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PREFACE

Since the discovery of the light emitting properties of the phenyl-based organic
semiconductors in 1990 there has been a huge growth of interest in conjugated
polymers. The potential device applications are enormous, ranging from optical
switching to solar cells and light emitting displays. These new developments are a
direct consequence of the active research in the 1980s on conjugated nonelectrolu-
minescent polymers, such as trans-polyacetylene. Polyacetylene has particularly
interesting and unusual low-lying electronic excitations, and has attracted much
experimental and theoretical interest, culminating in the award of the Nobel
prize for chemistry in 2000 for research in this field.

The progress in our understanding of the fundamental physics of conjugated
polymers, which provides a crucial underpinning to the technological applica-
tions, has also been large. This progress has been driven by experimental, theo-
retical and computational developments. A number of very careful and elegant
linear and nonlinear optical spectroscopies over the last decade have established
the energies and symmetries of the excited states. Meanwhile, computational
advances have been driven by the development of sophisticated numerical tech-
niques, coupled with cheaper and more powerful computers. One of these numer-
ical techniques is the density matrix renormalization group (DMRG) method.
This method is highly suited for solving correlated one-dimensional problems.

Conjugated polymers behave as quasi-one dimensional systems owing to their
strong intramolecular interactions and rather weak intermolecular interactions.
As a consequence, electron-electron interactions are weakly screened, and thus
both electron-electron interactions and electron-lattice coupling are fundamen-
tally important in determining the electronic behaviour. Electronic interactions
play a crucial role in determining the nature of electronic excitations as they
completely change the noninteracting electronic description. Moreover, the cou-
pling of these correlated electronic states to the lattice is also a delicate and
complicated problem. Together, electronic interactions and electron-lattice cou-
pling determine the relative energetic ordering of the electronic states, and this,
in turn, determines the optical properties of conjugated polymers. This under-
standing of the origin and nature of the electronic states helps us to explain why
some conjugated polymers, for example poly(para-phenylene), are electrolumi-
nescent, while others, for example trans-polyacetylene, are not.

The key aim of this book is to explain how electron-electron interactions and
electron-lattice coupling determine the types and character of the low-lying elec-
tronic states. Since these effects are complicated, our strategy will be to start with
the simplest approximation of noninteracting electrons and gradually develop the
full description. At each step care will be taken to explain how electron-electron
interactions and electron-lattice coupling modify the predictions of the simpler
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vi PREFACE

approximations.
We will see that one of the reasons why understanding the electronic proper-

ties of conjugated polymers is such a challenge is because the electronic potential
energy is comparable to the electronic kinetic energy. In other words, the relevant
parameter regime is intermediate between the weak and strong electron-electron
interaction limits. A useful strategy is therefore to tackle these systems from
both the weak and strong coupling extremes. In fact, light emitting polymers
lie on the weak-coupling side of the intermediate regime, whereas nonelectro-
luminescent polymers (such as trans-polyacetylene) lie on the strong coupling
side.

We focus on semiempirical models of π-conjugated systems. There are two
advantages to this strategy over studying ab initio models. First, reduced ba-
sis models in one dimension can be solved essentially exactly via the DMRG
method for very large systems. Thus, there is no need to make approximations
in the method which might obscure or prejudice an understanding of the physics.
Second, being approximate, reduced basis models retain some symmetries not
present in the ab initio models. In particular, particle-hole symmetry is partic-
ularly useful in characterizing neutral excited states. Finally, we remark that
although semiempirical, π-electron models are carefully parametrized so that
they also provide accurate predictions of excited state energies.

Solving very large systems by the DMRGmethod reveals the physics of conju-
gated polymers not present in conjugated molecules, namely that when the size of
the chain exceeds the spatial extent of the internal structure of the excited states
a quasi-particle description becomes appropriate. Conjugated polymers exhibit
a wealth of different quasi-particles: solitons, excitons, magnon, polarons, etc. It
is an aim of this book to explain the origin and physical consequences of these
quasi-particles.

Nonlinear optical measurements provide the most direct probe of the elec-
tronic states. Conversely, the nonlinear susceptibilities can be calculated if there
exists a theoretical understanding of the excited states. We describe the theory
of linear and nonlinear optical processes, and recast the so-called essential states
model in terms of the primary excitons.

Once an understanding of these intramolecular processes is established, an-
other aim of this book will be to explain electronic processes arising from in-
termolecular interactions. Thus, energy and charge transfer, and excited state
complexes involving two or more polymer chains are described. A mechanism for
determining the singlet exciton yield in light emitting polymers is also discussed.
However, we do not fully address the wider issues of how structure (from the local
polymer packing to the global morphology) affects the performance of systems
comprising conjugated polymers. Another important consequence of interchain
excitations is that they significantly modify the energy of some intrachain exci-
tations. An understanding of this effect is crucial to the interpretation of optical
experiments.
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A final aim of this book is to demonstrate how our theoretical understand-
ing of excited states enables us to make a consistent interpretation of exper-
imental results. Two final chapters draw these themes together in discussing
trans-polyacetylene, and the hugely technologically important phenyl-based light
emitting polymers.

The book is therefore organized as follows. Chapter 1 gives a brief overview
of the electronic properties of conjugated polymers. Our basic models for de-
scribing these properties are semiempirical π-electron models. So, Chapter 2
introduces and motivates these models. Next, we consider the solution of these
models in various limits: noninteracting electrons with fixed geometry in Chap-
ter 3, noninteracting electrons with electron-lattice coupling in Chapter 4, and
interacting electrons with fixed geometry in Chapter 5. Chapter 6 is devoted to
a discussion of excitons, as these are so important in determining the photo-
physical properties of conjugated polymers. The electronic states of interacting
electrons with electron-lattice coupling are described Chapter 7. Chapters 8 and
9 describe optical and electronic processes in conjugated polymers, respectively,
while experimental and theoretical investigations of trans-polyacetylene and light
emitting polymers are described in Chapters 10 and 11. Chapter 8 introduces
the nonlinear optical spectroscopies that are used to identify the excited states
of conjugated polymers discussed in Chapters 10 and 11.

This book was written with two kinds of readers in mind. One kind of readers
are experimentalists who wish to understand and interpret their experimental
data in terms of the fundamental electronic and optical properties of conjugated
polymers. The other type of readers are theoretical and computational chemists
and physicists who both want to understand the fundamental properties of con-
jugated polymers, as well as wishing to develop models and perform calculations
of their own. For these readers there are a number of appendices containing ma-
terial too technical for the main chapters. In particular, Appendix H gives a brief
review of the DMRG method.

Sheffield William Barford
January 2005
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Lidzey, Sumit Mazumdar, Carlos Silva, Markus Wohlgenannt, and David Yaron
are all greatly appreciated.

Last, but not least, my sincere thanks to my coworker since 1995, Robert
Bursill. It was he who principally developed the DMRG programs that we have
used to study correlated models of conjugated polymers. This book was inspired
by those studies.

This book was started in May, 2002. Without the benefit of a research fel-
lowship from the Leverhulme Trust in 2003-04 it is unlikely that it would ever
have been completed. I am very grateful to the Leverhulme Trust for the op-
portunity to be relieved from my teaching duties for one year. I would also like
to thank the Engineering and Physical Sciences Research Council, the Gordon
Godfrey Bequest of the University of New South Wales and the Royal Society
for sponsoring my research in this subject. Thanks too to the University of New
South Wales, and the Cavendish Laboratory and Clare Hall, Cambridge for their
hospitality in 2003-04.

I would like to thank Sonke Adlung at Oxford University Press for his en-
thusiasm for the book proposal, and his colleagues at OUP and Mark Fox in
Sheffield for their help over the preparation of the manuscript. Finally, I am very
grateful to Simon Martin and Sumit Mazumdar for providing valuable critical
feedback on the draft manuscript. As always, however, all errors and omissions
are the sole responsibility of the author.

viii



This book is dedicated to my mother and father.



This page intentionally left blank 



CONTENTS

1 Introduction to conjugated polymers 1

2 π-electron theories of conjugated polymers 7
2.1 Introduction 7
2.2 The many body Hamiltonian 7
2.3 The Born-Oppenheimer approximation 8
2.4 Second quantization of the Born-Oppenheimer

Hamiltonian 10
2.5 spn hybridization 11

2.5.1 sp hybridization 12
2.5.2 sp2 hybridization 12
2.5.3 sp3 hybridization 14
2.5.4 Remarks 14

2.6 π-electron models 15
2.7 Electron-phonon coupling 17

2.7.1 The nuclear-nuclear potential, Vn({un}) 18
2.8 Summary of π-electron models 19

2.8.1 The Hückel model 19
2.8.2 The Su-Schrieffer-Heeger model 20
2.8.3 The Pariser-Parr-Pople model 20

2.9 Symmetries and quantum numbers 21
2.9.1 Spatial symmetries 22
2.9.2 Particle-hole symmetry 22
2.9.3 Quantum numbers 24
2.9.4 State labels 24

3 Noninteracting electrons 26
3.1 Introduction 26
3.2 The noninteracting (Hückel) Hamiltonian 26
3.3 Undimerized chains 26

3.3.1 Cyclic chains 26
3.3.2 Linear chains 29

3.4 Dimerized chains 29
3.4.1 Cyclic chains 30
3.4.2 Linear chains 32

3.5 The ground state and particle-hole excitations 32
3.5.1 The band, charge, and spin gaps 34

3.6 Symmetries 35
3.6.1 Particle-hole symmetry and particle-hole parity 35
3.6.2 Linear chains and inversion symmetry 37

xi



xii CONTENTS

4 Electron-lattice coupling I: Noninteracting electrons 39
4.1 Introduction 39
4.2 The Peierls model 39
4.3 The dimerized ground state 41

4.3.1 The Hückel ‘4n+ 2’ rule 43
4.4 Self-consistent equations for {∆n} 43
4.5 Solitons 45

4.5.1 Odd-site chains 45
4.5.2 Even-site chains 47

4.6 Soliton-antisoliton pair production 49
4.7 Polarons 52
4.8 Nondegenerate systems 52
4.9 The continuum limit of the Su-Schrieffer-Heeger model 55
4.10 Dynamics of the Su-Schrieffer-Heeger model 57
4.11 Self-trapping 57
4.12 Concluding remarks 58

5 Interacting electrons 59
5.1 Introduction 59

5.1.1 Broken symmetries 59
5.1.2 Undimerized chains 60
5.1.3 Dimerized chains 62

5.2 The weak-coupling limit 64
5.2.1 Undimerized chains 64
5.2.2 Dimerized chains 64

5.3 The strong-coupling limit 65
5.3.1 Low-energy dimerized Heisenberg

antiferromagnet 65
5.3.2 High-energy spinless fermion model 66

5.4 The phase diagram of the undoped Pariser-Parr-Pople
model 69

5.5 The valence bond method 69

6 Excitons in conjugated polymers 73
6.1 Introduction 73
6.2 The weak-coupling limit 74

6.2.1 The effective-particle model 74
6.2.2 Solutions of the effective-particle model 79
6.2.3 Comparisons to the numerical calculations 79
6.2.4 Refinements of the theory 85

6.3 The strong-coupling limit 86
6.3.1 The effective-particle model 87

6.4 The intermediate-coupling regime 90
6.5 Concluding remarks 92



CONTENTS xiii

7 Electron-lattice coupling II: Interacting electrons 95
7.1 Introduction 95
7.2 The Pariser-Parr-Pople-Peierls model 96
7.3 Dimerization and optical gaps 97
7.4 Excited states and soliton structures 101

7.4.1 11B−
u state 102

7.4.2 13B+u state 104
7.4.3 21A+g state 105

7.5 Polarons 107
7.6 Extrinsic dimerization 108
7.7 Self-trapping 110
7.8 Concluding remarks 111

8 Optical processes in conjugated polymers 113
8.1 Introduction 113
8.2 Linear optical processes 114
8.3 Evaluation of the transition dipole moments 115

8.3.1 The Franck-Condon principle 115
8.3.2 Electronic selection rules 118
8.3.3 Franck-Condon factors 119
8.3.4 Electronic dipole moments: Application of the

exciton model 121
8.4 Nonlinear optical processes 123

8.4.1 The essential states mechanism 124
8.4.2 Third order harmonic generation 125
8.4.3 Electroabsorption 126

8.5 Size-dependencies of χ(n) 130

9 Electronic processes in conjugated polymers 131
9.1 Introduction 131
9.2 Exciton transfer 131

9.2.1 Exciton transfer integral 132
9.2.2 Coherent transfer 134
9.2.3 Incoherent transfer 138
9.2.4 The density matrix approach 140

9.3 Excited molecular complexes 141
9.3.1 Excimers 141
9.3.2 Exciplexes 142

9.4 Screening of intramolecular states 143
9.5 Electron transfer 148

9.5.1 Unimolecular electron transfer 148
9.5.2 Bimolecular electron transfer 151

9.6 The singlet exciton yield in light emitting polymers 154
9.6.1 Introduction 154
9.6.2 Basic model and the rate equations 156



xiv CONTENTS

9.6.3 Derivation of the intermolecular interconversion
rate 159

9.6.4 Estimate of the interconversion rates 167
9.6.5 Discussion and conclusions 169

10 Linear polyenes and trans-polyacetylene 171
10.1 Introduction 171
10.2 Predictions from the Pariser-Parr-Pople-Peierls model 174

10.2.1 Transition energies 174
10.2.2 Soliton structures 176
10.2.3 Adiabatic potential energy curves 178

10.3 Quantum phonons 180
10.3.1 Results and discussion 182

10.4 Character of the excited states of trans-polyacetylene 185
10.5 Other theoretical approaches 185

11 Light emitting polymers 187
11.1 Introduction 187
11.2 Poly(para-phenylene) 192

11.2.1 Benzene 192
11.2.2 Biphenyl 196
11.2.3 Oligo and poly(para-phenylenes) 200

11.3 Poly(para-phenylene vinylene) 207
11.3.1 Stilbene 207
11.3.2 Oligo and poly(para-phenylene vinylenes) 207

11.4 Other theoretical approaches 209
11.5 The excited states of light emitting polymers 212
11.6 Electron-lattice coupling 213

11.6.1 Noninteracting limit 214
11.6.2 Interacting limit 218

11.7 Concluding remarks 221

A Dirac bra-ket operator representation of one-particle
Hamiltonians 223
A.1 The Hückel Hamiltonian 223
A.2 The exciton transfer Hamiltonian 224

B Particle-hole symmetry and average occupation
number 226

C Single-particle eigensolutions of a periodic polymer
chain 227
C.1 Dimerized chain 228
C.2 poly(para-phenylene) 229

D Derivation of the effective-particle Schrödinger
equation 230



CONTENTS xv

E Hydrogenic solutions of the effective-particle exciton
models 234
E.1 The weak-coupling limit 234

E.1.1 Odd parity, even n solutions 235
E.1.2 Even parity, odd n solutions 236
E.1.3 Numerical results 236

E.2 The strong-coupling limit 236

F Evaluation of the electronic transition dipole
moments 238
F.1 The weak-coupling limit 238

F.1.1 Transitions between the ground state and an
excited state 239

F.1.2 Transitions between excited states 240
F.2 The strong-coupling limit 241

F.2.1 Transitions between the ground state and an
excited state 241

F.2.2 Transitions between excited states 241

G Valence-bond description of benzene 242

H Density Matrix Renormalization Group method 245
H.1 Introduction to the real-space method 245

H.1.1 Infinite algorithm method 245
H.1.2 Rotation and truncation of the basis 247
H.1.3 Symmetries and excited states 247
H.1.4 Finite algorithm method 248
H.1.5 Application to linear polyenes 248

H.2 Local Hilbert space truncation 249

References 251

Index 259



This page intentionally left blank 



1

INTRODUCTION TO CONJUGATED POLYMERS

Research into the electronic, optical, and magnetic properties of conjugated poly-
mers began in the 1970s after a number of seminal experimental achievements.
First, the synthesis of polyacetylene thin films (Itô et al. 1974) and the subse-
quent success in doping these polymers to create conducting polymers (Chiang
et al. 1977) established the field of synthetic metals. Second, the synthesis of the
phenyl-based polymers and the discovery of electroluminescence under low volt-
ages in these systems (Burroughes et al. 1990) established the field of polymer
optoelectronics.

The electronic and optical properties of conjugated polymers, coupled with
their mechanical properties and intrinsic processing advantages, means that they
are particularly attractive materials for the electronics industry. There are many
potential applications including, light emitting devices, nonlinear optical devices,
photovoltaic devices, plastic field-effect transistors, and electro-magnetic shield-
ing. The discovery and development of conductive polymers was recognized by
the award of the Nobel prize for chemistry in 2000 to Heeger, MacDiarmid, and
Shirakawa (see Heeger 2000; MacDiarmid 2000; and Shirakawa 2000).

A conjugated polymer is a carbon-based macromolecule through which the
valence π-electrons are delocalized.1 Trans-polyacetylene, illustrated in Fig. 1.1,
is a linear polyene, whose ground state structure is composed of alternating
long and short bonds. Also shown in Fig. 1.1 are two other linear polyenes, cis-
polyacetylene and polydiacetylene. The light emitting polymers, for example,
poly(para-phenylene) (or PPP) and poly(para-phenylene vinylene) (or PPV),
are characterized by containing a phenyl ring in their repeat units. PPP and
PPV are illustrated in Fig. 1.2.

As well as their many important technological applications, conjugated poly-
mers are also active components in many biological optophysical processes, for
example, as light collectors in photosynthesis, and in the vision mechanism via
photoisomerization. Charge transport in organic molecules is also an important
component of cellular function. Thus, many of the concepts developed in this
book are applicable to these biological systems.

Conjugated polymers exhibit electronic properties that are quite different
from those observed in the corresponding inorganic metals or semiconductors.
These unusual electronic properties may essentially be attributed to fact that
conjugated polymers behave as quasi-one dimensional systems owing to their

1Conjugate from the Latin conjugatus, meaning to join or unite.
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2 INTRODUCTION

trans-polyacetylene

cis-polyacetylene

polydiacetylene

Fig. 1.1. The carbon backbone of some linear polyenes. The hydrogen atoms are not
shown. More detailed chemical structures are illustrated in Chapter 2.

strong intramolecular electronic interactions and relatively weak intermolecu-
lar electronic interactions. Weak intermolecular electronic interactions (arising
from poor electronic wavefunction overlap) coupled to strong dissipation (or de-
phasing) mechanisms means that quantum mechanical coherence is generally
confined to a single chain, or at most a few other chains. Electronic wavefunc-
tions are therefore typically localized on single chains, or to pairs of chains in the
case of excited state complexes. This quasi-one dimensionality also means that
electron-electron interactions are weakly screened. Thus, electronic correlations
are important in determining the character of the electronic states. A final im-
portant factor in determining the character of the electronic states is that the
electrons and lattice are strongly coupled. As for electron-electron interactions,
the effects of electron-lattice coupling are enhanced in low dimensions.

Much early theoretical work on conjugated oligomers and polymers treated
electron-electron and electron-lattice interactions independently. In the 1950s
the focus was on the role of electron-lattice interactions in causing a metal-
semiconductor transition in one-dimensional metals (Fröhlich 1954; Peierls 1955),
and in determining the bond alternation in linear polyenes (Ooshika 1957, 1959;
Longuet-Higgins and Salem 1959). It was also realized that a broken-symmetry
ground state of bond alternation implies bond defects between different domains
of bond alternation (Ooshika 1957; Longuet-Higgins and Salem 1959), and to
associated mid-gap electronic states (Pople and Walmsley 1962). Theoretical
and experimental investigations into excited states and their associated bond
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poly(para-phenylene)

poly(para-phenylene-vinylene)

Fig. 1.2. The carbon backbone of some phenyl-based light emitting polymers.

defects (or solitons) grew rapidly after the introduction of a simplified model of
electron-lattice interactions in trans-polyacetylene by Su, Schrieffer, and Heeger
(Su et al. 1979). These developments are reviewed in (Heeger et al. 1988).

An alternative point of view, namely that electron-electron interactions are
important in determining the electronic properties in conjugated polymers, was
advocated by Ovchinnikov and coworkers (Ovchinnikov et al. 1973), who argued
that electronic correlations are principally responsible for the optical gap in lin-
ear polyenes. Likewise, the lack of electroluminescence in linear polyenes was
attributed to a dipole-forbidden strongly correlated singlet state lying below the
dipole-allowed singlet (Hudson and Kohler 1972; Schulten and Karplus 1972).
Another indication of the importance of electron-electron interactions is that
electroluminescence from light emitting polymers occurs from exciton (or bound
particle-hole states), and not from a direct band to band transition.

In fact, as we emphasize in this book, both electron-electron and electron-
lattice interactions must be treated together in order to achieve a coherent de-
scription of the excited states of conjugated polymers. It is the interplay of these
two processes that leads to the rich variety and relative energetic ordering of
the electronic states in conjugated polymers, and ultimately to their electronic
and optical properties. For example, strong electronic interactions and electron-
lattice coupling in trans-polyacetylene reverses the energy of the dipole allowed
and forbidden singlet states, rendering it nonelectroluminescent.

As a consequence of their size, conjugated polymers exhibit some physical
properties more associated with solid state physics than molecular physics. One
of these concepts is broken symmetry ground states. Another is the quasi-particle
description of excited states, widely used in solid physics, which is also appropri-
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ate in conjugated polymers provided that the conjugation length is longer than
the internal spatial extent of the excited state. Since the conjugation length is
typically 10− 20 repeat units (or ∼ 15− 50 Å) (much longer than a conjugated
molecule) while the typical size of the internal structure of an excited state is
5 − 10 Å, conjugated polymers do indeed exhibit a wealth of quasi-particles,
including solitons, excitons, magnons, and polarons. It is an aim of this book to
explain the origin and physical consequences of these quasi-particles.

Undoped (neutral) conjugated polymers are semiconductors, with optical
gaps of ∼ 2 − 3 eV and charge (or band) gaps typically ∼ 0.5 − 1.0 eV higher
in energy, reflecting the large exciton binding energies in polymers. Doped poly-
mers have ‘metallic’ conductivities of typically 103 − 105 S cm−1, with the high-
est conductivity in trans-polyacetylene being 105 S cm−1. (In comparison, the
conductivity of room temperature copper is 106 S cm−1.) However, although
the conductivities of conjugated polymers are reasonable, their performance as
synthetic metals is adversely affected both by disorder (which means that the
conductivity is close to the localization transition), and by the unstable nature
of highly doped polymers (Heeger 2000).

This book is principally concerned with neutral, semiconducting conjugated
polymers. Generally, as already remarked, these have quite different properties
from their inorganic counterparts. Inorganic semiconductors are characterized
by strong electron-electron screening (ε ∼ 11 in silicon) and strong spin-orbit
coupling. Since (in the effective-mass exciton model) exciton binding energies
∼ ε−2 and electron-hole separations ∼ ε, excitons in inorganic semiconductors
are weakly bound (∼ 25 meV) with large particle-hole separations (∼ 50 Å).
The strong spin-orbit coupling in inorganic semiconductors means that the to-
tal angular momentum is a good quantum number, and thus that singlet and
triplet states are mixed. In contrast, electron-electron screening is weak in or-
ganic systems (ε ∼ 2 − 3), so correspondingly the exciton binding energies are
large (∼ 0.5− 1.5 eV) and the particle-hole separations are small (∼ 5− 10 Å).

Spin-orbit coupling in organic systems is small, and thus spin is a good quan-
tum number. The large exchange energy between the lowest-lying singlet and
triplet excitons is another consequence of strong electron-electron interactions in
conjugated polymers. Definite spin states also have an important implication in
light emitting devices, as it implies that if electron-hole recombination is spin-
independent then only one-quarter of the injected electron-hole pairs become
singlet excitons. The maximum electroluminescence efficiency would therefore
be 25%. However, while spin-independent recombination does appear to occur
in conjugated molecules, it is a matter of current controversy in conjugated
polymers. An understanding of the excited state spectrum and recombination
processes is a prerequisite to address this issue.

A topic that has bedevilled the field is the exciton binding energy. There are
a number of reasons why this subject is controversial. First, to a certain extent
the concept is ill-defined. The concept of an exciton binding energy only makes
sense when the energy of a bound electron-hole quasi-particle can be compared
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to a widely-separated uncorrelated electron-hole pair. However, if the electron-
hole separation of the ‘bound’ state is of the order of the oligomer size it is not
possible to distinguish between that energy and the energy of a widely separated
pair. Second, there is a difference between vertical and relaxed energies. Thus, the
energy difference between the vertical transition to the exciton and the vertical
transition to an unbound electron and hole pair is different from the energy
difference between the relaxed exciton-polaron and a pair of polarons. Since the
exciton relaxation energy is roughly the same as that of a single polaron (namely
∼ 0.1−0.2 eV), this gives a difference of binding energies of∼ 0.1−0.2 eV between
these two estimates. Finally, there is a significant difference (of roughly 1−2 eV)
between the exciton binding energy in an isolated polymer chain and the binding
energy in a polymer chain in the solid state. This is because dielectric screening of
the intramolecular excited states by the environment significantly modifies their
energies. However, in contrast to inorganic semiconductors, since the binding
energy of the lowest energy excitons is comparable to their excitation energies,
this screening involves both dispersion and solvation components. It therefore
cannot simply be modelled by a static screened electron-hole potential, and it is
thus more difficult to theoretically predict the bulk binding energy. In this book
we take the view that spectroscopic probes are a reliable means of distinguishing
excited states. Thus, equipped with a theoretical understanding of the excited
states we use these probes to estimate the exciton binding energies.

The electronic and optical properties of conjugated polymers briefly described
in this chapter are summarized in Table 1.1. It is these properties that are the
subject of this book. We investigate semiempirical models of π-conjugated sys-
tems to address the following issues:

• What are the roles of electron-electron and electron-lattice interactions in
determining the broken symmetry ground states, and the type, character
and relative energetic ordering of the excited states?

• How does the type and character of the electronic states determine the
electronic and optical processes in conjugated polymers? For example,

∗ How do they determine the nonlinear optical spectroscopies?
∗ How do they determine energy and charge transport?

• How can nonlinear optical spectroscopies be used to determine the charac-
ter of the excited states?

• What is the role of the polymer’s environment in modifying the energy and
character of the excited states?

We begin these investigations by describing π-electron theories of conjugated
polymers in the next chapter.
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Table 1.1 Summary of the electronic and optical properties of conjugated polymers

Physics Consequences Chapter(s)
Quasi-one dimensional sys-
tems.

The effects of electron-electron and
electron-lattice interactions are en-
hanced. Broken symmetry ground states.

4, 5, 7

Conjugation lengths > 10−20
repeat units.

Quasi-particle description of excited and
charged states, for example, solitons, ex-
citons, magnons, and polarons.

4 − 11

Weak electron-electron
screening (the dielectric
constant in the solid state is
ε ∼ 2 − 3).

The lowest energy excitons have large
binding energies (∼ 0.5 − 1.5 eV) and
small particle-hole separations (∼ 5 − 10
Å).

6, 10, 11

Small exciton sizes. Excitons are generally localized on single
chains and luminesce strongly if they are
the lowest excited singlet excitation.

8

Strong electron-lattice cou-
pling.

Solitonic and polaronic structures. Self-
trapping of excited states.

4, 7, 10,
11

Electron-lattice interactions
coupled to strong electron-
electron interactions.

Enhanced bond alternation, energy rever-
sal of excited states and four-soliton ex-
cited states in linear polyenes.

7, 10

Energy reversal of excited
states in linear polyenes.

Not electroluminescent. 7, 10

Weak spin-orbit coupling and
strong electron-electron inter-
actions.

Spin is a good quantum number. Large
triplet-singlet exchange energies.

6, 10, 11

Weak interchain electronic
coupling.

Interchain excited state complexes (e.g.
excimers and exciplexes), which may
quench luminescence. Dephasing of inter-
molecular wavefunctions.

9

Exciton binding energies com-
parable to the optical gap.

Dielectric screening of excitons from both
solvation and dispersion interactions.

9

Disorder. Doped conjugated polymers exhibit con-
ductivity close to a disorder-induced
metal-insulator transition. Energy spec-
tra are broadened.
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π-ELECTRON THEORIES OF CONJUGATED POLYMERS

2.1 Introduction
The aim of this chapter is to introduce some of the language and notation used
throughout this book. We begin by discussing the many body Hamiltonian that
describes the electronic and nuclear degrees of freedoms in polymers. Then we
introduce the Born-Oppenheimer approximation which treats the nuclear de-
grees of freedom adiabatically and leads to the Born-Oppenheimer Hamiltonian
for the electronic degrees of freedom. Next, we introduce the concept of sp(n)

hybridization that decouples the higher energy σ electronic processes from the
lower energy π electronic processes. This leads to the concept of π-conjugation
and allows us to introduce the π-electron models of conjugated polymers. These
models include the Hückel model of noninteracting electrons, the Su-Schrieffer-
Heeger model of electron-phonon coupling, and models of interacting electrons,
such as the Pariser-Parr-Pople model. Finally, we discuss the various symmetries,
particularly spatial and particle-hole symmetries, that characterize the electronic
states of conjugated polymers.

2.2 The many body Hamiltonian
The electronic and nuclear degrees of freedom of a system are described by the
many body Hamiltonian,

HT = Hn−n({R}) +He−e({r}) +He−n({r}, {R}), (2.1)

where

Hn−n({R}) =
∑
α

P 2α
2Mα

+
1
2

∑
α�=β

ZαZβe2

|Rα −Rβ | (2.2)

describes the kinetic energy of the nuclei and their mutual potential energy from
Coulomb interactions,

He−e({r}) =
∑
i

p2i
2mi

+
1
2

∑
i �=j

e2

|ri − rj | (2.3)

describes the kinetic energy of the electrons and their mutual potential energy,
and

He−n({r}, {R}) = −1
2

∑
α,i

Zαe2

|Rα − ri| (2.4)

describes the potential energy arising from the Coulomb interactions between
the nuclei and electrons. {R} and {r} represent the set of nuclear and electronic

7
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coordinates, respectively, while M and m are the nuclear and electronic masses,
respectively. Zα is the nuclear number of the αth nucleus and e is the electronic
charge.

The full Hamiltonian, HT , can only be solved exactly for the hydrogen atom
in free space. For all other more complex systems various approximation schemes
are required. A very important approximation scheme is the Born-Oppenheimer
approximation, whereby the electronic degrees of freedom are explicitly decou-
pled from the nuclear dynamics. This will be discussed in the next section. An-
other approximation scheme for conjugated polymers is to focus explicitly on the
low-energy electronic degrees of freedom using parameters that in principle are
determined by the high-energy electronic degrees of freedom, but in practice are
treated semiempirically. This leads to effective π-electron models, which often
accurately describe the electronic states of conjugated systems. The most useful
consequence of π-electron models, however, is that they provide a quantitative
description of the low energy physics.

2.3 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation exploits the fact that the nuclear mass is
very much larger than the electronic mass, and therefore the nuclear dynamics
are expected to be ‘slow’ in comparison to the electronic dynamics. Thus, it is
convenient to introduce an electronic state, |i; {R}〉, that is determined by a set
of static nuclear coordinates, {R}. |i; {R}〉 thus depends parametrically on {R}.

The Born-Oppenheimer approximation is to assume that a many body state,
|I〉, may be factorized as a single, direct product of an electronic state, |i; {R}〉,
and a nuclear state |νi〉 associated with the electronic state, |i; {R}〉:

|I〉 = |i; {R}〉|νi〉. (2.5)

Then |I〉 satisfies an eigenvalue equation and |i; {R}〉 is an eigenstate of the so-
called Born-Oppenheimer Hamiltonian, provided that that the electronic state
|i; {R}〉 is so weakly parametrized by the nuclear coordinates that,

Pα|i; {R}〉 ≈ P 2α|i; {R}〉 ≈ 0. (2.6)

To show this, consider the action of the full Hamiltonian, HT , on |I〉:

HT |I〉 =

He−e({r}) +He−n({r}, {R}) + 1

2

∑
α�=β

ZαZβe2

|Rα − Rβ |


 |i; {R}〉|νi〉

+
∑
α

P 2α
2Mα

|i; {R}〉|νi〉, (2.7)

where we have explicitly decomposed Hn−n({R}) into its separate kinetic and
potential energy components. Now, using the product rule and the approxima-
tions encapsulated by eqn (2.6),
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{R}

E
({

R
}
)

i

Fig. 2.1. The adiabatic potential energy surface, Ei({R}).

P 2α (|i; {R}〉|νi〉) = |νi〉P 2α|i; {R}〉+ |i; {R}〉P 2α|νi〉+ 2Pα|i; {R}〉Pα|νi〉
≈ |i; {R}〉P 2α|νi〉. (2.8)

Thus, eqn (2.7) becomes,

HT |I〉 ≈ HBO({r}; {R})|i; {R}〉|νi〉+ |i; {R}〉
∑
α

P 2α
2Mα

|νi〉, (2.9)

where we define the Born-Oppenheimer Hamiltonian, HBO, as,

HBO({r}; {R}) = He−e +He−n +
1
2

∑
α�=β

ZαZβe2

|Rα − Rβ | . (2.10)

By definition, |i; {R}〉 is an eigenstate of HBO whose corresponding eigenvalue,
Ei({R}), is the sum of the electronic kinetic energy and all the potential energy
terms. Ei({R}) is also known as the adiabatic potential energy surface, and is
shown schematically in Fig. 2.1. As we shall see shortly, Ei({R}) is the effective
potential experienced by the nuclei.

Finally, inserting

HBO|i; {R}〉 = Ei({R})|i; {R}〉 (2.11)

into eqn (2.9) we have,

HT |I〉 ≈ |i; {R}〉
(
Ei({R}+

∑
α

P 2α
2Mα

)

)
|νi〉 = ε|i; {R}〉|νi〉. (2.12)

ε is the sum of the nuclear kinetic energy and the effective potential experienced
by the nuclei namely, Ei({R}).

The Born-Oppenheimer approximation is an adiabatic approximation, as it is
equivalent to the assumption that there are no transitions between the electronic
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states from changes of the nuclear coordinates. Mixing of the Born-Oppenheimer
states, {|I〉}, occurs by the nonadiabatic term neglected in eqn (2.9), namely,

1
2Mα

∑
α

(
2Pα|i; {R}〉Pα|νi〉+ |νi〉P 2α|i; {R}〉) . (2.13)

These nonadiabatic processes have important consequences, such as interconver-
sion and hence energy relaxation processes, as well as in chemical reactions.

The Born-Oppenheimer Hamiltonian is widely used in solid state physics and
quantum chemistry to study the electronic properties of materials - and it is also
widely used in this book. In the next section we recast it in the very convenient
second quantization representation.

2.4 Second quantization of the Born-Oppenheimer Hamiltonian

The Born-Oppenheimer Hamiltonian describes the electronic degrees of freedom.
A convenient representation of fermion Hamiltonians is by second quantization.
As this representation is widely used in this book, we give a brief discussion of it
here. A good discussion may be found in (Landau and Lifshitz 1977) or (Surján
1989).

In Dirac notation we may represent a single-particle electronic state as the
ket |i〉. Suppose that the single-particle states {|i〉} form an orthonormal basis.
The projection of |i〉 onto the coordinate representation, {|r〉}, (where |r〉 is an
eigenstate of the position operator, r̂) gives the single-particle wave function (or
orbital), φi(r), namely

φi(r) ≡ 〈r|i〉. (2.14)

It is often convenient to regard |i〉 and φi(r) as different, but essentially equivalent
representations of a single-particle state.

Then we may define the creation operator , c†i , such that it creates an electron
in the orbital φi(r). Formally,

|i〉 = c†i |0〉, (2.15)

where |0〉 is the vacuum state. The adjoint to the creation operator, the annihi-
lation operator , ci, destroys the electron in φi(r).

Since electrons carry spin we also need to define the creation operator c†iσ,
which creates an electron with spin σ in the spin-orbital,

χi(r, σ) = φi(r)σ. (2.16)

σ is the two-component spinor with values of
( 1
0

)
for an up-spin and

( 0
1

)
for

a down-spin with respect to an arbitrary axis of quantization. Similarly, ciσ
destroys an electron with spin σ in χi(r, σ).

The number operator , Niσ = c†iσciσ, counts the number of electrons with spin
σ in χi(r, σ).
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The Pauli principle, that the many body fermion wavefunction must be anti-
symmetric with respect to an exchange of coordinates, implies that the creation
and annihilation operators satisfy the following anticommutation relations:

ciσc
†
jσ′ + c†jσ′ciσ = δijδσσ′ (2.17)

and
ciσcjσ′ + cjσ′ciσ = c†iσc

†
jσ′ + c†jσ′c

†
iσ = 0. (2.18)

Using these rules, it can be shown that in second quantization the Born-
Oppenheimer Hamiltonian is expressed as,

HBO =
∑
ijσ

t̃ij

(
c†iσcjσ + c†jσciσ

)
+
1
2

∑
ijklσσ′

Ṽijklc
†
iσc

†
kσ′clσ′cjσ

+
1
2

∑
α�=β

ZαZβe2

|Rα −Rβ | , (2.19)

where

t̃ij =
∫

φ∗
i (r)

[
p2

2m
−
∑
α

Zαe2

|Rα − r|

]
φj(r)d3r, (2.20)

is the one-electron integral, and

Ṽijkl =
∫ ∫

φ∗
i (r)φ

∗
k(r

′)
e2

|r− r′|φl(r
′)φj(r)d3rd3r′, (2.21)

is the two-electron integral.
We may interpret the terms in eqn (2.19) as follows. The first term on

the right-hand side represents the transfer of an electron from the spin-orbital
χj(r, σ) to the spin-orbital χi(r, σ) (and vice versa), with an energy scale tij .
The terms i = j in the sum represent the single-particle on-site energy,2 while
the other terms represent the hybridization of the electrons between different
orbitals.3 The second term on the right-hand side represents electron-electron in-
teractions, the most important being the direct Coulomb interaction when i = j
and k = l, as we discuss in Section 2.6. For readers not familiar with the second
quantization approach, Appendix A describes a first quantization representation
of the first term on the right-hand side of eqn (2.19).

Equation (2.19) is a formal representation of all the electronic degrees of
freedom. It is necessary, and indeed useful when considering low energy pro-
cesses, to truncate the basis. For carbon-based systems this may be conveniently
accomplished by spn hybridization, as we describe in the next section.

2.5 spn hybridization
Atomic orbital hybridization is a well-known approximate procedure in quantum
chemistry designed to understand the nature of chemical bonds. In this procedure

2Denoted by α in quantum chemistry text books.
3Called the resonance integral, and denoted by β in quantum chemistry text books.
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Fig. 2.2. The chemical structures of acetylene (a) and ethylene (b).

linear combinations of atomic orbitals are constructed that have a directionality
optimized for bonding. In carbon-based molecules the orbitals involved in the
hybridization are the four outer valence orbitals, namely the 2s, 2px, 2py, and
2pz orbitals. There are three types of spn hybridization: sp hybridization, found
in linear molecules such as acetylene (shown in Fig. 2.2(a)); sp2 hybridization,
found in planar molecules such as ethylene (shown in Fig. 2.2(b)); and sp3 hy-
bridization, found in three-dimensional structures, such as methane. We briefly
describe these below. For further details, see (Coulson 1961), (Cohen-Tannoudji
et al. 1977), or (Atkins and Friedman 1997).

2.5.1 sp hybridization
We start with a discussion of sp hybridization. Consider a bond between two
carbon atoms oriented along the x-axis, as shown in Fig. 2.3. Then, the two
sp hybrids per carbon atom, |σ±〉, are formed from the 2s and 2px orbitals as
follows:

|σ±〉 = 1√
2
(|2s〉 ± |2px〉) . (2.22)

The σ orbitals are highly directional, and result in the strong covalent bonding.
The remaining orbitals, 2py and 2pz, remain unhybridized and are known as π
orbitals. They are orthogonal to the σ orbitals, and hinder rotations around the
bond axis. Figure 2.3 shows the acteylene structure with the pair of σ orbitals
and two pairs of π orbitals between the pair of carbon atoms, which altogether
form a ‘triple’ bond.

2.5.2 sp2 hybridization
In sp2 hybridization there are three sp2 hybrids per carbon atom. |σ1〉, illustrated
in Fig. 2.4, is constructed from the 2s and 2px orbitals as follows:

|σ1〉 = 1√
3

(
|2s〉+

√
2|2px〉

)
. (2.23)

The remaining σ orbitals are constructed from the 2s, 2px, and 2py, orbitals,
and may be defined as:
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Fig. 2.3. A schematic illustration of the σ and π (2py and 2pz) orbitals (shown
hatched) in acetylene.
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Fig. 2.4. A schematic illustration of the σ orbitals in ethylene. The π (2pz) orbitals
(not shown) are normal to the paper.

|σ2〉 = exp
(

−i2π
3
Lz

�

)
|σ1〉

(2.24)

and

|σ3〉 = exp
(
i
2π
3
Lz

�

)
|σ1〉, (2.25)

where Lz is the z-component of the angular moment operator. Thus, by defini-
tion, each σ orbital is oriented ±1200 with respect to each other. The remaining
2pz (or π) orbital lies perpendicular to the plane, and hinders rotations around
the carbon-carbon bond axis. The pairs of σ and π orbitals between each pair of
carbon atoms form a ‘double’ bond.
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(a)(a) (b)(b)

Fig. 2.5. Ab initio calculated quasi-particle band structure. (a) trans-polyacetylene,
where the valence and conduction bands are denoted as π and π∗, respectively,
and the four bands below the valence band are formed from the three sp2 hybrids
and the hydrogen 1s orbital. (b) poly(para-phenylene vinylene), where the valence,
π1, conduction, π∗

1 , and nonbonding bands, π2 and π∗
2 , are shown. Reprinted with

permission from M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 82, 1959, 1999.
Copyright 1999 by the American Physical Society.

2.5.3 sp3 hybridization

Here all four valence orbitals are involved in sp3 hybridization, resulting in a
tetrahedral orientation of the bonds, as found in methane or ethane. There is
one pair of σ orbitals between each pair of carbon atoms, resulting in a ‘single’
bond.

2.5.4 Remarks

The electrons in σ orbitals are localized in the σ bonds, whereas it is possible for
electrons in the π orbitals to delocalize (or conjugate) throughout the molecule.
Molecules composed of sp or sp2 hybridized orbitals are therefore known as ‘un-
saturated ’, while molecules composed of sp3 hybrids are known as ‘saturated ’.
Conjugated polymers are typically sp2 hybridized with one π-orbital per CH
group. (An exception is polydiacetylene which has both sp and sp2 hybridiza-
tion.) The four valence electrons are shared amongst the four hybrid orbitals,



π-ELECTRON MODELS 15
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Fig. 2.6. A schematic representation of a conjugated polymer with sp2 hybridization as
described by π-electron models. Each vertex is a site with on average one π-electron.

and thus there is one π-electron per CH group.
The σ and π orbitals are formally decoupled at the one-particle Hamilto-

nian level. Figure 2.5 illustrates the band structure of trans-polyacetylene and
poly(para-phenylene vinylene) derived from ab initio calculations. Evidently the
valence (bonding) and conduction (antibonding) π bands (denoted as π and π∗)
are separated from the σ bonding and antibonding bands. The low energy elec-
tronic transitions of ∼ 2 − 3 eV are π → π∗ excitations, while the σ → σ∗

excitations lie much higher in energy, being greater than 10 eV. It is this conve-
nient separation of energy scales that means that π-electron models provide an
accurate representation of the low-energy physics of conjugated molecules.

2.6 π-electron models
Figure 2.6 is a schematic representation of a conjugated polymer when described
by a π-electron model. Each vertex is a site representing a C-H group with one
π-orbital. On average, there is one electron per π-orbital.

In π-electron models the σ and core electrons play the static role of screening
the Coulomb interactions between the remaining degrees of freedom. In partic-
ular, they screen the nuclear-nuclear interactions, the interactions between the
π-electrons and the nuclei, and the mutual interactions between the π-electrons.
This screening is often modelled by a static dielectric constant,4 and by the re-
duction of the effective charge of the nucleus to +Q at large distances. We now
define Vp(r; {R}) as the pseudopotential which models the effective interaction
between the π-electrons and the nuclei, while V effe−e(r − r′) models the effective
electron-electron interaction.

Now, the second quantization representation of the Born-Oppenheimer Hamil-
tonian, eqn (2.19), is valid for an orthonormal basis. Since the atomic orbitals
are not automatically orthonormal, they must first be orthogonalized before they
are ready for use. Then we define,

t̃ij =
∫

φ∗
i (r)

[
p2

2m
+ Vp(r; {R})

]
φj(r)d3r (2.26)

and
Ṽijkl =

∫ ∫
φ∗
i (r)φ

∗
k(r

′)V effe−e(r− r′)φl(r′)φj(r)d3rd3r′. (2.27)

The four-centre integrals, V̂ijkl, are dominated by the diagonal terms:

4The refractive index of saturated molecules is typically 1.5, implying an effective, static
dielectric constant from the σ electrons of ≈ 2.25.
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Ui ≡ Ṽiiii =
∫ ∫

φ∗
i (r)φi(r)V

eff
e−e(r− r′)φ∗

i (r
′)φi(r′)d3rd3r′, (2.28)

which is the interaction between electrons in the same orbital, and

Vij ≡ Ṽiijj =
∫ ∫

φ∗
i (r)φi(r)V

eff
e−e(r− r′)φ∗

j (r
′)φj(r′)d3rd3r′, (2.29)

which is the interaction between electrons in orbitals φi and φj . Other terms
that are sometimes considered are the exchange interaction,

Kij ≡ Ṽijji =
∫ ∫

φ∗
i (r)φj(r)V

eff
e−e(r− r′)φ∗

j (r
′)φi(r′)d3rd3r′, (2.30)

the density-dependent hopping, Ṽiii,i+1, and the bond-charge repulsion, Ṽi,i+1,i+1,i.
These terms are smaller than the diagonal ones, as they are determined by the
wave function overlap, φ∗

i (r)φj(r). Moreover, since in practice π-electron models
are parametrized to fit experiment, these terms are generally neglected, and this
will be the approach largely adopted in this book.5

Another simplification is to assume that the two-centre integrals, tij , are only
nonzero for electrons in the same orbital or on neighbouring orbitals. Thus,

εi ≡ t̃ii (2.31)

is the on-site potential energy, and

ti ≡ −t̃i,i+1 (2.32)

is the nearest-neighbour hybridization (or transfer) integral.6

With these approximations, we may write a highly simplified Born-Oppenheimer
Hamiltonian for the π-electrons as,

Hπ
BO =

∑
i

εiNi −
∑
iσ

ti

(
c†i+1σciσ + c†iσci+1σ

)

+U
∑
i

Ni↑Ni↓ +
1
2

∑
i �=j

VijNiNj + Vn−n, (2.33)

where Ni =
∑

σ Niσ counts the number of electrons in the orbital φi(r) and Vn−n

is the screened nuclear-nuclear interaction.
Since this Hamiltonian is widely used throughout this book, we now describe

the physical meaning of each term.

5The neglect of the off-diagonal four-centre integrals is either called the Complete Neglect
of Differential Overlap (CNDO), or Zero Differential Overlap (ZDO). Models that retain some
other four-centre integrals are termed Intermediate Neglect of Differential Overlap (INDO).

6It is convenient to define the hybridization integral as positive-definite.
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• εiNi is the potential energy of the electrons in the orbital φi(r).

• −ti
(
c†i+1σciσ + c†iσci+1σ

)
represents the transfer of an electron with spin

σ between the spin-orbitals χi(r, σ) and χi+1(r, σ) with an energy −ti. As
the π-orbitals are on different sites, this represents the transfer of electrons
from site to site.

• UNi↑Ni↓ is the Coulomb interaction between two electrons in the same
spatial orbital (that is, on the same site).

• VijNiNj is the Coulomb interaction between the electrons in orbital φi(r)
and the electrons in orbital φj(r) (that is, on different sites).

Although eqn (2.33) represents a highly simplified model of conjugated molecules,
it still remains a considerable challenge to solve, understand and predict its phys-
ical behaviour. We discuss various additional approximations to Hπ

BO in Section
2.8. However, in the next section we discuss going beyond the Born-Oppenheimer
approximation to include explicit electron-phonon coupling.

2.7 Electron-phonon coupling

To derive a simple model of electron-phonon coupling, let us expand the π-
electron-nuclear interaction, Vp(r; {R}), around some reference set of coordi-
nates, {R0}:

Vp(r; {R}) = Vp(r; {R0}) +
∑
l

∂Vp
∂Rl

· ul + · · · , (2.34)

where ul is the displacement of the lth ion from its reference position. We define,

ε0i =
∫

φ∗
i (r)

[
p2

2m
+ Vp(r; {R0})

]
φi(r)d3r, (2.35)

t0i = −
∫

φ∗
i (r)

[
p2

2m
+ Vp(r; {R0})

]
φi+1(r)d3r, (2.36)

and

αmnl =
∫

φ∗
m(r)

[
∂Vp(r; {R0})

∂Rl

]
φn(r)d3r. (2.37)

Then, if we define

α ≡ αl,l+1,l = αl+1,l,l = −αl,l+1,l+1 = −αl+1,l,l+1 (2.38)

and
β ≡ αl,l,l+1 = −αl,l,l−1 (2.39)

we obtain the electron-phonon interaction,

Hπ
e−n =

∑
iσ

{
−α · (ui − ui+1)

(
c†iσci+1σ + c†i+1σciσ

)
+ β · (ui+1 − ui−1)Niσ

}
.

(2.40)
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These terms have a simple, physical interpretation. The first term on the right-
hand side is the change in the electronic kinetic energy arising from the changes
in the bond lengths from their reference values. Similarly, the second term is
the change in the electronic potential energy arising from the changes in bond
lengths. Notice that a reduction in the bond lengths results in a decrease of the
(negative) kinetic energy. Physically, this is caused by the increase in the magni-
tude of the negative hybridization integrals as the distances between neighbour-
ing atoms decreases.

The nuclear-nuclear interactions are modelled by the Hamiltonian,

Hn−n =
∑
α

P 2α
2Mα

+ Vn({un}), (2.41)

where Vn({un}) is the nuclear-nuclear potential energy associated with small
displacements from the reference coordinates.

The next step is to quantize the nuclear degrees of freedom as phonons, giving
a fully quantum mechanical description of the electron and nuclear degrees of
freedom. This step will be described in Chapter 7.

2.7.1 The nuclear-nuclear potential, Vn({un})
We conclude this section by making some remarks on the nuclear-nuclear po-
tential. It is convenient to separate this into an effective nuclear-nuclear poten-
tial arising from the nuclear charges associated with the σ bonds, V σ

n , and the
nuclear-nuclear potential from the remaining unscreened nuclear charges associ-
ated with the π electrons, V π

n :

Vn({un}) = V σ
n + V π

n . (2.42)

If we suppose that the reference structure is determined by the σ bonding
alone, as for example in polyethylene, and that distortions from this structure
are small, then we may express V σ

n as a sum of harmonic springs,

V σ
n =

K

2

∑
i

(ui+1 − ui)2. (2.43)

K is therefore the spring constant associated with the σ-bonds.
Now suppose that we consider the molecular structure arising from both the

σ and π electrons, as for example in trans-polyacetylene. As we shall see shortly,
the coupling of the π electrons to the lattice leads to both an overall reduction
in the chain length, and to a regular distortion of the lattice. Since we want to
describe the regular distortion relative to the average bond length, r0, rather than
the reference bond length, re, (determined by the σ electrons), it is convenient
to expand V σ

n about r0. Then,

V σ
n =

K

2

∑
i

(ui+1 − ui)2 +Kδr
∑
i

(ui+1 − ui)− NKδr

2
, (2.44)
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where δr is the average change in bond lengths caused by the π-electrons:

δr = r0 − re < 0. (2.45)

Using the Hellmann-Feynman theorem, we will show in Sections 4.4 and 7.2
that,

δr = −
(
2α〈T̂ 〉 − β〈D̂〉

)
K

, (2.46)

where T̂ is the bond order operator, defined in eqn (4.10), D̂ is the bond density-
density correlator, defined in eqn (7.11). The overbar represents a spatial average,
and α and β are the electron-phonon coupling parameters, defined in eqns (2.38)
and (2.39).

Hereafter, we adopt eqn (2.44) as the elastic potential energy resulting from
the σ bonds. We include the linear term, but neglect the final constant term.

2.8 Summary of π-electron models

Even though the neglect of the σ electronic dynamics leads to considerable sim-
plifications, the full π-electron-nuclear Hamiltonian is still too complicated to
solve exactly. In this section we introduce various approximations to the com-
plete Hamiltonian that make it more tractable. These models are summarized in
Table 2.1. Their physical properties are discussed in more detail in the chapters
that follow, as indicated in Table 2.1.

We also emphasize that even if accurate effective potentials could be derived
from first principles, their utility would be limited because of the errors associated
with the neglect of the dynamical influences of the σ and core electrons. In
practice, therefore, semiempirical parameters are often used, which are derived
by fitting the predictions of model Hamiltonians to some known experimental
results. This is often a very successful procedure.

2.8.1 The Hückel model

The most drastic approximation is to fix the positions of the nuclei and to ne-
glect the electron-electron interactions. Noninteracting electrons with fixed nuclei
geometry are described by the Hückel model (Hückel 1931, 1932), defined as

H =
∑
i

εiNi −
∑
iσ

ti

(
c†i+1σciσ + c†iσci+1σ

)
, (2.47)

where we define δi such that ti = t(1 + δi). δi is therefore the relative distortion
of the ith bond from its average value, where positive and negative values cor-
respond to shortened and lengthened bonds, respectively. Equation (2.47) is the
Born-Oppenheimer Hamiltonian, eqn (2.33), with U = V = 0, and neglecting
the constant Vn−n term.
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x

Fig. 2.7. The bond stretching mode of trans-CHx projected onto the x-axis.

2.8.2 The Su-Schrieffer-Heeger model

In a π-electron theory the ‘ion’ represents the CH group, so there are three ionic
degrees of freedom per unit cell. These ionic degrees of freedom may be formally
represented as collective, normal modes. Su, Schrieffer, and Heeger, in their treat-
ment of trans-polyacetylene, introduced a simplification to this problem (Su et
al. 1970). This simplification was to consider only the normal mode that pre-
dominantly couples to the π-electrons. For polyacetylene this is the carbon bond
stretching vibration. Thus, projecting the ionic coordinates onto the chain axis,
denoted by the x-axis, we have the Su-Schrieffer-Heeger (SSH) Hamiltonian, de-
fined as,

HSSH = He +Hn−n +He−n, (2.48)

where

He = −t
∑
iσ

(
c†i+1σciσ + c†iσci+1,σ

)
, (2.49)

Hn−n =
∑
i

(
P 2i,x
2M

+
Kx

2
(ui+1,x − ui,x)2 +Kxδr(ui+1,x − ui,x)

)
, (2.50)

and

He−n = −
∑
iσ

αx(ui,x − ui+1,x)
(
c†i+1,σci,σ + c†i,σci+1,σ

)
. (2.51)

We have set β = 0 (eqn (2.39)) and εi = 0. Assuming that the bond angles
remain fixed at 1200 during the bond stretching, the projected parameters are
defined as, un,x = 2un/

√
3, αx =

√
3α/2 and Kx = 3K/4 (Baeriswyl 1985). The

dynamics of the Su-Schrieffer-Heeger model are shown in Fig. 2.7.
The Su-Schrieffer-Heeger model in the limit of static nuclei is known as the

Peierls model. This is defined and discussed in Section 4.2.

2.8.3 The Pariser-Parr-Pople model

Interacting electrons with fixed nuclei satisfy the Pariser-Parr-Pople model (Pariser
and Parr 1953a, b; Pople 1953, 1954),7 defined as

7The Pariser-Parr-Pople model is known as the extended Hubbard model in solid state
physics.
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H = −
∑
iσ

ti(c
†
iσci+1σ + c†i+1σciσ) (2.52)

+U
∑
i

(
Ni↑ − 1

2

)(
Ni↓ − 1

2

)
+
1
2

∑
i �=j

Vij(Ni − 1)(Nj − 1).

The use of the term (Ni − 1) in the Coulomb interactions ensures that this
Hamiltonian automatically contains the electron-nuclear and nuclear-nuclear in-
teractions from the nuclear charges associated with the π-electrons. To see this,
let us expand the Coulomb interaction:

1
2

∑
i �=j

Vij(Ni − 1)(Nj − 1) =
1
2

∑
i �=j

VijNiNj +
∑
i �=j

VijNj +
1
2

∑
i �=j

Vij

(2.53)

The first term on the right-hand side is the electron-electron Coulomb interac-
tion. The second term is the potential energy experienced by the electrons from
the nuclei, where

Ṽj =
∑
i

Vij (2.54)

is the potential energy on site j.8 Finally, the third term is the nuclear-nuclear
potential energy, V π

n , of eqn (2.42).
The electron-electron interactions are usually treated using the semiempiri-

cal Ohno or Mataga-Nishimoto potentials. These expressions are interpolations
between a Coulomb potential, e2/4πε0rij, at large separations and U for the in-
teraction between two electrons in the same orbital (rij = 0). For bond-lengths
in Å and energies in eV the Ohno potential is

Vij =
U√

1 + (Uεrij/14.397)2
, (2.55)

and the Mataga-Nishimoto potential is

Vij =
U

1 + Uεrij/14.397
. (2.56)

ε is the dielectric function, which is usually set to unity. Typically, U is taken to
be the value of the ionization potential minus the electron affinity, which is ca.
11 eV in conjugated molecules.

2.9 Symmetries and quantum numbers

Most linear conjugated molecules and polymers possess spatial symmetries, while
cyclic polymers possess axial symmetry. Conjugated systems also possess an ap-
proximate particle-hole symmetry. These symmetries characterize the electronic

8Note that the potential energy is also Ṽj =
∫
φ∗
j (r)Vp(r; {R0})φj(r)d3r, where Vp(r; {R0})

is the pseudopotential defined in Section 2.6.
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Table 2.1 Summary of π-electron models

Model Comments Chapter(s)
Hückel Noninteracting electrons with a fixed ge-

ometry
3

Su-Schrieffer-Heeger (SSH) Noninteracting electrons with dynamic nu-
clei

4

Peierls Static-nuclear limit of the SSH model 4
Pariser-Parr-Pople (P-P-P) Interacting electrons with a fixed geometry 5, 6
P-P-P-SSH Interacting electrons with dynamic nuclei 7
Pariser-Parr-Pople-Peierls Static-nuclear limit of the P-P-P-SSH

model
7

states and determine whether or not the states are optically active. We introduce
these symmetries here, deferring a full discussion of the physical significance of
particle-hole symmetry to Chapter 3.

2.9.1 Spatial symmetries

As Figs 1.1 and 1.2 illustrate for trans-polyacetylene, poly(para-phenylene viny-
lene), and polydiacetylene, most conjugated polymers possess a two-fold rotation
symmetry about an axis of symmetry through their centre and normal to their
plane of symmetry. Such polymers are said to possess C2h symmetry (Atkins and
Friedman 1997).

C2h symmetry is equivalent to inversion symmetry defined by

r 	→ −r. (2.57)

A many body state that is even under inversion (with a positive eigenvalue) is
denoted Ag, while a many body state that is odd under inversion (with a negative
eigenvalue) is denoted Bu.

As illustrated in Fig. 1.2 poly(poly-phenylene), possesses planes of symmetry
through both the major and minor axes. This is denoted as D2h symmetry. The
character table for D2h symmetry is shown in Table 11.3.

2.9.2 Particle-hole symmetry

If a Hamiltonian has particle-hole (or charge-conjugation) symmetry then it is
invariant under the transformation of a particle into a hole under the action of
the particle-hole operator, Ĵ :

c†iσ 	→ (−1)iciσ̄ ≡ (−1)ih†
iσ, (2.58)

where h†
iσ creates a hole with spin σ, and σ̄ means the opposite spin to σ.

