.12.
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As in the cases of lower pair mechanisms, the position equation must be solved first. The resulting
linear velocity and acceleration equations can then be solved easily. Rewriting the position closure
equation in component form gives

€086, = r, cosf, +r, cosf, +r, cosb,

rysinf, =r,sin6, +r,sinf, +r,sin b,
Simplifying based on the input values, we get

r, =rcos6, +r

0=rsind, +r, (5.207)

Equations (5.207) are linear in the unknowns (r; and r,) and can easily be solved. The results are
r; =1, 0088, +7 =0.5c05(225°) +1.0 = 0.646 in
and
r, =—r,sin @, =0.354 in

To conduct the velocity analysis, rewrite Eq. (5.205) in component form and simplify or differentiate
Egs. (5.207) and simplify. In either case, the results are

Fy = -1, sinb,
¥, = 1,0, cosb, (5.208)

Substituting in the known values, we obtain

#, = ~n6, sin 8, = —0.5(~10)sin(225°) = -3.535 in/s
%, = 1,6, cosf, = —0.5(—-10) cos(225°) =-3.535 infs

The location of both C, and C; is given by rs = r, + r, in Fig. 5.53. Both points momentarily have the
same coordinates. However, the velocities of the corresponding points are different. To determine
the velocities, we must carefully interpret the vectors. The velocity of all points on the follower is the
same. Therefore, the velocity of C; is given by r; if r, remains horizontal. The velocity of C, is given
by the derivative of a vector fixed to link 2 and directed from point B to C. This is #; if we assume s
is fixed to link 2. Then the velocity of C, is given by #s = r, + r,if we assume that both r, and r, are
fixed to (i.e., rotate with) link 2. Then the components of the velocity of C, will be given by

Vo, =K =h+h= (—7‘1('92 sin@, — r,9, sin 6, )t' + (rlt‘;l2 cos 6, + 6, cos 6, )j
The relative velocity is given by
ve,lc, =Vc, ~Vc, = (r3 +18,sin6, +r,6, sin6, )i - (rlé2 cos 8, + 1,6, cos 6, )j
Substituting values for the variables gives
ve,jc, =ve, —ve, =[0}i - [1.0(~10) cos(0°) +0.5(~10) cos(225°)] = 6.464; in/s

For the acceleration analysis, differentiate Eqgs. (5.208) and simplify. Then,

. .
#, = ~r0, sinf, - r,0, cosb,

“ e -2 .
v, =-n0, cos, + rb, sind,

(5.209)
Substituting in the known values gives

% = -nb, sinf, — 1,62 cos 6, = 0—0.5(-10)" cos(225°) =35.35 in/s
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EXAMPLE 5.13
Kinematic
Analysis of a
Mechanism with a
Pin-in-a-Slot Joint

Solution

%, = -1, cos8, +r,63 sin6, = 0+0.5(-10)" sin(225°) = 3535 in/s
Finally, we obtain
ac, =# = +5 =(-rb, sinb, - r, sin6, - n6? cosb, - nd? cos6, )i
+(r,('9'2 cos@, + rzéz cosf, — r]9§ sinf, — r29§ sin 6, )j
= [0 -0-1(-10)" —0.5(-10)° cos(225°)]i + [o +0-0-0.5(-10)’ sin(225°)] i
=[-100+35.35]i + [35.35]j = —64.65i + 35.35

and

ac,jc, = ac, —ac, =[35.35+64.65i- 3535j=100i - 3535 in/s

For the mechanism shown in Fig. 5.54, find @, and a; if 6, = 100° and @, = 50 rad/s CCW and is
constant.

To solve the problem, set up four vectors as shown in Fig. 5.55. The vector r, is from point 4 to D, and
r, is from point A4 to B. The other two vectors involve the center of curvature, C, of the path that point
B, traces on link 3. Vector r; is from point B to C, and r, is from point D to C. Both points D and C are
fixed to link 3; therefore, r, is fixed to link 3. All of the vectors have constant lengths. The unknown

c
/\ 1.375"

3.24"

Pin-in-Slot Joint
0.6"

e 4.0 |

FIGURE 5.54 Mechanism for Example 5.13.

FIGURE 5.55 Vector loop for Example 5.13.



EXAMPLE 5.14
Kinematic
Analysis of a
Mechanism with
Rolling Contact

Solution
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angles are 8, and 6, because 8, is fixed and 8, is the known input angle. The known and unknown
information can be summarized as follows:

r=40in, 6,=180°, 6 =0 rads, 6 =0 rad/s’
rn,=06in, 6,=100°, 6§, =50 radfs, & =0 rad/s>
n=1375in, 6,=2, 6, =2, 6, =2

r,=324in, 6,=2, 6, =2, 6, =7

Based on Fig. 5.55, the vector closure equation for this mechanism is
Ltr=n+rn (5.210)

This equation is exactly the same as that for a four-bar linkage (Eq. 5.24). Therefore, the equations
developed for a four-bar linkage and summarized in Table 5.1 can be applied directly to this example.
The results are

6, =13831°, 6, =-2221 rads, 6, =73.77 radfs’

0, =27.6%°, 8, =6.133 radjs, 6, = —625.98 rad/s’
In the mechanism, vector #, is fixed to link 3. Therefore,

w, =6.133 rad/s CCW
@, =—62598 radfs’ CW

In the mechanism shown in Fig. 5.56, link 2 is turning with a constant angular velocity of 200 rpm
CCW. Determine the angular velocity and acceleration of link 4.

This mechanism involves rolling contact at point E. It is relatively straightforward to determine the
angular quantities associated with link 4 if we locate the vectors for the closure equations using the
centers of curvature of links 2 and 3 corresponding to the contact location E. This approach will not
yield any angular information for link 3, however. In fact, the velocity and acceleration of link 4 are
the same whether there is rolling or slipping at E.

The vector closure diagram is given in Fig. 5.57. The vector r, is from point 4 to D, and r, is from
point 4 to B. The other two vectors involve the center of curvature, C, of the path that point B, traces

3
AB=10" E
BE=07" 16"~y 2.5"
EC=10"
CcD=25" 2
y

FIGURE 5.56 Mechanism for Example 5.14.
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FIGURE 5.57 Vector loop for Example 5.14.

on link 3. Vector r; is from point B to C, the centers of curvature corresponding to E, and Ej, respec-
tively, and r, is from point D to C. Note that the points D and C of interest are those fixed to link 4.
Therefore, r, can be treated as a vector fixed to link 4.

All of the vectors have constant lengths. The unknown angles are 6, and 6, because 6, is fixed and
0, is the known input angle. The angle 6, can be computed from

2.
9, = tan™' 2357380
1.6

The known and unknown information can be summarized as follows:

n=V25 +1.6° =2.968in, 6, =57.38°, 6, =0 radjs, 6, =0

. 2 .
rn =1.01n, 6, =150°, 6, =200(6—:;)= 2094 rad/s, 6, =0
r,=(0.7+1.0)=17 in, 6, =2, 6, =2, b, =2
r=25in, 0, =" 6, =, 6, =2

Based on Fig. 5.57, the vector closure equation for this mechanism is

r +r3=r]+r;,

This equation is again exactly the same as for a four-bar linkage (Eq. 5.24). Therefore, the equations
developed for a four-bar linkage and summarized in Table 5.1 can again be applied directly to this
example. The results are

0,=13831°, 6,=-2221 radfs, 6, =-73.77 rad/s’
6, =27.69°, 6, =6.133 rad/s, 6, =—62598 rad/s’

In the mechanism, vector r, is fixed to link 4. Therefore, @, = 6.133 rad/s CCW and a, = 625.98
rad/s? CW.

5.13 NOTATIONAL DIFFERENCES:
VECTORS AND COMPLEX NUMBERS

Several different notations are in widespread use for analytical solution of planar kinematic
problems. The two principal notations are based on vectors and complex numbers. It is the
purpose of this section to compare these two notations. In principle, they are completely
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equivalent to one another, with every relationship written in one notation directly translat-
able to the other. Nevertheless, some relationships are more easily discerned when using
one in preference to the other. Broadly speaking, the complex number notation tends to be
most compatible with relationships that are most naturally expressed in polar coordinates.
This includes most relationships describing the instantaneous motion state of a rigid body.
These relationships are usually most compactly expressed in complex notation. Vector nota-
tion is, again broadly speaking, most compatible with relationships that are most naturally
expressed in Cartesian coordinates. This is usually true whenever there is no single point
that dominates the geometry of the system. In the opinion of the authors of this book, this
includes the majority of situations to be studied. Also, planar vector notation is fully com-
patible with the corresponding techniques used for three-dimensional representation. There-
fore, if only one notation is to be used, it should be the vector notation. For this reason, this
text is based on the use of vector notation. Of course, advanced students of the subject
should seek proficiency in both types of notation.

In complex number notation, planar vector quantities are represented by identifying
the real and imaginary parts with orthogonal components. Normally, the x component is
represented by the real part and the y component by the imaginary part. That is, the complex
number

z=x+tiy
represents the vector (x, y). An important alternative form for z is

e .
z=re _r(cos0+zsm6) (5.211)

where r is the length of the vector and @ is its direction relative to the x axis. That is

r=\jx2 +y2

0= tan'l(y/x)

It is this form that is effective in expressing polar relationships.
Referring to Fig. 5.58, we can write the basic closure equation for the four-bar link-
age with the vectors a, b, ¢, and d interpreted as complex numbers. Then
b+c=a+d
Using the form of Eq. (5.211), this can be written

and

i0 wo_ id
be” +ce’ =a+de (5.212)

Decomposition of this expression into its real and imaginary parts, respectively, gives

FIGURE 5.58 The real and imaginary axes used
in setting up a complex number solution of the four-
0, O3 bar loop.
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beosO+ccosy=a+dcose
bsinf+csingr =dsing

which are identical to the component equations developed using the vector formulation. The
development of a position solution and of the velocity and acceleration solutions of this
chapter is then identical to that given earlier.

Alternatively, the elimination of one of the variables may be pursued in the complex
variable form. Equation (5.212) may be written in the form

b+c—a=d (5.213)
Now, the conjugates of b, ¢, and d are, respectively,
b= be™, é=ce™, and d=de
Also, the conjugate of @ is a i since & is a real number. The conjugate of Eq. (5.213)
b+é-a=d
is also true since the process of forming the conjugate simply changes the signs on all imag-
inary parts.
Multiplication of each side of Eq. (5.213) by its conjugate gives
(b+c—a)(5+E—&)=dt§
Now, referring to Eq. (5.212), we get

22 =refre™ =2

Also
2+i=re? +re7 = r(cosB +isin 0) + r(cosf) —isin 0) =2rcosé
Hence
bb=b% cé=c?, and dd =d*
Thus, expansion of the foregoing expression gives

bb + c¢ + ad + bé + be — ba ~ ba — cd — éa = dd

or
b2 +c* +a® +bece™ +bePce — abe® — abe™™® — ace™ — ace™ = d?

or
b% +c? +a? +bcel( v) +bce i{o-v) —abe®® —abe™ —ace™ —ace™ =d*

or

b’ +c?+ad’ +2bccos(0—1/1)—2abcosO—2czccos¢ =d?

which is the same as the form derived earlier.
Similarly, multiplying each side of the equation

b-d-a=-c
by its conjugate gives

bb +dd + ai — bd — bd — ba — ba + da + da = c¢
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or

b +d? +a? —bde'®*) —bde ") _ ape -

giving

—bde —abe®® —abe™ +ade™ +ade™ = ¢*
b2 +d*+d* —2bdcos(0—d>)—2abcos() +2ad cos¢ = ¢

which is also the same as the form derived earlier
Equation (5.212) lends itself to development of velocity and acceleration expressions.
Differentiation with respect to time gives

ibbe® +ice™ = idpe'
or, removing the common factor i, we get
bbe” + cire™ = dpe™® (5.214)
Separation into the real and imaginary parts gives, respectively,
b cosh + cyscosy = dd} cos¢
and
bOsin @+ cysiny = ddsine

which may be recognized as the same form as given in Table 5.1.
Differentiation of Eq. (5.214) with respect to time gives

bée® +ibg*e’® +cz,?}ei"' +ic$2ei¢ = dcﬁe"ﬁ + iddﬁzeid’
Expansion of the €’0 terms gives
bé(cos 0 +isin 0) +b6? (i cosf —sin 0) + czl;(cos:[r +isin l[l) + ct/'f2 (i cosy —sin df)
= d(cos +isin ) +de*(icos - sinb)
Hence, separation into the real and imaginary parts gives
b6 cos® —b6? sin 6 + cif cos s — cif? sing = dp cosp — dc[Sz sing
and
bésin§+b§? cosf + cysing + ca/}Z cosy = dt'i; sing + ald}2 cos¢

which can be recognized as the same form as those given in Table 5.1.
The foregoing illustrates the equivalence of the vector and complex number repre-
sentations for simple planar mechanisms.

5.1 For the mechanism shown, do the following:
(a) Write the vector equation of the linkage shown.
(b) Write the x and y displacement equations.

(¢) Find the velocity component equations.

(d) Find the acceleration component equations.
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5.2 In the mechanism in Problem 5.1, determine ¢ analytically 5.8 Use loop equations to determine the velocity and accelet-

for the following values: ation of point B on link 2 when 8 = 30°, w, = 1 rad/s CCW, and
a=lcm, b=4cm 0=60°. 6=10 rad /s a, = 0. Make point 4 the origin of your reference coordinate
’ ’ ’ system.

5.3 In the mechanism shown, s = -10 in/s and s = 0 for the
position corresponding to ¢ = 60°. Find ¢ and ¢ for that position
using the loop-equation approach.

5.9 In the mechanism shown, 6 = 30°, @, = 1 rad/s CCW, and
a; = 0. Use loop equations to determine the velocity and accel-
eration of point B on link 4.

5.4 Inthe mechanism in Problem 5.3 assume that d> is 10 rad/s
CCW. Use the loop-equation approach to determine the velocity
of point B, for the position defined by ¢ = 60°.

5.5 In the mechanism given, point 4 is moving to the right
with a velocity of 10 cm/s. Use the loop-equation approach to
determine the angular velocity of link 3. Link 3 is 10 cm long,
and ¢ is 120° in the position shown.

Y

3in !

5.10 In the mechanism for Problem 5.9, assume that Vg, is a
constant 10 in/s to the left and 8 is 45°. Use loop equations to
determine the angular velocity and acceleration of link 3.

5.11 For the mechanism in the position shown, link 2 is the

driver and rotates with a constant angular velocity of 100 rad/s

CCW. Write vector loop equations for position, velocity, and

5.6 Re-solve Problem 5.5 if ¢ is 150°. aC?ceITrati(‘)‘n, and solve for the velocity and acceleration of point
on link 4.

5.7 The mechanism shown is a marine steering gear called
Rapson’s slide. 4B is the tiller, and CD is the actuating rod.
If the velocity of rod CD is a constant 10 in/min to the right, and
6 =300°, use the loop-equation approach to determine the angu-
lar acceleration of the tiller.

AB=09", AD=1.7", BC=26", h=08", 8, =6, ¢ = 120°
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5.12 For the mechanism in the position shown, link 2 is the driver ~ 5.16  In the simple, two-link mechanism given, Vg, is 10 in/s to
and rotates with a constant angular velocity of 50 rad/s CCW. the right. Use the loop-equation approach to determine v,, and
Write vector loop equations for position, velocity, and accelera- ;.
tion, and solve for the velocity and acceleration of point C on

link 3.

AB=10"

g 517 In the mechanism shown, the angular velocity of link 2 is
h=08" 100 rad/s CCW and the dimensions of various links are given.
4AB=18" Use loop equations to find the position and velocity of point D
on link 3 when 6, is 90°.
5.13 In the mechanism shown, link 3 slides on link 2, and link 4
is pinned to link 3 and slides on the frame. If @, = 10 rad/s CCW B ’jﬁ = 12 .25 in
=ZoIn

(constant), use loop equations to find the acceleration of link 4
for the position defined by ¢ = 90°.

BD=5in

5.18 In the Scotch yoke mechanism shown, @, = 10 rad’s, a,
= 100 rad/s?, and 8, = 60°. Also, length O4 = 20 in. Determine
Va, anda ” using loop equations.

?A

5.14 For the mechanism in the position shown, the cam (link 2)

rotates with an angular velocity of 200 rad/s. Write the vector L.
loop equations for position, velocity, and acceleration, and deter- ; ——4 )
mine the angular velocity and acceleration of the follower (link 3). B 773

Use ¢ = 60° and neglect the follower thickness (i.e., assume that

it is zero). L

5.19 Use loop equations to determine the velocity and acceler-
ation of point B on link 4. The angular velocity of link 2 is con-
stant at 10 rad/s CCW.

5.15 Inthe mechanism shown, link 3 is perpendicular to link 2.
Write the vector loop equations for position and velocity. If the
angular velocity of link 2 is 100 rad/s CCW, use the vector loop
equations to solve for the velocity of point C, for the position
corresponding to ¢ = 60°.
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5.20 The oscillating fan shown is to be analyzed as a double-
rocker. The fan is link 2, the motor shaft is connected to link 3, and
link 4 is connected from the coupler to the frame. The actual input
of the mechanism is the coupler, and %e, is a constant 956 (rad/s)
in the counterclockwise direction. Compute the angular velocity
and angular acceleration of link 2 if 8 = 120°, 4D = 0.75 in,
AB=DC=3.0in,and BC=0.50 in.

5.21 The rear suspension of a motorcycle can be analyzed as an
inverted slider-crank mechanism. The frame of the motorcycle is
link 1, and the tire assembly is attached to link 2 at point C. The
shock absorber comprises links 3 and 4. As the motorcycle goes
over a bump in the position shown, the angular velocity of link 2
relative to the frame, @,, is 5 rad/s CW, and the angular accelera-
tion, a,, is 45 rad/s’ CW. Compute the angular velocity and angu-
lar acceleration of link 3 for the position defined by 6 = 187°.

(-9.262", 10.728"
. A




522 The door-closing linkage shown is to be analyzed as a
slider-crank linkage. Link 2 is the door, and links 3 and 4 are the
two links of the door closer. Assume that the angular velocity of
the door (link 2) is a constant at 3.71 rad/s CW. Compute the
angular velocity and angular acceleration of link 4 if the dimen-
sions are as follows:

Coordinates of D (—2.5", —
AB=17.0"

3.0)
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5.23 The general action of a person who is doing pushups can
be modeled as a four-bar linkage as shown. The floor is the base
link, and link 4 comprises the back and legs. Link 2 is the fore-
arm, and link 3 is the upper arm. For the purposes of analysis,
the motion that is controlled is the motion of link 3 relative to
link 2 (elbow joint). Assume that e, is a constant 6.0 rad/s CCW.
Compute the angular velocity and angular acceleration of link 4
if link 2 is oriented at 45° to the horizontal.
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5.24 A carousel mechanism can be modeled as an inverted
slider-crank mechanism as shown. Point D is the location of the
saddle on the horse. Assume that the angular velocity of the
driver (link 2) is a constant 2 rad/s CCW. Compute the velocity
and acceleration of D; in the position shown if 4B = 8.0 in, BC
=96.0 in, and BD = 54 in.

-

\c

5.25 The shock-absorber mechanism on a mountain bicycle is
a four-bar linkage as shown. The frame of the bike is link 1, the
fork and tire assembly comprise link 3, and the connecting link-
age comprises links 2 and 4. As the bicycle goes over a bump in
the position shown, the angular velocity of link 2 relative to the
frame, @,, is 205 rad/s CW, and the angular acceleration, ;. is
60 rad/s” CW. Compute the angular velocity and angular accel-
eration of link 3 for the position shown.




6.1 INTRODUCTION

The machine designer is often called upon to provide a means of generating an irregular
motion. For our purposes, an irregular motion can be regarded as anything except either
uniform rotation about a fixed axis or uniform rectilinear translation. There are two means
of generating irregular motions by one-degree-of-freedom mechanisms: cams and linkages.
As irregular motion generators, they each have advantages and disadvantages. In general,
cams are easily designed but are relatively difficult, and therefore expensive, to manufac-
ture. They are also relatively unreliable owing to wear problems. Linkages are difficult to
design but are inexpensive to manufacture and relatively reliable. The subject of this chap-
ter is linkage design.

One naturally attempts to use the simplest mechanism capable of performing the
desired function. For this reason, four-link mechanisms are by far the most widely used. The
techniques used for the design of five- and six-bar mechanisms are basically extensions of
those used for four-link mechanisms. Thus, the primary emphasis of this chapter will be on
four-link mechanism synthesis.

The joints most commonly used in mechanisms are those in which the joint con-
straints are provided by two surfaces in contact, which, ideally, occurs over an area. This is
as opposed to point or line contact as is used in cams and gears. Surface contact is desirable
from the point of view of lubrication and wear resistance. The only surface contact, or lower
pair, joints that are available for use in planar mechanisms are hinges and prismatic slides.
There are, therefore, four possible basic types of four-link mechanisms with surface contact
joints.

1. The four-bar linkage. In this linkage, all four joints are hinges as shown in Fig. 6.1. This
is by far the most widely used linkage for irregular motion generation.

2. The slider-crank (and its inversions). The slider-crank chain is shown schematically in
Fig. 6.2. Linkages based on this chain are very commonly used to convert linear to rotary
motion and vice versa. It is little used when neither a linear input nor a linear output is
needed.

3. The elliptic trammel (and its inversions). The chain for the elliptic trammel is shown
in Fig. 6.3. Except for the Scotch yoke and Oldham inversions, the elliptic trammel is

FIGURE 6.1 The four revolute four-bar linkage. This is one of four basic planar
single-loop linkages. It is the most commonly used mechanism for generating irregular
motions.
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FIGURE 6.2 The slider-crank linkage is obtained by replacing one revo-
lute joint in a four-bar linkage with a prismatic joint. When inverted onto
the crank, or the coupler, so that the slide rotates, the linkage becomes a
turning block linkage.

FIGURE 6.3 Elliptic trammel linkage. The paths of all points in the
coupler are ellipses. When inverted onto one of the revolute-prismatic
members, this becomes a Scotch yoke linkage. The Scotch yoke is some-
times used as a harmonic motion generator. The other possible inversion,
onto the coupler, is used in practice as the Oldham coupling. This is a
simple mechanism for accommodating misalignment between shafts.

little used because of slip—stick friction problems in the two slides. Analysis equations
for two inversions of this linkage are given in Sections 5.9 and 5.10.

b

The Rapson slide. A schematic diagram of the chain for the Rapson slide is shown in
Fig. 6.4. There are two sliders that must be carefully designed if mechanisms based on
the chain are to work properly. In practice, the Rapson slide is used much less frequently
than the four-bar linkage or slider-crank because neither rotary joint can be made to
rotate 360°0 and because of slip—stick friction in the two slides. The analysis equations
for one inversion of this mechanism are given in Section 5.7.

The majority of the techniques discussed in this book are intended for four-bar link-
age synthesis. This is primarily because of the large number of dimensions that can be
varied, allowing more flexibility in design. Unfortunately, it also results in more compli-
cated design techniques. When the techniques are applied to linkages having one or more
slider joints, the results are somewhat simpler.

It is very rare for the desired motion to be exactly producible by a four-bar linkage.
Thus, we can typically only approximate the desired motion. One approach is to select a
number of positions (precision points) along the desired path and compel the linkage to
move exactly through those positions. Using this method, one has no direct control over the
behavior of the linkage between the design positions. One works in the (sometimes pious)
hope that the linkage movement will not deviate too far from that desired between the
design positions. It is, in fact, remarkable how accurate this method can be in favorable cir-
cumstances. It is possible to design a four-bar linkage for which the path of a point on the
coupler deviates no more than ﬁ of an inch from a straight line over a 10-in line length in
this way.

The types of problems most usually tackled using the precision position approach
permit a graphical solution. This is straightforward for problems with two and three design
positions but becomes complex and laborious for four or five design positions. Most preci-
sion position problems do not admit more than five design positions. Computer packages,

FIGURE 6.4 The Rapson slide linkage. Its inversions are also Rapson
slide linkages.
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such as KINSYN,! RECSYN,? and LINCAGES,? have been developed to automate the
solution of precision position problems. Graphical techniques that are useful for small num-
bers of design positions will be described in this chapter. They form a basis for understand-
ing the techniques of computer-aided synthesis required for more demanding problems.

The second basic approach is to select a rather large number of design positions and,
instead of requiring the mechanism to pass through them exactly, minimize the sum of the
squares of the deviations of the mechanism position from those positions. Thus, the linkage
motion approaches the design positions but does not exactly pass through any of them. This
method makes use of numerical optimization techniques to produce solution linkages. Con-
sequently, the use of a computer is essential. Used directly, this type of approach requires
the user to manipulate the mathematical constraints to obtain control over the type and
properties of the solution linkage. Some packages, such as the automatic synthesis module
of RECSYN, attempt to provide that control in a user-friendly form.

In a given problem, either of these approaches may yield good results. The choice is
most often decided by the techniques with which the designer is most familiar and by what
aids, such as synthesis programs, he or she has available.

The range of synthesis problems that arise is infinite. We will restrict our study to a
few classes of problems that, because of a combination of practical importance and a well-
developed theory, are most usually treated. They are as follows:

1. The double-rocker problem. This is one of the simplest linkage design problems. The
problem is to design a four-bar linkage that will move its output link through an angle ¢
while the input link moves through an angle 6.

2. The motion generation problem. A linkage is to be synthesized whose coupler, as a
whole, is to follow a desired trajectory. That is, the movement of the coupler as a whole
is specified, not just that of a point or line lying on it.

3. The function generation problem. In this case the angles of the two cranks are to be
coordinated. The name “function generation” originated in the days in which mechani-
cal analog computers were used to perform complex mathematical calculations in such
devices as naval gunsights. Linkages were used to generate angular relationships approx-
imating logarithms, trigonometric functions, and so forth.

4. The rocker amplitude problem. In the rocker amplitude problem, the output link is to
oscillate through a specified angular amplitude. Typically, the required linkage is a
crank-rocker with continuously rotating driving crank. An oscillatory output motion of
specified amplitude is required.

5. The point path problem. A single point on the coupler is to follow a nominated curve.
In this form the problem does not admit a direct graphical solution. However, this class
of problem is important from a practical point of view, and design methods will be pre-
sented. These are trial-and-error techniques starting with selection of an approximate
coupler point path from an atlas of coupler curves or from curves generated with a com-
puter program. Simple computer programs can be important aids in the trial-and-error
process.

A modified type of point path problem in which the progression of the coupler point
between design positions is coordinated with the corresponding angular displacements of
the driving crank does permit direct graphical solution. This is referred to as the path—angle
problem type. The techniques required for solution of this type of problem are beyond the
scope of this book. KINSYN, RECSYN, and LINCAGES do provide the capability for its
solution.
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6.2 TWO-POSITION DOUBLE-ROCKER DESIGN

A common problem in kinematics is the design of a double-lever or double-rocker mecha-
nism. The design situation is shown in Fig. 6.5a. The problem is to design a four-bar link-
age such that the output link will rotate through an angle ¢ when the input link rotates
through an angle 6. For the problem we will consider here, the distance between the fixed
pivots O, and O, is given as is the length of the output link O,B. To complete the design, we
must determine the length of the input link 0,4 and of the coupler 4B.

6.2.1 Graphical Solution Procedure

The basis for solving the problem is to invert the mechanism and visualize the motion of the
mechanism when the observer is fixed to the input link. This apparent motion is shown in
Fig. 6.5b. As observed from the ground or link 1, points 4 and B appear to move from posi-
tion 1 to position 2 through their respective angles, 8 and ¢. However, if link 2 is the refer-
ence, then link 2 appears not to move and the other links, including the frame, appear to
move relative to link 2 in the direction of 6. In a given position, the relative geometry is the
same regardless of which link is the reference link. Therefore, the quadrilateral 0,4,B,0, is
the same whether link 1 is the reference or link 2 is the reference. To show the apparent
position of the links relative to link 2, we need only rotate the quadrilateral 0,4,B8,0,
through an angle of -6 about pivot O,. When this is done, note that lines 0,0, and O,B, are
both rotated by the angle —6. This observation is the basis for the design procedure given in
the following.

The design procedure is illustrated in Fig. 6.6. We begin knowing the distance
between the frame pivots O, and O, and the length of the output link, O,B. First draw the
line O,B, and rotate it by —§ about the pivot O,. This will locate B’,, which is where B,
would appear to be if the observer were on link 2. Relative to the input link in position 1, B
appears to rotate on a circular arc about 4, as B travels from B, to B’,. Therefore, 4, must
lie on the perpendicular bisector of the line segment B,B’,. Also, 4, will lie on the desig-
nated line through O, shown in Fig. 6.6a.

Once 4, is determined, the lengths of the input rocker and of the coupler will be
known. The input rocker length is 0,4, and the coupler length is 4,B, (or 4,B',).

Note that the solution to this problem makes use of inversion. We will use this con-
cept of inversion again when we consider the design of linkages for motion generation or
rigid-body guidance.

FIGURE 6.5 Two positions of the rockers of a four-bar linkage. (a) shows the positions relative to the
frame, and (b) shows the positions relative to the input rocker.
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(©)

FIGURE 6.6 Locating point 4,, which in turn determines the length of the coupler and the input rocker.

6.2.2 Analytical Solution Procedure

The double-rocker problem can be solved analytically so that the design procedure can be
easily programmed. To begin, locate the origin of the coordinate system at O, and orient the
x axis through O, as shown in Fig. 6.7. Note that in Fig. 6.7, we have assumed that the direc-
tion of rotation is counterclockwise. This will allow us to use the standard positive sign con-
vention for angles that was employed in Chapter 5. Using the variables represented in
Fig. 6.7, we can compute the (x, y) coordinates of B, and B,.

For B,,
Xp =N trC08h,
Y, = rssing, 6.1)
To simplify the resulting expression, let
6,=6,+6
b, =¢+¢

FIGURE 6.7 Parameters for analytical solution procedure.
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Then for B,,
Xp, =H + 1,008,

VB, =rsing, (6.2)
Similarly, the coordinates of 4, and 4, can be written in terms of the input crank r,. For 4,
X 4 = 1,086,
Y4, = nsing, (6.3)
and for 4,,
x4, =ryc086,
Y4, = hsing, (6.4)

The distance between 4 and B is a constant (7;) for all positions of 4 and B. Therefore, we
can write

A R DY Y 65

or

2

("Al —Xp, )2 +(yA1 — Vs, )2 :(v",q2 _XBZ) ‘*(J’A2 — Y3, )2

Substituting values for the x’s and y’s in Egs. (6.1-6.5), we get
2 . . 2
(rz cost —n~ry cosqSl) + (rz sinf, —r, smcf)l)
2 2
= (r2 cosl, —n—r, cos¢2) +(r2 sinf, —r, sin¢2)
Expanding and simplifying using sin? 8 + cos? 6 = 1, we get

—n¥, oS8 — ryr, cosB, cOs P, + rir, COSP, —r,F, Sinf, sin
2 1~ 1 1 TN |~ 1 1

= —hF, co88, — 1,1, c0s, cos, +rr, cosd, — ryr,sind, sing,

In this equation, the only unknown is ,. The equation is linear in the unknown and can be
easily solved for r,. Collecting terms, we obtain

Fi¥y COSy — K1y COSh
= rz[—r1 cost)— r, cos 6 cosy — rysinf; sing, + 1, cos6,+ r, cos B, cosp, + 4 sinb, sind;z]
Then using the identity cos (a + b) = cos a cos b — sin a sin b, and solving for , we get
rlr4[cos b, - cosd),]
—r4[cos(01 -, )] +H [cos 0, —cos6, ] + r4[cos(02 -, )]

Knowing ,, we can compute r; from Eq. (6.5); that is,

2 . . 2
n= J(rz cosby—n—r, cosd)l) +(r2 sin@, —r, smcf)l)

2 . . 2
= \/(rz costy —n—ry cos¢>2) +(r2 sinf, —r, smqb2)
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6.3 MOTION GENERATION

6.3.1 Introduction

Figure 6.8 shows the path of a moving lamina as described by the paths of three points
embedded in it: 4, B, and C. That is, 4, is the first position of point 4, A4, is its second posi-
tion, and 43 is its third position, and similarly for points B and C. We will use this notation
extensively in the following. As viewed in the moving lamina, there is only one point, 4. As
seen from the fixed reference frame, this point assumes three different positions, 4,, 4,, and
A3, as the moving lamina moves through the three positions shown.

