

Programming Sudoku

■ ■ ■

Wei-Meng Lee

Programming Sudoku

Copyright © 2006 by Wei-Meng Lee

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-662-3

ISBN-10 (pbk): 1-59059-662-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Dominic Shakeshaft
Technical Reviewer: Andy Olsen
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager and Production Director: Grace Wong
Copy Edit Manager: Nicole LeClerc
Copy Editor: Bill McManus
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert
Proofreader: Lori Bring
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

iii

Contents at a Glance

About the Author . ix
About the Technical Reviewer . x
Acknowledgments . xi

Introduction . xiii

■CHAPTER 1 What Is Sudoku? . 1

■CHAPTER 2 Creating the Sudoku Application . 11

■CHAPTER 3 Basic Sudoku Solving Technique . 47

■CHAPTER 4 Intermediate Techniques . 69

■CHAPTER 5 Advanced Techniques . 95

■CHAPTER 6 Generating Sudoku Puzzles . 139

■CHAPTER 7 How to Play Kakuro . 171

■APPENDIX The SudokuPuzzle Class . 181

■INDEX . 207

v

Contents

About the Author . ix
About the Technical Reviewer . x
Acknowledgments . xi

Introduction . xiii

■CHAPTER 1 What Is Sudoku? . 1

Rules of Sudoku . 1

Sudoku Terminology . 3
It’s Just Logic! . 4
Variants of Sudoku . 7
Let’s Play Sudoku! . 8

Summary . 10

■CHAPTER 2 Creating the Sudoku Application . 11

Creating the Sudoku Project . 12

Creating the User Interface . 13

Declaring the Member Variables . 19

Representing Values in the Grid . 21

Generating the Grid Dynamically. 23

Starting a New Game . 26

Selecting the Numbers to Insert . 29

Handling Click Events on the Label Controls 30

Undoing and Redoing a Move . 37

Saving a Game . 38

Opening a Saved Game . 41

Ending the Game . 43

Testing the Application . 44

Summary . 45

Contents

vi ■C O N T E N T S

■CHAPTER 3 Basic Sudoku Solving Technique . 47

Elimination Technique . 47

Column, Row, and Minigrid Elimination . 48

Usefulness of the CRME Technique . 54

Exception Scenarios . 56

Implementing the CRME Technique . 58

Adding Member Variables . 58

Modifying the SetCell() Subroutine . 59

Adding a ToolTip Control . 60

Calculating the Possible Values for a Cell . 61

Scanning the Grid . 63

Wiring the Controls . 65

Testing It Out . 67

Summary . 68

■CHAPTER 4 Intermediate Techniques . 69

Lone Rangers . 69

Lone Rangers in a Minigrid . 70

Lone Rangers in a Row . 71

Lone Rangers in a Column. 73

Implementing the Technique . 77

Looking for Lone Rangers in Minigrids. 77

Looking for Lone Rangers in Rows . 80

Looking for Lone Rangers in Columns . 81

Modifying the SolvePuzzle() Function . 83

Testing Out the Lone Ranger Technique . 86

Example 1 . 86

Example 2 . 90

Summary . 93

■CHAPTER 5 Advanced Techniques . 95

Looking for Twins . 95

Looking for Triplets . 99

Variants of Triplets . 100

Brute-Force Elimination . 103

■C O N T E N T S vii

Implementing the Techniques . 106

Looking for Twins in Minigrids . 107

Looking for Twins in Rows. 111

Looking for Twins in Columns . 114

Looking for Triplets in Minigrids . 117

Looking for Triplets in Rows . 120

Looking for Triplets in Columns . 124

Modifying the SolvePuzzle() Function . 127

Using Brute-Force Elimination. 131

Modifying the Code Behind for the Solve Puzzle Button 133

Testing the Techniques . 134

Summary . 137

■CHAPTER 6 Generating Sudoku Puzzles . 139

Determining the Level of Difficulty . 139

Steps to Generate a Sudoku Puzzle . 141

Determining the Locations of Empty Cells . 144

Single-Solution Puzzles . 146

Implementing the Puzzle-Generating Algorithm 148

Creating the Class. 148

Randomizing the List of Possible Values . 150

Generating a New Puzzle . 152

Creating Empty Cells in the Grid . 156

Vacating Another Pair of Cells . 158

Exposing the GetPuzzle() Function . 160

Wiring Up the Logic with the User Interface . 162

Testing the Implementation . 165

Easy Puzzles . 165

Medium Puzzles . 167

Difficult Puzzles. 168

Extremely Difficult Puzzles. 169

Summary . 170

viii ■C O N T E N T S

■CHAPTER 7 How to Play Kakuro . 171

The Rules . 171

Solving a Kakuro Puzzle . 173

Tips for Solving Kakuro Puzzles . 177

Summary . 179

■APPENDIX The SudokuPuzzle Class . 181

■INDEX . 207

ix

About the Author

■WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions, a technology company that specializes in hands-on

training in the latest Microsoft technologies. Wei-Meng speaks
regularly at international conferences and has authored and

coauthored numerous books on .NET, XML, and wireless technologies,
including ASP.NET 2.0: A Developer’s Notebook and Visual Basic 2005

Jumpstart (both from O’Reilly Media). He is also the coauthor of the
Apress title XML Programming Using the Microsoft XML Parser.

Find out about the latest books and articles by Wei-Meng at his blog:
http://weimenglee.blogspot.com/.

x

About the Technical Reviewer

■ANDY OLSEN is a freelance developer, instructor, and writer based in Swansea in Wales.
Andy has been using Microsoft technologies for 20 years, back in the days when the words

“Visual Basic” were a contradiction in terms. Andy would like to thank his wife Jayne for
her patience against all the odds, and Emily and Thomas for all the fun. Cymru am Byth!

xi

Acknowledgments

The initial idea for this book started when I was browsing at a local bookstore. Looking at
the mountain of Sudoku books piled up at one prominent spot of the bookstore, I wondered

what the craze was all about. After picking one up to have a quick glance, I finally understood:
Sudoku puzzles not only are fun and challenging to solve, they offer good training for

thinking logically. That inspired me to write a program to solve Sudoku puzzles program-
matically, and then to write this book.

While most publishers are only interested in publishing Sudoku puzzles book, Gary Cornell
had the faith in me to say “yes” when I proposed doing a book on Sudoku programming.

For that, I am grateful to Gary and I hope that I have not disappointed him. Thank you, Gary!
I also want to express my sincere gratitude to my editor, Dominic Shakeshaft, whose

editing skill has definitely made this book a better read, and to my technical reviewer,
Andy Olsen, who has studiously checked every line of code that I have written—I am

forever amazed by his laser-sharp accuracy. Dominic and Andy are the best combination
that a publisher could ever offer to an author. I wish I could work with them on my next

book! Thank you, Dominic and Andy!
Thanks are also due to the early beta testers of my Sudoku puzzles—Jon Wright,

Adam Mozdzynski, Cynthia N. Vance, and Robert Douglas. I am grateful for your time and
your willingness to share your Soduku experiences with me.

Not forgetting the heroes behind the scenes, I want to thank Grace Wong for her great
management of this project, Bill McManus for reading and editing my writing to make

sure that readers will be able to enjoy the book, Katie Stence for her great work in getting
the book ready for production, and last but not least, Tina Nielsen for making all the

necessary arrangements to get this project going.

xiii

Introduction

Sudoku is the wildly popular new puzzle game that is taking the world by storm. Sudoku
puzzles are 9×9 grids, and each square in the grid consists of a 3×3 subgrid called a mini-

grid. Your goal is to fill in the squares so that each column, row, and minigrid contains the
numbers 1 through 9 exactly once. And some squares already contain numbers or symbols,

which lend clues toward the solution. While the rules of Sudoku are extremely simple, solving
a Sudoku puzzle is an intellectual challenge.

What This Book Covers
Programming Sudoku provides you with great approaches to building and solving Sudoku
puzzles. Using logical deduction and analysis, you’ll learn how to get a computer to solve

these puzzles for you. You will learn the various techniques that you can deploy to solve a
puzzle, ranging from basic techniques such as Column, Row, and Minigrid Elimination, to

the more advanced triplets identification technique. And if all logical techniques fail, brute-
force elimination will kick into action and solve the puzzle by making some educated

guesses. In addition to solving Sudoku puzzles, you will also learn the techniques for
programmatically generating Sudoku puzzles of varying levels of difficulty.

One of the myths about Sudoku is that you must be good in mathematics to play the
game. The fact is that people of all ages can enjoy Sudoku, regardless of whether they are

mathematically inclined. All you need is a logical mind and a great amount of patience.
I will teach you how to logically deduce a number for a cell and how one confirmed cell

can lead to the confirmation of other cells in the grid. Even if you are not a programmer,
this book will provide you with a better understanding of how to logically solve a Sudoku

puzzle.
While the code project provided in this book uses the Visual Basic 2005 programming

language, C# programmers should not have any major problem understanding or translating
the code. This book should be a fun, intriguing read whether you’re a novice or advanced

programmer. You’ll find this book interesting whatever your programming background. The
core techniques in the book enable you to solve Sudoku on any programming platform.

The following sections provide an overview of this book.

xiv ■I N T R O D U CT I O N

Chapter 1 – What Is Sudoku?

This chapter introduces you to Sudoku and explains the basics of how to play the game.

You will also walk through a scaled-down version of a Sudoku puzzle to understand how
the puzzle is solved step by step.

Chapter 2 – Creating the Sudoku Application

In this chapter, you will walk through the various steps to construct a Sudoku puzzle board
using a Windows application. This is the foundation chapter that all future chapters will

build on. Although the application in this chapter lacks the intelligence required to solve a
Sudoku puzzle, it does allow you to play Sudoku on the computer. Moreover, the applica-

tion that you build in this chapter provides some aid to beginning Sudoku players, because
it checks for compliance with the rules of Sudoku.

Chapter 3 – Basic Sudoku Solving Technique

In this chapter, you will learn how a Sudoku puzzle can be solved by using the elimination

technique, named Column, Row, and Minigrid Elimination (CRME). While the CRME
technique has its limitations, it nevertheless is able to solve many simple Sudoku puzzles.

Chapter 4 – Intermediate Techniques

In this chapter, you will learn about the lone ranger technique and how it is useful in

helping you to solve or weaken some difficult Sudoku puzzles. Lone rangers are extremely
useful and can always help to directly solve a Sudoku puzzle.

Chapter 5 – Advanced Techniques

In this chapter, you will learn the three advanced techniques that you can use to solve
Sudoku puzzles: twins, triplets, and brute-force elimination. Although most of the time

the twins and triplets techniques will not directly solve the puzzle, they are good techniques
for “softening” the puzzle so that the puzzle can be solved by other techniques such as

CRME and lone rangers. You will also learn how to use the brute-force technique to make

an educated guess when all the other techniques have failed.

■I N T R O D U C T I O N xv

Chapter 6 – Generating Sudoku Puzzles

This chapter combines all the techniques that you have learned in the past few chapters

and uses them to generate Sudoku puzzles of varying levels of difficulty. While I will describe
the techniques to generate Sudoku puzzles, you can adapt the methods to further improve

the quality of the puzzles. In fact, there are many areas of improvement that you might
want to look into, such as adjusting the weights assigned to each technique that is used to

solve a puzzle to further fine-tune the difficulty levels. Also, you can insert additional
checks in the program so that the puzzles generated can have only one solution.

Chapter 7 – How to Play Kakuro

In this chapter, you will learn how to play the new Kakuro puzzle game. If you are coming
from a Sudoku background, you should not find the puzzle too difficult.

Obtaining This Book’s Source Code
The source code for this book can be obtained from http://apress.com/book/download.html.
To run the code, you need Microsoft Visual Studio 2005.

1

■ ■ ■

C H A P T E R 1

What Is Sudoku?

Sudoku is a puzzle game that is taking the world by storm. The name Sudoku comes
from the Japanese word (shown in Figure 1-1) that means “number place.” The first

Sudoku puzzle was published in the United States, but Sudoku initially became popular
in Japan, in 1986, and did not attain international popularity until 2005.

Figure 1-1. The word Sudoku in Japanese

The rules of Sudoku are extremely simple, yet solving a Sudoku puzzle is an intellectual

challenge. A Sudoku puzzle contains a 9×9 grid, which is divided into nine smaller 3×3
grids (known as minigrids). Figure 1-2 shows a Sudoku grid with its nine minigrids.

Figure 1-2. A Sudoku grid

Rules of Sudoku
The aim of the game is to place a number from 1 to 9 into each of the cells, such that each

number must appear exactly once in each row and in each column in the grid. Additionally,

2 C H A P T E R 1 ■ W H A T I S S U D O K U ?

each minigrid must contain all the numbers 1 through 9. It’s also possible to use any other
set of symbols. However, using numbers is the obvious choice.

Figure 1-3 shows a partially completed Sudoku grid with the first row and column
completed and the first minigrid completed.

Figure 1-3. A partially completed Sudoku puzzle

A Sudoku puzzle usually comes with a partially filled grid. The aim is to complete the

grid in the shortest amount of time. Figure 1-4 shows a partially filled grid at the start of a
Sudoku puzzle.

Figure 1-4. A Sudoku puzzle

At first glance, a Sudoku puzzle looks simple enough, but upon further examination,
it is not as trivial as you might have initially imagined. The placement of the various

numbers in a partially filled Sudoku puzzle determines the level of difficulty of the game.

C H AP T E R 1 ■ W H A T I S SU D O K U ? 3

LEVELS OF DIFFICULTY

There are no hard and fast rules that dictate the difficulty level of a Sudoku puzzle. A sparsely filled

Sudoku puzzle may be extremely easy to solve, whereas a densely filled Sudoku puzzle may actually be
more difficult to solve. In Chapter 6, I will discuss how a Sudoku puzzle can be graded based on the tech-

niques used to solve it.

From a mathematical perspective, it has been proven that the total number of valid

Sudoku grids is 6,670,903,752,021,072,936,960 (that’s why you will never run out of puzzles
to solve!).

■Note If you are interested in how this magical number was derived, check out the paper from Bertram
Felgenhauer and Frazer Jarvis detailing the methodology of their analysis at http://www.shef.ac.uk/

~pm1afj/sudoku/.

Solving a Sudoku puzzle requires patience and a lot of logical thinking. Sometimes a
Sudoku puzzle has more than one solution. From a computing perspective, using brute

force seems to be the most direct way to solve a Sudoku puzzle. A combination of recur-
sion and backtracking guarantees that a solution will ultimately be derived (if a puzzle is

solvable in the first place). However, due to the large number of combinations available,
using brute force is always the last resort. In fact, most Sudoku puzzles can be solved by

the logical method of deduction. I will give you an example of this in the upcoming section
“It’s Just Logic!”

Sudoku Terminology
A Sudoku puzzle usually contains nine columns and nine rows. Within this 9×9 grid are
nine minigrids. In Figure 1-5, I have labeled each minigrid from 1 to 9, with minigrid 1 at

the top-left corner and minigrid 9 at the bottom-right corner.
Throughout this book, I will refer to each cell in the grid by its column number followed

by its row number. Figure 1-6 shows the coordinates of each cell in the grid.

4 C H A P T E R 1 ■ W H A T I S S U D O K U ?

Figure 1-5. The rows and columns in a Sudoku puzzle

Figure 1-6. The coordinates of cells in a Sudoku grid

It’s Just Logic!
Most Sudoku puzzles can actually be solved by applying some simple logic. As an example,
let’s consider the Sudoku puzzle shown in Figure 1-7, originally published in the Chicago

Sun-Times on November 8, 2005.

C H AP T E R 1 ■ W H A T I S SU D O K U ? 5

Figure 1-7. A sample Sudoku puzzle

In order to solve the puzzle, you have to start somewhere. Consider cell (7,4), shown

with the circle in Figure 1-8. First scan through the row that it is in, followed by the column,
and then finally within the minigrid itself. By scanning the row, you notice that the possible

values for (7,4) are 1, 2, 6, and 7 (since 4, 9, 8, 3, and 5 are already in the row). However,
when you then scan the column, you can immediately eliminate 2 as a possibility (since

the column already contains 2), leaving only 1, 6, and 7 as possible values for cell (7,4).
Finally, looking within the minigrid, you see that 1 and 7 are already present, so the only

possible value for (7,4) is 6.

Figure 1-8. Resolving the value for cell (7,4)

So now you can confidently fill in (7,4) with 6, as shown in Figure 1-9.

6 C H A P T E R 1 ■ W H A T I S S U D O K U ?

Figure 1-9. Filling in the value for cell (7,4)

The next obvious cell to fill in is (9,4), because the row, column, and minigrid in which

it exists already include most values between 1 and 9. Again, scanning the row, the possible
values are 1, 2, and 7. Scanning by column leaves 2 as the only possible value. Since there

is now only one possible value for (9,4), you can fill it in with 2, as shown in Figure 1-10,
without even examining the minigrid.

Figure 1-10. Filling in the value for cell (9,4)

As you can see, this process repeats itself. And as you fill in more and more cells, ultimately
you will solve the puzzle. Besides using the elimination technique (which I have aptly given

the name Column, Row, and Minigrid Elimination, or CRME; more on this in Chapter 2) that
I showed in this section, there are some other, not-so-obvious techniques that you can

use to solve a Sudoku puzzle. All of these techniques use logical deductions to derive a
number for a cell. You will learn more about these techniques in subsequent chapters.

C H AP T E R 1 ■ W H A T I S SU D O K U ? 7

■Note While most puzzles can be solved by logic alone, there are indeed some difficult puzzles that require
you to solve using the trial-and-error method.

Variants of Sudoku
Besides the standard 9×9 grid, variants of Sudoku puzzles include the following:

• 4×4 grid with 2×2 minigrids.

• 5×5 grid with pentomino (http://en.wikipedia.org/wiki/Pentomino) regions
(published under the name Logi-5). A pentomino is composed of five congruent

squares, connected orthogonally. If you have played the game Tetris before, you
have seen a pentomino.

• 6×6 grid with 2×3 regions.

• 7×7 grid with six heptomino (http://mathworld.wolfram.com/Heptomino.html)

regions and a disjoint region.

• 16×16 grid (Super Sudoku).

• 25×25 grid (Sudoku the Giant).

• A 3-D Sudoku puzzle (http://www.sudoku.org.uk/PDF/Dion_Cube.pdf) invented by

Dion Church was published in the Daily Telegraph (in the U.K.) in May 2005.

• Alphabetical variations, which use letters rather than numbers. The Guardian (in the

U.K.) calls these Godoku while others refer to them as Wordoku (see Figure 1-11).

■Tip For a detailed description of Sudoku variants, visit http://en.wikipedia.org/wiki/

Sudoku#Variants. Wikipedia, the free encyclopedia, has a good discussion of Sudoku at http://en.
wikipedia.org/wiki/Sudoku.

8 C H A P T E R 1 ■ W H A T I S S U D O K U ?

Figure 1-11. A sample Wordoku puzzle

Let’s Play Sudoku!
In the interest of space, let’s work through a scaled-down 4×4 Sudoku puzzle from start to

finish. The rules and techniques for a scaled-down Sudoku puzzle are the same as for a
full-sized Sudoku puzzle, but the smaller size enables us to work through the solution

from beginning to end much more quickly and easily, because fewer permutations are
available. We will use the numbers 1 to 4 instead of 1 to 9, since there are now four cells in

each row and column (as well as in each minigrid).
Consider the Sudoku puzzle shown in Figure 1-12.

Figure 1-12. A 4×4 Sudoku puzzle

The first cell that you can fill in is (2,4). After you scan both its row and column, you

should get the value 1 (see Figure 1-13).

Figure 1-13. Filling in the value for cell (2,4)

C H AP T E R 1 ■ W H A T I S SU D O K U ? 9

The next logical cell is (3,4), which is value 3 (see Figure 1-14).

Figure 1-14. Filling in the value for cell (3,4)

And that leaves us with (1,3), which is value 4 (see Figure 1-15).

Figure 1-15. Filling in the value for cell (1,3)

The next logical cell to fill in would be (1,2), which is value 3 (see Figure 1-16).

Figure 1-16. Filling in the value for cell (1,2)

That makes (4,2) a 1 (see Figure 1-17).

Figure 1-17. Filling in the value for cell (4,2)

10 C H A P T E R 1 ■ W H A T I S S U D O K U ?

And, naturally, that makes cell (3,1) a 4 (see Figure 1-18).

Figure 1-18. Filling in the value for cell (3,1)

You can now easily fill in the rest of the blanks, as shown in Figure 1-19.

Figure 1-19. Filling in the values for all remaining cells

And that completes the puzzle!

USEFUL SUDOKU RESOURCES

Here are some useful resources on Sudoku:

• Mathematics of Sudoku: http://en.wikipedia.org/wiki/Mathematics_of_Sudoku

• History of Sudoku: http://en.wikipedia.org/wiki/Sudoku#History

• Useful information on Sudoku: http://www.answers.com/topic/sudoku

Summary
This chapter introduced you to Sudoku and explained the basics of how to play the game.
You have also walked through a scaled-down version of a Sudoku puzzle. In the next

chapter, you will start building your own Sudoku application. You will progressively add
intelligence to it in the subsequent chapters so that you have a complete Sudoku solver.

11

■ ■ ■

C H A P T E R 2

Creating the
Sudoku Application

Now that you have a firm grounding in the basic rules of Sudoku, it is time for us to start
the journey into solving Sudoku puzzles using computer programming. For this task, you

will build a Windows application that represents a Sudoku puzzle. The application that
you build in this chapter will act as a rule enforcer, helping you to make sure that a value

inserted into a cell does not violate the rules of Sudoku. We aren’t concerned about how
to solve a Sudoku puzzle yet; we leave that for the next few chapters.

In this chapter, I walk you through the various steps to construct a Sudoku puzzle board
using a Windows application. This is the foundation chapter that all future chapters will

build on. While the application that you build in this chapter lacks the intelligence required
to solve a Sudoku puzzle, it will provide you with many hours of entertainment. Moreover,

it will provide some aid to beginning Sudoku players, because it helps to check for the
rules of Sudoku. Your Sudoku application will have the capabilities to do the following:

• Load and save Sudoku puzzles

• Ensure that only valid numbers are allowed to be placed in a cell

• Check whether a Sudoku puzzle has been solved

• Keep track of the time needed to solve a Sudoku puzzle

• Undo and redo previous moves

As in all large software projects, I will be breaking the functionalities of the Sudoku

application into various functions and subroutines. The following are the major tasks in
this chapter:

12 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

• Creating the user interface of the Sudoku application

• Using arrays to represent values in the grid

• Storing the moves using the stack data structure

• Generating the grid dynamically using Label controls

• Handling click events on the Label controls

• Checking whether a move is valid

• Checking whether a puzzle is solved

• Updating the value of a cell

• Undoing and redoing a move

• Saving a game

• Opening a saved game

• Ending the game

At the end of this chapter, you will have a functional Sudoku application that you can
use to solve your Sudoku puzzles!

Creating the Sudoku Project
The application that you will build in this chapter is a Windows application. Figure 2-1
shows how the application will look at the end of this chapter.

Using this application, users will be able to load and save puzzles to disk. The applica-
tion will act as a rule enforcer, ensuring that the user cannot place a number in a cell that

will violate the rules of Sudoku. This is useful for beginners who are learning Sudoku.

■Note The application in this chapter will not have the intelligence to solve a Sudoku puzzle yet. You will

begin building the intelligence in Chapter 3.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 13

Figure 2-1. The Sudoku application you will build in this chapter

Creating the User Interface

For the Sudoku application, you will create a Windows application using Microsoft Visual
Studio 2005. Launch Visual Studio 2005. Choose File ➤ New Project, select the Windows

Application template, and name the project Sudoku.

■Note Throughout this book, I will use Visual Basic 2005 as the programming language. C# programmers

should not have any major problem understanding/translating the code.

The project contains a default Windows form named Form1. Set the properties of Form1
as shown in Table 2-1. To change the property of a control in Visual Studio 2005, right-

click the control and select Properties to open the Properties window.

Table 2-1. Properties of Form1

Property Value

FormBorderStyle FixedToolWindow

Size 551, 445

Text Sudoku

14 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

Figure 2-2 shows how Form1 will look like after applying the properties listed in Table 2-1.
Essentially, you are creating a fixed-size window.

Figure 2-2. Modifying Form1

Adding a MenuStrip Control

In the Toolbox, double-click the MenuStrip control located on the Menus & Toolbars tab
to add a menu to Form1. In the MenuStrip Tasks menu (also known as a Smart Tag), click

Insert Standard Items to insert a list of standard menu items.

SMART TAGS IN VISUAL STUDIO 2005

A Smart Tag is a panel that is displayed next to a control (by clicking the arrow icon at the top-right corner
of the control), containing a list of commonly used properties. By saving you a trip to the Properties window

for some of the more common properties you need to set, Smart Tags can improve development productivity.
Smart Tags are a new feature in Visual Studio 2005.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 15

Once the standard menu items are inserted, you can customize the menu by removing
menu items that are not relevant (use the Delete key to remove menu items) and inserting

new items. Figure 2-3 shows the different menu items that you will add for this application.

Figure 2-3. The menu items for the Sudoku application

■Tip The standard menus by default include a Tools menu rather than a Level menu. You can simply replace
the Tools menu with the Level menu. In addition, you can change the menu items to Easy, Medium, Difficult,

and Extremely Difficult. For the File, Edit, and Help menus, if you want to delete any menu items, simply select
the unwanted item and press the Delete key.

To assign shortcuts to the different levels of difficulty, click each of the Level menu

items and enter the values as shown in Table 2-2 (see also Figure 2-4).

Figure 2-4. Setting the values for the Level menu and its menu items

Table 2-2. Values to Set for the Level Menu and Its Menu Items

Menu/Item Value

Level &Level

Easy &Easy

Medium &Medium

Difficult &Difficult

Extremely Difficult Ex&tremely Difficult

16 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

After you set the values, the Level menu looks like Figure 2-5.

Figure 2-5. The Level menu and its menu items

Adding a ToolStrip Control

You will now add a ToolStrip control to the Windows form so that users can choose a
number to insert into the cells. In the Toolbox, double-click the ToolStrip control (also

located on the Menus & Toolbars tab) to add it onto Form1. You need to add Label and
Button controls to the ToolStrip control; Figure 2-6 shows how to add controls to a

ToolStrip control.

Figure 2-6. Adding controls to the ToolStrip control

Add a Label control to the ToolStrip control, and set the Text property of the Label control
to Select number.

Next, add ten Button controls to the ToolStrip control. Set the DisplayStyle property of
each Button control to Text. Set the Text property of the ten Button controls to 1, 2, 3, 4, 5,

6, 7, 8, 9, and Erase, respectively, as shown in Figure 2-7, which depicts how the finished
ToolStrip control should look.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 17

Figure 2-7. The finished ToolStrip control

Adding a StatusStrip Control

You will also add to the bottom of the form a StatusStrip control (also located on the Menus &
Toolbars tab). Click the StatusStrip control on the form and insert two StatusLabel controls

(see Figure 2-8).

Figure 2-8. Populating the StatusStrip control

Figure 2-9 shows the form at this stage.

Figure 2-9. The form with the various menu controls

18 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

Adding Other Controls

The last step in creating the graphical user interface (GUI) of the Sudoku application is to

add the various controls, as shown in Figure 2-10.

■Note What about drawing the Sudoku grid? Well, I will be using Label controls to represent the cells within

a Sudoku grid. And since there are 81 of them, I will generate them dynamically. I will show you how to do
this in the next section.

Figure 2-10. Adding the various controls to Form1

The txtActivities control is used to display the various moves played by the user. Set the
properties of these controls as shown in Table 2-3.