There are two requirements for an interacting model to posses particle-hole
symmetry. The first requirement applies to the kinetic energy, and states that
the lattice must be composed of two interpenetrating sublattices, with nearest
neighbour one-electron hybridization between the two sub-lattices. As shown in
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t t

Fig. 2.8. A linear chain with particle-hole, or charge-conjugation, or alternacy sym-
metry. The lattice is composed of two interpenetrating sublattices (shown as open
and filled circles), with nearest neighbour hybridization between the sublattices.

Fig. 2.8, this requirement is satisfied for a one-dimensional chain with nearest
neighbour hybridization. As a consequence of particle-hole symmetry the kinetic
energy for a uniform cyclic chain satisfies εk = −εk+π/a, as shown in Fig. 3.1.
Similarly, for a linear uniform chain the kinetic energy satisfies εj = −εj−π, as
shown in Fig. 3.2. Thus, in both cases, the energy spectrum is symmetric about
ε = 0.

The second requirement for a model to posses particle-hole symmetry is that
the electron-electron interactions must be balanced - on average - by electron-
nuclear interactions. For a chain with translational symmetry every site is equiv-
alent with the same potential energy. For a linear chain, with open boundary
conditions, however, the sites are not equivalent. The electrons on sites in the
middle of a chain experience a larger potential energy from the nuclei than elec-
trons on sites towards the ends of the chain. This potential energy, Ṽj =

∑
i Vij ,

is shown in Fig. 2.9. Correspondingly, the electrons on sites in the middle of
the chain experience a larger electron-electron repulsion than electrons towards
the end of the chain. When this repulsion is equal and opposite to the electron-
nuclei attraction, there is particle-hole symmetry, and every site is essentially
equivalent.

It is easy to demonstrate that the kinetic energy term is invariant under the
transformation, eqn (2.58). Also, because under the particle-hole transformation

(Ni − 1) → −(Ni − 1) (2.59)

the Coulomb interactions in the Pariser-Parr-Pople model are also invariant
under this transformation. Particle-hole symmetry is an exact symmetry of π-
electron models, but since these models are approximate it should be noted that
particle-hole symmetry is only an approximate symmetry for conjugated poly-
mers. It is strongly violated in systems with heteroatoms.

Systems which posses particle-hole symmetry satisfy a number of properties.
First, the expectation value of the occupancy of each site is unity, or,

〈N̂ − 1〉 = 0. (2.60)

For the π-electron models this means that the average number of π-electrons
per site is unity. This result is proved in Appendix B. A second property is that
singlet particle-hole excitations that are negative under a particle-hole trans-
formation have an even particle-hole spatial parity, while singlet particle-hole
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Fig. 2.9. The on-site pseudopotential, Ṽj , of a linear chain of 100 sites, using the Ohno
potential, eqn (2.55). On average, this is balanced by the electron-electron repulsion
in systems with particle-hole symmetry.

Table 2.2 States and symmetry character table for linear polymers described by
π-electron Hamiltonians with inversion and particle-hole symmetries

State Particle-hole eigenvalue Inversion eigenvalue Spin
1A+

g +1 +1 0
1B−

u −1 −1 0
3B+

u +1 −1 1
3A−

g −1 +1 1

excitations that are positive under a particle-hole transformation have an odd
particle-hole spatial parity. In contrast, triplet states that are positive under a
particle-hole transformation have an even particle-hole parity, and vice versa.
This result is proved in Section 3.6.1. It has important consequences for under-
standing excitons, as we describe in Chapter 6.

2.9.3 Quantum numbers

As spin-orbit coupling is weak in conjugated systems the total spin is a conserved
quantum number. The low-lying energy eigenstates are singlet (S = 0) and triplet
(S = 1) states.

2.9.4 State labels

The many-body states are labelled as npX±, where

• n is the overall quantum number,
• p = 1 for singlets and p = 3 for triplets
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• X = Ag or Bu for even or odd inversion symmetry, respectively,
• ± refers to the particle-hole symmetry eigenvalue being ±1.

Table 2.2 summarizes the symmetries and quantum numbers of the low-lying
states of linear molecules.9 In the noninteracting limit the singlet and triplet
1Bu states are degenerate, and lie below the 2Ag state. In large part, the aim of
this book is to explain how electronic interactions and electron-phonon coupling
determines the character and energetic ordering of these states. First, however,
we must discuss these states in the noninteracting limit, which is the subject of
the following chapter.

9We show in Chapter 8 that the dipole operator connects states of the same spin with
opposite spatial and particle-hole symmetries.



3

NONINTERACTING ELECTRONS

3.1 Introduction

We start our investigation of the electronic states of conjugated polymers by
solving the simplest possible model, the noninteracting (or Hückel) model. We
apply this to both uniform and dimerized, cyclic and linear polymers. In all
cases the polymers have rigid geometries. This procedure naturally introduces
the concepts of Bloch and molecular-orbital states, from which the many-body
eigenstates are derived. We conclude this chapter by discussing the importance
of symmetries on the properties of the particle-hole excitations from the ground
state.

The dimerized chain is the simplest model of semiconducting polymers, and is
applied in particular to trans-polyacetylene. The noninteracting electronic struc-
ture of conjugated polymers with more complex unit cells, such as poly(para-
phenylene), will be discussed in their relevant chapters. We emphasize that the
noninteracting model is a simple model. It is not a realistic description of the
electronic states of conjugated polymers, as it neglects two key physical phenom-
ena: electron-phonon coupling and electron-electron interactions. Despite these
deficiencies it does provide a useful framework for the more complex descriptions
to be described in later chapters.

3.2 The noninteracting (Hückel) Hamiltonian

The noninteracting π-model of conjugated polymers introduced in Chapter 2, is,

H = −
N∑

n=1,σ

tn

(
c†nσcn+1σ + c†n+1σcnσ

)
, (3.1)

where tn = t(1+δn) and we have set the on-site energy, εn = 0. N is the number
of sites. For polymers with alternating short and long bonds, δn = δ(−1)n, where
δn is positive or negative for short or long bonds, respectively.

3.3 Undimerized chains

We first consider undimerized chains with δ = 0 and tn ≡ t.

3.3.1 Cyclic chains

For periodic boundary conditions eqn (3.1) with δ = 0 is diagonalized by the
Bloch transforms,

26
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c†nσ =
1√
N

∑
k

c†kσ exp(ikna), (3.2)

and
cnσ =

1√
N

∑
k

ckσ exp(−ikna). (3.3)

The Bloch wavevector, k = 2πj/Na and the (angular momentum) quantum
number j satisfies, −N/2 ≤ j ≤ N/2. a is the lattice parameter. The inverse of
eqns (3.2) and (3.3) are,

c†kσ =
1√
N

∑
n

c†nσ exp(−ikna) (3.4)

and
ckσ =

1√
N

∑
n

cnσ exp(ikna). (3.5)

Substituting eqns (3.2) and (3.3) into eqn (3.1) gives,

H = − t

N

∑
k,k′,n

c†kσck′σ exp(i(k − k′)na) exp(−ik′a) + hermitian conjugate.

(3.6)
Now, using the identity,

1
N

∑
n

exp(i(k − k′)na) = δkk′ , (3.7)

where δkk′ is the Kroneker delta-function satisfying,

δkk′ = 1, if k = k′;

and
δkk′ = 0, if k �= k′, (3.8)

we have that,
H = −2t

∑
kσ

cos(ka)c†kσckσ. (3.9)

Since c†kσckσ ≡ Nkσ, namely the number operator, we see that H is diago-
nal in the k-space representation. The single-particle eigenstates are the Bloch
states,10

|k〉 = c†kσ|0〉, (3.10)

with eigenvalues,
εk = −2t cos(ka). (3.11)

Equation (3.11) is the one-dimensional tight-binding band structure, shown in
Fig. 3.1.11

10We drop the spin label when discussing single-particle states.
11Notice that there is a two-fold degeneracy in the spectrum, namely εk = ε−k. This is

a consequence of time reversal symmetry, or more correctly, a symmetry in the reversal of
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Fig. 3.1. The tight-binding band structure of a cyclic chain, eqn (3.11). As a conse-
quence of particle-hole symmetry, εk = −εk+π/a, while εk = ε−k is a consequence
of time reversal invariance.

We may construct the Bloch functions by recalling from Section 2.4 that
the creation operator c†nσ creates an electron with spin σ in the π-orbital local-
ized on the nth site. Thus, projecting the Bloch state, |k〉, onto the coordinate
representation, {|r〉}, we have the Bloch function,

ψk(r) ≡ 〈r|k〉 = 1√
N

N∑
n=1

φn(r) exp(−ikna), (3.12)

where we have used eqns (2.14), (2.15), (3.4), and (3.10).
For readers not familiar with the second quantization approach, Appendix A

describes a first quantization representation and solution of the eqn (3.1).

3.3.1.1 The Hückel ‘4n + 2’ rule The energy spectrum of the cyclic chain
explains the Hückel ‘4n+2’ rule. This rule states that a cyclic chain with N sites
is highly stable if N = 4n+2, forms a free radical if N = 4n+1, and is unstable if
N = 4n, where n is an integer. The final result follows because filling the energy
levels with 4n electrons predicts a degenerate ground state. This degeneracy is
lifted by a dimerization of the chain; an effect known as the Peierls transition,
which we discuss in Chapter 4. The second result simply follows as there are an
odd number of electrons. Finally, the first result follows because the ground state

motion. Thus, a rotation (or translation) is equivalent to the reverse rotation (or translation)
(Tinkham, 1964).
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is nondegenerate, with an energy gap of O(t/N). However, this energy gap → 0
as N → ∞, so even these chains undergo a Peierls transition at a chain-length
dependent critical value of the electron-phonon coupling constant. This effect
will be discussed more fully in the next chapter.

3.3.2 Linear chains
For linear chains we solve eqn (3.1) using open boundary conditions. The trial
solution is

c†nσ =

√
2

N + 1

∑
β

c†βσ sin(βna), (3.13)

where the pseudo Bloch wavevector, β = πj/(N+1)a and j satisfies, 1 ≤ j ≤ N .
The inverse relation is

c†βσ =

√
2

N + 1

∑
n

c†nσ sin(βna). (3.14)

Substituting eqn (3.13) into eqn (3.1), and using the identity,

2
N + 1

N∑
n=1

sin(βna) sin(β′na) = δββ′ , (3.15)

leads to the diagonal representation eqn (3.9) with k replaced by β. Thus, the
energy of the molecular-orbital state, |β〉, is,

εβ = −2t cos(βa). (3.16)

This dispersion is shown in Fig. 3.2.
The molecular-orbital functions, ψβ(r), are constructed in exact analogy to

the Bloch functions of the last section. Thus, we have,

ψβ(r) ≡ 〈r|β〉 =
√

2
N + 1

N∑
n=1

φn(r) sin(βna). (3.17)

These molecular-orbital functions are particle-in-a-box solutions, and not sur-
prisingly, the molecular-orbital states satisfy the following condition under the
operation of the inversion operator î,

î|β〉 = i(β)|β〉, (3.18)

where the eigenvalue, i(β), is +1 for odd quantum number j and −1 for even
quantum number j.

3.4 Dimerized chains

The unit cell for a dimerized chain is shown in Fig. 3.3. There are two sites per
unit cell, and two different hybridization integrals, td = t(1+δ) and ts = t(1−δ),
representing the ‘double’ (short) and ‘single’ (long) bonds, respectively.
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Fig. 3.2. The tight-binding energy spectrum of a linear chain, eqn (3.16). As a conse-
quence of particle-hole symmetry, εβ = −εβ−π/a.

1

2a
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� 1��

stdt

Fig. 3.3. The dimerized chain showing the unit cell and the two sites per unit cell,
labelled 1 and 2. td and ts are the ‘double’ and ‘single’ bond transfer integrals,
respectively. The repeat distance is 2a.

3.4.1 Cyclic chains

The dimerized chain with periodic boundary conditions is diagonalized by the
operators cv†

kσ and cc†kσ that create electrons in Bloch states of the valence and
conduction bands, respectively:

cv†
kσ =

1√
2Nu

Nu∑
�=1

(
c†1�σ exp(iχk/2) + c†2�σ exp(−iχk/2)

)
exp(−i2�ka), (3.19)
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and

cc†kσ =
1√
2Nu

Nu∑
�=1

(
c†1�σ exp(iχk/2)− c†2�σ exp(−iχk/2)

)
exp(−i2�ka). (3.20)

Here, the sum is over unit cells,Nu = N/2, and k = 2πj/Na, where j satisfies,
−N/4 ≤ j ≤ N/4. c†1�σ and c†2�σ create electrons on sites 1 and 2 of the unit cell
�, and

χk = φk − ka, (3.21)

where
tan(φk) = δ tan(ka). (3.22)

The corresponding energies are

εvk = −2t (cos2(ka) + δ2 sin2(ka)
)1/2

(3.23)

for the valence band, and

εck = 2t
(
cos2(ka) + δ2 sin2(ka)

)1/2
(3.24)

for the conduction band.12 These results are derived in Appendix C
The band structure is shown in Fig. 3.4. εk = ±2t at k = 0 and εk = ±2δt

at k = π/2a. Thus, the band gap is 4δt, while the full band width is the same
as the undimerized chain, namely 4t. Notice that as δ is increased from 0 to 1
the band structure evolves from that of the undimerized chain (with a folded
dispersion), to localized orbitals on the double bonds, with energies of ±2t.

3.4.1.1 Wannier States By Fourier transforming the Bloch operators, c
v
c †
kσ , we

obtain Wannier operators, c
v
c †
�σ , which create electrons in Wannier states localized

on the �th repeat unit:

c
v
c †
�σ =

1
Nu

∑
k

c
v
c †
kσ exp(i2k�a). (3.25)

To a rather good approximation,13 the valence and conduction band Wannier
states are equivalent to the bonding and antibonding states, respectively, that
is,

c
v
c †
�σ ≈ 1√

2

(
c†2�−1 ± c†2�

)
. (3.26)

12For a general td and ts the energy spectrum is εk = ± (
t2d + t2s + 2tdts cos(2ka)

)1/2.
13The probability amplitude for the Wannier state to overlap a neighbouring dimer is very

small. For δ = 0.2 this amplitude is 0.16.
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Fig. 3.4. The valence and conduction bands of a dimerized, cyclic chain. The parti-
cle-hole excitation at k′, and its degenerate counterpart at −k′, connected by the
particle-hole transformation, are shown.

3.4.2 Linear chains
The energies of the valence and conduction bands for open, dimerized chains are
again given by eqns (3.23) and (3.24), but with k replaced by β (Lennard-Jones
1937). However, now, unlike the case for undimerized chains, there is no closed
expression for β. Instead, β is determined by the transendental equation,

td sin((N + 1)βa) + ts sin(βa) = 0. (3.27)

Equation (3.27) shows that there is one root in every π/N interval of β for
β = 0 → π/2a.14 The spectrum is plotted in Fig. 3.5.

3.5 The ground state and particle-hole excitations

Once the single-particle eigenstates have been obtained, the many-body states of
the noninteracting Hamiltonian are easily constructed by simply occupying these
single-particle states in accordance with the Pauli exclusion principle. Thus, the
ground state, |GS〉, for the dimerized, cyclic chain with one electron, on average,
per π-orbital is found by occupying the valence band:

|GS〉 =
∏
k

cv†
k↑c

v†
k↓|0〉. (3.28)

14Equation (3.27) is valid for chains with an even number of sites where the end bonds are
double bonds. If, however, the end bonds are single bonds ts and td are interchanged.
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Fig. 3.5. The energy spectrum of the valence and conduction molecular-orbital states
for a dimerized, linear chain. A particle-hole excitation and its degenerate counter-
part, connected by the particle-hole transformation, are shown. 2∆ is the charge
gap, shown as a function of inverse chain length in Fig. 3.6.

The ground state energy, E0, is thus,

E0 = 2
∑
k

εvk. (3.29)

As there are two electrons per Bloch state, the overall total-spin is zero. Such
a system is a semiconductor, as there is single-particle gap of 4δt between the
highest occupied valence band state and the lowest unoccupied conduction band
state.

An excited state is created by exciting an electron from the valence band to
the conduction band, thereby leaving a hole in the valence band,

|ke, kh〉 = cc†ke
cvkh

|GS〉, (3.30)

where ke and −kh are the wavevectors of the electron and hole, respectively. The
total momentum is

K = (ke − kh), (3.31)

and we define the relative momentum as,

2k′ = (ke + kh). (3.32)

This excitation is shown in Fig. 3.4. Thus,
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|ke, kh〉 ≡ |k′ +K/2, k′ −K/2〉. (3.33)

The spin label was neglected in eqn (3.30). In fact, a singlet excitation is
defined as

|1ke, kh〉 = 1√
2

(
cc†ke↑c

v
kh↑ + cc†ke↓c

v
kh↓

)
|GS〉, (3.34)

while the Sz = 1, 0, and −1 triplet excitations are,
|3ke, kh〉 = cc†ke↑c

v
kh↓|GS〉, (3.35)

|3ke, kh〉 = 1√
2

(
cc†ke↑c

v
kh↑ − cc†ke↓c

v
kh↓

)
|GS〉, (3.36)

and
|3ke, kh〉 = cc†ke↓c

v
kh↑|GS〉, (3.37)

respectively. The energy of these particle-hole excitations is

E(ke, kh) = E0 + εcke
− εvkh

, (3.38)

with the singlet and triplet states being degenerate. The excitation energy above
the ground state is

ε(ke, kh) = E(ke, kh)− E0 = εcke
− εvkh

. (3.39)

Exactly the same procedure is employed to construct the many-body-states
of the linear chain, except that β replaces k in the above expressions.

3.5.1 The band, charge, and spin gaps
The band gap is the energy between the highest occupied valence band state
and the lowest unoccupied conduction band state. This is also the energy of
the lowest particle-hole excitation. Now, in a noninteracting model the singlet
and triplet excitations are degenerate, so the band gap is equivalent to both the
charge and spin gaps. In general we define the charge gap as

2∆ = E0(N + 1) + E0(N − 1)− 2E0(N), (3.40)

where E0(M) is the ground state energy for M electrons. This is obviously
equivalent to the band gap, and it is the energy of an uncorrelated particle-hole
pair.

For short linear chains the charge gap scales linearly with 1/N , but for long
chains it scales as 1/N2, approaching 4δt in the infinite chain limit. This be-
haviour is shown in Fig. 3.6.15

15It is often erroneously claimed that the single-particle band gap scales as 1/N as N → ∞.
This is based on the assumption that the single-particle energy levels are particle-in-the-box
energy levels, εn = �

2n2/2ma2N2, where N is the number of sites. At half-filling, where the
number of electrons equals the number of sites, this assumption then predicts that the single
particle gap is ∆ε = εN/2+1 − εN/2 ∼ �

2/ma2N . As well as for noninteracting systems, as
will be shown in Chapter 6, the optical gap in an interacting system also scales as 1/N2 as
N → ∞.
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Fig. 3.6. The charge gap, 2∆, for dimerized, linear chains versus the inverse chain
length, and the square of the inverse chain length (inset). As N → ∞ the charge
gap scales as 1/N2. (δ = 0.1.)

3.6 Symmetries

3.6.1 Particle-hole symmetry and particle-hole parity

The particle-hole excitations, defined in Section 3.5, are eigenstates of the nonin-
teracting Hamiltonian, but they are not eigenstates of the particle-hole operator,
Ĵ , introduced in Section 2.9.2. To see this, consider the operation of Ĵ on the
singlet excitation, |1ke, kh〉:

Ĵ |1ke, kh〉 = − 1√
2

∑
σ

cc†−khσ
cv−keσ|GS〉

= −|1 − kh,−ke〉 ≡ −|1 − (k′ −K/2),−(k′ +K/2)〉, (3.41)

where we have used the relation that under a particle-hole transformation,

c
v
c †
kσ 	→ −c v

c

−kσ̄ ≡ −h v
c †
kσ , (3.42)

obtained from eqns (2.58), (3.19) and (3.20).16 Thus, under the particle-hole
transformation, K 	→ K and k′ 	→ −k′, as illustrated in Fig. 3.4. We therefore

16Note that under the particle-hole transformation k and σ are conserved, while the charge
is reversed.
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see that by forming linear combinations of |ke, kh〉 and | − kh,−ke〉 we create
simultaneous eigenstates of H and Ĵ :

|K, k′;∓〉 = 1√
2
(|ke, kh〉 ± | − kh,−ke〉) , (3.43)

where |K, k′;−〉 and |K, k′; +〉 have negative and positive particle-hole symmetry,
respectively. In the noninteracting limit these particle-hole states of opposite
symmetry are degenerate.

There is an important connection between particle-hole symmetry and the
relative parity of the particle-hole pair. Consider a basis state created by the
removal of an electron from a valence band Wannier orbital on the repeat unit
at R−r/2 and the creation of an electron on a conduction band Wannier orbital
at R+ r/2. This is illustrated in Fig. 6.1. This particle-hole pair has a centre-of-
mass coordinate, R, and a relative coordinate, r:

|R+ r/2, R − r/2〉 = 1√
2

∑
σ

cc†R+r/2,σc
v
R−r/2,σ|GS〉. (3.44)

Now, using the transformation between Wannier and Bloch states, eqn (3.25),
eqn (3.44) can be rewritten as,

|R+ r/2, R − r/2〉 =

∑
σ

1√
Nu

∑
ke

1√
Nu

∑
kh

exp(i(ke − kh)R) exp(i(ke + kh)r/2)c
c†
keσ

cvkhσ
|GS〉

=
∑
σ

1√
Nu

∑
K

1√
Nu

∑
k′
exp(iKR) exp(ik′r/2)cc†k′+K/2,σc

v
k′−K/2,σ|GS〉.

(3.45)

Thus, |R + r/2, R − r/2〉 is the Fourier transform, with respect to K and k′, of
|k′ + K/2, k′ − K/2〉 ≡ |ke, kh〉. Similarly, the basis state, |R − r/2, R + r/2〉,
obtained by reflecting the electron and hole in eqn (3.44), is the Fourier transform
of |− (k′ −K/2),−(k′+K/2)〉 ≡ |−kh,−ke〉. But, |− (k′ −K/2),−(k′+K/2)〉 is
connected to |k′ +K/2, k′ −K/2〉 by the particle-hole transformation, and thus
the linear combination,

|R, r;∓〉 = 1√
2
(|R+ r/2, R − r/2〉 ± |R − r/2, R+ r/2〉) (3.46)

is the Fourier transform of the particle-hole adapted state, eqn (3.43). We there-
fore see that singlet states that are negative under a particle-hole transforma-
tion have an even particle-hole parity, while singlet states that are positive un-
der a particle-hole transformation have an odd particle-hole parity. In contrast,
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Fig. 3.7. A schematic representation of the phases of the π-orbitals in the HOMO and
LUMO, from eqns (3.47) and (3.48).

triplet states that are positive under a particle-hole transformation have an even
particle-hole parity, and vice versa.17 This connection between particle-hole sym-
metry and the particle-hole parity, which is preserved in interacting models,
becomes a useful tool when describing and identifying bound particle-hole, or
exciton states, as we will do in Chapter 6.

3.6.2 Linear chains and inversion symmetry

We saw in Section 3.3.2 that the molecular-orbital states of linear chains are
eigenstates of the inversion operator, î. The ground state is constructed by occu-
pying each of the valence molecular-orbital states with two electrons. Thus, the
overall inversion symmetry of the ground state must be even (or Ag for a many-
body state). Now, because the molecular orbital states alternate in symmetry,
the highest occupied molecular orbital (HOMO) state will be either even or odd,
while the lowest unoccupied molecular orbital (LUMO) state will be either odd
or even. In fact, using eqns (3.19) and (3.20), with β = π/2a replacing k, the
HOMO is

ψHOMO(r) ≡ ψv
β=π/2a(r) =

1√
2Nu

∑
�

(−1)� (φ1�(r) + φ2�(r)) (3.47)

and the LUMO is

ψLUMO(r) ≡ ψc
β=π/2a(r) =

1√
2Nu

∑
�

(−1)� (φ1�(r)− φ2�(r)) . (3.48)

The phases of the HOMO and LUMO are shown schematically in Fig. 3.7.
Thus, a particle-hole excitation from the HOMO to the LUMO must have

overall odd symmetry. This is the 1Bu state. The first Ag excitation (the 2Ag

state) will be HOMO−1 to LUMO (or, equivalently HOMO to LUMO+1). Such
an excitation will lie higher in energy than the 1Bu state.18 These transitions
are shown in Fig. 3.8.

17This is easily proved by using eqn (3.36), and noting the minus sign relative to eqn (3.34).
18The energy difference is O(t/N2), so in the thermodynamic limit the 1Bu and 2Ag states

are degenerate.
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Fig. 3.8. The 1Bu (a) and 2Ag (b) transitions. The + and − symbols indicate the in-
version symmetry of the single-particle molecular-orbital states. The 1Bu transition
energy is the charge gap, 2∆, shown in Fig. 3.6.

As we show in Chapter 8, Bu states are dipole-connected to Ag states, and
thus in the noninteracting model the first excited state decays radiatively to the
ground-state. The charge-gap thus corresponds to the optical gap. The fact that
some conjugated polymers, such as trans-polyacetylene, do not electroluminesce
is a consequence of both strong electron-electron and electron-phonon interac-
tions that reverses the energetic ordering of the 1Bu and 2Ag states. Furthermore,
electron interactions result in an attraction between particle-hole pairs, forming
bound states, or excitons. The excitons lie in the charge gap, and thus, in gen-
eral, the optical and charge gaps do not coincide. We will return to these points
in later chapters.
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ELECTRON-LATTICE COUPLING I: NONINTERACTING
ELECTRONS

4.1 Introduction

Electron-phonon coupling plays a crucial rôle in one-dimensional systems. For
any value of the electron-phonon coupling an infinite, undistorted polymer chain
is unstable with respect to a lower symmetry, distorted structure. This is a con-
sequence of the well-known Peierls theorem (Fröhlich 1954; Peierls 1955), which
states that a one-dimensional metal is unstable with respect to a lattice distortion
that opens a band gap at the Fermi surface. A proof of bond-alternation in con-
jugated polymers in the noninteracting limit was first presented independently
by Ooshika (1957, 1959), and Longuet-Higgins and Salem (1959).

As we describe in this chapter, this mechanism will cause a linear polymer,
such as trans-polyacetylene, with one π-electron per orbital to have a dimerized
ground state composed of alternating short and long bonds. Ooshika (1957) and
Longuet-Higgins and Salem (1959) also recognized that a defect in the dimeriza-
tion, namely a boundary (or domain wall) between one phase of bond-alternation
and another (say, long-short-long bonds and short-long-short bonds, as illus-
trated in Fig. 4.1) is a natural consequence of the broken symmetry ground
state. As we will see, there is a fascinating association between these defects and
mid-gap electronic states in the semiconducting band gap. This leads to highly
mobile unpaired spins, as first predicted by Pople and Walmsley (1962). Many
of these early developments are described in (Salem 1966).

In this chapter we describe the consequences of electron-phonon coupling in
the absence of electron-electron interactions. The celebrated model for studying
this limit is the so-called Su-Schrieffer-Heeger model (Su et al. 1979, 1980), de-
fined in Section 2.8.2. In the absence of lattice dynamics this model is known as
the Peierls model. We begin by describing the predictions of this model, namely
the Peierls mechanism for bond alternation in the ground state and bond defects
in the excited states. Finally, we reintroduce lattice dynamics classically and
briefly describe amplitude-breathers.

4.2 The Peierls model

It is convenient to define the Peierls model as

HPeierls = Hkinetic +Helastic, (4.1)

where

39
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Hkinetic = −2
∑
n

tnT̂n (4.2)

represents the kinetic energy, and

Helastic =
1

4πtλ

∑
n

∆2
n + Γ

∑
n

∆n (4.3)

is the elastic energy of the σ electrons.
We define T̂n, the bond order operator for the nth bond, as

T̂n =
1
2

∑
σ

(
c†n+1,σcn,σ + c†n,σcn+1,σ

)
. (4.4)

tn is the bond hybridization integral,

tn = t+
∆n

2
, (4.5)

where ∆n is related to the distortion of the nth bond from its average value by

∆n = −2α(un+1 − un). (4.6)

Formally, α is the electron-phonon coupling parameter defined by eqn (2.38),
but it is often convenient to regard it as a semiempirical parameter. Notice
that a positive value of ∆n corresponds to a reduction in the bond length, and
vice versa. It is this term in tn that couples the electrons to the lattice, and
corresponds to eqn (2.40) with β = 0. ∆ plays the role of an order parameter,
whereby a nonzero value indicates a broken symmetry.

Helastic is just V σ
n - defined by eqn (2.44) (where we have omitted the constant

term in eqn (4.3)). Thus, by comparing eqn (4.3) with eqn (2.44) we can define
λ, the dimensionless electron-phonon coupling parameter, as

λ =
2α2

πKt
, (4.7)

and
Γ = −Kδr

2α
. (4.8)

K is the spring constant of the σ-bonds and δr is the average change in bond
length relative to the σ-bond reference value due to the π-electrons (see eqn
(2.45)).

The expectation value of the bond-order operator is a measure of the strength
of that bond, as illustrated by the simple example of ethylene. Modelling this by
two π-orbitals with two electrons shared between them it is easily shown that the
bonding molecular orbital has a bond-order value of +1, while the antibonding
molecular orbital has a bond-order value of −1. Thus, a larger bond-order value
implies a stronger bond.
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We seek a solution of H for arbitrary {∆n}.19 In Section 4.4 we discuss the
Hellmann-Feynman theorem, which gives us a general solution for any eigen-
state. For now, however, we describe the Peierls mechanism, which gives us the
dimerized, broken-symmetry ground state.

4.3 The dimerized ground state

Consider a linear, undistorted chain with all ∆n = 0. Then, the tight binding-
band structure is given by eqn (3.11) and shown in Fig. 3.1. Now, if there is
on average one π electron per site the Fermi wavevector kf = π/2a, where a is
the undistorted bond length. Suppose that the the chain dimerizes into long and
short bonds so that the unit cell doubles. Then the Brillouin zone will halve in
size, and the new Brillouin zone edge will lie at kf . From standard band theory
we know that this will result in a gap opening at kf , resulting in a reduction
of the kinetic energy of the valence electrons. The spectrum of the resulting
valence and conduction bands is given by eqns (3.23) and (3.24), and shown in
Fig. 3.4. As we now show, this reduction in kinetic energy exceeds the increase
in elastic energy that accompanies the distortion. Thus, at half-filling the system
spontaneously breaks the discrete translational symmetry and distorts into the
lower symmetry dimerized lattice. (Broken symmetries are discussed in general
in Section 5.1.1.)

We calculate the equilibrium bond distortion as follows (Longuet-Higgins and
Salem 1959). Let us suppose that there is a uniform staggered dimerization,

∆n = (−1)n∆. (4.9)

Then the total ground state energy is

E0(∆) = 2
∑
k≤kf

εvk +
N∆2

4πtλ

=
L

π

∫ π/2a

−π/2a
εvkdk +

N∆2

4πtλ
.

= −4Nt

π

∫ π/2

0

(
cos2 θ + δ2 sin2 θ

)
dθ +

Ntδ2

πλ
, (4.10)

where δ = ∆/2t. The first term on the right-hand side of eqn (4.10) is the
electronic kinetic energy, while the second term is the elastic energy, and we
have used eqn (3.23) for εvk.

The energy per site is

E0(δ)/N = −4t
π
E(1− δ2) +

tδ2

πλ
, (4.11)

19Notice that if we divide H by t and define ∆̃n = ∆n/t we see that the model is solely
parametrized by λ, with t setting the energy scale.
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Fig. 4.1. The ground state energy per site as a function of the dimerization parameter,
δ. The electron-phonon parameter, λ = 0.2. (As discussed in Section 4.8, the dashed
curve is the ground state energy with an extrinsic bond dimerization, te = 0.1t.)

where E is the complete elliptical integral of the second kind. For δ � 1,

E(1− δ2) ≈ 1 +
1
2

(
ln (4/|δ|)− 1

2

)
δ2 + · · · , (4.12)

and hence for small δ,

E0(δ)
N

≈ −4t
π

[
1 +

1
2

(
ln (4/|δ|)− 1

2

)
δ2
]
+
tδ2

πλ
. (4.13)

We see that as a function of δ - for small δ - the kinetic energy decreases more
quickly than the increase in elastic energy. Thus, the chain spontaneously dimer-
izes to a finite value of δ. The energy as a function of δ is shown in Fig. 4.1.
Notice that the ground state is doubly degenerate, with δ and −δ corresponding
to the A and B phases, respectively.

Minimizing E0 with respect to δ we find that there is a saddle point at δ = 0
and stable minima at

δ0 = ±4 exp
(

−
[
1 +

1
2λ

])
. (4.14)
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Thus, the band gap, 2∆0 ≡ 4δ0t, is

2∆0 = 16t exp
(

−
[
1 +

1
2λ

])
. (4.15)

In the noninteracting limit, the band gap is directly proportional to the dimer-
ization gap. In fact, this prediction is violated in trans-polyacteylene, indicating
the importance of electron-electron interactions - as we describe in Chapter 7.

The ratio of the band width, W = 4t, to the band gap introduces an impor-
tant concept, namely the coherence length, ξ:

ξ

a
=

W

2∆0
=

1
δ0
. (4.16)

4.3.1 The Hückel ‘4n+ 2’ rule
The above analysis indicates that the ground state is unstable for an infinitesi-
mally small electron-phonon coupling constant, λ. In fact, this result is only true
for linear chains, and for cyclic chains where the number of sites, N , satisfies
N = 4n, where n is an integer. As discussed in Section 3.3.1.1 the Hückel ‘4n+2’
rule states that cyclic chains where the number of sites satisfies N = 4n+ 2 are
highly stable. For these chains to dimerize the Peierls energy gap, eqn (4.15),
must exceed the energy gap of O(t/N) between the highest occupied and low-
est unoccupied states of the undimerized chain. This implies that the critical
electron-phonon coupling constant, λc, satisfies

λc >
1

2 ln(N)
. (4.17)

Figure 4.2 shows the λc versus the inverse chain length for cyclic chains with
N = 4n+ 2.

4.4 Self-consistent equations for {∆n}
A more general scheme to derive the equilibrium bond distortions, {∆n}, without
resorting to a guess about these distortions, is to require that the force per bond,
fn, is zero.

For the state |Ψ〉 with eigenvalue E, we define fn as

fn = − ∂E

∂(un+1 − un)
= − ∂〈Ψ|H|Ψ〉

∂(un+1 − un)
. (4.18)

Although |Ψ〉 is a function of {∆n}, this expression is conveniently evaluated if
we use the Hellmann-Feynman theorem, which states that

∂〈H(y)〉
∂y

= 〈∂H(y)
∂y

〉, (4.19)

for any variable y, where 〈· · · 〉 represents the expectation value with respect
to |Ψ〉 (see Cohen-Tannoudji et al. (1977) or Atkins and Friedman (1997) for a
proof).
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Fig. 4.2. The critical electron-phonon coupling constant, λc, for bond alternation to
occur versus inverse chain length, N−1, for cyclic chains, where N = 4n+ 2.

From eqn (4.1) we therefore have,

fn = −2α
(
∆n

2πtλ
+ Γ− 〈T̂n〉

)
. (4.20)

Thus, setting fn = 0 gives the following self-consistent equation for ∆n,

∆n = 2πtλ(〈T̂n〉 − Γ). (4.21)

When investigating the distortion of the polymer structure by the π-electrons
around the average bond length, r0, it is necessary to require a constant chain
length, namely, ∑

n

(un+1 − un) = 0, (4.22)

implying that ∑
n

∆n = 0. (4.23)

Using eqn (4.21), this also implies that

Γ =
1
N

∑
n

〈T̂n〉 = 〈T̂n〉, (4.24)

where the overbar represents the spatial average. Using eqn (4.8) it therefore
follows that
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δr = −2α〈T̂n〉
K

, (4.25)

confirming eqn (2.46) when β = 0.
Finally, we now see from eqn (4.21) that the distortion of the nth bond from

the average is proportional to the deviation of 〈T̂n〉 from its average value, Γ.
That is,

(un+1 − un) = −∆n

2α
= −

(
πtλ〈T̂n〉

α
− πtλΓ

α

)
(4.26)

= −
(
2α〈T̂n〉
K

+ δr

)
.

Equation (4.21) can be solved by a numerical iteration scheme. This is par-
ticularly useful for excited states where no sensible guess as to {∆n} may be
possible, and for interacting electron problems where no exact solutions are pos-
sible. We discuss interacting electrons and their coupling to phonons in Chapter
7.

We conclude this section by remarking on the character of the broken symme-
try ground state. The staggered dimerization of the ground state, represented by
eqn (4.9), together with eqn (4.21), implies that there is an alternating deviation
of the expectation value of the bond order operator from its average value. This
therefore represents a bond order wave of strong (short or ‘double’) and weak
(long or ‘single’) bonds.

4.5 Solitons

4.5.1 Odd-site chains

As a result of the degenerate ground state, an immediate and fascinating con-
sequence of bond-alternation are bond-defects, or solitons. Solitons separate a
dimerized region A from a dimerized region B, and thus they resemble domain
walls in ferromagnets.

One way to understand the origin of solitons is to consider an open, linear
chain containing an odd number of sites. As in the case of a cyclic chain this linear
chain will have a dimerized ground state. Since there are an odd number of sites,
there are an even number of bonds. An arrangement of short-long-short-long,
etc. bonds (A, say) is degenerate with an arrangement of long-short-long-short,
etc. bonds (B, say). However, these arrangements do not form the ground state,
because of the end effects that favour short bonds at both ends.20 There can
only be short bonds at both ends if the A phase transforms into the B phase in

20In principle, the A-phase can tunnel to the B-phase, so a state could lower its energy
by being a linear superposition of both phases. However, in the adiabatic approximation this
tunnelling is not possible, and even in the nonadiabatic regime the gain in energy is smaller
than the loss in energy in linear chains, because of end effects.
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Fig. 4.3. The mid-gap state and associated soliton distortions for an odd-site chain.

the middle of the chain via a soliton. The bond defect is shown schematically in
Fig. 4.3.

These geometric properties of the chain are also associated with mid-gap
states (Pople and Walmsley 1962). To see this, consider the energy spectrum of
an even-site chain. There are N/2 states in each of the valence and conduction
bands. As a result of particle-hole symmetry, every valence band state with
energy εv = ε maps into a conduction band state with energy εc = −ε. Thus, the
energy spectrum is symmetric about ε = 0, as shown in Fig. 3.4. Now, for an
odd-site chain there are (N − 1)/2 states in each of the valence and conduction
bands, and one localized gap state. As a consequence of particle-hole symmetry
the localized state lies at ε = 0. This mid-gap state is occupied by one electron,
and is associated with the soliton, as shown in Fig. 4.3.

By numerically iterating the self-consistent expression, eqn (4.21), the ground
state structure of the odd-site chain can be found. Figure 4.4 shows the staggered,
normalized bond dimerization, δn, defined as

δn = (−1)n (tn − t̄)
t̄

, (4.27)
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odd-site chain obtained by iterating eqn (4.21). The wavefunction of the mid-gap
state, ψn, is also shown.

(where t̄ is the average value of tn) for the ground state of an odd-site chain.
This curve approximately fits the expression (Su et al. 1979),

δn = δ0 tanh
(
(n− n0)a

ξ

)
, (4.28)

where ξ is the coherence length, defined in eqn (4.16), which determines the
width of the soliton centred at n0.

Also shown in Fig. 4.4 is the single-particle wavefunction, ψn, of the mid-gap
state, which is localized at the soliton. In the continuum limit, ξ � a,

ψn =
(
a

ξ

)1/2
sech

(
(n− n0)a

ξ

)
cos

(πn
2

)
. (4.29)

An undoped, odd-site chain is charge-neutral with spin 1/2. In this case ψ2n is
the spin density associated with the soliton. We denote the neutral solitons as
S0. If the chain is doped by one particle, however, the system has charge ±e and
has spin 0, so ψ2n is the charge density associated with the soliton. We denote
the charged solitons as S±. The cation is shown schematically in Fig. 4.4. We
therefore see that solitons exhibit unusual spin-charge quantum numbers.

4.5.2 Even-site chains
A single soliton exists in the ground state of an odd-site chain. For an even-
site chain, however, a soliton is paired with an antisoliton so as to restore the
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states.

bond dimerization. Since solitons change the sign of the staggered dimerization
they are known as topological defects. In analogy to the odd-site chain, an even-
site chain with a soliton-antisoliton pair has two mid-gap states, symmetrically
spaced around ε = 0, with energies,

ε0 = ±∆0sech
(
2n0a
ξ

)
. (4.30)

These are single-particle states with a definite spatial symmetry. Thus, the overall
spatial symmetry of the many body state is determined by the occupation of
these states. Figure 4.5 shows the occupancies for the 1Ag, 1Bu, and 2Ag states.

Pairs of solitons are the natural excitations from the ground state. This is
shown in Fig. 4.6, which shows the bond dimerization of the 1Bu state, ob-
tained by iterating eqn (4.21). The bond dimerization fits the functional form
(Brazovskii and Kirova 1981; Campbell and Bishop 1981),

δn = δ0

[
1 + tanh

(
2n0a
ξ

){
tanh

(
(n− n0)a

ξ

)
− tanh

(
(n+ n0)a

ξ

)}]
.

(4.31)
We see that there is a soliton at n = −n0, which changes the dimerization from
the A to B phase, and an antisoliton at n = n0, which reverses the phase again.

We can use eqn (4.31) to determine the adiabatic energy profiles of the 1Ag,
1Bu, and 2Ag states as a function of the soliton-antisoliton separation, R = 2n0.
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This is done by solving eqn (4.1) with the values of {δn} from eqn (4.31) for fixed
ξ and variable n0. The energy profiles are shown in Fig. 4.7. We see that the
solitons annihilate in the ground state, with the mid-gap states reabsorbed into
the valence and conduction bands, leaving a perfectly dimerized chain. In the
excited states, however, they repel, and the mid-gap states move to the middle
of the gap. For large separations the excitation energies converge to ∼ 4∆0/π,
showing that the soliton creation energy is ∼ 2∆0/π.

Solitons are stable in the excited states because of the favourable balance of
energies. In the vicinity of the soliton the dimerization is reduced, so the elastic
energy is reduced. This reduction in elastic energy more than compensates the
increase in kinetic energy associated with localizing the wavefunction near the
vicinity of the solitons.

4.6 Soliton-antisoliton pair production

We saw that the soliton in the ground state of an odd-site chain is either neu-
tral with spin-1/2 for the undoped chain (S0), or charged with spin 0 for the
singly doped chain (S±). We now discuss the types of solitons present in the
excited states of an even-site chain. Suppose that an even-site chain is instanta-
neously excited from the ground state to the 1Bu or 2Ag states. This is a vertical
transition, with the soliton-antisoliton separation initially zero. Within a time
∼ 2π/ω0 a soliton-antisoliton pair is created and separates a distance ∼ ξ. Their
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trajectory in energy space follows the adiabatic profiles shown in Fig. 4.7. As we
now show, as a consequence of the spatial and spin symmetries of the 1Bu state,
the singlet (11Bu) state produces a pair of charged solitons, while the triplet
(13Bu) state produces a pair of neutral solitons (Ball et al. 1983). The 2Ag state
produces an equal number of charged and neutral pairs.

First, let us consider the singlet, 11Bu state. We write this as,

|11Bu〉 = 1√
2

(
c†+↑c

†
−↓ − c†+↓c

†
−↑
)

|V 〉, (4.32)

where |V 〉 represents the occupied sea of valence states and c†±σ creates an elec-
tron with spin σ in the mid-gap state |ψ±〉. As shown in Fig 4.6, the mid-
gap wavefunctions, ψ±

n = 〈n|ψ±〉, resemble the molecular orbitals of a diatomic
molecule, as they are linear superpositions of Wannier wavefunctions localized
at the centre of each soliton. Denoting the wavefunction localized at the soliton
as φn and the wavefunction localized at the antisoliton as φn, we have

ψ±
n =

1√
2

(
φn ± φn

)
. (4.33)

For a single soliton, as in the ground state of a odd-site chain, φn ≡ ψn. This
is plotted in Fig. 4.4. The probability distribution functions associated with the
localized functions φn and φ̄n are also plotted in Fig. 4.11.
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Fig. 4.8. A schematic representation of the (a) 11Bu state and (b) the 13Bu state, as
expressed by eqn (4.35) and eqn (4.36), respectively.

Now, if c†σ and c̄†σ creates an electron in the states |φ〉 and |φ̄〉, respectively,
then

c†±σ =
1√
2

(
c†σ ± c†σ

)
. (4.34)

Inserting eqn (4.34) into eqn (4.32), we have

|11Bu〉 = 1√
2

(
c†↑c

†
↓ − c†↑c

†
↓
)

|V 〉. (4.35)

c†↑c
†
↓ creates a pair of electrons in the soliton, so it is negatively charged and

spinless, while the antisoliton contains no electrons, so it is positively charged
and also spinless. Similarly, c†↑c

†
↓ creates a pair of electrons in the antisoliton,

while the soliton contains no electrons. The 11Bu state is therefore a linear
superposition of spinless positively and negatively charged soliton-antisoliton
pairs, as shown schematically in Fig. 4.8(a).

A similar argument applies to the triplet, 13Bu state,

|13Bu〉 =
1√
2

(
c†+↑c

†
−↓ + c†+↓c

†
−↑
)

|V 〉

=
1√
2

(
c†↑c

†
↓ + c†↓c

†
↑
)

|V 〉, (4.36)

showing that it is a linear superposition of neutral spin-1/2 soliton-antisoliton
pairs, as shown schematically in Fig. 4.8(b).
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Finally, it is easily shown that the 21Ag state, defined as,

|21Ag〉 = c†−↑c
†
−↓|V 〉 (4.37)

=
1√
2

[
1√
2

(
c†↑c

†
↓ + c†↓c

†
↑
)

− 1√
2

(
c†↑c

†
↓ − c†↑c

†
↓
)]

|V 〉

has an equal number of charged and neutral soliton-antisoliton pairs.
These results have important consequences for pair production resulting via

an optical excitation from the ground state. Since the dipole operator only con-
nects the ground state to 1Bu states, only charged soliton pairs are produced
by this processes. Another interesting consequence, as we discuss in more detail
in Chapter 7, is that electron-electron interactions bind the oppositely charged
soliton-antisoliton pairs together, creating a strongly bound 11Bu exciton. These
bound soliton-antisoliton pairs show analogies to polarons, as discussed in the
next section, and to confinement of soliton-antisoliton pairs as a result of extrin-
sic dimerization, as discussed in the following section. In contrast, the neutral
solitons of the 13Bu and 21Ag states couple strongly to the bond order wave,
resulting in a significant lattice distortion and energy relaxation for these states.

4.7 Polarons

So far we have mainly focussed on the neutral excitations of the chain. However,
nonlinear defects - known as polarons - also exist in the ground state of a doped
chain. Polarons are a distortion of the lattice around the doped particle. In the
continuum limit the dimerization parameter satisfies the two-soliton expression,

δn = δ0

[
1 +

1√
2

{
tanh

(
(n− n0)a√

2ξ

)
− tanh

(
(n+ n0)a√

2ξ

)}]
, (4.38)

where

n0 =
ξ√
2a

ln(1 +
√
2) ≈ 0.623

ξ

a
. (4.39)

The small separation of the soliton-antisoliton pair means that there is no change
of dimerization, merely a reduction in the dimerization in the locality of the
doped particle. This is behaviour is shown in Fig. 4.9.

4.8 Nondegenerate systems

Trans-polyacetylene has the unusual property of exhibiting no extrinsic dimer-
ization, and thus has no extrinsic band gap. The dimerization arises entirely
from π-electrons coupling to the lattice. Consequently, the A and B phases are
degenerate. Most polymers, however, have an extrinsic semiconducting band gap
as a result of their stereochemistry independent of the of π-electrons. Examples
of polymers that are extrinsically semiconducting include, cis-polyacetylene (be-
cause of the structure caused by the σ orbitals), polydiacteylene (because of the
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associated polaronic distortion of the chain (right).

tetramerization caused by the py orbitals), and phenyl-based polymers (because
of the phenyl rings).

The detailed effects of the stereochemistry vary from polymer to polymer -
the details of particular polymers will be described in their relevant chapters.
However, to understand the qualitative consequences of extrinsic dimerization
we can use the linear chain to model its effects. In this model the π-electrons are
coupled to the extrinsic dimerization via the bond integral (Bishop et al. 1981;
Brazovoskii and Kirova 1981),

tn = t+ (−1)nte + ∆i
n

2
≡ t+

∆n

2
, (4.40)

where te is the extrinsic bond dimerization and ∆i
n/2 is the intrinsic dimerization.

The kinetic energy of the π-electrons is a function of both the extrinsic and
intrinsic dimerizations, while the elastic energy is determined only by the intrinsic
dimerization. It is this distinction between the dependence of the kinetic and
potential energies on the extrinsic dimerization that causes the nondegenerate
ground state, as we discuss shortly.

Assuming a uniform staggered distortion in the ground state, ∆i
n = (−1)n∆i,

and minimizing the ground state energy, we obtain the self-consistent equation,

2∆0 = 4te + 2∆i
0 = 8t exp(γ) exp

(
−
[
1 +

1
2λ

])
, (4.41)
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where
γ =

te
λ∆0

, (4.42)

is known as the confinement parameter.
The extrinsic dimerization has two effects. First, it causes an increased in-

trinsic dimerization, as shown in Fig 4.10. Second, it lifts the degeneracy of the
A and B phases, as shown in the plot of the ground state energy in Fig. 4.1. This
causes a linear confinement of the soliton-antisoliton pair, because the energy
to create a B phase relative to the A phase increases linearly with the soliton-
antisoliton separation. This new property of soliton-antisoliton confinenment is
illustrated by the localized Wannier orbitals associated with the soliton, φn, and
antisoliton, φ̄n. These are obtained from the molecular orbitals associated with
the mid-gap electronic states, ψ±

n , (described in Section 4.5) by inverting eqn
(4.33). Thus,

φn =
1√
2
(ψ+n + ψ−

n ) (4.43)

and
φ̄n =

1√
2
(ψ+n − ψ−

n ). (4.44)

Figure 4.11 shows the probability density of the Wannier orbitals associated
with the mid-gap states. Although the relative separation of Wannier orbitals
is small with an extrinsic dimerization of δe = 0.1, the fact that there are two
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distinct Wannier orbitals implies that the argument employed in Section 4.6 -
concerning the different characters of the 11B−

u and 13B+u states after electron-
lattice relaxation - is a general one. Thus, the 11B−

u state is comprised of spinless
electron-hole pairs, while the 13B+u state is comprised of two spin-1/2 objects.
These become confined in the presence of extrinsic dimerization.

Figure 4.12 shows the soliton-antisoliton pair for various extrinsic dimeriza-
tions. We see that even for relatively small extrinsic dimerizations the confine-
ment energy is large enough to prevent a phase reversal between the soliton and
antisoliton.

4.9 The continuum limit of the Su-Schrieffer-Heeger model

In the limit that the coherence length is much larger than the lattice spacing,
and provided that we are only interested in the low energy physics near to the
Fermi surface, a continuum version of the Su-Schrieffer-Heeger model can be
derived. This model, derived by Takayama, Lin-Liu, and Maki, is known as the
TML model (Takayama et al. 1980). It provides useful analytical results that
agree with the Su-Schrieffer-Heeger model in the continuum limit.

In the continuum limit, na → x and (−1)n∆n → ∆(x). Then the TML model
is defined as
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HTML =
∑
σ

∫
dxΨ†

σ(x)
[
−i�vF ∂

∂x
+∆(x)σx

]
Ψσ(x)

+
1

2π�vFλ

∫
dx

[
∆̇2(x)
ω20

+∆2(x)

]
, (4.45)

where Ψσ(x) are the electron field operators, σx and σz are the Pauli spin matri-
ces and vF = 2ta/� is the Fermi velocity. The first term on the right-hand side of
eqn (4.45) is the electron kinetic energy in the absence of a bond-order wave. The
second term represents the coupling of the electrons to the bond-order density
wave, which has the effect of mixing the two components of Ψσ on the opposite
Fermi points. The final two terms represent the kinetic and elastic energies of
the bond-order field.

The uniform, static solution for the bond-order gives,

2∆0 = 8t exp
(

− 1
2λ

)
. (4.46)

The soliton defects and wavefunction are given by eqns (4.28) and (4.29), re-
spectively, while the soliton creation energy is 2∆0/π. For further details of the
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TML model, we refer the reader to Takayama et al. (1980), Baeriswyl (1985),
and Heeger et al. (1988).

4.10 Dynamics of the Su-Schrieffer-Heeger model

So far in this chapter we have described the static geometrical distortions asso-
ciated with the electronic states, without paying much regard as to how these
distortions arise dynamically. In this section we briefly describe the predicted
dynamics of the Su-Schrieffer-Heeger model (introduced in Section 2.8.2).

After photoexcitation or electron-hole injection excess energy in the polymer
is liberated during the nonradiative relaxation to lower energy excited states (for
example, to the 11Bu or 21Ag states). Ultimately this energy is lost as heat via the
coupling of the intramolecular vibrations to the environment. However, initially it
is converted to intramolecular lattice dynamics. A particularly interesting type of
lattice dynamics are breathers (Su and Schrieffer 1980). A breather, or amplitude-
breather, describes localized oscillations in the bond-order amplitude. It may be
regarded as a nonlinear excitation of bound phonons resulting from the electron-
lattice coupling (Phillpot et al. 1989).

Semiclassical solutions of the Su-Schrieffer-Heeger model - whereby the ions
are treated classically and are subject to forces determined by the gradients of the
adiabatic potential - have been performed for both a degenerate system (namely,
trans-polyacetylene) and nondegenerate systems. In trans-polyacetylene the pho-
toexcited electron-hole pair rapidly diassociates into a widely separated soliton-
antisoliton pair, with the excess energy converted into a breather in the centre of
the chain (Bishop et al. 1984). In nondegenerate systems, however, the soliton-
antisoliton pair are confined, and a composite excitation involving the electron,
hole and breather develops (Phillpot et al. 1989).21

4.11 Self-trapping

As Figs 4.4 and 4.6 show, the single-particle wavefunctions of the mid-gap states
are localized at the centre of the solitons. In the absence of a driving field the
adiabatic approximation predicts that the solitons are static. In other words,
the electronic states are trapped at the soliton positions. This is called self-
trapping. However, in a translationally invariant system, such self-trapping is an
artefact of the approximation. This is because the energy eigenstates should also
be eigenstates of the translation operator, which self-trapped states evidently
are not. Eigenstates that satisfy this requirement are Bloch states constructed
from the basis of the localized (or Wannier) states. In order for the Hamiltonian
to connect localized states the lattice dynamics must be restored and treated
quantum mechanically. This leads to bands of soliton states. An electronic state

21The Su-Schrieffer-Heeger model alone is too simplistic to realistically model excited states
in conjugated polymers, as electron-electron interactions lead to significantly different predic-
tions. The study of breathers within an interacting electron model has been performed by
Takimato and Sasai (1989) and Tretiak et al. (2003).
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may be regarded as practically self-trapped, however, if the inverse bandwidth
multiplied by � is longer than experimental observation times. This is equivalent
to the statement that if the effective mass becomes so large that the dynamics
are slower than observational timescales, then the particle is self-trapped.

A quantum mechanical treatment of phonons and an application to trans-
polyacetylene will be described in Chapter 10.

4.12 Concluding remarks

This chapter has described the effects of electron-phonon coupling for noninter-
acting electrons in the adiabatic limit. Bond-alternation and soliton defects in the
excited states have been introduced. As stressed in Chapter 1, however, electron-
electron interactions also play an important role in determining the electronic
properties of conjugated polymers. In some cases the introduction of electron-
electron interactions qualitatively changes the predictions of the noninteracting
limit; in other cases there are quantitative changes. As an example of a qualitative
change, the bond-alternation amplitude is significantly enhanced by electronic
interactions. Quantitative changes include the 11Bu state changing from being
composed of an unbound soliton-antisoliton pair to being an exciton-polaron,
and to the 21Ag state being composed of a pair of bound soliton-antisoliton
pairs. It is also possible for there to be a reversal in the energetic ordering of
the 11Bu and 21Ag states. The effects of electron-electron interactions will be
described in the subsequent chapters.
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INTERACTING ELECTRONS

5.1 Introduction
In this chapter we begin to describe the effects of electron-electron interactions
in conjugated polymers. We first discuss broken symmetry ground states before
focussing on the character and excitation energies of some of the important low-
lying states. A particularly important consequence of electron-electron interac-
tions for neutral one-dimensional systems is the formation of bound particle-hole
excitations, or excitons. This subject will be briefly discussed in this chapter, but
fuller descriptions of excitons will be given in the next chapter. Electron-phonon
interactions will be neglected in this chapter, so throughout we consider π-
electron models with fixed geometries. The combined effects of electron-electron
and electron-phonon interactions will be described in Chapter 7.

5.1.1 Broken symmetries
An electronic state has a broken symmetry if its symmetry is lower than the
Hamiltonian that describes it. Broken symmetry ground states occur widely in
Nature, for example, in superconductivity, magnetism, and in particle physics
(Anderson 1984). Generally, electron systems in one-dimension can exhibit three
types of broken symmetries: spin-density waves, charge-density waves, and bond
order waves. These waves exhibit particular types of long range correlation, re-
spectively in the spin-density, charge-density, or bond order.

The bond alternation of linear polymers described in Chapter 4 is a bond or-
der wave. The broken symmetry of this ground state is illustrated by its energy
shown in Fig. 4.1. The energy is symmetric with respect to the bond alterna-
tion parameter, δ. (This reflects the symmetry of the underlying Hamiltonian.)
However, there are two equivalent minima at ±δ0. If the system can access both
configurations at each minima equally, perhaps by quantum tunnelling or ther-
mal activation, then the system has the same symmetry as the Hamiltonian.
Conversely, if the system falls into one of these minima and cannot subsequently
access the other minimum then the symmetry of the ground state is lower than
that of the Hamiltonian. This latter scenario is generally applicable to conjugated
polymers.

The periodicity of the correlation is characterized by the structure factor,
defined as,

SSDW(q) =
1
N

∑
�r

exp(iqr)〈(N↑� −N↓�) (N↑�+r −N↓�+r)〉, (5.1)

for the spin-density wave,

59
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SCDW(q) =
1
N

∑
�r

exp(iqr)〈(N↑� +N↓�) (N↑�+r +N↓�+r)〉, (5.2)

for the charge-density wave, and

SBO(q) =
1
N

∑
�r

exp(iqr)〈T̂�T̂�+r〉, (5.3)

for the bond order wave wave. T̂� is the bond order operator for the �th bond,
defined in in eqn (4.10). The wavevector of the periodicity, q, is related to the
Fermi wavevector kf , via q = 2kf . Thus, a half-filled system exhibits instabilities
at q = π/a implying a repeat unit of length 2a.

In an undimerized chain a spin-density wave exhibits gapless spin excitations
and gapped charged excitations. However, in a dimerized chain all three types of
order exhibit gapped spin and charge excitations. In fact, for a dimerized chain
the spin-density and bond order waves coexist. Mazumdar and Campbell have
shown (Mazumdar and Campbell 1985) that the Pariser-Pople-Parr model will
exhibit a broken-symmetry ground state provided that,

Vi,j+1 − 2Vi,j + Vi,j−1 ≥ 0, (5.4)

where Vi,j is the Coulomb interaction. They further showed that if,

U

2
+
∑
j

(Vi,2j − Vi,2j−1) > 0 (5.5)

the bond order (or spin-density) wave is favoured over the charge-density wave,
and conversely otherwise. Since the Ohno and Mataga-Nishimoto potentials (and
1/r potentials in general) satisfy both conditions we expect that conjugated
polymers will generally exhibit bond order (or spin-density) broken symmetry
ground states.