Actually, only the path of one point and the changes in the orientation of a line drawn
on the lamina are needed to describe its motion. To synthesize a four-bar linkage whose
coupler will approximate the given motion, we choose a number of positions on the trajec-
tory, such as 4,8,C}, 4,8,C,, and 4;B;C;, as design positions. This is shown in Fig. 6.8. The
coupler will be made to pass through these positions precisely. Depending on the degree of
accuracy required, a larger or smaller number of design positions should be chosen. Syn-
thesis of the linkage is easier and the flexibility available to the designer is greater if fewer
positions are used. Five is the upper limit to the number of design positions that can be used.

Geometrically, a crank has the effect of constraining the center of its moving pivot to
move on a circle. The fixed pivot is at the center of that circle and is sometimes called a
center point. Consequently, the problem of synthesizing a four-bar linkage to move its cou-
pler through the design positions is basically the problem of locating two points in the
moving lamina. Successive positions of each point all lie on the same circle. These points
are sometimes called circle points. These points are taken as the locations of the moving
pivots of the two cranks. The centers of the two circles on which their successive positions
lie become the fixed pivots of the cranks.

6.3.2 Two Positions

Because an infinite number of circles can be drawn through any two points, any point in the
moving lamina can be chosen as a moving pivot when two positions are of interest. In the
example shown in Fig. 6.9, the two positions of the lamina are defined relative to the fixed
frame by the line segments 4,B, and 4,B,, which are two positions of the line segment 4B

B, C,

FIGURE 6.8 Motion of a lamina along a continuous trajectory. Each point in the lamina moves along a
continuous curve. The triangle 4BC drawn on the lamina is shown in three different positions along the tra-
jectory: 4,B,C,, 4,8,C,, and 4;B,C;.
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FIGURE 6.9 Construction of a four-bar linkage that moves its coupler plane through the positions 4,B,
and 4,B,.

drawn on the moving lamina. Since any point in the lamina can be a moving pivot or circle
point, we might as well choose 4 and B. In each case, we then have an infinite number of
points that can be the fixed pivots or center points, namely all points on the perpendicular
bisector of 4,4, for the fixed pivot corresponding to 4 and all points on the perpendicular
bisector of BB, for the fixed pivot corresponding to B.

The perpendicular bisector of 4,4, can be constructed by setting any convenient
radius on a pair of compasses and drawing two arcs. The first arc is centered on A4,, and the
second is centered on 4,. The perpendicular bisector is the line drawn through the two inter-
sections of these two arcs. In practice, only small portions of the two arcs are drawn in the
neighborhoods in which the intersections are expected, as shown in Fig. 6.9. This operation
of constructing a perpendicular bisector will be used extensively in the following.

The four-bar linkage that results from this construction is, in its first position,
A*A,B,B*. The base link is 4*B*. The coupler is 4,B,. That is, in this case, the coupler is
simply the line segment used to define the positions of the moving lamina. This need not
be so.

Any point in the moving lamina, not just 4 or B, can be chosen as a moving pivot.
This is shown in Fig. 6.10, in which point C is chosen as the second moving pivot, rather
than point B. The first step, in this case, is to locate the two positions C; and C, of this point.
The convention for showing points on the moving plane that is used almost universally in
the literature, and that is followed here, is that the moving lamina is drawn in its first posi-
tion. Therefore, point C drawn on the moving lamina is identical to point C,. To locate point
C,, we note that ABC is a triangle drawn on the rigid, moving lamina. It does not change
shape, regardless of the motion. Therefore triangle 4,B,C,; is congruent to triangle 4,8,C;.
Consequently, C, can be located by completing triangle 4,B,C,.

In practice, this is accomplished by setting radius 4,C, on a pair of compasses and
drawing an arc with center 4,. The compasses are then set to radius B,C,, and an arc is
drawn with center B,. The intersection of the two arcs is point C,. It is important to note that
there are actually two possible intersections of these two arcs. One gives triangle 4,8,C,
congruent to triangle 4,B,C, but the other gives the mirror image of that triangle. This
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FIGURE 6.10 Solution of the same two-position problem shown in Fig. 6.9 with a different point: C,
chosen as the second moving pivot.

second possibility will give incorrect results. Care is necessary to ensure that the correct
intersection is used. In some cases, the correct solution is not obvious. A simple check is to
count off the vertices 4,, B,, C, when proceeding in a counterclockwise direction around
the triangle. Counting off 4,, B,, C,, when proceeding around the triangle in its second posi-
tion in the same direction, should give the same order. If the order is 4,C,B,, the triangle is
the mirror image, and the solution is incorrect.

The problem can now be solved in exactly the same manner as it was before, except
that C, and C, are used instead of B, and B,. That is, the perpendicular bisector of 4,4, is
constructed, and any point 4 * is selected on that perpendicular bisector to be the fixed pivot
corresponding to the moving pivot 4. The perpendicular bisector of C,C, is then con-
structed, and any point C* on that bisector is chosen to be the fixed pivot corresponding to
the moving pivot C. The resulting four-bar linkage is, in its first position, 4*4,C,C*. In its
second position it is 4¥*4,C,C*.

Actually, for two positions, it is possible to locate a unique point such that the moving
lamina can be attached to a single, fixed pivot at that point and will rotate through the two
design positions. This is shown in Fig. 6.11. This point, P,,, is called the displacement pole
for the two positions. One position can be reached from the other by means of a pure rota-
tion about the pole.

The construction for locating the pole is as shown in Fig. 6.11. Since P, lies on the
perpendicular bisector of 4,4,, it is equidistant from 4, and 4,. Similarly, it is equidistant
from B, and B,. Thus position 2 can be reached from position 1 by a pure rotation about P, .
Note that we can use the two positions of any two points on the moving body to locate the
pole. For example, we could also have used points 4 and C or C and B.

If more than two positions are involved, as is the case in the next section, there will be
a rotation pole for every two positions. For example, for three positions, there will be three
poles P, Py3, and P;. In each case, the poles will be located using the procedure shown in
Fig. 6.11.
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FIGURE 6.11 Location of the pole, P),, of displacement of the moving lamina from position 1 to position 2.
Py, is located at the intersection of the perpendicular bisectors of 4,4, and B, B,. The moving lamina can be
displaced from position 1 to position 2 by a pure rotation about P,,.

6.3.3 Three Positions with Selected Moving Pivots

Because a circle can be drawn through any three points, any point on the moving lamina
can be a moving pivot. The corresponding fixed pivot is at the center of the circle on which
the three positions of the point lie. Taking 4 as one moving pivot, the corresponding fixed
pivot 4* is located at the center of the circle upon which 4,, 4,, and 45, the three positions
of point 4, lie. Notice that 4,, 4,, and 4, represent the three positions of a single point, A,
in the moving plane. They are the positions of that point as seen from the fixed plane. The
positions of points and lines in the moving plane are, by convention, drawn on the first
position of the moving plane. Thus, points 4 and 4, can be regarded as being identical, as
can B and B,.

The center of the circle, 4*, can be found at the intersection of the perpendicular
bisectors of 4,4, and A,4;. Similarly, B* is located at the center of the circle on which B,
B,, and B; lie. That is, B* is at the intersection of the perpendicular bisectors of B,B, and
B,B;. The solution linkage is then the four-bar 4*4,B,B* as shown in position 1. This con-
struction is shown in Fig. 6.12.

As pointed out in the two-position case, it is not necessary for 4 and B to be chosen
as the moving pivots. If a third point, C (= C)), is chosen as a moving pivot, its second and
third positions may be found by constructing triangles 4,B,C, and 4,B,C; congruent to tri-
angle 4,B,C,. Figure 6.13 shows the synthesis of a four-bar linkage that moves its coupler
through the three positions in Fig. 6.12. The points C and D that do not lie on the line 4B
are chosen as the moving pivots. Points C, and C; are located by constructing congruent tri-
angles. Likewise, points D, and D; are located by constructing triangles 4,B,D, and 48,D;
congruent to triangle 4,B,D,. Notice that, although we represent the moving lamina by
means of the line segment 4B, the moving lamina is a plane, not a line, and we are at liberty
to draw points and lines on it that do not lie on 4B.

6.3.4 Synthesis of a Crank with Chosen Fixed Pivots

The procedure just given allows us to synthesize a crank with any chosen moving pivot. If
we wish to choose the fixed pivot rather than the moving pivot, the linkage must be inverted
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By

FIGURE 6.12 Synthesis of a four-bar linkage that moves its coupler plane through three nominated posi-
tions. The line segment AB defines the three positions of the moving plane. The points 4 and B are also
chosen as the moving pivots of the two cranks. A* and B* are the fixed pivots of those cranks.

FIGURE 6.13 The same problem as that of Fig. 6.12 solved with points C and D selected as moving
pivots, rather than 4 and B. Triangles 4,B,D, and 4,B,D; are congruent to 4;B8,D,. The solution linkage,
shown in its first position, is C*C,D\D*.

with the coupler becoming the reference frame. When this is done, the chosen fixed pivot is
observed to move through three apparent positions as seen by the observer on the coupler.
The resulting construction is shown in Fig. 6.14.

The three positions assumed by the chosen fixed pivot C* relative to the moving
lamina are plotted on the first position of that lamina. The apparent position of C* when the
lamina is in the first position is then its true position. Its apparent positions C*, and C*,
when the lamina is in its second and third positions are obtained by constructing triangle
A,B,C*, congruent to 4,B,C* and triangle 4,B,C*; congruent to triangle 4,B8,C*. The loca-
tion, C; of the moving pivot in the first position is obtained as the center of the circle on
which C*, C*,, and C*; lie. This defines the crank C*C, in its first position. If needed, the
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second and third positions (C,, C;) of the moving pivot can be located by constructing tri-
angle 4,B,C, congruent to triangle 4,B8,C, and triangle 4,B8,C, congruent to triangle
4,8,C;,

This technique gives, of course, only one crank. If both cranks are to have nominated
fixed pivots, the construction must be repeated for the second crank. If the moving pivot of
the second crank is to be chosen, then the earlier construction is used.

6.3.5 Design of Slider Cranks and Elliptic Trammels

To design a linkage that has a slider moving on a straight line, we must find a coupler point
that has three positions on a straight line. This is shown in Fig. 6.15. The points having three
points on a straight line are those special circle points that move on a circle of infinite
radius. Therefore, the points satisfying this condition are a select set of points. The proce-
dure for finding these special points is described in the following:

1. Locate the poles Py,, Py3, and P,; for positions 1 and 2, 1 and 3, and 2 and 3, respectively.

2. Locate the point P’,; called an image pole by making triangle P,,P,;P’,; the mirror
image of triangle P,,P;;P,; about the line through poles P,, and P, ;. The image pole P',-j-
is the point in the coupler about which the frame appears to pivot as the coupler moves
from position i to position j. Poles P, and P,; are both poles and image poles.

3. Locate the center of the circle circumscribing the image pole triangle P,P;P’,; by
drawing the perpendicular bisectors of P,,P,; and P3P’ ,; or P\,P’5;.

4. Draw the circle through P),, P\;, and P’ ;. This circle is fixed to the coupler and is called
the circle of sliders. Any point on this circle has all three of its positions collinear. Hence,
any point on this circle can be used as the moving pivot of a slider-hinge link.

5. Select a point on the circle of sliders and construct the three positions of that point (the
moving pivot). These three positions will be collinear. The slide direction is parallel to
the line on which all three positions lie. Actually, in this construction, one needs to con-
struct only two of the three positions since any two positions will determine the slider
line. Three positions of the coupler triangle (4BC) are shown in Fig. 6.16. Note that the
three triangles 4,B,C,, 4,B,C,, and 4,B,C; are congruent.

FIGURE 6.14 Synthesis of a crank with a selected fixed pivot C*. C* and C * are, respectively, the second
and third positions of point C* as seen from the moving lamina. C, is the center of the circle passing through
C*, C%, and C*. After the crank C*C, has been synthesized, the linkage may be completed by designing a
second crank by any method. The dashed crank is the result of choosing B, as the moving pivot of the second



6.3 MOTION GENERATION 269

Moving pivot traces

/ a straight line.

FIGURE 6.15 Geometric effect of replacing the fixed revolute
of a crank by a prismatic joint.

Path of slider point C 4, B,

Circle of Sliders

FIGURE 6.16 Construction of slider link and slider line. The three design positions are 4,5,, 4,B,, and
A3Bs. The slider point, C}, is chosen from the circle that passes through the points P,,, P,3, and P,,". C, and
C; are the second and third positions of the slider point. c is the line in the direction of sliding.

That this construction will give slider points can be proved as follows (also, see
Hall%):

1. The angle subtended at the pole P,; by any crank is 6,,/2, where 8, is the rotation of the
moving plane between positions 1 and i. This is shown in Fig. 6.17. This follows because
the circle point, X, being a point in the moving plane, rotates through angle ,; about P,
in moving from position 1 to position i. Since P,; X* is common for both positions, and
X*X;=X*X,, and P\ X, = P, X, it follows that triangle P, X*X is the mirror image of
P, X*X,. Therefore, L X\ P, X* = L X*P;X;=0,,/2.

2. A slider-hinge link can be thought of as a crank with its center point at infinity. If we
draw a line from P,; toward the center point at infinity, that line will be perpendicular to
the slider line. From the result in item 1, the angle at the pole P,;between the line join-
ing Py;to the circle point and a line normal to the slide is 6,/2. Thus, given the direction
c of the slide, the circle point C; whose three positions lie on a line parallel to ¢ is located
by drawing normals from ¢ to P}, and P,; as shown in Fig. 6.18, and constructing lines
at angles 6,,/2 and 6,5/2, respectively, to those normals. These lines intersect at the
required point C; as shown in Fig. 6.18. The angle P,C\P,; is (8,3/2—0,,/2).
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FIGURE 6.17 Relationship of angle subtended by a crank at a
pole to the angular displacement about that pole.

3. The three poles, Py, P,;, and P, form a triangle called a pole triangle as shown in
Fig. 6.19. From Fig. 6.18, the angle P,,C\P; is (6,3/2 — 6,,/2); and from the pole trian-
gle, (8,3/2 — 6,,/2) = 0,3/2 (since the exterior angle of a triangle is equal to the sum of the
opposite interior angles). Hence, the angle P,,C,P,; is equal to 6,;/2 regardless of the
direction of ¢, making the angle P,,C,P,, independent of the direction of ¢, and the locus
of all points having three positions collinear is the locus of all points C, forming the
angle (P,,C\P,3)/2. This is a circle passing through poles P,, and P,; with the central
angle subtended by P),P,; equal to ,;. The image pole, P’,;, also lies on this circle
because it rotates with the body to P,; through the angle 8,5 about P,;. Thus, the angle
Py,P' 3Py is 0,3/2. Hence, the required circle is the circle that circumscribes Pj,P)3P’ ;.

6.3.6 Order Problem and Change of Branch

Note that the preceding techniques really only guarantee that the mechanism can be assem-
bled in the design positions; they do not guarantee that the mechanism will function cor-
rectly between different design positions. It is confusing, but it is quite possible for the
simple graphical procedures developed here to produce spurious solutions. These are solu-
tions that do not physically pass through the design positions or pass through the design
positions in the wrong order. Thus, two problems can occur that may make the design
unacceptable.

The first problem arises because there are two possible assembly modes for a four-bar
linkage of given link lengths corresponding to a given value of the driving-crank angle.
These are termed “assembly configurations” or “solution branches.” If the solution linkage
for a motion generation problem is such that some of the design positions lie on one assem-
bly configuration and others on the other assembly configuration, it may not be possible to
move the linkage through all design positions without physically disconnecting it and
reassembling it in the other assembly configuration. Fortunately, there is a simple graphical
test to identify this problem.
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L] 8,52
6,52 \ G
0,5/2-0,,12
Pl}

)
FIGURE 6.18 Relationship of sliding
» direction ¢ and slider point C, to the poles Py,
12 and P,;.

Py FIGURE 6.19 Angular relationships of pole tri-
angle and image pole triangle. The triangles are
mirror images of each other.

To detect whether a mechanism must change branches to pass through all of the posi-
tions, it is necessary only to assemble the mechanism in one position and determine whether
it can be moved through the other two positions. This can be done conveniently if the link-
age can be animated on a computer screen. If one position is missed, then a change of
branch is indicated.

Another way to determine whether a change of branch is indicated is to examine the
angle ¢ between the coupler and the output link. Because an extreme position of the driving
joint corresponds to the angle  passing through an angle of either 0 or 7, the key to deter-
mining the branch change is the sign of that angle. A convenient method is to construct the
cranks and coupler in all design positions and inspect the angle ¢ between the driven crank
(the longer of the two cranks) and the coupler. A change in direction of this angle indicates
a change of branch in a crank-rocker or drag-link type of mechanism and a drive failure in
a double-rocker type of linkage. In either case, the solution linkage is not usable. An exam-
ple of this condition is shown in Fig. 6.20. There the direction of the angle D*D,C, is oppo-
site to that of angles D*D,C, and D*D,C;. Hence the linkage passes through a position in
which the driving joint C* is at a motion limit.
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EXAMPLE 6.1
Position Synthesis
of a Four-Bar
Linkage

Solution

FIGURE 6.20 An example in which the solution
linkage is incapable of moving through the design
positions without being disconnected and reassem-
bled. The solution linkage is shown in all three
design positions as C*C,D,D*, C*C,D,D*, and
C*C3D,D*, respectively. The angles between the
driven (longer) crank and the coupler are examined
in all three positions. These are the angles D*D,C, =
¥, D*D,C, = ys,, and D*D,C; = s, respectively. ¢,
is counterclockwise, and ¢, and ¢, are clockwise.
Thus the angle ¢ changes sign, indicating a change
of branch in the solution.

Design a four-bar linkage whose coupler moves through the three positions indicated by the line seg-
ment 4B in Fig. 6.21. Point B is to be one moving pivot and point X* is to be one fixed pivot.

1. The procedure for locating the fixed pivot B* is shown in Fig. 6.22. The construction used is that

of Fig. 6.12.

4

o -
{
Bl

A}

FIGURE 6.21 The problem of Example 6.1.

FIGURE 6.22 Location of the fixed pivot, B*,
given the moving pivot, B,.
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The procedure for the location of moving pivot X is shown in Fig. 6.23. The construction used is
that of Fig. 6.14.

FIGURE 6.23 Location of the moving pivot, .X;,
given the location of the fixed pivot, X*. Triangles
A B\X,* and 4,B,X* are congruent, as are triangles
A B X;* and 4;B.X*.

Triangle 4,B,X,* is congruent to triangle 4,B,X*, and triangle 4,B,.X;* is congruent to triangle
ABX*.
X is located at the center of the circle X*X,*X;*.

The other two positions of point X (X, and X;) can then be located by constructing triangles
A4,B,X, and A4;B,X; congruent to triangle 4,B,X,.

Check the solution.

We first check the Grashof type of the linkage:
X*B*=241=p

B.X,=428=¢q

B*B,=2.06=s

X*X,=4.62=1

I+5=6.68, p—q=6.69

so

I+s5<p +q (barely)

The shortest link, s, is a crank, so the linkage is a crank-rocker.

To check for change of branch, we draw the linkage in all three of the design positions,

as shown in Fig. 6.24. All of the information necessary to do this has already been gener-
ated in previous stages of the construction procedure.

Because X*X, is the longer of the two cranks, assume that it is the driven link, and

B*B is the driver link. We can then check the signs of the angles X*X,B,, X*X,B,, and
X*X;B; to check for branching. ZX*X,B, is counterclockwise whereas ZX*X,B, and
£ X*X;B, are clockwise. Hence a change of branch must occur.
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EXAMPLE 6.2
Position Synthesis
of a Slider-Crank
Mechanism

Solution

FIGURE 6.24 Construction of the solution linkage and
verification that it satisfies the design positions without dis-
connection. In this case, the linkage fails the test because
Y = LX*X,B, is counterclockwise whereas i, and ¢, are
clockwise. Hence, the linkage cannot be moved through the
design positions by rotation of the crank B*B.

Design a slider-crank mechanism to move a coupler containing the line 4B through the three positions
shown in Fig. 6.25. Use point B as a circle point.

To design a slider-crank mechanism, it is necessary to identify a circle point and the corresponding
center point (or vice versa) and a slider point. We must also identify the direction of the slider line. In
this problem, point B has been identified as the circle point for the crank. Therefore, to locate the
center point, we need only find the center of the circle on which the three positions of B lie. The con-
struction for finding the center point (B*) and the crank in position 1 is shown in Fig. 6.26.

To locate the slider point, we must locate the poles, the image pole P’,;, and the circle of sliders in
position 1. This circle is attached to the coupler. The construction of the poles is shown in Fig. 6.27,
and the locations of the image pole and circle of sliders are shown in Fig. 6.28. We can select any point
on the slider circle as a slider point. The point chosen is C. To complete the design, we need to locate
the slider point in positions 2 and 3. The three positions, C,, C,, and C;, will be collinear on the slider
line. The construction of the slider line is also shown in Fig. 6.28.

From the three positions of C shown in Fig. 6.28, it is clear that the linkage does go through the
three positions in the correct order. However, in general it is necessary to check for both order and
branch problems.

B,

4,

B 3
+ —+ FIGURE 6.25 Design positions for Example 6.2.
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FIGURE 6.26 Construction of crank of slider-crank mech-
anism for Example 6.2.

FIGURE 6.27 Construction of the poles for Example 6.2.

B 2
A 2
Circle of Sliders As B,

+Py

FIGURE 6.28 Circle of sliders and final linkage for

Path of point C
Example 6.2.
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6.3.7 Analytical Approach to Rigid-Body Guidance

Rigid-body guidance can be approached analytically in two ways. The first procedure
requires coordinate transformations and is more general. It can be extended easily to four
positions, and the different elements (such as the circle of sliders) developed in the graphi-
cal procedure arise naturally from the mathematics. However, for three positions, the first
procedure is more involved than the second procedure, which is a mathematical representa-
tion of the graphical procedure. Therefore, only the second procedure will be presented
here. Readers are referred to works by Sandor and Erdman,’ Waldron,® or Suh and Rad-
cliffe® for a more general analytical treatment.

The analytical approach to rigid-body guidance involves coordinate transformations
when center points are selected. Therefore, before addressing the topic directly, let us
develop the equations for the needed coordinate transformations between the coupler and
frame coordinate systems.

Coordinate Transformations The general relationship between the coupler and
frame systems is indicated in Fig. 6.29. From Fig. 6.29, we can write the vector equations as

Tp/o =Tp/s tTy0

In this equation, rp,, and r,, are defined in the frame coordinate system, and rp,, is
defined in the coupler coordinate system. Therefore, only rp,, needs to be transformed to
the frame coordinate system. This is shown in Fig. 6.30.

In matrix form, the coordinate transformation from the coupler to the frame system

Ot} 4]

In Eq. (6.6), the matrix R indicates the orientation (rotation) of the coupler coordinate
system relative to the frame coordinate system. The vector {a, ay}'r gives the origin of the
coupler coordinate system relative to the frame system. We need to determine the rotation
matrix [R] first. From Fig. 6.30, we have

is

Xp/y = X cosf—Ysin@

Ypjg =Y cosf+ Xsinf

Xp/g | _|cos@ —sinf|| X
YP/a sin@ cosf || Y

Y Tei0

or

Tpia

T a0

] x

FIGURE 6.29 Relationship between coupler and frame coordinate systems.
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FIGURE 6.30 Transformation from coupler system XY to
frame system xy.

For any general point with coordinates (X, Y) relative to the coupler, the coordinates (x, y)
relative to the frame are given by Eq. (6.6) or

i -lome ool -ta ]

Therefore,

sinf cos@

(] [cosﬂ —sinO]

(6.7)

We can also transform from the frame coordinate system to the coupler coordinate system.
This is shown in Fig. 6.31. From that figure it is clear that

Yp/y = Ypjg €OSO~xp/, sinf

or
{XP/A}=|:COSG sinB] Xpl4 :[A] Xp/4
Ypi —sinf cosf || Vp/4 Yp/a (6.8)
where
[A]= cosf sinf
—sinf cosé 6.9)

FIGURE 6.31 Transformation from frame system xy and
coupler system XY.
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When we compare Egs. (6.8) and (6.9), it is clear that
cosf sin@ | |cosf —sind T _jcosg§ —sinf -
—sin@ cosé sinf cos@ sinf cosé
Therefore,

-1 T
[4]=[~]" =[#] (6.10)
Now assume that we have specified the position of the coupler coordinate system by the

origin of the moving system (a,, a,) and the rotation angle 8 for the X axis. To transform
from the coupler system (X, Y) to the frame coordinate system (x, y), use

x| |cosf@ -—sinf||X . a,
y sinf cosf ||Y a, 6.11)
To transform from the frame system to the coupler system, use
X| _| cosf sinf||[x—a,| | cos® sinf ||x _ cosf sin@ ||a,
Y —-sinf cos# ||y —a, —sinf cosf||(y) [—sin cos@]||a, (6.12)

In the following, we will assume that each position of the coupler is given by the coordi-
nates (a,, a,) of the origin of the coupler coordinate system relative to the frame and by the
angle 6 for the X axis. If instead of the angle 8, the coordinates (b,, b,) of a second point B
in the coupler are given, we must first compute the angle 6 from the equation

0=tan-l{m]
by —a, (6.13)

When a circle point is selected, the coordinates of that point are given relative to the coupler
coordinate system (X, Y). The coordinates of the three positions of that point relative to the
frame coordinate system can be computed using Eq. (6.11). The corresponding center point
is located by finding the center of the circle (analytically) on which the three positions of
the circle point lie. The coordinates of the center of the circle will be defined in the frame
coordinate system.

If a center point is given, the coordinates will be in the frame coordinate system (x, y).
To find the corresponding circle point, the three apparent positions of the center point rela-
tive to the coupler coordinate system must be found. This is done using Eq. (6.12). The cor-
responding circle point is located by finding the center of the circle (analytically) on which
the three positions of the center point lie. The coordinates of the center of the circle will be
defined in the coupler coordinate system. The coordinates of this point in any of the posi-
tions can be found relative to the frame using Eq. (6.11). The crank length can be deter-
mined by computing the distance between the circle and center points once both are defined
relative to the same coordinate system.

Locating center points given circle points and vice versa requires that the center of the
circle corresponding to three positions of a point be found. To find the circle of sliders, the
locations of the poles and the image pole must be found. We will discuss an analytical pro-
cedure for finding poles first. After this is done, it will be apparent that the same procedure
can be used to find the center of a circle given three positions of a point.
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Finding Poles Let 4; and 4, and B; and B; be vectors defining the locations of two
points in two positions. The x and y coordinates of each point are assumed to be known. As
indicated in Fig. 6.11, the pole is the point that lets us move the rigid body from position i
to position j by a simple rotation. To determine the location of the pole analytically, let », be
the distance from the pole to point 4 and r be the distance from B to the pole P;; as shown
in Fig. 6.32a. The following geometric relationships then hold.

2 2 2
(4,20 +(4, =2 =) =(4, 2] +(4,-p,)
2 2 2 2
(Bx,- —Pif,) +(By,- _pify) =(’8) =(ij —pi,-,) +(Byf —p,-,-y) (6.14)
Expanding Egs. (6.14) gives
2 2 2 2 _ g2 2 2 2
Axi —2Ax,_pijx +pijx +Ay,- "ZAy,-P:jy +pijy = Ax; _2ijl’ij, +pl,jx +ij —2Ay}_p,-jy +pijy
2 2 2 2 _p2 2 2 2
B -2B,p; +pijx +By’_ —ZByjp,-jy tp; = Bx} —ZBxJp,-jx +p, +Byj —ZByjp,-jy +pl.jy

These equations can be simplified to give

(42 +42)- (AZ +A2) 24, ~ 4, Jp,, +2(4, -4, Jpy,

(Bfi * B;' ) - (Bjj * Bi/ ) = Z(ij B B"/ )‘p"f"x + 2(Byf B Byj )pijy (6.15)

These equations are linear in the unknown pole coordinates and can easily be solved. In
matrix form, the equations become

4,4, ) 24, -4,) {p B (ZAZINCAYY
2(8,-8,) 2(Byi-Byj) ng}_ (Bfi+B;)—(ij+Bij) 616

Equations (6.16) can be solved using a calculator or a matrix equation solver such as
MATLAB.

Equations (6.16) apply to most types of positions; however, there are three special
cases that will make the matrix singular. These are shown in Fig. 6.32 and identified in the
following:

1. Two positions of the coupler are parallel (Fig. 6.32b).
2. Lines linking the successive positions of two points are parallel (Fig. 6.32c).
3. Two successive positions of a point are coincident (Fig. 6.32d).

Each of these conditions can be handled separately.

Two Parallel Positions When two positions are parallel, the resulting pole is at
infinity in the direction given by the angle -y where

A, —4, B, -B,

y:.q_T_.*_tan_l u =E+tan_l ._.&__._.z'_
2 4 -4 | 2 B, B,

7 1 7 i
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(]

0 x o

FIGURE 6.32 Location of pole P; (a) general case, (b) parallel positions, (c) symmetric positions,
(d) intersecting positions at B (or 4).

Lines 4;4; and B;B; are Parallel When this situation occurs, the pole is located at the
intersection of the lines defined by 4,B; and A;B;. The location of the pole is then given by
solving the following simultaneous equations:

pijx - AX,- p’}; B A)’i
Bxi h Axi B}’i - AJ’.'

and

[pijx _ij _ pij_,, _ij ]
ij —ij Byj —ij

The equations can be simplified and rewritten as

Py, (Byi _Ay,.)_pijy (Bx,_ —Axi)= 4, (By.- _Ay.)_Ay,- (Bx,- ‘Axi)
Py, (Byf _Ay/ )_p’j.v (B"/ —ij)=Axl (Byj _AYJ)_AYJ (ij —ij)

or in matrix form,

(Byi - Ayi ) _(Bx: - Ax'_ ) {pij} } — A"s (By,_ - Ayi )_ Ay,. (th - A"i )
(8, -4,,) (B, -4,)|Ps] |4, (8, -4, )-4, (5, -4,

¥ Y
Equations (6.17) can be solved using a calculator or a matrix equation solver such as
MATLAB.

