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Preface

This book is an expanded up-to-date version of our Lecture Notes in Statis-
tics monograph entitled Conditionally Specified Distributions. Chapters
in that monograph have been edited, expanded, and brought up-to-date
(1998).

The concept of conditional specification of distributions is not new but,
except in normal families, it has not been well developed in the litera-
ture. Computational difficulties undoubtedly hindered or discouraged de-
velopments in this direction. However, such roadblocks are of diminished
importance today. Questions of compatibility of conditional and marginal
specifications of distributions are of fundamental importance in modeling
scenarios. Such issues are carefully analyzed in this book. Building on a
normal conditionals model, which dates back at least to Bhattacharyya
(1943), a broad spectrum of conditionally specified models is developed.
Models with conditionals in exponential families are particularly tractable
and provide useful models in a broad variety of settings.

Chapter 1 covers basic results on characterization of compatibility of
conditional distributions and uniqueness of the corresponding joint distri-
bution in a variety of settings. In addition, important functional equation
results are presented. These prove to be basic tools in subsequent develop-
ment of families of distributions with conditionals in specified parametric
families. Chapter 2 is focussed on the finite discrete case. In it, a variety of
compatibility and near-compatibility results are described.

Especially in Bayesian prior elicitation contexts, inconsistent conditional
specifications are to be expected. In such situations, interest will center on
most nearly compatible distributions. That is, distributions whose condi-
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tionals differ minimally from those given by the informed expert providing
prior information. Progress in this area is also discussed in Chapter 2.

Chapter 3 includes a careful development of the normal conditionals
model. Chapter 4 treats conditionals in prescribed exponential familes. A
spectrum of conditionally specified distributions not involving exponential
families is studied in Chapter 5. Chapter 6 focusses on the utility of certain
improper conditionally specified models which appear to have predictive
utility despite their failure to qualify as genuine joint distributions. The
situation here is somewhat analogous to cases in which Bayesians fearlessly
use nonintegrable priors and density estimators use estimates which are
sometimes negative to estimate positive quantities. Chapter 7 discusses dis-
tributional characterizations involving a mixture of regression assumptions
and conditional specifications. In certain circumstances such a mixture of
assumptions might well describe a researcher’s views on the nature of the
joint distribution and it is of interest to determine what classes of dis-
tributions are determined by such assumptions. Much of the material in
Chapters 1-7 can be extended to higher dimensions, at a price of increased
notational complexity. Details of such extensions are provided in Chapter 8.
In addition, certain characterizations of classical multivariate distributions
via conditional specification are described.

Inference procedures for conditionally specified models require creativ-
ity and/or computer intensive approaches. Nevertheless, relatively efficient
straightforward approaches are possible in some cases. Estimation tech-
niques, both classical and Bayesian, are discussed in Chapter 9. Conditional
specification provides a broad spectrum of feasible multivariate models.
Appropriate inferential techniques for these models require considerable
further development. There are still many open questions.

Simulations for conditionally specified distributions provide a tailor-made
scenario for use of the Gibbs sampler. Discussion of this and other relevant
material on simulation is gathered in Appendix A.

In Chapter 10, we discuss the general problem of specifying a multivariate
distribution using marginal and/or conditional densities. Compatibility and
uniqueness issues here are necessarily somewhat more complicated than
they are in two dimensions.

There are several alternative conditional specification routes that can
be considered. The conditional density approach has been most commonly
studied; but, for example, in reliability contexts, conditional survival func-
tion specification might be more appropriate. This and related models are
surveyed in Chapter 11. In Chapter 12, models for bivariate extremes are
discussed.

Conditionally specified distributions can often play roles as natural flexi-
ble conjugate prior families in many standard data analysis settings. In this
context, the availability of the Gibbs sampler is particularly convenient in
allowing easy simulations of posterior distributions. The development of
such flexible informative multiparameter priors is documented in detail in
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Chapter 13. The relationship between conditionally specified models and
simultaneous equations models is discussed in Chapter 14. Chapter 15 is
somewhat unstructured, containing as it does, a collection of conditional
specification topics that are either only partially developed or just didn’t
seem to fit in elsewhere.

In some sections of this book, ample references are given. The absence
of references in a particular section sometimes indicates that the material
is appearing for the first time. At other times the material may be a close
paraphrase of earlier papers of the authors and references are not explicitly
given. At the end of each chapter we provide brief bibliographic commen-
taries to help the reader put the material in context and to provide access
to references for further reading.

We are grateful to the University of Cantabria, the University of Castilla-
La Mancha, and to the Spanish CICYT for financial assistance during the
past seven years that we have worked in this area. Special thanks are given
to Iberdrola and José Antonio Garrido for their finantial support.

Several years ago, after hearing one of the authors give an introductory
talk on conditionally specified models, Mike Hidiroglou came up and said:

“Well, you seem to have found a nice sand-box to play in.”

He was right. We invite you to join us.

August 1999 Riverside, Barry C. Arnold
Santander, Enrique Castillo

Santander, José Maŕıa Sarabia
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1

Conditional Specification:
Concepts and Theorems

1.1 Why Conditional Specified Models?

In efforts to specify bivariate probability models, the researcher is fre-
quently hindered by an inability to visualize the implications of assuming
that a given bivariate family of densities will contain a member which will
adequately describe the given phenomenon. We contend that it is often
easier to visualize conditional densities or features of conditional densities
than marginal or joint densities. Thus to cite a classical example, it is not
unreasonable to visualize that in some human population, the distribution
of heights for a given weight will be unimodal with the mode of the con-
ditional distribution varying monotonically with weight. Similarly, we may
visualize a unimodal distribution of weights for a given height, this time
with the mode varying monotonically with the height. It is not as easy to
visualize features of the appropriate joint distribution; unless we blindly
follow Galton’s assertion that a unimodal bivariate distribution with ellip-
tical contours is clearly appropriate. Actually, for some of Galton’s data
sets, the elliptical nature of the contours is far from self-evident. The point
is that, even for the height-weight data, an assumption of normality for
both sets of conditional distributions might be the most we could justify.
As we shall see, such normal conditionals distributions comprise a flexible
family which subsumes and extends the classical bivariate normal model.

In this book, we will study the concept of conditional specification of joint
densities. We consider questions of compatibility and near compatibility of
given families of conditional distributions. We also consider cases in which
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conditional densities are only assumed to be known to belong to specified
parametric families (as in the height-weight example above). The models
thus derived are called conditionally specified models. We discuss aspects
of their distributions and address the issues of parametric estimation and
simulation for such models.

Before embarking on this study, we will make a few brief comments on
alternative methods of specifying joint distributions. In addition, we will
trace a few historical precedents for the study of conditionally specified
distributions.

1.2 How May One Specify a
Bivariate Distribution?

Let (X, Y ) be a two-dimensional random variable. Clearly its probabilistic
behavior for most purposes is adequately specified by knowledge of its joint
distribution function

FX,Y (x, y) = P (X ≤ x, Y ≤ y); x, y ∈ IR . (1.1)

Naturally for FX,Y (x, y) to be a legitimate distribution, it must be mono-
tone in x and in y, must satisfy F (−∞, y) = 0, F (x,−∞) = 0, F (∞,∞) =
1, and must assign nonnegative mass to every rectangle in IR2. At a very
basic level the distribution of (X, Y ) will be determined by identifying the
probability space on which X and Y are defined, say (Ω,F , P ), and ex-
plicitly defining the mappings X : Ω → IR and Y : Ω → IR. Of course, we
usually don’t get down to basics like that very often. More likely we will
specify FX,Y (x, y) by defining it in terms of some joint density fX,Y (x, y)
with respect to some measure on IR2. The density fX,Y (x, y) is then re-
quired to be nonnegative and integrate to 1. An alternative is to specify a
large number of moments and mixed moments of X and Y . With luck, this
will completely determine FX,Y (x, y). More exotic characterization meth-
ods exist but they are often specific to the given form of FX,Y (x, y), and
cannot be viewed as general techniques for characterizing bivariate distri-
butions (the key references if one wishes to pursue such matters are Kagan,
Linnik, and Rao (1973), Galambos and Kotz (1978)), Ramachandran and
Lau (1991), and Rao and Shanbhag (1994).

A variety of transforms can be used to characterize FX,Y (x, y). The joint
characteristic function

φX,Y (t1, t2) = E(exp[i(t1X + t2Y )]), t1, t2 ∈ IR , (1.2)

will uniquely determine FX,Y (x, y). The joint Laplace transform

ΨX,Y (t1, t2) = E(exp[−(t1X + t2Y )]), t1, t2 > 0, (1.3)
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will characterize FX,Y (x, y)’s corresponding to nonnegative random vari-
ables X and Y . The joint moment generating function, the joint mean
residual life function, and the joint hazard function, when they are well
defined, will all uniquely determine FX,Y (x, y).

Knowledge of the marginal distributions FX(x) and FY (y) has long been
known to be inadequate to determine FX,Y (x, y). A vast array of joint dis-
tributions with given marginals has developed over the years (surveys may
be found in Mardia (1970) and Ord (1972) for example, see also Hutchinson
and Lai (1990)). An extensive up-to-date catalog of discrete multivariate
distributions may be found in Johnson, Kotz, and Balakrishnan (1997).

If we incorporate conditional specification instead of, or together with,
marginal specification the picture brightens. It is sometimes possible to
characterize distributions this way.

First it is clearly enough to know one marginal distribution and the
family of corresponding conditional distributions, i.e., knowledge of FX(x)
and

FX|Y (x|y) = P (X ≤ x|Y = y), (1.4)

for every y, will completely determine the joint distribution of (X, Y ). Ac-
tually in some circumstances we can get away with a little less. Knowledge

of (1.4) and knowledge that X
d
= Y will often characterize FX,Y (x, y) (see

Section 15.5).
In reliability contexts other modeling approaches are sometimes used.

The “dynamic construction” prescribes the joint distribution of (X, Y ) by
specifying:

(i) the distribution of min(X, Y );

(ii) the probability p(t), that min(X, Y ) = X given that min(X, Y ) =
t, t > 0; and

(iii) the conditional distribution of Y given min(X, Y ) = X = t and the
conditional distribution of X given min(X, Y ) = Y = t, t > 0.

For details see Shaked and Shanthikumar (1987).

What if we are given both families of conditional distributions, FX|Y (x|y)
for every possible value y of Y and FY |X(y|x) for every possible value x
of X? Provided the families of conditional distributions are compatible,
in a sense to be discussed later in this chapter, and provided a related
Markov process is indecomposable, then indeed these families of conditional
distributions will uniquely determine the joint distribution of (X, Y ). A
survey of results related to such characterizations is to be found in Arnold
and Press (1989b). Sections 1.5-1.7 draw heavily on this source.

Perhaps the earliest work in this area was that of Patil (1965). He consid-
ered the discrete case and under a mild regularity condition showed that
the conditional distributions of X given Y and one conditional distribu-
tion of Y given X = x0 will uniquely determine the joint distribution of
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(X, Y ). As a corollary he concludes that, in the discrete case under a mild
regularity condition, both sets of conditionals will determine the joint dis-
tribution. The next contribution to this area was that of Amemiya (1975),
augmented by Nerlove and Press (1986) (based in part on a working paper
dated 1976). They discussed conditions sufficient for compatibility in the
discrete case. Sufficient conditions in a more general setting were presented
by Gourieroux and Montfort (1979) who also showed by a counterexample
that some regularity conditions were needed to guarantee the uniqueness of
a joint distribution corresponding to given compatible conditionals. Abra-
hams and Thomas (1984) essentially stated the compatibility condition
(Theorem 1.2 in the present work) correctly, but overlooked the possible
lack of uniqueness indicated in Gourieroux and Montfort’s work. A synthe-
sis of their results was presented in Arnold and Press (1989b). They also
dealt with more abstract settings and considered multivariate extensions
of the results.

Rather than specify completely the conditional distributions of X given
Y and of Y given X, we may wish to specify only that these conditional
distributions are members of some well-defined parametric families of dis-
tributions. This is the conditional specification paradigm which is a major
theme of this book. A brief review of early contributions to this area is
provided in the next section.

1.3 Early Work on Conditionally Specified Models

A conditionally specified bivariate distribution is associated with two para-
metric families of distributions F1 = {F1(x; θ) : θ ∈ Θ} and F2 = {F2(y :
τ) : τ ∈ T}. The joint distribution of (X, Y ) is required to have the prop-
erty that for each possible value y of Y , the conditional distribution of
X given Y = y is a member of F1 with parameter θ possibly dependent
on y. In addition, each conditional distribution of Y given X = x must
be a member of F2 for some choice of τ which may depend on x. One
of the earliest contributions to the study of such models was the work of
Patil (1965). He showed that if every distribution of X given Y = y was a
power series distribution and if every distribution of Y given X = x was
a power series distribution, then the joint distribution was a power series
distribution. Besag (1974), in the context of spatial processes, discussed
conditional specification. Several of the models he introduced reduce in the
bivariate case to models involving conditionals in exponential families to
be discussed in Chapter 4. A major breakthrough, in which the impor-
tant role of functional equations was brought into focus, was provided by
Castillo and Galambos (1987a). They completely characterized the class
of distributions with normal conditionals. Abrahams and Thomas (1984),
Besag (1974), and Bhattacharyya (1943) had actually described normal
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conditionals models with nonlinear regressions but had not attempted to
determine explicitly the class of all distributions with normal conditionals.
Incidently, Brucker (1979) did show that if we require normal conditionals
with linear regression and constant conditional variance, then we are led
to the classical bivariate normal distribution, independently verifying one
of Bhattacharyya’s observations.

Mimicking the work of Castillo and Galambos, Arnold (1987) described
and studied the class of all distributions with Pareto conditionals. Subse-
quently, Arnold and Strauss (1988a) dealt with exponential conditionals.
This was followed by their paper (Arnold and Strauss (1991)) which dis-
cussed conditionals in prescribed exponential families. Chapter 4 is based
on this work which unified and extended several earlier papers. Much of the
material in Chapter 5 is based on a series of papers by Castillo and Sara-
bia using functional equations to treat a variety of conditional specification
models not involving exponential families.

1.4 The Conditional Specification Paradigm

Our goal is to discuss general conditions under which candidate families of
conditional distributions for X given Y and for Y given X are compatible.
When we say they are compatible, we mean that there will exist at least
one joint distribution for (X, Y ) with the given families as its conditional
distributions.

In cases in which compatibility is confirmed the question of the possi-
ble uniqueness of the compatible distribution must be addressed. These
concepts lead naturally to what will be a central focus of this book, the
study of distributions with conditionals in prescribed parametric families.
A pivotal role in the development of such models will be played by a clas-
sical theorem dealing with the solutions of a particular kind of functional
equation (Theorem 1.3 below). It dates back to 1904, though special cases
of it may have been resolved even earlier.

In discussions of the compatibility of families of conditional distributions,
the concepts are most easily described and visualized when densities exist.
In particular, the discussion is most transparent when X, Y are discrete
and each has only a finite set of possible values. Our discussion begins in
such settings.

1.5 Compatible Conditionals: Finite Discrete Case

Consider X and Y to be discrete random variables with possible values
x1, x2, . . . , xI and y1, y2, . . . , yJ , respectively. A putative conditional model
for the joint distribution of (X, Y ) can be associated with two I×J matrices
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A and B with elements aij and bij . It is assumed that the aij ’s and bij ’s
are nonnegative. Our question is: What further conditions must A and B
satisfy in order that there might exist a random vector (X, Y ) with the
property that ∀i, j

aij = P (X = xi|Y = yj) (1.5)

and
bij = P (Y = yj |X = xi)? (1.6)

In addition we may address the question of the possible uniqueness of the
distribution of (X, Y ) satisfying (1.5) and (1.6). Two obvious constraints
that we must require are

I
∑

i=1

aij = 1, ∀j, (1.7)

and
J
∑

j=1

bij = 1, ∀i. (1.8)

Another obvious constraint is that A and B must have a common incidence
set.

Definition 1.1 (Incidence set of a matrix). Given a matrix A the set
{(i, j) : aij > 0} is called the incidence set of A and is denoted by NA. �

If a bivariate random variable (X, Y ) is to exist with conditionals (1.5)
and (1.6) then its corresponding marginal distributions will be severely
constrained. Let us introduce the following notation for these marginal
distributions, if they exist,

τi = P (X = xi), i = 1, 2, . . . , I, (1.9)

ηj = P (Y = yj), j = 1, 2, . . . , J. (1.10)

Since P (X = xi, Y = yj) can be written in two ways by conditioning on
either X or Y , A, B, τ , and η must satisfy

τibij = ηjaij , ∀i, j ∈ NA. (1.11)

These observations lead immediately to the following theorem:

Theorem 1.1 A and B, satisfying (1.7) and (1.8), are compatible iff:

(i) NA = NB = N say; and

(ii) there exist vectors u and v of appropriate dimensions for which

cij = aij/bij = uivj , ∀(i, j) ∈ N. (1.12)
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Proof. If A and B are compatible, then from (1.11) we have cij = τi/ηj

so (1.12) holds. Conversely, if (1.12) holds, an appropriate choice for τ is

provided by τi = ui/
∑I

i=1 ui and an appropriate choice for η is provided

by ηj = v−1
j /

∑J
j=1 v−1

j . �

Note that the condition (1.12) is intimately related to the concept of
quasi-independence as encountered in the study of contingency tables. It
is convenient to define an I × J matrix C with elements cij = aij/bij

when (i, j) ∈ N and with cij = 0 when (i, j) /∈ N . To get a feeling for the
implications of the theorem, the reader is invited to verify that the following
pair of candidate conditionals distribution arrays A, B are compatible:

A =

⎛

⎝

1/6 0 3/14
0 1/4 4/14

5/6 3/4 7/14

⎞

⎠ , (1.13)

B =

⎛

⎝

1/4 0 3/4
0 1/3 2/3

5/18 6/18 7/18

⎞

⎠ . (1.14)

Acceptable choices for u and v are provided by u = (8, 12, 36) and v =
( 1
12 , 1

16 , 1
28 ). If B is replaced by B̃, as follows,

B̃ =

⎛

⎝

3/4 0 1/4
0 1/3 2/3

5/18 6/18 7/18

⎞

⎠ , (1.15)

then we may verify that A and B̃, (1.13) and (1.15), are not compati-
ble. Note that in order to show incompatibility, i.e., that (1.12) fails, it is
enough to identify a “rectangle” of four nonzero entries in C = (cij), say
ci1,j1 , ci1,j2 , ci2,j1 , ci2,j2 , for which

ci1,j1ci2j2 �= ci1,j2ci2,j1 .

If all entries in A and B are positive so that cij > 0,∀i = 1, 2, . . . , I, and
j = 1, 2, . . . , J , then the condition for compatibility is simply expressible
as

cijc.. = ci·c·j , ∀(i, j),

where ci· =
∑

j cij , c.j =
∑

i cij and c·· =
∑

i

∑

j cij .
In Section 2.2 we will catalog a variety of alternative compatibility spec-

ifications in the finite discrete case. In addition, in that section we will
discuss “approximately” or “almost” compatible cases. For the moment,
we will stick with the compatibility criterion provided in Theorem 1.1 and
move on to consider cases where X and Y no longer have a finite list of
possible values.
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1.6 Compatibility in More General Settings

When we relax the condition that (X, Y ) be discrete random variables
with only a finite number of possible values, most of our observations of
Section 1.4 will carry over with only notational changes. The only compli-
cating factor is that, whereas in the finite case we could sum over rows and
columns without concern, now we may need to postulate suitable summa-
bility and/or integrability conditions to justify such operations. We assume
that (X, Y ) is a random vector which is absolutely continuous with respect
to some product measure µ1×µ2 on S(X)×S(Y ) where S(X) (respectively
S(Y )) denotes the support of X(Y ). Note that this allows one variable
to be discrete and the other continuous, an important special case. The
joint, marginal, and conditional densities of X and Y will be denoted by
fX,Y (x, y), fX(x), fY (y), fX|Y (x|y), and fY |X(y|x). The support sets S(X)
and S(Y ) can be finite, countable, or uncountable.

We will denote the families of candidate conditional densities (with re-
spect to µ1 and µ2) by

a(x, y) = fX|Y (x|y), x ∈ S(X), y ∈ S(Y ), (1.16)

and

b(x, y) = fY |X(y|x), x ∈ S(X), y ∈ S(Y ). (1.17)

It is convenient to introduce the notation

Na = {(x, y) : a(x, y) > 0}, (1.18)

Nb = {(x, y) : b(x, y) > 0}. (1.19)

The discussion in Section 1.4, allows us to immediately enunciate the
appropriate compatibility theorem.

Theorem 1.2 A joint density f(x, y), with a(x, y) and b(x, y) as its con-
ditional densities, will exist iff (i) Na = Nb = N , and (ii) there exist
functions u and v such that for all x, y ∈ N

a(x, y)/b(x, y) = u(x)v(y), (1.20)

where
∫

S(X)
u(x) dµ1(x) < ∞. �

Proof. In order for a(x, y) and b(x, y) to be compatible, suitable marginal
densities f(x) and g(y) must exist. Clearly (1.20) must hold with f(x) ∝
u(x) and g(y) ∝ 1/v(y). The condition

∫

u(x) dµ1(x) < ∞ is equivalent
(via Tonelli’s theorem) to the condition

∫

[1/v(y)] dµ2(y) < ∞ and only
one needs to be checked in practice. These integrability conditions reflect
the fact that the marginal densities must be integrable and indeed must
integrate to 1. �
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An example of the application of Theorem 1.2 follows. Consider the fol-
lowing candidate family of conditional densities (with respect to Lebesgue
measure):

fX|Y (x|y) = a(x, y) = (y + 2)e−(y+2)x I(x > 0),

and
fY |X(y|x) = b(x, y) = (x + 3)e−(x+3)y I(y > 0).

Here S(X) = S(Y ) = (0,∞) and to confirm compatibility we must verify
that (1.20) holds. In this example we have

a(x, y)

b(x, y)
=

(y + 2)e−(y+2)x

(x + 3)e−(x+3)y

=
(

e−2x

x+3

)

(

y+2
e−3y

)

and clearly (1.20) holds with

u(x) = e−2x/(x + 3)

and
v(y) = (y + 2)e3y.

For this choice of u(x) we have
∫∞
0

u(x) dx < ∞ and compatibility of
the two families of conditional densities is confirmed. The marginal density
of X is proportional to u(x). Such densities will be discussed further in
Chapter 4.

The crucial nature of the integrability condition may be seen in the
following simple example in which certain uniform conditional distributions
are candidates. The putative conditional densities are given by

fX|Y (x|y) = a(x, y) = y I(0 < x < y−1)I(y > 0),

and
fY |X(y|x) = b(x, y) = x I(0 < y < x−1)I(x > 0).

Here S(X) = S(Y ) = (0,∞) and N = Na = Nb = {(x, y) : x > 0, y >
0, xy < 1}. The ratio

a(x, y)

b(x, y)
=

y

x

factors nicely. Unfortunately, the function u(x) = x−1 is not integrable
so that the two families are not compatible. No joint distribution exists
with such conditional distributions. This example will be discussed again
in Chapter 6.

Returning to the general Theorem 1.2, if we define c(x, y) = a(x, y)/b(x, y)
our goal is to factor this expression into a function of x and a function of y.
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We need to show that for any (x1, x2, y1, y2) with (x1, y1) ∈ N, (x1, y2) ∈
N, (x2, y1) ∈ N , and (x2, y2) ∈ N we have

c(x1, y1)c(x2, y2) = c(x1, y2)c(x2, y1).

Perhaps the simplest situation involves the case in which N is a Cartesian
product S(X)×S(Y ) and in which serendipitously c(x, y) is integrable over
S(X) × S(Y ) (a condition which may well not obtain even for perfectly
compatible a(x, y) and b(x, y)). In this case we would only check to see if

c(x, y) =

∫

S(X)
c(x, y) dµ1(x)

∫

S(Y )
c(x, y) dµ2(y)

∫

S(X)

∫

S(Y )
c(x, y) dµ1(x) dµ2(y)

holds for every x ∈ S(X) and y ∈ S(Y ). Integrability of c(x, y) over N is
equivalent to integrability of both u(x) and v(y). The former u(x) must be
integrable for compatibility, the latter v(y) may well fail to be integrable
and factorization cannot in such cases be verified by simple integration.

If a and b are compatible, the following straightforward algorithm can
be used to obtain the corresponding joint density of (X, Y ):

Algorithm 1.1 (Obtaining a compatible joint distribution of (X, Y )
given the conditionals X|Y and Y |X).

Input. Two conditional probability density functions a(x, y) = fX|Y (x|y)
and b(x, y) = fY |X(y|x), and an Error.

Output. The corresponding compatible Y -marginal density function fY (y)
and the joint probability density function fX,Y (x, y) or a close alter-
native.

Step 1. Make Error1 = 1 and choose an arbitrary Y -marginal probability
density function f0(y).

Step 2. Make fY (y) = f0(y).

Step 3. Calculate the joint density fX,Y (x, y) using

fX,Y (x, y) = fY (y)a(x, y).

Step 4. Calculate the X-marginal density fX(x) using

fX(x) =
fX,Y (x, y)

∫

S(Y )
fX,Y (x, y) dy

.

Step 5. Calculate the updated Y -marginal probability density function f0(y)
using

f0(y) =

∫

S(X)

b(y, x)fX(x) dx.
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Step 6. Calculate the error by

Error1 =

∫

S(Y )

|fY (y) − f0(y)| dy.

Step 7. If Error1 > Error, go to Step 2; otherwise return the marginal
probability density f0(y) and the joint probability density function
fX,Y (x, y) and exit.

�

1.7 Uniqueness

Once we have determined that a(x, y) and b(x, y) are compatible, we may
reasonably ask whether the associated joint density fX,Y (x, y) is unique.
A negative answer is sometimes appropriate. Perhaps the most transpar-
ent case in which nonuniqueness occurs is the following. Focus on discrete
random variables (X, Y ) with SX = SY = {0, 1, 2, . . .}. Now consider the
family of conditional densities.

a(x, y) = b(x, y) =

{

1, x = y,
0, otherwise.

(1.21)

Thus we are postulating X = Y with probability 1. Evidently (1.21) de-
scribes compatible conditionals but there is no uniqueness in sight. Any
marginal distribution for X may be paired with such a family of conditional
distributions. The corresponding family of joint distributions for (X, Y )
with conditionals given by (1.21) is

P (X = i, Y = j) =

{

pi, i = j = 0, 1, 2, . . . ,
0, i �= j,

(1.22)

in which {p0, p1, . . .} is any sequence of positive numbers summing to 1.
Necessary and sufficient conditions for uniqueness may be described by

recasting the problem in a Markov chain setting. Suppose (X, Y ) is abso-
lutely continuous with respect to µ1 × µ2 with supports S(X) and S(Y ).
Suppose that a(x, y) and b(x, y) (defined by (1.16) and (1.17)) are compat-
ible with a marginal density τ(x) for X. When is τ(x) unique? Define a
stochastic kernel ba by

ba(x|z) =

∫

S(Y )

a(x, y)b(z, y) dµ2(y). (1.23)

Now consider a Markov chain with state space S(X) and transition kernel
ba. For such a chain, τ is a stationary distribution. It will be unique iff
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the chain is indecomposable. Note that the chain associated with a and b
defined by (1.21) is far from being indecomposable! One situation in which
indecomposability (and hence uniqueness) is readily verified corresponds
to the case in which Na = Nb = S(X) × S(Y ) (in such a case ba(x|z) > 0
for every x and z).

1.8 Conditionals in Prescribed Families

With the question of compatibility now completely resolved, it is time to
turn to a related but clearly distinct question regarding conditional specifi-
cation of bivariate distributions. We may conveniently recall the motivating
example described in Chapter 1. In that example we asked (i) is it possible
to have a bivariate distribution with X|Y = y ∼ normal (µ(y), σ2(y)), ∀y
and Y |X = x ∼ normal (ν(x), τ2(x)), ∀x, and (ii) if such models exist, can
we characterize the complete class of such distributions? In this scenario,
the conditional densities of X given Y are required only to belong to some
parametric family and the conditionals of Y given X are required only to
belong to some (possibly different) parametric family. Such conditionally
specified distributions, subject of course to compatibility conditions, will
be the major focus of this book.

Consider a k-parameter family of densities on IR with respect to µ1

denoted by {f1(x; θ) : θ ∈ Θ} where Θ ⊆ IRk. Consider a possible dif-
ferent ℓ-parameter family of densities on IR with respect to µ2 denoted by
{f2(y; τ) : τ ∈ T} where T ⊆ IR ℓ. We are interested in all possible bivariate
distributions which have all conditionals of X given Y in the family f1 and
all conditionals of Y given X in the family f2. Thus we demand that

fX|Y (x|y) = f1(x; θ(y)), ∀x ∈ S(X), y ∈ S(Y ), (1.24)

and
fY |X(y|x) = f2(y; τ(x)), ∀x ∈ S(X), y ∈ S(Y ). (1.25)

If (1.24) and (1.25) are to hold, then there must exist marginal distributions
for X and Y denoted by fX(x) and fY (y) such that

fY (y)f1(x; θ(y)) = fX(x)f2(y; τ(x)), ∀x ∈ S(X), y ∈ S(Y ). (1.26)

Whether such a functional equation can be solved for θ(y) and τ(x) de-
pends crucially on the nature of the known functions f1 and f2. In many
cases no solution is possible. Even in those cases in which nontrivial solu-
tions are found we must be careful to check whether the resulting solutions
correspond to valid (i.e., nonnegative and integrable) joint densities.

A remarkable number of families of conditional densities are expressible
in the form

f(x; θ) = φ

(

k
∑

i=1

Ti(x)θi

)

, x ∈ S(X), (1.27)
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where φ is invertible. For example, multiparameter exponential families are
of this form, as are Cauchy distributions. If we are dealing with conditionals
from a family such as (1.27) then, quite often, the problem can be solved. An
important tool in obtaining the solution is the following theorem presented
in a form due to Aczél (1966) (see also Castillo and Ruiz-Cobo (1992)).
The basic idea of the theorem can be traced back to Stephanos (1904),
Levi-Civita (1913), and Suto (1914).

Theorem 1.3 All solutions of the equation

n
∑

k=1

fk(x)gk(y) = 0, x ∈ S(X), y ∈ S(Y ), (1.28)

can be written in the form

⎡

⎢

⎣

f1(x)
f2(x)
· · ·

fn(x)

⎤

⎥

⎦
=

⎡

⎢

⎣

a11 a12 · · · a1r

a21 a22 · · · a2r

· · · · · · · · · · · ·
an1 an2 · · · anr

⎤

⎥

⎦

⎡

⎢

⎣

φ1(x)
φ2(x)
· · ·

φr(x)

⎤

⎥

⎦
,

⎡

⎢

⎣

g1(y)
g2(y)
· · ·

gn(y)

⎤

⎥

⎦
=

⎡

⎢

⎣

b1r+1 b1r+2 · · · b1n

b2r+1 b2r+2 · · · b2n

· · · · · · · · · · · ·
bnr+1 bnr+2 · · · bnn

⎤

⎥

⎦

⎡

⎢

⎣

Ψr+1(y)
Ψr+2(y)

· · ·
Ψn(y)

⎤

⎥

⎦
,

(1.29)

where r is an integer between 0 and n, and φ1(x), φ2(x), . . . , φr(x) on the
one hand and Ψr+1(x), Ψr+2(x), . . . ,Ψn(x) on the other are arbitrary sys-
tems of mutually linearly independent functions and the constants aij and
bij satisfy

⎡

⎢

⎣

a11 a21 · · · an1

a12 a22 · · · an2

· · · · · · · · · · · ·
a1r a2r · · · anr

⎤

⎥

⎦

⎡

⎢

⎣

b1r+1 b1r+2 · · · b1n

b2r+1 b2r+2 · · · b2n

· · · · · · · · · · · ·
bnr+1 bnr+2 · · · bnn

⎤

⎥

⎦
= 0. (1.30)

�

Two simple and straightforward consequences of the Aczél theorem are
of sufficient utility to merit separate listing.

Theorem 1.4 All solutions of the equation

r
∑

i=1

fi(x)φi(y) =

s
∑

j=1

gj(y)Ψj(x), x ∈ S(X), y ∈ S(Y ), (1.31)

where {φi}r
i=1 and {Ψj}s

j=1 are given systems of mutually linearly indepen-
dent functions, are of the form

f(x) = CΨ(x) (1.32)
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and
g(y) = Dφ(y) (1.33)

where D = C ′. �

Proof. Take A =

(

I
D

)

and B =

(

D
−I

)

in Theorem 1.3. �

Theorem 1.5 If for some invertible function γ we have

g(x, y) = γ(
∑r

i=1 fi(x)φi(y))

= γ(
∑s

j=1 gj(y)Ψj(x)), x ∈ S(X), y ∈ S(Y ),
(1.34)

where {φi}r
i=1 and {Ψj}s

j=1 are given systems of mutually linearly indepen-
dent functions, then

g(x, y) = γ(φ′(y)CΨ(x)). (1.35)

�

Theorem 1.5 will allow us to completely characterize distributions with
conditionals in given exponential families (Chapters 3 and 4). It will also
yield solutions for Cauchy conditionals, Pareto conditionals, and other non-
exponential family situations (Chapter 5). It must be remarked that, if we
use Theorem 1.5 to identify a joint density, there may be further restriction
necessary on the elements of C in (1.35) to ensure that the density is non-
negative and integrable. Such conditions are sometimes vexingly difficult
to pin down. The final fly in the ointment involves normalization. The
joint density must integrate to 1. Frequently, as we shall see, Theorem 1.5
easily provides us with conditionally specified densities up to an awkward
normalizing constant. It is possible to simulate data from such distributions
and to estimate parameters without specifically knowing the normalizing
constant, so this does not seriously hamper our use of such conditionally
specified models.

Note that Theorem 1.5 will only be useful in situations in which the sup-
port of the joint density is a Cartesian product, i.e., in which the support
of fX|Y (x|y) does not depend on y and that of fY |X(y|x) does not depend
on x. Several of the examples to be discussed in Chapter 5 do not fit this
paradigm. They can be resolved but a generally applicable theorem is lack-
ing and they are handled on a case by case basis. Examples treated include
the uniform conditionals case and the translated exponential conditionals
case.

1.9 An Example

Theorems 1.3, 1.4, and 1.5 are quite general and will be some of our basic
investigative tools, but it goes without saying that in some simple cases they
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are more powerful than necessary. Simpler arguments may well be adequate.
We can illustrate this phenomenon in the exponential conditionals case. In
this situation we assume that for each y > 0, X given Y = y is exponential
with intensity µ(y) and for each x > 0, Y given X = x is exponential
with intensity ν(x). It follows that, writing the joint density of (X, Y ) as
a product of marginal and conditional densities in both possible manners,
we have

fX(x)ν(x)e−ν(x)y = fY (y)µ(y)e−µ(y)x, ∀x > 0, y > 0. (1.36)

We can of course apply Theorem 1.5 here. First rewrite (1.36) in the form

exp{h1(x) · 1 − ν(x)y} = exp{h2(y) · 1 − µ(y)x}, (1.37)

where h1(x) = log[fX(x)ν(x)] and h2(y) = log[fY (y)µ(y)]. Clearly (1.37)
is of the form (1.34) so that Theorem 1.5 can be applied. The appropri-
ate identification between (1.37) and (1.34) is provided by the following
relations:

γ(u) = e−u, r, s = 2,
f1(x) = h1(x), φ1(y) = 1,
f2(x) = ν(x), φ2(y) = −y,
g1(y) = h2(y), Ψ1(x) = 1,
g2(y) = µ(y), Ψ2(x) = −x.

(1.38)

It then follows from Theorem 1.5 that the joint density must be of the form

fX,Y (x, y) = exp(c11 − c21x − c12y + c22xy)I(x > 0)I(y > 0), (1.39)

subject to appropriate constraints on the cij ’s. We will (Section 4.4) meet
this density again with a slightly different parametrization. Specifically, it
will be written

fX,Y (x, y) = exp(m00 − m10x − m01y + m11xy)I(x > 0)I(y > 0).

The same result could, in this case, have been obtained by more elemen-
tary means. Merely take logarithms on both sides of (1.36) and apply a
differencing argument with respect to x and y (mimicking a differentiation
argument without assuming differentiability). From this it follows that

µ(y) = αy + β1

and

ν(x) = αx + β2.

We may then plug this back into (1.36) and conclude that

fX(x) ∝ (αx + β2)
−1e−β1x.
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From this it follows that

fX,Y (x, y) ∝ exp [−(β1x + β2y + αxy)] I(x > 0)I(y > 0)

which is equivalent to (1.39). In order for (1.39) to be integrable over the
positive quadrant we must have m10 > 0 and m01 > 0. For the same rea-
son, we must have m11 ≤ 0 (the case m11 = 0 corresponds to independent
marginals). Once m10, m01, and m11 are fixed, m00 is completely deter-
mined by the requirement that the joint density integrates to 1. Specifically,
we have

m00 = log

[

1

m10m01

∫ ∞

0

e−u

(

1 +
m11u

m10m01

)−1

du

]

. (1.40)

This can be evaluated numerically or, via a change of variable, can be
expressed in terms of the tabulated exponential integral function. It is
a classic instance of the kinds of awkward normalizing constants to be
encountered when distributions are conditionally specified.

1.10 Bibliographic Notes

The material in Sections 1.5, 1.6, and 1.7 draws heavily on Arnold and
Press (1989a). Versions of the general theorems in Section 1.8 were used in
several papers by Castillo and Sarabia (1990a, 1990b, 1991). Section 1.9 is
based in part on Arnold and Strauss (1988a).

Exercises

1.1 Using Theorem 1.3, obtain the most general solution of the following
functional equations, where fi(x) and gi(x), i = 1, 2, 3, are unknown
functions:

(a) f1(x)y + f2(x)y2 + f3(x)y3 = xg1(y) + x2g2(y) + x3g3(y).

(b) f1(x) log y +f2(x) log(1+y)+f3(x) = g1(y) log x+g2(y) log(1+
x) + g3(y).

(c) f1(x) + xf1(x)g2(y) = g1(y) + yg1(y)f2(x).

1.2 Find the most general surface of the form z = z(x, y) such that
its cross sections with planes x = 0 and y = 0 are second-order
polynomials, that is,

z(x, y) = a(y)x2 + b(y)x + c(y),
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and
z(x, y) = d(x)y2 + e(x)y + f(x).

Obtain the most general expression for z = z(x, y) and plot some
examples.
(Castillo and Ruiz-Cobo (1992).)

1.3 Let (X, Y ) be a bivariate random variable with joint pdf f(x, y).
Let f(x|y) and f(y|x) be the conditional densities f(x|y) of X given
Y = y, and Y given X = x, respectively.

Prove that:

(a) If f(x0|y) > 0 for all y, then

f(x, y) ∝ f(x|y)f(y|x0)

f(x0|y)
.

(b) A sufficient condition for f(x|y) and f(y|x) to be compatible
with a joint density for (X, Y ) is that

f(x2|y)f(y|x1)

f(x1|y)f(y|x2)

does not depend on y for any choice of (x1, x2) such that x1 �= x2.

1.4 The equation

[a1(x)y + b1(x)]
c1(x)

= [a2(y)x + b2(y)]
c2(y)

,

where a1(x), b1(x), c1(x), a2(y), b2(y), and c2(y) are the unknown
functions, y ≥ −b1(x)/a1(x) and x ≥ −b2(y)/a2(y), and the func-
tions a1(x), a2(y), c1(x), and c2(y) are positive, is known as the
Castillo–Galambos functional equation. Solve this functional equa-
tion, assuming that

lim
x→∞

∣

∣

∣

∣

b1(x)

a1(x)

∣

∣

∣

∣

< ∞,

lim
y→∞

∣

∣

∣

∣

b2(y)

a2(y)

∣

∣

∣

∣

< ∞.

(Castillo and Galambos (1987b).)

1.5 Solve the functional equation,

α1(y) + β1(y)xγ1(y) = α2(x) + β2(x)yγ2(x),

where αi(x), βi(x), and γi(x) are unknown functions.
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Exact and Near Compatibility
in Distributions with Finite
Support Sets

2.1 Introduction

In the finite discrete case, a variety of compatibility conditions can be
derived. Such conditions provide a spectrum of alternative ways of mea-
suring discrepancy between incompatible conditionals. In addition, they
suggests alternative ways in which most nearly compatible distributions
can be defined in incompatible cases. A related concept of ǫ-compatibility
arises naturally in the discussion of incompatible cases.

2.2 Review and Extensions of
Compatibility Results

We are interested in discrete random variables X and Y with possible val-
ues x1, x2, . . ., xI and y1, y2, . . . , yJ , respectively. A candidate conditional
model for the joint distribution of (X, Y ) consists of I × J matrices A and
B with nonnegative elements in which A has columns which sum to 1 and
B has rows which sum to 1.

A and B form a compatible conditional specification for the distribution
of (X, Y ) if there exists some I × J matrix P with nonnegative entries pij

and with
∑I

i=1

∑J
j=1 pij = 1 such that for every i, j

aij = pij/p.j
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and

bij = pij/pi.,

where pi. =
∑J

j=1 pij and p.j =
∑I

i=1 pij .
If such a matrix P exists then, if we assume that

pij = P (X = xi, Y = yj), i = 1, 2, . . . , I, j = 1, 2, . . . , J,

we will have

aij = P (X = xi|Y = yj), i = 1, 2, . . . , I, j = 1, 2, . . . , J,

and

bij = P (Y = yj |X = xi), i = 1, 2, . . . , I, j = 1, 2, . . . , J.

Definition 2.1 (Compatible conditional probability matrices). Two
conditional probability matrices A and B are compatible if there exists a
joint distribution (i.e., P as described above) which has the columns and
rows, respectively, of A and B as its conditional distributions. �

As in Chapter 1, denote the incidence set of a matrix A by NA (i.e.,
NA = {(i, j) : aij > 0}).

As remarked earlier, compatibility of A and B can only occur if NA =
NB . We will always assume that each row and each column of A (and B)
contains at least one positive element (otherwise we would redefine the list
of possible values to leave out the zero rows and/or columns). Our first
characterization of compatibility was given in Theorem 1.1: A and B are
compatible iff they have identical incidence sets and if there exist vectors
u and v for which

cij = aij/bij = uivj , ∀(i, j) ∈ NA. (2.1)

Equivalently, and perhaps more transparently, A and B are compatible
if they have identical incidence sets and if there exist stochastic vectors

τ = (τ1, τ2, . . . , τI) and η = (η1, η2, . . . , ηJ)

such that

ηjaij = τibij , ∀i, j. (2.2)

In the case of compatibility, τ and η can be readily interpreted as the
resulting marginal distributions of X and Y , respectively.

In discussing alternative compatibility criteria, it is convenient to first
consider the case where all elements of A and B are positive before consid-
ering more general cases.
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2.2.1 Compatibility of Positive Conditional Probability

Matrices

If all the elements of A and B are positive, conditions (2.1) and (2.2) can
be related to the concepts of cross-product ratios and uniform marginal
representations.

Definition 2.2 (Cross-product ratio of a 2 × 2 matrix). The cross-
product ratio of a 2× 2 matrix D = (dij) with positive elements is defined
to be

d11d22/d12d21. (2.3)

�

Definition 2.3 (Cross-product ratios of a I × J matrix). The set
of cross-product ratios of a nonnegative I × J matrix A consists of the
cross-product ratios associated with all positive 2 × 2 submatrices of the
form

(

ai1j1 ai1j2

ai2j1 ai2j2

)

, (2.4)

where 1 ≤ i1 < i2 ≤ I and 1 ≤ j1 < j2 ≤ J . �

It is evident that if (2.2) holds (with aij > 0,∀i, j) then every cross-
product ratio of A will be equal to the corresponding cross-product ratio of
B. Conversely, equating of the cross-product ratios guarantees the existence
of vectors τ and η such that (2.2) holds.

Cross-product ratios essentially reflect and describe the dependence struc-
ture of a joint distribution or of a contingency table, or more generally, of
a matrix with nonnegative elements. Mosteller (1968) introduced the con-
cept of a uniform marginal representation of a contingency table to separate
marginal information from dependence structure information in such tables.
The concept is meaningful for any matrix with nonnegative elements.

Definition 2.4 (Uniform marginal representation of a matrix).
Given an I × J matrix with nonnegative elements (with at least one pos-
itive element in each row and column), we iteratively normalize rows and
columns to have sums 1/I and 1/J , respectively, until the procedure con-
verges. The limiting matrix is called the uniform marginal representation
(UMR) of the original matrix. �

It is possible to interpret the UMR of a matrix P with nonnegative ele-
ments which sum to 1, as that matrix Q with nonnegative elements which
sum to 1 and with uniform marginals, which is closest to P in terms of min-
imal Kullback-Leibler information distance (see, e.g., Arnold and Gokhale
(1994)). This distance measure will be useful in our further discussion of
compatibility.



22 2. Exact and Near Compatibility

Definition 2.5 (Kullback-Leibler information pseudo-distance).
Given two matrices P and Q, the Kullback-Leibler information distance
between them is defined as

I(Q, P ) =
∑

i

∑

j

qij log(qij/pij). (2.5)

�

The following algorithm gives the UMR matrix associated with a given
nonnegative matrix A.

Algorithm 2.1 (Obtaining the UMR matrix).

Input. A matrix AI×J and an Error.

Output. The corresponding UMR matrix.

Step 1. Make Error1 = 1.

Step 2. If Error1 > Error, make B = A and go to Step 3; otherwise
return matrix A and exit.

Step 3. Calculate i-marginals by si =
J
∑

j=1

ai,j , i = 1, . . . , I.

Step 4. Normalize rows: aij = aij/(Isi), i = 1, . . . , I, j = 1, . . . , J.

Step 5. Calculate j-marginals by tj =
I
∑

i=1

ai,j , j = 1, . . . , J.

Step 6. Normalize columns: aij = aij/(Jtj), i = 1, . . . , I, j = 1, . . . , J.

Step 7. Calculate Error1 =
∑

i,j |aij − bij | and go to Step 2. �

It is evident from the defining algorithm for the UMR representation
that the UMR representation of A will have the same cross-product ratios
as A. Consequently, two matrices have the same UMRs if and only if they
have identical cross-product ratios. These observations are summarized in
the following theorem:

Theorem 2.1 (Compatibility of conditional probability matrices).
(Arnold and Gokhale (1994)). Suppose that A and B contain only positive
elements, then the following statements are equivalent:

(i) A and B are compatible.

(ii) For every 2 × 2 subtable of A and the corresponding subtable of B,
the cross-product ratios are equal.

(iii) A and B have identical uniform marginal representations. �
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It is evident that if two conditional matrices are compatibles their UMR
matrices and the UMR of the compatible joint probability distribution P
coincide.

Example 2.1 (A compatible case). As an illustration consider two
candidate conditional matrices A and B as follows:

A =

⎛

⎝

1/7 1/4 3/7 1/7
2/7 1/2 1/7 2/7
4/7 1/4 3/7 4/7

⎞

⎠ (2.6)

and

B =

⎛

⎝

1/6 1/6 1/2 1/6
2/7 2/7 1/7 2/7
1/3 1/12 1/4 1/3

⎞

⎠ . (2.7)

To determine compatibility we could compute the cross-product ratios of
all 2×2 subtables of A and B. For example, the cross-product ratios corre-

sponding to the upper left 2×2 subtables of A and B are

(

1

7
· 1

2

)

/

(

2

7
· 1

4

)

and

(

1

6
· 2

7

)

/

(

2

7
· 1

6

)

, in both cases equal to 1. The other 17 cross-

product ratios of A and B are also equal. Instead of considering such cross-
product ratios, we can check for consistency by computing the UMRs of A
and B. By successive row and column renormalizations a common UMR
for A and B may be found; namely

UMR(A) = UMR(B) =

⎛

⎝

0.05478 0.08188 0.14190 0.05478
0.08489 0.12690 0.03665 0.08489
0.11030 0.04123 0.07145 0.11030

⎞

⎠ . (2.8)

Thus, compatibility of A and B given in (2.6) and (2.7) is assured. �

It is not essential that A and B contain only positive elements for The-
orem 2.1 to hold. However, some restrictions on the common incidence set
of A and B are necessary.

Example 2.2 (Counterexample). Consider

A =

⎛

⎝

1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

⎞

⎠ (2.9)

and

B =

⎛

⎝

1/3 2/3 0
0 1/3 2/3

1/3 0 2/3

⎞

⎠ . (2.10)
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It may be verified that A and B have equal cross-product ratios (there
are no positive 2 × 2 submatrices) but they do not have identical uniform
marginal representations, thus A and B are not compatible. �

It is evident that the array of cross-product ratios of a positive I × J
matrix contains a considerable amount of redundant information. The basic
cross-product ratio information of a matrix A with positive elements can
be summarized in the form of the cross-product ratio matrix.

Definition 2.6 (Cross-product ratio matrix). The F(I−1)×(J−1) ma-
trix with elements

fij =
aijaIJ

aiJaIj
, i = 1, . . . , I − 1, j = 1, . . . , J − 1, (2.11)

is called the cross-product ratio matrix corresponding to A. �

An alternative specification of compatibility of two conditional distri-
butions A and B with all elements positive is then possible, in terms of
equality of their corresponding cross-product ratio matrices. Indeed, this
may be the simplest criterion to check.

Example 2.3 (Checking compatibility by means of cross-product
ratio matrices). If

A =

⎛

⎝

1/5 2/7 3/8
3/5 2/7 1/8
1/5 3/7 1/2

⎞

⎠ (2.12)

and

B =

⎛

⎝

1/6 1/3 1/2
1/2 1/3 1/6
1/8 3/8 1/2

⎞

⎠ , (2.13)

compatibility is assured since both A and B share the common cross-
product ratio matrix

F =

(

4/3 8/9
12 8/3

)

. (2.14)

�

2.2.2 Compatibility of General Conditional Probability

Matrices

To determine whether A and B (no longer assumed to have all elements
positive) are compatible it is helpful to go back to the original definition.
They will be compatible if there exists a joint distribution P which has A
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and B as its corresponding conditionals, i.e., such that, for every (i, j) ∈
N(= NA = NB),

pij = aij

∑

i

pij (2.15)

and

pij = bij

∑

j

pij . (2.16)

Thus we are seeking solutions to linear equations. Additional constraints
that must be invoked are

pij ≥ 0, ∀i, j, (2.17)

and
I

∑

i=1

J
∑

j=1

pij = 1. (2.18)

Equation (2.18) is just one more linear equation to add to the list. The
constraint (2.17) is a lot more troublesome. A solution to (2.15), (2.16),
and (2.18) will be of no use to us unless it is nonnegative.

There are two other ways in which we can describe our search for a
compatible P in terms of linear equations subject to inequality constraints.
It seems redundant to list three ways at this juncture, but as we shall see,
all three ways will prove to be useful in noncompatibility cases when we, in
some sense, try to identify an “almost” compatible P . The second method
is based on the observation that if we could find compatible marginals we
could, using A and B, readily obtain P . The third method is based on the
fact that we really only need to find one compatible marginal, say that
corresponding to the random variable X. It combined with B will give us
P .

The three methods to determine compatibility may be summarized as
follows:

Method I. Seek one probability matrix P satisfying

pij − aij

I
∑

i=1

pij = 0, ∀i, j,

pij − bij

J
∑

j=1

pij = 0, ∀i, j,

I
∑

i=1

J
∑

j=1

pij = 1,

(2.19)

and

pij ≥ 0, ∀i, j. (2.20)



26 2. Exact and Near Compatibility

Method II. Seek two probability vectors τ and η satisfying

ηjaij − τibij = 0, ∀i, j,
I
∑

i=1

τi = 1,

J
∑

j=1

ηj = 1,

(2.21)

and

τi ≥ 0, ηj ≥ 0, ∀i, j. (2.22)

Method III. Seek one probability vector τ satisfying

aij

I
∑

k=1

τkbkj − τibij = 0, ∀i, j,

I
∑

i=1

τi = 1,

τi ≥ 0, ∀i.

(2.23)

In Method I, P is directly sought. In Method II we seek the marginals
which combined with A and B will give us P . In Method III, we seek the
X-marginal τ which, combined with B, will give us P .

All three methods involve linear equations to be solved subject to non-
negativity constraints.

Method I involves 2|N | + 1 equations in |N | unknowns (here |N | is the
cardinality of the incidence set NA = NB).

Method II involves |N |+2 equations in I +J unknowns while Method III
involves |N | + 1 equations in I unknowns. System (2.23) will probably be
the one we will try to solve in practice since it involves less equations and
less unknowns. Systems (2.19)–(2.20) and (2.21)–(2.22) will be of interest
to us in Section 2.8 in the context of ǫ-compatibility.

To check the existence of solutions and to identify all solutions to systems
of equations under nonnegativity constraints, such as those above, we can
use the following theorems (Castillo, Cobo, Jubete, and Pruneda (1998)).

First we need some definitions.

Definition 2.7 (Cone generated by a matrix). Let A be a real matrix
of dimension m × n. The polyhedral convex cone generated by A, denoted
by π(A), is the set of all vectors in IRm which can be expressed as linear
combinations of the columns of A with nonnegative coefficients. �

Definition 2.8 (Dual or polar cone). Let π be a cone in IRm. The
dual or polar cone of π is the set

Ω(π) = {u ∈ IRm : v′u ≤ 0, ∀v ∈ π} .
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In the case in which π is the cone generated by A, the dual cone admits a
simple description involving the matrix A. Thus

Ω(π(A)) =
{

u ∈ IRm : AT u ≤ 0
}

.