5.1.2 Undimerized chains

We now discuss the role of electronic interactions on the electronic spectra of
undimerized chains. Electronic interactions via the Coulomb potential have a
profound effect on the behaviour of electrons in one dimension. In particular,
the usual Fermi liquid behaviour, whereby the interacting electrons are renor-
malized into weakly interacting quasi-particles that in the metallic state behave
as a noninteracting electron gas with a renormalized effective mass, no longer ap-
plies. Instead, the electrons are described by a Luttinger liquid, which predicts
spin-charge separation, and has quite different transport and thermodynamic
properties to a Fermi liquid (Tsvelik 1995; Giamarchi 2003).

Luttinger liquid behaviour applies to metallic systems. However, as already
discussed, for a half-filled band the metallic state is unstable with respect to
a broken symmetry spin-density wave ground state. There is a gap to charge
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excitations, and hence the system is an insulator. The spin gap, however, is zero.
For the Hubbard model (namely, the Pariser-Parr-Pople model, eqn (2.52), in
the limit of only on-site Coulomb interactions) exact results can be obtained for
weak and strong interactions (Misurkin and Ovchinnikov 1971; Coll 1974). (See
Giamarchi (2003) or Essler et al. (2005) for full details on the Hubbard model.)

For weak coupling, U � t, the charge-excitation (or correlation) gap, 2∆, is

2∆ =
√
Ut

8π
exp

(
−2πt

U

)
, (5.6)

while for strong coupling, U � t,

2∆ = U − 4t+
8t2

U
ln(2). (5.7)

Such insulating systems are known as Mott-Hubbard insulators. The charge
gap separates many-particle states from which electrons can be removed (known
as the lower Hubbard band) from many-particle states to which electrons can
be added (known as the upper Hubbard band). These bands are quite unlike
the single-particle valence and conduction bands described in Chapter 3. For
example, as the number of electrons changes the width of the bands and the band
gap changes. In principle, the Hubbard bands can be measured experimentally
by determining the single-particle spectral weight, S(ω), defined by

S(ω) =
1
π

∑
kσ

Im[GR
kσ(ω)]. (5.8)

Here, GR
kσ(ω) is the retarded single-particle Green function,

GR
kσ(ω) = Fourier transform{〈Ψ0|c†kσ(t)ckσ(0)|Ψ0〉}, (5.9)

where |Ψ0〉 is the ground state. In the noninteracting limit, therefore, S(ω) is
the just the single-particle density of states, ρ(ω). Figure 5.1 shows a schematic
diagram of the Hubbard bands in the strong coupling limit.

Since the charge gap is the gap between the highest electron removal state
and the lowest electron addition state, we can also define it as

2∆ = E0(N + 1) + E0(N − 1)− 2E0(N), (5.10)

where E0(M) is the ground state energy for M electrons.
Our discussion so far has concentrated on charge excitations. These excita-

tions involve charge transfer from one site to another. We have also restricted
our discussion to the Hubbard model. For more realistic models with long range
interactions, such as the Pariser-Parr-Pople model (eqn (2.52)), bound electron-
hole pairs, or exciton states exist in the single-particle spectral gap. These states
will lie an energy equal to their binding energy below the bottom of the upper
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Fig. 5.1. A schematic diagram of the single-particle spectral function, S(ω), showing
the Hubbard bands in the strong-coupling limit, U � 4t, at half-filling.

Hubbard band. We describe excitons in detail in the next chapter, although a
brief description of the energy of bound states in the weak-coupling, undimer-
ized limit is given in Section 5.2.2. For polymers with inversion symmetry the
lowest charge-transfer (or ionic) excitation is the 11B−

u state. Another kind of
excitation from the ground state are spin-density wave (or covalent) excitations.
The lowest of these in energy is the spin-one magnon, or the 13B+u triplet state.
Pairs of magnons can combine to form singlet states, the lowest in energy being
the 21A+g state. In an undimerized chain the spin excitations are gapless, so the
13B+u and 21A+g states always lie below the 11B−

u state. For dimerized chains,
however, there is a crossover from band transitions to Mott-Hubbard transitions
as a function of interaction strength, as we now describe.

5.1.3 Dimerized chains

Recall from Chapter 3 that the noninteracting band gap in a dimerized chain is
4δt (where δ is the dimerization parameter), with the 11B−

u , 1
3B+u , and 21A+g

states being degenerate. For weak electronic interactions these states become
bound Mott-Wannier excitons,22 and their excitation energies increase as a func-
tion of the strength of the interactions. However, for stronger interactions the
13B+u and 21A+g states evolve into spin-density-wave states, and their energies
begin to decrease (Schulten and Karplus 1972; Tavan and Schulten 1987). The
11B−

u state, on the other hand, evolves into a Mott-Hubbard exciton, and its
energy eventually increases linearly with U . Figure 5.2 shows the energies of the
11B−

u , 1
3B+u , and 2

1A+g states, and the charge gap, 2∆, as a function of U for

22Mott-Wannier and Mott-Hubbard excitons are described in the next chapter.
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Fig. 5.2. The calculated Pariser-Parr-Pople model excitation energies of the 11B−
u ,

13B+
u , 13A−

g , and 21A+
g states, and the charge gap, 2∆, as a function of U on a

dimerized chain. This figure illustrates the crossover from band-insulator transitions
at small U to Mott-Hubbard transitions at large U . The intermediate parameter
regime, when U ∼ 4t, is applicable to conjugated polymers. δ = 0.1 and t = 2.5 eV.
The inset shows the excitation energies for small U .

δ = 0.1.
The crossover from band-insulator to Mott-Hubbard insulator occurs in the

intermediate-coupling regime, around U = 4t. This crossover has been studied
by Soos et al. (1993), Mukhopadhyay et al. (1995), and Shuai et al. (1997).
Understanding the excited states of conjugated polymers is a challenge because it
is this intermediate parameter regime that is applicable to conjugated polymers.

Also shown in Fig. 5.2 is the 13A−
g state, which becomes the lowest charge-

transfer triplet exciton in the strong coupling limit.
Having qualitatively described the behaviour of the low-lying excited states

as a function of the interaction strengths, we now discuss the weak and strong
coupling limits in more detail. The following two sections discuss these limits
in a rather formal, mathematical sense. In Section 5.5, however, we introduce
the valence bond method to present a qualitative, pictorial representation of the
weak and strong coupling limits.
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5.2 The weak-coupling limit

5.2.1 Undimerized chains

A field theoretical analysis of the extended Hubbard model with nearest (V1)
and next-nearest neighbour (V2) Coulomb interactions in the weak-coupling limit
yields a U(1) Thirring model (Essler et al. 2001). This model exhibits an explicit
separation of the charge and spin degrees of freedom. The spin degrees of freedom
are described by gapless bosonic excitations, namely pairs of spinons (or spin-
density waves). The charge degrees of freedom, on the other hand, are described
by a sine-Gordon model. For certain parameter ranges this model predicts bound
electron-hole pairs (or excitons), whose spectrum is determined by the equation,

En = 2∆sin
(
nπξ

2

)
. (5.11)

Here, 2∆ is the charge gap and

ξ =
β2

1− β2
, (5.12)

where β depends on the parameters in the model. Bound states exist in the
regime 0 < β < 1/

√
2 and the number of bound states, Nex, is determined by

Nex = integer part of
[
1− β2

β2

]
. (5.13)

For the Hubbard model (V1 = 0 and V2 = 0) β = 1 and so there are no bound
states. Long range Coulomb interactions decrease the value of β leading to one
or more bound states. Although this is a weak-coupling theory, it also works
reasonably well in the intermediate regime, defined by U ∼ 4t, as shown by a
comparison to a numerical calculation in Section 6.4.

5.2.2 Dimerized chains

In the weak-coupling limit a dimerized chain is a band insulator, with a filled
valence band and an empty conduction band, as described in Section 3.4. The
low-lying excitations are interband particle-hole transitions which bind to create
Mott-Wannier excitons. An effective-particle model is developed in detail in the
next chapter to describe this limit. We will see that the 11B−

u and 13B+u excitons
are the n = 1 singlet and triplet bound states, split by an exchange energy, while
the 21A+g and 13A−

g excitons are the degenerate n = 2 singlet and triplet bound
states. Here, n is the principal quantum number of the hydrogen-like bound
particle-hole pair described in Section 6.2. The n = 2 state is less strongly bound
than the n = 1 state, so as U increases, and the charge gap opens, the excitation
energies of the 21A+g and 13A−

g states grows more quickly than that of the 11B−
u

and 13B+u states. This behaviour is shown in Figs 5.2 and 6.3.
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5.3 The strong-coupling limit

In the strong coupling limit, U � t, a half-filled system is a Mott-Hubbard
insulator, rather than a band insulator. The energies of the charge-transfer (or
ionic) exciton states diverge strongly from the energies of the spin-density-wave
(or covalent) states. The former are described by a high-energy spinless fermion
model, introduced in Section 5.3.2, while the latter are described by a low-energy
dimerized Heisenberg antiferromagnet, introduced in the following section.

5.3.1 Low-energy dimerized Heisenberg antiferromagnet

A standard canonical transformation can be performed on the Pariser-Parr-Pople
model that has the effect of integrating out the high energy physics, leaving only
the low energy spin dynamics.23 The effective low-energy Hamiltonian is the
dimerized Heisenberg antiferromagnet,

H =
∑
i

JiSi · Si+1, (5.14)

where

Si =
∑
ρρ′

c†iρσρρ′ciρ′ , (5.15)

σ are the Pauli spin matrices,

Ji =
4t2(1− 2δi + δ2i )

U − V1
, (5.16)

and δi is the dimerization parameter for the ith bond.
For a fixed geometry consider a staggered dimerization, that is δi = δ(−1)i.

Then we can consider the dimer limit, defined by 0 � δ � 1 and the weakly-
dimerized limit, defined by 0 � δ � 1.

5.3.1.1 Dimer limit: 0 � δ � 1 In this extreme limit the chain is composed of
alternating ‘strong’ and ‘weak’ bonds, with a singlet dimer on each strong bond
in the ground state, as illustrated in Fig. 5.3. A triplet, or magnon, excitation
breaks one of these bonds, and costs an energy J (≡ 4t2/(U − V1)). Formally,
the magnon can be considered as two strongly bound spin-1/2 objects, known
as spinons (Affleck 1997). The first singlet excitation corresponds to two broken
bonds in an overall singlet and costs an energy 2J . These are both illustrated in
Fig. 5.3.

5.3.1.2 Weakly dimerized limit: 0 � δ � 1 As the dimerization becomes
weaker the two spinons comprising the magnon become less confined, with their

23Numerous text books describe this procedure. See, for example, Fulde (1993).
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Ground state

S = 1

S = 0

Fig. 5.3. A schematic representation of the ground state and the lowest triplet and
singlet excitations of the dimerized quantum antiferromagnet. The ovals represent
singlet dimers on the ‘strong’ bonds. This is an example of a valence bond repre-
sentation. The valence bond method is introduced in Section 5.5.

separation scaling as ∼ δ−2/3. The triplet (13B+u state) excitation energy, E(S =
1), vanishes as

E(S = 1) ∼ Jδ2/3√| ln(δ)| . (5.17)

For most of the parameter range the energy of the first singlet excitation (namely
the 21A+g state), E(S = 0), is twice the energy of the lowest triplet. However, as
δ → 0 the singlet becomes a bound bimagnon, as

E(S = 0) →
√
3E(S = 1) < 2E(S = 1), (5.18)

(see Zheng et al. (2001) and references therein). Thus, only in the limit that
δ → 0 is the 21A+g state a bound bimagnon.

5.3.2 High-energy spinless fermion model

In this section we derive an effective Hamiltonian that describes the high energy
physics associated with particle-hole (or ionic) excitations across the charge gap.
The Hamiltonian will describe a hole in the lower Hubbard band and a particle in
the upper Hubbard band, interacting with an attractive potential. This attractive
potential leads to bound, excitonic states. In the next chapter we derive an
effective-particle model for these excitons. A real-space representation of an ionic
state is illustrated in Fig. 5.5(b).

We write the Pariser-Parr-Pople model as

H = Hke +Hpe, (5.19)

where
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Hke = −t
∑
iσ

(c†iσci+1σ + c†i+1σciσ) (5.20)

and

Hpe = U
∑
i

(
Ni↑ − 1

2

)(
Ni↓ − 1

2

)
+
∑
ij

Vj(Ni − 1)(Ni+j − 1). (5.21)

It is instructive to recast Hke as

Hke = Hke
LHB +Hke

UHB +Hke
mix, (5.22)

where

Hke
LHB = t

∑
iσ

(1−Niσ̄)(c
†
iσci+1σ + c†i+1σciσ)(1−Ni+1σ̄), (5.23)

Hke
UHB = t

∑
iσ

Niσ̄(c
†
iσci+1σ + c†i+1σciσ)Ni+1σ̄, (5.24)

and

Hke
mix = t

∑
iσ

Niσ̄c
†
iσci+1σ(1−Ni+1σ̄) +Ni+1σ̄c

†
i+1σciσ(1−Niσ̄)

+ hermitian conjugate. (5.25)

Hke
LHB describes the hopping of holes in the lower Hubbard band, H

ke
UHB describes

the hopping of double occupancies in the upper Hubbard band, whileHke
mix mixes

the occupation of these two bands. By applying a canonical transformation to
H, Hke

mix may be eliminated to O(t/U) (Harris and Lange 1967). The elimination
of Hke

mix implies that different occupations of the Hubbard bands are decoupled.
The band width of each band is 4t.

A particle-hole excitation from the ground state corresponds to creating a
doubly occupied site, namely a particle, in the upper Hubbard band, and an
empty site, namely a hole, in the lower Hubbard band. In the absence of long
range Coulomb interactions described by Hpe the dynamics of the particle and
hole are independently described by Hke

UHB and Hke
LHB, respectively. The par-

ticle and hole move freely along the chain, irrespective of the underlying spin
background. However, because of the elimination of Hke

mix, the particle and hole
cannot annihilate, so their positions cannot be exchanged. They therefore act as
a pair of spinless fermions or hard core bosons. Hpe couples the particle and hole
with an effective attractive interaction.

For this particle-hole excitation the N -body problem has thus been mapped
onto the two-body problem, described by,

Hred = U −
∑
ij

Vj(Ni − 1)(Ni+j − 1)− t
∑
i

(a†
iai+1 + a†

i+1ai), (5.26)

where a†
i creates a spinless fermion on site i and Ni = a†

iai. For nearest neighbour
interactions, Vj = V1δ1j , this two-body problem has an analytical solution, with
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Fig. 5.4. The phase diagram of the Pariser-Parr-Pople model at half-filling. t = 2.5
eV.

the energy of the bound state being given by (Gallagher and Mazumdar 1997;
Gebhard et al. 1997),

E(K) = U − V1 − 4t2

V1
cos2

(
Ka

2

)
, (5.27)

where K is the centre of mass momentum. Since the onset of the unbound
particle-hole continuum is at

U − 4t cos
(
K

2

)
, (5.28)

a bound state only exists for V1 ≥ 2|t|. There is no analytical solution for a
general 1/r interaction. However, a simple numerical solution is readily available
by transforming the two-body problem into an effective particle problem, and in
certain limits analytical results are also available. This is described in Section 6.3.

The minimum charge gap, 2∆, is found by setting K = 0 in eqn (5.28),
giving 2∆ = U −4t, in agreement with eqn (5.7). Since the energies of the strong
coupling excitons scale as 2∆, we see that the large U behaviour is in agreement
with the numerical results of Fig. 5.2.
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5.4 The phase diagram of the undoped Pariser-Parr-Pople model

Having discussed the weak and strong coupling limits of the Pariser-Parr-Pople
model, we can now qualitatively explain the behaviour of the excitation energies
shown in Fig. 5.2.

In the weak-coupling limit the 21A+g exciton is less strongly bound than
the 11B−

u exciton. So, as the interaction strength increases, and the charge gap
widens, the 21A+g energy initially increases faster than the 11B−

u energy. However,
as the 21A+g state acquires spin-density-wave character, its energy begins to
decrease, so that there is a crossover in energy between the 11B−

u and 21A+g
states. This crossover is a function of δ and U/t, and is shown in a phase diagram
in Fig. 5.4. Generally, for a smaller δ or a larger U/t, the 21A+g state becomes
more correlated, and lies below the 11B−

u state (Mukhopadhyay et al. 1995).
This crossover has important consequences for the electroluminescent properties
of conjugated polymers. As we show in Chapter 8, the 11B−

u state is dipole
connected to the ground state, whereas the 21A+g state is not. Thus, if E(11B−

u ) <
E(21A+g ) the polymer is electroluminescent, whereas if E(2

1A+g ) < E(11B−
u ) it

is not, and the system decays nonradiatively to the ground state.

5.5 The valence bond method

We now introduce the valence bond method which provides a pictorial represen-
tation of the weak and strong coupling limits.

The Bloch or molecular orbital states are exact eigenstates of the kinetic
energy operator. We therefore might expect these states to be a useful basis in
the weak-coupling limit where the kinetic energy dominates over the potential
energy. Conversely, in the strong-coupling limit, where the potential energy dom-
inates over the kinetic energy, we might expect that a real-space basis is more
appropriate. The valence bond method provides such a real-space basis. In this
section we give a brief description of the valence bond method, as it provides in-
sight into the crossover from weak to strong coupling. Furthermore, as we explain
in Section 7.3, it also provides insight into the effects of electronic interactions on
the strength of the bond alternation. This method is also used in Appendix G to
qualitatively explain the lowest-lying singlet excitation of benzene. The reader
is referred to Coulson (1961), Mazumdar and Soos (1979), or Baeriswyl et al.
(1992) for more details of the valence bond method.

At half-filling the real-space basis states can be characterized by the number
of doubly occupied sites (with the same number of empty sites). Basis states
with no doubly occupied sites are classed as ‘covalent’, whereas basis states with
one or more doubly occupied site are classed as ‘ionic’. In a covalent basis state
each site is linked to one other by a singlet bond.

We can illustrate this point most simply with a two-π orbital system (e.g.
ethylene or a dimer). In this system the singlet subspace is spanned by three basis
states illustrated in Fig. 5.5: the covalent basis state (a) and the two equivalent
basis states in (b). The triplet state is also illustrated. (Notice that Fig. 5.3 also
illustrates covalent basis states.)
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Fig. 5.5. Valence bond basis states of the two-site dimer. |1〉 and |2〉 are singlets,
while |3〉 is the triplet, showing the Sz = 0 and Sz = 1 representations. The parity
eigenvalue P = ±1.

The basis states are formally represented as,

|1〉 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c

†
2↑
)

|0〉, (5.29)

|2〉 = 1√
2

(
c†1↑c

†
2↓ + Pc†2↑c

†
2↓
)

|0〉, (5.30)

and

|3〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑
)

|0〉, (5.31)

where the parity eigenvalue P = ±1.
Using these basis states the singlet eigenstates of the dimer may be expressed

as,
|ψ1〉 = a|1〉+ b|2〉 (5.32)

with P = 1,
|ψ2〉 = |2〉 (5.33)

with P = −1, and
|ψ3〉 = b|1〉 − a|2〉 (5.34)

with P = 1.
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Table 5.1 The molecular orbital eigenstates of the dimer (namely the noninteracting
limit of the Pariser-Parr-Pople model) expressed within the valence bond basis

State Energy b/a State label
|ψ1〉 −2t 1 1A+

g

|ψ4〉 0 — 3B+
u

|ψ2〉 0 — 1B−
u

|ψ3〉 2t 1 1A+
g

Table 5.2 The eigenstates of the dimer in the strong-coupling limit of the
Pariser-Parr-Pole model (J = 4t2/(U − V1) and V1 is the nearest neighbour Coulomb
repulsion)

State Energy b/a State label
|ψ1〉 V1 − J 2t/(U − V1) 1A+

g

|ψ4〉 V1 — 3B+
u

|ψ2〉 U — 1B−
u

|ψ3〉 U + J 2t/(U − V1) 1A+
g

The triplet state is
|ψ4〉 = |3〉. (5.35)

We first describe the noninteracting solutions. These are the molecular orbital
eigenstates listed in Table 5.1. The goundstate is a linear superposition of the
covalent and ionic basis states, |1〉 and |2〉. The first excited singlet state is the
odd-parity ionic state, |2〉, whereas the triplet excitation is the covalent state |3〉.
The second singlet excitation is an antisymmetric linear combination of |1〉 and
|2〉.

In the strong-coupling limit (defined by (U−V1) >> t) the eigenstates evolve
smoothly to those listed in Table 5.2. Now the ground state is predominately
the covalent state |1〉. The covalent triplet state has an excitation energy J .
The first singlet excitation is again the ionic state |2〉 with an excitation energy
(U − V1 + J),24 while the final singlet is again predominately ionic with an
excitation energy (U − V1 + 2J).

We therefore see in the dimer example that in the strong-coupling limit the
spectrum has split into low-energy covalent states, with an energy scale set by
J , and high-energy ionic states with an energy scale set by U − V1. This sim-
ple picture essentially confirms the discussions of Section 5.3, except for three
caveats arising from there being only two sites and two electrons. First, the ionic
spectrum is split-off from the covalent spectrum by U − V1 rather than by U
for widely separated singly and doubly occupied sites. Second, the even parity
singlet excitation is not related to the 21Ag state of large systems in the strong-
coupling limit. Finally, the triplet state on a dimer has no ionic character. As

24The energy difference between the 1B−
u and 3B+

u states, U − V1, (which is valid for
all nonzero interactions) is precisely the singlet-triplet exchange energy derived in the Mott-
Wannier exciton limit described in Section 6.2 and Appendix D.
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discussed earlier this is not representative of larger systems, where the 13B+u
state evolves from a Mott-Wannier exciton at weak-coupling to a gapped spin
density wave at large coupling.

In the next chapter we focus entirely on bound particle-hole, or excitonic,
excitations.



6

EXCITONS IN CONJUGATED POLYMERS

6.1 Introduction

The study of excitons in conjugated polymers has often been inspired by the
treatment of excitons in bulk three-dimensional semiconductors (as described in
Knox (1963)). A particle-hole excitation from the valence band to the conduction
band in a semiconductor leaves a positively charged hole in the valence band and
a negatively charged electron in the conduction band. The Coulomb attraction
between these particles results in bound states, or excitons. In three-dimensional
semiconductors the excitons are usually weakly bound, with large particle-hole
separations, and are well described by a hydrogenic model. Excitons in this limit
are known as Mott-Wannier excitons.

This model of bound conduction band electrons and valence band holes can
also be applied to conjugated polymers (Abe et al. 1992, Abe 1993). In conju-
gated polymers a one-dimensional hydrogenic model applies. However, a differ-
ence between one and three dimensions is that in one-dimension the first excited
state (namely the lowest bound state) is generally strongly bound, with a small
particle-hole separation (Loudon 1959). Such strongly bound excitons are akin
to Frenkel excitons in molecular crystals, which are delocalized intra-atomic
excitations. Molecular crystals also exhibit charge-transfer excitons, defined as
excitons with larger particle-hole separations, so that the exciton wavefunction
is spread over a few molecules. Finally, in molecular crystals, the term Mott-
Wannier exciton is usually reserved for excitons with a very large particle-hole
separation.

For simplicity, however, we prefer to denote all excitons formed from bound
states of conduction band electrons and valence band holes as Mott-Wannier
excitons, recognizing that this term includes both small and large radius excitons.
We call this limit the weak-coupling limit, as the starting point in the construction
of the exciton basis is the noninteracting band limit. As we will see, a real space
description of a Mott-Wannier exciton is of a hole in a valence band Wannier
orbital bound to an electron in a conduction band Wannier orbital.

An opposite, strong-coupling limit has also been used to describe excitons
in conjugated polymers (Gallagher and Mazumdar 1997; Gebhard et al. 1997;
Essler et al. 2001; Barford 2002). As described in the previous chapter, in this
limit a correlation gap separates the electron removal spectral weight (the lower
Hubbard band) from the electron addition spectral weight (the upper Hubbard
band). Now the bound particle-hole excitations are Mott-Hubbard excitons. That
is, a particle excited from the lower Hubbard band to the upper Hubbard band
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is bound to the hole it leaves behind. In a real-space picture this corresponds
to two electrons in the same atomic orbital bound to an empty atomic orbital
moving in a sea of singly occupied orbitals. A one-dimensional hydrogenic model
also applies in this limit (Barford 2002).

Generally, conjugated polymers are in the intermediate regime, as the band
width is comparable to the interaction strength. In other words, the electronic
kinetic energy is comparable to the electronic potential energy, and so neither
the weak nor strong coupling limits apply. Since no theory has yet been devel-
oped for the intermediate regime, numerical calculations are the only means to
theoretically study this regime.

In this chapter we describe the theory of excitons in isolated conjugated
polymers. We start with the weak-coupling limit and describe Mott-Wannier ex-
citons. Next, we discuss the strong coupling limit and Mott-Hubbard excitons.
Finally we discuss the intermediate coupling regime. The weak to strong coupling
crossover described in this chapter is also discussed by Mazumdar and Chan-
dross (1997). In the weak and strong coupling limits we derive relatively sim-
ple effective-particle models to describe the physics of excitons. These effective-
particle models are the prototypes for more sophisticated approaches that are
better at quantitatively predicting excited state energies. These are described
briefly in Section 6.2.4. The utility of the simpler approach presented here is
that it gives qualitative and intuitive insight into the physics of excitons in con-
jugated polymers.

6.2 The weak-coupling limit

The weak-coupling limit takes as its starting point the conventional semiconduc-
tor noninteracting band picture, introduced in Chapter 3.25 The ground state is
an occupied valence-band and an empty conduction-band. A bound conduction
band electron and valence band hole move through the lattice as an effective-
particle. In this section we derive the effective-particle model, discuss its solutions
and compare them to essentially exact calculations on the same Hamiltonian
(Barford et al. 2002b). We develop this theory for a linear, dimerized chain.

6.2.1 The effective-particle model

Since excitons are bound particle-hole excitations, a convenient basis for their
description are the particle-hole basis states introduced in Chapter 3. In k-space
these basis states are {|ke, kh〉}, defined by

|ke, kh〉 = 1√
2

(
cc†ke↑c

v
kh↑ ± cc†ke↓c

v
kh↓

)
|GS〉, (6.1)

where the plus sign creates a singlet basis and the minus sign creates a triplet
basis. The ground state, |GS〉, is the filled Fermi sea and is defined in eqn (3.28).
The basis state |ke, kh〉 is a function of the centre-of-mass momentum,

25The reader may find it helpful to review Chapter 3 before reading this section.
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K = (ke − kh), (6.2)

and the relative momentum,

2k′ = (ke + kh). (6.3)

Thus,
|ke, kh〉 ≡ |k′ +K/2, k′ −K/2〉. (6.4)

This particle-hole excitation is illustrated in Fig. 3.4. Now, for translationally
invariant Hamiltonians K is a good quantum number. However, unlike the non-
interacting Hamiltonian, the interacting Hamiltonian mixes states with different
k′.

The general exciton eigenstate, |ΦMWK 〉, is therefore a linear superposition of
these basis states

|ΦMWK 〉 =
∑
k′
Φ(k′,K)|k′ +K/2, k′ −K/2〉. (6.5)

As shown in Section 3.6.1, as a consequence of particle-hole symmetry, the am-
plitudes satisfy

Φ(k′,K) = ±Φ(−k′,K), (6.6)

if the particle-hole eigenvalue, J = ∓1 for singlet excitations, or J = ±1 for
triplet excitations.

To proceed further we need an equation for Φ(k′,K), which may be obtained
from an effective exciton Hamiltonian. However, as the Coulomb interaction is
not diagonal in k-space, a real space basis leads to a more intuitive description.26

A basis state in real-space, introduced in Section 3.6.1, is

|R+ r/2, R − r/2〉 = S†
rR|GS〉, (6.7)

where the operator S†
rR creates a particle-hole excitation from the ground state,

|GS〉. These are defined as,

S†
rR =

1√
2

(
cc†R+r/2,↑c

v
R−r/2,↑ ± cc†R+r/2,↓c

v
R−r/2,↓

)
(6.8)

and
|GS〉 =

∏
R

cv†
R↑c

v†
R↓|0〉, (6.9)

respectively. c
v
c †
Rσ are the Wannier operators, defined in Section 3.4.1.1. As in the

k-space picture, the plus sign in eqn (6.8) creates a singlet basis and the minus
sign creates a triplet basis. This basis state is shown schematically in Fig. 6.1.

26The reader is referred to the work of Abe et al. (1992), for an analysis in k-space.
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Fig. 6.1. The real-space particle-hole excitation, |R+r/2, R−r/2〉, labelled 1, from the
valence band Wannier orbital at R− r/2 to the conduction band valence orbital at
R+r/2. Its degenerate counterpart, |R−r/2, R+r/2〉, connected by the particle-hole
transformation, is labelled 2. R = (re + rh)/2 is the centre-of-mass coordinate
and r = (re − rh) is the relative coordinate. A Mott-Wannier exciton is a bound
particle-hole pair in this representation.

R =
(re + rh)

2
(6.10)

is the centre-of-mass coordinate and

r = (re − rh) (6.11)

is the relative coordinate. R and r are discrete variables measured as a contour
length along the polymer chain. Thus, defining d as the contour length between
repeat units (e.g. 2a for a dimerized chain), r/d is the number of repeat units
between the electron and hole.

We now define the general exciton eigenstate, |ΦMW〉, as
|ΦMW〉 =

∑
r,R

Φ(r,R)|R+ r/2, R − r/2〉, (6.12)

where Φ(r,R) is the exciton wave function, which is obtained from the appro-
priate exciton Hamiltonian. Since the exciton is a two-particle bound state, we
can proceed to find solutions in analogy to the hydrogen atom. Thus, we intro-
duce the effective-particle model by separating the centre-of-mass and relative
coordinates. For periodic boundary conditions we assume that

ΦnK(r,R) = ψn(r)ΨK(R), (6.13)

where ΨK(R) is the centre-of-mass wavefunction,

ΨK(R) =
1√
Nu

exp(iKR), (6.14)

and K is the centre-of-mass momentum: −π/d ≤ K ≤ π/d.
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ψn(r) is the relative wavefunction that describes the internal structure of the
exciton. Owing to particle-hole symmetry it satisfies

ψn(r) = ±ψn(−r), (6.15)

if the particle-hole eigenvalue, J = ∓1 for singlet excitations, or J = ±1 for
triplet excitations.27

For open boundary conditions we assume that

Φnj(r,R) = ψn(r)Ψj(R), (6.16)

where Ψj(R) is the centre-of-mass wavefunction,

Ψj(R) =
√

2
Nu + 1

sin(βjR), (6.17)

and βj is the centre-of-mass pseudomomentum:

βj =
jπ

(Nu + 1)d
, (6.18)

and j = 1, 2, · · · , Nu.
As shown in Appendix D, the relative wavefunction, ψn(r), satisfies the fol-

lowing Schrödinger difference equation,

−2t̃ cos
(
Kd

2

)
(ψn(r + d) + ψn(r − d)) +

(
2Xδr0δM − Ṽ (r)

)
ψn(r)

=
(
E − Ũ − 2∆ +X

)
ψn(r), (6.19)

where δM = 1 for singlet excitons, and δM = 0 for triplet excitons. δr0 = 1 when
r = 0 and δr0 = 0 when r �= 0. E is the energy of the effective-particle. For
effective-particles on linear chains K is replaced by βj .

The model parameters are defined as

• The effective hybridization integral, t̃ = t(1− δ)/2.
• The HOMO-LUMO gap, 2∆ = 2t(1 + δ).
• The local electron-hole interaction, Ũ = (U + V1)/2.
• The long-range electron-hole interaction, Ṽ (r).
• The singlet-triplet exchange interaction, 2X = U − V1.28

t and δ are parameters from the Pariser-Parr-Pople model (defined in eqn (2.52))
and Vj is the Ohno potential (defined in eqn (2.55)). U therefore sets the scale
of the electronic interactions. As r → ∞ the electron-hole potential

Ṽ (r) → V (εeffr), (6.20)

where V (r) is the Ohno potential and εeff is the effective dielectric constant
arising from the polymer geometry, as explained in Appendix D.

27We note that ψ(r) is the Fourier transform of Φ(k′) with respect to k′.
28See Appendix D for a discussion of the origin of this term.
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Fig. 6.2. The effective-particle model of excitons on a linear chain. The total exciton
wavefunction, Φnj(r,R) = ψn(r)Ψj(R), where ψn(r) is the relative wavefunction
and Ψj(R) is the centre-of-mass wavefunction. For each principal quantum number,
n, there is a family of excitons with different pseudomomentum, βj , which form a
band of exciton states. The relative wavefunctions are solutions of eqn (6.19), while
the centre-of-mass wavefunctions are determined by eqn (6.17).

Notice that two quantum numbers specify the exciton eigenstates, eqn (6.13)
or eqn (6.16): the principle quantum number, n, and the (pseudo) momentum
quantum number, K (or βj). For every n there are a family of excitons with
different centre-of-mass momenta, and hence different centre-of-mass kinetic en-
ergy. Odd and even values of n correspond to the relative wavefunction, ψn(r),
being even or odd under a reversal of the relative coordinate, respectively. We
refer to even and odd parity excitons as excitons whose relative wavefunction
is even or odd under a reversal of the relative coordinate. This does not mean
that the overall parity of the eigenstate (eqn (6.12)), determined by both the
centre-of-mass and relative wavefuctions, is even or odd. The number of nodes in
the exciton wavefunction, ψn(r), is n−1. Figure 6.2 illustrates the wavefunctions
and energies of excitons in the effective-particle model.

There is an important observation to be made about this effective-particle
model. This is that since the exchange interaction, X, is local (i.e. it is only
nonzero when r = 0), we immediately see that this term vanishes for odd parity
excitons (namely, ψn(r) = −ψn(−r)), as ψn(0) = 0. Now, since the parity of
the exciton is determined by the particle-hole symmetry, and odd singlet and
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triplet excitons are determined by positive and negative particle-hole symmetries,
respectively, this theory predicts that 1A+g and 3A−

g , and
1B+u and 3B−

u excitons
are degenerate.29

Eqn (6.19) is the Schrödinger equation for describing the Mott-Wannier ex-
citon wavefunctions and energies. In more sophisticated treatments it is usually
known as the Bethe-Salpeter equation. In the following two sections the solutions
of this equation will be described.

6.2.2 Solutions of the effective-particle model
The continuum or effective-mass limit and the hydrogenic solutions of eqn (6.19)
are described in Appendix E. As the continuum limit analysis remains qualita-
tively correct for a discrete lattice, it is useful to summarize them here before
discussing the general solutions.

• Odd parity (even n) states follow the Rydberg series, defined by the Ryd-
berg number n′ = n/2. Thus, the binding energies are

En(K) =
EI(K)
(n/2)2

, (6.21)

where EI is the effective Rydberg, defined in eqn (E.10).
• The lowest even parity state (n = 1) is strongly bound, with a binding
energy scaling as V (r → 0) → ∞.

• The remaining even parity (odd n) states are bounded in energy by the
odd parity states.

The solutions on a discrete lattice are illustrated in Figs 6.3 and 6.4. Figure
6.3 shows the excitation energies of the two lowest singlet and triplet states, and
the charge gap, while Fig. 6.4 shows the exciton probability density, ψ2n(r).

6.2.3 Comparisons to the numerical calculations
It is instructive to compare the approximate weak-coupling theory to essential
exact, numerical (density matrix renormalization group) calculations on the same
model (namely the Pariser-Parr-Pople model). The numerical calculations are
performed on polymer chains with the polyacetylene geometry. Since these chains
posses inversion symmetry the many-body eigenstates are either even (Ag) or odd
(Bu). As discussed previously, the singlet exciton wavefunction has either even
or odd parity when the particle-hole eigenvalue is odd or even. Conversely, the
triplet exciton wavefunction has either even or odd parity when the particle-hole
eigenvalue is even or odd. As a consequence, we can express a 1B−

u state as

|1B−
u 〉 =

∑
odd n

∑
odd j

Anj |ΦMWnj 〉+ other contributions, (6.22)

29This statement is only approximately correct, as the exchange term is formally only local
for onsite Coulomb interactions, that is, when Vj = 0. However, nonlocal exchange interactions
are negligible and decay rapidly: the exchange parameter between two dimers 	 units apart is
X� = (2V2� − V2�−1 − V2�+1)/4 ≈ −1/	3 for 1/r Coulomb interactions.
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Fig. 6.3. The transition energies of the lowest momentum (j = 1) n = 1 singlet (solid
curve), n = 1 triplet (dotted curve), n = 2 singlet and triplet (short-dashed curve)
excitons, and the charge gap (long-dashed curve) in the weak-coupling limit. t = 2.5
eV and δ = 0.2. The symbols are the DMRG calculations of the Pariser-Parr-Pople
model on 102 site chains: filled circles, 11B−

u (n = 1, j = 1 singlet); full circles, 13B+
u

(n = 1, j = 1 triplet); filled squares 21A+
g (n = 2, j = 1 singlet); open squares, 13A−

g

(n = 2, j = 1 triplet); diamonds, charge gap.

where |ΦMWnj 〉 is defined by eqns (6.12) and (6.16). Similarly, we can express a
1A+g state as

|1A+g 〉 =
∑
even n

∑
odd j

Anj |ΦMWnj 〉+ other contributions. (6.23)

Generally, the sums will be dominated by one component (except at anticross-
ings, as discussed shortly). The ‘other contributions’ to the state vectors include
components not described by the exciton basis, for example, covalent and holon-
doublon terms. These are expected to be negligible in the weak-coupling limit.

Table 6.1 classifies the many-body states according to their exciton quantum
numbers.30

30Notice that odd n (i.e. even parity ψ(r)) and odd j (i.e. even centre-of-mass wavefunction)
implies 1B−

u and even n (i.e. odd parity ψ(r)) and odd j implies 1A+
g , as the reflection operator

reflects both the centre-of-mass and relative coordinates, and hence exchanges the electron and
hole.
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Fig. 6.4. The singlet exciton probability density, ψ2
n(r), in the weak-coupling limit.

t = 2.5 eV, U = 3.33 eV and δ = 0.2.

Table 6.1 The classification of the many body singlet exciton states with particle-hole
symmetry in terms of their Mott-Wannier exciton quantum numbers (The correspond-
ing triplet states with the same spatial symmetry but opposite particle-hole symmetry
have the same quantum numbers)

Exciton quantum numbers
State n j
1A+

g Even Odd
1B+

u Even Even
1B−

u Odd Odd
1A−

g Odd Even

6.2.3.1 Transition energies The evolution of the calculated exciton energies
as function of chain length shows a number interesting features. Fig. 6.5(a) and
(b) shows the 1B−

u (odd n, odd j) and 1A+g (even n, odd j) spectra, respectively,
for representative weak-coupling parameters. The different pseudomomentum
(j) states for the same n, and anticrossings between states of different n are
clearly seen. Figure 6.5(a) shows the n = 1 and n = 3 excitons converging to
2.6 eV and 3.9 eV, respectively, while Fig. 6.5(b) shows the n = 2 and n = 4
excitons converging to 3.5 eV and 4.1 eV, respectively. The band gap is also
shown converging to 4.4 eV. Thus, for 102 sites with these parameters, there are
at least four families of bound excitons.

For large N the energies scale as 1/N2. A detailed analysis (Barford et al.



82 EXCITONS IN CONJUGATED POLYMERS

2

3

4

5

6

7

0 0.002 0.004 0.006 0.008 0.01

E
x

ci
ta

ti
o

n
en

er
g

y
(e

V
)

1/N
2

(a)

3

4

5

6

7

0 0.001 0.002 0.003 0.004 0.005

(b)

1/N
2

Fig. 6.5. The DMRG calculated singlet exciton transition energies of the
Pariser-Parr-Pople model as a function of square of the inverse chain length. The
parameters are representative of the weak-coupling limit: t = 2.5 eV, U = 3.33 eV,
and δ = 0.2. All curves are for odd pseudomomentum quantum number, j. Solid
and dashed curves are to illustrate the anticrossings. Also shown is the charge gap
as the dotted curve. (a) 1B−

u states, showing the n = 1 exciton converge to 2.6 eV
and the n = 3 exciton converge to 3.9 eV. (b) 1A+

g states, showing the n = 2 exciton
converge to 3.5 eV and the n = 4 exciton converge to 4.1 eV. Notice that the 1B−

u

states are interleaved with 1A−
g states (odd n and even j), while the 1A+

g states are
interleaved with 1B+

u states (even n and even j). These states are not shown.

2002b) shows that the ratios of the gradients of the energies versus 1/N2 of the
three lowest pseudomomentum branches (namely j = 1, 3, and 5) of the 1B−

u

(n = 1) and 1A+g (n = 2) excitons scale as 1 : 9 : 25. This agrees with the
analysis of Appendix E, indicating particle-in-a-box behaviour for the effective-
particle. (See eqn (E.7) with K replaced by βj = jπ/(Nu+1)d.) For short chain
lengths, however, the 1/N2 scaling is replaced by a 1/N scaling. This crossover
reflects a break-down of the effective-particle model, which occurs when the chain
length becomes comparable to or less than the particle-hole separation. In this
limit the excitation energies increase as the chain length decreases, because of a
confinement effect associated with squeezing the electron and hole together.

6.2.3.2 Particle-hole correlation function The exciton component of the nu-
merical many-body wavefunction can be obtained using the operator S†

rR defined
in eqn (6.8). Using eqns (6.7) and (6.12) it follows that projecting S†

rR|GS〉 onto
the exciton state |ΦMWnj 〉 gives the exciton wavefunction Φnj(r,R):

Φnj(r,R) = 〈ΦMWnj |S†
rR|GS〉. (6.24)

Thus, for a general numerically evaluated eigenstate, |p〉,
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Fig. 6.6. The DMRG calculated root-mean-square particle-hole separations, rp (eqn
(6.26)) in units of the molecular repeat distance, for 102 sites. t = 2.5 eV, U = 3.33
eV, and δ = 0.2. p1B−

u states (squares) and p1A+
g states (circles). The molecular

repeat distance is twice the lattice distance.

Φp(r,R) ≡
∑
nj

Ap
njΦnj(r,R) ≈ 〈p|S†

rR|true GS〉, (6.25)

where |true GS〉 is the numerically evaluated ground state. Φp(R, r) is the overall
exciton wavefunction for the state |p〉.

Correlation functions can now be calculated from this wavefunction. For ex-
ample, the average particle-hole separation, rp, is (Barford et al. 1998),

r2p =

∑
r,R r2Φ2p(r,R)∑
r,R Φ2p(r,R)

. (6.26)

The particle-hole separations are shown in Fig. 6.6 at 102 sites. The jumps
in the separation occur at p = 9 and p = 8 for the even and odd parity excitons,
respectively, corresponding to the j = 1 branches of the n = 3 and n = 4 families
of excitons. Notice that, as predicted in Appendix E, the particle-hole separations
decrease with increasing j for the same n.

6.2.3.3 Exciton families To compare the numerical results with the weak-
coupling exciton model we need to identify the exciton families (labelled by n)
and their pseudomomentum branches (labelled by j). There at least three ways
of identifying the lowest pseudomomentum branch (j = 1) of a given exciton
family.
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Table 6.2 The excitation energies and binding energies (in eV) for the first four j = 1
Mott-Wannier singlet excitons of a 102 site chain (δ = 0.2, U = 3.33 eV, and t = 2.5
eV)

DMRG calculation Weak-coupling theory
State Excitation energy Binding energy Excitation energy Binding energy

11B−
u (n = 1) 2.62 1.82 2.68 2.49

21A+
g (n = 2) 3.49 0.95 3.70 1.47

91B−
u (n = 3) 3.93 0.51 4.25 0.92

81A+
g (n = 4) 4.13 0.31 4.54 0.63

• These states have strong dipole moments between different families if |n−
n′| is odd (and thus they contribute strongly to the nonlinear optical spec-
troscopies, as we describe in Chapter 8).

• There are sharp changes in the particle-hole separations, rp, as shown in
Fig. 6.6.

• As shown in Fig. 6.5, energy plots against inverse chain length identify
the different exciton families by the bands of states which converge as the
chain length increases.

The comparisons between the essentially exact calculations and the weak-
coupling theory are summarized by comparing their predictions in Table 6.2 and
Fig. 6.3. For small U the agreement between the excitation energies is good for
the n = 1 and n = 2 excitons, and reasonably good for the n = 3 and n = 4
excitons. In this limit, as predicted, the odd parity singlet and triplet excitons are
degenerate. However, for intermediate U the results are less good, particularly
for the odd parity excitons. The binding energies do not agree well. The origin of
this disagreement is that the unbound particle-hole pair is strongly solvated by
intrachain screening, which is absent in the simple theory presented here. The
excitons are also screened, but this screening becomes less strong as the excitons
become more strongly bound.31

6.2.3.4 Primary excitons We conclude this section with a few remarks on the
essential states responsible for the nonlinear optical susceptibilities. As described
in Chapter 8, there are at most four states in a particular excitation pathway in
the sum-over-states calculation of the third-order nonlinear susceptibility, χ(3).
Only a few excitation pathways (and hence states) contribute to this sum. The
pathway must contain strong dipole moments to the ground state. In the weak
coupling limit these are the 11A+g , 1

1B−
u , 2

1A+g , and n1B−
u states, namely the

ground state and the j = 1, n = 1, 2, and 3 Mott-Wannier excitons.32

31In practice, the intrachain excitations are also screened by interchain interactions, and thus
the DMRG calculations also overestimate the experimentally determined binding energies by
ca. 1 eV. Interchain screening is discussed in Chapter 9.

32The anticrossings between a higher j of a lower n with the j = 1 state of a higher n, shown
in Fig. 6.5, can lead to spurious ‘essential states’, as oscillator strength is transferred from the
j = 1 state of higher n to the higher j state of the lower n. These other essential states, arising
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Fig. 6.7. A schematic energy level diagram of the j = 1 members of the Mott-Wannier
exciton families. The symmetry assignments refer to centro-symmetric polymers
with particle-hole symmetry.

Figure 6.7 is a schematic energy level diagram that summarizes the key low-
lying states with their predominant Mott-Wannier exciton quantum number as-
signments. The symmetry assignments refer to centro-symmetric polymers with
particle-hole symmetry. Notice, however, that particle-hole symmetry is not an
exact symmetry of conjugated polymers. The symmetry assignments in the ab-
sence of particle-hole symmetry are shown in Table 6.3. In particular notice that
the 21A+g state becomes the m1Ag state (where m > 2), as this state is not
in general the lowest excited even-parity singlet state. The lowest excited even-
parity singlet state is the 11A−

g state, which is the j = 2 pseudomomentum state
associated with the n = 1 exciton.

6.2.4 Refinements of the theory

A severe approximation in the weak-coupling effective model presented in this
chapter is that the ground state is noninteracting, and thus there is no screen-
ing of the electron-hole interactions by the other π-electrons. Such screening is
usually modelled by a static dielectric constant in the electron-hole interaction
(eqn (6.20)), and often also by a renormalization of the charge gap, 2∆.

Obviously, Hartree-Fock or density functional theory (DFT) ground states
would be more rigorous approximations. With such starting points, most meth-

from the accidental degeneracies, are quite different from the competing essential states seen
in the intermediate-coupling regime, as discussed below.
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Table 6.3 State labels and corresponding exciton quantum numbers in the
weak-coupling limit

State labels Exciton quantum numbers
Particle-hole symmetry No particle-hole symmetry n j

11A+
g 11Ag − −

11B−
u 11Bu 1 1

11A−
g 21Ag 1 2

21A+
g m1Ag 2 1

n1B−
u n1Bu 3 1

13B+
u 13Bu 1 1

13A+
g 13Ag 1 2

13A−
g m3Ag 2 1

n3B+
u n3Bu 3 1

ods proceed in a similar spirit to that presented here. Namely, a basis of single
particle-hole excitations is constructed from the ground state and the Hamilto-
nian is diagonalized within this basis. The single configuration interaction (S-
CI) method proceeds precisely in this manner (see (Szabdo and Ostlund 1996)
or (Atkins and Friedman 1997)). The random phase approximation improves
on the S-CI method by constructing a polarizable Hartree-Fock ground state.
Finally, the GWA-Bethe-Salpeter equation method takes as its starting point a
DFT-local density approximation (LDA) ground state, which is then corrected
by the GW-approximation before a Bethe-Salpeter equation is constructed for
the electron-hole wavefunction using the LDA orbitals (Rohfling and Louie 1999;
van der Horst et al. 2000, 2001).

While the methods described here give quantitative predictions of exciton
energies and wave functions in the weak-coupling limit, they are inapplicable for
the strong-coupling limit, described in the next section, as the excited state basis
of conduction band particles and valence band holes is no longer valid.

6.3 The strong-coupling limit

Excitons in the strong-coupling limit are quite different from their counterparts
in the weak-coupling limit. In the weak-coupling limit excitons are particle-hole
excitations from the valence to the conduction band. As described in Section 6.2,
a real space picture corresponds to a particle in a local antibonding molecular
orbital bound to a hole in local bonding molecular orbital. Since an electron and
hole can exist on the same dimer there are no restrictions on the symmetries of
the relative wavefunction, and both singlet and triplet excitons exist. However, as
shown in Section 5.3.2, the strong-coupling limit starts from the approximation
that the Coulomb interactions are so large that the undimerized band splits into
a lower and upper Hubbard band. At half-filling the lower Hubbard band is full,
corresponding to one electron per π orbital. Now an exciton is a particle in the
upper Hubbard band bound to a hole in the lower Hubbard band. An equivalent,
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Fig. 6.8. A Mott-Hubbard exciton. (a) An empty orbital (holon) at i′ − i/2 is bound
to a doubly occupied orbital (doublon) at i′ + i/2. This is equivalent to two spinless
fermions, or hardcore bosons, represented by Xs, shown in (b).

real-space picture is of an empty orbital bound to a doubly occupied orbital on
another site, as illustrated in Fig. 6.8. These are Mott-Hubbard excitons. This
problem maps onto the problem of two bound spinless fermions (or hard core
bosons), as described in Section 5.3.2. The particle and hole cannot exist on the
same site, so there is a local hardcore repulsion, and the relative wavefunction is
zero for r = 0. As will be shown in the next section, in the continuum limit with
a 1/r potential the bound states form a Rydberg series, with each energy level
being composed of an even and odd pair of states (Barford 2002).

6.3.1 The effective-particle model
The general particle-hole eigenstate in this limit is of the form

|ΦMH〉 =
∑
ii′

Φii′ |i′ + i/2, i′ − i/2〉, (6.27)

where
|i′ + i/2, i′ − i/2〉 = a†

i′+i/2a
†
i′−i/2|0〉, (6.28)

and the MH refers to Mott-Hubbard excitons. a†
i creates a spinless fermion on

site i and |0〉 is the vacuum of the two-body problem.
Following the same procedure as in Section 6.2.1, using Hred (defined in eqns

(5.26) and (6.27)), the relative wavefunction ψn(i), satisfies

−2t cos
(
Ka

2

)
(ψn(i+ 1) + ψn(i− 1))− V (i)ψn(i) = (E − U)ψn(i),

(6.29)

where i is the distance between atomic the pair of spinless fermions and a is the
lattice spacing, as illustrated in Fig. 6.8. V (i) is the Coulomb potential between
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a pair of electrons i sites apart. Equation (6.29) is the Schrödinger equation for
describing Mott-Hubbard excitons.

The hard core repulsion, imposed by the condition ψn(0) = 0, implies that
even and odd parity solutions are degenerate, because ψn(i) can be matched
by either ±ψn(−i) at the origin. Thus, the solutions of eqn (6.29) in the con-
tinuum limit are precisely the hydrogen atom wavefunctions (for zero angular
momentum), as described in Appendix E. In practice, the degeneracy between
the even and odd parity solutions is lifted by virtual transitions between the
Hubbard bands. To second order in perturbation theory the energy splitting is
O(t2/(U − V1)).

In analogy with eqns (6.22) and (6.23) we can express the exciton states as

|1B−
u 〉 =

∑
odd n

∑
odd j

Bnj |ΦMHnj 〉+ other contributions, (6.30)

and

|1A+g 〉 =
∑
even n

∑
odd j

Bnj |ΦMHnj 〉+ other contributions, (6.31)

where |ΦMHnj 〉 is defined in eqn (6.27).
Since the unbound continuum starts at (U − 4t), we see that this model is

unphysical for U � 4t, as then the bound states would have a negative excitation
energy. So, although we can obtain binding energies, we cannot obtain physically
realistic excitation energies in the intermediate coupling regime. However, as we
shall see in the next section, this theory does provide qualitative insight to the
behaviour of the intermediate-coupling regime.

This strong-coupling exciton theory completely neglects the low-lying spin
density wave excitations (described in Chapter 5); nor does it describe the triplet
excitons. In this limit the 13B+u state has evolved from the n = 1, j = 1 Mott-
Wannier triplet exciton to a gapless spin-density-wave (or magnon), while the
21A+g state has evolved from the weak-coupling n = 2, j = 1 Mott-Wannier
exciton to a pair of triplets (or a bimagnon) (Schulten and Karplus 1972; Tavan
and Schulten 1987). This picture is confirmed by the numerical calculations for
six sites, presented in Table 6.4. The first odd parity singlet exciton is now the
m1A+g state, wherem > 2 (m = 5 for the six-site calculation). This, as predicted,
is virtually degenerate with its associated even parity exciton, the 11B−

u state,
being ca. 4t2/(U − V1) higher in energy. The 13A−

g state is the 13B+u triplet
bound to the 11B−

u exciton, while the 83B+u state is the 13B+u triplet bound to
the 51A+g exciton. The excited states in this limit are represented schematically
in Fig. 6.9.

6.3.1.1 The particle-hole correlation function In analogy to the weak-coupling
limit, the strong coupling theory suggests an appropriate particle-hole (or holon-
doublon) correlation function for measuring the particle-hole separation in nu-
merical calculations. Suppose that
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Table 6.4 Excitation energies (in eV) of the key low-lying states for the undimerized
six-site chain (U = 100 eV, t = 2.5 eV, and V (i) is determined by the Ohno potential,
eqn (2.55))

State Character Excitation Energy (eV)
21A+

g Pair of magnons 0.365
11B−

u n = 1, j = 1 Mott-Hubbard singlet exciton 86.375
51A+

g (≡ m1A+
g ) n = 2, j = 1 Mott-Hubbard singlet exciton 86.650

n1B−
u n = 3, j = 1 Mott-Hubbard singlet exciton —

13B+
u Magnon 0.138

13A−
g Magnon bound to the n = 1 Mott-Hubbard exciton 86.545

83B+
u Magnon bound to the n = 2 Mott-Hubbard exciton 86.819

TripletsSinglets
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Fig. 6.9. Schematic energy level diagram of the spin-density-wave states and the j = 1
members of the Mott-Hubbard exciton families. J = 4t2/(U − V1). The symmetry
assignments refer to centro-symmetric polymers with particle-hole symmetry.

h†
i =

∑
σ

ciσ(1− niσ̄) (6.32)

creates a holon (namely removes a particle from the lower Hubbard band), while

d†
i =

∑
σ

c†iσniσ̄ (6.33)

creates a doublon (namely a particle in the upper Hubbard band). Then, assum-
ing that the ground state, |GS〉, is constructed by occupying the lower Hubbard
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band, the wavefunction for a holon-doublon excitation separated by r = ia in
the excited state |p〉 is

Φp(r,R) = 〈p|d†
i′+i/2h

†
i′−i/2|GS〉. (6.34)

The mean-square separation is then given by eqn (6.26).

6.4 The intermediate-coupling regime

As the strength of the Coulomb interactions are increased from the weak-coupling
limit the character of the ground state and excitations changes. As discussed
already, a new class of excitations emerges, and these are the spin-density-wave
(or covalent) states. The lowest lying triplet (13B+u ) becomes a spin-density-
wave, and the 21A+g state is a bimagnon. A higher lying 1A+g state evolves into
the n = 2 Mott-Hubbard exciton.

The intermediate-coupling regime is in the crossover between these limits. In
fact, the crossover also occurs as a function of the dimerization, δ. Consider the
undimerized chain, with δ = 0. As a result of the perfect nesting in one-dimension
there is always a correlation gap in the electronic spectrum of the half-filled chain
for any nonzero Coulomb interaction. For the Hubbard model the correlation
gap is ∼ √

Ut exp(−t/U) for t � U , while it is (U − 4t) for t � U . We expect
this prediction of a gapped charge spectrum to remain correct for long-range
interactions. The correlation gap separates the lower and upper Hubbard bands.
A particle-hole excitation across the correlation gap will result in a bound Mott-
Hubbard exciton for any interaction strength, although for weak interactions the
exciton will be considerably more complicated than the holon-doublon exciton
described in the last section. Alternatively, if the dimerization gap (2∆ = 4δt) is
large compared to the correlation gap, we expect Mott-Wannier excitons to be
the dominant low-energy particle-hole excitations.

We can see this behaviour by studying the numerical calculations. First, con-
sider δ = 0. Figure 6.10(a) shows the four lowest essential states. The 11B−

u ,
91A+g , and 7

1B−
u states are the j = 1, n = 1, 2, and 3 Mott-Hubbard excitons.

The 21A+g state, with an energy lower than the 11B−
u state, is predominately a bi-

magnon. The particle-hole separations in the holon-doublon channel, rp, defined
by eqns (6.26) and (6.34) are also shown.

Next, consider δ = 0.2. Fig. 6.10(b) shows that the four lowest essential states
appear to fit the weak-coupling model, as they are the 11B−

u , 2
1A+g , and 4

1B−
u

states. These are j = 1, n = 1, 2, and 3 Mott-Wannier excitons.
At δ = 0.1 there are both Mott-Hubbard and Mott-Wannier excitons, form-

ing two inter-related families of essential states. In general, the 1B−
u states are

linear superpositions of eqns (6.22) and (6.30), while the 1A+g states are linear
superpositions of eqns (6.23) and (6.31). As the bond dimerization decreases the
spin-density-wave component of the 21A+g state increases (Mukhopadhyay et al.
1995). Figure 6.10(c) shows the 11B−

u , 2
1A+g , and 41B−

u states, predominately
forming the Mott-Wannier family of excitons, while Fig. 6.10(d) shows the 11B−

u ,
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Fig. 6.10. The DMRG calculated essential states (defined as the four lowest states with
the strongest interstate dipole moments) for 30 site chains. The arrows show the
transition dipole moments normalized to 11A+

g → 11B−
u transition dipole moment.

The Mott-Wannier exciton and Mott-Hubbard exciton particle-hole separations (in
units of the lattice spacing) are shown italicized and bold, respectively. (a) t = 2.5
eV, U = 10 eV, and δ = 0, showing the Mott-Hubbard series; (b) t = 2.5 eV,
U = 10 eV, and δ = 0.2, showing the Mott-Wannier series; (c) t = 2.5 eV, U = 10
eV, and δ = 0.1; and (d) t = 2.5 eV, U = 10 eV, and δ = 0.1. Also shown in (c) and
(d) are the number of nodes in the Mott-Wannier exciton wavefunction (in round
brackets ( )) and the number of nodes in the Mott-Hubbard exciton wavefunction
(in square brackets [ ]). In all cases long range interactions are determined by the
Ohno potential. (The results for the undimerized chain (a) agree reasonably well
with the weak-coupling field theory described in Section 5.2.1 (Essler et al. 2001).
Using eqns (5.11) and (5.13) with the charge gap 2∆ = 4.0 eV and E1 = 2.25 eV
implies that there are two bound states and that E2 = 3.72 eV, compared to the
calculated value of 3.54 eV.)

61A+g , and 9
1B−

u states, predominately forming the Mott-Hubbard family of ex-
citons. The progression of excitons in both families can also be identified by the
jumps in the relevant particle-hole separation.

Since the 11B−
u state has large dipole moments to both the 21A+g and 61A+g

states, this state clearly has large amplitudes in both the n = 1 Mott-Hubbard
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and n = 1 Mott-Wannier families. Similarly, the character of each state can be
investigated by examining their Mott-Wannier and Mott-Hubbard exciton wave-
function components (defined by eqns and 6.25 and 6.34, respectively). The num-
ber of nodes in the Mott-Wannier and Mott-Hubbard exciton wavefunctions are
shown in Fig. 6.10(c) and (d). We note that the 61A+g state has one node in the
Mott-Hubbard exciton wavefunction and three nodes in the Mott-Wannier exci-
ton wavefunction. Thus, this state is an admixture of the n = 2 Mott-Hubbard
exciton and the n = 4 Mott-Wannier exciton. Since this lies energetically be-
low the 41B−

u state, which is predominately the n = 3 Mott-Wannier exciton,
we see that the simple classification of essential states into Mott-Wannier or
Mott-Hubbard excitons fails in certain parameter regimes.