Y

(6.17)

Two Successive Positions Coincident When a point on the coupler does not move in suc-
cessive coupler positions, that point is identical to the pole. Therefore, if 4, = A ; then both
equal p;;, or if B; = B;then both equal p;.
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Finding the Center of a Circle on Which Three Points Lie The procedure
given for finding poles can be used to find the center of the circle that passes through three
points. To do this, simply treat B; and 4, as the same point. This is shown schematically in
Fig. 6.33 to find A * given three positions of 4.

Image Pole The image pole is found by reflecting the pole about a line through the two
other poles. To find the image pole P’,;, we reflect the pole P,; about the line through poles
P, and P,;. This is shown in Fig. 6.34. Given the coordinates of poles P,,, P, and Py;, the
coordinates of the image pole, P’',;, can be found as follows. First define

8= (P13 —P12)=(8p gy)

and
h= (P23 ‘Plz) = (hx9 hy)
Then,
h
=t - 2
and
o=tan”'| 22 |-
Ex
Let

r=yh}+h
Then, the coordinates of the image pole are given by
P =P+ (r cos(B + 20)i +rsin(B+ 20)])

MATLAB functions for the pole and image pole routines are given on the disk included
with this book.

B FIGURE 6.33 Locating the center of a circle using the
pole procedure. Compare this figure with Fig. 6.32a.

o x FIGURE 6.34 Image pole location.
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Crank Design Given Circle Point If the circle point is specified, the circle point
coordinates (X, ¥) will be given relative to the coupler coordinate system. The procedure for
finding the corresponding center point and the resulting crank is given in the following.

1.

Transform the coordinates of the circle point to the frame coordinate system using Egq.
(6.11) for each position of the coupler. This will give three pairs of points, (x,, y,), (x,
¥2), and (x5, y;) relative to the frame coordinate system.

. SetA4; = (x;, y)); A; = (x, y»); and A; = (x3, y3). Then use the procedure in the subsec-

tion “Finding Poles” to find the location of the center point in the frame coordinate
system. Call this point (x*, y*).

. The crank in position 1 is located by the line from (x*, y*) to (x,, y,).
. Locate the second crank using the same procedure and complete the linkage.

Crank Design Given Center Point If the center point is specified, the center point
coordinates (x*, y*) will be given relative to the frame coordinate system. The procedure for
finding the corresponding circle point relative to the coupler coordinate system and the sub-
sequent crank is given in the following.

1.

Transform the coordinates of the center point to the coupler coordinate system using
Eq. (6.12) for each position of the coupler. This will give three pairs of points, (X *, Y*),
(X%, T¥), and (X%, Y¥), relative to the coupler coordinate system.

SetA,; = (X}, Y*%); A, = X%, 1'%); and 4; = (X%, Y%). Then use the procedure in subsection
“Finding Poles” to find the location of the circle point relative to the coupler coordinate
system. Call this point (X, Y).

Identify the position i in which the linkage is to be displayed. Transform the coordinates
of point (X, Y) to the frame coordinate system using Eq. (6.11) for position i. Call the
transformed point (x, y,).

The crank in position 7 is located by the line from (x*, y*) to (x, ;).

Locate the second crank and complete the linkage.

Design of a Slider If a slider is to be used, we must find the circle of sliders and two
of the three positions of the slider point. The procedure is given in the following.

1.

Let two points in the coupler be given as 4 = (0, 0) and B = (1, 0) relative to the coupler
coordinate system. Transform the coordinates of both points to the frame coordinate
system using Eq. (6.11) for each position of the coupler. This will give three pairs of
coordinates for 4 and three for B relative to the frame coordinate system. Call the point
locations 4,, 4,, A, B,, B,, and B;.

Compute the coordinates of the poles p,,, p|3, and p,; using the coordinates of 4 and B
and the procedure given in subsection “Finding Poles.” The resulting coordinates will be
in the frame coordinate system.

Compute the coordinates of the image pole p’,; using the procedure given in the subsec-
tion “Image Pole.” The coordinates of P’»; will also be in the frame coordinate system.
Set C; = piy; C; = py3; and C; = p’y;. Then use the procedure in subsection “Finding
Poles” to find the location of the center (x,, y,) of the slider circle in the frame coordinate
system. Compute the radius of the circle using

v, = \/(Ci, —xc)2 +(C,-y —yc)2
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The center (x,, y.) and radius 7, will correspond to the circle of sliders in position 1.

5. Select the x coordinate of the slider point. Call this coordinate x,. Solve for the coordi-
nate y, using

Notice that there will be two possible values for y, for each value of x;. It is necessary to
select the specific point desired by identifying which sign (+ or —) gives the proper con-
figuration for the linkage. The resulting point (x,, y,), will be the coordinates of the slider
point in position 1 in the frame coordinate system.

6. Transform the point (x,, y,), to the coupler coordinate system using Eq. (6.12) and (a,,
a,), and the rotation angle 6,. Call this point (X,, ¥,). It identifies the slider point relative
to the coupler coordinate system.

7. Determine the coordinates of point (X,, Y,) in the frame coordinate system for positions
2 and 3 of the coupler. Call these positions (x,, y,), and (x, o).

8. Define the slider line parametrically by

("’y)=("s’ys)1+B[(x5’xs)3‘(x5’ys)l] (6.18)

where points along the slider line are a function of the single variable 8. Note that 8 =0
at the first position (x,, y,), and 8 =1 at the third position (x,, y)s.

Compute B corresponding to the distance to the slider point in the second position using

JEEAREEAN
& [(xs’ys)3—(xs’ys)1] (6.19)

10. Check to ensure that the linkage goes through the positions in the correct order. For this
to occur, position 2 must lie between positions 1 and 3 or 0 < ,< 1.

Implementing the Analytical Approach to Rigid-Body Guidance The
procedures given in the previous subsections can be used with a calculator to design four-
bar linkages with revolute joints and sliders sliding on the frame. The procedures can also
be programmed easily on a computer using any of the various languages. It is especially
easy to program the procedure in MATLAB because of the ease with which matrix and
vector manipulations may be carried out. A program that implements the procedure with
limited graphical output is given on the disk included with this book.

6.4 FUNCTION GENERATION

The procedure developed here will use a four-bar linkage to generate the desired function;
however, the general ideas presented can be used for any system for which a functional rela-
tionship can be derived between two variables. For example, assume that a “black box” is
given such that the functional relationship between the two variables « and p is

f(a, P, a, ay, as, a4)=0 (6.20)

where a,, a,, a3, and q, are design variables defining the system. To design the system to
approximate the function
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EXAMPLE 6.3
Function
Generation with a
General Device

Solution

gla p)=0 (621)

we simply need to solve Eq. (6.21) four times to obtain four pairs of values for & and p. We
can designate these as (@, p)), (@, py), (a3, p3), and (g, p,). The points chosen where the
approximate solution matches the exact solution are called precision points. Next rewrite
Eq. (6.20) four times (corresponding to the number of design variables), one for each pair
of (@;, p;), and solve the resulting set of equations for a,, a,, as, and a,. Note that the equa-
tions may be nonlinear, requiring the use of numerical techniques.

A mechanical device characterized by the input—output relationship ¢ = 2a, + a, tan 8 is to be
used to generate (approximately) the function ¢ = 26; (with 6 and ¢ both in radians) over the
range 0 =< 0 < 7/3.

a. Determine the number of precision points required to complete the design of the system.

b. Choose reasonable precision points and determine the values for the unknown design variables
that will allow the device to approximate the function.

There are two unknowns (a, and a,), so the number of precision points is two. We will determine a
systematic way to locate the precision points later in this section, but for now, let us choose the two
points to be at the quarter and three-quarter points of the range. Then

. (B i) —ou (m/3-0)

0, =0, =0+-==02618
4 4 12
and
9. -0 3(m/3-0
0, =0, +( Y =0+ (=/ )=0+-’1=0.?854
4 4 4

The corresponding values of ¢ are

¢, =26, =2(0.2618)’ =0.03589, ¢, =267 = 2(0.7854)’ =0.9689

We can now solve for a, and a, using the desired input—output relationship,

¢ =2a; +a, tanf

Substituting into the equation the values for 6 and ¢ at the two precision points gives

0.03589 = 2a, +a, tan(0.2618) = 2a, +0.2679a,

and

0.9689 = 2a, +a, tan(0.7854) = 2a, +1.0000a,
Subtracting the two equations gives,
0.9330 = 0.7321a, resulting in a, =1.2746
Backsubstituting to determine a, gives

2a, =0.03589 - a, tan(0.2618) = 0.03589 - 0.2679(1.2746) = ~0.3055 resulting in a, = -0.1528
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The final equation for the device is

¢ =2a, +a, tan@ = —0.3055+1.2746 tan 0

In the following example, the function f'in Eq. (6.20) will be the governing position
equation for a four-bar linkage. The function g will be an arbitrary function that is specified
at the beginning of the analysis.

6.4.1 Function Generation Using a Four-Bar Linkage

Analytical function generation using a four-bar linkage was developed by Freudenstein, 13
and the basic equation relating the input and output variables for the four-bar linkage is
called Freudenstein’s equation.

Given three pairs of values for 6 and ¢ in Fig. 6.35, the objective for the case consid-
ered here is to find r,, 73, and r, for the four-bar linkage. This is the linkage that will approx-
imate the function implied by the three pairs of values for 6 and ¢. In the three-position
function generation problem, the size of the linkage does not affect the functional relation-
ship between 0 and ¢. Therefore, the frame link () can be taken to initially have length 1,
and the entire linkage can be scaled to any desired size after the basic design is established.

To develop the governing equation relating the input and output variables for the link-
age, first determine expressions for the x and y components of the vectors corresponding to
each link length. For the x direction,

¥, c0s@+r; cosyp =147, cosd (6.22)
and for the y direction,
r, Sinf+rsing =y sing (6.23)

We do not want ¢ in the final equation. Therefore, isolate the terms involving ¢ so
that this angle can be eliminated. Then

rcosy =1+r, cos¢ —r, cosd
rsing =r,sing —r, sinf (6.24)
Square both equations and add to get

w (c052 -+ sin’ :,D) = (l +r,cos¢ —r, cos 0)2 + (r4 sing —ry sin 0)2

Expanding the equation and simplifying gives
R =14+ 12 +12 +2r,cosd —2r, cosO—2ryn, cos(0 - d))

Because we have three pairs of values for 8 and ¢, this equation can be written three
times as

¥ =141} +1) +2r,cosdy —2r, cost —2rn cos(@l —d)l)
v =141} +1f +2r,cosd, —2r, cosb, —2rn cos(b?2 —¢2)

72 =1+7rf +15 +2r,co8¢y — 21, €080y — 27,7 C05(93 ‘¢3) (6.25)

Equations (6.25) can be solved for r,, 75, and 4. The procedure used to solve the equa-
tions depends on the tools that are available.
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FIGURE 6.35 Four-bar linkage used for function
generation.

Solution by Matrices The equations can be written simply in matrix form. To sim-
plify the result, first rearrange the terms and divide each equation in Egs. (6.25) by 2r,r,
and define the new unknowns as

2 2 2
- 1+r2 +r4 “?'3

21
2nyry (6.26)
1
22 =—
r (6.27)
and
1
23 = r_
4 (6.28)

We can then write the resulting equations as
2y +2, cos¢, —z; cosf, = cos(G| - d),)
2y +2, cos¢, —z3 cosb, = cos(92 —¢2)
z) +2, Cosh; — 23 cosl; = cos(03 —d>3) (6.29)
or in matrix form,
1 cos¢;, -—cosé, ||z c‘3’3(31 ‘4’1)
1 cos¢p, -—cosb, §z,,= cos(62 —¢2)

I cosgs —cosby [(z3] | cos(g, —g5) (6.30)

We can solve for z,, z,, and z; using MATLAB or some other matrix solver. Symbolically,
-1
Z 1 cosd, —cosb, Cos(ol _4’1)
zyr=[1 cos¢, -—coséh, cos(02 —¢2)

Z3 1 cos¢y —cosb, cos(83 _¢3) ©631)
Knowing z,, z,, and z;, we can solve for the unknown link lengths using Egs. (6.26), (6.27),
and (6.28). Then,

1

z, (6.32)

rn=
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1
ry=—
% (6.33)
and
7'3 = J;+722 +r42 —2r2r4zl (634)

Note that the square root used to compute ; can be plus or minus. Only the plus sign has a
physical meaning, however, since r; is physically the distance from the end of link 2 to the
end of link 4.

Unscaling the Solution In the previous derivation, it is assumed that the length of
the base link (7,) is 1. This is not generally the case. However, to determine the true size of
the links, it is necessary to know the size of just one of the links initially. Through a scaling
factor, we can determine the size of the other links.

Assume that the actual link lengths are R, R,, R;, and R,, where the R’s are related to
the computed #’s through the following:

R, =Kn
R, =Kr,
Ry=Kn
R,=Kr, (6.35)
where K is the scale factor for the linkage. From Eq. (6.35), we have
K=R1/’1 =R2/r2=R3/r3=R4/r4 (6.36)

After the design procedure is completed, we will know ry, 7, 3, and r,4. Therefore, we
need to specify only one of R;, R,, R, or R,to find K using Eq. (6.36). Knowing K, we can
compute the actual link lengths using Eq. (6.35).

6.4.2 Design Procedure When y = y(x) Is to Be Generated

Generally, in function generation, 6 and ¢ will not be given directly. Instead, the linkage
will be designed to approximate a function y = y(x), where y corresponds to ¢ (the output)
and x corresponds to @ (the input). The angles € and ¢ will be related to x and y such that,
given 8 and ¢, x and y can be computed. The functional relationships between ¢ and y and
0 and x are somewhat arbitrary; however, the problem is most easily solved if linear rela-
tionships are used. The most common relationships are

X"xO _ 0_00

Xf—xo_af—eo
and

Y=Y _ $-%

Yr—=Xo ¢f—¢o

or
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xf_xO
X = 0—00 + X
"f“’o( )+ (6.37)
y=;}f+(};o(¢—¢o)+%
fowe (6.38)
and
=% (x=2x0)+85
Xr=%o (6.39)
br—¢
¢p=—1 0()")’0)+¢0
Yr=)o (6.40)

When the design problem is formulated, we will know y = y(x) and the range for
x (X9 = x = x). Given x; and x;, we can compute y, and ¥ We must then pick 6, and 6,and
¢ and @, Then, given three design positions for x, three values for y, 8 and ¢ can be com-
puted, and given the three values for 6 and ¢, the link lengths can be computed using the
procedure given here.

Often, instead of selecting 8y, 8; ¢, and ¢, directly, 6,, ¢, and A9 = 0, —6yand A
= ¢;— ¢, are selected. Typically, choosing Af and A¢ to be between 60° and 120° usually
works well. It is also usually better to avoid having either the driver or the output link pass
below the line defined by the two fixed pivots (line of centers) in the range where the func-
tion is to be matched; that is, make 0° < 6, < 6 < 0, =180°and 0° = ¢y =< ¢ = ¢, = 180°.

6.4.3 Selection of Design Positions

In general, the function generated by the linkage will match the actual function only at the
precision points, and the error between the precision points will vary depending on where
the precision points are placed in the range x, < x < x; Therefore, when trying to match the
function y = y(x) over the range x, < x < x;, the objective is to select the precision points so
that the deviation of the function actually generated from that desired between the design
positions is minimized. The difference between the actual function generated and the
desired function is called the structural error e. If this error is plotted as a function of x, it
can be shown that the maximum structural error (e*) is minimized when it takes the form
shown in Fig. 6.36. Ideally, the maximum errors between the precision points are both equal
in magnitude to the errors at the ends of the range.

It is usually difficult to locate the precision points so that this criterion for the error is
met for an arbitrary function; however, a useful approximate solution is obtained by approx-
imating the error function by a Chebyshev polynomial of order N, where N is equal to the
number of precision points. If the approximation were exact, the optimum locations of the
precision points are given by

X = Al B ) COS[E—LJ e T el COS{L(?J— 1)}
2 2 N 2N 2 2 2

(6.41)

wherei=1,2,..., N. These values for x; are the roots of the Chebyshev polynomial of order
N. As already noted, Eq. (6.41) approximates only the optimum locations of the precision
points, but it is still a useful starting solution to use, especially when there is no other basis
upon which to choose design positions.
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] X2

+e*
Xg / \ X3/ | X

—e*

FIGURE 6.36 Optimum error distribution.

The roots of the Chebyshev polynomial can be given a geometric interpretation that
makes it easy to derive Eq. (6.41) if the form of the equation is forgotten. For this, draw a
circle of radius (x; — x,)/2 with its center at (x; + x,)/2. Then divide the circle into a regular
polygon with 2N sides. The projection of the vertices of the polygon onto the x axis will give
the locations of the precision points. This is shown in Fig. 6.37. When Chebyshev spacing
is used, the center point, (x; + x,)/2, will be a precision point only when N is odd, and the
extremes (x,and x,) of the range will never be chosen as precision points.

6.4.4 Summary of Solution Procedure for Four-Bar Linkage
and Three Precision Points

Lety = y(x) be the function to be generated over the range x, = x = x;. The design positions
should be placed inside the range x, < x =< x;, and as a rule, for the three positions use
_ X f + X0 X - Xo

X > cos30°
Xp+X
ft%

=Ty
Xp+Xy Xp—X

X3 = f2 9 2L 0 cos150°

Choose the angular range A of the input crank that is to correspond to the range
X = x = x,for x. Also, choose the angle 6, corresponding to x, from which this range is to start.
Choose the angular range A¢ of the output crank that is to correspond to the range
Yo =y = yfory where y; = y(xo) and y, = y(x)). Also, choose the angle ¢, corresponding to
¥, from which the output range will start.
Compute the values of 6 and ¢ that represent the precision points from the equations

6,-6 o
g, =L > (x,-—xo)+60= %= %o A0 +6,
xf—xo xf—xo
and
¢ =9 =
¢ = L (J’i—J’O)‘*d’o:qub‘*d’o

Yr=Xo Yr=Xo

where y; = y(x,).

e ad i

FIGURE 6.37 Chebyshev spacing for precision points.
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Next let the base length be unity and calculate the lengths for the driver, coupler, and
output links using Eqgs. (6.31)(6.34). To do this, solve

7| [1 cos¢, —cos, " cos(6; - )
zyp={1 cos¢, —cosh, cos(02 -, )
23 l Ccos ¢3 —COoSs 93 008(03 — ¢3)

for z,, z,, and z;. Then solve for 7, 75, and r, from

and

n= \/1+r22 +r42 —2nrz,

Note that r, and 7, can be negative. When r, or 7, is negative, the direction for the vector rep-
resenting the link length is reversed (see Fig. 6.38).
After the scaled link lengths are determined, determine the scale factor using

K=R1/"1=R2/"2 =R3/r3=R4/r4

and the true value of one of the link lengths. Then determine the true value for all of the link
lengths using Egs. (6.35).

Draw the linkage to scale, and check that a linkage with the calculated dimensions
will pass through the design positions (8,, ¢,), (8,, $), (83, ¢). The procedure guarantees
only that the linkage can be assembled in the design positions. It may not be able to move
from one position to another without changing branches. It is also important to check the
force and torque transmission characteristics of the linkage at each design position. As will
be discussed when crank-rocker mechanisms are considered, the force transmission char-
acteristics of a four-bar linkage can change greatly from position to position.

If for some reason the linkage is unacceptable, change either the range or starting
point for either 6 or ¢ and solve for another design.

Note that it is possible to choose different combinations of variables other than x,, x,,
and x; when selecting the precision points. If we let

x—xo=Ax

FIGURE 6.38 Interpretation of neg-
ative values for r, and r,.
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then the basic equations for selecting the precision points can be written as

X5 +X
x = A 0—&cos30"
2 2
Xp+x
x2=——————f )
2
X+ X Ax
X3 = L0 2 cos30°
2 2

From this it is clear that we can select any three from the list of variables, x,, x,, x3, X
Xy, or Ax and solve for the other three.

The function generation equations have been programmed using MATLAB in the rou-
tine fungen.m provided on the disk with this book. This routine can be easily modified to
handle a relatively wide range of function generation problems involving a four-bar linkage.

Design a linkage to generate the function y = log,ox over the range 1 < x =< 2.

From the given information,

xg=1and x, =2
Using Chebyshev spacing for the precision points, we have
_Xptxy Xp—X 2+1

X =————-—"—"—"—c0s30°= ———
2 2 2

-1
cos 30° =1.06699

Similarly, x, = 1.5 and x; = 1.93301. Then, the corresponding values for y are

v, =log,2=0.30103
Yo =log,,1=0

¥; = log,,x, =0.028160
¥, =logox, =0.176091
¥y = log,x; =0.28623

Note that a minimum of five decimal places is needed to ensure adequate solution accuracy. To iden-
tify the linkage angles, choose

0, =45°, A6 =60°

and

b, =0°, Ap=60°
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Note that these values are somewhat arbitrary. If the resulting linkage is unacceptable, we can try
other values. The precision points in terms of § are

X, - X, 1.06699 — 1

6, = A+ 6, = —— 60° +45° = 49.019°
Xp =X, 1
- 1.5-1
g, =2~ % AG+6, = 60° +45° = 75.000°
Xp =X
- 1.93301-1
9, = *3 =% A +6, = 3—60"4—45“: 100.981°
X, =X, 1
Similarly,
- 0.028160 -1
6, = 7% Ay +¢y = —————60°+0 = 5.612°
Y=Y 0.30103
- 0.176091 -1
b, = P27 %0 pgy ¢y = ———————60° +0° = 35.098°
Y=Y 0.30103
- 0.28623 -1
&, = 237V pagy ¢y = ———————60°+0 = 57.050°
Y= 0.30103

Using the matrix solution procedure, we get

2] [1 cosd, —cose, | [cos(6i-4) | 1 09952 —0.6558]" (0.7265) [0.6383
z,p=|1 cos¢, —cosé, cos(02—d>2) =1 08182 -0.2588| ¢0.7671,=10.2210
Z4 1 cos¢, —cosé, cos(03—¢3) 1 0.5439 -0.1905] |0.7202 0.2008

and
1 1
r,=—=——=0.7953
z, 12574
1 1
, = — =———=1.5080
zy  0.6631
and

ry = \/ L+ +7} =2nr,z, = \/ 1+0.7953% +1.5080 - 2(0.7953)(1.5080)(~0.0900) = 2.0304

For the overall size of the linkage, use a base link length of 2 in. Then the lengths of the other links
become

R, =1(2) = 2.0000 in

R, =0.7953(2) =1.5905 in
R, =1.5080(2) = 3.0160 in
Ry =2.0304(2) = 4.0608 in

The linkage is drawn to scale in Fig. 6.39.
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FIGURE 6.39 Final linkage for Example 6.4.

6.4.5 Graphical Approach to Function Generation

The function generation problem can be solved graphically if the linkage is inverted so that
the crank becomes the temporary frame. We can choose any position of the crank to start
the construction, but position 1 is the most common position to choose. To illustrate the pro-
cedure, the problem in Example 6.4 will be used again. That is, it will be assumed that three
pairs of points, (6;, ¢,), (6, ¢»), and (8;, ¢) are known. The input and output cranks in the
three positions are shown in Fig. 6.40. Note that the base link (7,) has been chosen, but the
lengths of the input and output links (r, and #,) have not been specified.

The next step is to invert the linkage so that the driver (r,) becomes the frame. To do
this, treat the group of links, 7, r,, and r,, as a rigid body in each position and rotate the
group of links such that 7, is in the same location for each position. This is shown in Fig.
6.41. In the inverted linkage, 7, is the frame, r;, the original coupler, is the output link, and
74, the original output link, becomes the coupler. For the inverted linkage, one crank is
known, so we need only establish the other crank (r; for the original linkage), and the link-
age geometry is established. The problem has therefore been converted to a rigid-body
guidance problem where 7, is the coupler to be guided. One crank (r;) has already been
established. To find the other crank, choose a point C on link 4. The center of the circle on
which C,, C,, and C; lie is C*. The synthesized linkage in position 1 is 4, B, C, C* as
shown in Fig. 6.42. When inverted back to the original base, we have the solution of the
function generation problem. The final solution linkage is shown in Fig 6.43. Note that 6,
and 6 are different in this solution compared with the analytical solution, but A6 is the same
for both solutions. Here, we chose the position of C (that is, the length of r,) rather than 6,.

FIGURE 6.40 Three positions for input and
output links for graphical synthesis.

Link 4 in Position 1~

FIGURE 6.41 Inversion of linkage making , the frame.
The original linkage is inverted onto its driving crank to
convert the function generation problem into a motion gen-
Link 2 eration problem.
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FIGURE 6.42 Construction of center point C* given three
positions of C.

3
C,

—,

P B FIGURE 6.43 Final solution linkage.

6.5 SYNTHESIS OF CRANK-ROCKER LINKAGES FOR
SPECIFIED ROCKER AMPLITUDE

In a crank-rocker mechanism, the crank rotates through 360°, and the rocker oscillates
through an angle 6. This mechanism is often used interchangeably with cam mechanisms
for the same function; however, there are many cases in which a crank-rocker mechanism is
superior to a cam—follower mechanism. Among the advantages over cam systems are the
smaller contact forces involved, the elimination of the retaining spring, and the closer clear-
ances achieved because of the use of revolute joints.

6.5.1 Extreme Rocker Positions and Simple Analytical
Solution

The maximum and minimum rocker angles occur in the positions shown in Fig. 6.44. Using
the cosine rule, we have

2
(rz + r3) =12 +r} —2nr,cosp (6.42)
and

2 2
(r3 —rz) = "12 +r4 —27’17‘40053 (643)

FIGURE 6.44 The positions of a crank-rocker linkage in which the rocker is at the extremes of its motion
range.
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Since we have two equations in six variables, r, r, s r4 p, and B, the values of four vari-
ables can be specified. As in the case of function generation, the angles in the triangles are
independent of the size of the triangles. Therefore, r, is usually taken as 1. Usually, the
design problem requires only a specified value for the difference B — p. Nevertheless, the
solution is much simpler if both p and B are specified. Since a crank-rocker linkage is
sought, it is also helpful to specify r,. Values in the range 0.1 = r? =< 0.4 will usually give
good results when r| = 1. Assuming p, B, | and r, are specified, we can solve Egs. (6.42)
and (6.43) for r; and r,. Adding the equations and simplifying, we get

r22 +r32 = "12 +r42 —rlr4(cosp+cos[3) (6.44)
Subtracting Eq. (6.44) from (6.42), we get

2 = r1r4(cos B—cos p)

(6.45)
Hence
nry (cos B—cos p)
BR=————
2n (6.46)
Substitution into Eq. (6.44) gives, after some manipulation,
Prl+Qr,+R=0 (6.47)
where
2 2
1 (cosB—cosp
P=1-— (cosp . )
4r;
0= —rl(cos/3+ cosp)
2
R=r-r; (6.48)

The solution to the quadratic equation Eq. (6.47) gives a positive root and a negative root for
r4. The negative root can be discarded. If no real roots exist, it is necessary to choose a new
value of 8 and try again. Once r, is known, r; can be found from Eq. (6.46). The formula-
tion of the problem guarantees that the joint between 7, and r; will rotate completely, but
this still does not guarantee a crank-rocker solution (it could be a type 1 double-rocker).
Thus, although it is a type 1 linkage, it is necessary to check that 7, > r,. The Grashof
inequality can be used as a simple check on arithmetic.

The simplified procedure given here can be used if the oscillation amplitude (p — )
is the only quantity of interest. The procedure gives no control over the time ratio of the for-
ward oscillation to the reverse oscillation. This time ratio is often of interest, however, and
the following procedure gives a means of incorporating it in the basic design procedure.

6.5.2 The Rocker Amplitude Problem: Graphical Approach

As the crank in a crank-rocker mechanism rotates through 360°, the output link or rocker
will oscillate through an angle 8. The limiting positions of the rocker occur when the crank
and coupler are collinear as shown in Fig. 6.45. In general, the time required for the rocker
oscillation in one direction will be different from the time required for the other direction.
As previously indicated, the ratio of the times required for the forward and return motions
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is called the time ratio. An expression for the time ratio can be developed by using the
nomenclature defined in Fig. 6.45.

In the crank-rocker, the crank moves through the angle ¢ while the rocker moves from
B, to B, through the angle 6. On the return stroke, the crank moves through the angle 360° —
¥ and the rocker moves from B, to B, through the same angle 6.

Assuming that the crank moves with constant angular velocity, the ratio of the times
for the forward and reverse strokes of the follower can be related directly to the angles in
Fig. 6.45. The crank angle for the forward stroke is ¢ or 180° + a. The crank angle for the
return stroke is 360° — ¢ or 180° — . Therefore, the time ratio, 0, can be written as

_ 180+«

0= 1%0-a (6.49)

where a is given in degrees.

The most common problem associated with the synthesis of crank-rocker mecha-
nisms is that of designing the linkage for a given oscillation angle and a given time ratio.
For the discussion here, assume that the time ratio Q has been given. The first step in the
synthesis is to compute the angle «. This can be done by rewriting the basic equation for 0.

Then,
a=180 (e-1)
(+1) (6.50)

Note that a is positive when Q is greater than 1 and negative when Q is less than 1. Exam-
ples of positive and negative « are shown in Fig. 6.46.

Once a is known, there are a number of ways to proceed with the design. The simplest
way is to choose a location for O,, select a trial value for ¢, and draw the two positions of
the rocker (r,) separated by the angle 6. Draw any line x through the pivot at B, and con-
struct a second line at an angle of « to the line x and through the pivot at B,. Call the second
line y. The intersection of lines x and y defines the location of the second fixed pivot (O,).

Next compute the values of r, and 7. This is done by using the geometric relation-
ships in Fig. 6.45. That is,

FIGURE 6.45 crank-rocker mechanism in extreme positions.
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r,+r;=0,B
and
h—hKh= 5;};
Therefore,
2 (6.51)
and
@ +0,B,
RETT S (6.52)

Note that during the design procedure, several choices were made. Among these were the
starting angle ¢ for the line O,B, and the slope of the line x. There are an infinite number of
choices for each, and each choice will give a different linkage.

Note also that not all solutions are valid. In particular, the pivots B, and B, may not
extend below the line of centers defined by a line through the fixed pivots O, and O, If this
happens, the linkage must change branch to reach the two positions, and the desired oscil-
lation angle will not be achieved. As indicated by Hall, once « and 8 are known, the locus
of acceptable positions for O, must lie on circle arcs represented by the heavy sections of
the circles shown in Fig. 6.47. The locus of O, must be on a circle arc because the triangle
B,B,0, has a fixed base and a constant apex angle («). If O, is chosen in the light part of the
circles, the two positions of B will be on opposite sides of the line of centers.

In some instances, the length of one of the links must be a specific value. However,
the procedure outlined here will permit only the length of the rocker to be specified directly.
If the length of one of the other links is known, the lengths of the links in the linkage can be
scaled using the procedure given in Section 6.4.1.

Range for o A study of Fig. 6.47 will indicate the extreme values for the angle a. When
the time ratio is 1, then @ = 0. This case is shown in Fig. 6.48. When a = 0, the limiting cir-
cles shown in Fig. 6.47 converge to a straight line through B, and B,. Any point outside the
span between B, and B, may be chosen as the fixed pivot for the crank. Note that, for this
case, the distance between B, and B, is equal to 2r,. [See Eq. (6.51).]

