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For Dad,
Who set me on this path.




Preface

This book draws from three areas of computing: image processing, computer
vision, and computer graphics. Image processing and computer vision in particular
have long been separate fields with overlapping interests. This is partly a sociolog-
ical phenomenon—image processing comes from electrical engineering, while
computer vision comes from computer science. These two fields blend smoothly
in digital camera design. The modern imaging chain starts at traditional filtering and
ends with feature analysis.

Parts of this book draw upon my research work with my students at Princeton
and Georgia Tech. Cheng-Yao Chen, Santanu Dutta, Jason Fritts, Se Hun Kim,
Changhong Lin, Chung-Ching Lin, Tiehan Lv, Jason Schlessman, Senem
Velipasalar, Jiang Xu, Heather Yu, and Shengqi Yang have all worked on aspects
of multimedia computing and embedded computer vision. I am grateful to them for
the opportunity to work with them and learn from them. Burak Ozer was not my
official student, but he has been my friend and collaborator on smart cameras for the
past 15 years.

The inspiration for this book comes from my father, an inventor who created two
different panoramic cameras. The camera on the dedication page, which was known
commercially as the CycloPan 360, uses a cylindrical mapping. Here is another
picture of Dad with his donut camera.

vii



viii Preface

He also created a motion picture version of this camera for use in a flight
simulator. That camera used 5" aerial film. The projector used the same optical
path as the camera but rotated continuously to sweep the image; it was an imposing
machine. I ran Dad’s color darkroom during those years—I worked cheap.

Dad, this book is entirely your fault. I have spent night after night typing away
because you taught me how to think. This book is my tribute to you.

Atlanta, GA, USA Marilyn Wolf
August 2016
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Chapter 1
Digital Photography

1.1 Introduction

Photography has evolved considerably in the two centuries since its invention.
Advances have allowed us to take more sophisticated, accurate photos with less
technical knowledge. The introduction of semiconductor image sensors and embed-
ded processors has formed the foundation for the latest set of advances. This book
studies the range of technologies that have enabled us to build smart cameras. The
move to smart cameras enables three trends, each of which we will analyze through
the book and introduce in this chapter: previsualization and autoprevisualization,
automated enhancement of photographs, and cameras that produce analytical
summaries rather than photographs.

1.2 Previsualization and Autoprevisualization

Digital cameras have changed the face of photography. Both casual and profes-
sional photographers can now take better pictures with less effort than ever before.
The goal of this book is to outline the technologies that make this possible.

Better pictures require good algorithms. But those algorithms ultimately must
make decisions about how to process the picture to get the “best” result. And “best”
is clearly a subjective criterion. I believe that at the heart of the digital camera
revolution is the move from previsualization by the photographer to
autoprevisualization by the camera. Previsualization is a term introduced by
Ansel Adams [Ada02A, Ada02B, Ada02C]—he taught photographers to see in
their mind’s eye how they wanted their photo to look and then determine the proper
combination of techniques to achieve that result. Previsualization is a human,
artistic endeavor. Cameras cannot make the sort of profound artistic judgments
that Ansel Adams did, but they can make choices based on scene characteristics and

© Springer International Publishing AG 2018 1
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2 1 Digital Photography

knowledge about the composition of typical photographs. The result is
autoprevisualization, an automation of the photographic art. Today’s cameras are
not gallery-ready artists, but they often make better decisions than do typical
snapshot shooters.

We need some sort of previsualization because photographs require careful
construction to give us a useful and interesting representation of a scene. The
human visual system operates on profoundly different principles than does a
camera. We perform a great deal of processing when we look at something without
being the slightest bit aware—our eye constantly scans, constantly adjusts for focus
and exposure, and continually identifies objects of interest. Capturing an image and
looking at the resulting photo are two very different experiences.

Technical applications of digital cameras need previsualization even more.
Autonomous automobiles give just one example. These cars rely on cameras to
identify both roads and obstacles. These cameras must work reliably under a huge
range of environmental conditions. The car’s cameras must be able to adjust
themselves continually to deliver the information required to safely drive the
car—the driver cannot twiddle the knobs to keep the vision system working.

Photographic technology has steadily moved toward simpler processes since its
earliest days. The Kodak, a simple box camera made possible by the advent of roll
film, helped to establish the snapshot as a tradition; professional photographers
were no longer needed to take photos. Film cameras started to add exposure
mechanisms in the 1960s and autofocus in the 1970s. But digital image sensors
allowed cameras to analyze images before, during, and after capture, making
possible a much broader spectrum of optimizations and interventions into the
photographic process.

1.3 Enhanced Images

Cameras are physical devices. A number of factors constrain the photograph we can
capture of a given scene: lighting, camera position, optics, and sensor characteris-
tics. Film photography gave us some tools with which to manipulate photographs to
enhance the image. A photographer could, for example, dodge and burn parts of the
print in order to alter the contrast within the image. Digital photography gives us a
much broader range of options. Early tools for image manipulation and enhance-
ment naturally emulated the techniques and results of film photography. Increas-
ingly, digital techniques allow us to create images that simply were not possible
with film. Focus stacking, for example, allows us to combine several photos in order
to create a composite with much greater depth-of-field. High-dynamic range (HDR)
algorithms allow us to combine photos with different exposures to create a com-
posite that re-renders the lighting of the scene.
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1.4 Beyond Images to Analysis

Computer vision algorithms allow us to move beyond producing a photograph at
all. Cameras are widely used to identify people and objects or to analyze and
classify their activity. Analysis has some advantages over imaging—when cameras
are used for safety and security, many people are more comfortable knowing that
images do not leave the camera. Algorithms can also combine information from
multiple cameras to create an even more accurate and complete understanding of a
scene. Multiple cameras reduce occlusion and can also provide several views of a
subject at multiple resolutions and perspectives.

1.5 Still and Moving Images

One of the interesting side effects of the digital camera resolution is a blurring of the
traditional boundary between still and motion picture cameras. In the film era, the
two were very different beasts. In the digital era, the differences between the two
become much smaller. Virtually all cameras today have some capability to capture
both still and moving images—they may be better at one than the other, but they can
do both. This book will move fluidly between still and video.

1.6 Taking a Picture

To understand just how much modern cameras do for us, let us consider the picture-
taking process. The photograph of Fig. 1.1 is not complicated or a work of art,
merely an enjoyable photo. Yet even taking this simple photo required some care
and consideration.

First, the steps that take place before a still photo are taken:

¢ The camera is positioned to have a chosen view of the subject. The position
includes not only the x, y, z position of the camera but also its orientation.

* The image is focused on a particular part of the subject.

» The required exposure is determined.

Once the photo is actually captured, the camera performs a number of steps,
some of which may be optional depending on the sophistication of the camera or the
choices made by the photographer:

» The scene’s white balance is determined to compensate for the different colors
produced by different types of light sources.
¢ The image may be sharpened to make it more pleasing.
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Fig. 1.1 An uncomplicated
photograph

« The image data is compressed, typically with lossy algorithms that throw away
some aspects of the image in order to reduce the amount of data required to
reproduce the image.

¢ The compressed image data is stored as a file in a storage medium.

The process for video is much the same except that most of these steps must be
performed continually: focus, exposure, image enhancement, compression, and
storage all require streaming operation.

Many of these operations require some sort of judgment—there is no single
answer as to what makes the best picture in most situations. Given the high degree
of automation of today’s cameras, you may not have thought much about some of
those decisions:

*  What should you focus on? Is the subject of the photograph the flower near the
camera or the mountain far away?

¢ What exposure should you use? A person is standing in front of a bright window.
You and your camera have two choices: the background is properly exposed and
clearly visible, leaving the person dark and unintelligible; or the background is
blown out and the person is clearly distinguishable.
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*  How much should you compress this photo? Do you care more about file size or
image detail? Is this a snapshot or a technical photograph?

Algorithms can help us with many of these tasks. (They cannot help us take our
photos on a perfect Utah evening unless we rely on surveillance cameras that
continually monitor everywhere and everything.) But algorithms can help us take
better photos and videos:

» Early-stage operations such as autofocus, autoexposure, and auto white balance

¢ Image enhancements such as sharpening and keystone correction or, in the case
of video, stabilization

« Composite photographs such as high-dynamic range (HDR) and mosaics

This book is intended to walk through the major operations in digital photogra-
phy and to understand the trade-offs in the design of camera systems.

1.7 How to Read this Book

This book was written to address a range of readers who may have diverse
backgrounds. I believe that the topics in the book are important for a full under-
standing of smart camera design, but not everyone may have the same depth of
interest in all of these topics. I have tried to arrange the subsections within sections
so that the major concepts of a section can be grasped without necessarily resorting
to all the necessary details.

All technical people interested in digital cameras and photography should, in my
opinion, have at least a basic appreciation of the arts of photography and cinema-
tography. Over the years, I have found the fields of computer music vs. image
processing and computer vision to be populated by very different types of people.
Computer music people are invariably musicians who have a deep, intuitive sense
of what they want to accomplish with their designs. Image processing and computer
vision specialists, in contrast, rarely have even a basic understanding of the
photographic arts. I think that an appreciation of how we use photos is at the
heart of autoprevisualization and essential to a truly in-depth understanding of
digital camera design. A corollary is that a fair amount of the technical material
required to understand digital camera design is not unique to digital. Optics and the
physics of light still apply in the digital domain.

The chapters are designed to explore different aspects of digital cameras:

o Chapter 2, Light, Optics, and Imaging, examines how images are formed and
displayed. It looks at the nature of light, optics, and the human visual system. It
also considers the more practical aspects of image capture, leading to a discus-
sion of previsualization.

o Chapter 3, Image Capture Systems and Algorithms, studies the design of cameras
as machines. We consider optics, image sensors, cameras as multiprocessors,
and the basic operations required to automate the photographic process. We also
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study the basic algorithms in the imaging path, such as sharpening and
compression.

Chapter 4, Image and Video Enhancement, studies algorithms for more
advanced image and video operations, such as high-dynamic range and image
mosaicing.

Chapter 5, Image and Video Analysis, considers algorithms that analyze imagery
and video with the goal of reducing the images to their characteristics: scene
recognition, tracking, etc.

Chapter 6, Photography and Cinematography, surveys the arts of photography
and cinematography. We look at some of the major styles and approaches to
these arts. We also consider how technological changes over the nearly 200-year
history of photography have influenced the practice and range of the art.



Chapter 2
Light, Optics, and Imaging

2.1 Introduction

Digital cameras capture images; we need to understand how to form and control
images before we can fully understand how digital cameras work. This chapter sets
the stage by identifying several key photographic problems that we will solve in the
succeeding chapters. We will start with a basic understanding of image formation
based on pinhole cameras. We will then survey the human visual system in Sect. 2.3
and then study color more deeply in Sect. 2.4. Sections 2.5 and 2.6 concentrate on
the basics of imaging, both lenses proper and a simpler model of the camera.
Section 2.7 briefly discusses image display. The final section integrates this material
into a practical view of image capture. We will discuss previsualization as a
technique to help people figure out how to take the image they want. That discussion
will set us up to understand autoprevisualization methods in the next two chapters.
Nothing in this chapter is specific to digital cameras—a camera is a camera.

2.2 Image Formation

Image formation is the starting point for image capture. A few words on imaging
and the physics of light help to inform our later discussions.

2.2.1 Light and Images

Images do not just happen. We need to use devices to control light that allows the
formation of an image that we can see. Some very simple examples show what we
mean by image formation.

© Springer International Publishing AG 2018 7
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Fig. 2.1 Image formation reflected light image surface
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Figure 2.1 shows a subject and an image surface on which we want to throw an
image of the subject. In natural scenarios, light comes to a subject from many
different directions. That light is reflected from the subject in many directions.
Similarly, each point on the imaging surface receives light from many different
points in the scene. By using a device—a /ens—to control how light reaches the
imaging surface, we can ensure that the light at each point on the imaging surface
comes from a single point on the subject (or at least from a small area on the
subject). The relationship of the camera to the subject is known as the point of view
(POV). The result is an image of the subject. This configuration is known as a
camera obscura and has been used for centuries to project images. The camera
obscura’s images are, however, transitory phenomena. The invention of photogra-
phy allowed us to capture and preserve these images.

An even simpler approach to image formation uses a pinhole camera—this toy is
also a useful abstract model for the camera. As shown in Fig. 2.2, the pinhole
restricts the paths to points in the image plane such that an image can form. The size
of the pinhole has several effects on the quality of the image. On the one hand, a
smaller pinhole gives us a clearer, more focused picture. A larger pinhole allows a
cone of light from the subject to fall onto a point on the imaging surface, producing
a circle of light. The circles from different points on the subject overlap on the
image surface, blurring the image. A smaller pinhole gives us a smaller circle and a
sharper image. On the other hand, the smaller pinhole results in a dimmer image
since the amount of light that reaches the image surface depends on the size—
specifically the area—of the pinhole. Although the situation is more complex in the
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case of lenses, this trade-off between sharpness and brightness is fundamental to
photography; it has practical effects on the design of cameras and even the way we
take photos.

Most subjects do not generate their own light but instead reflect light from other
sources. The path from light source to image surface is shown in Fig. 2.3. Incident
light is the light that falls on a subject; light may be direct illumination coming
directly from a source or indirect illumination that has been reflected from some
other object. Reflected light is the light reflected by the subject. Luminance is the
product of illumination onto an object and the object’s reflectance. The appearance
of the object—both its brightness and its color—depends on both its reflection
properties and the incident light upon it. In the case of indirect illumination, the
light’s qualities depend not only on its original source but the objects from which it
has been reflected. We will see in Sect. 2.3 that the visual system is extremely adept
at adjusting for variations in lighting to maintain the consistent appearance of an
object.

We use the concept of spatial frequencies to help us analyze images. Figure 2.4
shows a pattern of alternating light and darkness; this pattern is produced by
sinusoidal variations in the luminance of the image. We can form these patterns
both horizontally and vertically. We can also combine them to produce 2D spatial
frequency patterns. Spatial frequencies are useful because we can compose com-
plex patterns as combinations of basic sinusoidal spatial frequencies. We will use
spatial frequencies in JPEG compression in Sect. 3.6.2.
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Fig. 2.3 The path from
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Fig. 2.4 A plot of spatial frequencies

As we will see in Sect. 2.4, color is ultimately a perceptual phenomenon that
depends on how the eye and brain work. But the physical phenomenon of color is
determined by the frequency of light. Different frequencies produce different colors
in the visible spectrum ranging from violet to red. We often use frequency and color
interchangeably.

Cameras that can take pictures in either the ultraviolet (UV) or infrared
(IR) regions have their uses. Ultraviolet photography has many scientific uses.
Infrared cameras are widely used in consumer cameras. However, keep in mind
that these infrared cameras make use of light that is very near the visible band,
known as shortwave infrared (SWIR). Subjects such as people require illumination
by infrared light sources but can be captured with standard image sensors. Thermal
images capture longwave infrared (LWIR), which require a fundamentally different
image sensing technology. We will discuss infrared sensing in more detail in
Sect. 3.4.5.

Different light sources can have very different color temperatures: incandescent
lights are yellow, while fluorescent lights are green. The composition of sunlight
varies throughout the day. Figure 2.5 shows that the sun at high noon goes through
less atmosphere than at sunrise or sunset. As a result, sunlight is more heavily
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Fig. 2.5 Atmospheric filtering of sunlight and the golden hour

filtered at those times, giving it a golden hue. Photographers refer to the hour around
sunrise or sunset as the golden hour. The human visual system perceives the orange/
teal pair as having the highest contrast of any pair values on the color wheel.

2.2.2 The Physics of Light

Light is a form of electromagnetic radiation [Fey10]. Electromagnetic radiation
propagates as waves that can be characterized by either frequency or wavelength.
The wavelength and frequency of light are related by the speed of light c:

v=7 (2.1)

We will discuss how people see in more detail in 2.3, but the term light is
generally used for electromagnetic radiation that is at least near the range of
frequencies/wavelengths that can be detected by the eye. (Radio, for example,
refers to electromagnetic radiation at lower frequencies than that of light.)

Figure 2.6 shows the visible light spectrum, which occupies the wavelengths
roughly 400 — 700 nm. The wavelength of light is perceived as color. Wavelengths
longer than 700 nm are known as infrared, while wavelengths below 400 nm are
ultraviolet.

The human eye is not equally sensitive to all wavelengths of light. The CIE V(2)
function, shown in Fig. 2.7, is the standard definition of the eye’s relative sensitivity
under typical daylight. The eye’s sensitivity peaks at 555 nm.

We need to be able to measure the intensity of light [Per07]. Luminous intensity
is a measure of power but weighted by the sensitivity of the eye. The candela is
defined as light at 555 nm with a given power level in Watts through a given solid
angle. The resulting unit is the candela (cd), roughly the illumination produced by
one candle. The illuminance of a source projected on an area in a given direction is
measured in candela per square meter (cdfm®) or nits. The lux (Ix) is, by compar-
ison, a measure of intensity falling on a surface; it depends on the angle at which the
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light strikes the surface as well as the intensity and distance from the source to the
surface. [lluminance is highest when the light is normal to the surface; it falls off as
cos@ as the source goes off the normal.

We use the lumen (Im) to measure the total light emitted from the source in all
directions. It is derived from the candela so it also weighted by the eye’s sensitivity.
A 60 W incandescent bulb puts out about 800 /m.

One important physical mechanism for the generation of light is thermal. The
color of light emitted by a body depends on its temperature. We use this concept to
define a metric for color—color temperature, measured in Kelvin (K), is the
temperature of a black body that emits light of that color. A black body absorbs
all light falling onto it, so the only light that comes from the ideal black body is
produced by its thermal radiation.

What we refer to as white light is actually a mixture of light at several different
frequencies. The intensities of the various component frequencies, as well as their
intensities, combine to produce the perception of the color white. We will discuss
color perception in more detail in Sect. 2.3.

The French physicist Pierre de Fermat characterized the behavior of light in what
has become known as Fermat’s principle: light takes the path that requires the
shortest time.
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Fig. 2.8 Reflection of light

Light can be absorbed or reflected by a subject; most subjects combine absorp-
tion and reflection. Most subjects absorb light of different frequencies at different
rates, which helps to determine the subject’s color. Strictly speaking, reflection
results from light being absorbed and then reemitted by the subject, but for purposes
of ray optics, the ray appears to bounce off the reflector. For a flat ideal reflector, the
angle of incidence 6 equals the angle of reflection as shown in Fig. 2.8. This form of
reflection is known as specular. Reflection can also be diffuse, in which case not all
of the rays leave the surface at the same angle.

We can manipulate light in other ways by taking advantage of two additional
mechanisms: refraction and diffraction. Refraction allows us to focus light. Dif-
fraction can be useful but also acts as a nuisance factor that limits the performance
of optical systems.

Refraction, illustrated in Fig. 2.9, refers to the bending of the path of light
through a medium. Glass is the most common medium used to generate refraction,
but high-quality optical plastics can also be used. As the boundary of the medium,
the phase velocity of the wave changes, but its frequency does not. If the wavefront
is perpendicular to the medium, it continues to travel through the medium in the
same direction. If not, the wave’s direction changes at the medium’s boundary.
Snell’s law [Fey10] describes the relationship between the angles of the wavefront
in the two media:

sin 64

sin@, " (22)
The refractive index n of a material is used to characterize the material. Refraction
depends upon wavelength; this property results in chromatic aberrations as we will
see in Sect. 2.5.

Diffraction occurs at boundaries of a different form, namely, edges. The classic
case of diffraction is through a slit as shown in Fig. 2.10. In this case, we consider
the light not as rays but as wavefronts. On the left side of the slit, light moves as
waves that cover the entire surface. The planar wave that hit the slit becomes a
cylindrical wave that moves away from the slit. The intensity of light as a function
of position is highest in front of the slit, but several smaller peaks are also formed.
The angle between the two minima closest to the maximum intensity is given by the
Fraunhofer diffraction formula:

~— 2.3
7 (23)

The more general model for diffraction is Kirchhoff’s diffraction formula.
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Fig. 2.9 Refraction of light

Fig. 2.10 Diffraction of intensity
light

When light passes through two nearby slits, the two waves emanating from the
slits interfere with each other. The intensity at any point is the sum of the intensities
of the two waves. The intensity of this interference pattern is the superposition of
the intensities due to each slit. A regular pattern of slits, illustrated in Fig. 2.11, is
known as a diffraction grating. These two concepts are together known as the
Huygens-Fresnel principle. In the case of light through a circular aperture rather
than a slit, the intensity pattern is known as the Airy diffraction pattern.

Polarization is a physical phenomenon that has practical uses in the formation of
useful images. Light waves can be oriented at different angles. Glare from shiny
surfaces consists of a lot of light oriented at many different angles. A polarizing
filter selects light waves only at certain orientation, blocking the rest. Polarizing
filters can be used to eliminate glare, which is often more strongly oriented than is
light from other parts of the image. A polarizing filter can also be used to darken
blue skies in color photographs. (A red filter can be used to darken the sky in a
monochrome image.)
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Fig. 2.11 A diffraction intensity
grating

2.3 The Human Visual System

Our eyes function as cameras, but only in part. We see the world through a complex
visual processing system that starts within the eye and stretches to a large part of the
brain. If we want to use cameras to make images on paper or screens that give us a
sense of what the world looks like, we have to understand vision and how it differs
from a simple camera. Our discussion here only scratches the surface of a subject
that is both very complex and still under development. In addition to wondering at
the complexity of visual processing, we can also identify some perceptual mecha-
nisms that will help us understand how to manage exposure and color in cameras.

Figure 2.12 gives a highly simplified view of some of the components of the
visual system [Pal99]. The eyes connect to the optic nerves. The nerves from the
two eyes connect at the optic chasm. Several other structures—the lateral genicu-
late and superior colliculus—feed into the optic radiations, which then connect to
the visual cortex. At each stage in this system, the information gathered from the
eyes is processed and manipulated.

The eye does not have a shutter. The response of the retina to illumination at any
given instant decays over a short period due to the electrochemical processes that
transform light into neural pulses.

Figure 2.13 shows the structure of the eye. The top diagram shows the major
structural elements. Incoming light is mediated by the cornea, aqueous humor, iris,
and lens. The lens is flexible; the ciliary muscles stretch and relax the lens to change
its shape and focus. Muscles also control the iris to determine the amount of light
coming into the eye. The eye is not empty but filled with vitreous humor. The retina
covers much of the inner surface of the eye. The bottom diagram shows the
structure of the retina in more detail. The fovea is the optical center, covering
only about two degrees of the visual field. The retina has two types of photorecep-
tors: cones are adapted to color and fine detail and rods are more sensitive to light
and used primarily for low light levels. The area outside the fovea has a few cones,
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but most of the retina is occupied by cones. The fovea is much more densely
covered with photoreceptors than is the rest of the retina. Nerves from the retina
gather to send data to the optic nerve; that point is a small blind spot.

Visual acuity refers to the resolution of the visual system. The visual system can
resolve two lines about 1 arc minute apart, primarily due to the cones in the fovea.
Visual acuity is limited primarily by the lens.

The eye uses a lens to throw an image onto the retina, but that is about the limit
of the comparison to a camera. The visual system processes visual information in
many different ways:
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» The eye resolves only a small part of the scene at high resolution at any given
time. The eye is constantly in motion, painting different parts of the scene onto
the fovea. The visual system builds up our perception of the scene from this scan.

» The retina uses a lateral inhibition network of neurons to increase the contrast of
the scene. Each photoreceptor is connected to nearby photoreceptors. When the
photoreceptor is exposed to high illuminations, it fires rapidly to indicate the
illumination level. The lateral inhibition network transmits these high firing rates
to the nearby photoreceptors and inhibits their activity. The inhibited photore-
ceptors fire at lower rates than would be expected otherwise, increasing the
difference in perceived illumination between the two sites. The result is higher
contrast.

¢ The optic chiasm reorganizes the neural pathways from the eyes. Before the
chiasm, the optic fibers transmit information entirely from one retina. After the
optic chiasm, the signals from both eyes corresponding from the left half of the
visual field go to the right, while signals for the right half of the visual field go to
the left.

» The superior colliculus helps to control eye movement.

e The lateral geniculate nucleus controls the vergence and focus of the eyes and
analyzes the position of major objects.

e The visual cortex performs a number of analytic functions. The visual field is
mapped onto the visual cortex; depth in the visual cortex roughly corresponds to
the complexity of the objects being analyzed. For example, early layers identify
lines at each point in the visual field, with lines identified at many different
orientations; later layers combine these line segments into curves.

Even before we worry about how we perceive objects, we need to understand
some basic visual mechanisms that are directly relevant to photography. How do we
perceive brightness? And how do we perceive color?

The visual system’s response to light is not proportional. The visual system can
respond to huge variations in light levels; proportional response is difficult over
such large ranges of values. Over moderate luminance levels, the visual system
responds logarithmically, known as the Weber-Fechner law; over wider ranges, a
power law model is more accurate. We will use this relationship between stimulus
and response to understand exposure in Sect. 2.8.

Illumination levels vary widely both within and between scenes. Evening and
full noon sun provide very different levels of light; our perception of illumination
between these two scenes is smaller than the physical difference. As we look around
a scene, objects can be at very different reflectances. Adams [Ada02B] observed
that natural scenes can easily show ratios of reflectance between the brightest and
least bright object of 200-to-1. Constancy refers to our perception of object prop-
erties such as reflectance and color independent of variations in illumination, angle
of view, etc.

Visual scanning helps the visual system to manage varying lighting levels and
maintain lightness constancy. As the eye moves around the scene, the iris size is
adjusted to control the retina’s exposure levels. But this dynamic adjustment
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mechanism is not sufficient to explain constancy—some other system must control
the iris. The ratio of luminances at an edge provides cues for the determination of
perceived lightness. The visual system also needs to determine absolute levels. The
visual system seems to use an anchoring heuristic that assigns white and black at
the extreme ends of the luminances in the scene [Pal99]. Anchoring requires the
visual system to perform some global analysis of the scene. We will compare this
characteristic of the visual system to our selection of exposures for images in Sect.
4.3.

The eye does not scan randomly. Saliency refers to the characteristics of a scene
that tend to draw attention by the visual system. Generally speaking, edges and
detail are salient. We will return to computational models of saliency in Sect. 5.3.1.

Our color constancy allows us to see a red ball as red even when viewed under
different color conditions. Sunlight and indoor fluorescent lighting, for example,
have very different spectral compositions. As a result, the light reflected off the ball
will have very different spectral characteristics in each situation. But we still see the
ball as red in both situations. Land' and McCann [Lan71] proposed the retinex
theory to help explain this phenomenon. They used pictures they called Mondrians
to study this problem; each image consisted of rectangular patches of varying sizes,
colors, and values. They proposed that the visual system finds the ratio of reflec-
tances on the two sides of an edge, then chains together these ratios from one region
to the next to be able to compare reflectances between objects in different parts of
the visual field. Retinex theory also combines local, edge-related measures with
global information. It can be used to adjust for variations in color temperature; it
can also handle slow variation of lighting within the scene. We will consider the
problem of adjusting photographs for illumination color temperature in Sect. 3.5.2.

The capture and presentation of motion in video is based upon apparent motion.
Video is composed of a set of still images. The real motion of an object, in contrast,
is continuous. Modern cinema is presented at 24 frames per second; traditional
video is presented at 30 frames/sec. Video takes advantage of the beta effect to
present the illusion of motion from image sequences [Pal99]. This effect results in
the seemingly continuous motion of a light that alternates between two positions at
about 10 frames per second. (The persistence of vision theory as an explanation of
the effects of motion pictures has been disproven.) These frame rates are not,
however, fast enough to prevent the perception of flicker. At 60 frames per second,
flicker fusion results in the perception of continuous illumination. As we will see in
Sect. 2.disp, many video display systems use different techniques to increase the
display rate to the flicker fusion rate without increasing the actual frame rate.

"Edwin Land also invented the process used to manufacture polarized optical material as well as
the Polaroid instant photography process.
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2.4 Color Science

Color is a critical aspect of visual perception. The visual mechanisms of color are
sufficiently important that they deserve separate consideration. We will first study
theories of color vision. We will then move onto models of color that bridge the gap
between perception and reproduction.

2.4.1 Theories of Color Vision

Color science combines physiology, engineering, and art. In order to accurately and
predictably capture and reproduce color, we first need to understand a little more
about how the visual system perceives color. The retinex theory from Sect. 2.3
describes a later step in the process; early stages determine what colors we can see.

The tristimulus theory describes the way that the retina responds to light. Three
types of cones respond to three different bands of light. Figure 2.14 shows their
relative response to frequencies of light; the green-responsive cones are most
sensitive and provide the largest absolute response. Together, these three receptors
cover the visible light range. The eye does not respond to all wavelengths of light
equally well—it is most sensitive to green, a fact that we will exploit for image
sensors in Sect. 3.sensor. Our sensation of color starts with the relative amount of
stimulation of the three types of cones at a given location.

This leads to the additive color system that you probably learned as a child. As
shown in Fig. 2.15, the three primary colors are red, green, and blue. We combine
these primary colors to create other colors. The system is called additive because
we add together the primaries as if we are shining primary-colored lights onto a
white surface that reflects all colors. However, printed material behaves as a
subtractive medium—white light shining on a patch of a given color will absorb
some of the wavelengths and reflect others. The subtractive color system is based
on the secondary colors yellow, cyan, and magenta. The primary system is referred
to as RGB. The secondary system is typically referred to as CYMK—printing
processes generally require a separate black to ensure saturated dark areas, which
is labeled K.

However, the visual system cannot in fact distinguish all types of color combi-
nations. One part of the visual system makes use of opponent process theory to
reduce the amount of information that later stages need to process [Pal99]. This
encoding describes color as pairs of opposites: red/green or blue/yellow. As a result,
there are no colors that subjectively combine red/green or blue/yellow.

The perceived color of an object depends on three components:

e The color of the light with which the object is illuminated
¢ The reflectance of the object
¢ The response of the visual system to the reflected light
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Fig. 2.15 Additive and subtractive color systems

The visual system is very well adapted to correct for variations in illumination.
However, cameras are not. We will see the effects of illumination on images in
Sect. 2.8.1.

2.4.2 Color Models

Given the complexities of how we perceive color, we need ways to define color
beyond the basic additive/subtractive approach. An early color dictionary was
created by Albert Munsell. The Munsell Book of Color consists of 1600 carefully
manufactured paint chips that were designed to capture just noticeable differences
in color. The book is still widely used to identify colors of objects by comparing its
color to samples in the book.
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The Commission International de 1’Eclarage (CIE) established the first mathe-
matical color specification in 1931 [Per07]. A color sample is described by XYZ
tristimulus values. The XYZ value is the result of the combination of the spectral
radiance of a light source S(4), the spectral reflectance R(4), and a standard observer
model X(1), (1), z(4):

X =k / SR(A)F(A)dA (2.4)

Y=k / S(OR(A)y(A)dA (2.5)
Z—k / SR(A)Z(A)dA (2.6)

where k serves as a normalizing factor to ensure a maximum value of 100. The y(1)
is the CIE V(4) intensity function shown in Fig. 2.16. ¥(4) and z(1) take the form
shown in Fig. 2.16. This diagram is known as a chromaticity diagram because it
eliminates the value dimension, using only hue and saturation.

This model was created before a much experimental data on the range of
perceived colors was available. Over several decades, it became clear that the
CIE color space did not match well to a just-noticeable-difference (JND) model
of observable color—the distance between two colors in the diagram did not
correspond well to the perceived difference between the colors. More uniform
color spaces have been proposed: CIELAB, AE*94, and CIEDE2000. However,
the CIE chromaticity diagram is still widely used to explain color spaces.

The HSV color space is a widely used color space. We can describe color using
three criteria, each forming an axis of the color space:

e Hue is what we colloquially call color. It corresponds to the dominant wave-
length of light reflected by the color.

o Saturation refers to the color’s purity.

e Lightness or value refers to the color’s relationship to the range between black
and white.

Figure 2.17 shows the color spindle model for HSV. Hues vary around the
circumference of the spindle. Saturation varies from a completely unsaturated
gray in the middle to fully saturated at the edges. Value varies from black to
white along the spindle’s axis.

The YUV color model comes from the US analog color television standard,
which was created to be compatible with existing monochrome broadcast standards.
The Y component describes luminance, while U and V describe chrominance. The
terminology YCrCb is used for the digital versions of this approach to representing
color. The relationship between YUV and RGB is defined by the analog broadcast
standard and can be described by a matrix:
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Fig. 2.16 The CIE A
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Fig. 2.17 The HSV color
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2.5 Lenses

As we saw in Sect. 2.2, forming images requires controlling light. Lenses give us
much greater control over light than do pinholes. As with any design problem, we
must make trade-offs when designing a lens.
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2.5.1 Lenses and Image Formation

We can visualize the behavior of a lens using ray tracing. Figure 2.18 shows a
simple lens and the path of two rays through the lens. At each lens surface, the ray
refracts or changes angle. Two rays are enough to help us understand basic effects
of the lens.

Focus is a fundamental property of an image. As with many aspects of photog-
raphy, perceptual and artistic properties play a role, but we can understand the basic
physical principle. As shown in Fig. 2.19, parallel beams coming into the lens along
the lens’ axis converge at the focal point. Beams from different directions will be
focused to form a focal plane. Given a subject at infinity, the distance from the lens
to the focal plane is known as the focal length. Parallel or collimated beams
correspond to light from a subject that is infinitely far away. Even though the
focal plane distance changes with distance to the subject, we still use the focal
distance at infinity as a basic characteristic of the lens. The lens’ focal length is
commonly referred to as f.

Subjects at varying distances from the lens will focus at different distances from
the lens. The lens creates an image volume which we can sample at different points
to find different parts of the image in focus. The eye changes focus by pulling or
relaxing the lens to change its curvature. Flexible lenses are the rare exception for
cameras. Instead, the lens is moved mechanically relative to the image surface to
align the image surface with the desired focal plane.

Image planes near the focal plane are nearly but not quite in focus. Light in those
planes forms not a point but a circle of confusion as shown in Fig. 2.20. We are
willing to live with a small circle of confusion for two reasons. First, our eye is
limited in its resolving power. Second, most objects are not perfectly flat but have
depth; different parts of the object will focus at different planes, and there is no
single plane in which an entire 3D object will be in perfect focus. Eastman Kodak
gives 0.05 mm as the size of a just-acceptable circle of confusion for a standard
24 x 36 mm image surface [Kod88]; larger image surfaces allow for larger just-
acceptable circles of confusion. We refer to the range of planes at the subject that
come into acceptable focus as the depth-of-field. Limited depth-of-field is a draw-
back in some images and an advantage in others. Deep depth-of-field can give a
sense of realism in landscapes; we can use limited depth-of-field to draw attention
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Fig. 2.18 Ray tracing a lens
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away from the out-of-focus areas to subjects that are in focus. In practice, we use
the focal length to characterize the angle of scene covered by the lens.

Bokeh is a term for the rendering of highly defocused elements, typically in the
background. Bokeh is influenced by lens aberrations; the shape of the aperture also
plays a role. Portraits are often shot with small depth-of-field, and bokeh of
background elements is considered an artistic element. Some lenses use a radially
oriented graduated neutral density filter to shape bokeh [San17]; the filter rounds off
the edges of the bokeh elements, which is particularly helpful for highlights and
flare.

Lens focal length determines the size of the image circle thrown. As shown in
Fig. 2.21, shorter focal length lenses throw a smaller image circle, while longer
focal lengths throw larger image circles. If we do not change the size of the image
surface we use to view the image, longer focal lengths give us a narrower view of
the subject since the image surface covers a smaller proportion of the image circle.
Short focal lengths squeeze the subject onto a smaller image circle, more of which
fits onto the image surface. We choose short focal length lenses (or simply short
lenses) to give a wide view of the scene; we use long lenses to pick a small part of
the scene.

Conversely, changing the image surface size changes the image coverage as
shown in Fig. 2.22. Different types of camera use different image surface sizes: cell
phones use small image sensors, while dedicated cameras generally use image
sensors that are considerably larger. As we move to larger image surfaces, the
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image surface covers more of the scene and the lens appears to be less selective.
The lens has not changed, only our use of the image it throws.

A normal lens is one that gives a field-of-view that is equal to that of the human
eye. This occurs when the focal length of the lens is about equal to the diagonal size
of the image surface. As a result, the definition of a normal lens depends on the
image surface size. 50 mm is a normal lens for the standard 35 mm full-frame
format, which uses an image surface of 24 mm x 36 mm. A cellphone with a small
image sensor has a shorter normal focal length; a larger image sensor would require
a longer lens to achieve a normal field-of-view.
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Fig. 2.23 Lens shapes

2.5.2 Ray Optics

The optics of photographic lenses is relatively simple by the standards of modern
physics. Nonetheless, the design of modern photographic lenses is a complex
problem with elements of science, engineering, and art.

Spherical lenses are simplest to analyze. They are also simplest to manufacture.
Many lenses are manufactured today using a centuries-old technique: a block of
glass is ground to shape using a form with the inverse of the lens’ shape with the aid
of an abrasive.

As shown in Fig. 2.23, each side of the lens can be concave, convex, or flat. The
shapes of the fronts and backs of the lenses can be combined giving eight basic
configurations. Each side is characterized by its radius of curvature r. Lenses may
also vary considerably in their thickness.

The lensmaker’s formula gives the focal length f of a thin lens [Fow75]:

1 1 1
7 (n—1) [71 rj (2.8)
where 7 is the refractive index of the lens, d is the lens thickness, r; is the radius of
curvature of the lens side closest to the light source, and r, is the radius of curvature
of the side of the lens away from the light source. Diopter is the reciprocal of focal
length.

When a series of lenses is placed in contact, their combined focal length is

1 1 1
P (2.9)

When two lenses are separated by distance d, their combined focal length is
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When a subject is not at infinity but at a finite distance from the lens, the focal
plane is at a different position than for the infinity case. The lens focuses rays from a
point on the subject to a single point, allowing an image to form. However, the

focused image will not be at the focal length. The relationship between the subject-
lens distance and the lens-image plane distance is

(2.10)

1 1 1
1,11 2.11
st s f 211)

where s; and s, are the subject/lens and lens/image plane distances, respectively.

The nodal point of a lens is the point through which rays travel such that the
entry angle of the ray is the same as its exit angle. A lens has two nodal points,
forward and backward.

We can determine the width of the region for which the image is in acceptable
sharpness. We need a criterion to determine acceptability; we use the circle of
confusion diameter ¢ as the specification of sharpness. The hyperfocal distance is
the distance for a region of acceptable sharpness that extends to infinity—any object
farther away than the hyperfocal distance will be in focus:

_f
7Nc+

H f (2.12)
where N is the f-stop to which the lens is set and c is the circle of confusion
diameter. For some other subject distance s, the region of acceptable sharpness is in
the range

s(H—f) s(H—f)
H+s—2f" H-—s

(2.13)

The iris, shown in Fig. 2.24, is built into the lens and can be adjusted to create a
larger or smaller hole and thus controlling the amount of light reaching the image
surface.

A virtual image is formed on the same side of the lens as the image. As shown in
Fig. 2.25, the rays through the concave lens rays diverge on the imaging surface
side but converge on the subject side. The image is virtual because rays do not
travel through the space in which the image appears to be. A magnifying lens is a
practical example of the use of virtual images—the virtual image formed by the lens
appears larger than the subject. Mirrors also throw virtual images.
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Fig. 2.24 An iris in a lens
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Fig. 2.25 Formation of a virtual image

2.5.3 Lens Design

Although the basic physics of lenses has been understood for centuries, lens design
presents a substantial engineering problem. The creation of modern lenses requires
careful engineering to provide a balanced set of characteristics in the face of many
competing concerns.

A cine lens provides several features that make the lens more suitable to the
demands of long takes. Cine lenses are generally marked in T-stops, which measure
the total light through the lens, rather than f-stops. Cine lenses are often designed
with wide apertures to allow for shallow depth-of-field that helps to separate the
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subject from the background. Zoom cine lenses are generally parfocal so that the
focus does not change during a zoom. Cine lenses may also be designed as sets with
common optical and mechanical properties for all the members of the set.

We build compound lenses to both add features and reduce aberrations. High-
performance lenses combine lens elements of multiple shapes and several different
optical materials.

An aberration is any unwanted optical behavior of a lens. These aberrations can
be analyzed and characterized. Aberrations are generally categorized into six
different types [Cox66]:

* Spherical aberrations

e Coma

e Astigmatism

« Oblique spherical aberrations
¢ Distortion

¢ Chromatic aberrations

As shown in Fig. 2.26, a lens that is not truly spherical will cause parallel rays at
different positions to cross the lens axis at different positions.

Coma occurs for off-axis images and is a result of a finite aperture. As shown in
Fig. 2.27, parallel off-axis rays will not all focus at the same position on the image
plane. They will instead form a cone shape caused by circles of different sizes being
formed at offsets.

Astigmatism is the result of the image being projected to a curved surface rather
than a flat plane. Figure 2.28 shows a sample target which can demonstrate two
effects: circles around the image center can become increasingly out of focus with
distance from the center; or lines radiating from the image center can become
increasingly out of focus with distance from the center. Astigmatism results in field
curvature—the focal region of the lens is not flat.

Oblique spherical aberration results in flare surrounding the astigmatic lines,
with increasing flare at greater distance from the center.

Distortion results in changes to the relationships between lines. Figure 2.29
shows two types of distortion: barrel distortion pushes the edges of a square
outward and pincushion distortion pushes the edges inward.

Chromatic aberrations result from dispersion—different wavelengths of light are
refracted by different amounts. As a result, they focus at different points. Lateral
chromatic aberrations cause different wavelengths to focus at different points on the
image plane; longitudinal chromatic aberrations cause different wavelengths to
focus at different image planes.

The Cooke triplet [Cox66], shown in Fig. 2.30, illustrates how compound lenses
can improve image quality; this design was a significant advance in optics for its
combination of low aberrations and simple design. Petzval field curvature is an
aberration in which a flat object produces a curved focused image. The Petzval sum
for a set of lenses is
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Fig. 2.26 Spherical
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Fig. 2.28 Astigmatism

Riy1 — Ny (2.14)
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where r is the lens element radius and 7 is its index of refraction. The curvatures and
lens materials for the Cooke triplet are selected so that its Petzval sum is 1, resulting

in a flat field of focus.
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Fig. 2.29 Barrel and pincushion distortion

Fig.2.30 The Cooke triplet j ' \

We can control chromatic aberrations over a small range of wavelengths by
combining two lenses, made of different materials, each with a different dispersion
[Fow75]. This structure is known as an achromatic lens. If the relative dispersions
of the two lens elements are

_ 1 dm _ 1 dny
T —1d? = 1dr

' (2.15)

then the focal lengths of the lens elements are
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Fig. 2.31 An example of lens flare
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The advent of high-performance optical plastics has allowed lens designers to
make much more extensive use of aspheric lens elements. These aspheric elements
can provide substantial corrections with fewer lens elements than would be required
for purely spherical elements.

Although not an aberration, flare is an unwanted property of images. Flare
displays on the image surface due to internal reflections off the surfaces of the
lens elements. Modern lenses are coated to reduce flare. However, flare can still
occur in some situations, particularly when a strong light source is in the image;
Fig. 2.31 shows an example of flare from the sun. We can also minimize flare using
a lens hood to protect the lens from light entering at large angles.

We often use the term telephoto generically to mean a long focal length lens. The
technical definition is a lens whose back focus point is substantially shorter than the
lens’ focal length. Telephoto design allows the lens to be more compact. Telephoto
lenses make use of a positive group of lenses followed by a negative group [Cox66].

A zoom lens can be adjusted to provide different focal lengths; the focal plane
does not move as the lens is zoomed. If this were not the case, not only would the
image need to be refocused after a zoom, but the zoom itself would become more
difficult as the image blurred. We refer to a non-zoom, fixed focal length lens as a
prime. Figure 2.32 shows a simple zoom lens configuration [Cox66]: the two
negative lens elements move together relative to a pair of positive lenses; a prime



2.5 Lenses 33

DIVIQe

<«—— zoom ——> prime

Fig. 2.32 A simple zoom lens configuration

lens forms the back of the zoom. Practical zoom lenses are much more complex to
provide adequate aberration correction over the zoom range.

A substantial exception to the rule of spherical lens elements is the anamorphic
lens, widely used in cinema to create wide-screen presentations. Figure 2.33 shows
one type of anamorphic lens using cylindrical lenses. The cylindrical element
curves along the horizontal image axis but not the vertical axis. As a result, it
squeezes the image horizontally but not vertically. Ray tracing works in both
directions, so by playing back the image using the same type of anamorphic
element, we remove the distortion and produce a wider image. Anamorphic lenses
are used in film to provide a wide-screen image without requiring image frames
with very long, thin aspect ratios.

Some imaging characteristics rely on the relationship between the focal length
and image surface size, while others depend on the absolute characteristics of the
lens. For example, depth-of-field depends on absolute aperture size, not f-stop. As a
result, the normal lens for a smaller image sensor gives a larger depth-of-field than
does a normal lens for a larger image sensor.

2.5.4 Panoramas

Panoramic images—images which capture a long horizontal view of a scene—are
almost as old as photography. Panoramic images were widely created in the
nineteenth century; both the Library of Congress and Denver Public Library have
collections of historic panoramas. We can create panoramas either by algorithmi-
cally stitching together several small photos or by optical means. We concentrate
here on optical panoramas; we will discuss stitching algorithms in Sect. 4.mosaic.

The simplest approach, shown in Fig. 2.34, is to crop the image to a wide aspect
ratio. The lens must produce an image circle large enough to accommodate the
panoramic field. Much of the image circle is wasted.
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Fig. 2.34 A cropped panorama

A slightly more sophisticated approach is shown in Fig. 2.35. In this case, the
lens is rotated horizontally to scan a smaller image circle across the image surface.
The image surface itself is curved to maintain the focal distance to the lens. A
traveling slit allows only a small part of the image to hit the image surface at each
point. We minimize perspective shifts by rotating the lens around its nodal point.

Figure 2.36 shows an improved version of this method. The lens, a slit, and the
image surface all rotate together. The scene is painted as a cylinder as it is scanned.
The diameter of the cylindrical image depends on the focal length of the lens—
longer focal lengths produce larger diameter panoramas. Figure 2.37 shows two
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Fig. 2.37 Panoramas taken at different focal lengths

panoramas, one taken with a longer focal length and the other with a shorter focal
length. In this case, the panorama resulting from the shorter focal length diminishes
the grandeur of the scene; in other cases, the smaller-diameter panorama may be the
appropriate aesthetic choice.
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Fig. 2.38 An anamorphic panorama

Figure 2.38 shows an anamorphic panoramic system. A rotating lens and mirror
paint the scene onto the image surface through a slit. The bottom of the scene is
stretched relative to the top. The image can be displayed through a rotating lens/
mirror system, thanks to the reversibility of ray optics. This style of imagery was
practiced as painting during the Renaissance. The Uffizi in Florence has several
examples of these anamorphic paintings that are viewed using a cylindrical mirror
placed in the center of the image. These amazing paintings were also painted
through the cylindrical mirror.

An alternative anamorphic panorama is created with a fisheye lens. A fisheye
lens provides an extremely wide angle field of view. As shown in Fig. 2.39, the
fisheye lens maps the scene both horizontally and vertically onto the horizontal
image surface.
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Fig. 2.39 A fisheye panorama

2.5.5 Assessing Lenses

We use several terms to describe related but distinct concepts:

» The ability to distinguish fine detail is known as resolution. We can quantify the
concept of resolution.

» The term acutance is used in two different ways: specifically based on contrastor
as a general, perceptual sense of sharpness. We will discuss acutance in more
detail in Sect. 2.8.5.

An early quantitative definition for resolution is Rayleigh s criterion. Figure 2.40
shows a pair of slits, each projecting its own diffraction pattern. Rayleigh’s criterion
states that the minimum distance that can be resolved by these two slits is the
distance between the peak of one diffraction pattern and the first minimum of the
other.

The Airy disk is the luminance pattern created by an ideal lens with a finite
aperture. It appears as a bright center with concentric, alternating regions of dark
and light.

Rayleigh’s criterion suggests testing resolution using /ine pairs—measuring the
finest distance between two lines that the lens can resolve. The Air Force Resolution
Test Chart can be used for resolution tests. The chart is carefully manufactured to
provide precise line spacings and high contrast over a wide range of line pair
spacings. The IEEE resolution chart was developed for analog television.