�

It can be verified that Ω(π(A)) itself is a polyhedral convex cone. It too
can be viewed as a cone generated by some finite set of vectors in IRm.
In any cone π, there may be some vectors u such that −u ∈ π and some
vectors u such that −u /∈ π. Consequently, a cone can be represented as
the sum of a linear space and a cone. The polar cone Ω(π(A)) is thus of
the form

Ω(π(A)) = L(V ) + π(W ), (2.24)

where L(V ) is the linear space generated by the columns of an (m × k1)-
dimensional matrix V and π(W ) is the cone generated by the columns of
an (m×k2)-dimensional matrix W . The matrices V and W that appear in
(2.24) are called the generators of the dual cone Ω(π(A)). Details regarding
the construction of the specific matrices V and W appearing in (2.24) may
be found in Castillo et al. (1998).

Theorem 2.2 (Existence of a nonnegative solution in a linear
system). The system,

Cx = a subject to x ≥ 0, (2.25)

where C is a m× n constant matrix, x is a column matrix of n unknowns,
and a is a m column matrix of real numbers, has a solution iff

V T a = 0,
WT a≤ 0,

(2.26)

where V and W are the generators of Ω(π(C)), the dual or polar cone of the
cone generated by C (i.e., those matrices appearing in the representation
(2.24)). �

Thus, analyzing the compatibility of the system of equations Cx = a
reduces to finding the polar cone Ω(π(C)) and checking whether or not
V T a = 0 and WT a ≤ 0.

We will illustrate the use of this theorem for Method III above. In that
situation, the role of x is played by τ , a = (0, . . . , 0, 1) and the coefficients
of the matrix C can be identified from (2.23).

Due to the simple structure of a in our application, we need only check
the last component of the dual cone generators, that is, vin = 0,∀i and
wjn ≤ 0,∀j.
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Theorem 2.3 (Solution of a system of linear equations and in-
equalities) Consider a system of linear equations and inequalities. With-
out loss of generality, we can assume that it can be written in the following
form:

Bx = 0,
Cx ≤ 0,
xn = 1.

(2.27)

where B and C are matrices associated with the equalities and inequalities
of the system. The set X of solutions of (2.27) is

X ≡ {x ∈ Ω(L(B) + π(C))|xn = 1}. (2.28)

This implies that to solve (2.27) we can find first the polar cone Ω(L(B)+
π(C)) associated with the first two sets of constraints, and then impose the
condition xn = 1. �

Example 2.4 (Compatibility using Method III). Consider the ma-
trices A and B:

A =

(

1/4 1/2
3/4 1/2

)

, (2.29)

B =

(

1/3 2/3
3/5 2/5

)

. (2.30)

If we use Method III, then the system (2.23) becomes

⎛

⎜

⎜

⎜

⎝

1/4 −3/20
1/3 −1/5
−1/4 3/20
−1/3 1/5

1 1

⎞

⎟

⎟

⎟

⎠

τ =

⎛

⎜

⎜

⎜

⎝

0
0
0
0
1

⎞

⎟

⎟

⎟

⎠

; τ ≥ 0. (2.31)

According to Theorem 2.2 we need to obtain the generators of the dual
cone Ω(π(C)) = L(V ) + π(W ), which are given in Table 2.1. The reader
interested in the derivation of these generators is referred to Castillo, Cobo,
Jubete, and Pruneda (1998). In general it is not a trivial exercise.

Since the generators V and W do satisfy conditions (2.26), the condi-
tional probability matrices A and B are compatible. �

Example 2.5 (Incompatibility using Method III). Consider the ma-
trices A and B:

A =

(

1/4 1/2
3/4 1/2

)

, (2.32)

B =

(

1/6 5/6
3/5 2/5

)

. (2.33)
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TABLE 2.1. Generators of the dual cone Ω(π(C)) in Example 2.4.

w1 w2 v1 v2 v3

–5/2 5/2 1 4/3 –4/3
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

–3/8 –5/8 0 0 0

TABLE 2.2. Generators of the dual cone Ω(π(C)) in Example 2.5.

w1 w2 v1

16/3 100/9 148/9
–4 –10/3 –22/3
0 0 1

Using again Method III, the system (2.23) becomes
⎛

⎜

⎜

⎜

⎝

1/8 −3/20
5/12 −1/5
−1/8 3/20
−5/12 1/5

1 1

⎞

⎟

⎟

⎟

⎠

τ =

⎛

⎜

⎜

⎜

⎝

0
0
0
0
1

⎞

⎟

⎟

⎟

⎠

, τ ≥ 0. (2.34)

At this stage, if desired, we can remove redundant rows and linearly
dependent rows before proceeding to computing the generators of the dual
cone. For example, we can remove Equations 3 and 4, because they are
exactly the same (sign changed) as Equations 1 and 2, respectively, to
obtain the new system:

⎛

⎝

1/8 −3/20
5/12 −1/5

1 1

⎞

⎠ τ =

⎛

⎝

0
0
1

⎞

⎠ , τ ≥ 0. (2.35)

Following Theorem 2.2 we obtain the generators of the dual Ω(π(C∗)) =
L(V ) + π(W ), which are given in Table 2.2.

These matrices V and W do not satisfy (2.26), thus the conditional
probability matrices A and B are incompatible. �

Example 2.6 (A difficult case). Consider the matrices A and B:

A =

⎛

⎝

1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

⎞

⎠ , (2.36)
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TABLE 2.3. Generators of the dual cone Ω(π(C)) in Example 2.6.

w1 w2 w3 v1

6 12 12 30
–6 –6 –6 –18
–3 –6 –3 –12
0 0 0 1

B =

⎛

⎝

1/3 2/3 0
0 1/3 2/3

1/3 0 2/3

⎞

⎠ . (2.37)

We cannot resolve this case using cross-product ratio matrices (there are
no positive 2×2 submatrices). However, Method III and Theorem 2.2 may
be used without difficulty.

In this case, the system (2.23) becomes

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/6 0 −1/6
1/3 −1/6 0
0 0 0
0 0 0

−1/3 1/6 0
0 1/3 −1/3

−1/6 0 1/6
0 0 0
0 −1/3 1/3
1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

τ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
0
0
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, τ ≥ 0, (2.38)

which by removing redundant equations can be written as:

⎛

⎜

⎝

1/6 0 −1/6
1/3 −1/6 0
0 1/3 −1/3
1 1 1

⎞

⎟

⎠
τ =

⎛

⎜

⎝

0
0
0
1

⎞

⎟

⎠
, τ ≥ 0. (2.39)

The generators of the dual Ω(π(C)) = L(V )+π(W ), where C is the matrix
associated with system (2.39), are given in Table 2.3.

Since V and W do not satisfy (2.26), the conditional probability matrices
A and B are incompatible. �

2.3 Near Compatibility

Suppose that we are given two families of conditional distributions of X
given Y and of Y given X (i.e., A and B above) which are not compatible.
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How can we measure such incompatibility? And, how can we find a dis-
tribution P that is, in some sense, minimally incompatible with the given
conditional specifications? Such results will be of potential interest in the
context of elicitation of joint prior distributions in Bayesian analysis. In
the case of a two-dimensional parameter θ, the informed expert might give
conditional probabilities for θ1 given particular choices of values for θ2 and
conditional probabilities for θ2 given values of θ1. If our expert is fallible, it
is quite possible that the collection of conditional probabilities thus elicited
might be incompatible. A suitable choice of prior to use in subsequent anal-
ysis might then be that joint distribution f(θ1, θ2) that is least at variance
with the given elicited conditional probabilities. More generally, we might
envision obtaining partial or complete conditional specification from more
than one expert. Such information would most likely lack consistency and,
again a minimally discrepant distribution might be sought. The Kullback-
Leibler information function provides a convenient discrepancy measure
in such settings. As we shall see, not only does it provide a discrepancy
measure but, using it, a straightforward algorithm can be described which
will yield the most nearly compatible distribution. We will mention alter-
natives to the Kullback-Leibler measure but, in many ways, it seems the
most attractive choice.

2.4 Minimal Incompatibility in Terms of
Kullback-Leibler Pseudo-Distance

Suppose that A and B, two families of conditional distributions, are not
compatible and perhaps do not even have identical incidence sets. We seek
a probability matrix P with nonnegative entries summing to 1, which has
conditionals as close as possible to those given by A and B. Thus, we are
seeking P = (pij)I×J with

∑I
i=1

∑J
j=1 pij = 1 and with

pij/p.j ≈ aij , ∀i, j,

and
pij/pi. ≈ bij , ∀i, j.

To measure discrepancy between distributions we will use the Kullback-
Leibler information function as a measure of (pseudo) distance. Using it,
it is reasonable to search for a matrix P that will minimize the following
objective function

I
∑

i=1

J
∑

j=1

bij log

(

bijpi.

pij

)

+

I
∑

i=1

J
∑

j=1

aij log

(

aijp.j

pij

)

. (2.40)

Define
D = A + B,
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with elements dij = aij + bij . In order to ensure that a unique minimizing
choice of P exists for the objective function (2.40), it is necessary to make
some assumptions about the incidence set of the matrix D. For example, D
must not be block diagonal. A reasonable requirement that we will assume
is that some power of D, perhaps D itself, have all elements strictly positive.

If we differentiate (2.40) and use a Lagrange multiplier for the constraint
∑I

i=1

∑J
j=1 pij = 1, we may verify:

Theorem 2.4 Denote by P ∗ the choice of P which minimizes (2.40). Then
P ∗ must satisfy the following system of equations:

p∗ij
p∗i.

+
p∗ij
p∗.j

= dij , i = 1, 2, . . . , I, j = 1, 2, . . . , J. (2.41)

�

It is possible to solve (2.41) using a simple iterative algorithm:

p
(n+1)
i,j =

dij/[1/p
(n)
i. + 1/p

(n)
.j ]

∑I
i=1

∑J
j=1 dij/[1/p

(n)
i. + 1/p

(n)
.j ]

, (2.42)

beginning initially with p
(0)
ij = 1/IJ, i = 1, 2, . . . , I, j = 1, 2, . . . , J. The

algorithm (2.42) does appear to usually converge. Indeed it converges quite
rapidly in all examples tried. However, a proof of this convergence is lacking.
Fortunately there is another way to seek the optimal choice P ∗ to minimize
(2.40).

Let P ∗ be the solution to (2.41). Introduce the notation

p∗1|2(i|j) = p∗ij/p∗.j ,

p∗2|1(j|i) = p∗ij/p∗i..

Now for each i, j we have

p∗1|2(i|j) + p∗2|1(j|i) = dij .

Thus if dij �= 0, there exist numbers q∗ij1 and q∗ij2 such that

p∗1|2(i|j) = dijq
∗
ij1, (2.43)

p∗2|1(j|i) = dijq
∗
ij2, (2.44)

where

q∗ij1 + q∗ij2 = 1, i = 1, 2, . . . , I, j = 1, 2, . . . , J, (2.45)

and indeed

q∗ijk ∈ [0, 1], ∀i, j, k.
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In addition, the following relations hold

1 =

I
∑

i=1

p∗1|2(i|j) =

I
∑

i=1

dijq
∗
ij1, j = 1, 2, . . . , J, (2.46)

and

1 =

J
∑

j=1

p∗2|1(j|i) =

J
∑

j=1

dijq
∗
ij2, i = 1, 2, . . . , I. (2.47)

We seek an I × J × 2 array, Q∗ of nonnegative q∗ijk’s satisfying (2.45),
(2.46), and (2.47).

Visualizing our array as having rows, columns and “stacks,” we see that
(2.47) can be achieved by row normalizations, (2.46) by column normaliza-
tions, and (2.45) by stack normalizations. If we begin with the initial array
q∗ijk ≡ 0.5 and iteratively apply such row, column, and stack normalizations
we are guaranteed convergence to a unique Q∗ since we are simply using a
variation of the Darroch-Ratcliff (1972) iterative scaling algorithm.

Algorithm 2.2 (Obtaining the matrix Q∗).

Input. Matrices A and B, of dimension I × J , such that the columns of
A and the rows of B sum to 1, and DesiredErr, the desired error.

Output. Matrix Q∗.

Step 1. Calculate D = A + B.

Step 2. Initialize q∗ijk = 0.5, ∀i, j, k, and make TrueErr = DesiredErr.

Step 3. If TrueErr > DesiredErr, then make r∗ijk = q∗ijk, ∀i, j, k, and
go to Step 4. Otherwise, go to Step 8.

Step 4. Normalize rows: q∗ij2 =
q∗ij2

J
∑

j=1

dijq∗ij2

, ∀i, j.

Step 5. Normalize columns: q∗ij1 =
q∗ij1

I
∑

i=1

dijq∗ij1

; ∀i, j.

Step 6. Normalize stacks: q∗ijk = qijk/(q∗ij1 + q∗ij2), ∀i, j, k.

Step 7. Calculate TrueErr = max
i,j,k

|q∗ijk − r∗i,j,k|.

Step 8. Return matrix Q∗. �
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Arnold and Gokhale (1998c) report that in cases that they have consid-
ered, the determination of P ∗ via the Darroch-Ratcliff determination of Q∗

agrees with the determination of P ∗ based on the usually quicker iterative
scheme (2.42). This supports, but of course does not prove, the claim that
the simple scheme (2.42) may be used routinely in practice.

Example 2.7 (Obtaining a nearly compatible probability matrix).
Consider the following candidate arrays A and B:

A =

⎛

⎜

⎝

0.3 0.3 0.0 0.2
0.2 0.1 0.2 0.3
0.5 0.2 0.4 0.4
0.0 0.4 0.4 0.1

⎞

⎟

⎠
, (2.48)

B =

⎛

⎜

⎝

0.2 0.3 0.4 0.1
0.5 0.0 0.2 0.3
0.6 0.1 0.2 0.1
0.0 0.4 0.6 0.0

⎞

⎟

⎠
. (2.49)

It is not difficult to verify that they are incompatible, they do not even
share a common coincidence matrix!

If we write the I × J × 2 array Q∗ as an I × 2J matrix whose first J
columns give the q∗ij1’s and whose second J columns give the q∗ij2’s, iterative
normalization of rows, columns, and stacks yields in the limit:

Q∗ =

⎛

⎜

⎝

0.346 0.505 0.352 0.610 0.654 0.495 0.648 0.390
0.346 0.506 0.353 0.610 0.654 0.494 0.647 0.390
0.532 0.687 0.539 0.771 0.468 0.313 0.461 0.229
0.388 0.550 0.395 0.652 0.613 0.450 0.606 0.348

⎞

⎟

⎠
.

Referring to (2.43) and (2.44), we can then write the corresponding condi-
tional distributions which are closest to A and B in the sense of minimizing
(2.40). They are

P ∗
1|2(i|j) =

⎛

⎜

⎝

0.1728 0.3032 0.1410 0.1830
0.2422 0.0506 0.1411 0.3662
0.5850 0.2061 0.3235 0.3854
0.0000 0.4402 0.3945 0.0652

⎞

⎟

⎠
(2.50)

and

P ∗
2|1(j|i) =

⎛

⎜

⎝

0.3272 0.2968 0.2590 0.1170
0.4578 0.0494 0.2589 0.2338
0.5150 0.0939 0.2765 0.1146
0.0000 0.3598 0.6055 0.0348

⎞

⎟

⎠
. (2.51)

The matrices displayed in (2.50) and (2.51) satisfy condition (ii) of The-
orem 1.1 and thus are compatible with some probability distribution P ∗.
To fully identify P ∗, it remains only to identify one of its marginal distri-
butions. In general, this can be accomplished by solving a system of I × J
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linear equations. However, if column j of P ∗
1|2 contains no zeros (as is the

case with columns 2, 3, and 4 in our example), we can write

p∗i. =
p∗1|2(i|j)/p∗2|1(j|i)

∑4
i=1 p∗1|2(i|j)/p∗2|1(j|i)

. (2.52)

Evaluating (2.52), say for j = 2, using the figures displayed in arrays (2.50)
and (2.51) we obtain

p∗1. = 0.18701, p∗2. = 0.18741,
p∗3. = 0.40174, p∗4. = 0.22384.

(2.53)

For completeness, if we wish we may also use an analogous approach to
obtain the other marginal distribution:

p∗.1 = 0.35371, p∗.2 = 0.18302,
p∗.3 = 0.34347, p∗.4 = 0.11981.

(2.54)

Combining the values in (2.53) (the marginal distribution of X) with
the values in (2.51) (the conditional distributions of Y given X) we finally
obtain the following optimal distribution (i.e., that which is least discordant
with A and B):

P ∗ =

⎛

⎜

⎝

0.0612 0.0555 0.0484 0.0219
0.0857 0.0093 0.0485 0.0439
0.2069 0.0377 0.1111 0.0461
0.0000 0.0805 0.1355 0.0078

⎞

⎟

⎠
. (2.55)

�

The algorithm used to determine P ∗ works for almost any pair of candi-
date conditional distributions A, B (we only need something like (A+B)k >
0 for some k). It works even when cross-product ratios are noninformative,
as in the pathological example given in expressions (2.9) and (2.10). In
addition, the algorithm can be used to determine whether two matrices A
and B are compatible. We simply find the corresponding P ∗ and compare
its conditional distributions (which were found in the development of P ∗)
with A (and/or B). If they agree, A and B are compatible; if not, A and
B are incompatible.

Example 2.8 (Checking compatibility). Recall A and B, as given in
(2.9) and (2.10):

A =

⎛

⎝

1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

⎞

⎠ (2.56)
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and

B =

⎛

⎝

1/3 2/3 0
0 1/3 2/3

1/3 0 2/3

⎞

⎠ . (2.57)

It is perhaps not obvious whether these are incompatible or not. We apply
the above algorithm to obtain

Q∗ =

⎛

⎝

0.5673 0.4519 0.3415 0.4327 0.5481 0.6585
0.6758 0.5673 0.4519 0.3242 0.4327 0.5481
0.6327 0.5200 0.4052 0.3673 0.4800 0.5948

⎞

⎠ , (2.58)

P ∗
1|2(i|j) =

⎛

⎝

0.4728 0.5272 0.0000
0.0000 0.4728 0.5272
0.5272 0.0000 0.4728

⎞

⎠ , (2.59)

P ∗
2|1(j|i) =

⎛

⎝

0.3606 0.6394 0.000
0.000 0.3606 0.6394
0.3061 0.000 0.6939

⎞

⎠ , (2.60)

with corresponding marginals

p∗1. = 0.2562, p∗2. = 0.4073, p∗3. = 0.3365,
p∗.1 = 0.1954, p∗.2 = 0.3107, p∗.3 = 0.4940.

Thus, we finally get as our most nearly compatible distribution

P̃ =

⎛

⎝

0.0924 0.1638 0.0000
0.0000 0.1468 0.2605
0.1030 0.0000 0.2335

⎞

⎠ . (2.61)

Since (2.59) differs from (2.56) and (2.60) differs from (2.57), we confirm
the incompatibility of (2.56) and (2.57). �

The value of the criterion (2.40) can be used as a measure of incompati-
bility. If two pairs (A, B) and (C, D) of incompatible matrices of the same
order are given, the pair with the lower value of (2.40) can be ranked as
less incompatible. Indeed, if matrices (A, B) are compatible the minimal
value of (2.40) is zero and the converse also holds.

2.5 More Than One Expert

Instead of just one pair of conditional distributions, we might have several,
undoubtedly lacking in consistency, from a variety of forecasters. More gen-

erally, we might have a number, say n
(1)
ij , of determinations of aij (possibly

a different number of determinations for each pair (i, j)) and n
(2)
ij determi-

nations of bij . We might then seek a joint distribution, P , that is minimally
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discrepant from all of these conditional probabilities. If our determinations
are judged to be equally reliable than a reasonable approach would begin
by determining averages such as:

ãij =
1

n
(1)
ij

n
(1)
ij

∑

k=1

aij(k) (2.62)

and

b̃ij =
1

n
(2)
ij

n
(2)
ij

∑

k=1

bij(k). (2.63)

Assume that the n
(1)
ij ’s and n

(2)
ij ’s are positive (i.e., at least one deter-

mination has been provided for each of the conditional probabilities). Also
assume that each row and column of Ã and B̃ has at least one nonzero
entry. Next, column normalize Ã to make its columns sum to 1, to obtain
˜̃A. Analogously, row normalize B̃ to obtain ˜̃B. Then seek a distribution P ∗

that is minimally discrepant from ˜̃A and ˜̃B, using the techniques of Section
2.4, i.e., using criterion (2.40).

If the determination of the aij ’s and bij ’s are judged to be of unequal
reliability, then weights may be appropriately introduced to the definitions
of ãij and b̃ij in (2.62) and (2.63) above.

Other criteria may of course be used. The advantage of the one just de-
scribed is that it is simple and can be implemented using the same methods

as were used in the case of one expert (just replacing (A, B) by ( ˜̃A, ˜̃B)).
A modified version of the objective function (2.40) allowing multiple

determinations of the aij ’s and bij ’s can be set up as follows:

I
∑

i=1

J
∑

j=1

n
(1)
ij

∑

k=1

aij(k) log

(

aij(k)p.j

pij

)

+

I
∑

i=1

J
∑

j=1

n
(2)
ij

∑

k=1

bij(k) log

(

bij(k)pi.

pij

)

.

(2.64)

In the case in which all the n
(1)
ij ’s and all the n

(2)
ij ’s are equal say to n

(the case of n experts each providing complete conditional distributions
(Ak, Bk), k = 1, 2, . . . , n), use of criterion (2.64) will be completely equiv-
alent to use of criterion (2.40) applied to the average matrices Ã and
B̃.

2.6 Related Discrepancy Measures

There are, of course, a variety of distance and pseudo-distance measures
that can be applied to determine how far the conditional distributions of a
matrix P are from two given conditional probability matrices A and B.
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The Kullback-Liebler criterion (2.40) was a reasonable candidate and
turned out to be remarkably tractable. It is worth noting that, if we
switched the roles of aij , bij and p1|2(i|j) and p2|1(j|i) in (2.40) then, since
the Kullback-Liebler measure is not symmetric, we obtain a related but not
equivalent objective function:

I
∑

i=1

J
∑

j=1

pij

pi.
log

(

pij

pi.bij

)

+

I
∑

i=1

J
∑

j=1

pij

p.j
log

(

pij

p.jaij

)

. (2.65)

Criterion (2.65) is much more troublesome to work with than is criterion
(2.40). Absent any strong argument for using (2.65), use of (2.40) seems
preferable.

However, some tractable alternatives are available. Recall that our goal
is to choose P so that pij is well approximated by aijp.j ,∀i, j, and so that
also pij is well approximated by bijpi.,∀i, j. This suggests consideration of
a quadratic measure of discrepancy such as

Q =

I
∑

i=1

J
∑

j=1

[(pij − bijpi.)
2 + (pij − aijp.j)

2]. (2.66)

which can also be written as

Q =
I
∑

i=1

J
∑

j=1

[

2 (pij − (bijpi. + aijp.j)/2)
2

+ (aijp.j − bijpi.)
2
/2

]

≥
I
∑

i=1

J
∑

j=1

[

(aijp.j − bijpi.)
2
/2

]

.

(2.67)

Thus, the minimizing value of P corresponding to this objective function
Q can be found by solving the following system of linear equations:

pij = (p.jaij + pi.bij)/2, i = 1, 2, . . . , I, j = 1, 2, . . . , J, (2.68)

subject to
∑I

i=1

∑J
j=1 pij = 1.

An efficient manner of solving system (2.68) involves solving first for row
and column sums of (2.68) (namely the pi.’s and p.j ’s).

If we sum (2.68) over j for each fixed i, and over i for each fixed j, we
are led to the following system of I + J linear equations:

pi. =
1

2

⎡

⎣

J
∑

j=1

p.jaij + pi.

⎤

⎦ , i = 1, 2, . . . , I, (2.69)

p.j =
1

2

[

p.j +

I
∑

i=1

pi.bij

]

, j = 1, 2, . . . , J. (2.70)
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If we define an (I + J)-dimensional stochastic vector

q =
1

2
(p1., p2., . . . , pI., p.1, p.2, . . . , p.J)

we can write the system (2.69)-(2.70) in the form

q = qR, (2.71)

where

R =
1

2

(

I B
A′ I

)

. (2.72)

The matrix R is stochastic and the solution to (2.71) will be a long-run
stationary distribution of a Markov chain with transitions governed by R.
The fact that the diagonal elements of R are positive, guarantees that the
chain is aperiodic. It will have a unique long-run distribution (stationary
distribution) provided that R is irreducible. Iterative application of (2.71)
will converge to a solution to (2.71) in the irreducible case.

Having found the pi.’s and p.j ’s by solving (2.71), it is a straightforward
matter to obtain the pij ’s directly from (2.68).

In fact (2.68) itself can be interpreted in a Markovian context. If we
rewrite (pij) in stacked form as an (I × J)-dimensional row vector, then
we may verify that (pij) will be a left eigenvector corresponding to the
eigenvalue 1 normalized to sum to 1, of a somewhat complicated stochas-
tic matrix. So, in most cases (irreducibility considerations), the following
iterative scheme will converge to a solution to (2.68):

p
(n+1)
ij =

1

2
[p

(n)
.j aij + p

(n)
i. bij ]. (2.73)

Although the iterative scheme (2.71) is of smaller dimension than scheme
(2.73) (since it involves solving a system with I + J − 2 instead of IJ − 1
unknowns), the simplicity of algorithm (2.73) is appealing unless I and/or
J is large.

Example 2.9 (Iterative method). Application of algorithm (2.73) (cri-
terion (2.66)) to the matrices (2.48) and (2.49) leads to

P ∗∗ =

⎛

⎜

⎝

0.0754 0.0562 0.0382 0.0213
0.0859 0.0092 0.0518 0.0466
0.2141 0.0384 0.1049 0.0435
0.0000 0.0796 0.1292 0.0059

⎞

⎟

⎠
, (2.74)

which is slightly different from the matrix

P ∗ =

⎛

⎜

⎝

0.0612 0.0555 0.0484 0.0219
0.0857 0.0093 0.0485 0.0439
0.2069 0.0377 0.1111 0.0461
0.0000 0.0805 0.1355 0.0078

⎞

⎟

⎠
, (2.75)

which was obtained in (2.55) by minimizing the KL criterion. �
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Example 2.10 (Iterative method applied to matrices with zeros).
Applying the iterative method to the matrices (2.56) and (2.57) we obtain
the matrix

P ∗∗ =

⎛

⎝

0.0917 0.1583 0.0000
0.0000 0.1417 0.2583
0.1083 0.0000 0.2417

⎞

⎠ . (2.76)

�

Example 2.11 (Obtaining the compatible probability matrix by
the iterative method). Consider again the matrices in (2.6) and (2.7):

A =

⎛

⎝

1/7 1/4 3/7 1/7
2/7 1/2 1/7 2/7
4/7 1/4 3/7 4/7

⎞

⎠ (2.77)

and

B =

⎛

⎝

1/6 1/6 1/2 1/6
2/7 2/7 1/7 2/7
1/3 1/12 1/4 1/3

⎞

⎠ . (2.78)

We can use the iterative method (2.73) above to obtain the probability
matrix

P ∗∗ =

⎛

⎝

1/25 1/25 3/25 1/25
2/25 2/25 1/25 2/25
4/25 1/25 3/25 4/25

⎞

⎠ (2.79)

which is compatible with the above A and B conditionals. �

Other criteria might be of interest. Replacing squares in (2.66) by abso-
lute values leads to

Q′ =

I
∑

i=1

J
∑

j=1

[|pij − bijpi.| + |pij − aijp.j |]. (2.80)

Linear programming techniques could be useful in managing this objective
function.

It might be considered more natural to seek P so that pij/p.j is close to
aij , ∀i, j and pij/pi. is close to bij , ∀i, j. The price to be paid if we choose
this route is that the more natural objective functions will be more difficult
to minimize, e.g.,

Q′′ =

I
∑

i=1

J
∑

j=1

[

(

aij −
pij

p.j

)2

+

(

bij −
pij

pi.

)2
]

, (2.81)

or

Q′′′ =

I
∑

i=1

J
∑

j=1

[∣

∣

∣

∣

aij −
pij

p.j

∣

∣

∣

∣

+

∣

∣

∣

∣

bij −
pij

pi.

∣

∣

∣

∣

]

. (2.82)
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2.7 Markovian Measures of Discrepancy

If we have compatible conditional specifications, then a Gibbs sampler-type
argument can be used to identify the corresponding marginal distributions
(cf. the discussion in Section 1.7). In the finite discrete case it is particularly
simple to describe. The long-run distribution of the I state chain with
transition matrix BA′ will coincide with (p1., p2., . . . , pI.), the X marginal
distribution of P . Analogously, the long-run distribution of the J state
chain A′B will coincide with (p.1, p.2, . . . , p.J ), the Y marginal of P .

If we denote the long-run distributions corresponding to BA′ and A′B by
π = (π1, π2, . . . , πI) and η = (η1, η2, . . . , ηJ), respectively, then, provided A
and B are compatible, we will have

aijηj = bijπi, i = 1, 2, . . . , I, J = 1, 2, . . . , J. (2.83)

If A and B are incompatible the left and right sides of (2.83) will not all
be equal.

This suggests use of the following index of incompatibility

D =

I
∑

i=1

J
∑

j=1

(aijηj − bijτi)
2, (2.84)

where η and τ are solutions of the system

πBA′ = π (2.85)

and
ηA′B = η. (2.86)

Note that in fact only one of the two systems (2.85) and (2.86) needs to
be solved since the solutions are related by

η = πB. (2.87)

It must be emphasized that solutions to (2.85) and (2.86) which satisfy
(2.87) will almost always exist, whether or not A and B are compatible. It
is only in the compatible case however that (2.83) holds.

Liu (1996) briefly discusses the difference between the arrays (aijηj) and
(bijτi) in the incompatible case in the context of Gibbs sampler simulations.

Example 2.12 (Markovian measure of incompatibility; incompat-
ible case). Consider again the matrices in (2.48) and (2.49). Then we
have

BA′ =

⎛

⎜

⎝

0.17 0.18 0.36 0.29
0.21 0.23 0.45 0.11
0.23 0.20 0.44 0.13
0.12 0.16 0.32 0.40

⎞

⎟

⎠
, A′B =

⎛

⎜

⎝

0.46 0.14 0.26 0.14
0.23 0.27 0.42 0.08
0.34 0.20 0.36 0.10
0.43 0.14 0.28 0.15

⎞

⎟

⎠
,

(2.88)
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and then

π = ( 0.191056 0.193394 0.40089 0.214659 ) (2.89)

and
η = ( 0.375442 0.18327 0.324075 0.117213 ) , (2.90)

which lead to a value of D = 0.019 for the Markovian measure of incom-
patibility. �

The actual value assumed by D does not appear to have a ready inter-
pretation. It can be used to order pairs (A, B) in terms of discrepancy but
does not seem to provide an intrinsic absolute measure of discrepancy. Of
course, in the case of compatibility, D = 0.

Example 2.13 (Markovian measure of incompatibility; compat-
ible case). Consider again the matrices in (2.6) and (2.7). Then we
have

BA′ =

⎛

⎝

17/56 1/4 25/56
3/14 16/49 45/98

25/112 15/56 57/112

⎞

⎠ (2.91)

and

A′B =

⎛

⎜

⎝

29/98 15/98 25/98 29/98
15/56 23/112 29/112 15/56
25/98 29/196 67/196 25/98
29/98 15/98 25/98 29/98

⎞

⎟

⎠
, (2.92)

so that
π = ( 0.24 0.28 0.48 ) (2.93)

and
η = ( 0.28 0.16 0.28 0.28 ) , (2.94)

which lead to a value of D = 0 for our Markovian measure of incompati-
bility. �

A variant measure of incompatibility is suggested by the definition of D
(i.e., (2.84)). We know that, in the compatible case and only in that case,
there will exist vectors η and τ such that (2.83) holds. These vectors η and
τ admit interpretation as marginals of (X, Y ) or as long-run distributions of
related Markov chains, and we do not have to insist on these interpretations
in the formulation of our objective function. We can instead set up the
objective function

D̃(u, v) =

I
∑

i=1

J
∑

j=1

(aijvj − bijui)
2 (2.95)
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and seek stochastic vectors u∗ and v∗ to minimize D̃(u, v). The achieved
value D∗ = D(u∗, v∗) will be our index of inconsistency. If A, B are com-
patible then D∗ = 0 and u∗ = π and v∗ = η.

2.8 ǫ-Compatibility

In Section 2.2.2 we described three linear equation formulations of the
search for a matrix P compatible with given conditional matrices A and
B. If, instead of precise compatibility, we are willing to accept approximate
compatibility we will need to modify our objectives only slightly. First we
postulate the existence of a weight matrix W which quantifies the relative
importance of accuracy in determining the various elements in P . Thus
if wij is small, then quite precise determination of pij is deemed to be
desirable. If, for some i, j, wij is large, then we are not so worried about
precise determination of that particular element pij . We will then say that
we can find an ǫ-compatible matrix P corresponding to A and B if we can
approximately solve systems in Methods I, II, and III of Section 2.2.2 with
an error tolerance of ǫwij in all i, j. Thus our revised options in the search
for an (ǫ, W )-compatible matrix P (for given A, B) are as follows:

Option 1. Seek a probability matrix P to satisfy

|pij − aij

I
∑

i=1

pij | ≤ ǫwij , ∀i, j,

|pij − bij

J
∑

j=1

pij | ≤ ǫwij , ∀i, j,

I
∑

i=1

J
∑

j=1

pij = 1,

(2.96)

and

pij ≥ 0, ∀i, j. (2.97)

Option 2. Seek two probability matrices τ and η such that

|ηjaij − τibij | ≤ ǫwij , ∀i, j,
I
∑

i=1

τi = 1,

J
∑

j=1

ηj = 1,

(2.98)

and

τi ≥ 0, ηj ≥ 0, ∀i, j. (2.99)
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Option 3. Seek one probability vector τ satisfying

|aij

I
∑

i=1

τibij − τibij | ≤ ǫwij , ∀i, j,

I
∑

i=1

τi = 1,

(2.100)

and
τi ≥ 0, ∀i. (2.101)

Of course each of the constraints involving absolute values in (2.96)-
(2.100) can be replaced by two linear inequality constraints. So all our
constraints and equations are linear.

The above options immediately motivate three different concepts of ǫ-
compatibility.

Definition 2.9 (ǫ-compatible matrices). Two conditional probability
matrices A and B are said to be ǫ1-compatible iff system (2.96) ((2.98) or
(2.100)) has a solution for ǫ ≥ ǫ1 and not for ǫ < ǫ1, i.e. iff ǫ1 is the minimum
value of ǫ that allows system (2.96) ((2.98) or (2.100)) to have a solution. �

Note that two matrices A and B are compatible iff they are 0-compatible,
a special case of ǫ-compatibility.

To analyze and discuss the near-compatibility problem derived from
each of these concepts we can use, for example, any of the following three
methods:

Method 1. (Check for existence of a solution). Determine the set of
ǫ values that allows the system to have a solution.

Method 2. (Solving the system of inequalities). Find the most gen-
eral solution of the system considering ǫ as one more variable. This
can be done using the methods described in Theorem 2.3.

Method 3. (Solving a linear programming problem). Use linear pro-
gramming methods to minimize the function f(ǫ, p) = ǫ, where p de-
notes the vector obtained by stacking the columns of matrix P , or
f(τ , η, ǫ) = ǫ or f(τ , ǫ) = ǫ subject to the appropriate constraints
(2.96)–(2.97), (2.98)–(2.99), or (2.100)–(2.101).

We of course might apply these methods and options to either compatible
or incompatible pairs A, B.

A full list of examples would then involve 3 × 3 × 2 = 18 detailed com-
putations. We content ourselves with a stratified sample of such examples.
Throughout, for simplicity, we assume wij = 1,∀i, j. However, other values
are possible.
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Example 2.14 (A compatible example). Consider the following ma-
trices A and B:

A =

(

1/4 1/2
3/4 1/2

)

, (2.102)

B =

(

1/3 2/3
3/5 2/5

)

. (2.103)

Consider Option 1. The system (2.96) can be written as

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3/4 0 −1/4 0
−3/4 0 1/4 0

0 1/2 0 −1/2
0 −1/2 0 1/2

−3/4 0 1/4 0
3/4 0 −1/4 0
0 −1/2 0 1/2
0 1/2 0 −1/2

2/3 −1/3 0 0
−2/3 1/3 0 0
−2/3 1/3 0 0
2/3 −1/3 0 0
0 0 2/5 −3/5
0 0 −2/5 3/5
0 0 −2/5 3/5
0 0 2/5 −3/5
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

p≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
0
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

( 1 1 1 1 ) p = 1.

(2.104)

We briefly describe the above three methods.

Method 1. The system (2.104) is compatible for any value of ǫ. Thus,
matrices A and B are compatible.

Method 2. Solving system (2.104), considering ǫ as one more variable,
leads to a general solution that involves 25 extreme points but is too long
to be included here. However, from it we can determine that the minimum
value of ǫ is ǫ = 0 and the corresponding unique solution is

P =

(

1/8 1/4
3/8 1/4

)

. (2.105)

Method 3. Minimizing the function

f(ǫ, p11, p12, p21, p22) = ǫ,
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subject to the constraints in (2.104), leads to a zero (minimum) value of
the objective function that is attained at the P given in (2.105). �

Example 2.15 (An incompatible example). Consider the matrices A
and B:

A =

(

1/4 1/2
3/4 1/2

)

, (2.106)

B =

(

1/6 5/6
3/5 2/5

)

. (2.107)

Consider Option 2. The system (2.98) can be written as

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1/6 0 1/4 0
1/6 0 −1/4 0
−5/6 0 0 1/2
5/6 0 0 −1/2
0 −3/5 3/4 0
0 3/5 −3/4 0
0 −2/5 0 1/2
0 2/5 0 −1/2
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

τ
η

)

≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(

1 1 0 0
0 0 1 1

) (

τ
η

)

=

(

1
1

)

.

(2.108)

We briefly describe the above three methods.

Method 1. It can be shown, using Theorem 2.2, that system (2.108) is
compatible for ǫ ≥ 9/214. Thus, matrices A and B are incompatible but
(9/214)-compatible.

Method 2. The solution of system (2.108), considering ǫ as one more
variable, is

⎛

⎜

⎜

⎜

⎝

η1

η1

τ1

τ2

ǫ

⎞

⎟

⎟

⎟

⎠

= π1

⎛

⎜

⎜

⎜

⎝

0
0
0
0
1

⎞

⎟

⎟

⎟

⎠

+ Hλ,

π1 ≥ 0,

13
∑

i=1

λi = 1,
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where

λ = (λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 )
T

.

and

H =

⎛

⎜

⎜

⎜

⎝

12
37

6
41

42
107 0 0 1 1

2 0 1 1
4

9
14 0 1

25
37

35
41

65
107 1 1 0 1

2 1 0 3
4

5
14 1 0

26
37

22
41

46
107

3
5

2
5

1
6 0 0 0 1 1 1 1

11
37

19
41

61
107

2
5

3
5

5
6 1 1 1 0 0 0 0

9
74

9
82

9
214

1
5

3
10

5
12

3
10

3
5

1
2

3
10

15
28

2
5

5
6

⎞

⎟

⎟

⎟

⎠

,

From this it is clear that the minimum value of ǫ leading to a solution is
ǫ = 9/214, and then

τ =

(

42/107
65/107

)

, η =

(

46/107
61/107

)

. (2.109)

With these values of η and τ we obtain two probability matrices:

P 1 =

(

23/214 61/214
69/214 61/214

)

, (p1
ij = aijηj), (2.110)

P 2 =

(

14/214 70/214
78/214 52/214

)

, (p2
ij = bijτi), (2.111)

such that the maximum absolute error is 9/214, since

P 1 − P 2 =

(

9/214 −9/214
−9/214 9/214

)

.

Method 3. Minimizing the function

f(ǫ, η, τ) = ǫ

subject to the constraints in (2.108) leads to a minimum value of the ob-
jective function of 9/214, which is attained at the (η, τ) given in (2.109). �

Example 2.16 (Incompatible, once more). Again consider A and B
as in (2.106) and (2.107). However now we will use Option 3. The system
of inequalities (2.100) can be written as:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/8 −3/20
5/12 −1/5
−1/8 3/20
−5/12 1/5
−1/8 3/20
−5/12 1/5
1/8 −3/20
5/12 −1/5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

τ ≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ
ǫ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

( 1 1 ) τ = 1,
p ≥ 0.

(2.112)
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TABLE 2.4. Generators of the dual cone Ω(π(C)) in Example 2.16.

w1 w2 w3 w4 w5 w6 w7 w8 w9

0 –148 0 0 0 –20 –1 0 0
0 0 –1 0 0 0 0 –5 –66
0 0 0 0 –8 0 –1 0 –148

–12 –66 –1 0 0 0 0 0 0
–5 –9 0 –1 –1 –3 0 –1 9

Method 1. Removing redundant constraints and using a set of four non-
negative slackness variables y = (y1, y2, y3, y4), (2.112) can be written
as

⎛

⎜

⎜

⎜

⎝

1/8 −3/20 1 0 0 0
5/12 −1/5 0 1 0 0
−1/8 3/20 0 0 1 0
−5/12 1/5 0 0 0 1

1 1 0 0 0 0

⎞

⎟

⎟

⎟

⎠

(

τ
y

)

=

⎛

⎜

⎜

⎜

⎝

ǫ
ǫ
ǫ
ǫ
1

⎞

⎟

⎟

⎟

⎠

,

τ , y ≥ 0.

(2.113)

According to Theorem 2.2, we need to calculate the dual of the cone
generated by the columns of the matrix C of coefficients in (2.113). A
minimal set of generators of this dual is given in Table 2.4.

For the system (2.113) to have a solution we must have Wa ≤ 0. This
implies

(−66 − 148)ǫ + 9 ≤ 0 ⇔ ǫ ≥ 9/214. (2.114)

Thus the value 9/214 is a measure of compatibility for this case, which
has a clear interpretation (the maximum deviation in the alternative eval-
uations of pij). Thus if we define matrices

P1 = (bijτi) (2.115)

and

P2 =

(

aij

I
∑

i=1

bijτi

)

, (2.116)

then by judicious choice of τ we can make the maximal deviation between
elements of P1 and P2 as small as 9/214.
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Method 2. Solving the system of inequalities (2.112) considering ǫ as one
more variable. This leads to the solution

⎛

⎝

ǫ
τ1

τ2

⎞

⎠=

⎛

⎝

1
0
0

⎞

⎠π1 +

⎛

⎝

9/214 9/82 1/5 5/12
42/107 6/41 0 1
65/107 35/41 1 0

⎞

⎠

⎛

⎜

⎝

λ1

λ2

λ3

λ4

⎞

⎟

⎠
,

4
∑

i=1

λi = 1

λi ≥ 0, i = 1, 2, 3, 4,

τ1 ≥ 0.

(2.117)

It is obvious from (2.117) that the minimum value of ǫ is obtained for
π1 = 0, λ1 = 1, λi = 0, i �= 1, leading to 9/214, as found before. The
corresponding values of the X-marginal are τ1 = 42/107 and τ2 = 65/107.

From (2.115) and (2.116) we get

P1 =
λ1

107

(

7 35
39 26

)

+
λ2

41

(

1 5
21 14

)

+
λ3

3

(

1 2
0 0

)

+
λ4

6

(

1 5
0 0

)

,

P2 =
λ1

214

(

23 61
69 61

)

+
λ2

82

(

11 19
33 19

)

+
λ3

20

(

3 4
9 4

)

+
λ4

24

(

1 10
3 10

)

,

(2.118)
which for the optimum case ǫ = 9/214 leads to

P1 =
1

107

(

7 35
39 26

)

,

P2 =
1

214

(

23 61
69 61

)

.

Method 3. Solving the linear programming problem, we get the same
solution for τ and ǫ above. �

We can use the concepts of ǫ-compatibility to give us yet more definitions
of a most nearly compatible matrix P for a given pair A, B. If we use Option
1, and if A, B are ǫ-compatible, then the matrix P ∗ which satisfies (2.96)
with ǫ = ǫ1 will be judged to be most nearly compatible. If we use Option
2 and if A, B are ǫ1-compatible, then a reasonable choice for a most nearly
compatible matrix P ∗ will be

P ∗ =
1

2
(η∗

j aij + π∗
i bij),
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where π∗, η∗ satisfy (2.98) with ǫ = ǫ1. Finally, if we use Option 3 and if
A, B are ǫ1-compatible, then a plausible choice for a most nearly compatible
matrix P ∗ will be

P ∗ = (π∗
i bij),

where π∗ satisfies (2.100) with ǫ = ǫ1.

2.9 Extensions to More General Settings

Some of the material in this chapter extends readily to cases where (X, Y )
has a joint density that is absolutely continuous with respect to a convenient
product measure µ1×µ2 on S(X)×S(Y ) (where S(X) denotes the support
of X). Integrals will replace sums in the discussion and, provided we check
the integrability of solutions, few technical difficulties will be encountered.
Thus compatibility, as described in Theorem 1.2, can be defined in terms
of a cross-product ratio function

f(x1, y1)f(x2, y2)

f(x1, y2)f(x2, y1)
(2.119)

to obtain an extended version of the equivalence of conditions (i) and (ii)
in Theorem 2.1. The concepts of near compatibility discussed in the lat-
ter section do indeed continue to be meaningful in more abstract settings
(with integrals instead of sums), however we will encounter difficulties in
implementing the iterative algorithms if the support sets of X and Y are
infinite. Concepts of ǫ-compatibility can also be developed in more general
settings but they will be technically difficult to deal with.

2.10 Bibliographic Notes

Material on compatibility using cross-product ratios and uniform marginal
representations may be found in Arnold and Gokhale (1994, 1998b). The
discussion of compatibility via solution of linear equations subject to con-
straints is based on Arnold, Castillo, and Sarabia (1999a). The concept of ǫ-
compatibility is introduced in Arnold, Castillo and Sarabia (1999a). Marko-
vian discrepancy measures are discussed in Arnold and Gokhale (1998a).
Sections 2.4, 2.5, and 2.6 are based on Arnold and Gokhale (1998b).
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Exercises

2.1 Consider the conditional probability matrices in Example 2.15. In-
stead of uniform weights, assume the following weight matrix:

W =

(

1 2
2 1

)

.

(a) Determine the nearest compatible conditional probability ma-
trices to A and B.

(b) Compare the results with those in Example 2.15.

(c) Determine which of the error conditions are active and which
are not.

(d) Decrease the values of the elements in the above weight matrix
W as much as possible, without altering the nearest compatible
matrices.

2.2 Consider again matrices A and B in Example 2.15. Assume that
ǫ = 0.1 and that a weight matrix of the form

W =

(

a b
2a b/2

)

,

where a and b are constants, has been selected.

(a) Determine the conditions to be satisfied by a and b for the near
compatibility problem to have a solution.

(b) Determine the extra conditions for having a maximum set of
active constraints.

2.3 Given the two conditional probability matrices

A =

⎛

⎝

0.2 0.3 0.1
0.1 0.4 0.4
0.7 0.3 0.5

⎞

⎠ and B =

⎛

⎝

0.2 0.1 0.7
0.3 0.4 0.3
0.1 0.4 0.5

,

⎞

⎠ .

determine whether or not they are compatible by:

(a) The cross-product ratio method.

(b) The uniform marginal representation method.

(c) One of Methods I, II, or III, together with Theorem 2.2.

(d) The iterative algorithm in (2.42) to obtain Q∗, A∗, B∗, and the
associated P ∗.

(e) The iterative method in (2.73).

(f) The Markovian measure of discrepancy method.
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(g) The ǫ-compatibility approach with one of the options 1, 2, or 3.

(h) Linear programming techniques.

2.4 Given the following conditional probability matrices:

A =

⎛

⎝

0.2 0.3 0.1
0.1 0.4 − a 0.4
0.7 0.3 + a 0.5

⎞

⎠ and B =

⎛

⎝

0.2 + b 0.1 0.7 − b
0.3 0.4 0.3
0.1 0.4 0.5

⎞

⎠ ,

determine whether or not there are values a and b such that they are
compatible.

If the above answer is positive, determine such values.

2.5 In Option 2, Section 2.8, force the P 1 and P 2 probability matrices
in (2.110) and (2.111) to have the same Y -marginals. Compare the
resulting solution with that of Option 3.

2.6 Consider the conditional probability matrices

A =

⎛

⎝

0 1/3 0
1 1/3 1/2
0 1/3 1/2

⎞

⎠ , B =

⎛

⎝

0 1 0
1/4 1/2 1/4
0 1/5 4/5

⎞

⎠ .

Verify that A and B are not compatible even though UMR(A) =
UMR(B).

2.7 Consider the following conditional probability matrices:

A1 =

⎛

⎜

⎜

⎜

⎝

0 0 1/10 0 0
0 1/3 3/10 4/7 0
1 1/3 2/10 2/7 1
0 1/3 3/10 1/7 0
0 0 1/10 0 0

⎞

⎟

⎟

⎟

⎠

, B1 =

⎛

⎜

⎜

⎜

⎝

0 0 1 0 0
0 1/5 1/5 3/5 0

1/9 2/9 3/9 2/9 1/9
0 2/5 1/5 2/5 0
0 0 1 0 0

⎞

⎟

⎟

⎟

⎠

,

A2 =

⎛

⎝

0 1/3 0
1 0 1
0 2/3 0

⎞

⎠ , B2 =

⎛

⎝

0 1 0
1/5 0 4/5
0 1 0

⎞

⎠ .

(a) Verify that A1, B1 are incompatible while A2, B2 are compatible.

(b) Show that UMRs do not exist for any of the matrices A1, B1, A2,
or B2.
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Distributions with Normal
Conditionals

3.1 Introduction

At first glance, it is surprising that there can exist bivariate distributions
with all their conditional densities of the normal form, which are not the
classical bell-shaped bivariate normal that we are so familiar with. But such
distributions do exist and have actually been at least partially known and
understood for more than 50 years. After reviewing the history of such dis-
tributions we focus on developing a convenient parametric representation
of all such normal conditionals distributions. The role of the classical bi-
variate normal distribution as a special case is investigated in some detail.
In fact we begin our discussion with this topic.

3.2 Variations on the Classical Bivariate
Normal Theme

If (X, Y ) has a classical bivariate normal distribution with density

fX,Y (x, y) =
1

2πσ1σ2

√

1 − ρ2

× exp

{

− 1

2(1 − ρ2)

[

(

x − µ1

σ1

)2

−2ρ

(

x − µ1

σ1

)(

y − µ2

σ2

)

+

(

y − µ2

σ2

)2
]}

,

(3.1)
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then it is well known that both marginal densities are univariate normal and
all conditional densities are univariate normal. In addition, the regression
functions are linear and the conditional variances do not depend on the
value of the conditioned variable. Moreover the contours of the joint density
are ellipses. Individually none of the above properties is restrictive enough
to characterize the bivariate normal. Collectively they do characterize the
bivariate normal distribution but, in fact, far less than the complete list
is sufficient to provide such a characterization. Marginal normality is of
course not enough. It is easy to construct examples of distributions not of
the form (3.1) which have normal marginals. Perhaps the simplest example
is

fX,Y (x, y) =

{

1

π
e−(x2+y2)/2, xy > 0,

0, xy < 0.
(3.2)

which has standard normal marginals but has possible values only in two
quadrants of the plane. Some reference to conditional distributions or con-
ditional moments seems necessary to characterize the bivariate normal. An
indication of the difficulties is provided by the following putative charac-
terization. If the marginal density of X is normal and if the conditional
density of Y given X = x is normal for every x, can we conclude that
(X, Y ) is bivariate normal? Clearly the answer is no unless we assume in
addition that E(Y |X = x) is linear in x and that var(Y |X = x) does not
depend on x. With these two additional assumptions bivariate normality
is guaranteed, otherwise we would have quite an arbitrary regression of Y
on X and an equally arbitrary conditional variance function of Y given
X = x; neither of which is permitted in the bivariate normal model.

In a ground-breaking paper Bhattacharyya (1943) provided the following
interesting array of characterizations involving normal conditionals:

1. If for each fixed y, the conditional distribution of X given Y = y
is normal and the equiprobable contours of fX,Y (x, y) are similar
concentric ellipses, then the bivariate density is normal.

2. If the regression of X on Y is linear, if the conditional distribution
of X given Y = y is normal and homoscedastic for each y, and if
the marginal distribution of Y is normal, then fX,Y (x, y) must be
bivariate normal.

3. If the conditional distributions of X given Y = y for each y, and of
Y given X = x for each x are normal and one of these conditional
distributions is homoscedastic, then (X, Y ) is bivariate normal.

4. If the regressions, of X on Y and of Y on X, are both linear, and
the conditional distribution of each variable for every fixed value of
the other variable is normal, then fX,Y (x, y) is either normal or may
(with suitable choice of origin and scale) be written in the form
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fX,Y (x, y) ∝ exp{−(x2 + a2)(y2 + b2)}. (3.3)

Example 4 in Bhattacharyya’s list tells us there exist joint distribu-
tions with normal conditionals and even with linear regressions which are
not bivariate normal. As we shall see, Bhattacharyya is not too far away
from identifying all possible normal conditionals distributions. Much later,
Brucker (1979) verified that normal conditionals (of X given Y and of Y
given X) with linear regressions and constant conditional variances are
enough to characterize the bivariate normal distribution. Variations on
this theme were described by Fraser and Streit (1980) and Ahsanullah
(1985). Stoyanov ((1987), pp. 85–86) also considers (3.3) and an analogous
trivariate density.