FIGURE 6.46 Locations of O, given 8 and £ a.
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Locus of O, for—a

Locus of O, for +a

.

FIGURE 6.47 Possible locations for O, given
and a.

!

B, B,

Locus of O, fora =0 )

FIGURE 6.48 Limiting case when a =0 or
=1

8 -— )

As +a increases from 0, the center C of the bottom circle in Fig. 6.47 will move from
—o toward the pivot O,. The highest location possible for the circle is when it is tangent to
B, and B, at the two extreme locations of 7,. This is shown in Fig. 6.49. In this position,
there are no solutions possible, but if C is only slightly lower than the location C,, shown in
Fig. 6.49, solutions exist for O, for positive a. When C moves above the line between B, and
B,, the angle 2« is the obtuse angle shown in Fig. 6.49. From the geometry shown in Fig. 6.49,
the maximum value for a will be 7/2 + 6/2.

As a decreases from 0 (i.e., « becomes more negative), the center C’ of the top circle
in Fig. 6.47 will move from + o« toward the pivot O,. The lowest location possible for the
circle is again when it is tangent to r, at B, and B, for the two extreme locations of #,.
Again, in this position, no solutions are possible, but if C is moved only slightly higher than
the location C,, shown in Fig. 6.49, solutions will exist for O,. When C’ moves above C,,
the angle —2« is the acute angle at C,, as shown. From the geometry shown in Fig. 6.49, the
minimum value for & shown in Fig. 6.47 will be —(7/2 — 6/2).
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FIGURE 6.49 Limiting values for + «. The maximum value when
«a is positive is 77/2 + 6/2. The minimum value when « is negative
is —(m/2 - 6/2).

A crank-rocker is to be used in the transmission of an automatic washing machine to drive the agita-
tor. The rocker link is attached to a gear sector, which drives a pinion gear attached to the agitator
shaft. The radius of the sector gear is 3 in., and the pinion radius is 1 in. The pivot for the output link
is at O,. The sector gear is to oscillate 90°. The times for the forward and return stroke for the sector
are the same. If the base link (r,) of the mechanism is to be 10-cm long, determine the lengths of the
other links (r,, 73, and ;).

A sketch of the mechanism is shown in Fig. 6.50. We must determine the four-bar linkage defined by
0,, O,, 4, and B. The sector gear is attached to the output link, which rotates through an angle 8 of 90°.

The time ratio is 1 so
-1
a =180° Q— =180° 9 =0
o+1 2

Therefore, the locus for O, corresponds to that shown in Fig. 6.48. For the construction, let r, be
1 in. Then a solution for the linkage can be constructed as shown in Fig. 6.51.

Pinion

Gear Sector

FIGURE 6.50 Sketch of linkage for Example 6.5.
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y

N
8
L

FIGURE 6.51 A solution to Example 6.5.

From Fig. 6.51, we have

r, =lin
n=231in

r+nr=0,B
r,—r,=0,B,
or
r,=(0,8,-0,B,)/2=(2.90-1.49)/2=0.70 in
r=(0,8,-0,8,)/2=(2.90+1.49)/2=2.20 in
Determining the scaling factor, we get

SR =R R R
no 3.31 B onBon

Using the unscaled lengths from the figure gives
R, =3.021 7, =3.021(0.70) =2.11 cm

Ry =3.021 7, =3.021(2.20) = 6.65 cm
R, =3.0217,=3.021(1)=3.02 cm

The mechanism is drawn to scale in Fig. 6.52.

0, r

O,

FIGURE 6.52 Final linkage for Example 6.5.

6.5.3 Transmission Angle

Ultimately, the design of the crank-rockers reduces to an optimization problem because a
single design based on the construction discussed above will usually have poor transmission
angle characteristics. The maximum (7,,,) and minimum (7,,,) transmission angles are
shown in Fig. 6.53. Typically, a poor transmission angle corresponds to a large value of
(77/2 ~ Nmax/min)l- Note that the maximum and minimum values for the transmission angle
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do not occur at the extreme positions of 7,4, but 7,,,,, and n,,;;, can be easily computed using
the geometry in Fig. 6.53. The equations are

2 2 2
1 7'4 —(r’1+r2) +r3

Nmax = COS~
2nn
(6.53)
2
a1 "42“("1"'2) +rf
Tpin =08
2rn
(6.54)

If M0 1S DNegative, then 7, = 7 + N’ nax. Otherwise, M., = N’ max. Similar conditions apply
to Mmin.

6.5.4 Alternative Graphical Design Procedure Based on
Specification of 0,-0,

The graphical procedure developed earlier could be programmed if desired. However, it
has the undesirable characteristic of a variable length for the frame. An approach devel-
oped by Hall* is easier to program, and it will be discussed here. In this procedure, we will
select the length of the frame link initially (instead of link 4). This approach reduces the
design problem to a one-dimensional problem where well-defined limits are known for the
design variable.

Assuming 6 and « are known, the following procedure, represented in Fig. 6.54, pro-
vides a means for determining all of the linkages satisfying the design requirements. The
approach is to determine the locus for all possible values of B, relative to the frame. To con-
struct the locus, do the following:

1. Pick the base link and locate the ground pivots O, and O,. The distance 0,0, determines
the scale for the linkage.

2. Draw the line O,G at an angle 6/2 — « (positive clockwise) relative to 0,0,.
3. Draw the line O,G at an angle of 6/2 (positive counterclockwise) relative to 0,0,.

FIGURE 6.53 Maximum and minimum transmission
angles.

FIGURE 6.54 Construction of the circle arc
giving the locus B, and B,.
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EXAMPLE 6.6
Crank-Rocker
Design Using

Alternate
Graphical
Procedure

Solution

4. Draw the circle of radius GO, centered at G.

5. Draw a line (O,B, ) through O, at an angle of 8 (positive counterclockwise) relative to
0,0,.

6. The circle arc starting at O, and ending at the intersection with either 0,B,, or 0,0,
(whichever occurs first) gives the locus of the point B in the second extreme position of
the rocker. The point (B,) located at an angle 6 relative to the line O,B, is the other
extreme position. The locus of B, will be a second circle that has the same radius as the
B, circle, and the center for the B, circle will be the reflection of point G about the 0,0,
axis. The length r, is equal to O,B.

After B, is chosen and B, is located, the remaining link lengths can then be computed by
solving Eqs. (6.51) and (6.52). The transmission angle limits can be measured after draw-
ing the linkage in the extreme positions shown in Fig. 6.53.

A crank-rocker mechanism is to have an oscillation angle of 80° and a time ratio of 1.3. The base
length is to be 2 in. Design a linkage that will satisfy these conditions.

The time ratio is 1.3 so

a=180°] 271 | 21800 1321 [ 223470
0+1 13+1

We will begin the design procedure by drawing the two fixed pivots, locating point G, and drawing the
arc corresponding to the locus for B,. The angles needed to locate G are

6
— =40°
2

and

g— a =40°-23.47=16.53°

The construction is shown in Fig. 6.55.
Now we need to select any point on the locus for B,. Once B, is selected, B, can be found. This is
shown in Fig. 6.56. Given B, and B,, the link lengths can be found using Egs. (6.51) and 6.52).

FIGURE 6.55 Construction showing the locus of B, for
Example 6.6.
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FIGURE 6.56 Construction of B, and B, for
Example 6.6.

From Fig. 6.56, we have

r, =1.51in
n=2in

r, +r,=0,B,

r,—r =0,B,
r,=(0,8,-0,B,)/2=(3.09-129)/2=090 in
r,=(0,B,+0,B,)/2=(3.06+1.29)/2=2.18 in

The mechanism is drawn to scale in Fig. 6.57

FIGURE 6.57 Final linkage for Example 6.6.

Reviewing the graphical procedure represented in Fig. 6.54, we see that once 6 and «
are known, the arc defining the loci for B, is defined. Locating a point on the arc requires
the specification of only one additional parameter (). Therefore, different designs can be
developed by adjusting this single variable. Furthermore, because the locus for B, is the
circle arc between O, and B, , the limits for B can be established at the beginning of the
design procedure.

The geometry shown in Fig. 6.54 is the general geometry for the design procedure.
However, depending on the values of « and 8, four cases need to be considered. These are
represented in Figs. 6.48a—6.48d. The four cases are characterized by the following:

0 < a < 0 (the general case and the one represented in Figs. 6.54 and 6.58a),
—(m/2 - 6/2) <a <0 (Fig. 6.58b),

a = 0 (Fig. 6.58c), and

7/2 + 6/2 > a > 0 (Fig. 6.58d).

Ll R
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6.5.5 Analytical Design Procedure Based on Specification
of 0,-0,

Case a (0 <a <0) To determine the analytical equations for the arc giving the locus of
B, in Fig. 6.58a, it is necessary only to find the coordinates of the circle center G and the
limits 3, and B,. Locating the x and y axes as shown in Fig. 6.54, we define the center (xg5¥g)
by the triangle 0,0,G, which has one known side (0,0,) and two known included angles
(6/2 — a and 6/2). By simple plane geometry, the coordinates of the center of the B,
circle are

B tan(6/2)
g~ OZO“Lan(o/z) + tan(0/2 —a)J (6.55)
and
Ve = (0204 _xg)tan(G/Z)

and the radius of the circle arc is

2 2
g =\Xg + Vg (6.56)

A given point on the B, circle can be found using  and the angle 3; however, the allowable
range for B must be determined first. The point B on the rocker cannot lie below the line
defined by O0,0,. Therefore, one extreme position of the locus for B, is O,.

Locus for B, Locus for B,

(Xs V)

Locus for B,

(©a=0 @A) (724 6/2)>a >0

FIGURE 6.58 Different geometries based on relative values of « and 6.
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In Fig. 6.58a, the other extreme position is found by noting that B, cannot lie below
the extension of 0,0,. Therefore, the other extreme position of the B, locus is at the inter-
section of the B, circle and the line through O, at an angle of 6 with the horizontal. The
coordinates of this intersection point are found most easily if we first scale the linkage by
setting 0,0,= 1. Then

7 COS{ Brnin ) = X — X, (6.57)
raSin(Buin ) = Y = ¥ (6.58)
and
Im
o1 et (6.59)

If Egs. (6.57) and (6.58) are squared and added and Eq. (6.59) is used to eliminate x,,
from the result, the following quadratic equation results for y,;:

1 2 xg 1 2 2 2
|:1E 20 1:|YM Z[t 9 yg Vm [l Jg g zxg rB] 0
or

o[ -8F a1 | o

(6.60)

where

B=-2 xg_1+
B ETTREE
C=[1+y§+x§,—2xg—r§]

Two values for y are mathematically possible, but there will be a maximum of one positive
root. Only positive values for y,, are of interest. If both values of y are negative, the condition
in Fig. 6.58b is indicated. If one y,, is positive, then x,, can be computed using Eq. (6.59) or

Y
=1+—=*
" tan6 (6.61)

Note that B2 — 44C must be positive for a valid solution to exist.
The minimum 3 is

B ) =tan_1|iym-yg:|
min

Xpy = Xg

X

(6.62)
and the maximum value for B is
Buax =T +a~ ) (6.63)

For a valid design, Bnin =< B = Bmax-
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Case b [(/2 - 0/2) < a < 0] For the case when « is negative (Fig. 6.58b), the coordi-
nates of G and the radius 7, are the same as in Case a. The coordinates at the extreme loca-
tion B, are given by

V=0 (6.64)

and

0
X, =2rgcos| ——a
[2 J (6.65)

The equations for B, and B,,,, and are given by Egs (6.62) and (6.63).

Case ¢ (a = 0) When a =0, the center G will be at infinity, as shown in Fig. 6.58c¢. This
is indicated by Eq. (6.55) because the denominator in the expression for x, becomes 0.
Therefore, the locus for B, is a straight line through O, at an angle of 7/2 + 6/2 — « to the
horizontal. B, can be located anywhere along the straight line, including at infinity. When
B, is located at infinity, the coupler becomes a slider and the mechanism becomes an
inverted slider-crank mechanism (see Hall*). Computationally, this case can be best treated
separately. Points on the locus for B, are given by

xX=s cos(0/2 -7/2+ a) (6.66)
and
y= ssin(0/2 -7/2+ a) (6.67)

where s is the distance measured from the pivot O,. It is not necessary to compute 3,,;, and

Bmax-

Case d (m/2 + 0/2 > a > ) When a > 6, the center G will be located to the left of the
pivot O, as shown in Fig. 6.58d. The center of the circle is given by the intersection of the
line through O, with the line through O,. The coordinates of the center G are given by

tan(6/2) }

tan(0/2) + tan(6/2 -a)

xg = 0204[

and

Vg = —(0204 —xg)tan(8/2)

and the radius is given by
rg= ,fxz + yz

Note that both x, and y, will be negative. The locus for B, will begin at O, and end at B, ,
where :

Ym=0
and
x_=—2rsCOS 2—oz
m B 2
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The extreme values for 8 are given by

0
Bmin"’a*E

and

5 =tan—z[ym_—yg_]

Xy —Xg
For Cases a, b, and d, we can locate B, using any value of 8 between S, and B, The link
lengths are computed using Egs. (6.51) and (6.52) together with the following:
x=rgcosB+x,

y=rgsinfB+y,

ry=(x=1) +? (6.68)
0,8, = W (6.69)
b= tan“[ﬁ) (6.70)
0,B, = \/ [1+7 cos(e - 6’)]2 +[rysin(¢ - 9)]2 (6.71)

In Eq. (6.70), it is important to preserve the signs of both the.numerator and denominator
since ¢ may be greater than 7/2.

For Case c, we can locate values of B, by using the distance s from the pivot O,. For a
given value of s, we can compute the location (x,y) of B, using Eqs. (6.66) and (6.67). Equa-
tions (6.68)—(6.71) can then be used to compute the remaining quantities needed to deter-
mine O,B,and O0,B,.

The crank-rocker design equations are coded in MATLAB and included on the disk
with this book.

6.5.6 Use of Analytical Design Procedure for Optimization

Using the procedure developed, any value of B satisfying B, = B = Bax Will produce a
linkage that satisfies the basic design requirements for 8 and a (or Q). To choose the best
linkage, we must select a criterion to optimize. If the output link of the linkage is subjected
to a constant torque and we wish to design a linkage that can be driven with the smallest
motor possible, it is reasonable to optimize the linkage based on the transmission angle.
Therefore, we will use this as an example of the procedure that would be used for optimiza-
tion. Referring to Fig. 6.53, we see that the maximum and minimum values for the trans-
mission angle are given by Egs. (6.53) and (6.54).
The basic objective function to be minimized during the optimization procedure is

|

However, if U’ is used directly, the optimum linkage will occasionally be one where
7, is very small compared with one of the other link lengths. Therefore, it is convenient to

ku m
S~ Mmax "i‘ ~ Mmin

2

’

U’=max[
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include the link length ratio as part of the objective function. Because r, will be the shortest
link, this function can be written as

Hon o
F=max|-1 3 4
nnn

and
U” = e(F —n)
where n is an integer that represents the largest acceptable value for the link length ratio.
Here, it is assumed that length ratios less than » are acceptable. A typical value for 7 is 5.
The combined objective function is

u=u+wu

where W is a weighting factor that can be chosen to adjust the relative importance of the
length ratio. In many problems, the value chosen for # is not important because linkages
that have good transmission angles often have good link length ratios. When # is 5, values
between 1 and 5 for W will generally give good results.

Once B is selected, the crank-rocker linkage is completely defined, and a value for U
can be computed. Therefore, U is a function of 8 only, and well-established limits for 3 are
known. The optimization can then be easily accomplished by varying 8 and computing U
until U is minimized. This can be done manually, interactively, or by using any one-dimen-
sional (line search) optimization routine. Several such one-dimensional routines are
described by Arora.®

6.6 PATH SYNTHESIS

The path synthesis problem is that of specifying the path taken by a single point fixed in
some member of a mechanism. There may also be a requirement for faster or slower speeds
along different portions of the path. Although many research papers have been written on
the subject of path synthesis, designers usually use a trial-and-error approach in practice.
The traditional tool for this purpose is the Hrones and Nelson coupler-curve atlas.!0 This is
a large book containing plots of four-bar linkage coupler curves for a large variety of points
located in the coupler plane and a large range of link length variations. The approach is to
leaf through the coupler-curve atlas and pick out a curve that has more or less the right
shape and then refine it by trial and error, testing the effect of small variations in the posi-
tion of the coupler point or small variations in the link lengths. This gets quite laborious if
done manually.

Use of either a simple program based on the theory presented in Chapter 5 or profes-
sionally written linkage analysis software can make this task much easier. Coupler-curve
programs written in MATLAB for both four-bar linkages and slider-crank mechanisms are
included on the disk provided with this book. These programs use the same nomenclature
as the Hrones and Nelson atlas. Using these programs, it is possible to review quickly the
coupler curves available and to determine the link lengths and coupler point that will gen-
erate the curve.
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6.6.1 Design of Six-Bar Linkages Using Coupler Curves

Coupler curves from four-bar linkages and slider-crank mechanisms are used in two main
ways. The first is to use the motion of the coupler in the area of the curve to perform some
function. A common use for such points is in packaging and conveying equipment. Figure
6.59 shows a coupler mechanism design for packing hay in a round baler.!! Figure 6.60
shows a mechanism that has been used to feed film in a motion picture projector.!2

A second use for coupler curves is to facilitate the design of six- and eight-link mech-
anisms where the output link is to have a prescribed motion relative to the input link. A six-
link mechanism is represented schematically in Fig. 6.61, where link 2 is the input and link
6 is the output. The output dyad (links 5 and 6) is driven by the coupler point (E) of the four-
bar linkage. By properly selecting the coupler curve, different functional relationships
between ¢ and 0 can be achieved. The design of six-link mechanisms using coupler curves
is discussed extensively by Soni.> The design procedure is illustrated in the following two
examples.

FIGURE 6.59 Coupler point used in
packing mechanism in round baler.'!

FIGURE 6.60 Coupler point used in film feed mechanism.!8



310  CHAPTER6 PLANAR LINKAGE DESIGN

EXAMPLE 6.7
Design of a
Six-Link Dwell
Mechanism Using
a Coupler Curve

Solution

FIGURE 6.61 Six-link mechanism that can be designed using cou-
pler curves.

A mechanism of the type shown in Fig. 6.61 is to be designed such that link 6 is an oscillating lever
and link 2 rotates a full 360°. The output link is to oscillate through a range of 30° during the first 120°
of crank rotation. Link 6 is then to dwell for 90° of crank rotation and return during the remaining
150° of crank rotation.

To solve this problem, it is necessary to have access to an atlas of coupler curves or to use a program
that can generate the coupler curves. Regardless of the procedure used, we must be able to determine
the geometry of the curve and the travel distance along the curve as a function of input rotation. In the
Hrones and Nelson atlas and in the programs ar_crankrocker.m and hr_slidercrank.m provided on the
disk with this book, a dashed line is used for each 5° of crank rotation. We will use the four-bar pro-
gram hr_crankrocker.m to generate candidate coupler curves. The first step is to visualize the shape
of coupler curve that can be used to drive links 5 and 6. Several different geometries might be used,
but the simplest is a curve of roughly elliptical shape. The coupler curves used are displayed in Figs. 6.62
and 6.63, and the design procedure is shown in Fig. 6.64. The procedure is described in the
following.

1. Test different coupler curves to determine whether a portion of the curve in the vicinity of the
minor axis is roughly circular in shape for the desired dwell period (90° or 18 dashes). Fig. 6.62

4f n=4 r,=1 r=3 r=4
3 L
2 -
‘l L
0 -
-1+
2t
3t
4 FIGURE 6.62 Coupler curves for Example
sk By 6.7. Note that each dash corresponds to 5° of

3 2 1 o0 1 2 3 4 s crank rotation.
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gives a set of curves generated with the program hr_crankrocker.m whenr, =4, r,=1,r, =3,
and r, = 4. From the curves displayed, we will select the curve shown in Fig. 6.63.

Tr=4.rn=1 r=3 r=4

ro=1.5366 beta = 40.6013

N A . FIGURE 6.63 Coupler curve chosen

-3 -2 -1 0 1 2 3 4 for design in Example 6.7.

2. After a coupler curve is identified, find the center of the circle that best fits the circular region

identified in step 1. The radius of the circle will be the length of link 5. Identify explicitly the
beginning and end of the circular portion of the curve. The center of the circle arc will be one
extreme position for point F. This is shown in Fig. 6.64, where the mechanism has been redrawn
so that the frame link (#,) is horizontal.

Point F’ corresponds to the second extreme position of . To locate F”, identify the point on the
coupler curve corresponding to 120° (24 dashes) of crank rotation beyond the dwell. Locate a
perpendicular line to the coupler point at this point, and locate F” on this line. Note that when
link 5 is in an extreme position, it will be perpendicular to the coupler curve.

The pivot G must be located on the perpendicular bisector of the line FF'. Locate G such that the
angle FGF' is 30°. The parameters corresponding to the solution are as follows:

=4, r,=1682, BE=1537
n=1, rg=2.694, B=40.6°
r=3, G,=0.697, 6,=0
=4, G,=3.740

Compute and plot the motion of link 6 relative to link 2 to evaluate the design. The resulting
mechanism is simply a four-bar linkage with the addition of two more links (Watt’s six-bar
mechanism). The two additional links are called a dyad and can be easily anatyzed using the pro-
cedures given previously. A MATLAB routine (sixbar.m) for a six-bar linkage analysis based on
the four-bar and dyad routines is provided on the disk with this book. Part of the analysis from
this program is given in Fig. 6.65. The results are close to the design specifications, and the basic
design is acceptable. Note in Fig. 6.65 that the angular velocity of link 6 is approximately zero
during the dwell. The input (crank) velocity was 1 rad/s.
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EXAMPLE 6.8
Design of a
Six-Link
Mechanism for a
Double Oscillation

Solution

FIGURE 6.64 Design procedure
for mechanism in Example 6.7.
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FIGURE 6.65 Analysis of linkage designed in Example 6.7. The velocity plot is based on a crank velocity
of 1 rad’s.

This design procedure can yield a large number of candidate designs. The best design
can be chosen by using an appropriate evaluation criterion. Typical criteria are linkage size,
force transmission characteristics, and acceleration characteristics.

A mechanism of the type shown in Fig. 6.61 is to be designed such that link 6 will make two complete
30° oscillations for each revolution of the driving link.

For this problem, no timing information is required. Therefore, we need only to ensure that the output
link makes two complete oscillations for one oscillation of the input crank. Again, we will use the
four-bar program hr_crankrocker.m to generate candidate coupler curves. The first step is to visualize
the shape of a coupler curve that can be used to drive links 5 and 6. One curve that will work for this
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type of problem is a figure-eight curve. The design procedure is shown in Fig. 6.66 and described in
the following:

Y 3
T C
B 2 p )
N X
8, 4
ez d
S\, ==
/y\\ N
E a\ =< D\\\ “
N 1
\\ ¢ ”
S
G 4
6 F
30°
Fn G'

FIGURE 6.66 Procedure for designing linkage for Example 6.8.

1. Select a coupler curve that is a figure-eight curve with roughly equal lobes. The coupler curve
selected is displayed in Fig. 6.67.

2. After the coupler curve is identified, select the length of link 5 and draw a circle or circle arc
with a radius equal to the length of link 5 and tangent to the coupler curve at the two points b and
d. The center, F', of this circle is one extreme position of point F. Draw another circle or circle
arc of the same radius tangent to the coupler curve at points a and c. The center, F", of this circle
is the second extreme position of F.

3. The pivot point, G, must be located on the perpendicular bisector of the line F'F”". Locate G
such that the angle F'GF" is 30°. Link 6 is the link from F' to G (or from F” to G). Note that
there are two possible locations for point G. The location G is chosen in this example over G’
because it will result in better transmission characteristics. If point G’ is chosen, the linkage will
lock up before it traverses its entire range of motion because the distance G'b is slightly larger
than (EF + FG). The parameters corresponding to the solution are as follows:

n=2, 1r=2212, BE=1927
n=1, r,=1000, B=-3644°
r=2, G,=0625 6 =-2657°
n=15 G,=-2.468

4. Compute and plot the motion of link 6 relative to link 2 to evaluate the design. This is done in
Fig. 6.68 based on the program (sixbar.m) provided on the disk with this book. Again, the input
(crank) velocity was chosen as 1 rad/s.

The results given in Fig. 6.68 are very close to the design specifications. If more accurate results
are desired, the location of G or the lengths of 5 or r; could be adjusted slightly. This can be done
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2 n=2 rn=1 r=2 r,=15
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) X ) FIGURE 6.67 Curve that can be used for
-1 05 0 05 1 15 2 25 3 Example 6.8.
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FIGURE 6.68 Analysis of mechanism designed for Example 6.8.
manually or by using an optimization program that minimizes the error created by the linkage. How-
ever, even if an optimization program is used, the graphical procedure, which is very simple and quick
to apply, is a good means of generating an initial estimate of the optimum solution.
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6.6.2 Motion Generation for Parallel Motion Using Coupler
Curves

In industrial applications, it is sometimes necessary to move a rigid body along a curved
path in such a way that the angular orientation of the rigid body does not change. This situ-
ation, shown in Fig. 6.69, is a special case of rigid-body guidance when all of the positions
are parallel. If we attempt to use a four-bar linkage for this problem, only a parallelogram
linkage can guide a linkage through more than two parallel positions in general,'4 and the
design constraints for parallelogram linkages are severely restricted. Therefore, guiding a
linkage in parallel motion along a complex path generally requires more than four links.

A relatively simple solution to parallel motion synthesis is to use a four-bar linkage
and two parallelogram linkages in parallel to form an eight-link mechanism. The four-bar
linkage defines a coupler path along which one point of the rigid body is guided, and the
parallelogram linkages maintain the orientation of the rigid body relative to the ground.
This configuration is shown in Fig. 6.70.

To design the eight-link mechanism, we need only find a four-bar linkage coupler
curve that will approximate the curve that the output member must follow. This defines
linkage ABCDE in Fig. 6.70. Next the parallelogram linkages are added to maintain the ori-
entation of the rigid body. Referring to Fig. 6.70, we see that link FG is equal in length to
CB, and link GH is equal in length to AB. Lengths HA, BG, and CF are equal, but the actual
length is arbitrary from the standpoint of kinematics. Note that the parallelograms could
also have been used with lengths CD and DE. The side of the linkage used depends on the
design constraints.

In practical situations, the parallelograms may not work for the full range of motion
of the four-bar linkage either because of a need to change branch or because of a mechani-
cal interference among the links. If a full range of motion is required, the parallelogram
linkages can be replaced by two cable, belt, or chain drives. This is shown in Fig. 6.71. The
motion of link 2 relative to link 4 is equivalent in both cases if the two pulley or sprocket
diameters are equal. Any kind of belt, chain, or cable drive can be used as long as there is
no slipping at the pulleys.

Path defining motion

FIGURE 6.69 General parallel
motion along a curved path.

Coupler curve

FIGURE 6.70 Eight-link mechanism
to guide parallel motion along a curved
path.
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C
B
2 4 2 \ /
4 D A4 D
Parallelogram linkage K

Belt or chain drive

C
4

FIGURE 6.71 The motion of a parallelogram linkage can be duplicated by a belt or chain drive if the pul-
leys are of equal diameter.

The equivalent system corresponding to Fig. 6.70 is shown in Fig. 6.72. Different
pulley diameters are used for the two equivalent parallelogram-linkage drives to illustrate
that the two drives are separate. However, the two pulleys pivoting about point B must be
fixed together.

Pulley fixed to rigid body

2 Pulleys fixed together

Rigid body and pivoting about B

/
I
Coupler curve l\

FIGURE 6.72 Replacement of the parallel-
ogram linkages in Fig. 6.70 by belt drives.

EXAMPLE 6.9 | A test fixture must be removed from a hot hydraulic fluid bath. The fixture must be lifted vertically 6 in
Design of an and then carried horizontally approximately 24 in along the approximate path shown in Fig. 6.73. The
Eight-Link test fixture must remain parallel at all times. Design a linkage system that will move the fixture.

Mechanism for
Parallel Motion _
Generation y

/
Possible pivot locations

Approximate path

~ .
\\ Fixture

Enclosure

i Oil bath FIGURE 6.73 General geometry for fixture and

24 in ————» enclosure.

Solution To solve the problem, it is necessary to identify a four-bar linkage coupler curve that will match
approximately the curve represented in Fig. 6.73. The important features of the linkage are the pivot
locations, the 6-in rise in the coupler curve, and the lateral motion of approximately 24 in.
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Two programs (FourBarDesign and HRCrankRockerDesign) for generating four-bar linkage cou-
pler curves are available on the disk with this Book. The first program will generate coupler curves for
both Grashof type I and type II linkages whereas the second program is limited to crank-rocker mech-
anisms. For this problem, a crank-rocker linkage is not necessary so the first program was used. The
linkage was designed by trial and error, and the result is shown in Fig. 6.74.

=) Fourbar Design Windo v

FIGURE 6.74 Screen capture
from FourBarDesign program

showing solution coupler curve.

The linkage is shown with the fixture in Fig. 6.75. Because of the range of motion required for the
linkage, cable-driven pulleys are suggested for the final design rather than parallelogram linkages.

FIGURE 6.75 The mechanism
located in the chamber.
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6.6.3 Four-Bar Cognate Linkages

A given four-bar linkage with coupler point C will generate a unique coupler curve. It is
interesting to note that there are two other four-bar linkages that will generate exactly the
same coupler curve. The three four-bar linkages that will generate the same coupler curve
are called cognates. From a design standpoint, one of the linkages may have more desirable
motion characteristics than the others. Therefore, to select the best one, it is useful to iden-
tify all three linkages once the coupler curve is defined. The existence of the three cognate
linkages was originally discovered by Roberts.*7 A general discussion of cognate linkages
and a proof for Roberts’s theorem that identifies the geometric relationships among cog-
nates are given in Chapter 7. In this chapter, we will limit our discussion to a procedure for
finding cognates.

The geometry of the cognate linkages can be determined by considering extreme ver-
sions of the three linkages. The resulting diagram shown in Fig. 6.76 is called Roberts’s
linkage.# The mechanisms in this diagram will not move; however, the diagram shows the
relationships that must exist among the three cognate linkages. These relationships are
maintained when triangle MQO is shrunk while maintaining similarity, thereby permitting
the linkages to move. In particular, triangles MQO, ABC, GCF, and CDE are similar. Also,
figures MACG, BODC, and FCEQ are parallelograms. The coupler point is C, and two cog-
nate linkages share each of the pivots. Also, the couplers of each of the cognates are geo-
metrically similar to each other and to the triangle formed by the pivots. If we identify the
pivots as M, Q, and O, we can identify the three four-bar linkages by their pivots. That is,
one four-bar linkage is the MQ four-bar, one is the MO four-bar linkage, and the third is the
QO four-bar linkage.

The geometric relationships among three general cognate linkages are shown in
Fig. 6.77. When determining the cognate linkages, it is assumed that the MQ linkage is
known along with the coupler point C. The cognate linkages can be identified with the aid
of Roberts’s linkage, which reveals the geometric relationships among the three linkages.
Given the positions of M and Q and the lengths #,, 3, 4, s, 7, and r;, the equations for the
location of pivot O and the corresponding angles and lengths of the other cognate linkages
are shown in Table 6.1. Note that the cognates will all be of the same Grashof type but may
be different subtypes. When the location of the coupler point is specified, the coordinates of
A, B, and C must be given, or alternatively, the coordinates of 4 and B can be given along
with the angle B and length 7s.