Finally, add a Timer control (located on the Components tab in the Toolbox) to the
form. Set its Interval property to 1000 (the unit is in milliseconds). The Timer control is

used to keep track of the time taken to solve a Sudoku puzzle.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 19

Declaring the Member Variables

Now that you have added the various controls to the form, it is time to switch to the code-

behind of Form1 to add the various functionalities. In Solution Explorer, select Form1.vb
and click the View Code button to switch to the code-behind of Form1 (see Figure 2-11).

Figure 2-11. Switching to code view

In the Form1 class, add the following member variables (in bold):

Public Class Form1

 '---dimension of each cell in the grid---

 Const CellWidth As Integer = 32

 Const cellHeight As Integer = 32

Table 2-3. Properties of the Various Controls

Control Property Value

Label (Label1) Location 332, 53

Label (Label1) Text Activities

TextBox (txtActivities) Location 329, 69

TextBox (txtActivities) Multiline True

TextBox (txtActivities) Size 203, 321

TextBox (txtActivities) Scrollbars Vertical

Button (btnHint) Text Hint

Button (btnHint) Location 12, 367

Button (btnHint) Size 142, 23

Button (btnSolvePuzzle) Text Solve Puzzle

Button (btnSolvePuzzle) Location 160, 367

Button (btnSolvePuzzle) Size 142, 23

20 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---offset from the top-left corner of the window---

 Const xOffset As Integer = -20

 Const yOffset As Integer = 25

 '---color for empty cell---

 Private DEFAULT_BACKCOLOR As Color = Color.White

 '---color for original puzzle values---

 Private FIXED_FORECOLOR As Color = Color.Blue

 Private FIXED_BACKCOLOR As Color = Color.LightSteelBlue

 '---color for user-inserted values---

 Private USER_FORECOLOR As Color = Color.Black

 Private USER_BACKCOLOR As Color = Color.LightYellow

 '---the number currently selected for insertion---

 Private SelectedNumber As Integer

 '---stacks to keep track of all the moves---

 Private Moves As Stack(Of String)

 Private RedoMoves As Stack(Of String)

 '---keep track of filename to save to---

 Private saveFileName As String = String.Empty

 '---used to represent the values in the grid---

 Private actual(9, 9) As Integer

 '---used to keep track of elapsed time---

 Private seconds As Integer = 0

 '---has the game started?---

 Private GameStarted As Boolean = False

As you can see from the declaration, you first declared some constants to store the

dimension of each cell in the Sudoku grid. You also declared some variables to store the
various colors in the grid—all original values in the grid will have a blue background,

while values placed by the user will have a yellow background. Empty cells have a white
background.

Next, you declared two stack data structures—Moves and RedoMoves. A stack is a data
structure that works on the last-in, first-out (LIFO) principle. This means that the last item

pushed into a stack is the first item to be taken off. You use the Stack class to remember

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 21

the moves you made so that if you need to undo the moves, you can do so. I will discuss
this issue in more detail later in the chapter, in the section “Storing Moves in Stacks.”

If you observe the declaration of the stack, you will notice that there is a new keyword,
Of. This keyword is used when declaring a generic type. Support for generic types is a new

feature in .NET Framework 2.0. In our case, the Stack class is a generic class. During decla-
ration time, you use the Of keyword to indicate to the compiler that you can only push and

pop string data types (and not other data types) into and from the Stack class. This helps
to make your application safer and reduces the chance that you inadvertently push or pop

the wrong types of data into the stack.

Representing Values in the Grid

A standard Sudoku puzzle consists of a grid of nine rows and nine columns, totaling 81
cells. A good way to represent a Sudoku grid is to use a two-dimensional array. As an

example, the grid in Figure 2-12 will be represented in the array as follows (recall that a
cell in a Sudoku puzzle is referenced by its column number followed by its row number):

actual(1,1) = 4

actual(2,1) = 0

actual(3,1) = 2

actual(4,1) = 0

actual(5,1) = 3

...

actual(1,2) = 7

...

Each empty cell in the grid is represented by the value 0.

Figure 2-12. Representing cells in a Sudoku grid using an array

However, note that arrays in Visual Basic 2005 are zero-based. That is, when you declare

the actual variable to be actual(9,9), there are actually 100 elements in it, from actual(0,0)
to actual(9,9). For our application, the elements in row 0 and column 0 are left unused,

as shown in Figure 2-13.

22 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

Figure 2-13. Unused cells (shaded) in the array

Naming Cells

Each cell in the grid will be represented using a dynamically generated Label control. You
will need to assign a name to each Label control so that individual cells can be identified.

For simplicity, in our application each cell will be identified based on its column and row
numbers. For example, the Label control representing cell (1,1) will be named 11, cell (2,1)

will be named 21, and so on.

Erasability of a Cell

A cell may contain a value set by the user or set originally as part of the puzzle. If the value

is set by the user, it can be erased so that other values can be assigned to it. As such, there
must be a way to identify if a particular cell value can be erased. For this purpose, you can

use the Tag property of the Label control. As an example, if the value in cell (4,5) can be
erased, you will set its Tag property to 1. If its value cannot be erased, then its Tag property

would be 0.

Storing Moves in Stacks

To allow the user to undo and redo his moves, every time a number is placed in a cell, its
coordinates and values are placed in a stack. When the user undoes his move, a value is

popped from the stack and pushed into another stack. The value pushed into the stack is
a three-digit string. For example, 349 means that cell (3,4) has been assigned the value 9.

Figure 2-14 shows that when a user undoes a move, the value from the Moves stack is
popped and pushed into the RedoMoves stack. Similarly, when the user redoes a move,

a value is popped from the RedoMoves stack and re-pushed into the Moves stack.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 23

Figure 2-14. Using stacks for undo and redo options

Generating the Grid Dynamically

The first thing to do when the application loads is to generate the grid of a Sudoku puzzle.

The DrawBoard() subroutine dynamically creates 81 Label controls to represent each cell

in the 9×9 grid:

 '==

 ' Draw the cells and initialize the grid

 '==

 Public Sub DrawBoard()

 '---default selected number is 1---

 ToolStripButton1.Checked = True

 SelectedNumber = 1

 '---used to store the location of the cell---

 Dim location As New Point

 '---draws the cells

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 location.X = col * (CellWidth + 1) + xOffset

 location.Y = row * (cellHeight + 1) + yOffset

 Dim lbl As New Label

24 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 With lbl

 .Name = col.ToString() & row.ToString()

 .BorderStyle = BorderStyle.Fixed3D

 .Location = location

 .Width = CellWidth

 .Height = cellHeight

 .TextAlign = ContentAlignment.MiddleCenter

 .BackColor = DEFAULT_BACKCOLOR

 .Font = New Font(.Font, .Font.Style Or _

 FontStyle.Bold)

 .Tag = "1"

 AddHandler lbl.Click, AddressOf Cell_Click

 End With

 Me.Controls.Add(lbl)

 Next

 Next

 End Sub

Note that as you type the line AddHandler lbl.Click, AddressOf Cell_Click, you will
get a compiler error, because the method has not been defined yet. For now, let’s add an

empty Cell_Click() method stub so that the compiler does not complain:

 Private Sub Cell_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs)

 '---content to be populated later---

 End Sub

Each Label control is hooked to the Cell_Click() event handler, which is fired when

the user clicks each Label control (we will declare in it a later section).
The board is first drawn when the form loads, in the Form1_Load() event (you can simply

double-click an empty portion of Form1 to create this event handler):

 Private Sub Form1_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 '---initialize the status bar---

 ToolStripStatusLabel1.Text = String.Empty

 ToolStripStatusLabel2.Text = String.Empty

 '---draw the board---

 DrawBoard()

 End Sub

Figure 2-15 shows what the form looks like when it loads.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 25

Figure 2-15. Dynamically generating the Label controls

One feature is missing, however. In a Sudoku puzzle, nine minigrids are contained

within the bigger grid. You need a way to outline the nine minigrids. You do that by actually
drawing the lines—four horizontally and four vertically. The Form1_Paint() event is the

event that you use to insert the code to draw the eight lines:

 '==

 ' Draw the lines outlining the minigrids

 '==

 Private Sub Form1_Paint(_

 ByVal sender As Object, _

 ByVal e As System.Windows.Forms.PaintEventArgs) _

 Handles Me.Paint

 Dim x1, y1, x2, y2 As Integer

 '---draw the horizontal lines---

 x1 = 1 * (CellWidth + 1) + xOffset - 1

 x2 = 9 * (CellWidth + 1) + xOffset + CellWidth

 For r As Integer = 1 To 10 Step 3

 y1 = r * (cellHeight + 1) + yOffset - 1

 y2 = y1

 e.Graphics.DrawLine(Pens.Black, x1, y1, x2, y2)

 Next

26 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---draw the vertical lines---

 y1 = 1 * (cellHeight + 1) + yOffset - 1

 y2 = 9 * (cellHeight + 1) + yOffset + cellHeight

 For c As Integer = 1 To 10 Step 3

 x1 = c * (CellWidth + 1) + xOffset - 1

 x2 = x1

 e.Graphics.DrawLine(Pens.Black, x1, y1, x2, y2)

 Next

 End Sub

Figure 2-16 shows the effect of drawing these eight lines on the grid.

Figure 2-16. The grid with the eight lines

Starting a New Game

To start a new game, the user will select File ➤ New. For now, you will simply clear the

board and reset a few variables. In Chapter 6, you will be more adventurous and learn how
to generate a new Sudoku puzzle of varying levels of difficulty.

When a user starts a new game, be sure to ask if she wants to save the current game.
If she does, save the current game before you start a new game. To add an event handler

for the New menu item, double-click the New menu item in design view of Visual Studio
and the event handler for the New menu item will appear. Code the following:

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 27

 '==

 ' Start a new game

 '==

 Private Sub NewToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles NewToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MessageBox.Show("Do you want to save current game?", _

 "Save current game", _

 MessageBoxButtons.YesNoCancel, _

 MessageBoxIcon.Question)

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 StartNewGame()

 End Sub

As usual, to prevent the compiler from complaining about the missing

SaveGameToDisk() subroutine, add a stub for this subroutine:

 Public Sub SaveGameToDisk(ByVal saveAs As Boolean)

 '---content to be populated later---

 End Sub

The StartNewGame() subroutine simply resets a few variables and updates a Label

control located in the status bar. It also calls the ClearBoard() subroutine, which clears
the values in the grid. The code follows:

 '==

 ' Start a new game

 '==

 Public Sub StartNewGame()

 saveFileName = String.Empty

 txtActivities.Text = String.Empty

 seconds = 0

 ClearBoard()

28 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 GameStarted = True

 Timer1.Enabled = True

 ToolStripStatusLabel1.Text = "New game started"

 End Sub

The ClearBoard() subroutine prepares the Sudoku grid for a new game and creates a

new instance of the Moves and RedoMoves stack objects:

 '==

 ' Draws the board for the puzzle

 '==

 Public Sub ClearBoard()

 '---initialize the stacks---

 Moves = New Stack(Of String)

 RedoMoves = New Stack(Of String)

 '---initialize the cells in the board---

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 SetCell(col, row, 0, 1)

 Next

 Next

 End Sub

Notice that when a new game is started, the Timer control is also enabled so that the

clock can start running to keep track of the time elapsed. The Timer1_Click() event is fired
every 1 second (which is equivalent to 1000 milliseconds, as set in the Interval property).

The elapsed time is displayed in the Label control located in the status bar. To display the
elapsed time, add the following event to your code:

■Tip Double-click the Timer control at the bottom of Form1 to reveal this code-behind.

 '==

 ' Increment the time counter

 '==

 Private Sub Timer1_Tick(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Timer1.Tick

 ToolStripStatusLabel2.Text = "Elapsed time: " & _

 seconds & " second(s)"

 seconds += 1

 End Sub

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 29

Selecting the Numbers to Insert

Once a new game is started, the user will select a number to insert into the cells. You need

to ensure that only one number is selected in the toolbar. The SelectedNumber variable
keeps track of which number is currently selected, and if the user clicks the Erase button,

the number is saved as a 0. To highlight the number selected by the user in the toolbar,
create the ToolStripButton_Click() event:

 '==

 ' Event handler for the ToolStripButton controls

 '==

 Private Sub ToolStripButton_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles _

 ToolStripButton1.Click, _

 ToolStripButton2.Click, _

 ToolStripButton3.Click, _

 ToolStripButton4.Click, _

 ToolStripButton5.Click, _

 ToolStripButton6.Click, _

 ToolStripButton7.Click, _

 ToolStripButton8.Click, _

 ToolStripButton9.Click, _

 ToolStripButton10.Click

 Dim selectedButton As ToolStripButton = _

 CType(sender, ToolStripButton)

 '---uncheck all the Button controls in the ToolStrip---

 '---ToolStrip1.Items.Item(0) is "Select Number"

 '---ToolStrip1.Items.Item(1) is "1"

 '---ToolStrip1.Items.Item(2) is "2", etc

 '---ToolStrip1.Items.Item(10) is "Erase", etc

 For i As Integer = 1 To 10

 CType(ToolStrip1.Items.Item(i), ToolStripButton).Checked = False

 Next

 '---set the selected button to "checked"---

 selectedButton.Checked = True

30 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---set the appropriate number selected---

 If selectedButton.Text = "Erase" Then

 SelectedNumber = 0

 Else

 SelectedNumber = CInt(selectedButton.Text)

 End If

End Sub

Notice that the ToolStripButton_Click() event handles multiple events. You can make
it handle multiple events by separating with commas the events of each control that you

want to handle.
Figure 2-17 shows a number selected in the toolbar.

Figure 2-17. Selecting a number in the toolbar

Handling Click Events on the Label Controls

When the user has selected a number in the toolbar and clicks a cell on the grid, the
Cell_Click() event is fired. If a cell already contains a fixed value that was part of the orig-

inal puzzle (as indicated by a Tag property value of 0, which is not erasable), then there is
no need to go further. If the Tag property value is 1, you need to determine the cell that was

clicked (through converting the Sender object into a Label control and identifying its Name
property) and then assign it the appropriate value. You will also push the move into a

stack data structure so that the user can undo the move later on. Lastly, you need to also
check if the puzzle is solved after the value is placed. All these will be serviced by the

Cell_Click() event, which is coded as follows:

 '==

 ' Click event for the Label (cell) controls

 '==

 Private Sub Cell_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs)

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 31

 '---check to see if game has even started or not---

 If Not GameStarted Then

 DisplayActivity("Click File->New to start a new" & _

 " game or File->Open to load an existing game", True)

 Return

 End If

 Dim cellLabel As Label = CType(sender, Label)

 '---if cell is not erasable then exit---

 If cellLabel.Tag.ToString() = "0" Then

 DisplayActivity("Selected cell is not empty", False)

 Return

 End If

 '---determine the col and row of the selected cell---

 Dim col As Integer = cellLabel.Name.Substring(0, 1)

 Dim row As Integer = cellLabel.Name.ToString().Substring(1, 1)

 '---If erasing a cell---

 If SelectedNumber = 0 Then

 '---if cell is empty then no need to erase---

 If actual(col, row) = 0 Then Return

 '---save the value in the array---

 SetCell(col, row, SelectedNumber, 1)

 DisplayActivity("Number erased at (" & _

 col & "," & row & ")", False)

 ElseIf cellLabel.Text = String.Empty Then

 '---else set a value; check if move is valid---

 If Not IsMoveValid(col, row, SelectedNumber) Then

 DisplayActivity("Invalid move at (" & col & _

 "," & row & ")", False)

 Return

 End If

32 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---save the value in the array---

 SetCell(col, row, SelectedNumber, 1)

 DisplayActivity("Number placed at (" & col & _

 "," & row & ")", False)

 '---saves the move into the stack---

 Moves.Push(cellLabel.Name.ToString() _

 & SelectedNumber)

 '---check if the puzzle is solved---

 If IsPuzzleSolved() Then

 Timer1.Enabled = False

 Beep()

 ToolStripStatusLabel1.Text = "*****Puzzle Solved*****"

 End If

 End If

 End Sub

If the puzzle is solved, a beep will sound and a message will be displayed at the bottom

of the screen.

Checking Whether a Move Is Valid

Before a value can be assigned to a cell, you must ensure that the value does not violate the
rules of Sudoku. That is, it must be the unique number in its column, row, and minigrid.

Figure 2-18 shows the checking that must be performed before a cell can be assigned a
value. The square indicates the position to insert the value and the shaded regions indicate

the cells to check to ensure that the number is unique in its column, row, and minigrid.

Figure 2-18. Checking whether a value placed in a location violates the rules of Sudoku

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 33

The IsMoveValid() function checks if a number is valid:

 '==

 ' Check if move is valid

 '==

 Public Function IsMoveValid(_

 ByVal col As Integer, _

 ByVal row As Integer, _

 ByVal value As Integer) As Boolean

 Dim puzzleSolved As Boolean = True

 '---scan through column

 For r As Integer = 1 To 9

 If actual(col, r) = value Then '---duplicate---

 Return False

 End If

 Next

 '---scan through row

 For c As Integer = 1 To 9

 If actual(c, row) = value Then '---duplicate---

 Return False

 End If

 Next

 '---scan through minigrid

 Dim startC, startR As Integer

 startC = col - ((col - 1) Mod 3)

 startR = row - ((row - 1) Mod 3)

 For rr As Integer = 0 To 2

 For cc As Integer = 0 To 2

 If actual(startC + cc, startR + rr) = value Then

 '---duplicate---

 Return False

 End If

 Next

 Next

 Return True

 End Function

34 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

The IsMoveValid() function first scans the nine columns to see if the number to be
inserted has already been used. It then proceeds to scan the nine rows, and finally the

nine mingrids. At any point in the scan, if a duplicate is detected, the move is deemed to
be invalid and the function returns a False.

Checking Whether a Puzzle Is Solved

After a value is assigned to a cell, you need to check if the puzzle is now solved. The

IsPuzzleSolved() subroutine checks the entire grid to determine if the puzzle is solved:

 Public Function IsPuzzleSolved() As Boolean

 '---check row by row---

 Dim pattern As String

 Dim r, c As Integer

 For r = 1 To 9

 pattern = "123456789"

 For c = 1 To 9

 pattern = pattern.Replace(actual(c, r).ToString(),String.Empty)

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 '---check col by col---

 For c = 1 To 9

 pattern = "123456789"

 For r = 1 To 9

 pattern = pattern.Replace(actual(c, r).ToString(),String.Empty)

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 '---check by minigrid---

 For c = 1 To 9 Step 3

 pattern = "123456789"

 For r = 1 To 9 Step 3

 For cc As Integer = 0 To 2

 For rr As Integer = 0 To 2

 pattern = pattern.Replace(_

 actual(c + cc, r + rr).ToString(), String.Empty)

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 35

 Next

 Next

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 Return True

 End Function

The IsPuzzledSolved() function performs checks on the rows, columns, and minigrids.
As long as any one of the rows, columns, or minigrids does not have all the numbers from

1 to 9, the subroutine returns a False.

Updating the Value of a Cell

The SetCell() subroutine assigns a value to a cell by specifying its column and row number,
the value to set, and whether it is erasable. Because the cells are represented by Label

controls generated dynamically, you need to locate a specific cell by using the Find() method
in the Controls class. The SetCell() subroutine also sets the cells using the appropriate

colors. Code the SetCell() subroutine as follows:

 '==

 ' Set a cell to a given value

 '==

 Public Sub SetCell(_

 ByVal col As Integer, ByVal row As Integer, _

 ByVal value As Integer, ByVal erasable As Short)

 '---Locate the particular Label control---

 Dim lbl() As Control = _

 Me.Controls.Find(col.ToString() & row.ToString(), True)

 Dim cellLabel As Label = CType(lbl(0), Label)

 '---save the value in the array---

 actual(col, row) = value

 '---set the appearance for the Label control---

 If value = 0 Then '---erasing the cell---

 cellLabel.Text = String.Empty

 cellLabel.Tag = erasable

 cellLabel.BackColor = DEFAULT_BACKCOLOR

36 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 Else

 If erasable = 0 Then '---means default puzzle values---

 cellLabel.BackColor = FIXED_BACKCOLOR

 cellLabel.ForeColor = FIXED_FORECOLOR

 Else '---means user-set value---

 cellLabel.BackColor = USER_BACKCOLOR

 cellLabel.ForeColor = USER_FORECOLOR

 End If

 cellLabel.Text = value

 cellLabel.Tag = erasable

 End If

 End Sub

Figure 2-19 shows the different color coding used to represent different types of values.

The lighter shade indicates values set by the user, while the darker shade represents cells
set in the original puzzle.

Figure 2-19. Setting values in the cells

The DisplayActivity() subroutine displays a message in the TextBox control. It also
accepts an additional parameter indicating if a beep should be sounded. This is useful

for displaying error messages to alert the user. Code the DisplayActivity() subroutine
as follows:

 '==

 ' Displays a message in the Activities text box

 '==

 Public Sub DisplayActivity(_

 ByVal str As String, _

 ByVal soundBeep As Boolean)

 If soundBeep Then Beep()

 txtActivities.Text &= str & & Environment.NewLine

 End Sub

Figure 2-20 shows some messages displayed in the Activities TextBox control.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 37

Figure 2-20. Displaying messages in the TextBox control

Undoing and Redoing a Move

The user can undo a move by selecting Edit ➤ Undo. To undo a move, you simply need to

pop an item from the Moves stack and then push it into the RedoMoves stack. That way, if
the user chooses to redo his move, you can retrieve it from the RedoMoves stack as shown

in the following event handler for the Undo menu item:

 '==

 ' Undo a move

 '==

 Private Sub UndoToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles UndoToolStripMenuItem.Click

 '---if no previous moves, then exit---

 If Moves.Count = 0 Then Return

 '---remove from the Moves stack and push into

 ' the RedoMoves stack---

 Dim str As String = Moves.Pop()

 RedoMoves.Push(str)

38 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---save the value in the array---

 SetCell(Integer.Parse(str(0)), Integer.Parse(str(1)), 0, 1)

 DisplayActivity("Value removed at (" & _

 Integer.Parse(str(0)) & "," & _

 Integer.Parse(str(1)) & ")", False)

 End Sub

To redo a move, a user selects Edit ➤ Redo. This is similar to undoing a move—instead
of popping from the Moves stack, you now pop an item from the RedoMoves stack and push

it into the Moves stack. The following event handler for the Redo menu item shows how to
redo a move:

 '==

 ' Redo the move

 '==

 Private Sub RedoToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles RedoToolStripMenuItem.Click

 '---if RedoMove stack is empty, then exit---

 If RedoMoves.Count = 0 Then Return

 '---remove from the RedoMoves stack and push into the

 ' Moves stack---

 Dim str As String = RedoMoves.Pop()

 Moves.Push(str)

 '---save the value in the array---

 SetCell(Integer.Parse(str(0)), Integer.Parse(str(1)), _

 Integer.Parse(str(2)), 1)

 DisplayActivity("Value reinserted at (" & _

 Integer.Parse(str(0)) & "," & _

 Integer.Parse(str(1)) & ")", False)

 End Sub

Saving a Game

Saving a Sudoku puzzle is surprisingly easy. You can save a Sudoku puzzle as a string of
digits. For example, the puzzle shown at the beginning of the chapter in Figure 2-1 is saved in

a plain text file containing the following string:

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 39

402000008

000006240

810940007

080697031

006050900

750020080

600213759

003400006

970000400

■Note I have formatted the string in groups of nine for easy reading. In actual fact, this series of digits is

saved in the text file as a one-line string.

The SaveGameToDisk() subroutine first determines if the game has already been saved
previously. If it has not been saved before (or if the user selects File ➤ Save As), the Save

File dialog box is displayed to allow the user to choose a filename. If the file selected already
exists, the SaveGameToDisk() subroutine will delete the file and then create a new one to

save the string of digits. Code the SaveGameToDisk() subroutine as follows:

 '==

 ' Save the game to disk

 '==

 Public Sub SaveGameToDisk(ByVal saveAs As Boolean)

 '---if saveFileName is empty, means game has not been saved

 ' before---

 If saveFileName = String.Empty OrElse saveAs Then

 Dim saveFileDialog1 As New SaveFileDialog()

 saveFileDialog1.Filter = _

 "SDO files (*.sdo)|*.sdo|All files (*.*)|*.*"

 saveFileDialog1.FilterIndex = 1

 saveFileDialog1.RestoreDirectory = False

 If saveFileDialog1.ShowDialog() = _

 Windows.Forms.DialogResult.OK Then

 '---store the filename first---

 saveFileName = saveFileDialog1.FileName

40 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 Else

 Return

 End If

 End If

 '---formulate the string representing the values to store---

 Dim str As New System.Text.StringBuilder()

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 str.Append(actual(col, row).ToString())

 Next

 Next

 '---save the values to file---

 Try

 Dim fileExists As Boolean

 fileExists = _

 My.Computer.FileSystem.FileExists(saveFileName)

 If fileExists Then _

 My.Computer.FileSystem.DeleteFile(saveFileName)

 My.Computer.FileSystem.WriteAllText(saveFileName, _

 str.ToString(), True)

 ToolStripStatusLabel1.Text = "Puzzle saved in " & _

 saveFileName

 Catch ex As Exception

 MsgBox("Error saving game. Please try again.")

 End Try

 End Sub

■Note Realize that I used the StringBuilder class for string operation. When manipulating strings in a
loop (especially for string concatenation), it is always much more efficient to use a StringBuilder class

than to append String objects directly. Also, the My namespace is a new feature in Visual Basic 2005. It is
used as a shortcut to the many methods nested deep within the .NET Framework class library.

To save a game, the user can choose File ➤ Save As. The following shows the event

handler for the Save As menu item:

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 41

 '==

 ' Save as... menu item

 '==

 Private Sub SaveAsToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles SaveAsToolStripMenuItem.Click

 If Not GameStarted Then

 DisplayActivity("Game not started yet.", True)

 Return

 End If

 SaveGameToDisk(True)

 End Sub

If a game has previously been saved, the user can just choose File ➤ Save. The following
shows the event handler for the Save menu item:

 '==

 ' Save menu item

 '==

 Private Sub SaveToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles SaveToolStripMenuItem.Click

 If Not GameStarted Then

 DisplayActivity("Game not started yet.", True)

 Return

 End If

 SaveGameToDisk(False)

 End Sub

Opening a Saved Game

To open a previously saved game from disk, you first ask the user if she wants to save the
current game. You then invoke the StartNewGame() subroutine and prompt the user to

specify the filename of the saved game. You then initialize the individual cells of the grid
based on the content of the file opened. The following shows the event handler for the

Open menu item:

42 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '==

 ' Open a saved game

 '==

 Private Sub OpenToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles OpenToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MessageBox.Show("Do you want to save current game?", _

 "Save current game", _

 MessageBoxButtons.YesNoCancel, _

 MessageBoxIcon.Question)

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 '---load the game from disk---

 Dim fileContents As String

 Dim openFileDialog1 As New OpenFileDialog()

 openFileDialog1.Filter = _

 "SDO files (*.sdo)|*.sdo|All files (*.*)|*.*"

 openFileDialog1.FilterIndex = 1

 openFileDialog1.RestoreDirectory = False

 If openFileDialog1.ShowDialog() = _

 Windows.Forms.DialogResult.OK Then

 fileContents = _

 My.Computer.FileSystem.ReadAllText(_

 openFileDialog1.FileName)

 ToolStripStatusLabel1.Text = openFileDialog1.FileName

 saveFileName = openFileDialog1.FileName

 Else

 Return

 End If

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 43

 StartNewGame()

 '---initialize the board---

 Dim counter As Short = 0

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 Try

 If CInt(fileContents(counter).ToString()) <> 0 Then

 SetCell(col, row, _

 CInt(fileContents(counter).ToString()), 0)

 End If

 Catch ex As Exception

 MsgBox(_

 "File does not contain a valid Sudoku puzzle")

 Exit Sub

 End Try

 counter += 1

 Next

 Next

 End Sub

Ending the Game

To end the game, the user simply chooses File ➤ Exit. Before exiting the application,

prompt the user to save the game. The following shows the event handler for the Exit
menu item:

 '==

 ' Exit the application

 '==

 Private Sub ExitToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles ExitToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MsgBox("Do you want to save current game?", _

 MsgBoxStyle.YesNoCancel, "Save current game")

44 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 '---exit the application---

 End

 End Sub

Testing the Application
Now that the application is all wired up, it is time to test the application. In Visual Studio 2005,

press F5 to debug the application.
Save the following in a text file and save it as C:\Easy.sdo:

005400180146080500070013000451008706080000010603700948000390070004070269019006400

In the Sudoku application, load the Easy.sdo file by choosing File ➤ Open and selecting
C:\Easy.sdo. The Sudoku puzzle should now look like Figure 2-21.