6.5 Concluding remarks

In this chapter we have described the effective-particle models for excitons in
the weak and strong coupling limits, and compared them to essential exact, nu-
merical (DMRG) calculations. We saw that there is good agreement between the
effective-particle models and the computational results in these limits. We used
these extreme limits to understand the numerical calculations in the intermediate-
coupling regime. We summarize the main points as follows:

• In the weak-coupling limit (where the single particle gap is larger than
the correlation gap) the bound states are Mott-Wannier excitons, namely
conduction band electrons bound to valence band holes. A Mott-Wannier
exciton in real space is an electron in a conduction band Wannier orbital
bound to a hole in a valence band Wannier orbital. Singlet and triplet
excitons whose relative wavefunctions are odd under a reflection of the
relative coordinate (namely, even n excitons) are degenerate. Thus, the
21A+g and 13A−

g states are degenerate in this limit. In contrast, singlet and
triplet excitons whose relative wavefunctions are even under a reflection
of the relative coordinate (namely, odd n excitons) have energies that are
split by the exchange interaction.

• In the strong-coupling limit (where the correlation gap is larger than the
single particle gap) the bound states are Mott-Hubbard excitons, namely
particles in the upper Hubbard band bound to holes in the lower Hubbard
band. A Mott-Hubbard exciton in real space is a doubly occupied atomic
orbital bound to an empty atomic orbital. These bound states occur in
doublets of even and odd parity excitons. Triplet excitons are magnons
bound to the singlet excitons, and hence are degenerate with their singlet
counterparts.

• In the intermediate-coupling regime Mott-Wannier excitons are the more
appropriate description for large dimerization (δ = 0.2), while for the
undimerized chain Mott-Hubbard excitons are the correct description. For
dimerizations relevant to polyacetylene and polydiacetylene (that is, δ ∼
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0.1) there is a mixed representation of both Mott-Hubbard and Mott-
Wannier excitons.

• For both weak and strong coupling an infinite number of bound states exist
for 1/r interactions for an infinite polymer. As a result of the discreteness
of the lattice, and the restrictions on the exciton wavefunctions in one-
dimension, the progression of states does not follow the Rydberg series.

• Formally, the exciton binding energy is defined relative to the energy of
a widely separated uncorrelated electron-hole pair. In practice, excitons
whose particle-hole separation exceeds the length of the polymer (or more
correctly, the conjugation length) can be considered unbound. This marks
the breakdown of the effective-particle model.

• It is not known how many bound states exist in the intermediate regime.
• The numerical calculations show that the n = 1 exciton binding energy
increases monotonically with increasing Coulomb interaction. At large cou-
pling the binding energy agrees with the strong-coupling theory. We may
therefore place a theoretical estimate on the binding energy of excitons in
isolated conjugated polymers as ca. 4.6 eV.

• The numerically calculated exciton excitation energies scale as the inverse
of the chain length for short chains, and the inverse of the square of the
chain length for long chains. The long chain limit reflects the particle-in-
a-box behaviour of the effective-particle, where the energy decreases as
the chain length increases because of the delocalization of the effective
particle. However, when the chain length is comparable to or shorter than
the particle-hole separation we expect the effective-particle model to break
down. In that limit the excitation energies increase with decreasing chain
length because of confinement effects associated with squeezing the electron
and hole together.

• The so-calledm1Ag state observed in nonlinear optical spectroscopy (as de-
scribed in Chapter 8) is the 21A+g state, or n = 2 Mott-Wannier exciton in
the weak-coupling limit. In the strong-coupling limit it is the m1A+g state,
or n = 2 Mott-Hubbard exciton. This is often referred to as the charge-
transfer exciton, owing to its larger electron-hole separation in comparison
to the more strongly bound 11B−

u state, or n = 1 exciton.

It is instructive to apply these exciton theories to actual conjugated poly-
mers. Calculations on single poly(para-phenylene) chains (see Section 11.2.3)
predict the 11B−

1u (n = 1, j = 1) exciton at 3.7 eV, the 21A+g (n = 2, j = 1)
exciton at 5.1 eV and the 13A−

g triplet close in energy to the 21A+g state, at 5.5
eV. This progression indicates a Mott-Wannier series of excitons. An equivalent
description applies to poly(para-phenylene-vinylene). In contrast, polyacetylene
and polydiacetylene have predominately Mott-Hubbard excitons. In polyacety-
lene the vertical energies of the 11B−

1u and 2
1A+g states are virtually degenerate

(see Section 10.2.1), while for polydiacteylene the 21A+g state lies a few tenths
of an eV higher than the 11B−

1u state (Race et al. 2001). In both cases the 1A+g
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state most strongly connected to the 11B−
1u state is not the 21A+g state, but

a higher m1A+g state, fitting the pattern of Mott-Hubbard excitons. Further-
more, in both cases the 21A+g state undergoes strong electron-lattice relaxation,
and its relaxed energy lies below that of the relaxed 11B−

1u state (Race et al.
2003). This places polyacetylene and polydiacetylene on the correlated side of
the intermediate-coupling regime.

These predictions apply to the vertical excitations of single polymer chains.
Various additional intrinsic and extrinsic effects can significantly modify excited
state energies. Covalent states, such as the highly correlated 13B+u and 21A+g
states, undergo significant electron-lattice relaxation, and as already stated, this
leads to a reversal of the 11B−

1u and 21A+g energies in polyacetylene and poly-
diacetylene. In the next chapter we describe the combined effects of electron-
electron and electron-phonon coupling. There it will be shown that the descrip-
tion of the triplet excited state as a bound particle-hole pair - even in the weak-
coupling limit - requires revision.

An important extrinsic effect is screening by the environment, and again, this
significantly alters the energy of excited states. States with larger binding energy
are less screened than those that are weakly bound. Current estimates are that
the n = 1 exciton solvates by ca. 0.3 eV, the n = 2 exciton solvates by ca. 0.6
eV, and the band gap solvates by ca. 1.5 - 2.0 eV (Moore and Yaron 1998). This
effect will be discussed in Chapter 9.

Finally, we remark that this chapter has focussed on excitons confined to sin-
gle chains. However, the formalism can easily be extended to interacting chains,
and this will be considered briefly in Section 9.6 when we describe a theory for
the singlet exciton yield in light emitting polymers.
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ELECTRON-LATTICE COUPLING II: INTERACTING
ELECTRONS

7.1 Introduction

It has been recognized for some 30 years that neither electron-phonon inter-
actions nor electron-electron interactions alone are capable of explaining the
electronic properties of conjugated polymers. In trans-polyacetylene, for exam-
ple, it is impossible to consistently predict the values of the bond alternation
and the optical gap within a noninteracting framework for reasonable values of
the electron-phonon coupling constant (Ovchinnikov et al. 1973). In fact, as de-
scribed in this chapter, the bond alternation depends crucially on the strength of
the electronic interactions (Horsch 1981), with the optical gap being significantly
enhanced.

The effects of electron-phonon interactions alone were described in Chapter
4. We showed that these interactions lead to a dimerized, semiconducting ground
state and to solitonic structures in the excited states. On the other hand, the
effects of electron-electron interactions in a polymer with a fixed geometry were
described in Chapters 5 and 6. There it was shown that the electronic interactions
cause a metal-insulator (or Mott-Hubbard) transition in undimerized chains.
Electron-electron interactions also cause Mott-Wannier excitons in the weak-
coupling limit of dimerized chains, and to both Mott-Hubbard excitons and spin
density wave excitations in the strong coupling limit.

In this chapter we describe the combined effects of both electron-electron and
electron-phonon interactions, focussing our attention on these effects in linear
polyenes. As well as significantly enhancing the bond alternation in the ground
state, we will see that these combined effects lead to a rich and complex behaviour
in the excited states.

We start this investigation by treating the electronic degrees of freedom
within the Born-Oppenheimer approximation, where the nuclear degrees of free-
dom are static, classical variables. The π-electron model that describes both
electron-electron and electron-phonon interactions in the Born-Oppenheimer ap-
proximation is known as the Pariser-Parr-Pople-Peierls model. This is described
and its predictions are analyzed in the following sections. Chapter 10 will deal
with quantum phonons in an interacting electron model, specifically for trans-
polyacetylene.

95
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7.2 The Pariser-Parr-Pople-Peierls model

The Pariser-Parr-Pople-Peierls (P-P-P-P) model,HPPPP, is defined as the Peierls
model (defined in Section 4.2) supplemented by the Coulomb interactions. The
electrons and lattice are coupled together by the effects of changes in the bond
lengths both on the one-electron transfer integrals and the Coulomb interactions.
These effects are generally treated up to first order in the changes of bond length.
As the density-density correlator, (Nm−1)(Nn−1), decays rapidly with distance,
it is also a reasonable approximation to retain changes in the Coulomb potential
for only nearest neighbour interactions.

Thus, the Pariser-Parr-Pople-Peierls model is defined as

HPPPP = −2
∑
n

tnT̂n +W
∑
n

∆n(Nn+1 − 1)(Nn − 1) (7.1)

+
1

4πtλ

∑
n

∆2
n + Γ

∑
n

∆n + U
∑
n

(
Nn↑ − 1

2

)(
Nn↓ − 1

2

)

+
1
2

∑
m�=n

Vmn(Nm − 1)(Nn − 1),

where
T̂n =

1
2

∑
σ

(
c†n+1,σcn,σ + c†n,σcn+1,σ

)
, (7.2)

tn = t+ te(−1)n + ∆n

2
, (7.3)

∆n = −2α(un+1 − un), (7.4)

and

λ =
2α2

πKt
. (7.5)

The variables and parameters in eqns (7.2) - (7.5) are defined in Chapter 4. Vmn

(defined in eqn (2.55)) is the Ohno potential for the undistorted structure. For
generality, we also include an extrinsic dimerization, represented by the term
te(−1)n in eqn (7.3).

The second term on the right-hand side of eqn (7.1) is the change in the
Coulomb interactions arising from changes in bond length, where

W =
1
2α

(
∂Vmn

∂rmn

)
rmn=r0

=
Uγr0

2α(1 + γr20)3/2
, (7.6)

γ = (U/14.397)2 and r0 is the undistorted average bond length. It is instructive
to rewrite this term as

−2αW
∑
n

(un+1 − un)(Nn+1 − 1)(Nn − 1), (7.7)
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where we have used eqn (7.4). Expanding and resumming we see that this term
has two components. One component is the electron-phonon coupling arising
from the change in the ionic potentials,

−2αW
∑
n

(un+1 − un−1)Nn. (7.8)

Comparing this with eqn (2.40) we identify 2αW with β. The other component
represents the changes in the nearest neighbour electron-electron interaction from
the change in bond length,

−2αW
∑
n

(un+1 − un)Nn+1Nn. (7.9)

The first term on the right-hand side of eqn (7.1) is just the electron-phonon
coupling arising from the change in the kinetic energy, which is the first term in
eqn (2.40).

As described in Chapter 4, by using the Hellmann-Feynman theorem we can
derive a self-consistent equation for {∆n} for any state,

∆n = 2πtλ
(
〈T̂n〉 −W 〈D̂n〉 − Γ

)
, (7.10)

where
D̂n = (Nn+1 − 1)(Nn − 1) (7.11)

is the density-density correlator for the nth bond.
We note that constant chain lengths, implying that

∑
n∆n = 0, means that

Γ =
1
N

∑
n

(
〈T̂n〉 −W 〈D̂n〉

)
= 〈T̂n〉 −W 〈D̂n〉, (7.12)

where the overbar represents the spatial average. Using the definition of Γ from
eqn (4.8), eqn (7.12) derives eqn (2.46). We now see from eqn (7.10) that the
distortion of the nth bond is proportional to the deviation of 〈T̂n〉−W 〈D̂n〉 from
its average value, Γ. Thus, both the bond order, T̂n, and the bond density-density
correlator, D̂n, contribute to this distortion.

7.3 Dimerization and optical gaps
In this section we describe how electron-electron interactions modify the nonin-
teracting predictions both for the bond alternation of the ground state and the
optical gap. This subject has been studied by a number of authors (Ukranskii
1978; Horsch 1981; Hirsch 1983; Mazumdar and Dixit 1983; Baeriswyl and Maki
1985; Konig and Stollhoff 1990; Baeriswyl et al. 1992).

The ground state staggered dimerization, ∆0, is defined as

∆0 =
1
N

∑
n

∆n(−1)n. (7.13)

Figure 7.1 shows the behaviour of ∆0 for a linear chain as a function of the
Coulomb interaction strength, U . As U increases to the intermediate values of
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Fig. 7.1. The ground state dimerization, ∆0, (circles), the optical gap, defined as
the vertical excitation energy of the lowest dipole-allowed singlet (the 11B−

u state)
(squares) and the vertical charge gap (diamonds). All values are extrapolations to
the infinite chain and are normalized to their U = 0 values. In the U = 0 limit
the optical and charge gaps equal 2∆0. t = 2.5 eV and λ = 0.1. These results were
calculated from the Pariser-Parr-Pople-Peierls model on linear polyenes with the
trans-polyacetylene geometry with r0 = 1.4 Å and α = 4.6 eVÅ−2.

10 − 15 eV we see that there is a substantial increase in the bond alternation,
being approximately ten times greater than the noninteracting value. As the
Coulomb interaction increases further, however, the dimerization decreases and
vanishes in the asymptotic limit. The dimerization is maximized at U ∼ 4t, a
result first qualitatively explained by Dixit and Mazumdar (1984).

To understand the origins of this behaviour we first need to consider the
valence bond diagrams that dominate the wavefunction associated with a partic-
ular geometrical structure. As described in Section 5.5, a valence bond diagram
is a real-space representation of the electronic basis states. Figure 7.2 shows the
A and B geometrical structures of a dimerized linear chain. Also shown are the A
and B Kekulé valence bond diagrams that dominate the ground state wavefunc-
tion for each geometrical structure. The A and B phases are equivalent under a
translation.

The ground state of the A-phase geometrical structure will be dominated by
the A-phase Kekulé diagram. However, there will also be a contribution from
the B-phase Kekulé diagram because of quantum fluctuations (and vice versa).
These fluctuations will reduce the magnitude of the dimerization. Thus, the
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Fig. 7.2. The dimerized geometrical structures and associated Kekulé valence bond
diagrams of linear polyenes.

dimerization is enhanced if quantum fluctuations are suppressed. In the weak
coupling limit this suppression is achieved by electronic interactions as they
increase the resonance barrier between equivalent valence bond diagrams.

To see why interactions increase the resonance barrier between equivalent
diagrams consider Fig. 7.3. This figure shows the two equivalent Kekulé valence
bond diagrams of benzene linked together by different valence bond diagrams
generated by the action of kinetic energy operator. In these diagrams a line
represents a singlet bond, a cross represents a doubly occupied site and a dot
represents an empty site. A diagram composed entirely of singly occupied sites
is termed covalent, whereas a diagram containing one or more occupied sites is
termed ionic.

As shown by Coulson and Dixon (1961) the resonance barrier between two
equivalent diagrams increases with the lengths of the paths and decreases with
the number of paths connecting these diagrams. Now, electronic interactions
make ionic configurations energetically less favourable because each doubly oc-
cupied site costs an energy U . Thus, interactions also effectively reduce the num-
ber of paths and therefore increase the resonance barrier, thereby enhancing the
dimerization.

This argument breaks down when charge fluctuations are suppressed in favour
of spin-density wave fluctuations. As described in Chapter 5 this occurs in the
intermediate-coupling regime, around U ∼ 4t.

We can see why the dimerization decreases for strong electronic interactions
by considering the Pariser-Parr-Pople-Peierls model in the strong-coupling limit
(defined by U � t). As described in Section 5.3.1, in this limit the low-energy
physics of the Pariser-Parr-Pople model is described by the Heisenberg antifer-
romagnetic. Similarly, the low-energy physics of the Pariser-Parr-Pople-Peierls
model is described by the Heisenberg-Peierls (or spin-Peierls) model,
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Fig. 7.3. Some representative paths connecting the two Kekulé diagrams of benzene
(shown in the bottom left and right corners). The diagram in the top corner shows
the fully ionic configuration. All other diagrams are shown without their carbon
atom vertices. A line represents a singlet bond, a cross (×) represents a doubly
occupied site and a dot (·) represents an empty site. The potential energy of a
valence bond diagram is proportional to the number of doubly occupied sites. Thus
the ordinate is proportional to potential energy. The valence bond diagrams are
connected via the kinetic energy operator. Paths that include valence bond diagrams
with a large number of doubly occupied sites become energetically unfavourable as U
is increased. Thus, quantum fluctuations between the equivalent Kekulé diagrams
are reduced, thereby increasing the strength of the dimerization. Modified from
figure 9 with permission from S. N. Dixit and S. Mazumdar, Phys. Rev. B 29, 1824,
1984. Copyright 1984 by the American Physical Society.

H =
∑
n

JnSn · Sn+1 +
1

4πtλ

∑
n

∆2
n + Γ

∑
n

∆n, (7.14)

where (to first order in ∆n),

Jn = J0

(
1 +

∆n

t

)
, (7.15)

and

J0 =
4t2

U − V1
. (7.16)

(V1 is the nearest neighbour Coulomb interaction). Then the bond order param-
eter is given by,

∆n = −2πtλ
(
J0
t

〈Sn · Sn+1〉+ Γ
)
. (7.17)

Since the nearest neighbour spin-spin correlator, 〈Sn · Sn+1〉, is O(1) and J0 ∼
U−1 we see that ∆0 decreases as a function of U in the strong-coupling limit.
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This prediction is confirmed by the numerical results shown in Fig. 7.1, which
agree (up to a numerical factor of ∼ 2) with a strong coupling analysis in the
continuum limit (Nakano and Fukuyama 1980) that predicts,

∆0 = 8(2π)1/2t
(

λt

U − V1

)3/2
. (7.18)

Also shown in Fig. 7.1 is the optical gap, defined as the vertical excitation
energy of the lowest dipole-allowed singlet (the 11B−

u state). This increases very
rapidly with U because of a combination of two factors. First, as already dis-
cussed, the dimerization gap is increasing rapidly with U for U < 12.5 eV and
second, the optical gap also increases with U for fixed ∆, particularly for U > 10
eV (as shown in Fig. 5.2). In the intermediate-coupling regime the optical gap is
30 − 40 times larger than its noninteracting value. This behaviour illustrates a
dramatic failure of the noninteracting description, as first pointed out by Ovchin-
nikov and coworkers (Ovchinnikov et al. 1973). It further illustrates the combined
effects of both electron-electron and electron-phonon interactions. This will be
further demonstrated in the next section when we describe the excited state
structures.

7.4 Excited states and soliton structures
Electron-phonon interactions in the absence of Coulomb interactions lead to mid-
gap states and associated geometric lattice defects, or solitons. In this section we
explore how these geometric defects change as a function of the electron-electron
interaction strength.

First, we examine the relaxed and vertical energies of the Pariser-Parr-Pople-
Peierls model as a function of the interaction strength. These transition energies
are illustrated in Fig. 7.4. We first note the crossover in the vertical energies of
the 11B−

u and 21A+g states as a function of U (as already discussed in Chapter
5) signifying the highly correlated nature of the 21A+g state at strong-coupling
(Schulten and Karplus 1972). The relaxed energy of the 21A+g state, however,
is close to or lower than that of the relaxed energy of the 11B−

u state. For the
parameter region around 0 � U � 5 eV the relaxed energy of the 21A+g state lies
slightly higher than that of the 11B−

u state, as illustrated by the inset to Fig.
7.4. This shows the relaxed energies of the 11B−

u and 21A+g states as a function
of inverse chain length when U = 2.5 eV. 33

For all parameter values the relaxation energy of the 11B−
u state is modest,

in contrast to the large relaxation energies of the 13B+u and 21A+g states relative
to their vertical energies. These differences in the sizes of the relaxation energy
is also reflected in the significant geometrical distortions from the ground state
geometry in the 13B+u and 21A+g states, as described below.

33This, however, is an ‘artefact’ of the adiabatic approximation, which leads to self-trapping
(as described in Section 7.7). This is illustrated by the inset to Fig. 7.4, which shows the relaxed
energies of the 11B−

u and 21A+
g states as a function of inverse chain length, N−1. As N → ∞

the energies become constant as a consequence of self-trapping.
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Fig. 7.4. The vertical (solid symbols and curves) and relaxed (open symbols and
dashed curves) energies of the 11B−

u state (circles), the 13B+
u state (diamonds)

and the 21A+
g state (squares). The inset shows the relaxed energies of the 11B−

u

and 21A+
g states as a function of inverse chain length when U = 2.5 eV. t = 2.5 eV

and λ = 0.1.

7.4.1 11B−
u state

For any electronic interaction strength on a rigid, dimerized lattice this state is a
bound particle-hole pair, being the n = 1 Mott-Wannier singlet exciton at weak-
coupling and the n = 1 Mott-Hubbard exciton at strong-coupling. In contrast, in
the noninteracting limit electron-lattice coupling results in a soliton-antisoliton
pair of particle-hole spinless objects, as described by eqn (4.18) and illustrated
in Fig. 4.8(a). As there is no residual attraction between the particle and hole
in the noninteracting limit, they are widely separated. However, an infinitesimal
particle-hole attraction binds the particle-hole pair, causing a strongly bound
state as the electron interactions are increased. This behaviour is illustrated in
Fig. 7.5(a), which shows the staggered bond dimerization, δn, (defined in eqn
(4.27)) as a function of the Coulomb interaction, U . The figure clearly illustrates
the ‘polaronic’ nature of the exciton for any nonzero Coulomb interaction, as
first predicted by Grabowski et al. (1985). As the interaction strength increases
the particle and hole become more strongly bound, the particle-hole separation
decreases and the exciton creates a localized distortion of the lattice from the
ground state structure. The distortion is a tendency to reduce the amplitude of
the bond alternation, and is reminiscent of the polaronic distortion of a doped
particle described in Section 7.5.
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Fig. 7.5. The staggered, normalized bond dimerization, δn, as a function of bond in-
dex, n, of (a) the 11B−

u state and (b) the 13B+
u state for different values of U . The

values of U are shown in the key, t = 2.5 eV and λ = 0.1. The calculations were per-
formed on the Pariser-Parr-Pople-Peierls model for a 102-site chain using the DMRG
method. A two-point average was performed in (a), that is, δ̄n = (δn + δn+1)/2.

By fitting the solitonic structures of the 11B−
u state to the two-soliton func-

tional form,

δn = δ0

[
1 + tanh

(
2n0a
ξ

){
tanh

(
(n− n0)a

ξ

)
− tanh

(
(n+ n0)a

ξ

)}]
,

(7.19)
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Fig. 7.6. The fitted-values of ξ (circles), 2n0 (squares) and 2nd (diamonds) for the
11B−

u state (open symbols) using eqn (7.19) and the 21A+
g state (filled symbols)

using eqn (7.20). The crosses represent the fitted values of ξ for the 13B+
u state.

t = 2.5 eV and λ = 0.1.

the change in the geometrical structures as a function of U can be quantified.
The correlation length, ξ, and the soliton-antisoliton separation, 2n0, are plotted
in Fig. 7.6. This illustrates the decrease in the soliton-antisoliton separation as
the interaction strength is increased.

7.4.2 13B+u state

In contrast to the 11B−
u state, on a rigid, dimerized lattice the 13B+u state evolves

from the n = 1 Mott-Wannier triplet exciton at weak-coupling to a pair of
confined spinons at strong coupling. Thus, it acquires ‘covalent’ character as the
electronic interactions are increased. However, as described by eqn (4.36) and
illustrated in Fig. 4.8(b), in the noninteracting limit electron-lattice coupling
creates a soliton-antisoliton pair of spin-1/2 objects. In this limit, therefore, the
triplet state already has ‘covalent’ character. The effect of any electron-electron
interaction is to increase this covalency, leading to a strong lattice deformation
around the solitons, as shown in Fig. 7.5(b). We also see that there is a weak
repulsion between the soliton-antisoliton pair, resulting in them being repelled to
the ends of the chain, with a complete reversal of the bond alternation between
them. The fitted correlation length, ξ, of the 13B+u state, shown in Fig. 7.6, is
considerably smaller than that of the 11B−

u state.
The 11B−

u and 13B+u states are schematically illustrated in Fig. 7.7. We note
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Fig. 7.7. A schematic representation of (a) the 11B−
u state, showing the exciton

self-localized in the middle of the chain, and (b) the 13B+
u state, showing the spinons

with a region of bond reversal between them. In the weak-coupling limit the ovals
represent strong bond-order (or ‘double’ bonds), while the dashed lines represent
weak bond-order (or ‘single’ bonds). In the strong-coupling limit the ovals repre-
sent singlet dimers on the ‘double’ bonds. The electron and hole in the singlet are
strongly attracted, while the spinons in the triplet are weakly repelled.

that the character of the 11B−
u and 13B+u states in the weak-coupling limit

are changed by the electron-lattice coupling. On a rigid geometry the vertical
excitations are described as particle-hole excitations from the delocalized HOMO
to the delocalized LUMO. The particle and hole form a bound state (or exciton)
as a consequence of the attractive particle-hole potential. However, the relaxed
11B−

u state is more conveniently described as a pair of spinless oppositely charged
particles occupying the localized Wannier orbitals associated with the mid-gap
states (S±). Electron-hole interactions also bind the oppositely charged solitons
to form an exciton. In contrast, the 13B+u state is more conveniently described
as a pair of neutral spinons occupying these localized Wannier orbitals (Sσ).
Being neutral, the spinons do not form a bound state. It is also clear - both from
the geometrical structures and the relaxation energies - that the coupled effect
of electron-electron and electron-lattice interactions is more significant for the
13B+u state than for the 11B−

u state. The reason for this is that the bond-order
operator (defined in eqn (7.2)) couples to the covalent character of a state, which
is greater for the 13B+u state than for the 11B−

u state.

7.4.3 21A+g state

Electron-lattice coupling also has a rather dramatic affect on the 21A+g state,
again because of its ‘covalent’ character. On a rigid, dimerized lattice in the weak-
coupling limit this state is the n = 2 singlet Mott-Wannier exciton, evolving to a
pair of spin-1 objects at strong-coupling. Since the spin-1 objects are themselves
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Fig. 7.8. The staggered, normalized bond dimerization, δn, as a function of bond
index, n, of the 21A+

g state for different values of U . The values of U are shown in
the key, t = 2.5 eV and λ = 0.1. Singlet fission into two triplets is illustrated by the
geometric structure at U = 25 eV.

comprised of a pair of spin-1/2 objects (as illustrated in Fig. 5.3), it should not
be surprising to find that the 21A+g state is described by four-solitons in the
strong-coupling limit (Hayden and Mele 1986; Su 1995). Figure 7.8 indeed shows
that a four-soliton description is relevant for all nonzero interaction strengths,
becoming more pronounced as the Coulomb interaction increases.

The four-soliton form (Su 1995),

δn = δ0[1 + tanh
(
2n0a
ξ

)
{tanh

(
(n− nd − n0)a

ξ

)
− tanh

(
(n− nd + n0)a

ξ

)

+tanh
(
(n+ nd − n0)a

ξ

)
− tanh

(
(n+ nd + n0)a

ξ

)
}], (7.20)

can be used to extract the soliton parameters of the 21A+g state. We interpret
2n0 as the distance between the soliton-antisoliton pair and 2nd is the distance
between the centre-of-masses of the pair of solitons pairs. Their U dependence
is shown in Fig. 7.6, showing enhanced soliton confinement as U is increased up
to the intermediate regime.

For interactions less than a critical value of U the soliton parameters are
independent of chain length, indicating a confinement of the solitons, both within
a pair and between pairs. However, at a critical value of U the four solitons
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Fig. 7.9. The staggered, normalized bond dimerization, δn, as a function of bond
index, n, of the doped (polaron) state for different values of U . The values of U are
shown in the key, t = 2.5 eV and λ = 0.1.

become unconfined with 2n0 ∼ N/4 and 2nd ∼ N/2. Qualitatively, we can
understand this by recalling from Chapter 4 that at strong-coupling the 21A+g
state may be viewed as a pair of spin-1 objects, which are unbound except at a
vanishingly small dimerization. This singlet fission into a pair of triplets occurs at
large values of U (U > 22.5 eV), and is illustrated in Fig. 7.8 by the geometrical
structures for U = 25 eV.

7.5 Polarons

A polaron is charged particle associated with a lattice distortion. These were
described in the noninteracting limit in Chapter 4, where their origins arise solely
via the coupling of the lattice to the bond-order operator. In the interacting limit
there is an additional coupling to the lattice via the Coulomb interaction. Figure
7.9 shows the polaronic distortions for various interaction strengths. The lattice
distortions for nonzero interactions are qualitatively similar to those of the 11B−

u

state, illustrated in Fig. 7.5, confirming the exciton-polaron character of that
state. However, as described later in Section 7.7, because the charged particle has
both short-range interactions with acoustic phonons and long-range interactions
with longitudinal optic phonons, the coupling to the lattice is somewhat larger
than that for the exciton-polaron. This is demonstrated by the narrower and
deeper distortion for the polaron relative to the exciton-polaron.
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7.6 Extrinsic dimerization

We have seen in this chapter the dramatic differences the combined effects of
electronic interactions and electron-lattice coupling have on the character and
geometrical structures of the lowest singlet and triplet excited states: electron-
lattice coupling enhances the ‘ionic’ character of the 11B−

u state, whereas it
enhances the ‘covalent’ character of the 13B+u state. These observations apply
to linear chains in the absence of extrinsic dimerization. The question therefore
arises as to how the character of excited states of an extrinsically semiconducting
polymer, as for light emitting polymers or polydiacetylene, for example, evolve
as a function of Coulomb interactions for a fixed electron-lattice coupling.

We can begin to address this question by modelling an extrinsically semicon-
ducting polymer as a linear chain with an extrinsic dimerization. This is achieved
by the inclusion of te in eqn (7.3), as described in Section 4.8. As in the absence
of this term, in the noninteracting limit electron-lattice coupling causes mid-gap
electronic states, and associated localized soliton wavefunctions and geometri-
cal defects. The new affect of the extrinsic dimerization is to generate a linear
confining potential between the soliton-antisoliton pairs. This new property of
soliton-antisoliton confinenment is illustrated by the localized Wannier orbitals
associated with the soliton, φn, and antisoliton, φ̄n. These are obtained from the
molecular orbitals associated with the mig-gap electronic states, ψ±

n .
Figure 4.11 shows the probability density of the Wannier orbitals associated

with the mid-gap states. Although the relative separation of Wannier orbitals
is small with an extrinsic dimerization of δe = 0.1, the fact that there are two
distinct Wannier orbitals implies that the argument employed in Section 4.6 -
concerning the different characters of the 11B−

u and 13B+u states after electron-
lattice relaxation - is a general one. Thus, the 11B−

u state is comprised of spinless
electron-hole pairs, while the 13B+u state is comprised of two spin-1/2 objects.
These become confined in the presence of extrinsic dimerization. We would there-
fore expect that, as before, the different character of the 11B−

u and 13B+u states
will be evident by the different type of geometrical distortions when electron-
electron interactions are included.

Figure 7.10(a) and (b) shows the geometric structures of the 11B−
u and 13B+u

states, respectively. As the extrinsic dimerization causes a confinement of the
soliton-antisoliton pair, the geometrical structures are ‘polaronic’ in the nonin-
teracting limit for both cases. For the 11B−

u state, as before, increased Coulomb
interactions bind the particle-hole pair into an exciton, resulting in very little
change to the geometrical structure. For the 13B+u state, however, electronic
interactions lead to a more pronounced change in the geometrical structure, re-
sulting in a reversal in the intrinsic bond dimerization for a moderately small
U . We therefore see that the qualitative picture of the 11B−

u and 13B+u states
illustrated in Fig. 7.7 in the absence of extrinsic dimerization remains essentially
valid here, except that now the two spinons are bound in the 13B+u state and
there is a weaker reversal in the intrinsic bond alternation between them.

The geometrical structure of the 21A+g state is shown in Fig. 7.11. Notice that
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Fig. 7.10. The staggered, normalized, intrinsic bond dimerization, δin, as a function
of bond index, n, for a linear chain with extrinsic dimerization, δe = 0.1. (a) 11B−

u

state and (b) 13B+
u state. Notice that the total bond dimerization, δn = δin + δe,

does not change sign for the triplet state. t = 2.5 eV. λ = 0.1.

here, as for the 13B+u state, there is a change of sign of the intrinsic dimerization
in the middle of the chain. However, now the 21A+g state fits a two-soliton form for
U � 2.5 eV, unlike the four-soliton form in the absence of extrinsic dimerization.

The greater lattice distortions of the 13B+u and 21A+g states relative to the
11B−

u state is also reflected in their larger energy relaxations. These are listed
in Table 7.1 for a 66-site chain. Notice that there is a vertical gap of ca. 1 eV
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Fig. 7.11. The staggered, normalized, intrinsic bond dimerization, δin, as a function
of bond index, n, of the 21A+

g state for a linear chain with extrinsic dimerization,
δe = 0.1. t = 2.5 eV, and λ = 0.1.

Table 7.1 The vertical and relaxation energies (in eV) of a 66 site linear polyene cal-
culated from the Pariser-Parr-Pople-Peierls model with extrinsic dimerization (t = 2.5
eV, U = 10.0 eV, λ = 0.1, and δe = 0.1)

State Vertical transition energy Relaxation energy
13B+

u 2.95 0.37
11B−

u 4.12 0.14
21A+

g 5.07 0.91

between the 11B−
u and 21A+g states, but their relaxed energies are rather close.

7.7 Self-trapping

Within the Born-Oppenheimer appproximation we have seen that the excited
and charged states become self-localized, or self-trapped (Holstein 1959). Self-
trapping in one-dimensional systems is a consequence of the well-known result
from quantum mechanics that a symmetric attractive potential has at least one
bound state (see Song and Williams (1993) for more details and references).
In this case the attractive potential is the relaxation energy of the excited or
charged state associated with the deformation of the lattice.

Within a semiclassical, continuum approximation (Emin and Holstein 1976;
Toyozawa and Shinozuka 1980) the energy of the self-trapped state as a function
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of the variable, γ = r0/r, where r is the spatial extent of the centre-of-mass of
the electronic wavefunction and r0 is the lattice parameter, is

E(γ) = 2t(γ2 − gsγ − g�γ). (7.21)

gs, representing the short-range interaction with the acoustic phonons, is

gs =
E2d

4tKr30
, (7.22)

where Ed is the relaxation energy. g�, representing the long-range interaction
with the longitudinal optic phonons, is

g� =
e2

2tε̃r0
, (7.23)

where 1/ε̃ = 1/ε∞ −1/ε0, and ε∞ and ε0 are the high frequency and static dielec-
tric constants, respectively. Thus, the equilibrium spatial extent of the electronic
state, req, is

req =
2r0

gs + g�
. (7.24)

Since the excited states are electrically neutral, only the short-range, acoustic
interaction is relevant in eqn (7.24). (This is also true for the exciton-polaron, as
the particle and hole are closely separated.) The polaron, however, being charged
also couples to the longitudinal optic phonons, so the long-range term is retained
in eqn (7.24).

As we have already discussed in Section 4.11, self-trapping can never be a
true consequence of electron-phonon interactions in a translationally invariant
Hamiltonian: it is an artefact of the adiabatic approximation, which freezes the
nuclear degrees of freedom. When the nuclear degrees of freedom are quantized
it is possible to construct a translationally invariant wave-packet of both the
electron and nuclear degrees of freedom. The band width of this wavepacket is
a function of the phonon frequency, and in the adiabatic limit (ω → 0) it will
vanish.34

Of course, defects or other imperfections destroy translational invariance, and
these are always present in one-dimensional systems. It is thus useful to describe
a particle as practically self-trapped if the experimental timescales are shorter
than the time taken for the particle to tunnel out of its localized state.

7.8 Concluding remarks

We conclude this chapter by summarizing the combined effects of electron-
electron and electron-lattice interactions on the electronic states of conjugated
polymers.

34Quantum corrections to the adiabatic limit will be discussed in Section 10.3.
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• Generally, electronic interactions considerably enhance the bond alterna-
tion, particularly at the physically relevant values of U ∼ 4t. However, this
enhancement diminishes in the strong coupling limit.

• The enhancement of the bond alternation, coupled to the effect of electron
interactions on the optical gap, means that the optical gap is considerably
enhanced from its noninteracting value.

• The 11B−
u state is comprised of a pair of spinless oppositely charged par-

ticles, and forms an exciton-polaron.
• The 13B+u state is comprised of two spin-1/2 spinons, which weakly repel
in the absence of extrinsic dimerization.

• The 21A+g state has a four-soliton character. In the strong-coupling limit
there is singlet fission to a pair of triplets.

• There is a substantial energy relaxation for the 13B+u and 21A+g states, but
rather modest energy relaxation for the 11B−

u state. This is a consequence
of the more covalent character of the 13B+u and 21A+g states in comparison
to the 11B−

u state, and because the bond-order operator couples to the
covalent character of a state. Thus there can be energy level reversal, with
the relaxed energy of the 21A+g state being near to or below that of the
11B−

u state.
• These features remain qualitatively correct when there is extrinsic dimer-
ization, except that the soliton-antisoliton pairs are confined for both the
11B−

u and 13B+u states, and the 21A+g state has a two-soliton character.

The predictions presented in this chapter are all within the Born-Oppenheimer
approximation. Quantum phonons will reduce the amplitude of the bond alterna-
tion in the ground state (Fradkin and Hirsch 1983; McKenzie and Wilkin 1992)
- for realistic models of trans-polyactylene by about 20% (Barford et al. 2002b),
as described in Chapter 10. Quantum phonons also prevent self-trapping. This
latter has a rather significant affect on the relaxed energies of the 13B+u and
21A+g states in linear polyenes, as explained in Chapter 10.

In this chapter we have drawn together the effects of electron-electron and
electron-phonon coupling as a function of parameter space. In Chapter 10 we
consider the specific physical example of trans-polyacetylene, while in Chapter
11 we focus on the phenyl-based light emitting polymers. The next two chap-
ters describe how electron-lattice relaxation plays a key role in determining the
optical and electronic processes in conjugated polymers.
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OPTICAL PROCESSES IN CONJUGATED POLYMERS

8.1 Introduction
There are many excellent accounts of both the theory of optical processes in gen-
eral (Ziman 1972; Butcher and Cotter 1990; Mukamel 1995 and Loudon 2000),
and optical processes in organic (Pope and Swenberg 1999) and inorganic ma-
terials (Henderson and Imbusch 1989), in particular. It is the purpose of this
chapter to describe some of the important linear and nonlinear optical processes
that enable us to establish a connection between the theories of electronic states
described in this book and their experimental consequences.

Much of the recent interest in conjugated polymers has been inspired by
the optical properties of the light emitting phenyl-based systems. Unlike trans-
polyacetylene, the phenyl-based systems luminesce, because the lowest-lying sin-
glet excited state is dipole connected to the ground state. As we describe in
Chapters 10 and 11, this is a consequence of the different electron-electron and
electron-phonon interactions in these two types of system. Another potentially
important application of conjugated polymers is in nonlinear optical devices,
which exploit the fact that the polarizability depends nonlinearly on the electric
field. Such devices include optical switches, frequency multipliers and electric-
optic modulators (Pope and Swenberg 1999).

Linear optical processes give important information about the energies of
the dipole allowed states. However, ‘dark’ states - namely those with no dipole
moment to the ground state - are inaccessible. Nonlinear optical processes, on
the other hand, involve transitions between two or more states, so these access
the dipole-forbidden states. In this chapter we explain how third order nonlinear
process can be used to identify these forbidden states.

Consider a system of N polymers per unit volume under the influence of
driving electric fields E(ω1), E(ω2), E(ω3), etc. Then the response of a system
at a frequency ωσ = ω1 +ω2 +ω3 + · · · , as measured by its polarization, P(ωσ),
is,

P(ωσ) = χ(1)(−ωσ;ω1)E(ω1) + χ(2)(−ωσ;ω1, ω2)E(ω1)E(ω2)
+χ(3)(−ωσ;ω1, ω2, ω3)E(ω1)E(ω2)E(ω3) + · · · . (8.1)

The nth order electrical susceptibility, χ(n), is an n+1 rank tensor. If we rewrite
eqn (8.1) as,

P = χ
(1)
eff (E)E, (8.2)

we see that there is an effective electric field-dependent linear susceptibility, and
thus electric field-dependent refractive indices, for example.

113
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Before discussing the nonlinear effects we first establish our notation by dis-
cussing linear optical properties.

8.2 Linear optical processes
For transitions from the ground state, |0〉, to the excited states {|J〉} with ener-
gies {EJ} the first order susceptibility is

χ
(1)
αβ(ω) =

N

ε0�

∑
J

[ 〈0|µ̂α|J〉〈J |µ̂β |0〉
ΩJ − ω

+
〈0|µ̂β |J〉〈J |µ̂α|0〉

ΩJ + ω

]
. (8.3)

ΩJ = (EJ −E0)/� is the angular transition frequency of the state |J〉 and µ̂α is
the αth cartesian component of the dipole operator, µ̂.

If the polymers are oriented along the x-axis, the dominant susceptibility is
χ
(1)
xx . Then, denoting χ

(1)
xx as χ(1) we have

χ(1)(ω) =
N

ε0�

∑
J

[ 〈0|µ̂x|J〉〈J |µ̂x|0〉
ΩJ − ω

+
〈0|µ̂x|J〉〈J |µ̂x|0〉

ΩJ + ω

]
, (8.4)

=
Ne2

mε0

∑
J

fJ
Ω2J − ω2

, (8.5)

where
fJ =

2m
e2�

ΩJ〈0|µ̂x|J〉2 (8.6)

is the oscillator strength for the transition from |0〉 to |J〉. The oscillator strength
satisfies the important sum rule that∑

J

fJ = Ne, (8.7)

where Ne is the number of π-electrons in the polymer.
The linear optical properties follow directly from χ(1). For example, the bulk

dielectric function (or relative permittivity), ε(ω), is

ε(ω) = 1 + χ(1)(ω). (8.8)

Then, the linear absorption coefficient, defined as the fraction of energy absorbed
in passing through a unit thickness of material, is

α(ω) =
ω

nc
Im[ε(ω)]

=
ω

nc
Im[χ(1)(ω)]

=
πωN

ncε0�

∑
J

〈0|µ̂x|J〉2δ(ω − ΩJ), (8.9)

where n is the refractive index and c is the speed of light.35

35ω is implicitly complex, as it contains an imaginary term to represent damping.
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The time scale for an optical transition to the state |J〉 is ∼ 2π/ΩJ ∼ 10−15

s for transitions in the visible region. Once excited to the state |J〉 there is rapid
nonradiative interconversion to the lowest excited singlet state. The intercon-
version may be a multiphonon process - arising from the coupling of the Born-
Oppenheimer states via the nonadiabatic Hamiltonian (eqn (2.19)), or single-
phonon processes - arising from the coupling of the system to a phonon bath
(DiBartolo 1980). If the lowest excited singlet state is dipole connected to the
ground state, then in general there is both radiative spontaneous emission and
nonradiative emission to the ground state. The radiative inverse life-time, ΓJ , is
given by the Einstein expression

ΓJ ≡ τ−1 =
n(�ΩJ)3〈0|µ̂x|J〉2

πε0�4c3
. (8.10)

Typically, the life-time of the lowest excited state in polymers is ∼ 10−10− 10−9

s.
This behaviour after photoexcitation is encapsulated by the following empir-

ical rules (Birks 1970).

• Vavilov’s Rule: The fluorescence quantum efficiency is independent of the
excitation wavelength. This implies that there is efficient nonradiative in-
terconversion.

• Kasha’s Rule: Emission occurs from the lowest excited singlet state.

However, in some polymers the lowest excited singlet state is not dipole connected
to the ground state, and in those cases there are only nonradiative transitions
to the ground state.

8.3 Evaluation of the transition dipole moments

Evidently, the evaluation of optically important parameters, such as χ(1) and
ΓJ , depends on the evaluation of the transition dipole moments, 〈0|µ̂|J〉. In
calculating the dipole moments a considerable simplification arises if we adopt
the Franck-Condon principle. This is discussed in the next section.

8.3.1 The Franck-Condon principle

A general state, |J〉, of the polymer is a function of many degrees of freedom,
corresponding to the electron and nuclear coordinates. As usual, it is convenient
to represent the nuclear degrees of freedom as normal modes, with each normal
mode being associated with a normal coordinate, Qα, and a characteristic fre-
quency, ωα. To simplify the discussion of the Franck-Condon principle we will
make the reasonable assumption that only one normal mode is strongly coupled
to the electronic degrees of freedom.

The Franck-Condon principle is essentially a restatement of the Born-Oppenheimer
approximation (introduced in Chapter 2), as it assumes that the electronic tran-
sition occurs so quickly that the nuclear coordinates remain stationary. Phonon
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Fig. 8.1. The adiabatic energy curves of the electronic states |i;Q〉 and |j;Q〉, as a
function of the normal coordinate, Q. The solid up and down vertical arrows are
the vertical absorption and emission transitions, respectively. The dashed arrows
represent the nonradiative vibrational relaxation. The Stokes shift is twice the re-
organization energy.

frequencies are typically one order of magnitude smaller than optical transition
energies, corresponding to nuclear motion times being roughly ten times longer
than electronic transition times. Thus, the Born-Oppenheimer approximation is
generally valid.

The Franck-Condon principle is illustrated in Fig. 8.1. The solid curves rep-
resent the adiabatic energy of the electronic states as a function of a normal
coordinate, Q. Generally an excited state will have an electronic energy mini-
mum at a different Q value than the ground state, as the electronic distributions
differ in both states. Classically, the transitions are vertical, that is the tran-
sition occurs to the energy of the excited state with the same Q value as the
ground state. This is illustrated by the up-vertical arrow. Since the life-time of
the excited state is much longer than nuclear motion times, after the vertical
transition there is a relaxation of the nuclear coordinates to the bottom of the
adiabatic energy curve. The transition to the ground state is again vertical, with
an emission energy less than the absorption energy. This energy difference is the
Stokes shift.

For small displacements of Q from equilibrium the adiabatic energy profiles
are quadratic, and thus fluctuations in Q may be quantized as linear harmonic
oscillators. The energy of the oscillators is represented by the horizontal lines in
Fig. 8.2. Thus, quantum mechanically, there is a progression of linear harmonic
oscillator states for each electronic state. Vibronic transitions can occur between
pairs of vibronic states.

To calculate the amplitude of these transitions we adopt the Born-Oppenheimer
approximation and factorize |J〉 as a single, direct product of the electronic and
nuclear degrees of freedom
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Fig. 8.2. The vibrational energy levels and the associated (unnormalized) linear har-
monic oscillator wavefunctions. The Huang-Rhys parameter, S = Ed/�ω, and thus
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2 . Ed is the reorganization (or relaxation) energy.

|J〉 = |j;Q〉|νj〉, (8.11)

where |j;Q〉 represents the electronic part, parametrized by the normal coor-
dinate, Q, and |νj〉 represents the nuclear part associated with that electronic
state.36

The total dipole operator is the sum of the electronic and nuclear dipole
moments,

µ̂ = µ̂e + µ̂N . (8.12)

Then, the total transition dipole moment between the states |I〉 and |J〉 is,
〈I|µ̂|J〉 = 〈i;Q|µ̂e|j;Q〉〈µi|νj〉+ 〈i;Q|j;Q〉〈µi|µ̂N |νj〉

= µij〈µi|νj〉, (8.13)

because 〈i;Q|j;Q〉 = δij , as the states {|i;Q〉} are ortho-normal.
36We use upper case Latin letters to represent a general electron-phonon state, lower case

Latin letters to represent the electronic state, and lower case Greek letters to represent the
phonon states.
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µij = 〈i;Q|µ̂e|j;Q〉 (8.14)

is the electronic dipole moment and 〈µi|νj〉 is the instantaneous overlap of the
nuclear wavefunctions. The matrix element in eqn (8.14) is evaluated at the
same value of Q in both the initial and final electronic states, namely at the
equilibrium value of Q in the initial state.

Symmetry rules dictate that the electronic matrix elements are only nonzero
for electronic states of definite symmetries. We introduce these rules in the next
section, followed by a discussion of the the Franck-Condon factors, which de-
termine the intensity of the vibrational transitions. Finally, we use the exciton
model (described in Chapter 6) to evaluate the electronic dipole moments.

8.3.2 Electronic selection rules

There are three important selection rules for electronic transitions owing to the
properties of the electronic dipole operator, µ̂e. The electronic dipole operator is
defined as

µ̂e = er̂ = e
∑
i

ri(N̂i − 1), (8.15)

where ri is the position of the ith site, N̂i is the number operator, and the sum
is over all atomic sites.

• The electric dipole operator conserves total spin, so transitions only occur
between states in the same spin manifold.

• The electric dipole operator is antisymmetric with respect to the inversion
operator, î, and thus it connects states of opposite inversion symmetry. To
see this note that,

〈i|µ̂e|j〉 ≡ 〈i|̂i†îµ̂eî†î|j〉 = −〈i|̂i†µ̂eî|j〉 = −iiij〈i|µ̂e|j〉, (8.16)

where î|j〉 = ij |j〉, ij is the eigenvalue of î and îµ̂eî
† = −µ̂e. Thus, 〈i|µ̂e|j〉

is nonzero only if iiij = −1.
• The electric dipole operator is antisymmetric with respect to the particle-
hole operator and thus it connects states of opposite particle-hole symme-
try. The proof is identical to that for the inversion operator.

Centro-symmetric polymers, whose Hamiltonians are invariant under î, have
states classified as Ag (even) and Bu (odd). The ground state is a singlet Ag state,
so transitions between the ground state and singlet Bu states occur, but not
between the ground state and other Ag states. Transitions between the ground
state and triplet states are forbidden. (However, if there is spin-orbit coupling,
the Hamiltonian eigenstates are not eigenstates of total spin, the ‘triplet’ states
will contain some singlet character, and there will be phosphorescence from the
lowest triplet state.)
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8.3.3 Franck-Condon factors

The Franck-Condon factor, Fµν , is the square magnitude of the instantaneous
overlap of the nuclear wavefunctions,

Fµν = 〈µi|νj〉2. (8.17)

As the intensity of the transitions are proportional to the square of the dipole
moments (see eqn (8.6)), the Franck-Condon factors weight each of the vibronic
transitions. To evaluate these terms we write

〈µi|νj〉 = 〈µi|
{∫

dQ|Q〉〈Q|
}

|νj〉 =
∫

φµ(Q−Qi)φν(Q−Qj)dQ, (8.18)

where
φµ(Q−Qi) ≡ 〈Q|µi〉 (8.19)

is the µth linear harmonic wavefunction centred at Qi.
The overlap integral may be expressed as (Keil 1965),

〈µi|νj〉 =
√
µ!
ν!

(
− A√

2

)(ν−µ)

exp(−A2/4)Lν−µ
µ (A2/2), (8.20)

where Ln
m(x) are the associated Laguerre polynomials,

Ln
m(x) =

m∑
k=0

(−1)k(m+ n)!
(m− k)!(n+ k)!k!

xk, (8.21)

and

A =

√
Mω

�
(Qi −Qj), (8.22)

is the difference in the dimensionless electron-lattice coupling between the elec-
tronic states |i〉 and |j〉.

At T = 0 K only the lowest vibrational state (µ = 0) of the ground state
(|I〉) is occupied, and we define the zero-temperature Franck-Condon factor as

F0ν = 〈0|ν〉2 =
exp(−A2/2)(A2/2)ν

ν!

=
exp(−S)Sν

ν!
, (8.23)

where S is the Huang-Rhys parameter (Huang and Rhys 1950), defined by

S =
A2

2
=

Mω

2�
(Qi −Qj)2. (8.24)

The Huang-Rhys parameter has a useful, physical interpretation:
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Fig. 8.3. The zero-temperature Franck-Condon factor, F0ν , as a function of ν for
different values of the Huang-Rhys parameter, S. S = 0 (circles), S = 1.5 (squares),
S = 4.5 (triangles), and S = 9.5 (diamonds). The overlap of the harmonic oscillator
wavefunctions, shown in Fig. 8.2, ensures that the 0 − ν (or vertical) transition is
the largest.

S�ω = Ed =
(
ν +

1
2

)
�ω, (8.25)

where Ed and ν are defined in Fig. 8.2. Thus,

S = ν +
1
2
, (8.26)

where ν is the nearest vibrational level to which a vertical transition from the
µ = 0 ground state level reaches. Ed is the reorganization (or relaxation) energy.

Figure 8.3 shows F0ν for different values of S. We note that

• Only 0-0 transitions occur when S = 0.
• F0ν satisfies the sum rule,

∑
ν F0ν = 1. So, oscillator strength is transferred

from the 0-0 transition to higher transitions as S increases.
• The dominant transition is to the |ν〉 vibrational state, where ν = S−1/2.
We therefore see that the vertical, classical transition dominates.

• In general, F0ν is a Poisson distribution. However, as S increases the profile
of F0ν becomes a Gaussian function of ν.

• S may be obtained empirically from the experimental vibronic progression
by noting from eqn (8.23) that S = F01/F00.
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Fig. 8.4. The adiabatic energy curves for the initial and final states, the vibrational
energy levels, the vertical absorption and emission transitions, and the associated
intensity of the absorption and emission spectra determined by the Franck-Condon
factors.

Figure 8.4 summarizes Figs 8.2 and 8.3 by showing the vibronic transitions
and the optical spectra associated with these transitions determined by the
Franck-Condon factors. A well-defined vibronic progression indicates that the
excited and ground states have a nonzero Huang-Rhys parameter, and thus they
have different geometries. This usually implies, but does not prove, that the
excited state is self-trapped.

8.3.4 Electronic dipole moments: Application of the exciton model
Having discussed the vibrational overlaps, the final task is to evaluate the elec-
tronic transition dipole moments. We obtain insight into the behaviour of the
dipole moments by using the effective-particle exciton model, introduced in
Chapter 6.

In the exciton model the states are expressed as,

|1B−
u 〉 ≈

∑
odd n

∑
odd j

αnj |Φnj〉 (8.27)

and

|1A+g 〉 ≈
∑
even n

∑
odd j

αnj |Φnj〉, (8.28)

where |Φnj〉 represents a Mott-Wannier exciton eigenstate in the weak-coupling
limit, or a Mott-Hubbard exciton eigenstate in the strong-coupling limit. n and
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Fig. 8.5. The relative intensities, I0p, (proportional to the square of the transition
dipole moments) with respect to the |0〉 → |1〉 transition, calculated using the
weak-coupling exciton theory on a linear chain. U = 10 eV, t = 2.5 eV, and δ = 0.2.
Transitions from the ground state to even p states are forbidden by particle-hole
symmetry. p = np and jp = 1 for all cases.

j are the principle and pseudomomentum quantum numbers, respectively. In
practice, only one component dominates the sums in eqns (8.27) and (8.28).

The transition dipole moments may be evaluated using the explicit expres-
sions for |Φnj〉, as described in Appendix F. Below we summarize the results of
that calculation. In all cases the results are consistent with the selection rules
described in Section 8.3.2, namely that only A+g ↔ B−

u transitions are allowed.

8.3.4.1 The weak-coupling (Mott-Wannier) limit
• For transitions between the ground state and the excited state, |p〉 (with
quantum numbers np and jp), the transition dipole moment for a polymer
oriented along the x-axis is,

e〈11A+g |x̂|p〉 ∼ e

√
L

rp

d

jp
, (8.29)

for odd np and odd jp, and

e〈11A+g |x̂|p〉 = 0, (8.30)

otherwise.
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rp is the root-mean-square particle-hole separation of the state |p〉, L is the
length of the chain and d is the unit cell repeat distance.
We see that 〈11A+g |x̂|p〉 ∝ √

L/rp, and thus the oscillator strength is largest
for the most strongly bound exciton. The dependence on L is a consequence
of the sum rule, eqn (8.7).
Figure 8.5 shows the relative intensities (proportional to the square of
the transition dipole moments) for transitions from the ground state to a
number of excited states, calculated using the exciton theory.

• For transitions between two excited states, |p〉 and |q〉, the transition dipole
moment is

e〈p|x̂|q〉 = e
∫
drψnp(r)rψnq (r), (8.31)

for |np − nq| = odd and jp = jq, and

e〈p|x̂|q〉 = 0, (8.32)

otherwise.
ψnp

(r) and ψnq
(r) are the effective-particle wavefunctions for the states |p〉

and |q〉, respectively, and r is the particle-hole separation. We see that this
dipole moment is independent of chain length.
Table 8.1 shows that the dipole moment is largest for close lying exciton
states, as the integral in eqn (8.31) is maximized when |np − nq| = 1. It
also shows that the dipole moment increases as np and nq increase, as
the effective-particle wavefunction, ψn(r), spreads out (or the particle-hole
separation increases) as n increases (as shown in Appendix E).

8.3.4.2 The strong-coupling (Mott-Hubbard) limit
• For transitions between the ground state and excited states the transition
dipole moments are ∼ √

t/U ≈ 0. However, the oscillator strength to the
lowest optically allowed state is O(L), in order to satisfy the oscillator sum
rule.

• For transitions between two excited states, |p〉 and |q〉, the transition dipole
moment is given by eqn (8.31), with the same selection rules as in the weak-
coupling limit.

8.4 Nonlinear optical processes

In a centro-symmetric molecule the polarization must reverse sign under a rever-
sal of the electric field. This means that all even powers of the electric field vanish
in eqn (8.1). It therefore follows that in a centro-symmetric molecule χ(n) van-
ishes for all the even ns. Since conjugated polymers are often centro-symmetric,
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Table 8.1 Matrix elements, 〈n|x̂|m〉 = 1/2a
∫
drψn(r)rψm(r), (in units of the repeat

distance, 2a) using the weak-coupling exciton theory (U = 10 eV, t = 2.5 eV, and
δ = 0.2)

n m 〈n|x̂|m〉 n m 〈n|x̂|m〉
1 2 0.914 3 4 3.075
1 3 0 3 5 0
1 4 0.030 3 6 0.293
1 5 0 4 5 4.137
1 6 0.005 4 6 0
2 3 1.467 5 6 6.626
2 4 0
2 5 0.271
2 6 0

the lowest nonzero nonlinear susceptibility in conjugated polymers is therefore
usually χ(3).

The general expression for the third order nonlinear susceptibility is

χ
(3)
αβγδ(−ωσ;ω1, ω2, ω3) =

N

3!ε0�3
S
∑
LMN

[
〈0|µ̂α|L〉〈L|µ̂β |M〉〈M |µ̂γ |N〉〈N |µ̂δ|0〉
(ΩL − ωσ)(ΩM − ω2 − ω1)(ΩN − ω3)

+
〈0|µ̂β |L〉〈L|µ̂γ |M〉〈M |µ̂δ|N〉〈N |µ̂α|0〉
(ΩL + ω1)(ΩM − ω2 − ω3)(ΩN − ω3)

+
〈0|µ̂γ |L〉〈L|µ̂δ|M〉〈M |µ̂α|N〉〈N |µ̂β |0〉
(ΩL + ω1)(ΩM + ω1 + ω2)(ΩN − ω3)

+
〈0|µ̂δ|L〉〈L|µ̂α|M〉〈M |µ̂β |N〉〈N |µ̂γ |0〉
(ΩL + ω1)(ΩM + ω1 + ω2)(ΩN + ωσ)

]

(8.33)

where S represents the symmetrization operator that permutes the 3! pairs of
(µ̂α, ω1), (µ̂β , ω2), and (µ̂γ , ω3). As before, if the polymers are oriented along the
x-axis, then the dominant susceptibility is χ(3)xxxx.