FIGURE 6.76 Roberts’s linkage.
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FIGURE 6.77 Three cognate linkages will generate the
same coupler curve.

TABLE 6.1 Angle and Link Relationships Permitting the Cognate Linkages to Be
Determined. The Variables Refer to the Diagram in Fig. 6.77. The Coordinates (x,, y,),
(xg. ys). and {xc, yc) Are Assumed to Be Known from the Analysis of the MQ Linkage.
Alternatively, 8, ¢, and A Can Be Given Separately

7 7 7.
r6=r2—5 7=r4—5 8=yl—5
n n £}
B=tan™! Ye “Va | _ianY| XB V4
xC—xA xB—xA
xG=xM+(xC_xA) )’G=J’M+(YC—}’A)
xD':xQ+(xC_xB) }’D'—'J’Q"'()’c—yg)

d):tan-l[J’D“J’c] A___tan-l[yc—)’c}

Xp ~—Xc Xc —XG
xE=xD+r1cos(B+¢) yE=yD+r7sin([3+¢)
Xp=Xg+7g cos(/\+B) YF=Y¢ +r6sin()\+B)

’9=\/(x5—xo)2+(x5_xo)2 r10=\/(xE_XD)2+(xE—xD)2

The equations in Table 6.1 can be easily programmed to determine the geometry of
the cognate linkages, and this is done in a program (cognates.m) given on the disk with this
book. Figure 6.78 shows the cognate linkages for the mechanism shown in Fig. 6.77.
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[

-1

2t . . . . . L FIGURE 6.78 Three cognate linkages for the
-1 0 1 2 3 4 coupler curve in Fig. 6.63.
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DOUBLE-ROCKER EXERCISE PROBLEMS

6.1 Design a double-rocker, four-bar linkage so that the base
link is 2-in long and the output rocker is 1-in long. The input link
turns CCW 60° when the output link turns CW through 90°. The
initial angle for the input link is 30° CCW from the horizontal,
and the initial angle for the output link is —45°. The geometry is
indicated in the figure.

0, 0}
45°
B, o0 B,

6.2 Design a double rocker, four-bar linkage so that the base
link is 4-in long and the output rocker is 2-in long. The input link
turns CCW 40° when the output link turns CCW through 80°.
The initial angle for the input link is 20° CCW from the hori-
zontal, and the initial angle for the output link is 25°. The geom-
etry is indicated in the figure.

B,

80° B,

6.3 In a back hoe, a four-bar linkage is added at the bucket in
part to amplify the motion that can be achieved by the hydraulic
cylinder attached to the link that rotates the bucket as shown in
the figure. Design the link attached to the bucket and the coupler
if the frame link is 13-in long and the input link is 12-in long.
The input link driven by the hydraulic cylinder rotates through
an angle of 80°, and the output link rotates through an angle of
120°. From the figure, determine reasonable angles for the start-
ing angles (6, and ¢,) for both of the rockers.

RIGID-BODY GUIDANCE EXERCISE PROBLEMS

6.4 In the drawing, AB=1.25 cm. Use 4 and B as circle points,
and design a four-bar linkage to move its coupler through the
three positions shown. Use Grashof’s equation to identify the
type of four-bar linkage designed.

¥
BJ
6= 60°
4,(2,3)
BZ
0, =45°
4,2, 1)
B, X
4,(0.0),6,=0

6.5 Using points 4 and B as circle points, design a four-bar
linkage that will position the body defined by 4B in the three
positions shown. Draw the linkage in position 1, and use
Grashof’s equation to identify the type of four-bar linkage
designed. Position 4,B, is horizontal, and position 4,B, is ver-
tical. AB=1.25 in.

b Y

4,017 40— 4B
4,(1.63,125) B

/ EBS“

A,(2.13,0.63
¢ )y

B,

6.6 Design a four-bar linkage to move its coupler through the
three positions shown using points 4 and B as moving pivots.
AB =4 cm. What is the Grashof type of the linkage generated?

AY
BS
BZ
60°
452,24
50°
4,(2,0.85) X

4,(0,0) B,
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6.7 A four-bar linkage is to be designed to move its coupler
plane through the three positions shown. The moving pivot
(circle point) of one crank is at 4 and the fixed pivot (center
point) of the other crank is at C*. Draw the linkage in position 1
and use Grashof’s equation to identify the type of four-bar link-
age designed. Also determine whether the linkage changes
branch in traversing the design positions. Positions 4,8, and
A,B, are horizontal, and position 4B, is vertical. AB =3 in.

Y
+ B, (0.0, 2.88)

—+ B, (~1.94, 0.94)

C#
g

4;

1c10,-3.0)

6.8 Design a four-bar linkage to move a coupler containing the
line AB through the three positions shown. The moving pivot
(circle point) of one crank is at 4, and the fixed pivot (center
point) of the other crank is at C*. Draw the linkage in position 1,
and use Grashof’s equation to identify the type of four-bar link-
age designed. Position 4B, is horizontal, and positions 4,B, and
A3B; are vertical. AB=4 in.

Yy 14, 4,
0,2)
Al(f( B,
oo 9 (2,0 “9
-&L B, B, X

6.9 A mechanism must be designed to move a computer termi-
nal from under a desk to its top. The system will be guided by a
linkage, and the use of a four-bar linkage will be tried first. As a
first attempt at the design, do the following:

(a) Use C* as a center point and find the corresponding circle
point C in position 1.

(b) Use 4 as a circle point and find the corresponding center
point A*,

(¢) Draw the linkage in position 1.

(d) Determine the type of linkage (crank-rocker, double-rocker,
etc.) resulting.

(e) Evaluate the linkage to determine whether you would recom-
mend that it be manufactured.

Desk Y
e s Position 3(Horizontal)
GAB (3.3,2.6)
o [Position 2 160° x
4,(-22,-03) 135° 4, (2.1,-0.1)i
Position 1
L/ \

6.10 Design a four-bar linkage to move the coupler containing
line segment 4B through the three positions shown. The moving
pivot for one crank is to be at 4, and the fixed pivot for the other
crank is to be at C*. Draw the linkage in position 1 and deter-
mine the classification of the resulting linkage (e.g., crank-
rocker, double-crank). Positions 4,B, and 4B, are horizontal,
and position 4, B, is vertical. AB =3.5 in.

B, Y
(-1.0,2.5)]
A3+ B,(0.0,2.0)
A+ B, (0.0, 1.0)
ahct X
ke
< AI

6.11 Design a four-bar linkage to move a coupler containing
the line AB through the three positions shown. The moving pivot
(circle point) of one crank is at 4 and the fixed pivot (center
point) of the other crank is at C*. Draw the linkage in position 1,
and use Grashof’s equation to identify the type of four-bar link-
age designed. Position 4B, is horizontal, and positions 4,B, and
A3B; are vertical. AB =6 cm.
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6.12 Design a four-bar linkage to move the coupler containing
line segment 4B through the three positions shown. The moving
pivot for one crank is to be at 4, and the fixed pivot for the other
crank is to be at C*. Draw the linkage in position 1 and deter-
mine the classification of the resulting linkage (e.g., crank-
rocker, double-crank). Also check to determine whether the
linkage will change branch as it moves from one position to
another. Position 4,B, is horizontal, and position 4,B; is verti-
cal. AB=5.1 cm.

Al
(5.0, -1.0)

E’f(:s.o, -5.0)

B, 4,1 (7.8, -1.0)

B,

6.13 Synthesize a four-bar mechanism in position 2 that moves
its coupler through the three positions shown if points C* and
D* are center points. Position 4,8, and position 4,B; are hori-
zontal. AB=4 cm.

Y
D* (3.0, 2.6)

A4, (3.4, 1.6)

45°
4,2.7, 0.7)
-

Bl
4,(0.7, -1.8)

PROBLEMS 323

6.14 Synthesize a four-bar mechanism in position 2 that moves
its coupler through the three positions shown. Point 4 is a circle
point, and point C* is a center point. Position 4,B, and position
A3B, are horizontal. AB =4 cm.

[ 24
C*(23, 4.5)
BZ
B3
4,(27, 3.5)
45°

4,20, 1.0) X

A\ Bl

6.15 A hardware designer wants to use a four-bar linkage to
guide a door through the three positions shown. Position 1 is hor-
izontal, and position 3 is vertical. As a tentative design, she
selects point B* as a center point and A as a circle point. For the
three positions shown, determine the location of the circle point
B corresponding to the center point B* and the center point 4*
corresponding to the circle point 4. Draw the linkage in position
1 and determine the Grashof type for the linkage. Indicate
whether you think that this linkage should be put into production.

Y

Position 3
135°

Position 2

GM (0,8.3)

4,(-3.1,6.6)
Position 1

4,(-4.0,2.8)

6.16 Design a slider-crank mechanism to move the coupler
containing line segment AB through the three positions shown.
The moving pivot for the crank is to be at 4. Determine the
slider point, and draw the linkage in position 1. Also check to
determine whether the linkage can be moved from one position
to another without being disassembled. Position 4B, is hori-
zontal, and position 4,B; is vertical. 4B =2.0 in.

Y A, (269, 1.44)
135°
& 4,(5.06,00)
4,(0,0) B, B, X
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6.17 Design a slider-crank mechanism to move a coupler con-
taining the line 4B through the three positions shown. The line
AB is 1.25 in long. The moving pivot (circle point) of the crank
is at 4. The approximate locations of the three poles (P),, P;3,
Py3) are shown, but these should be determined accurately after
the positions are redrawn. Find A*, the slider point that lies
above B, on a vertical line through B, and draw the linkage in
position 1.

Y ﬁPIS

4, (1.25, 1.70)
.I—_*
1

B}
(1.65,1.25)4 %2 (3.15,1.31)
+P);
P} A

12 3
(215,058) y
B,

6.18 Design a slider-crank linkage to move a coupler contain-
ing the line AB through the three positions shown. The fixed
pivot (center point) of the crank is at C*. Draw the linkage
(including the slider line) in position 1. Position 4,B, is horizon-
tal, and positions 4,B, and 4B, are vertical. AB =4 in.

Yy 14, 145

6,2)
> B,

2,0) 4,0)

o2 00
(i 5, 5 X

6.19 Design a slider-crank mechanism to move a coupler con-
taining the line with 4 through the three positions shown. The
moving pivot (circle point) of the crank is at A. Find the slider
point that lies on line BC and draw the linkage (including the
slider line) in position 1. Note that line BC is not the line on
which the slider moves.

60°\

0.8,0.8) 43

4, 0.4

((IS‘N 30°

FUNCTION-GENERATION EXERCISE PROBLEMS

6.20 A device characterized by the input—output relationship
¢ =a, + a, cos 6 is to be used to generate (approximately) the
function ¢ = 62 (with 8 and ¢ both in radians) over the range
0=0=m/A.

(a) Determine the number of precision points required to com-
pute a, and a,.

A —

(0,0)

(b) Choose the best precision point values for § from among
0, 0.17, 0.35, and 0.52, and determine the values of a, and a,
that will allow the device to approximate the function.

(c) Find the error when 6 = 7/8.

6.21 A mechanical device characterized by the input—output
relationship ¢ = 2a, + 3a, sin 6 + a3 is to be used to generate
(approximately) the function ¢ = 262 (with 6 and ¢ both in radi-
ans) over the range 0 = 6 < 7/4. Exterior constraints on the
design require that the parameter a; = 1.

(a) Determine the number of precision points required to com-
plete the design of the system.

(b) Use Chebyshev spacing, and determine the values for the
unknown design variables that will allow the device to approxi-
mate the function.

(c) Find the error when 6 = 7/6.

6.22 A mechanical device characterized by the input—output
relationship ¢ = 2a, + a, tan § + 43 is to be used to generate
(approximately) the function ¢ = 36> (with 8 and ¢ both in radi-
ans) over the range 0 =< # < /3. Exterior constraints on the
design require that the parameter a; = 1.

(a) Determine the number of precision points required to com-
plete the design of the system.

(b) Use Chebyshev spacing, and determine the values for the
unknown design variables that will allow the device to approxi-
mate the function.

(c) Find the error when 6 = 7/6.

6.23 A mechanical device characterized by the input—output
relationship ¢ = 2a, + a, sin 6 is to be used to generate (approx-
imately) the function y = 2x? over the range 0 < x < /2, where
x,y, ¢, and 0 are all in radians. Assume that the use of the device
will be such that the starting point and range for x can be the
same as those for 6, and the range and starting point for y can be
the same as those for ¢.



(a) Determine the number of precision points required to com-
plete the design of the system.

(b) Use Chebyshev spacing, and determine the values for the
unknown design variables that will allow the device to approxi-
mate the function.

(c) Compute the error generated by the device for x = 7/4.
6.24 Determine the link lengths and draw a four-bar linkage
that will generate the function ¢ = 62 (with 8 and ¢ both in radi-
ans) for values of 6 between 0.5 and 1.0 radians. Use Chebyshev
spacing with three precision points. The base length of the link-
age must be 2 cm. Use the following angle information:

0, =20°, A0 =60°

by =45°, Adp=50°
6.25 Determine the link lengths and draw a four-bar linkage
that will generate the function ¢ = sinf for values of 6 between
0° and 90°. Use Chebyshev spacing with three precision points.
The base length of the linkage must be 2 cm. Use the following
angle information:

0,=30° 46 =90°

bo=30° Ad=60°
6.26 Design a four-bar linkage that generates the function
y = (Vx = x + 3) for values of x between 1 and 4. Use the

Chebyshev spacing for three precision points. The base length of
the linkage must be 2 in. Use the following angle information:

0,=45° A6=50°
¢y =30° A =70°
Compute the error at x = 2.

6.27 Design a four-bar linkage to generate the function y =x?— 1
for values of x between 1 and 5. Use Chebyshev spacing with
three precision points. The base length of the linkage must be
2 cm. Use the following angle information:

6, = 30° 46 =60°
o =45°, Ap=90°

Compute the error at x = 3.

CRANK-ROCKER EXERCISE PROBLEMS

6.28 The output arm of a lawn sprinkler is to rotate through an
angle of 90°, and the ratio of the times for the forward and
reverse rotations is to be 1 to 1. Design the crank-rocker mecha-
nism for the sprinkler. If the crank is to be 1 in long, give the
lengths of the other links.

6.29 Design a crank-rocker mechanism such that with the crank
turning at constant speed, the oscillating lever will have a time
ratio of advance to return of 3:2. The lever is to oscillate through
an angle of 80°, and the length of the base link is to be 2 in.

6.30 A packing mechanism requires that the crank (r,) rotate at
a constant velocity. The advance part of the cycle is to take twice
as long as the return to give a quick-return mechanism. The dis-
tance between fixed pivots must be 0.5 m. Determine the lengths
for r,, r3, and 7.
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6.31 The rocker O,B of a crank-rocker linkage swings sym-
metrically about the vertical through a total angle of 70°. The
return motion should take 0.75 times the time that the forward
motion takes. Assuming that the two pivots are 2.5 in apart, find
the length of each of the links.

6.32 A crank-rocker is to be designed such that with the crank
turning at a constant speed CCW, the rocker will have a time
ratio of advance to return of 1.25. The rocking angle is to be 40°,
and it rocks symmetricaily about a vertical line through O,.
Assume that the two pivots are on the same horizontal line, 3 in
apart.

6.33 Design a crank-rocker mechanism that has a base length
of 2.0, a time ratio of 1.3, and a rocker oscillation angle of 100°.
The oscillation is to be symmetric about a vertical line through
0,. Specify the length of each of the links.

6.34 A crank-rocker mechanism with a time ratio of 23 and a
rocker oscillation angle of 72° is to be designed. The oscillation
is to be symmetric about a vertical line through O,. Draw the
mechanism in any position. If the length of the base link is 2 in,
give the lengths of the other three links. Also show the transmis-
sion angle in the position in which the linkage is drawn.

6.35 The mechanism shown is used to drive an oscillating sand-
ing drum. The drum is rotated by a splined shaft that is cycled
vertically. The vertical motion is driven by a four-bar linkage
through a rack-and-pinion gear set (modeled as a rolling contact
joint). The total vertical travel for the sander drum is 3 in, and
the pinion has a 2-in radius. The sander mechanism requires that
the crank (r,) rotate at a constant velocity, and the advance part
of the cycle is to take the same amount of time as the return part.
The distance between fixed pivots must be 4 in. Determine the
lengths for r,, 73, and r,.

Sander Drum 1 Total Travel = 3"
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6.36 The mechanism shown is proposed for a rock crusher. The
crusher hammer rotates through an angle of 20°, and the gear
ratio Rg/Rp is 4:1, that is, the radius 7 is four times the radius rp.
Contact between the two gears can be treated as rolling contact.
The crusher mechanism requires that the crank (r,) rotate at a
constant velocity, and the advance part of the cycle is to take 1.5
times as long as the return part. The distance between fixed
pivots O, and O, must be 4 ft. Determine the lengths for r,, rs,
and r,.

6.37 The mechanism shown is proposed for a shaper mecha-
nism. The shaper cutter moves back and forth such that the for-
ward (cutting) stroke takes twice as much time as the return
stroke. The crank (r,) rotates at a constant velocity. The follower
link (r4) is to be 4 in and to oscillate through an angle of 80°.
Determine the lengths for r/, r,, and r;.

Cutter
Part Being Machined

6.38 A crank-rocker is to be used in a door-closing mechanism.
The door must open 100°. The crank motor is controlled by a
timer mechanism such that it pauses when the door is fully open.
Because of this, the mechanism can open and close the door in
the same amount of time. If the crank (r,) of the mechanism is to
be 10-cm long, determine the lengths of the other links (r,, 75,
and r,). Sketch the mechanism to scale.

L%

Wall ]

6.39 A crank-rocker is to be used for the rock crusher mecha-
nism shown. The oscillation angle for the rocker is to be 80°, and
the time for the working (crushing) stroke for the rocker is to be
1.1 times the return stroke. If the frame link (r,) of the mecha-
nism is to be 10-ft long, determine the lengths of the other links
(5, 3, and ry). Sketch the mechanism to scale.

6.40 A crank-rocker is to be used in a windshield-wiping mech-
anism. The wiper must oscillate 80°. The times for the forward
and return strokes for the wiper are the same. If the base link (r,)
of the mechanism is to be 10-cm long, determine the lengths of
the other links (,, 75, and r,). Sketch the mechanism to scale.

PATH-GENERATION EXERCISE PROBLEMS

6.41 Design a six-bar linkage like that shown in Fig. 6.61 such
that the output link will do the following for one complete revo-
lution of the input crank:

(a) Rotate CW by 30° for a CW rotation of 210° of the input
crank.

(b) Rotate CCW by 30° for a CW rotation of 150° of the input
crank.

6.42 Design a six-bar linkage like that shown in Fig. 6.61 such
that the output link will make two complete 35° oscillations for
each revolution of the driving link. (Hint: Select a coupler curve
that is shaped like a figure eight.)

6.43 Design a six-bar linkage like that shown in Fig. 6.61 such
that the output link will do the following for one complete revo-
lution of the input crank:

(a) Rotate CW by 40°.

(b) Rotate CCW by 35°.



(¢) Rotate CW by 30°.
(d) Rotate CCW by 35°.

(Hint: Select a figure-eight— or kidney-bean-shaped coupler
curve.)

6.44 Design a six-bar linkage like that shown in Fig. 6.61 such
that the displacement of the output link (link 6) is the given
function of the input link rotation. The output displacement
reaches maximum values of 30° and 60° at input rotations of 60°
and 240°, respectively. The rotation of the output link is zero
when the input rotation angle is 0°, 120°, and 360°.

3

60°

o /

ol 7 1\
[\

30°

20°

oINS/

0°  60° 120° 180° 240° 300° 360°

Rotation of crank 2, degrees

Displacement of link 6, degrees

6.45 Design a six-bar linkage like that shown in Fig. 6.61 such
that the displacement of the output link (link 6) is the given
function of the input link rotation. The output link dwells for 90°
of input rotation starting at 0° and 180°. The maximum rotation
angle for link 6 is 15°.

w n

10°

\\\
LT

50

]// \
0° 90° 180° 270°
Rotation of crank 2, degrees

360°

Displacement of link 6, degrees

6.46 Design an eight-bar linkage like that shown in Fig. 6.70
such that the coupler remains horizontal while the specified
point on the coupler moves approximately along the path given.

|¢————700 mm ———»

—(+ 60 mm +

Coupler Point

500 mm

L o

100 mm/'\

450 mm

PROBLEMS 327

6.47 Re-solve Problem 6.46 if the coupler is inclined at an
angle of 45°.

700 mm ———{

I
[+ + Coupler Point
500 mm 45°
60 mm 450 mm
+ \/(

100 mm

6.48 Design an eight-bar linkage like that shown in Fig. 6.70
such that the coupler remains horizontal while the given point on
the coupler moves approximately along the path from 4 to B to
C. The coupler can return either by retracing the path from C to
B to A or by going directly from C to 4. This means that the
basic four-bar linkage need not be a crank-rocker.

B Equilateral
Triangle

Coupler Point

COGNATE LINKAGE EXERCISE PROBLEMS

6.49 Determine the two four-bar linkages cognate to the one
shown. The dimensions are MA =10 cm, AB =16 cm, AC=32 cm,
OB =21 cm, and MQ = 24 cm. Draw the cognates in the position
for 6 = 90°.
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6.50 Determine the two four-bar linkages cognate to the one
shown. The dimensions are MO = 1.5 in, AB=BC=BQ=AC=11n,
and AM = 0.5 in. Draw the cognates in the position for 8 = 90°.

6.51 Determine the two four-bar linkages cognate to the one
shown. The dimensions are MQ =2 in, AB= BC = BQ =1 in, and
AM = 1.5 in. AC = 0.75 in. Draw the cognates in the position for
0 =45°.

6.52 Determine the two four-bar linkages cognate for the
drag-link mechanism shown. The dimensions are MQ = 1 m,
AM=BQ =4 m, and AB =2 m, and angles CAB and CBA both
equal 45°. Notice that the cognates will also be drag-link mech-
anisms. Draw the cognates in the position in which 6 = 180°.

Va




7.1 SPECIAL PLANAR MECHANISMS

7.1.1 Introduction

Some mechanisms are unusual enough to require special attention. The classes of mecha-
nisms discussed here meet a variety of common needs in mechanical engineering practice.
For this reason they are important, but none requires such extensive treatment as to justify
a chapter to themselves, as is the case with cam and gear mechanisms.

Generation of a straight line by a simple linkage mechanism is a recurring theme.
Slides or roller ways are not always acceptable for implementation in real mechanism
designs, and there continues to be a place for simple, four-bar linkages that can approximate
a straight-line coupler point path with a high degree of accuracy. Likewise, linkages that can
reproduce a path traced by one point at another tracing point with a change in scale find
many uses ranging from machine tools for milling nonrotationally symmetric surfaces to
remote actuation of robotic mechanisms.

Another recurring theme in mechanical engineering practice is the transfer of torque
and motion between shafts that are not coaxial, particularly when the relative alignment of
the shafts must change. Very common examples occur in the drive shafts of automobiles
that must accommodate movements resulting in changes of shaft alignment caused by sus-
pension movements and/or steering movements. There are also numerous examples of this
situation in construction and manufacturing machinery.

Automotive steering and suspension mechanisms are among the most common link-
age mechanisms in practical use. They are usually designed as decoupled, fundamentally
planar linkages. However, misalignments are deliberately introduced to produce desirable
effects such as a tendency for the steering to center itseif. Thus, they become spatial link-
ages with complex interactions.

Yet another recurring need in practical linkage design is for indexing: intermittent,
timed advancement of a drive in a constant direction. This technology had very numerous
and visible applications in the days of mechanical punched-card readers and similar busi-
ness machines. The problem is of continuing practical importance with many applications
in manufacturing and packaging machinery.

7.1.2 Approximate Straight-Line Mechanisms

Approximate straight-line mechanisms occupy a very special place in the history of kine-
matics. These have been used in many practical devices from steam engines to stripchart
recorders. The geometry of several linkages exhibiting approximate straight-line motions is
discussed in the following.
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Watt’s Straight-Line Mechanism Toward the end of the 18th century, when
James Watt and his contemporaries were developing the practical steam engines that pow-
ered the industrial revolution, there were no available means of machining long ways to a
high degree of straightness or of achieving low-friction linear motion. This was needed both
to guide the crosshead of the piston rod and for the valve gear that opened the valves in
coordination with the piston motion. The solution used by Watt and his contemporaries was
to devise a four-bar mechanism with an acceptably long coupler-point trajectory that
approximated a straight line to an acceptable degree of accuracy.

Watt’s straight-line mechanism continues to be of considerable practical importance.!
The linkage is simple, and the configuration is very flexible, allowing great freedom to the
designer. For example, the ratio of the lengths a and 5 shown in Fig. 7.1 is not very critical.
The linkage will produce reasonably straight motion over a wide range of dimensional
ratios b/a. It is not even essential that the two cranks have the same length. The essential fea-
ture is that the dimensions be such that the linkage is capable of assuming a position like
that shown in Fig. 7.1 with the two cranks being parallel and opposed, with the coupler
normal to both. If the cranks are of equal length the tracing point is the midpoint of the cou-
pler, and the line of the coupler in the position shown is the straight line that is approxi-
mated.

Because of its simplicity and ability to provide low friction, approximately linear
guidance, Watt’s straight-line mechanism is useful anywhere exact conformance to linear
motion is not essential. For example, it has been used in rear automotive suspensions of the
live axle type to restrain lateral motion of the axle by constraining the center point of the
axle to move along an approximate vertical straight line relative to the body.

The tracing point for the coupler curve shown in Fig. 7.1 is the midpoint of the cou-
pler. The proportions of a and b are variable. In the case drawn, a = 3 and b = 5. The form
of the coupler curve is known as a lemniscate. As can be seen, the central limbs of the lem-
niscate are good approximations to straight lines over a considerable length.

Chebyshev’s Straight-Line Mechanism The Chebyshev approximate straight-
line mechanism is also a linkage that is both of historical importance and of continuing
practical importance.! Like the Watt mechanism, it is simple. Its advantages are that it pro-
vides a very long segment of the path of the coupler midpoint that is approximately linear
and that both fixed pivots are on the same side of the linear path, as compared with the Watt
mechanism, in which they are on opposite sides. However, the dimensions are more critical
in this case. Referring to Fig. 7.2, we see that the required proportions area = 1, b = 2.5,
and ¢ = 2. As already noted, the tracing point is the midpoint of the coupler. As can be seen,
it approximates a straight line for a considerable distance. It might be noted that these pro-
portions require that the linkage be a type 1 double-rocker. Since it is normally used for
linear guidance of the tracing point, it is used in a coupler-driven mode.

Roberts’s Straight-Line Mechanism Robert’s approximate straight-line mech-
anism is also a symmetrical four-bar linkage, as shown in Fig. 7.3.! The coupler point indi-

a FIGURE 7.1 Watt’s straight-line mechanism.
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FIGURE 7.2 Chebyshev’s approximate straight-line mechanism.

cated generates an approximate straight line for the motion between the fixed pivots. Refer-
ring to Fig. 7.3, we see that the required proportionsarea = 1,b=1.2,c =2, and d = 1.09.
These dimensions make the mechanism a type 2 double-rocker. It is normally used for
linear guidance of the tracing point so that it is normally used in the coupler-driven mode.

Other Approximate Straight-Line Mechanisms There are many other four-bar
linkage configurations that yield reasonable approximations to linear motion of a tracing point.
Those used in level-luffing cranes and similar devices need to have the tracing point outside the
interval between the coupler pivots. A good example is the level-luffing crane (Fig. 7.4) used
on many docks to load and unload cargo. Here it is desirable that the path of the crane hook that
carries the load be a horizontal straight line. This means that the load moves approximately in
a horizontal plane when only turret and jib movements are used. Vertical motion is accom-
plished by the crane’s winch hauling or lowering the cable. Horizontal motion of the load has
two very significant advantages. First, little energy is used for turret or jib motions if the cranks
are counterweighted to eliminate work done against gravity in moving the mechanism itself.
The drives for those motions do not need to have large capacity. Second, it is relatively easy for
the crane operator to visualize a horizontal trajectory of the load and determine whether that
trajectory will interfere with fixed obstacles such as the side of the ship.

The jib of a typical level-luffing crane is arranged as a four-bar mechanism with a
coupler point that approximately describes a horizontal straight line. The pulley at the end
of the jib is placed at this point to produce the desired level-luffing action.

a

FIGURE 7.3 Roberts’s approximate straight-line mechanism.
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FIGURE 7.4 A level-luffing crane. The jib of the crane is configured as a four-bar mechanism that gener-
ates an approximate horizontal straight line at the axis of the sheave over which the cable passes at the end of
the jib. This means that the load moves approximately in a horizontal plane when only turret and jib move-
ments are used.

7.1.3 Exact Straight-Line Mechanisms

It is also possible, in principle, to generate a perfectly straight line with a linkage mecha-
nism, but generally only at the cost of a relatively complex mechanism if large motions are
desired. The first such mechanism to be invented was that of Peaucellier.? Hart? devised a
simpler mechanism that also generates an exact straight line, and several mechanisms based
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on the slider-crank mechanism will generate a straight line for limited motion.? There are
several other known exact straight-line generating linkages with revolute joints, but all are
much more complex than the four-bar approximate straight-line generators discussed here.

A Peaucellier linkage is shown in Fig. 7.5. The linkage has a rhombic loop, ABCD,
that forms a kite shape with the equal-length links PB and PD. The link OA is also equal in
length to the base OP. Point C generates a true straight line normal to the base OP.

As may be seen, this is a much more complex linkage than the four-bar loops used
previously to generate approximate straight lines. It has eight members and six joints, four
of which are ternary joints.

If a slider is introduced, it is possible to generate an exact straight line using the slider-
crank mechanism in Fig. 7.6. The range of motion is limited and a slider is required, but the
basic mechanism is quite simple. Based on the geometry of the linkage, the output motion
will be a simple sine function of the drive link (simple harmonic motion). As indicated in
Fig. 7.6, the mechanism is made up of isosceles triangles.

7.1.4 Pantographs

A plagiograph is a mechanism that exactly reproduces the path of a tracing point at a second
tracer point, usually with a change of scale. The most common class of plagiographs is the
family of pantograph mechanisms.

Pantographs have found many applications beyond that of plagiographs. These range
from carrying contacts to overhead cables on electric trains and streetcars to legs of walk-
ing machines. As will be seen, pantographs are also of theoretical importance in that they
lead to the theory of cognate linkages (Section 6.6.3). Cognate mechanisms, in turn, are of
great usefulness in practical machine design.

Straight Line
Path of Point C
b
C
a
B
FIGURE 7.5 Peaucellier’s exact straight-line mechanism.
This was the first and most famous exact straight-line mecha-
4 nism to be discovered. A number of others have since been dis-
covered, including some that are a little simpler. ABCD is a
. o__ rhombus, and links PB and PD have equal length. Link O4 has
the same length as the base OP. The path of point C'is a true
straight line normal to OP

FIGURE 7.6 Straight-line mechanism based on isosceles
slider-crank mechanism. The entire range of the straight line
can be reached if the mechanism is driven by the coupler.