Figure 2-21. Loading a Sudoku puzzle

Try solving the puzzle and see how long it takes.

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 45

■Tip This is an easy Sudoku puzzle.

Give up? Figure 2-22 shows the solution for the puzzle!

Figure 2-22. The solution to the Sudoku puzzle

Summary
In this chapter, you have walked through the various steps to construct a Sudoku puzzle
board using a Windows application. This is the foundation chapter that all future chapters

will build on. Although the application in this chapter lacks the intelligence required to
solve a Sudoku puzzle, it does allow you to play Sudoku on the computer. Moreover, the

application that you built in this chapter provides some aid to beginning Sudoku players
because it checks for compliance with the rules of Sudoku. Go find a Sudoku puzzle and load

it using this application. You will gain a better appreciation of the game after a few rounds.
In the next chapter, you are going to discover the first steps toward programmatically

solving a Sudoku puzzle. You will be surprised to learn that a lot of Sudoku puzzles can
actually be solved by using the simple logic detailed in Chapter 3.

47

■ ■ ■

C H A P T E R 3

Basic Sudoku
Solving Technique

In the last chapter, you built the user interface for the Sudoku application and added
some basic functionality to allow users to play Sudoku puzzles on the computer (although

the computer does not have the intelligence to solve Sudoku puzzles yet). Using the Sudoku
application, you can load a Sudoku puzzle and use it as a rule enforcer to help you place

the numbers in the correct positions. An added benefit of the application is that you can
also use it to manually craft Sudoku puzzles, because it allows you to place numbers on

an empty grid and then save the game to disk. The saved game can then be shared with
your friends.

Beginning in this chapter, we will look at the various techniques that you can use to
solve a Sudoku puzzle. For a start, this chapter describes the fundamental technique you

can use to solve most of the easy Sudoku puzzles. I first walk you through the technique so
that you understand how it works, and then I show you the implementation details.

While the technique covered in this chapter can be used to solve most of the easy
Sudoku puzzles, it is not sufficient to solve other, more complex Sudoku puzzles. To help

you to accomplish that, I will discuss more advanced techniques in Chapters 4 and 5.

Elimination Technique
Most Sudoku puzzles can be solved by a process of elimination. For example, if eight out

of nine cells in a row are filled, then the remaining cell must be the number that has not
been used in the row. In the case of Figure 3-1, the value of the remaining cell, (5,1), must

be 5, since 1 through 4 and 6 through 9 have already been used in that row.

■Note Recall that a cell is identified by its column and row number, so (5,1) refers to the cell in column 5

and row 1.

48 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Figure 3-1. Deriving the number for a cell based on elimination

When you try to place a number in a cell, examining just its row usually is insufficient,
because typically, unlike Figure 3-1, not all the other cells in the row are filled. You have to

also scan its column and, if that is not enough, scan within its minigrid. I call this technique
Column, Row, and Minigrid Elimination (CRME).

Here is the algorithm for CRME:

Scan each cell in the grid from left to right, top to bottom

 For each cell:

 Set possible values for each cell to 123456789

 Scan its column and eliminate the values already present in the

 column

 Scan its row and eliminate the values already present in the row

 Scan its minigrid and eliminate the values already present in

 the minigrid

 If there is only one possible value for the cell, the number for

 the cell is confirmed

Until no more cells can be confirmed

Column, Row, and Minigrid Elimination

To see how CRME works, let’s start off with the simplest scenario. Figure 3-2 shows a

partially filled Sudoku puzzle.

Figure 3-2. A partially filled Sudoku puzzle

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 49

Scanning each cell from left to right, top to bottom, the first empty cell you encounter
is (2,1). Examining the column that it is in tells you that the possible values left for this cell

are 2, 3, 4, 6, 7, 8, and 9 (see Figure 3-3).

■Note Yes, I realize that by scanning the row before the column, you can quickly deduce that the value

for (2,1) is 9 in this case. However, our program will scan by column first, followed by row, so we will follow
the CRME algorithm here for purposes of explanation. When solving the puzzle, it really doesn’t matter whether

you start scanning by column or by row; the end result is the same.

Figure 3-3. Scanning by column

However, scanning horizontally across the row reduces the number of possible values

to one, which is 9, because all the other values have already been used, as shown in
Figure 3-4.

Figure 3-4. Scanning by row

50 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Since the only possible value is 9, you can now fill in (2,1) with 9 (see Figure 3-5).

Figure 3-5. Filling in the value for (2,1)

Continuing with the scanning, the next empty cell is (2,2). Scanning by its column and
row, as shown in Figure 3-6, yields the possible values of 3, 4, 6, 7, and 8.

Figure 3-6. Scanning by column and row

By scanning the minigrid next (see Figure 3-7), you see that it already has the values
of 1, 2, 3, 4, and 9, so the possible values are now reduced to 6, 7, and 8. Because (2,2) has

more than one possible value remaining after we have searched the column, row, and
minigrid to eliminate values, the answer is not conclusive. But at least we now know that

only the values 6, 7, and 8 are possibilities for (2,2).

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 51

■Tip Knowing what are the possible values for a cell is very important in solving a Sudoku puzzle. While
cells with more than one possible number cannot be used to solve the puzzle in this chapter, you will learn in

the subsequent chapters how to utilize them to solve the puzzle.

Figure 3-7. Scanning within the minigrid

Continuing with the scan, the next interesting cell is (1,4), as shown in Figure 3-8.

Figure 3-8. Examining cell (1,4)

Scanning its column yields 3 and 8 as possible values, but scanning its row confirms
that the number is 3. And so you can now fill in (1,4) with 3, as shown in Figure 3-9.

52 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Figure 3-9. Filling in (1,4) with the value 3

Continuing with the scan, the next conclusive cell is (2,6). Scanning by column and row

does not yield a specific number, but scanning its minigrid confirms that the missing
number is 2 (see Figure 3-10).

Figure 3-10. Confirming the value for (2,6) by scanning column, row, and minigrid

This particular cell is worth noting because it illustrates that numbers confirmed in

earlier scans (cell (1,4) in this example) can often help in confirming other cells. If you had
not previously filled in the number for (1,4), then it would not be possible to confirm the

number for (2,6).
Finally, the last cell that you can confirm is (1,7), which you can confirm by simply

performing a column scan (see Figure 3-11).

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 53

Figure 3-11. Filling in the value for (1,7)

Figure 3-12 shows the list of possible values that each cell may contain after running

the grid through the CRME algorithm.

Figure 3-12. Possible values for the rest of the grid

54 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Usefulness of the CRME Technique

Although the grid in Figure 3-12 shows that a lot of cells are still unconfirmed after running

through the algorithm, in reality the situation is much more optimistic, because in a real
Sudoku puzzle there are many more initial nonempty cells than illustrated here. After

applying the CRME technique to the entire puzzle, you should be able to confirm many
more cells.

Also, you should repeat the entire scanning process whenever a cell gets confirmed.
To understand why this is important, consider the following. In the previous example, the

value for (1,4) was confirmed and later was used to help confirm (2,6). In this case, cells (1,4)
and (2,6) were confirmed in one pass, since we are scanning from left to right, top to bottom

(see Figure 3-13).

Figure 3-13. Confirming (1,4) helps confirm (2,6) in single pass

However, we might not always be that lucky. Consider the puzzle shown in Figure 3-14.

Figure 3-14. A Sudoku puzzle

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 55

In this case, if you apply the CRME technique to the grid, the first cell to get confirmed
is (2,6), which is a 2, as shown in Figure 3-15.

Figure 3-15. First pass only confirms (2,6)

■Tip This is a good time for you to put what you have learned into practice. Can you see why cell (2,6) is a 2?

But only by putting a 2 into (2,6) can you confirm (1,4). However, as you scan from left
to right and top to bottom, by the time you confirm (2,6), you have already passed (1,4).

Thus, to derive the value for (1,4), you need to scan the grid one more time, this time
confirming (1,4) to be a 3, as shown in Figure 3-16.

Figure 3-16. Confirming the value for (1,4) in the second pass

So when do you stop scanning the grid? The answer is obvious—you stop scanning if

you can’t confirm any cells in a scan (a scan involves 81 cells, from (1,1) to (9,9)). When
that happens, you can be sure that this technique has reached its usefulness (if you have

not solved the grid by then).

56 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Exception Scenarios

In general, when you apply the CRME technique to a Sudoku puzzle, you can be sure that

whenever the possible value for a cell is narrowed down to a single number, the number
is confirmed. However, there are two situations that can invalidate this rule:

• The puzzle is invalid

• The user’s placement of a number into a cell has caused the puzzle to have no solution

Invalid Puzzle

Consider the seemingly harmless Sudoku puzzle in Figure 3-17.

Figure 3-17. A partial Sudoku puzzle that is not solvable

Applying the CRME technique, the first cell to be confirmed is (1,3), as shown in

Figure 3-18.

Figure 3-18. Filling in the value for (1,3)

But this is where the first sign of trouble shows up. Scanning from cell (8,3), you realize
that there is no possible value for it. In its row, the values 1, 2, 3, 4, 5, 7, and 9 are already

used, and in its column, 6 and 8 are also taken up. That leaves nothing for (8,3), as illus-
trated in Figure 3-19.

In this case, the algorithm should sound a warning alarm that there is an error with the
puzzle. Unfortunately, at this stage we are not able to detect whether this is a user move

error (see next section) or a puzzle that is simply not solvable in the first place.

■Tip To detect whether the puzzle is solvable, you need to solve the puzzle first without any user’s moves.

Chapter 5 discusses this issue in more detail.

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 57

Figure 3-19. Scanning done in cell (8,3)

Invalid Move

Whereas you applied the CRME technique to an unsolvable Sudoku puzzle in the previous
section, here you begin with a solvable puzzle, shown in Figure 3-20.

Figure 3-20. A solvable Sudoku puzzle

Applying the CRME technique yields the results shown in Figure 3-21.

Figure 3-21. Filling in some of the cells

However, if the user starts the puzzle with a wrong move, like placing an 8 into (8,1), as
shown in Figure 3-22, this causes the puzzle to have no solution.

58 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Figure 3-22. Getting into a dead end

Scanning at (8,3) reveals that it has no possible values, as shown in Figure 3-23.

Figure 3-23. Scanning at (8,3) reveals no possible values

As in the previous case of an invalid puzzle, the algorithm should sound a warning
alarm that there is an error with the puzzle.

Implementing the CRME Technique
Now that you have a good understanding of the CRME technique, it is time to put that
into action. This section extends the project created in the previous chapter and then

progressively adds the logic to solve the puzzle.

Adding Member Variables

First, add the following member variables to the Form1 class:

 Private possible(9,9) As String

 Private HintMode As Boolean

The array possible() keeps track of the possible values for a cell. For example, if the
possible values for cell (7,8) are 2, 3, and 5, then possible(7,8) would contain the value 235.

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 59

Using the string data type to store the possible values is efficient because it allows values to
be removed easily using string manipulation methods such as Replace() in the String class.

The HintMode Boolean variable is used to indicate whether the user is actually requesting
a hint or wants the application to solve the entire puzzle. If HintMode is True, as soon as the

algorithm confirms a value for a cell, the application stops searching for the number for
the next cell and returns control back to the user.

Modifying the SetCell() Subroutine

In the previous chapter, you implemented the SetCell() subroutine to assign a value to a

cell. When the value of a cell is erased, you need to reset the possible values of all the other
empty cells to an empty string.

Insert the following code in bold into the SetCell() subroutine:

 '==

 ' Set a cell to a given value

 '==

 Public Sub SetCell(_

 ByVal col As Integer, ByVal row As Integer, _

 ByVal value As Integer, ByVal erasable As Short)

 '---Locate the particular Label control---

 Dim lbl() As Control = _

 Me.Controls.Find(col.ToString() & row.ToString(), True)

 Dim cellLabel As Label = CType(lbl(0), Label)

 '---save the value in the array

 actual(col, row) = value

 '---if erasing a cell, you need to reset the possible values

 ' for all cells---

 If value = 0 Then

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 If actual(c, r) = 0 Then possible(c, r) = _

 String.Empty

 Next

 Next

 Else

 possible(col, row) = value.ToString()

 End If

60 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

 '---set the appearance for the Label control---

 If value = 0 Then '---erasing the cell---

 cellLabel.Text = String.Empty

 cellLabel.Tag = erasable

 cellLabel.BackColor = DEFAULT_BACKCOLOR

 Else

 If erasable = 0 Then '---means default puzzle values---

 cellLabel.BackColor = FIXED_BACKCOLOR

 cellLabel.ForeColor = FIXED_FORECOLOR

 Else '---means user-set value---

 cellLabel.BackColor = USER_BACKCOLOR

 cellLabel.ForeColor = USER_FORECOLOR

 End If

 cellLabel.Text = value

 cellLabel.Tag = erasable

 End If

 End Sub

The preceding code segment is needed because when a cell is erased, all the possible
values for the other cells are no longer valid, and hence you need to recompute them.

Adding a ToolTip Control

To aid the user in solving the puzzle, we will use a ToolTip control to display the possible
values for a cell when the user places the cursor over a cell, like that shown in Figure 3-24.

Figure 3-24. Displaying the possible values for a cell using ToolTip text

To add a ToolTip control to the application, double-click the ToolTip control (located

in the Toolbox under the Common Controls tab) to add it to the project.
Switch to the code behind and add the SetToolTip() subroutine:

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 61

 '==

 ' Set the ToolTip for a Label control

 '==

 Public Sub SetToolTip(_

 ByVal col As Integer, ByVal row As Integer, _

 ByVal possiblevalues As String)

 '---Locate the particular Label control---

 Dim lbl() As Control = _

 Me.Controls.Find(col.ToString() & row.ToString(), True)

 ToolTip1.SetToolTip(CType(lbl(0), Label), possiblevalues)

 End Sub

This subroutine associates ToolTip text (containing the possible values) with the Label

control representing the specified cell.
In the StartNewGame() subroutine (created in the previous chapter), add the additional

line in bold so that when the user starts a new game, all the current ToolTip associations
are removed:

 Public Sub StartNewGame()

 saveFileName = String.Empty

 txtActivities.Text = String.Empty

 seconds = 0

 ClearBoard()

 GameStarted = True

 Timer1.Enabled = True

 ToolStripStatusLabel1.Text = "New game started"

 ToolTip1.RemoveAll()

 End Sub

Calculating the Possible Values for a Cell

To calculate the possible values for a cell, you first scan its column, followed by its row,

and then the minigrid it is in. If, after scanning, the possible value is an empty string, then
the application must raise an exception indicating that an error has occurred. All of these

steps are accomplished by the CalculatePossibleValues() function, which returns a
string containing a list of possible values for a specified cell:

62 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

 '==

 ' Calculates the possible values for a cell

 '==

 Public Function CalculatePossibleValues(_

 ByVal col As Integer, _

 ByVal row As Integer) _

 As String

 '---get the current possible values for the cell

 Dim str As String

 If possible(col, row) = String.Empty Then

 str = "123456789"

 Else

 str = possible(col, row)

 End If

 '---Step (1) check by column

 Dim r, c As Integer

 For r = 1 To 9

 If actual(col, r) <> 0 Then

 '---that means there is an actual value in it---

 str = str.Replace(actual(col, r).ToString(), String.Empty)

 End If

 Next

 '---Step (2) check by row

 For c = 1 To 9

 If actual(c, row) <> 0 Then

 '---that means there is an actual value in it---

 str = str.Replace(actual(c, row).ToString(), String.Empty)

 End If

 Next

 '---Step (3) check within the minigrid---

 Dim startC, startR As Integer

 startC = col - ((col - 1) Mod 3)

 startR = row - ((row - 1) Mod 3)

 For rr As Integer = startR To startR + 2

 For cc As Integer = startC To startC + 2

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 63

 If actual(cc, rr) <> 0 Then

 '---that means there is a actual value in it---

 str = str.Replace(actual(cc, rr).ToString(), String.Empty)

 End If

 Next

 Next

 '---if possible value is an empty string then error because of

 ' invalid move---

 If str = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 Return str

 End Function

Scanning the Grid

The CheckColumnsAndRows() function scans the individual cells in the grid from left to right,

top to bottom. It calls the CalculatePossibleValues() function defined in the previous
section and then assigns it to the ToolTip control of each Label control. If the possible

value returned is a single number, then the number for that cell is confirmed and the cell
in the grid is updated with the confirmed number. The Activities TextBox control is also

updated with information on the cell that is updated.
If the user is requesting a hint (as indicated by the HintMode variable, which is set in the

event handler for the Hint button; see the next section), the subroutine exits after the first
successfully confirmed cell. The control is then transferred back to the user.

The implementation of the CheckColumnsAndRows() function is as follows:

 '==

 ' Calculates the possible values for all the cells

 '==

 Public Function CheckColumnsAndRows() As Boolean

 Dim changes As Boolean = False

 '---check all cells

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 If actual(col, row) = 0 Then

 Try

 possible(col, row) = CalculatePossibleValues(col, row)

64 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

 Catch ex As Exception

 DisplayActivity("Invalid placement, please undo move", _

 False)

 Throw New Exception("Invalid Move")

 End Try

 '---display the possible values in the ToolTip

 SetToolTip(col, row, possible(col, row))

 If possible(col, row).Length = 1 Then

 '---that means a number is confirmed---

 SetCell(col, row, CInt(possible(col, row)), 1)

 '----Number is confirmed

 actual(col, row) = CInt(possible(col, row))

 DisplayActivity("Col/Row and Minigrid Elimination",_

 False)

 DisplayActivity("=========================", False)

 DisplayActivity("Inserted value " & actual(col, row) & _

 " in " & "(" & col & "," & row & ")",_

 False)

 '---get the UI of the application to refresh

 ' with the newly confirmed number---

 Application.DoEvents()

 '---saves the move into the stack

 Moves.Push(col & row & possible(col, row))

 '---if user only asks for a hint, stop at this point---

 changes = True

 If HintMode Then Return True

 End If

 End If

 Next

 Next

 Return changes

 End Function

The CheckColumnsAndRows() function returns True if there is at least one cell confirmed
in a single pass, and returns False if no cells get confirmed.

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 65

Wiring the Controls

Now that we have most of the logic worked out, it is time to wire up all the controls. Recall

that we have the controls shown in Figure 3-25.

Figure 3-25. The two Button controls in Form1

Double-click the Hint button and code the following:

 '==

 ' Hint button

 '==

 Private Sub btnHint_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnHint.Click

 '---show hints one cell at a time

 HintMode = True

 Try

 SolvePuzzle()

 Catch ex As Exception

 MessageBox.Show("Please undo your move", "Invalid Move",

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

 End Sub

Likewise, double-click the Solve Puzzle button and code the following:

 '==

 ' Solve Puzzle button

 '==

 Private Sub btnSolvePuzzle_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnSolvePuzzle.Click

66 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

 '---solve the puzzle

 HintMode = False

 Try

 SolvePuzzle()

 Catch ex As Exception

 MessageBox.Show("Please undo your move", "Invalid Move",

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

 End Sub

Note that both subroutines call the SolvePuzzle() subroutine, which is defined as follows:

 '==

 ' Steps to solve the puzzle

 '==

 Public Function SolvePuzzle() As Boolean

 Dim changes As Boolean

 Dim ExitLoop As Boolean = False

 Try

 Do

 '---Perform Col/Row and Minigrid Elimination

 changes = CheckColumnsAndRows()

 If (HintMode AndAlso changes) OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 Catch ex As Exception

 Throw New Exception("Invalid Move")

 End Try

 If IsPuzzleSolved() Then

 Timer1.Enabled = False

 Beep()

 ToolStripStatusLabel1.Text = "*****Puzzle Solved*****"

 MsgBox("Puzzle solved")

 Return True

 Else

 Return False

 End If

 End Function

C H A P T E R 3 ■ B A S I C S U D O K U S O L V I N G T E C H N I Q U E 67

This is the routine that we will modify in subsequent chapters when we add more logic
to solve the Sudoku puzzle.

Testing It Out
Testing our algorithm on some real puzzles is the best way to find out how useful it is.
Using the puzzle originally shown in Chapter 1 (refer to Figure 1-7), Figure 3-26 shows

how the puzzle looks when loaded into our application.

Figure 3-26. Loading the puzzle shown originally in Figure 1-7

Of course, if you want to try solving it manually, you can do so using the program. But
occasionally, you might want to use the Hint button to get the program to fill in a cell for

you. If you are eager to see if our algorithm is powerful enough to solve the puzzle, click
the Solve Puzzle button. Presto! The puzzle is solved, as shown in Figure 3-27.

You will be amazed to discover that a lot of Sudoku puzzles can be solved using this
CRME technique. If you are in doubt, try using the application built in this chapter and

solve some of the puzzles you find in your newspaper.

68 C H A P T E R 3 ■ B A S I C SU D O K U S O L V I N G T E C H N I Q U E

Figure 3-27. The puzzle solved using the CRME technique

Summary
In this chapter, you have started to understand how a Sudoku puzzle can be solved by
using the elimination technique, which I have named Column, Row, and Minigrid

Elimination (CRME).
Of course, the CRME technique has its limitations, and would grind to a stop when

applied to more complex Sudoku puzzles. In the next chapter, I am going to show you
how you can actually use the information produced by the CRME technique (that is, the

possible values for each empty cell) to further solve a Sudoku puzzle.

69

■ ■ ■

C H A P T E R 4

Intermediate Techniques

In the previous chapter, you saw how to use the CRME technique to solve some simple
Sudoku puzzles. However, there are more-challenging Sudoku puzzles that require much
more analysis and new techniques to solve, and that’s where the limitations of the CRME
technique become apparent. In this chapter, we continue our discovery of new techniques so
that we can tackle the more-challenging Sudoku puzzles. Beginning with this chapter and
continuing through to the end of the book, we will be looking for some not-so-obvious
patterns in Sudoku puzzles and analyzing how we can exploit those patterns to take us
one step closer to solving tough Sudoku puzzles.

Lone Rangers
Lone ranger is a term that I use to refer to a number that is one of multiple possible values
for a cell but appears only once in a row, column, or minigrid. To see what this means in
practice, consider the row shown in Figure 4-1. In this row, six cells have already been
filled in, leaving three unsolved cells (shown as shaded cells) with their possible values
written in them (derived after applying the CRME technique). Notice that the second cell
is the only cell that contains the possible value 8. Since no other cells in this row can possibly
contain the value 8, this cell can now be confirmed with the value 8. In this case, the 8 is
known as a lone ranger.

Figure 4-1. Identifying a lone ranger in a row

Lone rangers are extremely useful in helping to confirm the number for a cell and are
often useful in more complex Sudoku puzzles. Lone rangers can appear in a row, column,
or minigrid. Let’s see how you can use lone rangers to solve your Sudoku puzzles.

70 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Lone Rangers in a Minigrid

Consider the grid shown in Figure 4-2. We first saw this grid in Chapter 3.

Figure 4-2. A partial Sudoku puzzle

Using the CRME technique, we can confirm the values of only three cells, as shown in
Figure 4-3.

Figure 4-3. Confirming the values of three cells

We definitely can do better. As a start, let’s examine the possible values for all other
cells. Figure 4-4 shows the possible values after partially applying the CRME technique.

Figure 4-4. Possible values for the cells after applying the CRME technique

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 71

One interesting observation is found by looking at the third minigrid, shown in
Figure 4-5.

Figure 4-5. Examining the third minigrid

If you observe cell (7,2), one of the possible values is 1, along with the other numbers
like 3, 4, and 5. However, the number 1 appears as a possible value only for (7,2) and not
for the other cells within the minigrid. Logically, we can now conclude that as long as a
number appears only once (as a possible value) within the minigrid, that number can be
confirmed as the number for the cell. This is logical, because cells (7,1), (8,1), and (9,1)
cannot contain the value 1, and hence only (7,2) can contain 1. Following this argument,
we can now put a 1 in (7,2), as shown in Figure 4-6.

Figure 4-6. Confirming the value for (7,2)

Lone Rangers in a Row

Lone rangers do not just occur within minigrids; sometimes they occur within rows.
Consider the puzzle shown in Figure 4-7.

72 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Figure 4-7. Searching a Sudoku puzzle for lone rangers in rows

Applying the CRME technique yields the list of possible values shown in Figure 4-8.

Figure 4-8. Scanning for lone rangers in rows from the possible values of the unsolved cells

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 73

Scanning for lone rangers in the minigrids does not get you anywhere, but if you look
at row 5 (see Figure 4-9), you will see that there is a lone ranger in cell (6,5).

Figure 4-9. Lone ranger detected in row 5

And that effectively confirms (6,5) with the value 2.

Lone Rangers in a Column

Similar to lone rangers in rows, lone rangers also exist in columns. Consider the example
in Figure 4-10.

Figure 4-10. Searching a Sudoku puzzle for lone rangers in columns

Applying the CRME technique yields the list of possible values shown in Figure 4-11.

74 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Figure 4-11. Scanning for lone rangers in columns from the possible values of the unsolved cells

If you look at column 8, you will notice that cell (8,5) contains a lone ranger, 8 (see
Figure 4-12). And that confirms (8,5) to be 8.

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 75

Figure 4-12. Finding a lone ranger in the column

Once (8,5) is confirmed, you can now apply the CRME technique again, as shown in
Figure 4-13. This removes the number 8 from the list of possible values at cells (6,5), (9,5),
and (9,6).

76 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Figure 4-13. Confirming a cell affects other cells

And now you will discover yet another lone ranger in the same column, as pointed out
in Figure 4-14. And that effectively confirms (8,4) as a 6.

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 77

Figure 4-14. Confirming yet another cell

Implementing the Technique
It is now time to implement what we have discussed in code! As usual, we will extend the
project used in the previous chapter and progressively apply more puzzle-solving logic to it.

Looking for Lone Rangers in Minigrids

First, we will create the LookForLoneRangersinMinigrids() function. Its mission is to look
into each of the nine minigrids and scan for lone rangers (from 1 to 9). If a lone ranger is
found, the number is confirmed and the necessary action is taken to insert it into the cell.

78 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

The function returns True if a lone ranger is found in one of the minigrids; otherwise, it
returns False.

Figure 4-15 shows the steps taken by the LookForLoneRangersinMinigrids() function.