It may be instructive to view some distributions with normal conditionals
which are not bivariate normal. For our first example, as in Castillo and
Galambos (1989), consider

fX,Y (x, y) = C exp{−[x2 + y2 + 2xy(x + y + xy)]}; ∀x, y, (3.4)

where C > 0 is a constant such that fX,Y (x, y) integrates to 1. Even though
both conditionals are normal, fX,Y (x, y) is not bivariate normal, because
for this density the conditional variance of Y , given X = x is σ2(Y |X =
x) = 1/(2 + 4x + 4x2) (nonconstant) and the conditional expectation of Y ,
given X = x, is (−x2)/(1+2x+2x2) (nonlinear). A perhaps more striking
example is provided by

fX,Y (x, y)= Cexp

{

−9

2
x−2y− 9

2
x2− 1

2
y2−4xy−4x2y−xy2−x2y2

}

,∀x, y.

(3.5)
In this case both conditional densities are normal and the conditional
expectation of Y given X = x (µ(Y |X = x) = −2) and the condi-
tional expectations of X given Y = y (µ(X|Y = y) = −1/2) are con-
stant. Clearly, however, this bivariate density is not normal, since the vari-
ances of the conditional distributions are not constant [σ2(Y |X = x) =
1/(1 + 2x + 2x2), σ2(X|Y = y) = 1/(9 + 8y + 2y2)].

Looking at (3.4) and (3.5) it is easy to verify that the corresponding con-
ditional densities are indeed normal and with a little algebra it is possible
to write down the correct expressions for the conditional means and vari-
ances. What is perhaps not obvious is how one dreams up such examples.
The picture will clear in the next section.

3.3 Normal Conditionals

As in Castillo and Galambos (1987a, 1989) we begin with a joint density
fX,Y (x, y) assumed to have all conditionals in the univariate normal family.
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Specifically we assume the existence of functions µ2(x), σ2(x), σ1(y), and
µ1(y) such that

fX|Y (x|y) =
1√

2πσ1(y)
exp

[

−1

2

(

x − µ1(y)

σ1(y)

)2
]

(3.6)

and

fY |X(y|x) =
1√

2πσ2(x)
exp

[

−1

2

(

y − µ2(x)

σ2(x)

)2
]

. (3.7)

Denote the corresponding marginal densities of X and Y by f1(x) and
f2(y), respectively. Note that

f1(x) > 0, f2(y) > 0, σ2(x) > 0, and σ1(y) > 0.

If we write the joint density as a product of a marginal and a conditional
density in both ways we find

f1(x)

σ2(x)
exp

[

−1

2

(

y − µ2(x)

σ2(x)

)2
]

=
f2(y)

σ1(y)
exp

[

−1

2

(

x − µ1(y)

σ1(y)

)2
]

. (3.8)

If we define
u(x) = log(f1(x)/σ2(x)) (3.9)

and
v(y) = log(f2(y)/σ1(y)), (3.10)

then (3.8) assumes a form appropriate for direct application of Theorem
2.5 using the function γ(t) = et. Rather than quote Theorem 2.5 we shall
use our basic result, Theorem 2.3, to characterize our distributions.

Taking logarithms of both sides of (3.8) we obtain

u(x) − 1

2

(

y − µ2(x)

σ2(x)

)2

= v(y) − 1

2

(

x − µ1(y)

σ1(y)

)2

(3.11)

which can be rearranged to yield

[

2u(x)σ2
2(x) − µ2

2(x)
]

σ2
1(y) + σ2

2(x)
[

µ2
1(y) − 2v(y)σ2

1(y)
]

− y2σ2
1(y)

+x2σ2
2(x) + 2µ2(x)yσ2

1(y) − 2xσ2
2(x)µ1(y) = 0.

(3.12)

This is an equation of the form (2.24). The sets {σ2
2(x), xσ2

2(x), x2σ2
2(x)}

and {σ2
1(y), yσ2

1(y), y2σ2
1(y)} are sets of linearly independent functions.

They can play the roles of the φi’s and ψj ’s in (2.25). Thus from (2.25) we
obtain

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2u(x)σ2
2(x) − µ2

2(x)
σ2

2(x)
1

x2σ2
2(x)

µ2(x)
xσ2

2(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A B C
1 0 0
D E F
0 0 1
G H J
0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎝

σ2
2(x)

xσ2
2(x)

x2σ2
2(x)

⎞

⎠ , (3.13)
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⎛

⎜

⎜

⎜

⎜

⎜

⎝

σ2
1(y)

µ2
1(y) − 2v(y)σ2

1(y)
−y2σ2

1(y)
1

2yσ2
1(y)

−2µ1(y)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0
K L M
0 0 −1
N P Q
0 2 0
R S T

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎝

σ2
1(y)

yσ2
1(y)

y2σ2
1(y)

⎞

⎠ , (3.14)

where

⎛

⎝

A 1 D 0 G 0
B 0 E 0 H 1
C 0 F 1 J 0

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0
K L M
0 0 −1
N P Q
0 2 0
R S T

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (3.15)

and A, B, C, D, E, F, G, H, and J are constants. Equation (3.15) is equiv-
alent to

A =−K, L =−2G, M = D, B =−R, 2H =−S,
E = T, C = −N, P =−2J, Q = F.

(3.16)

Substitution of (3.16) into (3.13) and (3.14) leads to the following expres-
sions for the functions involved in (3.8) :

µ1(y) = −B/2 + Hy − Ey2/2

C + 2Jy − Fy2
, (3.17)

σ2
1(y) =

−1

C + 2Jy − Fy2
, (3.18)

µ2(x) =
G + Hx + Jx2

D + Ex + Fx2
, (3.19)

σ2
2(x) =

1

D + Ex + Fx2
, (3.20)

u(x) =
1

2

[

A + Bx + Cx2 +
(G + Hx + Jx2)2

D + Ex + Fx2

]

, (3.21)

v(y) =
1

2

[

A + 2Gy − Dy2 − (B/2 + Hy − Ey2/2)2

C + 2Jy + Fy2

]

, (3.22)

f1(x) =

exp

{

1
2

[

A + Bx + Cx2 +
(G + Hx + Jx2)2

D + Ex + Fx2

]}

√

(D + Ex + Fx2)
, (3.23)

f2(y) =

exp

{

1
2

[

A+2Gy−Dy2−(B/2 + Hy − Ey2/2)2

C + 2Jy − Fy2

]}

√

(−C − 2Jy + Fy2)
, (3.24)
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and for the joint density fX,Y (x, y):

fX,Y (x, y) =
1√
2π

× exp{ 1
2 [A + Bx+2Gy+Cx2−Dy2+2Hxy+2Jx2y−Exy2−Fx2y2]}.

(3.25)
At this point it is convenient to introduce a new parametrization which

will extend naturally to higher dimensions and will be consistent with the
notation used for more general exponential families in Chapter 4. Thus,
instead of expression (3.25), we write

fX,Y (x, y) = exp

⎧

⎨

⎩

(

1, x, x2
)

⎛

⎝

m00 m01 m02

m10 m11 m12

m20 m21 m22

⎞

⎠

⎛

⎝

1
y
y2

⎞

⎠

⎫

⎬

⎭

. (3.26)

where
m00 = A/2, m01 = G, m02 = −D/2,
m10 = B/2, m11 = H, m12 = −E/2,
m20 = C/2, m21 = J, m22 = −F/2,

(3.27)

and (3.17)–(3.24) transform to

E(X|Y = y) = µ1(y) = − m12y
2 + m11y + m10

2(m22y2 + m21y + m20)
, (3.28)

var(X|Y = y) = σ2
1(y) =

−1

2(m22y2 + m21y + m20)
, (3.29)

E(Y |X = x) = µ2(x) = − m21x
2 + m11x + m01

2(m22x2 + m12x + m02)
, (3.30)

var(Y |X = x) = σ2
2(x) =

−1

2(m22x2 + m12x + m02)
, (3.31)

f1(x) =

exp

{

1
2

[

2(m20x
2 + m10x + m00)−

(m21x
2 + m11x + m01)

2

2(m22x2 + +m12x + m02)

]}

√

−2(m22x2 + m12x + m02)
,

(3.32)

f2(y) =

exp

{

1
2

[

2(m02y
2 + 2m01y + m00) −

(m12y
2 + m11y + m10)

2

2(m22y2 + m21y + m20)

]}

√

−2(m22y2 + m21y + m20)
,

(3.33)
It remains only to determine appropriate conditions on the constants

mij , i, j = 0, 1, 2, in (3.26) to ensure nonnegativity of fX,Y (x, y) and its
marginals and the integrability of those marginals. In all cases the constant
m00 will be a function of the other parameters chosen so that one (and hence
all) of the densities (3.23), (3.24), (3.25), and (3.26) integrate to 1.
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In order to guarantee that the marginals in (3.32) and (3.33) are non-
negative (or, equivalently, to guarantee that for each fixed x, fX,Y (x, y)
is integrable with respect to y and for each fixed y it is integrable with
respect to x), the coefficients in (3.26) must satisfy one of the two sets of
conditions

m22 = m12 = m21 = 0, m20 < 0, m02 < 0, (3.34)

m22 < 0, 4m22m02 > m2
12, 4m20m22 > m2

21. (3.35)

If (3.34) holds then we need to assume in addition that

m2
11 < 4m02m20, (3.36)

in order to guarantee that (3.23) and (3.24) and hence (3.25) and (3.26) are
integrable. Note that (3.34) and (3.36) yield the classical bivariate normal
model.

If (3.35) holds then (m22x
2 + m12x + m02) is bounded away from zero

and the function within square brackets in (3.32) will, for large values of
|x|, behave like x2(4m20m22 + m2

21)/2m22 and consequently (3.32) will be
integrable.

It is interesting to note that in his paper in which he sought charac-
terizations of the classical bivariate normal, Bhattacharyya (1943) derived
an equation essentially equivalent to (3.26). He assumed differentiability
of fX,Y (x, y) in his derivation and he did not completely determine what
conditions on the parameters were needed to guarantee integrability. He
did express interest in making a detailed study of the density equivalent to
(3.26) at some future time.

3.4 Properties of the Normal Conditionals
Distribution

The normal conditionals distribution has joint density of the form (3.26)
where the constants, the mij ’s, satisfy one of the two sets of conditions:

(i) m22 = m12 = m21 = 0, m20 < 0, m02 < 0, m2
11 < 4m02m20;

(ii) m22 < 0, 4m22m02 > m2
12, 4m20m22 > m2

21.

Models satisfying conditions (i) are classic bivariate normal with normal
marginals, normal conditionals, linear regressions, and constant conditional
variances (see Figures 3.1 and 3.2).

More interesting are the models satisfying conditions (ii). These mod-
els have normal conditionals distributions but have distinctly nonnormal
marginal densities (see (3.32) and (3.33)). The regression functions are
given by (3.28) and (3.30). These are either constant or nonlinear. Each
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FIGURE 3.1. Density function of a bivariate normal (1.27324e0.241564−x2/2−xy−y2

)
showing its regression lines (top projections) and its marginal densities (right and
left projections).

FIGURE 3.2. Contour plot of the bivariate normal in Figure 3.1.

regression function is bounded (a distinct contrast to the classical bivariate
normal model). The conditional variance functions are also bounded. They
are given by (3.29) and (3.31).

The point or points of intersection of the two regression curves determine
the mode(s) of the bivariate distribution in both cases (i) and (ii). The bell-
shape of the classical bivariate normal is well known. The form of typical
normal conditionals densities satisfying conditions (ii) is not as familiar nor



-2

0

2

4
-2

0

2

4
0

0.5

1

1.5

2

-2

0

2

4

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

3.4 Properties of the Normal Conditionals Distribution 61

FIGURE 3.3. Example of a normal conditionals density showing its regression
lines (top projection) and its marginal densities (right and left projections).

FIGURE 3.4. Contour plot of the normal conditionals density in Figure 3.3.

as easy to visualize. Figures 3.3 and 3.4 illustrate a representative density
satisfying conditions (ii). The nonnormal marginals are shown in the back-
drop of the figure. Their nonnormal character is evident. The picture is
somewhat akin to what we might find if we left a classical Gaussian heap
of sand out in the wind overnight. Three other illustrative cases of densi-
ties satisfying (ii) are provided by Gelman and Meng (1991), including one
which is bimodal (see Figures 3.5 and 3.6 below and the reparametrization
discussion immediately preceding them).

What if we require normal conditionals and independent marginals? Re-
ferring to (3.26) the requirement of independence translates to the following
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functional equation:

(

1, x, x2
)

⎛

⎝

m00 m01 m02

m10 m11 m12

m20 m21 m22

⎞

⎠

⎛

⎝

1
y
y2

⎞

⎠ = r(x) + s(y), (3.37)

which is of the form (2.24). Its solution using Theorem 2.3 eventually leads
us to the conclusion that, for independence, we must have

m11 = m21 = m12 = m22 = 0. (3.38)

This shows that independence is only possible within the classical bivariate
normal model.

As consequences of the above discussion, Castillo and Galambos (1989)
derive the following interesting conditional characterizations of the classical
bivariate normal distribution:

Theorem 3.1 fX,Y (x, y) is a classical bivariate normal density if and
only if all conditional distributions, both of X given Y and of Y given X,
are normal and any one of the following properties hold:

(i) σ2
2(x) = var(Y |X = x) or σ2

1(y) = var(X|Y = y) is constant;

(ii) limy→∞ y2σ2
1(y) = ∞ or limx→∞ x2σ2

2(x) = ∞;

(iii) limy→∞σ1(y) �= 0 or limx→∞σ2(x) �= 0; and

(iv) E(Y |X = x) or E(X|Y = y) is linear and nonconstant.

�

Proof.

(i) If σ2
2(x) is constant, from (3.29) we get m21 = m22 = 0 which implies

classical bivariate normality.

(ii) If y2σ2
1(y) → ∞, from (3.29) we get m22 = 0 which implies classical

bivariate normality.

(iii) If lim σ1(y) �= 0, then from (3.29) we get m21 = m22 = 0 which
implies classical bivariate normality.

(iv) If E(Y |X = x) is linear, from (3.30) we get m22 = 0 which implies
classical bivariate normality. �

One final reparametrization merits mention. Following Gelman and Meng
(1991), if in (3.26) we make the following linear change of variables:

u =
x − a

b
,

v =
y − c

d
,

(3.39)
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where

a = − m12

2m22
, (3.40)

b = 2

√

−m22

4m20m22 − m2
21

, (3.41)

c = − m21

2m22
, (3.42)

d = 2

√

−m22

4m02m22 − m2
12

, (3.43)

and we rename u and v as x and y, respectively, we obtain the density
function

f(x, y) ∝exp
(

αx2y2 − x2 − y2 + βxy + γx + δy
)

, (3.44)

where α, β, γ, and δ are the new parameters which are functions of the old
mij parameters.

In this parametrization, the conditional distributions are

X|Y = y ∼ N

(

− βy + γ

2(αy2 − 1)
,− 1

2(αy2 − 1)

)

, (3.45)

Y |X = x ∼ N

(

− βx + δ

2(αx2 − 1)
,− 1

2(αx2 − 1)

)

. (3.46)

The only constraints for this parametrization are

α ≤ 0 and if α = 0 then |β| < 2. (3.47)

An advantage of this Gelman and Meng parametrization is that in some
cases it renders it easy to recognize multimodality. Bimodality of a distri-
bution with normal conditionals is perhaps a surprising development. It is,
of course, retrospectively obvious that the conditional mode curves (which
correspond to the conditional mean curves (3.28) and (3.30)) can intersect
at more than one point.

Since modes are at the intersection of regression lines, from (3.45) and
(3.46) the coordinates of the modes satisfy the system of equations

x =− βy + γ

2(αy2 − 1)
,

y =− βx + δ

2(αx2 − 1)
.

(3.48)

Substituting the first into the second we get

4α2y5−2α2δy4−8αy3+α(4δ−βγ)y2+(4−β2−αγ2)y−2δ−βγ = 0, (3.49)
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FIGURE 3.5. Example of a normal conditionals density with two modes showing
its regression lines and its marginal densities.

FIGURE 3.6. Contour plot of the normal conditionals density in Figure 3.5 (the
mask of Zorro?).
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which is a polynomial of degree 5. When this polynomial has a unique real
root, the density is unimodal, if it has three distinct real roots the density
is bimodal.

But can life get even more complicated? Can there exist three modes?
It turns out that (3.49) can have five distinct real roots, though diligent
searching of the parameter space is required before encountering such cases.
In addition, one mode may be a molehill while the others are mountains.
Such is the case in the example described below. But modes they all three
are, even though we have to resort to graphing f1/200(x, y) in order to make
them more evident in our picture.

Example 3.1 (Two-modes). Figures 3.5 and 3.6 show one example of a
density satisfying conditions (ii) with two modes. Its marginals (plotted on
the right and left projections), which are not normal and the correspond-
ing nonlinear regression lines (plotted on top of the joint density), clearly
indicate that the model is nonclassical. Observe that in this example the
regression curves intersect three times, corresponding to two modes and
a saddle point. Note also the unexpected bimodality of the corresponding
marginal densities. �

Example 3.2 (Three modes). Consider the model in (3.44) with pa-
rameters

α = −30, β = −100, γ = −22, δ = 20.

For this case the fifth degree polynomial (3.49) becomes

−2240 + 4524y + 63600y2 + 240y3 − 36000y4 + 3600y5 (3.50)

with roots

y = −1.199, y = −0.231, y = 0.1563, y = 1.466, y = 9.808,

which correspond to three relativa maxima (modes) and two saddle points.
Figure 3.7 shows the 200th root of the corresponding probability density
function (i.e., [f(x, y)]1/200) and Figure 3.8 shows its associated contour
plot together with the two regression lines and the five critical points
identified above. �

3.5 The Centered Model

Consider the bivariate random variable (X, Y ) with joint density function

fX,Y (x, y) = k(c)
1

2πσ1σ2
exp

{

−1

2
[(x/σ1)

2 + (y/σ2)
2 + c(x/σ1)

2(y/σ2)
2]

}

(3.51)



-10

-5

0

5

0

5

10

0

1

2

-10

-5

0

5

-12.5-10-7.5 -5 -2.5 0 2.5 5

-2.5

0

2.5

5

7.5

10

66 3. Distributions with Normal Conditionals

FIGURE 3.7. Transformed probability density of the three modes example.

FIGURE 3.8. Contour plot of the transformed probability density of the three
modes example in Figure 3.7. The regression curves are also shown in the diagram
as are the three modes (marked by solid dots) and the two other critical points
(marked by open dots).
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FIGURE 3.9. Bivariate centered model density plot for σ2
1 = σ2

2 = 10 and c = 20.

FIGURE 3.10. Contour plot of the centered normal conditionals density for σ2
1 =

σ2
2 = 10 and c = 20.

defined on the whole plane, where σ1, σ2 > 0, c ≥ 0, and k(c) is a nor-
malizing constant. With different parameters, the density function (3.51)
may be recognized as one of those which Bhattacharyya (1943) identified
as nonstandard models with normal conditional distributions. More par-
ticularly, (3.51) corresponds to the most general density function which
has normal conditional distributions with zero means. Consider (X, Y ), a
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bivariate random variable, such that

X|Y = y ∼ N(0, σ2
1(y)), (3.52)

Y |X = x ∼ N(0, σ2
2(x)), (3.53)

where σ2
1(y), σ2

2(x) are unknown functions such that σ2
1(y) > 0, σ2

2(x) > 0
for all x, y. Then, it can be proved that (Castillo and Galambos (1989)):
σ2

1(y) = σ2
1/(1+c(y/σ2)

2), σ2
2(x) = σ2

2/(1+c(x/σ1)
2), and the density func-

tion of (X, Y ) is given by (3.51). Equivalently, the density can be identified
as that obtainable from (3.26) upon setting m01 = m10 = m21 = m11 = 0.
A typical representation of the form of such densities is provided in Figures
3.9 and 3.10. The centered distribution can be used to model bivariate data
which are uncorrelated yet nonindependent. An example of this, provided
by Arnold and Strauss (1991), involves 30 shots at a target, under slow
firing conditions, in a pistol training session.

By integrating (3.51) with respect to y, using the normal density func-
tion, we obtain the marginal density of X,

fX(x) = k(c)
1

σ1

√
2π

[

1 + c(x/σ1)
2
]−1/2

exp

[

−1

2
(x/σ1)

2

]

(3.54)

and, similarly,

fY (y) = k(c)
1

σ2

√
2π

[

1 + c(y/σ2)
2
]−1/2

exp

[

−1

2
(y/σ2)

2

]

. (3.55)

Except when c = 0, (3.54) and (3.55) are not normal.
The normalizing constant k(c) in (3.51) can be obtained by the repre-

sentation of the integral of the confluent hypergeometric function given by
(a > 0, z > 0),

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−tzta−1(1 + t)b−a−1 dt (3.56)

(Abramowitz and Stegun (1964), eq. 13.2.5). Now, integrating (3.54) and
making the indicated change of variables we have

∫ +∞

−∞

1

σ1

√
2π

(

1 + c(x/σ1)
2
)−1/2

e−(x/σ1)
2/2 dx

= 2

∫ +∞

0

1

σ1

√
2π

(

1 + c(x/σ1)
2
)−1/2

e−(x/σ1)
2/2 dx

=
1√
2cπ

∫ +∞

0

t−1/2(1 + t)−1/2e−t/2c dt =
1√
2c

U

(

1

2
, 1,

1

2c

)

.
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where we have made
[

c(x/σ1)
2 = t

]

. Therefore, the value of k is given by

k(c) =

√
2c

U(1/2, 1, 1/2c)
. (3.57)

3.5.1 Distribution Theory

Suppose that (X, Y ) is a bivariate random variable with a centered normal
conditionals distribution (CNC) with density function (3.51). The param-
eters σ1 and σ2 are scale parameters, and c is the dependence parameter,
where c = 0 corresponds to independence between X and Y . Notice that the
correlation coefficient is always zero. From (3.54) and (3.55) the following
unconditional associations between X and Y may be verified:

(X/σ1)
[

1 + c(Y/σ2)
2
]1/2 ∼ N(0, 1), (3.58)

(Y/σ2)
[

1 + c(X/σ1)
2
]1/2 ∼ N(0, 1). (3.59)

Notice that the variable defined in (3.58) is independent of Y and the
variable in (3.59) is independent of X. Using (3.58) and (3.59), the following
relations among the moments of X and Y can be obtained:

E
{

(X/σ1)
n
[

1 + c(Y/σ2)
2
]n/2

}

=E
{

(Y/σ2)
n
[

1 + c(X/σ1)
2
]n/2

}

=E(Zn),

(3.60)
where for n even E(Zn) = (n − 1)(n − 3) · · · 1, since Z denotes an N(0, 1)
random variable. Because the random variable Z = (X/σ1)(1+c(Y/σ2)

2)1/2

is N(0, 1) and independent of Y , if V = σ1(1 + c(Y/σ1)
2)−1/2, it follows

that E(ZnV n) = E(Zn)E(V n) or, equivalently,

E [(X/σ1)
n]

E
{

[1 + c(Y/σ2)2]
−n/2

} =
E [(Y/σ2)

n]

E
{

[1 + c(X/σ1)2]
−n/2

} = E(Zn). (3.61)

The second relation can be obtained by symmetry. From the marginal den-
sity functions (3.54) and (3.55) we can obtain some particular moments
related to X and Y ,

E
{

(X/σ1)
n
[

1 + c(X/σ1)
2
]1/2

}

= E
{

(Y/σ2)
n
[

1 + c(Y/σ2)
2
]1/2

}

= k(c)E(Zn).
(3.62)

Alternatively, we can obtain the moments by using a moment generating
function. Since only the moments of even order are different from zero, we
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shall calculate the moment generating function of (X2, Y 2),

MX2,Y 2(s, t) = E(esX2+tY 2

)

=

∫ +∞

−∞

∫ +∞

−∞

k(c)

2πσ1σ2
e
−1/2

[

(σ−2
1 −2s)x2+(σ−2

2 −2t)y2+c( xy
σ1σ2

)2
]

dx dy

=
(1 − 2σ2

1s)−1/2(1 − 2σ2
2t)−1/2k(c)

k[c(1 − 2σ2
1s)−1(1 − 2σ2

2t)−1]
,

(3.63)

where s < 1/(2σ2
1), t < 1/(2σ2

2) in order to guarantee the convergence of
the integrand. When c = 0, (3.63) is recognized as the generating function
of two independent rescaled chi-square variables. Most of the moments can
be expressed in terms of the function

δ(c) =
d log k(c)

dc
=

k′(c)

k(c)
. (3.64)

From the moment generating function (3.63), in conjunction with (3.60),
we have

E(X2) = σ2
1 [1 − 2cδ(c)] , V (X2) = σ4

1

[

1 + 2δ(c) − 4c2δ2(c)
]

, (3.65)

E(Y 2) = σ2
2 [1 − 2cδ(c)] , V (Y 2) = σ4

2

[

1 + 2δ(c) − 4c2δ2(c))
]

, (3.66)

E(X2Y 2) = 2σ2
1σ2

2δ(c), (3.67)

ρ(X2, Y 2) =
1 − 2δ(c) − 4cδ(c) + 4c2δ2(c)

−1 − 2δ(c) + 4c2δ2(c)
. (3.68)

If we calculate E(X2Y 2) by means of the generating function, and equate
the result to (3.67) which was obtained using (3.60), we find that the
function δ must satisfy the following differential equation:

1 − (2 + 8c)δ(c) + 4c2δ2(c) − 4c2δ′(c) = 0. (3.69)

By means of (3.69), the moments of higher order can be expressed as
functions of δ. As an alternative, the values of k and δ can be expressed as

k−1(c) = E
[

(1 + cZ2)−1/2
]

, (3.70)

δ(c) =
1

2

E
[

Z2
(

1 + cZ2
)−3/2

]

E
[

(1 + cZ2)
−1/2

] , (3.71)

where Z ∼ N(0, 1). These expressions allow straightforward numerical ap-
proximation using draws from an N(0, 1) distribution. Expression (3.70)
also makes transparent the fact that k(c) is a monotone increasing func-
tion of c. Representative values of k(c) and δ(c) are displayed in Figures
3.11 and 3.12.
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FIGURE 3.11. Plot of k(c) versus c for the normal centered model.

FIGURE 3.12. Plot of δ(c) versus c for the normal centered model.

3.5.2 Marginal Distribution Theory

Now we shall take a closer look at the marginal density functions of X
and Y , given by (3.54) and (3.55). These are symmetric unimodal random
variables with less kurtosis than the normal distribution (refer to (3.61)).
The tails of these distributions are less heavy than those of the N(0, 1)
distribution. The distribution function of X is not simple, since (3.54) has
no closed form integral. However, a simple approximation for small values
of c is possible. If Φc(x) = P (X ≤ x) and x ≥ 0, when we expand in a
power series (justifiably differentiating under the integral sign) we obtain

Φc(x) = Φ(x/σ1) +

{

1

2

[

Φ(x/σ1) −
1

2

]

− 1

4
I(

3

2
,

1

2
(x/σ1)

2)

}

c + o(c),

(3.72)
where I(a, x) =

∫ x

0
e−tta−1 dt/Γ(a) represents the incomplete gamma func-

tion and Φ represents the standard normal distribution function. As an
alternative to the methods used in the previous section, the moments of X



72 3. Distributions with Normal Conditionals

can be expressed in terms of the confluent hypergeometric function. If n is
an even number, it may be verified that

E(Xn) = k(c)
1√
2π

σn
1 c−(n+1)/2Γ

(

n + 1

2

)

U

(

n + 1

2
,

n

2
+ 1,

1

2c

)

.

(3.73)
Since the expressions for the moments seem to be complex, some kind of re-
currence relation would be useful between them. By using recurrence prop-
erties of the confluent hypergeometric function (Abramowitz and Stegun
(1964), eqs. 13.4.21 and 13.5.27) we obtain

σ2
1(n − 1)

c
E(Xn−2) =

(

1

c
− n

)

E(Xn) +
1

σ2
1

E(Xn+2), (3.74)

where n is an even number. Analogously, it may be verified that

σ2
1(n − 1)

c
E(Xn−2Y m) =

[

1

c
− (n − m)

]

E(XnY m) +
1

σ2
1

E(Xn+2Y m)

(3.75)
from a formula similar to (3.73) for E(XnY m).

3.6 Bibliographic Notes

The key references for material in this chapter are Bhattacharyya (1943)
and Castillo and Galambos (1987a, 1989). Gelman and Meng (1991) pro-
vide interesting illustrations and an alternative parametrization. Further
discussion of multiple modes may be found in Arnold, Castillo, Sarabia
and González-Vega (1999b). The centered model is discussed in Sarabia
(1995).

Exercises

3.1 Solve functional equation (3.37).

3.2 Let (X, Y ) be a bivariate random variable with pdf given by

fX,Y (x, y) ∝ exp
[

−
(

x2y2 + x2 + y2 − 2δx − 2δy
)

/2
]

with δ a real constant.

(a) Prove that E(X|Y )/var(X|Y ) = E(Y |X)/var(Y |X) = δ.

(b) Prove that fX,Y (x, y) is bimodal if and only if |δ| > 2.

(Gelman and Meng (1991).)
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3.3 Obtain the most general bivariate distributions (X, Y ) with lognor-
mal conditionals X|Y = y, ∀y and Y |X = x, ∀x.

Note: A random variable X is said to be lognormal, iff log X ∼
N(µ, σ2).

3.4 Consider the model (4.44) written in terms of the parametrization

f(x, y) =
k(a, b, c, d)

2π
exp

[

−
(

ax2y2 + x2 + y2 + bxy + cx + dy
)

/2
]

.

with a > 0 and b, c, d real numbers.

(a) If U, V are N(0, 1) and independent random variables, prove
that

k−1(a, b, c, d) = E
{

exp
[

−
(

aU2V 2 + bUV + cU + dV
)

/2
]}

.

(b) Give an expression for the correlation coefficient in terms of the
function k(a, b, c, d) and its partial derivatives.

3.5 Compute the coefficient of linear correlation (3.68) for some values of
c ≥ 0.

3.6 Let (X, Y ) be a bivariate random variable such that X|Y = y is

normal for all y and Y |X = x is normal for all x and X
d
= Y . Does

X, Y have a classical bivariate normal distribution?

3.7 Let (X, Y ) be a bivariate random variable such that X and Y |X = x
for all x are normal distributions. Does X, Y have a classical bivariate
normal distribution?
Hint: Consider the joint pdf:

f(x, y) ∝
√

1 + x2exp
[

−
(

x2y2 + x2 + y2
)

/2
]

.

(Hamedani (1992).)

3.8 Is it possible to have (X1, X2) with a normal conditionals distribution
such that

E(X1|X2 = x2) = var(X1|X2 = x2), ∀x2,

and
E(X2|X1 = x1) = var(X2|X1 = x1), ∀x1?

(Gelman and Meng (1991).)

3.9 If (X1, X2) has a normal conditionals distribution then any one of
the following conditions is sufficient to ensure that (X1, X2) has a
classical bivariate normal distribution:
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(a) X1 is normally distributed.

(b) The contours of the joint density are similar concentric ellipses.



4

Conditionals in Exponential
Families

4.1 Introduction

Following our careful analysis of the normal conditionals example in Chap-
ter 3 and our brief mention of the exponential conditionals distribution
in Chapter 1, it is natural to seek out more general results regarding dis-
tributions whose conditionals are posited to be members of quite general
exponential families. Indeed the discussion leading up to Theorem 1.3, sug-
gests that things should work well when conditionals are from exponential
families. The key reference for the present chapter is Arnold and Strauss
(1991). However it should be mentioned that results due to Besag (1974),
in a stochastic process setting, anticipate some of the observations in this
chapter.

4.2 Distributions with Conditionals in Given
Exponential Families

In this section we consider the important case of exponential families.

Definition 4.1 (Exponential family). An ℓ1-parameter family of den-
sities {f1(x; θ) : θ ∈ Θ}, with respect to µ1 on D1, of the form

f1(x; θ) = r1(x)β1(θ) exp

{

ℓ1
∑

i=1

θiq1i(x)

}

, (4.1)
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is called an exponential family of distributons.
Here Θ is the natural parameter space and the q1i(x)’s are assumed

to be linearly independent. Frequently, µ1 is Lebesgue measure or count-
ing measure and often D1 is some subset of Euclidean space of finite
dimension. �

Consider the exponential family in (4.1) and let {f2(y; τ) : τ ∈ T} denote
another ℓ2-parameter exponential family of densities with respect to µ2 on
D2, of the form

f2(y; τ) = r2(y)β2(τ) exp

⎧

⎨

⎩

ℓ2
∑

j=1

τjq2j(y)

⎫

⎬

⎭

, (4.2)

where T is the natural parameter space and as is customarily done, the
q2j(y)’s are assumed to be linearly independent.

Our goal is the identification of the class of bivariate densities f(x, y)
with respect to µ1 × µ2 on D1 × D2 for which conditional densities f(x|y)
and f(y|x) are well defined and satisfy:

(i) for every y for which f(x|y) is defined, this conditional density belongs
to the family (4.1) for some θ which may depend on y; and

(ii) for every x for which f(y|x) is defined, this conditional density belongs
to the family (4.2) for some τ which may depend on x.

The general class of such bivariate distributions is described in the following
result:

Theorem 4.1 Let f(x, y) be a bivariate density whose conditional densi-
ties satisfy

f(x|y) = f1(x; θ(y)) (4.3)

and
f(y|x) = f2(y; τ(x)) (4.4)

for some function θ(y) and τ(x) where f1 and f2 are defined in (4.1) and
(4.2). It follows that f(x, y) is of the form

f(x, y) = r1(x)r2(y) exp{q(1)(x)′Mq(2)(y)}, (4.5)

where
q(1)(x) = (q10(x), q11(x), q12(x), . . . , q1ℓ1(x)),

q(2)(y) = (q20(y), q21(y), q22(y), . . . , q2ℓ2(y)).

where q10(x) = q20(y) ≡ 1 and M is a matrix of constants parameters of
appropriate dimensions (i.e., (ℓ1 + 1) × (ℓ2 + 1) subject to the requirement
that

∫

D1

∫

D2

f(x, y) dµ1(x) dµ2(y) = 1.
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For convenience we can partition the matrix M as follows:

M =

⎛

⎜

⎜

⎜

⎝

m00 | m01 · · · m0ℓ2

−− + −− −− −−
m10 |
· · · | M̃

mℓ10 |

⎞

⎟

⎟

⎟

⎠

. (4.6)

Note that the case of independence is included; it corresponds to the
choice M̃ ≡ 0. �

Proof. Consider a joint density with conditionals in the given exponential
families. Denote the marginal densities by g(x), x ∈ S(X) = {x : r1(x) > 0}
and h(y), y ∈ S(Y ) = {y : r2(y) > 0}, respectively. Write the joint density
as a product of a marginal and a conditional density in two ways to obtain
the relation

g(x)r2(y)β2(τ(x)) exp[τ(x)′q̃(2)(y)] = h(y)r1(x)β1(θ(y)) exp{θ(y)′q̃(1)(x)}
(4.7)

for (x, y) ∈ S(X) × S(Y ) where

q̃(1)(x) = (q11(x), q12(x), . . . , q1ℓ1(x)),

q̃(2)(y) = (q21(y), q22(y), . . . , q2ℓ2(y)).

Now define
τ0(x) = log[g(x)β2(τ(x))/r1(x)],

θ0(y) = log[h(y)β1(θ(y))/r2(y)],

and then (4.7) can be written in the form

r1(x)r2(y) exp

⎡

⎣

ℓ2
∑

j=0

τj(x)q2j(y)

⎤

⎦ = r1(x)r2(y) exp

[

ℓ1
∑

i=0

θi(y)q1i(x)

]

.

(4.8)
Note both sides of (4.8) represent f(x, y). If we cancel r1(x)r2(y) in (4.8) we
are left with a functional equation to which Theorem 2.4 applies directly.
It follows that

ℓ2
∑

j=0

τj(x)q2j(y) =

ℓ1
∑

i=0

θi(y)q1i(x) = q(1)′(x)Mq(2)′(y). (4.9)

We then obtain (4.5) by substituting (4.9) in (4.8). �

An alternative perhaps more elementary proof involves taking logarithms
on both sides of (4.8) and then taking differences with respect to x and y
(see Arnold and Strauss (1991).)
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The factor em00 in (4.5) is a normalizing constant. The other elements
of M are constrained to be such that

ψ(M) =

∫ ∫

D1×D2

e−m00f(x, y) dµ1(x) dµ2(y) < ∞. (4.10)

The normalizing constant is then necessarily given by 1/ψ(M), so that the
joint density integrates to 1. The normalizing constant frequently must be
evaluated numerically. As a consequence, the likelihood function associated
with samples from conditionals in exponential families distributions are of-
ten intractably complicated. Standard maximum likelihood techniques are,
at best, difficult to implement. The picture is not completely bleak however.
As we shall see in Chapter 9, pseudo-likelihood and method of moments
approaches are feasible and often prove to be quite efficient. We remark also
that a lack of explicit knowledge of the normalizing factor does not prevent
us from simulating samples from distributions with conditionals in expo-
nential families of distributions (see Appendix A). It will be convenient to
introduce the acronym CEF to avoid the necessity of repeating the mouth-
ful “conditionals in exponential families.” Thus CEF distributions are those
whose densities are of the form (4.5).

We have already met two important classes of CEF distributions; the
exponential conditionals class (introduced in Chapter 1) and the normal
conditionals class discussed in detail in Chapter 3. In the subsequent cat-
alog of CEF distributions in Sections 4.4 and 4.5, these old friends will be
only briefly described. Essentially we will just verify how they need to be
reparametrized in order to fit in the formulation given by (4.5).

We remark in passing that the requirement for the density to be inte-
grable may be so restrictive as to rule out any possible model except an
independent marginals model. See, for example, the discussion of Planck
conditionals in Section 4.9.

4.3 Dependence in CEF Distributions

The exponential conditionals distribution described in Chapter 1 has the
following joint density (repeating (1.39))

f(x, y) = exp(m00 − m10x − m01y + m11xy) , x > 0, y > 0,

where m10 > 0, m01 > 0, and m11 ≤ 0. For such a joint distribution it is
readily verified that

P (X > x|Y = y) = exp[−(m10 − m11y)x] . (4.11)

It follows that X is stochastically decreasing in Y . Consequently, applying
Theorem 5.4.2 of Barlow and Proschan (1981), X and Y are negatively
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quadrant dependent and consequently have nonpositive correlation, i.e.,
ρ(X, Y ) ≤ 0. It is reasonable to ask whether this negative dependence is
characteristic of the CEF distributions. As we shall see, in certain families
negative dependence is assured, in others positive dependence and in some
families a unrestrained spectrum of correlations is encountered. It is valu-
able to know about any correlation restraints in CEF models since those
constraints may help justify or countermand use of a particular model in
specific practical applications.

It remains a surprising fact that we cannot have X|Y = y exponential
with parameter dependent on y, Y |X = x exponential with parameter de-
pendent on x, and (X, Y ) positively correlated. But such is the case, and in
any given situation we must sacrifice either exponential conditionals or pos-
itive correlation in order to have a proper model. Of course with a normal
conditionals model, correlations of either sign are possible.

Let us now focus on CEF distributions given by (4.5). Under what con-
ditions can we assert that positive quadrant dependence obtains and hence
that, provided adequate moments exist, nonnegative correlation will be en-
countered? A convenient sufficient condition for such positive dependence
is that the density be totally positive of order 2, i.e., that

∣

∣

∣

∣

f(x1, y1) f(x1, y2)
f(x2, y1) f(x2, y2)

∣

∣

∣

∣

≥ 0 (4.12)

for every x1 < x2, y1 < y2 in S(X) and S(Y ), respectively. (See Barlow
and Proschan’s (1981), Theorem 5.4.2.) The determinant (4.12) assumes a
particularly simple form if the joint density is of the form (4.5). Substitution
into (4.12) yields the following sufficient condition for total positivity of
order 2 (abbreviated as TP2):

[q̃(1)(x1) − q̃(1)(x2)]
′M̃ [q̃(2)(y1) − q̃(2)(y2)] ≥ 0 (4.13)

for every x1 < x2 in S(X) and y1 < y2 in S(Y ). Thus, for example, if
the q1i(x)’s and the q2j(y)’s are all increasing functions, then a sufficient

condition for TP2 and hence for nonnegative correlation is that M̃ ≥ 0
(i.e., if mij ≥ 0,∀i = 1, 2, . . . , ℓ1, j = 1, 2, . . . , ℓ2). If M̃ ≤ 0 then negative
correlation is assured (as was encountered in the exponential conditionals
example). If the q1i’s and q2j ’s are not monotone then it is unlikely that

any choice for M̃ will lead to a TP2 density, and in such settings it is
quite possible to encounter both positive and negative correlations (as in
the normal conditionals example).
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4.4 Exponential Conditionals

In this case, ℓ1 = ℓ2 = 1, r1(t) = r2(t) = I(t > 0), and q11(t) = q21(t) = −t.
The resulting densities are of the form

f(x, y) = exp(m00 − m10x − m01y + m11xy) , x > 0, y > 0. (4.14)

For convergence we must have m10 > 0, m01 > 0, and m11 ≤ 0. It fol-
lows from the discussion in Section 4.3, that only nonpositive correlation
will be encountered. With different parametrization, this density has been
discussed extensively in Arnold and Strauss (1988a). It was also treated
by Besag (1974), Abrahams and Thomas (1984), and Inaba and Shirahata
(1986).

A more convenient parametrization is the following (see Arnold and
Strauss (1988a)):

f(x, y) =
k(c)

σ1σ2
exp[−x/σ1 − y/σ2 − cxy/(σ1σ2)] . (4.15)

The conditional densities are exponential, that is,

X|Y = y ∼ Exp[(1 + cy/σ2)/σ1], (4.16)

Y |X = x ∼ Exp[(1 + cx/σ1)/σ2]. (4.17)

The marginal densities are

fX(x) =
k(c)

σ1
(1 + cx/σ1)

−1e−x/σ1 , x > 0, (4.18)

fY (y) =
k(c)

σ2
(1 + cy/σ2)

−1e−y/σ2 , y > 0. (4.19)

Observe that from (4.16) and (4.17) we have unconditionally

X(1 + cY/σ2)/σ1 ∼ Exp(1), (4.20)

Y (1 + cX/σ1)/σ2 ∼ Exp(1). (4.21)

Note that the variable defined in (4.20) is independent of Y and the variable
defined in (4.21) is independent of X.

Example 4.1 (Exponential conditionals). Figure 4.1 shows an ex-
ample of an exponential conditionals distribution of the type in (4.15)
corresponding to c = 2, σ1 = σ2 = 1. The left figure corresponds to the
probability density function, and the right figure to the contours. �
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FIGURE 4.1. Example of an exponential conditionals with c = 2, σ1 = 2, σ2 = 1
showing (left side) the probability density function, and (right side) the contour
plot.

The normalizing constant can be obtained in terms of the classical ex-
ponential integral function. More precisely, we have

k(c) =
ce−1/c

[−Ei(1/c)]
, (4.22)

where

− Ei(u) =

∫ ∞

u

e−w

w
dw. (4.23)

The joint moment generating function is given by

MX,Y (s, t) = E(esX+tY ) =
(1 − σ1s)

−1(1 − σ2t)
−1k(c)

k[c(1 − σ1s)−1(1 − σ2t)−1]
, (4.24)

where s < 1/σ1 and t < 1/σ2. Thus, we have

E(X) = σ1[k(c) − 1]/c, (4.25)

E(Y ) = σ2[k(c) − 1]/c, (4.26)

var(X) = σ2
1k(c)[1 + c − k(c)]/c2, (4.27)

var(Y ) = σ2
2k(c)[1 + c − k(c)]/c2, (4.28)

cov(X, Y ) = σ1σ2[k(c) − k2(c) + c]/c2. (4.29)

Consequently, the coefficient of correlation is

ρ(X, Y ) =
c + k(c) − k2(c)

k(c)[1 + c − k(c)]
. (4.30)
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FIGURE 4.2. Coefficient of correlation ρ as a function of c for an exponential
conditionals density.

Figure 4.2 shows the coefficient of correlation ρ as a function of c for
the exponential conditionals family. Note that it is always negative and
bounded from below by the value −0.32.

4.5 Normal Conditionals

Assuming unknown mean and variance, we are dealing with two-parameter
exponential families here, i.e., ℓ1 = ℓ2 = 2. We have r1(t) = r2(t) = 1 and
we may parametrize in such a fashion that

q(1)(t) = q(2)(t) =

⎛

⎝

1
t
t2

⎞

⎠ ,

yielding a bivariate density of the form

f(x, y) = exp
{

q′(1)(x)Mq(2)(y)
}

= exp

⎧

⎨

⎩

( 1 x x2 )M

⎛

⎝

1
y
y2

⎞

⎠

⎫

⎬

⎭

.

(4.31)
This is a reparametrized version of the density discussed in detail in Chap-
ter 3. Necessary conditions on M to ensure a valid density are found in
that chapter. The choice m22 = m12 = m21 = 0 yields the classic bivariate
normal provided that

m20 < 0, m02 < 0, m2
11 < 4m02m20.

Correlations of both signs are possible. The nonclassical normal condition-
als models are governed by the following parametric constraints (equivalent
to (3.35)):

m22 < 0, 4m22m02 > m2
12, 4m22m20 > m2

21.
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4.6 Gamma Conditionals

The family of gamma distributions with scale and shape parameters forms
a two-parameter exponential family of the form

f(x; θ1, θ2) = x−1eθ1 log x−θ2xθθ1
2 [Γ(θ1)]

−1
I(x > 0). (4.32)

If X has its density of the form (4.32) then we write X ∼ Γ(θ1, θ2). If we
require all conditionals to be in the family (4.32) then Theorem 4.1 may
be invoked. In this example, ℓ1 = ℓ2 = 2, r1(t) = r2(t) = t−1I(t > 0), and

q(1)(t) = q(2)(t) =

⎛

⎝

1
−t

log t

⎞

⎠ .

Consequently, the general gamma conditionals class of densities is given by

f(x, y) = (xy)−1 exp

⎧

⎨

⎩

( 1 −x log x )M

⎛

⎝

1
−y

log y

⎞

⎠

⎫

⎬

⎭

, x > 0, y > 0.

(4.33)
It remains only to determine appropriate values of the parameters M to
ensure integrability of this joint density. Such conditions were provided by
Castillo, Galambos, and Sarabia (1990) using a different parametrization.
For fixed y, the density f(x, y) is of the form c(y)xα(y)−1e−β(y)x for suit-
able α(y) and β(y). For this to be integrable α(y) and β(y) must both be
positive. The conditional distributions corresponding to (4.33) are of the
form

X|Y = y ∼ Γ(m20 + m22 log y − m21y, m10 − m11y + m12 log y) (4.34)

and

Y |X = x ∼ Γ(m02 + m22 log x − m12x, m01 − m11x + m21 log x). (4.35)

Thus, our parameters must be such that all the expressions on the right-
hand sides of (4.34) and (4.35) are positive. In addition, we must verify
that the marginal densities thus obtained are themselves integrable. We
have

fX(x) = x−1 Γ(m02 + m22 log x − m12x)em00−m10x+m20 log x

(m01 − m11x + m21 log x)m02+m22 log x−m12x
, x > 0,

(4.36)
and an analogous expression for fY (y). It turns out that under the para-
metric conditions sufficient to ensure positivity of the gamma parameters
in (4.34) and (4.35), the function fX(x) is bounded in a neighborhood of
the origin and, for large x, is bounded by x1/2e−δx for some δ > 0. Conse-
quently it is integrable. The requisite conditions for a proper density f(x, y)
in (4.33) may be summarized as follows:
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MODEL I (in this case, X and Y are independent):

m11 = 0, m12 = 0, m21 = 0, m22 = 0,
m10 > 0, m20 > 0, m01 > 0, m02 > 0.

(4.37)

MODEL II:
m11 < 0, m12 = 0, m21 = 0, m22 = 0,
m10 > 0, m20 > 0, m01 > 0, m02 > 0.

(4.38)

MODEL IIIA:

m11 < 0, m12 = 0, m21 < 0, m22 = 0,

m10 > 0, m20 > 0, m02 > 0, m01 > m21

(

1 − log
m21

m11

)

.
(4.39)

MODEL IIIB:

m11 < 0, m12 < 0, m21 = 0, m22 = 0,

m20 > 0, m01 > 0, m02 > 0, m10 > m12

(

1 − log
m12

m11

)

.
(4.40)

MODEL IV:

m01 > m21

(

1 − log
m21

m11

)

, m11 < 0, m12 < 0, m21 < 0,

m10 > m12

(

1 − log
m12

m11

)

, m20 > 0, m02 > 0, m22 = 0.
(4.41)

and finally MODEL V:

m11 < 0, m10 > m12

(

1 − log
m12

m11

)

,

m12 < 0, m20 > m22

(

1 − log
m22

m21

)

,

m21 < 0, m01 > m21

(

1 − log
m21

m11

)

,

m22 < 0, m02 > m22

(

1 − log
m22

m12

)

.

(4.42)

The regression functions for the gamma conditionals distribution are of
course generally nonlinear. We have

E(X|Y = y) =
m20 + m22 log y − m21y

m10 + m12 log y − m11y
(4.43)

and

E(Y |X = x) =
m02 + m22 log x − m12x

m01 + m21 log x − m11x
, (4.44)
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obtained using (4.34) and (4.35). Expressions for the conditional variances
can also be written by referring to (4.34) and (4.35). As a curiosity, we
may note that certain fortuitous parametric choices can lead to E(X|Y =
y) = c1 and E(Y |X = x) = c2, i.e., m20/m10 = m22/m12 = m21/m11,
etc. These will generally not correspond to independent marginals since
the corresponding conditional variances will not be constant.

The modes of this distribution are at the intersection of the conditional
mode curves, that is, they are the solution of the system

x =
m20 + m22 log y − m21y − 1

m10 + m12 log y − m11y
,

y =
m02 + m22 log x − m12x − 1

m01 + m21 log x − m11x
,

where we assume that m20 > 1 and m02 > 1.

4.6.1 Model II

In this section we give a more detailed analysis of Model II, which can be
reparametrized as

f(x, y) =
kr,s(c)

σr
1σ

s
2Γ(r)Γ(s)

xr−1ys−1 exp

(

− x

σ1
− y

σ2
− c

xy

σ1σ2

)

I(x > 0, y > 0)

(4.45)
with r, s > 0, σ1, σ2 > 0, and c ≥ 0. Note that r and s are shape parameters,
σ1 and σ2 scale parameters, and c is a dependence parameter, such that
c = 0 corresponds to the case of independence.

If a random variable (X, Y ) has probability density function (4.45),
then we write (X, Y ) ∼ GCD(r, s; σ1, σ2, c). It is obvious that (X, Y ) has
conditionals

X|Y = y ∼ Γ(r, (1 + cy/σ2)/σ1) (4.46)

and
Y |X = x ∼ Γ(s, (1 + cx/σ1)/σ2) (4.47)

and marginals

fX(x) =
kr,s(c)

σr
1Γ(r)

(1 + cx/σ1)
−sxr−1e−x/σ1 , x > 0, (4.48)

and

fX(x) =
kr,s(c)

σs
2Γ(s)

(1 + cy/σ2)
−rxs−1e−y/σ2 , x > 0. (4.49)

It is worthwhile mentioning that only in the case c = 0 are these marginals
of the gamma form.
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From (4.46) and (4.47) we get the relations

X

σ1

(

1 + c
Y

σ2

)

∼ Γ(r, 1) (4.50)

and
Y

σ2

(

1 + c
X

σ1

)

∼ Γ(s, 1), (4.51)

where the random variable in (4.50) is independent of Y and the random
variable in (4.51) is independent of X. Many of the moments of (4.45) can
be written in terms of

δr,s(c) =
∂

∂c
log kr,s(c). (4.52)

One first observation is that the condition E(∂ log f(x, y)/∂c) = 0 becomes

E(XY ) = σ1σ2δr,s(c). (4.53)

The moment generating function of (X, Y ) is

GX,Y (u, v) = E(euX+vY ) =
(1 − σ1u)−r(1 − σ2v)−skr,s(c)

kr,s[c(1 − σ1u)−1(1 − σ2v)−1]
, (4.54)

where u < 1/σ1 and v < 1/σ2 to ensure the convergence of the integrand.
If we make use of the moment generating function to calculate E(XY ) and
set the result equal to (4.53) we obtain the differential equation

rs − c(r + s + 1)δr,s(c) + c2δ2
r,s(c) − c2δ

′

r,s(c) = δr,s(c), (4.55)

where δ
′

r,s(c) = ∂δr,s(c)/∂c. Using this differential equation we can con-
clude that all high-order moments of (X, Y ) can be expressed in terms of
(4.52). Now, making use of (4.50), (4.51), (4.52), and (4.55), we obtain the
moments

E(X) = σ1[r − cδr,s(c)], (4.56)

E(Y ) = σ2[s − cδr,s(c)], (4.57)

var(X) = σ2
1 [r(1−s)+(c(r + s − 1)+1)δr,s(c)−c2δ2

r,s(c)], (4.58)

var(Y ) = σ2
1 [s(1−r)+(c(r + s − 1)+1)δr,s(c)−c2δ2

r,s(c)], (4.59)

cov(X, Y ) = σ1σ2[(r + s)cδr,s(c)−rs+δr,s(c)−c2δ2
r,s(c)]. (4.60)

The Normalizing Constant

The normalizing constant and the function δr,s(c) play an important role
in the calculus of the GCD moments. We are interested in some expressions
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that are relatively easy to use. For example, from (4.48), the function kr,s(c)
can be written as

kr,s(c) =
cr

U(r, r − s + 1, 1/c)
, (4.61)

where U(a, b, z) is the “Confluent Hypergeometric” function, which is de-
fined in (3.56).