A more analytical method for image assessment is known as the modulation
transfer function (MTF) [Nas08, Sch98]. Modulation refers to the variation between
peak and trough in signals. Figure 2.41 shows a bar test pattern. We can plot the
intensity of the bars as a function of position. The lens will determine how these
bars are rendered in the image. A poor lens will spread the bars out, causing them to
overlap. The result is a smaller difference between bright and dark regions in the
image, which is represented by low modulation. A good lens will resolve the bars
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Fig. 2.41 Intensity modulation in images

sharply with less overlap between the light and dark areas, resulting in higher
modulation.

We use contrast to measure modulation:
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We can use a bar chart with varying spacing to measure the modulation of a lens
as a function of line spacing. In Fig. 2.42, the bar chart’s spacing varies from wide
on the left to narrow on the right. The lens produces an image with high modulation
on the left, reproducing the bars well, and low modulation on the right, muddying
the bars. If we plot contrast as a function of line spacing, we get the MTF plot of
Fig. 2.43. The x axis of the plot is line pair spacing distance; the y axis is modulation
level.
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Subjective factors will always play a role in the selection of lenses. For the film
Wall-E, the creative team carefully recreated the lens characteristics of Panavision
lenses used for film as well as the look of film stock itself; they liked the look these
aberrations and defects gave to the characters and settings.

2.6 Geometry and the Camera Model

For many purposes, we do not need ray tracing optics to understand what the
camera sees. (We will consider an exception in Sect. 4.7 when we study lens
correction algorithms.) A simpler model, the camera model, is geometric. It is
primarily concerned with the relationships between the scene and the camera and
makes use of only a very abstract model of the camera optics. We will start with an
introduction to the geometric algebra we will use to build these models. We will
then move onto the camera model itself.

2.6.1 Projective Geometry

Images are two-dimensional with points ranging over [u v]. The world is a three-
dimensional Euclidean space with points [x y z]. We can use algebra to
understand the relationships between these spaces: we need to be able to move
within Euclidean space; we also need to map Euclidean space into the image space.

We use homogeneous coordinates [Car78] to simplify our manipulations. The
term homogeneous refers to the fact that these coordinates do not assume a
particular origin. The homogeneous coordinate system for 3D uses four dimensions
to allow perspective transformations—Ilines in the 4D space map onto points in the
3D space. We can represent a 3D point in the 4D space as [x y z 1]; a point in the 4D
space [x y z h], h #0 represents the 3D point [x/wh y/h z/h]. A point in 3D space
corresponds to the points along a line in 4D space. We can similarly construct a
homogeneous coordinate system for the 2D image space [u v w]; it is easier and
more consistent to map the homogeneous coordinates of Euclidean space into a
homogeneous coordinate system for the 2D space.

A transformation matrix for the 3D homogeneous space is 4 x 4. For example,
we can specify a translation in x as

ax a000 X
y| _ 10100 y
z| 0010 z (2.18)
w 0001 w

The upper-left 3 x 3 matrix is used for linear transformations. More generally, in
the matrix
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ap a2 a3 py
az axy asz py (2.19)
asy asp dsz pj

ttht;l

the a s represent linear transformations, the p s perspective transformations, and the
t s translations. We can specify the perspective transformation for a distance d from
the image plane as [Fol96]

1000
0100
0010

001/d0

(2.20)

We can specify complex transformations as the product of several transforma-
tion matrices. The order is, of course, important. When analyzing the relationships
between subjects and the camera, we often transform the subject’s position to
camera coordinates using a combination of rotation and translation.

For a given focal length f, we can describe the transformation of the 3D point

into a 2D image point as
/1
/ 1/
[XJ =/ W (2.21)

We can classify several types of transformations on images [Har03] as illustrated
in Fig. 2.44. Isometric transformations perform rigid transformations:

X cos® — sinft. | [ x
Y| =1 sinf cosét, y (2.22)
1 001 1

If the 1,1 and 2,1 entries are negated, the transformation reverses the image
orientation. A similarity transformation combines isometric transformation and
scaling:

X s cosf —ssinft, | [ x
Y| =1 ssin@scosft, y (2.23)
1 001 1

An gffine transformation preserves parallel lines, lengths of parallel line seg-
ments, and ratios of areas:
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X anang ty X
yl = | ap a» fy y (224)
1 001 1

The most general form of 2D transformation is the projective transformation:

X anan ty X
yl = |ayant y (225)
1 ViV v 1

The upper block a;y, - - -, ax> performs rotation and scaling, the 1, ¢, terms perform

translation, and the vy, v, terms perform perspective operations.

A particularly important transformation for camera algorithms is a form of the
projective transformation known as 2D homography or as the fundamental
matrix—three points in the source image lie on the same line if and only if they
are also collinear in the transformed image. The homography has the form

x: N hit hia his| [ x
y /’121 h22 /’123 y (226)
1 hat hy hiz | |1

This homography has eight degrees of freedom. Given that the homography
matrix has nine parameters, we need to impose a constraint on the parameters to
ensure that the system has only eight degrees of freedom. A common assumption is
that the homography parameters are related by a multiplicative constant.
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Fig. 2.45 The center of projection of the camera

2.6.2 The Camera Model

The camera model [Car78] describes how a pinhole camera projects the 3D scene
onto the 2D image surface. It takes the form of a 4 x 3 matrix that transforms
homogeneous points in three-dimensional space to homogeneous points on the 2D
image surface. We can build up the camera model in several steps.

Figure 2.45 shows the basic model for the effect of the lens. Points on the subject
ps map onto points on the image surface p;. The rays that connect the subject and
image point pairs—a pair for each visible point on the subject—converge at the
center of projection. The center of projection is located a distance f away from the
image surface, f being the focal length of the lens. The z axis for the coordinate
space positioned at the center of projection goes through the middle of the image
surface. Longer focal length lenses put the center of projection farther away,
resulting in less scaling of the subject to the image surface. The center of projection
is not a physical entity, only an abstraction that allows us to build a very simplified
model of the lens; the center of projection is not the lens’ nodal point. The center of
projection is behind the image surface, not between the image surface and the
subject as the lens would be. However, this simple ray model allows us to capture
the basic projection made by the lens without resorting to complex physical models
of lenses.

The projection ray sets up two similar right triangles, one for p, and the other for
p;- The image triangle is scaled by frelative to the subject triangle; we can write the
positions of the image coordinates as

Xi :f&vyi :f& (2.27)
Zs Zg

We can write these relationships in homogeneous coordinates for both the
Euclidean and image spaces. This form is known as the viewing matrix:
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u x fool|™

v =v]Y| = 0f0 Vs X =u/w,y, =v/w (2.28)
z Zs

w | 001 |

All these positions are measured in world coordinate units.

We can generalize this simple model to include a simple set of intrinsic camera
parameters: we can scale the image from world units to pixel units with a scale
factor k; we can translate the image surface center from the axis with an offset
[x0 yol; we can add a parameter s to skew the image surface frame in a simple affine
transformation. These parameters are intended to model inaccuracies in the con-
struction and operation of the camera: translation accounts for offsets between the
image sensor center and the lens optical axis; skew helps to model effects of older
video cameras; the scale factor helps to estimate the pixel spacing in the image
sensor. The result is

u' kfsx00 s s
V| = |0k y,0 i = [K 03,1 i (2.29)
W 0010 | |7 N

The left-hand 3 x 3 submatrix is known as the calibration matrix K; it has five
degrees of freedom.

This model sets the image plane to be perpendicular to the optical axis. We can,
however, use a camera model to describe the camera movements of Sect. 2.
practical.composition. The center of projection refers to the position of the lens’
optical axis; we do not have to worry about front board movements relative to the
camera frame. This camera model assumed in the camera model does not take into
account lens characteristics or depth-of-field. We can model rear board movements
using a homography that describes the translation from the default image surface
position (centered on and perpendicular to the optical axis) to its adjusted position.
By measuring these movements relative to the lens board, we can take into account,
for example, shifts of the front board (Fig. 2.46).

The position of the camera relative to a scene origin is a set of extrinsic camera
parameters. In general, we need to translate and rotate from the camera center of
projection to the world origin, as shown in Fig. 2—camera-to-world. We can write
the translation from a point in the subject to image coordinates as

" X X
v | =KRT]|s| =m ]| (2.30)
w Zg Zg
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where K is the calibration matrix, R is a 3 X 3 rotation matrix, and 7 is a 3 x 1
translation matrix. Their 3 x 4 product M is known as the projection matrix. It has
11 degrees of freedom.

2.6.3 Camera Calibration

Camera calibration experimentally determines the intrinsic and extrinsic camera
parameters. Using a tape measure to find the location of the camera relative to the
subject is slow and unwieldy; given the noticeable variations in camera manufactur-
ing, published specifications for internal parameters should be treated with skepti-
cism. Calibration algorithms extract the camera parameters from imagery.

Tsai’s calibration methods [Tsa87] have been widely influential. His method
made use of a calibration target shown in Fig. 2.47. The target consisted of a series
of black squares placed on a flat target. Tsai developed two algorithms, a coplanar
method which used one picture of a target and a noncoplanar method which used
several pictures of the target at several different vertical positions. A variation on
this approach is to put two of these targets at right angles. The corners of the squares
are used as the features. The target is designed to create a large number of easy-to-
identify targets, allowing for a good fit of the camera model in the inevitable
presence of noise. Their position can be determined using standard algorithms
such as Canny edge detection.
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Fig. 2.47 Camera calibration targets

Tsai classified the parameters as group I, which required nonlinear estimation,
and group II, which required only projective geometry equations. The coplanar and
noncoplanar procedures first computed the group II parameters and then the group
1. Both methods first estimate the rotation and translation using linear methods,
then estimate the remaining parameters using nonlinear methods.

The first step is to estimate rotation R and translation 7. For each image feature
point (X, Y4), this linear equation can be formulated to describe its relationship to
the feature in world coordinates at (X,;, Yyi> Zyi)*

—1..
Ty I
Ty_ Ly 2
~1
Yaixwi Yaiyyi Yai — Xaixwi Xaivy) | Ty Tx | = Xai (2.31)
—1
Ty lr 4
Ty s

After this system of equations is solved, the rotation matrix parameters r; and the
translation parameters T, Ty can be found. A separate test needs to determine the
sign of T,. The rotation matrix and the focal length f are then computed from the ;s.

The focal length f and the translation 7, are estimated ignoring lens distortion
using an overdetermined set of linear relationships between the feature points and
the rotation and translation parameters. Given these initial estimates, the final
values for these parameters as well as the distortion parameters ki, can be
found using standard nonlinear solution techniques. The target plane must not be
exactly parallel to the image surface; if it is, the equations in this step will become
linearly dependent.

The coplanar algorithm can be used when the scale parameter s is known. If it is
not known, the noncoplanar method must be used. This method is broadly similar
but must handle many more measurements and overdeterminism.
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In the case of video, an additional intrinsic parameter is the frame rate. Relying
on the manufacturer’s specification is once again error-prone. Our group has seen
frame-rate variations of 20% in consumer cameras; others have reported to us errors
of 0.5% in their professional equipment, which amounts to a full frame every 6.7 s.
Less attention is paid in the literature to frame-rate calibration, but we can measure
frame rate by capturing a video sequence of a visible time reference; the length of
the video will limit the accuracy of the calibration. Temporal calibration is critical
when comparing the video from multiple cameras. We will discuss multicamera
calibration in Sect. 4.multicalibration.

2.7 Image Display

Our perception of an image depends in part on how it is displayed. In this section,
we will look at how several common types of displays work and how to manage the
display process.

Images can be displayed either on paper or on electronic devices. The ink jet
printer [Nie85, All85, Bha85] provided printed computer output that was both high
quality and low cost. The inkjet printhead boils a tiny amount of ink, causing the ink
to spit out to the paper. The ink droplets are a picoliter in size, and their position on
the page can be very accurately controlled. A scanning head lays down a column of
ink jets at each horizontal position on the page; multiple scans build up the
complete image. Modern archival-quality inkjet printers may use a dozen different
ink colors to produce a wide range of colors.

Three major electronic display technologies are in wide use today: LCD, OLED,
and DLP. Table 2.1 compares the characteristics of these types of displays.

The basic element of an LCD (liquid crystal display) is a light valve. Liquid
crystals can be oriented in the presence of an electric field. Their orientation can be
used to change the valve’s polarization properties and the amount of light through
the valve. Color displays are built by adding color filters to adjacent pixels. The
LCD element does not produce its own light but instead depends on reflected or
transmitted light. The light valve cannot be made completely transparent, limiting
its dynamic range. It may also take time to change the value of a pixel, resulting in
some image persistence. Some displays use quantum dots to generate light for
LCDs. A quantum dot structure’s output wavelength depends on the size of the dot
structure, which allows the wavelength of the generated light to be precisely
controlled. A quantum dot can be pumped from a wideband light source to produce
light with more precise wavelength characteristics.

OLEDs (optical light emitting diodes, also known as amorphous OLEDs or
AMOLEDs), in contrast, generate their own light at each pixel. They make use of
special organic materials that act like the silicon semiconductors used in chips.
OLEDs are very bright and can produce vivid colors. However, they degrade with
use quickly enough that each pixel in the display contains a circuit that measures the
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g:ble 2'1. PiSpl%%ly;: ) Display type Dynamic range Gamut Persistence
< aracteristics of electronic LCD Medium Medium Medium
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OLED High Large Medium
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characteristics of the LED and adjusts the circuit to compensate for changes.
OLEDs exhibit some image persistence.

The DLP (digital light processor) makes use of a controllable reflector at each
pixel. An internal light source shines on each reflector, which can be oriented to
either reflect out toward the lens or inward to a light baffle. The intensity of the pixel
is controlled by blinking the mirror several times, with more blinks corresponding
to a brighter pixel. Color images can be displayed in either of two ways: three DLP
units, one for each primary color, or with a color wheel that alternates the color
source between the primaries. Mirrors can be manufactured to be extremely effi-
cient reflectors, so the brightness of the displayed image is primarily limited by the
brightness of the internal light source.

The useful resolution of a display is ultimately limited by the acutance of the
visual system. As with image capture, the ideal viewing distance for a displayed
image is equal to its diagonal. We saw in Sect. 2.eye that the resolution of the eye is
about 1 arc minute. This translates to a maximum useful resolution of about 4K
lines at the standard viewing distance.

Virtual reality requires extremely high spatial resolution and frame rates. HD
frame resolutions are minimal, with some systems using 4K displays. Frame rates
run at 90 frames/sec or higher.

3D is primarily used today for motion pictures, although 3D still images were
popular in both the nineteenth and twentieth centuries (e.g., the ViewMaster). 3D
image display depends on disparity between the position of objects at the two eyes
as produced by a pair of images, each shot a small horizontal distance from the
other. Still image viewing systems could use a separate optical path for each eye.
Theater or home-theater 3D systems must use a single display for both images. The
1950s 3D movie craze (Creature of the Black Lagoon, etc.) was based on mono-
chrome movies; in this case, the left and right images could be projected through
red and cyan filters, with the images separated at the eyes using red/cyan glasses.
Modern color 3D systems polarize the two images and use glasses for which each
side has a different polarization.

Early computer display software did not distinguish between the colors and
luminances in the image to be displayed and their representation on the screen. As a
result, the same image could look very different when displayed on different
devices. A device’s gamut is the range of colors it can reproduce; it is defined
relative to a color space such as the CIE color space. As shown in Fig. 2.48, several
different gamuts have been defined for different types of devices: SRGB for CRTs,
Adobe RGB for printers, and Red.2020 for UHDTV.

Color management systems are designed to separate the characteristics of a
particular computer system from the image being displayed and provide device-
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independent color. As shown in Fig. 2.49, a color management system has two
major components: a set of device profiles that describe the gamuts of devices being
used and a color management module that translates between devices. Given an
input image in one gamut, the color management module will produce a new
version of the image converted to the gamut of the output device. Many image
formats encode gamut information—for example, whether the image was taken in
the SRGB or Adobe color space.

Moviemakers take extreme care with the management of colors. A color lookup
table (LUT) is used to give the color used to represent each possible pixel value.
Filmmakers will fine-tune the entries in their LUTs to adjust the rendering of their
images onto the screen. This approach can be seen as a specialized form of color
management.

2.8 Practical Image Capture

In this section, we look at the real-world capture of photographic images: exposure,
image composition, lighting, and perspective. We close with sections on image
quality assessment and the design of shutters and irises.
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2.8.1 Exposure Settings

For both still and moving images, we need to be able to capture a still image. We do
not capture images instantaneously—we need to wait a certain amount of time to
gather enough light. But we need to control the exposure of our image surface to the
image to capture an image. In the case of still images, we do this once. In the case of
video, we capture a sequence of still images in rapid succession.

Image sensors vary widely in their sensitivity to light. In order to create a usable
image, we need to measure the sensitivity of our image sensor so that we can
determine the required exposure. The standard measure for image sensor sensitivity
is known simply as ISO, although that is an abuse of terminology (the acronym
refers to the International Standards Organization, which has issued a particular
standard on the subject). ISO numbers are known as speeds with higher numbers
indicating more sensitive image sensors. Given the logarithmic relationship of
luminance to perceived brightness, we are interested in doublings and halvings of
ISO speeds: 100, 200, 400, etc.

We control the actual exposure using a combination of two mechanisms: the iris
(also known as the aperture) and the shutter. As shown in Fig. 2.50, the iris is part
of the lens and forms an aperture that controls the amount of light through the lens.
The shutter controls the duration with which the image is exposed to the image
sensor; the shutter may be either in the lens or in front of the image sensor, although
in most digital cameras it is at the image sensor.

Shutter settings, referred to as shutter speeds, are in fractions of a second. As
with ISO ratings, we are interested in powers of two. Typical shutter setting values
are 1/30, 1/60, 1/125, 1/250, etc.

Aperture settings are also designed to change the light through the lens in
multiples of 2. The illumination passing through the iris depends upon the area of
the iris, which makes the numbering system more complicated. We measure the iris
size relative to the lens’ focal length—this allows us to use consistent iris settings
even if we change to a lens with a different focal length. The iris setting is known as
an f-stop and is pronounced simply as, for example, “f 8.” Typical f-numbers are f/
2.8,f14,1/5.6,1/8, etc. (These numbers are iris diameters generated from 27%.) A
larger number in the denominator refers to a larger aperture setting. Professional
cinematographers still use T-stop terminology, but this term is not generally used
elsewhere; a T-stop includes losses in the lens as well as the aperture. Zoom lenses
may change the amount of light they throw onto the image surface while zooming;
t-stop settings take those changes into account.

As we change focus, the distance from the lens to the image surface changes,
changing the irradiance per unit area on the image plane. We must adjust
exposure. . ..
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Fig. 2.50 Iris and shutter image sensor
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Remember that the lens’ focal length determines the angle of view of the subject
that it paints on the image surface. We identify lenses with two numbers: its focal
length and its maximum f-stop. The maximum f-stop is the widest aperture setting
available on the lens. A lens with a wider maximum f-stop is referred to as a fast
lens. Although fast is good, a large maximum aperture often brings other trade-offs
for lens design that may result in some less desirable characteristics for the lens.

Given an exposure, we can determine the shutter speed and aperture required.
The exposure measurement system typically reports directly the shutter speed and
aperture. The luminance value used to determine the exposure often is not reported.
However, we have a degree of freedom in setting the exposure due to reciprocity.
The total amount of light falling on the image surface is what matters, so by
doubling the f-stop and halving the shutter speed (or vice versa), we maintain the
same exposure. For example, an exposure of f/5.6 at 1/125 sec is equivalent to f/8 at
1/60 sec and to f/4 at 1/250 sec. Reciprocity gives a great deal of freedom: faster
exposure times allow us to reduce motion blur; smaller apertures give us greater
depth-of-field. We can therefore select the combination of shutter speed and
aperture best suited to the type of image we want to capture. Reciprocity also
allows us to refer to changes in exposure in terms of stops—for example, increasing
or decreasing the exposure by one stop. We also mix our metaphors with phrases
such as “one stop slower” or “one stop faster.” (Reciprocity may fail in extreme
cases in some types of image sensors, particularly very long exposure times.)

We sometimes refer to exposure in terms of exposure value or EV. An EV
reading describes luminosity, so we can turn it into any combination of shutter
speed and aperture we want. Using EV allows us to succinctly describe light
intensity without adding caveats about reciprocity.

2.8.2 Which Exposure Setting?

However, determining what exposure is best to capture a given scene is not always
simple. We face two problems: we need to choose how to represent luminances in
the subject as tones in the final image; and we need to know the subject to know
what luminances in the scene to measure.

The first reality we need to face is that we can make any part of subject appear to
be white or black in the final image simply by changing our exposure. Figure 2.51
shows three different exposures of a standard reference card known as a gray scale.
The middle exposure is a nominal value; the top one EV more exposure; and the
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Fig. 2.51 Changing exposures changes the tonal representation of the subject

bottom strip received one stop less exposure. Changes in exposure result in the steps
in the gray scale changing their tones in the final image. This example shows us the
limits of representation of the world by photos. When we look at an image, we
cannot say that a given object in the scene was white or black. We can only say that
it was rendered so in the image.

We therefore face a choice in how we render the subject as tones in the image.
Although image manipulations that we will discuss in Chap. 4 will allow us to
change the tones of parts of the image selectively, exposure will change all the tones
in the subject in lockstep as we increase or decrease the exposure.

We will use a light meter to measure light intensity so that we can determine our
exposure. Ultimately, we will use the camera itself as a light meter, but imagine for
a moment that our meter is a separate instrument. A light meter is calibrated to give
an exposure that results in a mid-level gray image. Unfortunately, manufacturers do
not agree on the definition of mid-level gray. Different cameras or light meters may
be calibrated to different standards, resulting in slightly different results. We have
no clear, well-accepted definition of a mid-level gray. We will use the term mid-
level gray without assuming a particular meaning. Since most scenes do not provide
an obvious mid-level gray, we can use a gray card as a reference. Many gray cards
are printed to an 18% reflectance. Some authors, including Adams, have equated
the 18% reflectance value to mid-level gray, but the lack of a common standard for
calibration means that different light meters may render that reflectance to different
gray levels.

Figure 2.52 shows two different techniques we can use to find a reference
exposure that will render the image with standard tonality. Incident metering
measures the light falling on the subject. Reflective metering measures the light
reflected from the subject toward the camera.
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Fig. 2.52 Incident and reflective metering

Fig. 2.53 Mis-exposure
due to the reflective
characteristics of the subject

If the light reflected from a subject is measured to directly find an exposure, the
result may be a misrendering of the subject. A simple example is a piece of white
paper, shown in Fig. 2.53. The image was exposed using a reflective metering off
the paper. The result was an exposure that rendered the paper mid-level gray.

In order to determine the proper exposure for an image, we need to know the
subject and have some idea of how we want to render it. For example, many photos
of people are shot against bright lights or windows. An exposure based on the total
amount of light in the scene results in the exposure favoring the background but
leaving the face very underexposed and hard to read. Figure 2.54 shows two selfies:
one exposed primarily for the face tones and another at -2EV relative to the face-
weighted exposure. The face-weighted exposure renders the face well, but the scene
outside the window is blown out. Reducing the exposure gives more detail of the
background, but the face is now darker.

The Zone System of Ansel Adams [Ada02B] helps us understand the process of
choosing an exposure. The Zone System was formulated in the film era, but it still
offers us many lessons. Adams divided tones into 11 zones labeled with Roman
numerals: 0 for black through X for white. Zones are separated by one stop. The
zones correspond to the range of luminances that can be captured by film; some
image sensors provide somewhat wider dynamic range, as we will discuss in
Chap. 3. Figure 2.55 shows some regions of a photo labeled with their zones.

Previsualization is Adams’ term for thinking about how you want the photo to
look and deciding on the tones to be used in the image. If you choose a part of the
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face-weighted exposure -2EV

Fig. 2.54 Photographs of a face with backlighting

image and decide what tone should be used for it, you can then choose your
exposure accordingly. Zone V corresponds to 50% gray, so a meter reading of
that part of the subject will produce a 50% gray tone in the image. You can change
the zone at which the object is rendered by changing the exposure: Zone VII, for
example, requires increasing the exposure by two stops and Zone III is reached by
reducing the exposure two stops.

If exposure was our only tool, picking the zone for an object in the image would
determine the tones of everything else in the image as well. We will see in Sect. 4.3
that we can use image manipulation tools to compress or expand the range of tones;
Adams accomplished the same goal by changing the development time of film.
Figure 2.56 shows an image before and after its tonal range has been adjusted.

Adams recommends that photos be previsualized to contain both a solid white
and a solid black so that the eye has proper reference points. His recommendation is
consistent with the anchoring heuristic that we introduced in Sect. 2.3, which
suggests that the visual system adjusts itself relative to the darkest and lightest
parts of the image.

We would like our camera to help us find good exposures for our image. In the
case of simple images, we would like the camera to make all the decisions—we
want the camera to previsualize the image for us and decide what camera settings
achieve the photo we desire. We would like its assistance when we take on more of
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Fig. 2.55 Example zones in a photo

the artistic responsibilities to ourselves. We will explore these topics in more detail
in Chaps. 3 and 4.

2.8.3 Color Temperature

Just as we can render luminances in the image into many different tones, we can
also render color in different ways. The color temperature of the illumination
influences the color received by the image sensor—the subject cannot reflect
color wavelengths that it does not receive from the illumination.

Much as we can affect tonalities by changing exposure, we can change the
captured color of an image by changing its illumination. Common forms of
lighting—fluorescent, incandescent, and tungsten—operate at different color tem-
peratures. A light source with the characteristics of daylight can be created from
LEDs, either by using red, blue, and green LEDs or a single LED and phosphors to
generate the lights of the other colors. Control circuits can be used to vary the
relative outputs of red/green/blue LED arrays to provide a variable color temper-
ature light source.
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before
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Fig. 2.56 An image before and after tonal range adjustment

In order to render the image naturally, we need to correct for the color temper-
ature of the illumination. Many cameras allow you to select the type of light to
provide a preset color correction. We will look at automated color temperature
correction in Sect. 3.post.whitebalance.
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2.8.4 Image Composition

The composition of an image—the arrangement of elements within the image—is
an important aspect of its previsualization. Poor exposure choices may leave parts
of the image with undesirable tones. We want to choose exposure to make sure that
important subjects in the image are rendered in a suitable tone.

Unfortunately, no simple rule tells us where the subject of a photograph should
be. As we saw in Sect. 2.3, the visual system scans the scene to build up its view.
Our retina is incapable of viewing a large area at high resolution. As a result, good
photographs (an admittedly subjective term) give the eye several interesting things
to look at in different parts of the photograph. Those elements may be people,
recognizable objects, or simple textures such as the leaves of a tree.

A simple and surprisingly effective rule for the placement of compositional
elements is the Rule of Thirds, shown in Fig. 2.57. Divide the image into thirds both
vertically and horizontally, then place elements at some or all of those intersections.
The Rule of Thirds gives us several natural positions to spread interesting elements,
neither too far apart nor too close to each other or the borders.

The Golden Ratio is a more sophisticated and elegant rule for composition that is
widely used in all types of art. In Fig. 2.58, the ratio a/b is equal to the ratio a + b/a.
This allows us to repeatedly subdivide the rectangle into smaller and smaller pieces
that all satisfy the Golden Ratio.

Many aspects beyond simple placement of interesting objects play into compo-
sition. Depth-of-field is an important cue for attention. We can control depth-of-
field using the aperture: wide apertures give less depth-of-field, while narrow
apertures give more. Figure 2.59 shows photos of a still life taken at several
different apertures. The shot taken with the wider aperture renders the flowers at
the back of the bush somewhat out of focus and the porch as very unfocused. The
small aperture shot renders the background with much finer detail. Deep depth-of-
field is often important for documentary or technical photographs, but in some
situations, it results in distractions from the main subject. The bokeh of out-of-focus
objects can also be used as an artistic element. Some cameras that use stereo
information can be used to rerender backgrounds with bokeh.

Perspective is a natural phenomenon that can also be used to dramatic effect.
Figure 2.60 shows a simple example: the two lines are parallel, but as they move
farther away from the camera, their separation becomes a smaller fraction of the
angle of view. As a result, they appear to move together. At the horizon, they appear
to join together at the vanishing point.

Perspective effects can be seen at any orientation. Figure 2.61 shows examples
of horizontal and vertical perspective. Perspective effects are hard to perceive
directly, thanks to the constancy mechanisms of the human visual system. Careful
and relatively slow observation of a building, for example, can reveal its vanishing
points, but we normally do not pay attention to small perspective changes.

We can control some aspects of perspective as well as sharpness by controlling
the relative position of the image surface and lens. We have assumed that the lens
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and image surface are centered on a common axis, but this does not need to be the
case. A view camera provides several degrees of freedom for both the lens and
image surface; these movements can be used to manage perspective. We will
discuss the mathematics of perspective correction in Sect. 4.9.

We can also use camera motions to control sharpness. The Scheimpflug rule
[Kod88] is illustrated in Fig. 2.62. The image surface, lens plane, and subject plane
all meet at a single point. As a result, the image plane captures the maximum depth-
of-field.

Lighting provides important depth cues as well as drama. Highlights and
shadows can illustrate the shape of an object. Rim lighting—a light behind the
subject—provides a glowing boundary for the subject.

Composition for video generally follows the rules for still images while adding
additional techniques. The basic types of cinematic shots are named relative to the
scene and the people in it: an establishing shot shows the entire scene; a two-shot
shows two people; a medium shot shows the upper portion of a person; and a close-
up concentrates on the person’s face. Cinematic tradition holds that D. W. Griffith
on Birth of a Nation. The films of John Frankenheimer, for example The Manchu-
rian Candidate, provide examples of strong composition as a dramatic tool. Motion
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1/200 sec, f/7.1

1/40sec, f/16

Fig. 2.59 Depth-of-field at several different apertures

picture scenes are often shot with shallow depth-of-field to encourage the viewer to
avoid visual distractions.

Camera movement—horizontal movement is known as panning—can be used
both to reframe the scene and to provide drama. Hitchcock’s Rope was composed
entirely of 10-min shots, each shot consuming an entire reel of film. Zoom lenses of
sufficient quality for cinematic use became available in the 1960s, leading to a
decade of shots in which zoom was used to dramatically change framing.
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Fig. 2.60 The vanishing vanishing point
point of a pair of parallel
lines

Fig. 2.61 Examples of horizontal and vertical perspective

Fig. 2.62 The Scheimpflug camera »
rule for depth-of-field

Careful planning of shots helps to give the viewer a consistent point of view. The
180 degree rule is a simple example. As shown in Fig. 2.63, placing the camera on
one side of the subjects gives them one relative position, in this case actor A to the
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Fig. 2.63 The
180 degree rule

Fig. 2.64 Shooting dialog
from complementary
positions
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left of actor B. If the camera were moved to the opposite side of the line, actor B
would be to the left of actor A. Figure 2.64 shows the placement of cameras to
capture a dialog between two actors. Actor A is shot by the lower camera, while
actor B is shot by the upper camera. The positioning of the camera mimics to some
extent the position of the other actor to give the sense that each actor is talking to the
other.

Transitions are critical elements that help to distinguish cinema from still
photography. Films are composed of many individual shots that are composed
together. Several types of transitions can be used, each with their own application
and meaning:

» Cuts move immediately from one shot to the next.

¢ Fades may go out to black (or some other color) or come into the scene from
black.

« Dissolves overlap frames from two shots for a short interval, with one fading out
while the other fades in.
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* Wipes move a line or other shape across the screen that provides a boundary
between one shot’s frames and the next.

Montage was one of the fundamental discoveries of cinema. Montage was
discovered by Soviet filmmakers in the 1920s who found that viewers inferred
meaning from the juxtaposition of two shots. The Kuleshov effect demonstrates the
phenomenon. The experiment combined a shot of an expressionless actor alternat-
ing with three other shots: a plate of soup, a girl in a coffin, and a woman on a divan.
Audience members who saw the sequence believed that the actor’s expression was
different in each case even though all three shots of the actor were the same.

2.8.5 Image Quality Assessment

The assessment of image quality is no simple matter. Not only does the quality of an
image depend on every component in the imaging chain—lens, image sensor, and
display—but it also depends on the characteristics of the human visual system.

The modulation transfer function of the eye changes with illumination level
[Sch64]. Lower illumination levels result in an ability to resolve somewhat lower
spatial frequencies.

Katz’s formula [Cox66] suggests that resolutions of components of a system be
combined as

1 1 1
R = R? +Ri (2.32)
This formula is heuristic and not based on detailed vision science.

Higgins and Jones [Hig52] found that resolving power does not correlate well
with the subjective experience of sharpness.

The term acutance is often used as a measure of picture contrast. The most
general definition of acutance at a given point is the gradient of image density. We
can also calculate acutance using samples. Consider the response to a grating—a
spatial square wave—as shown in Fig. 2.65. We choose a region of the response
curve of length / from a local maximum to the next local minimum. We divide the
region into equal-sized strips of width a =//n. Each strip has a density D; and
a density slope (change in density from left edge to right edge) r;. Acutance is
defined as
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where D, and D,,;, are the maximum and minimum density values, respectively.
Kodak defined a formula for the combination of acutance and resolving power
R [Cox66]:

K=A(1-e"%) (2.34)

If resolving power is expressed in lines per mm, then ¢ = 0.007. Both acutance and
resolving power are important to an overall sense of sharpness. But given that the
visual system prefers to have solid black and white areas in an image, acutance is an
important feature of perceptual acceptability.

Subjective quality factor (SQF) [Gra72] is widely used to measure perceived
quality of a rendered image. SQF compares image metrics to a subjective and
undefined notion of quality. Granger and Cupery used a panel of viewers to evaluate
quality of images; they did not define quality for the panelists in order to elicit a
natural and comprehensive reaction to the test images. They defined SQF as
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Fig. 2.66 Response to a
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The outer integral is taken over the range 10 — 40 lines/mm, the range in which
the visual system has a high MTF as shown in Fig. 2-eye-mtf. The inner integral is
performed in polar coordinates to take into account both horizontal and vertical
resolution: f is the spatial frequency in cycles/mm at angle 0; d(logf) is the radial
optical transfer function (MTF + optics); and K is a normalizing constant deter-
mined by integrating at d =1. Granger and Cupery developed a log periodic test
chart to evaluate SQF and quality. As illustrated in Fig. 2.66, for a lens of typical
quality, the target’s modulation is proportional to the system MTF.

The IEEE Standard for Camera Phone Image Quality (CPIQ) Working Group
has developed its own definition of acutance. Both metrics combine the modulation
transfer function of the imaging system, the contrast sensitivity function of the
human visual system, image display height, and viewing distance.
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2.9 Summary

Images are the result of manipulating light—we cannot see or take pictures without
an optical system. Some simple characteristics, such as focal length and maximum
aperture, give us quite a bit of information about a lens and the nature of the image it
throws. We can use our understanding of lenses and imaging to throw a wide range
of images of a scene, all with different characteristics. There is, however, single no
best image to represent a scene. The image we want to capture depends on the uses
to which the image will be put and the equipment we use to capture and display the
image. Photographers can improve the quality of image they create by
previsualizing the image they want and determining how to produce that result.
We will spend the next two chapters studying how modern digital cameras can
autoprevisualize images to create good-looking results with little or no input from
the photographer.

Further Reading

Feynman [Fey10] is the go-to reference for physics. The Focal Encyclopedia of
Photography [Per07] is an excellent reference on photography. Palmer [Pal99]
provides a deep introduction to vision science. Arnheim [Arn74] relates vision
and perception to art. Imaging and Perception provides a number of insights into
the photographer’s relationship to perception. The argument on the relationship
between quantization and read noise is a very simplified version of a proof by
Abbas El Gamal.



Chapter 3
Image Capture Systems and Algorithms

3.1 Introduction

This chapter considers the design of cameras and all the processes that are required
to perform the initial processing of an image. We will concentrate in this chapter on
algorithms that provide traditional photos, such as sharpening and compression.
Imaging chain algorithms must be designed for efficiency. We measure efficiency
along several axes:

» Execution time. Cameras—both still and video—are real-time systems. We care
about the rate at which we can capture, process, and store images. Algorithms
must be designed to run fast. We are also concerned about variations in their
execution time, which can require additional buffer memory that imposes other
costs and limitations.

o FEnergy and power consumption. Energy and power are related but distinct
concerns. Energy is important because most cameras are battery-powered;
lower energy per consumption per image results in more images per battery
charge. Energy-efficient algorithms and systems must avoid unnecessary or
duplicative work. Power consumption—energy per unit time—is important in
large part because of thermal requirements. Power consumption results in heat.
Thermal power dissipation is the primary limitation on performance in high-
performance computer systems [Woll7]. Heat generated in a camera can also
affect sensor performance—most device and circuit noise increases with tem-
perature, typically exponentially.

e Memory bandwidth and capacity. Multimedia algorithms are memory-intensive.
Memory and mass storage devices can absorb and produce data at limited rates.
High memory access rates can limit system performance; it can also drive up
energy and power consumption. We are also concerned with the total memory
usage of an algorithm. Certain parts of the imaging pipeline, particularly those
near the image sensor, provide only constrained amounts of memory. Sloppy use
of buffer memory can, for example, limit the number of images in a burst.

© Springer International Publishing AG 2018 67
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This chapter concentrates on the capture of images in digital cameras. We will
start with a review of the camera design space. We will then analyze the design and
characteristics of image sensors. We will next look at algorithms used preexposure
and postexposure. We will then consider the computer architectures required for
cameras. We will consider image characteristics and multicamera systems. We will
close with a second look at trade-offs in camera design, based on our more nuanced
understanding of the camera design space.

3.2 The Generic Camera Architecture

Figure 3.1 shows an architecture for a generic digital camera. While simplified—
particularly in the case of memory—this block diagram shows the major compo-
nents of a camera that applies to a broad range of realistic camera designs. It also
applies to both video and digital still cameras.

The image capture subsystem renders an image onto the image sensor. The
image capture unit may or may not include mechanical elements for focus and
zoom, but most will include an iris as well as an electronic or mechanical shutter. A
filtering engine performs early processing steps on the image. The results are then
fed into a compression engine. The results are written to a mass storage device; they
may also be rendered onto the display. More advanced cameras also include an
image processing unit which may include a digital signal processor (DSP), a
graphics processing unit (GPU), and specialized accelerators. A host processor or
processor controls camera operation. A display is used to preview images, display
captured images, and support the user interface. Modern digital cameras rely on
sophisticated multiprocessors to perform their complex processing.

An important component of many digital cameras, particularly small ones, is a
speaker through which the camera plays camera sounds. Users still expect cameras
to make the sound of a mechanical shutter and film advance even though they do not
have these mechanisms. Many cameras play prerecorded sounds to enhance the
user’s camera experience.

Fig. 3.1 A generic digital
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3.3 The Camera Design Space

The space of cameras that can be designed is large and multidimensional. To make
good choices in the design of cameras, we need to understand the nature of the
design space and the constraints that determine its shape.

3.3.1 Trade-Offs

The physical world affords us very few free lunches. As a result, the principal goal
of engineering is to understand the trade-off's inherent in any design scenario. In the
case of consumer electronic devices like digital cameras, the trade-offs are stark and
easy to understand: we want our cameras to be extremely small, have infinite
battery life, deliver perfect quality results, and cost essentially nothing. We cannot
achieve all of those goals simultaneously. Instead, we must understand the relative
cost that improving the camera’s performance on one goal will take on its other
goals.

Let us understand some of the major goals for digital cameras in a little more
detail. Realistic designs may take into account other goals as well, for example,
durability and reliability. But this design space gives us good insight into why
digital cameras look and operate the way they do. A complementary notion to
design space is use cases—the scenarios under which we use a system. Different
use cases often require systems carved from different parts of the design space.

Image Quality As we saw in Chap. 2, image quality is a complex topic, and we
may judge different imaging systems as being of higher quality depending on what
image characteristics we consider most important. But whatever we mean by image
quality, some cameras simply do not need to produce very high-quality images—
adequacy is more than sufficient in many use cases.

Physical Size Many use cases require small physical size. Overall physical size is
an important goal. Thinness relative to the optical axis is particularly important in
many consumer electronics use cases, smartphones being an obvious example. The
size of the camera itself and the physical size of the user interface may be at odds.
Smartphones can include very small cameras while still using a large display that is
needed for other smartphone functions. Many professional cameras are physically
large in part to provide multiple buttons and dials as well as a dedicated display.

Cost The manufacturing cost of a camera comes from several different sources:
the cost of its components, assembly cost, software cost, and the cost of intellectual
property licenses.

Power Consumption and Battery Life Digital cameras require electric power to
operate; this power almost always comes from batteries. We want our batteries to be
both long-lived and physically small. These two requirements are at odds thanks to
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the most fundamental physical principles. Small, powerful batteries require high
energy densities. The energy density of modern battery chemistries already
approaches that of high explosives [Woll17].

3.3.2 Use Cases for Cameras

Use cases help us understand the requirements for systems. We can identify several
common use cases for digital still and video cameras.

Still or Video Snapshots Snapshots are taken by non-expert photographers or
perhaps knowledgeable photographers who do not want to worry too much about
the process. These photos are often of people, though scenery may play a role as
well. The photographer relies on the camera to deliver a usable picture or video. No
additional lighting is provided; the available lighting may be poor.

Portraiture Portraiture is taken by experienced photographers in more controlled
conditions. Portraits may be full-body or close-ups; they may include one or several
people. The camera is typically within a few meters of the subject. Controlled
environments and lighting are typical.

Landscape or Architectural Photography Photography or videography of natu-
ral scenes or buildings shares many characteristics with portraiture. However, the
subject is usually much farther away from the camera, and the photographer has
limited ability to control lighting.

Electronic News Gathering Electronic news gathering is videography performed
under a wide range of conditions. The subjects may be people or events; the
situations may be indoor or outdoor. The videographer is experienced but does
not have much time to set up or monitor the camera.

Studio Videography Studio videography, such as for scripted television or cin-
ema, may be taken indoors or outdoors. The videographer generally has more time
for setup and monitoring. Several cameras may run simultaneously to capture the
scene.

Technical and Scientific Technical and scientific uses for cameras range from
laboratory studies to machine vision for manufacturing systems. These photographs
may be taken either using a standard or specialized camera.

3.3.3 Four Examples of Camera Designs

Four different types of cameras cover the design space and use case space very
well—webcams or surveillance cameras, smartphone cameras, mirrorless and SLR
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cameras, and video camcorders. By comparing these four types of cameras, we can
better understand the trade-offs inherent in digital camera design.

Webcams or Surveillance Cameras Webcams are accessories for computers;
they may be built-in or plug-in accessories. Surveillance cameras stream video
over a network to a server. They are designed to be small and inexpensive. Image
quality is a secondary consideration. The webcam is powered by its host computer;
the webcam’s power consumption is a small fraction of the power consumption of
most host computers. Webcams also operate under very different user interface
assumptions than do our other categories. Much of the camera functionality is
provided by software running on the host, not by software embedded in the webcam
itself. This both reduces the cost of the camera and limits some aspects of its
operation. Surveillance cameras require a little more computational support since
they have to generate compressed video, but they also rely on the host for most
device control operations.

The low-cost, small-size, and simplified operation of webcams all play together
to determine its optical design. Webcams generally use simple lens systems with a
small number of elements made from plastic. The lenses operate at small apertures
to avoid the need for focusing—as a result, the lens has no moving elements. The
lens is operated at a small focal length, which contributes to improving the parfocal
distance and the range over which the camera stays in focus. Webcams have
relatively small image sensors. As a result, the lens can have a short focal length,
contributing to its small size.

The small aperture of the lens and image sensor both limit the webcam’s image
quality. As we will see in Section 3.sensor, small image sensors are more sensitive
to noise, in particular electronic noise that is most visible at low illumination levels.
The small aperture produces low illuminance levels, which make these noise
sources more visible in output images.

Webcams are used for both still and video capture. Support for both is provided
primarily by the host, as is storage.

Smartphone Cameras Smartphones are designed at a somewhat higher price
point than are webcams, although they are still inexpensive relative to dedicated
mirrorless and SLR cameras. They are physically very small, with thickness a
particularly important design constraint. They are intended to produce higher-
quality images than are most webcams and designed at a higher price point.
Smartphone optics are generally more capable than their webcam counterparts.
Many provide focus and zoom. Given the small lens size, the elements can be
moved by relatively simple mechanisms such as voice coils. These lenses are,
however, simple relative to their mirrorless/SLR and camcorder counterparts.
Smartphone image sensors are very small. Their size is often determined more
by depth than by width and height constraints. Figure 3.2 shows a cross section of a
smartphone with its lens on one side and the image sensor on the other. The
camera’s width is approximately equal to the focal length of the lens. A 7 mm
thick camera, for example, would allow a lens with a focal length of about 7 mm. If
we assume a normal focal length lens, this gives an image sensor diagonal of 7 mm.
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Fig. 3.2 Smartphone size
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Even a wide-angle lens equal to half of the normal focal length would give a 14 mm
diagonal image sensor. As a result, they suffer from the same low-light noise
limitations that constrain webcams.

Smartphone cameras are also part of larger devices, as with webcams, but
smartphones are much more tightly integrated than are laptop and desktop com-
puters. Smartphone processors provide specialized architectural features to support
camera operations, including both still and video. Smartphone cameras are also
constrained by limitations on battery capacity.

Mirrorless and SLR Cameras While these two categories are considered to be
very different by the enthusiasts and professionals they target, they are quite similar
under the hood, differing mainly in their viewing mechanisms. Mirrorless cameras
use electronic viewfinders, while single-lens reflex (SLR) cameras use optical
viewfinders.

Both are physically much larger and heavier than smartphone cameras. They
rely on much larger image sensors and optical systems. As a result, they provide
better operation under low-light operation. Their optical systems are complex, with
lenses composed of many elements and powerful motors for focusing.

Camcorders Camcorders are optimized for video rather than still imagery. They
are otherwise quite similar to mirrorless cameras. They may provide a wider range
of video formats and settings than an SLR or mirrorless camera. They also provide
features useful for videography. One example is zebra stripes, white stripes over-
laid on the viewfinder image to identify overexposed areas of the frame. Many
camcorders also provide neutral density filters to adjust exposure given that video
provides fewer options for shutter speed than does still photography.
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3.4 Image Sensors

This section studies image sensors in detail. Our goal is to use device physics and
circuits to understand the imaging characteristics of sensors. After introducing
some concepts in image sensor architectures, we analyze the characteristics of
photosensors. We then study the two major types of silicon sensors: CCD and
APS CMOS. We briefly consider advanced imagers such as time-of-flight and
infrared sensors. Section 3.sensor.analysis uses these results to analyze the imaging
characteristics of sensors. We close with a brief consideration of shutters, both
electronic and mechanical.

3.4.1 Image Sensor Architectures

Image sensor size is one important parameter of an image sensor. Figure 3.3 shows
the relative sizes of several common still image sensors. As you can see, these
sensors range in size by over an order of magnitude.

Pixel size and pixel count are also important parameters; sensor size alone does
not give us a great deal of information about the sensor’s resolving power. Pixels
generally range between 1 and 50 um on a side. Pixel counts can vary widely from
1 to 100 megapixels. As we will see in Section 3.sensor.analysis, the resolution of a
sensor depends on both its pixel size and its pixel count/image sensor size ratio.
Noise is a key limitation on sensor performance; we will see that the most important
sources of noise in image sensors are shot and reset noise.

The two major device designs for image sensors are the charge-coupled device
(CCD) and the CMOS image sensor; we will discuss their design in more detail in
Sections 3.sensor.ccd and 3.sensor.cmos. The CMOS image sensor now dominates
many digital camera categories thanks to its low-cost manufacturing technology.
However, CCDs are still used in some video cameras and have technical advantages
that make them superior for high-performance applications.