Figure 4-15. Looking for lone rangers in minigrids

Code the LookForLoneRangersinMinigrids() function as follows:

 '==

 ' Look for Lone Rangers in Minigrids

 '==

 Public Function LookForLoneRangersinMinigrids() As Boolean

 Dim changes As Boolean = False

 Dim NextMiniGrid As Boolean

 Dim occurrence As Integer

 Dim cPos, rPos As Integer

 '---check for each number from 1 to 9---

 For n As Integer = 1 To 9

 '---check the 9 minigrids---

 For r As Integer = 1 To 9 Step 3

 For c As Integer = 1 To 9 Step 3

 NextMiniGrid = False

 '---check within the minigrid---

 occurrence = 0

 For rr As Integer = 0 To 2

 For cc As Integer = 0 To 2

 If actual(c + cc, r + rr) = 0 AndAlso _

 possible(c + cc, r + rr).Contains(n.ToString())_

 Then

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 79

 occurrence += 1

 cPos = c + cc

 rPos = r + rr

 If occurrence > 1 Then

 NextMiniGrid = True

 Exit For

 End If

 End If

 Next

 If NextMiniGrid Then Exit For

 Next

 If (Not NextMiniGrid) AndAlso occurrence = 1 Then

 '---that means number is confirmed---

 SetCell(cPos, rPos, n, 1)

 SetToolTip(cPos, rPos, n.ToString())

 '---saves the move into the stack

 Moves.Push(cPos & rPos & n.ToString())

 DisplayActivity("Look for Lone Rangers in Minigrids",_

 False)

 DisplayActivity("===========================", False)

 DisplayActivity("Inserted value " & n.ToString() & _

 " in " & "(" & cPos & "," & rPos & ")",_

 False)

 Application.DoEvents()

 changes = True

 '---if user clicks the Hint button, exit the function---

 If HintMode Then Return True

 End If

 Next

 Next

 Next

 Return changes

 End Function

■Note AndAlso is a short-circuit operator that is new in Visual Basic 2005. When using this operator, if the
first condition evaluates to False, the second condition will not be evaluated.

80 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Looking for Lone Rangers in Rows

The next function we will write is the LookForLoneRangersinRows() function. This function
scans for lone rangers in each of the nine rows. It starts from the first row and iteratively
looks for lone rangers that may be present in the row, until the last row. This function is
less complex than the previous function, because the previous function has to scan within
a minigrid and hence involves additional looping constructs.

Figure 4-16 shows the steps taken by the LookForLoneRangersinRows() function.

Figure 4-16. Looking for lone rangers in rows

Code the LookForLoneRangersinRows() function as follows:

 '===

 'Look for Lone Rangers in Rows

 '===

 Public Function LookForLoneRangersinRows() As Boolean

 Dim changes As Boolean = False

 Dim occurrence As Integer

 Dim cPos, rPos As Integer

 '---check by row----

 For r As Integer = 1 To 9

 For n As Integer = 1 To 9

 occurrence = 0

 For c As Integer = 1 To 9

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 81

 If actual(c, r) = 0 AndAlso _

 possible(c, r).Contains(n.ToString()) Then

 occurrence += 1

 '---if multiple occurrences, not a lone ranger anymore

 If occurrence > 1 Then Exit For

 cPos = c

 rPos = r

 End If

 Next

 If occurrence = 1 Then

 '--number is confirmed---

 SetCell(cPos, rPos, n, 1)

 SetToolTip(cPos, rPos, n.ToString())

 '---saves the move into the stack---

 Moves.Push(cPos & rPos & n.ToString())

 DisplayActivity("Look for Lone Rangers in Rows", False)

 DisplayActivity("=========================", False)

 DisplayActivity("Inserted value " & n.ToString() & _

 " in " & "(" & cPos & "," & rPos & ")",

 False)

 Application.DoEvents()

 changes = True

 '---if user clicks the Hint button, exit the function---

 If HintMode Then Return True

 End If

 Next

 Next

 Return changes

 End Function

Looking for Lone Rangers in Columns

The last function we will write is the LookForLoneRangersinColumns() function. This function
is almost identical to the LookForLoneRangersinRows() function, except that it scans for lone
rangers in each of the nine columns.

Figure 4-17 shows the steps taken by the LookForLoneRangersinColumns() function.

82 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Figure 4-17. Looking for lone rangers in columns

Code the LookForLoneRangersinColumns() function as follows:

 '===

 'Look for Lone Rangers in Columns

 '===

 Public Function LookForLoneRangersinColumns() As Boolean

 Dim changes As Boolean = False

 Dim occurrence As Integer

 Dim cPos, rPos As Integer

 '----check by column----

 For c As Integer = 1 To 9

 For n As Integer = 1 To 9

 occurrence = 0

 For r As Integer = 1 To 9

 If actual(c, r) = 0 AndAlso _

 possible(c, r).Contains(n.ToString()) Then

 occurrence += 1

 '---if multiple occurrences, not a lone ranger anymore

 If occurrence > 1 Then Exit For

 cPos = c

 rPos = r

 End If

 Next

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 83

 If occurrence = 1 Then

 '--number is confirmed---

 SetCell(cPos, rPos, n, 1)

 SetToolTip(cPos, rPos, n.ToString())

 '---saves the move into the stack

 Moves.Push(cPos & rPos & n.ToString())

 DisplayActivity("Look for Lone Rangers in Columns", False)

 DisplayActivity("===========================", False)

 DisplayActivity("Inserted value " & n.ToString() & _

 " in " & "(" & cPos & "," & rPos & ")",_

 False)

 Application.DoEvents()

 changes = True

 '---if user clicks the Hint button, exit the function---

 If HintMode Then Return True

 End If

 Next

 Next

 Return changes

 End Function

■Tip The reason I have three separate functions for scanning lone rangers
(LookForLoneRangersinMinigrids(), LookForLoneRangersinRows(), and
LookForLoneRangersinColumns()) is that a cell that is confirmed during a scan in a
minigrid can cause other cells to be confirmed using the simpler CRME technique. Hence,

after scanning all the minigrids, I apply CRME to the grid and then progressively scan for lone
rangers in columns and rows.

Modifying the SolvePuzzle() Function

To solve a Sudoku puzzle using the lone ranger technique, we first apply CRME to the grid.
If there are no more changes, then we scan for lone rangers in the minigrids. If at least one
cell is confirmed in one of the minigrids, we apply the CRME technique to the entire grid
again. We scan for lone rangers in the rows only when the first two techniques have not
resulted in any changes to the grid. Finally, we scan for lone rangers in columns after
everything else fails to effect any changes on the grid.

Figure 4-18 shows the main flow of the SolvePuzzle() function and how it applies the
techniques discussed to solve the puzzle.

84 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Figure 4-18. Flowchart showing how various techniques are applied to solve a Sudoku puzzle

In the SolvePuzzle() function, add the lines in bold to scan for lone rangers:

 '==

 ' Steps to solve the puzzle

 '==

 Public Function SolvePuzzle() As Boolean

 Dim changes As Boolean

 Dim ExitLoop As Boolean = False

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 85

 Try

 Do

 Do

 Do

 Do

 '---Perform Col/Row and Minigrid Elimination----

 changes = CheckColumnsAndRows()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Ranger in Minigrids----

 changes = LookForLoneRangersinMinigrids()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Ranger in Rows----

 changes = LookForLoneRangersinRows()

 If (HintMode AndAlso changes) OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Ranger in Columns----

 changes = LookForLoneRangersinColumns()

 If (HintMode AndAlso changes) OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

86 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

 Catch ex As Exception

 Throw New Exception("Invalid Move")

 End Try

 If IsPuzzleSolved() Then

 Timer1.Enabled = False

 Beep()

 ToolStripStatusLabel1.Text = "*****Puzzle Solved*****"

 MsgBox("Puzzle solved")

 Return True

 Else

 Return False

 End If

 End Function

■Note OrElse is another short-circuit operator that’s new in Visual Basic 2005. When using this operator,
if the first condition evaluates to True, the second condition will not be evaluated.

Another way of scanning is to scan using CRME first, then scan for lone rangers in
minigrids, rows, and columns, and then repeat the entire process. However, my prefer-
ence is to apply the simpler CRME technique immediately after each scan for lone rangers
(minigrids, rows, and columns), because the CRME technique is computationally less
expensive than scanning for lone rangers and provides a good chance that the puzzle

could be solved directly.

Testing Out the Lone Ranger Technique
With all the relevant pieces of code in place, we can now embark on testing how useful the
lone ranger technique is in solving Sudoku puzzles.

Example 1

Consider the puzzle shown in Figure 4-19.

■Tip The puzzle is named Chap4-Eg1.sdo and can be downloaded from the book’s support site at
http://apress.com/book/download.html.

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 87

Figure 4-19. A Sudoku puzzle (Chap4-Eg1.sdo)

The first step is to apply the CRME technique to see if the puzzle can be solved. Doing
so yields the result shown in Figure 4-20.

Figure 4-20. The puzzle after applying the CRME technique

88 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

The possible values for each cell after applying the CRME technique are shown in
Figure 4-21.

Figure 4-21. Possible values for the cells after applying the CRME technique

■Tip Before you proceed, challenge yourself and see if you can spot any lone rangers in the nine minigrids.

Scanning for lone rangers in the nine minigrids will confirm three additional cells, as
shown in Figure 4-22.

■Note In this puzzle, there are no lone rangers in the rows or columns.

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 89

Figure 4-22. The puzzle after scanning for lone rangers in the minigrids

Applying the CRME technique to the grid again immediately solves the puzzle (see
Figure 4-23).

Figure 4-23. Applying CRME to the puzzle solves it immediately.

90 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Example 2

Let’s consider another example, shown in Figure 4-24.

■Tip The puzzle is named Chap4-Eg2.sdo and can be downloaded from the book’s support site at
http://apress.com/book/download.html.

Figure 4-24. Another Sudoku puzzle (Chap4-Eg2.sdo)

Applying the CRME technique to this puzzle gives us the state shown in Figure 4-25.
Scanning the minigrids, rows, and columns for lone rangers and then applying the

CRME techniques iteratively to the grid again yields the result shown in Figure 4-26.

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 91

Figure 4-25. The puzzle after applying the CRME technique

Figure 4-26. The puzzle after scanning for lone rangers in the minigrids

92 C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S

Table 4-1 details the steps attempted by the application to solve the puzzle.

Although applying the CRME and lone ranger techniques did not manage to solve this
puzzle, it has significantly weakened the puzzle and reduced the number of empty cells.
Figure 4-27 shows the state of the puzzle and the possible values for the nonempty cells.
The lone ranger technique sets up the grid nicely and prepares it for solving by using other
techniques, which will be discussed in the next chapter.

Table 4-1. Steps Taken by the Application to Solve the Puzzle

Technique Used Value Inserted

CRME Value 2 in (1,5)

CRME Value 3 in (1,9)

CRME Value 1 in (5,9)

CRME Value 6 in (9,9)

CRME Value 5 in (1,1)

CRME Value 1 in (1,3)

CRME Value 5 in (2,7)

CRME Value 7 in (3,7)

CRME Value 1 in (8,7)

CRME Value 8 in (1,8)

CRME Value 6 in (3,8)

CRME Value 9 in (8,9)

Look for lone rangers in minigrids Value 1 in (4,5)

Look for lone rangers in minigrids Value 1 in (9,6)

Look for lone rangers in minigrids Value 3 in (3,1)

Look for lone rangers in minigrids Value 5 in (9,4)

Look for lone rangers in minigrids Value 8 in (7,2)

Look for lone rangers in minigrids Value 8 in (3,6)

Look for lone rangers in minigrids Value 3 in (2,6)

Look for lone rangers in minigrids Value 5 in (8,3)

Look for lone rangers in minigrids Value 8 in (5,4)

Look for lone rangers in rows Value 9 in (3,3)

CRME Value 2 in (3,2)

Look for lone rangers in columns Value 6 in (8,1)

Look for lone rangers in minigrids Value 6 in (6,3)

C H A P T E R 4 ■ I N T E R M E D I A T E T E C H N I Q U E S 93

Figure 4-27. State of the puzzle after applying the CRME and lone ranger techniques

Summary
In this chapter, you learned about the lone ranger technique and how it is useful in
helping you to solve or weaken some difficult Sudoku puzzles. Lone rangers are extremely
useful and can always help to directly solve a Sudoku puzzle. However, if the techniques
covered so far prove ineffective in solving your tough Sudoku puzzles, the next chapter
will show you how you can solve the toughest Sudoku puzzles of them all.

95

■ ■ ■

C H A P T E R 5

Advanced Techniques

So far, you have learned a couple of techniques that have proven invaluable in solving
quite a few Sudoku puzzles. However, some difficult puzzles exist that just refuse to

surrender to CRME or lone rangers. In this chapter, you learn three additional techniques
that you can use to solve some difficult puzzles: looking for twins, looking for triplets, and,

lastly, brute-force elimination, a technique of last resort if everything else fails.

Looking for Twins
To understand the usefulness of looking for twins, consider the partial Sudoku puzzle

shown in Figure 5-1, which includes lists of possible values for unresolved cells.

Figure 5-1. A partially solved Sudoku puzzle with the possible values for empty cells

Observe the two cells (5,2) and (6,2) in Figure 5-2. They both contain possible values

of 2 and 3. In this scenario, if (5,2) takes the value 2, then (6,2) must take the value 3.
Conversely, if (6,2) takes the value 2, then (5,2) must take 3. All other cells in row 2 besides

these two cells cannot contain either 2 or 3. Because the two cells (5,2) and (6,2) have identical
lists of possible values and are in the same row, they are known as twins.

96 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Figure 5-2. Identifying the twins

Scanning across the row, you now can eliminate 2 and 3 as possible values for any of

the other cells, as shown in Figure 5-3, in which 2 has been deleted as a possible value for
cells (1,2) and (3,2).

Figure 5-3. Eliminating 2 and 3 as possible values for other cells in the same row as the twins

Similarly, because the twins appear in the same minigrid, all the other cells in this
minigrid cannot possibly take the values 2 and 3. Thus, you can eliminate 2 and 3 as

possible values for cells (4,1) and (5,1), as shown in Figure 5-4.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 97

Figure 5-4. Eliminating 2 and 3 as possible values for other cells in the same minigrid as the twins

If you noticed, there are now three pairs of twins in the grid, as identified in Figure 5-5.

Two pairs are in the first two rows and the third pair is in column 5.

Figure 5-5. New pairs of twins emerging after the first scanning

For the twins “23,” you can scan the column they are in and remove all occurrences

of 2 and 3. For example, if we examine the possible values for column 5, we can see that
the values 2 and 3 can be eliminated from many of the cells in this column (shown in

Figure 5-6 with the possible values for all the cells in the column).

98 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Figure 5-6. Scanning the column the twins are in

For the twins “45,” scanning by their minigrid allows you to remove the 4 and 5 in cell
(2,1), as shown in Figure 5-7. Doing so causes cell (2,1) to be confirmed with 2, which in

turn causes (2,4) to be confirmed with 4.

Figure 5-7. Confirming cell (2,1) and subsequently (2,4)

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 99

For the twins “89,” there isn’t much you can do to the row and minigrid that they are in.
This leaves the grid as shown in Figure 5-8. As you can see, scanning for twins in rows,

columns, and minigrids leaves us better off than before the scanning. In our example, two
cells get confirmed in the process.

Figure 5-8. The grid after scanning for twins in the rows, columns, and minigrids

Looking for Triplets
While twins can move you closer to solving a Sudoku puzzle, occasionally you will also
come across triplets. Consider the partial Sudoku puzzle shown in Figure 5-9.

Figure 5-9. A partial Sudoku puzzle

There are no twins in the minigrid, but you can spot three cells with the same possible
values. I call these triplets. Like twins, triplets are useful in further eliminating possible

values for other cells. In the puzzle shown, the numbers 2, 4, and 6 must definitely be
placed in one of the three cells containing 2, 4, and 6 as the possible values. Once this

reasoning is established, you can cross out the 2, 4, and 6 from the other cells in the mini-
grid. The grid now looks like Figure 5-10.

100 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Figure 5-10. Modifying the minigrid where the triplets are found

■Tip Triplets are made up of three cells.

Although in this example, identifying the triplets did not result in confirming any of the
cells, this technique is useful for further reducing the possibilities for other cells, which in

turn may be confirmed by some other techniques such as CRME and lone rangers.

■Note Like twins, triplets may appear in rows, columns, and minigrids.

Variants of Triplets

In the last section, you saw that triplets are made up of three cells, with each containing
the same three possible values. However, this definition is not always strictly adhered to.

There are three different scenarios that can be classified as triplets:

• Scenario 1: Three cells with the same three possible values (this scenario was discussed

in the last section)

• Scenario 2: Two cells with three possible values and one cell containing two possible

values that are a subset of the three possible values

• Scenario 3: One cell with three possible values and two cells containing two possible

values that are a subset of the three possible values

It is important to identify the three scenarios, because you have to write code to look

out for the various variants of triplets. To understand the three different scenarios, let’s
consider the following examples.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 101

Scenario 1

The first scenario is the most obvious. As long as three cells have an identical set of three

possible values, they are deemed to be triplets, as shown in Figure 5-11. You can then
eliminate the triplets as possible values from the rest of the cells.

Figure 5-11. A set of triplets

■Note In this and the next two scenarios, I have placed the numbers in the first row for ease of explanation.
In reality, triplets can occur in rows, columns, and minigrids.

Scenario 2

The second scenario is less obvious: two cells with three possible values and one cell
containing two possible values that are a subset of the three possible values. Three examples

are shown in Figure 5-12.

Figure 5-12. Examples of triplets—two cells with three possible values and one cell with two

possible values

■Tip The reason why I have shown three examples in Figure 5-12 is that for the cell with two possible values,
any combination of the three possible values is valid. In the example, the three possible values in the other two

cells are 1, 2, and 3. Hence, for the cell with two possible values, its possible value can be 23, 13, or 12.

102 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

To clarify why the examples in Figure 5-12 can be classified as triplets, let’s walk through
another example. Starting with the first (leftmost) example in Figure 5-12, assume that the

third cell now takes the value 2. That causes the first two cells to become twins, with
possible values 1 and 3, as shown in Figure 5-13. (The same happens if you now assume

that the third cell takes the value 3, which leaves the first two cells with twins, 1 and 2.)
Based on the earlier discussion on twins, the first two cells must assume one of the other

possible values.

Figure 5-13. Verifying an example of triplets

Effectively, this ensures that the three cells must contain one of the three possible
values: 1, 2, or 3. All other cells that contain 1, 2, or 3 as possible values must now be elim-

inated from their list of possible values.

Scenario 3

The third scenario is even less obvious than the second scenario. Figure 5-14 shows two

such examples.

Figure 5-14. Two more instances of triplets—one cell with three possible values and two cells
with two possible values

Using the first (left) example for illustration, suppose the second cell takes the value 1,

as shown in Figure 5-15. This causes the third cell to be 2, which in turn causes the first cell
to be 3. Hence, the three cells must contain one of the three possible values, 1, 2, or 3.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 103

Figure 5-15. Trying out the first example

■Tip Go ahead and assume different values for each of the cells. Each time, you will see that the first three
cells must assume either one of the three values 1, 2, or 3.

Brute-Force Elimination
Up to this point, you should be able to solve most Sudoku puzzles using the techniques
described in this book. However, sometimes (especially for difficult puzzles) all the tech-

niques seem to be useless. In such cases, you really need to make an educated guess and
put a value in a cell and then apply all the techniques covered so far. I call this technique

brute-force elimination.
Consider the partially solved Sudoku puzzle shown in Figure 5-16. Applying all the

other techniques could not solve the puzzle.

Figure 5-16. A partially solved Sudoku puzzle

Figure 5-17 shows the list of possible values for each of the unsolved cells.

104 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Figure 5-17. A partially solved Sudoku puzzle with its lists of possible values

The most natural way to solve the puzzle would be to do some guesswork. You can
select a value for an unsolved cell and apply the earlier techniques to see if that will solve

the puzzle. If that doesn’t solve the puzzle, select a value for the next unsolved cell and
repeat the same process until the puzzle is solved.

Now, the question is: which cell do we start with? Well, quite obviously you should start
with the cell with the least number of possible values. Scanning from left to right, top to

bottom, you can see that cell (1,1) is the first choice. In (1,1) there are two possible values,
5 and 8. You can choose either 5 or 8, but for simplicity you can always start with the first

number. So let’s choose 5 for (1,1) and then proceed to solve the puzzle using the techniques
we have discussed. Voila! The puzzle is solved, as shown in Figure 5-18.

■Tip Always start with the cell with the least number of possible values. That way, you greatly increase the
possibility of selecting the correct number that can help to solve the puzzle.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 105

Figure 5-18. The solved puzzle

In this example, we are pretty lucky. Simply selecting a cell and assigning a value to

it solved the entire puzzle. However, sometimes you will need to select a number, run
through the techniques, and then select another cell and run through the same process

again. For difficult puzzles, you may need to repeat this several times.
Sometimes, you may just make the wrong decisions and cause the puzzle to be unsolvable.

Using the same example, suppose that the first cell we select is not (1,1) but (5,4), with
possible values of 1 and 4. Assuming that we selected 1 for (5,4), run the grid through all

the various techniques.
Figure 5-19 shows the result of the grid after assigning 1 to cell (5,4) and then using the

other techniques to derive other cells.

Figure 5-19. The state of the grid after assigning 1 to cell (5,4)

At this stage, an error will occur. If you apply the CRME technique to cell (5,5), you will
realize that cell (5,5) has no possible values. Scanning its row and column, all the numbers

from 1 to 9 have already been used, as shown in Figure 5-20.

106 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Figure 5-20. A deadlock situation for cell (5,5)

In this case, you need to backtrack. You need to backtrack to where you have previously

guessed a value. In this case, you need to backtrack to cell (5,4) and, in the process, erase
all the cells you have confirmed based on assigning 1 to (5,4). Now, instead of assigning

1 to (5,4), try the next number, 4. This time around, if you apply all the techniques you
have learned, you will solve the puzzle.

Based on the description of the brute-force elimination technique, observe the following:

• The brute-force elimination technique can be implemented programmatically

using recursion. To allow for moves to backtrack, you need to “remember” the state
of the grid before assigning a value to a cell, which enables you to restore the grid to

its previous state.

• Selecting the right number to assign to a cell is important. In the example, selecting

a 1 for (5,4) causes the puzzle to have no solution, but selecting 4 for (5,4) solves the
puzzle. To solve a puzzle, you can always start from the first possible number and

work your way toward the solution. To minimize the possibility of backtracks,
always select the cell with the least number of possible values when applying the

brute-force technique.

• Even though I call this technique brute-force elimination, solving the puzzle using

this technique does not imply that we are solving the entire puzzle by guesswork. In
fact, for most puzzles, you need to apply the brute-force elimination technique only

a few times, and then you can solve the rest of the grid by other logical techniques
covered in this book.

Implementing the Techniques
Now that you understand the various advanced techniques described in this chapter, it is
time to implement them in code.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 107

Looking for Twins in Minigrids

The first technique that we will implement is the LookForTwinsinMinigrids() function to

look for twins in each of the nine minigrids. The function scans through all the cells in the
grid and looks for cells with two possible values. Once it finds a cell with two possible values,

it searches for the cell’s twin in the minigrid that it is in. If there is indeed a pair of twins in
the minigrid, the rest of the cells in the minigrid will have their list of possible values modified

to remove the values of the twins. After the process, if there are cells left with one possible
value, then those cells are confirmed. The function returns a True value if there are any

changes to the list of possible values for any of the cells in the grid. It returns a False value
if none of the cells’ possible values is affected.

Code the LookForTwinsinMinigrids() function as follows:

 '===

 ' Look for twins in minigrids

 '===

 Public Function LookForTwinsinMinigrids() As Boolean

 Dim changes As Boolean = False

 '---look for twins in each cell---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '---if two possible values, check for twins---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 2 Then

 '---scan by the minigrid that the current cell is in

 Dim startC, startR As Integer

 startC = c - ((c - 1) Mod 3)

 startR = r - ((r - 1) Mod 3)

 For rr As Integer = startR To startR + 2

 For cc As Integer = startC To startC + 2

 '---for cells other than the pair of twins---

 If (Not ((cc = c) AndAlso (rr = r))) AndAlso _

 possible(cc, rr) = possible(c, r) Then

 '---twins found---

 DisplayActivity("Twins found in minigrid at: (" & _

 c & "," & r & ") and (" & _

 cc & "," & rr & ")", False)

108 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 '---remove the twins from all the other possible

 ' values in the minigrid---

 For rrr As Integer = startR To startR + 2

 For ccc As Integer = startC To startC + 2

 '---only check for empty cells---

 If actual(ccc, rrr) = 0 AndAlso _

 possible(ccc, rrr) <> possible(c, r) _

 Then

 '---save a copy of the original

 ' possible values (twins)---

 Dim original_possible As String = _

 possible(ccc, rrr)

 '---remove first twin number from

 ' possible values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second twin number from

 ' possible values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(1), String.Empty)

 '---set the ToolTip---

 SetToolTip(_

 ccc, rrr, possible(ccc, rrr))

 '---if the possible values are

 ' modified, then set the changes

 ' variable to True to indicate that

 ' the possible values of cells in the

 ' minigrid have been modified---

 If original_possible <> _

 possible(ccc, rrr) Then

 changes = True

 End If

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 109

 '---if possible value reduces to empty

 ' string, then the user has placed a

 ' move that results in the puzzle being

 ' not solvable---

 If possible(ccc, rrr) = String.Empty _

 Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for

 ' the current cell, cell is

 ' confirmed---

 If possible(ccc, rrr).Length = 1 Then

 SetCell(ccc, rrr, _

 CInt(possible(ccc, rrr)), 1)

 SetToolTip(_

 ccc, rrr, possible(ccc, rrr))

 '---saves the move into the stack

 Moves.Push(_

 ccc & rrr & possible(ccc, rrr))

 DisplayActivity(_

 "Look For Twins in Minigrids", _

 False)

 DisplayActivity(_

 "===========================", _

 False)

 DisplayActivity(_

 "Inserted value " & _

 actual(ccc, rrr) & _

 " in " & "(" & ccc & "," & _

 rrr & ")", False)

 Application.DoEvents()

 '---if user clicks the Hint button,

 'exit the function---

 If HintMode Then Return True

 End If

 End If

 Next

 Next

 End If

 Next

 Next

110 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 End If

 Next

 Next

 Return changes

 End Function

If you examine the preceding code, you will realize that the code will scan each indi-

vidual cell in the grid. If a cell has two possible values, a scan for its twin is made within the
minigrid that it is in. Scanning in the minigrid starts from the top-left corner of the mini-

grid and continues until the last cell in the minigrid, as shown in Figure 5-21.

Figure 5-21. Scanning for twins within a minigrid

For example, if cell (5,5) has two possible values, then the scanning starts from the first

cell in the minigrid, whose coordinates are derived using the following statements:

 startC = c - ((c - 1) Mod 3)

 startR = r - ((r - 1) Mod 3)

Because c = 5 and r = 5, using the preceding formula, you can get startC = 5 –(4Mod3),

which is 4. The same calculation applies to startR, which is also 4. This formula can be
applied to any cells in the grid to derive the coordinates of the starting cell in the minigrid.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 111

Looking for Twins in Rows

The LookForTwinsinRows() function is similar to the LookForTwinsinMinigrids() function

except that it scans for twins in the rows. It examines each row and scans its columns from
left to right for twins. As soon as it locates a cell with two possible values, it scans starting

from the next column until it reaches the last column. If there is indeed a pair of twins in
the row, the rest of the cells in the row will have their list of possible values modified to

eliminated the values of the twins. After the process, if there are cells left with one possible
value, those cells are confirmed.