334

CHAPTER7 SPECIAL MECHANISMS

The Planar Collinear Pantograph The special properties of the pantograph link-
age have been used in a variety of applications. They also have important theoretical impli-
cations leading to the theory of cognate linkages, which will be discussed briefly later in
this chapter.

A simple form of planar pantograph linkage is shown in Fig. 7.7. In Fig. 7.7, link AB
has the length CD. Likewise, link AD has the length BC. Consequently, ABCD is a parallel-
ogram, regardless of the position of the linkage. Further, the lengths OB and OC are in the
ratio 1:4, as are the lengths CD and CE. It follows that triangle OBA is similar to triangle
OCE, because OB/OC is equal to BA/CE and angle OBA is equal to angle OCE. Conse-
quently, the ratio of the lengths O4 and OF is always 1:4. If point 4 traces any path in the
plane of the linkage, point E will trace a geometrically similar path that is magnified by a
factor of 4 compared with the path of point 4. This is best understood by considering the path
of point 4 to be a curve described in polar coordinates with origin at O. The position of the
corresponding point on the path of point £ is also described in polar coordinates centered on
O. The angular coordinate of that point is the same as that of the corresponding point on the
path of point 4. Its radial coordinate is four times that of the corresponding point on the path
of point 4. Hence the curve is the same. It is simply scaled up by a factor of 4.

Because of the tracing property, pantograph mechanisms have been used a great deal
to copy and rescale text and other geometric figures. The magnification factor can be set to
any desired value by varying the proportions of the links. In the form of the linkage that is
shown in Fig. 7.7, it is always equal to the ratio of length OC to OB, which must also be
equal to the ratio of CE to CD.

An example of the use of the pantograph mechanism to copy plane curves is a copy-
ing mill used to produce plate cams. The reader will find an in-depth discussion of cam
geometry in Chapter 8. Most plate cams are bounded by mathematically complicated
curves. To produce cams using a copy mill, a master cam is produced at an enlarged scale
by hand. The profile of the master is traced by a roller with its central axis located at point
E of Fig. 7.7. The axis of the milling cutter is at point 4. The ratio of the roller diameter to
the cutter diameter is the pantograph ratio. Consequently, the mill produces a cam that is
geometrically similar to the master but is reduced in size by the pantograph ratio. The use
of point E, rather than point 4, to trace the master provides improved accuracy, because
errors in the master profile are reduced by the pantograph ratio. The large size of the master
also facilitates its accurate manufacture.

FIGURE 7.7 A simple form of a planar pantograph linkage. Any path
traced by point 4 is reproduced by point E at a magnification of 4:1.
ABCD is a parallelogram. The ratios of lengths CD to CE and OB to OC
are both 1:4. Link OC is connected to the base by a fixed revolute joint at
0.
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The application just described is an example of inversion of the linkage by inter-
changing the tracing points 4 and E. The pantograph can also be inverted by hinging it to
the base with a fixed revolute coincident with 4, rather than at point O. This is shown in
Fig. 7.8. The path of point O is now copied by a geometrically similar path of point E. How-
ever, the magnification ratio is now 3:1 rather than 4:1. This is because, with these dimen-
sions, the ratio of length AE to A0 is 3:1.

There are other variations on the same theme. Figure 7.9 shows the pantograph link-
age used in the legs of the Adaptive Suspension Vehicle that was shown in Fig. 1.1. Here
there is no fixed pivot. Rather, point O is on a vertical slide and point 4 is on a horizontal

FIGURE 7.8 The pantograph of Fig. 7.7 inverted by mounting with a
fixed revolute at point A. The paths of points O and E are geometrically
similar. The magnification factor is now 3:1.

FIGURE 7.9 The leg mechanism of the Adaptive Suspension Vehicle. Point O moves on a slide that is vertical relative to the leg mounting
structure to produce a corresponding vertical motion of the ankle point E. Point 4 moves on a slide that is horizontal relative to the vehicle body
to drive point E along a horizontal path.
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slide. Motion of point 4 alone, produced by a hydraulic cylinder, causes a horizontal recti-
linear motion of the ankle point, E. Motion of point O alone, also produced by a hydraulic
cylinder, causes a vertical rectilinear motion of point E. Simultaneous motion of points 4
and O results in motion of point E along a plane curve. This is what happens when the foot
is picked up and the leg is swung back to its forward position. The magnification factor in
this mechanism is 5:1 for the drive motion (point 4) and 4:1 for the lift motion (point B).

Skew Pantographs A more general form of pantograph is the skew pantograph
shown in Fig. 7.10. OLMN is a parallelogram, and triangle NMQ is similar to triangle LPM.
As shown in the following, triangle OPQ is always similar to triangle LPM. Consequently,
the path traced by point Q is similar to that traced by point P, is rotated through angle a
from the path of P about O, and is magnified by the ratio LM/LP.

These properties are proved as follows. Note that since OLMN is a parallelogram,
£LMLO = ZONM = ¢. Likewise, ZLON = ZNML = 7 — ¢.

Triangles PLO and ONQ are similar for the following reasons:

ZPLO=ZONQ=¢ +a.

Also
NQ _ ML
NM PL

because triangles NMQ and LPM are similar and these are corresponding pairs of sides.
Now NM = OL, and ML = NO because OLMN is a parallelogram. Making these substitu-
tions, we get

No_No  NQ oL

OL PL NO PL
which establishes that triangles PLO and ONQ are similar since NQ and NO, and OL and
PL, are corresponding side pairs and the equal angles ZPLO and ZONQ are the included
angles.

Also, triangle OQMP is similar to PLO and ONQ for the following reasons:

4QMP=27T—,B—-y—(7r—¢.)= T+d—B-—vy
Also, because a, B, and vy are the vertex angles of triangle LPM,

at+tB+y=mw

FIGURE 7.10 A skew pantograph. OLMN is a paral-
lelogram and triangles LPM and NMQ are similar. The
triangle OPQ is always similar to triangles LPM and
NMQ. Consequently, the path traced by point Q is simi-
lar to that traced by point P. The path traced by Q is
rotated relative to that traced by P through angle « and it
is magnified by the ratio OQ/OP = LM/LP.
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SO
ZOMP =7 +¢—(m—a)=d+a=LONQ

Because triangles NMQ and LPM are similar
MQ PM
NO M
or
PM LM ON
MQ NO NQ
noting that LM = ON.
Therefore triangles QMP and ONQ are similar because the corresponding sides PM

and MQ, and ON and NQ, are in the same ratio and the included angles QMP and ONQ are
equal. Triangles QMP and PLO are similar because both are similar to ONQ.

It follows that
ZNQO = ZMQP
and so
LOQP=ZNOM =1y
Likewise
ZQPM = ZOPL
and so
ZLQPO=/MPL=0
Consequently,

LPOQ =«

and triangle OPQ is similar to triangles LPM and NMQ.

The geometric similarity of the paths of points P and Q can be inferred from an argu-
ment similar to that employed in the case of the collinear pantograph. If the path of point P
is considered to be a curve described in polar coordinates centered on O, the radial coordi-
nate is OP. The path of Q is also described in polar coordinates centered on O. The radial
coordinate is LM/LP times that of point P, and the angle reference is rotated through angle
from that used for the path of point P.

Roberts’s Theorem If the path of point P of the skew pantograph of the preceding
section is a circle, then that of point Q will also be a circle, as shown in Fig. 7.11. Thus, if P
is constrained to move on a circle by a crank rotating about fixed pivot, Op, then a crank can
also be connected to point Q from a fixed pivot at the center of its path, O,. Because the
path of Q is similar to that of P and triangle OPQ is always similar to triangle LPM, it fol-
lows that triangle 00,0, is also similar to triangle LPM. This creates two planar four-bar
linkages, OLPO, and O,QNO, for each of which M is a coupler point. Thus the path gen-
erated by point M as a coupler point of OLPO5 is identical to the path traced by M as a cou-
pler point of OpQNO. Thus we have generated two completely different four-bar
mechanisms that generate identical coupler curves. Linkages that have this property are
called cognates.* These are the same cognates that were briefly discussed in section 6.6.3.

We can go further. If points R and S are located by constructing the parallelograms
OpPMR and O,QMS, it can be shown that triangle MRS is similar to triangle LPM and
hence that the four-bar linkage OpRSO,, is also cognate to OLPOp and O,QNO, again
with M as the tracing point. The assemblage shown in Fig. 7.12 is known as Roberts’s
mechanism.
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FIGURE 7.11 A pair of cognate linkages. The path of point P in the skew pantograph of Fig. 7.10 is a
circle centered on Op. Therefore the path of point Q is also a circle, with center Oy, where triangle 00,0,, is
similar to triangle LPM. Therefore cranks OpP and O,Q can be added, and the assemblage will be mobile. M
is the common coupler point.

Roberts’s theorem states that if a planar four-bar mechanism is constructed, a coupler
point is selected, and the corresponding coupler curve is traced, then there are two other four-
bar linkages that will generate the identical coupler curve. That is, there are two four-bar
linkages that are cognate to the original four-bar. They may be obtained by constructing the
Roberts’s mechanism based on the original four-bar. In the case of Fig. 7.12, if we view
OLPOp, as the original four-bar linkage, with M being the selected coupler point, then the

FIGURE 7.12 A general Roberts mechanism. The three four-bar linkages OLPO,, OpRSOy, and O,QONO
are all cognates with M as the coupler point for each.
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cognates are O,QNO and OpRSO,, with M being the coupler point in both cases. Starting
with points O, L, P, Op, and M, we can construct the remainder of the figure by first com-
pleting the parallelograms OLMN and OpRMP to locate points N and R. Triangles 00,0,
NMQ, and MRS may then be constructed similar to triangle LPM to complete the figure.

If the original four-bar linkage is of Grashof type 1, then the cognates will also be
type 1. Likewise, if the original four-bar is type 2, then the cognates are also type 2. Further,
if the original four-bar is type 1 and is a crank-rocker linkage, then one of the cognates will
also be a crank-rocker linkage. The other will be a type 1 double-rocker. The cognates of a
drag-link linkage are both also drag links. The cognates of a type 1 double-rocker are both
crank-rockers.

As indicated in Chapter 6, cognate linkages can be very useful when a linkage has
been found that generates a desired path but that solution linkage has undesirable properties
such as interference with other components. Often one of the cognates will produce the
desired path without the problems of the original linkage.

The Chebyshev linkage of Fig. 7.2 is a type 1 double-rocker. As was discussed in Section 1.18, it is
difficult to transfer motion from the tracing point of this linkage owing to interference with the cranks
since the coupler tumbles between the cranks. As just discussed, the cognates of a type 1 double-rocker
are both crank-rockers and should be free of this problem. Construct the cognates and, hence, produce
a crank-rocker linkage with the same approximate straight-line coupler curve segment as the Cheby-
shev linkage.

Examination of Fig. 7.2 indicates that the coupler point is the midpoint of the line between the cou-
pler pivots. That is, the triangle LPM of Fig. 7.12 has collapsed into a line. Therefore triangle 00,0,
will also be collapsed to a line. Since O corresponds to L, O, corresponds to P, and O, corresponds
to M in these triangles (corresponding vertices have the same vertical angles), it follows that O, will
be midway between O and Op, as shown in Fig. 7.13. Similarly, triangles RMS and MNQ will collapse
to line segments.

Parallelograms OLMN and OrPMR are constructed as shown in Fig. 7.13 to locate points N and R.
The line MON is drawn. Note that in Fig. 7.12, N corresponds to L, M corresponds to P, and Q corre-
sponds to M in the two similar triangles LPM and NMQ. Therefore Q will be at the midpoint of NM in

FIGURE 7.13 Construction of the cognates
of the Chebyshev linkage shown in Fig. 7.2.
OLPO, is the original Chebyshev four-bar
mechanism, and M is the coupler point. The
cognates are ONQO,, and OpRSO,. Their
symmetry with one another is a result of the FIGURE 7.14 The cognate ONQO,, from
bilateral symmetry of the original linkage. Fig. 7.12 with its coupler curve plotted.

N

N
0
o 9,
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Fig. 7.13. Similarly, the line RSM is drawn to represent the coupler of the second cognate. The cranks
OpQ and OS are drawn to complete the two cognates shown by the dashed lines in Fig. 7.13.

The cognate ONQO,, is drawn on its own in Fig. 7.14 with the path of point M plotted. Not only is
it much easier to transfer motion from this linkage than from the original Chebyshev linkage, but the
linkage can be driven by continuous rotation of the crank ON, if desired.

7.2 SPHERICAL LINKAGES

Although spatial linkages, in general, will be discussed in Chapter 9, there are other classes
of mechanisms that are not general spatial linkages in the sense of satisfying the spatial
Kutzbach criterion [Eq. (1.3)] and are certainly not planar mechanisms. One of the most
extensive and practically important such groups is the class of spherical mechanisms, which
includes not only linkages but also spherical cam mechanisms and gears, namely bevel
gears, and rolling contact bearings, namely tapered roller bearings.

Although it is beyond the scope of this book, spherical mechanism theory is an
important component of spatial mechanism theory. This is because the rotational equations
defined for spatial mechanisms in Chapter 9 are identical for spherical mechanisms. How-
ever, the translation equations, also discussed in Chapter 9, are absent in the case of spher-
ical mechanisms. This allows inferences to be made on the basis of a spherical analog, and
these can be applied to spatial mechanisms. There is also a way of generating valid transla-
tion equations directly from the rotational equations.

7.2.1 Introduction

Spherical linkages form a family much like planar linkages. However, whereas in a planar
linkage all the revolute joint axes are parallel, in a spherical linkage they all intersect at a
common point, called the concurrency point. Actually, planar linkages can be thought of as
spherical linkages for which the concurrency point is at infinity.

There are many similarities in the properties of spherical and planar linkages. For
example, spherical linkages obey the same form of the Kutzbach criterion that planar link-
ages do (Section 1.7):

j
M=3(m-j-1)+) f,
ol (1.1)
Consequently, the simplest nontrivial spherical linkage is a four-bar linkage, just as in the
planar case.
Also, there is a form of the Grashof inequality governing rotatability of joints that
works for spherical linkages:

a tog <a,+a,

Here, instead of dealing with the lengths of the links, as in the case of a planar linkage, we
work with the angles between successive joint axes. a; is the smallest angle between two
successive joints, a, is the largest such angle, and a, and a,, are the other two angles.

As in the planar case, the inequality governs the presence of joints in a four-bar link-
age that can be completely rotated. If the inequality is satisfied, there are two completely
rotatable joints. They are the joints whose axes bound the angle a,. Depending on which
link is chosen as the base, the linkage will have characteristics similar to those of a crank-
rocker planar four-bar, or a drag-link, or a type 1 double-rocker. If the inequality is not sat-
isfied, there is no completely rotatable joint, and the linkage behaves like a type 2 planar
linkage.
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There is one variation from the planar analog. Whereas there is no limit on the length
of a link in a planar linkage—beyond the fact that it must be less than the sum of the lengths
of the other three links for it to be possible to assemble the loop—no side angle of a spher-
ical linkage can be greater than 90°. This is because there are, in fact, always two angles
between two lines that are supplements of one another. Either the angle or its supplement
can be viewed as the angle between two axes in a spherical four-bar linkage. If the angle is
greater than 90°, its supplement is less than 90°, so side angles in a spherical linkage can be
said to have an upper limit of 90°.

The closure equations for a spherical four-bar linkage, such as that shown schemati-
cally in Fig. 7.15, may, in principle, be developed using a procedure analogous to that used
to derive the closure equations for a planar four-bar linkage in Chapter 5. However, this
becomes very complex because the entities being dealt with are angles rather than lengths. A
more convenient procedure is to use the loop matrix transformations defined in Chapter 9.
Using either method, the relationship between angle ¢, considered to be the input angle, and
¢,, considered to be the output angle, of the linkage of Fig. 7.15 can be expressed as follows:

sin ¢, sin¢, sina, sina, — cos ¢, cos¢, cosa, sina, sina, + cos¢; sine cosa, sinay

+ cos ¢, sina, sina, cosay + cosa; Cosa, cosay —cosas =0 (7.1)
where ¢, ¢,, b3, and ¢, are the joint angles and @, @,, @3, and «, are the angles between the
joint axes of the spherical four-bar loop as shown in Fig. 7.15.

If ¢, is regarded as having a known value, this rather intimidating-looking equation
has the form

Pcos¢, +Q0sing, +R=0 (7.2)
for which a solution was developed in Chapter 5. Here
P =—cos¢, cosq; sina, sina, +sing; sina, cosay
QO =sin¢; sina, sina,

R = cosd¢ sina cosa, sina, + cosq; COSa, COS@, — COSQ; (7.3)

FIGURE 7.15 A schematic representation of a spherical four-bar mechanism. The heavy lines represent
the joint axes with concurrency point O. a, a,, a3, and a, are the angles between the successive axes. ¢y, ¢,,
5, and ¢, are the joint angles.
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Hence referring to Table 5.1, we can obtain values for ¢, given ¢, from

_ —Q+0P? +Q° - R?

R-P (7.4)
where o = £1 is a sign variable, and
¢ =2 tan"(:). (7.5)

We can also develop relationships between the angular velocities and accelerations about
joints 1 and 2 by differentiation of Eq. (7.1). Differentiation of Eq. (7.1) with respect to time
gives, after rearrangement,

. sina4(cos¢1 sing, sina, +sin¢; cos¢, cosa, sina, —sing, cose cosaz)

¢ =-

sina, (sincl:l cos ¢, sinay + cos @ sing, cose sinay, —sin¢, sina, sin a4) (7.6)

Further differentiation gives

by B
b= D+ L 0 -

where
A=sina, (sin ¢, cos, sinay + cosd sing, cosa sina, —sing, sing, cos a4)
B =2sina, sinay (sin ¢, sing, cosa; — cosey cosd>2)
C =sinaq, (sin ¢ sing, sina, — cos ¢ cos, cosa, sina, + cosd sing cosa, )

D =sina, (sincﬁ, sin¢, sinay — cos¢, cos¢, cosa sina, + cos, sina, cosa4) (7.8)

A spherical four-bar linkage is constructed with the angle between the axes of joints 1 and 2 (a;) being
120°, the angle between axes 2 and 3 (a,) 90°, that between axes 3 and 4 (a;) 75°, and that between
axes 1 and 4 (@) 30°. Member 1 is the base and the mechanism is a spherical crank-rocker linkage.
Find the output angle, ¢,, when the driving joint angle, ¢,, is 90°.

If the input crank is driven at a constant angular velocity of 10 rad/s, find the angular velocity, ¢,
of the driven crank, and its angular acceleration, (132, in the same position.

Substitution of the values
a) = 120° a,=90°% a;=75° a,=30° ¢, =90°
into Eq. (7.3) gives
P=0.75 0=05, R=-0.2588
Substitution of these values into Eq. (7.4) gives
t=-0.3603, ort = 1.3515
Application of Eq. (7.5) gives
¢, =—39.63°, or ¢, = 107.00°

The two solutions correspond to the two solutions obtained in the solution of the position problem of
a planar four-bar and have the same source in the reflection of the driven-crank and coupler about the
plane of the moving joint axis of the driving crank and the fixed joint axis of the driven crank.

Substitution of these values plus ¢, = 10 rad/s into Eq. (7.6) gives the values ¢, = 2.2302 rad/s and

¢2 0.8467 rad/s, respectively corresponding to the two solutions for ¢, given here. Further substitu-
tion into Eq. (7.8) gives the following sets of values:
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for ¢, =-39.63°, 4=0.8634, B=0.3189, C=-0.3189, D =0.2588

for ¢, = 107.00°, 4 =—0.8634, B=—-0.4781, C=0.4781, D = 0.2588
When substituted into Eq. (7.7) with $1 = 0 and the preceding values for d;, and 4'122 we get the fol-
lowing two values for the acceleration of the driven crank: ¢ =—27.20 rad/s? and ¢ — 50.90 rad/s?,

respectively. Once again, these correspond to the two possible solutions of the position
problem.

7.2.2 Gimbals

A set of gimbals is a spherical serial chain that allows an axis through the concurrency point
to be placed in any possible direction. Gimbals are often used in the mounts of directional
instruments such as theodolites or telescopes. They are also used in gyroscopes to allow the
rotor axis freedom to assume any direction relative to the base of the instrument.

7.2.3 Universal Joints

The simplest means of transferring motion between noncoaxial shafts is by means of one or
two universal joints. For this reason this very simple spherical mechanism appears in an
enormous variety of applications. They may be found as components of the Stewart platform
and 3-2-1 platform parallel mechanisms discussed in Chapter 9 and in many other situations.
(Universal joints are also known as Cardan joints in Europe and Hooke joints in Britain.)

Properties of the Universal Joint A common need in machinery is to transfer
rotation between two shafts that are not parallel to one another and that may be free to move
relative to one another. A universal joint is a simple spherical four-bar mechanism that
transfers rotary motion between two shafts whose axes pass through the concurrency point.
The joint itself consists of two revolute joints whose axes are orthogonal to one another.
They are often configured in a cross-shaped member as shown in Fig. 7.16. One of these
joints is arranged with its axis at 90° to that of the driving shaft, and the other has its axis at
90° to that of the driven shaft. In practice, the ends of the shafts are often configured as cle-
vises to mate with the cruciform shafts of the intermediate member. Together with the bear-
ings in which the two shafts turn, the universal joint forms a spherical four-bar linkage with
three sides being 90° angles. The fourth side is, in general, not 90°. This may be better seen
in Fig. 7.17, in which only one side of each of the crossed intermediate shafts is shown.

In general, the angular motion is not uniformly transferred from the driving shaft to
the driven shaft. The relationship between the angles of the driving shaft, 8,, and the driven
shaft, 0, is

cosy = tan 6, tan 6, (7.9)

where v is the angular misalignment of the shafts. This relationship can be quickly derived
from Eq. (7.1). As is indicated in Fig. 7.17, a, = a3 = a, = 90°. Also, @y =yand ¢, = 6,

FIGURE 7.16 Universal, Cardan, or Hooke joint.
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FIGURE 7.17 Universal joint geometry: y is the angular misalignment of the shafts; 0, is the angle of the
input shaft; 6, is the angle of the output shaft.

¢,= 6, where o;and ¢, (i = 1, 2, 3, 4) are consistent with Eq. (7.1). Substituting these values
into Eq. (7.1) reduces it to

sin 6, sin®, — cos @, cosf, cosy =0
which can be rearranged into Eq. (7.9).

If the driving shaft turns with a uniform angular velocity, the rotation of the driven shaft
is not uniform but fluctuates. That is, a single universal joint is not a constant-velocity cou-
pling like those that will be discussed in the next section. However, if the angle between the
shaft axes is small, the fluctuation will also be small and is acceptable in many applications.

The angular velocity relationship can be obtained by differentiating Eq. (7.9) written
in the form

tan 6, = cos y cot 6,
Differentiation with respect to time gives
92 sec’ 0, =— 91 csc® 6, cosy

Hence the ratio of the magnitudes of the shaft velocities is

w 7 cos’ 6, cos
@ _ Y _ COS 0 Cos

w6 sin? 6,
It is helpful to work in terms of the input angle, 6, alone. First use cos26 = 1/(1 + tan2) and
then use the angle equation to eliminate tan?4,:
@ _ cosy _ cosy _ cosy
w sin’ 0](1 + tan’ 02) B sin’ 0,(1 +cos’ y cot? 0,)  sin? 6, + cos® y cos® §,

This expression can be further simplified by replacing sin26[ by 1- cosZG, as follows:

Wy _ COsy _ Cosy
@, 1-cos? 6, + cos y cos? 6 1-sin’ycos’ 6, (7.10)

It may be seen that the velocity ratio is a function of 6, so that for constant input velocity
the output velocity will fluctuate. The velocity ratio varies from 1/cos?y to cosy during the
motion cycle. This relationship is plotted in Fig. 7.18.
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FIGURE 7.18 Velocity ratio fluctuation for a universal joint with y = 120°. The negative values of the
velocity ratio are an artifact of the way these angles are defined in Fig. 7.17. Examination of that figure indi-
cates that 8, decreases when 8, increases. Looking from the driving shaft toward the driven shaft, we see that
both shafts are rotating in the same direction.

A simple automotive vehicle is driven via the front wheels. Universal joints are used in the shafts con-
necting the differential to the front wheels, as a low-cost alternative to the constant-velocity joints that
are normally used to allow rotation of the front wheels about vertical axes for steering. At full steer-
ing lock, the inside front wheel is rotated 30° from the straight-ahead position. Calculate the percent-
age fluctuation in wheel velocity in this position.

If shaft 1 in Fig. 7.17 is viewed as the shaft from the engine and shaft 2 is viewed as the half-shaft dri-
ving the wheel, in the full lock position the angle between the axis of shaft 1 and the axis of shaft 2
will be 30°. That is, y = 180° — 30° = 150°. Applying Eq. (7.10) we get

0, ~0.8660

w, 1-0.25 c0s2¢9l

Thus, the maximum magnitude of the velocity ratio is 0.8660/0.75 = 1.155, and the minimum magni-
tude is 0.8660/1.25 = 0.693. Thus the maximum is 115% of the mean value of 1.0, and the minimum
is 69% of the mean. The maximum percentage fluctuation is 31%.

Dual Universal Joints By using two universal joints in a symmetric combination, it
is possible to have the second joint cancel out the fluctuation generated by the first. This
combination then produces a constant-velocity action.’ If the joints are aligned so that axis
3 of the first coupling is parallel to axis 2 of the second, as shown in Fig. 7.19, then 8," = 6,
where the prime (') is used to designate the angles of the second linkage. Hence, using
Eq. (7.9), we have

cos y =tan 6, tan 6,

cos y =tan 6, tan 6,’ (7.11)
and
tan @ = cosy’ _ cosy _ cos7y tan 6, — tan6,
tanf tané, cosy (7.12)

FIGURE 7.19 Dual universal joints arranged symmetrically. The combination provides a true constant-
velocity coupling, as described in the text.
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FIGURE 7.20 Dual universal joints on parallel, offset shafts. This arrangement also gives motion transfer
between the input and output shafts at a constant velocity ratio.

Hence the output angle of the combined joint, 8,', is always equal to the input angle 8,. The
same relationship is true if the shafts are not angulated, as in Fig. 7.19, but are parallel and
offset, as in Fig. 7.20. This is also a configuration of considerable practical importance. In
fact, the drive shafts of almost all front-engine, rear-wheel-driven automobiles feature this
arrangement.

A front-engine, rear-wheel-driven automobile employs a drive shaft with two universal joints in the
alignment of Fig. 7.20 to transmit torque from the output shaft of the gearbox to the differential. The
differential is mounted on the rear axle, and the suspension is of the live axle type (solid rear axle).
The universal joints accommodate movement of the rear axle permitted by the suspension. The dif-
ferential shaft is nominally parallel to the gearbox shaft. However, the suspension setup maintains this
relationship only to a good approximation. Also, some fore—aft rocking of the differential housing
occurs because of elastic deflection and backlash in suspension components. The angle v, as defined
in Fig. 7.20, varies from 175° to 160° between the suspension stops. The error in v at the rear univer-
sal joint is estimated to be +0.5°. Estimate the maximum percentage fluctuation in the velocity ratio
between the gearbox shaft and the differential shaft.

Because the error in vy is small, we should be able to use a small-angle approximation with acceptable
accuracy.
Equations (7.11) become

cos y=tan 6, tan 6,

and
cos (y +8y)=tan 6,’ tan 6,’
or
cos y—&ysiny=tan 6, tan 6,’
Noting that
, cos
tanf] = tanf, = ——7
tan 6,
. cos ytan @,
cosy—8ysiny= ———=
tan,
or

tan6; = tan 6, (1- Sytany)
Differentiation of this expression with respect to time gives
8; sec’ 6 = 6, sec’ 6, (l -3ytany)
Using

sec’ 6; =1+tan’ 6; =1+tan’ 6,(1- Sy tany)’
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gives the velocity ratio

D

) 1-déytany l—-38ytany

b cos’ 6, {1 +tan® 6, (1 - 8y tan 7)2} 1-28ytanysin’ 6,

Here the small-angle approximation has been used by dropping the &7 term in the expansion of the
denominator. This expression may be further simplified by multiplying top and bottom by the factor
1 + 287 tan vy sin®6, and again applying the small-angle approximation. Then

’

0 .
-ég- :(1+28w/'a;1n'ysin2 0])(1—6ytany)= l—<Sytan'y+2‘<)‘ytan'ysm2 0,
|

or .
-2 =1-8ytanycos26,
01
It is clear from this expression that the maximum magnitude of the velocity ratio, R, is 1 + &y tany
and the minimum value is 1 — 8y tany. Applying the values given in this particular problem, we find

that tan’y will be at a maximum when vy = 160° and 6y = 15°. Then
8y =0.5% 7/180 = 0.00873 rad

tan y =-0.364
)
R, = 1.0032 and R,,;, = 0.9968

The maximum percentage fluctuation of the velocity ratio is thus 0.32%.

7.3 CONSTANT-VELOCITY COUPLINGS

As can be seen in the preceding subsections, universal joints are not constant-velocity
joints. Although paired universal joints can function as constant-velocity joints, the arrange-
ment must satisfy special geometric conditions. There is a need for single joints that can
provide true constant-velocity action and that can accommodate other changes of alignment
such as plunging (movement in the direction of the shaft axis) of one shaft relative to the
other.

7.3.1 Geometric Requirements of Constant-Velocity
Couplings

An essential requirement for constant-velocity transfer of rotation between nonaligned
shafts is that the coupling mechanism be symmetric relative to the plane that bisects the spa-
tial angle between the shaft axes. Examination of Fig. 7.19 indicates that this condition is
satisfied by the double universal joint. However, in many situations, such as the drive trains
of front-wheel-driven automobiles, a more compact joint is needed.

7.3.2 Practical Constant-Velocity Couplings

A common commercial constant-velocity coupling uses bearing balls moving in shaped races
between inner and outer journals to transmit torque. The races are shaped so that the centers
of the balls are always in the plane of symmetry. The arrangement is shown in Fig. 7.21.
Figure 7.21 shows a ball-type constant-velocity coupling with six balls, and Fig. 7.22
shows a photograph of the coupling. The inner journal has a spherical outer surface with six
equally spaced races with semicircular cross sections cut into it. The centerline of each race
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Bearing Balls
Inner Journal

FIGURE 7.21 Ball-type constant-velocity coupling. The balls, six in the configuration shown, roll in races
cut in the inner and outer journals. The centerlines of the races are great circles with their planes inclined

to the journal axes at the same angle. Alternate races are cut with opposing angles. The angles of the races in
the inner and outer races are also opposite. In this way the center of each ball is always at the intersection

of the centerlines of the races in the inner and outer journals, which lies in the plane of symmetry of the
angulated joint. Because the ball centers always lie in a common plane of symmetry, the condition for
constant-velocity action is satisfied.

is a great circle of a neutral sphere that is slightly larger than the surface of the journal. The
planes of the great circles are inclined at equal angles to the journal axis, and alternate races
are cut at opposing angles. The outer journal has a spherical inner surface slightly larger
than the neutral sphere. Races are also cut into it with their centerlines being great circles in
the neutral sphere.
They are cut at the same angle to the journal axis as the races in the inner journal, and
successive races are again cut at opposing angles. The joint is assembled with each ball rolling
in inner and outer races that are at opposing angles. Therefore, the ball center is always at the
intersection of the race centerlines. This ensures that all ball centers lie in a common plane at
all times. This plane bisects the angle between the two journal axes and is, therefore, a plane '

FIGURE 7.22  Ball-type constant-velocity cou-
pling used in front-wheel-driven automobile.
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of symmetry. Since the ball centers all lie in a common plane of symmetry at all times, the
symmetry condition is satisfied and the joint transmits motion with constant velocity.