Silicon is sensitive to all wavelengths of visible light, although it is most
sensitive to red and infrared. We can sense color using color filters. By fabricating
a color filter on top of each pixel, we can control the light that is allowed onto the
pixel’s photosensor. The most common pattern for color filter arrays is the Bayer

Fig. 3.3 Image sensor

formats medium format

35 mm

smartphone



74 3 Image Capture Systems and Algorithms

Fig. 3.4 The Bayer pattern

pattern [Bay75], shown in Fig. 3.4. The Bayer pattern forms a 2 x 2 pattern that is
replicated across the image sensor. It uses two green filters to complete the pattern.
The human eye is most sensitive to green, so the pair of green pixels can be used to
approximate a luminance signal.

An alternative approach to color sensing was taken by the Foveon sensor
[Lyo02]. It used stacked photodetectors: blue closest to the surface at a depth of
0.2 pm, then green at 0.6 pm, and then red at 2 pm. The stacked photosensors take
advantage of the fact that the depth of penetration of light into silicon depends on
wavelength. The color accuracy of the sensor depends on the depth accuracy of the
fabrication of the photosensors.

Some camcorders use three CCDs, one for each primary color, and an image
splitter to divide the incoming image to the separate image sensors. A few profes-
sional still cameras may also use a sensor without a color filter array and an external
color filter wheel to successively capture red, green, and blue images.

Interlacing divides a video frame into fields with alternating lines—for example,
all even lines in one field and all odd lines in the other. The fields are displayed
sequentially. Interlacing was originally developed for early analog television sys-
tems to reach the flicker fusion rate at the lower frame rates possible at the time.

Many video image formats come from the US HDTV Grand Alliance specifi-
cation: 1080p is 1920 x 1080 (columns x rows) in progressive format; 10801 is the
same number of pixels but interlaced; and 720p is 1280 x 720 pixels in progressive
format. These standards use the Rec. 709 color space. The UHD Alliance has
defined ultrahigh-definition formats: 4 K UHDT is 3840 x 2160 pixels and is
sometimes called quad HD and 8 K UHDTYV is 7680 x 4320 pixels. These formats
allow for both the Rec. 709 and Rec. 2020 color spaces to be used. The DCI
standard measures slightly larger at 4096 x 2160 pixels.

Video is often encoded in luminance + chrominance format; YCrCb is one
example. These formats may represent chrominance at lower spatial resolutions
than is luminance. The n:n:n style is used to describe these formats: 4:4:4 samples
both luminance and chrominance at full spatial resolution; 4:2:2 samples chromi-
nance at half the spatial resolution of the luminance signal in both the horizontal
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and vertical directions; and 4:2:0 alternates sending the two chroma signals on
different frames, each at half the spatial resolution of luminance.

Some image sensors use back-side illumination. Traditional integrated circuits
are fabricated with transistors at the top surface of the chip, with interconnection
layers placed above. The back-side illumination scheme allows light in from the
bottom of the chip to feed the photosensors on the opposite side. The chips are
ground down to reduce the distance from the rear surface to the photosensor.
Stacked sensors combine back-side illuminated sensors with other chips connected
to the reverse side of the chip. The large number of connections and their relatively
low parasitic impedances allow a variety of advanced features to be built, including
high bandwidth and high frame rate sensing as well as attached processors.

3.4.2 Photosensors

Figure 3.5 shows the optical absorption coefficient a of silicon as a function of
wavelength; the penetration depth is equal to the inverse of the absorption coeffi-
cient. Light in the red and infrared range penetrates most deeply into silicon. The
dopants used to create n-type and p-type regions can be used to tweak the wave-
lengths to which the material is sensitive.

Sze analyzes photodetectors using the photoconductor [Sze81], which is a block
of semiconductor with ohmic conducts at each end separated by length L. Photons
absorbed by the semiconductor produce hole-electron pairs; the proportion of
carriers generated by photons is known as quantum efficiency n. The primary
photocurrent is
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where u,, is the carrier mobility, 7 is the carrier lifetime, P, is the optical power
input to the device, and % is Planck’s constant. The photocurrent gain is

T L
AOpt:l_r’T:E' (3.2)
t, is the carrier transit time and the recombination rate is 1/z. The response time
depends on the transit time, which in turn depends on the distance over which the
carrier must travel and the electric field which accelerates it.
The noise current in the photoconductor consists of three components: thermal
noise, shot noise, and 1/f noise. The mean-square thermal noise, also known as
Johnson noise, due to the device conductance is [Sze81]

ig, = 4kTGB (3.3)

where B is the bandwidth of the device. The shot noise is proportional to z/t,.

The dark current is the current produced by the device when no illumination is
applied. The bulk of dark current comes from recombination generation processes.
A major source of dark current is traps in the silicon [Seq75]. This bulk recombi-
nation generation current is proportional to

1 Xd

3 n,Tn (3.4)
where #; is the intrinsic carrier concentration, x, is the width of the depletion region,
and 7, is the minority carrier lifetime. Dark current from midband interface states
can be analyzed in a similar way.

A photodiode uses a pn junction to collect photocurrent. A photodiode may be
made as either a pn or pin (intrinsic) device. Photodiodes may be operated in either
of two modes: photovoltaic mode operates at no voltage across the diode; photo-
conductive mode operates with a large reverse diode voltage. Shot noise dominates
in photovoltaic operation. The photodiode capacitance is proportional to the Debye
length and so is proportional to the inverse square root of the doping [Sze81].

1/f noise occurs in many physical systems, including photodetectors, but its
physical basis is poorly understood. In this case, fis the modulation frequency; 1/f
noise is highest at low frequencies. Tian and El Gamal [Tia00] analyzed 1/f noise in
APS sensors. Their analysis was based on a model for MOSFET 1/f noise based on
the ability of gate oxide traps to capture channel carriers. This model predicts that
1/fnoise is inversely proportional to gate area. They applied this noise model to the
APS cell and found that the model predicts significantly higher noise values than
does the traditional 1/f model. They also observed that 1/f noise in successive
samples is highly correlated because the noise in each sample is generated by the
same traps. As a result, double correlated sampling may actually increase 1/f noise.
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A phototransistor is a photodetector that uses transistor action to amplify the
resulting signal. Both bipolar transistors and MOS structure can be used as
phototransistors [Sze81]. In the case of a bipolar transistor, the photodetector is
located at the base, causing a base current that is amplified in the emitter-collector
current. A phototransistor based on an MOS capacitor is known as a photogate as
shown in Fig. 3.6. The fact that the silicon gate absorbs a great deal of the blue
spectrum limits the color response of the photogate. Photons pass through the gate
and silicon dioxide into the device’s channel region where they may be absorbed.
The channel may be doped with various agents to adjust the wavelengths at which
the device is sensitive. An applied gate voltage creates a depletion region in which
minority carriers are collected. The gate voltage can be adjusted to change the depth
of the channel’s potential well relative to that of the source/drain region and
selectively move the collected carriers to the source/drain. Some light is absorbed
by the gate; windows may be cut into the gate to increase its transmissivity.

3.4.3 Charge-Coupled Devices

An image sensor is more than an array of photodetectors—we need to be able to
read out the photodetector values quickly and accurately. The charge-coupled
device (CCD) [Boy70] was the first practical solid-state image sensor.

The CCD is based on an array of MOS capacitors. The gate voltage (upper plate
voltage) of the MOS capacitor can be used to control the depth of a potential well;
with a high applied voltage, a deep potential well can be stored that can store a large
number of electrons. The potential well depth is proportional to gate voltage, so we
can manipulate collections of electrons using the relative gate voltages of adjacent
MOS capacitors. An example three-terminal CCD [Seq75] is shown in Fig. 3.7.
Each MOS capacitor is controlled by a clock phase ¢, ¢,, and 3. When ¢, is high,
its potential well holds a collection of electrons. As we raise lower ¢, and raise @3,
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Fig. 3.7 Operation of a three-phase CCD

potential well

we can move electrons to the next MOS capacitor much as we might move marbles
on a bedsheet. In this design, three terminals are used so that a barrier is introduced
between each pair of active MOS capacitors.

3.4.4 APS CMOS Image Sensors

CCDs require specialized manufacturing processes. In contrast, the APS image
sensor shares many similarities to dynamic RAM and can be made on processes
similar to those used for DRAM. As a result, APS CMOS image sensors have come
to dominate the market. CCD sensors are still used for applications where
extremely low noise is required.

As shown in Fig. 3.8, an APS image sensor is organized much like a memory
array but with continuous analog rather than discrete values. The pixel values are
read a row at a time; horizontal signals provide row control. A column of pixels are
connected to a bit line; circuitry at the end of each bit line reads the value from the
bit line and transfers it to an analog shift register for readout. Capturing a frame
proceeds in three steps:

* All pixels are reset simultaneously.

e All pixels are exposed simultaneously, with each integrating its own pixel
illumination level.

» Pixels are read out a row at a time.

Figure 3.9 shows the schematic for an APS pixel cell based on a photodiode
[Nix96]. A capacitance Cpq is used to integrate the photodiode current during the
sample; this capacitor can be formed by a floating diffusion region. The reset
transistor, when turned on, resets the capacitor voltage. The row transistor M,
operates as a source follower to provide current gain. When the row signal is
enabled, transistor M,,,, connects the amplified pixel value to the bit line.

Figure 3.10 shows the sample-and-hold circuitry in the column. The sample-and-
hold circuit itself is formed by the sampling transistor M,mpie and sampling
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capacitor Cy. My, y acts as a source follower for the column. To reduce noise in the
circuit, a double sampling circuit is used to grab samples of both the reset value and
the pixel value.

The sample-and-hold circuitry is connected to the remainder of the column
readout circuits. Readout is designed to minimize two types of noise. Fixed-pattern
noise results in a motley pattern of pixel values even when the sensor is not
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Fig. 3.10 Sample-and-hold sample
circuits in the APS column
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illuminated. This type of noise is the result of mismatches between the threshold
voltages of the transistors on the bit line. The double sampling circuit is used to
compare the reset and illuminated values of the pixel to cancel this noise. Reset
noise is due to incomplete reset of the pixel. A full reset of the pixel takes
approximately 1 ms largely because the reset transistor M., is in saturation for
only part of the reset period [Zhel1]. Most applications do not allow for the reset
period to be this long. As a result, the pixel is not fully reset; its value depends on
the pixel value from the previous image. This phenomenon is known as image lag.

The column includes two sample-and-hold circuits: one for the integrated pixel
value and one for the reset value [Nix96]. Differencing the pixel and reset values
reduces image lag. After using the two values, the pixel and reset sampling
capacitors are shorted together to produce a pair of output values. These output
values are independent of the threshold voltage of the column driver transistors. As
a result, this step eliminates column-based fixed-pattern noise.

Two groups analyzed noise in APS circuits, each emphasizing a different aspect.
Yadid-Pecht et al. [Yad97] analyzed the sample-and-hold circuitry. They pointed
out that the white noise power of an ideal sample-and-hold circuit is given by

S AT

Vn Cs (3 5)

However, the gate-to-source capacitance of transistor M1 and the sensing node
capacitance form a feedback network. Their analysis included both white and shot
noise. Tian et al. [Tia99] noted that the photodiode capacitance depends on its
reverse bias voltage. They analyzed the noise resulting from this nonlinearity as
well as shot noise during reset. They analyzed mean-square reset noise voltage
using a non-steady-state method; they found that this noise voltage is less than the
value given by the traditional formula kT/C,q where C,q is the photodiode
capacitance.

A standard pixel design has a dynamic range of 70 dB. We want larger dynamic
range for both artistic and technical applications. Both the standard CCD and APS
cells are linear; increasing the dynamic range of linear sensors may require a
combination of higher operating voltages and larger pixel capacitances, both of
which are undesirable. Improved circuit techniques allow pixels to operate
nonlinearly and provide increased dynamic range; these sensors are often called
logarithmic sensors since a logarithmic sensitivity curve matches the response of
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the eye. Decker et al. [Dec98] used a varying voltage on the reset transistor to
control the amount of charge kept in the pixel during the integration period,
resulting in nonconstant charging rates. Consider the APS pixel circuit of Fig. 3-
aps-pixel; if the reset voltage is varied during the integration time, the amount of
charge kept on C,,; can be controlled resulting in a nonlinear response curve for the
pixel. Schantz et al. [Sch00] used combined two techniques: each pixel could be
accessed up to four times per frame, allowing for varying integration times; and
column amplifier gains could also be controlled. Kavadis et al. [Kav00] used a
separate reference current to allow for correlated double sampling calibration
without requiring a separate measurement of the photocurrent. Stoppa et al.
[Sto02] used a comparator to measure both low- and high-intensity levels with a
comparator that determined when the photosensor charge had a reached a given
level. Lee et al. [Lee06] developed an infrared image sensor that provided both
high-dynamic range and high frame rates. Pixel values were recorded in floating-
point format with a mantissa and exponent. Each pixel included a dual-slope ADC
with separate comparators for the exponent and mantissa.

Dickinson et al. [Dic95] compared the quantum efficiency of APS and CMOS
sensors. They found that APS sensors had reduced efficiency at wavelengths below
about 500 nm but that their quantum efficiencies were otherwise comparable.

In addition to circuitry, image sensors include color filter arrays and microlens
arrays. As shown in Fig. 3.11, the microlens helps to focus light onto the
photosensor and helps to minimize the effects of fill factor. The color filter selects
the wavelengths of light passed to the photosensor. The color of the filter can be
controlled pixel by pixel, allowing, for example, the Bayer pattern filters to be built.

Most modern image sensors include their analog-to-digital converters (ADCs)
on-chip. Some chips include several ADCs for higher performance. A variety of
ADC architectures are used for image sensors: successive approximation, sigma-
delta, and flash. An on-chip ADC allows the sensor interface to be digital. The MIPI
D-PHY interface standard is commonly used to interface the image sensor to the
rest of the camera system.

Fig. 3.11 Cross section of microlens
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Fill factor is the percentage of pixel area that is devoted to the photosensor.

Semiconductor image sensors are very linear—their response is proportional to
the illumination [Whi74]. Some systems use gamma correction to adjust the
response curve:

Lot = AV, (3.6)

3.4.5 Advanced Image Sensors

Kleinfelder et al. [KleO1] developed a high-speed image sensor that used an analog/
digital converter per pixel. A pixel consisted of a photogate sensor, a comparator,
and an 8-bit memory. The comparator compared the pixel value to a ramp voltage to
generate the bits of the pixel value. They used correlated double sampling to cancel
out comparator offset voltages. Their sensor was demonstrated to capture
352 x 288 images at 10,000 frames/sec. Some high-speed image sensors do not
employ correlated double sampling to eliminate the settling time caused by the
small voltage associated with the reset value. The lack of CDS results in increased
pixel reset noise. Krymski et al. [Kry03] built a 240 frame/sec image sensor with an
A/D converter per column. Xu et al. [Xu12] proposed connecting the photosensor to
an integrating amplifier; the small capacitance of the amplifier would allow for
faster settling times. Recent designs have integrated memory within the pixel as a
burst buffer to allow for very high frame rates.

A time-of-flight sensor uses ranging techniques to measure the distance of
objects from the image sensor. A laser pulse is sent to the subject and the pixel
senses the time at which the reflected illumination returns from the subject. Time-
of-flight sensing requires very fast electronic shutters to accurately measure the
pulse return time. Elkhalili et al. [E1k04] designed a 4 x 64 sensor for time-of-flight
measurements. Its shutter operated at 30 ns, and they pipelined sample acquisition
with correlated double sampling to provide no dead time between measurements.
The sensor could measure object distances up to 8 m at a 1 cm resolution.

The infrared band is very wide and different types of sensors are used for
different parts of the band. Shortwave infrared is near the visible band. As we
saw in Fig. 3.5, silicon is very sensitive to the shortwave infrared region. Image
sensors designed for visible light are typically covered by a thin filter to absorb
infrared radiation; we can use the image sensor for shortwave IR simply by
stripping off the filter. However, this part of the infrared band requires illumination
just as for visible light. Thermographic images are produced in the longwave
infrared band—these are the types of images typically portrayed in movies; they
rely on the heat produced by objects of interest, but they require specialized sensors.
Two types of thermographic sensors are used [Flil2]: microbolometers and
quantum-well infrared photon. Quantum-well sensors are more sensitive and faster
but require that the sensor be cooled to cryogenic temperatures. Microbolometers,
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in contrast, can be used at room temperature. Thermographic cameras also require
optics made of different types of glass that do not absorb large amounts of long-
wave IR.

3.4.6 Image Sensor Characteristics

An image sensor can be measured using three different metrics:

e Pixel depth, the number of bits used to represent a pixel value

e Pixel count, the number of pixels in the image

» Pixel pitch, the size of a pixel (which we assume for simplicity is equal to the
distance between pixels)

» Image sensor size, the total physical size of the image sensor

These metrics are not entirely independent. We need to keep in mind that we
quantize images both spatially and intensity-wise: we divide the image into pixels
and then assign a discrete value to the intensity at each pixel. We will also see that
the relationships between these metrics introduce trade-offs. In particular, making
very small pixels to increase pixel count introduces some important limitations.

Pixel depth determines the number of luminance values that we can portray in
the image. We represent the image, which has continuously varying intensity, as an
integral number with discrete values. Quantization noise is the result of sampling
the continuous image into discrete values. Our standard assumption is that image
intensities are uniformly distributed over a range [—9%,9%] where Q is the value
corresponding to one bit. Then the root-mean-square (RMS) error is

1 0/2 0
E —=./— 2dg = ——. 3.7
" VQ/-Q/J = n 57

Clearly, reducing the range covered by one bit reduces quantization noise.
However, reducing quantization noise substantially below the physical noise in
the imaging system yields no results. 10-bit image sensors yield a dynamic range
similar to film; 12-bit and 14-bit dynamic range sensors are common advanced
cameras and specific applications such as automotive.

However, small pixel depths can result in posterization. Using a small number of
bits per pixel results in a small number of distinct values available in the image and
clearly visible boundaries between regions with different values. This effect has its
uses—this effect was commonly used in the 1960s, for example. But unwanted
posterization can be distracting. We will see in Sect. 3.6.2 that compression
algorithms can vary the number of bits per pixel throughout the image.

The Kell factor was introduced in the analog television era. It was motivated by
the observation that images captured at the Nyquist limit for the subject appeared to
have beat frequencies which could be minimized by limiting the bandwidth of the
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image. Kell factor has been generalized for pixelated image sensors to refer to
effective resolution. Diagonals through the sensor provide finer sampling than do
the rows and columns of pixels.

To analyze the relationship between pixel count, pixel pitch, and image sensor
size, let us assume that the image sensor is square and of size s x s. If the pixel pitch
is p, then the image sensor has n = s/p pixels in each dimension, giving a total pixel
count of n*. We can use the same methodology we used for quantization noise to
understand the RMS error introduced by pixelization:

_ P
B, = . (3.8)

Reducing pixel pitch reduces pixelization noise. Figure 3.12 shows an image
sampled with both large and small pixels.

If pixelization noise were our only concern, we would want to make every image
sensor with as many pixels as possible, independent of its physical size. However,
we also have to consider the physical noise from the pixel. For simplicity, we will
consider the reset noise of the imager (the noise generated due to incomplete
resetting of the pixel value between frames). The RMS reset noise [Tia99] is

y= 2L (3.9)
2Ch
where Cpq is the photodiode capacitance, k is Boltzmann’s constant, and T is
temperature. Tian et al. give an example value of reset noise of 303 pV for some
typical sensor values.

Pixel pitch is a proxy for photodiode capacitance. As a result, reducing the pitch
increases reset noise. As a result, for any given image sensor size, we can find an
optimal value for pixel pitch based on the competing mechanisms of electronic and
pixelization noise, as shown in Fig. 3.13.

We can increase pixel count without reducing pixel pitch by increasing image
sensor size. This effect takes advantage of the capture-to-render ratio or the
relative sizes of the image sensor and the displayed image. Using a larger image
sensor allows us to capture more pixels of a given size, which allows us to render
each pixel as a smaller element in the rendered image. This relationship holds no
matter what the final rendering size.

Photon shot noise is the most important source of noise in the photodetector.
Shot noise is the result of the discrete nature of light—this is noise in the input
signal, not in the image sensor device. Each photon registers as a shot; at large
scales the quantization is not noticeable, but at the scale of pixels, we can see
significant differences between the number of photons that hit pixels even when
they are illuminated by the same object. The arrival of photons obeys the Poisson
distribution; the arrival time of the next photon is independent of the arrival time of
the last. The standard deviation is a measure of noise; the Poisson distribution
relates mean and standard deviation as
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Fig. 3.12 Pixelization and the effects of pixel pitch

Oshot = /Hshot* (310)

The signal-to-noise ratio of the light signal is

S ) Oshot
— = — = /ﬂ . (3 . 1 1 )
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The signal-to-noise ratio of the photonic shot noise grows as the square root of
the pixel illumination [The07]. We will return to this result below after we discuss
exposure.
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Dark current is current produced in the absence of any illumination. The
magnitude of the dark current is a principal limit in sensitivity. Several phenomena
contribute to dark current [Titl1]: saturation current, generation-recombination
current, direct tunneling, surface leakage, conduction through the oxide under
large electric fields, and impact ionization.

Fixed-pattern noise results from spatial variations in the component parameters
across the image sensor—gate capacitance, doping, etc. Fixed-pattern noise can be
introduced at several points in the circuit, including the pixel amplifier, dark current
sources, and column amplifiers; each has its own characteristics. Some amount of
variation across the chip is both natural and inevitable; these variations cannot be
fully eliminated from manufacturing. Once the fixed-pattern noise of a sensor is
measured, it can be easily corrected by appropriate weighting of the pixels.

Image sensors also exhibit several other types of noise. The sample-and-hold
circuit, for example, is a critical component that is subject to several types of noise.
Gow et al. [Gow07] developed a detailed Matlab model of image sensor noise.

We also need to understand and measure the response of the photodetectors and
circuitry to light. Sensitometry is the experimental evaluation of the response of an
image sensor to light [Kod06]. We can measure that response by exposing the
image sensor to light at a range of intensities and recording its response to provide a
characteristic curve for the sensor. Figures 3.14 and 3.15 show example character-
istic curves for film and image sensors, respectively. The characteristic curve is
semilog: the x axis is the logarithm of exposure in units such as millilux-seconds. In
the case of film, the y axis is the density of the image formed on the film. Film is a
negative medium—higher exposure results in more silver and a darker image. The
image sensor’s characteristic curve has the opposite shape because it is a positive
medium with higher exposure leading to higher pixel values or pvalues. We saw the
effect of exposure on reference images in Fig. 2-changing-exposure.

The dynamic range of the image sensor is the ratio of the exposure values for
maximum and minimum pixel values. The contrast of the image sensor is the slope
of the characteristic curve. A typical film has a dynamic range of about ten stops. A
standard model for the main part of the film characteristic curve is a+ /. The film
characteristic curve has lower slopes at both ends. These regions, called toes, have
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lower contrast than the center of the characteristic curve. The toes of film give softer
rendition of extreme light and dark regions and are part of the classic film look.

We measure the sensitivity of film by its ISO number, often referred to as its
speed. The ISO number can be read from the characteristic curve. ISO 12232:2006
describes the standard for determining the ISO/ASA number for digital image
sensors. ISO numbers are on a linear scale, so doubling the speed of the image
sensor gives one additional stop of sensitivity. The ISO standard rounds speed
numbers to standard values: 32, 64, 125, 250, etc.

An image sensor has a native ISO at which it provides typical responsiveness.
Most image sensors and cameras allow the sensor to be used over a range of ISO
values. The native response of the pixel values is multiplied by the ISO multiplier to
create the adjusted ISO-valued image. We sometimes refer to non-native ISO
values as either push (higher ISO) or pull (lower ISO) by analogy to film.

The effect of ISO multiplication is to multiply the pixel values; since ISO values
are arranged at approximately powers of two, this scaling is equivalent to shifting
the pixel values to the left. The scaling required for ISO multiplication can be
performed at several points in the imaging chain as shown in Fig. 3.16. Early
systems multiplied the signal value just before A/D conversion. However, when
logarithmic sensors are used—the most efficient place to put ISO multiplication in
the logarithmic control circuitry—shorter intervals for discharging the storage node
result in a higher effective ISO. The reasoning behind this choice is illustrated in
Fig. 3.16. A typical signal processing chain includes amplification and noise at each
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Fig. 3.16 Amplification of ) < <)
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stage. The first stage amplifies both the signal and its noise, which tends to cause the
first stage’s noise to dominate over that of later stages.

Attempts to translate the Zone System into digital photography have resulted in
some confusion and inaccurate information. Some authors claim, either explicitly
or implicitly, that changing the exposure of an image changes the slope of the
characteristic curve. Nothing could be further from the truth. The characteristics of
the pixel circuits (and to some extent the surrounding circuits) determine how a
given number of photons are translated into a pixel value. Nor do the higher bit
positions somehow carry more information—pixels obey the laws of arithmetic and
a bit is a bit. Think of a bit as a unit of just noticeable difference—if we increase a
pixel’s value from 200 to 201, we have increased its intensity by the same amount
as if we increased it from 5 to 6.

The common digital interpretation of the Zone System is the expose-to-the-right
rule—that exposures should be as high as possible (pushing the histogram to the
right) without clipping highlights. This rule does provide benefit but not for the
reasons commonly believed. For a given ISO value, this rule has some value as it
pushes the signal further above the sensor’s read noise. When used with ISO
multiplication, it has an even greater benefit. As we saw above, photon shot noise
grows with the square root of the signal. If we use the logarithmic sensor signals to
control the sensor ISO (as compared to performing an amplification or digital
multiplication at the end of the signal processing chain), then the higher pixel
value is propagated through the image sensor chain. A higher illumination value
gives us a larger spread between signal and shot noise thanks to the Poisson
distribution characteristics. Because noise through a chain of amplifiers is domi-
nated by the first stage’s noise, we improve the signal-to-noise ratio through the
entire chain. The result—one that is surprising from the point of view of film
photography—is that higher ISO values result in lower noise. We will return to
the Zone System in Section 4.tonalmapping.

Some digital cameras exhibit ISO invariance [Say15]: the noise in the image is
roughly independent of the ISO setting. If the image sensor has a wide dynamic
range relative to the scene and a low analog noise floor, then we do not need to
apply the expose-to-the-right rule when the photo is taken. Instead, we can move
the response curve to higher levels in post-processing, a process known as pushing,
thus increasing the levels of the shadows. Tonal mapping using ISO invariance has
the advantage of not increasing the exposure of the highlights, thereby reducing the
chance of saturating those highlight regions.
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Fig. 3.17 Moving subjects and rolling shutters

Motion blur is a form of temporal sampling noise. As the subject moves during
exposure, the pixels integrate light during the exposure interval e not from a single
point on the subject but along a track:

M(e) = /Oel(t)dt. (3.12)

Capturing motion with a rolling shutter results in tearing or angling of the
moving subject. This phenomenon entered the visual vocabulary as a depiction of
speed but is entirely due to the effects of sampling by moving shutters. (This
phenomenon was first captured by film cameras of live subjects; it then became a
trope in cartoons.) Consider the moving subject in Fig. 3.17. The subject is of height
h, width w, and traveling at a velocity v. For a given shutter speed s, the subject
moves a distance / =vs during the exposure. At a speed of v=w/s, the subject
moves its entire width in one exposure interval; tearing of even 10% is noticeable.

Many advanced cameras provide video capture but have sensors whose resolu-
tion is considerably larger than that required for the supported video formats. These
cameras generally subsample lines to match the required video resolution. This
process means that parts of the image are not sampled at all, a situation very
different from the subpixel motion estimation we will discuss in Section 3.h264.

3.4.7 Shutters and Irises

Cameras need shutters to control exposure. Several types of shutters can be used,
each with their own advantages. Electronic shutters such as that of Reich et al.
[Rei93] use diffusion regions to selectively sweep electrons away from the photo-
detector when the appropriate voltage is applied to the diffusion. Electronic shutters
are widely used because they eliminate the size and expense of a mechanical
shutter; they also respond very quickly. However, electronic shutters are not as
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effective as mechanical shutters in cutting out light—electrons that are not captured
by the shutter structure result in noise in the final image. Some advanced cameras
use both mechanical and electronic shutters. Typically, the mechanical shutter is
used by default, but the electronic shutter can be used to eliminate the vibration
caused by the mechanical shutter.

An electronic shutter may be operated as either a global shutter or a rolling
shutter. A global shutter opens and closes all pixels simultaneously. A rolling
shutter, in contrast, shuts off pixels a line at a time. Rolling shutters can cause
aliasing artifacts with moving images as shown in Fig. 3.18.

Leaf shutters are placed within the lens and use interlocking vanes. Focal plane
shutters are located in front of the image surface and move a curtain across the
image surface. Leaf shutters generally provide higher flash synchronization speeds.
As shown in Fig. 3.19, focal plane shutters can result in fast-moving object
leaning—the curtain opening scans the moving object to capture it at different
locations in different parts of the image. This physical effect has become a visual
symbol for motion in still photos.

Cinema shutters must be able to repeatedly expose images. Video cameras may
use either electronic shutters or rotating shutters. Video necessarily provides fewer
options for shutter speeds than are possible with still photography; many video
cameras provide neutral density filters to adjust exposure. Mechanical shutters for
cinema are sometimes described by the angle through which they expose the image
sensor. Figure 3.20 shows an example of a 270" shutter.
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Fig. 3.20 A 270 shutter

A shutter gives one parameter for exposure variation. Irises provide a second
parameter and provide reciprocity as discussed in Sect. 2.8.1. However, many
smartphones do not include irises. They instead use ISO scaling to provide a second
exposure parameter.

3.5 Preexposure Operations

Before capturing an image, the camera must determine its focus and exposure.
These steps are critical to previsualization of the image. As we saw in Sect. 2.8, the
subject of the image may not be obvious, making it harder to determine how we
should focus and expose. Algorithms for focus and exposure necessarily have a
heuristic element to take into account the varying goals of a photograph. We need to
solve two distinct problems for both focus and exposure: how do we determine
focus/exposure at a given point in the image and which point do we choose to
evaluate. Since many photographs are of people, face detection provides an impor-
tant clue for both focus and exposure.

Our focus and exposure algorithms must be fast. Autofocus may be used on fast-
moving subjects; exposure can also change quickly as subjects move and lighting
changes. Both operations must be performed at rates of fractions of a second.

Many (but not all) of these exposure and focus algorithms make use of data from
the image sensor. In some cases, particularly in SLRs, a beam splitter may be used
to send some of the light to a separate image sensor for measurement purposes.
However, most digital cameras read from the image sensor at reduced resolutions.

An important abstraction of the image that plays an important role in
preexposure is the histogram. We can make a histogram of pixel values in any of
several representations: luminance, RGB, etc. Figure 3.21 shows an image along
with its luminance and RGB histogram. The histogram is divided into a set of bins
that represent a range of pixel values. For each pixel, we increment the count in the
bin that represents that pixel’s value. The shape of the histogram tells us a
surprising amount about the image in a very compact representation.

We will separately discuss focus in Sect. 3.5.1 and exposure in Sect. 3.5.2.
Section 3.5.3 considers image stabilization. We will devote Section 3.5.4 to face
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luminance histogram

RGB histogram

Fig. 3.21 Histograms of an image

detection, which is important to both focus and exposure. Focus and exposure are
similar for video and still photography; the main differences lie in whether they
operate continuously or remain fixed for the duration of the shot.

3.5.1 Autofocus

Autofocus systems predate digital cameras by several decades. Early autofocus
systems generally used active autofocus because they did not have an image sensor
with useful resolution. Active autofocus systems use pulses to determine the range
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of the subject. Infrared, ultrasound, and visible light pulses can be used, but infrared
systems operate under fundamentally different techniques than do ultrasound or
visible light ranging systems.

Infrared autofocus systems operate by triangulation as shown in Fig. 3.22.
(Some cameras and flash systems also use IR pulses to illuminate the subject for
passive autofocus systems; those systems do not rely on triangulation.)

Ultrasound and visible light time-of-flight systems both operate by measuring
the time from the emission of a pulse to the detection of a reflected return signal as
shown in Fig. 3.23. Radar operates on a similar principle although its pulses are in
the radio band. However, given the vastly different speeds of sound and light, the
electronics required for these two methods are vastly different. The speed of sound
is roughly 343 m/s, while the speed of light is 3 x 10® m/s. Ultrasound detectors can
use straightforward timing circuits (typically by charging a capacitor) to measure
time-of-flight. Visible light time-of-flight sensors, as we discussed in Section 3.
sensor.advanced, require 30 ns timing. Some versions of the Polaroid SX-70
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[Lan72] offered an early autofocus system using ultrasound; its sensor system
interface exposed two signals, one of which carried the timing of the outgoing
pulse, with the other giving the pulse timing for the return signal.

All these active autofocus systems operate only under a limited range subject
distance—the subject must be close enough to reflect a signal large enough to be
detected. If the system does not detect a return signal, it can default to focus at infinity.
Some modern systems combine optical time-of-flight with a passive autofocus system.

Passive autofocus systems are widely used. The two major approaches are phase
detection and contrast detection. Contrast detection is widely used in non-SLR
cameras because it makes direct use of the image sensor. Phase detection is
primarily used in SLRs because it requires additional optical mechanisms (although
on-chip phase detection sensors have recently appeared). Phase detection is faster
than contrast detection, offsetting its increased hardware complexity for high-end
cameras. Both methods make use of local features such as lines—we cannot focus
on a completely undifferentiated, featureless surface.

As shown in Fig. 3.24, phase autofocus systems [Sta76, Yam81] take advantage of
the fact that rays from a point on the subject may enter the lens at many different
points, all of which are focused at the same point in the focal plane. We can be out of
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focus focus

front-to-back focus
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Fig. 3.24 Phase autofocus
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focus in two different ways: front focus for a lens position that puts the image sensor
too close to the subject and back focus when the image sensor is too far away from the
subject. The phase autofocus system picks off the incoming from two conjugate
points; it does so to allow for separation of the sensors for the two different versions
of the image. The light can be directed to the autofocus system by, for example, a
beam splitter. A pair of lenses focuses each of the test images onto its own line sensor
that sense intensity at several points along a line in one dimension. The line sensors
give an intensity profile for each of the test images. Those profiles can be compared in
shape to determine the relative offset of the two test images. When the subject is in
focus, the two test images will have a known offset. The offset between the test
images gives both the magnitude and direction of the focus action. In the figure, if the
subject is in front focus, the test images will be farther apart, while if in back focus,
they will be closer together. Phase autofocus is fast because it can determine which
direction to drive the lens for focus. However, phase autofocus is sensitive to
orientation—the line that provides the feature must be perpendicular to the line
sensors. Phase autofocus can be integrated onto the image sensor with dedicated
pixels. One approach adds masks to the microlenses of these pixels that ensure that
only light from the required direction are allowed into the phase detection pixels
[But10]. Another approach uses aspherical lenses to direct focus to one side.

Contrast detection systems [Bel92] measure the contrast between adjacent pixels
to determine focus. Contrast at an edge is highest when the edge is in focus. Unlike
phase detection, contrast detection does not require special or modified hardware
and can be performed directly on pixel values read from the image sensor. As a
result, contrast autofocus is well-suited to video since it does not require additional
hardware in the optical path, and focusing decision can be made from pixel data
read from the sensor. However, contrast detection does not directly indicate
whether the subject is in front focus or back focus. Once the focus starts to move,
the size of the blur circle will decrease if the subject is coming into focus and
increase if the subject is going out of focus. However, the initial choice of direction
for focusing is indeterminate. The hunting required to find the focus point makes
contrast detection slower than phase detection. Several algorithms can be used to
evaluate focus [CheO1]:

o Sum-modulus-difference forms the sum of difference of adjacent pixels.
 Histogram entropy is defined as — Y h(i) In A(i) for the bins of the histogram
()70
h(i).
» Histogram of local variations finds the best-fit line through the logarithms of the
histogram bins.
e Fast Fourier transform evaluates the FFT of the image region.

Contrast autofocus is also orientation-dependent. However, the orientation of the
contrast measurement can be changed more easily by proper pixel readout and
arithmetic since the measurement does not rely on specialized hardware.

Autofocus must be performed at a particular point in the image. Phase detection
requires specialized hardware at the autofocus points; contrast detection may limit
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Fig. 3.25 Focus point
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itself to certain points to simplify the algorithms. The autofocus system must
determine which points to use for focus. Both phase and contrast algorithms rely
on line-like features to provide something on which to focus as shown in Fig. 3.25.
Given that the autofocus points are fixed and relatively sparse, only a few points
will be aligned with a useful focusing feature at any given framing. When more than
one focus point is available and the points have different focus values, heuristics
may be used to select a focus point, such as preferring ones toward the center of the
image. Advanced cameras typically allow the user to select an autofocus point.
Some autofocus systems perform motion estimation at the autofocus points to track
the subject and move the focus point as appropriate. Some autofocus systems also
use motion estimation to predict the required change in focus for a fast-moving
object in order to take into account the lag from the final focus measurement to the
actual image exposure.

3.5.2 Exposure

Autoexposure systems also predate digital cameras. Built-in meters produce
reflected exposure values (unless the photographer turns the camera around to
capture the light onto the subject). Built-in light meters first appeared in the
1960s. The earliest meters did not make use of the imaging path optics; later
cameras introduced through the lens (TTL) metering. These cameras did not have
motors to drive the iris and shutter selectors, so the photographer turned these
selectors to, for example, center a needle.

The first light metering systems took a single reading of the entire scene,
providing an averaged reflective reading. The center-weighted system introduced
by Nikon in the 1960s placed additional weight on a circle covering the middle part
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Fig. 3.26 Example
exposure zones

of the frame under the assumption that the subject was likely to appear in that circle.
The next move was to exposure zones. Figure 3.26 shows a typical configuration of
zones, with one in the middle and other zones surrounding the center. After taking a
reading in each zone, the camera can apply rules to determine an overall exposure.

Film cameras relied on separate exposure sensors; manufacturing cost limited
the number of sensors that could be put on the camera. Digital cameras can take
exposure readings directly from the image sensor and have much greater freedom in
using and combining the pixel values to determine an exposure. However, the
principle of measuring exposure at different points and then interpreting those
exposure values still holds. For example, the exposure system can test a given
exposure to be sure it falls within an acceptable range [EV ,in, EVmaxl; if not, it can
try to determine exposure from a different set of points [Tsu93]. Consider, for
example, a photo of a person standing in front of a bright window. The camera first
determines an exposure based on zones 2 and 3 in Fig. 3.26 and then determines that
the exposure value is too high. It can then try to compute an exposure value based
on zones 4 and 5. If that value is unacceptable, it can try an exposure based on Zone
I. Some cameras allow the user to set a scene type, such as landscape or portrait.
The scene type can be used to determine the exposure points to be used.

We can use the luminance histogram to determine exposure [Bel02]. We can test
for clipping by determining whether a given percentage of pixels (perhaps 5%) are
congregated at the ends of the histogram. Testing for the position of the histogram
center is a secondary test; we prefer the histogram to be in the middle or perhaps
slightly toward the top.

Video cameras want to avoid breathing of the exposure caused by sudden
changes in light. The exposure is adjusted continuously during shooting. Using a
lower gain response at high exposure levels than for lower exposure levels avoids
causing large changes in exposure when a small, bright region comes into the image
[Kon92].

Once we know the exposure value for the image, we still need to determine the
shutter speed and aperture. As Fig. 3.27 illustrates, reciprocity gives us equal
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exposure lines for each EV. (The term isoexposure line would be nice, but that
name risks confusion with auto ISO.) Cameras generally avoid low exposure
speeds, typically using shutter speeds of 1/125 sec or higher to avoid camera
shake. Once the minimum shutter speed has been satisfied, the camera can start
to reduce the aperture to increase depth-of-field.

The image sensor has a native ISO or sensitivity. Most image sensors place
amplifiers in the imaging chain that can be used to amplify the pixel values coming
off the sensor. This amplification effectively increases the ISO of the sensor [Par97].
The camera’s exposure heuristics can, when in auto ISO mode, choose to increase the
effective ISO rather than fall into an unacceptably low shutter speed. However, ISO
compensation amplifiers also amplify sensor noise that can affect image quality.

3.5.3 Image Stabilization

Image stabilization has different uses in still photography and video. We use it with
for still imagery in large part to reduce the minimum shutter speed required for
handheld photos or, equivalently, to use a smaller aperture at a given shutter speed.
In contrast, we stabilize video sequences to reduce or eliminate the jitter visible in
the shot.

We can stabilize the image against shake using several different methods: optical
image stabilization (OIS) moves the optics; mechanical image stabilization moves the
image sensor; and digital stabilization performs image processing. Camera movement
can be determined either optically or through sensors such as accelerometers.

Optical image stabilization senses motion and moves optical elements to change
the optical path to compensate. Figure 3.28 [0iz93] shows a pair of a negative and a
positive lens; together they provide little or no magnification. However, shifting the
negative lens perpendicular to the optical axis will adjust the focus points to
compensate for the motion of the camera.
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Fig. 3.28 Optical image
stabilization [Qiz93]
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Mechanical image stabilization senses camera motion and moves the image
sensor to accommodate. The image sensor can be moved using piezoelectric
actuators. The piezoelectric effect relates mechanical and electrical energy in
crystals; it can be used to generate precise motion.

Still image stabilization can be used to counteract both blurring and geometric
distortions of the subject. One approach [Heb08] takes advantage of a rolling shutter
to divide the image into horizontal strips. Camera motion is determined either by
image analysis or using accelerometers. A deskewing transformation is created for
each strip based upon the camera motion. Each strip is deblurred, the deskewing
operation is applied, and then the image is reformed from its component strips.

We will discuss video stabilization in Chap. 4.11.2.

3.5.4 Face Detection and Tracking

First, we need to clearly distinguish between face detection and face identification.
The second identifies the face of a particular person at a given location in the image;
the first only identifies a generic human face. Face identification is important in a
number of applications but is not particularly useful for focus or exposure deter-
mination. Merely knowing the location of the face or faces in an image is more than
sufficient to determine where focus and exposure algorithms should be applied.

Several approaches to face detection and recognition have been developed
[Yan02]. Facial detection often combines image features extracted bottom-up
with models of the organization of the typical human face. Figure 3.29 illustrates
the types of facial features that can be used for recognition, based on a cartoon-style
description of the face: the eyes, nose, mouth, etc.

Many fast face detectors are based on the approach of Viola and Jones [VioO1];
they combined simple features to rapidly prune the search space. As classifiers, they
used windows known as Haar-like features. Figure 3.30 shows the features of size
2, 3, and 4. The 2-pixel configuration gives two different classifiers: a; — a, and
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Fig. 3.29 Features in a
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a, —ay. The size three window classifier computes b+ b3 — b,. The size four
window classifiers are ¢; +c¢3 — ¢y — ¢4 and ¢, + ¢4 — ¢ — ¢3. These classifiers can
be combined into larger windows; Viola and Jones used a window of 24 x 24 which
contains over 180,000 windows. Lienhardt and Maydt [Lie02] expanded the set of

features to include rotated rectangles.

They use the integral image, illustrated in Fig. 3.31, as an intermediate repre-
sentation for fast computation of features in different parts of the image. The
integral image for point p, is the sum of all the pixels above and to the left,

including the point itself:
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H(pe,) = Y 16.)) (3.13)

isx j<y

We can compute the value of regions that do not extend to the origin as
combinations of integral images—for example, D =1I(p4) —II(py) —II(py) — 11
(p3)-

Viola and Jones used the AdaBoost algorithm, shown in Fig. 3.32, to train
classifiers. The algorithm is given a set of » training images {x;, - - -, x,}; for each
one, we have a training value y; € {0, 1} to identify negative/positive results. The
training set has m negative results and / positive results. They combined the
classifiers into a cascade designed to winnow out unpromising subwindows. The
cascade is fed all subwindows; only subwindows that pass the first classifier are
passed to the second and so on. Cho et al. [Cho(09] developed a hardware face
detector based on the approach of Viola and Jones.

Theocharides et al. [The04] developed a hardware face detector that was invari-
ant to rotation. Their architecture generated an image pyramid, then performed
rotation including lighting correction, and was then classified using three parallel
neural networks.
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3.6 Postexposure Operations

Postexposure processing has two important goals. First, it generates a complete,
usable image. Color filter array interpolation creates full RGB values for every
pixel; white balance adjusts for the color temperature of the scene’s lighting.
Second, postexposure processing improves the image. Sharpening produces results
that please viewers.

Several of these algorithms require digital image filtering, so we will introduce
some concepts and notations now. Filtering of images is a two-dimensional form of
digital filtering. Each pixel of the result R is a function of the values of some of the
pixels of the source image I:

RGj) = 32 S 1) (3.14)

Images are traditionally placed in the fourth quadrant; this practice began with
analog television, which scanned the screen starting from the upper-left.

Many, though not all, operations are /inear and can be described as a combina-
tion of the source image pixels multiplied by coefficients:

R(i.j) = D ei.DI)). (3.15)

We will use i for rows (x) and j for columns (y). We refer to the range over which
the filter operates as its window. We can specify the filter coefficients as a window
whose indexes are relative to the center of the window as shown in Fig. 3.33.

3.6.1 Color Filter Array Interpolation

The image sensor’s color filter array gives us a pixel value of a particular color at
each location. We want to have a full-color pixel value—such as RGB—at each
point. Color filter array interpolation fills in the missing color components at each
pixel. These algorithms are also known as demosaicing, but the term mosaicing is
also used for other image processing operations.

We can understand CFA interpolation using the Bayer pattern; the same
approach can be applied to other filter patterns as well. As shown in Fig. 3.34, a
green pixel is horizontally or vertically adjacent to two red and two blue pixels.

Fig. 3.33 A filter c(1,-1) c(1,0) c(1,1)
coefficient window
c(0,-1) c(0,0) c(0,1)

c(-1,-1) c(-1,0) c(-1,1)
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Fig. 3.34 Color filter array interpolation

Each red or blue pixel is adjacent to four green pixels but is only diagonally
adjacent to pixels of the complementary color.

A very simple approach is bilinear interpolation. We can find the missing color
components for a green pixel as

Bo(i,j) = 51 = 1,j) + 1 + 1)) (3.17)

N =

We can find the missing values for a blue pixel as

Gp(i,)) = 7 [I(,j = 1) +10,j+ 1) + 1 = 1,)) +1( + 1,))]. (3.18)

R Rt S

UG =1, = V) A+ — 1+ 1)+ 1+ 1, — 1)+ 1+ 1,j+ 1)].
(3.19)

RB(I)]) =

And similarly for the red pixel
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Grlinf) = UG = D)+ 1+ 1)+ 1= L)+ 16+ L) (3:20)
Bali.)) :%[I(i— L )41l = 14 )41+ 1= 1)+ 1+ 1,j+ 1)),
(3.21)

We can also generate use bicubic interpolation methods that average pixels over
a larger area.

However, the simple filtering approaches result in image artifacts at edges; the
effect is clearest at a boundary between white and a darker background. As shown
in Fig. 3.35, each of the color interpolation filters estimates that the white/dark
boundary is at a slightly different position. They do so because they are offset from
each other. As a result, the white/dark line is rendered as three distinct lines, one for
each color.

A variety of more sophisticated CFA interpolation algorithms have been devel-
oped [Gun05]. Edge-directed interpolation tries to identify horizontal or vertical

blue green red

Fig. 3.35 Moire patterns from color filter array interpretation
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lines: it calculates a horizontal gradient and vertical gradient as the difference
between horizontally/vertically aligned pixels. If the algorithm finds a horizontal
gradient, it uses vertically aligned pixels for interpolation; in the case of a vertical
gradient, it uses the horizontally aligned pixels; and in the case of no gradient, it
uses all local pixels.

Constant-hue interpolation assumes that hue within an object is constant. They
are generally more expensive in computation time and memory and are therefore
less likely to be used as part of the imaging chain. This approach uses the green
channel to adjust the interpolated red and blue values for hue constancy. Recon-
struction-based algorithms use assumptions about the correlation between channels
or the image characteristics. Such approaches may minimize a cost function and
apply Bayesian estimation or a Markov random field model.