Code the LookForTwinsinRows() function as follows:

 '===

 ' Look for twins in rows

 '===

 Public Function LookForTwinsinRows() As Boolean

 Dim changes As Boolean = False

 '---for each row, check each column in the row---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '---if two possible values, check for twins---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 2 Then

 '--scan columns in this row---

 For cc As Integer = c + 1 To 9

 If (possible(cc, r) = possible(c, r)) Then

 '--twins found---

 DisplayActivity("Twins found in row at: (" & _

 c & "," & r & ") and (" & cc & "," & r & ")", _

 False)

 '---remove the twins from all the other possible

 ' values in the column---

 For ccc As Integer = 1 To 9

 If (actual(ccc, r) = 0) AndAlso (ccc <> c) _

 AndAlso (ccc <> cc) Then

112 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 '---save a copy of the original possible

 ' values (twins)---

 Dim original_possible As String = _

 possible(ccc, r)

 '---remove first twin number from possible

 ' values---

 possible(ccc, r) = possible(ccc, r).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second twin number from possible

 ' values---

 possible(ccc, r) = possible(ccc, r).Replace(_

 possible(c, r)(1), String.Empty)

 '---set the ToolTip---

 SetToolTip(ccc, r, possible(ccc, r))

 '---if the possible values are modified, then

 ' set the changes variable to True to indicate

 ' that the possible values of cells in the

 ' minigrid have been modified---

 If original_possible <> possible(ccc, r) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(ccc, r) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the

 ' current cell, cell is confirmed---

 If possible(ccc, r).Length = 1 Then

 SetCell(ccc, r, CInt(possible(ccc, r)), 1)

 SetToolTip(ccc, r, possible(ccc, r))

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 113

 '---saves the move into the stack

 Moves.Push(ccc & r & possible(ccc, r))

 DisplayActivity("Look For Twins in Rows)", _

 False)

 DisplayActivity("=======================", _

 False)

 DisplayActivity("Inserted value " & _

 actual(ccc, r) & " in " & "(" & _

 ccc & "," & r & ")", False)

 Application.DoEvents()

 '---if user clicks the Hint button, exit

 ' the function---

 If HintMode Then Return True

 End If

 End If

 Next

 End If

 Next

 End If

 Next

 Next

 Return changes

 End Function

Figure 5-22 shows the process of scanning for twins in a row.

Figure 5-22. Scanning for twins in a row

The LookForTwinsinRows() function returns True if there are any changes to the list of

possible values for any of the cells in the grid. It returns False if none of the cells’ possible
values is affected.

114 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Looking for Twins in Columns

The LookForTwinsinColumns() function scans for twins in each of the nine columns. It

examines each column and scans its rows from top to bottom for twins. As soon as it
locates a cell with two possible values, it scans starting from the next row until it reaches

the last row. If there is indeed a pair of twins in the column, the rest of the cells in the
column will have their list of possible values modified to eliminate the values of the twins.

After the process, if there are cells left with one possible value, those cells are confirmed.
Code the LookForTwinsinColumns() function as follows:

 '===

 ' Look for twins in columns

 '===

 Public Function LookForTwinsinColumns() As Boolean

 Dim changes As Boolean = False

 '---for each column, check each row in the column---

 For c As Integer = 1 To 9

 For r As Integer = 1 To 9

 '---if two possible values, check for twins---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 2 Then

 '--scan rows in this column---

 For rr As Integer = r + 1 To 9

 If (possible(c, rr) = possible(c, r)) Then

 '--twins found---

 DisplayActivity("Twins found in column at: (" & _

 c & "," & r & ") and (" & c & "," & rr & ")", False)

 '---remove the twins from all the other possible

 ' values in the row---

 For rrr As Integer = 1 To 9

 If (actual(c, rrr) = 0) AndAlso (rrr <> r) _

 AndAlso (rrr <> rr) Then

 '---save a copy of the original possible

 ' values (twins)---

 Dim original_possible As String = _

 possible(c, rrr)

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 115

 '---remove first twin number from possible

 ' values---

 possible(c, rrr) = possible(c, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second twin number from possible

 ' values---

 possible(c, rrr) = possible(c, rrr).Replace(_

 possible(c, r)(1), String.Empty)

 '---set the ToolTip---

 SetToolTip(c, rrr, possible(c, rrr))

 '---if the possible values are modified, then

 ' set the changes variable to True to indicate

 ' that the possible values of cells in the

 ' minigrid have been modified---

 If original_possible <> possible(c, rrr) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(c, rrr) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the

 ' current cell, cell is confirmed---

 If possible(c, rrr).Length = 1 Then

 SetCell(c, rrr, CInt(possible(c, rrr)), 1)

 SetToolTip(c, rrr, possible(c, rrr))

 '---saves the move into the stack

 Moves.Push(c & rrr & possible(c, rrr))

 DisplayActivity(_

 "Looking for twins (by column)", False)

 DisplayActivity(_

 "============================", False)

116 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 DisplayActivity(_

 "Inserted value " & actual(c, rrr) & _

 " in " & "(" & c & "," & rrr & ")", _

 False)

 Application.DoEvents()

 '---if user clicks the Hint button,

 'exit the function---

 If HintMode Then Return True

 End If

 End If

 Next

 End If

 Next

 End If

 Next

 Next

 Return changes

 End Function

Figure 5-23 shows the process of scanning for twins in a column.

Figure 5-23. Scanning for twins in a column

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 117

The LookForTwinsinColumns() function returns True if there are any changes to the list
of possible values for any of the cells in the grid. It returns False if none of the cells’ possible

values is affected.

Looking for Triplets in Minigrids

The LookForTripletsinMinigrids() function scans through all the cells in the grid and
looks for cells with three possible values. Once it finds a cell with three possible values, it

searches for two other triplets in the minigrid that the cell is in. If there is indeed a set of
triplets in the minigrid, the rest of the cells in the minigrid will have their list of possible

values modified to eliminate the values of the triplets. After the process, if there are cells
left with one possible value, then those cells are confirmed.

The code for scanning triplets is similar to that of scanning for twins. However, it is
slightly more complex because now the application has to remember the coordinates of

the three cells (the triplets) instead of just two cells (for twins). The coordinates of the
three cells are saved as a string. For example, if the triplets are cells (1,1), (4,1), and (7,1),

their coordinates will be saved as "114171".
Code the LookForTripletsinMinigrids() function as follows:

 '===

 ' Look for triplets in minigrids

 '===

 Public Function LookForTripletsinMinigrids() As Boolean

 Dim changes As Boolean = False

 '---check each cell---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '--- three possible values; check for triplets---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 3 Then

 '---first potential triplet found---

 Dim tripletsLocation As String = c.ToString() & r.ToString()

 '---scan by minigrid---

 Dim startC, startR As Integer

 startC = c - ((c - 1) Mod 3)

 startR = r - ((r - 1) Mod 3)

 For rr As Integer = startR To startR + 2

 For cc As Integer = startC To startC + 2

118 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 If (Not ((cc = c) AndAlso (rr = r))) AndAlso _

 ((possible(cc, rr) = possible(c, r)) OrElse _

 (possible(cc, rr).Length = 2 AndAlso _

 possible(c, r).Contains(_

 possible(cc, rr)(0).ToString()) AndAlso _

 possible(c, r).Contains(_

 possible(cc, rr)(1).ToString()))) Then

 '---save the coordinates of the triplets

 tripletsLocation &= cc.ToString() & rr.ToString()

 End If

 Next

 Next

 '--found 3 cells as triplets; remove all from the other

 ' cells---

 If tripletsLocation.Length = 6 Then

 '--triplets found---

 DisplayActivity("Triplets found in " & _

 tripletsLocation, False)

 '---remove each cell's possible values containing the

 ' triplet---

 For rrr As Integer = startR To startR + 2

 For ccc As Integer = startC To startC + 2

 '---look for the cell that is not part of the 3

 ' cells found---

 If actual(ccc, rrr) = 0 AndAlso _

 ccc <> CInt(tripletsLocation(0).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(1).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(2).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(3).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(4).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(5).ToString()) Then

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 119

 '---save the original possible values---

 Dim original_possible As String = _

 possible(ccc, rrr)

 '---remove first triplet number from possible

 ' values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second triplet number from possible

 ' values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(1), String.Empty)

 '---remove third triplet number from possible

 ' values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(2), String.Empty)

 '---set the ToolTip---

 SetToolTip(ccc, rrr, possible(ccc, rrr))

 '---if the possible values are modified, then

 ' set the changes variable to True to indicate

 ' that the possible values of cells in the

 ' minigrid have been modified---

 If original_possible <> possible(ccc, rrr) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 'then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(ccc, rrr) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

120 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 '---if left with 1 possible value for the

 ' current cell, cell is confirmed---

 If possible(ccc, rrr).Length = 1 Then

 SetCell(ccc, rrr, _

 CInt(possible(ccc, rrr)), 1)

 SetToolTip(ccc, rrr, possible(ccc, rrr))

 '---saves the move into the stack

 Moves.Push(ccc & rrr & possible(ccc, rrr))

 DisplayActivity(_

 "Look For Triplets in Minigrids)", _

 False)

 DisplayActivity(_

 "==============================", False)

 DisplayActivity(_

 "Inserted value " & actual(ccc, rrr) & _

 " in " & "(" & ccc & "," & rrr & ")", _

 False)

 Application.DoEvents()

 '---if user clicks the Hint button, exit

 ' the function---

 If HintMode Then Return True

 End If

 End If

 Next

 Next

 End If

 End If

 Next

 Next

 Return changes

 End Function

The LookForTripletsinMinigrids() function returns True if there are any changes to
the list of possible values for any of the cells in the grid. It returns False if none of the cells’

possible values is affected.

Looking for Triplets in Rows

The LookForTripletsinRows() function scans for triplets in each of the nine rows. It exam-
ines each row and scans its columns from left to right for triplets. As soon as it finds a cell

with three possible values, it scans starting from the next column until it reaches the last

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 121

column. If there is indeed a set of triplets in the row, the rest of the cells in the row will
have their list of possible values modified to eliminate the values of the triplets. After the

process, if there are cells left with one possible value, then those cells are confirmed.
Code the LookForTripletsinRows() function as follows:

 '===

 ' Look for triplets in rows

 '===

 Public Function LookForTripletsinRows() As Boolean

 Dim changes As Boolean = False

 '---for each row, check each column in the row

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '--- three possible values; check for triplets---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 3 Then

 '---first potential triplet found---

 Dim tripletsLocation As String = c.ToString() & r.ToString()

 '--scans columns in this row---

 For cc As Integer = 1 To 9

 '---look for other triplets---

 If (cc <> c) AndAlso _

 ((possible(cc, r) = possible(c, r)) OrElse _

 (possible(cc, r).Length = 2 AndAlso _

 possible(c, r).Contains(_

 possible(cc, r)(0).ToString()) AndAlso _

 possible(c, r).Contains(_

 possible(cc, r)(1).ToString()))) Then

 '---save the coordinates of the triplet---

 tripletsLocation &= cc.ToString() & r.ToString()

 End If

 Next

 '--found 3 cells as triplets; remove all from the other

 ' cells---

 If tripletsLocation.Length = 6 Then

122 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 '--triplets found---

 DisplayActivity("Triplets found in " & tripletsLocation, _

 False)

 '---remove each cell's possible values containing the

 ' triplet---

 For ccc As Integer = 1 To 9

 If actual(ccc, r) = 0 AndAlso _

 ccc <> CInt(tripletsLocation(0).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(2).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(4).ToString()) Then

 '---save the original possible values---

 Dim original_possible As String = possible(ccc, r)

 '---remove first triplet number from possible

 ' values---

 possible(ccc, r) = _

 possible(ccc, r).Replace(possible(c, r)(0), _

 String.Empty)

 '---remove second triplet number from possible

 ' values---

 possible(ccc, r) = _

 possible(ccc, r).Replace(possible(c, r)(1), _

 String.Empty)

 '---remove third triplet number from possible

 ' values---

 possible(ccc, r) = _

 possible(ccc, r).Replace(possible(c, r)(2), _

 String.Empty)

 '---set the ToolTip---

 SetToolTip(ccc, r, possible(ccc, r))

 '---if the possible values are modified, then set

 ' the changes variable to True to indicate that the

 ' possible values of cells in the minigrid have

 ' been modified---

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 123

 If original_possible <> possible(ccc, r) Then

 changes = True

 End If

 '---if possible value reduces to empty string, then

 ' the user has placed a move that results in the

 ' puzzle being not solvable---

 If possible(ccc, r) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the current

 ' cell, cell is confirmed---

 If possible(ccc, r).Length = 1 Then

 SetCell(ccc, r, CInt(possible(ccc, r)), 1)

 SetToolTip(ccc, r, possible(ccc, r))

 '---saves the move into the stack---

 Moves.Push(ccc & r & possible(ccc, r))

 DisplayActivity("Look For Triplets in Rows", _

 False)

 DisplayActivity("=========================", _

 False)

 DisplayActivity("Inserted value " & _

 actual(ccc, r) & " in " & "(" & _

 ccc & "," & r & ")", False)

 Application.DoEvents()

 '---if user clicks the Hint button, exit the

 ' function---

 If HintMode Then Return True

 End If

 End If

 Next

 End If

 End If

 Next

 Next

 Return changes

 End Function

124 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

The LookForTripletsinRows() function returns True if there are any changes to the list
of possible values for any of the cells in the grid. It returns False if none of the cells’

possible values is affected.

Looking for Triplets in Columns

The LookForTripletsinColumns() function scans for triplets in each of the nine columns.
It examines each column and scans its rows from top to bottom for triplets. As soon as it

locates a cell with three possible values, it scans starting from the next row until it reaches
the last row. If there is indeed a set of triplets in the column, the rest of the cells in the column

will have their list of possible values modified to eliminate the values of the triplets. After the
process, if there are cells left with one possible value, then those cells are confirmed.

Code the LookForTripletsinColumns() function as follows:

 '===

 ' Look for triplets in columns

 '===

 Public Function LookForTripletsinColumns() As Boolean

 Dim changes As Boolean = False

 '---for each column, check each row in the column

 For c As Integer = 1 To 9

 For r As Integer = 1 To 9

 '--- three possible values; check for triplets---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 3 Then

 '---first potential triplet found---

 Dim tripletsLocation As String = c.ToString() & r.ToString()

 '--scans rows in this column---

 For rr As Integer = 1 To 9

 If (rr <> r) AndAlso _

 ((possible(c, rr) = possible(c, r)) OrElse _

 (possible(c, rr).Length = 2 AndAlso _

 possible(c, r).Contains(_

 possible(c, rr)(0).ToString()) AndAlso _

 possible(c, r).Contains(_

 possible(c, rr)(1).ToString()))) Then

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 125

 '---save the coordinates of the triplet---

 tripletsLocation += c.ToString() & rr.ToString()

 End If

 Next

 '--found 3 cells as triplets; remove all from the other

 ' cells---

 If tripletsLocation.Length = 6 Then

 '--triplets found---

 DisplayActivity("Triplets found in " & tripletsLocation, _

 False)

 '---remove each cell's possible values containing the

 ' triplet---

 For rrr As Integer = 1 To 9

 If actual(c, rrr) = 0 AndAlso _

 rrr <> CInt(tripletsLocation(1).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(3).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(5).ToString()) Then

 '---save the original possible values---

 Dim original_possible As String = possible(c, rrr)

 '---remove first triplet number from possible

 ' values---

 possible(c, rrr) = _

 possible(c, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second triplet number from possible

 ' values---

 possible(c, rrr) = _

 possible(c, rrr).Replace(_

 possible(c, r)(1), String.Empty)

126 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 '---remove third triplet number from possible

 ' values---

 possible(c, rrr) = _

 possible(c, rrr).Replace(_

 possible(c, r)(2), String.Empty)

 '---set the ToolTip---

 SetToolTip(c, rrr, possible(c, rrr))

 '---if the possible values are modified, then set

 ' the changes variable to True to indicate that

 ' the possible values of cells in the minigrid

 ' have been modified---

 If original_possible <> possible(c, rrr) Then

 changes = True

 End If

 '---if possible value reduces to empty string, then

 ' the user has placed a move that results in the

 ' puzzle being not solvable---

 If possible(c, rrr) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the current

 ' cell, cell is confirmed---

 If possible(c, rrr).Length = 1 Then

 SetCell(c, rrr, CInt(possible(c, rrr)), 1)

 SetToolTip(c, rrr, possible(c, rrr))

 '---saves the move into the stack

 Moves.Push(c & rrr & possible(c, rrr))

 DisplayActivity(_

 "Look For Triplets in Columns)", False)

 DisplayActivity(_

 "=============================", False)

 DisplayActivity(_

 "Inserted value " & actual(c, rrr) & _

 " in " & "(" & c & "," & rrr & ")", False)

 Application.DoEvents()

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 127

 '---if user clicks the Hint button, exit the

 ' function---

 If HintMode Then Return True

 End If

 End If

 Next

 End If

 End If

 Next

 Next

 Return changes

 End Function

The LookForTripletsinColumns() function returns True if there are any changes to the
list of possible values for any of the cells in the grid. It returns False if none of the cells’

possible values is affected.

Modifying the SolvePuzzle() Function

In the SolvePuzzle() function, add the following code in bold so that you now have a
complete set of techniques to solve a Sudoku puzzle:

 '==

 ' Steps to solve the puzzle

 '==

 Public Function SolvePuzzle() As Boolean

 Dim changes As Boolean

 Dim ExitLoop As Boolean = False

 Try

 Do '---Look for Triplets in Columns

 Do '---Look for Triplets in Rows

 Do '---Look for Triplets in Minigrids

 Do '---Look for Twins in Columns

 Do '---Look for Twins in Rows

 Do '---Look for Twins in Minigrids

 Do '---Look for Lone Ranger in Columns

 Do '---Look for Lone Ranger in Rows

 Do '---Look for Lone Ranger in

 ' Minigrids

128 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 Do '---Perform Col/Row and

 ' Minigrid Elimination

 changes = _

 CheckColumnsAndRows()

 If (HintMode AndAlso changes) _

 OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Ranger in

 ' Minigrids

 changes = _

 LookForLoneRangersinMinigrids()

 If (HintMode AndAlso changes) _

 OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Ranger in Rows

 changes = LookForLoneRangersinRows()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Ranger in Columns

 changes = LookForLoneRangersinColumns()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 129

 If ExitLoop Then Exit Do

 '---Look for Twins in Minigrids

 changes = LookForTwinsinMinigrids()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Twins in Rows

 changes = LookForTwinsinRows()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Twins in Columns

 changes = LookForTwinsinColumns()

 If (HintMode AndAlso changes) OrElse _

 IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Triplets in Minigrids

 changes = LookForTripletsinMinigrids()

 If (HintMode AndAlso changes) OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

130 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 If ExitLoop Then Exit Do

 '---Look for Triplets in Rows

 changes = LookForTripletsinRows()

 If (HintMode AndAlso changes) OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Triplets in Columns

 changes = LookForTripletsinColumns()

 If (HintMode AndAlso changes) OrElse IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 Catch ex As Exception

 Throw New Exception("Invalid Move")

 End Try

 If IsPuzzleSolved() Then

 Timer1.Enabled = False

 Beep()

 ToolStripStatusLabel1.Text = "*****Puzzle Solved*****"

 MsgBox("Puzzle solved")

 Return True

 Else

 Return False

 End If

 End Function

As you can probably deduce by now, at the inner core of the loop you first apply the
CRME technique, followed by a search for lone rangers (in minigrids, rows, and columns),

followed by a search for twins (in minigrids, rows, and columns), and finally by a search
for triplets (in minigrids, rows, and columns). At the end of all the loops, if the puzzle is

still not solved, then we have exhausted all logical means (at least the logical methods
covered in this book) to solve the puzzle. At that point, we have to rely on some educated

guesswork, as discussed in the next section.

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 131

Using Brute-Force Elimination

When all logical means have been used to solve a Sudoku puzzle and the puzzle remains

unsolved, you have to perform some guesswork and choose a value for a cell and see if
that helps to solve a puzzle. So let’s now look at how you can implement the brute-force

elimination technique in your code.
For the brute-force elimination technique, we need to add several member variables to

the class:

 Private BruteForceStop As Boolean = False

 Private ActualStack As New Stack(Of Integer(,))()

 Private PossibleStack As New Stack(Of String(,))()

The BruteForceStop Boolean variable is used to indicate if the brute-force method
should stop (when the grid is solved). The ActualStack variable is a Stack object that is

used to store the Actual array before a cell is fixed with a value. In the event that assigning
a particular value to a cell causes the puzzle to have no solution, the Actual array is

popped from the stack to restore the grid to its previous state. The PossibleStack variable
is similar to the ActualStack variable, except that it is used to store the Possible array.

To find the cell with the least number of possible values, we will create the
FindCellWithFewestPossibleValues() subroutine. It takes in two parameters passed in by

reference. When the subroutine exits, the two parameters will contain the column and
row number of the cell with the least number of possible values. The

FindCellWithFewestPossibleValues() subroutine is defined as follows:

 '===

 ' Find the cell with the least number of possible values

 '===

 Public Sub FindCellWithFewestPossibleValues(_

 ByRef col As Integer, ByRef row As Integer)

 Dim min As Integer = 10

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 If actual(c, r) = 0 AndAlso possible(c, r).Length < min Then

 min = possible(c, r).Length

 col = c

 row = r

 End If

 Next

 Next

 End Sub

132 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Finally, the SolvePuzzleByBruteForce() subroutine is a recursive subroutine that attempts
to solve a Sudoku puzzle by systematically selecting a possible value from a cell and then

applying all the other technique to solve the puzzle. It calls itself until the puzzle is solved,
or, if selecting a particular value for a cell causes the puzzle to be unsolvable, it backtracks by

restoring the state of the grid using the two Stack objects, ActualStack and PossibleStack.
The code for the SolvePuzzleByBruteForce() subroutine is as follows:

 '===

 ' Brute Force subroutine

 '===

 Public Sub SolvePuzzleByBruteForce()

 Dim c, r As Integer

 '---find out which cell has the smallest number of possible values---

 FindCellWithFewestPossibleValues(c, r)

 '---get the possible values for the chosen cell

 Dim possibleValues As String = possible(c, r)

 '---push the actual and possible stacks into the stack---

 ActualStack.Push(CType(actual.Clone(), Integer(,)))

 PossibleStack.Push(CType(possible.Clone(), String(,)))

 '---select one value and try---

 For i As Integer = 0 To possibleValues.Length - 1

 '---saves the move into the stack---

 Moves.Push(c & r & possibleValues(i).ToString())

 SetCell(c, r, CInt(possibleValues(i).ToString()), 1)

 DisplayActivity("Solve Puzzle By Brute Force", False)

 DisplayActivity("===========================", False)

 DisplayActivity("Trying to insert value " & actual(c, r) & _

 " in " & "(" & c & "," & r & ")", False)

 Try

 If SolvePuzzle() Then

 '---if the puzzle is solved, the recursion can stop now---

 BruteForceStop = True

 Return

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 133

 Else

 '---no problem with current selection, proceed with next cell---

 SolvePuzzleByBruteForce()

 If BruteForceStop Then Return

 End If

 Catch ex As Exception

 DisplayActivity("Invalid move; Backtracking...", False)

 actual = ActualStack.Pop()

 possible = PossibleStack.Pop()

 End Try

 Next

 End Sub

If a number selected for a cell results in no solution for the puzzle, an exception will be
raised. Handling this error is important, because it allows the subroutine to backtrack and

restore the grid to its previous state and select another number to try. A good way to visualize
how the subroutine works is to imagine solving the puzzle on paper. You select a number

for a cell and check if you can derive the values for the other cells. If after a few tries you
reach a dead end, you erase the last few cells that you have just filled in and select another

number and try again.

Modifying the Code Behind for the Solve Puzzle Button

The last step we need to perform is to modify the code behind for the Solve Puzzle button
so that if the puzzle cannot be solved using all the logical means, the application should

then proceed to use the brute-force elimination technique.

 '==

 ' Solve Puzzle button

 '==

 Private Sub btnSolvePuzzle_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnSolvePuzzle.Click

 ActualStack.Clear()

 PossibleStack.Clear()

 BruteForceStop = False

 '---solve the puzzle; no need to stop---

 HintMode = False

134 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

 Try

 If Not SolvePuzzle() Then

 SolvePuzzleByBruteForce()

 End If

 Catch ex As Exception

 MsgBox("Puzzle not solvable.")

 End Try

 If Not IsPuzzleSolved() Then

 MsgBox("Puzzle Not solved.")

 End If

 End Sub

If you want to check if a puzzle can be solved logically without resorting to brute force,

simply comment out the SolvePuzzleByBruteForce() function.

Testing the Techniques
With all the code in place, let’s put all we have done into action and test a few puzzles.

Figure 5-24 shows a Sudoku puzzle with 56 empty cells.

Figure 5-24. A Sudoku puzzle with 56 empty cells

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 135

Clicking the Solve Puzzle button solves the puzzle, fully exercising all the various tech-
niques we have learned so far, as shown in Figure 5-25.

Figure 5-25. The solved Sudoku puzzle!

■Note You may notice that when you click the Solve Puzzle button, the program seems to work pretty

slowly, generating the numbers one by one. This is due not to the inefficiency of our techniques but rather to
the large amount of text displayed in the TextBox control on the right of the grid. Try commenting out the two

lines in the DisplayActivity() subroutine, and you will immediately notice how fast the program can
solve the puzzle. In Chapter 6, you will get a better feel of how fast our techniques are.

What about another Sudoku puzzle? Figure 5-26 shows another example Sudoku puzzle.

Solving the puzzle requires using the brute-force technique only two times. The rest of
the puzzle can be solved using the other techniques. Figure 5-27 shows the solution for

this puzzle.

136 C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S

Figure 5-26. Another Sudoku puzzle

Figure 5-27. The solved Sudoku puzzle

What about “solving” an empty Sudoku puzzle? This will definitely require the brute-

force elimination technique. To see if that works, execute the application and start a new
puzzle (File ➤ New). Click Solve Puzzle to solve the puzzle (see Figure 5-28).

C H A P T E R 5 ■ A D V A N C E D T E C H N I Q U E S 137

Figure 5-28. Solving an empty Sudoku puzzle

■Note It took about 19 seconds on my computer to “solve” the empty puzzle when I turned on display of

the activities. Observe the messages displayed in the Activities textbox to see the different techniques used.

Notice that every time you solve an empty puzzle, you get the same solution. This is
expected, because our implementation of the brute-force elimination technique system-

atically chooses the first possible number to try to solve the puzzle. If that fails, it goes on
to select the next number. While in real life it is unlikely that you will be asked to solve an

empty Sudoku puzzle, the ability to generate a valid Sudoku grid from scratch is impor-
tant if you want to create new Sudoku puzzles. I will discuss this further in Chapter 6.

Summary
In this chapter, you have seen the three advanced techniques that you can use to solve

Sudoku puzzles. Although most of the time twins and triplets will not directly solve the
puzzle, they are good techniques for “softening” the puzzle so that the puzzle can be

solved by other techniques such as CRME and lone rangers.
You have also seen how to use the brute-force technique to make an educated guess

when all the other techniques have failed. In the next chapter, you will learn how to generate
Sudoku puzzles of varying levels of difficulty.

139

■ ■ ■

C H A P T E R 6

Generating Sudoku Puzzles

You have come this far and have learned some very useful techniques for solving Sudoku
puzzles. So far you have been learning how to solve puzzles; what about generating some

new puzzles? There are a couple of good reasons for generating your own Sudoku puzzles.
You may find that the puzzles you are currently solving are too simple and thus may want

to generate some really tough puzzles to challenge yourself. Or you may want to test your
friends by giving them some really tough puzzles and see them sweat. Or you may just be

interested in learning how you can programmatically generate Sudoku puzzles. In this
chapter, I will show you how to generate Sudoku puzzles of varying degrees of difficulty.

Determining the Level of Difficulty
To generate a Sudoku puzzle, you first need to consider the criteria for determining
the level of difficulty of a Sudoku puzzle. The first factor that affects the difficulty is the

number of empty cells in an initial Sudoku puzzle. In general, it is safe to say that the more
empty cells you have in a Sudoku puzzle, the higher the level of difficulty. The second

factor that affects the difficulty of a Sudoku puzzle is the placement of the various initial
numbers. From observation, in general, simple puzzles often have their initial numbers

evenly spaced apart, whereas difficult puzzles often have numbers clustered in groups.
Evenly spaced cells can often be solved with CRME, because it performs best when rows,

columns, and minigrids throughout the puzzle have a sufficient number of completed
cells to effectively reduce the possible answers for individual cells.

■Tip Keep in mind that these are generalizations regarding the difficulty levels of puzzles; puzzles with
initial numbers evenly spaced sometimes require some real effort to solve.