8.4.1 The essential states mechanism

It is clearly a formidable task to evaluate eqn (8.33) for all the possible states.
However, a considerable simplification occurs if we adopt the essential states
mechanism, introduced by Mazumdar et al. (Dixit et al. 1991) following earlier
work by Heflin et al. (1988) and Soos and Ramesesha (1989). The key idea
behind this concept is that only a few states are strongly dipole connected, and
that these states dominate the sum. In fact, as we saw in Section 8.3.4, the state
with the largest dipole moment to the ground state is the lowest-lying exciton
state, the n = 1 and j = 1, or the 11B−

u state. This, in turn, is most strongly
dipole connected to the nearest lying exciton state, namely, the n = 2 and j = 1,
or the m1A+g state. Finally, the m1A+g state is connected to the n = 3 and j = 1,
or the n1B−

u state. Thus, the 11A+g , 1
1B−

u , m
1A+g , and n1B−

u states constitute
the four essential states.
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Fig. 8.6. Third harmonic generation process.

In the weak-coupling (Mott-Wannier) limit m ≡ 2 if particle-hole symmetry
applies. Otherwise m > 2. In the strong-coupling (Mott-Hubbard) limit m > 2
always. The essentially states are shown schematically in Figs 6.7 and 6.9 for the
weak-coupling and strong-coupling limits, respectively.

Usually, there is an unambiguous identification of the essential states. How-
ever, there are at least three reasons why this identification can become difficult.
First, as noted in Table 8.1, the interstate dipole moments become larger for
higher lying states. Thus, if there is a relatively large dipole moment between
the ground state and a high lying 1B−

u state it is possible that another pathway
significantly contributes to χ(3). Second, it is possible that a state with a low
principle quantum number, n, and a high pseudomomentum quantum number,
j, is almost degenerate with a state with a high n and a low j. When this hap-
pens oscillator strength is transferred from the high n, low j state to the low
n, high j state. Finally, as discussed in detail in Chapter 6, there may be two
families of essential states, corresponding to there being both Mott-Wannier and
Mott-Hubbard families of excitons. This scenario is most likely to happen in the
intermediate-coupling regime.

Bearing in mind these caveats for the validity of the essential states mecha-
nism, we shall now make the assumption that it is a reasonable approximation.
This enables us to more readily interpret the third order nonlinear susceptibili-
ties, and in particular, to relate experimental observations to the excited states
of the polymer. We discuss this in the following sections.

8.4.2 Third order harmonic generation

In a third order harmonic generation process the system absorbs three photons
of energy �ω and emits one photon of energy 3�ω, as shown schematically in
Fig. 8.6. The susceptibility for this process is defined as
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Fig. 8.7. Schematic energy level diagram, showing the energies of the 11B−
u , m1A+

g ,
and n1B−

u states (bold), and the virtual transitions (dashed) for the dominant third
harmonic generation process given by the first term on the right-hand side of eqn
(8.34).

χ(3)(−3ω;ω, ω, ω) =
Ne4

ε0�

∑
lp

〈11A+g |x̂|l1B−
u 〉〈l1B−

u |x̂|m1A+g 〉〈m1A+g |x̂|p1B−
u 〉〈p1B−

u |x̂|11A+g 〉

[
1

(ΩlBu
− 3ω)(ΩmAg

− 2ω)(ΩpBu
− ω)

+
1

(ΩlBu
+ ω)(ΩmAg

− 2ω)(ΩpBu
− ω)

+
1

(ΩlBu
+ ω)(ΩmAg

+ 2ω)(ΩpBu
− ω)

+
1

(ΩlBu
+ ω)(ΩmAg

+ 2ω)(ΩpBu
+ 3ω)

],

(8.34)

where the sum over l and p includes only the 11B−
u and n1B−

u states. (For
clarity, we have also neglected the Franck-Condon factors in this expression.)
The dominant term is the first one, represented by the energy level diagram
shown in Fig. 8.7. There are one-photon resonances at �ω = E(11B−

u ) and
�ω = E(n1B−

u ), two-photon resonances at �ω = E(m1A+g )/2, and three-photon
resonances at �ω = E(11B−

u )/3 and �ω = E(n1B−
u )/3. A comparison of the third

order harmonic generation and the linear absorption is usually enough to allow
an unambiguous identification of the 11B−

u , m
1A+g , and n1B−

u states. Figure
8.8 shows a schematic sketch of the linear and third order harmonic generation
coefficients corresponding to the energy level diagram of Fig. 8.7.

8.4.3 Electroabsorption
The electroabsorption is defined as the normalized change in transmission arising
from a DC electric field, ξ,

−∆T
T

= D∆α, (8.35)

where D is the sample thickness and ∆α is the change in the linear absorption.
Since the electric field breaks the inversion symmetry, the 1A+g and 1B−

u states
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Fig. 8.8. Schematic plot of the third harmonic optical intensity (solid) and linear
absorption (dashed).

are mixed, rendering the formerly disallowed 1A+g states weakly allowed. ∆T/T
may be calculated from the nonlinear third order susceptibilities via,

−∆T
T

=
ωDξ2

nc
Im[χ(3)(−ω;ω, 0, 0)]. (8.36)

In principle, electroabsorption experiments enable excitons to be distinguished
from interband transitions, as excitons are subject to the Stark effect, while in-
terband transitions are subject to the Franz-Keldysh effect. We now describe
these two effects.

8.4.3.1 The Stark effect An electric field only affects the relative motion of an
exciton and has no affect on the centre-of-mass motion. Thus, the total potential
experienced by the electron-hole pair, Vtot(r), is

Vtot(r) = Vpot(r)− e2

4πε0ε|r| , (8.37)

where,
Vpot(r) = eξr (8.38)

arises from the electric field, ξ, and r is the relative coordinate. Vtot is sketched
in Fig. 8.9. The maximum value of Vtot on the left-hand side is

Vm = −2e
√

eξ
4πε0ε

. (8.39)

If the exciton binding energy is less that Vm the exciton immediately dissociates
under the influence of the electric field. If the exciton binding energy is greater



128 OPTICAL PROCESSES

||4

e

0

2

r���
�

)(tot rV

mV

r
E

n
er

g
y

exE

)(pot rV

Fig. 8.9. The potential, Vtot(r), as a function of the relative coordinate, r, experienced
by an electron-hole pair in the presence of an electric field, ξ. Vm is the height of
the barrier. The energy level of a bound exciton is denoted by Eex. An exciton with
a binding energy larger than Vm will decay in a finite time by the tunnelling of the
hole through the potential barrier.

than Vm, however, there is a finite probability that the hole can tunnel through
the potential barrier, and thus bound excitons acquire an electric-field dependent
life-time.

The value of the electric field that immediately dissociates the exciton can
also be estimated by a simple argument. The internal electric field in an exciton,
ξex, is

ξex ∼ Eex
e〈r〉 , (8.40)

where Eex is the binding energy and 〈r〉 is the mean separation between the
particle and hole. Now, in the hydrogenic model (see Appendix E, for example)

〈r〉 ∼ e2

4πε0εEex
. (8.41)

Thus,
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ξex ∼ 4πε0εE2ex
e3

. (8.42)

Setting ξ = ξex gives a condition for the dissociating electric field of the same
order as that from eqn (8.39) when Vm is set to −Eex.

To calculate the effects of an electric field it is necessary to add the term
Vpot(r)ψn(r) to the equation that describes the exciton wavefunction, ψn(r)
(namely, eqn (D.17)). For sufficiently small fields, the effect of Vpot(r) on the
exciton wavefunctions and energies can be calculated by perturbation theory.
Now, since Vpot(r) is an odd function of r and ψn(r) are either even or odd func-
tions of r it immediately follows that the first order corrections to the energy are
zero. Thus, the change in energy to |n〉 to second order in perturbation theory
is,

∆En =
∑
m�=n

〈n|Vpot(r)|m〉2
En − Em

= e2ξ2
〈n|r̂|0〉2
En − E0

+
e2ξ2

4a2
∑

m>0,m �=n

(∫
ψn(r)rψm(r)dr

)2
En − Em

. (8.43)

The first term on the right-hand side arises from the dipole connection of |n〉
to the ground state, and is positive. The second term arises from the dipole
connection of |n〉 to other excitons. As shown in Section 8.3.4, the matrix ele-
ments

∫
ψn(r)rψm(r)dr are largest when m > n. Thus, the sum is dominated

by terms with negative denominators, and so this term is negative. The balance
between the two terms on the right-hand side of eqn (8.43) determines whether
the exciton is blue or red shifted by the electric field.

For the ground state we may write

∆E0 = −e2ξ2
∑
m>0

〈m|r̂|0〉2
�Ωm

= −αM (0)ξ2

2
, (8.44)

where,

αM (ω) =
e2

m

∑
m>0

fm
(Ω2m − ω2)

(8.45)

is the molecular polarizability, �Ωm = (Em−E0) and fn is the oscillator strength.
Equation (8.44) is the energy of an induced dipole in an electric field.

8.4.3.2 The Franz-Keldysh effects The effect of an electric field on an un-
bound particle-hole pair is nonperturbative, as the electron can gain an arbitrary
amount of energy in the electric field by moving away from the hole. The effect
of this is to reduce the band gap to zero. However, for there to be an optical
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transition the electron must tunnel away from the hole. This photon-induced
tunnelling yields an optical absorption below the zero-field band edge as

∝ exp
(
−A(Eg − �ω)3/2

)
, (8.46)

where A is a material-dependent parameter.
There are also two other consequences of the electric field on the optical

signature of an unbound particle-hole pair. First, the electroabsorption above
the zero-field band gap exhibits oscillatory behaviour. This oscillatory behaviour
can be traced to the oscillatory nature of the Airy functions, which are the
solutions of the effective particle-hole equation in the absence of a Coulomb
potential. Second, the position of the electroabsorption peaks vary as ξ2/3, and
not with the ξ2 behaviour of excitons.

The Franz-Keldysh effects (Weiser and Horváth 1997) have been successfully
used to distinguish the particle-hole continuum from exciton states in polydi-
acetylene crystals (Sebastian and Weiser 1981).

8.5 Size-dependencies of χ(n)

To conclude this chapter we discuss the size-dependencies of the electric suscep-
tibilities. The weak-coupling exciton theory and the oscillator sum rule indicate
that transition dipole moments from the ground state to an excited state are
proportional to

√
L, whereas interexcited state transition dipole moments are

independent of size. This result indicates that χ(1) is a linear function of L for
long chains.

χ(3) processes that involve only two states are quadratic functions of L. How-
ever, most processes, such as that indicated in Fig. 8.7 which involve three or
four states, will be linear functions of L. For short chains, however, there will
be a supralinear dependence of χ(3) on L, because, as shown in Fig. F.1, owing
to confinement effects, the interexcited state transition dipole moments increase
with chain lengths for lengths shorter than the root-mean-square particle-hole
separations.
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ELECTRONIC PROCESSES IN CONJUGATED POLYMERS

9.1 Introduction

A number of important electronic processes in conjugated polymers are intro-
duced in this chapter. The emphasis is on describing electronic processes in single
or weakly coupled polymers. We describe exciton (or energy) transfer, excited
molecular complexes, charge transfer, and a theory of what determines the singlet
exciton yield in light emitting polymers. Only in Section 9.4, where we describe
screening of intramolecular excitations, are bulk systems considered. So, many
electronic processes in bulk systems, such as the important topics of energy and
electron transport, are not discussed. A discussion of electron transport in poly-
mers may be found in Pope and Swenberg (1999) and the reviews by Rehwald
and Kiess (1992), Bässler (2000), or Walker et al. (2002).

9.2 Exciton transfer

Energy is transferred from molecule to molecule (or more generally, from chro-
mophore to chromophore) via the transfer of excitons. In this section we discuss
resonant exciton transfer, whereby a ‘donor’ molecule in an excited state de-
excites (usually to the ground state) while simultaneously an ‘acceptor’ molecule
undergoes a transition to an excited state (usually from the ground state). This
process in illustrated in Fig. 9.1.

The exciton transfer is coherent when the transfer time is fast compared to
dissipative relaxation times, where the dissipative relaxation is usually inter or
intramolecular vibrational relaxation and the transfer time is proportional to the
inverse of the exciton transfer integral (described in the next section). In this limit
the exciton is described by a wavefunction, whose time dynamics are controlled

m n

GS

EX




Fig. 9.1. Resonant exciton transfer between the donor molecule, m, initially in an
excited state, |EX〉, and the acceptor molecule, n, initially in its ground state, |GS〉.
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by the Schrödinger equation. Conversely, the exciton transfer is incoherent when
the transfer time is slow compared to dissipative relaxation times. In this limit
the exciton is described by a probability distribution, whose time dynamics are
controlled by classical rate equations.

9.2.1 Exciton transfer integral

In this section we derive an expression for the transfer integral for the reso-
nant exciton transfer depicted in Fig. 9.1. Consider a system consisting of two
molecules, m and n. The total Hamiltonian for the system is the sum of the
intramolecular Hamiltonians, Hm and Hn, and the intermolecular Hamiltonian,
Hmn. The eigenstates of Hm and Hn are {|M〉m} and {|N〉n}, respectively.

Suppose that initially molecule m is in an excited state, |EX〉m, and molecule
n is in its the ground state, |GS〉n. In the absence of intermolecular interactions
the initial state, |I〉, is a direct product of these molecular states:

|I〉 = |EX〉m|GS〉n. (9.1)

The transfer of energy results in a final state, |F 〉, defined by

|F 〉 = |GS〉m|EX〉n. (9.2)

This transfer of energy is mediated by the Coulomb interactions between the
pair of molecules. Thus, the transfer integral, Wmn is defined as

Wmn = 〈F |He−e
mn |I〉, (9.3)

where

He−e
mn =

∑
r∈mr′∈n

e2

|r− r′| , (9.4)

and r and r′ are the electronic coordinates.
It is convenient to separate Wmn into a component arising from the direct

Coulomb interactions, denoted by Jmn, and another component arising from the
exchange interactions, denoted by K̃mn, namely,

Wmn = Jmn − K̃mn. (9.5)

The direct exciton transfer integral is responsible for the transfer of singlet ex-
citons between pairs of molecules. This is the dominant process. The exchange
exciton transfer integral is responsible for the transfer of triplet excitons between
pairs of molecules. However, the exchange interactions decrease exponentially
with distance, as they originate from the overlap of atomic wavefunctions, and
consequently the exchange transfer integral is also very small. We therefore focus
on the direct exciton transfer, Jmn.
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Expressing the intermolecular direct Coulomb Hamiltonian in second quan-
tization (as described in Section 2.6), namely,

He−e
mn =

∑
i∈mj∈n

Vij(N̂i − 1)(N̂j − 1), (9.6)

and using eqns (9.1) and (9.2) we have that

Jmn = 〈F |

 ∑
i∈mj∈n

Vij(N̂i − 1)(N̂j − 1)


 |I〉

=
∑

i∈mj∈n
Vij

[
m〈GS|(N̂i − 1)|EX〉m

] [
n〈EX|(N̂j − 1)|GS〉n

]
. (9.7)

When |ri−rj | is large compared to the interatomic spacing the Coulomb potential
is

Vij =
e2

|ri − rj | . (9.8)

Equation (9.7) shows why the direct Coulomb interaction only mediates sin-
glet exciton transfer. Since the ground state is a singlet and since the operator
(N̂i − 1) preserves total spin, the excited state connected to the ground state in
each of the square brackets must necessarily be a singlet.

We can see more clearly what Jmn represents by making the dipole approxi-
mation. We define r̃i and r̃j as the site coordinates relative to the centre-of-mass
of their respective molecules,

r̃i = ri −Rm,

r̃j = rj −Rn, (9.9)

where Rm and Rn are the centre-of-mass coordinates of molecules m and n,
respectively. Then, if |r̃i− r̃j | << |Rm−Rn| ≡ |Rmn| we can perform the dipole
approximation and write,

∑
i∈mj∈n

1
|ri − rj | ≈

∑
i∈m r̃i ·∑j∈n r̃j

|Rmn|3 −
3
(∑

i∈mRmn · r̃i
) (∑

j∈nRmn · r̃j
)

|Rmn|5 .

(9.10)
Then, substituting into eqn (9.7)

Jmn = κmnJ
0
mn, (9.11)

where

J0mn =
[m〈GS|µ̂m|EX〉m] [n〈EX|µ̂n|GS〉n]

|Rmn|3 , (9.12)

and
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κmn = r̂m · r̂n − 3(R̂mn · r̂m)(R̂mn · r̂n), (9.13)

is an orientational factor. r̂m and R̂mn are the unit vector parallels to µ̂m and
Rmn, respectively. µ̂m is the electronic dipole operator for molecule m, defined
by

µ̂m = e
∑
i∈m

r̃i(N̂i − 1). (9.14)

In the dipole approximation we therefore see that Jmn represents the in-
teraction between a transition dipole moment on molecule m with a transition
dipole moment on molecule n. Since these matrix elements are only nonzero for
dipole-allowed transitions this level of approximation describes the transfer of
dipole-allowed singlet excitons. For centrosymmetric molecules these will be the
1Bu excitons. Higher multipole expansions of the Coulomb potential will describe
the transfer of dipole-forbidden singlet excitons.

The dipole approximation is valid provided that the spatial extent of the
transition dipole moments are much smaller than the separation between the
centre-of-masses of the pair of molecules. However, since the transition dipole
moments for polymers are large (and scale as

√
L for transitions from the ground

state), this assumption is not necessarily valid.
To conclude this section we note that the triplet exciton transfer integral is

K̃mn = 〈F |

 ∑
i∈mj∈n

∑
σ

Kijc
†
iσciσ̄c

†
jσ̄cjσ


 |I〉

=
∑

i∈mj∈n

∑
σ

Kij

[
m〈GS|c†iσciσ̄|EX〉m

] [
n〈EX|c†jσ̄cjσ|GS〉n

]
, (9.15)

with Kij defined in eqn (2.30).

9.2.2 Coherent transfer
In this section we discuss the coherent motion of excitons through an assembly
or aggregate of N molecules. This is applicable when �/J is much smaller than
the dissipative relaxation times.

Suppose that the operator E†
m creates an exciton on the mth molecule. Thus,

it corresponds to exciting the molecule from its ground state to the state |EX〉m
with an excitation energy ∆. The Hamiltonian that describes the coherent motion
of the exciton through the aggregate is

H =
∑
mn

(
JmnE

†
mEn + JnmE

†
nEm

)
+∆

∑
m

E†
mEm. (9.16)

For simplicity we will assume that only one exciton is excited in the aggregate.
Then the basis states are ‘single-particle’ basis states of the form,

|m〉 = E†
m

N∏
n=1

|GS〉n. (9.17)
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Fig. 9.2. Collinear (a) and parallel (b) arrangement of a pair of molecules in a dimer.
The exciton transfer integral, J , is negative for the collinear arrangement and pos-
itive for the parallel arrangement.

|m〉 represents an exciton localized on the mth molecule. The eigensolutions of
eqn (9.16) were discussed in detail in Chapter 3. (See also Appendix A.) Here
we will review those solutions and discuss the particularly important results for
two coupled molecules, namely a dimer.

9.2.2.1 Dimers We discuss dimers for two particular geometrical arrangements,
namely collinear and parallel , as shown in Fig. 9.2. In the collinear arrangement
the exciton transfer integral, J = −2J0(R), whereas in the parallel arrangement,
J = J0(R), where J0(R) is defined in eqn (9.12). In both cases there are bonding,
|+〉, and antibonding, |−〉, solutions:

|+〉 = 1√
2
(|1〉+ |2〉) (9.18)

and
|−〉 = 1√

2
(|1〉 − |2〉) (9.19)

with energies (∆ + J) and (∆ − J), respectively. |m〉 is defined in eqn (9.17).
Thus, in the collinear arrangement the bonding solution is the lower energy state,
whereas in the parallel arrangement the reverse is true.

The transition dipole moment from the ground state to the excited states of
the dimer is

〈GS|µ̂T |±〉 = 〈GS| (µ̂1 + µ̂2)
1√
2
(|1〉 ± |2〉) , (9.20)

where |GS〉 = |GS〉1|GS〉2. Evaluating this expression for equivalent molecules
gives

〈GS|µ̂T |+〉 =
√
2〈µ̂GE〉 (9.21)

and
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Fig. 9.3. The energy level diagram and schematic representation of the dipoles in the
collinear and parallel arrangement of a pair of molecules in a dimer.

〈GS|µ̂T |−〉 = 0, (9.22)

where 〈µ̂GE〉 is the transition dipole moment for a single molecule.
Equations (9.21) and (9.22) tell us that there is constructive interference

of the dipole moments of the two molecules in the bonding state. Conversely,
there is destructive interference in the antibonding state. Thus, the collinear
arrangement is ‘bright’ and red-shifted, while the parallel arrangement is ‘dark’
with the dipole-active state blue-shifted. The splitting between these two states,
2J , is known as the Davydov splitting. The energy level diagram and a schematic
representation of the dipoles in the dimer are illustrated in Fig. 9.3.

9.2.2.2 Aggregates The analysis of the previous section is easily extended to
aggregates of molecules. An aggregate of collinear molecules is known as a J-
aggregate, while an aggregate of parallel molecules is known as an H-aggregate.
Assuming only nearest-neighbour transfer the energies of the delocalized exciton
form a band with energies,

εβ = ∆+ 2J cos(βR). (9.23)

The corresponding eigenstates are

|β〉 =
√

2
N + 1

∑
m

sin(βmR)|m〉, (9.24)

where β = jπ/(N + 1)R, j satisfies 1 ≤ j ≤ N and R is the distance between
molecules. The exciton, or Davydov, band width is |4J |.

As for the case of dimers, there is interference between the transition dipole
moments of each molecule in the aggregate. Extending the derivation of the
previous section, we have that
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〈GS|µ̂T |β〉 = 0, for even j, (9.25)

and

〈GS|µ̂T |β〉 ≈
√
N〈µ̂GE〉

j
, for odd j, (9.26)

(in analogy to eqns (F.10) and (F.11)). Again, 〈µ̂GE〉 is the transition dipole
moment of a single molecule. Notice that the total transition dipole moment
scales as

√
N in eqn (9.26), and thus the oscillator strength scales as N , as it

must do to satisfy the oscillator sum rule, eqn (8.7).
This interference means that the lowest excited state of a J-aggregate (namely,

j = 1) is superluminescent , whereas for an H-aggregate it is dark.

9.2.2.3 Quantum mechanical dynamics The dynamics in the coherent regime
are determined by the time-dependent Schrödinger equation,

i�
∂|Ψ(t)〉
∂t

= H|Ψ(t)〉. (9.27)

For the exciton transfer Hamiltonian defined by eqn (9.16) the general time
dependent state is of the form,

|Ψ(t)〉 =
∑
m

am(t)|m〉, (9.28)

where the basis states {|m〉} are defined by eqn (9.17).
If the pth molecule (or chromophore) of the aggregate is excited at time t = 0,

so that the exciton is initially localized on the pth molecule and |Ψ(0)〉 = |p〉,
the subsequent dynamics are given by,

am(t) =
(

2
N + 1

)∑
β

exp(−iεβt/�) sin(βmR) sin(βpR), (9.29)

where εβ is given by eqn (9.23). The probability that the exciton is localized on
the mth molecule at a time t is then |am(t)|2.

For the dimer this result gives the characteristic quantum mechanical oscilla-
tory behaviour. If molecule 1 is excited at time t = 0, the subsequent probabilities
of finding the exciton on molecules 1 and 2 are,

P1(t) = |a1(t)|2 = cos2(Jt/�) (9.30)

and
P2(t) = |a2(t)|2 = sin2(Jt/�), (9.31)

respectively, with a period h/J . As we shall see in Section 9.2.4, dissipative
phenomena dampen these oscillations.
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9.2.3 Incoherent transfer

When the dissipative relaxation time is shorter than the exciton transfer time
phase coherence of the exciton wavefunction can no longer be maintained and a
probabilistic interpretation is more appropriate.

The probability, Pm(t), that the exciton is on the mth molecule at time t is
determined by the rate equation,

∂Pm(t)
∂t

= −
∑
n

(kmnPm(t)− knmPn(t)) , (9.32)

where the rates, kmn, are usually determined by the Fermi Golden Rule. The
rate for dipole-allowed singlet exciton transfer via the direct Coulomb interaction
was determined by Förster (1951), and is known as Förster transfer. The rates
for dipole-forbidden singlet or triplet exciton transfer were determined by Dexter
(1953), and is known as Dexter transfer. We describe both of these processes in
the next two sections.

Equation (9.32) has been widely used to model exciton transport in conju-
gated materials. See Movaghar et al. (1986) and Meskers et al. (2001) for an
example of this approach. In Section 9.2.4 we briefly describe the more general
density matrix formalism to model exciton transport.

9.2.3.1 Förster transfer The rate for direct exciton transfer between a donor
molecule, D, and an acceptor molecule, A, is determined by the Fermi Golden
Rule expression,

kDA =
2π
�

|JDA|2δ(EF − EI), (9.33)

where the δ-function ensures energy conservation. |JDA|2 is determined by eqn
(9.7) (with the m and n replaced by D and A), and EI and EF are the initial
and final energies, respectively.

Using the identity that,

δ(x+ y) =
∫ ∞

−∞
δ(x− z)δ(y + z)dz, (9.34)

and noting that EI = EF = ∆, where ∆ is the exciton energy, as defined in
Fig. 9.1, we rewrite eqn (9.33) as,

kDA =
2π
�

|JDA|2
∫ ∞

−∞
δ(∆− �ω)δ(�ω −∆)d(�ω). (9.35)

We interpret the first delta function as representing the absorption of energy by
the acceptor molecule, while the second delta function represents the emission
of energy by the donor.
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In the dipole approximation we have,

kDA =
2π
�

κ2DA|µ̂GE
D |2|µ̂GE

A |2
|RDA|6

∫ ∞

−∞
δ(∆− �ω)δ(�ω −∆)d(�ω), (9.36)

where we have used eqns (9.11) - (9.13). Thus, using the expressions for the
donor emission and acceptor absorption (eqn (8.9)) spectra,

ID(ω) =
4�ω3|µ̂GE

D |2
3n3c3

δ(∆− �ω) (9.37)

and

αA(ω) =
πωN |µ̂GE

A |2
3ncε0

δ(�ω −∆), (9.38)

respectively,37 the Förster transfer rate can be expressed as an overlap of these
spectral functions:

kDA =
9n4c4ε0κ2DA

2N |RDA|6
∫ ∞

0

ID(ω)αA(ω)
ω4

dω. (9.39)

Here, n is the refractive index of the medium, c is the speed of light in vacuo and
N is the number of polymers per unit volume. This formulation encapsulates
the physical process of resonant exciton transfer, namely simultaneous emission
of energy by the donor and absorption of energy by the acceptor in an energy
conserving process. Notice, however, that a physical photon is not exchanged
between the donor and acceptor in this process.

We also notice that, unlike the case of coherent transfer - where the transfer
rate is ∝ |JDA| and hence |RDA|−3 - for incoherent transfer the rate is ∝ |JDA|2
and hence |RDA|−6. It is customary to define a Förster radius, RF , at which the
Förster transfer rate is equal to the radiative emission rate, kR = 1/τR. Then,

kDA =
1
τR

(
RF

|RDA|
)6

. (9.40)

Thus, for molecules separated by distances less than RF exciton transfer is more
likely to occur than radiative recombination.

9.2.3.2 Dexter transfer A similar expression determines the transfer rate for
triplet excitons, namely,

kDA =
2π
�

|K̃DA|2
∫

FD(E)FA(E)dE, (9.41)

where K̃DA is given by eqn (9.15). The spectral functions are defined by,

37The factors of 1/3 arise from the orientational average.
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FD(E) =
E−3ID(E)∫
E−3ID(E)dE

, (9.42)

where ID(E) is the emission curve of the donor and

FA(E) =
E−1σA(E)∫
E−1σA(E)dE

, (9.43)

where σA(E) is the absorption curve of the acceptor.

9.2.4 The density matrix approach

In general the exciton dynamics exhibits both coherent and incoherent behaviour,
where the incoherence arises from the coupling of the system to a dissipative
environment. This is conveniently modelled by an equation of motion for the
reduced density operator, ρ̂, defined by

ρ̂ = Tr{Ŵ (t)}, (9.44)

where Ŵ (t) is the full density operator and the trace is over the degrees of
freedom of the environment. (See May and Kühn (2000) for more details of this
approach.)

In the localized exciton basis {|m〉}, defined by eqn (9.17), the matrix ele-
ments of the reduced density operator are

ρmn = 〈m|ρ̂|n〉. (9.45)

The diagonal elements, ρnn, represent the classical populations, Pn, while the
off-diagonal elements, ρmn, describe the coherences between the quantum states
|m〉 and |n〉.

The equation of motion for the matrix elements is

∂ρmn

∂t
= −iωmnρmn − i

�

∑
�

(Jm�ρ�n − J�nρm�)

−δmn

∑
�

(km�ρmm − k�mρ��)− (1− δmn)(γm + γn)ρmn, (9.46)

where ωmn = (∆m−∆n)/�. The first two terms on the right-hand side represent
the coherent dynamics described in Section 9.2.2.3. The final two terms are the
dissipative terms: the third term represents the incoherent dynamics described by
the rate equation, eqn (9.32), while the final term represents coherence dephasing.

For a system in contact with a thermal heat bath equilibrium is achieved
provided that detailed balance is satisfied, namely

km�

k�m
= exp(−�ω�m/kBT ). (9.47)
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The competition between coherence and incoherence is readily illustrated by
the dimer, which serves as a model of a two-level system. If molecule 1 is initially
excited at time t = 0, the subsequent populations of molecules 1 and 2 are,

P1(t) = ρ11(t) =
1
2
(1 + exp(−αt) cos(ωt)) (9.48)

and
P2(t) = ρ22(t) =

1
2
(1− exp(−αt) cos(ωt)) , (9.49)

respectively. The parameters are,

α = k + γ (9.50)

and

ω =
(
4J2

�2
− (k − γ)2

)1/2
, (9.51)

where J = J12 = J21, k = k12 = k21, and γ = γ1 = γ2.
Equations (9.48) and (9.49) indicate that the system exhibits the ‘classical’

populations after a relaxation (or decoherence) time, α−1. Evidently, we also see
that the system is overdamped when 2|J |/� < |k − γ|.

9.3 Excited molecular complexes

9.3.1 Excimers

Excited dimers, or excimers, were introduced in Section 9.2.2.1 in the context
of resonant exciton transfer between two coupled molecules. See (Gordon and
Ware 1975) for a review. This resonant transfer results in the ‘bonding’ and
‘antibonding’ states, described by eqns (9.18) and (9.19), respectively.38 Thus,
the molecules in the lower excited state of a dimer experience an attraction -
mediated by the exchange of excitons - that is not present in the ground state.

As well as the intramolecular exciton component, excimers also have a charge-
transfer component, corresponding to an electron on one of the molecules and a
hole on the other. Representing the component with a hole on molecule m and
an electron on molecule n as |+〉m|−〉n, an excimer state is written as

|Ψ〉 = c1 (|EX〉m|GS〉n ± |GS〉m|EX〉n) + c2 (|+〉m|−〉n ± |−〉m|+〉n) . (9.52)
The charge-transfer component further stabilizes the excimer in two ways. First,
the intermolecular Coulomb interaction induces an attraction between the electron-
hole pair, resulting in a weakly bound charge-transfer exciton. Second, the inter-
chain one-electron Hamiltonian couples the charge-transfer component with the
exciton component.

A schematic illustration of the adiabatic potential energy surfaces for the
dimer is shown in Fig. 9.4. Since the pair of molecules in the lowest excited state

38Note, however, that for the parallel arrangement the ‘antibonding’ state has lower energy.
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Fig. 9.4. Schematic illustration of the adiabatic potential energy surfaces for the
ground state and lowest excited state of a dimer as a function of the molecular
separation, R. Also illustrated are the excimer fluorescence spectrum and the ab-
sorption and emission spectra for a single molecule.

experience an attraction that is not present in the ground state the equilibrium
geometry of the excimer corresponds to a repulsive ground state potential. Thus
the excimer emission is broad, featureless and red-shifted in comparison to the
molecular emission. Notice that there is also no associated absorption from the
ground state to the excimer.

Equation (9.52) indicates that there are four components to the excimer
state, |Ψ〉. Correspondingly, there are four excimer eigenstates. The lowest two
in energy are predominately composed of the bonding or antibonding exciton
wavefunctions, already described in Section 9.2.2.1. These are split in energy
by roughly 2J and centred around the exciton energy, ∆, as illustrated in Fig.
9.3. The highest two eigenstates in energy are predominately composed of the
bonding or antibonding charge-transfer wavefunctions. These are split in energy
by roughly the intermolecular transfer integral and centred around the charge-
transfer energy. This ordering of the ‘excimer eigenstates’ is quite different from
an exciplex, as we describe below, where a particular charge-transfer component
is usually the lowest state.

9.3.2 Exciplexes

An exciplex is an excited complex of two different molecules. Thus an exciplex
state is represented as

|Ψ〉 = c1|EX〉m|GS〉n + c2|GS〉m|EX〉n + c3|+〉m|−〉n + c4|−〉m|+〉n. (9.53)
In general, for molecules with similar HOMO-LUMO gaps the exciplex will be
dominated by the charge-transfer component |+〉D|−〉A, where D and A stand
for donor and acceptor, respectively. The donor and acceptor are defined such
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Fig. 9.5. The charge-transfer state of an exciplex, with the ionization potential, IPD,
and the electron affinity, EAA, of the donor (D) and acceptor (A) also shown.

that IPD < IPA and EAA > EAD, where IP is the ionization potential (defined
as the energy required to remove an electron) and EA is the electron affinity
(defined as the energy gained by accepting an electron), as illustrated in Fig.
9.5. Then, neglecting exciton and charge transfer terms, the lowest excited state
energy, ∆ is

∆ = IPD − EAA − C(R), (9.54)

where −C(R) is the Coulomb potential energy between the electron-hole pair.
The transition dipole moment of excimers and exciplexes with the ground

state (and hence their life-times) is a function of the relative orientation of the
two molecules. As we have seen in Section 9.2.2.1, parallel molecules in an ex-
cimer have a zero transition dipole moment, whereas collinear molecules have an
enhanced dipole moment.

9.4 Screening of intramolecular states

We described in Section 9.2 how excitons transfer from chain to chain as a result
of interchain interactions. Another important consequence of interchain interac-
tions is that they screen intrachain excitations. An understanding of the strength
of this screening is essential to quantitatively predict the energies of intrachain
excitations of polymers in a bulk environment. In this section we describe how
these screening energies can be estimated using second order perturbation the-
ory, and we show why screening of excitons in polymers is quite different from
that in conventional semiconductors.
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Consider an assembly of N molecules described by the Hamiltonian,

H = H intra +H inter. (9.55)

The intermolecular Hamiltonian, H inter, is regarded as the perturbation on the
sum of intramolecular Hamiltonians,

H intra =
∑
n

H intra
n , (9.56)

where H intra
n is the intramolecular Hamiltonian for the nth molecule. H inter is a

sum of pair-wise interactions between pairs of molecules:

H inter =
1
2

∑
m�=n

He−e
mn (9.57)

andHe−e
mn is defined in eqn (9.6) (as we are neglecting electron-transfer processes).

A general eigenstate of H intra is a direct product of intramolecular eigenstates,

|A〉 =
∏
m

|M〉m. (9.58)

To second order in perturbation theory the change in energy arising from the
intermolecular interactions is

∆EA = 〈A|H inter|A〉+
∑
A �=A′

〈A′|H inter|A〉2
EA − EA′

. (9.59)

Consider the general matrix element, 〈A′|H inter|A〉. Using the fact that H inter is
a sum over pairwise interactions this matrix element is

〈A′|H inter|A〉 = 1
2

∑
m�=n

〈A′|He−e
mn |A〉. (9.60)

Further, since He−e
mn only operates on molecules m and n we have,

〈A′|He−e
mn |A〉 =

∑
i∈m,j∈n

Vij

[
m〈M ′|(N̂i − 1)|M〉m

] [
n〈N ′|(N̂j − 1)|N〉n

]
.

(9.61)
For neutral systems with particle-hole symmetry the diagonal terms are zero,
because 〈N̂ − 1〉 = 0 (as shown in Appendix B). Thus, the first order corrections
to the energy are zero, and we need to consider the off-diagonal matrix elements
to second order in perturbation theory, where both |M ′〉m �= |M〉m and |N ′〉n �=
|N〉n.

In general, therefore, the sum over A′ in eqn (9.59) is a sum over all pairs
of molecules m and n and all states |M ′〉m and |N ′〉n connected to |M〉m and
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|N〉n, respectively by He−e
mn . There are two sets of terms to consider for identical

molecules. First, there are terms from the degenerate states associated with
the transfer of energy from molecule to molecule, namely |M ′〉m = |N〉m and
|N ′〉n = |M〉n. These are the resonant terms already considered in Section 9.2.
Second, there are the nonresonant terms that lead to the shift in state energies.
We now consider these latter terms.

Since our purpose is to calculate the screening of an excitation in a general
molecule by the other molecules, let us now consider the situation where molecule
p will be in a general state |P 〉p and the remaining {q} molecules will be in their
ground states, {|GS〉q}. The sum over A′ in eqn (9.59) is now over all molecules
q and all the connected eigenstates. In general this summation is not practical.
However, the essential physics underlying the screening is revealed when we make
two simplifying assumptions. First, for sufficiently distant molecules we can again
invoke the dipole approximation. Suppose that,

|A〉 = |P 〉p
∏
q

|GS〉q (9.62)

and

|A′〉 = |P ′〉p|Q〉q
∏
q′ �=q

|GS〉q′ , (9.63)

then,

〈A′|H inter|A〉 = κpq
|Rpq|3 [p〈P

′|µ̂p|P 〉p] [q〈Q|µ̂q|GS〉q] . (9.64)

Second, we invoke the ‘essential-states’ mechanism, described in Chapter 8, which
states that only a few states are strongly dipole connected. These are the ground
state and the lowest (pseudo)momentum eigenstate of each family of exciton
states. For centro-symmetric polymers these states are:

11Ag ↔ 11Bu ↔ m1Ag ↔ n1Bu, etc. (9.65)

Using these two approximations, we now derive simplified expressions for the
screening of the ground state and some of the key low-lying states.

1. The ground state of the system corresponds to all molecules being in their
ground state. The dominant term in the sum will be to the state with all pairs
of molecules p and q being in their lowest excitation, the 11Bu state. Thus,

∆E1A = −

∣∣∣∑q
κpq

|Rpq|3 〈11Bu|µ̂|11Ag〉2
∣∣∣2

2∆E(11Bu)
, (9.66)

where ∆E(X) is the transition energy of the state X.
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2. The first excited state of the system corresponding to molecule p in the
lowest excited state (11Bu) and the rest in their ground states. Again, the domi-
nant term in the sum will be to the state with next highest excitation in all pairs
of molecules p and q. Thus,

∆E1B = −

∣∣∣∑q
κpq

|Rpq|3 〈11Bu|µ̂|11Ag〉〈m1Ag|µ̂|11Bu〉
∣∣∣2

∆E(m1Ag)
. (9.67)

Notice that the term corresponding to the de-excitation of molecule p and the
excitation of another molecule to the 11Bu state is a resonant transfer, and
therefore it is not included here.

3. The second excited state of the system corresponding to molecule p in the
second excited state (m1Ag) and the rest in their ground states. Now there are
two important terms in the sum: one to the state with next highest excitation
in all pairs of molecules p and q, and the other to a de-excitation in p and an
excitation in q. Thus,

∆EmA = −

∣∣∣∑q
κpq

|Rpq|3 〈11Bu|µ̂|11Ag〉〈n1Bu|µ̂|m1Ag〉
∣∣∣2

∆E(n1Bu) + ∆E(11Bu)−∆E(m1Ag)

−

∣∣∣∑q
κpq

|Rpq|3 〈11Bu|µ̂|11Ag〉〈11Bu|µ̂|m1Ag〉
∣∣∣2

2∆E(11Bu)−∆E(m1Ag)
. (9.68)

The expressions derived within the dipole and essential-states approximation
indicate that:

• Screening is determined by induced transition dipole interactions, which
decrease as R−6. These are ‘dispersive’ or ‘London’ type interactions. The
change in energy of the ground state given by eqn (9.66) is the van der
Waal’s interaction.

• Screening effectively reduces the energy of the intramolecular excitations.
This screening is enhanced for the higher excited states, because the transi-
tion dipole moments between connected states increase (see Section 8.3.4)
and the energy denominators decrease.

• The time-scale for the screening is determined by the time to establish a
dipole in the dielectric, namely �/∆E(11Bu), and the time for the screened
molecule to make a transition to a different state, namely �/(∆E(Xf ) −
∆E(Xi)). As the excited state energies increase the energy differences de-
crease and this time scale diverges. Eventually this leads to a break-down
in the perturbation theory, and to solvation-like screening, as in a point
charge described below.

It is also instructive to estimate the screening of a free charge in the ground
state, as the screening energy of an unbound particle-hole pair is twice this value.
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Consider a doped particle on molecule p. Since in a doped molecule 〈N̂ −1〉 �= 0,
the dominant matrix elements are of the type,

∑
i∈mj∈n

Vij

[
p〈11Ag|(N̂i − 1)|11Ag〉p

] [
q〈11Bu|(N̂j − 1)|11Ag〉q

]
. (9.69)

This corresponds to the interaction of a monopole on molecule p with a transition
dipole moment on molecule q, and represents the static solvation of the point
charge.

As we have seen, the dielectric screening of the lowest excited states is
dispersion-like, becoming solvation-like for the weakly bound states and charged
states. Solvation-like screening occurs in inorganic semiconductors where the op-
tical gap is much larger than the exciton binding energy. Thus, the dielectric is
much faster than the internal dynamics of the electron-hole pair in the exciton,
and the polarization rapidly follows the charged species. In this case, the effects
of the polarization can be absorbed into a static screened electron-hole inter-
action. In contrast, because the binding energy of the lowest optically allowed
exciton of an organic semiconductor is comparable to its excitation energy the
effects of the polarization on this state must be modelled by a dynamic screened
electron-hole interaction.

Moore and Yaron (1998) modelled screening processes in polyacetylene by
surrounding a central solute chain by an increasing numbers of solvent chains
arranged in a crystalline structure and extrapolating to an infinite system. The
central chain was treated with a Pariser-Parr-Pople model with double and sin-
gle bond transfer integrals of td = 2.581 eV and ts = 2.228 eV, respectively, and
U = 11.13 eV. The solvent chains were treated in an independent-electron ap-
proximation. Coulomb interactions were included between all chains. Replacing
the central solute chain with a point charge led to an estimate of about 1 eV
for the solvation energy of a point charge. In the assumption of an infinitely fast
dielectric, where the solvent polarization is equilibrated to the instantaneous po-
sition of the electron and hole, the solvation energy of a well separated electron
and hole is about 1.9 eV. Using a model that approximates the dynamic response
of the dielectric, the free electron and hole become dressed by the dielectric re-
sponse of the solvent chains to form polarons, and the solvation energy drops
to about 1.5 eV. They also find in the dynamical model that the 11Bu state is
screened by ∼ 0.3 eV and the m1Ag state is screened by ∼ 0.6 eV. This means
that a single chain calculation of the 11Bu binding energy is ∼ 1.2 eV larger
than its value for a polymer chain in the solid state.

Similar energetic corrections were found in a one-dimensional dynamical
model of the dielectric (Barford et al. 2004). There it was also shown that co-
valent states are weakly screened by the environment, in contrast to the ionic
states that are strongly screened.
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9.5 Electron transfer

Both intra and inter molecular electron transfer are fundamental processes in
electron transport in polymers. This in turn determines the operation of organic
optoelectronic devices. Electron transfer between molecular complexes is also
an important process in many biological systems. In this section we give a brief
review of the nonadiabatic electron transfer that is relevant to electron transport.
Since this process is nonadiabatic, the configuration coordinates of the initial and
final electronic states are different. In practice, they are often taken to have the
same values; namely the position at which the potential energy surfaces cross
(called the reaction coordinates), as illustrated in Fig. 9.6.

In this section we derive expressions for the rates of electron transfer within
the Fermi Golden Rule approximation. As we described for exciton transport
in Section 9.2.4, these rates can be used to model charge transport using the
density matrix formalism. There is a wide and thorough discussion of this topic
in May and Kühn (2000).

9.5.1 Unimolecular electron transfer

We first consider electron transfer within a charged system composed of two
strongly coupled subsystems: a donor, denoted by D, and an acceptor, denoted
by A. The electron transfer occurs from D to A. These subsystems might be two
parts of a molecular complex, or two moities of the same molecule, for example.
Since these subsystems are strongly coupled they share the same nuclear normal
coordinates. The adiabatic potential energy of the system is illustrated in Fig.
9.6. UD(Q) is the potential energy of the system when the charge is localized on
D, while UA(Q) is the potential energy of the system when the charge is localized
on A.

9.5.1.1 Low temperature limit (kBT � �ωξ for all normal modes {ξ}) In this
limit electron transfer occurs via nuclear tunnelling between the minima of UD

and UA.
The initial, |D〉, and final, |A〉, states represent the electron localized on D

and A, respectively. Within the Born-Oppenheimer approximation the electronic
and nuclear degrees of freedom are described by the Born-Oppenheimer states,

|X〉 = |x; {Q}〉|νx〉. (9.70)

As usual, |x; {Q}〉 is the electronic state, |νx〉 is its associated nuclear state and
the {Q} label indicates that the electronic state is parametrized by the nuclear
coordinates. Thus,

|D〉 = |d;Q〉|νd〉 (9.71)

and
|A〉 = |a;Q〉|νa〉, (9.72)

for the simplified case of a single normal coordinate. The electron transfer inte-
gral, TDA, is
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Fig. 9.6. The adiabatic potential energies of the donor-acceptor system. UD(Q) is the
potential energy of the system when the charge is localized on the donor and UA(Q)
is the potential energy of the system when the charge is localized on acceptor. Eact,
Eλ and ∆E are the activation, reorganization and driving energies, as described in
the text. The reaction coordinate, Qr, is illustrated.

TDA = 〈A|H(1)|D〉, (9.73)

where H(1) is the one-electron Hamiltonian,

H(1) = −
∑

i∈Dj∈A,σ

tij

(
c†iσcjσ + c†jσciσ

)
. (9.74)

Inserting eqns (9.71) and (9.72) into eqn (9.73) gives,

TDA = 〈a;Q|H(1)|d;Q〉〈νa|νd〉, (9.75)

where we define the electronic matrix element as,

tDA = 〈a;Q|H(1)|d;Q〉. (9.76)

The nonadiabatic electron transfer rate is then given by the Fermi Golden
Rule expression,

kDA =
2π
�

∑
νdνa

f(Eνd
)|TDA|2δ(Eνd

− Eνa
)

=
2π|tDA|2

�

∑
νdνa

f(Eνd
)Fadδ(Eνd

− Eνa
). (9.77)

f(Eνd
) is the Bose distribution function for the occupancy of the νdth vibra-

tional level and Fad = 〈νa|νd〉2 is the Franck-Condon factor. The sum is over
all the initially populated levels νd and all the final levels, νa, satisfying energy
conservation.
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9.5.1.2 High temperature limit (kBT � �ωξ for all normal modes {ξ}) For-
mally, this limit may be obtained directly from the low-temperature expression.
However, in this section we derive it classically. In the high-temperature limit
electron transfer is an activated process due to thermal excitation over the po-
tential barrier separating the two minima of the adiabatic potentials UD and UA,
as illustrated in Fig. 9.6.

The nuclear coordinates are treated classically, via the configuration coordi-
nate, Q. Then, the transfer rate is given by the Fermi Golden Rule expression,

kDA =
2π|tDA|2

�

∫
f(Q)δ(UD(Q)− UA(Q))dQ. (9.78)

f(Q) is the classical (Boltzmann) distribution function,

f(Q) =

√
Mω2

2πkBT
exp

(
−UD(Q)

kBT

)
, (9.79)

which ensures an ensemble average over the initial configurations of the donor.
Evaluating the integral in eqn (9.78) gives,

kDA = |tDA|2
√

π

�2kBTEλ
exp

(
−Eact
kBT

)
, (9.80)

where Eact is the activation energy and Eλ is the reorganization energy , both
of which are defined in Fig. 9.6. Eλ is the energy lost when there is a vertical
transition from D to A, followed by vibrational relaxation to the minimum of
UA(Q).39

It is more convenient to re-express the activation energy in terms of the
reorganization energy and driving energy , ∆E, (also defined in Fig. 9.6), as
follows.

Eact =
(∆E − Eλ)2

4Eλ
. (9.81)

Then eqn (9.80) becomes the Markus expression (Markus 1964) for electron
transfer,

kDA = |tDA|2
√

π

�2kBTEλ
exp

(
− (∆E − Eλ)2

4kBTEλ

)
. (9.82)

It is customary to consider electron transfer in three limits. (a) The normal
limit , defined by Eλ > ∆E, (b) the activationless limit , defined by Eλ = ∆E,
and (c) the inverted limit , defined by Eλ < ∆E. These limits are illustrated in
Fig. 9.7.

39As expected from detailed balance, kAD = kDA exp(−∆E/kBT ).
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Fig. 9.7. The adiabatic potential energies in the (a) normal limit, (b) activationless
limit and (c) inverted limit.

9.5.2 Bimolecular electron transfer

Bimolecular electron transfer occurs between two separate, weakly-coupled molecules
with independent nuclear degrees of freedom. This is the more appropriate
description for charge transfer between polymers in solution and weakly cou-
pled polymers in a thin film. Electron transfer will occur from a charged donor
molecule to a neutral acceptor molecule. The adiabatic potential energies of the
molecules in their charge and neutral states are illustrated in Fig. 9.8.

9.5.2.1 Low temperature limit We consider electron transfer from a donor
molecule initially in a negative charge state, |D−〉, to an acceptor molecule ini-
tially in a neutral state, |A〉. The initial and final states are therefore

|I〉 = |D−〉|A〉 (9.83)

and
|F 〉 = |D〉|A−〉, (9.84)

respectively, where,
|D−〉 = |d−;QD〉|νd−〉, (9.85)

|D〉 = |d;QD〉|νd〉, (9.86)

|A〉 = |a;QA〉|νa〉, (9.87)

and
|A−〉 = |a−;QA〉|νa−〉. (9.88)

QD and QA are the nuclear configuration coordinates for the donor and acceptor,
respectively.
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Fig. 9.8. The adiabatic potential energies of the donor (D) and acceptor (A) molecules
in their charged and neutral states.

Electron transfer between molecules is mediated by H⊥ defined by,

H⊥ = −tij
∑

i∈Dj∈A,σ

(
cD†
iσ c

A
jσ + cA†

jσ c
D
iσ

)
, (9.89)

where cX†
iσ (cXiσ) creates (destroys) a π-electron on site i of molecule X and tij is

the interchain hybridization integral. Hence, the electron transfer integral is

TDA = 〈F |H⊥|I〉 = tDA〈νa− |νa〉〈νd|νd−〉, (9.90)

where the electronic matrix element is

tDA =
∑

i∈Aj∈B,σ

tij〈a−;QA|cA†
jσ |a;QA〉〈d;QD|cDiσ|d−;QD〉. (9.91)

The electron transfer rate is now,

kDA =
2π|tDA|2

�

∑
νd−νd

∑
νaνa−

f(Eνd− )f(Eνa
)Fdd−Fa−aδ((Eνd− + Eνa

)− (Eνd
+ Eνa− )),

(9.92)

where f(Eνd−) and f(Eνa) are the Bose distribution functions for the initial pop-
ulation of the vibrational levels, while Fdd− = 〈νd|νd−〉2 and Fa−a = 〈νa− |νa〉2.
Using the identity in eqn (9.34) we can rewrite the δ−function as,
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δ((Eνd− +Eνa
)−(Eνd

+Eνa− )) =
∫

δ(Eνd− −Eνd
−�ω)δ(Eνa

−Eνa− +�ω)d(�ω).

(9.93)
Then, defining the spectral functions D(ω) and A(ω) as

D(ω) =
∑

νd−νd

f(Eνd− )Fdd−δ(Eνd− − Eνd
− �ω) (9.94)

and
A(ω) =

∑
νaνa−

f(Eνd
)Fa−aδ(Eνa − Eνa− + �ω) (9.95)

the electron transfer rate may be expressed as,

kDA = 2π|tDA|2
∫

D(ω)A(ω)dω. (9.96)

As in exciton transfer, the overlap of the spectral functions reflects energy con-
servation during the electron transfer.

9.5.2.2 High temperature limit The electron transfer rate in the high temper-
ature limit follows in a similar manner to that of Section 9.5.1.2. Now, however,
there are two independent configuration coordinates, QD and QA.

The transfer rate is thus,

kDA =
2π|tDA|2

�

∫
f(QD)f(QA)δ((UD−(Q) + UA(Q))− (UD(Q) + UA−(Q)))dQDdQA.

(9.97)

Again, using the identity eqn (9.34) we define

D(ω) =
∫

f(QD)δ(UD−(Q)− UD(Q)− �ω)dQD

≡
√

π

�2kBTED
λ

exp
(

− (∆ED − ED
λ )

2

4kBTED
λ

)
(9.98)

and

A(ω) =
∫

f(QA)δ(UA(Q)− UA−(Q) + �ω)dQA

≡
√

π

�2kBTEA
λ

exp
(

− (∆EA − EA
λ )

2

4kBTEA
λ

)
, (9.99)

where
∆ED = ∆E(0)D − �ω, (9.100)
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∆EA = ∆E(0)A + �ω, (9.101)

and ED
λ , E

A
λ , ∆E

(0)
D , and ∆E(0)A are defined in Fig. 9.8. Then we obtain an

identical expression for the electron transfer rate as in the last section, namely,

kDA = 2π|tDA|2
∫

D(ω)A(ω)dω. (9.102)

Bimolecular electron transfer is an important mechanism in determining the
singlet exciton yield in light emitting polymers, as discussed in the next section.

9.6 The singlet exciton yield in light emitting polymers

9.6.1 Introduction

In the final section of this Chapter we discuss the singlet exciton yield in light
emitting polymers obtained via charge injection. As we now show, this yield is
a key a factor in the electroluminescence efficiency of polymer light emitting
devices.

The operation of a light emitting device is shown schematically in Fig. 9.9.
Electrons and holes are injected into the conduction and valence bands at the
cathode and anode, respectively. Under the influence of the electric field they drift
through the device, rapidly being captured and (as explained below) eventually
forming the lowest energy singlet or triplet excitons by interconversion. The
singlet excitons predominately recombine radiatively, whereas the triplet excitons
recombine nonradiatively.

The electroluminescence quantum efficiency, ηEL, of a light emitting device
is defined as,

ηEL =
(
Rate of photons detected

I

)
, (9.103)

where I is the current of injected electron-hole pairs. It is convenient to factorize
this expression into three factors,

ηEL =
(
Number of detected photons
Number of emitted photons

)

×
(
Number of emitted photons
Number of singlet excitons

)(
Rate of singlet exciton decay

I

)
.

(9.104)

Finally, we define the singlet exciton yield, ηS, by,

ηS =
1
ηc

(
Rate of singlet exciton decay

I

)
, (9.105)

where ηc is the fraction of electron-hole pairs captured.
Since electrons and holes are ejected into the device with random spin ori-

entations, there are initially three times as many triplet electron-hole pairs as
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Fig. 9.9. The schematic operation of a light emitting polymer device. Electrons in
the conduction band and holes in the valence band are mutually captured, forming
strongly bound exciton states. However, only the singlet excitons decay radiatively,
emitting a photon. Triplet excitons decay nonradiatively, emitting phonons that is
eventually wasted as heat.

singlet electron-hole pairs. Thus, when there is spin-independent recombination,
ηS = 25%. Singlet exciton yields in light emitting polymer devices exceeding the
spin-independent recombination value of 25% have now been reported by a large
number of groups (Cao et al. 1999; Ho et al. 2000; Dhoot et al. 2002; Wilson et
al. 2001; Wohlgenannt et al. 2002). Although the value of ηS remains controver-
sial (see Segal et al. 2003), an understanding and control of it is an important
factor in optimizing device performance.

Various theoretical attempts have been made to explain the enhanced singlet
exciton yield, including models based on either intramolecular and intermolecular
recombination. Bittner et al. (see Karabunarliev and Bittner (2003)) assume that
intrachain electron-hole recombination occurs via vibrational relaxation through
the band of exciton states between the particle-hole continuum and lowest bound
excitons. Since vibrational relaxation is faster in the singlet channel than the
triplet channel, because the lowest singlet exciton lies higher in energy than
the lowest triplet exciton, a faster formation rate for the singlet than the triplet
exciton is predicted. Hong and Meng (2001) argue that a multiphonon process in
the triplet channel also leads to faster intramolecular singlet exciton formation.

The different rates for singlet and triplet exciton formation predicted in the
literature for interchain recombination (Ye et al. 2002; Tandon et al. 2003) arise
largely from the assumption that an interchain density-dependent electron trans-
fer term is an important factor in the recombination mechanism. This term
couples states of the same ionicity. Since the interchain charge transfer states
are predominately ionic, while the intrachain triplet exciton has more covalent
character than the intrachain singlet exciton, the rate for the singlet exciton
formation is correspondingly greater.

The recent experimental and theoretical work is reviewed in Wohlgenannt
and Vardeny (2003), and Köhler and Wilson (2003).
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In this section we describe a model of interchain electron-hole recombination
that involves intermediate, loosely bound (charge-transfer) states that lie ener-
getically between the electron-hole continuum and the final, strongly bound exci-
ton states (Barford 2004). We will show that intermolecular interconversion from
the charge transfer to the lowest energy exciton states is limited by multiphonon
emission, which decreases approximately exponentially with the energy gap be-
tween the pair of states. Since the lowest singlet and triplet exciton energies are
split by a large exchange energy (of ca. 0.7 eV), while the charge-transfer states
are quasi-degenerate, the triplet exciton formation rate is considerably smaller
than the singlet exciton rate. Thus the singlet exciton yield may be greater than
25%, provided that the intersystem crossing mechanisms are fast enough.

The theory of this section relies on the assumption that excitons in light
emitting polymers are Mott-Wannier excitons (as described in Chapter 6). The
experimental and theoretical evidence for this assumption is described in detail
in Chapter 11.

9.6.2 Basic model and the rate equations

Figure 9.10 shows the energy level diagram for this model. The electrons and
holes are injected into the polymer device with random spin orientations. Under
the influence of the electric field the electrons and holes migrate through the
device, rapidly being captured (in less than 10−12 s) to form the weakly bound
charge-transfer singlet and triplet excitons, SCT and TCT, respectively. We as-
sume that no spin mixing occurs during this process, and thus the ratio of SCT
to TCT is 1:3.40 If the intersystem crossing (ISC) between TCT and SCT (with a
rate 1/τISC) competes with the interconversion from TCT to the triplet exciton,
TX, (with a rate 1/τTCT) and 1/τTCT is smaller than the interconversion rate
(1/τSCT) from SCT to the singlet exciton, SX, then the singlet yield is enhanced.

The charge-transfer states might be either intramolecular loosely bound ex-
citons or weakly bound positive and negative polarons on neighbouring chains.
Intramolecular charge-transfer states are Mott-Wannier excitons whose relative
electron-hole wavefunctions are odd under electron-hole exchange. As explained
in Chapter 6, a crucial characteristic of these states is that, because of their
odd electron-hole parity, the probability of finding the electron and hole on the
same molecular repeat-unit is zero. Thus, they experience very small exchange
interactions and therefore the singlet and triplet states are quasi-degenerate.41

Similarly, the intermolecular weakly bound positive and negative polarons - al-
though now possessing even electron-hole parity - also experience weak exchange
interactions as necessarily the electron and hole are on different repeat units, and
thus singlet and triplet states are also quasi-degenerate. Furthermore, since the
charge-transfer excitons are also weakly bound with relatively large electron-hole

40Furthermore, there is an efficient electric-field-induced electron-hole mixing, so all the
electron-hole pairs become charge-transfer excitons.