3.6.2 White Balance

White balance is required to ensure that white elements of the image are not
mis-rendered due to the color temperature of the illuminated light. The simplest
approach to white balance is the gray world assumption—we assume that the
average color of the image is gray, or

R=G=8 (3.22)

To perform the white balancing, we find the average value of all the pixels in the
image and then compute an adjustment coefficient for each color component:

| [

GR:3—R[R+G+B], (3.23)
1 - _

GG:E[ +G + B, (3.24)
| I

ngﬁ[R—i—G—i—B]. (3.25)

Figure 3.36 shows an example for which the gray world assumption fails to
produce an accurate white balance. The tunnel is lined with an orangish brick; a row
of larger gray bricks at the bottom of the image provides a natural gray reference to
illustrate the magnitude of the overall white balance. Because the color of the small,
orange bricks dominates, the algorithm assumes that this luminance distribution
represents gray and shifts the larger rocks (and the rest of the image) away from true
gray and toward orange.

An enhanced version of this approach directly applies the gray world model only
if the average color falls within a specified region of the color space [Koi96].
Figure 3.37 shows the region for which the average scene color is assumed to be

gray:
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Fig. 3.36 An example of gray world white balance failure

Fig. 3.37 A region of
acceptability for gray world
white balance

—a<B-G<a,
—-b<R—-G<b, (3.26)
—c<(R—C_?)+(E—C_;)<c.

The region is defined relative to the color difference signals R — G, B — G. If the
average color falls outside of this region, the R and/or B values in the image are
adjusted so that the average falls within the acceptable region.

Kim et al. [KimO08] developed a method that fits the image into one of several
standard illuminants. The CIE standard defines a number of standard illuminants
and points in the color space that correspond to particular types of light sources.
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They divide the image into blocks and discard blocks with low brightness because
they do not contain much color information. They compare three types of color
features: a modified gray world method, the white patch method, and color clus-
tering. To apply the modified gray world method, they select blocks whose color is
significantly different from surrounding blocks to reduce the chance of color
casting. They identify white blocks by looking for blocks with very high brightness.
They cluster the block colors to find a representative color. Given these three
features, they identify the standard illuminant closest to the set of feature illumi-
nants; they reject the match if it is larger than a threshold.

3.6.3 Sharpening

Most cameras apply a sharpening algorithm to non-raw images. People prefer the
higher acutance provided by sharpening. The result may not be an entirely realistic
rendering of the scene, but it is one that most people find pleasing.

We need to sharpen edges that appear in any orientation. We can do so using a
form of the Laplacian operator for brightness:

s

V’B —.
dx? + dy?

(3.27)
This operation only identifies points at which the image brightness is varying
rapidly. To sharpen an image, we want to add this result back into the original
image. We also need to find a discrete form for the filtering operation. We can do so
by generating each filtered pixel as a weighted combination of pixels in a region:

S = > > cli.)Ii,)). (3.28)

—1<i<1 —1<5<1

Our sharpening operator uses +9 at the center of the window and —1 elsewhere
as shown in Fig. 3.38. The central +9 value compensates for the eight subtracted
neighbor values and adds in the central pixel’s value.

This sharpening filter has low overhead and is appropriate for implementation in
the imaging chain. It can be performed in-place by writing the filter result back into
the original image; the differences caused by overwriting the pixel values with
sharpened values will be small. More sophisticated sharpening algorithms require

Fig. 3.38 A filtering -1 -1 =1
window for sharpening
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more memory as well as additional processing time and so are less suited to being
performed on the fly. We will discuss more sophisticated sharpening algorithms in
Section 4.resolution.

3.7 Image and Video Compression

Lossy compression is critical to the success of digital photography and video. This
section considers compression algorithms for both still images and video.

3.7.1 Lossy Compression

Cameras generate lots of data; even with improvements in storage capacity, data
consumes bandwidth and power. Image storage also makes use of lossless com-
pression; we will consider file formats in more detail in Section 3.platform.io. But
lossy compression provides much larger compression ratios to improve file size,
bandwidth, and power.

Lossy compression in media relies on perceptually aware coding—our algo-
rithms are designed to throw away parts of the data that are less likely to be
observed by the human perceptual system. Perceptually aware coding is used in
both audio standards like MP3 and visual standards such as JPEG and H.264.

Lossy compression for still and video images relies on somewhat different
principles. Image compression reduces information by eliminating fine detail.
This approach is well-suited to casual photography; it is not always the best
approach for fine art. Video compression takes advantage of the fact that we cannot
easily distinguish details in moving objects.

The design of a camera depends entirely on the choices of the designer. However,
we need to standardize formats for images and video so that we can effectively use
them: move them from camera to computer, run applications that read, and write the
imagery. Standards committees are responsible for formulating standards for a range
of technical subjects. Manufacturers are not required to meet these standards; how-
ever, they are generally required to satisfy certain compliance criteria in order to
receive permission to use the trademarks associated with the standard. (They may
also need to pay license fees for patents associated with the standard.)

3.7.2 Image Coding and JPEG

Figure 3.39 illustrates the key steps in the JPEG compression process [Wal91]; we
will defer some details until later. The image is broken into 8 x 8 blocks; the
discrete cosine transform is computed for each block; the block is quantized,
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making use of the DCT data; entropy coding is then applied to reduce the size of the
representation, resulting in a compressed image. JPEG decoding reverses the
process: entropy decoding, dequantization, inverse DCT, and recomposition of
blocks into the image. Let us consider these steps and the relationships between
them.

JPEG relies on the discrete cosine transform (DCT) [Ahm74] to analyze the
perceptual characteristics of the image suitable to lossy compression. The DCT is
nearly optimal in several characteristics related to its encoding properties. DCT has
also taken a life of its own as a primitive operation that is used in many other
algorithms. We will discuss hardware and software implementations for the DCT in
more detail in Sect. 3.8.6.

Given a sequence of values x(i),0 <i <N — 1, its discrete cosine transform X (k)
is

X(K) =3y (i) cos []%(z n %) k] LO<k<N-—1. (3.29)

The DCT can be written in several forms; this form is known as Type II. Note
that the cosine term can be precomputed—it depends on i but not on x(7).
The inverse transform—known as the IDCT—is

(k) = %X(O) + D i X () cos szl (k + %ﬂ O0<k<N—1. (3.30)

This form is known as Type [V.

Both the DCT and IDCT can be rewritten a recursive form known as the
butterfly, illustrated in Fig. 3.40. This form was discovered by Cooley and Tukey
and serves as the basis for the fast Fourier transform (FFT); the DCT is closely
related to the discrete Fourier transform and therefore to the FFT. The butterfly
computes two outputs from two inputs: b; = a; +xa,, b, =a; — xa,. The term x is
known as the twiddle factor; in the case of the DCT, it corresponds to the cosine
term; for FFT, it is e >"*""_ In general, we multiply by coefficients, but they are not
always shown in butterfly diagrams for simplicity. We can organize the 8 x 8 DCT
into butterflies as shown in Fig. 3.41. The computation is performed in three stages,
each with a smaller span of values.



110 3 Image Capture Systems and Algorithms
x(0) X(0)
w7 ><

S

x(4) X(4)
o XX >
AN =l
x(7) ;><i X(7)

Fig. 3.41 The 8 x 8 DCT formulated as butterfly operations

We need a two-dimensional transform of the image. One of the useful properties
of the DCT is that we can form the N x N 2-D DCT using two size N 1-D DCTs, one
for the rows and the other for the columns:

X(k,1) = Z Z x(i,) cos L%(H—%)l] cos [%(j—&—%)k],O

0<i<N—1 0<j<N-1

<k<N-1. (3.31)

The DCT does not by itself compress the image. It does, however, rewrite the
contents of the block—known as quantization—to make it easier to identify content
that can be removed for lossy compression. The DCT matrix is organized by spatial
frequencies in both the horizontal and vertical dimensions: X(0, 0) corresponds to
the DC value or the average value of the block; X(V — 1, 0) represents the strength
of the highest spatial frequency in the horizontal dimension; X(0, N — 1) represents
the highest spatial frequency in the vertical dimension; and X(N — 1,N — 1) gives
the value of the highest spatial frequency component in both the horizontal and
vertical dimensions.

Fine detail corresponds to high spatial frequencies. If we want to reduce the fine
detail in the image, we want to make the coefficients of the high spatial frequencies
smaller. Quite a few different schemes can be used to quantize the DCT. The most
general specification is as a matrix. Figure 3.42 shows a sample matrix from the
JPEG standard designed for average image quality. The quantized DCT matrix is
generated from a quantization matrix Q as

B(i,j) = round (Z((z’j;) (3.32)
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We want to design the quantization matrix to maximize its effect on the size of
the encoded image while minimizing its effect on the image’s quality. Reducing
some DCT coefficients to 0 has particular advantages. A sequence of zeros can be
very efficiently encoded using run-length coding—rather than writing out all the
zeros in full two’s complement representation, we can use a much more efficient
code to represent the presence of n zeros.

We can maximize the impact of zeroing out certain coefficients in the zigzag
pattern shown in Fig. 3.43. This pattern reads the coefficients in order of their
spatial frequency. If we zero out coefficients at high spatial frequencies, the result
will be to place zeros in the lower-right corner of the DCT matrix. The zigzag
pattern will generate longer sequences of zeros that would, for example, read in
row-major or column-major format.

The JPEG standard allows several different entropy coding algorithms to be
used. The typical application applies run-length coding and then Huffman coding.
The standard also allows arithmetic coding.

To summarize:

¢ DCT quantization directly influences the quality of the compressed image and
indirectly influences the size of the compressed representation.
» Entropy coding directly influences the size of the compressed representation.

Most JPEG encoders provide a quality index to control coefficient quantization.
Figure 3.44 shows an image encoded at several different quality levels; the original
image is differenced against the image encoded at 2% quality.
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100% - 2%

Fig. 3.44 Differences between images coded at different quality levels
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The JPEG standard allows several other steps. The color space may be
transformed to use YCrCb rather than RGB. If the color space is YCrCb, the
chroma components (Cr and Cb) may be spatially subsampled to either half
resolution horizontally or half resolution both horizontally and vertically.

The JPEG standard allows features to be used in various combinations. Today,
the codification of a set of features is known as a profile. This practice was not fully
formalized when JPEG was created. However, some common formats have been
created. The most widely used format for the creation of JPEG files is the JFIF
standard [Ham92]. The JFIF standard is compatible with the JPEG standard but
specifies that files be written in a particular way. The aspect of JFIF most directly
relevant to the image itself is the requirement to use YCrCb; JFIF also specifies the
spatial relationship between the positions of pixels in the highest-resolution com-
ponent and in the lower-resolution components.

3.7.3 Video Coding, H.264/AVC, and HEVC/H.265

Unlike image coding, in which JPEG is a dominant standard, several different video
coding standards are in common use. At this writing, H.264, also known as MPEG-
4 AVC, is used in a number of applications. HEVC, also known as H.2635, is in the
early stages of deployment.

In order to understand important features of modern video coders, we need to
first outline some basic concepts in video coding.

At the heart of video coding are block motion estimation and motion compensa-
tion. As illustrated in Fig. 3.45, a frame broken into areas traditionally known as
macroblocks and the motion of the objects in a subsequent frame is estimated. The
macroblock is traditionally 16 x 16 although modern video compression standards
allow for motion estimation on other sizes of blocks.

After transmitting the initial macroblock, we can transmit its movement in
subsequent frames using a motion vector that is much smaller than the macroblock.
We decode the image by applying the motion vector to the macroblock values and
placing them in their new, compensated positions. Coding one frame in terms of
another is known as interframe coding.

Motion estimation and compensation provide a great deal of compression but are
not sufficient to fully encode the video stream: within a frame, motion estimation
may fail to find a sufficient match; new objects may enter into the frame; and
transitions such as cuts and dissolves change all the contents of the frame. We can
form a complete coder as shown in Fig. 3.46 by computing the difference between
the video stream and the decompressed form of the compressed stream. The result is
a residual signal that is encoded using transform coding and quantization, much as
in JPEG still image compression. The results of block motion estimation and
residual signal compression are sent to the entropy coder to reduce the size of
their representation.
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Fig. 3.46 Organization of a typical video encoder

Figure 3.47 shows the block diagram of a typical decoder. After entropy
decoding, the information is separated into motion vectors and DCT coefficients.
Reconstructed frames are saved in a frame store so they can be used by other parts

of the compression system.

The compressed video stream relies on at least one frame that is not encoded in
terms of other frames. Thanks to history, we refer to such frames as I frames for
intraframe. A frame whose motion is predicted by past frames is known as a P
frame for predictive. We can also analyze motion using frames both before and after
the frame under consideration—we use buffers to hold the sequence of frames and
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wait to generate the compressed output until we have all the required frames. Such
frames are known as B frames for bidirectional.

Block motion estimation (often referred to as BME) assumes translational
motion. BME is powerful because it is both sufficiently accurate and easy to
compute [Net79]. Given two macroblocks M, M,, we can find the motion vector
from M, to M, by computing the sum-of-absolute differences of the pixels between
the macroblocks:

SADIZ = ZOS/SBZOSiSB|M1(i’j) _MZ(l7])| (333)

We choose M, to have some offset (x, y) relative to M; in the image frame. We
find the motion vector for several different offsets and select the offset with the
lowest SAD value to determine the motion vector.

A full-search computation of the motion vector is very expensive. Each SAD
requires B? difference/absolute value/sum operations; if B =16, then each SAD
requires 256 operations. The total number of operations for full search depends on
the distance of the search D operation from the original location. Full search of
macroblocks requires D?B?. Given that search regions of radius 16-64 may be
necessary, full search is too expensive for most applications—it takes too much
time, requires too many memory accesses, and consumes too much power.

A number of heuristic search algorithms have been developed to reduce the cost
of motion estimation. Dozens of such search algorithms have been proposed; three
popular alternatives are three-step search, four-step search, and diamond search.

Three-step search has been proposed in several variations. One enhanced verison
[Li94] is illustrated in Fig. 3.48. The first step searches eight exterior points, the
middle point, and eight points around the middle. If the minimum cost is at the
center, search stops. If the minimum-cost point is one of the neighbors of the center
point, an additional search step of the eight neighbors around that minimum is
performed. Otherwise, a set of eight points in a tighter radius around the minimum
are searched, followed by a third round of eight points at adjacent pixels.
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Four-step search [Po96] starts, as with three-step, by checking nine points in a
5 x5 window. The window remains at the same size for the second step, but the
search area is modified as shown in Fig. 3.49, depending on whether the minimum-
cost point is along a side or at a corner. The third step uses the same strategy. The
fourth step searches a nine-point pattern of adjacent pixels in a 3 x 3 window.

Diamond search [Tha98] starts with nine search points arranged in a diamond
pattern as shown in Fig. 3.50. As with four-step search, the second step adds points
in a pattern depending on whether the minimum-cost point was on a face or a
vertex. The third and final step searches the four internal points of the previous
diamond.

Some motion estimators perform subpixel motion estimation by interpolating
pixel values. We can estimate intermediate pixel values using standard techniques:
1(i+0.5,j) = $[I(i,j) +1(j + 1)], etc. We can then add these estimated pixels to
the motion estimation problem to give more accurate motion vectors.

Video encoders define a format for the output of the encoder; the same format is
used by the decoder. Since multimedia requires both audio and video, the complete
representation includes a video layer, an audio layer, and a system layer that records
the synchronization between them.

Video coders can operate in either variable bit rate or constant bit rate mode. A
basic video coder will generate a variable number of bits at its output as the video
content varies: some frames may require more bits than others; some parts of a
frame may require more bits than others. However, highly variable bit rates make
both storage and network transmission more difficult. We can adapt a coder to
constant bit rate mode by introducing a feedback loop from the entropy coder,
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Fig. 3.50 Diamond search
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which knows the number of bits being generated, and the rest of the coder.
However, naive constant bit rate coding introduces variances in the quality of the
generated video. In the simplest case, if the encoder is allocated a fixed number of
bits per frame, it could encode the top-left region of the frame at the highest quality
and successively reduce image quality as it moves toward the bottom right and runs
out of bits.

Sulllivan and Baker [Sul91] proposed the use of the Lagrange multiplier method
to optimize the rate-distortion characteristics of block motion estimation. In partic-
ular, they were interested in variable-sized block motion estimation, in which some
areas would be encoded using larger blocks that give less accurate information about
the motion within that region. They observed that once the distortion of macroblocks
has been estimated, the distortion of larger areas can be easily computed from the
macroblock values; the distortion estimation process can be modeled as a tree. They
formulated the optimization of rate R(B) and distortion D(B) of a bit allocation B as
an unconstrained problem using a Lagrange multiplier A:

min [D(B) + iR (B)] (3.34)
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for the set of possible bit allocations S. Larger values of A result in lower rates, while
smaller values reduce distortion. The global rate distortion can be minimized by
minimizing the Lagrangian for each block by:

Wk(bk) + Aby (3.35)

for the block distortion W;.

H.264/MPEG-4 AVC, commonly known simply as H.264, is a widely used
video compression standard [Wie03]: it is used for Blu-Ray™ discs, in many
surveillance cameras, and in many consumer video cameras. The complicated
name comes from history. Several generations of video coding standards had
been designed, with one lineage for consumer video and another for teleconferenc-
ing. H.264/MPEG-4 AVC was created to unify these different applications. The
newer HEVC standard provides improved compression ratios using several tech-
niques including the sizes of several types of regions and improved prediction
within and between frames.

We will concentrate here on the video layer of H.264 known as the video coding
layer (VCL). H.264 also uses a network abstraction layer (NAL) built on top of the
VCL to allow the data to be used in a variety of applications, including videocon-
ferencing, broadcast/recording, and streaming.

Figure 3.51 gives a block diagram for the H.264 encoding process. The middle
part of the block diagram operates as a decoder—after reconstructing the decoded
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Fig. 3.51 Block diagram of H.264 encoding
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Fig. 3.52 Intra-prediction _

image, the result is compared to the original image and the difference encoded to
improve the quality of the result.

H.264 provides flexible mechanisms for block motion estimation. It can perform
motion estimation over blocks of several sizes: 4 x 4,4 x 8,8 x4,8 x 8,8 x
16,16 x 8,16 x 16. The ability to use different-sized blocks for motion estimation
allows trade-offs between estimation quality and bit rate; H.264 uses Lagrangian
methods to optimize rate distortion [WieO3B]. It can also store several reference
pictures for motion estimation and compensation; this feature was motivated by
periodic motion, in which a sequence of blocks may appear repeatedly in the sequence.

H.264 uses the YCrCb color space and 4:2:0 sampling (half the sampling rate
both horizontally and vertically) with eight bits per sample.

Intra-prediction encodes information on a block using pixels from neighboring
blocks in the same frame—pixels in the block are filled with copies of neighboring
pixels. A 4 x 4 predictor is used for luminance blocks and supports nine modes,
each of which fills the predicted block from different surrounding directions.
Figure 3.52 shows two of the nine prediction modes: pixels are copied vertically
from the row above the block; pixels are copied diagonally down and right. A
separate mode using larger blocks is designed to efficiently encode large, uniform
regions. This mode supports four different directions and can be used for 16 x 16
luminance blocks or 8 x 8 chrominance blocks. Prediction is performed at Y4 luma
sampling. The intra-prediction can also be bypassed with a mode that directly sends
the samples.

Transforming coding of the residual does not use the DCT [Mal03]. It instead
operates on a 4 x 4 block and uses a transform matrix with all integer values. The
small block size is used because the residual signal has less spatial correlation than
does a standard image. The integer transform coefficients allow the operation to be
performed efficiently.

A deblocking filter smooths out block boundaries to minimize the visual effects of
mismatches between the visual characteristics of adjacent blocks. H.264 requires the
use of a deblocking filter to avoid using blocky frames in the compensation loop. The
deblocking filter first filters vertical macroblock edges and then horizontal edges. The
filter takes as input eight pixels, four from each side of the edge; it updates six pixels
in a luminance block or four in a chrominance block. Boundary strengths are used for
adaptive filtering; the boundary strength of a chroma block is determined by the
strength of the corresponding luminance boundary. The filter examines pixel values
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around the block boundary to determine if smoothing should be applied; it looks for
variations across the boundary that are significant enough to need smoothing but not
so large that they probably represent an object boundary in the image.

3.7.4 Quality Assessment of Compressed Images

Peak signal-to-noise ratio (PSNR) is often used to evaluate image and video
algorithms. However, PSNR does not reflect any perceptual characteristics of the
visual system. PSNR is typically defined by mean-squared error from the original
image [ to its noisy or compressed version J:

1 .. .2
MSE = WZOSKNZOgKN([(Z’]) —J(@i,)))". (3.36)
The PSNR is, in turn,

MAX?
MSE

PSNR = 101log (3.37)
where MAX is the maximum value of the original image. This simple formula is
easy to compute but does not weight image characteristics in a way that takes into
account perception. We discussed the assessment of image quality in Section 2.
quality but that discussion assumed ideal images. Since compression algorithms
discard image information, we need additional tools to understand how lossy
compression affects image quality.

The structural similarity index model (SSIM) [Wan04, Bov13] is a widely used
metric that takes into account perceptual criteria but is also easy to compute. SSIM
compares two images—an ideal reference image and the image to be tested. It
compares N x N windows from each image; we typically compare several windows
from each image. If the two image patches are x and y, each with an average u,
variance ¢, and covariance o, then their SSIM is given by

a

zﬂx”y + 1
H2+p2

20,0, + 3
o + 03 + 0

SSIM(x,y) =

B
[ Oy +€2/2 ]y, (3.38)

6,0y +¢2/2

In this formula, a, #, y are weighting factors for th¢ component. The additional
terms are ¢, = (k;L)%, ¢2 = (koL)* where L = 2" P Pixel 4 the typical values for
the coefficients are k; =0.01, k3 =0.03.
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3.8 Computing Platforms

Digital cameras are complex computer systems as well as optical systems. We refer
to the computer that underlies a complex system as its computing platform or
simply platform. As we have seen, cameras must perform complex computations
in the imaging chain. Those computations also vary widely in their characteris-
tics—digital filtering, for example, is very different from file system operations.
Cameras must perform under real-time constraints—deadlines—in order to avoid
dropping data and generating bad images. Most cameras also operate under power
consumption limitations.

In this section, we will consider the computing platforms for digital cameras. A
thorough discussion of digital camera computing platforms would occupy several
books. However, a basic understanding of camera platforms helps us to understand
some of the design decisions and trade-offs in camera design. We will also consider
the software required to operate a digital camera.

3.8.1 Cameras as Heterogeneous Multiprocessors

The result of the stringent requirements on cameras—performance, power, weight,
and cost—is that most camera platforms are heterogeneous multiprocessors, col-
lections of several different types of processors interconnected together. Many
embedded processors are heterogeneous [Wol0O8] because heterogeneity is the
most effective way to simultaneously meet real-time performance, power, and
cost constraints. The processing elements in a heterogeneous multiprocessor are
either programmable or fixed-function units known as accelerators. We will look at
the design of two important image and video accelerators in Section 3.platform.
accelerators. In addition to image processing, digital cameras need to perform a
variety of functions that are common to interactive computer systems, notably file
system management and user interface. The host processor, typically a RISC
processor, is responsible for such tasks.

While heterogeneous multiprocessors confer many advantages, ease of program-
ming is not one of them. The different types of processing elements often use
different instruction sets. The communication between these processors often
requires specialized mechanisms. Given the large volumes of software in modern
cameras, programming these cameras has become a complex task in itself, even
once the algorithms they perform are well-understood.

Several camera manufacturers have designed their own image processors; these
processors are generally proprietary and relatively few details on them are avail-
able. We will introduce two different chips used for digital multimedia systems as
examples of the wide range of possibilities in the digital camera platform design
space.
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The Texas Instruments AM572x Sitara processors [Tex16] include a dual ARM
Cortex-A15 microprocessors, two dual ARM Cortex-M4 processors, two C66X
digital signal processors, an image and video accelerator subsystem (IVA-HD), a
3D GPU, and a 2D graphics accelerator. It also includes on-chip memory. The
Cortex-Al5 units are organized as an MPCore multiprocessor [ARMO09], which
provides a snooping mechanism for cache coherency; each processor includes a
Neon SIMD coprocessor and floating point. The C66x is a very long instruction
word (VLIW) processor which can be used for audio, imaging, and video
processing. The Cortex-M4 CPUs provide hardware division and single-cycle
multiplication. The IVA-HD system includes a set of accelerators for video
encoding and decoding.

Smartphone processors combine many different architectural forms to provide
high performance at low power levels: RISC clusters, digital signal processors,
vector units, VLIW units, GPUs, and accelerators.

GPUs are increasingly common in digital camera platforms, particularly those
hosted on smartphones. GPUs provide enormous numerical processing power in a
relatively compact area. The graphics problems they were originally designed to
solve are in some sense the inverse problem of imaging. However, in both cases the
image can be broken up into relatively independent groups of pixels, allowing
computations to be performed with an embarrassing level of parallelism. The
NVIDIA Jetson TX1 [NVI14B] includes the Maxwell GPU. Maxwell [Nvil4]
includes 640 cores organized into four streaming multiprocessors. Cores can
perform floating-point arithmetic [Whill]; the large number of floating-point
units gives GPUs their tremendous numerical computational power. Programs to
run on the cores are specified as threads; during execution, the GPU groups threads
into warps for scheduling purposes. Each streaming multiprocessor includes a
16,384 X 32-bit register file; each thread can access up to 255 registers at a time.
The set of streaming multiprocessors also share a separate 96 KB memory. The
TX1 also includes a cluster of ARM Cortex A57 organized as an MPCore cluster.
The Cortex AS57 provides a 64-bit architecture and a floating-point unit.

Some GPUs provide limited-precision floating point, such as 16-bit floating-
point arithmetic. These smaller formats provide two benefits: operations consume
less power and smaller values result in more available registers and local memory.
Their limited dynamic range does affect the accuracy of results in some algorithms;
however, these smaller floating-point formats may be useful in some applications.
We will discuss an example in Sect. 4.11.1.

3.8.2 Buffering

The design of buffering in the platform is critical to the satisfaction of design
requirements. Inadequate buffering can reduce the image throughput; for still
cameras, this means less frequent capture of fast action, while for video, this
means reduced frame rates. Solving throughput problems by adding too much
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memory results in excessive power consumption. Buffers are required at several
points in the imaging chain; these buffers vary in their purpose and organization.

Figure 3.53 shows the placement of buffers in the image processing chain. Let us
consider these buffers one at a time.

The buffer between the image sensor and the image operations (Bayer pattern
filtering, sharpening, etc.) is relatively simple. Image operations must operate on
several adjacent lines in the image, but they do not require the entire image. The
rate at which data is consumed by the image operations is constant, so we can easily
determine the amount of memory required. As a result, this buffer is typically much
smaller than an image frame. Because this buffer is small, it may be built using
dedicated static RAM rather than bulk dynamic RAM (DRAM).

Compression and storage operations are more variable in both execution time
and data volume. Execution time for some algorithms may vary; compression may
also result in differing volumes of compressed data, which results in varying
amounts of time required for transfer. The amount of data in the buffer at any
given time ¢ depends on the history of input to the buffer and output from the buffer:

\Insge —'-: buffer

sensor

image |
— !
-< enhancement | buffer

—-{ compression

Fig. 3.53 Buffers in the image chain

B(t) =Y _ [Out(i) — In(i)]. (3.39)

o<i<t

The buffer between the image operations and compression is particularly impor-
tant in still cameras for bursts. Action photographers often take a sequence of
photos and select their preferred image later; we will also see that some image
enhancement algorithms make use of image sequence bursts to minimize motion
between images. If the compression system is not fast enough to keep up with the
frame rate generated by the image sensor, then the size of the buffer at the
compression unit’s input determines the maximum length of a burst—the burst
must pause when the buffer becomes full.

Similarly, if the storage system is not fast enough to keep up with the compres-
sion unit’s output, the size of the compression/storage buffer will limit the burst
sequence length. For video capture, the storage system must be fast enough to keep
up with compression—Ilimiting the length of a video clip would be acceptable only
in, perhaps, an ultrahigh frame-rate camera. However, the data volume produced by
the compression unit may vary. Even if the storage system can keep up on average,
buffering is required to avoid data loss. This type of buffer is known as an elastic
buffer.

The buffers at the input and output of the compression unit are typically built
from bulk DRAM. These buffers are considerably larger than the one used for
image operations; DRAM provides both lower cost and lower power consumption
than static RAM. This bulk DRAM may also be shared by the processors for
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program and data. If DRAM is used by multiple processing elements, contention
between the units must be factored into performance calculations to ensure that
units are not starved.

3.8.3 Input and Output

Most modern cameras use electronic displays. Some professional and enthusiast
cameras use optical viewfinders, either rangefinders or single-lens reflex finders.
Optical systems operate at the speed of light but do not take advantage of the image
sensor to pre-analyze the image.

The key design requirement for electronic displays is low latency—the delay
from image sensor to the display screen must be very small so that the photographer
can assess composition with moving objects. Low display latency requires careful
design to minimize buffering. Generally speaking, the resolution of the display is
smaller than that of the image sensor. However, the ratio of display to image sensor
resolution can vary widely: smartphone screens are a closer match to the sensor
resolution than are many mirrorless enthusiast cameras. Subsampling the image
sensor lines both reduces read time and matches the vertical resolution of the
viewfinder image to the screen. Digital filters can be used to reduce the image’s
horizontal resolution. Buffering latency can be minimized by matching the display
frame rate and the image sensor capture rate.

At the other end of the I/O chain, we have mass storage. Both compact flash
(CF) and secure digital (SD) cards are used in camera, but SD is more widely used
in modern cameras. Compact flash is based on the electrical standard of IDE
magnetic disk drives, although its pinout is different. CF originally offered larger
storage and higher bandwidth than SD, but modern SD variants are vastly improved
on both fronts. At this writing, versions of SD support up to 2 TB of storage and
transfer rates of 312 MB/sec.

The characteristics of flash devices lead to some interesting characteristics. The
write time of flash memory is considerably longer than read times. The transistors
used to store data wear out with multiple writes. Combinations of software and
firmware perform error correction as well as identify bad bits and swap in spares.
However, the read time of flash memory can increase with use—the error correction
algorithms used require more execution time as the number of bad bits increases.

3.8.4 File Formats

Cameras must create image data in file formats that can be used by general-purpose
computers as well as many other devices. Many printers, for example, accept flash
cards and can print directly from the card’s contents. A number of image-related file
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formats have been developed; some date back to the 1980s. We will survey a few
widely used formats.

The TIFF format [Ald88] predates the JPEG standard. While the standard allows
images to be stored in several styles, both compressed and uncompressed, it is
typically used today to store images without lossy compression. The pixels can be
stored directly or losslessly compressed using the LZW algorithm. TIFF allows the
number of bits per sample/pixel and a color map to be specified. Since it predates
modern color management standards, it does not directly conform to them. TIFF
also provides for fags to record metadata. A tag is a < name, value > pair; TIFF
defines some tag names and allows users to create their own tag names. Example
TIFF predefined tags include image width and height, image orientation, image data
location, image title, etc.

The JFIF file format we described in Section 3.JPEG is not often used on its own.
The Exif format [JEIO2] is commonly used to contain the JFIF data; many files with
the jpg format are, in fact, in the Exif format. Exif also includes an audio file
standard; we will concentrate on the image format. Exif allows one file to contain
several versions of an image as well as tags. The primary image can be saved in
TIFF or JPEG formats. The file can also contain a thumbnail image—a small
version of the image. Thumbnails are often used for quick display of the image;
not only does the thumbnail have fewer pixels but it is often stored in a format that
is simpler to decode than is JPEG. Exif allows both compressed and uncompressed
thumbnails although a compressed thumbnail cannot be combined with an
uncompressed primary image; an Exif-specific format is used for compressed
thumbnails. Exif defines a variety of tags and allows user-defined tags. Examples
include GPS information, x and y resolution, date and time, make/model/software
of the image recording device, etc.

The DCF standard [Cip10] builds upon the Exif standard; it concentrates on the
relationship of data to the storage media, writers, and readers. The creation of DCF
was motivated, in part, by the ad hoc development of MP3 storage methods. The
MP3 audio player was not originally considered in the MPEG-1 standard that
defined MP3. MP3 audio was originally collected on computer hard disks and
CDs. Because no standards existed for the use of MP3 files, even simple playback
devices were required to read the entire directory structure of the storage medium in
order to determine where playable files may be located. DCF specifies that image
data be kept in the DCIM directory, which is to be stored within the root directory.
File names are to be eight characters long not counting the extension; the first four
characters are uppercase alphabetic; the last four characters are numbers in the
range “00017-9999.” DCF specifies several characteristics of writers, for exam-
ple, that at most 900 DCF directories may be created under the image root directory.
The standard also specifies required characteristics of DCF readers, most impor-
tantly that they be able to detect the directories on a DCF-compliant medium and
display the files in a given specification.

Camera manufacturers often define raw image formats for their cameras. These
raw formats are generally proprietary; many of the raw formats have been reverse
engineered. Although the name implies that the data in the file is the original pixel
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values without modification, some raw formats in fact perform lossy data compres-
sion and do not preserve all the raw image data.

3.8.5 Operating Systems and File Systems

The dominant smartphone operating systems, iOS and Android, support digital
camera APIs. The pITRON operating system [Tak02] is widely used in digital
cameras and other consumer electronics devices. It provides priority-based sched-
uling of tasks.

The FAT32 file system [Mic00] is widely used for removable flash cards in
digital cameras and other consumer electronics devices. FAT32 was developed by
Microsoft as an extension of its earlier FAT and FAT16 file system. It supports
drives of up to 2 TB. FAT32 can be implemented in a relatively small amount of
code and provides a robust file system interface. Formatting a file system estab-
lishes the basic file system data structures, such as a root directory, on the storage
medium.

Flash memory wears out with writing [Woll7]. Many devices use a flash
translation layer to optimize the use of the flash memory. Directories are most
liable to fast wearing since they are modified much more often than are the sectors
of typical files—a file’s directory must be modified any time the file itself is
modified. Flash translation layers perform wear leveling by occasionally moving
directories to different locations in the flash drive. One consequence of the wear
properties of flash memory is deleting all files by formatting rather than deleting
individual files which is highly preferable—formatting requires only a single set of
writes while deleting individual files results in a large number of file writes.

3.8.6 Accelerators

A great deal of image computation is performed by dedicated hardware. The
primary reason for this architectural choice is power/energy consumption—hard-
wired units generally consume less energy per operation and less total power than
an equivalent programmable unit. Given that most cameras operate on batteries,
power consumption is a key concern.

Many digital cameras include hardwired units for both JPEG and video com-
pression. The design of complete implementations of these standards is beyond our
scope. We will concentrate here on the design of two types of units useful in image
and video compression: DCT and block motion estimation.

We introduced the butterfly operation for DCT in Sect. 3.6.2. A hardware
butterfly unit includes an adder, a negation unit, a multiplier, and a twiddle factor
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coefficient. We can perform all the DCT operations in fixed-point arithmetic: both
the input and output have limited dynamic range; the intermediate operations do not
include divisions, so no hidden dynamic range excursions occur; the twiddle factors
are in the range [0, 1] so we can perform operations with an implicit decimal point
at the head of the twiddle factor. We can use the butterfly structure to perform the
inverse DCT, but higher accuracy computations may be required.

We should note that the difference in hardware characteristics—area, perfor-
mance, and power consumption—between an adder and a multiplier is not as great
as many people think. While multipliers are inherently more complex than adders,
modern VLSI processors make single-cycle multipliers feasible for a wide range of
bit sizes; multipliers for the word sizes used in digital camera image processing are
very reasonable.

A number of DCT algorithms designed for hardware efficiency—particularly in
the 8-point DCT—have been proposed. We will describe a few here to illustrate the
range of possible solutions. We can estimate the hardware cost of a DCT algorithm
using the number of multipliers and adders it uses; however, wiring complexity and
other factors also contribute to overall hardware cost.

Loeffler et al. [Loe89] developed an algorithm for an 8-point DCT that requires
11 multiplications and 29 additions. The algorithm is shown in Fig. 3.54. The order
of the inputs and outputs are shown at the left-hand and right-hand ends of the
structure, respectively; note that the outputs appear in a different order. The
algorithm makes use of three kinds of units:

¢ A standard butterfly performs Og =1y +1,,00=1y+1;.
* The ¢ box performs Op = Ipkcosig + I1ksingt, 01 = —loksin g5 + 1k cos 5%,
This box can be rewritten with a common factor to reduce its effort to three

multipliers and three additions. Given the form y, = axg+ bxy,y; = — bxg+axy,
the formulas can be rewritten as y, =a(xg+x1),yo=(b —a)x; +ay,,y,= —(a
+b)x1 +ay,.

« The open box performs O = I+/2.

x(0) \ X(0)
x(1) \\ / X(4)
x(2) ——— X(6)

2 sqri(c,

x(3) X f— X(2)
x(4) c, X(7)
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[\ 25
x(7) X(1)

Fig. 3.54 An algorithm for DCT
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Kok [Kok97] developed a recursive algorithm for even-length DCTs. This
algorithm requires 12 multipliers and 29 adders for an 8-point DCT; it is also
designed to have a very regular structure. The even output C(7) is given by

ciy= 3 p(ncos ﬁ—: (2n + 1)21}, (3.40)
0<n<§-1
p(n)=x(n)+x(N—1—n)ne [0,%]—1]. (3.41)

The odd output D(i) is defined in terms of D/(i):

D'(i)= > gq(n)cos E—Z(Zn+l)2i}, (3.42)

0<n<§—1
g(n) =x(n) —x(N — 1 — n)2cos [i—z (2n + 1)} ne {0,]; - 1}, (3.43)
D'(0) = 2D(0). (3.44)

Guo et al. [Guo92] developed an algorithm that substituted table lookup from
ROM and adders for multipliers.

H.264 does not use the DCT but instead uses a transform with integer transform
coefficients [Mal03]. The DCT’s coefficients are irrational so that a DCT followed
by its inverse may not result in exactly the same values returned. Using integer
coefficients eliminates this problem.

The simplest way to implement a 2-D DCT is as a 1-D DCT, a transposition
buffer, followed by a second 1-D DCT. This operation is particularly useful if
hardware costs allow for only one DCT unit. However, direct 2-D DCT algorithms
can provide more efficient implementations.

Cho and Lee [Cho91] developed a 2-D DCT algorithm based on N 1-D DCT
modules as well as butterfly adders and shifters. They then reformulated the signal
flow graph so that only half of the DCT modules were operational at any given time.
As aresult, they could use multiplexers to reformulate the algorithm to require N/2
1-D DCT modules. Their algorithm operates on real numbers.

Lee et al. [Lee97] made use of complex arithmetic to develop a regular 2-D DCT
algorithm. Their algorithm operates in three phases: pre-addition consisting of
butterfly computations and multiplication by 1/4/2, complex DCT and rotation,
and a butterfly postaddition. They also showed how to fold their architecture from a
fully parallel form requiring four complex DCT units to a pipelineable unit that
used transpose memories, multiplexers, and circular shifters in addition to the
complex DCT and butterfly units. They showed that their IDCT architecture gave
lower mean-square error values than did previous approaches. They showed that
their folded architecture required four 1-D DCTs, four 4 x 4 trams[pse,e,proes.
76 adders, and four constant multipliers, totaling 402,048 transistors.

The key challenge in the design of motion estimation engines is memory
bandwidth. The sum-of-absolute-difference operator is relatively simple, but a
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huge number of operations are performed. Efficient motion estimation engines use
local registers to store values and carefully schedule operations to minimize the
number of times that a given pixel must be fetched.

Komareck and Pirsch [Kom89] developed systolic architectures for motion
estimation. These architectures use local communication links between arrays of
processing elements. For example, Fig. 3.55 shows a one-dimensional systolic
array. The reference macroblock and search area pixels are pumped into the array
as wavefronts, each staggered from top to bottom. The la — bl processing elements
pass their results to the summation block; a separate block is used to select the
minimum-error motion vector. This unit requires N(2p + 1)(2p +N) clock cycles
where N is the size of the macroblock in each dimension and p is the radius of the
search area.

Yang et al. [Yan89] developed a motion estimation architecture designed for full
search. The architecture is illustrated in Fig. 3.56; it includes 16 sum-of-absolute-
difference (SAD) processing elements whose outputs feed a comparator. Their
architecture schedules operations on pixels from the two macroblocks:
a represents the reference macroblock while b represents the search area. Succes-
sive a(i,j) values are broadcast to all of the absolute-difference operators, while
each b(k,[) value is shifted from one unit to the next. On the 15th cycle, for
example, the absolute-difference units are processing la(0, 15) — b(0, 15)I,la
(0, 14) — b(0, 15)I, - - -,1a(0,0) — b(0, 15)I. Each SAD unit computes the error for a
different candidate motion vector. To accommodate the larger access region for b,
the architecture includes two inputs for different parts of the b range and multi-
plexers to select the appropriate value. For a search area of [—7, 8] horizontally and
[—8, 8] vertically, this architecture requires 4367 cycles [Dut96].

Dutta and Wolf [Dut96] extended this architecture to allow programming for
algorithms other than full search. They added an interconnection network to
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connect the memory elements to the processing elements, a multi-ported memory,
and a programmable controller. When built with a generalized-cube network, a
three-step search of distance ratio 4: 3 : 1 required 2600 cycles.

Yang et al. [Yan05] analyzed the power consumption and performance of
hardware and software implementations of motion estimation. They compared
eight algorithms: full search, one-dimensional full search, three-step, four-step,
diamond, modified log [Kap85], alternating pixel decimation, and subsampled
motion field with APDS [Liu93]. They found four algorithms to provide the lowest
power consumption in both hardware and software realizations: modified log, three-
step, four-step, and subsampled motion field with APDS.

3.9 Image Characteristics and Image Capture

Not all scenes provide high-dynamic range; however, some scenes exhibit very
large contrasts between light and dark. Mixed indoor-outdoor lighting, common in
surveillance, often provides very wide dynamic ranges between indoor areas and
brightly lit outdoor areas. One example is a surveillance camera shot of the truck
driven by convicted Oklahoma City bomber Timothy McVeigh [Lin06]. The cam-
era was in the lobby of a building with a view of the outdoor scene. The truck is
barely visible in the brightly lit street; nonetheless, this image was used as evidence
in trial. Outdoor lighting conditions can also change in the matter of a few seconds
when winds cause clouds to move quickly.

Judder is perceived jumpiness of motion caused by frame rates that are low
relative to the rate of motion. Judder may be caused either by subject motion or by
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panning. For many years, cinematographers used rules to determine the maximum
rate at which they could pan based on exposure and subject motion characteristics.
However, now audiences have learned to use judder as a cue for fast motion [B16].

3.10 Stereo and Multicamera Systems

Stereoscopic cameras are sometimes used for art and entertainment; they are also
used for computer vision. The distance between cameras—the binocular distance—is
a key parameter; a larger binocular distance results in greater depth perception. 3D
cinema was popular in the 1950s with films such as Creature of the Black Lagoon;
viewers often reported headaches while watching these films. Studies later found that
headaches were the result of editing that jumped between subjects of widely varying
distances, resulting in rapid shifts of the eyes and muscle strain. While some modern
3D movies are shot stereoscopically, many are shot in 2D and post-converted into 3D
using a combination of algorithms and artists. Postconversion is popular because 3D
cinema cameras are both unwieldy and expensive.

A key operation for stereoscopic imagery is disparity analysis or stereo corre-
spondence. As illustrated in Fig. 3.57, the different positions of the left and right
eyes or cameras causes objects in the scene to appear in different locations in the
left and right images; disparity varies with distance to the object. Because different
objects are at different positions and give different disparity values, we need to
compute disparity for each pixel in the image—disparity is a property of each pixel,
not of the entire image. A simple approach to computing disparity d is to correlate
the left and right images using an approach similar to motion estimation and use
sum-of-absolute differences to judge the quality of the match at each possible
disparity. However, this brute force approach is computationally expensive; simple
algorithms to identify the best match may also introduce noise in the disparity map.
Kosov et al. [Kos09] formulated the disparity problem using gray-level constancy
and smoothness constraints; they efficiently solved for disparity using multigrid
solving algorithms as well as an adaptive multi-level grid. Hirschmuller [Hir0OS]
introduced semiglobal matching, which uses pixelwise matching as well as a
smoothness constraint. Disparity is calculated hierarchically, starting with a
low-resolution image, in order to provide estimates of the disparity for the cost
function. Tombardi et al. [TomO8] compared cost aggregation methods for stereo
correspondence. Ttofis et al. [Tto15] designed a hardware disparity engine that uses
the Census transform for correlation. The Census transform [Zab94] encodes the
relative brightness of the eight pixels adjacent to a given pixel. We compute a
window of the adjacent pixels such that window(i,j) is O if I(i,j) < I(center) and
1 otherwise. We then convert the window values to an unsigned integer by
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transposing them row by row, top down, and left to right, into the unsigned integer
from MSB to LSB. The resulting value is the transform value.

Camera systems with more than two lens/image sensor systems are useful for a
variety of purposes but are particularly useful for virtual reality capture, for which a
very wide angle of view must be captured with as little geometric distortion as
possible. To provide seamless global views, the cameras must be coordinated. Their
shutters must be synchronized to avoid motion aliasing; global shutters should also
be used rather than rolling shutters. A single exposure value is unlikely to be
possible for many complex scenes—some of the cameras will see underexposed
images, while others will see overexposed views. The images must be processed to
blend their exposures and avoid block boundaries. These blending algorithms are a
form of high-dynamic range imaging which we will discuss in Sect. 4.4.

3.11 Trade-Offs Revisited

As we noted at the start of the chapter, the physical world rarely presents us with
win-win situations. We generally need to trade off reductions in one desirable
characteristic in order to gain improvements in another. Now that we better
understand the camera imaging chain, we can evaluate some of the trade-offs
presented to us in digital camera design.



3.11 Trade-Offs Revisited 133

Larger image sensors have a clear cost. A larger image sensor requires a larger
image circle, which in turn requires a longer focal length lens for any given angle of
view. The larger optical system increases the size of the camera along the optical
axis; the larger image sensor increases the camera size in the other two dimensions.
(Larger image sensors also cost more to manufacture.) Let us call this relationship
the smartphone dilemma—how do we build a camera that gives good images but is
still physically small? We will see in Chap. 4 that algorithms can help us: high-
dynamic range imaging can reduce the effects of physical noise; hyperresolution
can reduce the effects of pixelization.

We need to determine whether our camera is limited by its optics or by its image
sensor. Katz’s formula from Sect. 2.8.5 suggested that imaging system resolution
depended on the sum of the inverse squares of the component resolutions. But we
can identify more specific constraints. The optical resolution can be characterized,
at least to a first order, by its circle of confusion. The pixel size of the image sensor
limits its spatial resolution. We would like the circle of confusion to be small
relative to the pixel, but we face diminishing returns. On the other hand, the very
small pixel sizes of some advanced image sensors—for example, 50 Mpixel sensors
for full-frame 35 mm—provide enough resolution that very high-quality lenses are
required to pay justice to the sensor’s resolution.

We have seen in Sect. 3.4.6 that dark current limits the low-light performance of
the sensor. We also saw that pixel noise limits the maximum useful resolution of the
Sensor.

Both video and still cameras face limitations on the resolution-frame-rate prod-
uct. The bandwidth of the system must be sufficient to handle the total data volume
generated each second. Before compression, we can express the data volume
directly in terms of pixels; after compression, we express it in terms of bits.
Video systems often subsample chroma information; still cameras may do so as
well. The chrominance vs. luminance bandwidth affects the total required band-
width. Chrominance subsampling is one method to satisfy bandwidth limitations
while still delivering a required frame rate.

Further Reading
Nakamura’s book [Nak05] provides detailed discussions of image sensor design
and associated image processing.



Chapter 4
Image and Video Enhancement

4.1 Introduction

This chapter considers algorithms to enhance photos and moving images. High-
dynamic range algorithms, for example, generate a composite image from several
images at different exposures. These algorithms are increasingly available on
cameras, but they are not part of the traditional imaging chain. Many of the
algorithms here require substantially more computation than was the case for the
methods of Chap. 3. In the next chapter, we will take this development a step further
to look at algorithms that do not produce images at all—they analyze images to
produce succinct descriptions.

The algorithms in this chapter do speak to our central challenge of
autoprevisualization. Previsualization is often associated with the Zone System
for exposure and development, but it refers to all of the many decisions that a
photographer must make:

» Tonal mapping
e Framing

« Focus

¢ Subject pose

Algorithms can help us with all these steps: histogram equalization and high-
dynamic range for tonal mapping, mosaicing and perspective transformations for
framing, superresolution and focus stacking for focus, and facial detection and
analysis for subject pose. Digital photographers often refer to manipulation of
images after capture as development in analogy to film photography. However,
most of the operations we perform with digital editing tools are closer to printing in
film photography.