140 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

From a programming standpoint, we can determine the difficulty level of a Sudoku
puzzle by analyzing how much effort must be expended to solve the puzzle. For the applica-

tion that we are building in this book, I have set four levels of difficulty for Sudoku puzzles:

• Level 1 – Easy

• Level 2 – Medium

• Level 3 – Difficult

• Level 4 – Extremely Difficult

The level of difficulty for a puzzle will be determined by solving the puzzle using all the

different techniques discussed in this book and examining how many times each technique
is invoked to solve the puzzle. As discussed in the previous chapters, the following are

techniques for solving a Sudoku puzzle:

• Column, Row, and Minigrid Elimination (CRME)

• Looking for lone rangers in minigrids/columns/rows

• Looking for twins in minigrids/columns/rows

• Looking for triplets in minigrids/columns/rows

• Brute-force elimination

As Sudoku puzzles get more complex, more advanced techniques are required to solve
them, such as looking for twins and triplets, with the last resort being the brute-force

elimination method. Relatively simple Sudoku puzzles can almost always be solved using
the first two or three techniques.

To determine the difficulty level of a puzzle, we apply each of the preceding techniques
in succession to try to solve the puzzle. Each time a cell is confirmed by a particular technique,

we add points to a counter (the number of points we add depends on the technique applied).
When the puzzle is solved, the total points accumulated serves as an indication of the total

amount of effort needed to solve the puzzle. In general, the lower the points, the simpler
the puzzle.

Table 6-1 lists the number of points I have designated for each technique.

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 141

Based on the point system detailed in Table 6-1, every time we confirm a cell by using

the CRME technique, we add 1 point, every time we confirm a cell by using the lone ranger
method, we add 2 points, and so forth. In addition, if we have to backtrack because we

have made a wrong decision, we also add 5 points, because this indicates that the puzzle
contains cells with large numbers of possible values, which increases the possibility that

the user will make a wrong decision. This situation is common for tough puzzles.
In general, most simple puzzles can be solved by using the first one or two techniques,

so their total accumulated points should be significantly lower than that of more complex
puzzles, which require more complex techniques to solve (and hence accumulate higher

total points). In the next section, I outline the steps to generate Sudoku puzzles of various
levels of difficulty.

Steps to Generate a Sudoku Puzzle
To generate a Sudoku puzzle, we start with an empty puzzle and use the brute-force

approach to fill in all the empty cells. After we’ve done that, we judiciously remove some
of the cells to give the user the starting point for their game. Our choice of how many cells

Table 6-1. Points Added for Each Technique

Technique Points

CRME 1

Lone rangers in minigrid 2

Lone rangers in column 2

Lone rangers in row 2

Twins in minigrid 3

Twins in column 3

Twins in row 3

Triplets in minigrid 4

Triplets in column 4

Triplets in row 4

Brute-force elimination 5

Backtracking in brute-force elimination 5

142 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

to remove will depend on the level of difficulty the user specified. To ensure that you
generate a different puzzle each time, you must randomize the list of possible values so

that the brute-force technique has the chance to select different numbers in every pass.

■Tip Mathematically, you cannot guarantee that the puzzle generated is always new. But if you randomize

the list of possible values, there is a high probability that every time you should get a different puzzle.

Once a complete grid is generated, it is now time to determine how many cells must be
taken out (left empty). Based on my experience solving Sudoku puzzles, I have designated

the number of empty cells for each level, as shown in Table 6-2.

Once the actual number of empty cells is determined (the application randomly chooses
a number within that range), the application randomly generates the locations of empty

cells. For example, if you want to generate a level 2 Sudoku puzzle, you first determine
how many empty cells are in the grid. Assuming the number is 47, you next proceed to

determine the coordinates of 47 cells in the grid and set the value of these cells to 0.

■Note For this book, I am judging the level of difficulty of a Sudoku puzzle based on the number of empty

cells in the puzzle and how much effort is needed to solve the puzzle. I will not consider the positioning of the
empty cells as a factor affecting the difficulty level.

Table 6-2. Number of Empty Cells for Each Difficulty Level

Level Empty Cells

1 (Easy) 40 to 45

2 (Medium) 46 to 49

3 (Difficult) 50 to 53

4 (Extremely Difficult) 54 to 58

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 143

Once the empty cells are determined, you need to verify that the puzzle does indeed
correspond to the level of difficulty indicated. To do this, you will solve the puzzle using

all the techniques covered in this book and then examine its total score.
Based on empirical data derived through testing 10,000 Sudoku puzzles generated by

my program, the average scores for the different levels are shown in Table 6-3.

As you can see, the number of empty cells does have a direct impact on the score,
which indicates the degree of difficulty.

When puzzles of specific levels of difficulty are generated, the application will test and
compare the scores against the chart shown in Table 6-4. If the score does not fall into the

respective range, the puzzle is regenerated and solved again. This process repeats until
the score of the puzzle falls into the required range.

Figure 6-1 summarizes the process to generate a Sudoku puzzle.

Table 6-3. Average Score for Each Difficulty Level

Level Empty Cells Average Score

1 40 to 45 44

2 46 to 49 51

3 50 to 53 58

4 54 to 58 114

Table 6-4. Acceptable Range of Points for Each Difficulty Level

Level Empty Cells Average Score Acceptable Range

1 40 to 45 44 42 to 46 inclusive

2 46 to 49 51 49 to 53 inclusive

3 50 to 53 58 56 to 60 inclusive

4 54 to 58 114 112 to 116 inclusive

144 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Figure 6-1. Steps to generate a Sudoku puzzle

Determining the Locations of Empty Cells

After an empty Sudoku puzzle is “solved,” it is time to determine the locations of empty
cells in the grid. Depending on the level of difficulty required, the number of empty cells

is determined by the application. For example, if a level 1 puzzle is required, then a random
number in the range of 40 to 45 is chosen. The next step would be to randomly choose the

locations of the various empty cells.
Most of the published Sudoku puzzles are symmetrical. This means that the nonempty

cells are distributed in rotationally symmetric cells. Consider the example shown in
Figure 6-2.

Symmetrical Sudoku puzzles look pleasing to the eyes, though they are not strictly
required. The puzzles that we will generate in this chapter are symmetrical. To ensure

that a Sudoku puzzle is symmetrical, we first determine the locations of the empty cells in
the top half of the puzzle, and then “mirror” them onto the bottom half.

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 145

Figure 6-2. A symmetrical Sudoku puzzle

If the puzzle is rotated clockwise 180 degrees, the same cells are shaded, as shown in

Figure 6-3.

Figure 6-3. Verifying that a Sudoku puzzle is symmetrical

The shaded region on the left in Figure 6-4 shows the top half of the grid. Empty cells

(determined randomly) are represented by ×. The top half of the grid is then rotated clock-
wise 180 degrees onto the bottom half of the grid so that the locations of the empty cells

mirror the top half.
The end result of the rotation is a symmetrical Sudoku grid.

146 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Figure 6-4. Generating a symmetrical Sudoku grid in two steps

Single-Solution Puzzles

In addition to being symmetrical, Sudoku puzzles have another, often-debated “rule”: all

Sudoku puzzles must have one and only one solution. That is, no matter how you solve
the puzzle, the answer must ultimately be the same.

In Chapters 3 to 5, you learned the various logical techniques—CRME, lone rangers, twins,
and triplets—that you can use to solve a Sudoku puzzle. All of these methods logically

deduce the number for a cell and do not involve any guesswork. You also learned that
when all else fails, you can use a form of guesswork, brute-force elimination. The following

describes the difference between using only logical techniques to solve a puzzle and
venturing into using brute-force elimination:

• If a Sudoku puzzle can be solved using logical techniques only, then it has a single
solution.

• If a Sudoku puzzle requires some guesswork (that is, using the brute-force elimina-

tion technique) to solve, then the Sudoku puzzle is not guaranteed to have a single
solution (that is, the puzzle has more than one correct solution).

The second point is interesting. Just because you apply the brute-force technique to
solve a Sudoku puzzle does not necessarily mean that the puzzle does not have a single

solution. It may still be a single-solution puzzle, but it may also have more than one solution,
because there still might be some other logical means of solving the puzzle that we have

not discovered yet.
For the puzzles that we will generate in this book, I have set the following guidelines:

• For levels 1 to 3, all puzzles are symmetrical and have a single solution.

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 147

• For level 4, all puzzles are symmetrical but there is no guarantee that they have a
single solution. In other words, level 4 puzzles require some guesswork to solve.

For level 1 to 3 puzzles, once the empty cells in the grid are determined randomly by the
application, you use all the logical techniques to solve it. If you cannot solve the puzzle, you

randomly choose another pair of cells to vacate (you need to choose a pair of cells to vacate to
ensure that the puzzle is symmetrical) and try to solve it logically again. You repeat this

process a number of times until you either solve the puzzle or, if the puzzle is still unsolv-
able, generate a fresh new grid and repeat the entire process. Figure 6-5 summarizes the

steps that you take to generate a level 1 to 3 puzzle.
For level 4 puzzles, once the grid is generated, you proceed to solve it using all the logical

techniques. If it fails, the application uses the brute-force elimination technique to solve it.
The overall score obtained will then be compared with the chart shown in Table 6-4. If its

score falls outside the acceptable range, a fresh grid is generated and the entire process of
solving and comparing the score is repeated.

Figure 6-5. Steps to generate level 1 to 3 puzzles

148 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Implementing the Puzzle-Generating Algorithm
To generate Sudoku puzzles, we use the same code base that we have built over the last
few chapters. We package all the subroutines and functions that we have discussed into a

class so that we have all the logic needed to solve and generate Sudoku puzzles.

■Note In the previous chapters, ideally, we would have had all the logic enclosed in a class, as we will in

this chapter, so that regardless of whether we were solving or generating a Sudoku puzzle, we would have
used the same code base. We did not enclose the logic in a class in those chapters because that would have

made the code unnecessarily difficult to follow, especially with the injection of the various GUI code to display
the activities. So, for the ease of explanation, in those chapters we had one code base for solving Sudoku

puzzles. In this chapter, we have one code base both for solving and generating Sudoku puzzles, enclosed in
a class.

Creating the Class

First, add a new class to the project by right-clicking the project name in Solution Explorer
and selecting Add ➤ Class. Name the class SudokuPuzzle.vb. Solution Explorer should

now look like Figure 6-6.

Figure 6-6. The newly added SudokuPuzzle.vb class file

Double-click the SudokuPuzzle.vb file and code the various functions and subroutines

as shown in Listing 6-1.

■Note The complete code for Listing 6-1 appears as Listing A-1 in the Appendix.

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 149

Listing 6-1. The SudokuPuzzle Class (Partial Content)

Public Class SudokuPuzzle

 Private actual(9, 9) As Integer

 Private possible(9, 9) As String

 Private BruteForceStop As Boolean = False

 Private ActualStack As New Stack(Of Integer(,))()

 Private PossibleStack As New Stack(Of String(,))()

 '---store the total score accumulated---

 Private totalscore As Integer

 Private Function SolvePuzzle() As Boolean

 Private Function CheckColumnsAndRows() As Boolean

 Private Function CalculatePossibleValues(_

 ByVal col As Integer, _

 ByVal row As Integer) _

 As String

 Private Function LookForLoneRangersinMinigrids() As Boolean

 Private Function LookForLoneRangersinRows() As Boolean

 Private Function LookForLoneRangersinColumns() As Boolean

 Private Function LookForTwinsinMinigrids() As Boolean

 Private Function LookForTwinsinRows() As Boolean

 Private Function LookForTwinsinColumns() As Boolean

 Private Function LookForTripletsinMinigrids() As Boolean

 Private Function LookForTripletsinRows() As Boolean

 Private Function LookForTripletsinColumns() As Boolean

 Private Sub FindCellWithFewestPossibleValues(_

 ByRef col As Integer, ByRef row As Integer)

 Private Sub SolvePuzzleByBruteForce()

 Private Function IsPuzzleSolved() As Boolean

End Class

150 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Note the following about Listing 6-1:

• The code shown all comes from the previous few chapters, with the GUI code and

comments stripped. See Listing A-1 for highlights of all the code changes.

• I have changed the access modifiers of all the functions and subroutines from Public to

Private.

• A new member variable called totalscore is added. This variable is used to record

the total score obtained when a puzzle is solved. The statements showing the accu-
mulation of the score are shown in bold in each function (see Listing A-1 for all the

locations to accumulate the total score).

The SudokuPuzzle class now contains all the code necessary to solve a Sudoku puzzle.

We next add additional code so that we can use the class to generate Sudoku puzzles.

Randomizing the List of Possible Values

First, add the RandomizeThePossibleValues() subroutine to the SudokuPuzzle class. The
RandomizeThePossibleValues() subroutine takes in a string parameter and randomly

swaps the characters within the string. This subroutine is used to randomize the list of
possible values for a cell.

The implementation of the RandomizeThePossibleValues() subroutine follows:

 '===

 ' Randomly swap the list of possible values

 '===

 Private Sub RandomizeThePossibleValues(ByRef str As String)

 Dim s(str.Length - 1) As Char

 Dim i, j As Integer

 Dim temp As Char

 Randomize()

 s = str.ToCharArray

 For i = 0 To str.Length - 1

 j = CInt((str.Length - i + 1) * Rnd() + i) Mod str.Length

 '---swap the chars---

 temp = s(i)

 s(i) = s(j)

 s(j) = temp

 Next i

 str = s

 End Sub

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 151

Modify the SolvePuzzleByBruteForce() subroutine so that the list of possible values for
a cell is randomized before one of them is selected as a value for a cell:

 '==

 ' Solve puzzle by brute force

 '==

 Private Sub SolvePuzzleByBruteForce()

 Dim c, r As Integer

 '---accumulate the total score---

 totalscore += 5

 FindCellWithFewestPossibleValues(c, r)

 Dim possibleValues As String = possible(c, r)

 '---randomize the possible values----

 RandomizeThePossibleValues(possibleValues)

 '-------------------

 ActualStack.Push(CType(actual.Clone(), Integer(,)))

 PossibleStack.Push(CType(possible.Clone(), String(,)))

 For i As Integer = 0 To possibleValues.Length - 1

 actual(c, r) = CInt(possibleValues(i).ToString())

 Try

 If SolvePuzzle() Then

 BruteForceStop = True

 Return

 Else

 SolvePuzzleByBruteForce()

 If BruteForceStop Then Return

 End If

 Catch ex As Exception

 '---accumulate the total score---

 totalscore += 5

 actual = ActualStack.Pop()

 possible = PossibleStack.Pop()

 End Try

 Next

 End Sub

By randomizing the list of possible values for an empty cell, the
SolvePuzzleByBruteForce() subroutine is now able to generate a fresh new grid

whenever it is applied to an empty Sudoku puzzle.

152 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

■Note There is one risk involved in randomizing the list of possible values. It may cause the program to go
into a “flat spin” as the subroutine continues picking the same wrong number for each try. Mathematically,

the chances are quite slim that the wrong number will always be selected, but it is still a remote possibility.

Generating a New Puzzle

The GenerateNewPuzzle() function generates a new Sudoku puzzle based on the level
indicated in its first parameter and returns the score in its second parameter. It returns the

new Sudoku puzzle as a string of numbers (in the same format as discussed in Chapter 1).
Code the GenerateNewPuzzle() function as follows:

 '==

 ' Generate a new Sudoku puzzle

 '==

 Private Function GenerateNewPuzzle(_

 ByVal level As Integer, _

 ByRef score As Integer) As String

 Dim c, r As Integer

 Dim str As String

 Dim numberofemptycells As Integer

 '---initialize the entire board---

 For r = 1 To 9

 For c = 1 To 9

 actual(c, r) = 0

 possible(c, r) = String.Empty

 Next

 Next

 '---clear the stacks---

 ActualStack.Clear()

 PossibleStack.Clear()

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 153

 '---populate the board with numbers by solving an empty grid---

 Try

 '---use logical methods to set up the grid first---

 If Not SolvePuzzle() Then

 '---then use brute force---

 SolvePuzzleByBruteForce()

 End If

 Catch ex As Exception

 '---just in case an error occurred, return an empty string---

 Return String.Empty

 End Try

 '---make a backup copy of the actual array---

 actual_backup = actual.Clone()

 '---set the number of empty cells based on the level of difficulty---

 Select Case level

 Case 1 : numberofemptycells = RandomNumber(40, 45)

 Case 2 : numberofemptycells = RandomNumber(46, 49)

 Case 3 : numberofemptycells = RandomNumber(50, 53)

 Case 4 : numberofemptycells = RandomNumber(54, 58)

 End Select

 '---clear the stacks that are used in brute-force elimination ---

 ActualStack.Clear()

 PossibleStack.Clear()

 BruteForceStop = False

 '----create empty cells----

 CreateEmptyCells(numberofemptycells)

 '---convert the values in the actual array to a string---

 str = String.Empty

 For r = 1 To 9

 For c = 1 To 9

 str &= actual(c, r).ToString()

 Next

 Next

154 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

 '---verify the puzzle has only one solution---

 Dim tries As Integer = 0

 Do

 totalscore = 0

 Try

 If Not SolvePuzzle() Then

 '---if puzzle is not solved and

 ' this is a level 1 to 3 puzzle---

 If level < 4 Then

 '---choose another pair of cells to empty---

 VacateAnotherPairOfCells(str)

 tries += 1

 Else

 '---level 4 puzzles do not guarantee single

 ' solution and potentially need guessing---

 SolvePuzzleByBruteForce()

 Exit Do

 End If

 Else

 '---puzzle does indeed have 1 solution---

 Exit Do

 End If

 Catch ex As Exception

 Return String.Empty

 End Try

 '---if too many tries, exit the loop---

 If tries > 50 Then

 Return String.Empty

 End If

 Loop While True

 '==

 '---return the score as well as the puzzle as a string---

 score = totalscore

 Return str

 End Function

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 155

As you can observe from the preceding code, you first solve an empty puzzle by
applying the SolvePuzzle() function. This function prepares the grid by generating all the

possible values for the empty cells. Obviously, at this stage it is not possible to solve the
empty grid using logic alone; hence, you have to apply the SolvePuzzleByBruteForce()

subroutine to solve it:

 '---populate the board with numbers by solving an empty grid---

 Try

 '---use logical methods to set up the grid first---

 If Not SolvePuzzle() Then

 '---then use brute force---

 SolvePuzzleByBruteForce()

 End If

 Catch ex As Exception

 '---just in case an error occurred, return an empty string---

 Return String.Empty

 End Try

Once a grid is filled with numbers, you will randomly choose the number of empty cells
based on the level desired. The CreateEmptyCells() subroutine is called to randomly

remove cells from the grid (discussed further in the next section).
Once the empty cells are determined, you will save the puzzle as a string and then

proceed to solve the puzzle. For a level 1 to 3 puzzle, you must ensure that it has only one
solution, and hence you need to solve the puzzle logically without resorting to brute force.

If you cannot solve the puzzle logically, you will choose another set of cells to empty and
try again (achieved by calling the VacateAnotherPairOfCells() subroutine, which I will

discuss later) until the puzzle is solved. This process is repeated up to 50 times, after which
the entire grid is aborted and the GenerateNewPuzzle() function returns an empty string,

signaling its failure to generate a puzzle of the desired difficulty level. For level 4 puzzles,
the process is straightforward—solve the puzzle using logical techniques and brute force

(if needed) and return the puzzle as a string.

■Note The reason why you need to solve a puzzle immediately after it is generated is that you need to deter-

mine the score that is used up to solve the puzzle. This ensures that puzzles are of the right level of difficulty.

156 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

The GenerateNewPuzzle() function made several calls to the RandomNumber() function,
which returns a random number between the two specified parameters. Add the

RandomNumber() function to the class as follows:

 '==

 ' Generate a random number between the specified range

 '==

 Private Function RandomNumber(ByVal min As Integer, _

 ByVal max As Integer) As Integer

 Return Int((max - min + 1) * Rnd()) + min

 End Function

The minimum and maximum numbers are inclusive of the lower and upper bounds.
That is, RandomNumber(1,9) generates a random number from 1 to 9, inclusive.

Creating Empty Cells in the Grid

The CreateEmptyCells() subroutine randomly determines the location of empty cells in

the Sudoku grid. It first generates the location of empty cells in the top half of the grid (as
described in conjunction with Figure 6-4, earlier). It then “reflects” the empty cells onto

the bottom half of the grid so that a symmetrical Sudoku puzzle is achieved.
The implementation of the CreateEmptyCells() subroutine is as follows:

 '==

 ' Create empty cells in the grid

 '==

 Private Sub CreateEmptyCells(ByVal empty As Integer)

 Dim c, r As Integer

 '----choose random locations for empty cells----

 Dim emptyCells(empty - 1) As String

 For i As Integer = 0 To (empty \ 2)

 Dim duplicate As Boolean

 Do

 duplicate = False

 '---get a cell in the first half of the grid

 Do

 c = RandomNumber(1, 9)

 r = RandomNumber(1, 5)

 Loop While (r = 5 And c > 5)

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 157

 For j As Integer = 0 To i

 '---if cell is already selected to be empty

 If emptyCells(j) = c.ToString() & r.ToString() Then

 duplicate = True

 Exit For

 End If

 Next

 If Not duplicate Then

 '---set the empty cell---

 emptyCells(i) = c.ToString() & r.ToString()

 actual(c, r) = 0

 possible(c, r) = String.Empty

 '---reflect the top half of the grid and make it symmetrical---

 emptyCells(empty - 1 - i) = _

 (10 - c).ToString() & (10 - r).ToString()

 actual(10 - c, 10 - r) = 0

 possible(10 - c, 10 - r) = String.Empty

 End If

 Loop While duplicate

 Next

 End Sub

The locations of empty cells are stored in an array. For example, if there are 48 empty

cells, then the emptyCells() array has 48 members, with indices from 0 to 47. The location
of each empty cell is stored as a string. Figure 6-7 shows how the empty cells are repre-

sented in the array.

Figure 6-7. Representing the locations of empty cells in an array

158 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Finding the location of symmetrical cells is surprisingly easy. Consider the grid shown
in Figure 6-8. The grid contains two pairs of symmetrical cells. Cell (2,1)’s symmetrical

counterpart is (8,9), and cell (1,4)’s symmetrical counterpart is (9,6). If you examine the
coordinates of these cells closely, you will discover that both their row and column indices

add up to 10.

Figure 6-8. Two pairs of symmetrical cells

For example, the sum of the columns of (2,1) and (8,9) is 10 (2 + 8). Likewise, the sum of

their rows is also 10 (1 + 9). You can verify this principle for the other pair of cells. So, given
the coordinate of a cell (c,r), its symmetrical counterpart is (10 – c,10 – r).

Vacating Another Pair of Cells

For a level 1 to 3 puzzle, you ensure that it has one solution by enforcing that the puzzles
be solved logically. If the puzzle cannot be solved logically, a feasible remedy would be

to restore the value for a random pair of cells and re-determine another set of empty
cells and see if that enables the puzzle to be solved. This task is accomplished by the

VacateAnotherPairOfCells() subroutine.
The implementation of the VacateAnotherPairOfCells() subroutine is as follows:

 '==

 ' Vacate another pair of cells

 '==

 Private Sub VacateAnotherPairOfCells(ByRef str As String)

 Dim c, r As Integer

 '---look for a pair of cells to restore---

 Do

 c = RandomNumber(1, 9)

 r = RandomNumber(1, 9)

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 159

 Loop Until str((c - 1) + (r - 1) * 9).ToString() = 0

 '---restore the value of the cell from the actual_backup array---

 str = str.Remove((c - 1) + (r - 1) * 9, 1)

 str = str.Insert((c - 1) + (r - 1) * 9, _

 actual_backup(c, r).ToString())

 '---restore the value of the symmetrical cell from

 ' the actual_backup array---

 str = str.Remove((10 - c - 1) + (10 - r - 1) * 9, 1)

 str = str.Insert((10 - c - 1) + (10 - r - 1) * 9, _

 actual_backup(10 - c, 10 - r).ToString())

 '---look for another pair of cells to vacate---

 Do

 c = RandomNumber(1, 9)

 r = RandomNumber(1, 9)

 Loop Until str((c - 1) + (r - 1) * 9).ToString() <> 0

 '---remove the cell from the str---

 str = str.Remove((c - 1) + (r - 1) * 9, 1)

 str = str.Insert((c - 1) + (r - 1) * 9, "0")

 '---remove the symmetrical cell from the str---

 str = str.Remove((10 - c - 1) + (10 - r - 1) * 9, 1)

 str = str.Insert((10 - c - 1) + (10 - r - 1) * 9, "0")

 '---reinitialize the board---

 Dim counter As Short = 0

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 If CInt(str(counter).ToString()) <> 0 Then

 actual(col, row) = CInt(str(counter).ToString())

 possible(col, row) = str(counter).ToString()

 Else

 actual(col, row) = 0

 possible(col, row) = String.Empty

 End If

 counter += 1

 Next

 Next

 End Sub

160 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

In the VacateAnotherPairOfCells() subroutine, you need to directly manipulate the
str (representing the puzzle) variable when restoring and emptying a new pair of cells.

You cannot directly modify the actual() array, because during the time when this subroutine
is called, the actual() array would contain the partially solved puzzle, and modifying the

actual() array at this stage would mess up the puzzle. Instead, you need to manipulate
the original puzzle as represented by the str variable. To restore a pair of cells, you simply

get the original values of the pair from the actual_backup() array.
Figure 6-9 shows how to translate the location of a cell in a grid to the index in a string

variable.

Figure 6-9. Translating the address from a cell to a string variable

Once the pair of cells has been restored and a new pair of empty cells inserted, you can
reinitialize the board by resetting the actual() and possible() arrays from the str variable.

Exposing the GetPuzzle() Function

With all the logic for generating new Sudoku puzzles defined, it is finally time for us to

expose the GetPuzzle() function so that the Sudoku application can call it to obtain a new
puzzle.

The GetPuzzle() function calls the GenerateNewPuzzle() function and ensures that the
puzzle is of the right level of difficulty. It does so by checking the score of the puzzle and

then generating a new puzzle if the score does not match the level of difficulty required:

 '==

 ' Get Puzzle

 '==

 Public Function GetPuzzle(ByVal level As Integer) As String

 Dim score As Integer

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 161

 Dim result As String

 Do

 result = GenerateNewPuzzle(level, score)

 If result <> String.Empty Then

 '---check if puzzle matches the level of difficulty---

 Select Case level

 '---average for this level is 44---

 Case 1 :

 If score >= 42 And score <= 46 Then

 Exit Do

 End If

 '---average for this level is 51---

 Case 2 :

 If score >= 49 And score <= 53 Then

 Exit Do

 End If

 '---average for this level is 58---

 Case 3 :

 If score >= 56 And score <= 60 Then

 Exit Do

 End If

 '---average for this level is 114---

 Case 4 :

 If score >= 112 And score <= 116 Then

 Exit Do

 End If

 End Select

 End If

 Loop Until False

 Return result

 End Function

During the testing of the application, generating a level 3 puzzle takes a little longer

than generating puzzles of the other levels, because level 3 puzzles have more empty cells
and require more tries to solve by all the logical methods (since they must have a single

solution). In contrast, level 4 puzzles take less time to generate because there is no need to
ensure that they have a single solution. In general, level 1 puzzles take the least time to

generate, followed by level 2, and then level 3 puzzles. The time needed to generate level
4 puzzles sometimes is as long as level 1 and 2 puzzles, because additional time is used for

brute-force elimination (and possibly lots of backtracking).

162 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Wiring Up the Logic with the User Interface
Now that we have all the code to generate new Sudoku puzzles, let’s wire up all the logic
with the GUI portion of the application.

Recall from Chapter 2 that the Level menu has four menu items: Easy, Medium, Difficult,
and Extremely Difficult (see Figure 6-10). Using this menu, users can select the level of

difficulty for each Sudoku puzzle. When the user selects a level, we display a checkmark
next to the menu item. To do so, set the CheckOnClick property of each menu item to True,

as shown in Figure 6-10.