Alternatively, using again (4.48), kr,s and δr,s can be given as

k−1
r,s (c) = E[(1 + cZs)

−r] = E[(1 + cZr)
−s], (4.62)

δr,s(c) = r
E[Zs(1 + cZs)

−r−1]

E[(1 + cZs)−r]
= s

E[Zr(1 + cZr)
−s−1]

E[(1 + cZr)−s]
, (4.63)

where Zα ∼ Γ(α, 1). These expressions allow us to obtain kr,s and δr,s

by simulating samples from a Γ(α, 1) distribution. Expression (4.62) shows
that kr,s(c) is an increasing function of c.

Higher-Order Moments and Mode

Higher-order moments of X and Y can also be expressed in terms of the
function kr,s(c), that is, in terms of (4.61). Writing Xσ1 = X/σ1, Yσ2 =
Y/σ2 and taking into account the fact that E(Xn1

σ1
Y n2

σ2
) = E[Y n2

σ2
E(Xn1

σ1
|Y )]

we obtain

E(Xn1
σ1

Y n2
σ2

) =
Γ(r + n1)Γ(s + n2)

Γ(r)Γ(s)
× kr,s(c)

kr+n1,s+n2(c)
. (4.64)

Using the relations (4.61) we can then obtain recurrence formulas for the
moments. Using relations 13.4.21 and 13.4.27 in Abramowitz and Stegun
(1964) it can be shown that

(k + r−1)E(Xk−1) = −
(

k + r − s − 1

c

)

c

σ1
E(Xk)+

c

σ2
1

E(Xk+1) (4.65)

with k = 1, 2, .... The associated recurrence relations for the random vari-
able Y are obtained by symmetry. In addition, we have

E(log X) = ψ(r) + log σ1 −
∂

∂r
log kr,s(c), (4.66)

where ψ is the digamma function.
If r, s > 1, then the mode of the density (4.45) is

x0 =
σ1

2c

[

−(1 + cs − cr) +
√

(1 + cs − cr)2 + 4c(s − 1)
]

, (4.67)

y0 =
σ2

2c

[

−(1 + cr − cs) +
√

(1 + cr − cs)2 + 4c(r − 1)
]

. (4.68)

If c = 0 the mode becomes (x0, y0) = (σ1(r − 1), σ2(s − 1)) for r, s > 1.
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FIGURE 4.3. Example of a gamma conditionals distribution in (4.45) with c =
1, σ1 = σ2 = 1, r = s = 3 showing (left side) the probability density function,
and (right side) the contour plot.

Example 4.2 (Gamma conditionals Model II). Figure 4.3 shows an
example of a gamma conditionals distribution of the type in (4.45) cor-
responding to c = 1, σ1 = σ2 = 1, r = s = 3. The left figure shows the
probability density function, and the right figure the associated contours. �

4.7 Weibull Conditionals

In general, the two-parameter Weibull distribution does not form an expo-
nential family and consequently more detailed discussion of this model will
be deferred to Chapter 5. However, if the power parameter is held fixed,
the Weibull becomes a one-parameter exponential family. In fact, we may
view a Weibull random variable W as a positive power of an exponential
random variable, i.e.,

W = Xc,

where X is exponential. We may introduce the notation Weibull(c) to de-
note the class of Weibull distributions with fixed power c and arbitrary
scale. It follows readily, since the functions xc1 and xc2 are invertible on
(0,∞), that the class of all bivariate distributions with W1|W2 = w2 ∼
Weibull(c1) for every w2, and W2|W1 = w1 ∼ Weibull(c2) for every w1 is
merely given by taking (X, Y ) to have a general exponential conditionals
distribution given by (4.14) and defining

(W1, W2) = (Xc1 , Y c2).

Of course, analogous distributions could be generated by other invertible
functions φ1(X) and φ2(Y ) instead of Xc1 and Y c2 .
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4.8 Gamma–Normal Conditionals

In the study of the stochastic behavior of ocean waves, Longuet-Higgins
(1975) were led to a model in which squared wave amplitude and wave
period had a joint distribution with gamma and normal marginals. How-
ever, since the theoretical derivation was performed assuming a narrow
energy spectrum, Castillo and Galambos (1987a) suggest that it is perhaps
more reasonable to assume a model with gamma and normal conditional
distributions. Such a model might be applicable even in the wide energy
spectrum case. Models of this type may be identified as CEF distributions
as follows.

The class of bivariate distributions with X|Y = y having a gamma dis-
tribution for all y and Y |X = x having a normal distribution for all x will
be given by (4.5) with the following choices for the r’s and q’s:

r1(x) = x−1I(x > 0), r2(y) = 1,

q11(x) =−x, q21(y) = y,

q12(x) = log x, q22(y) = y2.

(4.69)

Then, the joint density can be written as

f(x, y) = (x)−1 exp

⎧

⎨

⎩

( 1 −x log x )M

⎛

⎝

1
y
y2

⎞

⎠

⎫

⎬

⎭

, ; x > 0, ; y ∈ IR .

(4.70)
Provided that the parameters are suitably constrained to yield a proper

joint density, the specific forms of the conditional distributions will be as
follows:

X|Y = y ∼ Γ(m20 + m21y + m22y
2, m10 + m11y + m12y

2) (4.71)

and
Y |X = x ∼ N(µ(x), σ2(x)), (4.72)

where

µ(x) =
m01 − m11x + m21 log x

2(−m02 + m12x − m22 log x)
, (4.73)

σ2(x) =
1

2
(−m02 + m12x − m22 log x)−1. (4.74)

Thus three necessary conditions for a proper joint distribution are

m20 + m21y + m22y
2 > 0, ∀y ∈ IR , (4.75)

m10 + m11y + m12y
2 > 0, ∀y ∈ IR , (4.76)
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and
−m02 + m12x − m22 log x > 0, ∀x > 0. (4.77)

Provided our parameters are constrained to ensure that (4.75)–(4.77) hold,
the only further constraint is that one (and hence both) of the resulting
marginal densities be integrable. In this manner we are led to the following
set of parametric constraints for valid gamma-normal models.

MODEL I (in this case, X and Y are independent):

m12 = 0, m22 = 0, m02 < 0, m11 = 0,
m21 = 0, m10 > 0, m20 > 0, m01 ∈ IR .

(4.78)

MODEL II:

m22 = 0, m12 > 0, m02 < 0, m2
11 < 4m10m12,

m20 > 0, m21 = 0, m01 ∈ IR .
(4.79)

MODEL III:

m12 > 0, m02 < m22

(

1 − log
m22

m12

)

,

m22 > 0, m2
11 < 4m10m12,

m01 ∈ IR , m2
21 < 4m20m22.

(4.80)

The regression function of X on Y is biquadratic, while the regression of
Y on X is a bilinear function of y and log y.

Example 4.3 (Gamma-Normal conditionals). Figure 4.4 shows an
example of a normal-gamma conditionals distribution of type II correspond-
ing to m02 = −1, m01 = 1, m10 = 1.5, m12 = 2, m11 = 1, m20 = 3, m22 =
m21 = 0. The left figure corresponds to the probability density function,
and the right figure to the contours. �

The conditional mode functions can intersect more than once (similar to
the case for normal conditionals distributions). In Figure 4.5, a bimodal
gamma-normal conditionals density is shown. It corresponds to the param-
eter values m01 = 0.7, m02 = 1.4, m10 = 1.8, m11 = 1.3, m12 = 2.3, m20 =
3.7, m21 = 4.8, m22 = 3.3.

4.9 Power-Function and Other Weighted
Distributions as Conditionals

The family of power-function densities

f(x; θ) = θxθ−1, 0 < x < 1, (4.81)
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FIGURE 4.4. Example of a normal-gamma conditionals distribution with m02 =
−1, m01 = 1, m10 = 1.5, m12 = 2, m11 = 1, m20 = 3, m22 = m21 = 0 showing (left
side) the probability density function, and (right side) the contour plot.

FIGURE 4.5. An example of a gamma-normal conditionals distributions with
two modes.
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where θ ∈ (0,∞) is clearly an exponential family and modeling situations
might suggest use of joint densities with conditionals in this family. Rather
than describe this specific class of joint distributions it is convenient to
recognize that (4.81) is a special case of a general class of weighted distri-
butions on IR+ (see, for example, Patil and Rao (1977) for a good intro-
duction to weighted distributions and their potential for applications). For
any nonnegative function A(x) on IR+ we may define the corresponding
class of g weighted distributions (g again is a nonnegative function) by

f(x; θ) = [g(x)]θA(x)B(θ), x > 0. (4.82)

If we let
q(x) = log g(x),

then we see immediately that (4.82) is a one-parameter exponential family.
Denote the natural parameter space of this family by the interval

(θ1(g, A), θ2(g, A)). (4.83)

Of course different choices of g and/or A will lead to different distributions
with possibly different natural parameter spaces. We will say that X has a
(g, A) weighted distribution if (4.82) holds. We may then ask what is the
nature of all bivariate distributions for which X|Y = y is a (g1, A1) weighted
distribution for all y and Y |X = x is a (g2, A2) weighted distribution for
every x? Using (4.5) it is apparent that the form of the joint density must
be as follows:

f(x, y)=A1(x)A2(y)em00 [g1(x)]m10 [g2(y)]m01em11(log g1(x))(log g2(y)),
x, y > 0

(4.84)
where m10, m01, and m11 must satisfy

θ1(g1, A1) < m10 + m11 log g2(y) < θ2(g1, A1), ∀y with A2(y) > 0,

and

θ1(g2, A2) < m01 + m11 log g1(x) < θ2(g2, A2), ∀x with A1(x) > 0.

In some cases we will also need to impose the additional conditions that

θ1(g1, A1) < m10 < θ2(g1, A1)

and
θ1(g2, A2) < m01 < θ2(g2, A2)

to ensure that the joint density is integrable. This would be necessary,
for example, in the case in which A1(x) = 1, A2(y) = 1, g1(x) = e−x, and
g2(y) = e−y. This of course is yet another representation of the exponential
conditionals distribution.
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In some cases, severe parametric restrictions are necessary in order to
have a valid distribution. An example is provided by the Planck distribu-
tion. It is a weighted distribution with g(x) = x and A(x) = (ex−1)−1, x >
0. Thus

f(x; θ) = xθ/[(ex − 1)Γ(θ + 1)ξ(θ + 1)], x > 0,

where θ > −1 (here ξ is the Riemann zeta function). If a bivariate density is
to have all conditionals in the Planck family we must have a representation
like (4.84) and for legitimate Planck conditionals of X given y we will
require

m11 log y + m01 > −1, ∀y > 0.

Evidently this is only possible if m11 = 0. If follows that the only Planck
conditionals model that can be constructed is the trivial one with indepen-
dent Planck marginals.

4.10 Beta Conditionals

The beta conditionals model is associated with the following choices for the
r’s and q’s in (4.5):

r1(x) = [x(1 − x)]−1I(0 < x < 1),
r2(y) = [y(1 − y)]−1I(0 < y < 1),
q11(x) = log x,
q21(y) = log y,
q12(x) = log(1 − x),
q22(y) = log(1 − y).

(4.85)

This yields a joint density of the form

f(x, y) = [x(1 − x)y(1 − y)]−1 exp{m11 log x log y + m12 log x log(1 − y)
+ m21 log(1 − x) log y + m22 log(1 − x) log(1 − y)
+ m10 log x + m20 log(1 − x)
+ m01 log y + m02 log(1 − y)
+ m00}I(0 < x, y < 1).

(4.86)
In order that the associated beta conditionals will have parameters in the
natural parameter space of the beta exponential family we require that

m10 + m11 log y + m12 log(1 − y) > 0, ∀y ∈ (0, 1),
m20 + m21 log y + m22 log(1 − y) > 0, ∀y ∈ (0, 1),
m01 + m11 log x + m21 log(1 − x) > 0, ∀x ∈ (0, 1),
m02 + m12 log x + m22 log(1 − x) > 0, ∀x ∈ (0, 1).

(4.87)

Evidently (4.87) cannot be true if any mij with i and j ≥ 1 is positive.
So mij ≤ 0, i = 1, 2, j = 1, 2. In order to guarantee integrability of the
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FIGURE 4.6. Example of a beta conditionals distribution with m01 = 1, m02 =
1, m10 = 1, m11 = −1, m12 = −1, m20 = 1, m21 = −3, m22 = −1 showing (left
side) the probability density function, and (right side) the contour plot.

marginal distributions we require m10 > 0, m20 > 0, m01 > 0, m02 > 0. Re-
ferring to (4.87) to read off the appropriate parameters for the conditional
distributions we may readily write conditional means and variances. For
example

E(X|Y = y) =
m10 + m11 log y + m12 log(1 − y)

(m10 + m20) + (m11 + m21) log y + (m12 + m22) log(1 − y)
.

(4.88)
As usual M̃ ≡ 0 corresponds to independent marginals. Both negative and
positive correlations are possible in this family.

Example 4.4 (Beta conditionals). Figure 4.6 shows an example of a
beta conditionals distribution corresponding to (4.86) with m01 = 1, m02 =
1, m10 = 1, m11 = −1, m12 = −1, m20 = 1, m21 = −3, m22 = −1. The left
figure corresponds to the probability density function, and the right figure
to the contours. �

4.11 Inverse Gaussian Conditionals

We say that X has an inverse Gaussian distribution if its density is of the
form

f(x) =

√

η2

π
e2

√
η1η2e−η1x−η2x−1

I(x > 0). (4.89)

In such a case we write X ∼ IG(η1, η2). The parameters η1, η2 are con-
strained to be positive in order to have a proper density.
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The inverse Gaussian conditionals model corresponds to the following
choices for the r’s and q’s in (4.5):

r1(x) = x−3/2I(x > 0),
r2(y) = y−3/2I(y > 0),

q11(x) =−x,
q21(y) =−y,
q12(x) =−x−1,
q22(y) =−y−1.

(4.90)

The joint density is of the form

f(x, y) = (xy)−3/2 exp{m11xy + m12xy−1 + m21x
−1y

+ m22x
−1y−1 − m10x − m20x

−1

− m01y − m02y
−1 + m00}I(x > 0, y > 0).

(4.91)

In order to have proper inverse Gaussian conditionals distributions we
require that

m10 − m11y − m12y
−1 > 0, ∀y > 0,

m20 − m21y − m22y
−1 > 0, ∀y > 0,

m01 − m11x − m21x
−1 > 0, ∀x > 0,

m02 − m12x − m22x
−1 > 0, ∀x > 0.

(4.92)

Clearly then, mij ≤ 0, i = 1, 2, j = 1, 2. In addition we require that

m10 > −2
√

m11m12, m20 > −2
√

m21m22,
m01 > −2

√
m11m21, m02 > −2

√
m12m22,

(4.93)

in order to guarantee that (4.92) holds and that the resulting marginal
densities are integrable. Reference may be made to (4.92) to determine the
relevant parameter values in the conditional distributions. For example,

X|Y = y ∼ IG(m10 − m11y − m12y
−1, m20 − m21y − m22y

−1)

and, consequently,

E(X|Y = y) =

√

m20 − m21y − m22y−1

m10 − m11y − m12y−1
. (4.94)

4.12 Three Discrete Examples (Binomial,
Geometric, and Poisson)

Definition 4.2 (Binomial distribution). A random variable has a

binomial(n, p) distribution if P (X = x) =

(

n
x

)

px(1−p)n−x, x = 0, 1, . . . , n,

0 < p < 1. �
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A two-dimensional random vector (X, Y ) will have

X|Y = y ∼ binomial (n1, p1(y))

for each y and Y |X = x ∼ binomial(n2, p2(x)) for each x if its joint density
is of the form

fX,Y (x, y) = kB(p1, p2, t)

(

n1

x

)

px
1(1 − p1)

n1−x

(

n2

y

)

py
2(1 − p2)

n2−ytxy,

x = 0, 1, . . . , n1, y = 0, 1, . . . , n2.
(4.95)

Here p1 ∈ (0, 1), p2 ∈ (0, 1), and t > 0. This is merely a reparametrized
version of (4.5) with the appropriate choices of r’s and q’s. The case t =
1, corresponds to independence. The correlation is positive if t > 1 and
negative if t < 1. Conditional means and variances are readily written
down since X|Y = y ∼ binomial(n1, [p1t

y/(1− p1 + p1t
y]) and Y |X = x ∼

binomial(n2, [p2t
x/(1 − p2 + p2t

x]). Thus

E(X|Y = y) = n1p1t
y/(1 − p1 + p1t

y), (4.96)

etc.

Definition 4.3 (Geometric distribution). A random variable has a
geometric (q) distribution if P (X = x) = (1 − q)qx, x = 0, 1, 2, . . . , where
0 < q < 1. �

Since this is a one-parameter exponential family of distributions, a two-
dimensional random vector with geometric conditionals can be readily
written using (4.5). After convenient reparametrization we obtain

fX,Y (x, y) = kG(q1, q2, q3)q
x
1 qy

2qxy
3 , x = 0, 1, 2, . . . , ; y = 0, 1, 2, . . . .

(4.97)
For convergence and legitimate geometric conditionals we require that
q1 ∈ (0, 1), q2 ∈ (0, 1) while 0 < q3 ≤ 1. The case q3 = 1 corresponds to
independent marginals. Otherwise, the correlation between X and Y is neg-
ative. Since X|Y = y ∼ geometric(q1q

y
3 ) and Y |X = x ∼ geometric(q2q

x
3 ),

we may determine conditional moments such as

E(X|Y = y) = q1q
y
3/(1 − q1q

y
3 ). (4.98)

Our final discrete example is the Poisson conditionals distribution.

Definition 4.4 (Poisson distribution). A random variable X has a
Poisson(λ) distribution if P (X = x) = e−λλx/x!, x = 0, 1, 2, . . . , λ > 0. �

Since this is a one-parameter exponential family we may use (4.5) to de-
scribe the class of Poisson conditionals distributions. When reparametrized,
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we obtain
fX,Y (x, y) = kP (λ1, λ2, λ3)λ

x
1λy

2λ
xy
3 /(x! y!),

x = 0, 1, . . . , y = 0, 1, . . . .
(4.99)

In order to have summability in (4.99) and legitimate Poisson conditional
distributions the parameters are constrained to satisfy λ1 > 0, λ2 > 0, and
0 < λ3 ≤ 1. The conditional distribution of X given Y = y is Poisson(λ1λ

y
3)

while Y |X = x ∼ Poisson(λ2λ
x
3). Consequently,

E(X|Y = y) = λ1λ
y
3, (4.100)

etc. If λ3 = 1, X and Y are independent. If 0 < λ3 < 1, X and Y are
negatively correlated.

We also have

E(X) = λ1
kP (λ1, λ2, λ3)

kP (λ1, λ2λ3, λ3)
,

E(Y ) = λ2
kP (λ1, λ2, λ3)

kP (λ1λ3, λ2, λ3)
,

E(XY ) = λ1λ2λ3
kP (λ1, λ2, λ3)

kP (λ1λ3, λ2λ3, λ3)
.

(4.101)

Just as we cannot have exponential conditionals with positive corre-
lation, we cannot have Poisson (or geometric) conditionals with positive
correlation.

The Poisson conditionals distribution, (4.99), is also known as Obrechkoff’s
distribution (Obrechkoff (1938)).

4.13 Poisson–Gamma Conditionals

Consider a random variable (X, Y ) such that

X|Y = y ∼ Poisson(y), (4.102)

where we assume that the random variable Y is a gamma variable with
density function

Y ∼ Γ(α, λ). (4.103)

The resulting distribution of X is known as a compound Poisson distribu-
tion. It is well known that the unconditional distribution of X is negative
binomial with probability mass density

fX(x) =
Γ(x + α)

x! Γ(α)

(

λ

λ + 1

)α (

1

λ + 1

)x

, x = 0, 1, . . . . (4.104)
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From (4.102) and (4.103) it easy to prove that the conditional density of
Y given X = x is gamma, that is,

Y |X = x ∼ Γ(x + α, λ + 1). (4.105)

As a generalization of this scenario we can ask for the most general distri-
bution of a random variable (X, Y ) such that its conditional distributions
are of the Poisson and gamma type. This will be a CEF distribution as in
(4.5) with ℓ1 = 1 and ℓ2 = 2 and,

q(1)(x) =

(

1
x

)

,

q(2)(y) =

⎛

⎝

1
−y

log y

⎞

⎠ ,

and with r1(x) = 1/x! and r2(y) = y−1I(y > 0). In this way, we obtain the
joint density

f(x, y) =
1

x! y
exp

⎧

⎨

⎩

( 1 x )M

⎛

⎝

1
−y

log y

⎞

⎠

⎫

⎬

⎭

, x = 0, 1, 2, . . . , y > 0.

(4.106)
which is equivalent to

f(x, y)=
1

x! y
exp(m00 + m10x − m01y − m11xy + m02 log y + m12x log y),

x = 0, 1, 2, . . . , y > 0.
(4.107)

where

m01 > 0, m02 > 0, m11 ≥ 0, m12 ≥ 0. (4.108)

Some extra conditions are required to ensure the integrability of (4.107).
The case m11 = 0 and m12 = 1 corresponds to the compound Poisson

distribution, and the case m11 = m12 = 0 to the case in which X and Y
are independent. The conditional densities of the new model are

X|Y = y ∼ Poisson(em10−m11y+m12 log y), (4.109)

Y |X = x ∼ Γ(m02 + m12x, m01 + m11x). (4.110)

The marginal density of X in (4.107) is a generalization of the negative
binomial distribution. Its density function is

fX(x) =
Γ(m02 + m12x)

(m01 + m11x)m02+m12x
× em00+m10x

x!
, x = 0, 1, . . . . (4.111)
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4.14 Bibliographic Notes

Section 4.2 is based on Arnold and Strauss (1991). Section 4.3 is drawn from
Arnold (1988a). Convenient references for the examples in later sections are
as follows:

(i) Exponential: Arnold and Strauss (1988a);

(ii) Normal: Castillo and Galambos (1987a);

(iii) Gamma: Castillo, Galambos, and Sarabia (1990);

(iv) Weibull: Castillo and Galambos (1990);

(v) Gamma-Normal: Castillo and Galambos (1987a);

(vi) Power function and other weighted distributions: this material is new;

(vii) Beta: Arnold and Strauss (1991) and Castillo and Sarabia (1990a);

(viii) Inverse Gaussian: this material is new;

(ix) Binomial, geometric, Poisson: Arnold and Strauss (1991);

(x) Poisson-gamma: this material is new.

A good source of information on the various univariate exponential families
discussed in this chapter is Johnson, Kotz, and Kemp (1992) and Johnson,
Kotz, and Balakrishnan (1994, 1995).

Exercises

4.1 Consider the distribution with exponential conditionals given by (4.15).

(a) If k(c) is the normalizing constant and if we define

ψ(c) =
1

ck(c−1)
,

prove that

ψ′(c) = ψ(c) − 1

c
.

(b) Using the joint moment generating function (4.24) and (a), ob-
tain the moment expressions (4.26)–(4.29).

(Arnold and Strauss (1988a).)

4.2 Consider the model with Poisson conditionals given by (4.99).



100 4. Conditionals in Exponential Families

(a) Obtain the marginal distributions of X and Y .

(b) If 0 < φ ≤ 1, prove that

∞
∑

n=0

5n

n!
exp(7φn) =

∞
∑

n=0

7n

n!
exp(5φn) .

4.3 Obtain the modal value of the distribution with Poisson conditionals
given by (4.99).

4.4 Identify the class of bivariate distributions for which all conditional
distributions of X given Y and of Y given X are in the family of
gamma distributions with scale and shape parameters equal to each
other.

4.5 A random variable X is said to be a Laplace random variable and is
denoted by X ∼ Lap(µ, σ), if its pdf is given by

f(x;µ, σ) =
1

2σ
exp

(

−
∣

∣

∣

∣

x − µ

σ

∣

∣

∣

∣

)

, −∞ < x < ∞,

with µ ∈ IR and σ ∈ IR+.

(a) Find the most general random variable (X, Y ) such that X|Y =
y ∼ Lap(µ1, σ1(y)) and Y |X = x ∼ Lap(µ2, σ2(x)). Find their
marginal probability density functions.

(b) For the centered case (µ1 = µ2 = 0), obtain an expression for
the normalizing constant.

(c) Solve the problem in the general case, i.e., find the most general
random variable such that X|Y = y ∼ Lap(µ1(y), σ1(y)) and
Y |X = x ∼ Lap(µ2(x), σ2(x)).

4.6 Discuss the sign of the correlation coefficient for the gamma-normal
conditionals model with joint pdf given by (4.70).

4.7 Consider the bivariate weighted distributions conditionals with joint
pdf given by (4.84).

(a) Consider some particular cases.

(b) Discuss the sign of the correlation coefficient.

(c) Find the regression lines x = E(X|Y = y) and y = E(Y |X = x).

(d) Characterize some bivariate distributions with weighted condi-
tionals and a particular regression function.

(Sarabia and Castillo (1991).)

4.8 Characterize the bivariate distributions (X, Y ) with beta conditionals
satisfying:
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(a) The conditional expectations E(X|Y = y) and E(Y |X = x) are
constant.

(b) The two conditional mode functions are constant.

(c) The conditional variances are constant (homoscedastic).

4.9 A random variable X is said to be a negative binomial random
variable and is denoted by X ∼ NB(α, p), iff

P (X = x) =
Γ(x + α)

Γ(x + 1)Γ(α)
pαqx, x = 0, 1, 2, . . . ,

with α > 0, 0 < p < 1, and q = 1 − p.

(a) Obtain the most general random variable (X, Y ) such that X|Y =
y ∼ NB(α1, p1(y)) and Y |X = x ∼ NB(α2, p2(x)). Use the most
convenient parametrization.

(b) Solve the general case with nonconstant αi, i = 1, 2.

4.10 Obtain the most general bivariate distribution (X, Y ) such that the
conditional distributions of X|X + Y and X + Y |X are exponential
distributions.

4.11 Consider the gamma conditionals distribution (4.33). Determine suf-
ficient conditions on the parameters of this model to guarantee that
X has a gamma distribution and Y has a Pareto distribution.

4.12 For n = 1, 2, . . . consider the extreme order statistics X1:n, Y1:n, Xn:n,
Yn:n based on a sample of independent random vectors (Xi, Yi), i =
1, 2, . . . , n, with common exponential conditionals distributions (4.14).

(a) Verify that X1:n and Y1:n are asymptotically independent and
determine the limiting distribution of (X1:n, Y1:n).

(b) Now consider Xn:n and Yn:n.

(Angus (1989).)





5

Other Conditionally
Specified Families

5.1 Introduction

Of course, not every conditionally specified model involves exponential fam-
ilies. The present chapter surveys a variety of conditionally specified models
not fitting into the exponential family paradigm. No general theorem anal-
ogous to Theorem 4.1 is available and results are obtained on a case by case
basis. The key tools are of course Theorems 1.3 and 1.4 which permit us to
solve the functional equations characterizing many conditionally specified
models.

We shall treat first the case of distributions with Pareto conditionals, and
two extensions involving Pearson type VI and generalized Pareto distribu-
tions. These three models, together with the Dagum type I distribution,
which can be derived from them, can be used for modeling data involv-
ing income for related individuals or income from different sources. Next
we describe distributions with Cauchy and Student-t conditionals, heavy
tailed alternatives to the normal conditionals model. Then, the most gen-
eral cases of distributions with uniform and exponential conditionals, in
the sense of having nonrectangular support, are analyzed. In this study
we shall use the compatibility conditions described in Chapter 1, which
are specially suited for distributions with a support depending on the pa-
rameters. Finally, we shall study the distributions with scaled (first type)
beta conditionals with nonrectangular support. In particular, those sub-
ject to the condition X + Y ≤ 1 have applications in simulating random
proportions.
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The plot thickens a little when we turn to study Weibull and logistic
conditionals models. As we shall see, there is no trouble developing the
corresponding functional equations. The general solutions however are not
easy to obtain and even when, as is the case with Weibull conditionals, we
can solve the equations, or prove they have a solution, it is not easy to write
down the form of the resulting joint density. In fact, at the present time, we
are not able to write an explicit form for a nontrivial Weibull conditionals
density (i.e., one which does not have independent marginals and is distinct
from those obtained by power transformations of exponential conditionals
models as described in Section 4.7). Trivial logistic conditionals densities
are related to certain Pareto conditionals distributions and have constant
conditional scale parameters. Nontrivial logistic conditionals models have
evaded discovery. In this case even existence is open to question.

Our final section of this chapter deals with mixtures. A time honored
device for constructing bivariate densities with specified marginals involves
mixtures of densities with suitable independent marginals. Can mixtures
of suitable conditionally specified distributions yield useful models with
conditionals in specified families? Not quite, as it turns out, but the mix-
ture device may be useful in suggesting possible forms of well-behaved
conditionally specified models.

5.2 Bivariate Distributions with
Pareto Conditionals

Definition 5.1 (Pareto type II distribution). We say that a random
variable has a Pareto type II distribution, according to the hierarchy of
Pareto distributions described in Arnold (1983), if its probability density
function is

f(x, α) =
α

σ

(

1 +
x

σ

)−(α+1)

I(x > 0), (5.1)

where α, σ > 0. In the following this distribution will be denoted by
P (σ, α). �

This law is closely related to the one introduced by Pareto in 1895,
in his famous polemic against the French and Italian socialists who were
pressing for institutional reforms to reduce inequality in the distribution of
income. Pareto analyzed the characteristics of regularity and permanence
in observed income distributions, which indicated that the income elasticity
of the survival distribution function was constant, that is,

d log P (X > x)/d log x = α, (5.2)

where X is the income variable with range (x0,∞).
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The value of α (which is called the Pareto index), is normally close to
1.5, even though it changes with time and from population to population.
It is often interpreted as an inequality measure. It may be noted that the
Gini index corresponding to (5.2) is given by (2α − 1)−1. The distribu-
tions described by (5.1) and (5.2) differ only by translation. Recently, the
Pareto laws have been applied to model stochastic phenomena from other
areas such as health care, telephone circuitry, oil explorations, queue service
disciplines, and reliability investigations. For more details about general-
izations, properties, and applications of Pareto distributions, see Arnold
(1983).

In this section, we look for all bivariate densities fX,Y (x, y), such that all
conditional distributions are of the type (5.1), with constant Pareto index
α. Then the conditional distributions are

X|Y = y ∼ P (σ1(y), α),

Y |X = x ∼ P (σ2(x), α),

where σ1(y), σ2(x) are positive functions with positive arguments. Thus,
writing the joint density as a product of marginal and conditional densities
in both ways, we get the functional equation

g1(y)

σ1(y) + x
=

g2(x)

σ2(x) + y
, (5.3)

where

g1(y) = (α σ1(y)αfY (y))1/(α+1), g2(x) = (α σ2(x)αfX(x))1/(α+1). (5.4)

Equation (5.3) can be readily rearranged to be of the form (1.31) and
consequently we may find the following general solution:

σ1(y) =
λ00 + λ01y

λ10 + λ11y
, σ2(x) =

λ00 + λ10x

λ01 + λ11x
, (5.5)

g1(y) =
1

λ10 + λ11y
, g2(x) =

1

λ01 + λ11x
, (5.6)

where the λij ’s are arbitrary constants. From (5.3)–(5.6) we get the follow-
ing joint and marginal densities:

fX,Y (x, y) ∝ 1

(λ00 + λ10x + λ01y + λ11xy)α+1
, (5.7)

fX(x) ∝ 1

(λ01 + λ11x)(λ00 + λ10x)α
, fY (y) ∝ 1

(λ10 + λ11y)(λ00 + λ01y)α
.

(5.8)
It remains now to identify constraints on the λi’s to ensure that (5.7) and
(5.8) are nonnegative and integrable. Clearly for nonnegativity we must
assume all λij ’s are ≥ 0. It turns out that to ensure integrability, we must
distinguish three cases.
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Case (i): 0 < α < 1. In this case we must have λ10 > 0, λ01 > 0, λ11 > 0
and λ00 ≥ 0,

Case (ii): α = 1. Then we need λ10 > 0, λ01 > 0, λ11 > 0, and λ00 > 0.

Case (iii): α > 1. Here we must have λ00 > 0, λ10 > 0, and λ01 > 0 while
λ11 ≥ 0.

It will be noted that in case (iii), the choice λ11 = 0 leads to a distribution
with Pareto marginals and Pareto conditionals (this special case is the
bivariate Pareto introduced by Mardia (1962)). In order to calculate the
normalizing constant in (5.7) we need to evaluate the integral

I =

∫ ∞

0

∫ ∞

0

dx dy

(λ00 + λ10x + λ01y + λ11xy)α+1
(5.9)

with the above conditions. For this we shall distinguish three cases:

Case (i): λ11 = 0. In this case elementary calculus yields

I = α(α − 1)/(λα−1
00 λ10λ01). (5.10)

Case (ii): λ00 = 0. In this case, define φ = λ11/(λ10λ01) and make a simple
change of variables to obtain

I =
πφα−1

αλ10λ01sin(απ)
. (5.11)

Case (iii): λ00 �= 0. Setting λ∗
10 = (λ10/λ00), λ

∗
01 = (λ01/λ00), λ

∗
11 =

(λ11/λ00), φ
∗ = λ∗

11/(λ∗
10λ

∗
01), and using a technique similar to that given

by Arnold (1987), we get (5.9) in terms of hypergeometric functions:

I =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F (α, 1; α + 1; 1 − 1/φ∗)

α2λα+1
00 λ∗

10λ
∗
01φ

∗ =

∑∞
k=0

α

α + k

(

1 − 1

φ∗

)k

α2λα+1
00 λ∗

10λ
∗
01φ

∗

if φ∗ >
1

2
,

φ∗α+1F (α, α; α + 1; 1 − φ∗)

α2λα+1
00 λ∗

10λ
∗
01

=

φ∗α+1
∑∞

k=0

Γ(α + k)

(α + k)k!
(1 − φ∗)k

αλα+1
00 λ∗

10λ
∗
01Γ(α)

if 0 < φ∗ ≤ 1

2
.

(5.12)
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Expression (5.12) simplifies considerably in the case when α = 1 or 2. We
find

[α = 1], I =
1

λ10λ01

− log[(λ00λ11)/(λ10λ01)]
(

1 − λ00λ11

λ10λ01

) (5.13)

and

[α = 2], I =
1

2λ00λ10λ01

φ∗

(1 − φ∗)2

[

1

φ∗ + log φ∗ − 1

]

. (5.14)

The quantity I defined in (5.12) clearly deserves the title of an awkward
normalizing constant and parameters estimation techniques will need to be
carefully chosen to sidestep the problem of repeatedly evaluating I. Such
techniques will be discussed in Chapter 9. In order to study the dependence
between the random variables X and Y in the model (5.7), we compute

d

dy
P (X > x|Y = y) = −α

(

1 +
x

σ1(y)

)−(α+1)
[λ00λ11 − λ10λ01]

(λ00 + λ01y)2
x

and observe that its sign depends on the sign of λ00λ11 − λ10λ01. Thus,
according to Barlow and Proschan (1981), we conclude that X is stochas-
tically increasing or decreasing with Y . Consequently, for values of α and
the λi’s such that the correlation coefficient exists, we have

signρ(X, Y ) = sign(λ10λ01 − λ00λ11). (5.15)

In particular, the bivariate densities with λ00 = 0, or λ11 = 0 always have
a positive coefficient of correlation.

By using some changes of variable in (5.7) other interesting bivariate
distributions with given conditionals can be obtained. For example, if α =
1 in (5.7) and if we let U = log X, V = log Y , then (U, V ) has all its
conditional distributions of the logistic form with unit scale parameters.
These are the trivial logistic conditionals distributions referred to in the
Introduction. Nontrivial logistic conditionals densities will be discussed in
Section 5.10.

5.3 Pearson Type VI Conditionals

In this section we consider a generalization of the above Pareto families.
Specifically we treat Pearson type VI laws, which are also called beta dis-
tributions of the second kind. The densities associated with Pearson VI
distributions are

f(x; p, q) =
σq

B(p, q)
xp−1(σ + x)−(p+q), x > 0, (5.16)
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TABLE 5.1. Reciprocals of the normalizing constants for the Pearson type VI
models.

λ00 = 0 J =
B(p, q)B(p − q, q)

λq
10λ

q
01λ

p−q
11

λ11 = 0 J =
B(p, q)B(p, q − p)

λq−p
00 λq

10λ
p
01

λ00, λ11 > 0 J =
B(p, q)2

λq−p
00 λp

10λ
p
01

F (p, p; p + q, 1 − 1

θ
)

where p, q, σ > 0. In the following discussion, this family will be denoted
by B2(p, q, σ).

We wish to determine the most general class of bivariate random vari-
ables (X, Y ) such that X|Y = y ∼ beta 2(p, q, σ1(y)) and Y |X = x ∼
beta 2(p, q, σ2(x)). Using a similar technique to that used in the Pareto
case, we get

fX,Y (x, y) ∝ xp−1yp−1

(λ00 + λ10x + λ01y + λ11xy)p+q
, (5.17)

where λ00, λ11 ≥ 0, and λ10, λ01 > 0. If λ00 = 0, then q < p and λ11 �= 0,
and if λ11 = 0, then 1 < p < q and λ00 �= 0. Note that (5.17) reduces to
(5.7) when p = 1. The marginal densities corresponding to (5.17) are

fX(x) ∝ xp−1

(λ01 + λ11x)p(λ00 + λ10x)q
, fY (y) ∝ yp−1

(λ10 + λ11y)p(λ00 + λ01y)q
.

(5.18)
To determine the appropriate normalizing constant we must evaluate the
integral

J =

∫ ∞

0

∫ ∞

0

xp−1yp−1

(λ00 + λ10x + λ01y + λ11xy)p+q
dx dy. (5.19)

This can be accomplished by methods similar to those used in the Pareto
case. We thus obtain the entries in Table 5.1.

If λ10λ01 = λ00λ11, we have the trivial case of independence where X ∼
beta 2(p, q; λ00/λ10) and Y ∼ beta 2(p, q; λ00/λ01). The density (5.17) with
λ11 = 0 is an extension of the bivariate Pareto distribution introduced by
Mardia (1962).
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In direct analogy to the univariate beta(2) distribution, the class of dis-
tributions (5.17) is closed under reciprocation, i.e. if we denote (5.17) by
B2C(λ00, λ10, λ01, λ11; p, q), then if (X, Y ) ∼ B2C(λ00, λ10, λ01, λ11; p, q),
we have (1/X, 1/Y ) ∼ B2C(λ11, λ01, λ10, λ00; q, p). In addition, it is easy
to prove that

E(Xk|Y = y) =
B(p + k, q − k)

B(p, q)

(

λ00 + λ01y

λ10 + λ11y

)k

, (5.20)

E(Y k|X = x) =
B(p + k, q − k)

B(p, q)

(

λ00 + λ01x

λ10 + λ11x

)k

, (5.21)

provided that q > k. Thus the conditional moments are rational functions
of the conditioned variable. In a similar way, it is easy to prove that if the
coefficient of correlation exists, then we have

signρ(X, Y ) = sign(λ10λ01 − λ00λ11),

just as in the Pareto case.

5.4 Bivariate Distributions with Generalized
Pareto Conditionals

A hierarchy of Pareto distributions was introduced in Arnold (1983). The
generalized Pareto distribution that we are considering in the present book
was called a Pareto (IV) distribution in that monograph. Since we will
not consider other distributions in the hierarchy we will merely refer to
the distribution as generalized Pareto (it is also known as a Burr XII
distribution).

Definition 5.2 (Generalized Pareto distribution). We say that X
has a generalized Pareto distribution and write X ∼ GP(σ, δ, α) if its
survival function is of the form

P (X > x) =

[

1 +
(x

σ

)δ
]−α

I(x > 0), (5.22)

where σ, δ and α are positive. �

Our goal is to identify all bivariate distributions with the property that
all of their conditional distributions are members of the family (5.22). We
will outline analogous multivariate extensions in Chapter 8.

We wish to identify the class of all bivariate random variables (X, Y )
such that for every y > 0 we have

X|Y = y ∼ GP(σ(y), δ(y), α(y)), (5.23)
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and for every x > 0 we have

Y |X = x ∼ GP(τ(x), γ(x), β(x)). (5.24)

If we denote the corresponding marginal densities of X and Y by f(x) and
g(y), respectively, and write the joint density of (X, Y ) as the product of
marginal and conditional densities in both possible ways (i.e., fX(x)fY |X(y|x)
and fY (y)fX|Y (x|y)) we conclude that the following functional equation
must hold:

f(x)β(x)γ(x)yγ(x)−1

[τ(x)]γ(x)[1 + [
y

τ(x)
]γ(x)]β(x)+1

=
g(y)α(y)δ(y)xδ(y)−1

[σ(y)]δ(y)[1 + [
x

σ(y)
]δ(y)]α(y)+1

, x, y > 0.

(5.25)
If we introduce the following new notation:

a1(x) = xf(x)β(x)γ(x)/[τ(x)]γ(x),

b1(x) = τ(x)−γ(x),

c1(x) = −[β(x) + 1],

a2(y) = yg(y)α(y)δ(y)/[σ(y)]δ(y),

b2(y) = σ(y)−δ(y),

c2(y) = −[α(y) + 1],

we may rewrite (5.25) in a simplified form.

a1(x)yγ(x)[1 + b1(x)yγ(x)]c1(x) = a2(y)xδ(y)[1 + b2(y)xδ(y)]c2(y), x, y > 0.
(5.26)

Since the functions f, γ, τ, β, g, δ, σ, and α in (5.25) are only constrained
to be always positive, it follows that the functions a1, b1, γ, a2, b2, and δ in
(5.26) must be positive, while c1 and c2 are constrained to assume values
in the interval (−∞,−1). Subject only to these constraints we need to
solve (5.26). In principle this can be done as follows. Take the logarithm of
both sides of (5.26). Differentiate successively three times with respect to
y (or take differences if you wish to avoid assuming differentiability). Set
y = 1 in all four equations. This gives four horrendous equations to solve
for a1, b1, c1, and γ. Finally, constraints may need to be imposed on the
free parameters in the solution to ensure integrability of the corresponding
joint density. The situation is completely analogous to that encountered in
the search for the general class of distributions with Weibull conditionals
(as described in Arnold, Castillo, and Sarabia (1992), pp. 73–75).

Two special cases of (5.26) are tractable and will be discussed below.
Suppose that (5.23) and (5.24) hold with γ(x) = γ and δ(y) = δ. The

functional equation to be solved (i.e., (5.26)) now assumes the form

a1(x)yγ [1 + b1(x)yγ ]c1(x) = a2(y)xδ[1 + b2(y)xδ]c2(y). (5.27)
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Now make the charge of variables u = xδ, v = yγ and introduce the new
functions

ã1(u) = u−1a1(u
1/δ), ã2(v) = v−1a2(v

1/γ),

b̃1(u) = b1(u
1/δ), b̃2(v) = b2(v

1/γ),
c̃1(u) = c1(u

1/δ), c̃2(v) = c2(v
1/γ).

These functions must satisfy the equation

ã1(u)[1 + b̃1(u)v]c̃1(u) = ã2(v)[1 + b̃2(v)u]c̃2(v). (5.28)

However, this functional equation is equivalent to one solved earlier in
Castillo and Galambos (1987a) (their equation (5.23)). The regularity con-
ditions are slightly different but this does not affect the form of the general
solution. Two families of solutions to (5.28) exist. In case 1, there exist
constants λ1, λ2, λ3, λ4, and λ5 such that

ã1(u)[1 + b̃1(u)v]c̃1(u) = [λ1 + λ2u + λ3v + λ4uv]
λ5 , (5.29)

while in case 2, there exist constants θ1, θ2, θ3, θ4, θ5, and θ6 such that

ã1(u)[1 + b̃1(u)v]c̃1(u)

= exp [θ1 + θ2 log(θ5 + u) + θ3 log(θ6 + v) + θ4 log(θ5 + u) log(θ6 + v)] .
(5.30)

Tracing these expressions back through the changes of variables and redef-
initions of functions used in the derivation, we are led to the following two
classes of joint densities with generalized Pareto marginals with constant
γ(x) and δ(y).

Model I:

fX,Y (x, y) = xδ−1yγ−1[λ1 + λ2x
δ + λ3y

γ + λ4x
δyγ ]λ5 , x, y > 0, (5.31)

and

Model II:

fX,Y (x, y) = xδ−1yγ−1 exp{θ1 + θ2 log(θ5 + xδ) + θ3 log(θ6 + yγ)
+ θ4 log(θ5 + xδ) log(θ6 + yγ)}, x, y > 0.

(5.32)

In (5.31) we require that λ5 < −1 while λ1 ≥ 0, λ2 > 0, λ3 > 0, λ4 ≥ 0.
This family coincides with the family described in detail in Arnold, Castillo,
and Sarabia (1992) pp. 56–60). The common constant value for α(y) and
β(x) is [−λ5−1]. Both negative and positive correlations are possible in this
model. When second moments exist (i.e., when min(2/δ, 2/γ)+λ5 +1 < 0)
the sign of the correlation is determined by sign (λ2λ3 −λ1λ4) (cf. Arnold,
Castillo, and Sarabia (1992), p. 59 with slightly different notation).
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Densities of the form (5.25) have marginals given by

fX(x) =
1

δ(−1 − λ5)
xδ−1(λ3 + λ4x

δ)−1(λ1 + λ2x
δ)λ5+1, x > 0,

and

fY (y) =
1

γ(−1 − λ5)
yγ−1(λ2 + λ4y

γ)−1(λ1 + λ3y
γ)λ5+1, y > 0.

These marginals will be generalized Pareto distributions only if λ4 = 0.
A joint density described by (5.31) will be unbounded as x or y ap-

proaches 0 if δ < 1 or, respectively, γ < 1. If δ ≥ 1 and γ ≥ 1, the density is
bounded and is unimodal. One representative three-dimensional example,
including the associated contour plot, of the density is displayed in Figure
5.1.

The second family, (5.32), is distinct from the family described in Arnold,
Castillo and Sarabia. The parameters θ5 and θ6 must be positive, the pa-
rameters θ2 and θ3 must be less than −1, and the parameter θ4 must be
≤ 0. In this family the functions σ(y) and τ(x) are constants; specifically

σ(y) = θ
1/δ
5 and τ(x) = θ

1/γ
6 . In this family only nonpositive correlations

are possible. The fact that θ4 ≤ 0 ensures that the density of (X, Y ) is
totally negative of order 2 which, when the correlation exists, determines
that its sign be nonpositive (cf. Section 4.3). The marginal density of X,
corresponding to a joint density of the form (5.32), is given by

fX(x)=
−xδ−1

1 + θ3 + θ4 log(θ5 + xδ)

× exp[θ1 + (1 + θ3) log θ6 + (θ2 + θ4 log θ6) log(θ5 + xδ)], x > 0.

An analogous expression can be written for fY (y). One representative three-
dimensional example, including the associated contour plot, of the density
(5.32) is displayed in Figure 5.2.

In summary, we have identified two classes of distributions with gener-
alized Pareto conditionals with γ(x) and δ(y) constant: (i) those with a
common constant value for α(y) and β(x), (5.31); and (ii) those with con-
stant values for σ(y) and τ(x), (5.32). It is not possible to have a model in
which γ(x) and δ(y) are constant and both α(y) and σ(y) are nonconstant.
Nor is it possible to have γ(x) and δ(y) both constant and β(x) and τ(x)
both nonconstant. Next we consider the models that can arise when we
require that α(y) and β(x) be possibly different constants.

Suppose that (5.23) and (5.24) hold with α(y) = α and β(x) = β. The
functional equation to be solved (i.e., (5.26)) now assumes the form

a1(x)yγ(x)[1 + b1(x)yγ(x)]c1 = a2(y)xδ(y)[1 + b2(y)xδ(y)]c2 . (5.33)
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FIGURE 5.1. Probability density function of a generalized Pareto conditionals
distribution Model I with δ = 3.5, γ = 3.5, λ1 = λ2 = λ3 = 2, λ4 = 3, λ5 = −2.5.
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FIGURE 5.2. Probability density function of a generalized Pareto conditionals
distribution Model I with δ = 2.2, γ = 2.5, θ1 = θ5 = θ6 = 1, θ2 = θ3 = −2, θ4 =
−1.5.
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The general solution is obtainable by techniques analogous to those used
previously. The constants c1 and c2 must be equal to or less than −1.
Reparametrizing, the corresponding family of joint densities is of the form

f(x, y) =
(xy)−1 exp[θ0 + θ2 log x + θ3 log y + θ4 log x log y]

[1 + exp{θ1 + θ2 log x + θ3 log y + θ4 log x log y}]α+1

x > 0, y > 0
(5.34)

where α > 0. To ensure that the functions γ(x) and δ(y) are uniformly
positive we must set θ4 = 0 in (5.34). With this modification the resulting
distribution has γ(x) and δ(y) constant and is thus a special case of Model
I in (5.31) with λ2 = λ3 = 0.

5.4.1 Conjectures About More General Cases

In light of the results obtained above, we conjecture that there will not
exist solutions to (5.25) with more than one of the functions γ(x), τ(x) and
β(x) nonconstant. If this proves to be true then the totality of generalized
Pareto conditionals models will be subsumed by Models I and II ((5.31)
and (5.32)).

5.4.2 Related Distributions

We could consider the addition of a location parameter in our generalized
Pareto model. We will write X ∼ GP∗(µ, σ, δ, α) if its survival function is
of the form

P (X > x) =

[

1 +

(

x − µ

σ

)δ
]−α

, x > µ. (5.35)

We would then seek to identify all bivariate random variables (X, Y ) with

X|Y = y ∼ GP∗(µ(y), σ(y), δ(y), α(y))

for every possible value y of Y and

Y |X = x ∼ GP∗(ν(x), τ(x), γ(x), β(x))

for every possible value x of X. The trivial case in which µ(y) ≡ µ and
ν(x) ≡ ν leads to translated versions of Models I and II. We conjecture
that no nontrivial solutions will be found (i.e., solutions with nonconstant
µ(x) and ν(y)). Compatibility conditions on the conditional distribution
will require that ν(y) = µ−1(y) if ν and µ are nonconstant functions (cf.
Section 5.8) where translated exponential conditionals are discussed.
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The family of densities (5.31) is a generalization of the bivariate Burr
type XII distribution given by Takahasi (1965). Some dependent distribu-
tions with Burr marginals exist in the family (5.31). An important advan-
tage of this family with respect to the Takahasi family is that the corre-
lation coefficient may be of either sign. Other bivariate extensions of the
Burr type XII have been given by Durling, Owen, and Drane (1970). See
also Arnold (1990).

By means of the change of variable U = 1/X, V = 1/Y in (5.31) we can
obtain the most general distribution with Dagum type I conditionals, i.e.
with cumulative distribution functions of the form

F (x) =

{

0 if x < 0,
1/[1 + 1/(λxq)]p if x ≥ 0.

(5.36)

A close relative of the family (5.22) is the family of survival functions

F̄ (x; α, k) =

(

1 − kx

α

)1/k

, 0 < x <
α

max(0, k)
, (5.37)

where k ∈ IR , α > 0. We will call distributions of the form (5.37), Pickands-
deHaan distributions. If X has survival function (5.37) we write X ∼
PdH(k, α). The case k = 0 (evaluated by taking the limit as k → 0
in (5.37)), corresponds to the exponential distribution. The case k < 0
corresponds to (5.1).

Bivariate distributions with conditionals in the Pickands-deHaan family
are discussed in Arnold, Castillo, and Sarabia (1995a).

5.5 Bivariate Distributions with
Cauchy Conditionals

Definition 5.3 (Location-scale Cauchy distribution). A random vari-
able X has a Cauchy (µ, σ) distribution if its density is of the form

fX(x) =

[

πσ

(

1 + (
x − µ

σ
)2
)]−1

, −∞ < x < ∞; σ > 0, µ ∈ IR .

(5.38)
�

The Cauchy model is usually selected when we need a density function
with tails heavier than those of the normal distribution. In the following it
will be denoted by C(µ, σ).

In our search for the most general Cauchy conditionals distribution we
assume Y |X = x ∼ C(µ2(x), σ2(x)), X|Y = y ∼ C(µ1(y), σ1(y)), where
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σ2(x), σ1(x) > 0 for all x. This leads to the functional equation

fX(x)

σ2(x)

(

1 +

(

y − µ2(x)

σ2(x)

)2
) =

fY (y)

σ1(y)

(

1 +

(

x − µ1(y)

σ1(y)

)2
) . (5.39)

Setting
g1(x) = fX(x)/σ2(x), g2(y) = fY (y)/σ1(y), (5.40)

equation (5.39) becomes equivalent to

g1(x) + g1(x)

(

x − µ1(y)

σ1(y)

)2

= g2(y) + g2(y)

(

y − µ2(x)

σ2(x)

)2

, (5.41)

which can be easily converted to one of the form (1.31). Thus, the general
solution may be expressed as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g1(x)
g1(x)x
g1(x)x2

1 +
a2(x)

b2(x)
µ2(x)

b2(x)
1

b2(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= A

⎡

⎣

g1(x)
g1(x)x
g1(x)x2

⎤

⎦ ;

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 +
c2(y)

d2(y)

−2
µ1(y)

d2(y)
1

d2(y)
−g2(y)
2g2(y)y
−g2(y)y2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= B

⎡

⎣

g2(y)
g2(y)y
g2(y)y2

⎤

⎦ ,

where:

A′ =

⎛

⎝

1 0 0 a11 a21 a31

0 1 0 a12 a22 a32

0 0 1 a13 a23 a33

⎞

⎠ , B′ =

⎛

⎝

b11 b21 b31 −1 0 0
b12 b22 b32 0 1 0
b13 b23 b33 0 0 −1

⎞

⎠ ,

with
A′B = 0,

from which aij = (−1)j+1bij (i, j = 1, 2, 3).
If for k = 1, 2, 3 we define

Pk(x) = ak1 + ak2x + ak3x
2, Qk(y) = a1k − 2a2ky + a3ky2, (5.42)

the solution of (5.41) becomes

µ2(x) =
P2(x)

P3(x)
, µ1(y) = − Q2(y)

2Q3(y)
, (5.43)

σ2
1(x) =

P1(x)P3(x) − P 2
2 (x)

P 2
3 (x)

, σ2
2(y) =

4Q1(y)Q3(y) − Q2
2(y)

4Q2
3(y)

, (5.44)

g1(x) =
P3(x)

P1(x)P3(x) − P 2
2 (x)

, g2(y) =
4Q3(y)

4Q1(y)Q3(y) − Q2
2(y)

. (5.45)
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If we introduce the notation

m00 = a11, m10 = a12, m01 = −2a21,
m20 = a13, m02 = a31, m11 = −2a22,
m12 = a32, m21 = −2a23, m22 = a33.