41This prediction is confirmed in PPV-DOO, where E(SCT) ∼ 3.2 eV (Frolov et al. 2002)
and E(TCT) ∼ 3.1 eV (Monkman et al. 2001). See also Kadashchuk et al. (2004).
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Fig. 9.10. The energy level diagram of the quasi-degenerate singlet and triplet
charge-transfer excitons (denoted by SCT and TCT, respectively) and the lowest
singlet and triplet excitons (denoted by SX and TX, respectively). SCT and TCT

may be either intramolecular odd parity excitons or intermolecular even parity ex-
citons. (In each case these correspond to the lowest pseudo-momentum members of
each exciton family, as described in Section 9.6.3.1.) Also shown are the respective
lifetimes (or inverse rates) for the interconversions within the same spin manifolds
and intersystem crossing (ISC) between the spin manifolds. ∆ is the exchange en-
ergy between SX and TX.

separations, there exist efficient spin-flipping mechanisms, such as spin-orbit cou-
pling, or exciton disassociation via the electric field or by scattering from free
carriers and defects. Here we focuss on interconversion to the strongly bound
excitons from the interchain charge-transfer excitons.

The strongly bound excitons, SX and TX, are intramolecular states. The inter-
conversion process from SCT to SX and from TCT to TX depends on the nature of
SCT and TCT. The mechanism for bimolecular interconversion is described more
fully in the next section. In this section we describe the kinetics by classical rate
equations. The use of classical rate equations is justified if rapid interconversion
follows the ISC between TCT and SCT, as then there will be no coherence or
recurrence between TCT and SCT. We also note that since interconversion is fol-
lowed by rapid vibrational-relaxation (in a time of ∼ 10−13 s) these processes
are irreversible.

We first consider the case where ISC occurs directly via the spin-orbit cou-
pling operator. This operator converts the Sz = ±1 triplets into the singlet,
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and vice versa. Let NSX , NSCT , N
±
TX
, and N±

TCT
denote the number of SX, SCT,

and the Sz = ±1 TX and TCT excitons, respectively. N/τ = Iηc is the number
electron-hole pairs created per second (where ηc is the fraction of electron-hole
pairs captured and I is the current of electron-hole pairs). Then the rate equa-
tions are:

dNSCT

dt
=

N

4τ
+
N±

TCT

τISC
−NSCT

(
1

τISC
+

1
τSCT

)
, (9.106)

dN±
TCT

dt
=

N

2τ
+
NSCT

τISC
−N±

TCT

(
1

τISC
+

1
τTCT

)
, (9.107)

dNSX

dt
=

NSCT

τSCT

− NSX

τSX

, (9.108)

and
dN±

TX

dt
=

N±
TCT

τTCT

− N±
TX

τTX

. (9.109)

Notice that the Sz = 0 component of the TCT exciton is converted directly to
the Sz = 0 component of the TX exciton, and cannot contribute to the singlet
exciton yield.

From eqn (9.105) the singlet exciton yield, ηS , is defined by,

ηS =
NSX/τSX

Iηc
≡ NSX/τSX

N/τ
. (9.110)

Solving the rate equations under the steady state conditions that

dNSCT

dt
=

dN±
TCT

dt
=

dNSX

dt
=

dN±
TX

dt
= 0 (9.111)

gives

ηS =
3 + γ

4(1 + β + γ)
, (9.112)

where β = τSCT/τTCT and γ = τISC/τTCT .
Alternatively, we might consider ISC via a spin-randomization process, whereby

the charge-transfer excitons are scattered into charge-transfer triplets with a
probability of 3/4 and charge-transfer singlets with a probability of 1/4. Then
the rate equations are (Wohlgenannt and Vardeny 2003),

dNSCT

dt
=

N

4

(
1
τ
+

1
τISC

)
−NSCT

(
1

τISC
+

1
τSCT

)
, (9.113)

dNTCT

dt
=
3N
4

(
1
τ
+

1
τISC

)
−NTCT

(
1

τISC
+

1
τTCT

)
, (9.114)

dNSX

dt
=

NSCT

τSCT

− NSX

τSX

, (9.115)
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Fig. 9.11. The singlet exciton yield, ηS, versus γ = τISC/τTCT . β = τSCT/τTCT . Solid
curves from eqn (9.112), dashed curves from eqn (9.117).

and
dNTX

dt
=

NTCT

τTCT

− NTX

τTX

. (9.116)

where NTCT is the total number of charge-transfer triplets. Solving again for the
steady state, the singlet exciton yield becomes,

ηS =
1 + γ

1 + 3β + 4γ
, (9.117)

In practice, as we shall show, τTCT � τSCT so β ≈ 0. We note that ηS is
a function only of the relative life-times of charge-transfer singlets and triplets,
and the ISC rate. The singlet yield is plotted in Fig. 9.11 as a function of γ. We
now describe the calculation of the relative rates.

9.6.3 Derivation of the intermolecular interconversion rate

Intermolecular interconversion occurs via the electron-transfer Hamiltonian, H⊥.
For parallel chains with nearest neighbour electron transfer this is

H⊥ = −t⊥
∑
iσ

(
c
(1)†
iσ c

(2)
iσ + c

(2)†
iσ c

(1)
iσ

)
, (9.118)

where c(�)†iσ (c(�)iσ ) creates (destroys) a π-electron on site i of chain � and t⊥ is the
interchain hybridization integral.
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If the chains are weakly coupled we may regard H⊥ as a perturbation on
the approximate Hamiltonian, H0, where H0 contains the intramolecular Hamil-
tonians and the remaining interchain interactions - particularly the Coulomb
interactions. Thus, we may write the Born-Oppenheimer Hamiltonian for a pair
of coupled polymer chains as,

H = H0 +H⊥. (9.119)

Within the Born-Oppenheimer approximation the electronic and nuclear degrees
of freedom are described by the Born-Oppenheimer states,

|A〉 = |a; {Q}〉|νa〉, (9.120)

where |a; {Q}〉 is the electronic state and |νa〉 is its associated nuclear state.
We assume that the stationary electronic states are the eigenstates of the ap-

proximate Hamiltonian, H0. Thus, the perturbation, H⊥, mixes these electronic
states. In particular, it causes an interconversion from the interchain excitons
(or weakly bound polaron pairs) to the intrachain excitons.

We take the initial electronic state, |i〉, to be a positive polaron on chain 1
and a negative polaron on chain 2,

|i〉 = |P+, P−;Q1, Q2〉. (9.121)

The interchain Coulomb interaction between the chains creates a weakly bound
charge-transfer exciton, to be described below. The labels Q1 and Q2 indicate
the independent normal coordinates of chains 1 and 2, respectively.

The effect of H⊥ is to move charge from one chain to another. We consider
the situation where the negative polaron is transferred from chain 2 to chain
1. Thus, the final electronic state, |f〉, is an intramolecular exciton on chain 1
(denoted by |EX〉), leaving chain 2 in its ground electronic state,

|f〉 = |EX;Q1〉(1)|GS;Q2〉(2). (9.122)

These electronic states are illustrated in Fig. 9.12.
The isoenergetic interconversion rate from the initial to the final states is

determined by the Fermi Golden Rule expression,

kI→F =
2π
�

〈F |H⊥|I〉2δ(EF − EI), (9.123)

where the initial and final Born-Oppenheimer states are,

|I〉 = |P+, P−〉|νP+〉(1)|νP−〉(2) (9.124)

and
|F 〉 = |EX〉(1)|GS〉(2)|νEX〉(1)|νGS〉(2), (9.125)

respectively. The matrix element appearing in eqn (9.123) is a product of the
electronic matrix elements and the vibrational overlaps,
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Fig. 9.12. A schematic representation of the initial and final electronic states. The
initial state, |i〉, is an electron and hole on neighbouring chains in a weakly bound
intermolecular charge transfer state. The final state, |f〉, is an electron and hole on
chain 1 bound in an intramolecular exciton state, while chain 2 is in its electronic
ground state.

〈F |H⊥|I〉 = 〈f |H⊥|i〉(1)〈νEX|νP+〉(1)(2)〈νGS|νP−〉(2). (9.126)

We derive expressions for the electronic matrix element and the vibrational over-
laps in the following two sections.

9.6.3.1 Electronic matrix elements The corresponding electronic matrix ele-
ment is

〈f |H⊥|i〉 = (2)〈GS|(1)〈EX|H⊥|P+, P−〉. (9.127)

We evaluate this matrix element using the effective-particle exciton model
introduced in Chapter 6. We briefly review this theory here. In the weak-coupling
limit42 (namely, the limit that the Coulomb interactions are less than or equal to
the band width) the intramolecular excited states of semiconducting conjugated
polymers are Mott-Wannier excitons described by,

|EX〉 =
∑
r,R

Φnj(r,R)|r,R〉. (9.128)

|r,R〉 is an electron-hole basis state (defined in eqn (6.7)) constructed by pro-
moting an electron from the filled valence band Wannier orbital at R − r/2 to

42This is the relevant limit for light emitting polymers, as explained in Chapter 11.
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the empty conduction band Wannier orbital at R+ r/2. R is the center-of-mass
coordinate and r is the relative coordinate of the effective particle.

Φnj(r,R) is the total exciton wavefunction. In the effective-particle approxi-
mation this may be expressed as a product of the relative wavefunction, ψn(r),
and the centre-of-mass wavefunction, Ψj(R):

Φnj(r,R) = ψn(r)Ψj(R). (9.129)

ψn(r) is a hydrogen-like electron-hole wavefunction labelled by the principle
quantum number, n. This has the property that under electron-hole reflection
(namely, r → −r) ψn(r) = ψn(−r) for odd n and ψn(r) = −ψn(−r) for even n.
On a linear chain the centre-of-mass wavefunction is

Ψj(R) =

√
2

N + 1
sin(βjR), (9.130)

where N is the number of unit cells. For each principle quantum number, n,
there is a band of excitons with different pseudo-momentum, βj = jπ/(N +1)d,
where j satisfies 1 ≤ j ≤ N and d is the unit cell distance. Thus, every exciton
state label, EX, corresponds to two independent quantum numbers: n and j.

As described in Chapter 6, n = 1 corresponds to the SX and TX families of
intrachain excitons, while n = 2 corresponds to the SCT and TCT families of
intrachain excitons. The lowest energy branch of each family has the smallest
pseudo-momentum, namely, j = 1. The effective-particle model is illustrated in
Fig. 6.2.

It is also convenient to describe the intermolecular weakly bound polaron
pairs as charge-transfer excitons described by

|P+, P−〉 =
∑
r,R

ψ̃n(r)Ψj(R)|r,R; 2〉, (9.131)

where ψ̃n represents the interchain effective-particle wavefunction. n = 1 (namely,
even electron-hole parity) for the lowest energy interchain excitons. |r,R; 2〉 is
an electron-hole basis state constructed by promoting an electron from the filled
valence band Wannier orbital at R − r/2 on chain 1 to the empty conduction
band Wannier orbital at R+ r/2 on chain 2.

Using eqns (9.128), (9.129), and (9.131) the electronic matrix element is

〈f |H⊥|i〉 =
∑
r′,R′

ψn′(r′)Ψj′(R′)
∑
r,R

ψ̃n(r)Ψj(R)(2)〈GS|(1)〈r′, R′|H⊥|r,R; 2〉.

(9.132)

This matrix element is evaluated by expressing H⊥ in terms of the valence and
conduction Wannier orbital operators. Retaining terms that keep within the
exciton subspace H⊥ becomes
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H⊥ = −t⊥
∑
jσ

(
c
v(1)†
jσ c

v(2)
jσ + c

c(1)†
jσ c

c(2)
jσ

)
+H.C. (9.133)

Then,

〈f |H⊥|i〉 = −t⊥
∑
r′,r

ψn′(r′)ψ̃n(r)
∑
R′,R

Ψj′(R′)Ψj(R)(1)〈r′, R′|r,R〉(1).

(9.134)

By exploiting the orthonormality of the basis functions,

〈r′, R′|r,R〉 = δr′rδR′R, (9.135)

we have

〈f |H⊥|i〉 = −t⊥
∑
r

ψn′(r)ψ̃n(r)
∑
R

Ψj′(R)Ψj(R). (9.136)

Now, the centre-of-mass wavefunctions also form an orthonormal set,43∑
R

Ψj′(R)Ψj(R) = δj′j . (9.137)

Thus, using eqn (9.137) in eqn (9.136) we obtain the final result for the electronic
matrix element,

〈f |H⊥|i〉 = −t⊥
∑
r

ψn′(r)ψ̃n(r). (9.138)

Equations (9.137) and (9.138) demonstrate the important result that inter-
conversion via H⊥ is subject to two electronic selection rules.
1. Interconversion occurs between excitons with the same centre-of-mass pseudo-

momentum, βj .
2. Interconversion occurs between excitons with the same electron-hole parity.

Thus, |n′ − n| = even.
Since the lowest energy interchain excitons have even electron-hole parity this
implies that H⊥ connects them to SX and TX, and not to the intramolecular SCT
and TCT.44 Moreover, since the interchain exciton will have relaxed to its lowest
momentum state, H⊥ converts it to the intrachain exciton in its lowest momen-
tum state, and not to higher lying momentum states. Interconversion subject to
these selection rules is illustrated in Fig. 9.13.

43For example, the {sin(βjR)} functions satisfy 2/(N + 1)
∑

R sin(βj′R) sin(βjR) = δj′j .
44However, H⊥ can connect the interchain excitons to other even parity intrachain excitons,

if the former lie higher in energy. In that case the electron-hole recombination can be regarded
as an intrachain processes, as the states must relax via the intrachain charge-transfer excitons,
SCT and TCT.
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Fig. 9.13. Electronic selection rules determine that intermolecular interconversion oc-
curs from the n = 1, j = 1 intermolecular exciton to the n = 1, j = 1 intramolecular
exciton.

9.6.3.2 Vibrational overlaps We now discuss the contribution of the vibra-
tional wavefunctions to the total matrix element, eqn (9.126).

Intermolecular interconversion is an isoenergetic process which occurs from
the lowest pseudomomentum state of the charge-transfer manifold and the low-
est vibrational levels of this state to the lowest pseudomomentum state of the
intramolecular excitons at the same energy as the initial level. Thus, the vibra-
tional levels in eqn (9.124) are νP+ = 0 and νP− = 0. However, the vibrational
levels in eqn (9.125) are determined by the conservation of energy.

Using eqn (9.123) the rate is thus,

kI→F =
2π
�

|〈f |H⊥|i〉|2
∑

νEXνGS

F
(1)
0νEX

F
(2)
0νGS

δ(EF − EI)

=
2π
�

|〈f |H⊥|i〉|2
∑

νEXνGS

F
(1)
0νEX

F
(2)
0νGS

δ(∆EνEX
1 +∆EνGS

2 )

(9.139)

where
F
(1)
0νEX

= |(1)〈0P+ |νEX〉(1)|2 (9.140)

and
F
(2)
0νGS

= |(2)〈0P− |νGS〉(2)|2 (9.141)

are the Franck-Condon factors associated with the vibrational wavefunction over-
laps of chains 1 and 2, respectively. Likewise,

∆EνEX
1 = E1(EX; νEX)− E1(P+; 0P+) (9.142)

and
∆EνGS

2 = E2(GS; νGS)− E2(P−; 0P−) (9.143)

are the changes in energy of chains 1 and 2, respectively. These changes in energy
are illustrated in Fig. 9.14.
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Fig. 9.14. Bimolecular electron transfer from chain 2 (right) to chain 1 (left). The ini-
tial state is a positive polaron on chain 1 and a negative polaron on chain 2, each in
their lowest vibrational level. The electron transfer creates an exciton state in chain
1, with chain 2 in its ground state. The energy differences between the final and ini-
tial states are ∆Eν

� for the �th chain. From energy conservation, ∆EνGS
2 = −∆EνEX

1 .
If ∆Q1 = 0 then ∆EνEX

1 = ∆E0
1 and thus ∆EνGS

2 = −∆E0
1 .

Using the same procedure as Section 9.5.2 we can recast eqn (9.139) into the
familiar rate expression for bimolecular electron transfer (see eqn (9.96)),

kI→F =
2π
�

|〈f |H1
inter|i〉|2

∫
D(E)A(E)dE, (9.144)

where the spectral functions for the donor (chain 2) and acceptor (chain 1) are

D(E) =
∑
νGS

F
(2)
0νGS

δ(∆EνGS
2 + E) (9.145)

and
A(E) =

∑
νEX

F
(1)
0νEX

δ(∆EνEX
1 − E), (9.146)

respectively (where the expressions are taken at T = 0 K).
A useful simplification to this expression arises by noting that the geomet-

ric distortions of the polarons and exciton polarons (namely the 11Bu or 13Bu

states) from the ground state structure are similar (as described in Chapter 7).
Thus, the Huang-Rhys parameter (proportional to ∆Q21, as defined in Fig. 9.14)
for the 11Bu and 13Bu states relative to the positive polaron is negligible.45

Therefore, to a good approximation,

45This assumption is less valid for the triplet state.
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F0νEX ∼ δ0νEX . (9.147)

Thus, the change of energy of chain 1 is

∆EνEX
1 ≡ ∆E01 , (9.148)

where ∆E01 is the 0-0 energy difference on chain 1 between the final exciton state
and the positive polaron. This is illustrated in Fig. 9.14. By the conservation of
energy we therefore have,

∆EνGS
2 = −∆E01 . (9.149)

The vibrational level, νGS , of the ground state of chain 2 to which intercon-
version from the negative polaron initially occurs is given by

νGS = (∆E02 −∆EνGS
2 )/�ω = (∆E02 +∆E01)/�ω

= (E2(P−; 0P−)− E2(GS; 0GS) + E1(P+; 0P+)− E1(EX; 0EX))/�ω
= (∆ECT −∆EEX)/�ω,

(9.150)

where

∆ECT = (E1(P+; 0P+)− E1(GS; 0GS)) + (E2(P−; 0P−)− E2(GS; 0GS))
(9.151)

and
∆EEX = E1(EX; 0EX)− E1(GS; 0GS) (9.152)

are the 0-0 transition energies of the charge-transfer exciton and the state |EX〉,
respectively.

9.6.3.3 Multiphonon emission The condition expressed in eqn (9.148) implies
that the energy integral in eqn (9.144) is restricted to the value of E = ∆E01 .

Thus, the rate becomes,

kI→F =
2π
�

|〈f |H⊥|i〉|2
∑
ν2

F
(2)
0νGS

δ(∆EνGS
2 +∆E01)

=
2π
�

|〈f |H⊥|i〉|2F (2)0νGS
ρf (E). (9.153)

ρf (E) is the final density of states on chain 2, defined by,

ρf (E) =
∑
νGS

δ(∆EνGS
2 +∆E01), (9.154)

which is usually taken to be the inverse of the vibrational energy spacing.
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Fig. 9.15. Interconversion (IC) followed by rapid vibrational relaxation (VR) with the
emission of νGS phonons.

Inserting the expression for the Franck Condon factor (see eqn (8.23)),

F
(2)
0νGS

= |(2)〈0P− |ν11Ag
〉(2)|2 = exp(−Sp)SνGS

p

νGS!
(9.155)

into eqn (9.153) we have the result that,

kI→F =
2π
�

∣∣∣∣∣t⊥
∑
r

ψn=1(r)ψ̃n=1(r)

∣∣∣∣∣
2

ρf (E)
exp(−Sp)SνGS

p

νGS!
. (9.156)

This equation is our final expression for the interconversion rate.
Sp is the Huang-Rhys parameter for the polaron relative to the ground state,

defined as
Eλ/�ω, (9.157)

where Eλ is the reorganization (or relaxation) energy of the polaron relative to
the ground state, illustrated in Fig. 9.15. After the isoenergetic transition there
is vibrational relaxation to the lowest vibrational level of the ground state of
chain 2 via the sequential emission of νGS phonons. The number of phonons
emitted corresponds to the difference in energies between the initial charge-
transfer and final exciton states, given by eqn (9.150). This is a multiphonon
process, illustrated in Fig. 9.15. In the next section we estimate these rates.

9.6.4 Estimate of the interconversion rates

Since interconversion from the intermolecular to the intramolecular charge-transfer
excitons is forbidden by symmetry, we now only discuss interconversion to the
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lowest excitons, SX or TX. (As remarked in footnote 44, interconversion to higher-
lying exciton states is allowed, but if this happens recombination is an intramolec-
ular process via the intramolecular charge-transfer excitons.) Thus, the state la-
bel EX is now taken as SX or TX. Similarly, the number of phonons emitted,
νGS, is either νS or νT , as determined by eqn (9.150) and illustrated in Fig. 9.10.

Within the Mott-Wannier basis the exciton wavefunction overlaps are easy
to calculate. Using t⊥ = 0.1 eV, the interchain distance as 4 Å and standard
semiempirical Coulomb interactions gives∑

r

ψSX(r)ψ̃SCT(r) ≈ 1.0 (9.158)

and ∑
r

ψTX(r)ψ̃TCT(r) ≈ 0.9. (9.159)

The polaron Huang-Rhys parameter, Sp, is not accurately known for light emit-
ting polymers. However, we expect it to be similar to the SX exciton Huang-Rhys
parameter. The relaxation energy of the SX exciton has been experimentally de-
termined as 0.07 eV in poly(para-phenylene vinylene) (Liess et al. 1997), with a
similar value calculated for ‘ladder’ poly(para-phenylene) (Moore et al. 2005).46

From the figures in Hertel et al. (2001), we estimate the relaxation energy to
be 0.12 eV in ladder poly(para-phenylene) (where the phenyl rings are planar)
and 0.25 eV in poly(para-phenylene) (where the phenyl rings are free to rotate).
Thus, taking the relaxation energy as 0.1 eV and �ω = 0.2 eV implies that
Sp ∼ 0.5.

Now, using �ω = 0.2 eV (≡ ρ−1
f ), Sp ∼ 0.5 and assuming that the energy

difference between the strongly bound singlet exciton (SX) and the intramolec-
ular charge-transfer excitons of ∼ 0.8 eV is approximately the energy differ-
ence between the singlet exciton and the intermolecular charge-transfer exci-
tons, we can estimate the interconversion rate for the singlet exciton. This is
kSCT→SX ∼ 7.5 × 1011 s−1 (or τSCT ∼ 1 ps). Similarly, using an exchange gap
of ∼ 0.7 eV gives kTCT→TX ∼ 1 × 108 s−1 (or τTCT ∼ 10 ns). Thus, the triplet
interconversion rate is much slower than the singlet interconversion rate.

The ISC rate is also not accurately known, with quoted values ranging from
0.3 ns (Burin and Ratner 1998) to 4 ns (Frolov et al. 1997). Nevertheless, de-
spite this uncertainty, we see that the estimated triplet interconversion rate is
comparable to or slower than the ISC rate, which from eqn (9.112) and Fig. 9.11
implies a large singlet exciton yield

Generally, the ratio of the rates is

kSCT→SX

kTCT→TX

=

∣∣∣∑r ψSX(r)ψ̃SCT(r)
∣∣∣2 exp(−Sp)

SνS
p

νS !∣∣∣∑r ψTX(r)ψ̃TCT(r)
∣∣∣2 exp(−Sp)

SνT
p

νT !

. (9.160)

46Electron-lattice relaxation in light emitting polymers is discussed in Section 11.6.
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Thus,

kSCT→SX

kTCT→TX

≈ S−(νT −νS)
p

νT !
νS !

. (9.161)

This ratio increases as Sp decreases, because then multiphonon emission becomes
more difficult. The ratio also increases as the exchange energy, (νT − νS)�ω,
increases for any νS or νT if Sp < 1.

9.6.5 Discussion and conclusions

This section has described a theory of intermolecular interconversion from inter-
molecular weakly bound polaron pairs to strongly bound intramolecular excitons
to explain the enhanced singlet exciton yield in light emitting polymers. A cru-
cial aspect of the theory is that both the strongly bound intramolecular excitons
and the intermolecular charge-transfer excitons are effective-particles, which are
described by both an effective-particle wavefunction and a center-of-mass wave-
function. The orthonormality of the centre-of-mass wavefunctions ensures that
interconversion occurs to the lowest member of the strongly bound exciton fam-
ilies, and not to higher lying members of these families. The interconversion is
then predominately a multiphonon process, determined by the Franck-Condon
factors. These factors are exponentially smaller for the triplet manifold than
the singlet manifold because of the large exchange energy. There is also a con-
tribution to the rates from the overlap of the effective-particle wavefunctions,
which again are smaller in the triplet manifold, because the triplet exciton has a
smaller particle-hole separation and has more covalent character than its singlet
counterpart (Tandon et al. 2003). As a consequence, the interconversion rate in
the triplet manifold is significantly smaller than that of the singlet manifold,
and indeed it is comparable to the ISC rates. Thus, the singlet exciton yield is
expected to be considerably enhanced over the spin-independent value of 25% in
light emitting polymers.

Any successful theory must explain the observation that the singlet exciton
yield is close to 25% for molecules and increases with conjugation length (Ho et
al. 2000; Wohlgenannt et al. 2002). This theory qualitatively predicts this trend
for two reasons. First, the effective-particle description of the exciton states is
only formally exact for infinitely long chains. This description breaks down when
the chain length is comparable to the particle-hole separation. In that limit the
quantum numbers n and j (which describe the effective-particle wavefunction and
center-of-mass wavefunction, respectively) are no longer independent quantum
numbers. Then, interconversion is expected to take place between all the states
lying between the charge-transfer state and the lowest exciton state. However,
as the chain length increases interconversion to higher lying states is suppressed
in favour of the lowest lying exciton. This prediction is confirmed by quantum
chemical calculations (Beljonne et al. 2004). The second reason that the singlet
exciton yield is enhanced in polymers over molecules is that as shown in Section
11.6 the Huang-Rhys parameters decrease as the conjugation length increases.
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(The experimental evidence for this is discussed by Wohlgenannt et al. (2004).)
Thus the relative rate (given by eqn (9.160)) increases.

We note that the effective-particle description is still valid when there is self-
trapping. In this case the centre-of-mass wavefuctions are not the particle-in-the-
box wavefunctions appropriate for a linear chains (eqn (9.130)), but they are the
ortho-normalized functions appropriate for the particular potential well trapping
the effective particle. The key point is that because these are ortho-normalized
functions and because the potential wells for the excitons and polarons are very
similar the selection rules for interconversion are still valid. Thus, interconversion
occurs between a pair of states with the same center-of-mass quantum numbers.

Finally, we remark that this theory presents strategies for enhancing the
singlet exciton yield. Ideally, the polymer chains should be well conjugated,
closely packed and parallel. The last two conditions ensure that the interchain
charge-transfer excitons lie energetically below high lying intramolecular exci-
tons, and thus recombination is an interchain interconversion process and not
an intramolecular process via the intramolecular charge-transfer excitons. In-
tramolecular recombination is not desirable because although interconversion
from the intrachain charge-transfer excitons is slower in the triplet manifold
than the singlet manifold, both rates are expected to be faster than the ISC
rate.
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LINEAR POLYENES AND TRANS -POLYACETYLENE

10.1 Introduction

The many unusual properties of trans-polyacetylene have already been described
in this book in the context of understanding the roles of electron-electron and
electron-lattice interactions in π-electron models. These have been described in
Chapters 4 and 7, in particular. In this chapter we describe some experimental
observations and show how these are explained within a framework of correlated
electrons with strong electron-lattice coupling. The chemical structure of trans-
polyacetylene is illustrated in Fig. 1.1.

The realization that electronic interactions play a significant role in polyenes
came via the experimental observations by Hudson and Kohler (1972) that the
dipole-forbidden 21Ag state lies below the dipole-allowed 11Bu state. Further
extensive studies of polyene oligomers by Kohler confirm the hypothesis that the
relaxed energy of the 21Ag state lies below the relaxed energy of the 11Bu state.
An analysis of oligomer spectroscopy from 6 to 16 carbon atoms suggests the
empirical relation (Kohler 1988),

E0−0(21Ag) = 0.96 +
20.72
N

eV, (10.1)

where N is the number of carbon atoms. Similarly, for the 11Bu state,

E0−0(11Bu) = 2.01 +
15.60
N

eV. (10.2)

The existence of the 21Ag state below the 11Bu state in polyacetylene thin
films was suggested by a number of experiments. Third harmonic generation
(THG) and two-photon absorption by Halvorson and Heeger (1993) indicates
that a 1Ag state lies below 1.1 eV in energy, while linear absorption, which locates
the 11Bu state, typically rises at 1.8 eV and peaks at 2.0 eV (Vardeny 1993),
as illustrated in Fig. 10.1. Peaks at 0.6 and 0.89 eV were observed in the THG
spectrum by Fann et al. (1989). From the discussion of THG in Chapter 8, we
know that this data implies some combination of 1Ag states at twice the photon
energy (namely 1.2 and 1.8 eV), and 1Bu states at three times the photon energy
(namely 1.8 and 2.7 eV). Fann et al. interpreted the experiments as indicating
the 1Ag and 1Bu states virtually coincident at 1.8 eV.

As we will describe in this Chapter, theoretical modelling indicates that the
21A+g state, unlike the 11B−

u state, undergoes considerable lattice relaxation.
A reasonable interpretation of these experiments is therefore that the relaxed

171
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Fig. 10.1. The photoinduced absorption spectrum (solid curve) and linear absorption
(dashed curve) of trans-polyactelyene thin film. Reprinted with permission from
Z. V. Vardeny, Relaxation in Polymers, edited by T. Kobayashi, World Scientific,
Singapore, 1993. Copyright 1993 by World Scientific Publishing Co. Pte. Ltd.

energy of the 21A+g state lies ca. 1.0 eV below that of the 11B−
u state, but that

their vertical transition energies are very similar. However, it is also possible that
the 0.89 eV feature observed in THG spectrum is a higher lying n1B−

u state at
2.7 eV. This would be consistent with the interpretation of the m1A+g state at
∼ 2.5 eV in the electroabsorption spectrum, as discussed below.

Figure 10.2 illustrates the electroabsorption spectrum of phenyl-substituted
trans-polyacetylene thin film (Liess et al. 1997). The feature at 2.0 eV is the red-
shifted 11Bu exciton. The feature at 2.5 eV is attributed to a dipole-forbidden
state, namely the m1Ag state. Unlike polydiacetylene crystals, disordered trans-
polyacetylene thin film does not exhibit Franz-Keldysh oscillations (described in
Chapter 8) and therefore a definite assignment of a conduction band edge cannot
made. However, because disordered polydiacetylene also does not exhibit Franz-
Keldysh oscillations, but a smeared-out feature similar to the one exhibited at
2.5 eV in Fig. 10.2 it is sometimes assumed that this feature does mark the band
edge. Another interpretation is that this feature represents the n = 2 Mott-
Hubbard exciton,47 described in Chapter 6, with the particle-hole continuum
lying close in energy (possibly at 2.7 eV, which is three times the THG feature at

47We note that this is not the n = 2 Mott-Wannier exciton, because that is part of the 21A+
g

state, whose vertical transition energy is expected to lie much closer in energy to the 11B−
u

state.
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Fig. 10.2. The electroabsorption spectrum of phenyl-substituted trans-polyactelyene
thin film. Reprinted with permission from M. Liess, S. Jeglinski, Z. V. Vardeny,
M. Ozaki, K. Yoshino, Y. Ding, and T. Barton, Phys. Rev. B 56, 15712, 1997.
Copyright 1997 by the American Physical Society.

0.89 eV discussed above). Whether the correct interpretation of the 2.5 eV feature
is that it is the n = 2 Mott-Hubbard exciton or the particle-hole continuum, it
seems reasonable to assume that 0.5 eV is a lower bound on the binding energy
of the 11Bu exciton.

To conclude the experimental review we describe the photoinduced absorp-
tion spectrum, which is reproduced in Fig. 10.1. The photoinduced absorption
spectrum of a system, obtained while it is being pumped at an energy above the
optical gap, gives an insight into the excited states of that system. Typically a
polyacetylene system is pumped at 2.4 eV and photoinduced absorption peaks
are observed at 0.43 and 1.35 eV. These are referred to as low energy and high
energy features, respectively. The low energy feature is attributed to a charged
state, as it is associated with infrared modes (Friend et al. 1987). In contrast, the
high energy feature is attributed to a neutral state, as in this case there are no
associated infrared modes. The possible origins of these features will be further
discussed in Section 10.2.3.

Theoretical work also suggests the important role of electronic interactions
in linear polyenes. By performing a double-configuration-interaction calculation
on the Pariser-Parr-Pople model, Schulten and Karplus (1972) demonstrated
that the 21A+g state has a strong triplet-triplet contribution, and has a lower
energy than the 11B−

u state. The triplet-triplet and correlated nature of the
21A+g state was further investigated by Tavan and Schulten (1987). A real-space
renormalization group calculation on the Hubbard-Peierls model for chains of up
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to 16 sites by Hayden and Mele (1986) indicated that the 21A+g state is composed
of four solitons. These predictions were confirmed by Su (1995) and Wen and Su
(1997). In a different context, Ovchinnikov et al. (1973) also highlighted the role
of electronic interactions by suggesting that they are largely responsible for the
optical gap.

In the next section we describe how the semiempirical Pariser-Parr-Pople-
Peierls model - a correlated π-electron model with electron-lattice coupling -
quantitatively predicts the excitation spectrum of polyene oligomers, while it
qualitatively predicts the spectrum for trans-polyacetylene thin films.

10.2 Predictions from the Pariser-Parr-Pople-Peierls model

The predictions of the Pariser-Parr-Pople-Peierls model (defined by eqn (7.1)) as
a function of the Coulomb interaction strength for the linear polyene structure
were described in Chapter 7. In this section we discuss the predictions taken
from Barford et al. (2001) of the model for the particular parameter set relevant
for trans-polyacetylene.

The four parameters in the model are the transfer integral, t, the Coulomb in-
teraction, U , the dimensionless electron-phonon coupling, λ, and α, which relates
the bond dimerization ∆n to the change in bond length. An optimal parametriza-
tion of t and U for conjugated polymers was derived by Bursill et al. (1998) by
fitting the Pariser-Parr-Pople model to the excited states of benzene. This gives
t = 2.539 eV and U = 10.06. Assuming that this parametrization is transferable
between all π-conjugated systems it can also be used for trans-polyacetylene. λ
was found by fitting the vertical energies of the 11B−

u and 21A+g states calculated
from the Pariser-Parr-Pople-Peierls model to the six-site linear polyene (Bursill
and Barford 1999). This gives λ = 0.115. Finally, using the experimentally deter-
mined value of the spring constant, K, as 46 eV Å−2 (Ehrenfreund et al. 1987)
gives α = 4.593 eV Å−1.

Solving the Pariser-Parr-Pople-Peierls model with these parameters using the
DMRG method and equilibrating using the Hellmann-Feynman method gives a
ground state dimerization, δ = 0.10, implying a bond-length alternation of 0.056
Å. This result is in close agreement with the experimental result of 0.052 Å
(Kahlert et al. 1987).

10.2.1 Transition energies

Next, we consider the vertical transition energies, Ev, and the relaxed transition
energies, E0−0. These are plotted as a function of inverse chain length in Fig.
10.3(a). We see that the vertical energy of the 21A+g state lies approximately
0.3 eV above that of the 11B−

u state in the long chain limit. The relaxation
energy of the 11B−

u state is modest, being approximately 0.2 eV for 102 sites.
By contrast, the relaxation energy of the 13B+u and 21A+g states are substantial,
being approximately 0.8 and 1.5 eV, respectively. The energy of the relaxed 21A+g
state lies 1 eV below that of the 11B−

u state. As already described in Chapter
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Fig. 10.3. (a) Calculated transition energies for the 11B−
u state (squares), 21A+

g state
(diamonds) and 13B+

u state (triangles) as functions of the inverse number of sites.
Vertical and relaxed transitions are indicated by dashed and solid lines and open
and solid symbols, respectively. Experimental values of the relaxed 11B−

u (×) and
21A+

g (+) state energies for polyenes in hydrocarbon solution (Kohler 1988). (b)
Calculated transition energies for the 11B−

u state (squares) and charge gap (circles).
Reprinted with permission from W. Barford, R. J. Bursill, and M. Yu Lavrentiev,
Phys. Rev. B 63, 195108, 2001. Copyright 2001 by the American Physical Society.

7, the strong relaxation of the 21A+g state is associated with a large distortion
from the ground state structure.

The experimental values of the E0−0(11B−
u ) andE

0−0(21A+g ) for short polyenes
are also shown (Kohler 1988). The calculated 21A+g results are in excellent agree-
ment with the experimental values. The 11B−

u values are approximately 0.3 eV
lower than the theoretical predictions, which is approximately the reduction ex-
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pected by the solvation of the polyene chain in solution, as discussed in Section
9.4. In contrast, since the 21A+g state is a highly correlated state with more spin-
density-wave (or covalent) character than particle-hole (or ionic) character, this
state is not expected to exhibit much solvation (Barford et al. 2004).

However, while the calculated values for short chains fit the Kohler empirical
expressions (eqns (10.1) and (10.2)) rather well, there are significant deviations
from them for long chains, and as a consequence the calculated values also deviate
from the thin film experimental values for the 11B−

u and 21A+g states described
in Section 10.1.

The calculated energies converge rapidly with chain size because of self-
trapping, which occurs once the chain size exceeds the spatial extent of the
solitonic structures. These will be described in the next section. In Section 10.3
we discuss the extent to which a fully quantum treatment of the lattice degrees
of freedom changes this behaviour to better fit the experimental values.

Figure 10.3(b) shows the the charge gap, 2∆, defined as

2∆ = E0(N + 1) + E0(N − 1)− 2E0(N), (10.3)

where E0(N) is the ground state energy for N electrons. It also shows the tran-
sition energy of the 11B−

u state. In the long chain limit the charge gap represents
the energy of an uncorrelated electron-hole pair, and therefore represents the
band edge. The relaxation energy of the charge gap is roughly double that of
the 11B−

u state. This is expected as the two charges form independent polarons,
whereas the excitonic 11B−

u state forms a single polaron, as described in Chapter
7.

The isolated single chain binding energy is 2.4 eV. However, as explained in
Section 9.4, the unbound pair is strongly screened in a solid state environment
by ∼ 2.0 eV, whereas the exciton is more weakly screened (∼ 0.3 eV). This
implies that the binding energy of the exciton in the solid state is ∼ 0.7 eV, in
reasonable agreement with experimental interpretations of Section 10.1.

10.2.2 Soliton structures
The structures of the ground state and the 11B−

u , 1
3B+u and 21A+g states are

shown in Fig. 10.4. The 13B+u and 21A+g states undergo considerable lattice
distortion, whereas the 11Bu state shows a weak polaronic distortion of the
lattice, very similar to the charged state. In Chapter 7 it was shown that the
11B−

u and 21A+g states fit a two-soliton form (defined in eqn (7.19)). In contrast,
the 21A+g state fits a four-soliton form (defined in eqn (7.20)), indicating the
strong triplet-triplet character of that state.

Further insight into the electronic structure of polyenes and its relation to
their geometry can be obtained from the spin-spin correlation function, defined
as

Sn = 〈Ŝz
nŜ

z
N+1−n〉, (10.4)

where Ŝz
n is the z-component of the spin operator on site n. Sn measures antifer-

romagnetic correlations between sites symmetrically situated with respect to the
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Fig. 10.4. The staggered, normalized bond dimerization, δn, (defined in eqn (4.27))
as a function of bond index from the centre of the chain of various states of
trans-polyacetylene calculated from the Pariser-Parr-Pople-Peierls model. 11A+

g

(crosses), 11B−
u (squares), 13B+

u (triangles), 21A+
g (diamonds) and polaron (circles).

Reprinted with permission from W. Barford, R. J. Bursill, and M. Yu Lavrentiev,
Phys. Rev. B 63, 195108, 2001. Copyright 2001 by the American Physical Society.

centre of the chain. As the correlation function shows unimportant oscillations
between even and odd site indices it is more convenient to use the symmetrized
function,

S̃m =
1
2
(
S(N−m)/2 + S(N−m)/2+1

)
, (10.5)

where m = 0, 4, 8, . . . , N − 2. This measures the correlations between pairs of
doubly bonded sites, with m being the distance between them.

The spin-spin correlation functions calculated in the ground state geometry
are shown in Fig. 10.5(a). They show a monotonic decay for the correlations in
the 11A+g and 11B−

u states, but in the 21A+g state there is a small minimum at
m = 8 and a maximum atm = 16. This behaviour of the spin-spin correlations in
the 21A+g state becomes clearer when it is calculated in the relaxed geometry of
this state. Here, the correlation function of the 21A+g state, shown in Fig. 10.5(b),
has a strong minimum at m = 8 - where it changes sign - and a maximum at
m = 20. These features strongly confirm the triplet-triplet character of this
state. By comparing Fig. 10.5(b) to the soliton structure shown in Fig. 10.4 we
see that the unpaired spins (or spinons) correspond to the positions of the four
geometrical solitons at n = ±m/2, namely n = ±4 and n = ±10.
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(a)

(b)

(b)(a)

(b)

(b)

Fig. 10.5. Spin-spin correlation function (defined in eqn (10.5)) as a function of the
distance between the pairs of spins for the 11A+

g (solid squares), 21A+
g (solid dia-

monds) and 11B−
u (empty squares) states. (a) In the relaxed ground state geometry.

(b) In the relaxed 21A+
g geometry. Reprinted with permission from W. Barford, R.

J. Bursill, and M. Yu Lavrentiev, Phys. Rev. B 63, 195108, 2001. Copyright 2001
by the American Physical Society.

10.2.3 Adiabatic potential energy curves

The soliton-antisoliton interactions in the excited states are illustrated by the
adiabatic energy curves shown in Fig. 10.6. These are obtained by calculating
transition energies as a function of the soliton-antisoliton separation, 2n0, using
the equilibrium values of ξ (and nd/n0 for the 21A+g state). The two-soliton fit
(eqn (7.19)) is used for the 11B−

u state for a fixed value of ξ = 11.8. The four-
soliton fit (eqn ((7.20)) is used for the 21A+g state for fixed values of ξ = 5.7 and
nd/n0 = 1.5.

Figure 10.6 shows a rather weak repulsion for the soliton pairs in the 11B−
u

state at short distances, leading to the shallow polaronic distortion, as already
discussed. At longer distances there is strong attraction, arising from the exci-
tonic character of this state. In contrast, for the 21A+g state there is a strong short
range repulsion and a weak long range attraction from its residual particle-hole
character.

Figure 10.6 illustrates the crossover in energies of the 11B−
u and 21A+g states

as a function of soliton separation. Thus, a vertical photo-excitation to the 11Bu

state would be rapidly followed by the creation of a soliton-antisoliton pair.
If symmetry breaking interconversion interactions are present there will be a
crossover to the 21A+g state. Since this state is dipole inactive emission to the
ground state is nonradiative.

Figure 10.6 also provides a possible explanation of the high energy fea-
ture observed at 1.35 eV in the photo-induced absorption spectrum of trans-
polyacetylene, which is attributed to neutral states. A vertical excitation from
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Fig. 10.6. The adiabatic potential energy curves for the 11B−
u state (solid circles) and

the 21A+
g state (solid squares) as a function of the soliton-antisoliton separation,

2n0. The corresponding energy of the ground state in the geometry of the relaxed
excited states are shown in open symbols. The vertical optical transition from the
ground state to the 11B−

u state is denoted by a solid up-arrow labelled ‘V’; the
vertical nonradiative emission from the 21A+

g state to the ground state is shown
by a dashed down-arrow labelled ‘NR’; and the possible origin of the high energy
feature in the photoinduced absorption is shown by a dashed up-arrow labelled
‘PIA’. The parameters used in this calculation are t = 2.5 eV, U = 10 eV and
λ = 0.1.

the relaxed energy of the 21A+g state to the 11B−
u state is at 1.2 eV, very close in

energy to the experimental feature. However, a difficulty with this explanation is
that the oscillator strength for this transition is very small (Ramasesha and Soos
1984; Barford et al. 2001). An alternative explanation for the high energy feature
is that it corresponds to a transition from the lowest triplet state (13B+u ) to the
13A−

g state. (Indeed, a similar feature in light emitting polymers is attributed to
this transition.) This transition does have the required oscillator strength.

The attribution of the low energy feature at 0.43 eV to charged states is less
problematic, as it is consistent with the theoretically calculated energy difference
of 0.45 eV between the relaxed polaron and its first dipole connected excited
state. This transition also has a significant oscillator strength.
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10.3 Quantum phonons

The adiabatic approximation is widely accepted as being applicable to the elec-
tronic states of conjugated polymers. As described above, solutions of an adia-
batic Hamiltonian (namely, the Pariser-Parr-Pople-Peierls model) agree remark-
ably well with experimental observations for short polyenes. A linear extrapola-
tion in inverse chain length of the experimental observations coincide with the
experimental observations of the energies of the 11B−

u and 21A+g states in thin
films. Thus, it is reasonable to assume that the thin film observations correspond
to excitations in well-conjugated polymers. In contrast, the calculated excitation
energies deviate from a linear extrapolation once self-trapping of the excited
states occurs. This occurs when the chain length exceeds the spatial extent of
the soliton structures. Thus, it is reasonable to ask, is self-trapping an unphysical
artefact of the adiabatic approximation in linear polyenes? Correspondingly, will
a fully quantized model achieve better predictions for the excitation energies?
These questions were addressed by Barford et al. (2002a). We reproduce that
analysis here.

The fully quantized model is described by the following Hamiltonian,

H = Hph +He +He−ph. (10.6)

The phonon Hamiltonian is,

Hph =
N∑

n=1

P 2n
2M

+
K

2

N−1∑
n=1

(un+1 − un)
2
, (10.7)

where M is the nuclear mass and K is the elastic spring constant. Notice that
since we are considering linear chains the sum in the elastic term is from n =
1, . . . , N − 1.

The electron Hamiltonian is the usual Pariser-Parr-Pople model,

He = −t
N−1∑
n=1,σ

(c†nσcn+1σ + c†n+1σcnσ) + U

N∑
n=1

(
Nn↑ − 1

2

)(
Nn↓ − 1

2

)

+
1
2

∑
m�=n

Vmn(Nm − 1)(Nn − 1). (10.8)

Finally, assuming that electron-phonon coupling arises from linear deviations
in bond lengths, the electron-phonon coupling Hamiltonian is the same as that
introduced in Chapter 7, namely,

He−ph = αt
∑
nσ

(un+1 − un)(c†nσcn+1σ + c†n+1σcnσ)

−2αW
∑
n

(un+1 − un)(Nn+1 − 1)(Nn − 1), (10.9)

where W is defined in eqn (7.6).
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The Pariser-Parr-Pople-Peierls model is the adiabatic limit of this model,
taken by setting M → ∞ and treating the nuclear displacements classically.
However, now we intend to quantize the nuclear degrees of freedom. To do this
we rewrite Hph as,

Hph =
N−1∑
n=2

P 2n
2M

+
K̃

2

N−1∑
n=2

u2n − K̃

2

N−2∑
n=2

un+1un, (10.10)

where K̃ = 2K. To ensure constant chain lengths we have also taken the first
and last sites to be stationary (thus, u1 = uN = 0). The first two terms on the
right-hand side describe N − 2 independent harmonic oscillators, while the final
term represents the coupling between these oscillators.

The first two terms are diagonalized by introducing the phonon creation and
annihilation operators (see (Cohen-Tannoudji et al. 1977)):

b†n =

√
Mω

2�
un − i

√
1

2M�ω
Pn (10.11)

and

bn =

√
Mω

2�
un + i

√
1

2M�ω
Pn, (10.12)

respectively. b†n (bn) creates (destroys) a quantum of energy, �ω, in the linear

harmonic oscillator located on the site n, where ω =
√
K̃/M .

The inverse expressions are,

un =

√
�

2Mω

(
b†n + bn

)
(10.13)

and

Pn = i

√
M�ω

2
(
b†n − bn

)
. (10.14)

Substituting for un and Pn in eqn (10.10) we have,

Hph = �ω
∑
n

(
b†nbn +

1
2

)
− �ω

∑
n

Bn+1Bn, (10.15)

where we have introduced,

Bn =

(
b†n + bn

)
2

, (10.16)

which represents the dimensionless displacement of the nth. oscillator.
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Similarly,

He−ph = g
∑
nσ

(Bn+1 −Bn)
(
c†n+1σcnσ + c†nσcn+1σ

)

−W̃
∑
n

(Bn+1 −Bn) (Nn − 1)(Nn+1 − 1) , (10.17)

where

g =
(
tλπ�ω

2

)1/2
, (10.18)

W̃ =
(

�ω

K

)1/2
Uγr0

(1 + γr20)3/2
, (10.19)

γ = (U/14.397)2 and r0 is the undistorted average bond length.
Equations (10.8), (10.15), and (10.17), along with the boundary conditions

that
B1 = BN = 0 (10.20)

complete the description of the model. For parameter ranges applicable for linear
polyenes, namely ω0 =

√
K/M = 0.2 eV, and t, U , λ and α as defined in

Section 10.2, this model can be conveniently solved using the density matrix
renormalization group method. Full details of the implementation are given in
Barford et al. (2002a). There is also a brief description of the methodology in
Appendix H. The next section describes the results.

10.3.1 Results and discussion

Figure 10.7 shows the transition energies for the 11B−
u and 13B+u states as a

function of inverse chain length for up to 102 sites. For short chains the differences
between the transition energies in the quantum and adiabatic limits are very
small. However, the quantum calculation of the triplet state energy deviates
from the adiabatic result in two ways. First, the gradient as a function of inverse
chain length is greater, and second, the flattening-off of the energy occurs at a
larger chain length. As a consequence, there is a clear deviation between these
limits for the triplet state as the conjugation length increases. This deviation
is a result of the de-pinning of the excited state by the lattice fluctuations. In
contrast, the deviation between the adiabatic and quantum limits for the singlet
excited state is relatively modest. At 102 sites the deviations are 0.38 eV and
0.14 eV for the triplet and singlet states, respectively.

Further insight into the de-pinning of the excited states can be obtained from
a study of their geometrical structures. Figure 10.8 shows the staggered bond
length changes in the ground state and excited states. We see that the ground
state dimerization of ca. 0.04 Å in the quantum limit is slightly smaller than the
adiabatic result of ca. 0.05 Å. In the limit of long chains the relative root-mean-
square fluctuation in the bond length is ca. 0.9, close to previous theoretical
(Su 1982) and experimental (McKenzie and Wilkin 1992) estimates. However,
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Fig. 10.7. Transition energies for the 11B−
u state (circles) and 13B+

u state (triangles)
as a function of inverse chain length. Adiabatic/quantum calculations are indicated
by solid/open symbols. Also shown are the 11B−

u (×) and 13B+
u (+) transition

energies for the undimerized Pariser-Parr-Pople model. Reprinted with permission
from W. Barford, R. J. Bursill, and M. Yu Lavrentiev, Phys. Rev. B 65, 75107,
2002. Copyright 2002 by the American Physical Society.

although there are considerable quantum fluctuations in the bond alternation,
there is no evidence that these fluctuations destroy the broken symmetry of the
ground state.

There are significant deviations between the quantum and adiabatic predic-
tions for the triplet soliton structures. The soliton width in the adiabatic calcu-
lation (ca. 10 bond lengths) is much shorter than the corresponding quantum
calculation.

Finally, we consider the optically allowed excitonic (11B−
u ) state. In the adi-

abatic approximation this state creates a shallow polaronic distortion of the lat-
tice, with self-trapping only becoming important for chain lengths longer than
ca. 40 sites. This is confirmed by the excitation energies shown in Fig. 10.7, in-
dicating that the transition energies calculated in the quantum limit are within
ca. 0.1 eV of the adiabatic result, and Fig. 10.8, showing that the quantum and
adiabatic polaronic structures are similar.

Evidently, quantum lattice fluctuations play an important role in the de-
pinning of the self-trapped excited states, leading to corrections to the adiabatic
approximation. These corrections are particularly important for the lowest-lying
triplet, as this state is gapless in the long chain limit in the absence of electron-
phonon coupling. Figure 10.7 show the triplet transition energy for the undimer-
ized Pariser-Parr-Pople model. Thus, the phonon frequency (0.2 eV) is not small
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Fig. 10.8. The staggered bond dimerization in Å as a function of bond index from the
centre of the chain) of various states: 11A+

g (diamonds), 11B−
u (circles) and 13B+

u

(triangles). Adiabatic/quantum calculations are indicated by solid/open symbols.
Reprinted with permission from W. Barford, R. J. Bursill, and M. Yu Lavrentiev,
Phys. Rev. B 65, 75107, 2002. Copyright 2002 by the American Physical Society.

in comparison to the electronic energy scale, and the approximation of slow nu-
clear motion relative to the electronic timescales is no longer valid. This break-
down of the adiabatic approximation is an emergent property of long chains.
At 102 sites the phonon-calculated triplet energy is only 56% of the adiabatic
approximation. Since the dipole forbidden 21A+g state in trans-polyacetylene is
predominately formed from a pair of bound triplets, this reduction in the triplet
energy from quantum fluctuations is also expected to apply to the 21A+g state. It
would be reasonable to expect that the semiclassical prediction of 1.74 eV for its
transition energy might be reduced to ca. 1.0 eV with the inclusion of quantum
phonons. This prediction is very close to Kohler’s linear extrapolation (1988),
and to the experimental determination of the 21A+g energy by Halverson and
Heeger (1993).

In contrast, the exciton-polaron (11B−
u ) state is expected to be in the adia-

batic limit, as its energy in the undimerized Pariser-Parr-Pople model is 1.6 eV
in the long chain limit. This is confirmed by Fig. 10.7, which show the deviations
between the quantum and adiabatic limits is only ca. 0.1 eV at 102 sites.

We have seen in this section how quantum fluctuations can reconcile the
predictions of π-electron models to the experimental observations on thin films.
However, remembering that disorder is also an effective mechanism to pin excited
states, it is possible that the parametrization of the π-electron models (derived
with short oligomers) is simply not valid for long polymers.
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10.4 Character of the excited states of trans-polyacetylene

The physical parameter range relevant for trans-polyacetylene, namely Coulomb
interactions comparable to the bandwidth, is intermediate between the weak and
strong coupling limits defined in Chapter 5. As shown in Fig. 5.2, this means
(as already discussed) that the 11B−

u and 21A+g vertical transition energies are
virtually degenerate, signalling a bimagnon component to the 21A+g state. Fur-
ther evidence for this bimagnon character is the four-soliton fit to the geometrical
structure. However, there is still some residual n = 2 Mott-Wannier exciton char-
acter to the 21A+g state, because as shown in Fig. 10.6 the solitons are weakly
attracted at large separation. This is in contrast to the spin-1/2 spinons of the
13B+u state, which are weakly repelling at all separations. (In the strong cou-
pling limit the 21A+g state evolves to a pair of unbound magnons, as described
in Chapter 7.)

The character of the 11B−
u and 13B+u states are easier to understand, and

have already been described in Chapters 6 and 7. The 11B−
u state in the inter-

mediate regime has both n = 1 Mott-Wannier exciton and n = 1 Mott-Hubbard
exciton character. Electron-lattice coupling enhances this particle-hole character,
with the exciton being composed of a pair of charged-spinless solitons (S±). The
13B+u state in the intermediate regime has both n = 1 Mott-Wannier exciton
and spin-density-wave character. Electron-lattice coupling enhances the ‘cova-
lent’ character causing a pair of spin-1/2 spinons (Sσ). The 11B−

u and 13B+u
states are schematically illustrated in Fig. 7.7.

Finally, we remark on the m1Ag state shown in the electroabsorption spec-
trum of Fig. 10.2. While it is possible that 2.5 eV is the vertical transition energy
of the 21A+g state, the THG experiments of Fann et al. (1989) indicate that the
vertical transition energies of the 21A+g and 11B−

u states are virtually degener-
ate. Thus, more reasonable interpretations are that the 2.5 eV feature represents
either the n = 2 Mott-Hubbard exciton or the particle-hole continuum

10.5 Other theoretical approaches

A recent ab initio calculation of the optical spectrum of trans-polyacetylene
has been performed by Rohlfing and Louie (1999). Their approach is to correct
the quasi-particle gap obtained within density functional theory by the GW-
approximation and then to construct a Bethe-Salpeter equation for the particle-
hole excitations. As discussed in Section 6.2.4, this is a weak-coupling approxima-
tion, as it assumes the existence of valence and conduction band quasi-particles.
Although the calculation was performed for a single chain, the effects of bulk
dielectric screening were modelled by a screened particle-hole interaction. Figure
10.9(a) shows the calculated optical spectrum, with a predicted binding energy
of 0.4 eV for the lowest exciton. Figure 10.9(b) shows the exciton probability
distribution functions for the zero-momentum first and second excited states,
namely the n = 1 (even parity) and n = 2 (odd parity) Mott-Wannier excitons.
These are equivalent to the 11B−

u and 21A+g states for linear systems. The near
degeneracy of these energies is in agreement with the Pariser-Parr-Pople-Peierls
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gA12
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Fig. 10.9. (a) Calculated optical absorption spectrum of trans-polyacetylene from a
DFT-GWA-BSE calculation. The solid and dashed curves represent the exciton
and quasi-particle spectra, respectively. (b) The electron-hole distribution function.
Reprinted with permission from M. Rohlfing and S. G. Louie, Phys. Rev. Lett., 82,
1959, 1999. Copyright 1999 by the American Physical Society.

model calculations and some experiments. Notice, however, that this procedure
cannot describe Mott-Hubbard excitons, so the possibility of a Mott-Hubbard
exciton at 2.5 eV has not been demonstrated.
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LIGHT EMITTING POLYMERS

11.1 Introduction

The discovery of electroluminescence in poly(para-phenylene vinylene) (PPV)
(Burroughes et al. 1990) has led to a re-awakened interest in conjugated poly-
mers. This interest is partly driven by a desire to understand the electronic
properties of the phenyl-based light emitting polymers in order to exploit them
for a wide range of technologies. These technologies include cheap and flexible
light emitting displays, photovoltaic devices, optical switching, and field-effect
transistors.

In this chapter we present a description of the excited states of the phenyl-
based light emitting polymers.48 This description is achieved by using the the-
oretical and computational modelling of these systems to interpret the experi-
mental evidence acquired by a wide variety of spectroscopic probes.

The first observation we make is that, in contrast to linear polyenes, the
phenyl-based polymers electroluminesce. This indicates that the electronic states
are different in the two systems. In particular, although electronic interactions
are strong in phenyl-based systems, they are not as strong as in linear polyenes to
cause the reversal in energetic ordering of the dipole-allowed and dipole-forbidden
singlets that is observed in the latter systems. There are two qualitative expla-
nations why electronic correlations are less strong in phenyl-based systems than
in linear polyenes. First, the presence of phenyl rings in the chemical structure
means that electrons are more able to avoid each other than in a linear chain.
This means that a mapping of the low-energy physics onto an effective one-
dimensional model would imply a reduced Coulomb interaction, U . Second, the
mapping of the valence and conduction band structures onto an effective one-
dimensional model implies a relatively large effective bond alternation, namely
δ ∼ 0.2, in contrast to δ ∼ 0.1 in trans-polyacetylene (Soos et al. 1993). As
described in Chapter 5, a larger effective bond alternation implies reduced elec-
tronic correlations. As a consequence, the low energy excitations of light emitting
polymers (namely those excitations associated with peak I of the absorption spec-
trum described below) may be described by the weak-coupling exciton theory
introduced in Chapters 5 and 6. However, these arguments concerning electronic
correlations do not apply to the higher lying excitations (namely those excita-
tions associated with peaks II, III, and IV of the absorption spectrum described
below), as these excitations are highly localized.

48See Section 9.6 for a discussion of the singlet exciton yield in light emitting polymers.
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Fig. 11.1. (a) The optical-absorption spectra of PPV (solid curve) and MEH-PPV
(dashed curve). Reprinted with permission from S. J. Martin, D. D. C. Bradley, P.
A. Lane, H. Mellor, and P. L. Burn, Phys. Rev. B 59, 15133, 1999. Copyright 1999 by
the American Physical Society. (b) The optical-absorption (one-photon) spectra of
a DOO-PPV film (solid curve) and two-photon absorption of DOO-PPV in solution
(circles). Reprinted with permission from S. Frolov, Z. Bao, M. Wohlgenannt, and
Z. V. Vardeny, Phys. Rev. B 65, 205209, 2002. Copyright 2002 by the American
Physical Society. The chemical structures of PPV, MEH-PPV and DOO-PPV are
shown in Fig. 11.3.