■Tip You can set the CheckOnClick property for all menu items simultaneously in the Designer by holding

down the Control key and clicking each menu item, and then modifying the CheckOnClick property in the
Properties window.

Figure 6-10. Configuring the menu items

Also, set the Checked property of the Easy menu item to True so that the default level is

always Easy.
Double-click each menu item to switch to its code behind and code the following:

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 163

 Private Sub EasyToolStripMenuItem_Click(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles EasyToolStripMenuItem.Click

 MediumToolStripMenuItem.Checked = False

 DifficultToolStripMenuItem.Checked = False

 ExtremelyDifficultToolStripMenuItem.Checked = False

 End Sub

 Private Sub MediumToolStripMenuItem_Click(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles MediumToolStripMenuItem.Click

 EasyToolStripMenuItem.Checked = False

 DifficultToolStripMenuItem.Checked = False

 ExtremelyDifficultToolStripMenuItem.Checked = False

 End Sub

 Private Sub DifficultToolStripMenuItem_Click(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles DifficultToolStripMenuItem.Click

 EasyToolStripMenuItem.Checked = False

 MediumToolStripMenuItem.Checked = False

 ExtremelyDifficultToolStripMenuItem.Checked = False

 End Sub

 Private Sub ExtremelyDifficultToolStripMenuItem_Click(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ExtremelyDifficultToolStripMenuItem.Click

 EasyToolStripMenuItem.Checked = False

 MediumToolStripMenuItem.Checked = False

 DifficultToolStripMenuItem.Checked = False

 End Sub

Once you do this, the next time a user selects a level, she will be able to see the check-

mark next to the selected level, as shown in Figure 6-11.

Figure 6-11. Displaying a checkmark next to the selected menu item

164 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

To generate a new puzzle and load it onto the grid when the user selects File ➤ New,
double-click the File ➤ New menu item and modify its code behind as follows:

 '==

 ' Start a new game

 '==

 Private Sub NewToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles NewToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MessageBox.Show("Do you want to save current game?", _

 "Save current game", _

 MessageBoxButtons.YesNoCancel, _

 MessageBoxIcon.Question)

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 '---change to the hourglass cursor---

 Windows.Forms.Cursor.Current = Cursors.WaitCursor

 ToolStripStatusLabel1.Text = "Generating new puzzle..."

 '---create an instance of the SudokuPuzzle class---

 Dim sp As New SudokuPuzzle

 Dim puzzle As String = String.Empty

 '---determine the correct level---

 If EasyToolStripMenuItem.Checked Then

 puzzle = sp.GetPuzzle(1)

 ElseIf MediumToolStripMenuItem.Checked Then

 puzzle = sp.GetPuzzle(2)

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 165

 ElseIf DifficultToolStripMenuItem.Checked Then

 puzzle = sp.GetPuzzle(3)

 ElseIf ExtremelyDifficultToolStripMenuItem.Checked Then

 puzzle = sp.GetPuzzle(4)

 End If

 '---change back to the default cursor

 Windows.Forms.Cursor.Current = Cursors.Default

 StartNewGame()

 '---initialize the board---

 Dim counter As Integer = 0

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 If puzzle(counter).ToString() <> "0" Then

 SetCell(col, row, CInt(puzzle(counter).ToString()), 0)

 End If

 counter += 1

 Next

 Next

 End Sub

Essentially, you create an instance of the SudokuPuzzle class and then invoke the

GetPuzzle() method to generate a new Sudoku puzzle. While the puzzle is being generated,
you display an hourglass icon to indicate to the user that the application is busy. Once the

new puzzle is ready, it is loaded onto the board.

Testing the Implementation
We can now test the fruit of our labor. Let’s generate a series of puzzles of different levels

of difficulty and see if you can solve them. Have fun!

Easy Puzzles

Figure 6-12 shows a puzzle rated as Easy.

166 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Figure 6-12. A puzzle rated as Easy

Clicking the Solve Puzzle button solves the puzzle. Figure 6-13 shows the solution for
the puzzle.

Figure 6-13. The solved Easy-rated puzzle

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 167

Medium Puzzles

Figure 6-14 shows a puzzle rated as Medium.

Figure 6-14. A puzzle rated as Medium

Figure 6-15 shows its solution.

Figure 6-15. The solved Medium-rated puzzle

168 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Difficult Puzzles

Figure 6-16 shows a puzzle rated as Difficult.

Figure 6-16. A puzzle rated as Difficult

Figure 6-17 shows its solution.

Figure 6-17. The solved Difficult-rated puzzle

C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S 169

Extremely Difficult Puzzles

Figure 6-18 shows a puzzle rated as Extremely Difficult.

Figure 6-18. A puzzle rated as Extremely Difficult

Figure 6-19 shows its solution.

Figure 6-19. The solved Extremely Difficult–rated puzzle

170 C H A P T E R 6 ■ G E N E R A T I N G S U D O K U P U Z Z L E S

Summary
This chapter combines all the techniques that you have learned in the past few chapters
and uses them to generate Sudoku puzzles of varying levels of difficulty. While I have

described the techniques to generate Sudoku puzzles, you can adapt the methods to
further improve the quality of the puzzles. In fact, there are many areas of improvements

that you might want to look into, such as adjusting the weights assigned to each technique
that is used to solve a puzzle to further fine-tune the difficulty levels. Also, you can insert

additional checks in the program so that the puzzles generated can have only one solution.

171

■ ■ ■

C H A P T E R 7

How to Play Kakuro

As the book goes to press, Kakuro, a numbers-based puzzle game similar to Sudoku, is
quickly gaining popularity. Like Sudoku, Kakuro puzzles use the numbers 1 to 9 and provide
hours of fun and challenges. Think of Kakuro as the numerical equivalent of crossword
puzzles. Instead of filling in the crossword puzzle with letters, you fill it in with numbers.
In this chapter, I show you how to play Kakuro and share some tips for solving Kakuro
puzzles. Although I won’t show you the programmatic steps to solve a Kakuro puzzle, you can
apply the logical techniques used to solve Sudoku puzzles to solve Kakuro puzzles as well.

The Rules
A typical Kakuro puzzle looks like Figure 7-1.

Figure 7-1. A Kakuro puzzle

Like Sudoku, Kakuro puzzles are not fixed in size. A Kakuro puzzle contains a number
of empty cells as well as bisected cells with numbers in them, known as clue squares. Using
the puzzle shown in Figure 7-1, the boxed cells shown in Figure 7-2 are the clue squares.

172 C H A P T E R 7 ■ H O W T O P L A Y K A K U R O

■Note For easier referencing, I will refer to each individual cell in a Kakuro puzzle by its column and row
number, as I did for the Sudoku puzzles’ cells.

Figure 7-2. Clue squares in a Kakuro puzzle

■Note The empty shaded cells are not in use; they are like the black squares in a crossword puzzle.

Each clue square contains one or two numbers. Figure 7-3 shows an example of an
“across” clue (borrowing crossword puzzle terminology). The 6 in the top-right corner of
the cell is the clue for the row. It indicates that the values of the next consecutive series of
empty cells must all add up to 6, with the following restrictions:

• Each cell must be filled with a number from 1 to 9.

• Cells in a row (or column) cannot have repeating numbers.

Figure 7-3. An example of an across clue

Figure 7-4 shows a likely combination of values for the three cells. Other combinations
are also possible, like 2,1,3 or 3,1,2. Combinations like 1,1,4 and 2,2,2 are invalid because
they contain duplicates.

C H A P T E R 7 ■ H O W T O P L A Y K A K U R O 173

Figure 7-4. Possible values for the three cells

Besides across clues, there are “down” clues (again using crossword puzzle terminology).
An example is shown in Figure 7-5. The number written in the bottom-left corner of the
cell is the clue for the column.

Figure 7-5. A down clue

Here, the values for the two cells highlighted in Figure 7-5 must add up to 7. Possible
combinations are 1,6, 2,5, and 3,4.

■Note Clue squares can also contain both across and down clues. In such cases, there are two numbers in
the clue square—one in the top-right corner and the other in the bottom-left corner.

The objective of the game is to fill up the grid with numbers so that each cell contains a
number that fulfills the across and down rules. Sounds easy? Let’s try to solve a Kakuro
puzzle.

Solving a Kakuro Puzzle

Now that you have seen what a Kakuro puzzle looks like and learned the rules, it is time to
solve one yourself. I will walk you through the process of solving a simple Kakuro puzzle,
using the same puzzle shown earlier.

First, consider the two boxed cells highlighted in the bottom-right corner of Figure 7-6.

174 C H A P T E R 7 ■ H O W T O P L A Y K A K U R O

Figure 7-6. Considering a set of two cells in a row

The two cells can take the value of 1,2 or 2,1. However, if you consider two vertical cells
(see Figure 7-7), the possible values for these cells are 1,3 or 3,1. They cannot have the
values 2,2, since this violates the rules of Kakuro. Furthermore, cell (4,4) cannot take the
value 3, since that leaves (5,4) with no allowable values (remember that cells (4,4) and
(5,4) must add up to 3). Hence, that leaves only one possible value for cell (4,4), which is 1.

Figure 7-7. Considering a set of two cells in a column

With (4,4) confirmed with the number 1, it is now easy to fill in the numbers for (4,3)
and (5,4), as shown in Figure 7-8.

C H A P T E R 7 ■ H O W T O P L A Y K A K U R O 175

Figure 7-8. Filling in the cells (4,3) and (5,4)

We are now left with four cells. Let’s start with the smallest clue number to add up to.
It’s always a good idea to start with the smallest clue number to add up to, because there
are fewer possible combinations that fit the clue. If you look at the current grid, the smallest
clue number to add up to is not 5 (cell (2,1)), but 6 (cell (1,3)), because effectively for cell
(1,3), 3 out of a total of 6 is already taken up, by cell (4,3). Thus, we now need to consider
only the two boxed cells shown in Figure 7-9.

Figure 7-9. Considering two cells instead of three

The possible values for these two cells are 1,2 and 2,1. Since the number of cells left is
quite small and filling in the two cells with 1,2 or 2,1 does not cause problems for other
cells, let’s try to fill in the two cells with 1,2, as shown in Figure 7-10.

176 C H A P T E R 7 ■ H O W T O P L A Y K A K U R O

Figure 7-10. Filling in the two cells

Now see if you can complete the grid. In fact, you can solve the puzzle, by filling in (2,2)
with 4 and (3,2) with 5, as shown in Figure 7-11.

Figure 7-11. Solving the puzzle

Interestingly, this Kakuro puzzle has more than one solution. If you instead choose 2,1
for the two cells (2,3) and (3,3), you get a different solution (see Figure 7-12).

Figure 7-12. Multiple-solution puzzle

C H A P T E R 7 ■ H O W T O P L A Y K A K U R O 177

■Note There are no hard and fast rules stating that a Kakuro puzzle must have a unique solution. Some web
sites, however, insist that a good Kakuro puzzle must have only one solution. I will leave that judgment to you.

Tips for Solving Kakuro Puzzles
If you have followed the previous section closely, you should be able to observe that knowing
the composition of a number is one of the keys to solving Kakuro puzzles. For example,
the number 6 is made up of 1, 2, and 3. You can also think of it as made up of 2 and 4, or 1
and 5. Having a table that lists all the possible combinations is useful. Table 7-1 shows a
partial list of such numbers.

Table 7-1. Composition of Numbers for Various Number of Cells

Number of Cells Number Composition

2 3 1 2

4 1 3

5 1 4

2 3

6 1 5

2 4

7 1 6

2 5

3 4

8 1 7

2 6

3 5

3 6 1 2 3

7 1 2 4

8 1 2 5

1 3 4

9 1 2 6

1 3 5

2 3 4

4 10 1 2 3 4

11 1 2 3 5

178 C H A P T E R 7 ■ H O W T O P L A Y K A K U R O

In addition, it is always easier to start with the clue that has the smallest number to
add up to. Working with the smallest number often allows other clues to be reduced and
subsequently solved. In our earlier example, confirming a cell with the value 3 effectively
reduces the across clue value of 6 to 3, since 3 is already filled in the third cell (see Figure 7-13).

Figure 7-13. Reducing the across clue

One useful technique you can use is to write down the possible values for a set of cells.
Figure 7-14 shows the possible values written for two sets of cells.

Figure 7-14. Writing down the list of possible values for a set of cells

12 1 2 3 6

1 2 4 5

13 1 2 3 7

1 2 4 6

1 3 4 5

5 15 1 2 3 4 5

16 1 2 3 4 6

17 1 2 3 4 7

1 2 3 5 6

Table 7-1. Composition of Numbers for Various Number of Cells (Continued)

Number of Cells Number Composition

C H A P T E R 7 ■ H O W T O P L A Y K A K U R O 179

Observe that the number 1 appears twice in cell (4,4). Because that is the only value
that satisfies both the down clue (4) and across clue (3), you can now confirm cell (4,4)
with the number 1.

Summary
In this chapter, you learned how to play the new Kakuro puzzle game. If you are coming
from a Sudoku background, you should not find the puzzle too difficult. But most impor-
tantly, I hope you enjoy the games and have countless hours of fun and entertainment!

181

■ ■ ■

A P P E N D I X A

The SudokuPuzzle Class

Listing A-1 provides partial code for the SudokuPuzzle class that contains the logic to
solve Sudoku puzzles (without the GUI code), as discussed throughout the book. The
statements in bold indicate modified and newly added statements.

Listing A-1. SudokuPuzzle Class Containing the Logic to Solve Sudoku Puzzles

Public Class SudokuPuzzle

 '---used to represent the values in the grid---

 Private actual(9, 9) As Integer

 '---used to represent the possible values of cells in the grid---

 Private possible(9, 9) As String

 '---indicate if the brute-force subroutine should stop---

 Private BruteForceStop As Boolean = False

 '---used to store the state of the grid---

 Private ActualStack As New Stack(Of Integer(,))()

 Private PossibleStack As New Stack(Of String(,))()

 '---store the total score accumulated---

 Private totalscore As Integer

 '---back up a copy of the Actual array---

 Dim actual_backup(9, 9) As Integer

 '==

 ' Steps to solve the puzzle

 '==

 Private Function SolvePuzzle() As Boolean

 Dim changes As Boolean

 Dim ExitLoop As Boolean = False

182 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 Try

 Do '---Look for Triplets in Columns---

 Do '---Look for Triplets in Rows---

 Do '---Look for Triplets in Minigrids---

 Do '---Look for Twins in Columns---

 Do '---Look for Twins in Rows---

 Do '---Look for Twins in Minigrids---

 Do '---Look for Lone Rangers in Columns---

 Do '---Look for Lone Rangers in Rows---

 Do '---Look for Lone Rangers in

 ' Minigrids---

 Do '---Perform Col/Row and Minigrid

 ' Elimination---

 changes = CheckColumnsAndRows()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Rangers in

 ' Minigrids---

 changes = _

 LookForLoneRangersinMinigrids()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Lone Rangers in Rows---

 changes = LookForLoneRangersinRows()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 183

 If ExitLoop Then Exit Do

 '---Look for Lone Rangers in Columns---

 changes = LookForLoneRangersinColumns()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Twins in Minigrids---

 changes = LookForTwinsinMinigrids()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Twins in Rows---

 changes = LookForTwinsinRows()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Twins in Columns---

 changes = LookForTwinsinColumns()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Triplets in Minigrids---

 changes = LookForTripletsinMinigrids()

184 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Triplets in Rows---

 changes = LookForTripletsinRows()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 If ExitLoop Then Exit Do

 '---Look for Triplets in Columns---

 changes = LookForTripletsinColumns()

 If IsPuzzleSolved() Then

 ExitLoop = True

 Exit Do

 End If

 Loop Until Not changes

 Catch ex As Exception

 Throw New Exception("Invalid Move")

 End Try

 If IsPuzzleSolved() Then

 Return True

 Else

 Return False

 End If

 End Function

 '==

 ' Calculates the possible values for all the cells

 '==

 Private Function CheckColumnsAndRows() As Boolean

 Dim changes As Boolean = False

 '---check all cells---

 For row As Integer = 1 To 9

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 185

 For col As Integer = 1 To 9

 If actual(col, row) = 0 Then

 Try

 possible(col, row) = CalculatePossibleValues(col, row)

 Catch ex As Exception

 Throw New Exception("Invalid Move")

 End Try

 If possible(col, row).Length = 1 Then

 '---number is confirmed---

 actual(col, row) = CInt(possible(col, row))

 changes = True

 '---accumulate the total score---

 totalscore += 1

 End If

 End If

 Next

 Next

 Return changes

 End Function

 '==

 ' Calculates the possible values for a cell

 '==

 Private Function CalculatePossibleValues(_

 ByVal col As Integer, _

 ByVal row As Integer) _

 As String

 Dim str As String

 If possible(col, row) = String.Empty Then

 str = "123456789"

 Else

 str = possible(col, row)

 End If

 Dim r, c As Integer

186 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '---Step (1) check by column---

 For r = 1 To 9

 If actual(col, r) <> 0 Then

 '---that means there is an actual value in it---

 str = str.Replace(actual(col, r).ToString(), String.Empty)

 End If

 Next

 '---Step (2) check by row---

 For c = 1 To 9

 If actual(c, row) <> 0 Then

 '---that means there is an actual value in it---

 str = str.Replace(actual(c, row).ToString(), String.Empty)

 End If

 Next

 '---Step (3) check within the minigrid---

 Dim startC, startR As Integer

 startC = col - ((col - 1) Mod 3)

 startR = row - ((row - 1) Mod 3)

 For rr As Integer = startR To startR + 2

 For cc As Integer = startC To startC + 2

 If actual(cc, rr) <> 0 Then

 str = str.Replace(actual(cc, rr).ToString(), String.Empty)

 End If

 Next

 Next

 '---if possible value is string.Empty, then error---

 If str = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 Return str

 End Function

 '==

 ' Look for Lone Rangers in Minigrids

 '==

 Private Function LookForLoneRangersinMinigrids() As Boolean

 Dim changes As Boolean = False

 Dim NextMiniGrid As Boolean

 Dim occurrence As Integer

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 187

 Dim cPos, rPos As Integer

 '---check for each number from 1 to 9---

 For n As Integer = 1 To 9

 '---check the 9 minigrids---

 For r As Integer = 1 To 9 Step 3

 For c As Integer = 1 To 9 Step 3

 NextMiniGrid = False

 '---check within the minigrid---

 occurrence = 0

 For rr As Integer = 0 To 2

 For cc As Integer = 0 To 2

 If actual(c + cc, r + rr) = 0 AndAlso _

 possible(c + cc, r + rr).Contains(_

 n.ToString()) Then

 occurrence += 1

 cPos = c + cc

 rPos = r + rr

 If occurrence > 1 Then

 NextMiniGrid = True

 Exit For

 End If

 End If

 Next

 If NextMiniGrid Then Exit For

 Next

 If (Not NextMiniGrid) AndAlso occurrence = 1 Then

 '---that means number is confirmed---

 actual(cPos, rPos) = n

 changes = True

 '---accumulate the total score---

 totalscore += 2

 End If

 Next

 Next

 Next

 Return changes

 End Function

188 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '===

 'Look for Lone Rangers in Rows

 '===

 Private Function LookForLoneRangersinRows() As Boolean

 Dim changes As Boolean = False

 Dim occurrence As Integer

 Dim cPos, rPos As Integer

 '---check by row----

 For r As Integer = 1 To 9

 For n As Integer = 1 To 9

 occurrence = 0

 For c As Integer = 1 To 9

 If actual(c, r) = 0 AndAlso _

 possible(c, r).Contains(n.ToString()) Then

 occurrence += 1

 '---if multiple occurrences, not a lone ranger anymore---

 If occurrence > 1 Then Exit For

 cPos = c

 rPos = r

 End If

 Next

 If occurrence = 1 Then

 '--number is confirmed---

 actual(cPos, rPos) = n

 changes = True

 '---accumulate the total score---

 totalscore += 2

 End If

 Next

 Next

 Return changes

 End Function

 '===

 'Look for Lone Rangers in Columns

 '===

 Private Function LookForLoneRangersinColumns() As Boolean

 Dim changes As Boolean = False

 Dim occurrence As Integer

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 189

 Dim cPos, rPos As Integer

 '----check by column----

 For c As Integer = 1 To 9

 For n As Integer = 1 To 9

 occurrence = 0

 For r As Integer = 1 To 9

 If actual(c, r) = 0 AndAlso _

 possible(c, r).Contains(n.ToString()) Then

 occurrence += 1

 '---if multiple occurrences, not a lone ranger anymore---

 If occurrence > 1 Then Exit For

 cPos = c

 rPos = r

 End If

 Next

 If occurrence = 1 Then

 '---number is confirmed---

 actual(cPos, rPos) = n

 changes = True

 '---accumulate the total score---

 totalscore += 2

 End If

 Next

 Next

 Return changes

 End Function

 '==

 ' Look for Twins in Minigrids

 '==

 Private Function LookForTwinsinMinigrids() As Boolean

 Dim changes As Boolean = False

 '---look for twins in each cell---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

190 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '---if two possible values, check for twins---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 2 Then

 '---scan by the minigrid that the current cell is in---

 Dim startC, startR As Integer

 startC = c - ((c - 1) Mod 3)

 startR = r - ((r - 1) Mod 3)

 For rr As Integer = startR To startR + 2

 For cc As Integer = startC To startC + 2

 '---for cells other than the pair of twins---

 If (Not ((cc = c) AndAlso (rr = r))) AndAlso _

 possible(cc, rr) = possible(c, r) Then

 '---remove the twins from all the other possible

 ' values in the minigrid---

 For rrr As Integer = startR To startR + 2

 For ccc As Integer = startC To startC + 2

 If actual(ccc, rrr) = 0 AndAlso _

 possible(ccc, rrr) <> _

 possible(c, r) Then

 '---save a copy of the original

 ' possible values (twins)---

 Dim original_possible As String = _

 possible(ccc, rrr)

 '---remove first twin number from

 ' possible values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second twin number from

 ' possible values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(1), String.Empty)

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 191

 '---if the possible values are

 ' modified, then set the changes

 ' variable to true to indicate

 ' that the possible values of cells

 ' in the minigrid have been modified---

 If original_possible <> _

 possible(ccc, rrr) Then

 changes = True

 End If

 '---if possible value reduces to

 ' empty string, then the user has

 ' placed a move that results in

 ' the puzzle being not solvable---

 If possible(ccc, rrr) = _

 String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value

 ' for the current cell, cell is

 ' confirmed---

 If possible(ccc, rrr).Length = 1 Then

 actual(ccc, rrr) = _

 CInt(possible(ccc, rrr))

 '---accumulate the total score--

 totalscore += 3

 End If

 End If

 Next

 Next

 End If

 Next

 Next

 End If

 Next

 Next

 Return changes

 End Function

192 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '==

 ' Look for Twins in Rows

 '==

 Private Function LookForTwinsinRows() As Boolean

 Dim changes As Boolean = False

 '---for each row, check each column in the row---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '---if two possible values, check for twins---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 2 Then

 '--scan columns in this row---

 For cc As Integer = c + 1 To 9

 If (possible(cc, r) = possible(c, r)) Then

 '---remove the twins from all the other possible

 ' values in the row---

 For ccc As Integer = 1 To 9

 If (actual(ccc, r) = 0) AndAlso _

 (ccc <> c) AndAlso (ccc <> cc) Then

 '---save a copy of the original possible

 ' values (twins)---

 Dim original_possible As String = _

 possible(ccc, r)

 '---remove first twin number from possible

 ' values---

 possible(ccc, r) = possible(ccc, r).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second twin number from possible

 ' values---

 possible(ccc, r) = possible(ccc, r).Replace(_

 possible(c, r)(1), String.Empty)

 '---if the possible values are modified, then

 ' set the changes variable to true to indicate

 ' that the possible values of cells in the

 ' minigrid have been modified---

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 193

 If original_possible <> possible(ccc, r) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(ccc, r) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the

 ' current cell, cell is confirmed---

 If possible(ccc, r).Length = 1 Then

 actual(ccc, r) = CInt(possible(ccc, r))

 '---accumulate the total score---

 totalscore += 3

 End If

 End If

 Next

 End If

 Next

 End If

 Next

 Next

 Return changes

 End Function

 '==

 ' Look for Twins in Columns

 '==

 Private Function LookForTwinsinColumns() As Boolean

 Dim changes As Boolean = False

 '---for each column, check each row in the column---

 For c As Integer = 1 To 9

 For r As Integer = 1 To 9

 '---if two possible values, check for twins---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 2 Then

194 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '--scan rows in this column---

 For rr As Integer = r + 1 To 9

 If (possible(c, rr) = possible(c, r)) Then

 '---remove the twins from all the other possible

 ' values in the row---

 For rrr As Integer = 1 To 9

 If (actual(c, rrr) = 0) AndAlso _

 (rrr <> r) AndAlso (rrr <> rr) Then

 '---save a copy of the original possible

 ' values (twins)---

 Dim original_possible As String = _

 possible(c, rrr)

 '---remove first twin number from possible

 ' values---

 possible(c, rrr) = possible(c, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second twin number from possible

 ' values---

 possible(c, rrr) = possible(c, rrr).Replace(_

 possible(c, r)(1), String.Empty)

 '---if the possible values are modified, then

 'set the changes variable to true to indicate

 ' that the possible values of cells in the

 ' minigrid have been modified---

 If original_possible <> possible(c, rrr) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(c, rrr) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 195

 '---if left with 1 possible value for the

 ' current cell, cell is confirmed---

 If possible(c, rrr).Length = 1 Then

 actual(c, rrr) = CInt(possible(c, rrr))

 '---accumulate the total score---

 totalscore += 3

 End If

 End If

 Next

 End If

 Next

 End If

 Next

 Next

 Return changes

 End Function

 '==

 ' Look for Triplets in Minigrids

 '==

 Private Function LookForTripletsinMinigrids() As Boolean

 Dim changes As Boolean = False

 '---check each cell---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '--- three possible values; check for triplets---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 3 Then

 '---first potential triplet found---

 Dim tripletsLocation As String = c.ToString() & r.ToString()

 '---scan by minigrid---

 Dim startC, startR As Integer

 startC = c - ((c - 1) Mod 3)

 startR = r - ((r - 1) Mod 3)

 For rr As Integer = startR To startR + 2

 For cc As Integer = startC To startC + 2

196 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 If (Not ((cc = c) AndAlso (rr = r))) AndAlso _

 ((possible(cc, rr) = possible(c, r)) OrElse _

 (possible(cc, rr).Length = 2 AndAlso _

 possible(c, r).Contains(_

 possible(cc, rr)(0).ToString()) AndAlso _

 possible(c, r).Contains(_

 possible(cc, rr)(1).ToString()))) Then

 '---save the coordinates of the triplets

 tripletsLocation &= cc.ToString() & rr.ToString()

 End If

 Next

 Next

 '--found 3 cells as triplets; remove all from the other

 ' cells---

 If tripletsLocation.Length = 6 Then

 '---remove each cell's possible values containing the

 ' triplet---

 For rrr As Integer = startR To startR + 2

 For ccc As Integer = startC To startC + 2

 '---look for the cell that is not part of the

 ' 3 cells found---

 If actual(ccc, rrr) = 0 AndAlso _

 ccc <> CInt(tripletsLocation(0).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(1).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(2).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(3).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(4).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(5).ToString()) Then

 '---save the original possible values---

 Dim original_possible As String = _

 possible(ccc, rrr)

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 197

 '---remove first triplet number from possible

 ' values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second triplet number from possible

 ' values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(1), String.Empty)

 '---remove third triplet number from possible

 ' values---

 possible(ccc, rrr) = _

 possible(ccc, rrr).Replace(_

 possible(c, r)(2), String.Empty)

 '---if the possible values are modified, then

 ' set the changes variable to true to indicate

 ' that the possible values of cells in the

 ' minigrid have been modified---

 If original_possible <> possible(ccc, rrr) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(ccc, rrr) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the