(5.46)

the joint density of (X, Y ) finally becomes

fX,Y (x, y) ∝

⎡

⎣( 1 x x2 ) M

⎛

⎝

1
y
y2

⎞

⎠

⎤

⎦

−1

, (5.47)

where M = (mij), i, j = 0, 1, 2, is a matrix of arbitrary constants. It remains
to determine constraints on these parameters to guarantee that (5.47) is
nonnegative and integrable over the plane.

We write:

fX,Y (x, y) =
[

a1(y) + b1(y)x + c1(y)x2
]−1

, (5.48)

=
[

ã1(x) + b̃1(x)y + c̃1(x)y2
]−1

, (5.49)

where

a1(y) = m00 + m01y + m02y
2, (5.50)

b1(y) = m10 + m11y + m12y
2, (5.51)

c1(y) = m20 + m21y + m22y
2, (5.52)

ã1(x) = m00 + m10x + m20x
2, (5.53)

b̃1(x) = m01 + m11x + m21x
2, (5.54)

c̃1(x) = m02 + m12x + m22x
2. (5.55)

If the marginal density functions exist, they are of the form

fX(x) ∝
[

4ã1(x)c̃1(x) − b̃2
1(x)

]−1/2

, (5.56)

fY (y) ∝
[

4a1(y)c1(y) − b2
1(y)

]−1/2
. (5.57)

First, we analyze the positivity of (5.48). We discuss different cases. If
c1(y) = 0, then b1(y) = 0 and a1(y) > 0. This case is not possible since
it leads to nonintegrability. Consequently, c1(y) �= 0. Then, the following
three conditions must hold for all y:

a1(y) > 0, (5.58)

c1(y) > 0, (5.59)

4a1(y)c1(y) − b2
1(y) > 0. (5.60)
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From (5.58) we have two possible cases

m02 = m01 = 0, m00 > 0, (5.61)

or
m00 > 0, m02 > 0, m2

01 − 4m00m02 < 0. (5.62)

Similarly, from (5.59) we have another two cases

m22 = m21 = 0, m20 > 0, (5.63)

or
m22 > 0, m20 > 0, m2

21 − 4m20m22 < 0. (5.64)

Consideration of (5.49) leads to similar relations as those in (5.58) to
(5.64).

Now we can divide the class of possible Cauchy conditionals distributions
into two classes:

(i) The class with m22 = 0. Using (5.63) and its counterpart derived
from (5.49) we have m21 = m12 = 0. If there were a joint density
corresponding to such a parametric configuration, we would have

fX,Y (x, y) ∝ (m00+m10x+m01y+m20x
2+m02y

2+m11xy)−1. (5.65)

A natural and convenient reparametrization permits rewriting this in
the form

fX,Y (x, y) ∝ [1 + (x − µ1, y − µ2)Λ(x − µ1, y − µ2)
′]−1, (5.66)

where µ1, µ2 ∈ IR and Λ is positive definite. The condition that Λ be
positive definite will guarantee that (5.66) is non-negative. Unfortu-
nately, (5.66) is not integrable over the plane. Thus (5.66) is a species
of improper model of the type to be discussed further in Chapter 6.

(ii) The class with m22 > 0. First, conditions (5.61), (5.64), with (5.60),
together with their counterparts derived from (5.49), are not possi-
ble because the resulting pdf is not integrable. Thus, only conditions
(5.62), (5.64), (5.60) and their counterparts are possible. Using stan-
dard results, we can easily prove the integrability. Thus, in summary,
the conditions on the parameters to ensure that for m22 > 0 the joint
density of the form (5.48) be well defined with marginals (5.56) and
(5.57) are

m00, m20, m02, m22 > 0 (5.67)

and

4m20m22 − m2
21 > 0, (5.68)
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4m02m22 − m2
12 > 0, (5.69)

4m02m00 − m2
01 > 0, (5.70)

4m20m00 − m2
10 > 0, (5.71)

4a1(y)c1(y) − b2
1(y) > 0, ∀y (5.72)

4ã1(x)c̃1(x) − b̃2
1(x) > 0, ∀x. (5.73)

Note that the left-hand sides of (5.72) and (5.73) are fourth degree poly-
nomials in y and x, respectively. Conditions (5.72) and (5.73) are equiv-
alent to conditions for the coefficients of a fourth degree polynomial to
be strictly positive. These conditions, though not simple, can be explicitly
given. The implementation using a personal computer is easy. The proof of
the conditions is based in the Sturm-Habicht sequence and can be found
in González-Vega (1998). Consider a monic fourth degree polynomial

P (a, x) = x4 + a3x
3 + a2x

2 + a1x + a0. (5.74)

Then, ∀x, P (a, x) > 0 if and only if a0 > 0 and a ∈ H4 where

H4 =
{

a ∈ IR4 : S2 < 0, S1 �= 0, S0 > 0
}

∪
{

a ∈ IR4 : S2 = 0, S1 ≤ 0, S0 > 0
}

∪
{

a ∈ IR4 : S2 > 0, S1 < 0, S0 > 0
}

∪
{

a ∈ IR4 : S2 > 0, S1 = 0
}

and

S2 = 3a2
3 − 8a2,

S1 = 2a2
2a

2
3 − 8a3

2 + 32a2a0 + 28a1a2a3 − 12a2
3a0 − 6a1a

2
3 − 36a2

1,

S0 = −27a4
1 − 4a3

3a
3
1 + 18a2a3a

3
1 − 6a2

3a0a
2
1 + 144a2a0a

2
1 + a2

2a
2
3a

2
1

−4a2
3a

2
1 − 192a3a

2
0a1 + 18a0a2a

3
3a1 − 80a0a

2
2a3a1 + 256a3

0

−27a4
3a

2
0 + 144a2a

2
3a

2
0 − 128a2

2a
2
0 − 4a3

2a
2
3a0 + 16a4

2a0.

As a final comment, we point out that the model with m22 > 0 does
include, as a special case, densities with Cauchy marginals. The sufficient
condition for having Cauchy marginals is that, for some γ > 0 and δ > 0
with γ �= 1 and δ �= 1, the following hold:

4ã1(x)c̃1(x) = γb̃2
1(x),

4a1(y)c1(y) = δb2
1(y).

One special submodel may be of interest. If we insist on null location
parameters in the conditional densities (i.e., that m10 = m01 = m11 =
m12 = m21 = 0), then the model reduces to

fX,Y (x, y) ∝ 1

m00 + m20x2 + m02y2 + m22x2y2
, (5.75)
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fX(x) ∝ 1
√

(m00 + m20x2)(m02 + m22x2)
, (5.76)

fY (y) ∝ 1
√

(m00 + m02y2)(m20 + m22y2)
, (5.77)

where m00, m20, m02, m22 > 0. The conditional scale parameters in (5.75)
are given by

σ2(x) =

√

m00 + m20x2

m02 + m22x2
, σ1(y) =

√

m00 + m02y2

m20 + m22y2
. (5.78)

The normalizing constant in (5.75) can be obtained by evaluating the
integral

I =

∫ ∞

−∞

∫ ∞

−∞

dx dy

m00 + m20x2 + m02y2 + m22x2y2
. (5.79)

Without loss of generality we can assume m00m22 < m02m20 and then

I =
2π√

m20m02

∫ π/2

0

dθ

(1 − sin2 α sin2 θ)1/2
=

2π√
m20m02

F
(π

2
/α

)

, (5.80)

where

sin2 α =
m2

20m
2
02 − m2

00m
2
22

m2
20m

2
02

(5.81)

and F (π/(2α)) is the Complete Elliptic Integral of the First Kind, which
has been tabulated in Abramowitz and Stegun (1964), pp. 608–611. An
approximation is given by formula 17.3.33 in Abramowitz and Stegun:

F (π/2/α) = (a0 + a1(1 − α) + a2(1 − α)2)
− (b0 + b1(1 − α) + b2(1 − α)2) log(1 − α) + ǫ(α),

(5.82)

where |ǫ(α)| ≤ 3 × 10−5, and

a0 = 1.3862944, a1 = 0.1119723, a2 = 0.0725296,
b0 = 0.5, b1 = 0.1213478, b2 = 0.0288729.

Similarly to the Cauchy density function, the densities (5.76) and (5.77)
do not possess finite moments or cumulants.

Observe that imposition of a condition requiring constant conditional
scale parameters is equivalent to requiring Cauchy marginals. As remarked
earlier this can be achieved with both independent and dependent marginals.

The transformation u = log x, v = log y applied to the density (5.75)
leads us to the hyperbolic secant conditionals distribution with density of
the form

fU,V (u, v) ∝ (αe−x−y + βe−x+y + γex−y + δex+y)−1. (5.83)

In (5.83), the parameters α, β, γ, and δ are all required to be positive.
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5.6 Bivariate Distributions with Student-t
Conditionals

As a generalization of the models in the previous section we consider now
the most general distribution with Student-t conditionals.

Definition 5.4 (Student-t distribution). A random varaible Uα is said
to follow a Student-t distribution if its pdf is given by

fUα(u) =
Γ [(α + 1)/2]

(απ)1/2Γ(α/2)

(

1 +
u2

α

)−(α+1)/2

if −∞ < u < ∞. (5.84)

with α > 0. �

Setting α = 1 in (5.84), we obtain the standard Cauchy distribution. If
α > 1 then E(Uα) = 0, and if α > 2, then var(Uα) = α/(α − 2).

Now we are interested in the most general distribution of (X, Y ) with
conditionals

X|Y = y ∼ µ1(y) + σ1(y)Uα (5.85)

and
Y |X = x ∼ µ2(x) + σ2(x)Uα, (5.86)

with σi(x) > 0, i = 1, 2, ∀x.
Using similar arguments to those used for the Cauchy case, we find that

the joint pdf of the random variable (X, Y ) is

f(X,Y )(x, y) =
[

(1 x x2)M(1 y y2)′
]−(α+1)/2

. (5.87)

Now we will use the definitions of a1(y), b1(y), c1(y), ã1(x), b̃1(x), and
c̃1(x) given in (5.50)–(5.55). The location and scale parameters for the
conditional densities are given by

µ1(y) = −1

2
× b1(y)

c1(y)
, (5.88)

µ2(x) = −1

2
× b̃1(x)

c̃1(x)
, (5.89)

and

σ2
1(y) =

4a1(y)c1(y) − b2
1(y)

4αc2
1(y)

, (5.90)

σ2
2(x) =

4ã1(x)c̃1(x) − b̃2
1(x)

4αc̃2
1(x)

. (5.91)

The marginals, when they exist, are of the form

fX(x) ∝ [c̃1(x)]
(α−1)/2

[4ã1(x)c̃1(x) − b̃2
1(x)]α/2

, (5.92)
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and

fY (y) ∝ [c1(y)]
(α−1)/2

[4a1(y)c1(y) − b2
1(y)]α/2

. (5.93)

Setting α = 1 in (5.92) and (5.93) we get (5.56) and (5.57) which corre-
sponds to the Cauchy case.

Similarly to the Cauchy case, we can break the class of possible Student
t conditionals distributions into two classes:

(i) The class corresponding to m22 = m21 = m12 = 0. This class can be
parametrized as

f(X,Y )(x, y) ∝
[

1 +
1

α − 1
(x − µ1 y − µ2)Σ

−1(x − µ1 y − µ2)
′
]−(α+1)/2

,

(5.94)
where α > 1 to get integrability, and Σ must be positive definite. This
model corresponds to the classical bivariate Student-t distribution.

(ii) The class corresponding to m22 > 0. The development in this case is
essentially the same as that provided in the Cauchy case and will not
be repeated here. The conditions for integrability are (5.67)–(5.73)
together with α ≥ 1. This model is studied in Sarabia (1994).

5.7 Bivariate Distributions with
Uniform Conditionals

Let (X, Y ) be a bivariate random variable such that the conditional X|Y =
y ∼ U(φ1(y), φ2(y)) with c < y < d, φ1(y) ≤ φ2(y), and Y |X = x ∼
U(ψ1(x), ψ2(x)) with a < x < b, ψ1(x) ≤ ψ2(x). We assume that φ1 and
φ2 are either both nondecreasing or both nonincreasing and that the two
domains

Nφ = {(x, y) : φ1(y) < x < φ2(y), c < y < d}
and

Nψ = {(x, y) : ψ1(x) < y < ψ2(x), a < x < b}
are coincident, so that the compatibility conditions are satisfied. Note that
in principle a or c could be −∞ and b or d could be +∞. If such unbounded
domains are considered we will have to make sure that the φ’s and ψ’s are
such that the area of the support domain is finite.

Writing the joint density as products of marginals and conditionals gives
us the following functional equation:

fY (y)

φ2(y) − φ1(y)
=

fX(x)

ψ2(x) − ψ1(x)
, (x, y) ∈ Nψ, (5.95)
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which implies that both terms must be constant, i.e.,

fX(x) = k[ψ2(x) − ψ1(x)], a < x < b,

fY (y) = k[φ2(y) − φ1(y)], c < y < d, (5.96)

where

k−1 = Area of Nψ =

∫ b

a

[ψ2(x) − ψ1(x)] dx=

∫ d

c

[φ2(y) − φ1(y)] dy < ∞.

Thus, we get

fX,Y (x, y) =

{

k if (x, y) ∈ Nψ,
0 otherwise,

(5.97)

and the regression lines

E(X|Y = y) =
φ2(y) + φ1(y)

2
, c < y < d,

E(Y |X = x) =
ψ2(x) + ψ1(x)

2
, a < x < b, (5.98)

which are monotone. If ψ1(x) ≡ 0 and φ1(y) ≡ 0 then X and Y will be
negatively correlated.

An interesting particular case arises when φ1 and φ2 are invertible; then
φi(x) = ψ−1

i (x), i = 1, 2.

5.8 Possibly Translated Exponential Conditionals

Consider a random vector (X, Y ) with the property that all conditionals
are possibly translated exponential distributions. A random variable X has
a possibly translated exponential distribution if

P (X > x) = e−λ(x−α)I(x > α), (5.99)

where λ > 0 and α ∈ (−∞,∞). If (5.99) holds we write X ∼ exp(α, λ). We
wish to identify the class of all bivariate distributions (X, Y ) such that

X|Y = y ∼ exp(α(y), λ(y)), y ∈ S(Y ),

and

Y |X = x ∼ exp(β(x), γ(x)), x ∈ S(X). (5.100)

Clearly, for compatibility, we must assume that

D = {(x, y) : α(y) < x} = {(x, y) : β(x) < y}. (5.101)
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Consequently, α(·) must be nonincreasing and β = α−1. Then for (x, y) ∈
D, the following functional equation must hold:

λ(y) exp{−λ(y)[x − α(y)]}fY (y) = γ(x) exp{−γ(x)[y − β(x)]}fX(x),

(x, y) ∈ D,
(5.102)

where fX(x) and fY (y) are the marginal pdf’s.
Taking logarithms and defining

u(x) = log[γ(x)fX(x)] + γ(x)β(x), v(y) = log[λ(y)fY (y)] + λ(y)α(y),

we get
γ(x)y − λ(y)x + v(y) − u(x) = 0, (5.103)

which is a functional equation of the form (1.31), with general solution

γ(x) = ax + b, u(x) = cx + d, λ(y) = ay − c, v(y) = −by + d. (5.104)

Subject to integrability constraints we obtain

fX,Y (x, y) ∝ exp(d + cx − by − axy), (x, y) ∈ D, (5.105)

and

fX(x) =
exp[cx + d − (ax + b)β(x)]

ax + b
, x ∈ S(X), (5.106)

fY (y) =
exp[−by + d − (ay − c)α(y)]

ay − c
, y ∈ S(Y ). (5.107)

To ensure that (5.106) and (5.107) are integrable we need to assume that
inf{x : (x, y) ∈ D} > −∞ and inf{y : (x, y) ∈ D} > −∞. To see the need
for such a condition consider the possible choice D = {(x, y) : x + y > 0}.
Everything works well except that in this case (5.105), (5.106), and (5.107)
are not integrable.

In the model (5.105), the regression curves are given by

E(X|Y = y) = α(y) + (ay − c)−1, y ∈ S(Y ), (5.108)

and
E(Y |X = x) = β(x) + (ax + b)−1, x ∈ S(X). (5.109)

5.9 Bivariate Distributions with
Scaled Beta Conditionals

Another interesting model where there is a condition on the range has been
given by James (1975). He looked at multivariate distributions with beta
conditionals which arise in connection with the generation of distributions
for random proportions which do not possess neutrality properties.
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Definition 5.5 (Neutrality). Let X and Y be positive continuous ran-
dom variables such that X+Y ≤ 1. Then X is said to be neutral if the pairs
of random variables X, Y/(1 − X) and Y , X/(1 − Y ) are independent. �

It is well known that the bivariate Dirichlet distribution with density
function

fX,Y (x, y) =
Γ(α + β + γ)

Γ(α)Γ(β)Γ(γ)
xα−1yβ−1(1−x− y)γ−1, x, y > 0, x+ y < 1,

(5.110)
(α, β, γ > 0) is characterized by the neutrality character of its marginals.
With the purpose of extending the Dirichlet distribution, James assumed
first type beta distributions for the conditionals of X/(1−Y ) given Y = y,
and of Y/(1 − X) given X = x.

More precisely assume that (X, Y ) are positive continuous random vari-
ables with P (X + Y < 1) = 1 such that

Y |X = x ∼ (1 − x)B(α1(x), β1(x)), 0 < x < 1, (5.111)

and
X|Y = y ∼ (1 − y)B(α2(y), β2(y)), 0 < y < 1. (5.112)

Our by now familiar techniques can be used to readily determine the nature
of the corresponding joint density. Thus

fX,Y (x, y) = µxα−1yβ−1(1 − x − y)γ−1 exp(η log x log y),
x, y > 0, x + y < 1,

(5.113)

fX(x) = µB(γ, η log x+β)xα−1(1−x)η log x+β+γ−1, 0 < x < 1, (5.114)

where α, β, γ > 0, η ≤ 0, and µ is a suitable normalizing factor. From
expressions (5.113) and (5.114), we conclude that the Dirichlet distribution
(η = 0) is characterized by having first kind beta conditionals X|Y = y,
and Y |X = x (with X + Y ≤ 1) and at least one of its marginals being of
the beta kind (James (1975), pp. 683).

A slight generalization of (5.113) is possible. We can consider scaled
beta’s with support {0 < x < h(y)} instead of {0 < x < 1 − y}. See the
discussion in Section 5.7.

5.10 Weibull and Logistic Conditionals

Definition 5.6 (Weibull distribution). We say that X has a Weibull
distribution if

P (X > x) = exp[−(x/σ)γ ] , x > 0, (5.115)

where σ > 0 and γ > 0. �
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If (5.115) holds we write X ∼ Weibull(σ, γ). The case γ = 1, corresponds
to the exponential distribution. Our goal is to characterize all bivariate
distributions with Weibull conditionals. That is, random variables (X, Y )
such that

X|Y = y ∼ Weibull(σ1(y), γ1(y)), y > 0, (5.116)

and
Y |X = x ∼ Weibull(σ2(x), γ2(x)), x > 0. (5.117)

Interest centers on nontrivial examples in which γ1(y) and γ2(x) are not
constant. If they are constant, the discussion in Section 4.7 provides a
solution. Writing the joint density corresponding to (5.116) and (5.117)
as products of marginals and conditionals yields the following functional
equation, valid for x, y > 0:

fY (y)
γ1(y)

σ1(y)

[

x

σ1(y)

]γ1(y)−1

exp

[

−
(

x

σ1(y)

)γ1(y)
]

= fX(x)
γ2(x)

σ2(x)

[

y

σ2(x)

]γ2(x)−1

exp

[

−
(

y

σ2(x)

)γ2(x)
]

.

(5.118)
For suitably defined functions φ1(y), φ2(y), ψ1(x) and ψ2(x), (5.118) can be
written in the form

φ1(y)xγ1(y) exp
[

−φ2(y)xγ1(y)
]

= ψ1(x)yγ2(x) exp
[

−ψ2(x)yγ2(x)
]

.

(5.119)
This equation is not as easy to solve as those reducible to the form (2.24).
We may indicate the nature of solutions to (5.119) by assuming differentia-
bility (a differencing argument would lead to the same conclusions albeit
a bit more painfully). Take logarithms on both sides of (5.119) then dif-
ferentiate once with respect to y to get a new functional equation, and
then again with respect to y to get another functional equation. Now set
y = 1 in these two equations and in (5.119). This yields the following three
equations for ψ1(x), ψ2(x) and γ2(x):

c1x
γ1e−c2xγ1

= ψ1(x)e−ψ2(x), (5.120)

c3 + c4 log x = −c5x
γ1−c6(log x)xγ1 +γ2(x) [1−ψ2(x)] , (5.121)

c7+c8 log x = −c9x
γ1 − c10(log x)xγ1 − c11(log x)2xγ1

− γ2(x) − ψ2(x)γ2(x) [γ2(x) − 1] . (5.122)

These three equations may be solved to yield γ2(x), ψ1(x), and ψ2(x). See
Castillo and Galambos (1990) for details. A similar approach will yield
expressions for φ1(y), φ2(y), and γ1(y). Unfortunately, it appears to be
difficult to determine appropriate values for all of the constants appearing
in the solutions to guarantee compatibility in a nontrivial situation.
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An analogous situation is encountered when we study distributions with
logistic conditionals.

Definition 5.7 (Logistic distribution). We say that X is a logistic
(µ, σ) random variable if its density is of the form

fX(x) =
1

σ
e(x−µ)/σ/[1 + e(x−µ)/σ]2, (5.123)

where µ ∈ IR and σ > 0. �

We seek distributions for which the conditional distribution of X given
Y = y is logistic(µ1(y), σ1(y)) while the distribution of Y given X = x is
logistic(µ2(x), σ2(x)). Thus we must solve the following functional equation:

fY (y)

σ1(y)

e(x−µ1(y))/σ1(y)

[1 + e(x−µ1(y)/σ1(y)]2
=

fX(x)

σ2(x)

e(y−µ2(x))/σ2(x)

[1 + e(y−µ2(x))/σ2(x)]2
. (5.124)

If we define
φ(y) = 2

√

σ1(y)/fY (y)

and
ψ(x) = 2

√

σ2(x)/fX(x)

we may rewrite (5.124) in the form

φ(y) cosh

(

x − µ1(y)

2σ1(y)

)

= ψ(x) cosh

(

y − µ2(x)

2σ2(x)

)

. (5.125)

Despite its attractive simplicity, (5.125) appears to be difficult to solve
except in the trivial case when σ1(y) = σ1 and σ2(x) = σ2 (as described in
Section 5.2).

5.11 Mixtures

A suitable scale mixture of exponential densities yields a Pareto (α) density.
Thus

∫ ∞

0

ce−cx cα−1e−c

Γ(α)
dc = α(1 + x)−(α+1). (5.126)

If we try a similar scale mixture of exponential conditionals densities, we
do not get a simple expression and emphatically do not obtain a Pareto
conditionals density. However, a scale mixture of kernels of exponential con-
ditionals densities does yield the kernel of the Pareto conditionals density
since

∫ ∞

0

ce−c(m10x+m01y+m11xy) c
α−1e−c

Γ(α)
dc

= α(1 + m10x + m01y + m11xy)−(α+1).
(5.127)
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An analogous argument involving scale mixtures of normal densities yield-
ing a Cauchy density would have allowed us to guess the form of the Cauchy
conditionals density (5.47). Other scale mixtures of exponential families can
be treated in a similar fashion.

5.12 Bibliographic Notes

Section 5.2 is based on Arnold (1987) and Castillo and Sarabia (1990a).
Section 5.3 covers material from Castillo and Sarabia (1990b). Section 5.4 is
based on Arnold, Castillo, and Sarabia (1992). The general Cauchy condi-
tionals material in Section 5.5 has not appeared elsewhere. The expressions
for the marginal densities given in Arnold, Castillo, and Sarabia (1992) have
been corrected. Section 5.7 is based on Sarabia (1994). Anderson (1990)
and Anderson and Arnold (1991) discuss the centered Cauchy conditionals
distribution. Uniform conditionals (Section 5.4) were introduced in Arnold
(1988a). Section 5.8 on possibly translated exponential conditionals is new.
The scaled beta material in Section 5.9 is based on James (1975). In Sec-
tion 5.10, the Weibull material is based on Castillo and Galambos (1990),
while the logistic material is new.

Information on the families of univariate distributions covered in this
chapter may be found in Johnson, Kotz, and Balakrishnan (1994, 1995).

Exercises

5.1 Apart from the independent case, is there a joint bivariate density
with conditionals of the form:

f(x|y) = λ(y)e−λ(y)x, x > 0,

such that λ(y) > 0, and

f(y|x) =
α

σ(x)

(

1 +
y

σ(x)

)−(α+1)

, y > 0,

with σ(x) > 0 and α > 0?

5.2 The joint pdf,

f(x, y) = k(α, δ)(1 − x − y + δxy)1/α−1,

for 0 < x, y < 1, and 1 − x − y + δxy > 0 with α > 0, is a particular
case of the model with conditionals in the Pickands–deHaan family.

(a) Obtain the marginal distributions.
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(b) Compute the moments and the normalizing constant.

(Arnold, Castillo, and Sarabia (1995).)

5.3 A random variable X is said to be a Bradford random variable, and
is denoted as X ∼ BF(θ), if its pdf is

f(x; θ) =
θ

log(1 + θ)(1 + θx)
, if 0 < x < 1,

where θ > 0.

(a) Obtain the most general random variable (X, Y ) such that X|Y =
y ∼ BF(θ1(y)) and Y |X = x ∼ BF(θ2(x)).

(b) Write the integral

∫ 1

0

log(1 + ax)

1 + bx
dx

in terms of the dilog function

dilog(x) =

∫ x

1

log t

1 − t
dt.

Using this fact, obtain the normalizing constant of the bivari-
ate distribution with Bradford conditionals, in some particular
cases.

5.4 A random variable X is said to be generalized Poisson with parame-
ters λ and θ, and is denoted as X ∼ GP(λ, θ), if its pdf is

P (X = x) =
1

x!
λ(λ + θx)x−1 exp[−(λ + θx)] , x = 0, 1, 2, . . . ,

and P (X = x) = 0 for x > m when θ < 0, and where λ > 0,
max(−1,−λ/m) < θ ≤ 1, m > 4.

Find the bivariate distributions with conditionals of the generalized
Poisson type.

5.5 A random variable is said to be a finite mixture if its pdf is of the
form

f(x) = π1f1(x) + . . . + πkfk(x)

where πi ≥ 0 and π1 + . . . + πk = 1 and f1(x), . . . , fk(x) are known
linearly independent pdfs.

(a) Obtain the most general pdf f(x, y) with conditionals

f(x|y) = π1(y)f1(x) + . . . + πk(y)fk(x)
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and
f(y|x) = π̃1(x)g1(y) + . . . + π̃r(x)gr(y),

where {fi(x), i = 1, . . . , k} and {gj(y); i = 1, . . . , n} are sets of
linearly independent pdfs.

(b) Obtain the marginal distributions and the moments.

(c) Characterize the bivariate finite mixture conditionals distribu-
tions which are uncorrelated but not independent.

5.6 Suppose that (X1, X2) has a Cauchy conditionals distribution (5.47).
Show that (1/X1, 1/X2) also has a Cauchy conditionals distribution.

5.7 We say that X has a hyperbolic secant distribution if its density is
of the form

fX(x) = (αe−x/σ + βex/σ)−1.

Investigate the family of bivariate densities with hyperbolic secant
conditionals.
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Improper and Nonstandard Models

6.1 Introduction

In our discussion of compatible conditional densities (Chapter 1) it will be
recalled that the key requirements for compatibility were:

(i) {(x, y) : f(x|y) > 0} = {(x, y) : f(y|x) > 0};

(ii) f(x|y)/f(y|x) = a(x)b(y); and

(iii) a(x) in (ii) must be integrable.

In several potentially interesting situations compatibility fails only because
condition (iii) is not satisfied. Such “improper” models may have utility for
predictive purposes and in fact are perfectly legitimate models if we relax
the finiteness condition in our definition of probability. Many subjective
probabilists are willing to make such an adjustment (they can thus pick an
integer at random). Another well-known instance in which the finiteness
condition is relaxed with little qualm is associated with the use of improper
priors in Bayesian analysis. In that setting, both sets of conditional densities
(the likelihood and the posterior) are integrable nonnegative densities but
one marginal (the prior) and, consequently, both marginals are nonnegative
but nonintegrable. For many researchers, then, these “improper” models
are perfectly possible. All that is required is that f(x|y) and f(y|x) be
nonnegative and satisfy (i) and (ii). Integrability is not a consideration. A
simple example (mentioned in Chapter 1) will help visualize the situation.
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Suppose we ask for a joint density fX,Y (x, y) such that for each x > 0,

Y |X = x ∼ U

(

0,
1

x

)

(6.1)

and for each y > 0,

X|Y = y ∼ U

(

0,
1

y

)

. (6.2)

If a corresponding joint density is to exist it clearly must be of the form

fX,Y (x, y) = cI(x > 0, y > 0, xy < 1). (6.3)

Thus (X, Y ) is to have a uniform distribution over a region in the plane of
infinite area.

Models such as (6.3) (and the nonintegrable Cauchy conditionals density
(5.66)) may correctly summarize our feelings about the relative likelihoods
of possible values of (X, Y ) and, consequently, may have great predictive
utility despite their flawed nature. We do not propose to resolve whether
or not such models should be used. We merely provide a modest cata-
log of “improper” conditionally specified models which have arisen in the
literature.

More serious modeling inconsistencies occasionally occur. What if the
given functions f(x|y) are f(y|x) are occasionally negative? Or what if
the given families of conditional densities are incompatible? Again we will
only remark on such modeling anomalies. They do occur. The perils of
conditional specification are not always appreciated.

6.2 Logistic Regression

A logistic probability model is often used to relate a binary response vari-
able Y to several predictor variables X1, X2, . . . , Xk. The model is of the
form

P (Y = 1|X1, X2, . . . , Xk) =
1

{1 + exp{−[β0 +
∑p

j=1 βjΦj(X1, . . . , Xk)]}} ,

(6.4)
where the βk are unknown constants. In addition, it is often assumed that
vector (X1, X2, . . . , Xk) given Y = 1 and Y = 0 has a specific distribu-
tion. For example, these conditional distributions may be posited to be
multivariate normal. If we make such a claim then we have a model with
conditionals in exponential families (binomial and multivariate normal),
and the material in Chapter 4 can be used to completely specify the spec-
trum of acceptable models. Severe restrictions must be made on the Φj ’s
appearing in (6.4). Many of the logistic regression models discussed in the
applied literature are questionable in the light of these observations.
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6.3 Uniform Conditionals

Let A be a subset of the plane for which each x cross section has finite
measure and each y cross section has finite measure. Now define a function
on IR2 by

f(x, y) = I((x, y) ∈ A). (6.5)

If A has finite planar measure then this defines a proper joint density with
all conditionals uniform (on the appropriate cross-section sets). If A has
infinite measure we get “improper” uniform conditionals models analogous
to the one defined in (6.3).

6.4 Exponential and Weibull Conditionals

Improper exponential conditionals models may be of either of two kinds
(or a combination of both). The first kind are models involving a scale pa-
rameter which is a function of the conditioning variable. Recall the general
form of the exponential conditionals density ((4.14))

fX,Y (x, y) ∝ exp[−m10x − m01y + m11xy] I(x > 0)I(y > 0). (6.6)

If m10 > 0 and m01 > 0 and m11 ≤ 0, then (6.6) is a perfectly legitimate
joint density. If, however, m10m01 = 0 [i.e., if one or both of m10, m01 are
zero], then the model still has exponential conditionals but is improper
in the sense that (6.6), although nonnegative, no longer is integrable. For
example, the specification that P (X > x|Y = y) = e−xy and P (Y >
y|X = x) = e−xy is improper in the sense that no integrable joint density
can lead to such conditional distributions (it corresponds to the choice
m10 = m01 = 0, m11 = −1).

The second type of improper exponential conditionals model involves
a location parameter which is a function of the conditioning variable. A
simple example involves a nonincreasing function ψ(x) defined on the real
line with inverse ψ−1(y). In order to have conditional distributions of the
form

P (X > x|Y = y) = e−[x−ψ−1(y)]I(x > ψ−1(y)) (6.7)

and

P (Y > y|X = x) = e−[y−ψ(x)]I(y > ψ(x)), (6.8)

we must consider an improper (nonintegrable) joint density for (X, Y ).
Consideration of (Xc1 , Y c2) for c1, c2 > 0 will lead to improper Weibull

conditionals models analogous to (6.6) and (6.7)–(6.8). An example is
provided by the function

F (x, y) = [1 − exp(−xγyη)]I(x > 0)I(y > 0). (6.9)
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For each fixed x, (6.9) is a genuine Weibull distribution function for y.
Similarly for each fixed y, it is a Weibull distribution function for x. How-
ever, there is no integrable joint density over the positive quadrant with
conditional distributions given by (6.9).

6.5 Measurement Error Models

In the context of measurement error, we may encounter random variables
(X, Y ) such that

X − Y ∼ N(0, σ2). (6.10)

Condition (6.10) is compatible with a broad spectrum of joint densities
for X and Y , some of which are bivariate normal. In an effort to treat X
and Y in an exchangeable fashion the question arises as to whether a joint
density for (X, Y ) can be found to satisfy (6.10) and to have conditional
distributions described as follows:

X|Y = y ∼ N(y, σ2
1), (6.11)

Y |X = x ∼ N(x, σ2
2). (6.12)

Referring to our compatibility theorem (Theorem 2.2) we conclude that
we must require σ2

1 = σ2
2 , but then the ratio fX|Y (x|y)/fY |X(y|x) will

be constant and thus not integrable. Thus no integrable joint density can
satisfy (6.11) and (6.12).

Related issues arise when we ask if it is proper to have a valid model in
which both forward and backward regression models are valid with normal
errors.

6.6 Stochastic Processes and Wöhler Fields

Consider an indexed family of invertible decreasing functions

{y = φz(x) : z ∈ A}. (6.13)

Let Z be a random variable with range A. For a fixed value of x, we can
define a random variable Y (x) as follows:

Y (x) = φZ(x). (6.14)

Analogously, for a fixed value of y, we may define X(y) by

X(y) = φ−1
Z (y). (6.15)
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Note that the only randomness in (6.14) and (6.15) is associated with the
random variable Z. It is consequently evident that for any x, y,

P (Y (x) ≤ y) = P (X(y) ≤ x). (6.16)

The family of curves

P (Y (x) ≤ y) = c, 0 ≤ c ≤ 1, (6.17)

or, equivalently,
P (X(y) ≤ x) = c, 0 ≤ c ≤ 1, (6.18)

is called the Wöhler field of the stochastic process. It is important to realize
that (6.16) does not deal with conditional distributions. There is no random
variable X nor any random variable Y . There are two intimately related
stochastic processes (6.14) and (6.15).

Sometimes physical considerations suggest the appropriate form for the
densities of Y (x) and X(y). For example, we might posit that they are all
of the Gumbel minimum type or perhaps that they are all Weibull.

6.6.1 Compatibility Conditions in Fatigue Models

When modeling fatigue and other similar lifetime data, models are selected
mainly because of mathematical tractability, simplicity, and/or concor-
dance with the data. However, models should be derived based on physi-
cal and statistical considerations. These considerations require that fatigue
models should satisfy the following conditions (see Castillo, Fernández-
Canteli, Esslinger, and Thürlimann (1985) and Castillo and Galambos
(1987a)):

1. Models should take into account the fact that lifetime is governed by
the weakest link principle, that is, the fatigue lifetime of a piece is
the fatigue lifetime of its weakest subpiece or link. The weakness of a
subpiece is determined by the size of its largest crack and the stress
it is subjected to. Thus a piece can fail because it has a large crack
and/or a large stress concentration.

2. Models must be stable. For example, because of the weakest link
principle, models must be stable with respect to minimum operations.
Assume the cdf of the fatigue lifetime of a longitudinal piece belongs
to the parametric family F = {F (x; θ); θ ∈ S}, where the parameter
θ can be assumed, without loss of generality, to be the length of the
piece. Then, according to the weakest link principle, the cdf of the
first-order statistic of a sample of size n from F (x; θ) must be the same
as the cdf of the lifetime of a piece of length nθ. Thus, the family F
must satisfy the functional equation F (x; nθ) = 1 − [1 − F (x; θ)]

n

which is the formal statement of stability with respect to minimum
operations.
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FIGURE 6.1. Wöhler curves for the fatigue model.

3. Models must take into account the positive character of lifetime and
stress level.

4. The distributions of lifetime given stress level should be compati-
ble with the distribution of the stress level given lifetime, that is, if
FX(x; y) is the cumulative distribution function (cdf) of X given y,
and FY (y; x) is the cdf of Y given x, then

FX(x; y) = FY (y; x). (6.19)

This compatibility equation can be explained as follows. Suppose
the curves in Figure 6.1 are in the parametric family y = θα(x) or
x = θ−1

α (y), with the curves heading in the northeast direction as α
increases. Think of α as being random with some distribution. For
given (x, y), let η(x, y) be the value of α such that θη(x,y)(x) = y or

θ−1
η(x,y) = x. Then

FX(x; y) = P (X ≤ x; y) = P (θα(y) ≤ x) = P (α ≤ η(x, y))
= P (θ−1

α (x) ≤ y) = P (Y ≤ y; x) = FY (y; x).
(6.20)

Thus when selecting any point on any of the Wöhler percentile curves,
the number of curves to the left of the point (i.e., in the X-direction)
is equal to the number of curves below the point (i.e., in the Y -
direction), that is,

FX(θ(y); y) = FY (θ−1(x);x), (6.21)

which is equivalent to (6.16).

In the following sections we introduce several models. All of them satisfy
conditions 1, 2, and 4. In addition, the reversed generalized Pareto model
satisfies condition 3.
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6.6.2 The Gumbel–Gumbel Model

As in Castillo et al. (1985) and Castillo (1988), suppose that the random
variables X(y),−∞ < y < ∞, and Y (x),−∞ < x < ∞, all have Gumbel
distributions. It follows that

P (X(y) ≤ x) = P (Y (x) ≤ y) = 1 − exp

{

− exp

[

x − a(y)

b(y)

]}

= 1 − exp

{

− exp

[

y − c(x)

d(x)

]}

,

(6.22)

where a(y), b(y), c(x), and d(x) are unknown functions such that b(y) > 0
and d(x) > 0. Equation (6.22) can be written as

x − a(y)

b(y)
=

y − c(x)

d(x)
⇔ xd(x)−a(y)d(x)−yb(y)+ c(x)b(y) = 0, (6.23)

which is a functional equation of the form (1.31). Thus, using Theorem 2.3,
we get the general solutions

a(y) =
Cy − D

Ay − B
, b(y) =

1

Ay − B
, c(x) =

Bx − D

Ax − C
, d(x) =

1

Ax − C
.

(6.24)
Substitution into (6.22) leads to

P (X(y) ≤ x) = P (Y (x) ≤ y) = 1−exp{− exp[Axy−Bx−Cy+D]}, ∀x, y.
(6.25)

However, if A �= 0, expression (6.25) is not a monotonic function of x for
every y. Thus A = 0.

Consequently, the most general model of the Gumbel–Gumbel type is

P (X(y) ≤ x) = P (Y (x) ≤ y)

= 1 − exp{− exp[−Bx − Cy + D]}, B, C < 0; ∀x, y.
(6.26)

Note that the Wöhler field for this model consists of a set of parallel straight
lines.

In the context of the discussion in earlier sections of this chapter, we
note that (6.26) does provide indexed families of Gumbel distributions but
there is no integrable joint density fX,Y (x, y) which has its conditional
distributions given by (6.26). Lack of integrability is the only lacuna, oth-
erwise (6.26) would provide a routine example of a conditionally specified
distribution with Gumbel marginals.

6.6.3 The Weibull–Weibull Model

Suppose that for each fixed y > 0, X(y) has a Weibull distribution and
for each fixed x > 0, Y (x) has a Weibull distribution. From (6.16) we then
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have

P (X(y) ≤ x) = P (Y (x) ≤ y) = 1 − exp
{

−[a(x)y + b(x)]c(x)
}

= 1 − exp
{

−[d(y)x + e(y)]f(y)
}

,

y ≥ − b(x)

a(x)
, x ≥ − e(y)

d(y)
, (6.27)

where a(x), b(x), c(x), d(y), e(y), and f(y) are unknown positive functions.
Castillo and Galambos (1987b) obtained the following three families of

solutions as the general solutions of the functional equation (6.27):

P (X(y) ≤ x) = P (Y (x) ≤ y)

= 1−exp
{

−
[

E(x−A)C(y−B)D exp[M log(x−A) log(y−B)]
]}

,

x > A, y > B,
(6.28)

P (X(y) ≤ x) = P (Y (x) ≤ y)

= 1 − exp{−[C(x − A)(y − B) + D]E}, x > A, y > B,
(6.29)

and

P (X(y) ≤ x) = P (Y (x) ≤ y)

= 1 − exp{−E(x − A)C(y − B)D}, x > A, y > B.
(6.30)

We can change the notation of model (6.30) to get

P (X(y) ≤ x) = P (Y (x) ≤ y)

= 1 − exp{−σ(x − δ)ǫ(y − ρ)ǫ/k} x > δ; y > ρ.
(6.31)

The physical interpretation of these parameters is given in Section 6.7.
As in the Gumbel–Gumbel case, there do not exist integrable joint den-

sities, fX,Y (x, y), whose conditionals are given by (6.28), (6.29), or (6.30).

6.6.4 The Reversed Generalized Pareto Model

Castillo and Hadi (1995) develop the reversed generalized Pareto model
(RGPD) which satisfies the above four conditions of compatibility.

Since design values are associated with small probabilities of failure, that
is, only with lower tail values it follows that only the left-hand part of the
Wöhler field is relevant for design considerations (see Figure 6.2). With
this in mind, it is not reasonable to continue fatigue testing after some
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FIGURE 6.2. Wöhler curves for the reeversed generalized Pareto fatigue model.

given time (some standard procedures last until 2 × 106 or 107 cycles)
unless a very low stress level is used. In some cases these specimens give
information about the right tail but give no information about the left tail
(see Galambos (1987)). In fact, only fatigue data below a given threshold
value u, say, have information about relevant design values. The central
idea of the method to be described is to model only the relevant part of
the Wöhler field, that is, the small-percentile curves.

To this end, we transform the random variable X by first truncating at
a threshold value u and then translating the origin to u, thus getting a new
random variable Z = Tu(X), which is defined as X − u given X ≤ u, (see
Figure 6.2). The random variable Z has the cdf

H(z; u) = P (Z ≤ z) = P [X ≤ u + z|X ≤ u] =
F (u + z)

F (u)
, x0−u ≤ Z ≤ 0,

(6.32)
where F (x) is the cdf of the fatigue lifetime X and x0 is the lower endpoint
of F .

If we assume that the distribution of the random variable Z belongs
to a parametric family H = {H(x;u); u ∈ S}, then this family cannot be
chosen arbitrarily. Since truncating any random variable X at v is the same
as truncating Tu(X) at v, for any v < u, we have

Tv(X) = Tv(Tu(X)). (6.33)

From (6.32) and (6.33), it follows that

H(z; v) =
H(v + z; u)

H(v; u)
. (6.34)
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This functional equation is the formal statement of compatibility of the
family H(x; u) with respect to the above transformation.

It follows from (6.32) that

F (x) = F (u)H(x − u; u), x < u. (6.35)

Thus, to estimate F (x) for x < u, we need to estimate both F (u) and
H(x− u; u). In practice, different values of u should be tried out and F (u)
can then be estimated by the ratio of the sample data below u to the sample
size. To estimate H(x − u; u), we use the following result:

Theorem 6.1 The RGPD

G(z; σ, α) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

1 +
αz

σ

)
1
α

, z > 0, ifα < 0,

−σ

α
< z < 0, ifα > 0,

exp
( z

σ

)

, z < 0, if α = 0,

(6.36)

where σ and α are the scale and shape parameters, respectively, is a good
approximation of H(z; u), in the sense that

lim
u→x0

sup
x0−u<z<0

|H(z; u) − G(z; σ(u), α)| = 0, (6.37)

for some fixed α and functions σ(u), if and only if F is in the minimal
domain of attraction of one of the extreme value distributions.

See Pickands (1975) for the proof of the equivalent result for the maximal
domain of attraction. Note that the RGPD family satisfies (6.34), that is,
it is stable with respect to the transformation Tu(X). Using Theorem 6.1,
from (6.35) and (6.36), the proposed model for a given level is

F (x) = F (u)G(x − u; σ, α), x < u. (6.38)

We note, however, that for a good approximation, F (u) need not be small
if the specimen length is large and can be close to 1 if it is very large. Thus,
the cdf of X for a given stress level y can then be approximated by

FX(x; y) ∼= FX(θ(y); y)G (x − θ(y); σ(y), α(y)) , x < θ(y), (6.39)

where now the parameters α and σ and u = θ(y) depend on the stress level
y. Similarly, the cdf of Y given a lifetime x can be approximated by

FY (y; x) ∼= FY (θ−1(x);x)G
(

y − θ−1(x); τ(x), η(x)
)

, y < θ−1(x). (6.40)

Therefore, from (6.19), (6.39), (6.40), and (6.21) and assuming that (6.39)
and (6.40) are identities, we have

G (x − θ(y);σ(y), α(y)) = G
(

y − θ−1(x); τ(x), η(x)
)

. (6.41)
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Then from (6.36), (6.41) becomes

H(x; y)=

[

1 − α(y)

σ(y)
θ(y) +

α(y)

σ(y)
x

]

1

α(y)
=

[

1 − η(x)

τ(x)
θ−1(x) +

η(x)

τ(x)
y

]

1

η(x)
,

(6.42)
for α �= 0, or

H(x; y) =
x − θ(y)

σ(y)
=

y − θ−1(x)

τ(x)
, (6.43)

for α = 0, where σ(y) and τ(x) are the scale parameters and α(y) and
η(x) are the shape parameters, for the lifetime given the stress level and
for the stress level given the lifetime, respectively. Thus, the compatibility
condition has led to the functional equations in (6.42) and (6.43) which
impose conditions on the functions α(y), σ(y), η(x), and τ(x). The solutions
of these functional equations (cf. (5.28)) are given by the following theorem:

Theorem 6.2 Let A, B, C, D, α, κ and ǫ be parameters, then:

1. The functional equation (6.42) has only two solutions which are given
by

H(x; y) = [Axy + Bx + Cy + D]
1/α

, 0 ≤ Axy + Bx + Cy + D ≤ 1,
(6.44)

and

H(x; y) = (Ax + B)ǫ(Cy + D)ǫ/κ, 0 ≤ (Ax + B)ǫ(Cy + D)ǫ/κ ≤ 1.
(6.45)

2. The functional equation (6.43) has only one solution which is given
by

H(x, y) = exp [Axy + Bx + Cy + D] , −∞ ≤ Axy+Bx+Cy+D ≤ 0.
(6.46)

Note that in principle the range of α is (−∞,+∞). However, we want
H(x, y) to be a distribution function for fixed y and for fixed x (Galambos
(1987), pp. 53–54), so we must restrict α to be nonnegative. Note also that
models (6.44)–(6.46) are derived based on only two assumptions, namely,
the compatibility condition (6.19), and the adequacy of the RGPD as an
approximation to H(x; y) as given by Theorem 6.1.

We should mention here that H(x; y) does not represent a joint distri-
bution of the random variables X and Y , but it is interpreted as either the
distribution of lifetime X for a given stress level y or the distribution of
stress level Y associated with a lifetime x. However, since the lifetime can-
not be fixed, the second is a nonobservable random variable (an engineer
has direct control over the stress level but has no control over the lifetime).



144 6. Improper and Nonstandard Models

6.7 Physical Interpretations of
the Model Parameters

To interpret the parameters of H(x; y), we first note that if A �= 0, model
(6.44) can be written as

H(x; y) = [β + σ(x − δ)(y − ρ)]
1/α

, (6.47)

where
σ = A, δ = −C/A, ρ = −B/A, β = D − BC/A. (6.48)

Also, the parameters A and C in model (6.45) should be different from
zero, otherwise H(x; y) is not a distribution function of X given y or of Y
given x. Additionally, the Wöhler curves in Figure 6.1 indicate that A, C, κ,
and ǫ are positive, in which case model (6.45) can be written as

H(x; y) = σ(x − δ)ǫ(y − ρ)ǫ/κ, (6.49)

where σ = AκCǫ/κ, δ = −B/A, ρ = −D/C. This parametrization has a
clear physical interpretation (see Figure 6.1):

• ρ is the endurance limit, that is, the stress level below which failure
due to fatigue does not occur;

• δ is a minimum lifetime that can be guaranteed for all specimens;

• σ is a combined scale factor for lifetime and stress level;

• β is associated with the zero-percentile (if β is zero, the zero-percentile
curve degenerates to two straight lines parallel to the x- and y-axes);
and

• 1/α, ǫ, and ǫ/κ are shape parameters.

An interesting special case of model (6.47) is obtained when ρ = δ = 0.
In this case there is neither endurance limit nor minimum positive lifetime.
Another special case of (6.44) is obtained for A = 0, which leads to a set
of parallel straight percentile lines.

The zero-percentile curve for model (6.47) is β + σ(x − δ)(y − ρ) =
0, which implies that at the zero-percentile, the lifetime depends on the
stress level. On the other hand, the zero-percentile curve for model (6.49)
is σ(x − δ)ǫ(y − ρ)ǫ/κ = 0, which implies that at the zero-percentile x = δ
for all stress levels y > ρ. Although specimens having zero lifetime at any
stress level are possible, fracture mechanic theory states that fatigue failure
is due to the progressive enlargement of existing cracks along the specimen
and is governed by the largest crack in the piece. The zero-percentile curve
is associated with the behavior of the worst possible specimen. The lifetime
of this specimen depends on the stress level because the larger the stress
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level the faster the progression of its largest crack. For this reason, we would
argue that only model (6.47) admits a reasonable physical interpretation.

Several methods for estimation of the parameters of this model have been
proposed by Castillo and Hadi (1995).

6.8 Bibliographic Notes

The examples in Sections 6.2, 6.3, 6.4, and 6.5 are taken from or modified
from Arnold and Press (1989a). Most of the Wöhler field material in Section
6.6 is based on Castillo et al. (1985) and Castillo (1988).

Exercises

6.1 Discuss the existence of a joint pdf f(x, y) whose conditional densities
satisfy

f(x|y) ∝ ye−yx, 0 < x < A,

and
f(y|x) ∝ xe−xy, 0 < y < A,

making a distinction between A finite and A infinite.

6.2 Discuss the existence of bivariate distributions (X, Y ) such that

X − Y |Y = y ∼ N(µ1(y), σ2
1(y))

and
Y − X|X = x ∼ N(µ2(x), σ2

2(x)).

6.3 If X ∼ N(µ, 1) then, from a fiducial viewpoint, the distribution of µ
given X = x is N(x, 1). Discuss the implied joint distribution of X
and µ in such a setting.

6.4 Consider the uniform conditionals example discussed in Section 6.1
((6.1) and (6.2)). A Markov Chain with state space IR can be set up
as in (1.23) using the conditional densities (6.1) and (6.2). Discuss
the long-run behavior of this chain.

6.5 Discuss the Wöhler field for a gamma–gamma model (cf. Section 6.6).





7

Characterizations Involving
Conditional Moments

7.1 Introduction

By now we have developed a repertoire of experience in characterizing
distributions whose conditionals are required to belong to specified para-
metric families. Two kinds of unexpected results have been encountered.
On the one hand, the class of conditionally specified joint densities might
be surprisingly constrained. For example, exponential conditionals models
turn out to be always negatively correlated. In some sense, then, specifying
the form of the conditional distributions is more restrictive than we might
have envisioned. On the other hand, the conditionally specified families
often include unexpected models with anomalous properties; for example,
the nonclassical normal conditionals models with their unusual rational
regression functions (ratios of quadratic functions). Many of the condition-
ally specified models have high-dimensional parameter spaces. Interesting
subfamilies are frequently obtainable by invoking additional conditions on
the form of the regression functions or other conditional moments.

One example of the phenomenon in question was provided in Section 3.4.
There certain restrictions on the conditional variances and/or regression
functions of a normal conditionals distribution were shown to characterize
the classical bivariate normal distribution (specifically, see Theorem 3.1).
Several other analogous results are described in the following sections.

Instead of being given both families of conditional densities we might
be given one family of conditional densities and the other regression func-
tion. Interesting characterization problems arise in this context. Attempts
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to characterize distributions only using conditional moments will also be
briefly described.

7.2 Mardia’s Bivariate Pareto Distribution

As a bivariate extension of the usual Pareto distribution, Mardia (1962)
proposed the family of densities which may be reparametrized in the fol-
lowing form:

fX,Y (x, y) =
α(α + 1)

σ1σ2

(

1 +
x

σ1
+

y

σ2

)−(α+2)

, x > 0, y > 0. (7.1)

Such a joint density has Pareto marginals and Pareto conditionals. Using
the notation introduced following equation (5.1) we may write

X ∼ P (σ1, α),
Y ∼ P (σ2, α),

(7.2)

and

X|Y = y ∼ P

(

σ1

(

1 +
y

σ2

)

, α + 1

)

,

Y |X = x∼ P

(

σ2

(

1 +
x

σ1

)

, α + 1

)

.