We can also move traditional previsualization considerations to produce
enhanced images that could not be made using film: high-dynamic range frees us
from some constraints on exposure and lighting; superresolution allows us to
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squeeze improved acutance from simple cameras and imperfect images; mosaicing
allows us to capture a composite image of a large area, then decide later which
section is most interesting. Some of these algorithms are directly applicable to
video; others like mosaicing can be used to generate picture elements for video.

We will move through enhancement algorithms from simple to more complex.
The next section introduces a few algorithms that we will use in this chapter,
including the Gaussian pyramid and interpolation. Section 4.3 looks at tonal
mapping and color grading. Section 4.4 considers high-dynamic range imaging.
Section 4.5 discusses sharpening and superresolution, while Sect. 4.6 discusses the
introduction of bokeh. Section 4.7 studies lens corrections. Section 4.8 studies focus
stacking. Section 4.9 considers keystone correction; that algorithm is useful in the
mosaic composition algorithms discussed in Sect. 4.10. We discuss video stabili-
zation in Sect. 4.11. Section 4.12 considers software design issues for these
algorithms. Finally, Sect. 4.13 surveys these results to consider their implications
for photography.

4.2 Useful Algorithms

The Gaussian pyramid [Bur83] is a multiscale representation of an image as
illustrated in Fig. 4.1. We can generate a low-pass filtered version of an image a
Gaussian smoothing function, for example,

1 —2 /262
g(x)zﬁe /2 (4-1)

Given an image I, _ |, we use the smoothing function to produce /;. We then find
the prediction error L; =1; | —I;. We perform this operation recursively to gener-
ate the image pyramid.

Interpolation algorithms have several uses. They can be used to simply increase
the pixel count of an image; since these algorithms do not combine multiple images,
they do not increase the image information. They can also be used to regenerate the
uniform pixel field after distortion operations, for example, during keystone cor-
rection and mosaic composition.

Several algorithms have been designed with varying perceptual effects. Nearest
neighbor interpolation is the simplest approach. It copies pixels from the original
image to supply the interpolated values. It has poor perceptual characteristics. A
somewhat more sophisticated approach is bilinear interpolation, which uses linear
interpolation on a 2 x 2 window, resulting in a quadratic formula for the interpo-
lated pixel I,(x;, y,). Given four pixels from the original image I;(xy, y1), [>(x2, y1),
I5(x2, 1), 14(x1, y2), we interpolate two values in x, one for the upper pair of pixels
and the other for the lower pair:
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The final interpolation is performed in y:

I[:}’2—)’b1x1+)’h—)’1[x2_ (4_4)
Y2 =N Y2 =N

Bicubic interpolation is widely used for upsampling and resampling images. It
interpolates on a 4 x 4 window, resulting in a smoother image. Original image
points are convolved with a kernel function to find the interpolated values. The
kernel function is designed to be symmetric and continuous and to have a contin-
uous first derivative; it is also designed to match the Taylor series expansion of the
function as much as possible. The one-dimensional form of the kernel function is
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15x —2.5x2 +1 0< <1
u(x) = —O.5|x|3 —25ax* +4x| +2 1< |x[ <2 (4.5)
0 otherwise

The kernel is convolved with coefficients equal to the pixel values; the boundary
values of the interpolation coefficients are c¢_;=c,—3c;+3co,Cn
+1=23cy—3cy_ 1 +cny_». To interpolate, we take a 4 x 4 window of pixels in the
original image [ around (j,k) in the range [—1,2] in each dimension. The
two-dimensional interpolation is performed by multiplying together the
one-dimensional convolutions. We can interpolate a fractional-positioned point
(x,¥),x,y€[0, 1] as

1(~(]'+)C,k +y) = ZflSISZZflgrngZ[(‘j + l7k + m)u(x - xj+1)u(y - yk+m>
(4.6)

While bicubic interpolation has many desirable properties, the fact that kernel
function assumes negative values at its outer edges means it does create some
ringing undershoot.

Lanczos interpolation uses a sinc filter. The two-dimensional Lanczos window is

. . X, . ;Y
asmazx Sin—asimomgy Sin—
L(x,y) = a4 pxe 4 —a< (4.7)

m2x?
x,y <aandx,y# 0,L(0) = 1,0 otherwise.

A value is interpolated by discrete convolution.

Zhou et al. [Zho12] use interpolation to guide cubic interpolations. They first
identify diagonal edges which they use to interpolate pixels on the diagonals
between the original pixels. They then use horizontal and vertical edges to inter-
polate pixels above/below and left/right of the original pixels.

4.3 Tonal Mapping and Color Grading

The tonal mapping problem is a simple example of the types of operations we want
to perform on images after capture. It also helps us better understand the role of
post-capture operations in previsualization. Tonal mapping simply refers to how we
map radiosities in the scene to gray levels in the final rendered image. A naive view
of photography puts all the responsibility for tonal mapping onto exposure. But the
Zone System [Ada02B, Ada02C] teaches that decisions after exposure are critical
to how the image is finally rendered.

The Zone System tells us to first choose a low-valued tone and a high-valued
tone in the scene and decide in which zone each should be placed. In film, we then
expose for the low value and develop for the high value. The exposure should be
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chosen to ensure that the tone chosen for the lower zone is captured at that zone—a
Zone III value, for example, would be captured by setting the exposure two stops
below that required for Zone V middle gray. The film development time is then
determined to place the higher zone. For example, if the higher tone is desired to be
on Zone VIII but the exposure places it only on Zone VII, the film could be
developed longer to make the required adjustment.

In film, we develop for the high tones because development changes the slope of
the characteristic curve. Longer development affects the higher zones more than it
does the lower zones—the lower zones stay at approximately the same density,
while the higher zones become more dense, increasing the slope of the curve.
Similarly, shorter development reduces the slope of the characteristic curve. We
can therefore change the contrast in the image by changing development.

To achieve the same result in digital photography, we need to use digital tools.
We can change the characteristic curve of an image by consistent relative adjust-
ment of the pixel values. Figure 4.2 shows a before-and-after example of charac-
teristic curve adjustment. In this case, the tool allows us to change the slope of the
characteristic curve by moving its black and white endpoints; it then adjusts the
pixel values to conform to the new curve. The resulting image has more contrast
with brighter whites and deeper blacks, making it more pleasing to look at; we saw
in Chap. 2 that the human visual system prefers scenes with strong black and white
values so that the visual system can calibrate itself. To understand the transforma-
tion, let’s start with a linear characteristic curve:

p,=ap;+b (4.8)

The transformed output pixel p,’s value depends on the input pixel value p,€[O0,
W1, the characteristic curve slope a, and its y intercept b. For the unmodified image,
a=1,b=0. We can change both the slope and the intercept. Then the value of each
pixel in the transformed image is

Io(lvj) :all(laj)+b (49)

with the understanding that /, ranges over [0, W]. As with film, changes to the slope
have the greatest effect on the higher zone values, although the slope does affect all
the pixel values to some extent. We can change the mapping of the lower pixel
values by changing the y intercept.

However, digital processes give us flexibility that we do not have in chemical
photography. We can choose pretty much any characteristic curve we want and
apply it to the image. Figure 4.3 gives an example of a nonlinear characteristic
curve transformation which allows us to change the balance between light and dark
areas in subtle but useful ways.

We change zone values in color images by applying the same characteristic
curve transformation to all of the color channels. We can also change the color
balance of the image by applying different transformations to different color
channels. In Fig. 4.4, we can increase the yellow in the image by reducing the
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Fig. 4.2 Characteristic
curve adjustment

before curve adjustment

after curve adjustment

blue; this curve makes the yellow most pronounced in the darker regions of the
image.

Once again, we have more freedom than with film. Color film does not work well
with the Zone System because different layers respond differently to changes in
development time, resulting in color shifts.

Remember that tonal mapping of our digital images has fundamentally different
goals than does color management. Both perform similar mappings of luminosities
and color values. But the color manager’s goal is to keep the image rendering
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Tone Curves

Fig. 4.3 Effects of applying a nonlinear characteristic curve transformation

consistent across displays that have different characteristics. Tonal management, in
contrast, is designed to change how the image looks.

Histogram equalization is an algorithmic approach to tonal mapping; its under-
lying assumption is that pixel values should be uniformly distributed. This rule
tends to give good, easy-to-read images.

We can treat the pixel values as a posterior probability distribution. Let’s assume
that we have W bins, one for each possible pixel value. If n,(k) is the number of
pixels in bin & (the number of pixels whose intensity equals the bin value), then we
can represent the probability density function of the pixels as

_ k)

) ="

(4.10)
where N is the total number of pixels in the image. If we consider the pixel values to
be real-valued over [0, 1], the uniform distribution of pixel values would give a
probability density function of p;(k) = 1; the cumulative distribution function would
be a line of slope 1 and y intercept at the origin. For our discrete histogram, the
cumulative histogram function is
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H(k) = O<Zl<kh(1). (4.11)
This cumulative function gives us the mapping required from the image’s pixel
distribution to a uniform distribution.
The equalized image’s pixel values are

The W factor translates the cumulative histogram to the range of pixel values.

Larson et al. [Lar97] developed a modified form of histogram equalization. They
found that linear histogram equalization increased the contrast of low-contrast
areas. They limited local contrast changes to be no more than the global contrast
value:

< NAh
B longax - longin

H (k) (4.13)
where A# is the size of a histogram bin and [L,y;,, Limax] 1 the luminance range of
the display or output image. They used an iterative algorithm to adjust the
histogram.
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Color grading is the term used for the image adjustment process in motion
picture production. Color timing refers to the photochemical version of this process,
which adjusted exposure times to control color. Digital workflows give filmmakers
much finer-grained control over their images and introduces correspondingly more
work. Colorists perform both corrective and artistic operations; they work both
within an image and across shots. Basic corrections may include exposure, white
balance, contrast, and noise. An early part of the process is to create one or more
lookup tables (LUTs) to map pixel values from the input sequence to values in the
print. Colorists work with the director and cinematographer to build lookup tables
that reflect the color and lighting scheme for each part of the film; many films use
different LUTs for different scenes or act to convey emotion through lighting. The
LUT may be adjusted manually, one value at a time, to create the desired look; this
level of detailed control goes far beyond what is possible with film. Many motion
pictures shot on film are scanned so that color grading can be performed digitally.

4.4 High-Dynamic Range Images

High-dynamic range (HDR) imagery combines several images to create a merged
image that displays more clearly the range of illumination in the scene. Most
algorithms use different exposures—bracketing the exposure—but we will see
one algorithm that combines a burst of several images taken at the same exposure.
An example is shown in Fig. 4.5. Creating an HDR image requires us to do two
things: determine how the scene luminance of each point in the image is determined
from the set of images and map from the scene luminance to the display luminance
to compresses the dynamic range onto the display’s limited range. We have a
variety of criteria with which to compress the expanded dynamic range onto the
display range, depending on our model of what is important to the viewer as well as
the computational effort we are willing to expend.

An early approach to HDR was developed by Mann and Picard [Man95]. They
weighted output pixel values v — v using the function

vo = [ddvlog g(v)] B (4.14)

where g(v) is the camera response function.
Debevec and Malik [Deb97] used a peak-shaped weighting function that favors
midrange pixel values:
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O par e
high dynamic range image
Fig. 4.5 A high-dynamic range image and its component images

V — Vimin, V < %(Vmin + Vmax)
Vo = 1 . (415)
Vmax — V,V > E(Vmin + Vmax)

In these formulas, viin, Vimax are the smallest and largest pixel values in the
image.

In addition to mapping tonal values, high-dynamic range algorithms can try to
minimize noise. Early approaches concentrated on quantization noise. Later
methods developed more detailed noise models of sensors. Granados et al.
[GralO] developed a noise model that included photon shot noise, dark current
shot noise, readout noise, photoresponse nonuniformity, and dark current
nonuniformity. They developed a weighting function to minimize the variance of
the luminance reconstruction:
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B tfgzaf
gt (ajﬂx + zﬂD) + 207

Wopt (V) (4.16)

In this formula, #; is the exposure time, g is the gain of the complete imaging
chain, g; is the pixel gain, yy is the mean pixel value, pp is mean dark current, and
or is the readout noise including quantization error. Hasinoff et al. [Has10] devel-
oped a model based on the fact that ISO scaling improves image signal-to-noise
ratio, as we discussed in Section 3.sensor.analysis. They modeled SNR for a single
image as

SNR(®)* = b

= 4.17
Dt + Zagead + GiDng ( )

where @ is the irradiance, g is camera gain,  is exposure time, 6>,  is the read noise

variance, and U/Z\DC is the quantization noise of the analog-digital converter. The

function [I < Imax (g)} is a binary operator that enforces zero SNR for saturated
pixels. They showed that under their model, the SNR of the merged set of images is
linear in the size of the image set. They formulated the problem of finding the
optimal set of exposures to minimize SNR as an integer program.

Hasinoff et al. [Has16] developed a burst-based approach to HDR that has been
implemented in the Android Camera2 API. Unlike the other methods, their
approach combines images of the same exposure; burst sets in size range between
two to eight images. This approach works because the burst of constant-exposure
images serves to integrate the luminances in the same way that a single long
exposure would.

Their system operates directly on the raw image value without color filter array
interpolation or other operations. To minimize the effects of shake, they align the
images in the set using a four-level Gaussian pyramid; they then perform a subpixel
alignment estimate. Their merging algorithm models pixel noise as shot noise; they
estimate the noise on a tile-by-tile basis using the root-mean-square value of the
tile’s pixel values. They merge by computing the 2D DFTs T,(w) of each tile for in
image z €[0, N — 1]. They compute an averaged value as

. | vt

To(0) = ; (1 — A)T. (@) + A.To(w). (4.18)

The parameter A, controls the blending between the alternate frame z and the
reference frame:

Al - Tol) ~ T-(o)f

 |To(w) — T.(w)]* + co? (4.19)
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They map the dynamic range of the pixels onto the display using a weighted sum
of three criteria [Mer10]: they use the absolute value of a Laplacian filter on the
grayscale image as a metric for contrast; they compare the pixel value’s R, G, and B
channels to the standard deviation of the channel to evaluate saturation; they
emphasize midrange values using a Gaussian curve to measure well-exposedness.
Their weighting function for these three criteria has a power law form:

Cijv"CSii v Eij " (4.20)

Their system also performs a number of other operations, including correcting
for lens vignetting, white balancing, color correction, dehazing, chromatic aberra-
tion correction, and sharpening.

Virtual reality omnidirectional video capture requires simultaneous HDR
processing of all the cameras that contribute to the VR stream. Popovic et al.
[Popl4] developed an FPGA-based processing system to perform Debevic and
Malik’s HDR algorithm in real time on 16 cameras.

The effect of high-dynamic range processing on the viewing experience varies
depending on the scene. Figure 4.6 shows two examples of HDR photos, both taken
with Android cameras. The mountain sunrise photo shows detail in most sections of
the image, but the foreground appears brighter than it seemed, giving a slightly
surreal result. The airport sunset photo fairly accurately captures the experience of
this very contrasty but beautiful scene.

The example of 4.5 is based on only two of the five bracketed images taken of the
scene. HDR images generated from different combinations of those images resulted
in different renderings of the scene, a result of both the varying data from the
images and the effects of the HDR rendering algorithm. This rendering, based on
the extremes of the exposure bracket, preserved the contrast between the shaft of
light and the dark forest. Using only two images minimized the effect of movement
of the leaves under the afternoon breeze.

4.5 Sharpening and Superresolution

The unsharp mask filter is widely used in post-processing to sharpen images. The
name comes from the photographic practice of using a mask to burn in the area
around edges; the mask is blurred to avoid creating lines at the edge of the mask.
Despite its name, the unsharp mask is a linear filter. The principles are best
illustrated in continuous form [Spr12]. The unsharp mask is given by the convolu-
tion of the image with a Gaussian:

Ulx.y) = 1(x,y)* \%()/ : (4.21)



4.5 Sharpening and Superresolution 147

Fig. 4.6 Examples of high-dynamic range images

Fig. 4.7 The unsharp mask
filter

Gaussian
smoothing

classical

Gaussian ( > ( ) X
smoothing

simplified

where * is the convolution operator. The standard deviation gives the radius of the
filter. As illustrated in Fig. 4.7, the sharpened image can be generated using a
smoothing parameter c to weight the original and mask images:

c I(x,y) 1—c
2c— 1Y T

I'(x,y) = U(x,y). (4.22)
A digital unsharp mask filter is built with discrete filters for the mask. The
classical approach can be used with a Gaussian filter. A simpler implementation of
this filter, also shown in Fig. 4.7, is to use a Laplacian filter or a Sobel operator as an
edge detector, weight the mask by a factor 4, and then add it to the image.
Superresolution algorithms go beyond sharpening and upsampling to create an
image with a higher pixel density than the original image. Superresolution has its
artistic uses but is particularly useful in technical applications; for example, it is
widely used for license plate readers. Four major approaches have been developed:
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reconstruction from several lower-resolution images, interpolation, machine learn-
ing, and algorithms based on compressed sensing.

Tsai and Huang [Tsa84] formulated reconstruction from low-resolution images
using Fourier transforms. They analyzed the properties of shifted component
images in the Fourier domain and used the shifted component spectra to solve for
the superresolution image. Their procedure required knowledge of the shifts
between the component images. Hardie et al. [Har97] formulated the problem of
finding the relative shifts of the components as a maximum a posteriori problem.
They modeled the prior for the density of the superresolution image as a Gaussian;
they included a value for each pixel and a 1/4 weight for each of its four cardinal
(north, south, east, west) neighbors. They assumed translational motion. They used
a gradient descent algorithm to solve for the MAP; they simultaneously solved for
the superresolution image values and the translations between the component
images. Patti et al. [Pat97] took into account motion blur during reconstruction.
They used an integral model of motion blur similar to the model we saw in
Sect. 3.4.6. They noted that the effect of subject motion is to perform a homo-
graphic transformation on the rectangular pixel. They use the method of projection
onto convex sets to solve the estimation problem. At each step, they compute blur
for each site and estimate an updated image; they then compute the residual and
backproject it onto the component images, then apply a stopping criterion. Robin-
son et al. [Rob10] used an FFT implementation of a Weiner filter to denoise the
merged superresolution image; they used spatially varying estimates of the noise
variance. Some cameras capture multiple images for superresolution by shifting the
sensor using piezoelectric actuators similar to those used for image stabilization.
This approach also gives a full set of color filter array samples at each location,
avoiding the need for CFA interpolation.

The RAISR algorithm [Mill16] uses machine learning for superresolution. The
algorithm is rained on pairs of low-quality/high-quality images to recreate details
similar to those in the high-quality version from features in the low-quality version.
Training is performed on edge features based on direction, strength, and coherence
(consistency of directionality). This approach was found to be comparable to
Lanczos interpolation.

Hou and Andrews [Hou78] used cubic spline-based interpolation for
superresolution. The form of the third-order spline is

&{(5 — &) UE-E ) —4E-& ) UE-& ) +6(E— &) UE-&)

—4(E = &) U(E = En) + (6 — E2) U(E = &)U
(4.super — pline)

In this formula, A is the grid spacing and U() is a unit step function. They used
a digital filter to interpolate the curve given a sampling interval 6 and a fixed
multiple m:
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Machine learning methods use learning algorithms to infer the prior
co-occurrences between the component images and superresolution image. Sun
et al. [Sun03] decomposed a low-frequency image to identify and classify primi-
tives. Off-line training had associated the low-frequency primitives with high-
frequency primitives. A consistent set of high-frequency primitives was found
using a Markov model. The high-frequency components were then combined
with the low-frequency image to create the superresolution image.

Compressed sensing is widely used in modern signal processing; sparse signal
models allow sampling rates below the Nyquist criterion to be used. Yang et al.
[Yan10] used compressive sensing methods to create a superresolution image from
a single low-resolution image. They used a training algorithm to identify relation-
ships between low-resolution and high-resolution image patches. Their training
algorithm used a common indexing scheme for the low- and high-resolution image
patches; this allowed a low-resolution patch to be used to look up its corresponding
high-resolution patch. Their dictionary, which was overcomplete, was based on a
linear combination of a set of atomic features. The high-resolution patches are
combined to create the superresolution image. They applied their approach both to
general images and to images of faces; knowledge of the subject characteristics
allows lower-resolution component images to be used.

4.6 Bokeh Introduction

Shallow depth of focus is often used to separate the subject of the photo from the
background. Photographers have long exposed at wide apertures to create a shallow
depth-of-field and render the background with bokeh. Lenses with shorter focal
lengths also provide shallower depth-of-field which can be used to increase the
bokeh of the background. However, smartphone lenses often operate at narrow
apertures. Some cameras use stereo information, either from stereo analysis or a
time-of-flight imager, to separate foreground and background regions. The back-
ground regions are then convolved with a kernel operator to create an out-of-focus
background; a variety of bokeh effects can be created by proper choice of the blur
kernel.

4.7 Lens Corrections

As we saw in Chap. 2, lenses introduce a wide range of distortions and aberrations.
Correcting those problems after image capture requires a model of the lens. While
in principle the optical characteristics of the lens could be derived from its design,
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we rarely have enough information to do so reliably. We generally rely on basic
models, often with parameters that are reverse engineered from camera calibration.

Fisheye distortion has received a great deal of attention. This geometric distor-
tion becomes pronounced at focal lengths much shorter than the normal focal length
for the sensor format. Hughes et al. [HugO8] survey algorithms for fisheye distor-
tion. A simple radial distortion model [Len88] fits the distortion parameters to a
second-order polynomial:

X u YL[

X, = Y = s
T R YT 1+ R

R*=X2+7Y2 (4.24)

Lower-order models do not provide sufficient correction for very wide-angle
lenses. Shah and Aggarwal [Sha94] proposed a fifth-order model with both odd and
even terms:

0 = ab + bO* + c6® + do* + e6°, (4.25)
p' = ap+ bp* + cp® +dp* + ep’, (4.26)

where (p, 6) is the position of the image point in polar coordinates and (p, ) is its
corrected position. An alternative model is the perspective model [Ish03]:

s :ftan]‘;. (4.27)

In this case, f is the apparent focal length of the fisheye, which may not be the
same as its physical focal length.

This correction will, in the case of very wide fisheye lenses, leave some
corrected image locations without pixels mapped to them. The missing pixel values
can be filled in using interpolation.

Some camera and lens systems automatically capture lens data and record it in
the image or video file. Data may include both the type of lens and its settings—
focal length and aperture. This data can be used in post-processing to guide
corrections. Databases of lens characteristics are available in both commercial
and open-source versions.

4.8 Focus Stacking

Focus stacking combines several images of a subject to create a composite image
with a larger depth-of-field. Figure 4.8 shows a pair of component images and the
resulting photo-stacked image. Photostacking is particularly useful in macropho-
tography and microphotography where extremely small depths of field limit one’s
ability to resolve the subject without racking the focus.

As we saw in Chap. 2, focusing slightly changes the framing of the subject in the
image as the lens moves relative to the image surface. This effect is often significant
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image pair

focus stacked image

Fig. 4.8 Focus stacking

in situations that call for focus stacking. The component images need to be
registered using homographies to properly register the component images.

Hariharan et al. [Har07] develop focal connectivity maps to generate a focus
stack. They estimated focus by filtering each component image with x and y Sobel
operators and then used the results to generate a sharpness map for each component
image i:

Site,y) = /Py, 3) + By (). (4.28)

They low-pass filtered the sharpness maps to help to combine local focus
regions. They then used a sharpness threshold test to generate the focus stack
image from the component images.

Federov et al. [Fed06] broke the component images into tiles and applied a focus
criterion to select which component image would represent each tile position. They
then treated the tiles as mosaic elements and combined them using multi-resolution
spline methods.



152 4 Image and Video Enhancement

original image with keystone

corrected image with modified keystone

Fig. 4.9 Keystone correction

4.9 Keystone Correction

Keystone correction, shown in Fig. 4.9, is useful for both artistic and technical
purposes. (The name comes from the shape of the keystone at the top of a stone
arch.) It can be used to substitute for camera swings and tilts in photographs of
buildings. Car backup cameras are an often pointed downward and their imagery



4.10 Mosaic Composition 153

benefits from keystone correction. This operation transforms the four corners of the
keystone to the corrected positions of the corners: (py, py, p3,ps) — (P}, 5 P5, P4 )-
For each point p; = {x;, y;), we can write (letting /33 = 1)

; huxi+hoy;+his 0 hoxi + hpy; + hys
o= = . (4.29)
h31y; + hay; + 1 h31y; + hay; + 1

We can rewrite these formulas by multiplying by the denominator to put full set
of relationships between the four point pairs in matrix form:

X' = KH, (4.30)
le x1y11 00 0(—xpx)) (—y1x)) hiy
¥ 000xyy,1 (=) (=yi) | | 72 (@31)
x.g x4y,100 0( x4xg)( —Y4%y) hay .
¥, 000 xay,1 (=x4¥,) (=ya¥4) | | o

The homography parameters can be found from the positions of the four
corresponding point pairs as (K’ K) '(K" X). Numerically solving for these
parameters does require some care; Hartley [Har97] used a preconditioning method
to minimize the effects of noise in the values of the points.

4.10 Mosaic Composition

Mosaicing creates a composite picture from several images with overlapping fields
of view. (This procedure is very different from the demosaicing used to interpolate
pixel values from color filter arrays.) Mosaicing relies on homographic projections
to transform the component images. It has a number of artistic and technical uses.
We can use mosaicing to build a larger image with more detail, change aspect ratio,
or shoot now and crop later. Mosaics can also be used to build background for other
applications and to create synthetic views such as video rearview mirrors. Huge
panoramas can be made with dozens or hundreds of component images, allowing
viewers to zoom in for detailed views. While these large mosaics could be thought
of as superresolution, they are not constructed using subpixel interpolation or
estimation techniques.

The first step in synthesizing a mosaic is to determine the geometric projection
used from the scene to the synthetic image. As we saw in Sect. 2.5.4, we can choose
between several different projections for panoramic scenes. Figure 4.10 shows
three possible projections: perspective, cylindrical, and spherical. In many cases,
the photographer has not been precise about camera movements, so without a
detailed reconstruction of camera movement, any projection will be approximate.
The rotations of the camera should be performed around the lens’ nodal point to
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Fig. 4.10 Projections of
component images onto
mosaics

perspective

cylindrical

spherical

avoid perspective shifts, but this effect becomes less significant as subject distance
increases; it is rarely a consideration for distant landscapes.

Szeliski and Shum [Sze97] developed an algorithm for mosaicing that does not
restrict the motion of the camera during image capture. Their method requires
estimating the focal length of the lens, which in turn requires estimating a
homography matrix between a pair of images Iy I; (or possibly several pairs).
They generate the homography parameters using an iterative method; at each
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iteration, they warp the image I by I+ D where the update matrix D has d3; =0 and
nonzero parameters otherwise. At a point x, y, this update can be written as

V- (1 + dll)x +dpy+dis yu _ (1 + d21)x +dypy +dx (4 32)
dyx+dpy+1 dyx+dpy+1 '
They use a Jacobian matrix (the partial derivatives of the position x with respect
to the update values d) to optimize the parameters; these partial derivatives describe
the motion from one frame to the other:

Ja(x)

dx’ [xleOO—xz—xy]T (4.33)

T dd T [000xy1l—xy—y?

We then minimize

> [8f alx)d + e 2 (4.34)

1

where g/ is the image gradient VI 1(x).

Given the homography matrix that relates two images, we can estimate the focal
length of the lens.

The relationship between the two images [y, [, is VRV, ' (assuming for
generality that each shot has its own viewing matrix): the inverse of the view of
camera 0, rotation to the position of camera 1, and the view of camera 1. The
homography can be represented in terms of this rotation as

Toor017°02
rorir2 . (4.35)

rao/fira [firafo/fi

The first focal length can be estimated as

mz +m? —m> —m? .
fi= \/ 0 ! : Lif ms # my (4.36)

ms — mg
moms —+ mniy

fi= if my # 0 and ms # 0 (4.37)

mams

Motion between frames must be estimated more accurately than in the case of
video compression because we do not have an error signal to correct any discrep-
ancies. The camera moves from frame to frame rotationally; each frame i is
modeled by V;R;, the viewing and rotation matrices. We want to find the rotation
vector [w,w,w.] for each frame. We can add the rotation estimation to the iterative
estimation of the homography matrix. A rotational update matrix can be used to find
a Jacobean matrix for the minimization procedure:
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dx’ dd _ [—xy/ff+2/f—y]"
o=—"—== 2 . (4.38)
dd dQ —f =y /f xy/f x
We can map the component images into a spherical mosaic. The pixels in the
mosaic have polar coordinates [6, ¢]; each pixel coordsponds to a 3D position

[XY Z] =[cos¢sin® sing coscos). (4.39)

A point p in 3D space is mapped onto an image k as T,V R;p. A similar approach
works for cylindrical and perspective mappings.

Brown and Lowe[Bro03] used SIFT features to find correspondences between
component images. We will discuss SIFT features in more detail in Section 5.alg.

The edges of the component images will overlap; we need to find a way to join
together the images. Agarwala et al. [Aga04] proposed merging images at naturally
occurring seams in the component images. Their method makes use of an algorithm
by Kwatra et al. [Kwa03]. The pixels in the region of the overlap between two
images are modeled as a mesh. Each edge between pixels s and ¢ is assigned a
matching quality weight. A simple form of the weight is

11o(s) = L ()]l + [[fo(5) = L (D)]]- (4.40)

A more sophisticated form of this weighting function takes into account the
horizontal and vertical gradients of the images. The minimum-weighted cut that
separates the mesh into two components corresponding to the two sides of the
boundary gives the best seam between the two images. This cut set can be found
using standard operations research algorithms [HilO1].

4.11 Video Stabilization

Stabilizing video is more complex than eliminating the effects of camera shaking in
still images. Camera movement may be part of the design of the shot. In the case of
artistic shots, we want to maintain the flow of the shot while reducing shake. In
some technical applications, we may want to correct for all camera motion, for
example, to facilitate tracking. We will first discuss optical flow and then go into
stabilization algorithms proper.

4.11.1 Optical Flow

Optical flow is a detailed, local analysis of motion that produces a motion vector at
each point. It can be computed for every pixel in the image, although many
applications require only a subset of pixel locations to be analyzed. Optical flow
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Fig. 4.11 Optical flow

is finer-grained than block motion estimation, which is designed to operate on
relatively large macroblocks. Figure 4.11 shows an example of optical flow vectors
computed for an image based relative to the previous frame in the video sequence.
Optical flow is more computationally intensive than block motion estimation, but
modern platforms can compute optical flow in real time.

The Kanade-Lucas-Tomaso (KLT) algorithm [Luc81, Tom91] is widely used to
compute optical flow. It computes the gradient of luminance at each point with
smoothness constraints. The optical flow at a point is computed on an n X n
window; a 2 x 2 window is sufficient for simple applications, and larger windows
give more accurate results, particularly with larger displacements. The partial
derivatives of the frame [/ relative to its reference frame are /I,,1,,/;; these can be
approximated using difference equations. The flow vector is given as

-1

Vy

[Vx] _ ZlgiyZlggnlz(iJ) ZlSiSnZISiSnlx(iJ)Iy(i’j)
YicienXrjends G E1)  YicienXijend ()
215i3n21§j§n1x(iaj)lt(i,j)
[ZlgignZlggn[y(iaj)ll(i’j)

These formulas can be solved iteratively; a small number of iterations are
typically required for small motion.

(4.41)

4.11.2 Stabilization Algorithms

Stabilizing a video signal requires that we adjust each frame so that objects do not
move due to shake; the scene should move, however, as we deliberately move the
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camera. The motion of the camera is known as egomotion. If the camera has
accelerometers, the egomotion can be much more easily determined; if not,
egomotion must be estimated from the video sequence. We must be able to separate
egomotion from any subject motion in the scene.

A simple method [Mac93] is to use an oversized image sensor. As the lens
moves relative to the image sensor, we select the appropriate part of the image
sensor for use. If the image circle is smaller than the image sensor, we can use
illumination directly to determine where the lens has moved due to shake.

The algorithm of Irani et al. [Ira94] selects an object on which it will base its
motion estimation between two consecutive frames Iy, /,. The displacement of an
image point [u v] representing scene point [X Y Z], assuming small field of view and
rotation, is

T T 0 0
—fc(—XJrQy) F X2+ 92y — Pyt
ujp _ Z Z fe fe (4.42)
Y f (TY+.(2 ) + x0 +yTZ XZQY—FyzQX ' '
el T 4% zt Yy — X~ -
z Z fe fe

These equations follow from the perspective projection model of Sect. 2.6.1.
They can be substituted into the formula defining a plane in 3D, Z=A + Bx+ CY, to
give eight parameters that describe 3D motion of a planar surface; Irani et al. refer
to this form as a pseudo-2D projective transformation. The region with the dom-
inant 2D motion is selected using a three-step process to gradually improve the
selection: first translation using two parameters, then affine with six parameters,
and then a pseudo-2D projective transformation with eight parameters. Estimation
of the parameters is performed iteratively using a Gaussian pyramid. The resulting
parameters are used to register /; and I,. The registration process cancels the
rotation component. Based on this result, the 3D translation between the two frames
is computed. They then use the 2D motion parameters and 3D translation param-
eters to compute the 3D rotation of the camera.

We will consider camera motion again as part of tracking in Sect. 5.5.

4.12 Software Design for Image Enhancement

Numeric dynamic range determines the number formats we need to use for a
computation. The most basic choice is between integer and floating point, but we
can make further distinctions within each category. Modern processors often
support efficient integer operations down to 8 bits of precision and up to 32 or
64 bits. IEEE floating point (IEEE 754) specifies formats ranging in length from
16 to 256 bits; many GPUs also support several floating point standards of varying
lengths based on subtle variations to IEEE 754 which result in significantly smaller
logic implementations. In purely software implementations, different number rep-
resentations result in different run times and power consumptions. Custom
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hardware designs provide us with an even wider range of choices with correspond-
ingly larger tradeoffs between precision, performance, and power.

Given an arithmetic expression, we can evaluate the dynamic range required for
the expression. We are given the dynamic range of each of the input variables. For
simplicity, we can represent a variable in the form

F0.nnn F ee. (4.43)

In this description, the number of digits for the mantissa and exponent is to be
determined. This representation does not restrict us to floating point formats.
Keeping the number in a normalized form—the value is always shifted to eliminate
leading zeros to the right of the decimal point—simplifies our analysis. We are
primarily interested in the extreme ranges of the exponent, which will determine the
number of bits required and help us decide whether to use a floating point
representation.

Integer representations populate the number line uniformly. In contrast, floating
point representations fill the number line at different densities for each different
exponent value. The number line is less densely covered at larger exponents since
the same number of mantissa values are spread across a larger range. In most cases,
when a floating point representation is chosen, this varying range is not a major
concern.

Addition and subtraction will at most change the exponent by 1. For example,
0.999E1 +0.999E1 =0.198E2. Multiplication adds the exponent values and can
double the size of the exponent. Division subtracts the exponent values, which in
the case of a pair of negative exponents can result in the absolute value of the
resulting exponent doubling. Given these rules, we can apply the operators from the
expression to the dynamic range representations of the input variables to determine
the dynamic range of each step. If we use the same number representation through-
out the calculation, the required precision is determined by the worst-case dynamic
range, not the dynamic range of the final result. KLT optical flow is an example of
this principle [Sch15]. The input values are 8 bit (or perhaps 10 bit) pixel values; for
most practical applications, the output dynamic range is even smaller given the
limited range of a flow vector. However, the matrix inversion requires the larger
dynamic range of floating point arithmetic. However, they found that reduced-
precision floating point and a relatively simple division algorithm could be used
given the required precision for image analysis.

We do not need to use the same number representation for the entire expression.
However, conversion between formats imposes costs in execution time and power
consumption.
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4.13 Practical Image Enhancement

These enhancement algorithms allow cameras to provide novice users with better
pictures than is possible using only the traditional image chain operations. A basic
workflow for enhanced snapshots typically includes several elements:

» Face detection is used to identify faces which are then used to set the exposure
and focus.

« Exposure settings can be analyzed to determine whether high-dynamic range
processing is appropriate.

*  White balance may be adjusted either by analyzing the scene automatically or
from user inputs that classify the scene content.

Image enhancement algorithms offer the potential of more radical interventions:
we can adjust composition, contrast, resolution, focus, perspective, framing, and, in
the case of video, stability. Based on these algorithms, we have a great deal of
freedom to create our photograph or video after shooting. Rather than carefully
setting up the image and camera for a desired result, we can capture raw material
and then adjust it at our leisure; we can make our final selections either immediately
or after careful consideration.

Panoramas offer us a basic ability to shoot a scene but decide much later how to
present it. Figure 4.12 shows a panorama with several possible croppings; these
selections vary in their visual content and appeal. But panoramas do not allow us to
move our point-of-view relative to the scene. We could image using a wandering
video to later create the view we want from a 3D model of the scene.

We can also think of many operations that could be performed but are not
commonly used today. For example, lighting adjustment is infrequently used,
although algorithms do exist. This step could be used to change the flat or poor
lighting of a person’s face in a natural scene—perhaps to something more glamor-
ous. We could go further and modify or synthesize the appearance and behavior of a
person. A simple example would be to combine a smiling face with a different body
pose. The commercial cinema has taken this process much further. Rogue One: A
Star Wars Story, released in 2016, featured a performance by Peter Cushing, who
passed away in 1994; it also featured a brief appearance by a youthful Carrie Fisher.

Fig. 4.12 Panoramas offer multiple cropping opportunities
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Of course, with great power comes great responsibility. At some point manip-
ulations stop being photography and move into the realm of animation. On the one
hand, the prevalence of computer-generated imagery in film has probably shifted
public appetites toward a slightly more synthetic style of photography. Highly
stylized images have become very popular, suggesting that viewers have learned
to enjoy and expect heightened reality. On the other hand, the uncanny valley
probably exists for all sorts of images, not just people. Altered views of landscapes
and other scenes may need to choose which side of the valley they reside: abstrac-
tion or representation.

Further Reading
Gonzalez and Woods [Gon17] provide a thorough introduction to image processing
algorithms.



Chapter 5
Image and Video Analysis

5.1 Introduction

The human visual system is much more than a camera—most of the visual system is
dedicated to analyzing the imagery captured by our eyes. We perceive the world
both as scenic imagery and as our understanding of those scenes—people, objects,
and places. Digital cameras have allowed us to move photography beyond imaging
to image understanding. A camera does not need to take a picture—it can report on
what it sees.

The results of our analysis depend entirely on the quality of the images upon
which it is based. Every stage of the imaging chain affects the final result. Improper
exposure, for example, can obscure an object of interest in the frame. In the case of
video, variations in lighting across the scene can, if handled improperly, cause the
subject’s rendered appearance to change dramatically from frame to frame.

The algorithms of Chaps. 3 and 4 were pixel-intensive. While pixel-oriented
computation requires large numbers of both arithmetic operations and data
accesses, it has compensating advantages. Many pixel-oriented algorithms are
fairly regular. Not only does regularity simplify programming, it also increases
cache hit rates, resulting in higher performance and lower power consumption for
the memory system.

The algorithms of this chapter move beyond pixel-oriented operations to extract
features, identify objects and scenes, and analyze motion. As data becomes more
abstract, the number of memory accesses decreases. But the number of operations
per datum increases and the complexity/cost of those operations may also increase.
Floating-point operations become much more common in later stages of analysis
due to the wider dynamic range required. While floating-point addition and multi-
plication are not particularly costly—both can be executed in a single cycle by
modern processors—floating-point division is inherently slower. Division is typi-
cally performed using iterative algorithms whose execution time may vary with
data values.

© Springer International Publishing AG 2018 163
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Higher-level analysis also requires more sophisticated data structures and access
patterns on those data structures. While many pixel-oriented algorithms can operate
on data structures of known and unchanging sizes, analysis often requires dynamic
data structures. Dynamic memory management requires care to avoid memory leaks
from data structures that are not unallocated once they are no longer needed.
Passing varying amounts of data between tasks also requires elastic buffers.

Multicamera systems are often built on distributed computing platforms. Design
of multicamera algorithms requires careful consideration of the abstractions to be
passed between nodes in the distributed platform: too much data consumes too
much bandwidth; too little data results in inadequate information for data fusion.

Section 5.alg introduces several important algorithms. Section 5.image.char
considers low-level image characteristics. We then look at several important
applications: video summarization in Section 5.video, visual search in Section 5.
scene, and tracking and gesture recognition in Section 5.tracking. Section 5.multi
generalizes some of these algorithms to multicamera systems. Section 5.apps
briefly review the use cases and workflows made possible by these analysis
algorithms.

5.2 Image Analysis Algorithms

The Mahalanobis distance is widely used to compare multidimensional data to a
distribution. It measures the

M) = /(e =)= (- ) (51)

where x is the measurement, g is the mean vector, and X is the covariance matrix.
As we will see in Section 5.scene.id, this metric can also be used to compare two
random vectors.

Corners are useful features which can be found efficiently. We are given a
window function w() to select a region of the function (the window can be a box
or Gaussian) and a shift range [U V] over which we test for the corner. The Harris
detector is

Hj) = [i1] Zzww)[,ﬁ ’,5] H (5.2)

uelU veV

SIFT [Low99, Low04, Low04B] is widely used to extract features from images;
those images can then be compared with features extracted from other images.
Figure 5.1 shows the correspondences between SIFT features in a pair of images,
each of which takes a slightly different view of the scene. SIFT features are
designed to be invariant to changes in scale, translation, and rotation; these features
are also partially invariant to changes in illumination as well as affine or 3D
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Fig. 5.1 Correspondences between SIFT features in two images

projection. Features are extracted using a set of difference-of-Gaussian versions of
the image:

D(i,j,0) = G(i,j, ko) *1(i,j) — G(i,j,0)*1(i,j) = L(i,j, ko) — L(i,j,0)  (5.3)

where k is the scale factor applied to the image. The image pyramid is built starting
from a 2X upsampled version of the image to allow high spatial frequencies to be
analyzed. At a given level of the pyramid, 3 x 3 image patches are analyzed to find
local minima and maxima. The locations of minima and maxima are compared, and
only features which retain their identity at the adjacent scales are selected. To
improve stability and matching, the extremal position X can be interpolated using a
Taylor expansion of D(), with that interpolated position then used to refine the
estimate of D():

D(%)=D +% (dZCT)

<D (5.4)

Extrema with low values of D (%) are rejected. A separate test rejects features
produced by edges for which the principal curvature across the edge is large but
small in the perpendicular direction. Given a Hessian matrix H of the second-order
derivatives of D(), the required test is

Tr(H)  (r+1)
Det(H) = -

where Tr(H) is the trace (sum of the eigenvalues) of H, Det(H) is its determinant,
and r=10.

(5.5)
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The reference orientation of the feature is determined from a histogram of local
image gradient orientations, with the reference orientation chosen at the local
maximum. The gradient magnitude and orientation can be computed as

m(i.j) = ¢ (L + 1) = LG = 1)) + LG +1) = LG = D)), (5.6)

LN (7]+1) L(ivj_l)
0(i,j) = tan ~ { Li+1))—Lii- 17]')}. (5.7)

The feature vector is described as a 4 x 4 array of image gradient histograms
from the region around the feature, each with 8 orientation bins, giving a total of
128 entries. This vector is normalized to unit length to reduce its sensitivity to
illumination.

SURF [Bay06] extracts high-quality features with considerably less computa-
tional effort than is required for SIFT. SURF uses box filters as an approximation
for Gaussians. The SURF descriptor is constructed by first assigning an orientation
based on x and y Haar wavelet responses. A square region is defined by the assigned
orientation, split into 4 x 4 subregions. The Haar wavelet responses in the dimen-
sions defined by the orientation and the results from the subregions are summed; the
sum of the absolute values of the results are also summed. The values are scaled to a
unit vector to provide the descriptor components.

Mikolajczyk et al. [Mik05] compared region detectors that are covariant relative
to affine transformations. Since affine transformations can be used to model
changes in viewpoint, this class of detectors can be used to identify features across
multiple cameras. They studied five detectors: Harris-Affine, Hessian-Affine, max-
imally stable extremal region (MSER), edge based, and intensity extrema based.
The Hessian autocorrelation matrix is

_ _ [xx(xyo-D) [.ry(xaoD)
H=H(x,op) = Io(xop) 1 (x,00) (5.8)

The scales of selected features can be normalized for comparison. For either the
Harris or Hessian detectors, an iterative region estimation algorithm can be used:
first detect an initial region and select the scale; estimate the shape using the second
moment matrix; normalize the region to be circular; re-estimate the shape if the
eigenvalues of the second moment matrix differ.

RANSAC [Fis81] is widely used to fit models to data which contains a certain
number of points with very large errors—a common situation in feature detection,
for example. RANSAC operates iteratively. At each step, a subset S of data points is
selected and the model is applied to those points. The result is a set of points SeS that
fit the model within some error tolerance. If the size of S is above a threshold, it is
used as the basis to generate a new S; if not, the next § is selected from scratch. The
procedure terminates when either a consensus set has been found or the maximum
number of allowed iterations has been reached.
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Particle filtering [Dou08] is widely used to approximate problems whose underly-
ing characteristics do not adhere to traditional mathematical assumptions, such as
Gaussian distributions. We are interested in estimating a posterior density p(x; ., y;.z)
which describes an underlying sequence x; ., as represented by a sample sequence
¥1.,- An importance density g() allows us to draw samples that approximate the
underlying distribution. A weight function w() is used to shape the importance density
toward the posterior density. Sequential importance sampling makes use of an impor-
tance density for which the sequence importance is the product of the members:

qn(ink) = ql(xl) H C](Xk|)€1;k,1). (59)

2<k<n

A sequence can be created sequentially with the new weight being computed
from the previous weights and an incremental importance weight function.
Resampling allows new samples to be generated from the previously estimated
distribution. A sequential Monte Carlo procedure repeatedly generates a new
sample for the sequence, computes the weights, and resamples until some stopping
criterion is reached.

5.3 Image and Video Characteristics

This section looks at image and video characteristics from several perspectives.
First, we consider the statistics of small image patches. Next, we consider algo-
rithms to compute metrics that approximate psychovisual saliency. We then con-
sider the selection of key frames in video sequences.

5.3.1 Image Statistics

Huang et al. [Hua00] studied the statistics of range images. They proposed a 1/~
form for the distribution of single pixels. They found that a bivariate distribution
model was a better fit for range images than for optical images. Lee et al. [Lee03]
studied the statistics of both optical and range images. They concentrated on 3 x 3
patches. They found that optical images were dominated by two-dimensional
features that coorespond to edges subject to camera blur. They found that range
patches, in contrast, were grouped into a number of small clusters.

Zontak and Irani [Zon11] analyzed the distribution of features within an image;
their 5 x 5 patches were somewhat larger than the 3 x 3 patches used by Lee,
Huang, and Mumford. They compared the frequency of reoccurrence of image
patches in a set of 300 images. They used the Parzen estimator [Par62] to estimate
the empirical density of an image patch p within a neighborhood N
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. . 1 2
density(p; dist) = mzp,eNKh (| lp — pil| ) (5.10)

where Kj() is a Gaussian kernel. They found that the required radius for nearest-
neighbor search grows exponential with the gradient of the patch:

dist(|grad|) = 8, + pellEndl/10), (5.11)

They found that patches are repeated much more frequently within an image
than between images.

5.3.2 Saliency

Saliency refers to the attention paid to a part of an image; as we saw in Chap. 2, the
eye constantly scans a scene but may pay more attention to some areas than others.

Itti et al. [1tt98] developed a feature-based model that produces a saliency map of
an image. Their approach is illustrated in Fig. 5.2. The feature operations are
performed at nine different scales based on Gaussian pyramids. The feature extrac-
tors perform linear center-surround operations as the difference between pixels at
two different scales.

A simple model of image statistics is based on the amplitude of the Fourier
transform of the image, which is proportional to 1/f where f is frequency.