 ' current cell, cell is confirmed---

 If possible(ccc, rrr).Length = 1 Then

 actual(ccc, rrr) = CInt(possible(ccc, rrr))

 '---accumulate the total score---

 totalscore += 4

 End If

 End If

198 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 Next

 Next

 End If

 End If

 Next

 Next

 Return changes

 End Function

 '==

 ' Look for Triplets in Rows

 '==

 Private Function LookForTripletsinRows() As Boolean

 Dim changes As Boolean = False

 '---for each row, check each column in the row---

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 '--- three possible values; check for triplets---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 3 Then

 '---first potential triplet found---

 Dim tripletsLocation As String = c.ToString() & r.ToString()

 '---scans columns in this row---

 For cc As Integer = 1 To 9

 '---look for other triplets---

 If (cc <> c) AndAlso _

 ((possible(cc, r) = possible(c, r)) OrElse _

 (possible(cc, r).Length = 2 AndAlso _

 possible(c, r).Contains(_

 possible(cc, r)(0).ToString()) AndAlso _

 possible(c, r).Contains(_

 possible(cc, r)(1).ToString()))) Then

 '---save the coordinates of the triplet---

 tripletsLocation &= cc.ToString() & r.ToString()

 End If

 Next

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 199

 '--found 3 cells as triplets; remove all from the other

 ' cells---

 If tripletsLocation.Length = 6 Then

 '---remove each cell's possible values containing the

 ' triplet---

 For ccc As Integer = 1 To 9

 If actual(ccc, r) = 0 AndAlso _

 ccc <> CInt(tripletsLocation(0).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(2).ToString()) _

 AndAlso _

 ccc <> CInt(tripletsLocation(4).ToString()) Then

 '---save the original possible values---

 Dim original_possible As String = possible(ccc, r)

 '---remove first triplet number from possible

 ' values---

 possible(ccc, r) = _

 possible(ccc, r).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second triplet number from possible

 ' values---

 possible(ccc, r) = _

 possible(ccc, r).Replace(_

 possible(c, r)(1), String.Empty)

 '---remove third triplet number from possible

 ' values---

 possible(ccc, r) = _

 possible(ccc, r).Replace(_

 possible(c, r)(2), String.Empty)

 '---if the possible values are modified, then set

 ' the changes variable to true to indicate that

 ' the possible values of cells in the minigrid

 ' have been modified---

 If original_possible <> possible(ccc, r) Then

 changes = True

 End If

200 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(ccc, r) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the current

 ' cell, cell is confirmed---

 If possible(ccc, r).Length = 1 Then

 actual(ccc, r) = CInt(possible(ccc, r))

 '---accumulate the total score---

 totalscore += 4

 End If

 End If

 Next

 End If

 End If

 Next

 Next

 Return changes

 End Function

 '==

 ' Look for Triplets in Columns

 '==

 Private Function LookForTripletsinColumns() As Boolean

 Dim changes As Boolean = False

 '---for each column, check each row in the column---

 For c As Integer = 1 To 9

 For r As Integer = 1 To 9

 '--- three possible values; check for triplets---

 If actual(c, r) = 0 AndAlso possible(c, r).Length = 3 Then

 '---first potential triplet found---

 Dim tripletsLocation As String = c.ToString() & r.ToString()

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 201

 '---scans rows in this column---

 For rr As Integer = 1 To 9

 If (rr <> r) AndAlso _

 ((possible(c, rr) = possible(c, r)) OrElse _

 (possible(c, rr).Length = 2 AndAlso _

 possible(c, r).Contains(_

 possible(c, rr)(0).ToString()) AndAlso _

 possible(c, r).Contains(_

 possible(c, rr)(1).ToString()))) Then

 '---save the coordinates of the triplet---

 tripletsLocation += c.ToString() & rr.ToString()

 End If

 Next

 '--found 3 cells as triplets; remove all from the other cells---

 If tripletsLocation.Length = 6 Then

 '---remove each cell's possible values containing the

 ' triplet---

 For rrr As Integer = 1 To 9

 If actual(c, rrr) = 0 AndAlso _

 rrr <> CInt(tripletsLocation(1).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(3).ToString()) _

 AndAlso _

 rrr <> CInt(tripletsLocation(5).ToString()) Then

 '---save the original possible values---

 Dim original_possible As String = possible(c, rrr)

 '---remove first triplet number from possible

 ' values---

 possible(c, rrr) = _

 possible(c, rrr).Replace(_

 possible(c, r)(0), String.Empty)

 '---remove second triplet number from possible

 ' values---

 possible(c, rrr) = _

 possible(c, rrr).Replace(_

 possible(c, r)(1), String.Empty)

202 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 '---remove third triplet number from possible

 ' values---

 possible(c, rrr) = _

 possible(c, rrr).Replace(_

 possible(c, r)(2), String.Empty)

 '---if the possible values are modified, then set

 ' the changes variable to true to indicate that

 ' the possible values of cells in the minigrid

 ' have been modified---

 If original_possible <> possible(c, rrr) Then

 changes = True

 End If

 '---if possible value reduces to empty string,

 ' then the user has placed a move that results

 ' in the puzzle being not solvable---

 If possible(c, rrr) = String.Empty Then

 Throw New Exception("Invalid Move")

 End If

 '---if left with 1 possible value for the current

 ' cell, cell is confirmed---

 If possible(c, rrr).Length = 1 Then

 actual(c, rrr) = CInt(possible(c, rrr))

 '---accumulate the total score---

 totalscore += 4

 End If

 End If

 Next

 End If

 End If

 Next

 Next

 Return changes

 End Function

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 203

 '===

 ' Find the cell with the least number of possible values

 '===

 Private Sub FindCellWithFewestPossibleValues(_

 ByRef col As Integer, ByRef row As Integer)

 Dim min As Integer = 10

 For r As Integer = 1 To 9

 For c As Integer = 1 To 9

 If actual(c, r) = 0 AndAlso possible(c, r).Length < min Then

 min = possible(c, r).Length

 col = c

 row = r

 End If

 Next

 Next

 End Sub

 '==

 ' Solve puzzle by brute force

 '==

 Private Sub SolvePuzzleByBruteForce()

 Dim c, r As Integer

 '---accumulate the total score---

 totalscore += 5

 '---find out which cell has the least number of possible values---

 FindCellWithFewestPossibleValues(c, r)

 '---get the possible values for the chosen cell---

 Dim possibleValues As String = possible(c, r)

 '---push the actual and possible stacks into the stack---

 ActualStack.Push(CType(actual.Clone(), Integer(,)))

 PossibleStack.Push(CType(possible.Clone(), String(,)))

 '---select one value and try---

 For i As Integer = 0 To possibleValues.Length - 1

 actual(c, r) = CInt(possibleValues(i).ToString())

204 A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A SS

 Try

 If SolvePuzzle() Then

 '---if the puzzle is solved, the recursion can stop now---

 BruteForceStop = True

 Return

 Else

 '---no problem with current selection, proceed with next

 ' cell---

 SolvePuzzleByBruteForce()

 If BruteForceStop Then Return

 End If

 Catch ex As Exception

 '---accumulate the total score---

 totalscore += 5

 actual = ActualStack.Pop()

 possible = PossibleStack.Pop()

 End Try

 Next

 End Sub

 '==

 ' Check if the puzzle is solved

 '==

 Private Function IsPuzzleSolved() As Boolean

 Dim pattern As String

 Dim r, c As Integer

 '---check row by row---

 For r = 1 To 9

 pattern = "123456789"

 For c = 1 To 9

 pattern = pattern.Replace(actual(c, r).ToString(), String.Empty)

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

A P P E N D I X A ■ T H E S U D O KU P U Z Z L E C L A S S 205

 '---check col by col---

 For c = 1 To 9

 pattern = "123456789"

 For r = 1 To 9

 pattern = pattern.Replace(actual(c, r).ToString(), String.Empty)

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 '---check by minigrid---

 For c = 1 To 9 Step 3

 pattern = "123456789"

 For r = 1 To 9 Step 3

 For cc As Integer = 0 To 2

 For rr As Integer = 0 To 2

 pattern = pattern.Replace(_

 actual(c + cc, r + rr).ToString(), String.Empty)

 Next

 Next

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 Return True

 End Function

End Class

207

Index

3-D Sudoku puzzle, invented by
Dion Church, 7

■A
across clues, example of in Kakuro puzzle, 172
Activities text box, codd for displaying a

message in, 36
actual_backup() array, getting values from to

restora a pair of cells, 160
ActualStack variable, function of in

brute-force elimination technique, 131
advanced techniques, implementing for

solving Sudoku puzzles, 106–134
AndAlso operator, function of, 79
arrays, using to represent cells in Sudoku

grids, 21–22

■B
Brute Force subroutine. See

SolvePuzzleByBruteForce()
subroutine

brute-force elimination technique. See also
elimination technique

observations, 106
for Sudoku puzzles, 103–106
using, 131–133

BruteForceStop Boolean variable, function
of in brute-force elimination
technique, 131

Button controls
adding to the ToolStrip control, 16
setting the Text property of, 16

■C
CalculatePossibleValues() function, code for,

62–63
Cell_Click() event, handling on the Label

controls, 30–37
Cell_Click() event handler, Label control

hooked to, 24
Cell_Click() method stub, adding an empty

to the user interface, 24

cells
calculating the possible values for, 61–63
code for VacateAnotherPairOfCells()

subroutine, 158–159
erasability of in Sudoku grid, 22
naming in the Sudoku grid, 22
updating the value of, 35–37

Chap4-Eg1 puzzle
after applying the CRME technique, 87–88
after scanning for lone rangers in the

minigrids, 89
testing out the lone ranger technique on,

86–89
Web site address for downloading, 86

Chap4-Eg2 puzzle
after applying the CRME technique, 91
after scanning for lone rangers in the

minigrids, 91
state of after applying the CRME and lone

ranger techniques, 93
testing out the lone ranger technique on,

89–93
Web site address for downloading, 90

CheckColumnsAndRows() function, code
for, 63–64

checkmark, displaying next to the selected
Level menu item, 163

CheckOnClick property, setting
simultaneously for all menu items in
the Designer, 162

Church, Dion, 3-D Sudoku puzzle invented
by, 7

ClearBoard() subroutine, code for, 27–28
click events, handling on the Label controls,

30–37
clue squares, in Kakuro puzzles, 171–173
code example

adding an empty Cell_Click() method
stub, 24

adding member variables to Form1, 19–20

208 ■I N D E X

for adding member variables to Form1
class, 58–59

for adding the RandomNumber() function
to the SudokuPuzzle.vb class, 156

calculates the possible values for all the
cells, 63–64

for calculating the possible values for a
cell, 62–63

for CheckColumnsAndRows() function,
63–64

checking whether a puzzle is solved, 34–35
for ClearBoard() subroutine, 27–28
click event for the Label (cell) controls,

30–32
for coding the

LookForLoneRangersinMinigrids()
function, 78–79

for displaying a message in the Activities
text box, 36

drawing cells and initializing the grid,
23–24

drawing the board for a puzzle, 28
for drawing the lines outlining the

minigrids, 25–26
enabling the Timer control, 28
event handler for the ToolStripButton

controls, 29–30
for exiting a game, 43–44
for FindCellWithFewestPossibleValues()

subroutine, 131
for the Form1_Load() event, 24
for GenerateNewPuzzle() function,

152–155
for generating a new puzzle and loading it

onto the grid, 164–165
of the GetPuzzle() function, 160–161
for implementation of the

CreateEmptyCells() subroutine,
156–157

IsMoveValid() function, 33
for LookForLoneRangersinColumns()

function, 82–83
for LookForLoneRangersinMinigrids()

function, 78–79
for LookForLoneRangersinRows()

function, 80–81
for LookForTripletsinColumns() function,

124–127

for LookForTripletsinMinigrids()
function, 117–120

for LookForTripletsinRows() function,
121–123

for LookForTwinsinColumns() function,
114–117

for LookForTwinsinMinigrids() function,
107–110

for LookForTwinsinRows() function,
111–113

for modifying the code behind the Solve
Puzzle button, 133–134

for modifying the SetCell() subroutine,
59–60

for modifying the
SolvePuzzleByBruteForce()
subroutine, 151

for modifying the SolvePuzzle() function,
84–86

for opening a saved game, 42–43
for the RandomizeThePossibleValues()

subroutine, 150
for redoing puzzle moves, 38
for Save As menu item, 41
for Save menu item, 41
for saving a game to a disk, 39–40
for selecting the numbers to insert into

puzzles, 29–30
for setting a cell to a given value, 35–36
for setting the ToolTip for a label control, 61
showing call to the ClearBoard()

subroutine, 27–28
for showing the checkmark next to the

selected Level menu item, 163
for SolvePuzzle() subroutine Steps to solve

the puzzle, 66
for SolvePuzzleByBruteForce()

subroutine, 132–133
starting a new game and adding an event

handler for, 27
StartNewGame() subroutine, 27–28
the SudokuPuzzle class (partial

content), 149
for undoing puzzle moves, 37–38
using SaveGameToDisk() subroutine,

39–40
for the VacateAnotherPairOfCells()

subroutine, 158–159

209■I N D E X

Find it faster at http://superindex.apress.com

for wiring the Hint button control, 65
for wiring the Solve Puzzle button control,

65–66
code view, switching to for Form1, 19
Column, Row, and Minigrid Elimination

(CRME). See CRME; CRME technique
columns

looking for lone rangers in, 81–83
looking for triplets in, 124–127
looking for twins in, 114–117
scanning by, 49
searching for lone rangers in, 73–77, 81–83

controls. See also Button controls; Label
control; StatusStrip control; Timer
control; ToolStrip control;
txtActivities control

adding others to the user interface
Windows form, 18–19

properties of the various, 19
Controls class, using Find() method in to

locate a specific cell to assign a value
to, 35–36

CreateEmptyCells() subroutine
implementation of, 156–158
for randomly removing cells from a

grid, 155
CRME technique, 50–53

algorithm for, 48
Chap4-Eg1 puzzle after applying, 87–88
Chap4-Eg2 puzzle after applying, 91
example of possible values for cells after

applying, 70–71
exception scenarios, 56–58
implementing, 58–67
importance of repeating the entire

scanning process, 54–55
testing the algorithm on some real

puzzles, 67–68
usefulness of, 54–55
using to solve Sudoku puzzles, 6

■D
debugging, your Sudoku application in

Visual Studio 2005, 44–45
Designer, setting all CheckOnClick property

menu items in, 162
Difficult level puzzle, example showing

generated and solved, 168

DisplayActivity() subroutine
commenting out to speed solving of

puzzles, 135
for displaying a message in the Activities

text box, 36
down clues, example of in Kakuro puzzle, 173
DrawBoard() subroutine, for dynamically

creating Label controls for cells in
9x9 grid, 23–24

■E
Easy level puzzle, example showing

generated and solved, 165–166
Edit->Redo, for redoing puzzle moves, 38
Edit->Undo, undoing puzzle moves with,

37–38
elimination technique. See also brute-force

elimination technique
defined, 6

emptyCells() array, location of empty cells
stored in, 157

error messages, using DisplayActivity()
subroutine for displaying, 36

Exit menu item, for ending games, 43–44
Extremely Difficult level puzzle, example

showing generated and solved, 169

■F
F5 shortcut key, for debugging your Sudoku

application in Visual Studio 2005, 44
Felgenhauer, Bertram, methodology of

number of valid Sudoku grids by, 3
File->Exit, ending a game with, 43–44
File->Save, using to save a previously saved

game, 41
File->Save As menu item, using to save a

game, 40–41
FindCellWithFewestPossibleValues()

subroutine, code example for, 131
flowchart, showing how various techniques

are applied to solve puzzles, 84
Form1

adding the various controls to, 14–18
declaring the member variables, 19–21
setting properties for, 13–14
switching to code view for, 19
wiring the button controls in, 65–67

210 ■I N D E X

Form1 class, adding member variables to,
58–59

Form1_Paint() event, using to draw the lines
outlining the puzzle minigrids, 25–26

■G
games

ending, 43–44
opening a previously saved from disk,

41–43
saving, 38–41
starting new, 26–28
using File->Save As to save, 40–41

GenerateNewPuzzle() function
called by the GetPuzzle() function,

160–161
for generating new puzzles, 152–155

generic types, use of Of keyword for
declaring, 21

GetPuzzle() function, code example for,
160–161

Godoku, alphabetical variation of Sudoku, 7
graphical user interface (GUI).

See user interface
grids

generating dynamically, 23–26
generating symmetrical in two steps,

145–146
scanning, 63–64

GUI. See user interface

■H
heptomino

variant of Sudoku, 7
Web site address for information about, 7

Hint button, code for wiring, 65
History of Sudoku, Web site address for, 10

■I
intermediate techniques

for solving Sudoku puzzles, 69–93
steps taken by the application to solve the

puzzle, 92
invalid move, examples of, 57–58
invalid puzzles, examples of, 56–57
IsMoveValid() function, code for checking

whether a move is valid, 33
IsPuzzleSolved() subroutine, for checking if a

puzzle is solved, 34–35

■J
Jarvis, Frazer, methodology of number of

valid Sudoku grids by, 3

■K
Kakuro, how to play, 171–179
Kakuro puzzles

clue squares in, 171–173
composition of numbers for various

number of cells, 177–178
considering a set of two cells in a

column, 174
considering a set of two cells in a row, 174
example of multiple-solution puzzle, 176
filling in the cells, 175–176
solving, 173–177
solving the puzzle, 176
tips for solving, 177–179
typical, 171

■L
Label controls

adding to the ToolStrip control, 16
creating dynamically for cells in 9x9 grid,

23–24
example of dynamically generated, 25
handling click events on, 30–37
setting the Tag property for erasability

of, 22
using for naming cells in a grid, 22

Level menu
assigning shortcuts to the different levels

of difficulty, 15–16
configuring the menu items in, 162
displaying a checkmark next to the

selected menu item, 163
menu items for setting difficulty of each

Sudoku puzzle, 162
table of values for, 15

Logi-5. See also pentomino
variant of Sudoku, 7

lone rangers
Chap4-Eg1 puzzle after scanning for in

minigrids, 89
Chap4-Eg2 puzzle after scanning for in

minigrids, 91
defined, 69
looking for in columns, 73–77, 80–81
looking for in minigrids, 77–79
looking for in rows, 71–73, 80–81

211■I N D E X

Find it faster at http://superindex.apress.com

lone ranger technique
implementing to solve Sudoku puzzles,

77–86
testing it out, 86–93

LookForLoneRangersinColumns() function,
code example for, 82–83

LookForLoneRangersinMinigrids() function,
code example for, 78–79

LookForLoneRangersinRows() function,
code example for, 80–81

LookForTripletsinColumns() function, code
example for, 124–127

LookForTripletsinMinigrids() function, code
example for, 117–120

LookForTripletsinRows() function, code
example for, 121–123

LookForTwinsinColumns() function, code
example for, 114–117

LookForTwinsinMinigrids() function, code
example for, 107–110

LookForTwinsinRows() function, code
example for, 111–113

■M
Mathematics of Sudoku, Web site address

for, 10
Medium level puzzle, example showing

generated and solved, 167
member variables, adding to Form1, 19–20
MenuStrip control, adding to Form1, 14–16
MenuStrip Tasks menu (Smart Tag), using to

insert a list of standard menu
items, 14

Microsoft Visual Studio 2005
debugging your Sudoku application in,

44–45
launching, 13
Smart Tags in, 14
using to create the Sudoku application, 13

minigrids
looking for triplets in, 117–120
outlining within the bigger grid, 25–26
scanning for twins within, 107–110
scanning within and filling in, 50–53
using lone rangers in, 70–71

Moves stack, 22–23
declaring data structure of for Form1, 20

■N
New menu item, adding an event handler for,

26–27

■O
Of keyword, used when declaring a generic

type, 21
OrElse operator, function of, 86

■P
pentomino

variant of Sudoku, 7
Web site address for information about, 7

possible() array, for keeping track of possible
values for a cell, 58–59

PossibleStack variable, function of
in brute-force elimination
technique, 131

Properties window, setting properties for
Form1 in, 13–14

puzzle-generating algorithm, implementing,
148–161

puzzles. See Sudoku puzzles

■R
RandomizeThePossibleValues() subroutine,

implementation of, 150
RandomNumber() function, code for adding

to the SudokuPuzzle.vb class, 156
RedoMoves stack, 22–23

declaring data structure of for Form1, 20
rows

looking for lone rangers in, 80–81
looking for triplets in, 120–124
scanning by, 49
scanning for twins in, 111–113
searching for lone rangers within, 71–73

■S
Save As menu item, code for, 41
Save menu item, code for, 41
SaveGameToDisk() subroutine, code for,

39–40
scoring

acceptable range of points for each
difficulty level, 143

average score for each difficulty level in
puzzles, 143

for solving Sudoku puzzles, 141

212 ■I N D E X

SelectedNumber variable, function of, 29
SetCell() subroutine

for assigning a value to a cell, 35–36
modifying, 59–60

single-solution puzzles, 146–147
Smart Tags, in Visual Studio 2005, 14
Solution Explorer, declaring the member

variables for Form1 in, 19–20
Solve Puzzle button, modifying the code

behind for, 133–134
Solve Puzzle button control, code for wiring,

65–66
SolvePuzzle() function

modifying, 83–86
modifying to have a complete set of

techniques to solve puzzles, 127–130
SolvePuzzle() subroutine, code for Steps to

solve puzzle, 66
SolvePuzzleByBruteForce() subroutine

code example for, 132–133
modifying, 151

sounds, setting parameter indicating if a
beep should be sounded, 36

Stack class
function of Of keyword in, 21
using to remember the moves you

made, 20
stack data structures, declaring for Form1,

19–20
stacks

storing moves in for undoing and redoing,
22–23

using for undo and redo options, 22–23
StartNewGame() subroutine

code for, 27–28
modifying so all current ToolTip

associations are removed, 61
for specifying the filename of a saved

game, 41–43
StatusLabel controls, inserting into the

StatusStrip control, 17
StatusStrip control

adding to the user interface Windows
form, 17

populating, 17
string variable, translating the address from a

cell to, 160
StringBuilder class, using for string

operation, 40

Sudoku
in Japanese, 1
playing a scaled-down 4x4 puzzle from

start to finish, 8–10
rules of, 1–3
useful resources on, 10
variants of, 7–8
Web site address for detailed description

of variants of, 7
Web site address for history of, 10
Web site address for useful information

on, 10
Web site address for Wikipedia discussion

of, 7
what it is, 1–10

Sudoku application
assigning shortcuts to the different levels

of difficulty, 15–16
capabilities of, 11
checking whether a move is valid, 32–34
creating, 11–45, 12–44
creating the user interface, 13–19
customizing the menu by removing and

inserting items, 15
major tasks in creating, 12
selecting the numbers to insert, 29–30
testing, 44–45

Sudoku grid
coordinates of cells in, 4
declaring the member variables for, 19–20
erasability of cells in, 22
example of, 1
naming cells in, 22
using an array for representing cells in,

21–22
Sudoku project, creating, 12–44
Sudoku puzzles

acceptable range of points for each
difficulty level, 143

advanced techniques, 95–137
basic solving technique, 47–68
cell identification, 47
checking whether a move is valid, 32–34
checking whether a puzzle is solved, 34–35
code for GenerateNewPuzzle() function,

152–155
code for generating new and loading onto

the grid, 164–165

213■I N D E X

Find it faster at http://superindex.apress.com

creating the SudokuPuzzle.vb class for,
148–150

determining the level of difficulty for,
139–141

determining the locations of empty cells,
144–146

eliminating 2 and 3 as possible values for
other cells, 97

ensuring that they are symmetrical,
144–145

example of a deadlock situation, 105–106
example of partially filled, 48
example of solved puzzle, 105
example showing generated and solved

Difficult puzzle, 168
example showing generated and solved

Easy puzzle, 165–166
example showing generated and solved

Extremely Difficult puzzle, 169
example showing generated and solved

Medium puzzle, 167
examples of partially completed, 2
filling in the value for (2,1), 50
finding a lone ranger in a column, 75
flowchart showing how various

techniques are applied to solve, 84
generating, 139–170
generating a series of with different levels

of difficulty, 165–169
guidelines for puzzles in book, 146–147
implementing advanced techniques for

solving, 106–134
levels of difficulty, 3
levels of difficulty set for in this book, 140
list of possible values for unsolved cells, 104
looking for triplets in, 99–103
looking for twins in, 95–99
modifying SolvePuzzle() function for,

127–130
representing values in the grid, 21–23
resolving the value for cell (7,4), 5–6
rows and columns in, 4
sample of, 5
scanning by column and row, 50
scanning for lone rangers in columns, 74
scanning for lone rangers in rows, 72
scoring solutions of, 141
selecting the numbers to insert, 29–30
single solution rule for, 146–147

solving an empty, 136–137
solving using intermediate techniques,

69–93
starting a new game, 26–28
steps to generate, 141–147
steps to generate level 1 and 3, 147
table showing average score for each

difficulty level in, 143
table showing number of empty cells for

each difficulty level, 142
testing the advanced techniques for

solving, 134–137
undoing and redoing moves in, 37–38
using computer programming to solve,

11–45
using elimination technique for solving,

47–58
using simple logic to solve, 4–7

Sudoku terminology, 3–4
Sudoku the Giant, variant of Sudoku, 7
SudokuPuzzle class

code listing for partial content of, 149
creating an instance of and invoking the

GetPuzzle() method, 164–165
SudokuPuzzle.vb class, creating, 148–150
Super Sudoku, variant of Sudoku, 7
symmetrical cells, finding the location of, 158

■T
techniques. See also brute-force elimination

technique; CRME technique; lone
ranger technique

for solving Sudoku puzzles, 140
table of points added for each, 141

testing, your Sudoku application in Visual
Studio 2005, 44–45

Text property, setting for button controls, 16
TextBox control, displaying a message in, 36–37
Timer control

adding to the user interface Windows
form, 18

enabling to keep track of time elapsed, 28
Timer1_Click() event, function of, 28
ToolStrip control

adding controls to, 16–17
adding to the user interface Windows

form, 16–17

214 ■I N D E X

ToolStripButton_Click() event, creating to
highlight the number selected by the
user in the toolbar, 29–30

ToolStripButton controls, event handler
code for, 29–30

ToolTip control
adding to aid the user in solving the

puzzle, 60–61
setting for a label control, 61

triplets
looking for in minigrids, 117–120
looking for in puzzles, 99–103
looking for in rows, 121–123
scenario 1 variant of, 100–101
scenario 2 variant of, 101–102
scenario 3 variant of, 102–103
variants of, 100–103

twins
code for looking for in columns, 114–117
code for looking for in minigrids, 107–110
code for looking for in rows, 111–113
identifying in puzzles, 96
looking for, 95–99
new pairs emerging after first scanning, 97
scanning for in a column, 116

txtActivities control, adding to the user
interface Windows form, 18

■U
user interface

adding an empty CellClick() method stub
to, 24

adding a ToolStrip control to, 16–17
creating, 13–19
setting properties for Form1, 13–14
wiring up the logic with, 162–165

■V
VacateAnotherPairOfCells() subroutine

for choosing another set of cells to
empty, 155

code example for, 158–159
Visual Studio 2005. See Microsoft Visual

Studio 2005

■W
Web site address

detailing the methodology of number of
valid Sudoku grids, 3

for downloading puzzle Chap4-Eg1, 86
for downloading puzzle Chap4-Eg2, 89
for History of Sudoku, 10
for information about heptomino, 7
for information about pentomino, 7
for Mathematics of Sudoku, 10
for methodology of number of valid

Sudoku grids, 3
for useful information on Sudoku, 10
for Wikipedia discussion of Sudoku, 7

Wordoku, alphabetical variation of Sudoku, 7
Wordoku puzzle, sample of, 8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