(7.3)

From (7.3) we may compute the corresponding regression functions

E(X|Y = y) =
σ1

α

(

1 +
y

σ2

)

(7.4)

and

E(Y |X = x) =
σ2

α

(

1 +
x

σ1

)

. (7.5)

Thus the regressions are linear.
Since α > 0 in (7.1), the conditional densities in (7.3) are Pareto with

index α+1, greater than 1. We may ask whether Pareto conditionals and lin-
ear regression functions are enough to characterize the Mardia distribution.
Specifically, we ask if

X|Y = y ∼ P (σ1(y), α + 1) (7.6)

and
Y |X = x ∼ P (σ2(x), α + 1) (7.7)

and linear regression functions imply that the joint density must be given
by (7.1). An affirmative answer is called for. From the discussion in Section
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5.2, Pareto conditionals such as (7.6) and (7.7) are only associated with a
joint density of the form

fX,Y (x, y) ∝ (λ0 + λ1x + λ2y + λ3xy)−(α+2), (7.8)

where λ0 > 0, λ1 > 0, λ2 > 0, and λ3 ≥ 0. From (7.8) we conclude that

E(X|Y = y) =
1

α

(

λ0 + λ2y

λ1 + λ3y

)

. (7.9)

This could be constant (when λ0/λ1 = λ2/λ3), which implies X and Y are
independent Pareto variables. It will be a non-constant linear function iff
λ3 = 0 and in this case (7.8) can be readily reparametrized to the form
(7.1). Technically we only need to assume Pareto conditionals and one
nonconstant linear regression function to conclude that the model is of the
Mardia type.

A second characterization of the Mardia distribution is possible. Sup-
pose that (7.3) holds, i.e., Pareto conditionals, and (7.2) holds, i.e., Pareto
marginals. Then, again, we may claim that the distribution is of the Mar-
dia type. The argument is as follows. Pareto conditionals implies a joint
density of the form (7.8) with marginals given by (5.8). These marginal
densities will only be Pareto densities if either λ3 = 0 or λ0/λ1 = λ2/λ3.
The latter yields independent Pareto marginals while the former (λ3 = 0)
guarantees that the joint density is of the Mardia form. Again, we actually
need only assume that one marginal density is Pareto and that we have
Pareto conditionals, to draw the conclusion.

A slight generalization of the above observations involves the Pearson
type VI or Beta 2 distribution discussed in Section 5.3. By referring to the
regression formulas (5.20) and (5.21) we may characterize all distributions
with Beta2(p, q) conditionals and regression functions which are polynomi-
als of degree q. They correspond to the choice λ3 = 0 in (5.17). We remark
in passing that the bivariate Beta 2 density, (5.17), has Beta 2 marginals
and conditionals.

7.3 Linear Regressions with Conditionals in
Exponential Families

If we have normal conditionals and impose a condition that one regres-
sion function is linear and nonconstant, then we characterize the classi-
cal bivariate normal density. What happens to other conditionals in expo-
nential families distributions when we add a nonconstant linear regression
condition?

If we consider the exponential conditionals family (Section 4.4) we see
that the regression function can never be a nonconstant linear function.
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Turning to the gamma conditionals family, whose regression functions are
given in (4.43) and (4.44), we see that we cannot have either regression
function be a nonconstant linear function. As noted in Section 4.6, constant
regression functions are indeed possible (in both dependent and indepen-
dent cases). A similar analysis can be performed for the gamma–normal
conditionals model (Section 4.9). Here too it is not possible to have either
regression function be a nonconstant linear function. The same observation
is correct for the beta conditionals model. We had, in fact, no hope for non-
constant linear regressions in the beta conditionals density. We can only
hope to encounter nonconstant linear regressions if, in (4.1), q1i(x) = x for
some i or, in (4.2), q2j(y) = y for some j.

If instead of requiring that the conditionals belong to exponential fami-
lies, we require the marginals to be in exponential families, it is not difficult
to construct examples with nonconstant linear regressions.

7.4 Linear Regressions with Conditionals in
Location Families

It is sometimes difficult to characterize distributions whose conditionals be-
long to given location families. Particular cases (the normal and Cauchy, for
example) are tractable, others are not. What happens if we put conditions
on the regression function? Apparently Narumi (1923) was the first to study
this question. He considered all possible bivariate distributions with given
regression functions E(X|Y = y) = a(y) and E(Y |X = x) = b(x) with con-
ditionals belonging to unspecified location families. Thus the conditional
densities were required to be of the form

fX|Y (x|y) = g1(x − a(y)) (7.10)

and
fX|Y (y|x) = g2(y − b(x)) (7.11)

(note that (7.10) and (7.11) implicitly include the assumption that con-
ditional variances are constant, a stringent condition). For certain choices
of the functions a(y) and b(x), it is possible to determine the nature of
the joint distribution associated with (7.10) and (7.11). For example, it is
natural to inquire about the case in which a(y) and b(x) are linear. In that
case, we will have

fY (y)g1(x − a1y − a2) = fX(x)g2(y − b1x − b2). (7.12)

Narumi solves (7.12) by taking logarithms of both sides and differentiating,
assuming the existence of derivatives up to the third order. He was thus
able to conclude that either X and Y were independent, a trivial solution
(a1 = b1 = 0), or log g1 must be quadratic and eventually (X, Y ) must
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have a classical bivariate normal distribution. Instead of differentiating,
one could difference. A third approach involves rewriting (7.12) in terms of
functions

g̃1(u) = g1(u − a2)

and
g̃2(u) = g2(u − b2).

Equation (7.12) then becomes

fY (y)g̃1(x − a1y) = fX(x)g̃2(y − b1x). (7.13)

Lajko (1980) has shown that (7.13) can only hold (for a1 �= 0 and b1 �= 0)
if the logarithms of all four functions involved are quadratic. Again we are
led either to independent marginals or a classical bivariate normal.

More generally, if a(y) and b(x) in (7.10) and (7.11) are known func-
tions we can write the joint density fX,Y (x, y) as a product of marginal
and conditional densities in two ways (as we are accustomed to do). Then

by considering
∂2 log fX,Y (x, y)

∂x∂y
we arrive at Narumi’s general functional

equation (his equation (iii), with modified notation)

a′(y)ψ′′
1 (x − a(y)) = b′(x)ψ′′

2 (y − b(x)), (7.14)

in which we have defined

ψi(u) = log gi(u), i = 1, 2. (7.15)

We were able to solve (7.14) when a(y) and b(x) were linear. What about
more general choices of a(y) and b(x)? It turns out (Narumi (1923)) that
(7.14) actually is sufficiently restrictive to determine the nature of all four
functions a, b, ψ1, and ψ2. For example, we must have

a′(y) =

cm

(

coth2

√
c (y − y0)

2
− 1

)

(√
c coth

√
c (y − y0)

2
+ n

)2

− m2a

(7.16)

for certain choices of the parameters a, c, y0, m, and n. An analogous ex-
pression must hold for b′(x). Thus only very specialized regression functions
a(y) and b(x) can appear in (7.10) and (7.11). The following general form
of all densities satisfying (7.10) and (7.11) is provided by Narumi, ((1923),
p. 214):

f(x, y)∝ eγx+δy

{(

cosh

√
a(x − x0)

2
− λ1 sinh

√
a(x − x0)

2

)

×
(

cosh

√
c(y − y0)

2
− λ2 sinh

√
c(y − y0

2

)

+λ3 sinh

√
a(x − x0)

2
sinh

√
c(y − y0)

2

}−1

.

(7.17)
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It includes the classical bivariate normal as a (very) special case and in-
cludes a bivariate Makeham distribution.

7.5 Specified Regressions with Conditionals in
Scale Families

Suppose instead of (7.10) and (7.11) we require that the conditional densi-
ties satisfy

fX|Y (x|y) = g1(x/c(y))/c(y), (7.18)

fY |X(y|x) = g2(y/d(x))/d(x), (7.19)

for given positive functions c(y) and d(x). What can be said about the joint
density fX,Y (x, y)?

Based on the analysis of Narumi for location families, we can expect that
(7.18) and (7.19) will only be compatible for very special choices of c(y)
and d(x). To begin let us consider particular choices for c(y) and d(x) for
which we know there is at least one solution. Recall that the exponential
conditionals distribution (1.39) had all its conditionals in scale families and
had regressions which were of the form

E(Y |X = x) = (c21 + c22x)−1,

E(X|Y = y) = (c12 + c22y)−1.

It is then natural to inquire about the nature of all joint densities whose
conditional densities satisfy

fX|Y (x|y) = g1((α + y)x)(α + y), (7.20)

fY |X(y|x) = g2((β + x)y)(β + x). (7.21)

It is reasonable to restrict our search to random variables (X, Y ) with
support in the positive quadrant. Thus we ask for what functions g1 and
g2 can we have (7.20) and (7.21) holding for x > 0 and y > 0? Let
ψi(u) = log gi(u), then we can write log fX,Y (x, y) in two ways and obtain
the relationship

log [(α + y)fY (y)] + ψ1((α + y)x) = log [(β + x)fX(x)] + ψ2((β + x)y).

Now differentiate with respect to x and y to obtain

[(α+y)x]ψ′′
1 ((α+y)x)+ψ′

1((α+y)x) = [(β+x)y]ψ′′
2 ((β+x)y)+ψ′

2((β+x)y).
(7.22)

But this can hold for every x, y if and only if

uψ′′
1 (u) + ψ′

1(u) = γ = vψ′′
2 (v) + ψ′

2(v) (7.23)
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for some constant γ. The differential equation for ψ1(u) implicit in (7.23)
has as its general solution

ψ1(u) = c0 + c1u + c2 log u

so that
g1(u) = uc2ec0+c1u. (7.24)

Analogously g2(v) is a gamma density. Thus (X, Y ) has gamma condition-
als. Referring back to Section 4.6, we conclude that the class of all solutions
to (7.20) and (7.21) coincides with the MODEL II gamma conditionals class
(described by (4.33) with parametric constraints (4.38)).

It is possible to derive a general solution to (7.18)–(7.19) defined on the
positive quadrant analogous to Narumi’s general solution to the system
(7.10)–(7.11). This is true because the functional equation associated with
the system (7.18)–(7.19), namely

g1(x/c(y))fY (y)/c(y) = g2(y/d(x))fX(x)/d(x), x > 0, y > 0, (7.25)

is equivalent to the functional equation

g̃1(u− a(v))f̃Y (v) = g̃2(v − b(u))f̃X(u), −∞ < u < ∞, −∞ < v < ∞,
(7.26)

where
g̃1(u) = g1(e

u), g̃2(v) = g2(e
v),

f̃X(u) = fX(eu)e−b(u), f̃Y (v) = fY (ev)e−a(v),

and u = log x, v = log y.
Since (7.26) is identical in form to the functional equation associated

with the system (7.10)–(7.11), a solution to (7.18)–(7.19) over the positive
quadrant can be obtained by suitable substitution in (7.17).

7.6 Conditionals in Location-Scale Families with
Specified Moments

We now seek joint densities whose conditional densities satisfy

fX|Y (x|y) = g1

(

x − a(y)

c(y)

)

1

c(y)
, (7.27)

fY |X(y|x) = g2

(

y − b(x)

d(x)

)

1

d(x)
, (7.28)

for given functions a(y) and b(x) and given positive functions c(y) and d(x).
In principle, we could search for the general solution to (7.27)–(7.28) since
from our discussion in Sections 7.3 and 7.4 (based on Narumi’s work), we
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can expect solutions to (7.27)–(7.28) for only a few choices of a(y), b(x), c(y),
and d(x). Rather than attempt to determine the potentially complicated
nature of such a general solution, we will content ourselves with report-
ing the solutions corresponding to certain tractable special choices for the
conditional means and standard deviations.

Case (i): Linear regressions and conditional standard deviations.

Here we assume that (7.27) and (7.28) hold with

a(y) = a0 + a1y,
b(x) = b0 + b1x,
c(y) = 1 + cy,
d(x) = 1 + dx.

(7.29)

We assume that our random variables are non-negative so x > 0 and
y > 0 in (7.27)–(7.29). In this case, Narumi (1923) shows that the
joint density must be of the form

fX,Y (x, y) = (α + x)p1(β + y)p2(γ + δ1x + δ2y)q. (7.30)

This, except for a location shift, can be identified with the Beta-2
conditionals densities discussed in Section 5.3 with the restriction
that λ3 = 0 in (5.17). Perusal of the conditional moments in (5.20)
and (5.21), with λ3 = 0, will confirm that (7.29) does hold for such
densities. Note that if the support of (X, Y ) is not restricted to be
the positive orthant, (7.30) also includes Dirichlet distributions and
other unnamed distributions.

Case (ii): Suppose that we have linear regressions and quadratic condi-
tional variances.

Thus we assume
a(y) = a0 + a1y,
b(x) = b0 + b1x,

c(y) =
√

1 + c1y + c2y2,
d(x) =

√
1 + d1x + d2x2.

(7.31)

In this case Narumi reports that the joint density is necessarily of the
form

fX,Y (x, y) =
[

α + βx + γy + δ1x
2 + δ2xy + δ3y

2
]−γ

. (7.32)

This includes the nonintegrable Cauchy conditionals distribution (5.65)
(when γ = 1) together with bivariate t distributions (when 2γ is an
integer). It should be observed that for certain choices of γ in (7.32)
conditional variances do not exist and, technically (following Narumi
(1923) and Mardia (1970)), we should call c(y) and d(x) scedastic
curves instead of conditional standard deviations.
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7.7 Given One Family of Conditional
Distributions and the Other
Regression Function

We know that giving both families of conditional densities, of X given
Y and of Y given X, is more than enough to characterize the joint den-
sity of (X, Y ). It is also evident that being given both regression functions
E(X|Y = y) and E(Y |X = x) will usually be inadequate for determin-
ing the joint density. An intermediate case would involve one family of
conditional densities, say of X given Y , and the other regression function
E(Y |X = x).

Thus, we assume that we are given:

(i) a family of putative conditional densities

fX|Y (x|y) = a(x, y), x ∈ S(X), y ∈ S(Y ), (7.33)

and

(ii) a regression function

E(Y |X = x) = ψ(x), x ∈ S(X). (7.34)

The following questions arise naturally:

(A) Are a(x, y) and ψ(x) compatible in the sense that there will exist a
joint density function fX,Y (x, y) with a(x, y) as its corresponding family
of conditional densities and with ψ(x) as its regression function of Y on X?

(B) Suppose a(x, y) and ψ(x) are compatible, under what conditions do
they determine a unique joint density?

(C) Given a(x, y), identify the class of all compatible functions ψ.

(D) Suppose that a(x, y) is specified to be such that, for each y, a(x, y)
belongs to a given parametric family of densities, i.e., a(x, y) = f∗(x; θ(y)),
and also that ψ belongs to a given parametric family of functions (e.g.,
linear), i.e., ψ(x) = g∗(x; λ). Identify the class of bivariate distributions so
determined.

The resolution, partial or complete, of these questions will closely par-
allel developments in Chapter 1, where both families of conditionals den-
sities were assumed to be given. As in Chapter 1, there are pedagogical
advantages to be gained by separating the discrete and continuous cases.
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7.7.1 The Finite Discrete Case

Suppose that S(X) = {x1, x2, . . . , xI} and S(Y ) = {y1, y2, . . . , yJ} where,
without loss of generality, x1 < x2 < . . . < xI and y1 < y2 < . . . < yJ .
Consider any family of conditional densities

aij = P (X = xi|Y = yj) (7.35)

and consider a candidate regression function

ψi = E(Y |X = xi), i = 1, 2, . . . , I. (7.36)

For ψ and A to be compatible we certainly require that y1 ≤ ψi ≤ yI ,∀i =
1, 2, . . . , I. If there exists an appropriate marginal density for Y which will
make A and ψ compatible, it, denoted by η, will satisfy the following system
of equations in restricted (nonnegative) variables:

ψi =
J
∑

j=1

yjP (Y = yj |X = xi) =
J
∑

j=1

yj

aijηj

J
∑

j=1

aijηj

, i = 1, . . . , I,

J
∑

j=1

ηj = 1,

ηj ≥ 0, ∀j = 1, . . . J.

(7.37)

The system (7.37) may be rewritten in the form

J
∑

j=1

(ψi − yj)aijηj = 0, ∀i = 1, . . . , I,

J
∑

j=1

ηj = 1,

ηj ≥ 0, ∀j = 1, . . . J.

(7.38)

Rewritten in this form, we have a system of linear equations and we seek
nonnegative solutions. Identification of the existence of a solution, or better
yet identification of all possible solutions, will be the order of the day. This
is, in essence, the same problem as the one we faced in Section 2.2.2 when
we sought a vector τ to make A and B compatible (cf. (2.23)).

Even if y1 ≤ ψi ≤ yJ ,∀i, it is possible for the system (7.38) to fail to
have a solution. When a solution exists it can be found by solving a reduced
system obtained by deleting the Ith equation in the first line of (7.37). But
of course this solution is not guaranteed to satisfy the deleted equation.
We can illustrate this phenomenon in the simplest possible case, i.e., when
I = J = 2.

Theorem 7.1 (Compatibility when I=J=2.) The system of equations
and inequalities obtained from (7.38) after deleting the equation associated
with i = I, when I = J = 2, always has a unique solution provided that
y1 ≤ ψ1 ≤ y2. The pair (ψ, A) will be compatible if this solution satisfies
the deleted Ith equation. �
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Proof. Note y1 < y2. Our “deleted” systems become

(ψ1 − y1)a11η1 + (ψ1 − y2)a12η2 = 0,
η1 + η2 = 1,
η1 ≥ 0,

η2 ≥ 0.

(7.39)

The solution of the system of the first two equations is

η1 =
a12(y2 − ψ1)

a11(ψ1 − y1) + a12(y2 − ψ1)
,

η2 =
a11(ψ1 − y1)

a11(ψ1 − y1) + a12(y2 − ψ1)
,

(7.40)

which, according to the last two inequalities in (7.39), must be nonnegative.
However, this implies that either one of the following two conditions must
hold:

(I) a12(y2−ψ1) ≥ 0, a11(ψ1−y1) ≥ 0, and a11(ψ1−y1)+a12(y2−ψ1) ≥ 0;

(II) a12(y2−ψ1) ≤ 0, a11(ψ1−y1) ≤ 0, and a11(ψ1−y1)+a12(y2−ψ1) ≤ 0;

which, due to the non-negative character of the aij ’s, lead to the equivalent
conditions:

(Ia) y1 ≤ ψ1 ≤ y2 and a11(ψ1 − y1) + a12(y2 − ψ1) ≥ 0;

(IIa) y2 ≤ ψ1 ≤ y1 and a11(ψ1 − y1) + a12(y2 − ψ1) ≤ 0.

Case (Ia) always holds if y1 ≤ ψ1 ≤ y2, and case (IIa) cannot occur, since
y2 > y1. �

If this solution does not satisfy the deleted equation, then the original
full system has no solution. This occurs when ψ2 �= y1η1 + y2η2, where
η1, η2 are as in (7.40).

It is not unusual to encounter situations in which the matrix A and
partial information about ψ (namely, ψ1, ψ2, . . . , ψI−1) will uniquely de-
termine a compatible distribution. When I = 2 this is always so. When
I > 2, it is not necessarily true, as the following examples show, even when
y1 ≤ ψi ≤ yJ ,∀i = 1, 2, . . . , I − 1.

Example 7.1 (Incompatible case). Consider the case in which I = J =
3 and (y1, y2, y3) = (1, 2, 3), the following conditional probability matrix

A =

⎛

⎝

1/3 1/4 1/5
2/3 1/2 3/5
0 1/4 1/5

⎞

⎠ , (7.41)

and the regression function

ψ = E(Y |X) = (ψ1, ψ2, ψ3) = (3/2, 6/5, ψ3). (7.42)
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Note that 1 = y1 ≤ ψi ≤ y3 = 3 as required.
The system (7.38) without the equation corresponding to i = I = 3 for

this case becomes
1/6η1 −1/8η2 −3/10η3 = 0,

2/15η1 −2/5η2 −27/25η3 = 0,
η1 + η2 + η3 = 1,
η1 ≥ 0,

η2 ≥ 0,
η3 ≥ 0,

(7.43)

which is incompatible. In fact, the first three equations have as a unique
solution (η1, η2, η3) = (1/7, 4/3,−10/21), which does not satisfy the last
nonnegativity constraint in (7.43). �

Example 7.2 (Compatible case). Consider the case in which I = J = 3
and (y1, y2, y3) = (1, 2, 3), the following conditional probability matrix

A =

⎛

⎝

1/3 1/4 1/5
2/3 1/2 3/5
0 1/4 1/5

⎞

⎠ , (7.44)

and the regression values

ψ = E(Y |X) = (ψ1, ψ2, ψ3) = (86/47, 104/53, ψ3). (7.45)

Note that 1 = y1 ≤ ψi ≤ y3 = 3 as required.
The system (7.38), without the equation corresponding to i = I = 3, for

this case becomes

13/47η1 −2/47η2 −11/47η3 = 0,
34/53η1 −1/53η2 −33/53η3 = 0,

η1 + η2 + η3 = 1,
η1 ≥ 0,

η2 ≥ 0,
η3 ≥ 0.

(7.46)

The system of inequalities is compatible and has as unique solution
(η1, η2, η3) = (1/3, 1/3, 1/3). This leads to the following joint probability
matrix:

P =

⎛

⎝

1/9 1/12 1/15
2/9 1/6 3/15
0 1/12 1/15

⎞

⎠ . (7.47)

It can be verified that the conditional probability matrix of X given Y
corresponding to this P agrees with (7.44). From P , the other conditional
probability matrix is

B = PY |X =

⎛

⎝

20/47 15/47 12/47
20/53 15/53 18/53

0 15/27 12/27

⎞

⎠ , (7.48)
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and thus the regression of Y on X becomes

ψ = (ψ1, ψ2, ψ3) = (86/47, 104/53, 66/27), (7.49)

that is, compatible with (7.45). �

In general we can use Theorem 2.2 to identify the possible solutions to
the system (7.38) and we can then determine whether compatibility and
whether uniqueness obtains.

In direct analogy to our discussion in Chapter 2, on compatibility of
matrices A and B, we can address the concept of “almost” compatibility of
A and ψ (the conditional distributions of X given Y and the regression of
Y on X). Thus instead of seeking η so that (7.38) holds exactly we might,
for a given ǫ > 0 and given weights wik, i = 1, 2, . . . , I, k = 1, 2, seek η to
satisfy the following system of inequalities:

J
∑

j=1

(ψi − yj)aijηj ≤ ǫwi1, ∀i = 1, . . . , I,

J
∑

j=1

(ψi − yj)aijηj ≥ ǫwi2, ∀i = 1, . . . , I,

J
∑

j=1

ηj = 1,

ηj ≥ 0, ∀j = 1, . . . J,

(7.50)

where wi1, wi2, i = 1, 2, . . . , I, are given values to reflect the relative impor-
tance of the errors in the equations in the system (7.38).

Example 7.3 (Compatible case). Consider again the case I = J = 3
with (y1, y2, y3) = (1, 2, 3), the following conditional probability matrix

A =

⎛

⎝

1/3 1/4 1/5
2/3 1/2 3/5
0 1/4 1/5

⎞

⎠ , (7.51)

and the regression values

ψ = E(Y |X) = (ψ1, ψ2, ψ3) = (86/47, 104/53, ψ3). (7.52)

The system (7.50), without the equation corresponding to i = I = 3, for
this case becomes using wik = 1,∀i, k,

+13/47η1 − 2/47η2 − 11/47η3 − ǫ≤ 0,
− 13/47η1 +2/47η2 +11/47η3 − ǫ≤ 0,
+34/53η1 − 1/53η2 − 33/53η3 − ǫ≤ 0,
− 34/53η1 +1/53η2 +33/53η3 − ǫ≤ 0,

η1 +η2 +η3 = 1,
− η1 ≤ 0,

− η2 ≤ 0,
− η3 ≤ 0.

(7.53)
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The general solution of the system of inequalities (7.53) using the tech-
niques developed by Castillo, Cobo, Jubete, and Pruneda is

⎛

⎜

⎜

⎜

⎜

⎝

η1

η2

η3

ǫ

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1
3 0 1 968

1877
2134
4421 0 153

2440

0 968
1027

1
3 0 0 0 0 1 2287

2440

0 59
1027

1
3 1 0 909

1877
2287
4421 0 0

1 55
1027 0 33

53
34
53

55
1877

55
4421

2
47

11
488

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

π1

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (7.54)

where π1 > 0 and λi ≥ 0,
∑8

i=1 λi = 1.
The minimum value of ǫ leading to a solution of the system (7.50) is

ǫ = 0, which corresponds to λ2 = 1, λi = 0, i �= 2. For these values of the
λ’s we get (η1, η2, η3) = (1/3, 1/3, 1/3), which is the compatible solution
obtained in Example 7.2.

Note that the π1 component of ǫ guarantees that a solution exist for large
nonnegative values of ǫ. �

Example 7.4 (Incompatible case). Consider again the case I = J = 3
with (y1, y2, y3) = (1, 2, 3), the following conditional probability matrix

A =

⎛

⎝

1/3 1/4 1/5
2/3 1/2 3/5
0 1/4 1/5

⎞

⎠ , (7.55)

and the regression function

ψ = E(Y |X) = (ψ1, ψ2, ψ3) = (3/2, 6/5, ψ3). (7.56)

The system (7.50), without the equation corresponding to I = 3, for this
case becomes (again with wik = 1,∀i, k)

1/6η1 − 1/8η2 − 3/10η3 − ǫ≤ 0,
− 1/6η1 +1/8η2 +3/10η3 − ǫ≤ 0,
2/15η1 − 2/5η2 − 27/25η3 − ǫ≤ 0,

− 2/15η1 +2/5η2 +27/25η3 − ǫ≤ 0,
η1 +η2 +η3 = 1,

− η1 ≤ 0,
− η2 ≤ 0,

− η3 ≤ 0.

(7.57)
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The general solution of the system of inequalities (7.57) using the tech-
niques developed by Castillo, Cobo, Jubete, and Pruneda is:

⎛

⎜

⎝

η1

η2

η3

ǫ

⎞

⎟

⎠
=

⎛

⎜

⎝

0 0 23/28 0 7/11 1
0 0 0 1 4/11 0
0 1 5/28 0 0 0

2400 27/25 1/12 2/5 2/33 1/6

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

π1

λ1

λ2

λ3

λ4

λ5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (7.58)

where π1 > 0 and λi ≥ 0,
∑5

i=1 λi = 1.
The minimum value of ǫ leading to a solution of the system (7.57) is

ǫ∗ = 2/33, which corresponds to λ4 = 1, λi = 0, i �= 4. For these values
of the λ’s we get (η1, η2, η3) = (7/11, 4/11, 0).

Note that the π1 component of ǫ guarantees that the system has solution
for any value of ǫ ≥ 2/33. �

Note that the above development was based on the idea of finding a Y -
marginal in order to analyze the compatibility of the conditional probability
(aij) and the regression function ψi, i = 1, 2, . . . , I. Alternatively, we can
seek a joint probability matrix P for the same purpose. With this option,
the system of inequalities analogous to (7.50) becomes

J
∑

j=1

(ψi − yj)pij ≤ ǫwi1, ∀i = 1, 2, . . . , I,

J
∑

j=1

(ψi − yj)pij ≥ ǫwi2, ∀i = 1, 2, . . . , I,

aij

I
∑

i=1

pij − pij ≤ ǫwij , ∀i = 1, 2, . . . , I, j = 1, 2, . . . , J,

J
∑

j=1

pij = 1,

pij ≥ 0, ∀i = 1, 2, . . . , I, j = 1, 2, . . . J,

(7.59)

where wij are given.
This allows us to introduce two versions of the concept of ǫ-compatibility.

Definition 7.1 (ǫ-compatibility). A conditional probability matrix (aij)
and a regression function ψi, i = 1, 2, . . . , I, are said to be ǫ1-compatible iff
the system (7.50) (or (7.59)) has solution for ǫ ≥ ǫ1 and not for ǫ < ǫ1, i.e.
iff ǫ1 is the minimum value of ǫ that allows the system (7.50) (or (7.59)) to
have a solution. �

Remark 7.1 The extremal value of ǫ in the definition above, and the
corresponding solutions η (the Y -marginal probability matrix) and P (the
joint probability matrix), can be obtained by linear programming techniques,
minimizing the function ǫ subject to the constraints in (7.50) (or (7.59)),
respectively.
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The above definition of ǫ-compatibility suggests the following inconsis-
tency measures:

IM1 =

I
∑

i=1

∣

∣

∣

∣

∣

∣

J
∑

j=1

(ψi − yj)aijη
∗
j

∣

∣

∣

∣

∣

∣

, (7.60)

or

IM2 =

I
∑

i=1

∣

∣

∣

∣

∣

∣

J
∑

j=1

(ψi − yj)p
∗
ij

∣

∣

∣

∣

∣

∣

, (7.61)

where η∗
j , j = 1, 2, . . . , J , is one of the solutions of the system (7.50), and

p∗ij , i = 1, 2, . . . , I, j = 1, 2, . . . , J , is one of the solutions of the system
(7.59), for ǫ = ǫ1.

Instead of being given a regression function ψ, we might be given a set
of conditional percentiles such as

{αr,s : αr,s = P (Y ≤ ys|X = xr); (r, s) ∈ S ⊂ I × J}.

We would then wish to know if these αr,s’s are compatible with the given
conditional probability matrix A.

In this case, the system of inequalities analogous to (7.50) becomes

αr,s

J
∑

j=1

arjηj −
∑

j≤s

arjηj ≤ ǫwrs, ∀(r, s) ∈ S,

αr,s

J
∑

j=1

arjηj −
∑

j≤s

arjηj ≥ ǫwrs, ∀(r, s) ∈ S,

J
∑

j=1

ηj = 1,

ηj ≥ 0, ∀j = 1, . . . J.

(7.62)

It then becomes obvious that we could define new versions of ǫ-compatibility
and related inconsistency measures.

7.7.2 The Infinite Discrete Case

Suppose S(X) = {0, 1, 2, . . .} and S(Y ) = {0, 1, 2, . . .} and we are given
fX|Y (x|y) = a(x, y) and E(Y |X = x) = ψ(x). Then the density of Y , say
g(y), will be the solution to

∞
∑

y=0
[ψ(x) − y]a(x, y)g(y) = 0, ∀x = 0, 1, 2, . . . ,

∞
∑

y=0
g(y) = 1,

g(y)≥ 0, ∀y = 0, 1, 2, . . . .

(7.63)
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For certain choices of a(x, y), (e.g., binomial, negative binomial) and certain
ψ, this can be solved. Identifiability of mixtures of f(x|y) plays a role here
as it does in the continuous case discussed next.

Example 7.5 (Binomial conditionals). Suppose S(X) = {0, 1, 2, . . .}
and S(Y ) = {0, 1, 2, . . .}. Also assume that for any y ∈ S(Y )

a(x, y) =

(

y
x

)

px(1 − p)y−x, x = 0, 1, 2, . . . , y, (7.64)

for some p ∈ (0, 1). Assume that fX|Y (x|y) = a(x, y), i.e. binomial condi-
tionals. What regression functions ψ(x) (= E(Y |X = x)) are compatible
with this choice for a(x, y)? It is not difficult to verify that the family a(x, y)
is identifiable.

For this example, (7.63) assumes the form

∞
∑

y=x

(ψ(x) − y)

(

y
x

)

px(1 − p)y−xg(y) = 0, ∀x = 0, 1, 2, . . . . (7.65)

Suppose for the moment that ψ(x) is compatible with a(x, y) given in
(7.64). We seek a density g(y) to satisfy (7.65). Divide both sides of (7.65)
by (p/(1 − p))x and define

h(y) =
(1 − p)yg(y)

∞
∑

y=0
(1 − p)yg(y)

. (7.66)

We can then write (7.65) as

∞
∑

y=x

(ψ(x) − y)

(

y
x

)

h(y) = 0, ∀x = 0, 1, 2, . . . . (7.67)

Note that h(y) is a discrete density with all moments finite and knowledge
of h(y) will suffice to determine g(y). So now we need to solve (7.67).

Recall that we may write

(

y
x

)

= (y)x/x! and that the generating function

corresponding to the density h(y), say Ph(s), can be defined as

Ph(s) =

∞
∑

k=0

E[(Z)k]

k!
sk, (7.68)

where Z has discrete density h(y). Consequently, knowledge of the factorial
moments of Z will suffice to determine h. However, (7.67), after multiplying
by x!, can be written as

ψ(x)
∞
∑

y=x

(y)xh(y) =
∞
∑

y=x

y(y)xh(y)

=
∞
∑

y=x

[(y − x) + x](y)xh(y).
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Consequently,

ψ(x)E [(Z)x] = E [(Z)x+1] + xE [(Z)x]

and thus for x = 0, 1, 2, . . .

E [(Z)x+1]

E [(Z)x]
= (ψ(x) − x) . (7.69)

Evidently (7.69) can be solved iteratively to obtain the sequence

E [(Z)x] , x = 1, 2, . . . .

Now we are faced with the more difficult issue of determining which
sequences ψ(x) can be consistent with the given family of conditional
densities (7.64). The class is not empty. For example, the choice ψ(x) =
x + c will yield a Poisson distribution for Z in (7.69) and eventually a
Poisson(c/(1−p)) distribution for Y (from (7.66)). Evidently, a compatible
ψ can be constructed, using (7.69), by beginning with any random variable
Z with support 0, 1, 2, . . . whose moment generating function E(etZ) exists
for t = −log(1−p). Then (7.66) can be used to obtain the density of Y from
that of Z. This certainly provides a broad class of compatible functions ψ.
It is not clear whether or not other compatible choices for ψ exist. Note
that Korwar (1974) discussed the special case in which ψ(x) = ax + b. He
also treated an analogous problem involving Pascal rather than binomial
conditionals. �

Papageorgiou (1983) gives some other discrete examples analogous to
that discussed in Example 7.5. He discusses examples in which a(x, y) is
hypergeometric or negative hypergeometric. For example, if

a(x, y) =

(

n
x

)(

N − n
y − x

)

(

N
y

) , 0 ≤ x ≤ y, (7.70)

and if E(Y |X = x) = ψ(x) is consistent with (7.70), then he shows that
ψ(x) and a(x, y) uniquely determine the distribution of (X, Y ). In par-
ticular, if ψ(x) = x + (N − n)p, then Y is necessarily a binomial(N, p)
random variable (and X is binomial(n, p)). He also discusses multivariate
extensions of this result. Thus if (X, Y ) is such that X|Y = y is multivari-
ate hypergeometric (drawing balls from urns with balls of several colors),
then consistent specification of E(Yi|X = x), i = 1, 2, . . . , ℓ, will uniquely
determine the joint distribution of (X, Y ).

Solutions to (7.63) (or (7.38)), for consistent functions ψ, have appeared
in this literature on a case by case basis. Wesolowski (1995a, 1995b) pro-
vides a good survey up to 1995. He also provides a quite general character-
ization result involving conditional distributions of the power series type.
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A power series distribution with support {0, 1, 2, . . .} and parameter θ has
as its discrete density

f(x; θ) = c(x)θx/c∗(θ), x = 0, 1, 2, . . . , (7.71)

where c(x) is the coefficient function and c∗(θ) (the normalizing constant)
is called the series function. If X has density (7.71) we write X ∼ PS(θ)
(it being understood that c(·) and c∗(·) are fixed and known). Wesolowski
concentrates in the case in which X|Y = y ∼ PS(y), ∀y. In such cases, the
joint distribution of (X, Y ) will be uniquely determined by any consistent
regression function of Y on X (i.e., ψ(x)) provided the coefficient function
c(·) in (7.71) is reasonably well behaved.

Theorem 7.2 (Wesolowski, 1995a.) Let (X, Y ) be a discrete random
vector such that either:

(a) S(X) = {0, 1, 2, . . . , n} for some integer n and the cardinality of S(Y )
is ≤ n + 2; or

(b) S(X) = {0, 1, 2, . . .} and S(Y ) ⊆ {0, 1, 2, . . .}.

Assume that S(X) and S(Y ) are known and that for any x ∈ S(X), y ∈
S(Y ) we have

P (X = x|Y = y) = c(x)yx/c∗(y),

where c(·) and c∗(·) are known. In addition, if S(Y ) is not bounded assume
that

∑

x∈S(X)

2x

√

c(x) = ∞. (7.72)

Then the distribution of (X, Y ) is uniquely determined by E(Y |X = x) =
ψ(x), x ∈ S(X). �

Proof. The key to the proof lies in the introduction of a random variable
Z with discrete density

fZ(z) ∝ P (Y = z)/c∗(z), z ∈ S(Y ). (7.73)

It then becomes a question of determining the moments of Z using (7.63).
From them since, in the finite case (or under a Carleman moment condition
related to (7.72)), the moments determine the distribution of Z, we get the
distribution of Z and from it (using (7.73)) the distribution of Y . �

Wesolowski also provides an analogous theorem for the case in which
X|Y = y ∼ PS(1/y) (assuming P (Y = 0) = 0).

Examples in which Theorem 7.2 can be successfully applied include:

(a) If X|Y = y ∼ Poisson(λy), y ∈ S(Y ), then E(Y |X = x) determines
the distribution of (X, Y ) (the case in which S(Y ) = {0, 1, 2, . . .} was
discussed by Cacoullos and Papageorgiou (1995)).
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(b) If

X|Y = y ∼ binomial

(

n1,
pty

1 − p + pty

)

, y = 0, 1, 2, . . . , n2,

where 0 < p < 1, t �= 1, and n2 ≤ n1 +1, then E(tY |X = x) uniquely
determines the distribution of (X, Y ). (Define U = tY before applying
the theorem to (X, U)).

(c) If X|Y = y ∼ Poisson(λty), y ∈ {0, 1, 2, . . .}, where λ > 0, 0 < t < 1,
then E(tY |X = x) uniquely determines the joint density of (X, Y ).
Here too, define U = tX before applying the theorem.

The last example is intimately related to the Poisson conditionals dis-
tribution described in Chapter 4 (see (4.99)). Recently Wesolowski has
shown that the Poisson conditionals distribution can be characterized by
appropriate knowledge of the conditional density of X given Y = y and of
ψ(x) = E(Y |X = x).

Theorem 7.3 (Wesolowski, 1995a.) If (X, Y ) has S(X) = S(Y ) =
0, 1, . . ., and if for each y ∈ S(Y )

X|Y = y ∼ Poisson(λ1λ
y
3) (7.74)

and for each x ∈ S(X)

E(Y |X = x) = λ2λ
x
3 , (7.75)

where λ1 > 0, λ2 > 0, and 0 < λ3 < 1, then (X, Y ) has a bivariate Poisson
conditionals distribution with discrete density given by (4.99). �

Note that this theorem is somewhat unsatisfactory since it only deals
with a specific form for ψ(x) (i.e., (7.75),) a form which would only occur
to a person who was already familiar with the Poisson conditionals distri-
bution. A more general result was provided by Wesolowski in the Pareto
conditionals case (Theorem 7.4 below).

7.7.3 The Continuous Case

In the continuous case we are given, for each y ∈ S(Y ), fX|Y (x|y) =
a(x, y), x ∈ S(X) and E(Y |X = x) = φ(x), x ∈ S(X).

The corresponding density for Y , say g(y), must be obtained by solving
∫

S(Y )

(ψ(x) − y) a(x, y)g(y)dµ2(y) = 0, ∀x ∈ S(X),

∫

S(Y )

g(y)dµ2(y) = 1,

g(y)≥ 0, ∀y ∈ S(Y ).

(7.76)
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For certain choices of a(x, y) this equation can be solved.

Example 7.6 (Exponential conditionals). Suppose that the condi-
tional densities for X given Y are exponential, i.e.,

fX|Y (x|y) = a(x, y) = (y + δ)e−(y+δ)x, x > 0, (7.77)

and suppose that for every x > 0 we have

E(Y |X = x) = ψ(x).

What must fX,Y (x, y) look like? Denote the unknown density of Y by g(y).
Equation (7.76) now takes the form

∫ ∞

0

(ψ(x) − y)(y + δ)e−(y+δ)xg(y) dy = 0, ∀x > 0. (7.78)

Multiplying this by eδx yields
∫ ∞

0

(ψ(x) − y)e−yx(y + δ)g(y) dy = 0, ∀ x > 0. (7.79)

Let M(x) be the Laplace transform of the unknown nonnegative function

g̃(y) = (y + δ)g(y), (7.80)

i.e.,

M(x) =

∫ ∞

0

e−xy(y + δ)g(y) dy . (7.81)

Equation (7.79) becomes

ψ(x)M(x) = −M ′(x). (7.82)

Consequently, given an appropriate ψ(x), we can solve (7.82) for M(x). By
the uniqueness of Laplace transforms this determines g̃(y), from which we
can determine g(y), the marginal density of Y (using (7.80)). So in this
example we are able to answer questions (A) and (B) on page 155. Com-
patible choices of ψ(x), for the conditional densities (7.77), are functions
such that exp[−

∫ x

0
ψ(u) du] is a Laplace transform. For example, we could

take ψ(x) = (γ + x)−1. �

We can profitably consider this example from the viewpoint of identifia-
bility.

A family of conditional densities a(x, y) associates a nonnegative inte-
grable function on S(X) with any nonnegative integrable function on S(Y )
in a natural way as follows:

(Tg)(x) =

∫

S(Y )

a(x, y)g(y) dy. (7.83)
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The family of conditional densities is said to be identifiable if the trans-
formation T defined in (7.83) is invertible. The discrete examples men-
tioned following (7.63) and the exponential conditional example (7.77) had
corresponding a(x, y)’s which were identifiable.

For them, it was possible to solve (7.76) (or (7.63)) for g(y) for a given
function ψ(x). Identifiability may well be helpful in this analysis as the
following discussion suggests.

Let us assume that T defined by (7.83) is invertible (i.e., a(x, y) is
identifiable). Equation (7.76) can be written in the form

ψ(x)T (g(y))) = T (yg(y)). (7.84)

Now define a mapping Sψ as follows:

Sψ(g(y)) = T−1(T (yg(y))/ψ(x)). (7.85)

If we can show that Sψ is a contraction mapping then it will have a unique
fixed point which will be the desired solution to (7.84). Verification of the
fact that Sψ is a contraction mapping may not be easy.

The exponential conditionals example is unusual in that, for it, we were
able to characterize the class of compatible ψ(x)′s for the given a(x, y).

Most of the results on the determination of f(x, y) via ψ(x) and a(x, y)
assume compatibility of ψ. The following theorem is representative, in it
for a given a(x, y) it is proved that E(Y |X = x) = ψ(x) determines f(x, y).

But it does not suggest how we might recognize compatible functions
ψ(x).

Theorem 7.4 (Wesolowski, 1994.) If (X, Y ) is an absolutely continuous
random vector with S(X) = S(Y ) = (0,∞) and if, for every y > 0,

X|Y = y ∼ Pareto(
a + by

1 + cy
, α), (7.86)

where a ≥ 0, b > 0, c ≥ 0, α > 0, then the distribution of (X, Y ) is uniquely
determined by E(Y |X = x) = ψ(x), x > 0. �

Thus, for example, if

E(Y |X = x) =
a + x

(α − 1)(b + cx)
, (7.87)

then (X, Y ) must have a Pareto conditionals distribution as discussed
in Section 5.2. If the c appearing in (7.86) and (7.87) is zero, then we
characterize the Mardia’s bivariate Pareto distribution.

Presumably functions other than (7.87) are consistent with (7.86) giv-
ing Theorem 7.4 more generality than Theorem 7.3, however no other
consistent choices for ψ(x) other than (7.87) come readily to mind.
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7.8 Conditional Moments Only Given

What if we are just supplied with the two regression functions φ(y) =
E(X|Y = y) and ψ(x) = E(Y |X = x)? What can we say about the joint
distribution of (X, Y )? Unfortunately the answer is: “not much.” As a triv-
ial example if φ(y) ≡ ψ(x) ≡ 0, an enormous variety of suitable symmetric
distributions can be found to satisfy the given regression conditions. If X
and Y are random variables each having only two possible values, then
consistent specfications of φ(y) and ψ(x) will determine the joint distribu-
tion uniquely. As soon as the cardinalities of the support sets of X and Y
sum to as least 6, we will lose uniqueness; though in finite cases we could
identify the structure of all solutions using the results in Castillo, Cobo,
Jubete, and Pruneda (1998).

What if we add information about higher moments? Generally speaking
we are still faced with difficulties. The nature of the problems that might
be encountered can be glimpsed by considering a related problem: the char-
acterization of Gaussian conditional structure. In it, first- and second-order
conditional moments are used to characterize a class of distributions which
include the classical normal.

Definition 7.2 (Gaussian conditional structure). A random vector
(X, Y ) will be said to exhibit Gaussian conditional structure if there exist
constants α1, β1, α2, β2, σ

2
1 , and σ2

2 such that ∀x ∈ S(X) and ∀y ∈ S(Y )

E(X|Y = y) = α1 + β1y,
E(Y |X = x) = α2 + β2x,
var(X|Y = y) = σ2

1 ,
var(Y |X = x) = σ2

2 .

(7.88)

�

These, of course, are the first and second conditional moment expressions
for classical bivariate normal distributions. But other random variables can
mimic this behavior. Kagan, Linnik, and Rao (1973) provide conditions
equivalent to (7.88) in terms of the joint characteristic function of (X, Y ).

Examples of non-Gaussian characteristic functions satisfying (7.88) are
not that easy to visualize.

The first example of this genre was provided by Kwapian sometime prior
to 1985. It was first reported in Bryc and Plucinska (1985). It was in fact
presented in terms of the joint characteristic function. Kwapian considers
a random vector (X, Y ) whose joint characteristic function is given by

φX,Y (s, t) = p cos(s + t) + (1 − p) cos(s − t), (7.89)

where p ∈ (0, 1) and, to avoid independence, p �= 1/2. It is obvious that
(7.89) does not correspond to a Gaussian random vector. Nevertheless, if
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TABLE 7.1. Probability density function of (X, Y ) for the Kwapian example.

x\y −1 1

−1 (1 − p)/2 p/2
1 p/2 (1 − p)/2

(X, Y ) has (7.89) as its characteristic function, (7.88) will hold, and (X, Y )
thus has Gaussian conditional structure.

Where did (7.89) come from? And, why does it work? The picture is
clearer if we consider the joint discrete density of a random vector (X, Y )
as shown in Table 7.1, where p ∈ (0, 1) and p �= 1/2. It is readily verified
that this is indeed Kwapian’s example (the corresponding characteristic
function is given by (7.89)). But the joint distribution in Table 7.1 has
marginals with only two possible values. This gives linear regression func-
tions by default (any function with a two point domain is linear!). Constant
conditional variances are a consequence of the fact that p(1−p) = (1−p)p.

The elegant simplicity of the Kwapian example would suggest ready ex-
tension to higher dimensions. However, only recently (Nguyen, Rempala,
and Wesolowski (1996)), have any other (other than relabeled versions of
the Kwapian example) non-Gaussian examples been discussed in either two
or more dimensions.

Further discussion of attempts to characterize the class of distributions
with Gaussian conditional structure, and of characterization of the clas-
sical normal distribution within this class, may be found in Arnold and
Wesolowski (1996).

7.9 Bibliographic Notes

Narumi (1923) is the key reference for the material in Sections 7.4, 7.5, and
7.6. Section 7.7 is based in part on Arnold, Castillo, and Sarabia (1993b)
and Arnold, Castillo, and Sarabia (1999a). Section 7.8 draws on Arnold
and Wesolowski (1996).

Exercises

7.1 Discuss the compatibility conditions of the system (7.38) in the case
I = J = 3. Discuss the general case.

7.2 Prove Theorem 7.3.
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7.3 Let (X, Y ) be a bivariate random variable. Prove that the following
three sets of conditions involving conditional moments characterize
the bivariate normal distribution:

(a) E|X| < ∞, and

Y |X = x ∼ N(α + βx, σ2),

E(X|Y = y) = γ + δy,

for some real numbers α, β, γ, δ with β �= 0, δ �= 0, and σ > 0.

(b)
Y |X = x ∼ N(α + βx, σ2),

with β �= 0, E(X) = E(Y ) = 0, V (X) = V (Y ) = 1, and

E(X2|Y = y) = 1 − ρ2 + ρ2y2,

where ρ = E(XY ), 0 �= |ρ| < 1,

(c)

Y |X = x ∼ N(µ(x), σ2(x)),

E(µ(X)|Y = y) = α + βy, β �= 0,

E(σ2(X)|Y − µ(X)) = c > 0,

and X
d
= µ(X) up to a change of scale and/or location.

Hint: Use characteristic functions.

(Ahsanullah and Wesolowski (1993).)

7.4 Let (X, Y ) be a two-dimensional random variable, and assume that

X
d
= Y and that FX and FY have N as common support. Let

{φx(y) : x ∈ N} be a family of distributions functions indexed by N .

(a) If there exists a distribution function F such that F ≡ FX ≡ FY

and
φx(y) = P (Y ≤ y|X = x), ∀y, ∀x ∈ N,

then it is unique provided that φx(y) satisfies the following inde-
composability condition: There do not exist two disjoint subsets
of N , say A1 and A2, such that

∫

A1

dφx(y) = 1, ∀x ∈ A1,

and
∫

A2

dφx(y) = 1, ∀x ∈ A2.



172 7. Characterizations Involving Conditional Moments

(b) If a density exists, this can be rewritten as a homogeneous
Fredholm integral equation

∫

R

φ′
x(y)f(x) dx = f(y).

(c) Suppose that X and Y are identically distributed and that X,
given Y = y, is normally distributed with mean

E(X|Y = y) = − m12y
2 + m11y + m10

2(m22y2 + m21y + m20)

and variance

var(X|Y = y) = − 1

2(m22y2 + m21y + m20)
.

Then (X, Y ) is a bivariate normal conditionals distribution.

(Arnold and Pourahmadi (1988).)

7.5 If, for all x > 0,

f(x) =

∫ ∞

0

(α + 1)(1 + y/σ)α+1

σ(1 + x/σ + y/σ)α+2
f(y) dy,

with α > 0, σ > 0 where f is a pdf, then

f(x) =
α

σ(1 + x/σ)α+1
, x > 0.

(Ahsanullah and Wesolowski (1993).)

7.6 Let X, Y be independent random variables. Define

U = aX + bY, V = cX + dY,

where a, b, c, d are some real numbers. Assume that ab �= cd. If the
conditional distributions of U given V is normal, with probability 1,
then X and Y are normal.

(Kagan and Wesolowski (1996).)

7.7 Suppose that E(X|Y = y) = y, ∀y and E(Y |X = x) = x,∀x.

(a) Show that any one of the following assumptions is sufficient to
ensure that X = Y with probability 1.

(i) E(X2) < ∞;

(ii) E|X| < ∞; and

(iii) X ≥ 0 with probability 1.
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(b) Construct a proper (not easy) or improper (quite easy) example
in which E(X|Y = y) = y, ∀y and E(Y |X = x) = x,∀x and
X �= Y on a set with positive probability.

(Remark: These issues arise in discussions of the possible existence
of unbiased Bayes estimates.)

(Bickel and Mallows (1988).)

7.8 Suppose that for each y ∈ IR, X|Y = y ∼ N
(

0, (a + by2)−1
)

and for
each x ∈ IR, E(Y |X = x) = 0 and E(Y 2|X = x) = (c+dx2)−1. In ad-
dition, assume that Y has a symmetric distribution (is this crucial?).
Prove that (X, Y ) has a centered normal conditionals distribution
(3.51).

7.9 (a) Suppose that we are given that fX|Y (x|y) = a(x, y), x ∈ S(X),
y ∈ S(Y ) and that, for x ∈ S(X), the mode of the conditional
density of Y given X = x is given by an invertible function φ(x).
Verify that the joint density of (X, Y ) is completely determined
by this information.

(Hint: Set up a differential equation that can be solved for fY (y).)

(b) Carry through the program outlined in (a) for the case in which

a(x, y) =
1√
2π

exp

[

−1

2
(x − αy)2

]

and
φ(x) = βx.
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Multivariate Extensions

8.1 Introduction

As we have seen, conditional specification in two dimensions already presents
a plethora of problems and potential modeling scenarios. Much more com-
plicated issues and problems can be expected in higher dimensions.

The issue of conditional/marginal specification in complete generality
will be deferred until Chapter 10. In the present chapter we survey re-
sults and models that can be obtained readily by analogy to available two-
dimensional material. In addition to developing multivariate conditionally
specified models we will consider (following the lead of Bhattacharyya, who
dealt with the two-dimensional normal conditionals distribution) what kind
of additional conditions, in addition to having conditionals of appropriate
form, are sufficient to characterize certain more classical multivariate dis-
tributions. Considerable attention will be focussed on the development of
the classical multivariate normal distribution via conditional specification.

8.2 Extension by Underlining

The material in Chapters 1 and 4 was written and undoubtedly read with
the assumption that the random variables X and Y were one-dimensional.
However, things will continue to make sense if X and Y are of higher di-
mensions. If X is ℓ1-dimensional, and better denoted by X with possible
values x ∈ SX and Y is ℓ2-dimensional, better denoted by Y with possible
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values y ∈ SY , then all the material in Chapters 1 and 4 remains correct
with X’s, Y ’s, x’s, and y’s underlined and interpreted as appropriate vec-
tors. Going further, X and Y could assume values in more abstract spaces
than IRℓ1 and IRℓ2 (e.g., Hilbert spaces, etc.) and our results will, with
minor editing, still remain valid.