This type of joint can be made relatively compact and is commonly used in automo-
tive drive shafts to allow smooth torque transmission despite the movements of the wheels
permitted by the suspension.

7.4 AUTOMOTIVE STEERING AND SUSPENSION
MECHANISMS

7.4.1 Introduction

Automotive steering and suspension mechanisms are primarily designed as separate, planar
mechanisms acting in different planes. However, they are interconnected because they have
common links. Also, both have modifications that make them spatial linkages. For exam-
ple, the axis about which the wheel turns in response to movements of the steering linkage
is not vertical. The inclination of the axis, called camber, creates a tendency for the steering
to center itself at low speed, since it results in the vehicle body being raised slightly when-
ever the wheels are turned away from the straight-ahead position. Camber is not effective in
providing centering at high speed. However, another modification, called caster, provides
this action. The wheel steering axis is moved forward relative to the wheel a little way. The
distance the wheel rotation axis trails the steering axis is the caster.

The interconnection, together with modifications such as camber that create a truly
spatial character, can lead to undesirable dynamic interactions. It is very undesirable for
suspension movements to be felt through the steering, or for the position of the steering
linkage to influence suspension performance.

7.4.2 Steering Mechanisms

From a purely kinematic viewpoint, the essential geometry of an automotive steering link-
age is that the axes of the front wheels should, at all times, be concurrent at the axis of the
rear wheels. It is possible to synthesize a four-bar linkage that will constrain the front wheel
axes to approximate this condition very closely. This is the basis of the Ackermann steering
gear. As can be seen from Fig. 7.23, it is necessary that the front wheels be “toed out” to an
increasing extent as the radius of curvature of the vehicle path is reduced.

However, a close approximation to Ackermann geometry is often not used on modern
automobiles, particularly on high-performance vehicles and race cars. This is because, at
high speed, steering becomes a dynamic problem. To change direction, it is necessary to
develop lateral forces at the tire contacts with the road. The production of lateral force
requires some slip between the wheel and the road. By using less toe-out than would be
required by the Ackermann geometry, more lateral slip is generated at the outside front
wheel, which also carries a greater share of the vehicle weight owing to dynamic load trans-
fer and is, therefore, able to generate more lateral force. Some race car steering setups go so
far as to reverse the kinematically ideal relationship by actually toeing the front wheels in
by a small amount during turns. This very aggressive geometry produces very strong cor-
nering action at the expense of tire wear, which is not, of course, such a concern in a race
over a limited distance as it is in general automotive use.

Ackermann action, or any other desired relationship between the steering angles of
the wheels, can be adequately approximated by an eight-bar steering linkage such as that
shown in Fig. 7.24. Because the wheels move vertically with suspension travel, the joints at



350 CHAPTER7 SPECIAL MECHANISMS

RN FIGURE 7.23 The Ackermann steering
IR condition. Since the axes of all four wheels
- \\ meet at a common instantaneous center, the

NS I wheels can roll without any lateral scuffing
1 I Y action. This is the ideal steering geometry at

low speeds.

FIGURE 7.24 A typical steering gear arrangement. The
Pitman arm, O;F, is turned by the steering column. The four-
bar loop O:EFOr is a parallelogram. O.E is the idler arm,
and EF is the relay rod. AC and BD are the tie rods, and O 4
and OB, which are fixed to the structures that carry the stub
axles, are called the steering arms. The steering arms turn
about the steering knuckles O, and Ojp. Note that the linkage
is bilaterally symmetric about the centerline of the vehicle.

the ends of the tie rods must be spherical joints. Thus, the linkage becomes spatial, although
still approximating the designed planar behavior.

In modern cars, it is more common to use a linear input to the steering linkage. This
is typically produced by a rack-and-pinion type of steering box. This linear input is applied
directly to the relay rod. This arrangement may be thought of as the limiting case of the
mechanism in Fig. 7.24 as the arms O¢E and OxF become infinitely long, producing the
configuration of Fig. 7.25. It has the advantages of being simpler (using six members versus
eight), more compact, and potentially lighter.

FIGURE 7.25 The rack-and-pinion steering linkage geometry analyzed in Example 7.5. The position of
the intersection of the front wheel axes as a function of the rack displacement, u, and the values of the wheel
angles y and 8 are tabulated in Table 7.1. The coordinates of i are plotted as a function of u in Fig. 7.26.
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A steering linkage for an automobile is shown in Fig. 7.25. The wheel base of the automobile (dis-
tance between front and rear wheel axes) is ¢ = 100 in. The distance between the steering knuckles is
2 =50 in. The length of the steering arm is @ = 3 in, and it is inclined at angle a = 9° to the plane of
the wheel. The length of the tie rods is » = 10 in. When the wheels are in the straight-ahead position
shown in Fig. 7.25, the inner ends of the tie rods are a distance » = 10.08 in from the steering knuck-
les in the lateral direction, and s = 7.72 in in the longitudinal direction.

Plot the x and y coordinates of the intersection of the front wheel axes for increments of 0.1 in of
the rack displacement, u, in the range 0 <u ” 1.5 in, where the reference frame has its origin at the
middle of the rear axle, as shown. The x coordinate can be interpreted as the radius of curvature of the
path followed by the vehicle, and the y coordinate is the error from perfect Ackermann geometry. As
indicated in Fig. 7.23, if the Ackermann condition were exactly met, y would be zero at all times. Also
calculate the angles of the inner and outer front wheels relative to the straight-ahead position through-
out this range.

The linkage can be analyzed as two slider-crank linkages acting in parallel with a common input, u,
applied to the sliders. Resolving components in the x and y directions respectively, we have for the
right side

acosf+bcosp=r+u (7.13)
asinf@+bsinp=s (7.14)

where p is the tie rod angle as shown in Fig. 7.25.
Similarly, for the left side, we have

acos¢p +bcosv=r—u (7.15)
asing +bsinv=s (7.16)

The angle u may be eliminated from Egs. (7.13) and (7.14) by segregating the u terms on one side of
each equation, squaring both sides of both equations, and adding to give

b = (r+u—acosi9)2 +(s—asin 0)2

or
b* =r* +s* +a’* +u’ +2ru—2aucosf — 2ar cosf — 2assin (7.17)
This equation has the form
Pcos@+Qsin@ +R=10 (7.18)
where
pP= 2a(u+r)
Q= 2as
R=b"-d’—r* =s" =’ - 2mu (7.19)

Hence the standard solution of Table 5.1 may be applied to obtain values of € corresponding to given
values of u. Two values of 8 are obtained for each value of u, one positive and one negative. Only the
negative value is consistent with the configuration shown in Fig. 7.25, so the positive value is dis-
carded.

Similarly, elimination of v from Eqgs. (7.15) and (7.16) gives

b’ = (r - u—acos«,zS)2 +(s—asin<f>)2

or

br=rt+st+at +u’ -2ru+ 2aucos¢ —2ar cos¢p — 2assin ¢ (7.20)
This equation has the form
P'cos¢p +Q’sing +R =0 (721)
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where
P’ =2a(r-u)
Q =2as
R=b-a-r -5 —u* +2ru
(7.22)

for which the solution is also given by Table 5.1. Values of ¢ for incremental values of u throughout
the specified range can be calculated. As was the case for 6, two values of are obtained for each value
of u, one positive and one negative. Only the negative solution is consistent with the configuration
drawn in Fig. 7.25, so the positive solution is discarded.

Now y=7/2 -0 -, and 8 = ¢ + a — 7/2, where y and 8 are the steering angles of the inner and
outer front wheels, as shown in Fig. 7.25, and values of y and & may now be calculated. The resulting
values of y and & throughout the range of values of u are listed in Table 7.1. Also, ¥ and & determine
the location of the intersection, 7, of the axes of the wheels:

q-y _ 9=y

tany=-2"2_ tns=-21"2_
x-p/2 x+p/2 (7.23)

Hence,
(x —p/2)tan7=(x +p/2)tan6
which, when solved for x, gives

p[tany+tan6)

x==
2\ tany—tané

Substitution for x into either of Egs. (7.23) allows a solution for y to be obtained:

o tan ytan &
y=a-p tany—tan §

(7.24)

The results are tabulated in Table 7.1 and are plotted in Fig. 7.26. It may be seen that the linkage gives
a reasonable approximation to the Ackermann condition, except at very large wheel angles.

TABLE 7.1 Numerical Values Obtained by Solution of Example 7.5

u 0% o x y

0.2 4.13 3.99 1475.17 ~4.65
0.3 6.25 5.94 973.19 -391
0.4 8.43 7.87 718.74 -2.86
0.5 10.67 9.79 563.51 -1.50
0.6 12.99 11.68 457.89 0.17
0.7 15.38 13.56 380.59 2.18
0.8 17.88 15.43 320.98 4.52
0.9 20.50 17.29 273.11 7.23
1.0 23.28 19.13 233.42 10.34
1.1 26.25 20.98 198.57 13.90
1.2 29.50 22.81 169.98 17.99
1.3 33.13 24.65 143.39 22.74
1.4 37.38 26.48 118.66 28.44

1.5 42.87 28.31 94.09 35.86
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FIGURE 7.26 The coordinates of the intersection of the front wheel axes, i, plotted against the rack dis-
placement, . x approximates the radius of curvature of the vehicle’s path, and y is the error in location of the
intersection relative to the rear axle axis. That is, y is the deviation from the Ackermann condition. When

u =0, x = and y = 0. The values used in the plot are included in Table 7.1.

7.4.3 Suspension Mechanisms

An automotive suspension performs the function of a vibration filter, reducing the ampli-
tudes of vibrations excited by geometric variations in the road surface. This is the function
of the spring damper arrangements that are integral components of the suspension. Analy-
sis of this vibration filtering action is normally covered in texts on mechanical vibrations
and is beyond the scope of this book. Here we confine ourselves to the kinematic require-
ments of suspension mechanisms.

Automotive suspension mechanisms must allow controlled, single-degree-of-freedom
motion of the wheel axis relative to the body of the vehicle. The travel allowed needs to be
as close as possible to normal to the plane of the ground at the wheel contact. Also, it is nec-
essary for the suspension mechanism to maintain the plane of the wheel as perpendicular as
possible to the ground at all times. This is because automobile tires are designed to develop
maximum lateral force when they are in the upright position, as opposed to motorcycle
tires, which must function in inclined positions during hard cornering. Since the center of
mass of an automotive vehicle is almost always higher than the wheel axes, there is a ten-
dency for the body to roll toward the outside of a turn. Another objective of suspension
design is to attempt to control this tendency to roll.

Automotive steering and suspension mechanisms are truly spatial mechanisms. How-
ever, their initial design generally rests on planar principles.

When viewed from the front, the instantaneous center of motion of the body of the
vehicle relative to the ground is called the roll center. The location of the roll center for a
typical independent suspension geometry is shown in Fig. 7.27. The center is located by
using the Kennedy—Aronholdt theorem as described in Chapter 4.

Of course, the roll center moves as the position of the vehicle body moves. Whereas
the roll center will be on the vehicle centerline for a road vehicle at rest on a level surface,
it will shift off that line in the asymmetric positions that result from cornering. There is also
a roll center for the rear suspension, so one can think of a roll axis, which is the line that
passes through both roll centers.

The location of the roll center relative to the center of mass of the vehicle governs the
effect of inertial forces caused by cornering on the system. Obviously, if the vertical dis-
tance between the roll center and the center of mass is large, the moment produced by lat-
eral acceleration will be large. A suspension geometry that brings the roll center
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I 4 = Roll Center

FIGURE 7.27 Roll center geometry for an automotive independent suspension system. The roll center is
the instantaneous center of relative motion of the vehicle body and the ground.

progressively closer to the center of mass with increasing body roll might be attractive,
because if the action of the suspension springs were linear, it would lead to increasing roll
stiffness with increasing roll angle.

Suspension designers think of the roll center as the point of transfer of the inertial
force between the sprung and unsprung masses of the vehicle. The unsprung mass com-
prises the wheels and suspension members directly attached to them whose position is
directly determined by the road surface. The sprung mass is everything that moves when the
springs are deflected.

7.5 INDEXING MECHANISMS

7.5.1

Indexing mechanisms are intermittent motion mechanisms that hold position alternately
with a timed, unidirectional motion of the output member. This is distinct from other types
of intermittent motion mechanisms such as dwell cams, which alternate forward and return
motion with holding position. The output member of an indexing mechanism always
advances in the same direction. Indexing mechanisms are of practical importance in appli-
cations such as weaving looms, advancing workpieces in repetitive manufacturing opera-
tions, and many instrument mechanisms.

Geneva Mechanisms

The most common type of indexing mechanism is a Geneva mechanism. Geneva mecha-
nisms come in many varieties, both planar and spherical. When advancing, a Geneva mech-
anism is kinematically similar to an inverted slider-crank. When holding position, it
functions as a simple journal bearing.

The name Geneva mechanism originated because these mechanisms were used in
mechanical watch and clock movements in the days when mechanical movements were
dominant, and Switzerland was the world center of the industry.

A simple example of a Geneva mechanism is shown in Fig. 7.28. The pin, P, on the
driving wheel engages the slots in the star-shaped driven wheel to advance the driven wheel
one-quarter turn for every rotation of the driving wheel. In between the advance move-
ments, the eccentric cylindrical journal surfaces cut into the star wheel engage with the
journal surface on the driving wheel to lock the star wheel in position, although the driving
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Driving Wheel

Journal Surfaces
FIGURE 7.28 A four-station Geneva mechanism.
The output member is the star wheel. The star wheel
is advanced by the pin in the input wheel. The star
wheel is advanced one-quarter revolution counter-
clockwise for every revolution of the input wheel.

The advance movement occurs during one-quarter of
a cycle with the star wheel being locked by the jour-
nal surface on the input wheel for the other three-
quarters of the cycle.

wheel continues to rotate. The centerline of the slot must be tangent to the circle, with radius
r, described by the center of the pin at the position in which the pin enters or leaves the slot.
If this condition is not satisfied, there will be infinite acceleration at the beginning of
advancement and infinite deceleration at the end. This condition dictates that the center dis-
tance of the two wheels should be V2r. It also requires that the outer radius of the star
wheel be r. The radius of the journal surfaces is flexible. The centers of the cylindrical
cutouts on the star wheel lie on a circle with radius V/2r.

During the advancing phase of the cycle, the mechanism is kinematically equivalent
to an inverted slider-crank. One of its attractions is that it smoothly accelerates and then
decelerates the star wheel.

The motion of the star wheel may be analyzed by reference to Fig. 7.29. Resolving the
sides of the triangle whose vertices are the two shaft axes and the pin axis in the vertical and
horizontal directions, we get

rsinf = xsin¢
rcos(9+xcos¢=\/5r (7.25)
.Elimination of x by substitution from the first of these equations into the second gives

cos@+ sin6 = \/5
tan ¢

after canceling the common factor r. Rearrangement of this expression gives

tand = sin @
V2~ cos (1.26)
or
o= tan“[ sin@ ]
V2 - cos6 (7.27)

Differentiation of Eq. (7.26) with respect to time followed by simplification gives

(\5 cosf - 1)
(\/5 - cos(})2

q'S(l + tan? d)) =0
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Substitution for tan ¢ from Eq. (7.26) gives, after rearrangement and simplification,

\/-2_cos9—l

3-2 «/E cos@
Differentiation again with respect to time gives, after simplification,

«/Ecose—l 9 \/Esinﬂ

b=6 -6 -
3—2 2COSB (3_2 20036)

In the usual case in which the driving wheel is driven at constant angular velocity, the first
term disappears and
\E sinf

2
(3 -242 cose)

=6
(7.28)

b=

(7.29)
Equations (7.27), (7.28), and (7.29) are plotted versus @ (in degrees) in Fig. 7.30. ¢ is plot-
ted in radians. Of course, ¢ varies from — 45° to 45° during the advancement. The angular
velocity curve is actually ¢/8, and the angular acceleration curve is ¢/62.

FIGURE 7.29 Kinematic modeling of the Geneva mechanism of
Fig. 7.28. 6 is the angle of rotation of the driving wheel, measured from
the line of centers. ¢ is the angle of rotation of the star wheel.
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Driver Angle (deg)
FIGURE 7.30 Position, velocity, and acceleration of the driven wheel of the Geneva mechanism shown in
Figs. 7.28 and 7.29 during the advancement phase of the motion cycle. The angular position of the star wheel

is in radians. The angular velocity and acceleration curves are respectively normalized to the driver angular
velocity and driver angular velocity squared.
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As can be seen from Fig. 7.30, the velocity and acceleration curves are smooth and
well behaved, but the derivative of the acceleration (jerk) is infinite at the beginning and end
of the advancement because the acceleration is discontinuous there. So far, we have con-
sidered only the simplest version of the Geneva mechanism: the four-station planar variety.
The number of stations is the number of slots in the star wheel and may, in principle, be any
number, although the geometric lower limit is three. There is also a practical upper limit at
which the journal surfaces on the star wheel become too short to effectively lock the output
between advancements. The number of pins on the driving wheel is usually one, but drivers
with two or more are possible.

The essential geometry for relating the number of stations to the duration of the
advancement is shown in Fig. 7.31. Here « is the angle between the slot centerline and the
line of centers of the two wheels at the moment of engagement or disengagement of the pin.
That is, « is half the angle between successive slots, or 360°(2N), where N is the number of
stations. As already noted, the slot axis must be tangent to the circle traversed by the pin
center at these positions to avoid infinite accelerations. This determines the relationship
between N and the duration of the advancement, which is 7 — 2« by inspection of the figure.
Consequently, the duration of the advancement increases with the number of stations,
approaching a limit of 180° as the number of stations becomes very large. This has the
advantage of making the advancement motion more gentle but the possible disadvantage of
decreasing the duration of the period for which the output is stationary. The trade-off
between these effects and the desirability of avoiding gearing downstream of the indexing
mechanism determine the choice of the number of stations. Gearing downstream of an
indexing mechanism should be avoided because of the inaccuracy and uncertainty in posi-
tion introduced by necessary backlash in the gear train. Gear backlash is not usually a prob-
lem if the gears are in uniform motion. However, the discontinuous motion output from an
indexing mechanism and consequent reversals of acceleration result in slapping across the
backlash interval. Hence, any speed reduction should be done upstream of the indexing
mechanism.

The number of stations also determines the ratio of the center distance of the wheel
axes to the pin radius and the outside diameter of the star wheel. By inspection of Fig. 7.31,
the former ratio is 1/sin « and the latter is 1/tan a.

If we note that « = w/N, Egs. (7.27-7.29), respectively, become for this more general

case
b= tan™" sinasinf
1—sinacos@

(7.30)
ci;-ésina[ cosf —-sina
1+sin’a -2 sina cosf
(7.31)
e N,
T o i ’
2 i\r ,/
\ X .
r
sin o L/j/
P\/ ’ ta; a FIGURE 7.31 Critical geometry for a Geneva mechanism with N stations.
a= %|/ / a is the angle between the slot centerline and the line of centers at the

moment of engagement of the pin; « is half the angle between successive
slots on the star wheel.
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EXAMPLE 7.6
Analysis of a
Geneva Wheel

Solution

sina cos’asin 6

b= :
) .
(1 +sin a—Zsmacosf))
(7.32)

Spherical Geneva mechanisms allow indexed motion transfer between angulated shafts.
More importantly, a large number of stations can be accommodated without losing positive
locking action between advances.

An indexing drive is to be driven by a synchronous electric motor turning at 360 rpm. (The speed of
a synchronous motor is locked to the alternating-current cycle frequency and so is essentially con-
stant.) The single pin driver is to turn a six-station Geneva wheel. Compute the following:

a.

the number of advances per second,

b. the angle through which the Geneva wheel advances during every revolution of the driving

c

wheel,

. the duration in seconds of the dwell in the output motion,
. the peak angular velocity of the output shaft, and

. the peak angular acceleration of the output shaft.

. The number of advances per second is the number of revolutions of the driver per second, which

is 360/60 = 6.

. The angle advanced is 2a = 360N = 60°, with N, the number of stations, being 6 in this case.

Hence a = 30°.

The fraction of the cycle during which the output is locked (dwelling) is
180 - 2«
A=———
360

with a in degrees, giving A = 1/3. The duration of the complete cycle is T = 1/6 s from part a.
Hence the duration of the dwell is

T=AT=1/18=0.0555s

. Referring to Eq. (7.32), we see that dz is at its maximum value when 6 = 0. Also, for N = 6,

sina=0.5
$0, substituting this value and 6 = 0 in Eq. (7.31) gives
d;max = 0
g is the angular velocity of the drive wheel, so
§=2mx6=37.70 rad/s
Therefore,

Drax =37.70 rad/s

Note that ¢ is positive in the CCW direction and 6 is positive in the CW direction (see Fig.
7.29). Therefore the positive values for both ¢ and 6 indicate that the star wheel rotates in the
opposite direction to the driver.

. Itis necessary to determine the value of 6 that maximizes ¢. A straightforward way to do this

would be to plot Eq. (7.32) in the same way as in Fig. 7.30, but with a = 30°. ¢ and the angle 6
at which it occurs could then be read directly from the plot.

Alternatively, we can differentiate Eq. (7.32) to identify the extrema of ¢. Noting that 6 is con-
stant, we have
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. .y 2
iii: 6 sinacos a 3 [(1+sinza—25inacosé))cosG—4sinasin20
dt (l+sin2a—-25inacos€)
and so

d

@ _,

dt
when

(1 +sin2a)cos0—28inacos20— 4sin asin’8 =0

Replacement of sin%6 by 1 — cos® § and rearrangement of the equation give

cos20+ycos0—2 =0
where
1+sin’a
" 2sina (7.33)
The preceding equation can be treated as a quadratic equation in the variable cos6. Solving for cos6,

we get
-yt \’ 'y2 +8
2

It is possible to show that only the positive value of the square root gives a value of cos 6 with magni-
tude between 0 and 1 in the allowable range of 0 < a < 60°, so only that solution is valid. Hence, dis

at a maximum when
2
1] Y + \j Y +8
2

cosf =

6 =xcos

(7.34)
where the + sign now comes from inversion of the cosine, not from the quadratic solution. Equations
(7.33) and (7.34) are of general validity for locating the maximal values of 4> In the present case, sub-
stituting sina = 0.5 in Eq. (7.33) gives

y=125

Hence Eq. (7.34) gives
6=+22.90°

Substitution of these values into Eq. (7.32) gives
= +1.372
6
Hence, since 8 = 6 X 27 = 37.70 rad/s, the peak angular acceleration is 1950 rad/s2.
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PROBLEMS

Exercise Problems Involving
Cognate Linkages

7.1 A coupler curve has the approximate straight-line section
shown in the figure. Design a four-bar linkage that will generate
the portion of the curve shown. Describe the linkage in suffi-
cient detail that it can be manufactured.

Y

s B x=6

Ya=
*4 Ve xp=18
Ay L R

7.2 Re-solve Problem 7.1ifx,=3,y,=3, s5=20, and y,=25.

7.3 Determine the cognate linkages that will trace the same
coupler curve as that traced by point C in the figure shown.

C

AB=1.5"
BC=1.25"
BD=2.0"
BC=3.0"
DE =1.25"

7.4 Determine the cognate linkages that will trace the same
coupler curve as that traced by point C in the figure shown.

DE=1.125"
BD=225"
BC=10"

Exercise Problems Involving
Spherical Four-Bar Linkages

7.5 A spherical four-bar linkage is shown in the figure. If the
angular velocity of link 2 is 100 rad/s (constant), find the angu-
lar velocity and angular acceleration of link 4 as a function of
the rotation of link 2. Plot the angular velocity and angular
acceleration of link 4 for a full rotation of link 2. Make the cal-
culations for the assembly mode shown in the figure.

7.6 Re-solve Problem 7.5 if &; = 150° but all other data remain
the same.

Exercise Problems Involving
Steering Linkages

7.7 The mechanism shown is used for a steering linkage for an
automobile. The wheel base is 110 in, and link O,F is driven by
the steering column. The toe-in angle () is 9°. If the link dimen-
sions are given as shown, determine the y error in the
Ackermann steering condition (see Figs. 7.23 and 7.26) for a 10°
CCW rotation of OfF. Recall that the linkage OEFOr is a
parallelogram.

0;0,=50in
0B=0,A=3in
OpF =0gE=3in
BD=AC=12in
DC=26in
O:0p=28in
h=8in

7.8 Write a computer program to analyze the steering linkage
shown in Problem 7.7. If only h can change, determine the opti-
mum value for / that will give the least error in y for the Acker-
mann steering condition for a £15° rotation of OF.

7.9 In the rack-and-pinion mechanism shown in Fig. 7.25, the
wheel base is 125 in. If the link dimensions are

p=55in, b=121in

a=35in, r=111in

a=10°% s=6.0in
plot the y error in the Ackermann steering condition as a func-

tion of the displacement u (see Fig. 7.26) for a +1.5-in displace-
ment of u.



7.10 A new subcompact automobile is being designed for
rack-and-pinion steering. Assume that the wheel base is 90 in.
Determine the other dimensions such that the error in the Ack-
ermann steering condition is as small as possible for a +1.5-in
displacement of the rack.

Exercise Problems Involving
Geneva Mechanisms

7.11 The center distance between the driver and follower of a
Geneva mechanism is to be 3 in. The driver is to rotate five rev-

PROBLEMS 361

olutions for each rotation of the follower. The driving pin is to
enter the slot tangentially so that there will be no impact load.
Do the following:

(a) Design the Geneva mechanism and draw it.
(b) Determine the angular velocity and acceleration of the

Geneva wheel for one fifth of a revolution if the angular veloc-
ity of the driver is 100 rpm CCW. Plot the results.

7.12 Re-solve Problem 7.11 if the input link rotates three rev-
olutions for each rotation of the follower. Conduct the velocity
and acceleration analysis for one third of a rotation.
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Cams are used for essentially the same purpose as linkages, that is, generation of irregular
motion. Cams have an advantage over linkages because cams can be designed for much
tighter motion specifications. In fact, in principle, any desired motion program can be
exactly reproduced by a cam. Cam design is also, at least in principle, simpler than linkage
design, although, in practice, it can be very laborious. Automation of cam design using
interactive computing has not, at present, reached the same level of sophistication as that of
linkage design.

The disadvantages of cams are manufacturing expense, poor wear resistance, and rel-
atively poor high-speed capability. Although numerical control (NC) machining does cut
the cost of cam manufacture in small lots, costs are still quite high in comparison with link-
ages. In large lots, molding or casting techniques cut cam costs, but not to the extent that
stamping and so forth, can cut linkage costs for similar lot sizes.

Unless roller followers are used, cams wear quickly. However, roller followers are
bulky and require larger cams, creating size and dynamic problems. In addition, the bear-
ings in roller followers create their own reliability problems.

The worst problems with cams are, however, noise and follower bounce at high
speeds. As a result, there is a preoccupation with dynamic optimization in cam design.

Cam design usually requires two steps (from a geometric point of view):

1. synthesis of the motion program for the follower and
2. generation of the cam profile.

If the motion program is fully specified throughout the motion cycle, as is the case,
for example, with the stitch pattern cams in sewing machines, the first step is not needed.
More usually, the motion program is specified only for portions of the cycle, allowing the
synthesis of the remaining portions for optimal dynamic performance. An example is the
cam controlling the valve opening in an automotive engine. Here the specification is that
the valve should be fully closed for a specified interval and more or less fully open for
another specified interval. For the portions of the cycle between those specified, a suitable
program must be synthesized. This can be done, with varying levels of sophistication, to
make the operation of the cam as smooth as possible. In general, the higher the level of
dynamic performance required, the more difficult the synthesis process.

The second stage of the process, profile generation, is achieved by kinematic inver-
sion. The cam is taken as the fixed link and a number of positions of the follower relative to
the cam is constructed. A curve tangent to the various follower positions is drawn and
becomes the cam profile. If the process is performed analytically, any level of accuracy can
be achieved.
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8.2 CAM-FOLLOWER SYSTEMS

A general cam—follower system consists of three elements as shown in Fig. 8.1. The first
two are the cam and follower, and the third is a spring or other means of ensuring that the
follower remains in contact with the cam. The function of the spring can be replaced by
gravity or by constraining the follower between the two surfaces on the cam or constraining
the cam between two surfaces on the follower. Both of these approaches are usually more
expensive than using a spring and therefore are not commonly used.

A follower is characterized by its motion relative to the ground link and by the geom-
etry of its face that contacts the cam. The cam—follower motion may be either rotational or
translational, and translating followers may be either radial or offset. Examples of these are
shown in Fig. 8.2. The follower surfaces may be either knife edged, flat, spherical (or cylin-
drical), or roller as shown in Fig. 8.3.

Actually, these geometries are all of the same class depending on the radius of curva-
ture of the follower face. That is, the knife edge has a radius of curvature that is zero, the flat
face has a radius of curvature that is infinite, and the general roller and cylindrical follow-
ers have a finite (but nonzero) radius of curvature. In this discussion, only planar cams will
be considered, so no distinction between spherical and cylindrical follower faces will be
made. Also, if only geometric information is of interest, no distinction needs to be made

FIGURE 8.1 Elements of a cam—follower system.

L ]

Offset

@ (&) ©

FIGURE 8.2 (a) Cylindrical-faced, oscillating follower. (b) Offset, flat-faced, translating follower.
(c) Radial, flat-faced, translating follower.

( @:: I
@ I: FIGURE 8.3 (a) Roller follower. (b) Cylindrical-faced

(©)
C ] q ] follower. (c) Flat-faced follower. (d) Knife-edged
® @) follower.
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between roller and rigid cylindrical-faced followers. Obviously, there is a significant differ-
ence from an overall design standpoint, however.

Although here we will consider only planar, rotating cams, in practice a large number
of different cam geometries are found. Some of the different types of cams and follower
systems are shown in Fig. 8.4.

(@) ®

v ® )

FIGURE 8.4  Some types of cams. (a) Radial cam and flat-faced, offset translating follower. (b) Radial
cam and spherical-faced, oscillating follower (c) Radial (heart) cam and translating, knife-edged follower.
(d) Radial two-lobe frog cam and translating, offset, roller follower. (¢) Wedge cam and translating roller fol-
lower. (f) Cylindrical cam and oscillating roller follower. (g) End or face cam and translating roller follower.
(h) Yoke cam and translating roller follower.

8.3 SYNTHESIS OF MOTION PROGRAMS

The problem of motion-program synthesis is the problem of filling in, in an optimal way,
the portions of the motion cycle that are not completely specified. The characteristics of the
problem may be demonstrated by consideration of a cam that is required to drive a follower
that dwells at 0 for a cam rotation of 60°, dwells at 1.0 in for a cam rotation of 110° to 150°,
and is required to move with constant velocity from a displacement of 0.8 to 0.2 in for 200°
to 300° of cam rotation. The specified portions of the motion program are displayed in
Fig. 8.5.

A simple solution to the problem of filling the gaps is simply to move the cam at con-
stant velocity between the specified segments, giving a follower displacement diagram as
shown in Fig. 8.6.