Hou and Zhang [HouO7] analyzed saliency using its spectral residual. They use
as a metric the logarithm of the amplitude of the Fourier transform of the image:

L(f) = logA(f). (5.12)
They find an average spectrum of the image as

*

{ 1 1 -
A(f):; 1 1 o L(f). (5.13)
r
The residual spectrum is
R(f) = L(f) = A(f) (5.14)

They take the inverse Fourier transform of the residual to create a saliency map.

Goferman et al. [Gof12] developed a context-aware saliency model based on a
combination of low-level features, unusual global features, visual organization
rules, and priors on object location. They measured local dissimilarity between
two image patches as
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Fig. 5.2 Center-surround-based saliency mapping [1tt98]
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They used the constant ¢ = 3; they defined color in the CIE L*a*b space. This
results in a single scale saliency of

. 1
Si=1- exp{_EZISkSKd(pir’qir)} (5.16)

where K is the maximum saliency value. The saliency of a pixel i is its mean
saliency at different scales:

~1 ,
Si=+ > reRS; (5.17)

where R is the set of patch sizes in the multiscale analysis. Context is modeled by
weighting a pixel relative to its Euclidean distance dy, (i) to its closest attended

pixel at scale r:

S = A%Z’_(ng‘ﬁ — dp i) )- (5.18)

They assumed that the subject is centered in the image and so multiplied S; by a
centered Gaussian distribution; other models of the subject prior could be used.

Liu et al. [Liul1] used a supervised learning algorithm to create a saliency map.
Their learning procedure estimated the weights of a set of features using the
maximum-likelihood criterion. Features are combined linearly. They used multiple
features for static images: multiscale contrast, center-surround histogram, and the
spatial variance of color. They also considered saliency in video. They weighted the
motion field as the exponent of the variance of the motion vector magnitude at each
point. They considered several features of this weighted motion field: multiscale
contrast, center-surround histogram, and spatial distribution. They also identified
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coherence of moving objects by identifying whether a given pixel’s color changed
substantially from one frame to the next.

5.3.3 Key Frame Selection

Key frames can be selected by motion analysis [Wol96]—frames at the local
minima of motion are selected at key frames. This approach is based on the
observation that people tend to remember the stillest points in an action. This
approach automatically determines both the number of key frames and the position
of those key frames in the shot. It also takes into account both subject and camera
motion.

Motion is estimated using the sum of the magnitudes of the optical flow vectors
at each pixel:

M) =" Joxlij, )] + Joy(i.j,1)]. (5.19)
i

Local minima can be determined by first identifying pairs of local maxima. After
the first local maximum 1, is selected, the next local maximum m, is chosen at the
next point that varies by at least n% of the motion value for m,. The local minimum
between these two points is chosen as a key frame and m, is made to be the next m;.

Figure 5.3 shows the 19 key frames selected by this algorithm from the resig-
nation speech of President Richard M. Nixon; the frames also show the optical flow
vectors. The source tape contained a flaw which caused a momentary disruption and
the generation of some extra key frames. The speech lasted for 15 minutes and was
televised as a single shot with no cuts. However, the camera operator zoomed in at
several points during the speech. After having started with a wide shot of Nixon at
the President’s desk, it ended on a tight shot of his head. The zoom transitions are
fairly subtle, but their cumulative effect is strong, particularly when viewed in this
summarized format.

Alfred Hitckcock’s Rope is a feature-length film in which every shot lasts the
duration of a 10-minute reel of film. This film represents an extreme case of the
need for key frame selection as a means of summarization. Early film cameras were
heavy and bulky, resulting in static shots separated by cuts, dissolves, etc. A variety
of cinematic innovations, including zoom lenses and Steadicam, have given film-
makers more freedom to reframe the shot rather than cut in order to control the
viewer’s point of view.
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Fig. 5.3 Key frames automatically selected from the Nixon resignation speech

5.4 Scene Analysis

Scene characterization has a number of uses: casual photography may use scene
characteristics to guide exposure and focus decisions; characteristics may also be
used to search within large set of videos. We will first consider retrieval-oriented
methods and then study face detection and recognition in more detail.

5.4.1 Visual Search

The QBIC system [F1i95] was an early and influential visual search system. QBIC
was designed for use in visual databases. Images and videos were analyzed as they
were loaded into the database; a query interface allowed users to formulate queries,
which were then satisfied by a match engine. Object characteristics included
texture, color, location, and shape. Scene characteristics included texture, color,
texture and color as a function of position, and visual sketches. Video was



172 5 Image and Video Analysis

segmented into key frames and characterized by object and camera motion. The
query languages allowed a query to be formulated in terms of these primitives. The
match engine applied distance functions between the query and image descriptors.
The traditional data structures for organizing searching in text are not always
appropriate to the higher-dimensionality descriptors of video. QBIC used R*
trees for low-dimensional features; it used principal component analysis to reduce
the dimensionality of higher-dimensional features.

Sivic and Zisserman [Siv03] developed image descriptors for video sequences
that allowed them to use text retrieval methods on images—the matches on
descriptors can be precomputed. They construct two types of regions for each
frame. One is constructed as an ellipse around an interest point by iteratively
maximizing the isotropy of the intensity gradient in the region. The other type is
identified as a region whose area is roughly stationary as the intensity quantization
threshold is changed. Each region is represented by a 128-dimensional SIFT
descriptor. They compare regions among adjacent frames and reject any region
that is not stable for three frames. Regions are then clustered to reduce the
dimensionality of the search space. The Mahalanobis distance is used to define
the distance between regions.

Philbin et al. [Phi07] developed a set of techniques for search over large image
databases. For each image, they extracted affine-invariant Hessian regions and
generated a 128-dimensional SIFT descriptor for each one. They modeled both
the images and search queries as sparse vectors of the occurrences of these
descriptors. They used approximate k-means (AKM) to cluster the descriptors.
Their clustering algorithm made use of eight k-dimensional (k-d) trees. The dimen-
sion on which to split each tree is chosen randomly from a set of dimensions with
high variance; the split point is chosen close to the medium. The forest of trees
creates overlapping partitions which help to control the curse of dimensionality.
They use a combined priority queue for all trees to manage the search for a good
partition for a given data point; the search is stopped at a fixed limit of paths. After
initial search using approximate k-means, they rerank the initial set of results to
take into account spatial information. They used a version of RANSAC to generate
transformations that describe the spatial relationships between regions. They are
able to test only a single pair of corresponding features for each image pair by
making use of shape information to reject unlikely pairs and by restricting the set of
transformations considered.

5.4.2 Face Detection and Recognition

Both face detection and recognition are important in many different applications
[Zha03]. Face detection is useful in itself to identify the presence of people; it can
also be used as a precursor to face recognition.

Leung et al. [Leu95] used a model-based approach combined with bottom-up
features. They filter an image with an image pyramid of Gaussian derivative filters
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and then match against template vectors to identify local feature matches. They use
a graph to model constellations of features. They form a random vector X of
normalized distances between features which they then normalize for length; they
represent the normalized vector by its mean and covariance matrix. They use the
maximum likelihood approach to estimate the scale of the face in the image. They
search for faces by first identifying features with strong matches and then using the
constellation graph vector to identify candidate positions for the missing features.
They use an optimal discriminant to rank the candidate face positions.

Zhu et al. [ZhuOO0] used wavelet features to detect faces. They found a small set
of wavelet features for faces based on training from a dataset that combined both
faces and non-face images. They used a log-likelihood ratio test to classify a set of
features derived from an image patch as being face or non-face.

The eigenface method [Tur91] can be used for both face detection and recogni-
tion. Recognition is based on Facebook of images F = {/,, - - -,I);}. If each image is
N x N, it can be interpreted as an N>-dimension vector, with the pixel value at each
position giving the ordinate along the axis which represents that pixel. The set of
pixels is analyzed using principal component analysis to fit the vector set into
M components, each described by an orthonormal vector u; and eigenvector 4;. Any
given face can then, in principle, be described as a linear combination of the
eigenfaces. We detect a face by comparing the distance of the test image from
the Facebook vectors; if the test image is too far away from all of the eigenfaces, it
is considered to not have a face. We recognize a face by finding the Facebook
vector closest to the test image.

5.5 Tracking

Tracking models the movement of an object of interest, also known as a target,
over a sequence of observations. Observations can be made using sensing methods
other than video, with radar tracking being a prime example. In this section, we will
concentrate on a connected set of observations from a single sensor. We first
consider the separation of objects of interest from background items. Section
5.5.2 looks at tracking from a single camera. Section 5.5.3 develops appearance
models. Section 5.5.4 studies algorithms for activity analysis. Section 5.5.5 looks at
tracking from a moving camera.

5.5.1 Background Elimination

The term background elimination (or sometimes background subtraction) is used to
describe the process of identifying a subset of pixels for further analysis; typically,
subjects that display more motion are identified as foreground and areas with less
motion as background. Unfortunately, the use of the term background in this case
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does not conform to standard usage. In theater, for example, foreground means the
front of the stage and background means the back of the stage. We will use the
computer vision terminology here to be consistent with the literature, but we do so
under protest.

A naive approach to background elimination is to take a reference frame known
to not have any regions of interest and then to compare each successive frame to the
reference frame. The two frames are compared pixel by pixel against a threshold:

BG(i,j) = R(i,j) — I(i,j) < 1. (5.20)

The result is a background map that identifies each pixel as being either
background or foreground.

This method is fast bit gives poor results in all but the most controlled situations.
The typical scene includes small object movements that are not of interest. Fig-
ure 5.4 shows a light rail station with several objects that move or change subtly: the
electronic sign changes and its scanning logic can create problems for image
capture; the trees may move in the wind. Even indoors, small movements such as
the placement of coffee cups may not be of interest.

The mixture-of-Gaussians methodology [Sta99, Sta00] provides a more robust
method to separate small motions from the region of interest. This approach not
only models pixel values as Gaussian, but it keeps several models for each pixel.
The different models for a pixel may cover, for example, the case in which a leaf is
visible at the pixel and when it is not. Typically, K =4 models are kept. The pixels
are modeled as independent. In order to reduce computational expense, Stauffer and
Grimson also assumed that the color channels were independent and had equal
variances. The probability of observing a pixel X, is

P Xt>ﬂ7 Z Wi 1 Xt>/"7 ) (521)

1<i<K

where #() is the Gaussian probability density function. The weighting factor w; , is
both position and time dependent. At each update, the weights are adjusted by

wi; = (1 — a)w; -1 + a(My,,) (5.22)

where the decision variable M, ,= 1 if the model was matched and O otherwise. The
weights are renormalized after all the pixels have been reweighted. The mean and
variance for a matched distribution are updated as

He = (1= p)puy + pX; (5.23)
r2 (1-p) f21+P(Xt ) (X: — py) (5.24)

where
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Fig. 5.4 A scene with small amounts of movement

p = an(Xi, |, ox). (5.25)

Schlessman et al. [Sch07] designed a hardware implementation of the mixture-
of-Gaussians approach using three major functional units: comparison, updating of
means and variances, and updating of Gaussian weights. They identify as the
background models those with the least variance and which are most widely
represented in the image. They use T as an estimate of the proportion of the
image that should be considered background. They choose as background models
the first B distributions such that

B = argmin,, [Zlgkg)wk > T}. (5.26)

Sheikh and Shah [She05] used competing background and foreground models to
improve target/background separation. They assumed that targets are relatively
constant in their appearance. They used a Gaussian model over a range of pixels
to take into account correlations between pixels. An edge-preserving Markov
random field estimates target position.

5.5.2 Tracking from a Fixed Camera

The simplest view of tracking is as a historical problem—we identify the target in
each frame and record its position. However, we typically treat tracking as a
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prediction problem—based on the target’s recent behavior, its position in the next
frames is predicted.

The basic model of motion is linear with unchanging direction. We can use a
Kalman filter to track the target. For simplicity, we will formulate the target
position in image coordinates, which can be separately translated to world coordi-
nates. The state of the target in frame & includes both its position and velocity:

Xp = [xk Vi Vak vyk]. (5.27)

An observation in frame k only indicates its position:

Vi = [yx yy} ~ (5.28)
The system state and our observation of that state is updated from frame to frame
as
X = Ox;_ + &, (529)
Y =Hx; + pu. (5.30)

The state transition matrix @® updates the position based on the velocity
components:

1 0 Ar O
01 0 At

o= 00 0 1 (5.31)
001 O

The measurement matrix H extracts the position from the state vector. &£ repre-
sents model uncertainty, while y represents observation noise. We write the pre-
diction as x; or, when computed before the latest observation, x; . Let the
covariance matrix of the state be P and the covariance of the estimate be R. We
estimate the new system state in two steps. The propagate step finds

Y1 =ox, (5.32)
- T
Py = ®P®" + Q. (5.33)

The update step involves both the position estimate and the covariance matrix:

Pe=((P0)" +HTR*1H)_I, (5.34)
G =% +PH R (y,—H%O). (5.35)

We can also formulate tracking as a hidden Markov model. The state of both the
subject p(x;lx; _ 1) and our observation of the subject p(z;l z; _ 1) depends on those
values from the previous frame. The probability of an extended track and our
observations of it in the interval [1, - - -, k] can be written as
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Fig. 5.5 Possible paths P4
from observations of ) . (&)
multiple targets

p(x1)p(zi|x1) H {p(xilxi-1)p(zilxi) } (5.36)

2<i<k

We will return to this type of model in Sect. 5.6.3.

If more than one target is being tracked, the tracker needs to be able to assign
observations to distinct tracks. A classic challenge case for multitarget tracking is
shown in Fig. 5.5. The two targets are initially far apart but converge to cross a
common point at about the same time. The observations can be assigned to two
radically different track assignments: each target continues along its initial trajec-
tory after the crossing, or each target changes its course to follow a reflection of the
earlier path.

Reid [Rei79] used a Kalman filter to track each target; he assumed that the
number of targets was known a priori. He built hypotheses trees to keep track of the
possible target assignments for each observation. He used a Bayesian model to
model a hypothesis derived from a set of observations. Pi]‘ is the probability of a
given configuration at time k using the observations over the period [1, - - -, i]. Npr,
Ppr are the number and probability of detection; Nt is the number of previously
known targets. Net, frr are the number and probability of false targets, while
Ny, fnrare the number and probability of new targets. The probability of a new
configuration of targets is

[JY Nror—Npr) pNer N H e -
Pik — EPDDT(I PD)( TGT DT)ﬂF? N¥T [ 1SmSNDTN(ym HX, Pk )}P‘Ié 1
(5.37)

In this formula, ¢ is a normalization constant.

Fortmann et al. [For83] formulated the multitarget tracking problem by building
hypotheses to assign observations to targets. Each observation should be associated
with no more than one event. Let y; =y, —y and S be its covariance. The
probability density of a measurement y; association with a target ¢ is Gaussian:
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xo((5751757) 2)
= (5.38)

N(y_; ;0,8")

The probability of a set of target identifications given a set of observations is

P(X|Y;) = HN 550,8) [ Ph T (1 - Ph)- (5.39)

jetr ted te—o6

C is in this case the density of false measurements, 7 is the set of measurements
associated with a valid target, and § is the set of detected targets.

5.5.3 Appearance Models

Several types of problems can present themselves in imagery for the tracking
problem:

¢ The target may be occluded by other objects. In the case of multiple targets, one
target may occlude another.
¢ The lighting on the target may change.

Mixed indoor-outdoor lighting presents the greatest challenges for any sort of
image interpretation. These photos often exhibit very wide dynamic range that may
be beyond the capabilities of the image sensor. Lighting conditions can also change
nearly instantaneously, for example, as clouds move onto the scene. Lighting
conditions also change slowly over the course of the day so that settings which
work at noon no longer work at night. Figure 5.6 shows an example of a train
platform: during the day, the track is brightly lit and the platform is in shade; at
night, the platform is more brightly lit than is the track.

We need an appearance model for the target and a criterion for the similarity of
two appearance models. Background subtraction identifies a set of pixels consid-
ered to be foreground. A simple shape model for the foreground object is its
bounding box. Given a set of pixels p;eP, its bounding box (LL, UR) is

({minx(P), miny(P)), (maxx(P), maxy(P))). (5.40)

Since the size of the target will change depending on its distance from the
camera, we need relative metrics for comparison of two bounding boxes. The
simplest metric is the ratio of the bounding boxes By, B»:

\UR\ — LLy,|/|UR\y — LL,,|

. (5.41)
|UR> — LLy.|/|URay — LLy,|
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Fig. 5.6 Lighting on a train
platform

The histogram of the bounding box region can be used to further characterize its
appearance; either the color or luminance histograms can be used. The
Bhattacharyya distance is commonly used to compare histograms and other distri-
butions. The Bhattacharyya distance between histograms H;, H, is

—In ZHI (i\Ha (i) (5.42)

where i ranges over the histogram bins.

Jepson et al. [Jep03] used a multicomponent appearance model. An observation
is d,.The subject appearance is assumed to have a stable set of features described as
a Gaussian ¢,. It models data outliers as uniformly distributed and denoted as P(d,).
The third component of the model has a short time constant to account for either
motion or sudden changes in appearance (people, e.g., change appearance when
they turn to face away from the camera). The probability of an observation
corresponding to the subject is given by the mixture

P(d,|q,, ms,d; 1) = m,P(d;|d;—) + mgP(d;|q,) + mP(d;) (5.43)

where m = {m,,, m;,m;} are the mixing probabilities. The main parameters—the
Gaussian parameters for the stable component and the mixing probabilities—are
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estimated using expectation maximization. The log-likelihood of the observation
history is formulated using a support envelope S,(k):

L(d;|q,,m;) = Z Si(k)logP (di|qy, mye, di—1). (5.44)

t<k<—o0

The expectation step computes the ownership probabilities for the observations:

m; tP(dk§qt7dk—1)
idy) = —— 270 2 5.45
one(de) P(di;my, q,di—1) (5.45)

The maximization step updates the mixture probabilities and the Gaussian mean
and variance of the stable component:

mio= Y Si(k)oi(d), (5.46)

1<k<—o0
Moo= Z‘; (5.47)
o2, = Zi; — i, (5.48)
The M, are moments defined by
M= Y Sik)do(dy). (5.49)

1<k<—00

To reduce storage requirements, they approximate the current ownership as the
ownership at the time for which the data was first observed.

Comaniciu et al. [ComO03] used a mean-shift target model. They used a gener-
alized form of the Bhattacharyya coefficient to compare target models; they
denoted this similarity function as p(y) = p[p(y), 4]. They represent the target as
an ellipse with normalized size. A kernel profile k(x) weights pixels relative to their
distance from the center; the kernel profile is convex and monotonic decreasing. For
the example of the Bhattacharyya coefficient as a similarity function, the distance
between two candidate distributions p, § depends on a set of weights:

(5.50)

In this formula, x is the position of the target in the original and y is its position in
the new frame, while the function §[b(x;) — u] = 1 when u is equal to the bin holding
pixel x;. A new estimate of the kernel position, moving from position y, in one
frame to position y, in the next frame, is given by
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~ 2
Yo —Xi
Z Xiwig Oh IH
~ 1<i<ny,
= — (5.51)
Yo —Xi
Z wig Oh
1§i§nh

This formula is used to iteratively estimate the new position. At each step, the
similarity function is tested and compared to a threshold, typically chosen to give
pixel-level accuracy for the search. If the similarity function is larger than the

ol
threshold, the position is adjusted as y; « 5 (yo + ¥ )

Zhou et al. [Zho04] used a mixture-of-Gaussians model to take into account
variations in appearance of the target, such as the target turning to present a
different aspect of its features to the camera. The observation likelihood is a product
of Gaussians. The target is modeled directly using pixel values. As a result, their
update process is similar to that used for background elimination.

5.5.4 Activity Analysis

Activity analysis can take into account combinations of people moving through
spaces and the gestures and poses they make.

Pfinder [Wre97] was an early real-time human activity tracker. Its algorithms
were based on statistical models of blobs that represent identified portions of the
person. The system did not explicitly use background elimination. It did rely on
initial capture of a scene without a subject and allowed slow changes in the
background. The subject was then expected to enter the scene; contour analysis
was used to build an initial set of blobs based on a simple model of the person with
an arms-extended pose commonly used to build an initial set of blobs. Each blob
matrix was represented as a Gaussian model with mean g and covariance K. Each
blob also had a support map with Boolean per-pixel entries indicating whether the
blob occupied that pixel. In addition to the occupancy of the frame, each blob was
represented by a YUV color vector to represent the overall color of the blob. Pixels
not occupied by blobs are modeled as a YUV color value with mean p, and
covariance K. At each frame, each pixel not occluded by a blob is updated using
the rule g, = ay + (1 — a)u, _ . Each blob is updated using the Kalman-style rule

Xinln) = Xinj—1) + Gl { Y — X1 } (5.52)
where G is the Kalman state matrix of EQ 5 Kalman state. At each frame, given a

pixel value y =[x y U/Y V/Y], they find the likelihood for each pixel’s membership
k in the set of blobs and background:
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1 _ 1 m
di = ) v *ﬂk)TKkl(y — M) — ) In K| — B In2z. (5.53)
They use heuristics to deal with luminance changes caused by shadows. They
use these likelihoods to build support maps for each of the blobs and for the
background. They use the new member pixels of a blob to update the model
mean and covariance:

() = [0 - m) v —m)". (5.54)
(K) =E'] — . (5.55)

Wolf et al. [Wol02] analyzed gestures in real time. Their algorithm did not use
markers but was intended to classify gestures, not track the motion of limbs. They
used background elimination to separate the subject from the background and then
identified boundaries for parts of the foreground. They fit an ellipse to each of the
region, which was then modeled as its ellipse parameters plus a bit for flesh tone/
non-flesh tone color. Figure 5.7 shows the region boundaries and the ellipses fitted
to those regions; the ellipses are also labeled by color, either flesh tone or non-flesh
tone. A graph was built with a node for each ellipse and edges between adjacent
region nodes. The graph was matched against a library of poses to classify the pose
of that frame. A hidden Markov model was then used to classify a sequence of poses
into a gesture.

Stauffer and Grimson [Sta00] developed a codebook-based classification algo-
rithm for the classification of motion. An observation is of the form
[x y dx dy size]. They used online vector quantization to generate a codebook of a
set of observations. The activity of a target does not directly model time or
sequence; an activity is a multiset (which may contain multiple instances of a
given element) of observations. They build a co-occurrence matrix for pairs of
prototypes i,j such that ¢;; represents the probability of an observation
corresponding to the i prototype being followed by an observation represented
by the /" prototype. They use this co-occurrence matrix to build probability mass
functions (PMFs) for sequences. They build the PMFs in the form of a binary tree
with N nodes. The co-occurrence matrix can be estimated by the PMFs p;() and the
prior probabilities 7; for the sequences:

Ciy= > w*p i) p.(j)- (5.56)

1<c<N

The priors and PDFs are iteratively estimated to minimize the sum-squared error
of the co-occurrence matrix estimate. The updated rules are

Tie < (1 - a,,)*n:(. + aﬂz (Ci,j - E;)pc(l)*pc(/)’ (557)

is]
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Fig. 5.7 Ellipse models for gesture analysis

peli) = (1= ) pey + 4 S (Ciy = Coy) pe(i)- (5.58)

isj

They used a,>a,. At each branch in the modeling tree, the branch / co-
occurrence matrix is derived from the parent co-occurrence matrix as

1 * -k .
Ci,j =Ci; ()" pi(j)-

Brand and Kettnaker [Bra0O] used hidden Markov model training based on
entropy minimization to improve results on small video datasets.

5.5.5 Tracking from a Moving Camera

Tracking from a camera on a moving platform—such as a car—requires a great deal
of analysis to be able to perform the tracking itself. Egomotion is the motion of the
camera relative to the scene. In order to track the target relative to the scene, we
need to determine and subtract out egomotion. We must do so without prior
knowledge of the camera parameters and, in the face of complex, noisy movement.
The video stabilization methods of Section 4.stab were intended for aesthetic use
and did not require extreme accuracy. Egomotion analysis for tracking from a
moving platform requires substantially more accuracy.

Tracking from a moving camera is typically performed in several steps
[YamO06]:

¢ Feature points are extracted for each frame.
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e Corresponding features are identified between frames i and i + 1.

¢ Egomotion is estimated from the corresponding features.

e The 3D structure of the scene is estimated and a region of interest is identified.
For example, in the case of vehicles on roads, the lane is recognized; a region
some distance ahead may be the region of interest.

¢ The target is identified.

Even though we are dealing with a single camera, we need to choose a projection
of the scene in order to at least approximately correct for perspective effects. Kang
et al. [Kan05] performed an initial affine motion detection and used the results to
perform an additional step to minimize parallax. Lin [Lin12] used an ellipsoid
model for the surface in front of the vehicle to approximate the perspective effects
in a typical driving scenario. A motion vector in the scene is subjected to a
translation T and rotations @ to project it onto the image surface. If distances to
objects in the scene are large compared to the focal length, we can assume small
rotation angles. This ellipsoidal model gives ten degrees of freedom: focal length,
three rotational, three translational, and the three ellipsoidal parameters.

We need feature points for both egomotion analysis and target tracking. We can
use a variety of methods to generate features, such as Harris corners or SIFT/SURF.
Figure 5.8 gives an example of egomotion point matching: red crosses are features
from frame i — 1, green crosses are from frame 7, and blue points are estimations.

We estimate the egomotion vector by comparing the identified motion vectors
(red to green in the figure) to our estimate of the motion and the resulting motion
vector (red to blue). This objective function can be written as

=[3-

This objective function can be minimized by making an initial guess for the
value of the motion, using genetic algorithms to construct an improved solution,
and then using nonlinear least squares optimization to find the final value.

We can use the egomotion result to perform background elimination; the purely
pixel-oriented algorithms of Sect. 5.5.1 are clearly insufficient when the camera
moves with every frame. We can use the egomotion vector to project the previous
frame onto the current frame; we can interpolate pixel values to improve accuracy.
An example is shown in Fig. 5.9. While edges of objects in the scene introduced a
small amount of noise, the largest motion corresponds to objects that moved: the
car, a pedestrian, and leaves on a tree. We can use Bayes’ rule to classify pixels as
background or foreground (along with the fact that P(fg)+P(bg) =1):

. (5.59)

P(Vk|b7 S, mp)P(b|S7 mp)
P(vi|s, mp)

P(b|vy, s, mp) = (5.60)

where mp is the camera motion parameter set, s is the pixel position, and vy is the
pixel value. We can estimate these probabilities using histograms:
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Fig. 5.9 An example comparison between a current frame and a compensated previous frame
[Lin12]

P(b|vk,s,mp) = HPy (5.61)
We can estimate P, (s) using the interpolated version of the previous frame.
We can group together motion vectors using clustering algorithms. The number

of clusters varies from frame to frame so we need to use bottom-up clustering

algorithms to identify groups of similar motion vectors. We can estimate /inkages
between clusters in the previous and current frame [Lin10]; some clusters in the
previous frame will link to only one cluster in the current frame, while others may
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have several possible matches. The result is a directed graph whose nodes are the
clusters for each frame and with time-oriented directed edges from one linked
cluster to the next. This model is an example of a Bayesian network.

We can use belief propagation to classify motion [Lin10]. This class of algo-
rithms uses graph traversal to find the marginal distributions of hidden nodes based
upon the observed nodes. In the case of motion vector clustering, the relevant
observed variables include the average angle of motion vectors in a group, the
number of feature points in the group, and the distance between groups.

5.6 Multicamera Systems

Multiple cameras provide us with information about a scene that we cannot obtain
from a single camera. Training multiple cameras on a scene helps us with four
different problems:

e Occlusion is caused from other objects (a person standing behind a desk) or by
the object itself (front view vs. back view). Cameras at different positions help us
to cover more of the objects in the scene.

e Pixels on target is a useful metric for resolution. As a subject moves away from a
camera, the subject’s image falls on fewer and fewer pixels. When another
camera is placed at the right position, it will see the subject move toward it.

e Depth can be recovered from disparity.

» Larger spaces—buildings, parks, and cities—can be covered by multiple cam-
eras in ways that cannot be achieved by a single camera.

Multicamera systems are used in many applications. Motion capture for video
games uses several tightly coordinated cameras in a structured environment. Sur-
veillance systems make use of multiple cameras that are usually less tightly
coupled: Tokyo Station makes use of over 700 cameras in a relatively small
space; the cities of London and Chicago combine cameras operated by the city
with information from privately owned cameras to provide assistance to law
enforcement.

Multicamera systems introduce purely algorithmic questions but, as we will see
in the next section, they also require consideration as distributed computing sys-
tems. After looking at the need for distributed algorithms, we will study calibration
algorithms in Section 5.multicalibration and tracking algorithms in Section 5.multi-
tracking.
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5.6.1 Multicamera Systems as Distributed Computing
Systems

Early multicamera systems sent video signals to a centralized computer for
processing. This approach simplified many problems that allowed progress on
algorithms. But centralized processing does not scale for video analysis, just as
with many other applications. Distributed algorithms running on distributed com-
puting systems are required to provide real-time video analysis.

The first limitation of centralized video analysis is latency. As we will see in
Section 5.multicalibration, comparing video streams requires synchronizing them.
Early multicamera systems used analog cameras; these cameras had to be run off a
common clock; the video cable lengths had to carefully controlled to maintain
synchronization. As a result, only systems with very small diameters could be built.
Digital video streams eliminate some of these possibilities, but longer network
distances still introduce delay. Buffering can be used to maintain logical synchro-
nization, but as a result, the latency from image capture to analytical result
increases. Distributed algorithms reduce the radius of communication, thus reduc-
ing both latency and buffer memory requirements.

Distributed algorithms also benefit video applications for the same reasons as
with other applications: reduced bandwidth, lower communication power consump-
tion, and lower computational power consumption. Bandwidth and power con-
sumption are particularly important for multicamera systems because they are
inherently physically distributed Internet of things (IoT) systems. Installation cost
is a critical component of cost of ownership of IoT systems, and this cost is
dominated by the cost of pulling wires to the camera’s location. Wireless networks
offer reduced installation cost, but their bandwidth is limited relative to wired
networks. Power wiring is also a critical cost, so reducing power consumption is
key to installation and maintainability; communication power consumption is a
critical component of overall power consumption.

Distributed computing also offers increased privacy. Given the powerful abili-
ties of modern embedded computing platforms, we can process raw video within
the camera and transmit only abstract representations. Assuring users that no raw
imagery leaves the camera ameliorates the privacy concerns of many people.
(We should note that in many instances, people are even more concerned about
audio privacy than they are about their visual privacy.) Widen [Wid08] analyzes the
law relating to privacy and video surveillance.

We need to carefully consider the abstractions that the cameras present to each
other. How we represent imagery as something other than pixel arrays determines
the way we combine information from multiple cameras. Abstract representations
also influence power consumption, bandwidth, and latency.

Consider the example of Fig. 5.10. The cameras have overlapping fields-of-
view, but each camera can see parts of the scene that the other cannot. As the
subject moves, it starts in the field-of-view of camera A, then to the overlapping
views of A and B, and finally to a position at which it can be seen only by B. It
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camera A camera B

Fig. 5.10 Moving the computation with the subject

makes sense to move the computation as the subject moves; so long as one camera
handles the entire analysis, all we need is a simple handoff mechanism. However,
the situation can be more complicated in the overlap region. The subject may be
located at a point at which neither camera has a full view of the subject. They can
cooperate at different levels of abstraction: one can send its pixels to the other or
they can trade models at some level of abstraction.

Lin et al. [Lin10B] designed a distributed version of the gesture recognition
system. When only part of the subject is in view of each camera, each camera
performs low-level computations; one of the cameras is designated to perform the
data fusion of these operations to perform the final gesture classification. A token is
passed around the network to identify the lead camera node for the subject; the
token management protocol was formally verified. They point out that the amount
of data that must be shared between nodes varies widely depending on the level of
abstraction: entire standard definition images require 100 kB; contour points require
2-5 kB; and ellipse parameters or body part parameters each require fewer than
100 bytes. If the cameras trade ellipse parameters, they must determine whether the
ellipse crosses camera boundaries; in this case, they must share lower-level data to
build an accurate model of the body part. The system was built on a service-oriented
model; middleware provided node management, service discovery, and service
scheduling.

Distributed algorithms are harder to design than centralized algorithms. Video
algorithms add the challenge of temporal synchronization, but we must also con-
sider algorithmic synchronization to ensure that each thread of the computation has
the data it needs. We need agreement algorithms, a simple example being
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identifying a common label for an object that can be seen by several cameras.
Distributed computing models result in more complex programming models
and APIs.

Given the difficulty of distributed program design, we want to isolate the
application designer from details of application development. We can use
middleware [Rin08] to provide abstractions to the application developer that hide
details of operating system mechanisms and provide higher-level interfaces to
support distributed computing and the particular complexities of distributed smart
cameras. An agent-based model allows a computation to migrate from node to
node. Agent models require data migration and sometimes code migration; they are
particularly challenging for heterogeneous platforms in which different binaries are
required to run on different components of the platform. A publish/subscribe
system provides message-based communication without requiring the publisher
of a message to explicitly concern itself with the identity of nodes which will
receive the message. Quality-of-service (QoS) managers allow applications to
specify bandwidth requirements and then manage the priority of communications
to ensure that each application receives the bandwidth it was promised.

5.6.2 Multicamera Calibration

Spatial calibration in cameras with overlapping fields-of-view requires finding
points in the scene which can be used for correspondence. Figure 5.11 shows a
scene viewed from two different positions. The field-of-view line of the other
camera is marked in each image. Three reference points on the ground that are
visible to both cameras are also marked; these three points are sufficient to define
the ground plane.

If we have no information about the location of any point in the scene, cameras
can be calibrated up to a similarity transformation [Har03] Devarajan et al. [Dev06]
calibrate a camera network using a distributed algorithm. The camera model is
based on perspective:

P; = KR! [I;3:3 — Ci]. (5.62)

K; is the camera’s intrinsic matrix, R; is the camera rotation matrix, and C; is the
camera center.

We refer to the set of points in the scene used by the camera network for
calibration as {Xj, - - -, Xy}. The projection of one of these points X; by camera i is

/11;,[”117} —P [ﬂ (5.63)

A;j is the projective depth of the point at the camera.
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Fig. 5.11 Corresponding points for spatial calibration

They model the camera system using two graphs. The vision graph with M nodes
describes pairs of cameras which share views of a certain minimum number of
calibration points. The communication graph describes camera pairs that can
directly communicate with each other.

They form an initial vision graph by first identifying feature points in each
camera; they used both corner detection and SIFT to identify features. They then
identify initial nearest-neighbor matches between features in image pairs and then
perform outlier rejection using both extremal heuristics and a RANSAC-style
operation.

Each camera locally calibrates itself using a version of structure from motion—
the camera estimates the positions of the calibration points and camera parameters
using 2D image correspondences. The set of image projections has the form

Py
W= |P|[X{X} ] (5.64)

Solving for the projective depth values runs into ambiguities which can be
resolved using the absolute dual quadric matrix [Har03]. Based on this initial
estimate, bundle adjustment is used to improve the solution. This optimization
procedure minimizes the cost function

, min D> G — ) Y (e — i) (5.65)
{Pihiecticy T 7
{P}},kévj‘
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The resulting parameters are expressed relative to its neighbors. They form
clusters of cameras and associated points to translate global positions.

Cameras must also be calibrated temporally. Errors in time between cameras
correspond to errors in tracking position. Cameras exhibit wide variations in frame
rate; even if they are synchronized at one point in time, their frame rates are not
accurate enough to ensure a consistent time base. Velipasalar and Wolf [Vel0S]
used tracking to temporally calibrate distributed cameras. Two cameras are cali-
brated using a tracking target that can be seen by both cameras. Correspondences
between locations in the two images are found using four pairs of points on the
ground plane of the scene. Given these correspondences, the position of the target
as projected onto the ground plane can be found using the projective invariant
formulas. After each camera generates its own track for the target, they compare
their positions for the target. Local search is used to find the correspondence
between frames such that both cameras register the same position for the target at
the same time. This algorithm is fast enough to be used periodically to keep the
cameras synchronized.

5.6.3 Multicamera Tracking

The most direct generalization of tracking to multicamera systems is to assume that
the fields-of-views of the cameras at least partially overlap. Continuous coverage is
important in many surveillance applications.

We can build a distributed tracking system as a network of cooperating trackers:
each camera performs its own tracking and the cameras also comparing their results
with those of other cameras [VelO5]. The cameras can identify the relationships
between their fields-of-view using multicamera calibration methods; it is also
possible to find field-of-view lines without full calibration [KhaO3]. Based on
those results, each camera can determine the field-of-view lines for each of the
other cameras with which it shares views of the scene. Cameras need to agree with
each other as to the identity of the subjects being tracked. When a subject enters the
field-of-view of camera i, that camera can determine the other cameras which can
see the subject based on the field-of-view lines. It can then communicate with the
other camera to compare the position and appearance of the target. If the two agree
that these observations correspond to the same target, they can assign a common
label to identify the target. If the target is later occluded from the camera’s view, the
camera can obtain the target’s position from the other cameras. Figure 5.12 shows
the results of tracking a model car from a set of three cameras placed 120° apart.
The cameras have agreed on label 51 for the target. The box completely occludes
the subject in the bottom view, but the camera is able to determine the subject’s
position from the other cameras. Foreknowledge of the occluded object’s position
helps the camera processes to be ready for the subject’s reappearance. A protocol
was used to control the cooperation of cameras [Vel06]. The protocol provided
non-blocking communication between the cameras. A camera could send a
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AN

Fig. 5.12 Tracking in the presence of occlusion using cooperating cameras

message and then proceed with more processing without waiting for responses.
Synchronization points could be used to ensure that all nodes had reached the same
point; the cameras were synchronized every few frames. Tracking accuracy
depends on the synchronization rate: synchronizing on every frame resulted in
95% accuracy, while synchronizing once every two seconds (60 frames) resulted
in 55% accuracy. The MPI library was used to manage inter-camera
communication.
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Kokiopoulou and Frossard [Kok10] developed a distributed algorithm to classify
targets into one of several possible classes based on the sensor readings from the
cameras. A training phase generates a set of weights to capture the similarity of
observations of a target from different cameras. Each node computes an initial
smoothness function based on the trained weights. The nodes then exchange values
in a consensus algorithm to agree on an assignment of the observations to a class.

However, overlapping fields-of-view are impractical for very large areas. Track-
ing from cameras with nonoverlapping fields-of-view is often formulated using
techniques related to hidden Markov models.

Covering large areas ultimately requires placing cameras with nonoverlapping
fields-of-view. This tracking problem combines traditional computer vision tech-
niques with combinatorial optimization.

Chang and Gong [Cha01] used a Bayesian network to fuse tracking results from
multiple cameras. Their network included four types of nodes: correspondence
nodes encode assignments of observations to targets; comparison nodes compare
a subject at one camera against possible subjects at another camera; modality
confidence nodes represent the confidence of a given observation modality; and
indicator nodes indicate modality confidence.

Javed et al. [Jav05] used a color calibration phase to correct for color rendering
differences between cameras in the network. The training phase is used to generate
brightness transfer functions between pairs of cameras in the network. They showed
that these brightness transfer functions are of small dimension.

The tracking problem infers the activity of a set of subjects x* from a series of
observations. In the more general formulation, we have a series of observations; we
do not know a priori the number of subjects or their appearance. Each camera

produces observations Y = { . -,y,j S } each at time ¢ and with observation

sequence number j; an observation includes an appearance model as well as a
timestamp. We have an appearance model for each subject with a similarity metric
d(A(y1),A(y2)). Tracks are the result of partitioning the observations into sets with
each set Ty = {y;1, - - -, Y} representing a track; the set of all tracks is wx = {T7, - - -,
Tk}. Each observation can belong to at most one path. We will refer to the actual
behavior of the subject as a path p;. The track is an approximation of the path, which
is itself hidden.

In many applications, we can model the movement of targets as discrete paths.
Hallways in buildings are a clear example, as are roadways. But even many open
spaces such as parks may exhibit preferred pathways either as paved paths or as
paths worn into the ground. Figure 5.13 shows an example path graph model for
part of a building. A node in the graph represents a camera. The camera positions
are arbitrary and need not be located at intersections. Directed edges connect two
nodes i — j if the subject can move from i to j. We use a designated entry/exit node
to model subjects entering or leaving the system. We can label the path graph with
two probabilities: P(v;lv;) is the edge probability of a subject moving from node i to
jand P(flv;,v,) is the travel time probability for the time required to move from
node i to j.
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Fig. 5.13 A path graph

We can add directionality information to the observations to reduce uncertainty
[Kim09]. The camera adds to the observation of the direction through which the
subject moves through the camera’s field-of-view. Each node in the vision graph
becomes a supernode that is internally modeled as a small graph with nodes for the
entry and exit points used by the camera.

The probability of a track depends on both the fit of the observations to the path
and the likelihood of the path itself. A path that, for example, requires the subject to
teleport from one side of the building to the other within one second has a low path
probability—the travel time probabilities in the path graph do not make such an
occurrence likely.

Kettnaker and Zabih [Ket99] decomposed paths into links between pairs of
adjacent cameras; the posterior modeled the likelihood that observations at the
two nodes were generated by the same target. They model a track with three
components: probability frans(c; ;_1,¢; ;) of the duration and location of each
transit from one camera to another, the probability of a track of a given length,
and the probability of new targets entering the system. They maximize the ratio of
the posterior of a set of track assignments to the null hypothesis of each observation

being in a separate track. After applying modeling assumptions, their objective
function becomes

ponlt) 17 P (il Jprans(cigr. ) (1~ )
P(me ) i << p(yi,j,1>px’lloc(i,j)

(5.66)

In this formula, p, is the probability of a target exiting the system. After taking
the log of the product formula, minimizing the sum can be formulated as a weighted
assignment problem which can be solved using the Munkres algorithm.

We can write the probability of a path as the product of the link probabilities and
of the probability of the subject entering the system:



5.6 Multicamera Systems 195

:P()Co) H P(X,‘|x,‘_])- (567)

1<i<|p|

The probability of a track given a set of observations is given by a similar chain
of probabilities. For track k, the probability of two consecutive observations as the
result of the hidden movement of the subject is P(yx.; — 1, Yk, d Xk, i — 1, X, ;). Given the
travel time probabilities and the appearance similarity metric, we can refine this
probability as

P(Yk,iayk,j|xk,i7xk,_/) :P(tj— fi|xi,x_i)P(d(A(J’1)aA(yz))|xi,x_i)- (5.68)

Then the probability of a track is

P(Tx) = P(y,00 Y,11v0, %,1) H P (Vi Va1, %,1) - (5.69)

1<i<|Ty

The probability of a set of tracks given the observations is the product of the path
and track probabilities:

P(axlY) = ] Pl [] P(T0) (5.70)

1<k<K 1<k<K

We need to assign both edge and travel time probabilities to the path graph. In
the absence of a priori information about where people go and how long it takes
them to get there, assigning paths as equally likely is often a good starting point.
Travel times can be estimated using assumptions about velocity. These probabili-
ties can be updated based on observations as the system operates. This formulation
can be modeled as a bipartite graph [Kim10] with one set of nodes representing the
observations and the other set representing the tracks; weighted edges give the
assignment of the observations to tracks and the associated posterior probability.

Oh et al. [Oh0O4] used Markov chain Monte Carlo algorithms to solve the
observation-to-track assignment problem. Starting with each observation in its
own track partition, they probabilistically modify the partition until a termination
criterion is met. They used several types of moves:

e Birth generated a new track from a set of singleton observations; death
decomposed a track into its individual observations.

e Splitting broke a track into two pieces while merging combined two tracks
into one.

o Extension added several observations to a track while reduction removed several
observations.

» Update added a single observation to a track.

» Switch swapped sections of two different tracks.
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At each step, they first randomly select a move and the track/tracks to which to
apply the move to generate a new set of tracks w. They provisionally apply the
move and then accept the move with probability

Alw, ') = min(l,” ’“’)>. (5.71)

z(w)g(w, @)

Zajdel and Krose [Zaj05] used a form of multiple hypothesis tracking to solve
the track partitioning problem, resulting in a reduced-complexity algorithm. They
form an initial set of tracks based on a subset of the observations processed by an
expectation-maximization algorithm. Their algorithm iteratively processes the
remaining observations. Observations are added to the track set one at a time;
each new observation is added to several different candidate tracks which are then
evaluated and pruned.

The tracking problem can also be solved using distributed algorithms based on
MCMC moves [Kim10]. Successive observations are likely to come from cameras
that are nearby in the vision graph. As a result, the search for successors and
predecessors is primarily local, allowing us to partition the search algorithm across
the distributed system. The system is mapped onto a set of overlapping neighbor-
hoods, based on a radius » of communication between cameras. Cameras can share
their own observations with their neighbors. Each camera formulates its own
estimates of paths related to its observations. Cameras in the neighborhood can
vote on updated tracks to create a local consensus. In the event of a tie, the camera
that generated the observations wins. The accuracy of the resulting tracks depends
on the radius of communication, but experiments show that a very small radius of
r =2 works well.

Person reidentification is used to determine whether a person sighted at different
times by nodes in a distributed camera network is, in fact, the same person.
Gheissari et al. [Ghe06] broke images of a person into parts and generated signa-
tures that are invariant to illumination and pose as well as clothing movement.
Features are identified using a hue/saturation histogram and a set of edges. A series
of frames is analyzed to identify a stable set of edges—for example, edges that
represent the boundaries between garments rather than edges created by draping of
the fabric. They group together sets of edges that have low cost in space and time. A
greedy algorithm partitions the primitive regions into clusters. They use the Hessian
affine invariant operator to generate a large set of points of interest and generate
correspondences; this approach uses the large number of feature points generated to
compensate for the instability of the sets. They use a model to generate correspon-
dences to body parts (head, torso, arms, legs). Zheng et al. [Zhe13] use learning
algorithms based on relative distance comparison between sets of features. An
iterative algorithm is used to train the model so that the distance between interesting
pairs is smaller than the distance between irrelevant pairs. They scale their approach
to larger problems using ensemble learning: a set of weak models is trained first;
then an ensemble model is learned based on the weak models.
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An interesting variation on the multicamera tracking problem is tracking from
several unmanned aerial vehicles (UAVs). Behtke et al. [BetO7] developed a
tracking algorithm for a fleet of UAVs. Each UAV is assumed to be able to identify
a candidate for the target. Each UAV’s navigation system provides an estimate of
its position; the camera can estimate a direction vector to the target. The target’s
position is estimated from the set of measurements.

5.7 Use Cases and Workflows

Real-time video analysis opens up a wide range of new use cases for single cameras:

*  Monitoring of scenes to detect activity or certain types of activity.

« Identification of people and vehicles, both by direct feature classification and by
techniques such as license plate readers based on hyperresolution.

¢ Automated vehicles which provide features such as lane departure warnings,
pedestrian excursion detection, and collision avoidance.

Networked smart cameras are the result of several developments: the creation of
the Internet Protocol and wireless networking devices combined with low-cost
cameras and video encoders allowed video to be sent over much longer distances
than was possible with analog video. The application of several networked cameras
extends the usefulness of many of these use cases and adds more:

¢ Tracking of the movement of large numbers of people and vehicles over large areas
* Monitoring and mapping using autonomous vehicles

The basic principles of exposure, focus, and tonal mapping are perhaps even
more important to computer vision and automated analysis than is the case for
photographs intended for viewing. The imaging parameters for the object of interest
must be compatible with the parameters of the analysis algorithm; those imaging
parameters must also be maintained as the subject moves through different lighting
environments.

Most analytics require some type of extrinsic camera calibration to determine
the camera’s relationship to its environment. Applications with tightly controlled
environments may not need background elimination, but cameras placed in more
complex environments do need to separate objects of interest from other objects.
Cameras on moving platforms—cars, unmanned aerial and water vehicles, etc.—
require egomotion analysis. An increasing number of applications combine the
results from multiple cameras; depending on the environment and the type of
subject, camera results may be combined at different levels of abstraction ranging
from low-level representations through initial classifications.

Further Reading
Books edited by Bobda and Velipasalar [Bob14] and Bhanu et al. [Bhal1] discuss
distributed smart camera networks.



Chapter 6
Photography and Cinematography

6.1 Introduction

Art and technology form a symbiotic relationship in many media. The history of
drawing and painting, for example, is closely tied to the development of new
materials. But the relationship between the technological means and artistic ends
is perhaps no closer than in photography, an inherently technical medium. Photog-
raphy is also unique in that it much more directly captures the natural world than do
painting or sculpture. Although we have seen that photographs demand some
amount of manipulation and interpretation, their quasi-realistic nature took years
for the viewing public to digest and accept. Moving pictures raised this ambiguity to
new heights by introducing time as a variable in our understanding of the
presentation.