There are of course many other ways to conditionally specify a multivari-
ate density that do not fit into the underlining paradigm described above.
For example in three dimensions, the joint density of (X, Y, Z) might be
specified by giving the conditional densities of X given (Y, Z), of Y given
(X, Z), and of Z given (X, Y ). Clearly compatibility checks will be required
here as they were in two dimensions. The scheme being used here is, ev-
idently, to give the conditional density of each coordinate given all other
coordinates. The remainder of this chapter will focus on this scheme, which
is clearly a direct analogy of the scheme used in bivariate settings earlier.
Discussion of other schemes is, as mentioned earlier, deferred to Chapter
10.

We could of course immediately plunge into k dimensions. However most
of the ideas are already visible in three dimensions and it is helpful to start
in this simplified arena.

8.3 Compatibility in Three Dimensions

For simplicity we will not only hold the dimension down to 3 but will also
focus on the finite discrete case.

Consider discrete random variables X, Y , and Z with possible values x1,
x2, . . ., xI , y1, y2, . . . , yJ , and z1, z2, . . . , zK , respectively. Three candidate
families of conditional densities can be denoted by A, B, and C where

aijk = P (X = xi|Y = yj , Z = zk),

bijk = P (Y = yj |X = xi, Z = zk), (8.1)

cijk = P (Z = zk|X = xi, Y = yj).

Clearly we must require that
∑

i aijk = 1, ∀j, k,
∑

j bijk = 1, ∀i, k and
∑

k cijk = 1, ∀i, j. In addition, an analog of Theorem 2.1 must hold to
ensure compatibility. The densities (8.1) will be compatible iff there exist
arrays {dij}, {eik}, and {fjk} such that

aijk/bijk = eikf−1
jk ,

aijk/cijk = dijf
−1
jk , (8.2)

bijk/cijk = dije
−1
ik .

If the densities are compatible then uniqueness of the corresponding joint
distribution of (X, Y, Z) is guaranteed by irreducibility of the Markov chain
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(Xn, Yn) defined on the state space {x1, . . . , xI} × {y1, . . . , yJ} with tran-
sition probabilities defined as follows:

P (Xn = xi2 , Yn = yj2 |Xn−1 = xi1 , Yn−1 = yj1)
=

∑

k ci1j1kai2j1kbi2j2k.
(8.3)

A trivial sufficient condition for uniqueness is that aijkbijkcijk > 0, ∀i, j, k.
See Nerlove and Press (1986) for some discussion of alternative sufficient
conditions.

8.4 Compatibility in Higher Dimensions

Now assume that X is a k-dimensional random vector with coordinates
(X1, X2, . . ., Xk). We introduce a convenient notational convention at this
point. For each coordinate random variable Xi of X we define the vector
X(i) to be the (k − 1)-dimensional vector obtained from X by deleting Xi.
We use the same convention for real vectors, i.e., x(i) is obtained from x
by deleting xi. We concentrate on conditional specifications of the form
“Xi given X(i),” a direct generalization to k dimensions of the material in
Chapter 1 (for two dimensions) and Section 8.3 (for three dimensions).

A putative conditional specification of the joint distribution of X us-
ing the “Xi given X(i)” form would be as follows. For i = 1, 2, . . . , k the
conditional densities should be of the form

fXi|X(i)
(xi|x(i)) = φi(xi; x(i)), ∀x(i) ∈ S(X(i)), (8.4)

where for each x(i),
∫

S(Xi)
φi(xi; x(i)) dµi(xi) = 1. To ensure compatibility

of the conditional specification (8.4) there must exist functions ui(x(i)), i =
1, 2, . . . , k, such that

φ1(x1; x(1))u1(x(1)) = φ2(x2; x(2))u2(x(2)) = . . .

. . . = φk(xk; x(k))uk(x(k)).
(8.5)

If the densities are compatible, then uniqueness of the corresponding
joint density will be guaranteed by irreducibility of the Markov chain

(X
(n)
1 , . . . , X

(n)
k−1) defined on the state space S(X(k)), in a manner analogous

to that used in (8.3).

8.5 Conditionals in Prescribed Families

Consider k parametric families of densities on IR defined by

{fi(x; θ(i)) : θ(i) ∈ Θi}, i = 1, 2, . . . , k, (8.6)
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where θ(i) is of dimension ℓi and where the ith density is understood as
being with respect to the measure µi. We are interested in k-dimensional
densities that have all their conditionals in the families (8.6). Consequently,
we require that for certain functions θ(i) : S(X(i)) → Θi we have, for
i = 1, 2, . . . , k,

fXi|X(i)
(xi|x(i)) = fi(xi; θ(i)(x(i))). (8.7)

If these equations are to hold, then there must exist marginal densities
for the X(i)’s such that

fX
(1)

(x(1))f1(x1; θ(1)(x(1))) = fX(2)
(x(2))f2(x2; θ(2)(x(2)))

. . . = fX(k)
(x(k))fk(xk; θ(k)(x(k))).

(8.8)

Under certain circumstances this array of functional equations can be
solved. Extended versions of the theorems in Section 1.8 will be useful in
this context. The classic example in which a solution is readibly obtainable
corresponds to the case in which each of the i families in (8.6) are expo-
nential families. This will yield straightforward k-dimensional analogs of
the results in Chapters 3 and 4. In addition, many of the results discussed
in Chapter 5 extend readily to higher dimensions. Only the book-keeping
gets worse as dimensionality increases.

8.6 Conditionals in Exponential Families

Suppose that the k families of densities f1, f2, . . . , fk in (8.6) are ℓ1, ℓ2, . . . , ℓk

parameter exponential families of the form

fi(t; θ(i)) = ri(t) exp

⎧

⎨

⎩

ℓi
∑

j=0

θijqij(t)

⎫

⎬

⎭

, i = 1, 2, . . . , k, (8.9)

(here θij denotes the jth coordinate of θ(i) and by convention qi0(t) ≡
1,∀i). We wish to identify all joint distributions for X such that (8.7) holds
with the fi’s defined as in (8.9) (i.e., with conditionals in the prescribed
exponential families).

By using an extended version of the Stephanos–Levi–Civita–Suto The-
orem 1.3 or by taking logarithms in (8.8) and differencing with respect
to x1, x2, . . . , xk we may conclude that the joint density must be of the
following form:

fX(x) =

[

k
∏

i=1

ri(xi)

]

exp

⎧

⎨

⎩

ℓ1
∑

i1=0

ℓ2
∑

i2=0

. . .

ℓk
∑

ik=0

mi1,i2,...,ik

⎡

⎣

k
∏

j=1

qij
(xj)

⎤

⎦

⎫

⎬

⎭

.

(8.10)
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The k-dimensional array of parameters M includes one, namely m00...0,
which is a function of the others and plays the role of the normalizing
constant to ensure that fX(x) integrates to 1. Our experience in two di-
mensions warns us that the determination of appropriate constraints on
the parameters in the array M , to ensure a valid (integrable) density, will
be a daunting exercise. Sometimes simple sufficient conditions can be given
but often a complete characterization of the admissible values of M will
be unattainable. The case of independent coordinates random variables is
included in (8.10). It corresponds to the choice

mi1,i2,...,ik
= 0 if

k
∑

j=1

I(ij �= 0) > 1.

In the following sections we will briefly discuss some important examples
of multivariate conditionals in exponential families distributions, together
with some nonexponential family examples. Needless to say, the list is not
exhaustive.

8.7 Multivariate Exponential Conditionals
Distribution

In this case, X is assumed to be a k-dimensional random vector with Xi >
0, i = 1, 2, . . . , k. For each i we require that the conditional distribution
of Xi given X(i) = x(i) is exponential µi(x

(i)) for some functions µi(·).
Clearly this is a conditionals in exponential families distribution and can
be written in the form (8.10). However, since each exponential family has
just one parameter, a slightly simpler representation is possible. The joint
density must be of the following form:

fX(x) = exp

⎡

⎣−
∑

s∈ξk

λs

(

k
∏

i=1

xsi
i

)

⎤

⎦ , x > 0, (8.11)

where ξk is the set of all vectors of 0’s and 1’s of dimension k. The param-
eters λs (s �≡ 0) are nonnegative, those for which

∑k
i=1 si = 1 are positive,

and λ0 is such that the density integrates to 1. For k > 2, it is not easy
to determine an analytic expression for λ0 as a function of the λs’s. It is

evident that in (8.11), Xi is stochastically decreasing in X(i), so that non-
positive correlations are encountered. Submodels of (8.11) may be obtained

by, for example, setting λs = 0 for every s for which
∑k

i=1 si > m for some
integer m < k. Exchangeable models are associated with choices of λs such

that λs = λs′ whenever
∑k

i=1 si =
∑k

i=1 s′i.
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Example 8.1 (Multivariate exponential conditionals). One simple
exchangeable model will be discussed in some detail in Chapter 9. It is a
one-parameter family of the form

fX(x) = φ(δ) exp

(

−
k

∑

i=1

xi − δ

k
∏

i=1

xi

)

, x > 0, (8.12)

where φ(δ) is the appropriate normalizing constant. �

Finally we remark that only a modest modification of (8.11) will give
the general form of all k-dimensional distributions with conditionals in
one-parameter exponential families. Here, for each i, Xi given X(i) = x(i)

is postulated to belong to an exponential family (8.9) with ℓi = 1. Instead
of using the form (8.10), we can write the general form of such densities,
modeled after (8.11), as follows:

fX(x) =

[

k
∏

i=1

ri(xi)

]

exp

⎡

⎣

∑

sǫξk

δs

k
∏

i=1

[qi1(xi)]
si

⎤

⎦ . (8.13)

Note that (8.11) and (8.13) include models with independent coordi-
nate random variables. We merely set λs (respectively δs) equal to zero if
∑k

i=1 si > 1.

8.8 Multivariate Normal Conditionals
Distribution

Suppose now that we require that, for each i, Xi given X(i) = x(i), should
be normally distributed with mean µi(x

(i)) and variance σ2
i (x(i)). The cor-

responding joint density will then be of the form (8.10) with ℓ1 = ℓ2 =
· · · = ℓk = 2,

ri(t) = 1, i = 1, 2, . . . , k, (8.14)

and
qi0(t) = 1, i = 1, 2, . . . , k,
qi1(t) = t, i = 1, 2, . . . , k,
qi2(t) = t2, i = 1, 2, . . . , k.

(8.15)

The coefficients (the m’s) in (8.10) must be chosen to ensure that all the
conditional variances are always positive (compare with Section 3.3) and
that the density is integrable. The density can be written in the form

fX(x) = exp

⎧

⎨

⎩

∑

i∈Tk

mi

⎡

⎣

k
∏

j=1

x
ij

j

⎤

⎦

⎫

⎬

⎭

, (8.16)



8.10 Multivariate Uniform Conditionals Distribution 181

where Tk is the set of all vectors of 0’s, 1’s, and 2’s of dimension k, since
the qij ’s defined in (8.15) can be written in the form qij(t) = tj .

The classical k variate normal distribution is of course a special case of
(8.16). In order for (8.16) to reduce to a classical k-variate normal density

we require that every mi, for which
∑k

j=1 ij > 2, should be zero. The
remaining mi’s must be such that the quadratic form in x that they define
is negative definite, for convergence. We will investigate the role of the
classical normal distribution as a special case of (8.16) in more detail in
Section 8.15.

The model (8.16) reduces to one with independent normal marginals if

every mi for which
∑k

j=1 I(ij �= 0) > 1 is zero.

8.9 Multivariate Cauchy Conditionals
Distribution

Our first nonexponential family example involves Cauchy random variables.
The k-dimensional Cauchy conditionals distribution will have the prop-

erty that for each i, Xi|X(i) = x(i) has a Cauchy (µi(x(i)), σi(x(i))) distri-
bution for some functions µi and σi. The corresponding functional equa-
tions are readily solved (compare Section 5.5, where the bivariate case was
treated). The resulting density for X is found to be of the form

fX(x) =

⎡

⎣

∑

i∈Tk

mi

⎛

⎝

k
∏

j=1

x
ij

j

⎞

⎠

⎤

⎦

−1

. (8.17)

To ensure that (8.17) is a valid density we must impose constraints inti-
mately related to those required on the mi’s in the multivariate normal con-
ditionals case ((8.16)). The classical elliptically symmetric k-variate Cauchy
distribution is associated with the choice of mi’s for which mi = 0 whenever
∑k

j=1 ij > 2.

8.10 Multivariate Uniform Conditionals
Distribution

Consider a k-dimensional random variable X. Suppose that for each i the
conditional distribution of Xi given X(i) = x(i) is uniform over some in-
terval (φ1i(x(i)), φ2i(x(i))). Evidently the joint density must be constant
over some subset T of k-space of finite content constrained to be such that
for each i, and each x(i) ∈ IRk−1, the set {xi : (x1, . . . , xk) ∈ T} is ei-
ther empty or an interval. For example, T could be a convex set of finite
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content. Alternatively, it could be the region in the positive orthant under
some surface (provided the region so defined is of finite content).

8.11 Multivariate Pareto Conditionals
Distribution

For α > 0 (held fixed in the present section) we say that X has a Pareto
(α, σ) distribution if

fX(x) =
α

σ

(

1 +
x

σ

)−(α+1)

, x > 0, (8.18)

as in Section 5.2.
Now we seek to identify all k-dimensional distributions for which for each

i the conditional density of Xi given X(i) = x(i) is a member of the family
(8.18) with scale parameter σi(x(i)), some function of x(i).

This is clearly not an exponential family example. However, the argu-
ments provided in Section 5.2, extend in a straightforward fashion to give
the following general form for such multivariate Pareto(α) densities:

fX(x) =

⎡

⎣

∑

sǫξk

δs

(

k
∏

i=1

xsi
i

)

⎤

⎦

−(α+1)

, x > 0. (8.19)

Some care must be exercised to determine admissible values for the δs’s to
guarantee that (8.19) is integrable (of course δ0 will usually be an unattrac-
tive function of the other δs’s, chosen to make the integral over the positive
orthant equal to 1). All of the δs’s must be nonnegative and some are per-
mitted to be zero. How many and which ones depends on k and α. Refer
back to the bivariate case discussed in Section 5.2 to get a flavor of the
issues involved .

Correlations, when they exist, can be positive or negative depending on
the choice of δs’s in (8.19). Judicious choices of δs’s will lead to models with
independent marginals. Specifically, we must choose δ0 > 0 and for s �= 0,

δs = δ

(1−
k

∑

i=1

si)

0

k
∏

i=1

(δ∗i )si , (8.20)

where δ∗1 = δ1000..0, δ
∗
2 = δ010..0, etc.

Analogous multivariate extensions are possible for the generalized Pareto
conditionals distributions and the Pickands–deHaan distributions discussed
in Chapter 5.
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For the generalized Pareto distributions we have a k-dimensional version
of Model I of the form

fX(x) =

⎡

⎣

k
∏

j=1

x
δj−1
j

⎤

⎦

⎧

⎨

⎩

∑

s∈ξk

λs

⎡

⎣

k
∏

j=1

x
sjδj

j

⎤

⎦

⎫

⎬

⎭

−(α+1)

, x > 0, (8.21)

where ξk is the set of all vectors of 0’s and 1’s of dimension k. The k-
dimensional version of Model II is given by

fX(x) =

⎡

⎣

k
∏

j=1

x
δj−1
j

⎤

⎦ exp

⎧

⎨

⎩

∑

s∈ξk

λs

⎡

⎣

k
∏

j=1

log(θj + x
δj

j )

⎤

⎦

⎫

⎬

⎭

, x > 0. (8.22)

The closely analogous k-variate forms of the Pickands–deHaan distribu-
tion are given by:

(I) fX(x) = [
∑

s∈ξk
λs

∏k
j=1(σxj)

sj ]1/σ−1, x ∈ D, where D is the set in
which the expression in square brackets is positive.

(II) fX(x) = exp
[

∑

s∈ξk

]

λs

∏k
j=1 log(1 − δixi)]

si , 0 < xi < δ−1
i , i =

1, 2 . . . , k.

8.12 Multivariate Beta Conditionals Distribution

Here we ask, for each i, that Xi given X(i) = x(i) have a beta distribu-
tion with parameters α(x(i)) and β(x(i)). The beta distribution is a two-
parameter exponential family and so the beta conditionals densities will be
of the form (8.10) with ℓ1 = ℓ2 = . . . = ℓk = 2,

ri(t) = [t(1 − t)]−1I(0 < t < 1), i = 1, 2, . . . , k, (8.23)

q10(t) = 1, i = 1, 2, . . . , k,
qi1(t) = log t, i = 1, 2, . . . , k,
qi2(t) = log(1 − t), i = 1, 2, . . . , k.

(8.24)

Most of the m’s in (8.10) must be nonpositive, the exceptions being those

mi1i2...ik
’s for which

∑k
j=1 I(ij �= 0) = 1. These m’s must be positive.

Reference back to the bivariate case in Section 4.10 will help explain these
restrictions.

Life becomes more interesting if we allow scaled beta distributions as
acceptable conditionals. The classical example in which all conditionals
are scaled beta variables is provided by the Dirichlet distribution. We are
effectively seeking a multivariate extension of the material in Section 5.9
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and, again, reference to James (1975) will be instructive. We actually pose
the problem in a form slightly more general than that discussed in Section
5.9 and in James’ work.

Specifically, we wish to identify k-dimensional random variables such
that for each i, Xi given X(i) = x(i) has a scaled beta distribution with
parameters αi(x(i)) and βi(x(i)) and support on the interval (0, ci(x(i))).
First, for compatibility, the ci(x(i))’s must be such that they correspond to
a joint support set of finite content for X that consists of all points in the
positive orthant of k-space under some surface. Within that region, T , the
joint density must be expressible as a product of marginals f(i)(x(i)) and
conditionals in k ways. Thus we must have

f(1)(x(1))
1

c1(x(1))

(

x1

c1(x(1))

)α1(x(1))−1 (

1 − x1

c1(x(1))

)β1(x(1))−1

= f(2)(x(2))
1

c2(x(2))

(

x2

c2(x(2))

)α2(x(2))−1
(

1 − x2

c2(x(2))

)β2(x(2))−1

= · · · etc. (8.25)

Only in special circumstances will (8.25) have a solution. If βi(x(i)) ≡ 1, i =
1, 2, . . . , k, then the joint density must be of the form

fX(x) =

(

k
∏

i=1

xi

)−1

exp

⎧

⎨

⎩

∑

sǫξk

δs

[

k
∏

i=1

(log xi)
si

]

⎫

⎬

⎭

, x ∈ T. (8.26)

A second trivial case in which a solution is possible occurs when ci(x(i)) ≡
ci, i = 1, 2, . . . , k. For in this case we merely obtain Xi = ciX

∗
i where X∗

has an unscaled beta conditionals distribution (given by (8.13) with r’s and
q’s defined by (8.23) and (8.24)).

The final instance in which a solution is obtainable corresponds to the
case where βi(x(i)) ≡ β �= 1, i = 1, 2, . . . , k. In this case the joint density
is necessarily supported on a set of the form

T =

{

x : xi > 0,

k
∑

i=1

cixi < 1

}

, (8.27)

where the ci’s are positive. On this set, T , the joint density is of the form

fX(x) =

(

k
∏

i=1

xi

)−1 (

1 −
k

∑

i=1

cixi

)β−1

exp

⎧

⎨

⎩

∑

sǫξk

δs

[

k
∏

i=1

(log xi)
si

]

⎫

⎬

⎭

.

(8.28)
This is essentially the form of the density introduced by James (1975).
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James also discusses a variant problem as follows. Suppose for each i,
X(i) given Xi = xi is Dirichlet(k − 1, γ(xi)). It follows in this case that
the k-dimensional joint density of X must be Dirichlet(k, γ) so that no
interesting new multivariate distributions will be encountered.

8.13 Multivariate Binomial Conditionals
Distribution

Up till now, all our multivariate examples have involved continuous dis-
tributions. Naturally discrete examples exist. We could write appropriate
choices of r’s and q’s in (8.13) to lead to multivariate geometric, Poisson,
and binomial conditionals distributions but, by referring to the correspond-
ing bivariate examples in Section 4.12, the interested reader can do this
easily.

We will discuss an interesting variant of the binomial conditionals dis-
tribution. A close parallel with the scaled beta conditionals example will
be apparent. In that example a generalization of the Dirichlet distribution
was uncovered. In the present example a generalization of the multinomial
distribution will be sought. Thus we seek a k-dimensional random vector
X with possible values being vectors x of nonnegative integers such that
∑k

i=1 xi ≤ n where n is a fixed positive integer. We wish to have, for each
i, the conditional distribution of Xi given X(i) = x(i) be binomial with pa-
rameters n−∑

j �=i xj and pi(x(i)). By writing the joint density as a product
of marginals of X(i)’s and conditionals of Xi given X(i), i = 1, 2, . . . , k, we
eventually find that the joint density must be of the form

fX(x) =

(

k+1
∏

i=1

xi!

)−1

exp

⎧

⎨

⎩

∑

s∈ξk

λs

[

k
∏

i=1

xsi
i

]

⎫

⎬

⎭

, xi ≥ 0,

k
∑

i=1

xi ≤ n,

(8.29)

where we introduce the convenient notation xk+1 = n−∑k
i=1 xi. The model

(8.29) includes the classical multinomial as a special case (choose λs = 0 if
∑k

i=1 si > 1).

8.14 Further Extension by Underlining

It will be noted that almost all of the results in Sections 8.3 through 8.6
remain valid even when all the xi’s are themselves vectors of possibly differ-
ent dimensions. Thus underlining (to indicate vectors) provides immediate
generalization of the results.
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8.15 Characterization of Multivariate Normality
via Conditional Specification

Nested within the family of normal conditionals distributions (8.16) are to
be found the classical k-variate normal distributions. It was remarked in
Section 8.8 that they can be identified by the property that, for them, the
parameters mi corresponding to i’s for which

∑k
j=1 ij > 2 must all be zero.

These may be dubbed the non-Gaussian parameters. First Bhattacharyya
(1943), and later Castillo and Galambos (1987a), addressed the issue of
characterizing the classical multivariate normal distribution (or Gaussian
distribution) via distributional properties in addition to normal condition-
als. A survey of results of this type will be presented in this section.

It will be helpful to review certain well-known properties of the k-dimen-
sional Gaussian (classical multivariate normal) distribution. Notational con-
ventions used heavily in the discussion, some new, some old, are the follow-
ing. If X is a k-dimensional random vector, we denote its ith coordinate
by Xi and, for each i, we denote the vector X with Xi deleted by X(i).
For each i, j, X(i,j) denotes the vector X with its ith and jth coordinates

deleted. X̃(i)ℓ will be used to denote a subvector of X(i) with ℓ coordinates.

In addition, we write X = (Ẋ, Ẍ) to indicate a partitioning X into two
subsets where Ẋ includes, say, k1 of the coordinates of X (not necessarily
the first k1 coordinates) and Ẍ includes the remaining coordinates.

In similar fashion, x denotes a generic point in IRk and xi, x(i), x(i,j), x̃(i)ℓ,
(ẋ, ẍ) are defined analogously to their random counterparts.

If a k-dimensional random variable X has a Gaussian (classical multi-
variate normal) distribution, then it admits a representation of the form

X = µ + Σ1/2Z,

where Z1, Z2, . . . , Zk are i.i.d. standard univariate normal random vari-
ables. In such a case we write X ∼ N (k)(µ, Σ). Here µ ∈ IRk and Σ is
a nonnegative definite k × k matrix. Such random variables, X, have the
following properties (among others):

1. All one-dimensional marginals are normal.

2. All ℓ-dimensional marginals, ℓ < k, are ℓ-variate normal.

3. All linear combinations are normal. In fact, for any ℓ × k matrix B,
we have

BX ∼ N (ℓ)(Bµ, BΣB′).

4. All conditionals are normal. Thus if we partition X = (Ẋ, Ẍ), then
the conditional distribution of Ẋ, given Ẍ = ẍ, is k1-variate normal
for every ẍ.
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5. All regressions are linear. Thus for any i and any j1, j2, . . . , jℓ (�= i),

E(Xi|Xj1 , . . . , Xjℓ
) is a linear function of Xj1 , Xj2 , . . . , Xjℓ

.

6. All conditional variances are constant. Thus var(Xi|Xj1 , . . . , Xjℓ
) is

nonrandom for any i, j1, . . . , jℓ.

7. If Σ is positive definite, the joint density of X is elliptically contoured.

8. X has linear structures, i.e., X admits a representation of the form

X = a0 + AZ,

where the Zi’s are independent random variables.

Naturally, Conditions 1–8 contain more than enough to characterize the
classical k-variate normal distribution. Parsimonious selections from Con-
ditions 1–8 undoubtedly will suffice. Most of those properties, taken indi-
vidually fail to characterize the classical multivariate normal distribution.
Combinations of these properties can be used to characterize the classical
model. Condition 3 does characterize the classical model. Condition 4 also
will characterize the classical model provided k > 2. None of the others
alone will do it. Conditions 7 and 8, together, will characterize the classical
distribution.

Condition 4, involving conditional distributions will be our major con-
cern. As remarked above, if Condition 4 holds, then necessarily X is a clas-
sical k-variate normal random variable. But much less than the full force
of Condition 4 is needed. To see this we will list three more multivariate
normal properties that are subsumed by Condition 4.

If X is classical k-variate normal, then:

9. For every i, Xi given X(i) = x(i) is univariate normal for each x(i) ∈
IRk−1.

10. For each i, j, (Xi, Xj) given X(i,j) = x(i,j) is classical bivariate

normal for each x(i,j) ∈ IRk−2.

11. For each i and for each subvector X̃(i)ℓ of X(i) for each ℓ, Xi given

X̃(i)ℓ = x̃(i)ℓ is univariate normal for each x̃(i)ℓ ∈ IR ℓ.

Of course we know that if Condition 9 holds then we merely characterize
the k-variate normal conditionals distribution (see Section 8.8). More must
be assumed to guarantee that the non-Gaussian parameters are forced to
be zero. Bhattacharya and Castillo and Galambos addressed this goal by
positing that, in addition to Condition 9, we also require that parts of
one of Conditions 1, 5, or 6 hold (refer to Chapter 3 for details in the
bivariate case). Our goal is to buttress Condition 9 with further conditional
assumptions to achieve the end of characterizing the classical distribution.

The first result obtained in this direction was:
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Theorem 8.1 Suppose that for each i, j and for each x(i,j) ∈ IRk−2, the
conditional distribution of (Xi, Xj) given X(i,j) = x(i,j) is classical bivari-
ate normal with mean vector (µi(x(i,j)), µj(x(i,j)) and variance covariance
matrix

(

σ11(xi,j) σ12(xi,j)
σ21(xi,j) σ22(xi,j)

)

.

It follows that X has a classical k-variate normal distribution. �

Proof. Since (Xi, Xj) given X(i,j) = x(i,j) is classical bivariate normal,
it has univariate normal conditionals. It then follows that Xi given Xj and
X(i,j), i.e., given X(i) is univariate normal.

It follows that fX(x) has (8.16) as its density.
Now for any i and j, the conditional density of (Xi, Xj) given X(i,j) =

x(i,j) is postulated to be classical bivariate normal and so it will be of the
form

fXiXj |X(i,j)
(xi, xj |x(i,j)) ∝ exp[Q(xi, xj)], (8.30)

where Q(xi, xj) is a quadratic form in xi, xj with coefficients which may
depend on x(i,j).

This forces many of the mi’s in (8.16) to be zero. In fact, the joint
density must assume the form (using new notation for the reduced number
of parameters)

fX(x) = exp

⎧

⎨

⎩

−

⎡

⎣

k
∑

j=1

βjx
2
j +

∑

s∈ξk

δs

⎛

⎝

k
∏

j=1

x
sj

j

⎞

⎠

⎤

⎦

⎫

⎬

⎭

, (8.31)

where ξk is as defined following (8.11). However, the number of nonzero
parameters can be reduced even further. By considering the conditional
densities of (Xi, Xj) given X(i,j),∀i, j, which have to have positive definite
quadratic forms, we can conclude that any δs in (8.31) for which s includes
more than two 1′s must be zero.

It follows that the joint density is expressible in the form (again with
new simplified parameters)

fX(x) = exp

⎧

⎨

⎩

−

⎡

⎣α +

k
∑

j=1

λjxj +

k
∑

j=1

k
∑

ℓ=1

γjℓxjxℓ

⎤

⎦

⎫

⎬

⎭

, (8.32)

where the matrix (γjℓ)
k
j,ℓ=1 is positive definite (for integrability). This of

course indicates that X has a classical k-variate normal distribution. �

Remark 8.1 Arguments similar to those used in this proof can be used
to justify the following statements. Suppose that for each i and for each
x(i) ∈ IRk−1, the conditional distribution of Xi given X(i) = x(i) is classical
univariate normal, and in addition assume that the regression of each Xi
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on X(i) is linear (or assume the conditional variance of Xi given X(i) =
x(i) does not depend on x(i)). Then X has a classical k-variate normal
distribution. This extends the result for k = 2, discussed by Bhattacharyya
(1943) and Castillo and Galambos (1989).

A closely related result is the following:

Theorem 8.2 Suppose that for each i and for each x(i) ∈ IRk−1, the con-
ditional distribution of Xi given X(i) = x(i) is normal with mean µi(x(i))

and variance σ2
i (x(i)). In addition assume that for each i, j and each x(i,j) ∈

IRk−2, the conditional distribution of Xi given X(i,j) = x(i,j) is normal with

mean µij(x(i,j)) and variance σ2
ij(x(i,j)). It follows that X has a classical

k-variate normal distribution. �

Proof. Since for each i, Xi given X(i) = x(i) is normally distributed (∀x(i))
it follows that X has a k-dimensional normal conditionals density of the
form (8.16). Now fix j. Since for each i, Xi given X(i,j) = x(i,j) is normally
distributed for every x(i,j), it follows that X(j) has a (k − 1)-dimensional
normal conditionals distribution with a density that is a (k−1)-dimensional
version of (8.16). This implies that when (8.16) is integrated with respect to
xj , the resulting marginal is again of analogous form. This can only occur if
all mi’s with a 2 in the jth coordinate of the subscript i are zero except for
m00,...,2,...,0 (the coefficient whose subscript has a 2 in the jth coordinate
and zeros elsewhere). This argument can be repeated for j = 1, 2, . . . , k.
The joint density of X can then be expresed in the following form (using
new notation for the reduced number of possibly nonzero parameters):

fX(x) = exp

⎧

⎨

⎩

−

⎡

⎣

k
∑

j=1

βjx
2
j +

∑

s∈ξk

ms

⎛

⎝

k
∏

j=1

x
sj

j

⎞

⎠

⎤

⎦

⎫

⎬

⎭

. (8.33)

In order that (8.33) be integrable over IRk, it is necessary that the βj ’s
be positive and that every ms corresponding to an s with more than two
nonzero coordinates must be zero.

It follows that the joint density is expressible in the form (again with
new simplified parameters)

fX(x) = exp

⎧

⎨

⎩

−

⎡

⎣α +

k
∑

j=1

λjxj +

k
∑

j=1

k
∑

ℓ=1

γjℓxjxℓ

⎤

⎦

⎫

⎬

⎭

. (8.34)

For integrability the matrix (γjℓ)
k k

j=1,ℓ=1 must be positive definite. It is then
evident that X has a classical k-variate normal distribution. �

The transition from the general normal conditional distribution to the
classical k-variate normal distribution involves setting many of the param-
eters equal to zero. If we insist on proper (i.e., integrable) densities we
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must remember that setting certain of the mi’s equal to zero in (8.16)
may require (for integrability) that others also be set equal to zero. Recall
the discussion in two dimensions in Chapter 3 where it was noted that if
m22 = 0 then necessarily m12 and m21 must also be zero.

Example 8.2 (Trivariate normal conditionals distribution). Con-
sider the following normal conditionals density:

f(x1, x2, x3) = exp {−[m000 + m100x1 + m010x2 + m001x3

+ m110x1x2 + m101x1x3 + m011x2x3

+ m111x1x2x3 + m200x
2
1 + m020x

2
2

+ m002x
2
3]
}

.

(8.35)

For this density it is evident that X1|X2, X3, X2|X1, X3, X3|X1, X2,
X1|X2, X2|X1, X1|X3, X3|X1, X2|X3, and X3|X2 are all of the univariate
normal form. The presence of a non-zero term for the parameter m111 in
(8.35) identifies a distribution which is not classical trivariate normal.

Thus (8.35) would seem to contradict Theorem 8.2. It does not however,
since close inspection of (8.35) reveals it to be “an impossible” (i.e., not
integrable) model. �

8.16 Multivariate Normality in
More Abstract Settings

Bischoff (1996a) pointed out that many of the results dealing with nor-
mal conditionals and multivariate normality remain valid in abstract inner
product spaces. If we let X and Y be random vectors taking values in real
inner product spaces (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ), respectively. Bischoff’s
abstract version of Bhattacharyya’s theorem takes the form:

Theorem 8.3 (Bischoff (1996b).) With respect to (V ⊕ W, 〈·, ·〉V ⊕W ) let
fW (·|v) be normal on (W, 〈·, ·〉W ) for each v ∈ V with the known mean
mW (v) ∈ W and the known positive definite covariance ΣW (v) = A(v)−1 ∈
L(W, W ), and let fV (·|w) be normal on (V, 〈·, ·〉V ) for each w ∈ W with the
known mean mV (0) and the covariance ΣV (0) = B(0)−1 for w = 0. Then
under the assumption

fV (v|w) · fW (w) = f(v, w) = fW (w|v) · fV (v),
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the Lebesgue-density f is completely determined and given with respect to
(V ⊕ W, 〈·, ·〉V ⊕W ) by

f(v, w) = gV (0) · (2π)−α/2 · detA(0)1/2 · exp{ 1
2 〈mv(0), B(0)mV (0)〉V }

× exp{−1
2 〈w − mW (0), A(0)(w − mW (0))〉W }

× exp{−1
2 〈v − mV (0), B(0)(v − mV (0))〉V }

× exp{〈w,
k
∑

i=1

〈v, Ci,Av + ci,A〉V di〉W }

× exp{−1
2 〈w,

k
∑

i,j=1

〈v1Aijv + ai,j〉V (di � dj)w〉W }

= γ exp
{

− 1
2 〈w − mW (v), A(v)(w − mW (v))〉W

}

× exp
{

1
2 〈mW (v), A(v)mW (v)〉W

}

× exp
{

− 1
2 〈v − mV (0), B(0)(v − mV (0))〉V

}

× exp
{

1
2 〈mV (0), B(0)mV (0)〉V

}

= γ′ exp
{

− 1
2 〈w − mW (0), A(0)(w − mW (0))〉W

}

× exp
{

1
2 〈mW (0), A(0)mW (0)〉W

}

× exp
{

− 1
2 〈v − mV (w), B(w)(v − mV (w))〉V

}

× exp
{

1
2mV (w), B(w)mV (w)〉V

}

,
(8.36)

where γ and γ′ are constants such that the last two expressions are proba-
bility densities. �

(A convenient reference for discussion of normal distributions on inner
product spaces and the linear function � is Eaton (1983).)

The step from the normal conditionals distributions, described in the
above theorem, to the normal distribution on V ⊕ W , can be made using
arguments closely paralleling those used in the case where V = W = IR.

8.17 Characterizing Mardia’s Multivariate Pareto
Distribution via Conditional Specification

The classical normal distribution is remarkable for having all of its marginals
and all of its conditionals of the same (multivariate normal) form. Few
distributions share this property. One that does is Mardia’s multivariate
Pareto distribution. Here, then, is an opportunity to seek parallel charac-
terizations to the normal characterizations discussed in Section 8.15. As we
shall see, the parallel is remarkably close.

Recall that for α > 0, we say that X has a Pareto(σ, α) distribution if
its density is of the form

fX(x) =
α

σ

(

1 +
x

σ

)−(α+1)

, x > 0. (8.37)

Mardia (1962) introduced an interesting k-dimensional distribution with
Pareto marginals (the corresponding bivariate version of this distribution
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was discussed in Section 7.2). The joint survival function of this distribution
is of the form

F̄X(x) = P (X > x) =

[

1 +

k
∑

i=1

(

xi

σi

)

]−α

, x > 0. (8.38)

If X has the distribution described by (8.38) we write X ∼ MP(k)(σ, α).
If we write X = (Ẋ, Ẍ), where Ẋ is k1-dimensional and Ẍ is (k − k1)-

dimensional, it is readily verified that Ẋ ∼ MP(k1)(σ̇, α) (where σ̇ de-
notes the first k1 coordinates of σ). Thus the Mardia multivariate Pareto
has Mardia multivariate Pareto marginals. It also has Mardia multivariate
Pareto conditionals. Elementary computations confirm that Ẋ|Ẍ = ẍ ∼
MP (k1)(c(ẍ)σ̇, α + k − k1) where c(ẍ) = (1 +

∑k
k1+1 xi/σi). A convenient

reference for properties of the Mardia multivariate Pareto distribution is
Chapter 6 of Arnold (1983).

In Section 8.11 we identified the class of all distributions for which for
each i, Xi given X(i) = x(i) is Pareto(σ(x(i)), α+k−1) for every x(i). This
family has densities of the form

fX(x) =

⎡

⎣

∑

s∈ξk

δs

(

k
∏

i=1

xsi
i

)

⎤

⎦

−(α+k)

, x > 0, (8.39)

where ξk is the set of all vectors of 0’s and 1’s of dimension k. Note that
the role played by α in Section 8.11 is now being played by α + k. This
family of course includes the Mardia multivariate Pareto distributions, but
it includes many other distributions with Pareto conditionals.

We must make more stringent assumptions to guarantee that the dis-
tribution is of the Mardia form. We might, for example, postulate Pareto
marginals as well as conditionals. It is not difficult to verify that this will
indeed characterize Mardia’s distribution. It is of interest to determine
whether the Mardia model can be characterized using only conditional
specifications.

Paralleling the results of Section 8.15 we have the following results:

Theorem 8.4 (Characterization of Mardia’s multivariate Pareto
distribution). Suppose that for each i, j and each x(i,j) ∈ IRk−2 we have

(Xi, Xj)|X(i,j) = x(i,j) ∼ MP(2)((σi(x(i,j)), σj(x(i,j))), α + k − 2) (8.40)

for some functions σi(x(i,j)) and σj(x(i,j)). It follows that X has a Mardia
k-variate Pareto distribution. �

Proof. Since the MP(2) distribution has Pareto conditionals, (8.40) im-
plies that Xi given X(i) = x(i) is Pareto(σ(x(i)), α + k − 1). It then follows
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that the joint density of X is given by (8.39). However, in order for a density
of the form (8.39) to have conditionals of (Xi, Xj) given X(i,j) of the form
(8.40), all of the δs’s in (8.39) must be zero except those corresponding to
vectors s with at most one nonzero coordinate. This implies that the joint
density corresponds to a Mardia k-variate Pareto distribution. �

Theorem 8.5 (Characterization of Mardia’s multivariate Pareto
distribution). Suppose that for each i and any x(i) ∈ IRk−1 we have

Xi|X(i) = x(i) ∼ P (σ̃i(x(i)), α + k − 1) (8.41)

for some functions σ̃i(x(i)) and that for every i, j and every x(i,j) ∈ IRk−2

we have
Xi|X(i,j) = x(i,j) ∼ P (˜̃σi,j(x(i,j)), α + k − 1) (8.42)

for some functions ˜̃σi,j(x(i,j)).
It follows that X has a Mardia k-variate Pareto distribution. �

Proof. From (8.41) we conclude that the joint density is of the form
(8.39), Similarly for a fixed j, for each i we have that Xi given X(i,j) is
Pareto distributed so that each X(j) will have a (k − 1)-dimensional joint
density the form (8.39). However it is not difficult to verify that (8.39) will
have (k − 1)-dimensional marginals of the same form iff all of the δs’s in
(8.39) are zero except those corresponding to vectors s with at most one
nonzero coordinate. This implies that the joint density corresponds to a
Mardia multivariate Pareto distribution. �

In the proof of Theorem 8.5 a key idea was recognition that the hy-
potheses led us to a distribution for X that was conditionally specified
whose (k − 1)-dimensional marginals X(j), j = 1, 2, . . . , k, had analogous
(k − 1)-dimensional conditionally specified distributions. This places se-
vere constraints on the parameters appearing in the conditionally specified
distribution of X. Many of the examples described earlier in this chapter
admit analogous characterization results.

For example, if we require a k-dimensional random variable X to have
an exponential conditionals distribution (8.11) with the property that ev-
ery (k − 1)-dimensional marginal be again of the exponential conditionals
form (8.11), then it follows that the coordinates of X must be independent
exponential random variables.

8.18 Bibliographic Notes

Section 8.3 is based on Arnold and Press (1989b). Sections 8.5 and 8.6
draw on Arnold and Strauss (1991). Most of the examples in Sections
8.8–8.13 have not been introduced elsewhere. The key references for the
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characterization material in Sections 8.15 and 8.17 are Arnold, Castillo,
and Sarabia (1994a, 1994c). The extension to more abstract spaces is dis-
cussed in Bischoff (1996b). The multivariate exponential conditionals dis-
tribution was described in Arnold and Strauss (1988a). James (1975) has
some material relating to multivariate beta conditionals distributions.

Exercises

8.1 Let Z = (Z1, . . . , Zn), n ≥ 2, an n-dimensional random vector with
continuous density function f(z). Split the random vector Z into
two random vectors X = (Z1, . . . , Zk) and Y = (Zk+1, . . . , Zn), with
1 ≤ k < n. It is well known that both conditional densities f(x|y) and
f(y|x) are multivariate normal if the joint density f(x, y) is multivari-
ate normal. Now, suppose that the conditional densities f(x|y) and
f(y|x) are both multivariate normal. Denote the covariance matrix
of the conditional density f(y|x) by Σ2(x). Prove that the following
statements are equivalent:

(a) The probability density function f(x, y) is multivariate normal.

(b) The matrix Σ2(x) is constant in Rk.

(c) For the minimal eigenvalue λ(x) of the positive definite matrix
Σ2(x),

u2λ(ubj) → ∞, as u → ∞, for j = 1, 2, . . . , k,

where b1, . . . , bk is an arbitrary but fixed basis in Rk.

(Bischoff and Fieger (1991).)

8.2 Let (X1, X2, X3) be a trivariate random variable. Assume that the
random variable (X1, X2)|X3 = x3 is Mardia Pareto ∀x3 and that
(X2, X3)|X1 = x1 is Mardia Pareto ∀x1. Do these conditions guaran-
tee that (X1, X2, X3) is a trivariate Mardia Pareto distribution?

Hint: Consider the joint density given by

f(x1, x2, x3) ∝ (1 + ax1 + bx2 + cx3 + mx1x3)
−(α+1).

8.3 Let (X1, . . . , Xn) be a random variable with joint probability density
function f(x1, . . . , xn). Denote by f(xi|x(i)) the conditional density
of Xi given the remaining variables Xj , j �= i.

(a) Prove that

f(x1, . . . , xn) ∝

n
∏

i=1

f(xi|x0
(i))

n−1
∏

i=1

f(x0
i |x0

(i))
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for a given vector x0 = (x0
1, . . . , x

0
n) for which all the conditional

densities in the above expression are positive.

(b) Prove that the conditional densities f(xi|x(i)), i = 1, . . . , n, are
compatible if the expression

n
∏

i=1

f(xi|x0
(i))

n
∏

i=1

f(x0
i |x0

(i))
×

n
∏

i=1

f(z0
i |z0

(i))

n
∏

i=1

f(xi|z0
(i))

does not depend on (x1, . . . , xn) for (x0
1, . . . , x

0
n) �= (z0

1 , . . . , z0
n).

(Joe (1997).)

8.4 Suppose that X1, X2, . . . , Xn are jointly distributed random vari-

ables, (X1, X2, . . . , Xn−1)
d
= (X2, X3, . . . , Xn), and Xn|X1 = x1, X2 =

x2, . . . , Xn−1 = xn−1 is normal with mean α +
∑n−1

j=1 βjxj and vari-

ance σ2. Then, (X1, X2, . . . , Xn) are jointly multivariate normal.

(Arnold and Pourahmadi (1988).)

8.5 A nonnegative function g defined on A ⊂ IR2 is called totally positive
of order 2 (TP2), if for all x1 < y1, x2 < y2 with xi, yj ∈ A,

g(x1, x2)g(y1, y2) ≥ g(x1, y2)g(y1, x2).

If the last inequality is reversed, then g is reversed rule of order 2
(RR2).

Consider the trivariate conditionals distributions with joint pdf:

f(x1, x2, x3)∝ exp[−m100x1 − m010x2 − m001x2 − q(x1, x2, x3)]
×I(xi ∈ IR+)

where

q(x1, x2, x3) = m110x1x2 + m101x1x3 + m011x2x3 + m111x1x2x3.

(a) Obtain the bivariate marginals f(x1, x2), f(x1, x3), and f(x2, x3).

(b) Prove that f(x1, x2) is reversed rule of order 2 if and only if
m001m111 ≥ m101m011.

(c) If m110 = 0 and m001m111 < m101m011, then f(x1, x2) is totally
positive of order 2.

(d) If m110 = m001 = m111 = 0, and m100 = m010 = m101 =
m011 = 1, then f(x1, x2) is totally positive of order 2 and
f(x1, x3), f(x2, x3) are reversed rule of order 2.
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(Joe (1997).)

8.6 Theorems 8.1 and 8.2 require only notational modification in order
to remain valid when each Xi is a vector of dimension mi (instead of
1).

(Bischoff (1996a).)
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Estimation in Conditionally
Specified Models

9.1 Introduction

Standard estimation strategies are often difficult to implement when deal-
ing with conditionally specified models. A variety of techniques, to some de-
gree tailor-made for conditionally specified models, will be suggested in this
chapter. The emphasis will be on bivariate models but certain multivariate
cases are also discussed.

9.2 The Ubiquitous Norming Constant

Almost all of the conditionally specified distributions introduced in this
book are cursed with the presence of a term em00 . All other parameters
save m00 are constrained to belong to intervals in the real line. The param-
eter m00, we are blithely told, is chosen to make the density integrate to 1.
As a consequence m00 is in fact an often intractable function of the other
parameters. In a few cases an explicit expression is available (e.g., the expo-
nential conditionals density, (4.22), the Pareto conditionals density, (5.10),
(5.11), and (5.12), etc.). In such cases maximum likelihood becomes less
troublesome. In most cases, however, more devious means will be desir-
able. Pseudolikelihood and modified method of moments approaches have
proved to be viable approaches. They yield consistent asymptotically nor-
mal estimates. A third approach, which involves discretization of the data
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in absolutely continuous cases, reduces the problem to that of estimation
in a log-linear Poisson regression model.

The awkward normalizing constant hampers the likelihood enthusiast
but in fact is even harder on the Bayesian investigator. Some tentative
approaches to Bayesian analysis of conditionally specified densities will be
sketched in Section 9.9. More work and more insight is however needed in
this direction.

Throughout this chapter we focus on bivariate conditionally specified
distributions. In most cases the necessary modifications to extend the dis-
cussion to higher dimensions are self-evident. Some examples are provided
in Section 9.10.

9.3 Maximum Likelihood

Definition 9.1 (Maximum likelihood estimate). Suppose that we
have n observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from some bivariate
conditionally specified density f(x, y; θ), θ ∈ Θ. The maximum likelihood

estimate of θ, say θ̂, is a usually unique value of θ for which

n
∏

i=1

f(Xi, Yi; θ̂) = max
θ∈Θ

n
∏

i=1

f(Xi, Yi; θ). (9.1)

�

One approach to finding θ̂, an approach made even more feasible as com-
puting power increases, involves a direct search. A second, and historically
more favored, approach involves solving the likelihood equations

∂

∂θj

n
∑

i=1

log f(Xi, Yi; θ) = 0, j = 1, 2, . . . , k, (9.2)

and verifying that the solution corresponds to a true maximum. In gen-
eral, the method works best when a low-dimensional sufficient statistic is
available. The classical situation where maximum likelihood shines is one
in which f(x, y; θ) is an exponential family of densities. Note that all of
the bivariate conditionals in exponential families densities, introduced in
Chapters 3 and 4, were in fact themselves exponential families of bivariate
densities. We can therefore expect that maximum likelihood and perhaps
necessary variations on that theme will fare well in those settings. Esti-
mation based on samples from the “other” conditionally specified densities
introduced in Chapter 5 will undoubtedly require different treatment. So,
in our discussion of maximum likelihood, let us focus on conditionals in
exponential families.



9.3 Maximum Likelihood 199

We will begin with a very simple example. Suppose we have observations
from the conditionals in given exponential families density (4.5) with k = 1
and ℓ = 1, i.e.,

fX,Y (x, y) = r1(x)r2(y) exp{m00+m10q11(x)+m01q21(y)+m11q11(x)q21(y)}.
(9.3)

Here m10, m01 and m11 are constrained to make the density integrable
while m00 is determined, as a function of the other parameters, to make
the integral equal to 1. A relabeling of the parameters will help us to apply
well-known estimation results. Set m10 = θ1, m01 = θ2, and m11 = θ3 and
let

ψ(θ) = e−m00

=

∫ ∞

−∞

∫ ∞

−∞
r1(x)r2(y) exp{θ1q11(x) + θ2q21(y) + θ3q11(x)q21(y)} dx dy.

(9.4)
With this notation the log-likelihood of a sample of size n from our density
is

ℓ(θ) = −n log ψ(θ) +

n
∑

i=1

log r1(Xi) +

n
∑

i=1

log r2(Yi)

+θ1

n
∑

i=1

q11(Xi) + θ2

n
∑

i=1

q21(Yi) (9.5)

+θ3

n
∑

i=1

q11(Xi)q21(Yi).

Differentiating and setting the partial derivatives equal to zero yields the
likelihood equations

∂ψ(θ)

∂θ1

ψ(θ)
=

1

n

n
∑

i=1

q11(Xi), (9.6)

∂ψ(θ)

∂θ2

ψ(θ)
=

1

n

n
∑

i=1

q21(Yi), (9.7)

and
∂ψ(θ)

∂θ3

ψ(θ)
=

1

n

n
∑

i=1

q11(Xi)q21(Yi). (9.8)

If ψ(θ) is a simple analytic expression these equations can be easily solved
(directly or iteratively). Even if ψ(θ) is ugly (which is the case for most
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of our conditionals in exponential families examples), there is hope. Note
that

∂ψ(θ)

∂θ1

ψ(θ)

=

∫ ∞

−∞

∫ ∞

−∞
q11(x)r1(x)r2(y) exp{θ1q11(x)+θ2q21(y)+θ3q11(x)q21(y)} dx dy

∫ ∞

−∞

∫ ∞

−∞
r1(x)r2(y) exp{θ1q11(x)+θ2q21(y)+θ3q11(x)q21(y)} dx dy

,

(9.9)
which can be evaluated by numerical integration. Similar expressions are
available for the other terms on the left-hand sides of (9.7) and (9.8). So
a possible approach involves picking initial values of θ1, θ2 (maybe based
on crude moment estimates) then searching for a value of θ3 to make (9.8)
hold. Take this value of θ3 with the previous value of θ2 and search for
a value of θ1 to make (9.6) hold. Now go to (9.7), etc. The approach is
computer intensive but probably more efficient than a direct search which
might involve many more numerical evaluations of ψ(θ) for various choices
of θ. Having solved the likelihood equations, we can, with a little more
numerical integration, write an approximation for the variance-covariance
matrix of our estimate θ̂. The Fisher information matrix corresponding to
our model is the 3 × 3 matrix I(θ) with the (i, j)th element given by

Iij(θ) =

ψ(θ)
∂2

∂θi∂θj
ψ(θ) −

(

∂

∂θi
ψ(θ)

)(

∂

∂θj
ψ(θ)

)

(ψ(θ))2
. (9.10)

Finally, the estimated variance covariance matrix of θ̂ is

ˆ∑
(θ̂) = [I(θ̂)]−1/n, (9.11)

where θ̂ is the solution to (9.6)–(9.8). The entries in I(θ̂) may be com-
puted by numerical integration and the resulting matrix must be inverted
numerically.

Example 9.1 (Centered normal conditionals distribution). As an
example of this kind of analysis consider the slow firing target data dis-
cussed by Arnold and Strauss (1991). Thirty bivariate observations are
assumed to be a sample from a centered normal conditionals distribution
(recall Section 3.5). The joint density in question is of the form

fX,Y (x, y) = exp(θ1x
2 + θ2y

2 + θ3x
2y2)/ψ(θ), (9.12)

where θ1, θ2 < 0 and θ3 ≤ 0. In this example

q11(x) = x2, q21(y) = y2. (9.13)



9.3 Maximum Likelihood 201

The form of ψ(θ) is known. Unfortunately (referring to (3.57)), it involves
confluent hypergeometric functions and the expression is not useful. The
complete minimal sufficient statistics for the given data set are

1

30

30
∑

i=1

X2
i = 8.359,

1

30

30
∑

i=1

Y 2
i = 5.452, (9.14)

1

30

30
∑

i=1

X2
i Y 2

i = 21.310.

These are used on the right-hand side of (9.6), (9.7), and (9.8). Itera-
tive solution utilizing numerical integration of expressions like (9.9) yields
solutions

θ̂1 = −0.0389,

θ̂2 = −0.0597, (9.15)

θ̂3 = −0.0082.

�

In the centered normal conditionals case, an alternative to the iterative
solution of (9.14) is available. It relies on the fact that the normalizing
constant, though not as simple as one might wish, is at least easy to evaluate
numerically.