Notice, however, that if this is done, the velocity is discontinuous at cam angles 60°,
110°, 150°, 200°, 300°, and 360°, causing the acceleration to become infinite at these loca-
tions. Since the follower cannot follow an infinite acceleration, this leads to loss of contact
and/or excessive local stresses and resultant noise and wear problems.
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1.0
2B FIGURE 8.5 The statement of
00 the required displacements of a
o 90° 180° 270° 360° cam design problem in graphical
Cam Angle form.
1.0
.
SE
88 FIGURE 8.6 A cam angle-
£g follower displacement program
e 00 that satisfies the displacement
o0 90° 180° 270° 360° requirements specified in Fig.

Cam Angle 8.5.

The preceding motion program matches only the displacements at the ends of the seg-
ments. The infinite acceleration problem can be removed by matching both displacement
and velocity at the ends of segments of the program. One way to do this is to subdivide the
synthesized segments into two parts with a constant acceleration on the first and constant
deceleration on the second. On such a subsegment, if the acceleration is a, the velocity is
given by

v=y, t+at
where v, is the velocity at the beginning of the segment. The displacement is given by
a s
y =5y +vf + E t

where s, is the displacement at the beginning of the segment. Now, if the cam is driven at
constant velocity,

6=90 + wt

where 6 is the cam angle, 6, is the cam angle at the beginning of the segment, and w is the
angular velocity. Hence

(=%

w
9-6))
v=vyy+a
w
2
-6, -6
y=5+v w0)+a( 2(0;)

Therefore, the relationship between s and 6, as plotted on the follower-displacement
diagram, is parabolic (see Fig. 8.7). Cam—follower displacement programs that use this type
of transition are called parabolic. The cam profiles developed from them are also called
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1.0
] |
58 g FIGURE 8.7 A follower dis-
E g ,l placement program that satisfies
S the displacement requirements of
a . . . .
Fig. 8.5 using parabolic transi-
0.0 . . .
0° 90° 180° 270° 360° tions. This is called a parabolic

Cam Angle follower-displacement program.

“parabolic.” It is important to understand that a so-called parabolic cam does not have a par-
abolic curve in its profile. Rather, the parabolas are in the transition curves used in the fol-
lower-displacement program.

8.4 ANALYSIS OF DIFFERENT TYPES OF FOLLOWER
DISPLACEMENT FUNCTIONS

Several different standard functions can be used to connect the parts of the displacement
diagram where a specific type of motion is required. These displacement profiles ultimately
determine the shape of the cam. Many different types of motions have been used in practice,
and some have been extensively studied. These include the following:

uniform motion,

parabolic motion,

simple harmonic motion,

cycloidal motion, and

LA S o

general polynomial motion.

The first two types of program have already been introduced. The first four types of
program can be generated graphically as well as analytically, but the fifth type is generated
only analytically. Both graphical and analytical development will be considered here, where
possible. Both methods assume that the angular velocity, , of the cam is constant. If this is
the case, then

y=y(0)
and
0 = 00 + wt

Here, y is used as a generic output variable. It may correspond to either a linear or
angular displacement of the follower. Note that if the cam motion is given as a function of
time, the motion can easily be represented as a function of the cam rotation in degrees using
the preceding expressions. ‘

The higher derivatives are given by

o) _avar_
dt do dt

and
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y=

Tdt\dedt ) gt \dt) " de g . db

PH) _d(dvdo)_dy(as) &80 _Ly o, v
dr> dt
But because w is constant, « = 0 and

j} — yr/ (,t)2

Therefore, y is a simple constant times y’, and j is also a constant times y". Conse-
quently, even though we ultimately want to know the response to the time derivatives ( and
7), we may work directly with the derivatives (' and ") with respect to the cam displace-
ment. If the cam velocity is not a constant, then the cam profile can be designed for only
one operating situation if higher derivatives are important. In the following, a constant-
velocity cam is assumed, and y is again used to represent either an angular or linear dis-
placement of the follower. Similarly, 6 is used for the displacement of the cam, and it may
be either an angular or a linear displacement.

The follower curves can be studied in terms of the simple diagram shown in Fig. 8.8.
A general displacement diagram will be made up of three or more parts:

1. rises (1 or more),
2. returns (1 or more), and
3. dwells (0 or more).

Both the rise and return parts will contain one or more inflection points. These are
points where a maximum slope is reached, and they correspond to points on the cam surface
with maximum steepness. These points are identified by the locations where the curvature
of the diagram changes sign. At the inflection points, the radius of curvature of the curve is
infinite.

In each of the standard curve cases, we will look at mainly the rise part of the follower
profile. The return part can be determined using the mirror images of the curves considered.

E‘-‘; Rise | Dwell _| Return . Dwell _|
l
&
£z
g ~
flecti i .
2 Inflection Points FIGURE 8.8 Terminology
= 9 used when discussing follower-
0 Cam Displacement 360° displacement programs.

8.5 UNIFORM MOTION

Uniform motion is represented in Fig. 8.9. To derive the equations for the follower dis-
placement, a general form for the mathematical expression corresponding to the type of
motion is assumed. The general equation will have undetermined constants in it, and these
constants can be determined by matching boundary conditions at the two ends of the curve.
For uniform motion, the general form of the curve used is

y=C0



368  CHAPTERS PROFILE CAM DESIGN

¥y
Rise, 8 Dwell

6

5

4
3 L

2

Dwell !

12 3 4 s 6 Cam Motion FIGURE 8.9 Uniform motion.

If L is the amount of the rise, and 8 is the cam rotation required for the rise, then the
constant C must be L/B and y becomes

L
=—0
"
During the rise, the velocity and acceleration are

y=7w

B

and
y=0

The displacement, velocity, and acceleration are plotted in Fig. 8.10. As noted earlier,
the acceleration is infinite at the points where the uniform motion meets the dwells. There-
fore, even for low speeds and elastic members, the forces transmitted will be very large. For
very low speeds, however, this type of displacement diagram might be acceptable.

Graphically, the uniform motion—displacement diagram is characterized by a uniform
change in y for a uniform change in the cam motion. This condition is shown in Fig. 8.9.

Dwell Rise, B . Dwell

] f
§ Acceleration
E o0
3
=
& Velocity
A A
: l
g L
2 1
E |
&9
' -
Cam Motion FIGURE 8.10 Displacement,
\ Acceleration velocity, and acceleration rela-
L tions for uniform motion.

8.6 PARABOLIC MOTION

The equations for parabolic motion can be derived using the same procedure as described
in Section 8.3. However, two parabolas must be used for each transition. The two parabolas
meet at the point midway between the ends of the two dwell regions. The general form for
both parabolas is

y=C0 +C10+C202 (81)
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and
y' =C +2C,0

y'=2G (8.2)

If the cam displacement is taken as O at the beginning of the rise, then at 6 = 0,
y =y'=0.Then, C, = C,=0. Also, at § = /2,y = L/2. Therefore, the displacement and first
and second derivatives with respect to 8 are

0 2
=2L —
g (B)

, L
y —4—-2"0
y"=4_L_2
B (8.3)

and the velocity and acceleration are

Lw

2
yeat

At the point at which the curve meets the first dwell, the velocity and acceleration are
continuous, but the third derivative, or jerk, is infinite. This derivative is proportional to the
change in force and for high-speed cams is an important aspect of the motion. Although not
so serious as having an infinite acceleration pulse, an infinite jerk can excite vibratory
behavior in the system.

For the second half of the rise, the conditions to match are at = 8/2,y = L/2, and at
6 =B,y =L,andy’ =0.Then from Egs. (8.61) and (8.62), we get

2
g=q,+qﬁ+c2(é)

2 2
L=C,+CB+Cp’
0 = Cl +2C2B

The solution to this linear set of equations yields

CO =—L
Cl =£
B

2L

C2 _——

B2

so that

(8.4)
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and , 4L[ 0]
y=1-=
B\ B
»_ 4L
G
Finally, the velocity, acceleration, and jerk are given by
_ 4L_w( - z)
B B
_ 4Le?
=- o

These equations apply to the segment of the program to the right of the inflection
point shown in Fig. 8.11.

Graphically, the part of the curve up to the inflection point can be generated using the
construction shown in Fig. 8.12. For the construction, the horizontal axis is divided into uni-
form increments, and the maximum rise is evenly divided into the same number of equal
increments. The point at the origin is then connected to each of the points on the line of the
maximum rise. Points on the displacement curve are given by the intersection of the diago-
nal lines with the corresponding vertical lines.

A cam return using parabolic motion is shown in Fig. 8.13. To determine the equa-
tions for the return from y = L to 0 during the angular displacement B, we can use Eq. (8.1)
again but with different boundary conditions. To simplify the equations, we will shift the
origin of the coordinate system to the end of the dwell at the beginning of the return. For the
first part of the return, y =L andy’ =0at@ =0andy =L2 at @ = B/2. For these condition,
Cy=L,C,=0,and C,==2L

BZ
The displacement equation is
2
y=L[1- 2[2)
B

(8.5)

For the second half of the return, the conditions to match are at 6 = 8/2, y =L/, and
atf =B,y =0,andy’ = 0. For these conditions,

9 2
y= ZL(I - —J
B (8.6)
Dwell Rise, 8 |Dwell
—
E * Jerk
E o § Jerk . ® g e
;: Displacement ~ F
&l |- Accclemion |
;; Velocity—_~" : \~\ I L
= - L2 b
) ,/ I N,
a | ~
: Cam Motion
i
! FIGURE 8.11 Displacement, velocity,
————————— - acceleration, and jerk relations for para-
o ¥ Jerk

bolic motion during rise.
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Rise, 8 4
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2 L2
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1
—
Dwell Z | FIGURE 8.12 Construction of parabolic
0 1 2 3 4 Cam Motion segment of follower-displacement program.
Dwell Retum’ ﬁ DWEB
/Displacement

=
Q
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~\\ __Velocity I /,/I Cam Motion
| .
~. ! 7~ FIGURE 8.13 Displacement, velocity,
\\ | /’ lJerk ’ . .
L X ~d - § oo acceleration, and jerk relations for para-

bolic motion during return.

In general, the rise and return will not always start at 6 = 0. However, in these cases,
a simple coordinate transformation can be used. If the rise or return actually starts at 6 = v,
substitute (6 — y) wherever @ appears in Egs. (8.3)-(8.6).

Design a parabolic cam—follower displacement program to provide a dwell at zero lift for the first 120°
of the motion cycle and to dwell at 0.8 in lift for cam angles from 180° to 210°. The cam profile will
be laid out using 10° plotting intervals. Assume that the cam rotates with constant angular velocity.

The motion specification is as shown in Fig. 8.14. For the first part of the rise ending at ¢ = 150° in
the interval 120° to 180°, Eq. (8.3) applies if we use 8§ = (¢ — 120°) and 0.8 = L. The resulting expres-
sion for the first part of the rise is

2 2
(4 -120°
y= 2L(—) = 1.6(1’—)
B 60° 8.7)
E
E
§ -1.0
e —_—
.é
£
e
| { ) { 1 | ! | i { 1 i FIGURE 8.14 The
0° 90° 180° 270° 360°

motion specification for

Cam Angle, ¢ Example 8.1.
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For the second part of the rise starting at § = 150°, Eq. (8.4) applies if we use 8 = (¢ - 120°) and
0.8 = L. The resulting expression is

2 \2
y=L 1—2(1—%) =O.81—2(1—MJ

60°
(8.8)

Using Egs. (8.7) and (8.8) produces the successive lifts given in Table 8.1. For the first part of the
return ending at 6 = 285° in the interval 210° to 360°, Eq. (8.5) applies if we use 6 = (¢ — 210°) and
0.8 = L. The resulting expression for the first part of the return is

2 ° 2
y=1L 1-2(2) =0.8 1—2(MJ
B 150°
(8.9)

For the second part of the return starting at 6 = 285°, Eq. (8.6) applies if we use § = (¢ —210° and
0.8 = L. The resulting expression is

2 o 2
y= ZL(I _ﬁ) = 1.6[1—&J
B 150° (8.10)
Using Eqs. (8.9) and (8.10) produces points on the return curve given in Table 8.2. The resulting tran-
sition curves are plotted in Fig. 8.15. Notice that the lift values are tabulated to four decimal places.
Cam and follower systems normally use very rigid components and even small profile variations are
important. For this reason, we normally work with at least four decimal places when doing cam cal-

culations. Gears are another type of profile mechanism in which the components are very rigid and,
consequently, even tiny profile variations can be important.

TABLE 8.1 Cam-Follower Data for Rise in Example 8.1

6 120° 130° 140° 150° 160° 170° 180°
y  0.0000 0.0444 0.1778 0.4000 0.6222 0.7556 0.8000

TABLE 8.2 Cam-Follower Data for Return in Example 8.1

0 210° 220° 230° 240° 250° 260° 270° 280°
y 0.8000 0.7929 0.7716 0.7360 0.6862 0.6222 0.6440  0.4516
0 290° 300° 310° 320° 330° 340° 350° 360°
y 03484 0.2560 0.1778 0.1138  0.0640 0.0284 0.0071 0.0000

Follower Displacement

FIGURE 8.15 The para-
bolic follower-displacement
program generated in
Example 8.1.

Cam Angle, ¢
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8.7 HARMONIC FOLLOWER-DISPLACEMENT
PROGRAMS

Simple harmonic motion can be generated by an offset (eccentric) circular cam with a radial
follower and is therefore a common form to use for a displacement diagram. Cams with this
type of transition curve are commonly referred to as “harmonic cams.” The equations for
simple harmonic motion are formed from the basic equation

C
y=Cy+C cosCyr = Co(l + C—' cos Czoj
0

The displacement, velocity, acceleration, and jerk diagrams are shown in Fig. 8.16.
Simple harmonic motion produces a sine velocity curve and a cosine acceleration curve.
There is no discontinuity at the transition point, so that 6 is defined for all angles between
zero and B. The equations for a rise starting from 6 = 0 and ending at § =8 and y = L are

L[ m‘))
y=—|1l-cos—
2 B

- L(WT . e .. L(Trwr .l
y'=—=|—| sin—, y=——| — | sin—
2\ B B 2\ B B

(8.11)
The equations for the return from 8 =0,y =Lto 8 =B,y =0are
y=—|1+cos—
2 B
, L me . 7wl . mwo
T R T
(8.12)
Dwell Rise, 8 _ | Dwell
il
E o §Jerk .  § Jerk
§ Displacement__
g VelocitK
E E _ Acceleration

| CamMotion  FIJGURE8.16 Shape of the displace-
I ! ment, velocity, acceleration, and jerk
% erk

curves for simple harmonic motion.
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EXAMPLE 8.2
Design for
Harmonic Motion

Solution

” L(wj 0 L(Trw) 0
=——|—=| cos—, y=——| — s —
2\ B B 2\ B B
m L[WT w0 .. L(mo)3 w0
=—| — n—, y=—— n—
2\ B B 2\ B B

A simple harmonic displacement diagram can be generated graphically by drawing a
semicircle on the vertical axis and dividing it into an even number of segments. The cam
motion axis is then divided into the same number of even increments, and horizontal lines
are drawn from the points on the semicircle axis. The intersections of the horizontal lines
with the corresponding vertical lines give the location of points on the simple harmonic
curve. This construction is shown in Fig. 8.17. For the construction, note that

Aa 180
A0 B
where 3 is the cam rotation for the follower to move from lift 0 to L. With the advent of

computers, the graphical procedure is typically used only for schematic representations of
simple harmonic motion.

y
5 6
4\
3 ia L
2
! 0 I 4 5 6
A6 CamMotion  FJGURE8.17 Graphical construction
Rise, 8 of displacement diagram for a simple
harmonic rise.

Design a harmonic cam to satisfy the same motion specifications as for Example 8.1. That is, the
motion program is to provide a dwell at zero lift for the first 120° of the motion cycle and to dwell at
0.8 in lift for cam angles from 180° to 210°. The cam profile will be laid out using 10° plotting inter-
vals.

The motion specification is as shown in Fig. 8.14 where ¢ is the cam rotation angle.
The rise in the interval 120° to 180° can be computed using Eq. (8.11) if we use § = (¢ -120°) and
0.8 = L. The resulting expression for the rise is

y= £[1 — oS 10) = 0.4[1 ~ Cos M)
2 B

OO
(8.13)
The results are given in Table 8.3.

For the return in the interval 210° to 360°, Eq. (8.12) applies if we use 6 = (p—-210°and 0.8 = L.
The resulting expression for the return is

y= g[l + cos %0) = 0.4[1 + cOSMJ

150° (8.14)
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Using this equation produces the successive values for y given in Table 8.4.

TABLE 8.3 Cam-Follower Data for Rise Using Simple Harmonic Motion in Example 8.2

6 120° 130° 140° 150° 160° 170° 180°
y 0.0000 0.0536  0.2000 0.4000 0.6000 0.7464  0.8000

TABLE 8.4 Cam-follower Data for Return in Example 8.2

0 210° 220° 230° 240° 250° 260° 270° 280°
y 0.8000 0.7913 0.7654 0.7236 0.6677  0.6000 0.5236 0.4418
0 290° 300° 310° 320° 330° 340° 350° 360°
y 0.3582 0.2764 0.2000 0.1323 0.0764  0.0346 0.0087  0.0000

The tabulated lift values may be compared with those of Example 8.1 to observe the differences
between comparable parabolic and harmonic transition curves. If plotted, the follower-displacement
program would be difficult to distinguish from Fig. 8.15. However, there will be important differences
in the values for the derivatives.

8.8 CYCLOIDAL FOLLOWER-DISPLACEMENT
PROGRAMS

All of the motions given so far have nonzero values of acceleration (and therefore infinite
jerk) at the beginnings and ends of the motion and therefore are limited to relatively low
speeds. Cycloidal motion has zero acceleration at the beginning and end of the motion and
so is useful for relatively high speeds.

A cycloidal transition produces a sinusoidal acceleration curve. The equations for the
rise are

2 B
2
,,,_4L13r cos—zﬂ, y 4L7r2( Jcosm
B B B

These curves are plotted in Fig. 8.18. There is no discontinuity at the inflection point,
and therefore the equations are valid for values of 6 from zero to 8. The curve is symmet-
ric, and the return is given by y = L —y. Therefore, ' =—-y', )" =—)",and y"" = - """
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Cycloidal motion may be obtained by rolling a circle of radius L/2m, where L is the
total rise, on the displacement axis as shown in Fig. 8.19. However, to construct the curve
graphically, a more convenient, alternative way is shown in Fig. 8.19. First, a circle with
diameter L/ and center at (3, L) is divided into an even number of increments, and the
resulting points are projected onto the displacement axis. The cam motion axis is divided
into the same number of increments. A series of lines parallel to the line from the origin to
the point (8, L) is then drawn from the projected points on the circle diameter. The inter-
sections of these lines with the corresponding vertical lines from the cam-motion axis give
points on the cycloidal curve.

y 4_.5
0,6

/~ L
/ = 2
/ L
| - /% / .

N\

~ FIGURE 8.19 Graphical construction
12 34 5 Cam Motion . < 4
Rise, B of displacement diagram for cycloidal

| | motion.

8.9 GENERAL POLYNOMIAL FOLLOWER-
DISPLACEMENT PROGRAMS

For high-speed machines, it is common to specify a general polynomial profile for a cam.
Depending on the order of the polynomial chosen, it is theoretically possible to match
almost any conditions posed by the designer. A polynomial curve is fitted to the rise or
return. Only odd-order polynomials are appropriate for rises or returns between dwells if the
same conditions are to be matched at both ends of the polynomial. A first-order polynomial
gives constant velocity and infinite acceleration at the beginning and end of the transition.
This is the uniform motion profile discussed previously. A third-order polynomial gives a
parabolic velocity variation, linear acceleration, and infinite jerk at the beginning and end
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of the transition. A fifth-order polynomial gives finite acceleration and jerk. The derivative
of jerk is infinite at the ends of the transition. A fifth-order fit is the practical maximum
unless great care is taken during manufacturing. Dynamic effects resulting from manufac-
turing errors tend to become more important than those from curve fitting at this stage.

For a general polynomial follower displacement, the displacement function is given
by

y=1(0)=F 49
i=0

where 8 is the cam angle, and the A’s must be determined from the conditions to be
matched. The equation permits us to match the same number of conditions as there are 4’s,
that is, n + 1 conditions. When » is large and the angles are measured in degrees, the terms
in the summation can vary greatly in size. For example, if 6 is 100° and n is 10, the coeffi-
cients of @' in the equation can vary hugely, and round-off error will make it difficult to
obtain an accurate solution. Therefore, it is convenient to rewrite the displacement equation
in terms of the cam rotation angle 3, which gives the range over which the equation is to be
used. The resulting equation is

r=s0-3e(3]

Now the coefficients of the constants are always numbers between 0 and 1, and
round-off error problems have been greatly reduced. The constants in the two equations are
related by the simple expression

A=
B

The conditions to be matched will typically involve at least the velocity and acceler-
ation of the follower, and the required equations for these conditions can be written as

. (i—l)
IPYANIR IR e
-f(e)_ 5 a ,»zllc'[ﬁ]
and

e 10 (0T 1 (Ve o\
y—f(e)—Edt—zlzl lC,[EJ +Z;-2—(E) Zl(l_l)c‘(_ﬁ-)

i=2

Notice that the summation on the velocity term starts at 1 because C, does not appear
in the equation, and the summation on the acceleration term starts at 2 because neither C,
nor C, appears in the acceleration equation.

Now if a constant-velocity cam is used,

de
Y ew
dt
and
2
a9 _,
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where o is the angular velocity of the cam. The follower equations may then be written as

the following:
n 0 i
=Y C|—
2e(3)
n (i-1)
525

y=70)- (%Jzif(i— 1)c,.(%)“‘2)

i=2

i=1 (0)=[%J3ii(i—l)(i—2)q [ %J""”

i=3

As an example of the use of the polynomial profile, assume that we begin and end the
follower displacement with a dwell as shown in Fig. 8.20 and assume that we want to match
the position, velocity, and acceleration at both the beginning and end of the period being
considered.

For points 4 and B in Fig. 8.20, the following conditions apply:

0=0=>y=py=3y=0
0=B=>y=L

There are six conditions, so the position equation must have six constants. The result-
ing equations for position, velocity, and acceleration are

2 3 4 5
y=C0+C1(%J+C2[%) +C3[%J +C4(%) +C5(%)
® : oY A}
'=73- C1+2C2[BJ+3C3(BJ +4C4(§) +SC5(§)

o oY oY
[ ] 2C2 +6C3[EJ+12C4(EJ +20C5(E]

Dwell Rise, B

;:: —l

£

g _

a Displacement Curve

2 >
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z L
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& FIGURE 8.20 Initial infor-
mation for polynomial profile

4 Cam Motion

example.
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Evaluation of these equations at the beginning and end of the rise period gives the fol-
lowing six equations that must be solved:

0

Go

0=_(1_)C1
B

2
0=(2J 2C,
B
L=Cy+C+C,+C;+Cy +Cs

= 2], +2C, +3C, +4C, +5Cs
B 2 4

2
0= (—Z—J [2C, +6C; +12C, +20Cs ]

Solution for the unknown constants C, through C; gives

CO = Cl =C2 =0
C3 = lOL, C4 =—15L, C5 =6L

The displacement equation can then be written in the form

A} o\ oY
y=10L(—] —lSL(——) +6L(—j
B B B

This is called the 3-4-5 polynomial transition because of the powers of the terms that remain
in the expression. The first three derivatives and the velocity, acceleration, and jerk are

It

given by
[/ \2 3 4]
6675
pi\B) \B) \B)]" B |\B
[ 2 3] 2
. [B_J_{e] +2(2) , yzw{g]
& |B)(B) "L B
- , \
60L 0 0 )
]l
|O\B) B B
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§ Velocity Displacement
E i
é
3
£

Cam Motion

Jerk

J (&)

FIGURE 8.21 Shape of the
displacement, velocity, acceler-
ation, and jerk relations for the
3-4-5 polynomial motion.
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These general relationships are plotted in Fig. 8.21. The displacement results are visually
similar to the cycloidal curve, but the velocity, acceleration, and jerk are somewhat differ-
ent. In general, this type of cam will begin and end its motion more slowly than the other
types, and to produce such a cam, extreme machining accuracy is required, especially at the
beginning and end of the motion. The machining is commonly done on a computer numer-
ically controlled (CNC) milling machine.

TABLE 8.5 Comparison of the Different Types of Cam-Follower Motion for B=L=1

0 y (linear) y (parabolic) y (harmonic)  y {cycloidal) y (polynomial)
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0500 0.0050 0.0062 0.0008 0.0012
0.10 0.1000 0.0200 0.0245 0.0065 0.0086
0.15 0.1500 0.0450 0.0545 0.0212 0.0266
0.20 0.2000 0.0800 0.0955 0.0486 0.0579
0.25 0.2500 0.1250 0.1464 0.0908 0.1035
0.30 0.3000 0.1800 0.2061 0.1486 0.1631
0.35 0.3500 0.2450 0.2730 0.2212 0.2352
0.40 0.4000 0.3200 0.3455 0.3065 0.3174
0.45 0.4500 0.4050 0.4218 0.4008 0.4069
0.50 0.5000 0.5000 0.5000 0.5000 0.5000
0.55 0.5500 0.5950 0.5782 0.5992 0.5931
0.60 0.6000 0.6800 0.6545 0.6935 0.6826
0.65 0.6500 0.7550 0.7270 0.7788 0.7648
0.70 0.7000 0.8200 0.7939 0.8514 0.8369
0.75 0.7500 0.8750 0.8536 0.9092 0.8965
0.80 0.8000 0.9200 0.9045 0.9514 0.9421
0.85 0.8500 0.9550 0.9455 0.9788 0.9734
0.90 0.9000 0.9800 0.9755 0.9935 0.9914
0.95 0.9500 0.9950 0.9938 0.9992 0.9988
1.00 1.0000 1.0000 1.0000 1.0000 1.0000

To compare the profiles generated by the different follower-displacement programs,
let =L =1, and vary 6 from 0 to 8. We can then compute y as a function of 6 in incre-
ments of 0.05. The results are shown in Table 8.5. Notice that the variation among the dif-
ferent profiles is very small in most cases. This emphasizes that extreme accuracy must be
achieved if the benefits of using the different follower-displacement programs are to be
realized.

8.10 DETERMINING THE CAM PROFILE

Once the follower motion is determined as a function of the cam displacement, the cam
surface can be found either graphically or analytically. For extremely accurate cams, the
geometry must be determined analytically and the machining must be done using CNC
milling machines. For low-speed cams, however, a graphical layout and manual machining
are adequate.
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In both the graphical and analytical approaches to determining the cam geometry, the
cam mechanism must be inverted. That is, the cam is taken as the reference system, and the
frame and follower are considered to move relative to the cam. To maintain the correct rel-
ative motion, the follower will move relative to the cam in a direction opposite to the motion
of the cam relative to the follower.

If we restrict our discussions to planar, rotating cams, four general types of followers
are possible: (a) a translating cylindrical-faced follower, (b) a translating flat-faced follower,
(c) a rotating cylindrical-faced follower, and (d) a rotating flat-faced follower (Fig. 8.22).

Notice that the cam geometry is independent of the type of joint between the cylin-
drical-faced follower and the cam. The kinematic design procedure is exactly the same
when a roller follower or a solid cylindrical-faced follower is involved. We will consider
both graphical and analytical approaches to the design of the cam for each type of follower
shown in Fig. 8.22.

8.10.1 Graphical Cam Profile Layout

EXAMPLE 8.3

Layout of a Cam
Profile for a Radial
Roller Follower

As already indicated, cam profiles are laid out graphically using inversion. That is, the cam
is viewed as stationary, and the successive positions of the follower are located relative to it.
This results in a polar plot of successive follower positions. The cam profile is then filled in
as the envelope curve of the follower positions.

The first step in laying out the cam profile is to select a base circle radius. The base
circle represents the position of the follower at zero lift. Successive lift values are plotted
radially outward from the base circle.

Choosing a large base circle radius results in a large cam. However, if the base circle
is too small the cam profile may have hollows of smaller radius than the follower. Since the
follower will bridge across such a hollow, it will not follow the desired lift program. Obvi-
ously, this situation must be avoided, and it is therefore necessary to have a means of com-
puting the radius of curvature of the cam at different locations.

The pressure angle of a cam is the angle between the contact normal and the velocity
of the point on the follower at the contact location. Reducing the pressure angle reduces the
contact loads and promotes smoother operation with less wear. Increasing the base circle
radius decreases the maximum value of pressure angle. Thus, it is good practice to use the
largest base circle that the design constraints will allow. As a general rule of thumb, the base
circle radius should be two to three times the maximum lift value.

FIGURE 8.22 Common fol-
lower configurations for planar,
rotating cams. (a) Translating
cylindrical-faced follower;

(b) translating flat-faced fol-
lower; (c) rotating cylindrical-
faced follower; (d) rotating
flat-faced follower.

Lay out a cam profile using the harmonic follower displacement profile of Example 8.2. That is, the
follower is to dwell at zero lift for the first 120° of the motion cycle and to dwell at 0.8 in lift for cam
angles from 180° to 210°. The cam is to have a translating, roller follower with a 1-in roller diameter.
The cam will rotate clockwise. Lay out the cam profile using 10° plotting intervals.
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Solution

The basic motion specification is as shown in Fig. 8.15. Using the results of Example 8.2 produces
the lift values to be plotted given in Table 8.6. Notice that the dwells correspond to locations on the
cam where the radius is constant.

TABLE 8.6 Follower Displacements for Example 8.3

6 0,360° 10° 20° 30° 40° 50° 60° 70° 80°
y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 90° 100° 110° 120° 130° 140° 150° 160° 170°
y 0.0000 0.0000 0.0000 0.0000 0.0536 0.2000 0.4000 0.6000 0.7464
0 180° 190° 200° 210° 220° 230° 240° 250° 260°
y 0.8000 0.8000 0.8000 0.8000 0.7913 0.7654 0.7236 0.6677 0.6000
6 270° 280° 290° 300° 310° 320° 330° 340° 350°
y 05236 0.4418 0.3582 0.2764 0.2000 0.1323 0.0764 0.0346 0.0087

The layout of the cam is accomplished by drawing radial lines at 10° increments. Because the cam
rotates clockwise, the radial lines are laid off and labeled in the counterclockwise direction, as shown
in Fig. 8.23. Next, the base circle and the prime circle are drawn. The base circle is chosen to have a
1.5-in radius, and it is the largest circle that can be drawn inside the cam profile and be tangent to the
cam profile. The radius of the prime circle is equal to r, + r, where 1y 1s the base circle radius and r,
is the radius of the roller follower. In this problem, the prime-circle radius is 2.0 in. The cam profile
is initially laid off from the prime circle to give the pitch curve. The pitch curve is the curve traced by
the center of the roller follower. Notice that the pitch curve will be the cam profile if ry is zero. This
corresponds to the case of a knife-edged follower.

Follower
Translation

Follower Rotation 7 N

Relative to Cam
— A4 R

Pressure %, ¢ Cam Rotation

Follower

Motion
180°

FIGURE 8.23 Layout of the cam profile for Example 8.3. The process of laying out a cam profile is one of
inversion. That is, the cam is viewed as being stationary, and successive positions of the follower are plotted
relative to it. In this case, a pri