We now turn to a description of the optical properties. Figures 11.1 and
11.2 show the characteristic linear absorption spectrum of the phenyl-based light
emitting polymers. These are
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Fig. 11.2. The linear-absorption of PFO (Cadby and Martin 2004). The chemical
structure of PFO is shown in Fig. 11.3.
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Fig. 11.3. The chemical structures of PFO, PPV, MEH-PPV and DOO-PPV.

• A dominant low energy peak (labelled I or a), predominantly polarized
along the long-axis. This is the 11Bu state.

• A weak peak (labelled II or b), predominantly polarized along the short-
axis in poly(para-phenylene) (PPP), but along the long-axis in PPV. This
feature becomes more pronounced when there is chemical substitution, as
in the case of MEH-PPV illustrated in Fig. 11.1(a).
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• Another relatively weak peak (labelled III or c), predominantly polarized
along the short-axis.

• A dominant high energy peak (labelled IV or d), polarized along the long-
axis.

As well as linear spectroscopy, the nonlinear spectroscopic techniques of elec-
troabsorption, third harmonic generation and two-photon absorption have all
been deployed to investigate other excited states. In addition, phosphorescence
probes and photoinduced absorption have been used to investigate the triplet
states. In view of the spectral shifts arising from disorder and variations in the
chemical structures, these investigations reveal a remarkably consistent picture
for PPP, PFO, and PPV.

In particular,

• Electroabsorption (Martin et al. 1999), and two-photon absorption and
photoinduced absorption (Frolov et al. 2002) indicate a dipole forbidden
state at ca. 0.7 eV higher in energy than the 11Bu state in PPV derivatives.
This state is labelled the m1Ag state, and is indicated in Fig. 11.1(b).
Electroabsorption in PFO indicates that the m1Ag state is 0.8 eV higher
in energy than the 11Bu state (Cadby et al. 2000).

• Third harmonic generation indicates a 1Bu state at 3.2 eV in PPV (Mathy
et al. 1996). Modelling of the electroabsorption data by Martin et al. (1999)
indicates that this state is ca. 0.1 eV higher in energy than the m1Ag state.
This 1Bu state is labelled the n1Bu state.

• Phosphorescence indicates a triplet state at ca. 0.7 eV lower in energy than
the 11Bu state for a wide variety of systems. (See Köhler and Beljonne
(2004) for a review of the data.) This triplet state is the 13Bu state.

• Photoinduced absorption from the 13Bu state indicates another triplet
state 1.4 eV higher in energy (Monkman et al. 2001). This state is the
13Ag state, which is almost degenerate with the m1Ag state.

• Photoinduced absorption and two-photon absorption (Frolov et al. 2002)
indicates another dipole forbidden state at 3.6 eV in PPV. This long-lived
state is labelled k1Ag in Fig. 11.1(b). A strong photoinduced absorption
signal has also been observed at 1.5 eV above the relaxed 11Bu state in
PFO (Xu et al. 2001).

• Photoconduction in MEH-PPV occurs at 3.1 eV (Chandross et al. 1994),
while in ladder-type PPP it occurs at 1.1 eV above the 0-0 transition to
the 11Bu state (Barth et al. 1998).

Although the transition energies of peaks I-III vary between different kinds of
phenyl-based light emitting polymers, the observation that the general spectro-
scopic features, and even the actual energy gaps between excited states are so
similar between different systems, suggests that a common description exists for
the excited states. We will argue in this chapter that the ‘low-energy’ states
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Table 11.1 The spectroscopically determined state energies in eV

Polymer 11Bu m1Ag n1Bu 11Bu Exciton binding energy
PPVa 2.84 — — —
PPVb 2.46 3.15 3.3 0.84
PPVc — — 3.2 —

MEH-PPVd 2.44 — — —
MEH-PPVe 2.25 2.9 3.0 0.75
DOO-PPVf 2.5 3.2 — > 0.7

PFOg 3.2 4.0 — > 0.8
PPPh 3.7 4.6 — > 0.9

aVertical excitation from linear absorption (Martin et al. 1999). bSum-over-states fitting
of electroabsorption (Martin et al. 1999). cThird harmonic generation (Mathy et al.
1996). dVertical excitation from linear absorption (Martin et al. 1999). eSum-over-
states fitting of electroabsorption (Martin et al. 1999). fVertical excitations from linear
and two-photon absorption (Frolov et al. 2002). g11Bu vertical excitation from linear
absorption,m1Ag from electroabsorption (Cadby et al. 2000). h11Bu vertical excitation
from linear absorption, m1Ag from electroabsorption (Lane et al. 1997). The 11Bu

exciton binding energy is determined by assuming that the n1Bu state lies at or close
to the particle-hole continuum. The m1Ag energy therefore provides a lower bound to
the 11Bu exciton binding energy.

(11Bu, m1Ag, n1Bu, 13Bu and 13Ag) are all associated with particle-hole exci-
tations from the valence to the conduction band.

Table 11.1 lists the energies of the low energy states as determined by various
spectroscopic probes. Later in this chapter we will argue that the 11Bu andm1Ag

states are the n = 1 and n = 2 Mott-Wannier excitons, respectively.49 The n1Bu

state is expected to be the n = 3 Mott-Wannier exciton, lying close to the
particle-hole continuum, or the onset of the particle-hole continuum itself. The
DMRG calculations presented in Section 11.2.3 suggest the latter possibility.
This interpretation of the excited states then places a lower bound on the 11Bu

exciton binding energy, as listed in the table.
In attempting to understand the excited states of light emitting polymers the

theoretical community has often taken two opposing points of view. On the one
hand there is the view that the excited states of polymers are derived from those
of benzene (Rice and Gartstein 1994; Gartstein et al. 1995). Since electronic in-
teractions are important in benzene, this view proposes that the excited states of
polymers also exhibit strong electronic correlations. An alternative assumption
is that because excited states in polymers are more delocalized than in molecules
electronic interactions are less important, and therefore a conventional semicon-
ductor viewpoint of bound electron-hole excitations describes the physics. This
viewpoint is strongly advocated by Kirova and Brazovskii (Kirova et al. 1999;

49Mott-Wannier excitons were described in Chapter 6. Recall that our definition of Mott-
Wannier excitons includes bound particle-hole excitations with small particle-hole separations.
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Kirova and Brazovskii 2004).
In this chapter we describe detailed investigations of the excited states of

systems from small molecules to very long oligomers. These investigations use the
DMRG method to solve the Pariser-Parr-Pople model, and thus are essentially
assumption-free. The only assumptions are the relevance of parameters and the
ability to use single-chain calculations to interpret experiments in the solid state.
We find that both views concerning the relevance of electron-electron interactions
have merits: some excited states can be viewed as weakly delocalized intraphenyl
excitations, while other excited states (particularly the low energy states listed
in Table 11.1) become important only in sufficiently large molecules. These are
more conveniently interpreted from a semiconductor viewpoint.

11.2 Poly(para-phenylene)

It is evident from the chemical structure of the phenyl-based systems, shown in
Fig. 1.2 and Fig. 11.3, that the phenyl ring is a key component of the structure.
Since at the level of the π-electron approximation, phenyl and benzene rings are
equivalent, a study of the electronic states of benzene provides useful insight to
the electronic states of oligomers and polymers.

11.2.1 Benzene

We start by introducing the noninteracting description of benzene, although
as we shall see, this description fails to explain the spectroscopic observations,
indicating that electronic interactions are important in this molecule.

The noninteracting molecular orbitals of benzene have already been intro-
duced in Chapter 3. These are the Bloch states,

|j〉 = 1√
6

6∑
n=1

c†n exp
(

−iπjn
3

)
|0〉, (11.1)

where c†n creates an electron in the π-orbital on site n and the quantum number
j satisfies, j = 0,±1,±2, 3. Equivalently, the molecular orbital wavefunctions are

ψj(r) =
1√
6

6∑
n=1

φn(r) exp
(

−iπjn
3

)
, (11.2)

where φn(r) is a π-orbital on site n. The corresponding energies are

εj = −2t cos
(
πj

3

)
. (11.3)

In general, the molecular orbitals expressed by eqn (11.2) have complex am-
plitudes. Real amplitude molecular orbitals are trivially obtained by taking linear
combinations of the degenerate pairs. In particular, we define the real amplitude
molecular orbitals as
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|1〉 ≡ |j = 0〉;
|2〉 ≡ 1√

2
(|j = 1〉+ |j = −1〉) ;

|3〉 ≡ 1√
2
(|j = 1〉 − |j = −1〉) ;

|4〉 ≡ 1√
2
(|j = 2〉+ |j = −2〉) ;

|5〉 ≡ 1√
2
(|j = 2〉 − |j = −2〉) ;

|6〉 ≡ |j = 3〉. (11.4)

These real-amplitude molecular orbitals and their energies are illustrated in Fig.
11.4.

As discussed in Chapter 2, the π-electron models used in this book are in-
variant under the particle-hole transformation,

c†iσ → (−1)iciσ̄. (11.5)

This implies that the molecular orbitals are related by a particle-hole transfor-
mation. In particular, numbering the sites as indicated in Fig. 11.4, it is readily
shown that a molecular orbital |�〉 is transformed to its complement |�̄〉 by the
particle-hole transformation as follows,

|�〉 → −|�̄〉. (11.6)

The complementary pairs of orbitals connected in this way are,

|1〉 ↔ −|6〉,

|2〉 ↔ −|4〉,

and

|3〉 ↔ −|5〉. (11.7)

The ground state of benzene is determined by occupying the three lowest en-
ergy orbitals with two electrons each. Low-energy particle-hole excitations occur
from the HOMOs (namely the states |2〉 and |3〉) to the LUMOs (namely the
states |4〉 and |5〉). Thus, there are four degenerate excitations of energy 2t. We
denote a transition from |�h〉 to |�e〉 as |�e, �h〉. Then, from the nodal patterns of
the molecular orbitals we see that excitations |4e, 2h〉 and |5e, 3h〉 are polarized
along the z-direction, while the excitations |5e, 2h〉 and |4e, 3h〉 are polarized
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Fig. 11.4. The molecular orbitals of benzene and their electronic occupation in the
ground state. The shading indicates the atomic orbital amplitudes on each site. The
site labelling defines the particle-hole transformation rule, eqn (11.7).

along the y-direction. In fact, the spatially allowed excitations, |1E1u(z)〉 and
|1E1u(y)〉, are the linear combinations,

|1E1u(z)〉 = 1√
2
(|4e, 2h〉 − |5e, 3h〉) (11.8)

and

|1E1u(y)〉) = 1√
2
(|5e, 2h〉+ |4e, 3h〉) , (11.9)

while the spatially forbidden excitations, |1B1u〉 and |1B2u〉, are the linear com-
binations,
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Table 11.2 The experimentally determined and theoretical predictions of the low-lying
vertical excitations of benzene (in eV) (The experimental assignments are from (Bursill
et al. 1998). Pariser-Parr-Pople calculations with t = 2.539 eV, and U = 10.06 eV
(Bursill et al. 1998).)

State |j| σ(xy) σ(xz) Experiment Pariser-Parr-Pople model CASPT2a

11B+
2u 3 + − 4.90 4.75 4.84

11B−
1u 3 − + 6.20 5.47 6.30

11E−
1u(z) 1 − + 6.94 6.99 7.03

11E−
1u(y) 1 + − 6.94 6.99 7.03

13B+
1u 3 − + 3.94 4.13 3.89

13E+
1u(z) 1 − + 4.76 4.76 4.49

13E+
1u(y) 1 + − 4.76 4.76 4.49

13B−
2u 3 + − 5.60 5.60 5.49

aLorentzon et al. (1995). j is the angular momentum of the excited state, which is
related to the Bloch momentum k, via k = πj/3a. The sign of σ(xy) and σ(xz) indicates
the symmetry under a reflection through the xy or xz planes, respectively.

|1B1u〉 = 1√
2
(|4e, 2h〉+ |5e, 3h〉) (11.10)

and
|1B2u〉 = 1√

2
(|5e, 2h〉 − |4e, 3h〉) . (11.11)

Next, we consider the particle-hole eigenvalues of these excited states. In
analogy to the discussion of Section 2.9.2, using the rules in eqns (11.7), it is
readily shown that the singlet/triplet 1E1u(z), 1E1u(y) and 1B1u states have
negative/positive particle-hole eigenvalues, while the singlet/triplet 1B2u state
has a positive/negative particle-hole eigenvalue. These assignments are shown in
Table 11.2.

As usual, electronic interactions lift the degeneracies between the singlet and
triplet states, and between states of different particle-hole symmetry. The ex-
perimentally determined transition energies shown in Table 11.2 indeed clearly
deviate from the noninteracting prediction, indicating that electronic interac-
tions play an important role in determining the character of the excited states.
Rather than there being four degenerate singlet excitations, there are a pair of
degenerate excitations and a further two excitations at different energies. The
optically dominant singlet excitations are the spatially and particle-hole allowed
11E−

1u(z) and 11E−
1u(y) excitations at 6.94 eV. The spatially forbidden 11B−

1u
and 11B+2u excitations are weakly allowed because of vibronic coupling.

The 11B+2u excitation is particularly weak, because it is also forbidden by
particle-hole symmetry selection rules. (These are weakly broken because of the
lack of perfect particle-hole symmetry in conjugated systems.) We note that this
state lies considerably lower in energy than the three higher states. This fact,
and the positive particle-hole symmetry assignment, indicates that this state is
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Fig. 11.5. The carbon sites in biphenyl. The bond labels define the hybridization
integrals used in eqn (11.20). The torsion angle between adjacent phenylene rings
is ∼ 300 in solution.

highly correlated with ‘covalent’ character. Indeed, as described in Appendix
G, the small excitation energy of this state is qualitatively predicted in the
strong-coupling limit of the valence bond method where only covalent diagrams
are retained. Rather than being a particle-hole excitation, the 11B+2u state is
more correctly described as a linear superposition of the two equivalent Kekulé
structures, as illustrated in Fig. G.1(b).

Also shown in Table 11.2 are the predictions from the Pariser-Parr-Pople
model, where the parameters have been optimized to minimize the error on the
excitations energies (Bursill et al. 1998). The optimized parameters are U = 10.06
eV and t = 2.539 eV. Fully ab initio CASPT2 predictions that are in good
agreement with experiment are also shown (Lorentzon et al. 1995).

Finally, the low-lying triplet excitations of benzene are also shown in Table
11.2. We note that in contrast to the usual ordering of singlet and triplet states
the 11B+2u state lies energetically below the 13B−

2u state.

11.2.2 Biphenyl

We now turn to a discussion of the low-energy spectrum of biphenyl, again
starting from the noninteracting limit. It is convenient to regard biphenyl as two
benzene molecules (stripped of one hydrogen atom each) bonded together, as
illustrated in Fig. 11.5. Since biphenyl possesses D2h symmetry it is convenient
to use the D2h symmetry-adapted molecular orbitals of benzene (shown in Fig.
11.4) to construct its molecular orbitals.

We first note that the benzene molecular orbitals |3〉 and |5〉 have nodes in the
wavefunction passing through the bridging atoms. Thus, these orbitals do not
hybridize, and therefore become nonbonding biphenyl molecular orbitals. The
remaining four molecular orbitals on each phenyl ring do hybridize, giving the
bonding and antibonding molecular orbitals. These orbitals and their energies
as shown in Fig. 11.6.

In the molecular orbital description the lowest-lying excitations of biphenyl
are
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Fig. 11.6. Molecular orbitals of biphenyl represented by their predominant compo-
nent left and right molecular orbitals of benzene (denoted by |X;L〉 and |X;R〉
and illustrated in Fig. 11.4). Also shown are the molecular orbital energies (using
ts = t), their electronic occupation in the ground state and the low-lying electronic
transitions, labelled 1, 2, and 3.

1. The HOMO-LUMO excitations, denoted as |7e, 6h〉〉, at 1.4t. This has B1u
symmetry and is polarized along the long-axis.50

2. The two degenerate excitations from the HOMO to the unoccupied non-
bonding orbitals and the two degenerate excitations from the occupied
nonbonding orbitals to the LUMO. These can be grouped as follows.

(a) The excitation from the HOMO to the unoccupied symmetric non-
bonding orbital, denoted as |8e, 6h〉〉, and the excitation from the
occupied symmetric nonbonding orbital to the LUMO, denoted as

50To avoid confusion in this section, we identify biphenyl excitations with a |〉〉 symbol and
benzene excitations with a |〉 symbol.
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Table 11.3 The experimentally determined and theoretical predictions of the low-lying
vertical excitations of biphenyl (in eV) (The experimental assignments are from (Bursill
et al. 1998). Pariser-Parr-Pople calculations with tp = 2.539 eV, ts = 2.22 eV, and
U = 10.06 eV (Bursill et al. 1998). This table also serves to define the character table
for D2h symmetry group.)

State σ(xy) σ(xz) Experiment Pariser-Parr-Pople model CASPT2a

11B+
3g − − 4.1 (0-0) 4.58 4.04

11B+
2u + − 4.2 (0-0), 4.6 4.55 4.35

11B−
1u − + 4.8 4.80 4.63

11B−
3g − − − 6.28 5.07

11B−
2u + − 5.9 6.66 5.69

21B−
1u − + 6.1 6.22 5.76

21A+
g + + ca. 6.0 6.30 5.85

13B+
1u − + ca. 3.5 3.63 3.10

13B+
2u + − 3.9 (0-0) 4.56 4.14

aLorentzon et al. (1995)

|7e, 4h〉〉, at 1.7t. These have B2u symmetry and are polarized along
the short-axis. In addition, the linear combinations

1√
2
(|8e, 6h〉〉 ± |7e, 4h〉〉) (11.12)

have ∓ particle-hole symmetry for the singlet states and ± particle-
hole symmetry for the triplet states.

(b) The excitation from the HOMO to the unoccupied antisymmetric non-
bonding orbital, denoted as |9e, 6h〉〉, and the excitation from the oc-
cupied antisymmetric nonbonding orbital to the LUMO, denoted as
|7e, 5h〉〉, also at 1.7t. These have B3g symmetry.

3. The four degenerate excitations from the occupied to unoccupied nonbond-
ing orbitals. In particular, we emphasize the excitation from the occupied
to the unoccupied symmetric non-bonding orbitals, denoted as |8e, 4h〉〉, at
2t, which has B1u symmetry.

These excitations are shown in Fig. 11.6. In the noninteracting limit the biphenyl
excitations |7e, 6h〉〉 and |8e, 4h〉〉 may be regarded as a decoupling of the benzene
excitations |4e, 2h〉 and |5e, 3h〉.

As for benzene, electronic interactions in biphenyl significantly modify the
noninteracting predictions. Table 11.3 lists the experimentally determined exci-
tation energies. The degenerate pair of B2u symmetry excitations are strongly
split, with the 11B+2u state lying below the 11B−

1u state. The biphenyl 1
1B+2u state

is derived from its parent benzene 11B+2u state, and like its parent it is a strongly
correlated ‘covalent’ state. Its positive particle-hole symmetry assignment in π-
electron models means that it is only weakly dipole active in conjugated systems.
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Fig. 11.7. Showing how the low-energy singlet excitations of benzene evolve to the
significant low-energy singlet excitations of biphenyl. The molecular axes are defined
in Fig. 11.5.

Similarly, the more dipole-active 11B−
2u state is derived from the parent benzene

11E−
1u(y) state.

51

In contrast, the 11B−
1u and 21B−

1u states are derived from the mixing of the
parent benzene 11B−

1u and 11E−
1u(z) states. As stated earlier, this mixing may

be regarded as a decoupling of the intrabenzene excitations. Thus, a more useful
way of understanding their origins is via the noninteracting picture, as follows.
The 11B−

1u state is related to the |7e, 6h〉〉 excitation. This becomes the 11B−
1u

exciton in polymers. The 21B−
1u state is related to the |8e, 4h〉〉 excitation. This

is the localized intraphenyl ‘Frenkel’ exciton.
The relation between the parent benzene states and the daughter biphenyl

states is illustrated in Fig. 11.7.
The 11B+3g state, which is odd under both σ(xy) and σ(xz) reflection, and

the 21A+g state, which is even under both σ(xy) and σ(xz) reflection, are also
listed in Table 11.3. The 11B+3g state is the two-photon state associated with the

51At the Pariser-Parr-Pople model level of approximation the benzene 11B+
2u and 11E−

1u(y)
states do not mix to form the biphenyl states, because they have opposite particle-hole sym-
metry.
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transversely polarized 11B+2u state. The 2
1A+g state is the first excited symmetric

even particle-hole symmetric state, which we argue becomes the m1Ag state in
polymers.

Table 11.3 also shows the predictions of the Pariser-Parr-Pople model (Bursill
et al. 1998) and a CASPT2 calculation (Lorentzon et al. 1995). The additional
parameter in the Pariser-Parr-Pople model, namely the bridging bond hybridiza-
tion integral, ts, is determined by fitting the predicted 11B−

1u transition energy to
the experimental value. This gives ts = 2.22 eV. With this fit the Pariser-Parr-
Pople model does reasonably well at predicting the positions of the remaining
states, except for the conspicuous failure of the 11B−

2u, which is predicted to lie
too high in energy and above the 21B−

1u state. The CASPT2 method is more
successful at predicting the correct energetic ordering.

The four absorption peaks in light emitting polymers can be qualitatively
understood by this investigation of the excited states of biphenyl. As we see in
the next section, the 11B+2u state is very weakly hybridized in oligomers and
its energy remains virtually independent of chain length. In contrast, the 11B−

1u
state strongly hybridizes, so its energy reduces with chain length to lie below the
11B+2u energy at three or more phenyl rings. These excitations are responsible
for peaks II and I, respectively. Likewise, peaks III and IV derive from the 11B−

2u
and 21B−

1u states.

11.2.3 Oligo and poly(para-phenylenes)

Finally, we turn to describe the excited states of oligo and poly(para-phenylenes).
As before, we briefly review the noninteracting description, before describing the
affects of electronic interactions.

The analytical expression for the tight binding bands of poly(para-phenylene)
is (Ambrosch-Draxl et al. 1995),

ε1−4(k) = ±tp
(
2α2 +

1 + γ2

2
± β

)1/2
, (11.13)

where,

β2 =
1− γ2

2
+ 4α2

(
1 + γ2

2
+ γ cos(kd)

)
, (11.14)

α = t2/t1, (11.15)

and
γ = t3/t1. (11.16)

The hybridization integrals are defined by the bond labels shown in Fig. 11.5.
This spectrum is illustrated in Fig. 11.8. The low-energy zero-momentum excita-
tions are also shown, in analogy to the low-energy excitations of biphenyl. These
are

1. The |d∗
1e, d1h〉 excitations, which have B1u or Ag symmetry.
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Fig. 11.8. The energy spectrum of poly(para-phenylene) using eqn (11.20) with
t1 = t2 = t3 = t. The low-lying electronic transitions are labelled 1, 2 and 3.

2. The degenerate excitations,

1√
2
(|d∗

1e, lh〉 ± |l∗e , d1h〉) , (11.17)

which have B2u symmetry. For singlet excitations the symmetric combi-
nation has negative particle-hole symmetry, while the antisymmetric com-
bination has positive particle-hole symmetry, and vice versa for triplet
excitations.

3. The |l∗e , lh〉 excitation, which has B1u symmetry.
Again, electronic interactions modify this picture, although for some excita-

tions it is arguable that a noninteracting framework is a good starting point for
the introduction of electronic interactions. In particular, the lowest energy exci-
tations are excitonic, resulting from the attraction between the particle and hole
in the |d∗

1e, d1h〉 excitations. To see this, we review the Pariser-Parr-Pople model
predictions obtained via the DMRG method (Bursill and Barford 2002). The
parameters used in the calculation were, t1 = t2 ≡ tp = 2.539 eV, t3 ≡ ts = 2.22
eV, and U = 10.06 eV.

Figure 11.9 shows the Pariser-Parr-Pople model predictions of theN -dependence
of the transition energies of some key states. Also shown are experimental re-
sults for biphenyl, oligomers, and polymer thin films. To analyze these results it
is useful to classify the excited states into a number of types.
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ts

tp

ts

tp

Fig. 11.9. The DMRG calculated transition energies of para-phenylene oligomers as
a function of inverse chain length. Calculated from the Pariser-Parr-Pople model
with unscreened parameters: U = 10.06 eV, tp = 2.539 eV, ts = 2.22 eV, and a
dielectric constant, ε = 1. 13B+

1u (pentagons), 11B−
1u (diamonds), 11B+

2u (stars),
21A+

g (squares), 13A−
g (crosses), the localized intraphenyl 1B−

1u (Frenkel) state (tri-
angles), and 11B−

2u (circles). The filled symbols are the experimental values for
biphenyl, oligomers (N = 3, . . . , 6 (Niko et al. 1999) and N = 6 (Zojer et al. 2000)
and thin film polymers (N = ∞) (Lane et al. 1997; Niko et al. 1999). The inset
shows the oligo-phenylene geometry with the bond integrals tp and ts. Reprinted
with permission from R. J. Bursill and W. Barford, Phys. Rev. B 66, 205112, 2002.
Copyright 2002 by the American Physical Society.

11.2.3.1 1B−
1u and 1A+g states associated with |d∗

1e, d1h〉 excitations These ex-
cited states are associated with the bound particle-hole excitations from the
valence band to the conduction band. These excitations are essentially one-
dimensional, because although the particle-hole wavefunction spreads over a
phenyl ring, the centre-of-mass wavefunction propagates along the chain. We
therefore expect that the Mott-Wannier exciton model described in Chapter 6
will apply to them.

As shown in Fig. 11.9, the calculated 11B−
1u energy indicates that this state

strongly delocalizes. The DMRG results for the 11B−
1u energy in the N = 3, . . . , 6

systems practically coincide with oligomer data. For large N the 11B−
1u energy

approaches 3.73 eV in reasonable agreement with the experimental peak observed
at 3.63–3.68 eV.
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Table 11.4 Calculated transition dipole moments connecting various 1A+
g and 1B−

1u
states for the N = 8 system (For this oligomer the 51B−

1u state is the Frenkel exciton,
while the 71B−

1u state is the ‘n1B1u’ state of the essential states model of nonlinear
optical processes. The 21A+

g state is always the ‘m1Ag’ state in PPP. From (Bursill
and Barford 2002).)

j
〈
11A+

g |µ̂|j1B−
1u

〉 〈
j1A+

g |µ̂|11B−
1u

〉 〈
21A+

g |µ̂|j1B−
1u

〉

1 2.85 2.85 2.64
2 0.68 2.64 0.48
3 0.19 0.31 0.06
4 0.11 0.14 0.02
5 2.52 1.17 1.57
6 1.03 — 1.31
7 0.62 — 5.06
8 0.48 — 0.04

Electroabsorption studies place the 21A+g state at around 4.6 eV (Lane et al.
1997), approximately 0.5 eV below the extrapolated Pariser-Parr-Pople model
result of 5.1 eV. This discrepancy may be explained by the characteristic red
shifts generally observed for certain excited states when going from well isolated
chains to polymers in the solid state (as described in Section 9.4). Typical es-
timates for this polarization or interchain screening shift are ∼ 0.3 eV for the
11B−

1u state and ∼ 0.6 eV for the 21A+g state (Moore and Yaron 1998). These
corrections resolve the theoretical and experimental predictions for the transition
energy of the 21A+g state.52

Table 11.4 shows that the 21A+g state has a large transition dipole moment
with the 11B−

1u state, and unlike the case for polyenes, it is not predominantly
a pair of bound magnons, but a particle-hole excitation. (It is usually labelled
the m1Ag state.) This particle-hole excitation is either an n = 2 Mott-Wannier
exciton, or the edge of the unbound particle-hole continuum.

To investigate the position of a possible electron-hole continuum we consider
the transition dipole moments between various 1A+g states and the 11B−

1u state,
as well as between the 21A+g state and various 1B−

1u states. The N = 8 values,
listed in Table 11.4, are representative of the general situation. We note that,
in addition to the 11A+g and 21A+g states, another, higher lying state, which
we denote as the p1A+g state, also has an appreciable transition dipole moment
with the 11B−

1u state. (For the N = 8 case p = 5.) There is also a pattern
in the

〈
21A+g |µ̂|j1B−

1u

〉
values. Namely, the j = 1 state has a strong transition

dipole moment with the 21A+g state, as does the higher lying 1B−
1u absorption

peak state (the localized intraphenyl exciton). In addition, there is another state,

52Qualitative modelling of solid state screening by using renormalized parameters, as dis-
cussed in Section 11.4, also corrects the transition energies (Chandross and Mazumdar 1997b,
Bursill and Barford 2005).
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Fig. 11.10. The DMRG calculated transition energies in para-phenylene oligomers of
a number of 1A+

g and 1B−
1u states as a function of 1/N2, where N is the number

of repeat units. Calculated from the Pariser-Parr-Pople model with unscreened pa-
rameters: U = 10.06 eV, tp = 2.539 eV, td = 2.684 eV, ts = 2.22 eV, and ε = 1. The
low-lying 1B−

1u states are branches of the n = 1 family of Mott-Wannier excitons
and the low-lying 1A+

g states are branches of the n = 2 family of Mott-Wannier
excitons. (See also Fig. 6.5.) 11B−

1u (large, open circles), 21B−
1u (open, down tri-

angles), 31B−
1u (up triangles), 41B−

1u (diamonds); 21A+
g (small, solid circles), 31A+

g

(small, solid squares), 41A+
g (×). Also shown are the high lying localized intraphenyl

1B−
1u (Frenkel) excitation (open squares), n1B−

1u (pentagons), and p1A+
g (stars). The

large, solid circle and solid down triangle show the position of the first and second
long-axis polarized absorption peaks respectively for sexiphenyl (N = 6) (Zojer et
al. 2000). The dotted lines are to guide the eye. Reprinted with permission from R.
J. Bursill and W. Barford, Phys. Rev. B 66, 205112, 2002. Copyright 2002 by the
American Physical Society.

lying higher still, that has the largest transition dipole moment with the 21A+g
state. We adopt the usual convention of denoting this state as the n1B−

1u state.
(In the N = 8 case n = 7.)

In order to further probe the nature of the various 1A+g and 1B−
1u exciton and

nonlinear optical states, we turn to an investigation of their large N behaviour.
Fig. 11.10 shows a number of 1A+g and 1B−

1u state transition energies as func-
tions of 1/N2. Evidently the transition energies are linear in 1/N2 for large N .
We see that there are a number of states in the 1B−

1u sector that converge to
the same energy as the 11B−

1u state in the long-chain limit. The ratio of their
slopes is approximately 1 : 9 : 16, etc. fitting the effective-particle exciton model
for odd pseudomomentum quantum number j. This is the band of the n = 1
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Mott-Wannier excitons described in Chapter 6. (Notice that the even pseudo-
momentum quantum number j states, corresponding to the 1A−

g states, are not
shown.)

Similarly, the 1A+g sector has a number of odd pseudomomentum branches
converging to the same energy. This is the band of the n = 2 Mott-Wannier
excitons. (Again, the even pseudomomentum quantum number j states, in this
case corresponding to the 1B+u states, are not shown.) Notice the analogy of Fig.
11.10 to Fig. 6.5. A slice through energy for a particular oligomer size in Fig.
11.10 gives two bands of states associated with the principle quantum numbers,
n = 1 and n = 2.

Above these states lie the p1A+g and the n1B−
1u states, which converge to the

same energy in the N = ∞ limit. The strong transition dipole moments from the
21A+g state to the n1B−

1u state and from the 11B−
1u state to the p

1A+g state, and
the close proximity in energy of the p1A+g and the n1B−

1u states indicate that
these states are close to the onset of the continuum of unbound particle-hole
excitations. Lying below this continuum are the n = 1 and n = 2 Mott-Wannier
excitons and the Frenkel exciton (as described below). The convergence of the
p1A+g and the n1B−

1u energies to ca. 6.25 eV as N → ∞ would imply a very
large binding energy (ca. 2.5 eV) for the 11B−

1u exciton. However, band states
are generally expected to be strongly affected by solid state screening (a red
shift of 1.5 eV has been estimated for polyacetylene (Moore and Yaron 1998)).
Taking such a shift into account would bring the n1B−

1u energy and hence the
exciton binding energy much closer to the results implied by electroabsorption
experiments of ca. 1 eV. These corrections also imply a solid state binding energy
for the 21A+g state of ca. 0.2 eV.

We conclude this section by remarking that we have exploited the particle-
hole symmetry of the Pariser-Parr-Pople model to label the excited states with
their particle-hole symmetries. In real conjugated systems, however, particle-hole
symmetry is weakly broken (and more substantially broken with substituent side
groups). Under these circumstances the state labels map onto those shown in
Table 6.3. Thus, the 21A+g state becomes the m1Ag state. This reflects the fact
that even in a particle-hole symmetric model the 21A+g state is not necessarily
the lowest even parity excited state, as in general there will be higher-lying
pseudomomentum counterparts of the 11B−

1u state with A−
g symmetry that lie

below the 21A+g state. This explains why even parity states with weak intensity
are sometimes observed below the m1Ag in light emitting polymers, as shown
for example in Fig. 11.1(b).

11.2.3.2 11B+2u state As already noted in Section 11.2.2, the particle-hole dipole-
forbidden state 11B+2u lies below the dipole-active 11B−

1u state in biphenyl. How-
ever, the 11B+2u state very weakly delocalizes, because the excited state wave-
function has zero amplitudes on the bridging atoms, and delocalization therefore
occurs via Coulomb-induced resonant exciton transfer (as described in Section
9.2). However, since the transition dipole moment with the ground state is very
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small for this state, resonant exciton transfer is not very effective. Thus, the
energy of the 11B+2u state is almost independent of chain length, converging to
4.4 eV. This energy agrees well with the very weak second absorption peak at
4.4–4.5 eV (Lane et al. 1997) in polymer thin films. Adding weight to this inter-
pretation is the observation of a weak but well defined 4.40 eV absorption peak
in a highly textured film of sexiphenyl (N = 6), orientated perpendicular to the
substrate (Zojer et al. 2000), as well as the weak, perpendicularly polarized ab-
sorption peak detected in orientated PFO film in the region 4.2–4.8 eV (Miller
et al. 1999b).

The results of this and the last section indicate that the first (strong) and sec-
ond (weak) absorption peaks in phenyl-based systems are the 11B−

1u and 1
1B+2u

states, respectively.53

11.2.3.3 11B−
2u state The third absorption peak is polarized normal to the long

axis in PPP. In thin films it lies at 5.2–5.3 eV (Lane et al. 1997). A conspicuous
failure of the Pariser-Parr-Pople model with the usual parametrization is its
prediction for this state. The exact calculation for biphenyl places this state at
6.66 eV, whereas experimentally it is at ca. 5.85 (and below the 21B−

1u state). As
shown in Fig. 11.9 its calculated energy is 5.9 eV in the long chain limit, 0.6–0.7
eV higher than the experimental value.54 As in biphenyl, this state derives from
the 11E−

1u(y) state of benzene. Like the 1
1B+2u state, it too delocalizes only via

resonant exciton transfer, which is more effective for this state because of the
larger transition dipole moment with the ground state.

11.2.3.4 Frenkel exciton The fourth absorption peak is polarized parallel to
the long axis. In thin films it lies at 5.7–6.0 eV (Lane et al. 1997). This state
is a highly localized intraphenyl (Frenkel) excitation which lies at 6.16 eV in
biphenyl. Its N -dependence is plotted in Fig. 11.9.

11.2.3.5 Other states Fig. 11.9 also shows the lowest lying triplet states (13B+1u
and 13A−

g ). We note that the 13A−
g state lies around 0.4 eV higher than the 21A+g

state. The close proximity of the 21A+g and 13A−
g states is consistent with the

53Although the 11B+
2u state is particle-hole dipole forbidden in the P-P-P model, it is

(weakly) observable in biphenyl (and presumably larger systems) because particle-hole symme-
try is actually broken in real systems. Another possible interpretation of the second absorption
peak is that it is due to the 21B−

1u state (see Chandross et al. 1997). That is, although the
21B−

1u and 11B−
1u states coincide in the N = ∞ limit (see Fig. 11.10), for systems of around

N = 8 phenyl rings, the 21B−
1u state has an appreciable transition dipole moment with the

11A+
g state (see Table 11.4) and has an energy of around 4.4 eV. Although polydispersity

would appear to rule out this scenario, this alternative interpretation is possible if we assume
that the conjugation length distribution is sharply peaked around N = 8 rings in thin films
(because, unlike the 11B+

2u state, the 21B−
1u state has strong N -dependence). Interestingly,

beyond the first maximum centred at 3.95 eV, in addition to the short-axis polarized peak at
4.4 eV, the long-axis polarized absorption in Zojer et al. (2000) shows a peak at 4.91 eV that
agrees well with the P-P-P 21B−

1u result of 4.88 eV for N = 6 (see Fig. 11.10).
54These predictions are corrected by using a screened electron-electron interaction (Castleton

and Barford 2002; Bursill and Barford 2005).
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theory that in the weak-coupling Mott-Wannier exciton limit (as described in
Chapter 6) these states are degenerate. However, because of the spin-density-
wave contribution to its wavefunction the 21A+g state lies lower in energy than
the 13A−

g state.

11.3 Poly(para-phenylene vinylene)
Although poly(para-phenylene vinylene), or PPV, was the first phenyl-based
polymer to exhibit electroluminescence its slightly more complicated chemical
structure than PPP means that PPP is a more convenient model system to study
theoretically. Nonetheless, the remarkable similarities in the optical spectroscopy
of the two systems means that we should seek a common description of their
excited states. Indeed, as we explain in this section, the theoretical description
of the excited states of PPV, apart from overall energy differences, is very similar
to PPP.

As shown in Fig. 1.2, PPV pocesses C2 symmetry, and thus the states are
classified as Ag or Bu. We begin this investigation by a study of stilbene, the
smallest phenylene-vinylene oligomer.

11.3.1 Stilbene
Stilbene is represented in Fig. 11.12 by N = 0. Table 11.5 lists its experimental
and calculated excitation energies. Since it is useful to relate these excitations
to the corresponding excitations in biphenyl, the symmetry assignments of the
states shown in brackets are the symmetries the stilbene states would have if
stilbene had D2h rather than C2 symmetry. We make the same assignment of
the origin of the four absorption peaks in PPV as for PPP. Namely, peak I
originates from the 11B−

u (or 11B−
1u) state, peak II originates from the 11B+u (or

11B+2u) state, peak III originates from the 21B−
u (or 11B−

2u) state, and peak IV
originates from the 31B−

u (or 21B−
1u) state.

11.3.2 Oligo and poly(para-phenylene vinylenes)
The band structure of poly(para-phenylene vinylene), derived using the method
described in Appendix C, is shown in Fig. 11.11. Now there are eight bands
arising from the eight π-orbitals per unit cell. The pair of nonbonding bands
is a consequence of the D2h symmetry of the Hückel model for PPV with short
range transfer integrals. The low-lying excitations are precisely the same as those
described in the previous section for PPP. As in PPP, the low-energy particle-hole
excitations between the valence and conduction bands are responsible for the low
energy delocalized excitons. Particle-hole excitations involving the nonbonding
bands are responsible for the higher energy weakly delocalized excitons.

Figure 11.12 shows the DMRG calculated excitation energies of oligo(para-
phenylene vinylenes) using the Pariser-Parr-Pople model with unscreened pa-
rameters (Bursill and Barford 2005).55 As for oligo(para-phenylenes), the 11B−

u

55In these calculations the geometry was straightened (i.e. the single-double bond angle was
set to 1800) so that the D2h spatial symmetry could be used to target high-lying states. The
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Table 11.5 The experimentally determined and theoretical predictions of the low-lying
vertical excitations of stilbene (in eV) (The symmetry assignments of the states shown
in brackets are the symmetries the stilbene states would have if stilbene had D2h rather
than C2 symmetry. The experimental assignments are from Castleton and Barford
(1999). Pariser-Parr-Pople calculations with tp = 2.539 eV, td = 2.684 eV, ts = 2.22
eV, and U = 10.06 eV (Castleton and Barford 1999).)

State Experiment Polarization Pariser-Parr-Pople model
11B−

u (← 11B−
1u) 3.9, 4.2 Parallel 4.18

11B+
u (← 11B+

2u) Higher than 11B−
u Perpendicular 4.38

21A+
g (← 11B+

3g) 4.4, 4.5 — 4.39
31A+

g (← 21A+
g ) 4.7, 5.0 — 5.12

21B−
u (← 11B−

2u) 5.4 Perpendicular 5.97
31B−

u (← 21B−
1u) 6.1 Parallel 5.80

13B+
u (← 13B+

1u) 2.3, 2.6 — 2.78

-3t

-2t

-t

0

t

2t

3t

-�/d 0 �/d

�

k

123

*l

l

*
1d

1d

Fig. 11.11. The energy spectrum of poly(para-phenylene vinylene) with
t1 = t2 = t3 = t. The low-lying electronic transitions are labelled 1, 2 and
3.

and 21A+g states are the 11Bu and m1Ag states, respectively, as indicated by the
strong transition dipole moment between them. They are therefore the lowest

single and double bond lengths were shortened to preserve the overall molecular size. Thus
rs = 1.283 and rd = 1.194.
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Fig. 11.12. The DMRG calculated transition energies of para-phenylene viny-
lene oligomers as a function of inverse chain length. Calculated from the
Pariser-Parr-Pople model with unscreened parameters: U = 10.06 eV, tp = 2.539
eV, td = 2.684 eV, ts = 2.22 eV, and dielectric constant, ε = 1. The symmetry as-
signments of the states shown in brackets are the symmetries the PPV states would
have if PPV had D2h rather than C2 symmetry. The inset shows the oligo-phenylene
vinylene geometry with the bond integrals tp, td and ts.

pseudomomentum branches of n = 1 and n = 2 Mott-Wannnier excitons. The
higher-lying excitations, corresponding to the second, third and fourth absorp-
tion peaks are also shown. The second and third absorption peaks arise from
states that would have 1B+2u and 1B−

2u symmetry if PPV had D2h symmetry,
but instead have 1B+u and 1B−

u symmetry. The fourth absorption peak is the
Frenkel exciton. Since these calculations were performed for a single chain using
the standard Pariser-Parr-Pople model parameters, our earlier discussion on the
importance of solvation effects also apply here. Namely, higher lying states, es-
pecially the m1Ag and band states are expected to be strongly red-shifted in the
solid state. We discuss this point further in the next section.

11.4 Other theoretical approaches

Various theoretical approaches indicate two families of singlet excitons and two
families of triplet excitons below the conduction band threshold in PPV. Chan-
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Fig. 11.13. The DMRG calculated transition energies of para-phenylene viny-
lene oligomers as a function of inverse chain length. Calculated from the
Pariser-Parr-Pople model with screened parameters: U = 8 eV, tp = 2.4 eV, td = 2.6
eV, ts = 2.2 eV, and ε = 2. The excited states are identified with the spectroscopic
features shown in Fig. 11.1. (See also Fig. 11.14.) The symmetry assignments of the
states shown in brackets are the symmetries the PPV states would have if PPV had
D2h rather than C2 symmetry.

dross and Mazumdar (1997) solved the Pariser-Parr-Pople model at the single
configuration-interaction level using renormalized parameters. In particular, by
choosing U = 8 eV, tp = 2.4 eV, td = 2.6 eV, ts = 2.2 eV and a static dielec-
tric function, ε = 2 they were able to consistently fit the calculated single chain
absorption peaks of PPV to experiment. This renormalization can therefore be
regarded as a semiempirical modelling of the effects of solid state screening. For
an eight-unit oligomer they then calculate the 11Bu state at 2.7 eV, an m1Ag

state at 3.3 eV and the n1Bu state at 3.6 eV. The 11Bu and m1Ag states are the
n = 1 and n = 2 excitons, while the n1Bu state coincides with the charge-gap and
therefore indicates the onset of the particle-hole continuum. They also predict
the 13Bu state at 1.4 eV. These results are consistent with DMRG calculations
of the same model parameters shown in Fig. 11.13 (Bursill and Barford 2005).
Comparing this figure with Fig. 11.12 we see that the 11B−

u and 21A+g states are
effectively solvated by ca. 0.1 eV and 0.6 eV, respectively. The excited states are
identified with the spectroscopic features shown in Fig. 11.1.

Beljonne et al. (1999) performed quantum chemical calculations using the
INDO Hamiltonian. They identified a number of important spectroscopic states,
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(a) (b)(a) (b)

Fig. 11.14. (a) The π band structure and band labels for nonplanar di-hydroxy-PPV
calculated using the INDO Hamiltonian. (b) The associated absorption spectrum
using single configuration interactions. The solid line is the total absorption spec-
trum, the dotted line is absorption polarized perpendicular to the chain axis, and
the dashed line is absorption polarized parallel to the chain axis. The band compo-
sitions of the excited states are as follows: I, 97% d1 → d∗

1; II, 50% d1 → �∗, 35%
� → d∗

1, 6% d1 → d∗
1; III, 44% � → d∗

1, 34% d1 → �∗, 18% d1 → d∗
1; IV, 46% � → �∗,

29% d1 → �∗, 11% d1 → d∗
2, 7% � → d∗

1. Reprinted with permission from J. D.
Weibel and D. Yaron, J. Chem. Phys. 116, 6846, 2002. Copyright 2002, American
Institute of Physics.

in particular the 11Bu andm1Ag states. An ab initio calculation by Rohlfing and
Louie (1999) on a PPV polymer predicts dipole allowed and forbidden singlet
excitons at 2.4 eV and 2.8 eV, respectively, with the quasi-particle gap at 3.3
eV. They also predict triplet excitons at 1.5 eV and 2.7 eV. The 2.4 eV and
2.8 eV singlet excitons are the 11Bu and m1Ag states, respectively, while the
1.5 eV and 2.7 eV triplet excitons are the 13Bu and m3Ag states, respectively.
The m1Ag and m3Ag states are nearly degenerate, as predicted by the Mott-
Wannier exciton theory for odd parity particle-hole wavefunctions. Using the
same technique with a screened electron-hole interaction van der Horst et al.
(2001) predict 11Bu binding energies in ladder-PPP and PPV of 0.43 and 0.48
eV, respectively.

The origin of the higher-lying peaks has also been investigated. Rohfling and
Louie (1999), and Weibel and Yaron (2002) predict that peak II in PPV arises
from an exciton caused predominately by the (|d∗

1e, lh〉 − |l∗e , d1h〉)/√2 particle-
hole excitation. This is essentially equivalent to the proposition that this peak
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arises from the 11B+2u excitation of benzene (Rice and Garstein 1994). Weibel and
Yaron (2002) have also investigated the effects of breaking particle-hole symme-
try on the oscillator strength and polarization of peak II. Using the semiempiri-
cal INDO Hamiltonian on nonplanar di-hydroxy-PPV their calculations indicate
that chemical substitution and mixing of the π and σ orbitals enhances the os-
cillator strength, as originally suggested by Gartstein et al. (1995). Moreover, as
illustrated in Fig. 11.14, this peak becomes predominately polarized along the
chain axis, in agreement with experiment (Miller et al. 1999a).

Most authors agree that the peak III can be assigned to an exciton caused
by the (|d∗

1e, lh〉+ |l∗e , d1h〉)/√2 particle-hole excitation. This is essentially equiv-
alent to the proposition that this peak arises from the 11E−

1u(y) excitation of
benzene. Similarly, peak IV is assigned to the Frenkel exciton caused by the
|l∗e , lh〉 particle-hole excitation. These are the original assignments proposed by
Rice and Gartstein (1994).

Shukla et al. (2003) have investigated the high energy k1Ag state by multi-
reference configuration interactions, and argue that this state arises from double
d1 → l∗ and l → d∗

1 excitations.

11.5 The excited states of light emitting polymers

The experimental and theoretical studies of light emitting polymers described in
this chapter suggest that the excited states can be understood as follows:

• Peak I corresponds to the low-energy dipole active 11B−
u (or 11B−

1u) state.
This is the lowest pseudomomentum branch of the family of n = 1 Mott-
Wannier singlet excitons resulting from the Coulomb attraction between
the particle-hole excitation from the valence (d1) to the conduction (d∗

1)
bands.

• Approximately 0.7 eV higher in energy is the m1Ag state, identified by
electroabsorption (Martin et al. 1999), two-photon absorption and pho-
toinduced absorption (Frolov et al. 2002). The Pariser-Parr-Pople model
calculations described in this chapter suggest that this state is the 21A+g
state, which is the lowest pseudomomentum branch of the family of n = 2
Mott-Wannier excitons. This is sometimes labelled a charge-transfer ex-
citon, because the particle-hole separation is greater than in the strongly
bound 11Bu exciton. This assignment places a lower bound on the spec-
troscopically determined binding energy of the 11Bu exciton of 0.7 eV.

• Approximately 0.7 eV below the 11B−
u exciton is the 13B+u triplet, indicat-

ing a large exchange energy characteristic of correlated states. This state is
the lowest pseudomomentum branch of the family of n = 1 Mott-Wannier
triplet excitons.

• Photo-induced absorption from the 13B+u triplet indicates another triplet,
the 13A−

g state, at approximately 1.4 eV higher in energy, and essentially
degenerate with the 21A+g state. This triplet state is the lowest pseudomo-
mentum branch of the family of n = 2 Mott-Wannier triplet excitons. As
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expected from Mott-Wannier exciton theory described in Chapter 6 the
odd particle-hole parity singlet and triplet (charge-transfer) excitons are
virtually degenerate.

• The n1Bu state at 0.1 eV higher in energy than the m1Ag state in PPV
(Martin et al. 1999) indicates binding energies of ∼ 0.8 eV and 0.1 eV for
the n = 1 and n = 2 singlet excitons, respectively.

• Higher in energy are the excitations associated with peak II. The chain in-
dependent position of this peak, its transverse polarization in PPP and its
small oscillator strength all indicate that it derives from the highly corre-
lated 11B+2u state of benzene. Its optical strength arises from the breaking
of particle-hole symmetry via substitution and π − σ bond mixing.56

• The k1A+g state observed by two-photon absorption and photoinduced ab-
sorption slightly lower in energy than the 11B+2u state by Frolov et al. (2002)
is long-lived and readily undergoes interchain charge separation. Although
the origin of the k1A+g state is unclear, the experimental evidence suggests
that it is the even-parity partner of the 11B+2u state (namely, the 11B+3g
state in PPP, which has 1A+g symmetry in PPV) (Shukla et al. 2003).

• Peak III is the 11B−
2u state of PPP. This state derives from the 11E−

1u(y)
state of benzene.

• Finally, peak IV is the intraphenyl, or Frenkel, exciton.

11.6 Electron-lattice coupling

We now turn to a discussion of the effects of electron-lattice coupling on the
electronic states of light emitting polymers.

Electron-lattice coupling has profound effects on the behaviour of conjugated
polymers. It is responsible for the self-trapping of excited states. It also plays a
vital role in determining the interconversion between excited states, and in energy
and charge transfer processes. Predicting interconversion rates is important for
understanding many electronic processes in conjugated polymers, for example,
the determination of the singlet exciton yield in light emitting polymers, as
described in Section 9.6

The phenyl-based conjugated polymers are extrinsically semiconducting as a
consequence of the chemical structure determined by the σ bonds. Thus, with
all bond lengths equal there is still a semiconducting band gap, as shown by
Figs 11.8 and 11.11. However, coupling of the π-electrons to the lattice is still
important as it causes the types of excited state structures described in Chapters
4 and 7 for extrinsically semiconducting polymers.

56However, the origin of this state is somewhat controversial. Chandross et al. (1997) argue
that its predominately longitudinal polarization in PPV (Miller et al. 1999a) suggests that it
is a higher momentum branch associated with the 11Bu state.
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Fig. 11.15. The fractional change in transfer integrals of poly(para-phenylene) from
the uniform value, t, in the noninteracting limit. The electron-phonon parameter
used in the Peierls model (eqn (4.1) is λ = 0.12. The labels refer to the bonds shown
in Fig. 11.16. Only the upper rung of bonds are shown. Notice that the change in
transfer integrals is opposite to the change in bond lengths.

Electron-lattice coupling in light emitting polymers has been investigated by
a number of groups using a variety of methods, including multi-reference config-
uration interactions (Beljonne et al. 1995), density functional theory (Ambrosch-
Draxl et al. 1995), semiempirical Austin Model 1 (Zojer et al. 1999), time depen-
dent Hartree-Fock theory (Tretiak et al. 2002), GWA-Bethe-Salpeter equation
(Artacho et al. 2004) and DMRG calculations of the Pariser-Parr-Pople-Peierls
model (Moore et al. 2005).

In this section we discuss the geometrical structures and relaxed energies of
the phenyl-based systems. We take the noninteracting and interacting electron
limits in turn.

11.6.1 Noninteracting limit

As discussed in Chapter 4, the noninteracting limit in the adiabatic approxima-
tion is described by the Peierls model (defined in Section 4.2). The ground and
excited state structures are easily obtained via the Hellmann-Feynman proce-
dure, described in Section 4.4.

Figure 11.15 shows the fractional change in transfer integrals for the ground
state, δti, defined in eqn (4.5). The bonds are defined by Fig. 11.16. Since the
bonds are initially all of the same length, we see that the coupling of the π-
electrons to the lattice has caused an effective ‘bond’ alternation. The phenyl-
ring bonds shorten while the bridging bond lengthens. This is the benzenoid
structure, as the phenyl-ring bonds are roughly all of the same length.
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Fig. 11.16. (a) The bonds illustrated in Figs 11.15 and 11.19, and bond lengths in Å
of the ground state determined in the interacting limit. (b) The quinoid structure
of the 11B−

u state. Bond lengths in the centre of the distortion in the interacting
limit. (See Section 11.6.2 and Fig. 11.19)

To see this effective bond alternation we define the summed bond distortions
as

δtn =
∑

i∈phenyl ring
δti; odd n (11.18)

and
δtn = δti= bridging bond; even n. (11.19)

Then we define the normalized, staggered and summed ‘bond’ alternation, δn,
as

δn =
δtn
t
(−1)n. (11.20)

Figure 11.17 shows δn for the ground state. Under this mapping the phenyl
ring is equivalent to a double bond (or dimer) and the bridging bond is a single
bond. As for polyenes, this effective alternation increases the semiconducting
band gap. Note that end-effects coupled to the constraint of an overall constant
contour length causes the oscillations in δn: there are greater distortions in the
phenyl rings at the end of the chain than in those in the middle of the chain.
Thus, in the middle of the chain the summed distortion in bond lengths in a
phenyl ring is not quite equal and opposite to the distortion of the bridging
bonds.

Next consider the 1B1u excited state structure, shown in Fig. 11.15. This is
the quinoid structure, illustrated in Fig. 11.16 (b). In contrast to the ground
state, there is now a significant variation in the bond lengths in the phenyl-ring:
bonds labelled 1 shorten, while bonds labelled 2 lengthen. The bridging bond
also shortens.
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Fig. 11.17. The staggered, normalized and summed bond distortions of
poly(para-phenylene) (as defined in eqn (11.20)) in the noninteracting limit.

At first sight the excited state lattice distortions of poly(para-phenylene) rep-
resented in Fig. 11.15 do not resemble those of a linear polyene. We therefore
might enquire whether the geometrical defects (for example, solitons, polarons,
etc.) and their associated mid-gap electronic states also exist in an analogous
manner in poly(para-phenylene). To show that bond defects do exist in an anal-
ogous manner to linear polyenes we again consider the summed bond distortions,
defined by eqns (11.18) - (11.20).

The 1B1u state structure is illustrated in this way in Fig. 11.17. The relaxed
1B1u state creates a ‘polaronic’ structure, whereby the average bond length in
the phenyl ring increases while the bridging bond length decreases, but there is
no reversal in sign of the bond distortions from the ground state. As described in
Section 4.8, this polaronic structure of excited states occurs in extrinsically semi-
conducting polymers where the ground state is nondegenerate: reversing the sign
of the bond distortions gives a higher energy. A bond defect, or soliton, separates
two regions of opposite bond distortions. Creating a soliton and antisoliton pair
and moving them apart creates a region of reversed bonds. Thus, there is a linear
confining potential between the soliton and antisoliton for large separations. As
in linear polyenes, these bond defects are also associated with mid-gap states.

Associated with the two mid-gap single-particle states of the excited state
are a bonding, ψ+i , and antibonding, ψ−

i , molecular orbital (where i is a site
index). As explained in Section 4.6, these molecular orbitals are analogous to the
bonding and antibonding orbitals of molecular hydrogen. The molecular orbitals
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Fig. 11.18. The soliton (solid symbols) and antisoliton (open symbols) probability
densities (defined by eqn (11.24)).

are constructed from localized Wannier functions, φi and φ̄i, which represent the
soliton and antisoliton respectively. In particular,

ψ±
i =

1√
2
(φi ± φ̄i), (11.21)

or inverting

φi =
1√
2
(ψ+i + ψ−

i ) (11.22)

and

φ̄i =
1√
2
(ψ+i − ψ−

i ). (11.23)

In linear polyenes with degenerate ground states the soliton and antisoliton are
widely separated. However, as described above, they are confined in extrinsic
semiconductors. This confinement is illustrated for poly(para-phenylene) in Fig.
11.18, which shows the soliton and antisoliton probability density summed over
each phenyl ring,

φ2n =
∑

i∈phenyl ring
φ2i . (11.24)

We see that the soliton and antisoliton wavefunctions are centred on neighbouring
phenyl rings in the middle of the chain.
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Table 11.6 The relaxation energies of the 1B1u state and polaron for para-phenylene
oligomers (in eV) calculated from the Peierls model (eqn (4.1)) (t = 2.514 eV and
λ = 0.12)

Number of phenyl rings 1B1u state Polaron
4 0.23 0.06
8 0.15 0.04
20 0.08 0.02
40 0.06 0.01

This description of the molecular orbital defect states means that we can
again apply the argument of Section 4.6 to describe the solitonic character of the
excited states. In particular, the 11B1u state is a linear superposition of spin-
less positively and negatively charged soliton-antisoliton pairs, while the 13B1u
state is a linear superposition of neutral spin-1/2 soliton-antisoliton pairs. These
differences in the solitonic descriptions become important when the spin degen-
eracy is lifted by electronic interactions, and they help explain the quite different
geometrical distortions of these two states in the interacting limit. We investigate
these structures in the next section.

To aid in our understanding of exciton-polaron structures (to be described
below) and relaxation energies, we also investigate charged (polaron) states in
the noninteracting limit. Figure 11.17 shows the polaronic structure associated
with a doped particle. Table 11.6 lists the relaxation energies of the 1B1u state
and polaron for different oligomer lengths. We note that the relaxation energy
of the 1B1u state is considerably greater than for the polaron, and that the
relaxation energies reduce as the oligomer lengths increase.

In general, poly(para-phenylene) is not planar because of the steric repulsion
of the hydrogen atoms. The torsional angle between adjacent phenyl rings for
a single chain is estimated to be 270 (Ambrosch-Draxl et al. 1995). Packing in
a crystalline environment planarizes the chain, and in this case the torsional
angle is estimated to be 170. The quinoid structure of the excited state also
planarizes the chain, because in this structure the bridging bond has more double
bond character, and thus twisting the rings reduces the bond integral and hence
increases the energy more than in the benzenoid structure. The torsional angle
in the middle of the distortion is estimated to reduce to ∼ 80 (Artacho et al.
2004).