This short history outlines a few points in the development of still photography
and cinematography. The succession of technological developments serves as a
loose framework; aesthetic evolution is a critical aspect of our understanding of
development of the form.

6.2 Photography

Early photography’s development was, like many inventions, a story of parallel and
competing inventors who had only partial knowledge of each other. The camera
obscura had been known for centuries. Three key developments made photography
possible. First, light-sensitive chemicals were identified. Second, chemicals were
used to develop a latent image (the earliest experiments used extremely long
exposures that caused the light-sensitive materials to change color so as to be
directly visible). Third, chemical means were found to fix the image so it would
not fade. In France, Joseph Niépce and Louis Daguerre worked first separately, with
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Fig. 6.1 A daguerreotype
(Library of Congress
[Unk63])

Niépce starting his work in the 1810s, then together starting in the 1820s. In
England, William Fox Talbot developed a process using light-sensitive materials
on paper. The photographic fixing problem was solved by Sir John Herschel.

Figure 6.1 shows a daguerreotype, the result of Daguerre’s work. This process
coated a piece of metal with light-sensitive materials. The image was viewed
directly and could form a positive, but only when the photograph was held at the
proper angle to reflect light off the metal and to the viewer. Daguerreotypes became
extremely popular, thanks to their durability and low cost. Portraits, which once
were the playthings of the rich, were now available to the broader public. However,
the daguerreotype eventually fell out of favor because it could not be copied—each
was unique. Fox Talbot’s calotype process, in contrast, used the original exposure
as a negative. A print was made by exposing a new piece of photographic material
through the negative. However, because the negative was made of paper, the
images were diffuse and indistinct.

Early photographic materials were not very sensitive to light. Exposures could
require minutes. These long exposures made still life arrangements, buildings, and
quiet natural scenes popular subjects. Photographs of people were also made, but
they required the subject to stay still for the entire exposure. Early photographic
materials were also not sensitive to all wavelengths of light; panchromatic film was
introduced only at the turn of the twentieth century. The collidon process made use
of an emulsion on a glass plate, which allowed much more detailed photographs.
Early collidon processes required working with the plate while wet. The combina-
tion of glass and wet plates turned each photographer into a practicing chemist.
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Nonetheless, photography was quickly applied to many arenas. Photographs of
battle were taken of the Crimean War in 1855. The American Civil War was
extensively photographed. Matthew Brady is the best known Civil War photogra-
pher his famous photograph of General Sherman is shown in Fig. 6.2 but other
photographers also covered the war. Figure 6.3 shows President Abraham Lincoln
and US Army officers at Antietam, Maryland; this photograph was taken by
Alexander Gardner. Notice the relatively stiff poses to accommodate the required
exposure times. This photograph was staged, but many other photographs of battle
scenes were also taken.

Although early photographs appear stagey and artificial to us, early viewers
considered photographs as literal representations. Newhall, for example, recounts
how nineteenth-century viewers reacted strongly against a photograph of the death
of a young girl and her attending family [New64]; they reacted to the staged
photograph much more strongly than they would have to an equivalent painting.

Nineteenth-century photographers brought photography to remote locations,
often preparing wet plates in difficult conditions. The US Civil War brought out
photographers who made extensive and historically important photographs, some-
times immediately after a battle. T. Sherman; Fig. 6.3 shows President Lincoln and
his generals at the site of a major. Later in the century, photographers documented
the American West. Edward Curtis created an influential series of photographs of
Native Americans and other scenes of the West. Panoramic photographers roamed
the country in the late nineteenth and early twentieth centuries. They often created
their portraits of towns and industrial sites on commission.

As photographic materials and equipment improved, photographs were increas-
ingly useful in the capture of motion. Figure 6.4 shows first flight—the first
powered, controlled flight. The Wright brothers hired a photographer to capture
their flight to create a photograph that would accompany their patent application.
After the flight, they asked “Did you get it?”” The photographer was so stunned he
wasn’t sure if he took this photo. He had to develop the plate to know that he had
remembered to fire the shutter.

George Eastman developed a form of roll film; early versions used a paper
backing which was later improved to a film backing. He made use of this film in the
Kodak, a handheld camera designed for amateur use. The aperture and shutter speed
were fixed, requiring the photographer only to point and shoot. After shooting a roll
of photos, the consumer mailed the camera back to Eastman’s company; they
developed and printed the film, loaded the camera with a new roll, and returned
both the camera and photos. The Kodak was marketed under the slogan “You press
the button, we do the rest.” The Eastman system provided both ease of use and low
cost and did much to popularize amateur photography.

Improved photographic processes also allowed photography to develop as an art.
A key theme in art was the interplay between realism and abstraction. Alfred
Stieglitz was influential in the early twentieth century as both a photographer and
a curator. Stieglitz created the periodical Camera Work which became a very
influential record of the artistic development of photography. Edward Steichen
was an important photographer in the first half of the twentieth century. His work
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Fig. 6.2 Portrait of Maj.
Gen. William T. Sherman,
officer of the Federal Army
(Library of Congress
[Bra60])

Fig. 6.3 Abraham Lincoln at Antietam (National Archives [Gar62])
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Fig. 6.4 Original Wright brothers’ 1903 airplane (“Kitty Hawk™) in first flight, December
17, 1903 at Kitty Hawk, N.C. Orville Wright at controls. Wilbur observing. (Library of Congress
[UnkO03])

included still lifes and urban compositions, but he was also an extremely successful
commercial photographer. He also served as Director of Photography for the
Museum of Modern Art, where he created the exhibit The Family of Man. Edward
Weston made stunning photographs of both people and natural objects as abstract
forms. Ansel Adams, a friend of Weston, concentrated on natural scenes with
emphasis on the abstract use of their compositional forms and textures. Figure 6.5
shows one of Adams’ photographs of the Tetons in Wyoming. Laszlo Moholy-
Nagy was both a painter and photographer who made highly abstract photographs.

New processes allowed newspapers to print photographs. News photography
added immediacy and often luridness to stories. Arthur Fellig worked under the
name Wee Gee during the 1930s. His photographs of crime scenes, mostly on
New York’s Lower East Side, captured crime scenes in much the same way as they
were seen by the police, thanks to his prompt arrival on crime scenes. His motto was
“f/8 and be there.” He published his works in a book titled Naked City.

The development of the 35 mm camera encouraged the development of new
forms of photography of everyday life; the cameras were small enough to be used
without attracting attention. Henri Cartier-Bresson became a master of the 35 mm
form. He introduced the notion of the decisive moment at which the people and
objects of a scene formed the best possible composition.



204 6 Photography and Cinematography

Fig. 6.5 “The Tetons—Snake River,” Grand Teton National Park, Wyoming (National Archives
[Ada41])

Photography became a tool for social commentary. Jacob Riis photographed the
slums of New York in the early late 1880s and 1890s; his work was aided by the
development of flash photography based on flash powder. He used these photo-
graphs as part of a campaign of newspaper stories and public speeches to campaign
for reforms to improve slum conditions. During the Great Depression, the US
Works Progress Administration employed many artists, including photographers.
The photographers helped to create a documentary movement. Dorothea Lange and
Walker Evans were key members of the WPA documentary team. During World
War II, both Lange and Ansel Adams took photographs of the internment of
Japanese Americans such as the photo of Fig. 6.6; Lange’s photographs were
shelved for many years by government officials who considered them to be too
politically charged. The civil rights movement was a key subject for documentary
photography as well as more traditional forms. Gordon Parks created a photo series
for Life magazine which depicted scenes from the life of an African-American
family in the segregated South. Parks went onto become a noted film director, most
notably of the iconic film Shaft.

Space flight produced iconic and historic images. Astronaut Wally Schirra took a
used Hasselblad camera on his Mercury flight; the photographs he took in orbit
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Fig. 6.6 Manzanar from Guard Tower, view west (Sierra Nevada in background), Manzanar
Relocation Center, California (Library of Congress [Ada43])

were so well received that photography became a central component of future
missions. Figure 6.7 shows a photograph of Neil Armstrong on the moon; the
footprints of Armstrong and Buzz Aldrin dot the landscape. We will discuss
television coverage of space flight in the next section.

In the twenty-first century, the smartphone married photography and communi-
cation to create a range of new uses for photography. Participants broadcast
photographs and videos of news events and social movements, sometimes live.
People also photographed and broadcast their own illegal actions on social media.
Early smartphone cameras were simple and provided only low-quality images.
Modern smartphones use high-resolution sensors enhanced with advanced
computation.

6.3 Cinematography

Cinematic artists have displayed varying interpretations of the roles of director and
cinematographer. Some directors concentrate on the actors and leave photographic
decisions to the cinematographer. On the other hand, John Frankenheimer declared
that “the director decides what is in the frame,” and Stanley Kubrick effectively
acted as his own cinematographer. Decisions about lighting are one key area of
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Fig. 6.7 Neil Armstrong on the moon (NASA [Ald69])

concern for the cinematographer. Perhaps no better example exists of the influence
of lighting on the look of a film than The Godfather. Cinematographer Gordon
Willis, ASC, chose to light Marlon Brando’s face from above. The shadows cast
upon Brando’s eyes conveyed the lurking menace presented by Brando’s character.

Eadweard Muybridge made pioneering photographic records of a moving horse
in 1878. The image sequence was captured using a series of cameras placed along a
track; the horse broke a wire at each camera location to fire its shutter. The image
sequence was taken to settle a bet made by Leland Stanford as to whether all four of
a horse’s hooves were off the ground simultaneously. The experiments were
conducted at what is now Stanford University.

The invention of the motion picture is generally credited to Thomas Edison. He
worked on the problem of capturing and showing movement starting in 1889 and
demonstrated it in 1893. The camera captured image sequences on flexible roll film,
which was relatively novel at the time. A mechanism moved a portion of the film in
front of the image frame, then paused, while a rotating shutter opened to expose the
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image. Edison built a stage known as the Black Maria at his West Orange, New
Jersey, laboratory; the stage rotated to allow it to follow the sun. Early movies were
very short and almost anything captured in motion was attractive to audiences. The
first motion picture copyrighted in the United States was Fred Ott’s Sneeze, a film
of a few seconds long whose content is perfectly captured by its title.

Edison invented the motion picture but did not invent the projector. His kinet-
oscope consisted of an eyepiece and lenses through which a rotating set of cards
was viewed. The motion picture projector was invented by the brothers Auguste and
Louis Lumi’ere. The French word cinema pays tribute to their contribution. They
showed their first motion picture in 1895. They also invented Autochrome, the first
useful color photographic process.

The form of the motion picture developed gradually over the first 20 years. Films
became longer and told increasingly more complex and sophisticated stories.
Genres also emerged. The Great Train Robbery was made in 1903. The film tells
the story of a pair of bandits who stop a train, board it, terrorize the train employees
and passengers, and steal the contents of its safe. The thieves are then chased down
by a posse. The closing shot shows one of the bandits shooting directly at the
camera. This film is regarded as the first Western.

By the early 1910s, the feature film had emerged as the long form of cinema. A
milestone feature film was The Birth of a Nation directed by D. W. Griffith and
released in 1915. This film was a morally reprehensible work depicting the forma-
tion of the white supremacist Ku Klux Klan, but it also codified a number of
cinematic techniques.

During the 1910s and 1920s, a number of cinematic techniques were developed,
including the closeup and the dialog scene. As these techniques were introduced,
audiences learned how to interpret them, allowing subsequent directors to use those
techniques and build on them to create even more sophisticated sequences. The
result was the development of the visual language of cinema. Because films were
silent, this visual language was shared across the world. Films did rely on title cards
interspersed to provide description. Ultimately, directors raced to make the first
feature with no title cards,

The 1920s were perhaps the high point of cinematic comedy. The reigning
comedic geniuses of the era included Charlie Chaplin (arguably the first global
star), Buster Keaton, and Harold Lloyd. All three combined physical comedy with
strong characterization. Chaplin’s The Gold Rush, released in 1925, is a master-
piece. Among its many achievements, it introduced what would become a trope in
cartoons—a hungry person imagining another person as a juicy, steaming roast
chicken. Buster Keaton, The Great Stoneface, mixed impassive observation of
chaos around him with impressive physical reactions of his own to create works
that still seem modern and fresh. Harold Lloyd’s glasses character used a gee-whiz
persona as a front for daredevil feats. His Safety Last is a lasting commentary on
modern life. Hal Roach was the most important producer of comedy shorts. Among
other achievements, he paired Stan Laurel and Oliver Hardy. He lived long enough
to be a guest on Late Night with David Letterman.
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Edison tried to synchronize phonographs to motion pictures but eventually gave
up. Lee De Forest, a radio pioneer, developed a synchronized sound system. But the
film which changed the motion picture industry relied on a relatively primitive
technique. The Jazz Singer, released in 1927, relied on records played at key points
in the film; most of the film was silent. The film starred Al Jolson, a popular
entertainer. It became a sensation and audiences demanded more sound films.
Within 2 years, the entire industry had converted to sound production. The com-
plexities of capturing synchronized sound kept film productions, which in the silent
history had made extensive use of locations, into the studio for years to come.

The silent era film industry was very international. European studios introduced
many innovations and made many popular films. The industry consolidated under
the sound era. Although the introduction of the spoken word made films in some
ways less portable, the much higher cost of sound production outweighed that
problem. Hollywood became a global source for film; its rise was aided by the
troubles in Europe. The Hollywood studios did make efforts to internationalize their
products; Laurel and Hardy, for example, learned their lines phonetically in Spanish
and produced dual language versions of every shot with the spoken word.

Nanook of the North (1922) was an early documentary feature. It told the story of
an Inuit family living in northern Quebec. A great deal of the footage was staged
and today would be considered something closer to a docudrama. However, it is
popular in its initial release and today is considered a pioneering film.

The movie musical developed quickly in the early 1930s. Busby Berkeley
became known for his complex musical numbers with large choruses of dancers.
The dancers were often shot from above, forming geometric shapes that shifted as
they moved. Berkeley also directed a series of films costarring Judy Garland and
Mickey Rooney and went on to create the Esther Williams water spectaculars. His
gift can best be described as the ability to visually portray music.

Fred Astaire, a successful Broadway dancer, moved to Hollywood in the 1930s.
His films of that decade with Ginger Rogers as his partner are regarded as classics of
the form. Astaire was a meticulous craftsman who insisted that the dances be shot at
full body length without close-ups.

The Western was a fixture of both the silent and sound eras and evolved into a
genre that was uniquely suited to film. William S. Hart was the foremost movie
cowboy of the silent era; his characters were portrayed as noble and honest. The Big
Trail (1930), directed by Raoul Walsh, was an early talkie Western that was also
shot in an early widescreen processes using 70 mm film; it featured John Wayne in
his first starring role. The director John Ford created the visual template for the
Western as he settled on Monument Valley, located in the Navajo Nation Reser-
vation on the Arizona-Utah border, as the location for many of his films. Ford’s first
film in Monument Valley was Stagecoach (1939), which made a star of John
Wayne. The Searchers (1956) also starred Wayne but in a much darker and more
melancholy story that is considered one of the greatest examples of the form.

Color photography, unlike sound, took years to develop and to effectively
introduce into motion picture production. Technicolor was the most successful
color motion picture process, but the process evolved over several major steps.
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An early form was used in several pictures in the early 1920s, but this form could
not capture or display a full-color gamut. Full-color Technicolor was introduced in
the late 1920s, but the Great Depression slowed its introduction. The Disney
cartoon Flowers and Trees from 1932 was a relatively early use of the three-strip
Technicolor process.

Electronic television was invented by Philo Farnsworth in 1927. Television also
took years to develop technically and even longer to come into common use. By the
late 1930s, television technology had advanced to the point that it was demonstrated
at the New York World’s Fair. However, World War II delayed the introduction of
regularly scheduled television programming until the late 1940s.

Early television production relied on live editing. The first videotape recorder
was not introduced until 1956 [Amp17] and was used sparingly for years. Feeds
from each camera were brought to a console operated by a director and technicians.
The director switched the output signal between cameras in order to create the shot
sequence for the show.

The 1950s are known as the Golden Age of Television due to the large number of
high-quality programs and the large numbers of talented performers and directors
who emerged during those years. Playhouse 90 was one of several highly acclaimed
dramatic series which aired full-length dramas performed live, often with sophis-
ticated sets and complex camerawork. John Frankenheimer, Arthur Penn, and
Franklin J. Schaffner were acclaimed television directors who went onto successful
careers in film. Paddy Chayefsky wrote the acclaimed television drama Marty and
went onto write Network and many other films. Rod Serling wrote television
dramas, including an early dramatization of an airplane hijacking and then went
on to create the classic The Twilight Zone as well as the screenplay for Planet of the
Apes. The Twilight Zone used fantasy as a framing device for the social commentary
themes which Serling had developed more overly in his earlier work.

I Love Lucy, which aired from 1951 to 1957, was a seminal program in the
history of television. Lucille Ball was a gifted comedic actress who possessed both
perfect timing and physical comedy skills that embodied ridiculousness. Her
appearance at the dawn of television helped define comedy and the role of
women in television. Her husband Desi Arnaz played a supporting role on the
show that required him largely to react to his wife’s ridiculousness. Behind the
camera, Arnaz was a brilliant producer who created key forms in the emerging
medium. He insisted that the show be shot in front of a live audience like a play.
This was a bold decision given the technical challenges of television production at
the time. He hired cinematographer Karl Freund ASC to shoot the show. Together
they developed the three-camera setup—master and two close-ups—that still form
the backbone of television. Freund also developed a flat lighting style that allowed
them to shoot from all angles simultaneously; in contrast, cinematic productions
adjusted the lighting for each angle. Arnaz also decided to spend the extra money to
shoot the show on film. This gave him a much higher-quality record than was
possible with the kinescopes of the time. The result was the enablement of the rerun,
which both popularized key shows through repetition and magnified the earnings of
popular shows. I Love Lucy is said to have run continuously around the world for
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decades; many remarked that the first messages from Earth received by aliens on
other worlds would be pictures of Lucille Ball.

Television news also emerged as a distinct medium with Edward R. Murrow,
already famous for his work in radio, creating programs such as Person to Person.
A critical event in the development of television news was the coverage of the
Army-McCarthy hearings of the US Senate, which were prompted by the allega-
tions made by Senator Joseph McCarthy of Communist infiltration of the US
government. The hearings were covered live for several weeks by both the ABC
and DuMont networks. Presentation of the behavior of McCarthy, along with
newspaper coverage, resulted in a shift in public opinion against McCarthy.
Another key event in the development of television news was the coverage of the
Kennedy-Nixon debates in 1960. Nixon refused to wear makeup for the first debate
and presented a poor visual appearance; Kennedy, in contrast, was much more
telegenic.

Spaceflight provided major television events throughout the 1960s. Live cover-
ages of key events such as launch and reentry were standard procedure. Apollo
7, which remained in Earth orbit, provided the first live television broadcast from
space. Two months later, Apollo 8 broadcast a program from lunar orbit on
Christmas Eve, 1968, which received the largest audience of any television broad-
cast up to that time. Apollo 11 broadcast live Neil Armstrong’s first step onto
the moon.

In cinema, the French Nouvelle Vague (New Wave) was created by a generation
of young directors starting in the late 1950s. Some of them first made their mark as
film critics before moving onto making their own films. Jean-Luc Godard and
Francois Truffaut are two members of the New Wave who created major bodies
of work. Italian cinema also blossomed after World War II. Italian neorealism,
embodied in works such as Roberto Rossellini’s Open City (1945) and Vittorio De
Sica’s Bicycle Thieves (1948), was a response to difficult conditions after the war.
Federico Fellini started in a neorealist style and then moved onto a more fantastical
style.

In the late 1960s and 1970s, Hollywood studios hired a generation of young
directors in an attempt to fight increasing competition from television. These
directors made use of a range of innovative techniques, some of them borrowed
from influential European directors. Key examples of the period were Francis Ford
Coppola’s The Godfather (1972), which became a huge hit, and its sequel The
Godfather: Part I1, (1974), also a huge hit. The downbeat themes of the latter film
would have been unthinkable in a studio film a decade before. Their experiments in
technique were also aided by technical advances, such as zoom lenses and faster
film stocks.

Documentary film evolved in the postwar period to embrace a style known as
cinéma verite. Filmmakers made use of smaller, more portable equipment to
attempt a less intrusive style of filming. They also edited their footage in a style
that less overtly imposed a narrative. Major American practitioners of the form
included Albert and David Maysles and D. A. Pennebaker. The television docu-
mentary An American Family (1976) portrayed 7 months in the life of a California
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family. The filmmakers expected to capture a slice of life; instead, the film ended
with the husband and wife deciding to divorce and the son coming out as gay. That
series is now widely regarded as a progenitor of reality TV. Albert Brooks’ Real
Life (1979) parodies An American Family and itself widely regarded as presaging
some of the seedier aspects of modern reality programming. It contains a montage
that is both an excellent example and a brilliant parody of the form.

The first film created entirely by computer graphics was The Last Starfighter
(1984). However, the film that made CGI a key force in major motion pictures was
Terminator II: Judgment Day (1991). That film’s liquid terminator character
demonstrated both how convincing computer graphics could be and how CGI
could be used in service of the story.

The Steadicam system was introduced in the 1970s. It allowed a camera operator
to carry the camera on a mount attached to the operator’s body and to make very
smooth camera moves. Sequences in two films, both from 1976, demonstrated
Steadicam’s capabilities: Rocky Balboa running up the steps in Philadelphia in
Rocky and Stanley Kubrick’s shot behind a boy’s tricycle in The Shining.

Two films reinvented the chase scene. Earlier films had shot chases either on
stages using special effects or with relatively simple camera setups. Hitchcock’s
North by Northwest (1959) presented Cary Grant being chased across an Illinois
cornfield by a PT-17 crop duster. Hitchcock explained to Francois Truffaut [Tru85]
that he wanted to subvert the traditional suspense dynamic of the character under-
neath a streetlamp on a darkened street waiting for an event to occur. Grant’s
character, in contrast, is told to travel to an isolated rural area to wait for an
unspecified event. Peter Yates’ Bullitt (1969) features what is still one of the
greatest car chases in cinema. It was filmed on the streets of San Francisco using
high-performance cars. Much of the driving was performed by stunt drivers, but
Steve McQueen drove the Mustang for close-ups; studio-bound films had been
unable to present the star as the subject of such clear and intense jeopardy. Bullitt
won the Academy Award for best editing, thanks to Frank Keller’s ability to clearly
convey the geography and plot of the chase while maintaining its kinetic energy.

Hong Kong filmmakers redefined the action film. Enter the Dragon (1973) made
an international star of Bruce Lee and depicted fight sequences using shots that
clearly showed off the moves of the fighters. Jackie Chan’s films were famous for
his incredible stunt work; his films ended with outtakes of the stunts, often includ-
ing shots of him being taken to the hospital. John Woo created a series of films that
depicted gunfights almost as ballets; The Killer (1989) is a prime example of
his work.

Akira Kurosawa was the most famous Japanese director of the postwar film. His
work covered a range of themes and periods. But the samurai ethic was an
important influence on his thought and the American Western a significant influ-
ence on his work. The Seven Samurai (1954) tells the story of a group of unem-
ployed fighters hired by a village to protect them from bandits. The samurai are
loners, much like the traditional cowboy. That film went onto influence the Amer-
ican Western when it was remade as The Magnificent Seven (1960). His film
Yojimbo (1961) became the basis for A Fistful of Dollars (1964).
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The combination of broadcast, cable, and streaming services in the early twenty-
first century created huge demand for content. In 2015, FX network CEO John
Landgraf predicted that “peak TV”’—meaning the largest number of scripted pro-
grams in production—would occur in 2015 or 2016 [Adal5]. Landgraf later
updated his prediction; his network released a study in 2016 that counted
455 scripted series in production in the United States in 2016, up from 421 in
2015 and 266 in 2011 [Zuc16].

Further Reading
Beaumont Newhall’s The History of Photography [New64] is a standard reference
which describes the interplay between technical and artistic developments.

Mast [Mas92] gives a comprehensive survey of the history of motion pictures.
Bordwell [Bor85] analyzes the cinematic forms used to tell stories. The Parade’s
Gone By [Bro68] is an important work on silent-era Hollywood. Louise Brooks was
a silent film star; her autobiography Lulu in Hollywood [Bro82] provides a glimpse
into work and life in the silent movie period and is also very well written. American
Cinematographer provides a wealth of interviews and articles. Francois Truffaut’s
Hitchcock [Tru85] is not only a discussion between two master filmmakers but
benefits from Truffaut’s journalistic training. Avclub.com’s series A History of
Violence explores the history of the action film in detail.


http://avclub.com

References

[Ada41]

[Ada43]

[Ada02A]

[Ada02B]

[Ada02C]

[Adal5]

[Aga04]

[Ahm74]

[A1d69]

[Ald88]

[AlI85]

[Amp17]

Ansel Adams, “The Tetons---Snake River, Grand Teton National Park, Wyoming,”
1941-42, Series Ansel Adams Photographs of National Parks and Monuments, 1941---
1942, ARC Identifier 519904, NAIL Control Number NWDNS-79-AA-GOl.

Ansel Adams, “Manzanar from Guard Tower, view west (Sierra Nevada in back-
ground), Manzanar Relocation Center, California,” 1943, Reproduction Number:
LC-DIG-ppprs-00200. Call Number: LC-A351-3-M-4-Bx [P&P]. Library of Congress
Prints and Photographs Division Washington, D.C. 20540 USA

Ansel Adams, The Camera, The Ansel Adams Photography Series 1, New York: Little,
Brown and Company, 2002.

Ansel Adams, The Negative, The Ansel Adams Photography Series 2, New York:
Little, Brown and Company, 2002.

Ansel Adams, The Print, The Ansel Adams Photography Series 3, New York: Little,
Brown and Company, 2002.

Erik Adams, “TCA roundup: ‘2015 or 2016 will represent peak TV in America’”,
avclub.com, Aug 7, 2015, http://www.avclub.com/article/tca-roundup-2015-or-2016-
will-represent-peak-tv-am-223558

Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex
Colburn, Brian Curless, David Salesin, and Michael Cohen. 2004. Interactive digital
photomontage. In ACM SIGGRAPH 2004 Papers (SIGGRAPH *04), Joe Marks (Ed.).
ACM, New York, NY, USA, pp. 294-302. doi: http://dx.doi.org.prx.library.gatech.
edu/10.1145/1186562.1015718

N. Ahmed, T. Natarajan and K. R. Rao, “Discrete Cosine Transform,” in /EEE
Transactions on Computers, vol. C-23, no. 1, pp. 90-93, Jan 1974. doi: https://doi.
org/10.1109/T-C.1974.223784

Buzz Aldrin, “Photograph of Neil Armstrong on the Moon,”From RG: 255, Project
Files on the Early Apollo Surface Experiments Package (EASEP). This item is a
photograph of Neil Armstrong on the moon. National Archives Identifier: 4957965.
Creator: National Aeronautics and Space Administration. Manned Spacecraft Center.
Science and Applications Directorate. 1/1967-2/17/1973

Aldus and Microsoft, TIFF Revision 5.0, Aug. 8, 1988.

Ross R. Allen, John D. Meyer, and William R. Knight, “Thermodynamics and
hydrodynamics of thermal ink jet printers,” in Hewlett-Packard Journal, vol. 36, no.
5, May 1985, pp. 21-27.

Ampex, “Ampex History,” http://www.ampex.com/ampex-history/, accessed Jan.
26, 2017.

© Springer International Publishing AG 2018 213
M. Wolf, Smart Camera Design, https://doi.org/10.1007/978-3-319-69523-5


http://www.avclub.com/article/tca-roundup-2015-or-2016-will-represent-peak-tv-am-223558
http://www.avclub.com/article/tca-roundup-2015-or-2016-will-represent-peak-tv-am-223558
http://dx.doi.org.prx.library.gatech.edu/10.1145/1186562.1015718
http://dx.doi.org.prx.library.gatech.edu/10.1145/1186562.1015718
https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/T-C.1974.223784
https://catalog.archives.gov/id/4957965?&sp=%7B%22q%22%3A%22armstrong%20moon%22%7D&sr=0
http://www.ampex.com/ampex-history/
https://doi.org/10.1007/978-3-319-69523-5

214

[ARMO09]
[Arn74]

[B16]

[Bay75]
[Bay06]
[Bel92]

[Bel02]

[Bet07]

[Bha85]

[Bhall]
[Bob14]
[Bor85]
[Bovi3]
[Boy70]

[Bra65]

[Bra00]

[Bra60]

[Bro68]

[Bro82]

[Bro03]

[Bur83]

[But10]

References

ARM, Cortex-A9 MPCore Technical Reference Manual, Revision r2p0, 2009.
Rudolph Arnheim, Art and Visual Perception: A Psychology of the Creative Eye, The
New Version, Berkeley and Los Angeles CA: University of California Press, 1974.
Benjamin B, “Cutting-edge clarity,” in American Cinematographer, vol. 97, no.
12, Dec 2016, pp. 34-49.

Bryce E. Bayer, “Color imaging array,” U. S. Patent 3,971,065, Mar 5, 1975.
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “SURF: Speeded Up Robust
Features,” in ECCV 2006: European Conference on Computer Vision, LCNS, vol.
3951, Springer, 2006, pp. 404—417.

Cynthia S. Bell, “Contrast-based autofocus mechanism,” U. S. Patent 5,170,202, Dec
8, 1992.

Cynthia S. Bell, Edward P. Tomaszewski, Amy E. Hansen, and Kannan Raj, “Deter-
mining a final exposure setting automatically for a solid state camera without a
separate light metering circuit,” U. S. Patent 6,486, 915, Nov 26, 2002.

Bethke B., Valenti M., How J. (2007) Cooperative Vision Based Estimation and
Tracking Using Multiple UAVs. In: Pardalos P.M., Murphey R., Grundel D., Hirsch
M.J. (eds) Advances in Cooperative Control and Optimization. Lecture Notes in
Control and Information Sciences, vol. 369. Springer, Berlin, Heidelberg

Eldurkar V. Bhaskar and J. Stephen Alden, “Development of the thin-film structure for
the ThinkJet printhead,” in Hewlett-Packard Journal, vol. 36, no. 5, May 1985,
pp- 27-33.

Bir Bhanu, Chinya V. Ravishankar, Amit K. Roy-Chowdhury, Hamid Aghajan, and
Demetri Terzopoulos, eds., Distributed Video Sensor Networks, Springer, 2011.
Christophe Bobda and Senem Velipasalar, eds., Distributed Embedded Smart Cam-
eras: Architectures, Design, and Applications, Springer, 2014.

David Bordwell, Narration in the Fiction Film, Madison WI: University of Wisconsin
Press, 1985.

A. C. Bovik, “Automatic Prediction of Perceptual Image and Video Quality,” in
Proceedings of the IEEE, vol. 101, no. 9, Sept 2013, pp. 2008-2024.

W. S. Boyle and G. E. Smith, “Charge Coupled Semiconductor Devices,” in Bell
System Technical Journal, vol. 49, no. 4, Apr 1970, pp. 587-593.

Matthew Brady, “Portrait of Maj. Gen. William T. Sherman, officer of the Federal
Army,” between 1860 and 1865. Brady National Photographic Art Gallery, Repro-
duction Number LC-DIG-cwpb-07136, Call Number LC-B813- 6454 A, Library of
Congress Prints and Photographs Division Washington, D.C. 20540 USA http://hdl.
loc.gov/loc.pnp/pp.print

M. Brand and V. Kettnaker, “Discovery and segmentation of activities in video,” in
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.
844-851, Aug 2000. doi: https://doi.org/10.1109/34.868685

Brady National Photographic Art Gallery (Washington DC), Maj. Gen. William
Tecumseh Sherman; half-length, seated, ca. 1860- ca. 1865, 111-B-1769, National
Archives Identifier 526708.

Kevin Brownlow, The Parade’s Gone By, Berkeley CA: University of California
Press, 1968.

Louise Brooks, Lulu in Hollywood, New York: Alfred A. Knopf, 1982.

M. Brown and D. G. Lowe, “Recognising panoramas,” in Proceedings Ninth IEEE
International Conference on Computer Vision, Nice, France, 2003, pp. 1218-1225
vol. 2. doi: https://doi.org/10.1109/ICCV.2003.1238630

P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact Image Code,” in IEEE
Transactions on Communications, vol. 31, no. 4, pp. 532-540, Apr 1983. doi: https://
doi.org/10.1109/TCOM.1983.1095851

Richard Butler, “Exclusive: Fujifilm’s phase detection system explained,” dpreview.
com, Aug 5, 2010.


http://hdl.loc.gov/loc.pnp/pp.print
http://hdl.loc.gov/loc.pnp/pp.print
https://doi.org/10.1109/34.868685
https://doi.org/10.1109/ICCV.2003.1238630
https://doi.org/10.1109/TCOM.1983.1095851
https://doi.org/10.1109/TCOM.1983.1095851

References 215

[Car78]  Ingrid Carlbolm and Joseph Paciorek, “Planar geometric projections and viewing
transformations,” in Computing Surveys, vol. 10, no. 4, Dec 1978, pp. 465-504.

[ChaO1] T. H. Chang and S. Gong, “Tracking multiple people with a multi-camera system,” in
Proceedings 2001 1.E. Workshop on Multi-Object Tracking, Vancouver, BC, 2001,
pp. 19-26. doi: https://doi.org/10.1109/MOT.2001.937977

[CheO1]  N. Ng Kuang Chern, Poo Aun Neow and M. H. Ang, “Practical issues in pixel-based
autofocusing for machine vision,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.0O1CH37164),2001, pp. 2791-2796,
vol. 3. doi: https://doi.org/10.1109/ROBOT.2001.933045

[Cho91] Nam Ik Cho and San Uk Lee, “Fast algorithm and implementation of 2-D discrete
cosine transform,” in /EEE Transactions on Circuits and Systems, vol. 38, no. 3, pp.
297-305, Mar. 1991. doi: https://doi.org/10.1109/31.101322

[Cho09]  Junguk Cho, Shahnam Mirzaei, Jason Oberg, and Ryan Kastner. 2009. Fpga-based face
detection system using Haar classifiers. In Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays (FPGA 09). ACM, New York, NY,
USA, 103-112. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/1508128.1508 144

[Cipl0]  Camera and Imaging Products Association, Design rule for Camera File system” DCF
Version 2.0 (Edition 2010), Standardization Committee, Camera and Imaging Prod-
ucts Association, Apr 26, 2010.

[Com03] D. Comaniciu, V. Ramesh and P. Meer, “Kernel-based object tracking,” in [EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp.
564-577, May 2003. doi: https://doi.org/10.1109/TPAMI.2003.1195991

[Cox66]  Arthur Cox, Photographic Optics: A Modern Approach to the Technique of Definition,
thirteenth edition, London and New York: Focal Press, 1966.

[Deb97]  Paul E. Debevec and Jitendra Malik. 1997. Recovering high dynamic range radiance
maps from photographs. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, pp. 369-378. doi: http://dx.doi.org.prx.library.
gatech.edu/10.1145/258734.258884

[Dec98]  S. Decker, D. McGrath, K. Brehmer and C. G. Sodini, “A 256x256 CMOS imaging
array with wide dynamic range pixels and column-parallel digital output,” in /[EEE
Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2081-2091, Dec 1998. doi: https://
doi.org/10.1109/4.735551

[Dev06]  Dhanya Devarajan, Richard J. Radke, and Haeyong Chung. 2006. “Distributed metric
calibration of ad hoc camera networks,” in ACM Transactions on Sensor Networks,
vol. 2, no. 3, Aug 2006, pp. 380—403. doi: http://dx.doi.org.prx.library.gatech.edu/10.
1145/1167935.1167939

[Dic95] A. Dickinson, B. Ackland, E. S. Eid, D. Inglis and E. R. Fossum, “Standard CMOS
active pixel image sensors for multimedia applications,” in Proceedings Sixteenth
Conference on Advanced Research in VLSI, Chapel Hill, NC, 1995, pp. 214-224. doi:
https://doi.org/10.1109/ARVLSI.1995.515622

[Dou08]  Arnaud Doucet and Adam M. Johansen, “A tutorial on particle filtering and smooth-
ing: fifteen years later,” version 1.1, Dec 2008.

[Dut96]  S. Dutta and W. Wolf, “A flexible parallel architecture adapted to block-matching
motion-estimation algorithms,” in IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, no. 1, pp. 74-86, Feb 1996. doi: https://doi.org/10.1109/76.
486422

[Elk0O4] O. Elkhalili, O. M. Schrey, P. Mengel, M. Petermann, W. Brockherde and B. J.
Hosticka, “A 4x64 pixel CMOS image sensor for 3-D measurement applications,”
in IEEFE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1208-1212, July 2004. doi:
https://doi.org/10.1109/JSSC.2004.829927

[Fed06]  D. Fedorov, B. Sumengen and B. S. Manjunath, “Multi-Focus Imaging using Local
Focus Estimation and Mosaicking,” in 2006 International Conference on Image


https://doi.org/10.1109/MOT.2001.937977
https://doi.org/10.1109/ROBOT.2001.933045
https://doi.org/10.1109/31.101322
http://dx.doi.org.prx.library.gatech.edu/10.1145/1508128.1508144
https://doi.org/10.1109/TPAMI.2003.1195991
http://dx.doi.org.prx.library.gatech.edu/10.1145/258734.258884
http://dx.doi.org.prx.library.gatech.edu/10.1145/258734.258884
https://doi.org/10.1109/4.735551
https://doi.org/10.1109/4.735551
http://dx.doi.org.prx.library.gatech.edu/10.1145/1167935.1167939
http://dx.doi.org.prx.library.gatech.edu/10.1145/1167935.1167939
https://doi.org/10.1109/ARVLSI.1995.515622
https://doi.org/10.1109/76.486422
https://doi.org/10.1109/76.486422
https://doi.org/10.1109/JSSC.2004.829927

216

[Fey10]

[Fis81]

[F1i95]

[Fli12]

[Fol96]

[For83]

[Fow75]

[Gar62]

[Ghe06]

[Gof12]

[Gonl17]

[Gow07]

[Gra72]

[GralO]

[Gre50]

[Gun05]

[Guo092]

[Ham92]

References

Processing, Atlanta, GA, 2006, pp. 2093-2096. doi: https://doi.org/10.1109/ICIP.
2006.312820

Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures
on Physics, Volume 1: Mainly Mechanics, Radiation and Heat, Millenium Edition,
New York: Basic Books, 2010.

Martin A. Fischler and Robert C. Bolles. 1981. “Random sample consensus: a para-
digm for model fitting with applications to image analysis and automated cartogra-
phy,” Communications of the ACM, vol. 24, no. 6 (June 1981), pp. 381-395. doi: http://
dx.doi.org.prx.library.gatech.edu/10.1145/358669.358692

M. Flickner et al., “Query by image and video content: the QBIC system,” in
Computer, vol. 28, no. 9, pp. 23-32, Sep 1995. doi: https://doi.org/10.1109/2.410146
Flir Systems, Inc., The Ultimate Infrared Handbook for R&D Professionals, Flir
Systems, Inc., 2012.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, second edition in C, Menlo Park CA: Addison-
Wesley, 1996.

T. Fortmann, Y. Bar-Shalom and M. Scheffe, “Sonar tracking of multiple targets using
joint probabilistic data association,” in IEEE Journal of Oceanic Engineering, vol.
8, no. 3, pp. 173—184, Jul 1983. doi: https://doi.org/10.1109/JOE.1983.1145560
Grant R. Fowles, Introduction to Modern Optics, second edition, Mineola NY: Dover
Publications, 1975.

Photographed by Alexander Gardner. President Lincoln visiting the battlefield at
Antietam, Md., Oct 3, 1862. General McClellan and 15 members of his staff are in
the group. 165-SB-23. National Archives Identifier: 533297

N. Gheissari, T. B. Sebastian and R. Hartley, “Person Reidentification Using Spatio-
temporal Appearance,” in 2006 1.E. Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), 2006, pp. 1528-1535. doi: https://doi.org/10.
1109/CVPR.2006.223

S. Goferman, L. Zelnik-Manor and A. Tal, “Context-aware saliency detection,” in
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp.
1915-1926, Oct 2012. doi: https://doi.org/10.1109/TPAMI.2011.272

Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, fourth edition,
Pearson, 2017.

R. D. Gow, David Renshaw, Keith Findlater, Stuart J. McLeod, John Hart, and Robert
L. Hicol “A Comprehensive Tool for Modeling CMOS Image-Sensor-Noise Perfor-
mance,” in IEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1321-1329,
June 2007. doi: https://doi.org/10.1109/TED.2007.896718

E. M. Granger and K. N. Cupery, “An optical merit function (SQF), which correlates
with subjective image judgements,” in Photographic Science and Engineering, vol.
16, no. 3, May—June 1972, pp. 221-238.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. P. Seidel and H. P. A. Lensch,
“Optimal HDR reconstruction with linear digital cameras,” in 2010 I.E. Computer
Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA,
2010, pp. 215-222. doi: https://doi.org/10.1109/CVPR.2010.5540208

Allen R. Greenleaf, Photographic Optics, New York: The MacMillan Company, 1950.
Bahadir K. Gunturk, John Glotzbach, Yucel Altunbasak, Ronald W. Schafer, and
Russel M. Mersereau, “Demosaicking: color filter array interpolation,” in /EEE Signal
Processing Magazine, Jan 2005, pp. 44-54.

J. I. Guo, C. M. Liu and C. W. Jen, “The efficient memory-based VLSI array designs
for DFT and DCT,” in IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 39, no. 10, pp. 723-733, Oct 1992. doi: https://doi.org/
10.1109/82.199898

Eric Hamilton, JPEG File Interchange Format, Version 1.02, Sept 1, 1992.


https://doi.org/10.1109/ICIP.2006.312820
https://doi.org/10.1109/ICIP.2006.312820
http://dx.doi.org.prx.library.gatech.edu/10.1145/358669.358692
http://dx.doi.org.prx.library.gatech.edu/10.1145/358669.358692
https://doi.org/10.1109/2.410146
https://doi.org/10.1109/JOE.1983.1145560
https://doi.org/10.1109/CVPR.2006.223
https://doi.org/10.1109/CVPR.2006.223
https://doi.org/10.1109/TPAMI.2011.272
https://doi.org/10.1109/TED.2007.896718
https://doi.org/10.1109/CVPR.2010.5540208
https://doi.org/10.1109/82.199898
https://doi.org/10.1109/82.199898

References 217

[Har97]  Richard I. Hartley, “In defense of the eight-point algorithm,” in /[EEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, no. 6, June 1997, pp. 580-593.

[Har03]  Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision,
second edition, Cambridge: Cambridge University Press, 2003.

[Har07]  H. Hariharan, A. Koschan and M. Abidi, “Multifocus Image Fusion by Establishing
Focal Connectivity,” in 2007 1.E. International Conference on Image Processing, San
Antonio, TX, 2007, pp. III - 321-III - 324. doi: https://doi.org/10.1109/ICIP.2007.
4379311

[Has10] ~S. W. Hasinoff, F. Durand and W. T. Freeman, “Noise-optimal capture for high
dynamic range photography,” in 2010 I.E. Computer Society Conference on Computer
Vision and Pattern Recognition, San Francisco, CA, 2010, pp. 553-560. doi: https://
doi.org/10.1109/CVPR.2010.5540167

[Has16]  Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron,
Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. “Burst photography for high
dynamic range and low-light imaging on mobile cameras,” ACM Transactions on
Graphics, vol. 35, no. 6, Article 192 (Nov 2016), pp. 12. doi: https://doi-org.prx.
library.gatech.edu/10.1145/2980179.2980254

[Heb08]  Rene Helbing, “Still image stabilization suitable for compact camera environments,”
U. S. Patent Application Publication US 2008/0030587 A1, Feb 7, 2008.

[Hig52] G. C. Higgins and L. A. Jones, “The Nature and Evaluation of the Sharpness of
Photographic Images,” in Journal of the Society of Motion Picture and Television
Engineers, vol. 58, no. 4, pp. 277-290, Apr 1952. doi: https://doi.org/10.5594/J01196

[Hil01] Frederick S. Hillier and Gerald J. Lieberman, Introduction to Operations Research,
seventh edition, New York: McGraw-Hill, 2001.

[Hir08] H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Informa-
tion,” in [EEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no.
2, pp. 328-341, Feb 2008. doi: https://doi.org/10.1109/TPAMI.2007.1166

[Honl7]  Christiana Honsberg and Stuart Bowden, “Optical Properties of Silicon,” pveducation.
org, http://pveducation.org/pvcdrom/materials/optical-properties-of-silicon, accessed
June 8, 2017

[Hua0O] J. Huang, A. B. Lee and D. Mumford, “Statistics of range image,” Proceedings IEEE
Conference on Computer Vision and Pattern Recognition. CVPR 2000, Hilton Head
Island, SC, 2000, pp. 324-331 vol. 1.

[Hou78] Hsieh Hou and H. Andrews, “Cubic splines for image interpolation and digital
filtering,” in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
26, no. 6, pp. 508-517, Dec 1978. doi: https://doi.org/10.1109/TASSP.1978.1163154

[HouO07] X.Hou and L. Zhang, “Saliency Detection: A Spectral Residual Approach,” in 2007 I.
E. Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007,
pp. 1-8. doi: https://doi.org/10.1109/CVPR.2007.383267

[Hug08] C. Hughes, M. Glavin, E. Jones and P. Denny, “Review of geometric distortion
compensation in fish-eye cameras,” in IET Irish Signals and Systems Conference
(ISSC 2008), Galway, 2008, pp. 162—167. doi: https://doi.org/10.1049/cp:20080656

[Ira94] M. Irani, B. Rousso and S. Peleg, “Recovery of ego-motion using image stabilization,”
in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-
tion, Seattle, WA, 1994, pp. 454-460. doi: https://doi.org/10.1109/CVPR.1994.
323866

[Ish03] C. Ishii, Y. Sudo and H. Hashimoto, “An image conversion algorithm from fish eye
image to perspective image for human eyes,” in Proceedings 2003 IEEE/IASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2003,
pp- 1009-1014 vol. 2. doi: https://doi.org/10.1109/AIM.2003.1225480

[1tt98] L. Itti, C. Koch and E. Niebur, “A model of saliency-based visual attention for rapid
scene analysis,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 11, pp. 1254-1259, Nov 1998. doi: https://doi.org/10.1109/34.730558


https://doi.org/10.1109/ICIP.2007.4379311
https://doi.org/10.1109/ICIP.2007.4379311
https://doi.org/10.1109/CVPR.2010.5540167
https://doi.org/10.1109/CVPR.2010.5540167
https://doi-org.prx.library.gatech.edu/10.1145/2980179.2980254
https://doi-org.prx.library.gatech.edu/10.1145/2980179.2980254
https://doi.org/10.5594/J01196
https://doi.org/10.1109/TPAMI.2007.1166
http://pveducation.org/pvcdrom/materials/optical-properties-of-silicon
https://doi.org/10.1109/TASSP.1978.1163154
https://doi.org/10.1109/CVPR.2007.383267
https://doi.org/10.1049/cp:20080656
https://doi.org/10.1109/CVPR.1994.323866
https://doi.org/10.1109/CVPR.1994.323866
https://doi.org/10.1109/AIM.2003.1225480
https://doi.org/10.1109/34.730558

218

[Jav05]

[JEIO2]

[Jep03]

[Kan05]

[Kap85]

[Kav00]

[Ket99]

[Key81]

[Kha03]

[Kim08]

[Kim09]

[Kim10]

[KleO1]

[Kod88]
[Kod06]

[Ko0i96]

References

O. Javed, K. Shafique and M. Shah, “Appearance modeling for tracking in multiple
non-overlapping cameras,” in 2005 1.E. Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), 2005, pp. 26-33 vol. 2. doi: https://doi.
org/10.1109/CVPR.2005.71

Technical Standardization Committee on AV & IT Storage Systems and Equipment,
Exchangeable image file format for digital still cameras: Exif Version 2.2, Japan
Electronics and Information Technology Industries Association, JEITA CP-3451,
Apr, 2002.

A. D. Jepson, D. J. Fleet and T. F. El-Maraghi, “Robust online appearance models for
visual tracking,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 10, pp. 1296-1311, Oct 2003. doi: https://doi.org/10.1109/TPAMI.2003.
1233903

Jinman Kang, 1. Cohen, G. Medioni and Chang Yuan, “Detection and tracking of
moving objects from a moving platform in presence of strong parallax,” in Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1, 2005, pp. 1017,
vol. 1. doi: https://doi.org/10.1109/ICCV.2005.72

S. Kappagantula and K.R. Rao, “Motion Compensated Predictive Interframe Coding,”
in IEEE Transactions on Communications, vol. 33, no. 9, pp. 1011-1015, Sept 1985.
S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts and J. Bogaerts, “A
logarithmic response CMOS image sensor with on-chip calibration,” in /EEE Journal
of Solid-State Circuits, vol. 35, no. 8, pp. 1146-1152, Aug 2000. doi: https://doi.org/
10.1109/4.859503

V. Kettnaker and R. Zabih, “Bayesian multi-camera surveillance,” in Proceedings.
1999 1.E. Computer Society Conference on Computer Vision and Pattern Recognition
(Cat. No PR00149), Fort Collins, CO, 1999, pp. 259, vol. 2. doi: https://doi.org/10.
1109/CVPR.1999.784638

R. Keys, “Cubic convolution interpolation for digital image processing,” in IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp.
1153-1160, Dec 1981. doi: https://doi.org/10.1109/TASSP.1981.1163711

S. Khan and M. Shah, “Consistent labeling of tracked objects in multiple cameras with
overlapping fields of view,” in IEEE Transactions on PAMI, vol. 25, no. 10, pp.
1355-1360, Oct 2003.

Sujung Kim, Wook-joong Kim and Seong-Dae Kim, “Automatic white balance based
on adaptive feature selection with standard illuminants,” in 2008 15th IEEE Interna-
tional Conference on Image Processing, San Diego, CA, 2008, pp. 485-488. doi:
https://doi.org/10.1109/ICIP.2008.4711797

Honggab Kim, Romberg, J.; Wolf, W., “Multi-camera tracking on a graph using
Markov chain Monte Carlo,” in Third ACM/IEEE International Conference on Dis-
tributed Smart Cameras, 2009. ICDSC 2009, vol., no., pp. 1-8, Aug 30 2009-Sept
2 2009.

Honggab Kim and Marilyn Wolf, “Distributed tracking in a large-scale network of
smart cameras,” in Proceedings of the Fourth ACM/IEEE International Conference on
Distributed Smart Cameras, ACM Press, 2010, pp. 8-16.

S. Kleinfelder, SukHwan Lim, Xingiao Liu and A. El Gamal, “A 10000 frames/s
CMOS digital pixel sensor,” in IEEE Journal of Solid-State Circuits, vol. 36, no.
12, pp. 2049-2059, Dec 2001. doi: https://doi.org/10.1109/4.972156

Kodak, Kodak Book of Large-Format Photography, Rochester NY: Kodak Books,
1988.

Kodak, Basic Photographic Sensitometry Workbook, document H-740, Eastman
Kodak Company, November 2006.

T. Koizumi, Hwan-Sul Chun and H. Zen, “A new optical detector for a high-speed AF
control,” in [EEE Transactions on Consumer Electronics, vol. 42, no. 4, pp.
1055-1061, Nov 1996. doi: https://doi.org/10.1109/30.555905


https://doi.org/10.1109/CVPR.2005.71
https://doi.org/10.1109/CVPR.2005.71
https://doi.org/10.1109/TPAMI.2003.1233903
https://doi.org/10.1109/TPAMI.2003.1233903
https://doi.org/10.1109/ICCV.2005.72
https://doi.org/10.1109/4.859503
https://doi.org/10.1109/4.859503
https://doi.org/10.1109/CVPR.1999.784638
https://doi.org/10.1109/CVPR.1999.784638
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/ICIP.2008.4711797
https://doi.org/10.1109/4.972156
https://doi.org/10.1109/30.555905

References 219

[Kok97] C. W. Kok, “Fast algorithm for computing discrete cosine transform,” in IEEE Trans-
actions on Signal Processing, vol. 45, no. 3, pp. 757-760, Mar 1997. doi: https://doi.
org/10.1109/78.558495

[Kok10] E. Kokiopoulou and P. Frossard, “Distributed classification of multiple observations
by consensus,” in 2010 I.E. International Conference on Image Processing, Hong
Kong, 2010, pp. 2697-2700. doi: https://doi.org/10.1109/ICIP.2010.5652022

[Kom89] T. Komarek and P. Pirsch, “Array architectures for block matching algorithms,”
in IEEE Transactions on Circuits and Systems, vol. 36, no. 10, pp. 1301-1308, Oct
1989. doi: https://doi.org/10.1109/31.44346

[Kon92] Toshiharu Kondo, Akihiro Kikuchi, Takashi Kohashi, Fumiaki Kato, and Katuaki
HIrota, “Digital color video camera with auto-focus, auto-exposure, and auto-white
balance, and an auto exposure system therefor which compensates for abnormal
lighting,” U. S. Patent 5,093,716, Mar 3, 1992.

[Kos09]  Kosov S., Thorméhlen T., Seidel HP. (2009) Accurate Real-Time Disparity Estimation
with Variational Methods. In: Bebis G. et al. (eds) Advances in Visual Computing.
ISVC 2009. Lecture Notes in Computer Science, vol. 5875. Springer, Berlin,
Heidelberg

[KumO5] Dinesh Kumar, Pavan Shastry, and Anirban Basu, “Overview of the H.264/AVC,”
in 8" Texas Instruments Developer Conference India, Texas Instruments, Nov 30—
Dec 1, 2005.

[Kry03]  A. I Krymski, N. E. Bock, N. Tu, D. Van Blerkom, and E. R. Fossum, “A high-speed,
240-frame/s, 4.1-Mpixel CMOS sensor,” IEEE Transactions on Electron Devices, 50
(1), January 2003, pp. 130-135.

[Kwa03] Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk, and Aaron Bobick. 2003.
“Graphcut textures: image and video synthesis using graph cuts,” in ACM Trans-
actions on Graphics, vol. 22, no. 3 (July 2003), pp. 277-286. doi: http://dx.doi.org.prx.
library.gatech.edu/10.1145/882262.882264

[Lan71]  E.H.Land and J. J. McCann, “Lightness and retinex theory,” in Journal of the Optical
Society of America, vol. 61, 1971, pp. 1-11.

[Lan72] Edwin H. Land, “Absolute one-step photography,” in Photographic Science and
Engineering, vol. 16, no. 4, July—Aug 1972, pp. 247-257.

[Lar97]  G. W. Larson, H. Rushmeier and C. Piatko, “A visibility matching tone reproduction
operator for high dynamic range scenes,” in IEEE Transactions on Visualization and
Computer Graphics, vol. 3, no. 4, pp. 291-306, Oct—Dec 1997. doi: https://doi.org/10.
1109/2945.646233

[Lee97]  Yung-Pin Lee, Thou-Ho Chen, Liang-Gee Chen, Mei-Juan Chen and Chung-Wei Ku,
“A cost-effective architecture for 8§x8 two-dimensional DCT/IDCT using direct
method,” in IEEE Transactions on Circuits and Systems for Video Technology, vol.
7, no. 3, pp. 459-467, Jun 1997. doi: https://doi.org/10.1109/76.585925

[LeeO1]  June-Sok Lee, You-Young Jung, Byung-Soo Kim and Sung-Jea Ko, “An advanced
video camera system with robust AF, AE, and AWB control,” in I[EEE Transactions on
Consumer Electronics, vol. 47, no. 3, pp. 694-699, Aug 2001. doi: https://doi.org/10.
1109/30.964165

[Lee03] Lee, Ann B., Kim S. Pedersen, and David Bryant Mumford, “The nonlinear statistics
of high-contrast patches in natural images,” in International Journal of Computer
Vision, vol. 54, nos. 1-3, 2003, pp. 83-103.

[Lee06]  Sang-Min Lee, Hyunsik Park, and Bruce A. Wooley, “Per-pixel floating-point ADCs
with electronic shutters for a high dynamic range, high frame rate infrared focal
plane array,” in IEEE 2006 Custom Integrated Circuits Conference, IEEE, 2006, pp.
647-650.

[Len87] R. Lenz and R. Tsai, “Techniques for calibration of the scale factor and image center
for high accuracy 3D machine vision metrology,” in Proceedings. 1987 IE.


https://doi.org/10.1109/78.558495
https://doi.org/10.1109/78.558495
https://doi.org/10.1109/ICIP.2010.5652022
https://doi.org/10.1109/31.44346
http://dx.doi.org.prx.library.gatech.edu/10.1145/882262.882264
http://dx.doi.org.prx.library.gatech.edu/10.1145/882262.882264
https://doi.org/10.1109/2945.646233
https://doi.org/10.1109/2945.646233
https://doi.org/10.1109/76.585925
https://doi.org/10.1109/30.964165
https://doi.org/10.1109/30.964165

220

[Len88]

[Leu9s]

[Lie02]

[Li94]

[Lin06]

[Lin10]

[Lin10B]

[Lin12]

[Liu93]

[Liull]

[Loe89]

[Low99]

[Low04]

[Low04B]

[Luc81]

[Lyo02]

References

International Conference on Robotics and Automation, 1987, pp. 68-75. doi: https://
doi.org/10.1109/ROBOT.1987.1088012

R. K. Lenz and R. Y. Tsai, “Techniques for calibration of the scale factor and image
center for high accuracy 3-D machine vision metrology,” in /[EEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 713-720, Sept 1988. doi:
https://doi.org/10.1109/34.6781

T. K. Leung, M. C. Burl and P. Perona, “Finding faces in cluttered scenes using
random labeled graph matching,” in Proceedings of IEEE International Conference on
Computer Vision, Cambridge, MA, 1995, pp. 637-644. doi: https://doi.org/10.1109/
ICCV.1995.466878

R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object
detection,” in Proceedings. International Conference on Image Processing, 2002,
pp. 1-900-1-903 vol. 1. doi: https://doi.org/10.1109/ICIP.2002.1038171

Reoxiang Li, Bing Zeng and M. L. Liou, “A new three-step search algorithm for block
motion estimation,” in IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 4, no. 4, pp. 438-442, Aug 1994. doi: https://doi.org/10.1109/76.313138
Douglas O. Linder, “Famous Trials: Oklahoma City Bombing Trial,” http://law2.
umkc.edu/faculty/projects/ftrials/mcveigh/mcveightrial.html, 2006, accessed Dec
20, 2016.

Chung-Ching Lin and Marilyn Wolf, “Belief Propagation for Detecting Moving
Objects from a Moving Platform”, in International Conference on Image Processing,
Computer Vision and Pattern Recognition (IPCV), IEEE, 2010.

Chang Hong Lin, Marilyn Wolf, Xenefon Koutsoukos, Sandeep Neema, and Janos
Sztipanovits. 2010. “System and software architectures of distributed smart cameras,”
in ACM Transactions on Embedded Computing Systems, vol. 9, no. 4, Article 38 (Apr
2010), pp. 30. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/1721695.1721704
Chung-Ching Lin, Detecting and Tracking Moving Objects From a Moving Platform,
Ph.D. dissertation, Georgia Institute of Technology, April 2012.

B. Liu and A. Zaccarin, “New Fast Algorithms for the Estimation of Block Motion
Vectors,” in IEEE Transactions on Circuits and Systems for Video Technology, vol.
3, no. 2, pp. 148-157, Apr. 1993.

T. Liu, Zejian Yuan, Jian Sun, Jindong Wang, Nanning Zheng, Xiaoou Tang, and
Heung-Yeung Shum, “Learning to Detect a Salient Object,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 2, pp. 353-367, Feb. 2011. doi:
https://doi.org/10.1109/TPAMI.2010.70

C. Loeffler, A. Ligtenberg and G. S. Moschytz, “Practical fast 1-D DCT algorithms
with 11 multiplications,” in International Conference on Acoustics, Speech, and
Signal Processing,, Glasgow, 1989, pp. 988-991 vol. 2. doi: https://doi.org/10.1109/
ICASSP.1989.266596

D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings
of the Seventh IEEE International Conference on Computer Vision, Kerkyra, 1999,
pp- 1150-1157 vol.2. doi: https://doi.org/10.1109/ICCV.1999.790410

David G. Lowe, “Distinctive image features from scale-invariant keypoints,” in
International Journal of Computer Vision, vol. 60, no. 2, 2004, pp. 91-110.

David G. Lowe, Method and apparatus for identifying scale invariant features in an
image and use of same for locating an object in an image, U. S. Patent 6,711,293, Mar
23, 2004.

Bruce D. Lucas and Takeo Kanade, “An iterative image registration technique with an
application to stereo vision,” in Proceedings of Image Understanding Workshop, 1981,
pp- 121-130.

Richard F. Lyon and Paul M. Hubel, “Eyeing the Camera: Into the Next Century,” in
Proc. IS&T/SID 10th Color Imaging Conf., 2002, pp. 349-355.


https://doi.org/10.1109/ROBOT.1987.1088012
https://doi.org/10.1109/ROBOT.1987.1088012
https://doi.org/10.1109/34.6781
https://doi.org/10.1109/ICCV.1995.466878
https://doi.org/10.1109/ICCV.1995.466878
https://doi.org/10.1109/ICIP.2002.1038171
https://doi.org/10.1109/76.313138
http://law2.umkc.edu/faculty/projects/ftrials/mcveigh/mcveightrial.html
http://law2.umkc.edu/faculty/projects/ftrials/mcveigh/mcveightrial.html
http://dx.doi.org.prx.library.gatech.edu/10.1145/1721695.1721704
https://doi.org/10.1109/TPAMI.2010.70
https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1109/ICCV.1999.790410

References 221

[Mac93] Michael P. MacKay, “Method and apparatus for stabilizing an image produced in a
video camera,” U. S. Patent 5,253,071, Oct 12, 1993.

[Mal03] H. S. Malvar, A. Hallapuro, M. Karczewicz and L. Kerofsky, “Low-complexity
transform and quantization in H.264/AVC,” in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 598-603, July 2003. doi: https://doi.
org/10.1109/TCSVT.2003.814964

[Man95] Steve Mann and Rosiland W. Picard. “Extending dynamic range by combining
different exposed pictures,” in Proceedings IS&T Annual Conference, pp. 442-448,
1995. Also MIT Media Laboratory Perceptual Computing Section Technical Report
No. TR-323.

[Mas92]  Gerald Mast, A Short History of the Movies, fifth edition, revised by Bruce F. Kawin
New York: Macmillan Publishing, 1992.

[Mel72]  H. Melchior, “Demodulation and Photodetection Techniques,” in F. T. Arecchi and
E. O. Schulz-Dubois, eds., Laser Handbook, vol. 1, Amsterdam: North-Holland, 1972,
pp. 725-835.

[Mer10] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion, a simple and practical
alternativbe to high dynamic range photography,” in Computer Graphics Forum, vol.
28, no. 1, March 2009, pp. 161-171, doi: https://doi.org/10.1111/j.1467-8659.2008.
01171.x

[Mic00]  Microsoft, Microsoft Extensible Firmware Initiative FAT32 File System Specification,
Version 1.03, Dec 6, 2000.

[Mik05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool, “A Comparison of Affine Region Detectors,” in Interna-
tional Journal of Computer Vision, vol. 65, no. 1, Nov 1, 2005, pp. 43-72, doi: https://
doi.org/10.1007/s11263-005-3848-x

[Mil16]  Peyman Milanfar, “Enhance! RAISR sharp images with machine learning,” Google
Research Blog, Nov 14, 2016, https://research.googleblog.com/2016/11/enhance-
raisr-sharp-images-with-machine.html

[NakO5]  Junichi Nakamura, ed., Image Sensors and Signal Processing for Digital Still Cam-
eras, CRC Press, 2005.

[NasO8] H. H. Nasse, “How to Read MTF Curves,” Carl Zeiss, Camera Lens Division, Dec
2008.

[Net79] A. N. Netravali and J. D. Robbins, “Motion-compensated television coding: Part I,” in
The Bell System Technical Journal, vol. 58, no. 3, pp. 631-670, Mar 1979. doi: https://
doi.org/10.1002/j.1538-7305.1979.tb02238.x

[New64] Beaumont Newhall, The History of Photography, revised and enlarged edition,
New York: The Museum of Modern Art, 1964.

[Nie85]  Niels J. Nielsen, “History of ThinkJet Printhead Development,” in Hewlett-Packard
Journal, vol. 36, no. 5, May 1985, pp. 4-10.

[Nix96]  R.H. Nixon, S. E. Kemeny, B. Pain, C. O. Staller and E. R. Fossum, “256x256 CMOS
active pixel sensor camera-on-a-chip,” in /EEE Journal of Solid-State Circuits, vol.
31, no. 12, pp. 2046-2050, Dec 1996. doi: https://doi.org/10.1109/4.545830

[NVI14] NVIDIA, NVIDIA GeForce GTX 980, white paper, 2014.

[NVI14B] NVIDIA, NVIDIA Jetson TX1 System-on-Module, data sheet, 2014.

[Oh04] Songhwai Oh, Stuart Russell, and Shankar Sastry, “Markov chain Monte Carlo data
association for general multiple-target tracking problems, in 43¢ IEEE Conference on
Decision and Control, IEEE, 2004, TuB08.5

[0iz93]  Kouji Oizumi, Nozomu Kitagishi, and Shoichi Yamzaki, “Optical system for stabiliz-
ing an image,” U. S. Patent 5,270,857, Dec 14, 1993.

[Pal99] Stephen E. Palmer, Vision Science: Photons to Phenomenology, Cambridge MA: MIT
Press, 1999.


https://doi.org/10.1109/TCSVT.2003.814964
https://doi.org/10.1109/TCSVT.2003.814964
https://doi.org/10.1111/j.1467-8659.2008.01171.x
https://doi.org/10.1111/j.1467-8659.2008.01171.x
https://doi.org/10.1007/s11263-005-3848-x
https://doi.org/10.1007/s11263-005-3848-x
https://research.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html
https://research.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html
https://doi.org/10.1002/j.1538-7305.1979.tb02238.x
https://doi.org/10.1002/j.1538-7305.1979.tb02238.x
https://doi.org/10.1109/4.545830

222

[Par62]

[Par97]

[Pat97]

[Per07]

[Phi07]

[P0o96]

[Pop14]

[Rei79]

[Rei93]

[Rin08]

[Rob10]

[San17]

[Say15]

[Sch98]
[Seq75]

[Scho64]

[Sch00]

[Sch07]

References

Parzen, Emanuel. “On Estimation of a Probability Density Function and Mode.” in The
Annals of Mathematical Statistics, vol. 33, no. 3, 1962, pp. 1065-1076. www.jstor.org/
stable/2237880.

Kenneth A. Parulski and James E. McGarvey, “Automatic camera exposure control
using variable exposure index CCD sensor,” U. S. Patent 5,610,654, March 11, 1997.
A. J. Patti, M. I. Sezan and A. Murat Tekalp, “Superresolution video reconstruction
with arbitrary sampling lattices and nonzero aperture time,” in I[EEE Transactions on
Image Processing, vol. 6, no. 8, pp. 1064-1076, Aug 1997. doi: https://doi.org/10.
1109/83.605404

Michael R. Peres, ed., The Focal Encyclopedia of Photography: Digital Imaging,
Theory and Applications, History, and Science, Burlington MA: Focal Press, 2007.
J. Philbin, O. Chum, M. Isard, J. Sivic and A. Zisserman, “Object retrieval with large
vocabularies and fast spatial matching,” in 2007 I.E. Conference on Computer Vision
and Pattern Recognition, Minneapolis, MN, 2007, pp. 1-8. doi: https://doi.org/10.
1109/CVPR.2007.383172

Lai-Man Po and Wing-Chung Ma, “A novel four-step search algorithm for fast block
motion estimation,” in IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 6, no. 3, pp. 313-317, Jun 1996.

Vladan Popovic, Kerem Seyid, Elieva Pignat, Omer Cogal, Yusuf Leblebici, “Multi-
camera platform for panoramic real-time HDR video construction and rendering,” in
Journal of Real-Time Image Processing, vol. 26 July 2014, doi: https://doi.org/10.
1007/311554-014-0444-8

D. Reid, “An algorithm for tracking multiple targets,” in IEEE Transactions on
Automatic Control, vol. 24, no. 6, pp. 843-854, Dec 1979. doi: https://doi.org/10.
1109/TAC.1979.1102177

R. K. Reich et al., “Integrated electronic shutter for back-illuminated charge-coupled
devices,” in IEEE Transactions on Electron Devices, vol. 40, no. 7, pp. 1231-1237, Jul
1993. doi: https://doi.org/10.1109/16.216426

B. Rinner and W. Wolf, “An Introduction to Distributed Smart Cameras,” in Pro-
ceedings of the IEEE, vol. 96, no. 10, pp. 1565—1575, Oct 2008. doi: https://doi.org/10.
1109/JPROC.2008.928742

M. D. Robinson, C. A. Toth, J. Y. Lo and S. Farsiu, “Efficient Fourier-Wavelet Super-
Resolution,” in IEEE Transactions on Image Processing, vol. 19, no. 10, pp.
2669-2681, Oct 2010. doi: https://doi.org/10.1109/T1P.2010.2050107

Rishi Sanyal, “Sony FE 100mm F2.8 STF bokeh demystified,” dpreview.com, Feb
17, 2017.

Rishi Saynal, “Sony Alpha 7R II: real-world ISO invariance study,” Digital Photog-
raphy Review, Aug 24, 2015, https://www.dpreview.com/articles/7450523388/sony-
alpha-7r-ii-real-world-iso-invariance-study

Schneider Kreuznach, “Optics for Digital Photography: A White Paper,” Schneider
Kreuznach, 1998.

Carlo H. Se’quin and Michael F. Tompsett, Charge Transfer Devices, New York:
Academic Press, 1975.

O. H. Schade, “An Evaluation of Photographic Image Quality and Resolving Power,”
in Journal of the SMPTE, vol. 73, no. 2, pp. 81-119, Feb 1964. doi: https://doi.org/10.
5594/106117

M. Schanz, C. Nitta, A. Bussmann, B. J. Hosticka and R. K. Wertheimer, “A high-
dynamic-range CMOS image sensor for automotive applications,” in /[EEE Journal of
Solid-State Circuits, vol. 35, no. 7, pp. 932-938, July 2000. doi: https://doi.org/10.
1109/4.848200

J. Schlessman, M. Lodato, B. Ozer and W. Wolf, “Heterogeneous MPSoC Architec-
tures for Embedded Computer Vision,” in 2007 L.E. International Conference on
Multimedia and Expo, Beijing, 2007, pp. 1870-1873. doi: https://doi.org/10.1109/
ICME.2007.4285039


http://www.jstor.org/stable/2237880
http://www.jstor.org/stable/2237880
https://doi.org/10.1109/83.605404
https://doi.org/10.1109/83.605404
https://doi.org/10.1109/CVPR.2007.383172
https://doi.org/10.1109/CVPR.2007.383172
https://doi.org/10.1007/s11554-014-0444-8
https://doi.org/10.1007/s11554-014-0444-8
https://doi.org/10.1109/TAC.1979.1102177
https://doi.org/10.1109/TAC.1979.1102177
https://doi.org/10.1109/16.216426
https://doi.org/10.1109/JPROC.2008.928742
https://doi.org/10.1109/JPROC.2008.928742
https://doi.org/10.1109/TIP.2010.2050107
https://www.dpreview.com/articles/7450523388/sony-alpha-7r-ii-real-world-iso-invariance-study
https://www.dpreview.com/articles/7450523388/sony-alpha-7r-ii-real-world-iso-invariance-study
https://doi.org/10.5594/J06117
https://doi.org/10.5594/J06117
https://doi.org/10.1109/4.848200
https://doi.org/10.1109/4.848200
https://doi.org/10.1109/ICME.2007.4285039
https://doi.org/10.1109/ICME.2007.4285039

References 223

[Sch15]  Jason Schlessman and Marilyn Wolf, “Tailoring design for embedded computer vision
applications,” in I[EEE Computer, vol. 48, no. 5, May 2015, pp. 58-62.

[Sha94] S. Shah and J. K. Aggarwal, “A simple calibration procedure for fish-eye (high
distortion) lens camera,” in Proceedings of the 1994 I.E. International Conference
on Robotics and Automation, San Diego, CA, 1994, pp. 3422-3427 vol.4. doi: https://
doi.org/10.1109/ROBOT.1994.351044

[She05] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for object detection,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no.
11, pp. 1778-1792, Nov 2005. doi: https://doi.org/10.1109/TPAMI.2005.213

[Siv03]  J. Sivic and A. Zisserman, “Video Google: a text retrieval approach to object matching
in videos,” in Proceedings Ninth IEEE International Conference on Computer Vision,
Nice, France, 2003, pp. 1470-1477, vol. 2. doi: https://doi.org/10.1109/ICCV.2003.
1238663

[Spr12]  Kenneth R. Spring, John C. Russ, Matthew Parry-Hill, Thomas J. Fellers, and Michael
W. Davidson, “Unsharp mask mkiltering,” 2012, http://olympus.magnet.fsu.edu/
primer/java/digitalimaging/processing/unsharpmask/index.html

[Sta76] Norman L. Stauffer, “Auto-focus camera with solid state range finder,” U. S. Patent
3.945,023, Mar 16, 1976.

[Sta99] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time
tracking,” in Proceedings. 1999 1.E. Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, 1999,
pp. 252, vol. 2. doi: https://doi.org/10.1109/CVPR.1999.784637

[Sta00] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time
tracking,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
22, no. 8, pp. 747-757, Aug 2000. doi: https://doi.org/10.1109/34.868677

[Sto02] D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi and G. F. Dalla Betta, “Novel CMOS
image sensor with a 132-dB dynamic range,” in [EEE Journal of Solid-State Circuits,
vol. 37, no. 12, pp. 1846-1852, Dec 2002. doi: https://doi.org/10.1109/JSSC.2002.
804347

[Sul91]  G. J. Sullivan and R. L. Baker, “Rate-distortion optimized motion compensation for
video compression using fixed or variable size blocks,” Global Telecommunications
Conference, 1991. GLOBECOM ’91.’ Countdown to the New Millennium. Featuring a
Mini-Theme on: Personal Communications Services, Phoenix, AZ, 1991, pp. 85-90
vol.1. doi: https://doi.org/10.1109/GLOCOM.1991.188361

[Sun03]  Jian Sun, Nan-Ning Zheng, Hai Tao and Heung-Yeung Shum, “Image hallucination
with primal sketch priors,” in 2003 I.E. Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings., 2003, pp. 11-729-36 vol. 2. doi:
https://doi.org/10.1109/CVPR.2003.1211539

[Sze81] S. M. Sze, Physics of Semiconductor Devices, second edition, New York: John Wiley
and Sons, 1981.

[Sze97]  Richard Szeliski and Heung-Yeung Shum. 1997. Creating full view panoramic image
mosaics and environment maps. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques (SIGGRAPH *97). ACM Press/Addi-
son-Wesley Publishing Co., New York, NY, USA, pp. 251-258. doi: http://dx.doi.org.
prx.library.gatech.edu/10.1145/258734.258861

[Tak02]  Hiroaki Takada, editor, and Ken Sakamura, supervisor, ITRON4.0 Specification,
version 4.00.00, Tron Association, 2002.

[Tex16]  Texas Instruments, AMS572x Sitara™ Processors Silicon Revision 2.0, 1.1 Technical
Reference Manual, Literature Number SPRUHZ6H, Oct 2014, revised Nov 2016.

[Tha98]  Jo Yew Tham, S. Ranganath, M. Ranganath and A. A. Kassim, “A novel unrestricted
center-biased diamond search algorithm for block motion estimation,” in /[EEE Trans-
actions on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 369-377, Aug
1998. doi: https://doi.org/10.1109/76.709403


https://doi.org/10.1109/ROBOT.1994.351044
https://doi.org/10.1109/ROBOT.1994.351044
https://doi.org/10.1109/TPAMI.2005.213
https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/ICCV.2003.1238663
http://olympus.magnet.fsu.edu/primer/java/digitalimaging/processing/unsharpmask/index.html
http://olympus.magnet.fsu.edu/primer/java/digitalimaging/processing/unsharpmask/index.html
https://doi.org/10.1109/CVPR.1999.784637
https://doi.org/10.1109/34.868677
https://doi.org/10.1109/JSSC.2002.804347
https://doi.org/10.1109/JSSC.2002.804347
https://doi.org/10.1109/GLOCOM.1991.188361
https://doi.org/10.1109/CVPR.2003.1211539
http://dx.doi.org.prx.library.gatech.edu/10.1145/258734.258861
http://dx.doi.org.prx.library.gatech.edu/10.1145/258734.258861
https://doi.org/10.1109/76.709403

224

[The04]

[The07]

[Tia99]

[Tia00]

[Tit11]

[TomO8]

[Tom91]

[Tru83]
[Tru85]

[Tsa84]

[Tsa87]

[Tsu08]

[Tsu93]

[Ttol5]

[Tur91]

[Unk63]

[Unk03]

[VelO5]

References

T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin and W. Wolf,. “Embedded
hardware face detection,” in /7th International Conference on VLSI Design. Pro-
ceedings., 2004, pp. 133-138. doi: https://doi.org/10.1109/ICVD.2004.1260915

A. Theuwissen, “CMOS image sensors: State-of-the-art and future perspectives,” in
ESSCIRC 2007 — 33rd European Solid-State Circuits Conference, Munich, 2007,
pp. 21-27. doi: https://doi.org/10.1109/ESSCIRC.2007.4430242

Hui Tian, Boyd A. Fowler, Abbas El Gamal; Analysis of temporal noise in CMOS
APS. In Proc. SPIE 3649, Sensors, Cameras, and Systems for Scientific/Industrial
Applications, 177 (Apr 27, 1999); doi:https://doi.org/10.1117/12.347073.

Hui Tian, Abbas El Gamal, Analysis of 1/f noise in CMOS APS. In Proc. SPIE 3965,
Sensors and Camera Systems for Scientific, Industrial, and Digital Photography
Applications, 168 (May 15, 2000); doi:https://doi.org/10.1117/12.385433.

Albert H. Titus, Maurice C.-K. Cheung, and Vamsy P. Chodavarapu, “CMOS Photo-
detectors,” Chapter 4 in Jeong-Woo Park, ed., Photodiodes/Book 2, July 2011.

F. Tombari, S. Mattoccia, L. Di Stefano and E. Addimanda, “Classification and
evaluation of cost aggregation methods for stereo correspondence,” in 2008 I.E.
Conference on Computer Vision and Pattern Recognition, Anchorage, AK, 2008,
pp. 1-8. doi: https://doi.org/10.1109/CVPR.2008.4587677

Carlo Tomasi and Takeo Kanade, Detection and Tracking of Point Features, Techni-
cal Report CMU-CS-91-132, Carnegie Mellon University, Apr 1991.

Francois Truffaut, Hitchcock, Revised Edition, New York: Simon and Schuster, 1983.
Francois Truffaut and Helen Scott, Hitchcock, revised edition, New York: Simon and
Schuster, 1985.

R. Tsai and T. Huang, “Multiframe image restoration and registration,” in Advances in
Computer Vision and Image Processing, vol. 1, Greenwich, CT: JAI, 1984.

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses,” in IEEE Journal on
Robotics and Automation, vol. 3, no. 4, pp. 323-344, Aug 1987. doi: https://doi.org/10.
1109/JRA.1987.1087109

Hidetoshi Tsubaki, Mitsuhiro Saito, and Takahiro Oshino, “Image stabilizing appara-
tus, image-pickup apparatus and image stabilizing method,” U. S. Patent Application
Publication 2008/0246848 A1, Oct 9, 2008.

Akio Tsuji and Teruo Sano, “Electronic camera with automatic exposure control,”
U. S. Patent 5,223,935, June 29, 1993.

Christos Ttofis, Christos Kyrkou, and Theocharis Theocharides. 2015. “A Hardware-
Efficient Architecture for Accurate Real-Time Disparity Map Estimation,” in ACM
Transactions on Embedded Computing Systems, vol. 14, no. 2, Article 36 (Feb 2015),
pp. 26. doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/2629699

M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” Proceedings.
1991 LE. Computer Society Conference on Computer Vision and Pattern Recognition,
Maui, HI, 1991, pp. 586-591. doi: https://doi.org/10.1109/CVPR.1991.139758
Unknown photographer, “Unidentified young African American soldier in Union
uniform,” taken between 1863 and 1865, hand-colored tintype, Reproduction Number
LC-DIG-ppmsca-50221, Call Number AMB/TIN no. 3264, Library of Congress Prints
and Photographs Division Washington, D.C. 20540 USA http://hdl.loc.gov/loc.pnp/
pp.print

Unknown photographer, “Original Wright Brothers’ 1903 Aeroplane (“Kitty Hawk”)
in first flight, Dec 17, 1903 at Kitty Hawk, N.C. Orville Wright at controls. Wilbur
observing.” National Archives Identifier: 7580929 Local Identifier: 165-WW-713-6.
Creator: War Department. 1789-9/18/1947

S. Velipasalar and W. Wolf, “Multiple object tracking and occlusion handling by
information exchange between uncalibrated cameras,” in /EEE International Confer-
ence on Image Processing 2005, 2005, pp. 1I-418-21. doi: https://doi.org/10.1109/
ICIP.2005.1530081


https://doi.org/10.1109/ICVD.2004.1260915
https://doi.org/10.1109/ESSCIRC.2007.4430242
https://doi.org/10.1117/12.347073
https://doi.org/10.1117/12.385433
https://doi.org/10.1109/CVPR.2008.4587677
https://doi.org/10.1109/JRA.1987.1087109
https://doi.org/10.1109/JRA.1987.1087109
https://doi.org/10.1109/CVPR.1991.139758
http://hdl.loc.gov/loc.pnp/pp.print
http://hdl.loc.gov/loc.pnp/pp.print
https://doi.org/10.1109/ICIP.2005.1530081
https://doi.org/10.1109/ICIP.2005.1530081

References 225

[Vel06] S. Velipasalar, J. Schlessman, C. Y. Chen, W. Wolf and J. P. Singh, “SCCS: A
Scalable Clustered Camera System for Multiple Object Tracking Communicating
Via Message Passing Interface,” in 2006 1.E. International Conference on Multimedia
and Expo, Toronto, Ont., 2006, pp. 277-280. doi: https://doi.org/10.1109/ICME.2006.
262452

[VelO8]  Senem Velipasalar and Wayne H. Wolf, “Frame-level temporal calibration of video
sequences from unsynchronized cameras,” Machine Vision and Applications Journal,
Jan 2008, doi: https://doi.org/10.1007/s00138-008-0122-6

[Vio01]  P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Proceedings of the 2001 1.E. Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, 2001, pp. I-511-I-518 vol.1. doi: https://
doi.org/10.1109/CVPR.2001.990517

[Wal91]  Gregory K. Wallace. 1991. “The JPEG still picture compression standard,” in Com-
munications of the ACM, vol. 34, no. 4 (Apr 1991), pp. 30—44. doi: http://dx.doi.org.
prx.library.gatech.edu/10.1145/103085.103089

[Wan04] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” in /EEE Transactions on
Image Processing, vol. 13, no. 4, Apr 2004, pp. 600-612.

[Wanl6] Wei-Chih Wang, “Optical Detectors,” undated notes.

[Whi74] M. H. White, D. R. Lampe, F. C. Blaha and I. A. Mack, “Characterization of surface
channel CCD image arrays at low light levels,” in IEEE Journal of Solid-State
Circuits, vol. 9, no. 1, pp. 1-12, Feb 1974. doi: https://doi.org/10.1109/ISSC.1974.
1050448

[Whill] Nathan Whitehead and Alex Fit-Florea, “Precision & performance: floating point and
IEEE 754 compliance for NVIDIA GPUs,” NVIDIA, 2011.

[Wid08] W. H. Widen, “Smart Cameras and the Right to Privacy,” in Proceedings of the IEEE,
vol. 96, no. 10, pp. 1688-1697, Oct 2008. doi: https://doi.org/10.1109/JPROC.2008.
928764

[Wie03] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/
AVC video coding standard,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560-576, July 2003. doi: https://doi.org/10.1109/
TCSVT.2003.815165

[Wie03B] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini and G. J. Sullivan, “Rate-constrained
coder control and comparison of video coding standards,” in /[EEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 688—703, July 2003. doi:
https://doi.org/10.1109/TCSVT.2003.815168

[Wol96] Wayne Wolf, “Key frame selection by motion analysis,” in Proceedings, ICASSP ‘96,
IEEE Press, 1996, pp. 1240-1243.

[Wol02] Wayne Wolf, Burak Ozer, and Tiehan Lv, “Smart cameras as embedded systems,” in
IEEE Computer, vol. 35, no. 9, Sept 2002, pp. 48-53.

[Wol08] Wayne Wolf, Ahmed A. Jerraya, and Grant Martin, “Multiprocessor System-on-Chip
(MPSoC) Technology,” in IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 27, no. 10, Oct 2008, pp. 1701-1713.

[Woll7]  Marilyn Wolf, The Physics of Computing, Cambridge MA: Elsevier, 2017.

[Wre97] C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, “Pfinder: real-time
tracking of the human body,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 780-785, Jul 1997. doi: https://doi.org/10.1109/34.
598236

[Xul2] R. Xu, B. Liu and J. Yuan, “A 1500 fps Highly Sensitive 256 X 256 CMOS Imaging
Sensor With In-Pixel Calibration,” in IEEE Journal of Solid-State Circuits, vol. 47, no.
6, pp. 1408-1418, June 2012. doi: https://doi.org/10.1109/JSSC.2012.2192662

[Yad97] Orly Yadid-Pecht, Karmak Mansoorian, Eric R. Fossum, Bedabrata Pain; Optimiza-
tion of noise and responsivity in CMOS active pixel sensors for detection of ultralow-
light levels. Proc. SPIE 3019, Solid State Sensor Arrays: Development and Applica-
tions, 125 (Apr 25, 1997); doi: https://doi.org/10.1117/12.275185.


https://doi.org/10.1109/ICME.2006.262452
https://doi.org/10.1109/ICME.2006.262452
https://doi.org/10.1007/s00138-008-0122-6
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org.prx.library.gatech.edu/10.1145/103085.103089
http://dx.doi.org.prx.library.gatech.edu/10.1145/103085.103089
https://doi.org/10.1109/JSSC.1974.1050448
https://doi.org/10.1109/JSSC.1974.1050448
https://doi.org/10.1109/JPROC.2008.928764
https://doi.org/10.1109/JPROC.2008.928764
https://doi.org/10.1109/TCSVT.2003.815165
https://doi.org/10.1109/TCSVT.2003.815165
https://doi.org/10.1109/TCSVT.2003.815168
https://doi.org/10.1109/34.598236
https://doi.org/10.1109/34.598236
https://doi.org/10.1109/JSSC.2012.2192662
https://doi.org/10.1117/12.275185

226

[Yam81]

[YamO06]

[Yan89]

[Yan02]

[Yan05]

[Yan10]

[Zab94]

[Zajo5]

[Zha03]

[Zhell]

[Zhe13]

[Zho04]

[Zho12]

[Zhu00]

[Zonl1]

[Zuc16]

References

Akira Yamanaka and Toshinori Imura, “Auto-focus camera having a rangefinder,”
U. S. Patent 4,300,823, Nov 17, 1981.

K. Yamaguchi, T. Kato and Y. Ninomiya, “Vehicle Ego-Motion Estimation and
Moving Object Detection using a Monocular Camera,” in /8th International Confer-
ence on Pattern Recognition (ICPR’06), Hong Kong, 2006, pp. 610-613. doi: https://
doi.org/10.1109/ICPR.2006.1165

K. M. Yang, M. T. Sun and L. Wu, “A family of VLSI designs for the motion
compensation block-matching algorithm,” in IEEE Transactions on Circuits and
Systems, vol. 36, no. 10, pp. 1317-1325, Oct 1989. doi: https://doi.org/10.1109/31.
44348

Ming-Hsuan Yang, D. J. Kriegman and N. Ahuja, “Detecting faces in images: a
survey,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
24, no. 1, pp. 34-58, Jan 2002. doi: https://doi.org/10.1109/34.982883

Shengqi Yang, Wayne Wolf and Narayanan Vijaykrishnan, “Power and performance
analysis of motion estimation based on hardware and software realizations,” in /EEE
Transactions on Computers, vol. 54, no. 6, June 2005, pp. 714-726.

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse
representation,” IEEE Transactions on Image Processing, 19(11), November 2010,
pp- 2861-2873.

Ramin Zabih and John Woodfill, “Non-parametric local transforms for computing
visual correspondence,” in Jan-Olof Eklundh, ed., Computer Vision --- ECCV ’94:
Third European Conference on Computer Vision Stockholm, Sweden, May 2—6 1994
Proceedings, Volume II, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 151-158,
doi https://doi.org/10.1007/BFb0028345

Wojciech Zajdel and Ben J. A. Krose, “A sequential Bayesian algorithm for surveil-
lance with nonoverlapping cameras,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 19, pp. 977 (2005). doi: https://doi.org/10.1142/
50218001405004423

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. 2003. “Face recognition: A
literature survey,” in ACM Computing Surveys, vol, 35, no. 4 (Dec 2003), pp. 399—458.
doi: http://dx.doi.org.prx.library.gatech.edu/10.1145/954339.954342

R. Zheng, T. Wei, D. Gao, Y. Zheng, F. Li and H. Zeng, “Temporal noise analysis and
optimizing techniques for 4-T pinned photodiode active pixel sensor,” in 20/1 L.E.
International Conference on Signal Processing, Communications and Computing
(ICSPCC), Xi’an, 2011, pp. 1-5. doi: https://doi.org/10.1109/ICSPCC.2011.6061804
W. S. Zheng, S. Gong and T. Xiang, “Reidentification by Relative Distance Compar-
ison,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no.
3, pp. 653—668, Mar 2013 doi: https://doi.org/10.1109/TPAMI.2012.138

S.K. Zhou, R. Chellappa, and B. Moghaddam. “Visual tracking and recognition using
appearance-adaptive models for particle filters,” in IEEE Transactions on Image
Processing, vol. 13, no. 11, pp. 1491-1506, 2004.

D. Zhou, X. Shen and W. Dong, “Image zooming using directional cubic convolution
interpolation,” in IET Image Processing, vol. 6, no. 6, pp. 627-634, Aug 2012. doi:
https://doi.org/10.1049/iet-ipr.2011.0534

Ying Zhu, S. Schwartz and M. Orchard, “Fast face detection using subspace discrim-
inant wavelet features,” Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Hilton Head Island, SC, 2000,
pp- 636-642 vol. 1. doi: https://doi.org/10.1109/CVPR.2000.855879

M. Zontak and M. Irani, “Internal statistics of a single natural image,” CVPR 2011,
Providence, RI, 2011, pp. 977-984. doi: https://doi.org/10.1109/CVPR.2011.5995401
Esther Zuckerman, “FX counts a whopping 455 original scripted series this year,”
avclub.com, Dec 21, 2016.


https://doi.org/10.1109/ICPR.2006.1165
https://doi.org/10.1109/ICPR.2006.1165
https://doi.org/10.1109/31.44348
https://doi.org/10.1109/31.44348
https://doi.org/10.1109/34.982883
https://doi.org/10.1007/BFb0028345
https://doi.org/10.1142/S0218001405004423
https://doi.org/10.1142/S0218001405004423
http://dx.doi.org.prx.library.gatech.edu/10.1145/954339.954342
https://doi.org/10.1109/ICSPCC.2011.6061804
https://doi.org/10.1109/TPAMI.2012.138
https://doi.org/10.1049/iet-ipr.2011.0534
https://doi.org/10.1109/CVPR.2000.855879
https://doi.org/10.1109/CVPR.2011.5995401

	Preface
	Contents
	Chapter 1: Digital Photography
	1.1 Introduction
	1.2 Previsualization and Autoprevisualization
	1.3 Enhanced Images
	1.4 Beyond Images to Analysis
	1.5 Still and Moving Images
	1.6 Taking a Picture
	1.7 How to Read this Book

	Chapter 2: Light, Optics, and Imaging
	2.1 Introduction
	2.2 Image Formation
	2.2.1 Light and Images
	2.2.2 The Physics of Light

	2.3 The Human Visual System
	2.4 Color Science
	2.4.1 Theories of Color Vision
	2.4.2 Color Models

	2.5 Lenses
	2.5.1 Lenses and Image Formation
	2.5.2 Ray Optics
	2.5.3 Lens Design
	2.5.4 Panoramas
	2.5.5 Assessing Lenses

	2.6 Geometry and the Camera Model
	2.6.1 Projective Geometry
	2.6.2 The Camera Model
	2.6.3 Camera Calibration

	2.7 Image Display
	2.8 Practical Image Capture
	2.8.1 Exposure Settings
	2.8.2 Which Exposure Setting?
	2.8.3 Color Temperature
	2.8.4 Image Composition
	2.8.5 Image Quality Assessment

	2.9 Summary

	Chapter 3: Image Capture Systems and Algorithms
	3.1 Introduction
	3.2 The Generic Camera Architecture
	3.3 The Camera Design Space
	3.3.1 Trade-Offs
	3.3.2 Use Cases for Cameras
	3.3.3 Four Examples of Camera Designs

	3.4 Image Sensors
	3.4.1 Image Sensor Architectures
	3.4.2 Photosensors
	3.4.3 Charge-Coupled Devices
	3.4.4 APS CMOS Image Sensors
	3.4.5 Advanced Image Sensors
	3.4.6 Image Sensor Characteristics
	3.4.7 Shutters and Irises

	3.5 Preexposure Operations
	3.5.1 Autofocus
	3.5.2 Exposure
	3.5.3 Image Stabilization
	3.5.4 Face Detection and Tracking

	3.6 Postexposure Operations
	3.6.1 Color Filter Array Interpolation
	3.6.2 White Balance
	3.6.3 Sharpening

	3.7 Image and Video Compression
	3.7.1 Lossy Compression
	3.7.2 Image Coding and JPEG
	3.7.3 Video Coding, H.264/AVC, and HEVC/H.265
	3.7.4 Quality Assessment of Compressed Images

	3.8 Computing Platforms
	3.8.1 Cameras as Heterogeneous Multiprocessors
	3.8.2 Buffering
	3.8.3 Input and Output
	3.8.4 File Formats
	3.8.5 Operating Systems and File Systems
	3.8.6 Accelerators

	3.9 Image Characteristics and Image Capture
	3.10 Stereo and Multicamera Systems
	3.11 Trade-Offs Revisited

	Chapter 4: Image and Video Enhancement
	4.1 Introduction
	4.2 Useful Algorithms
	4.3 Tonal Mapping and Color Grading
	4.4 High-Dynamic Range Images
	4.5 Sharpening and Superresolution
	4.6 Bokeh Introduction
	4.7 Lens Corrections
	4.8 Focus Stacking
	4.9 Keystone Correction
	4.10 Mosaic Composition
	4.11 Video Stabilization
	4.11.1 Optical Flow
	4.11.2 Stabilization Algorithms

	4.12 Software Design for Image Enhancement
	4.13 Practical Image Enhancement

	Chapter 5: Image and Video Analysis
	5.1 Introduction
	5.2 Image Analysis Algorithms
	5.3 Image and Video Characteristics
	5.3.1 Image Statistics
	5.3.2 Saliency
	5.3.3 Key Frame Selection

	5.4 Scene Analysis
	5.4.1 Visual Search
	5.4.2 Face Detection and Recognition

	5.5 Tracking
	5.5.1 Background Elimination
	5.5.2 Tracking from a Fixed Camera
	5.5.3 Appearance Models
	5.5.4 Activity Analysis
	5.5.5 Tracking from a Moving Camera

	5.6 Multicamera Systems
	5.6.1 Multicamera Systems as Distributed Computing Systems
	5.6.2 Multicamera Calibration
	5.6.3 Multicamera Tracking

	5.7 Use Cases and Workflows

	Chapter 6: Photography and Cinematography
	6.1 Introduction
	6.2 Photography
	6.3 Cinematography

	References