11.6.2 Interacting limit

In Chapter 7 we described the combined effects of electron-lattice and electron-
electron interactions on the electronic states of conjugated polymers. We dis-
cussed these effects for polymers with and without extrinsic semiconducting gaps.
We saw that electron-electron interactions enhance the bond alternation in the
ground state, and generally enhance the size of the lattice distortions for excited
states. The enhancement is greater and the electron-lattice relaxation energy is
larger for states with covalent character relative to states that are entirely ionic
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Table 11.7 The vertical and relaxation energies of para-phenylene oligomers calculated
from the Pariser-Parr-Pople-Peierls model (eqn (7.1)) (t = 2.514 eV, U = 10.06 eV,
and λ = 0.12)

Vertical transition energy Relaxation energy
State N = 4 N = 8 N = 4 N = 8
13B+

1u 3.29 3.17 0.58 0.41
11B−

1u 4.21 3.96 0.17 0.06
21A+

g 5.52 5.26 1.28 1.14

in character. Thus, the 13B+u and 21A+g states undergo a greater electron-lattice
relaxation than the 11B−

u state. These features also occur for the electronic states
of light emitting polymers, as we now describe.

To investigate the combined effects of electron-lattice and electron-electron
interactions we again employ the Pariser-Parr-Pople-Peierls model introduced
in Section 7.2. Notice that the calculations described here do not describe free
rotations of phenyl rings relative to one another. Thus, their applicability are to
ladder poly(para-phenylene), where the stereochemistry causes the rings to have
a planar geometry, or polymers in the solid state, where ring rotations are more
restricted.

Table 11.7 lists the vertical and relaxed energies of the 13B+1u, 1
1B−

1u and
21A+g states for 4 and 8 ring para-phenylene oligomers. As in linear polyenes,
the relaxation energy of the 11B−

1u state is small, whereas the relaxation energy
of the 13B+1u state is large. The experimentally determined relaxation energy of
the 11B−

u state in the related polymer poly(para-phenylene vinylene) has been
reported as 0.07 eV by Liess et al. (1997). We may also deduce the relaxation
energy in poly(para-phenylene) and ladder poly(para-phenylene) from Fig. 3 of
Hertel et al. (2001) by noting that the ratio of the intensities of the 0−1 to 0−0
vibronic peaks in the absorption or emission spectra is S, the Huang-Rhys factor.
The relaxation energy is then �ω × S, where �ω is the characteristic phonon
frequency. Thus, using S = 0.6 for ladder poly(para-phenylene), S = 1.2 for
poly(para-phenylene) and �ω = 0.2 eV gives relaxation energies of 0.12 eV and
0.24 eV for ladder poly(para-phenylene) and poly(para-phenylene), respectively.
The larger relaxation energy for poly(para-phenylene) is expected, as the rings
are free to rotate, and this result is consistent with a calculated value of 0.22 eV
reported in Artacho et al. (2004). The relaxation energy of the 11B−

1u state in the
interacting limit is intermediate between the relaxation energy of the 1B1u state
and polaron in the noninteracting limit, as listed in Table 11.6. This illustrates
the exciton-polaron nature of the 11B−

1u state, as further discussed below.
The relaxation energy of the 21A+g state is also large, but not large enough

to cause an energy level reversal of the 11B−
1u and 21A+g states. The difference

in relaxation energies between the 13B+1u and 11B−
1u states increases the 0 − 0

energy singlet-triplet exchange gap from the vertical gap of ∼ 0.6 eV to ∼ 0.9
eV, in good agreement with experiment (Köhler and Beljonne 2004). We also see
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Fig. 11.19. The fractional change in transfer integrals of eight-ring para-phenylene
oligomers from the uniform value, t, in the interacting limit. The parameters used
in the Pariser-Parr-Pople-Peierls model (eqn (7.1)) are U = 10.06 eV, t = 2.514 eV,
and λ = 0.12. The labels refer to the bonds shown in Fig. 11.16. Only the upper
rung of bonds are shown.

that the relaxation energy reduces with chain size, consistent with an increased
delocalization of the excitations and consequently a diminished effective electron-
lattice coupling.

Next, we consider the associated geometrical structures. These are plotted in
Fig. 11.19 for the normalized changes in transfer integrals and in Fig. 11.20 for the
staggered, summed bond distortions. As predicted, the ground state alternation
is enhanced in the interacting limit over the noninteracting limit by 8%. The
bond lengths, calculated using δri = −δti/α, are shown in Fig. 11.16.

The 11B−
1u state is now an exciton-polaron. Its structure is qualitatively sim-

ilar in both the noninteracting and interacting limits, as the soliton-antisoliton
confinement due to linear confinement arising from the effective extrinsic bond
alternation has a rather similar effect to electron-hole attraction. However, as
already predicted, the 13B+1u state has a more pronounced distortion because it
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Fig. 11.20. The staggered, normalized and summed bond distortions of eight-ring
para-phenylene oligomers (as defined in eqn (11.20)) calculated from the
Pariser-Parr-Pople-Peierls model. t = 2.514 eV, U = 10.06 eV, and λ = 0.12.

has some covalent character. Indeed, there is a change of sign in the effective
bond alternation. The middle bridging bond becomes a ‘short’ bond, while the
adjacent phenyl-ring become ‘long’ bonds. Similarly, the 21A+g state shows a
significant structural distortion, with a change of sign of the bond alternation.
The lattice distortions of the 11B−

1u, 1
3B+1u, and 2

1A+g states - as defined by the
summed bond distortions of eqn (11.20) and shown in Fig. 11.20 - are qualita-
tively similar to those of linear polyenes with extrinsic dimerizarion, as described
in Chapter 7.

The different relaxation energies and geometrical structures of the singlet
and triplet B1u states in the interacting limit is obviously related to the different
kind of solitons comprising these states, as described in the previous section.
In particular, the electronic interactions induce a strong coupling of the neutral
soliton to the bond-order correlation, causing a significant distortion for the
triplet state. In contrast, the charged solitons weakly couple to the bond-order
correlation, and thus the singlet state is more weakly coupled to the lattice. Since
the 21A+g state has an admixture of charged and neutral solitons, it also couples
more strongly to the lattice than the 11B−

1u state.

11.7 Concluding remarks

This chapter has described the spectroscopic and theoretical investigations of the
excited states of light emitting polymers. Although the experiments are generally
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performed on polymers in thin film samples, the emphasis has been to describe
the electronic properties of single polymer chains. The role of the environment
has been discussed only in so far that it acts as a dielectric medium to screen
the intramolecular excitations.

Intermolecular interactions, however, are crucial in determining the perfor-
mance of light emitting and photovoltaic polymer devices. The effect of these
interactions is also critically dependent on the local molecular structure. For ex-
ample, as described in Section 9.2, if a pair of chains form a dimer in a parallel
arrangement the lowest singlet excitation is necessarily dipole-forbidden. How-
ever, as described in Section 9.6, a parallel arrangement of chains is precisely
the configuration required to optimize the singlet exciton yield. Interface states,
for example, exciplexes, also play an important role in device performance. On
a larger length scale, the overall polymer morphology - particularly for polymer
blends - determines both charge and energy transport in polymer devices.

Understanding the precise role of structure on the performance of polymer
electronic devices and other systems comprising conjugated polymers, for exam-
ple light harvesting complexes, remains one of the outstanding challenges of the
field.



APPENDIX A

DIRAC BRA-KET OPERATOR REPRESENTATION OF
ONE-PARTICLE HAMILTONIANS

Throughout this book electronic models of conjugated polymers are developed
within the number or second quantization representation. This representation is
particularly powerful for treating many-body problems. However, as it is less fa-
miliar than a first quantization approach, this appendix explains the equivalence
of the two approaches for single particle Hamiltonians. We take two examples:
the fermion noninteracting (or Hückel) Hamiltonian and the exciton transfer
model.

A.1 The Hückel Hamiltonian
The Hückel Hamiltonian, described in Chapter 3, is

H = −
N∑

n=1,σ

tn

(
c†nσcn+1σ + c†n+1σcnσ

)
, (A.1)

where tn = t(1 + δn).
As explained in Section 2.4, c†nσ creates an electron with spin σ in the spin-

orbital, χn(r, σ). We define the Dirac ket state as

|n, σ〉 = c†nσ|0〉, (A.2)

where |0〉 is the vacuum state. The ket state |n, σ〉 is formally equivalent to the
spin orbital χn(r, σ).

The bra state, 〈n, σ|, is the conjugate to the ket state. The scalar product of
a bra and ket is defined as

〈m,σ|n, σ〉. (A.3)

If the states form an orthonormal set then,

〈m,σ|n, σ〉 = δmn. (A.4)

For an orthonormal set we notice that the operator,

|m,σ〉〈n, σ| (A.5)

projects the state |n, σ〉 onto the state |m,σ〉:
|m,σ〉〈n, σ|k, σ〉 = |m,σ〉δnk. (A.6)

Thus, |m,σ〉〈n, σ| and c†mσcnσ are equivalent: both have the effect of transferring
an electron from the spin-orbital χn(r, σ) to the spin-orbital χm(r, σ).

223



224 BRA-KET HAMILTONIAN REPRESENTATIONS

We can therefore express the Hückel Hamiltonian (eqn (A.1)) as,

H = −
N∑

n=1,σ

tn (|n, σ〉〈n+ 1, σ|+ |n+ 1, σ〉〈n, σ|) . (A.7)

As described in Section 3.3.1, for cyclic undimerized chains this Hamiltonian is
diagonalized by the Bloch states,

|k, σ〉 = 1√
N

∑
n

|n, σ〉 exp(ikna), (A.8)

where N is the number of sites. To demonstrate this, consider

H|k, σ〉 = H
1√
N

∑
n

|n, σ〉 exp(ikna)

= − t√
N

∑
n,σ

(|n, σ〉 exp(ik(n+ 1)a) + |n+ 1, σ〉 exp(ikna)) ,

(A.9)

where we have used the properties of the projection operator, eqn (A.5). Re-
summing the second term on the right-hand side, we have

H|k, σ〉 = − t√
N

∑
n,σ

(|n, σ〉 exp(ik(n+ 1)a) + |n, σ〉 exp(ik(n− 1)a)) ,

= −2t cos(ka)|k, σ〉 = εk|k, σ〉. (A.10)

A.2 The exciton transfer Hamiltonian

The exciton transfer Hamiltonian,

H =
∑
mn

(
JmnE

†
mEn + JnmE

†
nEm

)
+∆

∑
m

E†
mEm, (A.11)

was introduced in Section 9.2.2. Here,E†
m creates an exciton on themthmolecule.

The ket state

|m〉 = E†
m

N∏
n=1

|GS〉n (A.12)

represents an exciton localized on the mth molecule. (In analogy to eqn (A.2)
we may regard

∏N
n=1 |GS〉n as the vacuum state.)

Equation (A.11) is equivalent to,

H =
∑
mn

(Jmn|m〉〈n|+ Jnm|n〉〈m|) + ∆
∑
m

|m〉〈m|. (A.13)

For a dimer it is easy to show that the symmetric and antisymmetric states
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|+〉 = 1√
2
(|1〉+ |2〉) (A.14)

and
|−〉 = 1√

2
(|1〉 − |2〉) (A.15)

diagonalize H with energies (∆ + J) and (∆ − J), respectively (with Jmn =
Jnm = J).



APPENDIX B

PARTICLE-HOLE SYMMETRY AND AVERAGE OCCUPATION
NUMBER

Electron models with particle-hole symmetry satisfy the condition that

〈N̂ − 1〉 = 0 (B.1)

when the number of electrons equals the number of orbitals. The number oper-
ator, N̂ =

∑
σ c

†
σcσ. Thus, the occupancy of each orbital satisfies,

〈N̂〉 = 1. (B.2)

To prove this, note that under a particle-hole transformation,

(N̂ − 1) → −(N̂ − 1), (B.3)

that is,
Ĵ(N̂ − 1)Ĵ† = −(N̂ − 1), (B.4)

where Ĵ is the particle-hole operator, satisfying

Ĵ†Ĵ = 1. (B.5)

Thus, the expectation value of (N̂ − 1) is

〈N̂ − 1〉 ≡ 〈Ψ|N̂ − 1|Ψ〉
= 〈Ψ|Ĵ†Ĵ(N̂ − 1)Ĵ†Ĵ |Ψ〉, (B.6)

using eqn (B.5).
Now, if an eigenstate of the Hamiltonian is also an eigenstate of Ĵ , which is

automatically the case for a state of definite charge when the number of charges
equals the number of orbitals, then

Ĵ |Ψ〉 = J(Ψ)|Ψ〉, (B.7)

where J(Ψ) is the particle-hole eigenvalue, with values ±1. Using the conjugate
to eqn (B.7), namely,

〈Ψ|Ĵ† = J∗(Ψ)〈Ψ|, (B.8)
as well as eqn (B.7), eqn (B.6) becomes

〈N̂ − 1〉 = 〈Ψ|J∗(Ψ)Ĵ(N̂ − 1)Ĵ†J(Ψ)|Ψ〉
= |J(Ψ)|2〈Ψ|Ĵ(N̂ − 1)Ĵ†|Ψ〉. (B.9)

Finally, using eqn (B.4) and |J(Ψ)|2 = 1 we see that

〈N̂ − 1〉 = −〈N̂ − 1〉, (B.10)

thus proving eqn (B.1).
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APPENDIX C

SINGLE-PARTICLE EIGENSOLUTIONS OF A PERIODIC
POLYMER CHAIN

In this appendix we derive the eigenfunctions and eigenvalues of a noninteracting
periodic polymer chain. We use a straightforward generalization of the method
employed in Section 3.3.1 for the uniform cyclic chain.

We write the Hückel Hamiltonian for a polymer composed of a periodic se-
quence of monomers as,

H =
∑
m

Hm +
∑
m

∑
n

Hmn, (C.1)

where Hm is the intramonomer one-particle Hamiltonian and Hmn is the inter-
monomer one-particle Hamiltonian. In particular,

Hm =
∑
σ

c†mσHm
cmσ

=
∑
σ

(
c1†mσ c2†mσ · · · ) ·


 t11m t12m · · ·
t21m t22m · · ·
· · · · · · · · ·


 ·


 c1mσ

c2mσ

· · ·


 , (C.2)

where ci†mσ creates an electron on the ith site of the mth unit cell and tijm is the
intramonomer transfer integral between sites i and j.

Similarly,

Hmn =
∑
σ

c†mσHmn
cnσ

=
∑
σ

(
c1†mσ c2†mσ · · · ) ·


 t11mn t12mn · · ·
t21mn t22mn · · ·
· · · · · · · · ·


 ·


 c1nσ
c22σ
· · ·


 , (C.3)

where tijmn is the intermonomer transfer integral between sites i and j on monomers
m and n, respectively.

Exploiting the translational invariance of the polymer we introduce the Bloch
transforms,

c†mσ =
1√
N

∑
k

c†kσ exp(ikmd), (C.4)

and
cmσ =

1√
N

∑
k

ckσ exp(−ikmd), (C.5)
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where the Bloch wavevector, k = 2πj/Nd, d is the repeat distance, N is the
number of unit cells and the quantum number j satisfies, −N/2 ≤ j ≤ N/2.

Substituting the Bloch tranforms into eqn (C.2) and eqn (C.3), and following
the same procedure as in Section 3.3.1, we obtain the momentum space repre-
sentation,

H =
∑
kσ

c†kσH
mckσ +

∑
kσ

∑
n

c†kσH
mnckσ exp(−iknd)

=
∑
kσ

c†kσH
0ckσ, (C.6)

where
H0 = Hm +

∑
n

Hmn exp(−iknd). (C.7)

Now, if S is the unitary matrix that diagonalizes H0 (and S† is its adjoint),
we may write eqn (C.6) as,

H =
∑
kσ

c†kσS
†SH0S†Sckσ

=
∑
kσ

c̃†kσH̃
0
c̃kσ, (C.8)

where
H̃
0
= SH0S† (C.9)

is the diagonal representation of the Hamiltonian and

c̃†kσ = c†kσS
† (C.10)

are the diagonalized Bloch operators.
We now use this procedure to find the eigensolutions of the dimerized chain

and poly(para-phenylene) as examples of the method.

C.1 Dimerized chain
With the sites of the unit cell labelled as shown in Fig. 3.3, eqn (C.6) becomes

H =
∑
kσ

(
c1†kσ c2†kσ

) ·
(

0 td + ts exp(−i2ka)
td + ts exp(i2ka) 0

)
·
(
c1kσ
c2kσ

)
,

(C.11)

where ts and td are the transfer integrals for the single and double bonds, re-
spectively.

By the similarity transformation (eqn (C.9)) H is diagonalized to

H =
∑
kσ

(
cv†
kσ cc†kσ

) ·
(
εvk 0
0 εck

)
·
(
cvkσ
cckσ

)
, (C.12)

where cv†
kσ and c

c†
kσ are defined by eqns (3.19) and (3.20), respectively, and ε

v
k and

εvk by eqns (3.23) and (3.24), respectively.
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C.2 poly(para-phenylene)

With the sites of the phenyl ring labelled as shown in Fig. 11.4, we have

H =

∑
kσ

(
c1†kσ c2†kσc

3†
kσ c4†kσ c5†kσ c6†kσ

) ·




0 t 0 ts exp(−ikd) 0 t
t 0 t 0 0 0
0 t 0 t 0 0

ts exp(ikd) 0 t 0 t 0
0 0 0 t 0 t
t 0 0 0 t 0




·




c1kσ
c2kσ
c3kσ
c4kσ
c5kσ
c6kσ



,

(C.13)

where t and ts are the intraphenyl and bridging bond transfer integrals, respec-
tively. The eigenvalues are given by eqn (11.20) and plotted in Fig. 11.8.



APPENDIX D

DERIVATION OF THE EFFECTIVE-PARTICLE
SCHRÖDINGER EQUATION

The Schödinger equation for the effective-particle model of excitons was intro-
duced in Chapter 6. In this appendix we derive that equation.

First we need to derive an exciton Hamiltonian in the weak-coupling limit.
To do this it is necessary to recast the Pariser-Parr-Pople model (see Section
2.8.3),

H = −
∑
iσ

ti(c
†
iσci+1σ + c†i+1σciσ) (D.1)

+U
∑
i

(
Ni↑ − 1

2

)(
Ni↓ − 1

2

)
+
1
2

∑
i �=j

Vj(Ni − 1)(Ni+j − 1),

in a molecular orbital basis. The Ohno interaction, Vj , is defined in eqn (2.55).
As a simplification, we assume that the Wannier molecular orbitals for a

linear, dimerized chain are localized on a particular dimer, that is,

cv†
�σ ≈ 1√

2
(c†2�−1σ + c†2�σ) (D.2)

for the valence band (bonding) molecular orbital, and

cc†�σ ≈ 1√
2
(c†2�−1σ − c†2�σ), (D.3)

for the conduction band (antibonding) molecular orbital. � is the unit cell index.
The inverse relations are thus,

c†2�−1σ ≈ 1√
2
(cv†

�σ + cc†�σ) (D.4)

and
c†2�σ ≈ 1√

2
(cv†

�σ − cc†�σ). (D.5)

Substituting eqns (D.4) and (D.5) into the Pariser-Parr-Pople model, eqn
(D.1), we obtain the molecular orbital exciton Hamiltonian,57

Hexciton = H1 +H2 +H3. (D.6)

We now describe the terms in Hexciton in turn.

57The molecular orbital Hamiltonian also contains terms that change the occupancy of the
valence and conduction bands. However, as such terms do not connect basis states within the
exciton subspace they are neglected.
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H1 is the single-electron Hamiltonian,

H1 = −
∑
�γσ

t̃γγ

(
cγ†
�σc

γ
�+1σ + cγ†

�+1σc
γ
�σ

)
+
∑
�γ

εγN
γ
� , (D.7)

where
Nγ

�σ =
∑
σ

cγ†
�σc

γ
�σ (D.8)

and the index γ indicates the conduction (γ = c) or valence (γ = v) band. The
first term on the right-hand side represents the transfer of electrons between
nearest neighbour dimers. The second term is the one-electron energy of the
HOMO and LUMO states. 2∆ = εc − εv is the HOMO-LUMO gap on a dimer.

Next, H2 describes the Coulomb interactions,

H2 = Ũ
∑
�γ

Nγ
�↑N

γ
�↓ +

Ũ

2

∑
�γ �=γ′

Nγ
� N

γ′
� +

∑
� �=�′γγ′

Ṽ�′Nγ
� N

γ′
�+�′ . (D.9)

The first two terms are the Coulomb interactions between electrons on the same
dimer, while the third term is the Coulomb interaction between electrons on
dimers �′ units apart.

Finally, H3 describes the exchange interaction.

H3 = −X
∑
�γ �=γ′

[
Sγ
� · Sγ′

� +
1
4
(Nγ

� − 1)(Nγ′
� − 1)

]
, (D.10)

where
Sγ
� =

∑
ρρ′

cγ†
�ρσρρ′cγ�ρ′ (D.11)

and σ are the Pauli spin matrices. This interaction arises from the usual mech-
anism that the electrons in a triplet state on the same dimer avoid each other,
whereas electrons in a singlet state do not. Thus, the exchange energy is 2X =
U −V1. (This is precisely the energy difference between the 1B−

u and 3B+u states
on a dimer, as shown in Section 5.5.)

In terms of the atomic orbital parameters the remaining molecular orbital
parameters are

t̃vv = −t̃cc = t(1− δ)
2

,

εc = −εv = t(1 + δ) ≡ ∆,

Ũ =
U + V1

2
,

and
Ṽ� =

V2�−1 + 2V2� + V2�+1
4

,

where we adopt the notation that when the atomic orbital parameters and molec-
ular orbital parameters both use the same letter the molecular orbital parameters
are distinguished by tildes.
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The scalar product 〈R+ r
2 , R− r

2 |Hexciton|ΦMW〉 gives the following difference
equation for the exciton wavefunction, Φ(r,R),

− t̃

(
Φ
(
r − d,R+

d

2

)
+Φ

(
r + d,R − d

2

)
+Φ

(
r − d,R − d

2

)
+Φ

(
r + d,R+

d

2

))

+
(
2Xδr0δM − Ṽ (r)

)
Φ(r,R) =

(
E − Ũ − 2∆ +X

)
Φ(r,R).

(D.12)

δM = 1 for singlet excitons and δM = 0 for triplet excitons. δr0 = 1 when r = 0.
d is the contour length between repeat units (e.g. 2a for a dimerized chain, where
a is the lattice spacing), and

t̃ =
t(1− δ)

2
. (D.13)

To derive an effective-particle model we separate the centre-of-mass and rel-
ative coordinates. For periodic boundary conditions we assume that

ΦnK(r,R) =
1√
Nu

exp(iKR)ψn(r), (D.14)

where K is the centre-of-mass momentum: −π/d ≤ K ≤ π/d.
For open boundary conditions we assume that

Φnj(r,R) =
√

2
Nu + 1

sin(βjR)ψn(r), (D.15)

where βj is the centre-of-mass pseudo-momentum:

βj =
jπ

(Nu + 1)d
, (D.16)

and j = 1, 2, · · · , Nu.
Substituting eqn (D.14) into eqn (D.12), we obtain the following Schrödinger

difference equation for the relative wavefunction, ψn(r):

−2t̃ cos
(
Kd

2

)
(ψn(r + d) + ψn(r − d)) +

(
2Xδr0δM − Ṽ (r)

)
ψn(r)

=
(
E − Ũ − 2∆ +X

)
ψn(r). (D.17)

ψn(r) is the relative wavefunction for the electron-hole pair in the localized molec-
ular orbitals r/d molecular repeat units apart. A similar equation is obtained
using eqn (D.15) with K replaced by βj .

As r → ∞
Ṽ (r) → V (εeffr), (D.18)

where V (r) is the Ohno potential, defined in eqn (2.55) and εeff is the effective
dielectric constant arising from the polymer geometry. This scale factor arises
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because the electron-hole separation, or the relative coordinate, r, is measured as
a contour length along the polymer chain (so, r/d is the number of repeat units
between the electron and hole). However, the Coulomb interaction is determined
by the geometrical separation between the electron and hole. The scaling between
these length scales is determined by εeff. (e.g. in the trans-polyacetylene struc-
ture if the contour-distance between the electron and hole is r the geometrical
separation is r/

√
3 and thus, εeff = 1/

√
3.)

Equation (D.17) is solved in the following appendix in the effective-mass
limit.



APPENDIX E

HYDROGENIC SOLUTIONS OF THE EFFECTIVE-PARTICLE
EXCITON MODELS

In this appendix we examine the properties of the effective-particle exciton mod-
els derived in Appendix D and described in Chapter 6 in the continuum or
effective-mass limit.

E.1 The weak-coupling limit

In making the connection to the continuum limit it is convenient to set t̃ =
�
2/2Md2, so 2t̃ = �

2/2µd2, where the reduced mass, µ =M/2, and M is the ef-
fective mass. d is the contour length between repeat units (e.g. 2a for a dimerized
chain).

Then, scaling lengths by the effective Bohr radius,

a0(K) =
4πε0εεeff�

2 cos(Kd/2)
µe2

(E.1)

and the energy by the effective Rydberg,

EI(K) =
µe4

2�2 cos(Kd/2)(4πε0εεeff)2
, (E.2)

eqn (D.17) becomes,

− 1
a′2 (ψn(r′ + a′) + ψn(r′ − a′))− 2ψn(r′)

a′(1 + r′2)1/2
= (E′

n − Ũ ′ − 2∆′)ψn(r′),

(E.3)

where r′ = r/a0(K), a′ = d/a0(K), E′
n = En/EI(K), Ũ ′ = Ũ/EI(K), and

∆′ = ∆/EI(K). We have used the Ohno function (eqn (2.55)) for the Coulomb
interaction, which remains finite as r′ → 0, and we set X = 0, as we are uninter-
ested in the details of the exchange interaction. ε is the actual dielectric function,
while εeff is the effective dielectric constant arising from the polymer geometry,
as explained in Appendix D.

In the continuum limit (a′(K) → 0) eqn (E.3) is identical to the effective
one-dimensional equation for the radial part of the three-dimensional hydrogen
atom wavefunction, u(r) = rφ(r), for the case of zero angular momentum, where
φ(r) is the radial wavefunction (see Cohen-Tannoudji et al. (1977, p. 792)). This
equation was studied in detail by Loudon (1959). It is useful to treat the even
and odd parity solutions separately.
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Fig. E.1. The dispersion curves of the four lowest bound states (solid and dashed) for
a regularized Coulomb potential with a′(K = 0) = 1. Even (odd n) parity states
(solid curves) and odd (even n) parity states (dashed curves). The particle-hole
continuum is bounded by the dotted curves. The energies are in units of EI .

E.1.1 Odd parity, even n solutions
The odd parity states have the same boundary conditions as u(r), namely u(0) =
0 and u(r → ∞) → 0. They are formed by matching u(r) with −u(−r) at the
origin. Thus, for even n the binding energies are

En(K) =
EI(K)
(n/2)2

(E.4)

and the corresponding wavefunctions are

ψn(r,K) = (Nr/a′(K)) exp (−2r/na′(K))Ln/2 (4r/na′(K)) , (E.5)

where Lm is the mth order Laguerre polynomial and N is a normalization con-
stant.

Notice that as a result of theK dependency of EI(K) the binding energies for
a given n are larger for the higher centre-of-mass momentum states. Similarly,
the characteristic length, a0(K), decreases for higher momentum states, resulting
in a smaller particle-hole separation.

The particle-hole continuum is trivially found by setting Ṽ (r = 0) in eqn
(D.17). The onset of the particle-hole continuum is at Ũ +2∆−2EI(K)/a′(K)2,
so the exciton energies relative to the ground state are

Eexn (K) = Ũ + 2∆− 2EI(K)
a′(K)2

− En(K). (E.6)
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As K → 0 we find,

Eexn (K) = E0 − EI(K = 0)
(n/2)2

(
1 +

K2d2

8

)
+

�
2K2

2(2M)
, (E.7)

where E0 = Ũ + 2∆− 2EI(K = 0)/a′(K = 0)2, and the last term is the kinetic
energy of the effective particle of mass 2M .

The average particle-hole separation, r0, may be found from the expectation
value of r,

r0 = 2〈r〉n = 3(n/2)2a0(K), (E.8)

which increases rapidly with the principal quantum number, n, but decreases for
higher momentum states of the same n.

E.1.2 Even parity, odd n solutions

The even parity wavefunctions do not satisfy the same boundary conditions as
hydrogen atom wavefunction, u(r), at r = 0, so there are no semianalytical
results for these states. However, it can be shown that the lowest even parity
state is strongly bound, with a binding energy scaling as 2/a′(K), while the
energies of the remaining even parity states are bounded by a higher and lower
odd parity state.

E.1.3 Numerical results

For arbitrary a′(K) it is necessary to solve eqn (E.3) numerically. Figure E.1
shows the dispersion of the four lowest bound states and the particle-hole con-
tinuum for the value a′(K = 0) = 1. Figure E.2 shows the binding energy of the
four lowest states at K = 0 as a function of a′. As a′ decreases the binding ener-
gies approach the Rydberg series, except for the energy of the first even parity
state (n = 1), which diverges. We see that the n = 1 bound state is split-off from
the remaining states, whose energies are scaled by the Rydberg energy.

Typical values for conjugated polymers, with t = 2.5 eV, are (i) δ = 0.1 gives
EI = 3.90 eV, and a′ = 1.31; (ii) δ = 0.2 gives EI = 4.40 eV and a′ = 1.48. The
resulting binding energies from Fig. E.1 agree very well with those of Fig. 5.1(a).

The results discussed here apply to an infinite, periodic chain. Identical results
are obtained for infinite, linear chains, except that the centre-of-mass momentum,
K, is replaced by the pseudo-momentum βj = jπ/(Nu + 1)d. Replacing K by
βj , eqn (E.7) indicates that the exciton energies scale as (j/Nu)2 in the large Nu

limit.

E.2 The strong-coupling limit

The analysis for this limit is very similar to that of the weak-coupling limit,
except that now the hardcore repulsion imposes the boundary condition that
ψ(0) = 0 on all the solutions. Thus, degenerate pairs of even and odd solutions are
found by matching ψ(r) with ±ψ(−r) as r → 0. So, setting the molecular-orbital
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Fig. E.2. The zero-momentum exciton binding energies in units of EI in the
weak-coupling limit for a regularized Coulomb potential versus a/aI . Even par-
ity (odd n) states (solid curves) and odd (even n) parity states (dashed curves).
The energies of the odd parity solutions approach the Rydberg series as a/aI → 0,
while the energy of the n = 1 solution diverges.

parameters, denoted by the tilde, to the atomic-orbital parameters, ∆ = 0, the
repeat distance, d, to a, and replacing n/2 by n on the right-hand sides of eqns
(E.4) - (E.8) the strong-coupling results trivially follow:

a0(K) =
�
2 cos(Ka/2)εeff

µe2
, (E.9)

EI(K) =
µe4

2�2 cos(Ka/2)ε2eff
, (E.10)

En(K) =
EI(K)
n2

, (E.11)

and

Eexn (K) = U − 2EI(K)
a′(K)2

− En(K), (E.12)

where a′(K) = a/a0(K).



APPENDIX F

EVALUATION OF THE ELECTRONIC TRANSITION DIPOLE
MOMENTS

In this appendix we use the effective-particle exciton models introduced in Chap-
ter 6 to calculate transition dipole moments. These results are summarized in
Chapter 8.

F.1 The weak-coupling limit

In the weak-coupling limit a general excited state is of the form,

|p〉 =
∑
nj

αp
nj |ΦMWnj 〉, (F.1)

where
|ΦMWnj 〉 =

∑
r,R

ψn(r)Ψj(R)|R+ 2/2, R − r/2〉 (F.2)

and

|R+ r/2, R − r/2〉 = 1√
2

(
cc†R+r/2,↑c

v
R−r/2,↑ ± cc†R+r/2,↓c

v
R−r/2,↓

)
|GS〉. (F.3)

|GS〉 is the ground state, defined by eqn (6.9). ψn(r) is the dimensionless ‘hydro-
genic’ wavefunction for the particle-hole pair, where r is the relative coordinate.

Ψj(R) =

√
2

N + 1
sin(βjR) (F.4)

is the centre-of-mass envelope wavefunction, where R is the centre-of-mass coor-
dinate. βj = πj/(Nu + 1), where Nu is the number of unit cells. For simplicity,
we now consider ‘pure states’, that is states with just one component of |ΦMWnj 〉
in |p〉.

The electronic dipole operator in one-dimension is

µ̂e = ex̂ = e
∑

unit cells, �

(
x�1(N̂�1 − 1) + x�2(N̂�2 − 1)

)
, (F.5)

where the subscripts 1 and 2 refer to the left and right sites of the unit cell,
respectively, as shown in Fig. 3.3.
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Using the relations eqn (3.26) the density operators become

N̂�1 =
1
2

(
N̂v

� + N̂ c
� +

∑
σ

(cv†
�σc

c
�σ + cc†�σc

v
�σ)

)
(F.6)

and

N̂�2 =
1
2

(
N̂v

� + N̂ c
� −

∑
σ

(cv†
�σc

c
�σ + cc†�σc

v
�σ)

)
. (F.7)

We now use these equations to calculate the matrix elements for the transitions.

F.1.1 Transitions between the ground state and an excited state
The only term in the dipole operator that connects the ground state to excited
states is cv†

�σc
c
�σ. So,

x̂ =
1
2

∑
�σ

(
x�1c

v†
�σc

c
�σ − x�2c

v†
�σc

c
�σ

)
,

= −a

2

∑
�σ

cv†
�σc

c
�σ, (F.8)

where a is the lattice parameter. The dipole operator can only connect a basis
state |R+ r/2, R − r/2〉 to |GS〉 if r = 0.

Thus,

〈GS|x̂|p〉 = − a√
Nu + 1

∑
R

sin(βjR)ψn(0). (F.9)

Summing over R we have,

〈GS|x̂|p〉 = 0 (F.10)

for even j and

〈GS|x̂|p〉 = 2
√
Nuaψn(0)
jπ

(F.11)

for odd j. ψn(0) is the particle-hole wavefunction at r = 0. This is only non-zero
for exited states that have even particle-hole parity (or are odd under a particle-
hole transformation). This implies odd n, as for these states ψn(r) is an even
function of r. Furthermore, since ψn is normalized, dimensional arguments imply
that ψn(0) ∼ √

a/〈r〉, where 〈r〉 is the root-mean-square particle-hole separation
(or the spread of the wavefunction).

Thus,

〈GS|x̂|p〉 ∼ a
√
L/〈r〉, (F.12)

for odd n and odd j, and

〈GS|x̂|p〉 = 0, (F.13)

otherwise. L is the length of the polymer.
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Fig. F.1. The DMRG calculated transition dipole moment squared (in arbitrary units)
versus the number of unit cells for the Pariser-Parr-Pople model. U = 10 eV, t = 2.5
eV and δ = 0.2. 〈11B−

u |x̂|11A+
g 〉 (bold curve) and 〈21A+

g |x̂|11B−
u 〉 (dashed curve).

For long chains this result agrees with the weak-coupling theory. However, for chain
lengths shorter than the particle-hole separations of the |11B−

u 〉 and |21A+
g 〉 states

the matrix element 〈21A+
g |x̂|11B−

u 〉 shows a chain length dependence.

The square of the transition dipole moment is plotted in Fig. F.1 for an exact
calculation of the Pariser-Parr-Pople model. Equation (F.13) and Fig. F.1 both
show that the square of the transition dipole moment scales as L, as it must
do for the oscillator strength (defined in eqn (8.6)) to satisfy the sum rule, eqn
(8.7).

F.1.2 Transitions between excited states

The terms in the dipole operator that connect excited states are now N̂v
� and

N̂ c
� . So,

x̂ =
∑
�

x� ((Nv
� − 2) +N c

� ) . (F.14)

Now since,
x̂|R+ r/2, R − r/2〉 = r|R+ r/2, R − r/2〉, (F.15)

we have that,

〈p′
n′j′ |x̂|pnj〉 = 1

2a

∫
drψn(r)rψn′(r). (F.16)
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This is independent of chain length, as shown in Fig. F.1 for large chains. Notice
that this matrix element connects states with the same value of j and opposite
particle-hole parity. Thus, these transition dipole moments are only nonzero when
j = j′ and |n− n′| = odd.

F.2 The strong-coupling limit

In the strong-coupling limit a general excited state is described by eqn (6.30) or
eqn (6.31). However, now the basis state |R + r/2, R − r/2〉 corresponds to an
empty site at R − r/2 and a doubly occupied site at R + r/2 in a sea of singly
occupied sites, as described in Section 6.3.

F.2.1 Transitions between the ground state and an excited state

From its definition (e.g. eqn (8.33)) it is evident that the dipole operator does
not connect the ground state to any excited state, and thus to zeroth order in
t/U the transition dipole moments to the ground state are zero in this limit.
However, we know from the sum rule, eqn (8.7), that this result cannot be true
to all orders of t/U . In fact, assuming that the lowest exciton state, |p〉, carries
all the oscillator strength, we have,

〈GS|x̂|p〉2 = Ne�
2

2mEf
, (F.17)

where Ef ∼ U is the transition energy. Thus,58

〈GS|x̂|p〉2 = aL
t

U
. (F.18)

F.2.2 Transitions between excited states

The transition dipole moments between excited states are given by,

〈p′
n′j′ |x̂|pnj〉 = 1

a

∫
drψn(r)rψn′(r), (F.19)

where now ψn are the particle-hole wavefunctions for the Mott-Hubbard excitons.
The same selection rules apply as in the weak-coupling limit.

58This result can also be derived by noting that Mott-Hubbard excitons include some ground
state (or covalent) character, with amplitudes O(

√
t/U).



APPENDIX G

VALENCE-BOND DESCRIPTION OF BENZENE

In Section 11.2.1 the electronic spectrum of benzene was discussed from the
molecular orbital (or noninteracting) limit. However, as experiments and the
exact solution of the Pariser-Parr-Pole model indicate, the molecular orbital ap-
proach fails to qualitatively predict the low-lying singlet spectrum. The covalent
j = 3 transition, namely the 11B+2u state, lies energetically well below the ionic
j = 3 and j = 1 transitions, namely the 11B−

1u and 1
1E−

1u states, respectively. In
contrast, the molecular orbital solution predicts that these states are degenerate.

The molecular orbital approach is valid in the weak-coupling limit. In the
other limit of strong-coupling the valence bond method is a more suitable ap-
proach. The basis states employed by the valence bond method are real-space
states. As described in Section 5.5, at half-filling the basis states can be charac-
terized by the number of doubly occupied sites (with the same number of empty
sites). Basis states with no doubly occupied sites are classed as ‘covalent’, whereas
basis states with one or more doubly occupied site are classed as ‘ionic’. In the
limit of strong electronic interactions the ionic basis states are much higher in
energy than the covalent states. Thus in the strong-coupling limit we need only
consider the covalent states.

The effective low-energy Hamiltonian for the purely covalent basis is the
Heisenberg antiferromagnet,

H = J
∑
i

Si · Si+1, (G.1)

where

J =
4t2

U − V1
. (G.2)

For the benzene molecule with six π-orbitals the S = 0 subspace is spanned
by five basis states. A particular nonorthogonal representation of these basis
states is illustrated in Fig. G.1. There are two equivalent Kekulé structures and
three equivalent Dewar structures (Coulson 1961).

Solving eqn (G.1) within this subspace we obtain the singlet spectrum listed
in Table G.1. Notice that the j = ±1 (or k = ±π/3a) excitation (corresponding
to E1u symmetry) is absent. The j = 3 (or k = π/a) state is the lowest-lying
singlet excitation. Since this has same symmetry as the 11B+2u state we see that
the valence bond method qualitatively predicts the lowest lying singlet excitation
of benzene. This state is represented in Fig. G.1(b). Its excitation energy relative
to the ground state is

242
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Fig. G.1. The singlet eigenstates of benzene within the valence bond covalent sub-
space. Ignoring the lines representing the benzene skeleton, a line between two
vertices indicates a singlet bond. The left-hand diagram in (a) shows the two equiv-
alent Kekulé structures, while the right-hand diagram shows the three equivalent
Dewar structures. (a) The j = 0 (k = 0) states with energies (∓√

13/2 − 1)J and
coefficients C2/C1 = (1 ∓ √

13)/6. (b) The j = 3 (k = π/a) state with an energy
−3J/2. (c) The doubly degenerate j = ±2 (k = ±2π/3a) states with an energy
−J/2.

√
13− 1
2

J. (G.3)

We emphasize that although retaining just the covalent diagrams of the va-
lence bond method provides useful insight into the lowest-lying singlet excitation
of benzene, this approach widely overestimates the excitation energies. For ex-
ample, using eqns (G.2) and (G.3) with the Pariser-Parr-Pople parameters of
U = 10.06 eV, V1 = 7.19 eV, and t = 2.539 eV, implies that J = 8.98 eV and
thus the excitation energy of the 11B+2u state is 11.7 eV. Since this prediction is
much higher than the experimental value it indicates that the 11B+2u state must
also contains some ionic character. (See Bondeson and Soos (1979) for the full
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Table G.1 The singlet spectrum of benzene using the covalent diagrams of the valence
bond method

j k Energy Diagram from Fig. G.1
0 0 −(1 +

√
13/2)J (a) with C2/C1 = (

√
13 − 1)/6

3 π/a −3J/2 (b)
±2 ±2π/3a −J/2 (c)
0 0 (

√
13/2 − 1)J (a) with C2/C1 = (

√
13 + 1)/6

Table G.2 The triplet spectrum of benzene using the covalent diagrams of the valence
bond method

j k Energy
0 0 −2.118J

±2 ±2π/3a −1.281J
3 π/a −J
0 0 0.118J

±2 ±2π/3a 0.781J
±1 ±π/3a J

valence bond analysis of the singlet spectrum.)
The covalent valence bond method also fails to qualitatively predict the triplet

spectrum, as it predicts the lowest-lying triplet to be at k = 0, whereas both
experiment and the exact solution of the Pariser-Parr-Pople model place it at
k = π/a. The covalent valence bond predictions are listed in Table G.2.



APPENDIX H

DENSITY MATRIX RENORMALIZATION GROUP METHOD

The density matrix renormalization group (DMRG) method is an efficient and
accurate Hilbert space truncation procedure (White 1992; 1993) that can be
used to solve quantum mechanical models on very large systems. It is particularly
suited for one-dimensional quantum lattice models, such as the π-electron models
discussed in this book. This appendix contains a brief review of the DMRG
method relevant for these models. A full discussion of the method and its various
applications may be found in (Peschel et al. 1999), (Dukelsky and Pittel 2004),
or (Schollwöck 2005).

H.1 Introduction to the real-space method

H.1.1 Infinite algorithm method

Consider a linear chain of N sites composed of four blocks, labelled i = 1, . . . , 4.
At present we consider symmetric systems with open boundary conditions so
that blocks 1 and 4, and blocks 2 and 3 are equivalent. This is illustrated in Fig.
H.1. A general state of the block i is denoted by |mi〉(i), where mi is a short-
hand label for the quantum numbers of the block (e.g. the conserved quantum
numbers, spin and charge, and any other state index). Block i has Ni sites and
its Hilbert space is spanned by Mi states.

Block 1 is augmented by block 2 to form the system block with Ns = N1+N2
sites and a Hilbert space of Ms =M1M2 states. Similarly, block 4 is augmented
by block 3 to form the environment block with Ne = N3+N4 sites and a Hilbert
space of Me =M3M4 states.

1 4

2 3

System block Environment block

Superblock

Fig. H.1. The component blocks for the infinite algorithm method of the DMRG
technique for open boundary conditions.
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If this procedure is repeated so that the left- and right- hand blocks are grown
by sequentially augmenting them with the middle blocks, the Hilbert space size
of these blocks would grow exponentially in size as a function of their physical
size. The goal is therefore to truncate the system block Hilbert space so that
Ms → M̃s ≈ M1 at each iteration. This goal is achieved by the DMRG method.

A general system block state, |ms〉(s), is a direct product of states of blocks
1 and 2,

|ms〉(s) = |m1〉(1)|m2〉(2). (H.1)

Similarly, a general environment block state, |me〉(e), is a direct product of states
of blocks 3 and 4,

|me〉(e) = |m3〉(3)|m4〉(4). (H.2)

Together, the system and environment blocks constitute the superblock . The
total Hamiltonian is applied to the superblock. Thus, unlike the constituent
blocks, the superblock is specified by conserved quantum numbers (e.g. spin and
charge), and consequently a subbasis of the entire Hilbert space is constructed
from a subbasis of the direct product of the system and environment blocks.
Denoting a subbasis of the superblock as {|m〉} we have

{|m〉} = {|ms〉(s)|me〉(e)}. (H.3)

We may thus express a superblock eigenstate as,

|Ψ〉 =
∑
m

Ψ(m)|m〉

=
Ms∑
ms

Me∑
me

Ψ(ms,me)|ms〉(s)|me〉(e), (H.4)

where Ψ(m) is determined by diagonalizing the superblock Hamiltonian.
We wish to truncate and rotate the Hilbert space of the system block subject

to retaining an optimal representation of |Ψ〉. Denoting the size of the truncated
superblock Hilbert space as M̃s and the approximate, optimal superblock state
as |Ψ̃〉 we have,

|Ψ̃〉 =
M̃s∑
ms

Me∑
me

Ψ̃(ms,me)|ms〉〉(s)|me〉(e), (H.5)

where {|ms〉〉(s)} is the rotated optimal basis of the system block. By optimal
we mean that 〈Ψ|Ψ̃〉 is maximized.

It can be shown that |Ψ̃〉 is optimized if the rotated and truncated basis of the
system block are the M̃s eigenstates with the highest eigenvalues of the system
block reduced density matrix. These states are the most ‘probable’ for describing
the approximate state, |Ψ̃〉, in the truncated basis.
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The system block reduced density matrix is,

ρmsm′
s
=
∑
me

Ψ(ms,me)Ψ(m′
s,me), (H.6)

where the sum is over the environment block states.
In the next DMRG iteration the new block 1 is the old system block (and

the new block 4 is its spatial reflection). Thus, the overall chain has grown by
N2 + N3 sites. Furthermore, since the Hilbert space of the new blocks 1 and
4 are essentially the same as the old blocks, although their physical size has
increased, the Hilbert space of the superblock remains essentially constant as it
grows. Thus, it is possible to perform highly accurate calculations on chains much
longer than is possible by conventional exact diagonalization techniques. Since
the DMRG method is a variational technique, more accurate approximations can
be obtained by increasing the number of states retained in any block.

In the following sections we briefly describe a few technical details, the finite
lattice algorithm for improving the DMRG accuracy for a particular system size,
and extensions of the DMRG method.

H.1.2 Rotation and truncation of the basis

We require the matrix elements of the Hamiltonian and other operators pertain-
ing to the system block in the new, truncated basis. These matrix elements are
denoted as

Õ(m′
s,ms) = (s)〈〈m′

s|Ô|ms〉〉(s). (H.7)

By a similarity transformation,

Õ = SOS†, (H.8)

where S† is the Ms × M̃s rectangular matrix whose M̃s columns are the density
matrix eigenstates expressed in the old basis, and

O(m′
s,ms) = (s)〈m′

s|Ô|ms〉(s). (H.9)

H.1.3 Symmetries and excited states

Eigenstates of the superblock Hamiltonian are conveniently calculated using a
sparse matrix diagonalization routine, such as the conjugate gradient method.
Excited states specified by certain conserved quantum numbers within a par-
ticular symmetry sector may be found by a Gram-Schmidt orthogonalization
procedure. Relevant symmetries for conjugated polymers are spatial inversion,
particle-hole symmetry and spin-flip symmetry (which distinguishes between sin-
glet and triplet states). The construction of symmetry adapted trial states in the
conjugate gradient routine is greatly facilitated by using sparse block-symmetry
operators. Their construction is discussed in the next section.
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H.1.3.1 Sparsity of the block-symmetry operators Suppose that Ô(s) is a sym-
metry operator of the system block (for example, particle-hole or spin-flip sym-
metry). Then it can be shown that

Ô(s)ρ̂QO
(s)† = ρ̂Q̄, (H.10)

where ρ̂Q is the system block reduced density operator for a particular conserved
quantum number, Q, (e.g. spin and/or charge) and Q̄ is the complementary
quantum number obtained via the action of the symmetry operator, Ô(s).

Equation (H.10) has two significant consequences. To explain these, we mod-
ify the notation for the system blocks states from |ns〉〉(s) to |Q,ns〉〉(s), where
Q denotes the conserved quantum numbers of the block and ns is now a supple-
mentary index. Then

1. If Q = Q̄ then Ô(s) commutes with ρ̂Q and the eigenstates of ρ̂Q are
simultaneously eigenstates of Ô(s). Thus,

Ô(s)|Q,ns〉〉(s) = ±|Q,ns〉〉(s). (H.11)

2. If Q �= Q̄ then all the states with complementary quantum numbers may
be defined as

|Q̄, ns〉〉(s) = Ô(s)|Q,ns〉〉(s). (H.12)

Equations (H.11) and (H.12) imply that the rotated block symmetry operator is
sparse.

H.1.4 Finite algorithm method

Accuracy of the wavefunction and energy at a particular superblock size can
be improved by performing finite lattice sweeps. That is, DMRG calculations
are performed with blocks 1 and 4 of different sizes. A sweep from left to right
starts with block 1 containing N2 sites (that is, it is a copy of block 2), and
block 4 containing N − 3N2 sites. Block 1 is continually augmented until it has
N − 3N2 sites. This procedure shuffles the Hilbert spaces of the blocks, resulting
in improved accuracy.

H.1.5 Application to linear polyenes

The application of the DMRG technique to solving the Pariser-Parr-Pople or
Pariser-Parr-Pople-Peierls model for linear polyenes is relatively standard. In this
case blocks 2 and 3 are single sites representing a single π-orbital. Each orbital
has four allowed spin states, so the Hilbert space of the (augmented) system block
is 4×M1. Using the infinite lattice method means that the chains are symmetric,
so inversion symmetry, as well as particle-hole and spin-flip symmetries may be
imposed to target 1B−

u ,
3B+u ,

1A+g states, etc. More challenging applications of
the DMRG method arise when studying electron-phonon problems and phenyl-
based light emitting polymers. In these cases it is necessary to perform a local
Hilbert space truncation, as described in the next section.
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H.2 Local Hilbert space truncation

The DMRG method outlined above is a procedure to calculate the low-lying
eigenstates of large systems. However, the concept of constructing an optimal
basis for a block (previously, the combined blocks 1 and 2) has wider generality
(Zhang et al. 1998), particularly if the block is a natural repeat unit or moiety
of a molecular chain. Often the full Hilbert space of block 2 will be too large
to augment with block 1, and so an optimal truncation of that block is needed.
Examples of these kinds of problems include:

1. Electron-phonon problems - discussed in Chapter 10 (Barford et al. 2002a),
where the Hilbert space size of a single site is 4×(number of site-phonons+1).

2. Light emitting polymers - discussed in Chapter 11 (Bursill and Barford
2002, 2005), where the Hilbert space size of the phenyl rings in π-electron
models is 212.

3. Larger basis semiemprical quantum chemistry models, such as INDO, where
the Hilbert space size of the atoms or moieties is very large.

The procedure for constructing an optimally truncated Hilbert space of a
single block (usually block 1 or 2) is a straightforward generalization of the
DMRG method. Suppose that the Hilbert space of block j is to be truncated.
Then we construct an environment block state from the remaining block states,

|me〉(e) =
∏
i �=j

|mi〉(i), (H.13)

and the direct product space of the superblock is then

{|m〉} = {|mj〉(j)|me〉(e)}. (H.14)

The superblock eigenstate is

|Ψ〉 =
Mj∑
mj

Me∑
me

Ψ(mj ,me)|mj〉(j)|me〉(e). (H.15)

Again the optimal basis for the single block j are the eigenstates with the highest
eigenvalues of its reduced density matrix, defined by,

ρmjm′
j
=
∑
me

Ψ(mj ,me)Ψ(m′
j ,me). (H.16)
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Friend, R. H. (2001) Nature 413, 828.
Wohlgenannt, M., and Vardeny, Z. V. (2003) J. Phys.: Condens. Matter 15,
R83.
Wohlgenannt, M., Jiang, X. M., Vardeny, Z. V., and Janssen, R. A. J. (2002)
Phys. Rev. B 88, 197401.
Wohlgenannt, M., Jiang, X. M., and Vardeny, Z. V. (2004) Phys. Rev. B 69,
241204.
Xu, S., Klimov, V. I., Kraabel, B., Wang, H., and McBranch, D. W. (2001)
Phys. Rev. B 64, 193201.
Ye, A., Shuai, Z., and Brédas, J. L. (2002) Phys. Rev. B 65, 045208.
Zhang, C., Jeckelmann, E., and White, S. R. (1998) Phys. Rev. Lett. 80, 2661.
Zheng, W., Hamer, C. J., Singh, R. R. P., Trebst, S., and Monien, H. (2001)
Phys. Rev. B 63, 144411.
Ziman, J. M. (1972) Principles of the Theory of Solids, Cambridge University
Press, Cambridge.
Zojer, E., Cornil, J., Leising, G. Fink, J., and Brédas, J. L., (1999) Phys. Rev.
B 59, 7957.



258 REFERENCES

Zojer, E., Koch, N., Puschnig, P., Meghdadi, F., Niko, A., Resel, R., Ambrosch-
Draxl, C., Knupfer, M., Fink, J., Brédas, J. L., and Leising, G. (2000) Phys.
Rev. B 61, 16538.



INDEX

absorption coefficient, 114
adiabatic potential energy surface, 9, 116
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transition energies, 195
valence bonds, 242

Bethe-Salpeter equation, 79, 86
biphenyl, 196
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Bloch
function, 28
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state, 27
transform, 26, 227
wavevector, 27, 228

Bohr radius, 234
bond

‘double’, 13
‘single’, 14
‘triple’, 12

bond order
operator, 40
wave, 45, 60

bond-defects, 45
Born-Oppenheimer

approximation, 8
Hamiltonian, 9
states, 10

bra state, 223
breathers, 57
broken symmetries, 59

centre-of-mass
coordinate, 76
momentum, 74
wavefunction, 76

charge-density wave, 60
coherence length, 43
Complete Neglect of Differential Overlap

(CNDO), 16
confinement parameter, 54

conjugate, 1, 14
conjugated polymer, 1

Davydov splitting, 136
density matrix, 140
Density Matrix Renormalization Group

(DMRG) method, 245
Dexter

rate, 139
transfer, 139

dielectric function, 114
dimerization

extrinsic, 52, 108
intrinsic, 53

dimers, 135
collinear, 135
parallel, 135

dipole approximation, 133
dipole operator, 117

electronic, 118, 238
Dirac notation, 10, 223
DMRG method, 245

block symmetry operators, 248
environment block, 245
finite algorithm, 248
infinite algorithm, 245
local Hilbert space truncation, 249
real-space, 245
reduced density matrix, 247
rotation and truncation, 247
superblock, 246
superblock state, 246
system block, 245

doublon, 89

electrical susceptibility, 113
first order, 114
third order, 124

electroabsorption, 126
electroluminescence quantum efficiency,
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electron transfer, 148

activation energy, 150
activationless limit, 150
bimolecular, 151
driving energy, 150
inverted limit, 150
Markus expression, 150
normal limit, 150
reorganization energy, 150
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electron-electron interactions, 59
electron-phonon coupling, 17, 39

parameter, 40
essential states, 84, 124
exchange interaction, 16, 78, 231
excimers, 141
exciplex, 142
excitation

covalent, 62
ionic, 62

exciton-polaron, 102
excitons, 73

charge-transfer, 73
dissociation, 127
Frenkel, 73
Mott-Hubbard, 73, 87

effective-particle model, 87
particle-hole correlation function, 88
particle-hole separation, 88
Schrödinger equation, 88
transition dipole moments, 241

Mott-Wannier, 62, 73
effective-particle model, 74, 121, 232,

234
Hamiltonian, 230
particle-hole separation, 83
particle-hole correlation function, 82
Schrödinger equation, 79, 232
transition dipole moments, 238

transfer, 131
coherent, 134
Dexter, 139
Förster, 138
Förster radius, 139
Förster rate, 139
incoherent, 138
model, 134, 224
resonant, 131

Förster
radius, 139
transfer, 138
transfer rate, 139

Fermi Golden Rule, 138
Fermi liquid, 60
fermion

annihilation operator, 10
creation operator, 10

Franck-Condon
factors, 119
principle, 115

Franz-Keldysh effects, 129

gap
band, 34

charge, 34
spin, 34

Hückel ‘4n+ 2’ rule, 28, 43
Hückel model, 19, 26, 223, 227
Heisenberg antiferromagnet, 65, 242
Heisenberg-Peierls model, 99
Hellmann-Feynman theorem, 43
highest occupied molecular orbital, 37
holon, 89
HOMO, 37
Huang-Rhys parameter, 119
Hubbard model, 20, 61
hybridization
sp, 12
sp2, 12
sp3, 14
spn, 11

insulator
band, 64
Mott-Hubbard, 65

integral
hybridization, 16
transfer, 16

Intermediate Neglect of Differential
Overlap (INDO), 16

inversion
operator, 22, 37
symmetry, 22, 37

Kasha’s rule, 115
ket state, 223

Laguerre polynomials, 235
associated, 119

light emitting polymers, 187
electroabsorption, 190
electron lattice coupling

soliton structures, 220
electron-lattice coupling

interacting limit, 218
noninteracting limit, 214

excited states, 212
linear absorption, 188
Mott-Wannier excitons, 212
photoconduction, 190
photoinduced absorption, 190
poly(para-phenylene vinylene), 207
poly(para-phenylene), 192
singlet exciton yield, 154
solitons, 216
third harmonic generation, 190
two-photon absorption, 190

lowest unoccupied molecular orbital, 37
LUMO, 37
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Mataga-Nishimoto potential, 21
mid-gap states, 46
molecular polarizability, 129
molecular-orbital functions, 29
Mott-Hubbard
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insulators, 61

multiphonon emission, 166

nonadiabatic operator, 10
nuclear-nuclear potential, 18
number operator, 10, 226

Ohno potential, 21
one-electron integral, 11
operator

fermion annihilation, 10
fermion creation, 10
inversion, 22, 37
number, 10, 226
particle-hole, 22, 35, 226
phonon annihilation, 181
phonon creation, 181

optical processes
linear, 114
nonlinear, 123

orbital, 10
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oscillator strength, 114
sum rule, 114

Pariser-Parr-Pople model, 20
phase diagram, 69

Pariser-Parr-Pople-Peierls model, 96
particle-hole

eigenvalue, 226
excitations, 32
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parity, 35
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transformation, 22, 35, 226

Pauli principle, 11
Pauli spin matrices, 231
Peierls

mechanism, 41
model, 39
theorem, 39

phonons, 180
annihilation operator, 181
creation operator, 181
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band structure, 207
chemical structure, 3

transition energies, 207, 210
poly(para-phenylene), 192, 200

band structure, 200
chemical structure, 3
Frenkel exciton, 206
Mott-Wannier excitons, 203
transition energies, 201, 204

polyacetylene
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chemical structure, 1
trans

adiabatic potential energy curves,
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chemical structure, 1
electroabsorption, 172
linear absorption, 171
photo-induced absorption, 173
soliton structures, 176
third harmonic generation, 171
transition energies, 174
two-photon generation, 171

polydiacetylene
chemical structure, 1

quantum mechanical dynamics, 137
quantum numbers, 21, 24

momentum, 78
principle, 78

quantum phonons, 180

relative
coordinate, 76
momentum, 75
wavefunction, 77

relative permittivity, 114
relaxation energy, 120
reorganization energy, 120
Rydberg, 234

saturated, 14
screening, 143
second quantization, 10
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self-trapping, 57, 110

exciton-polaron, 111
polaron, 111

semiconductor, 33
single-particle

electronic state, 10
spectral weight, 61
wavefunction, 10

singlet state, 24
solitons, 45
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four-soliton function, 106
neutral, 47
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spin-density wave, 59
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spin-Peierls model, 99
spin-spin correlation function, 176
spinless fermion model, 66
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spontaneous emission rate, 115
staggered normalized bond dimerization,

46
Stark effect, 127
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structure factor, 59
Su-Schrieffer-Heeger model, 20

continuum limit, 55
dynamics, 57

superluminescence, 137
symmetry, 21
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D2h, 22

time reversal, 27
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TML model, 55
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transfer

energy, 131
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Wannier
operator, 31
state, 31
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