Example 9.2 (MLE of the centered normal conditionals model).
Suppose that a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is available
from a centered normal conditional distribution with joint pdf given by
(3.51). Denote the observed values by (xi, yi), i = 1, 2, ..., n, and define

x2 =
1

n

n
∑

i=1

x2
i , y2 =

1

n

n
∑

i=1

y2
i , x2y2 =

1

n

n
∑

i=1

x2
i y

2
i .

The log-likelihood function, used to estimate (σ1, σ2, c), is given by

l(σ1, σ2, c) = n

[

− log 2π + log k(c) − log(σ1σ2) −
x2

2σ2
1

− y2

2σ2
2

− cx2y2

2σ2
1σ2

2

]

.

(9.16)
Differentiation with respect σ1, σ2, and c yields the following likelihood
equations

σ2
1 = x2 + cσ−2

2 x2y2, (9.17)

σ2
2 = y2 + cσ−2

1 x2y2, (9.18)

δ(c) = x2y2/(2σ2
1σ2

2), (9.19)
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TABLE 9.1. Representative values of ψ(c) = δ−1/2(c) [1 − 2cδ(c)], (left side of
(9.22)) in order to calculate the MLE of c.

c ψ(c) c ψ(c) c ψ(c) c ψ(c)

0.0 1.41421 5.0 2.51268 10.0 2.93033 15.0 3.23418
0.5 1.73576 5.5 2.56344 10.5 2.96433 15.5 3.26098
1.0 1.89634 6.0 2.61152 11.0 2.99738 16.0 3.28726
1.5 2.01529 6.5 2.65726 11.5 3.02954 16.5 3.31306
2.0 2.11285 7.0 2.70093 12.0 3.06088 17.0 3.33838
2.5 2.19692 7.5 2.74278 12.5 3.09144 17.5 3.36327
3.0 2.27156 8.0 2.78299 13.0 3.12127 18.0 3.38773
3.5 2.33914 8.5 2.82173 13.5 3.15042 18.5 3.41179
4.0 2.40119 9.0 2.85912 14.0 3.17894 19.0 3.43546
4.5 2.45879 9.5 2.89528 14.5 3.20685 19.5 3.45876

where δ(c) is as defined in (3.64). Expressions (9.17)–(9.19) can be written
in the form

σ2
1 = x2 [1 − 2cδ(c)]

−1
, (9.20)

σ2
2 = y2 [1 − 2cδ(c)]

−1
, (9.21)

δ−1/2(c) [1 − 2cδ(c)] =

[

x2y2

2x2 × y2

]−1/2

. (9.22)

Representative values of the defined function on the left side of (9.22) are
included in Table 9.1 (taken from Sarabia (1995)). We can affirm that δ(c)
is a monotone increasing function of c by direct inspection of this table.
The maximum likelihood estimator of c is very easy to obtain from this
table (or more extended ones) once we calculate the value of the right side
of (9.22). In order to obtain the asymptotic variances of the maximum
likelihood estimators, we need to calculate the Fisher information matrix.
From (9.16), with n = 1, iσ1σ1 = −E(∂2l/∂σ2

1) = 2/σ2
1 and iσ2σ2 = 2/σ2

2 .
Similar computations lead to

iσ1σ2 =
4cδ(c)

σ1σ2
, σ1icσ1 = σ2icσ2 = 2δ(c),

and
icc = −δ′(c) = −(1 − (2 + 8c)δ(c) + 4c2δ2(c))/4c2.

�

In principle, the same kind of analysis can be performed for samples from
any density of the form (4.5). The likelihood equations will be of the form

E(q̃(1)(X)) =
1

n

n
∑

i=1

q̃(1)(Xi),
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E(q̃(2)(Y )) =
1

n

n
∑

i=1

q̃(2)(Yi), (9.23)

E(q̃(1)(X)q̃′(2)(Y )) =
1

n

n
∑

i=1

q̃(1)(Xi)q̃
′(2)(Yi),

where equality between vectors denotes equality of coordinates and equality
between matrices indicates elementwise equality. Thus (9.23) does indeed
represent ℓ1 +ℓ2 +ℓ1ℓ2 equations in the ℓ1 +ℓ2 +ℓ1ℓ2 unknown parameters.

Castillo and Galambos (1985) investigated the performance of maximum
likelihood estimates in the full (eight-parameter) normal conditionals dis-
tribution ((3.25)). Predictably, when estimating so many parameters, good
results are obtainable only for relatively large sample sizes. A sample of
size 200 seems adequate, a sample of size 50 is probably not.

We may, of course, use maximum likelihood estimation in any condi-
tionally specified model, even those not involving exponential families. The
price we must pay is the absence of a simple sufficient statistic, but that
does not necessarily imply that the likelihood equation will be completely
intractable.

Example 9.3 (Bivariate Pareto conditionals). Consider a sample
from a bivariate Pareto conditionals density (5.7) with α = 1. The nor-
malizing constant is given in (5.13). For convenience we reparametrize by
introducing

δ1 = λ1/λ0,

δ2 = λ2/λ0,

and
φ = (λ0λ3)/(λ1λ2).

Thus our density is of the form

fX,Y (x, y) =
δ1δ2(1 − φ)

− log φ
[1+δ1x+δ2y+φδ1δ2xy]−2, x > 0, y > 0. (9.24)

The log-likelihood of a sample from this density is given by

ℓ(δ1, δ2, φ) = n log δ1 + n log δ2 + n log |1 − φ|
−n log |− log φ|

−2

n
∑

i=1

log[1 + δ1Xi + δ2Yi + φδ1δ2XiYi]. (9.25)

For a fixed value of φ, the likelihood is maximized by solving

n

δ1
= 2

n
∑

i=1

Xi + δ2φXiYi

1 + δ1Xi + δ2Yi + φδ1δ2XiYi
,
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n

δ2
= 2

n
∑

i=1

Yi + δ1φXiYi

1 + δ1Xi + δ2Yi + φδ1δ2XiYi
. (9.26)

These can be solved iteratively and then a straightforward search procedure
can be used to find the optimal value of φ. If we are not willing or able to
assume that the parameter α = 1 in our Pareto conditionals model, then
the complicated nature of the resulting normalizing constant leads us to
seek alternatives to maximum likelihood estimation such as those described
in the following sections. �

9.4 Pseudolikelihood Involving
Conditional Densities

The normalizing constant is the only thing that makes the above analysis
nonroutine. Surely we can finesse knowledge of the normalizing constant.
We know a great deal about the density without it. The perfect tool for
estimation of conditionally specified distributions, especially those with
conditionals in exponential families, is a particular form of pseudolikelihood
(in the sense of Arnold and Strauss (1988b)) involving conditional densities.
It is proposed to seek θ̃ to maximize the pseudolikelihood function.

Definition 9.2 (Pseudolikelihood estimate). Suppose that we have
n observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from some bivariate condi-
tionally specified density f(x, y; θ), θ ∈ Θ. The maximum pseudolikelihood
estimate of θ, say θ̃, is a usually unique value of θ for which

PL(θ̃) =
n
∏

i=1

fX|Y (Xi|Yi; θ̃)fY |X(Yi|Xi; θ̃)

= max
θ∈Θ

n
∏

i=1

fX|Y (Xi|Yi; θ)fY |X(Yi|Xi; θ).

(9.27)

�

Arnold and Strauss (1988b) show that the resulting estimate θ̃ is consis-
tent and asymptotically normal with a potentially computable asymptotic
variance. In exchange for simplicity of calculation (since the conditionals
and hence the pseudolikelihood do not involve the normalizing constant)
we pay a price in slightly reduced efficiency.

We will illustrate the technique in the case where the conditionals are
members of one-parameter exponential families. The technique can be ex-
pected to work well in the general case of conditionals in multiparameter
exponential families. The only requirement is that we should have rela-
tively simple analytic expressions available for the βi’s appearing in (4.1)
and (4.2). If not, then the conditional likelihood technique will not have
any great computational advantage over ordinary maximum likelihood.
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In the case k = ℓ = 1, the joint density assumes the form (9.3) and again
we reparametrize by setting m10 = θ1, m01 = θ2, and m11 = θ3. With this
convention we may write the conditional densities of X|Y = y as follows:

fX|Y (x|y) = r1(x)β1(θ1 + θ3q21(y)) exp[(θ1 + θ3q21(y))q11(x)], (9.28)

where β1(·) is as defined in (4.2) (it represents the norming constant func-
tion for the one-parameter exponential family to which the conditional dis-
tribution of X given Y = y belongs for every y). An anologous expression
to (9.28) is available for fX|Y (x|y). Substituting these in (9.27) and taking
the logarithm yields the following objective function to be maximized by
suitable choices of θ1, θ2, and θ3:

log PL(θ) =

n
∑

i=1

log r1(Xi) +

n
∑

i=1

log β1(θ1 + θ3q21(Yi))

+θ1

n
∑

i=1

q11(Xi) + θ3

n
∑

i=1

q11(Xi)q21(Yi)

+

n
∑

i=1

log r2(Yi) +

n
∑

i=1

log β2(θ2 + θ3q11(Xi))

+θ2

n
∑

i=1

q21(Yi) + θ3

n
∑

i=1

q11(Xi)q21(Yi). (9.29)

Differentiating with respect to the θi’s and equating to zero leads to the
following pseudolikelihood equations:

−
n

∑

i=1

β′
1(θ1 + θ3q21(Yi))

β1(θ1 + θ3q21(Yi))
=

n
∑

i=1

q11(Xi), (9.30)

−
n

∑

i=1

β′
2(θ2 + θ3q11(Xi))

β2(θ2 + θ3q11(Xi))
=

n
∑

i=1

q21(Yi), (9.31)

and

2

n
∑

i=1

q11(Xi)q21(Yi) =−
n

∑

i=1

q21(Yi)β
′
1(θ1 + θ3q21(Yi))

β1(θ1 + θ3q21(Yi))

−
n

∑

i=1

q11(Xi)β
′
2(θ2 + θ3q11(Xi))

β2(θ2 + θ3q11(Xi))
.

(9.32)

The expression τ1(θ) = −β′
1(θ)/β1(θ), which appears in (9.30) and (9.32),

actually has a simple interpretation. Denote by Zθ a random variable with
the density (4.1) (with k = 1). It is readily verified that

τ1(θ)
∆
= −β′

1(θ)/β1(θ) = E(q11(Zθ)). (9.33)

Analogously τ2(θ) = E(q21(Wθ)), where Wθ has density (4.2).



206 9. Estimation in Conditionally Specified Models

Example 9.4 (Poisson conditionals distributions). As an example,
consider the case in which all conditionals are Poisson distributions, i.e.,
density (4.99). In this case, q1(t) = q2(t) = t and βi(θ) = exp(−eθ), i =
1, 2. Consequently, −βi(θ)/βi(θ) = eθ. Thus our pseudolikelihood equations
take the relatively simple form

eθ1

n
∑

i=1

eθ3Yi =

n
∑

i=1

Xi, (9.34)

eθ2

n
∑

i=1

eθ3Xi =

n
∑

i=1

Yi, (9.35)

and

eθ1

n
∑

i=1

Yie
θ3Yi + eθ2

n
∑

i=1

Xie
θ3Xi =

n
∑

i=1

XiYi. (9.36)

Iterative solution is possible. Note that (9.34) and (9.35) give simple ex-
pressions for θ1, θ2 for a given value of θ3 and the right-hand side of (9.36)
is a monotone function of θ3 for given θ1 and θ2. �

Example 9.5 (Centered normal conditionals distribution). Re-
turning again to our centered normal conditionals example using the param-
etrization of Example 9.2, the pseudolikelihood function assumes the form

PL(σ1, σ2, c)∝ (σ1σ2)
−n

n
∏

i=1

[

(1 + cy2
i /σ2

2)(1 + cx2
i /σ2

1)
]1/2

exp

[

− 1

2σ2
1

n
∑

i=1

(1 + cy2
i /σ2

2)x2
i −

1

2σ2
2

n
∑

i=1

(1 + cx2
i /σ2

1)y2
i

]

and the corresponding pseudolikelihood equations are given by

σ2
1 +

1

n

n
∑

i=1

cx2
i

1 + cx2
i /σ2

1

= x2 +
2c

σ2
2

x2y2,

σ2
2 +

1

n

n
∑

i=1

cy2
i

1 + cy2
i /σ2

2

= y2 +
2c

σ2
1

x2y2,

1

n

n
∑

i=1

x2
i /σ2

1

1 + cx2
i /σ2

1

+
1

n

n
∑

i=1

y2
i /σ2

2

1 + cy2
i /σ2

2

= x2y2/(σ2
1σ2

2).

These are readily solved in an iterative fashion. �
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9.5 Marginal Likelihood

In the case of conditionally specified bivariate densities, the unfriendly nor-
malizing constant is needed to specify the marginal densities, as well as the
bivariate density. There will generally be little or no advantage to be gained
by focussing on marginal likelihoods. Not only that, marginal likelihoods
may be uninformative about some parameters in the bivariate model. For
example, in the classical bivariate normal model, marginal data will tell
us nothing about the correlation or covariance parameter. Of course, the
motivation for using marginal data may be that it is all that is available.
If that is the case, then maximization of the marginal likelihood function
may well provide us with consistent asymptotic normal estimates of most
and perhaps all of the θi’s.

Definition 9.3 (Maximum marginal likelihood estimate). Suppose
that we have n observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from some bi-
variate conditionally specified density f(x, y; θ), θ ∈ Θ. The maximum

marginal likelihood estimate of θ, say
˜̃
θ, is a usually unique value of θ

for which

ML(
˜̃
θ) =

n
∏

i=1

fX(Xi;
˜̃
θ)

n
∏

i=1

fY (Yi;
˜̃
θ) = max

θ∈Θ

n
∏

i=1

fX(Xi; θ)

n
∏

i=1

fY (Yi; θ).

(9.37)
�

For example, Castillo and Galambos (1985) report on the successful use
of such an approach for estimating the eight parameters of the normal
conditionals model ((3.25)).

9.6 An Efficiency Comparison

Evidently the marginal and conditional likelihood approaches will lead to
loss of efficiency when compared to the maximum likelihood solution. There
are some indications that the loss may not be as great as one might fear; at
least in the case of conditional likelihood. We should be prepared for poten-
tially catastrophic drops in efficiency when we resort to marginal inference.
For example, some parameters may not even be marginally estimable. The
classical bivariate normal example reminds us that this can occur in models
that would definitely not be considered pathological. We can contrive sit-
uations in which conditional inference will be uninformative. For example,
if X is Poisson(θ) and Y = X with probability 1. In general, we expect
that conditional inference will be effective but somewhat inefficient (since
the estimates obtained are usually not functions of the minimal sufficient
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statistics). Conditional likelihood estimates can be fully efficient. If we con-
sider a sample from a classical five parameter bivariate normal distribution,
we find that the maximum likelihood and maximum conditional likelihood
estimates are identical.

The example we study in detail is one in which all three methods (full
likelihood, marginal likelihood, and conditional likelihood) are relatively
straightforward and all are informative about the unknown parameter. De-
tails regarding the necessary computations are to be found in Arnold and
Strauss (1988b).

Example 9.6 (Bivariate exponential conditionals model). We con-
sider n observations from a bivariate exponential conditionals model with
unit scale parameters. Thus the density from (4.14) can be written in the
form

fX,Y (x, y) = k(θ) exp{−(x + y + θxy)}, x, y > 0, (9.38)

where

k(θ) =

[∫ ∞

0

e−u(1 + θu)−1du

]−1

. (9.39)

The parameter θ reflects dependence and is necessarily nonnegative (θ = 0
corresponds to independent standard exponential marginals). The likeli-
hood equation corresponding to a sample (X1, Y1), . . . , (Xn, Yn) from (9.38)
reduces to

[1 + θ − k(θ)]/θ2 =
1

n

n
∑

i=1

XiYi. (9.40)

It is relatively easy to solve (9.40) numerically, although the implied use of
(9.39) means that a considerable number of numerical integrations may be

required. Denote the solution to (9.40) by θ̂. The asymptotic distribution
of this maximum likelihood estimate is then

θ̂
·∼ N(θ, [nI(θ)]−1), (9.41)

where
I(θ) = [θ2 + 2θ − k(θ)(k(θ) + θ − 1)]/θ4, θ �= 0. (9.42)

Next we turn to marginal inference. The marginal density of X derived
from (9.38) is

fX(x) = k(θ)(1 + θx)−1e−x, x > 0. (9.43)

The marginal density of Y is identical to that of X. Our marginal likelihood
equation

d

dθ

n
∑

i=1

[log fX(Xi; θ) + log fY (Yi; θ)] = 0 (9.44)
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simplifies to

[1 + θ − k(θ)]/θ2 =
1

2n

n
∑

i=1

[

Xi

1 + θXi
+

Yi

1 + θYi

]

. (9.45)

This can be solved by a straightforward search procedure. Denoting the
resulting marginal likelihood estimate by θ̂M we may verify that

θ̂M
·∼ N(θ, [nIM (θ)]−1), (9.46)

where

IM (θ) =
[1 + 2k2(θ) − (θ + 3)k(θ)]2

θ4[(θ + 7)k(θ) − 4k2(θ) − 3 + 2θ2M(θ)]
, (9.47)

in which

M(θ) = e1/θk(θ)θ−2

∫ θ

0

e−1/u[k(u)]−1 du.

We observe that the marginal likelihood equation (9.45), involving k(θ) as
it does, is actually more troublesome to solve than is the full likelihood
equation (9.40). Presumably we would only use θ̂M if only marginal data
were available.

Now consider conditional or pseudolikelihood estimation. Our objective
function, to be maximized, is

log PL(θ) =

n
∑

i=1

[log(1 + θYi) − (1 + θYi)Xi

+ log(1 + θXi) − (1 + θXi)Yi]. (9.48)

The equation
∂ log PL(θ)

∂θ
= 0 simplifies to the form

n
∑

i=1

Xi

1 + θXi
+

n
∑

i=1

Yi

1 + θYi
= 2

n
∑

i=1

XiYi. (9.49)

The left-hand side is a decreasing function of θ so that a simple search
procedure can be used to solve (9.49). If we denote the solution to (9.49)

by θ̂C , we may verify (see Arnold and Strauss (1988b)) that

θ̂C
·∼ N(θ, [nIC(θ)]−1), (9.50)

where

IC(θ) =
[1 + 4θ + 2θ2 − (1 + 3θ)k(θ)]2

θ4[1 + 8θ + 4θ2 − k(θ)(1 + 7θ) + 2θ2M(θ)]
, (9.51)

in which M(θ) is as defined following (9.47). By referring to (9.42), (9.47),
and (9.51) it is possible to graphically compare the asymptotic variances of
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FIGURE 9.1. Asymptotic variances of competing estimates.

the three competing estimates. Reference to Figure 9.1 confirms the asser-
tion that the conditional estimate is remarkably efficient when compared
to the maximum likelihood estimate, no matter what the true value of θ
may be. The marginal estimate rapidly becomes seriously inefficient as θ
increases, underlining our earlier conclusion that we would only use such an
estimate in situations where only marginal information were available. �

9.7 Method of Moments Estimates

Long before Fisher presented and popularized likelihood estimation tech-
niques, consistent asymptotically normal parametric estimates were rou-
tinely identified using a variety of schemes fitting loosely into the cate-
gory of “method of moments” techniques. Roughly speaking, the technique
could be quite routinely employed when we had available n vector obser-
vations X1, . . . , Xn from some parametric family of densities f(x; θ) where
θ = (θ1, . . . , θk) was k-dimensional.

Definition 9.4 (Method of moments estimate). Suppose that we
have n observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from some bivariate
conditionally specified density f(x, y; θ), θ ∈ Θ. Choose judiciously k func-
tions φ1, . . . , φk such that the expressions

Eθ(φi(X)) = gi(θ), i = 1, 2, . . . , k, (9.52)
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are analytically computable, involve collectively each θi, i = 1, 2, . . . , k, and
are functionally independent. Set up the k equations

gi(θ) =
1

n

n
∑

j=1

φi(Xj), i = 1, 2, . . . , k, (9.53)

and solve for θ. The resulting solution θ̃ is, under regularity conditions, a
consistent asymptotically normal estimate of θ, which is called a method
of moments estimate. �

In the case of conditionally specified densities, the method of moments
technique works quite well but may well involve repeated recomputation of
the awkward density norming constant in our efforts to solve the equations
of the form (9.53). In the case of densities involving conditionals in expo-
nential families, a judicious choice of φi’s in (9.53) actually gives method of
moment equations which are exactly the likelihood equations displayed in
(9.23). The solution of these equations, as is the case for almost any other
set of moment equations, will repeatedly involve the normalizing constant;
feasible but tiresome.

A clever swindle due to Strauss (introduced in Arnold and Strauss (1988a))
helps us avoid the problems with the normalizing constant. Of course a
small price must be paid in terms of reduced efficiency but, when the nor-
malizing constant is particularly fearsome, that may be judged to be a
very small price to pay. The technique will work well in most conditionally
specified models. It relies on a simple device of treating the awkward nor-
malizing constant, say k(θ) = θ0, as an additional parameter in addition
to the k θi’s and setting up one additional moment equation, k + 1 in all,
and solving for θ0, θ1, . . . , θk. The estimated values obtained for θ1, . . . , θk

in this way are clearly again consistent asymptotically normal estimates. A
simple example, once again the exponential conditionals case, will illustrate
the technique.

Example 9.7 (Exponential conditionals distribution). Suppose we
have n observations from the density

fX,Y (x, y) = k(θ) exp[−(θ1x + θ2y + θ3xy)] , x, y > 0, (9.54)

where k(θ) is such that the integral over the positive quadrant equals 1.
Denote k(θ) by θ0 and treat (9.54) as a density involving four parame-
ters θ0, θ1, θ2, θ3 (ignoring for convenience the fact that θ0 is a function of
θ1, θ2, θ3).
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Now consider the following four functions of (X, Y ):

φ1(X, Y ) = X,

φ2(X, Y ) = Y,

φ3(X, Y ) = XY,

φ4(X, Y ) = (X + Y )2. (9.55)

Note that the number of φi’s is one more than the true dimension of the
parameter space. We propose to equate sample averages of the φi’s in (9.55)
to their expectations written as functions of θ1, θ2, θ3, and θ0 and solve for
the parameters. It is not difficult to verify that

E(X) = (θ0 − 1)θ2/θ3,
E(Y ) = (θ0 − 1)θ1/θ3,

E(XY ) =
θ1θ2(θ0 − θ2

0) + θ3(1 − θ1 − θ2) + θ0θ3(θ1 + θ2)

θ2
3

,
(9.56)

and

E[(X + Y )2] =
1

θ2
3

[

(1 − θ0)(θ
2
1 + θ2

2) + θ0θ1θ2θ3

[

1

θ1
+

1

θ2

]]

+ 2E(XY ).

Consistent estimates are then obtainable by solving the system

1

n

n
∑

i=1

Xi = E(X),

1

n

n
∑

i=1

Yi = E(Y ),

1

n

n
∑

i=1

XiYi = E(XY ),

1

n

n
∑

i=1

(Xi + Yi)
2 = E[(X + Y )2],

(9.57)

for θ0, θ1, θ2, and θ3.
A slight variation on this scheme actually permits us to write explicitly a

set of consistent asymptotically normal estimates. Define, following Arnold
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and Strauss (1988a),

X̄ =
1

n

n
∑

i=1

Xi,

Ȳ =
1

n

n
∑

i=1

Yi,

S2
X =

1

n

n
∑

i=1

(Xi − X̄)2,

S2
Y =

1

n

n
∑

i=1

(Yi − Ȳ )2,

SXY =
1

n

n
∑

i=1

(Xi − X̄)(Yi − Ȳ ),

(9.58)

and

RXY = SXY /
√

S2
XS2

Y .

By the strong law of large numbers we know that, as n → ∞,

X̄
a.s.→ (θ0 − 1)θ2/θ3,

Ȳ
a.s.→ (θ0 − 1)θ1/θ3,

RXY
a.s.→ ρ(X, Y ) =

(

θ3

θ1θ2
+ θ0 − θ2

0

)

θ0

(

1 +
θ3

θ1θ2
− θ0

) ,

T =
√

S2
XS2

Y /X̄Ȳ
a.s.→

θ0

(

1 +
θ3

θ1θ2
− θ0

)

(θ0 − 1)2
.

(9.59)

Now we equate the left- and right-hand sides of the expressions in (9.59) and
solve. We obtain the following relatively simple consistent asymptotically
normal estimates:

θ̃0 = T/(1 + RXY T ),

θ̃1 = θ̃0/[X̄(θ̃0 + T (θ̃0 − 1))],

θ̃2 = θ̃0/[Ȳ (θ̃0 + T (θ̃0 − 1))],

θ̃3 = θ̃0(θ̃0 − 1)/[X̄Ȳ (θ̃0 + T (θ̃0 − 1))].

(9.60)

Note that in these expressions the true value of θ0 is always ≥ 1. The true
correlation is always nonpositive so that the estimated value of θ0 given
in (9.60) will usually be also ≥ 1. If θ̃0 < 1, then this can be taken as an
indication that the data do not fit the exponential conditionals model. �
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Example 9.8 (Centered normal conditionals distribution). Recall
that we have data (X1, Y1), (X2, Y2), . . . , (Xn, Yn) with common density
(3.51). Treat the normalizing constant δ(c) = δ as a fourth parameter and
define

X2 =
1

n

n
∑

i=1

X2
i ,

Y 2 =
1

n

n
∑

i=1

Y 2
i ,

S2
X2 =

1

n

n
∑

i=1

(X2
i − X2)2,

S2
Y 2 =

1

n

n
∑

i=1

(Y 2
i − Y 2)2,

SX2Y 2 =
1

n

n
∑

i=1

(X2
i − X2)(Y 2

i − Y 2),

then by the strong law of large numbers, we may conclude that as n → ∞:

X2 a.s.−→ σ2
1(1 − 2cδ),

Y 2 a.s.−→ σ2
2(1 − 2cδ),

T =
SX2SY 2

X2 × Y 2

a.s.−→ 1 + 2δ − 4c2δ2

(1 − 2cδ)2
,

R =
SX2Y 2

SX2SY 2

a.s.−→ 1 − 2δ − 4cδ + 4c2δ2

−1 − 2δ + 4c2δ2
.

By equating these statistics to their a.s. limits and solving, the following
strongly consistent estimators are obtained:

ĉ =
1

4

[

1 + RT − 2T − 1 − T 2

1 + RT

]

, (9.61)

δ̂ =
2(1 + RT )

(1 − R)2T 2
, (9.62)

σ̂2
1 =

X2

1 − 2ĉδ̂
, (9.63)

σ̂2
2 =

Y 2

1 − 2ĉδ̂
, (9.64)

and, therefore, k̂ = exp(ĉδ̂) will be the estimator of the normalizing con-
stant. �

Yet another manner to obtain suitable moment equations exists in the
exponential conditionals case. Note that if (X, Y ) have joint density given
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by (9.54) it follows that:

(θ1 + θ3Y )X ∼ Γ(1, 1) (9.65)

and
(θ2 + θ3X)Y ∼ Γ(1, 1). (9.66)

Equating sample moments of the variables on the left-hand sides of (9.65)
and (9.66), with their corresponding known theoretical expectations, will
give us a plethora of moment equations to choose from (and, incidentally,
no guidance on how to choose among them). For example we could set up
the following three equations:

θ1
1

n

n
∑

i=1

Xi + θ3
1

n

n
∑

i=1

XiYi = 1,

θ2
1

n

n
∑

i=1

Yi + θ3
1

n

n
∑

i=1

XiYi = 1, (9.67)

and

θ2
1

1

n

n
∑

i=1

X2
i + θ2

3

1

n

n
∑

i=1

X2
i Y 2

i + 2θ1θ3
1

n

n
∑

i=1

X2
i Yi = 2,

and solve for θ1, θ2, and θ3.
Another possibility would involve choosing θ1, θ2, and θ3 to minimize

some weighted sum of squared deviations between sample and theoretical
moments corresponding to (9.65) and (9.66). Thus our objective function
might be

M
∑

j=1

e−j2

{[

1

n

j
∑

ℓ=1

(j
ℓ)θ

ℓ
1θ

j−ℓ
3

n
∑

i=1

Xj
i Y j−ℓ

i − (j!)

]2

+

[

1

n

j
∑

ℓ=1

(j
ℓ)θ

ℓ
2θ

j−ℓ
3

n
∑

i=1

Xj−ℓ
i Y j

i − (j!)

]2
⎫

⎬

⎭

, (9.68)

where M is not too large. Other possible schemes will occur to the reader.
Note that techniques of this type can also be used for the general normal
conditionals distribution. In that case, we can write

φ1(Y )(X − φ2(Y )) ∼ N(0, 1) (9.69)

and
φ3(X)(Y − φ4(X)) ∼ N(0, 1) (9.70)

for suitably chosen φ1, φ2, φ3 and φ4. Then we can equate several sample
and theoretical moments of (9.69) and (9.70) and solve to estimate the pa-
rameters. Another situation where the technique works is the case where



216 9. Estimation in Conditionally Specified Models

the conditionals are gamma distributed with unknown but constant shape
parameters. In that case, X(θ1 + θ3Y ) and Y (θ2 + θ3X) have gamma dis-
tributions with unit scale and constant shapes, so equations analogous to
(9.67) are readily set up.

Example 9.9 (Gamma conditionals distribution Model II). In the
above situation, if we assume in addition that θ1 = θ2 = 1, not only can we
set up equations analogous to (9.67) but we can even obtain closed-form
solutions. The common density of the (Xi, Yi)’s in this case can be written
as

fX,Y (x, y) =
kr,s(c)

Γ(r)Γ(s)
xr−1ys−1e−x−y−cxy.

Then we have

X(1 + cY ) ∼ Γ(r, 1) independent of Y, (9.71)

Y (1 + cX) ∼ Γ(s, 1) independent of X, (9.72)

and, consequently,

E [XY (1 + cY )] = E [X(1 + cY )] E [Y ] , (9.73)

E [XY (1 + cX)] = E [Y (1 + cX)] E [X] . (9.74)

Addition of these equations, and some algebraic manipulation, leads to

c = −2
cov(X, Y )

cov(XY, X + Y )
. (9.75)

From (9.71) and (9.72) we get

E [X(1 + cY )] = r,

E [Y (1 + cX)] = s.
(9.76)

Now we define the sample moments

X =
1

n

n
∑

i=1

Xi,

Y =
1

n

n
∑

i=1

Yi,

XY =
1

n

n
∑

i=1

XiYi,

SX,Y =
1

n

n
∑

i=1

(Xi − X)(Yi − Y ),

(9.77)

and
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SXY,X+Y =
1

n

n
∑

i=1

(

XiYi − XY
) (

Xi + Yi − X − Y
)

. (9.78)

Finally, using (9.75) and (9.76), equating the statistics in (9.77) and
(9.78) to their population values, we obtain the following consistent esti-
mates of the parameters:

ĉ = −2
SX,Y

SXY,X+Y
, (9.79)

r̂ = X − ĉXY , (9.80)

ŝ = Y − ĉXY . (9.81)

�

9.8 Log-Linear Poisson Regression Estimates

The curse of the normalizing constant has been shown to be avoidable by
small swindles such as treating conditional rather than full likelihood or by
introducing an extra parameter of convenience. Consistent, but generally
not fully efficient estimators, result from these manoeuvres. In this section
another simple swindle is introduced. The motivation and explanations are
simplest in finite discrete cases; so we begin with such an example.

Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are i.i.d. random variables with
a common binomial-conditionals distribution (recall Section 4.12). Here
n1, n2 are fixed and known and the joint density for (X, Y ) can be written
in the reparametrized form

fX,Y (x, y) = exp [θ0 + c(x, y) + θ1x + θ2y + θ3xy]

× I(x ∈ {0, 1, 2, . . . , n1})I(y ∈ {0, 1, 2, . . . , n2}),
(9.82)

where c(x, y) = log

(

n1

x

)

+ log

(

n2

y

)

, θ1 ∈ IR , θ2 ∈ IR , θ3 ∈ IR. Of course

θ0 is the awkward normalizing constant. We wish to estimate (θ1, θ2, θ3).
For each possible value (i, j) of (X, Y ) let Nij denote the number of obser-
vations for which X = i and Y = j. Let N denote the two-way contingency
table of Nij ’s. The random variable N has a multinomial distribution, i.e.
N ∼ multinomial(n, p), where

log pij = θ0 + c(i, j) + θ1i + θ2j + θ3ij. (9.83)

But instead, if N∗ were thought of as having coordinates that are inde-
pendent Poisson(pij) random variables, then the conditional distribution of
N∗ given

∑n1

i=1

∑n2

j=1 N∗
ij = n, would be, again, multinomial(n, p). Conse-

quently, the likelihood associated with (9.83) is identical to the likelihood
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associated with an array of independent Poisson random variables Nij with
means µij = pij .

Thus, we are in a Poisson regression situation, in which the logarithms of
the means of the Nij ’s are linear functions of covariables c(i, j) (with known
coefficient 1), i, j, and ij. Standard Poisson regression algorithms will then
yield maximum likelihood estimates of θ1, θ2, and θ3 (the “intercept” θ0 is
of no interest to us).

Such estimates being maximum likelihood estimates will be consistent
and efficient asymptotically normal estimates.

Lindsey (1974) recommends use of this approach in many nondiscrete
cases via grouping of the data. Moschopoulous and Staniswalis (1994)
pointed out its potential utility for conditionally specified models. Grouping
will undoubtedly reduce the efficiency of the resulting estimates, neverthe-
less, good consistent asymtotically normal estimates can be obtained in
this manner for all our models involving conditionals in exponential fam-
ilies. And, as Moschopoulous and Staniswalis (1994) show, they can be
remarkably efficient. We briefly describe the technique here. More details
can be found in Moschopoulous and Staniswalis (1994), in Lindsey and
Mersch (1992), and in Lindsey (1974).

Suppose that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is a random sample from
a general bivariate conditionals in exponential families distribution with
density (4.5). Thus

log fX,Y (x, y) = c(x, y) +
[

q(1)(x)′Mq(2)(y)
]

, x ∈ S(X), y ∈ S(Y ).

(9.84)
We will group the data to transform our problem into a multinomial prob-

lem. Following Moschopoulous and Staniswalis (1994), we let R(∆1, ∆2) =
{Rij}j=1,∞

i=1,∞ denote a partition of the support of fX,Y where each Rij =
{(x, y), x ∈ ((i− 1)∆1, i∆1] and y ∈ ((j − 1)∆2, j∆2]}. Hence each element
Rij in the partition R is a rectangle with area ∆1∆2 and is centered at the
point (xi, yj) = ((i − 0.5)∆1, (j − 0.5)∆2). Let Nij denote the number of
observations in the sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) falling in Rij .

Instead of maximizing the likelihood of the original data (the (Xi, Yi)’s)
we deal with the multinomial likelihood of the Nij ’s. Observe that

P ((X, Y ) ∈ Rij)
.
= ∆1∆2fX,Y (xi, yj). (9.85)

So the likelihood based on the Nij ’s is

L(M)
.
=

∞
∏

i=−∞

∞
∏

j=−∞
(∆1∆2fX,Y (xi, yj))

Nij . (9.86)

Of course, in practice, only a finite number of the Nij ’s will be nonzero
(they sum to n), so only a finite number of factors in the right-hand side
of (9.86) need be considered. But from (9.84) it is obvious that pij , the
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probability associated with cell (i, j) (i.e., with Rij), will satisfy

log pij = −log ∆1 − log ∆2 + c(xi, yj) + q(1)(xi)
′Mq(2)(yj). (9.87)

So, as in our simple binomial conditionals example, we can estimate the
elements of M by Poisson regression.

9.9 Bayesian Estimates

The general paradigm for Bayesian inference involves specification of an
acceptable likelihood function f(x; θ) for the data, elicitation of an appro-
priate prior density for the parameter θ, say g(θ), and then, via Bayes
theorem, determination of the resulting posterior density of θ given X = x,
i.e.,

f(θ|x) ∝ f(x; θ)g(θ), (9.88)

to be used for subsequent inference regarding θ. Naturally, if the likelihood
f(x; θ) is only known up to a constant of proportionality, as is the case in
many conditionally specified models, the Bayesian technique will flounder.

Definition 9.5 (Bayes estimate). The mean or the mode of the pos-
terior density is used as an estimate of θ and is known as the Bayes
estimate. �

The computation of the posterior mean or mode will generally be impos-
sible if f(x; θ) is only known to be of the form

c(θ)g(x; θ),

where c(θ), to be chosen so that
∫

f(x; θ) dx = 1, can only be numerically
evaluated for each choice of θ.

A computer intensive solution is of course possible. For a conditionals in
exponential families data set our likelihood can be written in the form

n
∏

i=1

f(xi, yi; θ) = [ψ(θ)]−n exp

⎡

⎣−
M
∑

j=1

θjTj(x, y)

⎤

⎦ , (9.89)

where θ ∈ Θ, a subset of IRM (here M , the dimension of the parameter
space, can be quite large). Any integral of a function of θ over Θ can be
approximated to a desired level of accuracy by averaging the values of the
integrand evaluated at a large finite number of equally spaced points in Θ.
Denote this grid of points in Θ by G.

For illustrative purposes we will focus on the case in which θ ≥ 0.
Now assume a joint prior for θ with independent gamma marginals, i.e.,
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θi ∼ Γ(αi, λi)

with αi, λi chosen to match our elicited prior mean and variance of the
parameter θi. It follows that the posterior expectation of any parametric
function h(θ) given X = x will be well approximated by

E(h(θ)|X = x)
.
=

∑

θ∈G

h(θ)[ψ(θ)]−n

(

M
∏

i=1

θαi−1
i

)

exp

[

−
M
∑

j=1

θj [Tj(x, y) + λj ]

]

∑

θ∈G

[ψ(θ)]−n

(

M
∏

i=1

θαi−1
i

)

exp

[

−
M
∑

j=1

θj [Tj(x, y) + λj ]

] .

(9.90)
The choice h(θ) = θj will then give us the approximate squared error
loss Bayes estimate of θj . Implementation of this approach will require
evaluation of ψ(θ) at each of the many points in G.

A second alternative is to use independent gamma priors and then use
the mode of the posterior as our estimate of θ. The computations required
for this approach are exactly the same as those required for maximum
likelihood estimation.

A third avenue involves incorporation of the normalizing constant in the
prior. The general technique will be clear after working through an exam-
ple. Consider a sample of size n from a conditionals in one-parameter expo-
nential families distribution with unit scale parameters and one unknown
interaction parameter θ. Thus our likelihood is

n
∏

i=1

fX,Y (xi, yi; θ) = [ψ(θ)]−n exp

{

n
∑

i=1

[q1(xi) + q2(yi) − θq1(xi)q2(yi)

}

,

(9.91)
where θ > 0.

Consider the family of prior densities

gα,λ(θ) ∝ [ψ(θ)]nθα−1e−λθ. (9.92)

Now elicit from the researcher an appropriate prior mean and variance for
θ and choose α and λ so that the prior gα,λ(θ) defined in (9.92) has that
mean and that variance. This will require a small amount of numerical
integration but can be accomplished. With the appropriate choice, say α∗

and λ∗, of hyper-parameters in (9.92) the posterior density becomes

f(θ|x, y) = f(x, y; θ)gα∗,λ∗(θ)

∝ θα∗−1e−θ[λ∗+
∑n

i=1
q1(xi)q2(yi)]. (9.93)
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Evidently the posterior is a gamma density and, for example, the squared
error loss Bayes estimate of θ will be the posterior mean, namely,

θ̂B = α∗
[

λ∗ +

n
∑

i=1

q1(Xi)q2(Yi)

]−1

. (9.94)

In the case of a conditionals in exponential families model involving sev-
eral parameters θ1, θ2, . . . , θM we merely take a convenient joint prior from
the family

gα,λ(θ) = [ψ(θ)]n
M
∏

j=1

θ
αj−1
j e−λjθj . (9.95)

We might reasonably choose α and λ to match prior means and variances of
the θi’s. Having done that (a nontrivial job involving considerable numeri-
cal integration, see below) the posterior density will factor into independent
gamma marginals, and Bayes estimates of the coordinates of θ are imme-
diately available. A Bayesian purist might object to the appearance of n in
the prior. Surely changing the sample size shouldn’t affect the prior. The
response to this criticism is that the change in n has not affected the prior.
It has, however, changed the class of convenience priors that we select from
to approximate our prior. From this viewpoint, the approach is philosoph-
ically no more objectionable than is the customary use of conjugate prior
families in routine Bayesian analysis.

The fly in the ointment associated with the use of priors like (9.95) is
the job of matching up prior means and variances. It will probably involve
evaluating ψ(θ) at all points in some grid to evaluate numerically the mo-
ments of (9.95). If this is done then the work is essentially equivalent to
that needed for an approximate standard Bayesian analysis using indepen-
dent gamma priors. The technique, involving the use of (9.95), would have
value if we envisioned analyzing several data sets using the same prior.

9.9.1 Pseudo-Bayes Approach

A final entry in the list of Bayesian and Bayesian motivated methodologies
may be dubbed the pseudo-Bayes approach.

Definition 9.6 (Pseudo-Bayes estimate). If we replace the likelihood

f(x, y; θ) =

n
∏

i=1

f(xi; yi; θ)

by the pseudolikelihood

n
∏

i=1

f(xi|yi; θ)f(yi|xi; θ)
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and then seek the mode or mean of the resulting pseudo-posterior density
of θ, i.e.,

f̃(θ|x, y) ∝ g(θ)

n
∏

i=1

f(x|yi; θ)f(yi|xi; θ), (9.96)

we obtain a new estimate, which is called the pseudo-Bayes estimate. �

This ad hoc approach performs remarkably well. Naturally, for large n,
the pseudo-Bayes estimate will be very close to the pseudolikelihood esti-
mate (or conditional likelihood estimate if you wish) which is consistent
and asymptotically normal. It is not clear precisely how the use of (9.96)
accommodates the prior information implicit in the assumption of g(θ) as
a prior. It is evident that (9.96) is not a true posterior density for any
non-data-dependent prior. Some preliminary work on properties of such
estimates has been reported in Arnold and Press (1990).

One disturbing feature of this approach is that the pseudo-posterior
density appears often to have smaller variance than the true posterior
density (when it can be calculated). In a sense, (9.96) is behaving as if
there are 2n, instead of n, observations. A quick fix would be to replace
the pseudolikelihood by its square root, i.e., use as a pseudo-posterior the
function

˜̃
f(θ|x, y) ∝ g(θ)

√

√

√

√

n
∏

i=1

f(xi|yi; θ)f(yi|xi; θ). (9.97)

However, reliable rules for recommending which of (9.96) or (9.97) (or
indeed a form involving some other power of the pseudolikelihood) to use
are lacking at this time.

9.10 Multivariate Examples

Although the concepts discussed in bivariate settings in this chapter usually
extend readily to higher dimensions, the associated book-keeping can be
depressing. We will limit ourselves to a brief discussion of two quite simple
k-variate models.

Example 9.10 (k-variate exponential conditionals). Suppose that we

have a sample (X(1), . . . , X(n)) from the joint density

fX(x) = φ(δ) exp

[

−
k

∑

i=1

xi − δ

k
∏

i=1

xi

]

, x ≥ 0, (9.98)

where φ(δ) is the appropriate normalizing constant. This is a simple ex-
ample with exponential conditionals. In this case, a method of moments
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approach works well for estimating δ. Note that for each i,

Xi|X(i) = x(i) ∼ Γ

⎛

⎝1, 1 + δ
∏

j �=i

xj

⎞

⎠

and so

Xi

⎛

⎝1 + δ
∏

j �=i

Xj

⎞

⎠ ∼ Γ(1, 1).

Consequently

E(Xi) + δE

⎛

⎝

k
∏

j=1

Xj

⎞

⎠ = 1

and
k

∑

i=1

E (Xi) + kδE

⎛

⎝

k
∏

j=1

Xj

⎞

⎠ = k. (9.99)

From (9.99), equating sample and population moments, we find a simple
consistent estimate of δ of the form

δ̂ =

1 − 1

nk

n
∑

i=1

k
∑

j=1

X
(i)
j

1

n

n
∑

i=1

k
∏

j=1

X
(i)
j

. (9.100)

�

Example 9.11 (Simplified centered k-variate normal condition-

als). Suppose that we have a sample (X(1), . . . , X(n)) from the joint den-
sity

fX(x) = ψk(c)(2π)−k/2(σ1 . . . σk)−1 exp

{

1

2

[

k
∑

i=1

(

xi

σi

)2

+ c

k
∏

i=1

(

xi

σi

)2
]}

,

(9.101)
where σi > 0, i = 1, 2, . . . , k, c ≥ 0, and ψk(c) is an appropriate normalizing
constant. Clearly (9.101) is a particularly simple k-dimensional density with
normal conditionals.

The moment generating function of (X2
1 , ..., X2

k) is given by

M(s1, ..., sk) = E(es1X2
1+...+skX2

k)

=
(1 − 2s1σ

2
1)−1/2 · · · (1 − 2skσ2

k)−1/2ψk(c)

ψk [c(1 − 2s1σ2
1)−1 · · · (1 − 2skσ2

k)−1]
.

(9.102)
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Unfortunately, for dimensions higher than two, the normalizing constant
ψk(c) does not satisfy a simple differential equation, and this fact makes
the estimation process somewhat more difficult. First, we verify that for
i, j ∈ {1, 2, ..., k},

E(X2
i ) = σ2

i (1 − 2cδk(c)), (9.103)

V (X2
i ) = σ4

i (2 − 8cδk(c) − 4c2δ′k(c)), (9.104)

E(X2
i X2

j ) = (σiσj)
2(1 − 8cδk(c) + 4c2δ2

k(c) − 4c2δ′k(c)), if i �= j,

(9.105)

ρ(X2
i , X2

j ) =
2cδk(c) + 2c2δ′k(c)

−1 + 4cδk(c) + 2c2δ′k(c)
, (9.106)

E(

k
∏

i=1

X2
i ) = 2δk(c)

k
∏

i=1

σ2
i , (9.107)

where δk(c) = ψ′
k(c)/ψk(c) and δ′k(c) = dδk(c)/dc. Formula (9.107) can be

easily deduced taking into account the fact that E(∂ log fX(x)/∂c) = 0.
For convenience, for estimation by the method of moments, we consider
δk and δ′k to be new parameters. By the strong law of large numbers, as
n → ∞),

X2
i

a.s.−→ E(X2
i ) = σ2

i (1 − 2cδk), i = 1, 2, ..., k, (9.108)

[

k
∏

i=1

SX2
i

X2
i

]2/k

a.s.−→
[

k
∏

i=1

√

V (X2
i )

E(X2
i )

]2/k

=
2 − 8cδk − 4c2δ′k

(1 − 2cδk)2
, (9.109)

2

k(k − 1)

∑

i<j

r(X2
i , X2

j )
a.s.−→ 2cδk + 2c2δ′k

−1 + 4cδk + 2c2δ′k
, (9.110)

∏k
i=1 X2

i
∏k

i=1 X2
i

a.s.−→ E(
∏k

i=1 X2
i )

∏k
i=1 E(X2

i )
=

2δk

(1 − 2cδk)k
. (9.111)

Observe that, when k = 2, only (9.108) to (9.110) need to be used, and
(9.111) is unnecessary. We denote by u, v, and w the statistics defined
on the left sides of (9.109)–(9.111). If we equate the left and right sides of
(9.108)–(9.111) and solve for c, δk, and δ′k we obtain the strongly consistent
parameter estimators

ĉ = 2g(U, V )/W [1 − 2g(U, V )]
k
, (9.112)

δ̂k = g(U, V )/ĉ, (9.113)

σ̂2
i = X2

i /(1 − 2ĉδ̂k), i = 1, 2, ..., k, (9.114)

where
g(U, V ) = V (U − 1)/2U(V − 1). (9.115)

�
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9.11 Bibliographic Notes

Castillo and Galambos (1985) studied maximum likelihood for the nor-
mal conditionals model. They also considered marginal likelihood. Arnold
(1987) discussed maximum likelihood for the Pareto conditionals model.
Conditional likelihood techniques were discussed in Arnold (?) and Arnold
and Strauss (1988a, 1988b, 1991). Estimates obtained using the method
of moments were introduced in Arnold and Strauss (1988a). The Poisson
regression estimation approach (Section 9.8) was introduced by Moschop-
oulous and Staniswalis (1994). Most of the Bayesian estimation material
has not appeared elsewhere. The exception is the pseudo-Bayesian mate-
rial which is based on preliminary research contained in a working paper
by Arnold and Press (1990).

Exercises

9.1 Consider a bivariate binary distribution (X, Y ) such that if pij =
P (X = i, Y = j), for i, j = 0, 1,

p00 = p10 = p01 = θ, p11 = 1 − 3θ, 0 ≤ θ ≤ 1/3.

Suppose we have a random sample of size n, and let Nij , i, j = 0, 1,
be the corresponding frequencies.

(a) Prove that the maximum likelihood estimator of θ is given by

θ̂ =
n − n11

3n

with variance
θ(1 − 3θ)

3n
.

(b) Prove that the estimator which maximizes the marginal likeli-
hood is

θ̂m =
2n00 + n01 + n10

4n
with variance

θ(3 − 8θ)

8n
.

(c) Prove that the pseudolikelihood estimator of θ is

θ̂c =
n01 + n10

3(n01 + n10) + 2n11

with asymptotic variance

θ(1 − 3θ)(1 − θ)

2n
.
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(d) Prove that the pseudolikelihood estimator and the marginal
likelihood estimates have less than full efficiency for 0 < θ < 1/3.

(e) Prove that the variance functions of θ̂m and θ̂c cross at θ = 1/6,

showing that in general we cannot expect θ̂m to be a uniformly
better or worse estimator than θ̂c.

(Arnold and Strauss (1991).)

9.2 Let (X1, . . . , Xn) be a random variable with joint pdf,

f(x1, . . . , xn) = φn(c)
n
∏

i=1

1

σi
exp

(

−
n

∑

i=1

xi

σi
− c

n
∏

i=1

xi

σi

)

,

xi ≥ 0, i = 1, . . . , n,

where σi > 0, i = 1, . . . , n, c ≥ 0, and φn(c) is the normalizing
constant.

(a) Describe a method for obtaining φn(c) using simulations from
independent exponential random variables with mean σi, i =
1, . . . , n.

(b) Show that

Xi|X(i) = x(i) ∼ Exp

⎡

⎣

1

σi

⎛

⎝1 + c
∏

j �=i

xi

σj

⎞

⎠

⎤

⎦

with i = 1, . . . , n.

(c) If δn(c) = d log φn(c)/dc, show that

E(Xi) = σi [1 − δn(c)] ,

var(Xi) = σ2
i

[

1 − 2cδn(c) − c2δ′n(c)
]

,

E(XiXj) = σiσj

[

1 − 3cδn(c)+c2δ2
n(c) − c2δ′n(c)

]

, i �= j,

ρ(Xi, Xj) =
cδn(c) + c2δ′n(c)

−1 + 2cδn(c) + c2δ′n(c)
,

E(X1 · · · Xn) = σ1 · · · σnδn(c).

(d) From a multivariate random sample of size m, and using (c),
obtain consistent estimators of the parameters σ1, . . . , σn and c.

9.3 Consider the bivariate joint pdf given by

f(x, y; θ) = k(θ)xy exp(θ log x log y), 0 < x, y < 1,

with θ ≤ 0.
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(a) Obtain k(θ).

(b) What is the sufficient statistic for θ?

(c) Obtain estimators for θ using maximum likelihood, marginal
likelihood and pseudolikelihood. Obtain the asymptotic vari-
ances and compare them.

9.4 Consider the Model II with gamma conditionals given by (4.45) and
with joint pdf

f(x, y) =
kr,s(c)

σr
1σ

s
2Γ(r)Γ(s)

xr−1ys−1 exp (−x/σ1 − y/σ2 − cxy/σ1σ2) .

Assume that r and s are known parameters, and that we wish to
estimate σ1, σ2, and c from a bivariate random sample of size n.

(a) If δr,s(c) = d log kr,s(c)/dc, prove that the maximum likelihood
estimators of the parameters satisfy the equations

σ1 =
X

r − cδr,s(c)
,

σ2 =
Y

s − cδr,s(c)
,

XY

X × Y
=

δr,s(c)

[r − cδr,s(c)] [s − cδr,s(c)]
.

(b) For a particular value of r and s, obtain a table for evaluating
the maximum likelihood estimator of the parameter c.

(c) Obtain the Fisher information matrix and the asymptotic vari-
ances.

9.5 Suppose that a sample of size n is available from a centered Cauchy
conditionals distribution (5.75). Outline a suitable algorithm for ob-
taining pseudolikelihood estimates of the three parameters in the
model.

9.6 Suppose that a sample of size n is available from a Pareto conditionals
distribution (5.7). Derive the pseudolikelihood equations for estimat-
ing the parameters of the model and outline an iterative algorithm
for solving them.

(Arnold (1991).)

9.7 Suppose that a sample of size n is available from a bivariate distri-
bution with conditionals in exponential families (4.5). Verify that the
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maximum likelihood estimates of the parameters of the model are
solutions to the equations

E[q̃(1)(X)] =
1

n

n
∑

i=1

q̃(1)(Xi),

E[q̃(2)(Y )] =
1

n

n
∑

i=1

q̃(2)(Yi),

E[(q̃(1)(X))(q̃(2)(Y ))′] =
1

n

n
∑

i=1

(q̃(1)(Xi))(q̃
(2)(Yi))

′.

(Arnold and Strauss (1991).)
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Marginal and Conditional
Specification in General

10.1 Introduction

A k-dimensional density function is determined by certain combinations of
marginal and conditional densities. It would be desirable to identify all pos-
sible such specifications. Considerable progress can be made in this direc-
tion. A key result is a uniqueness theorem due to Gelman and Speed (1993).
However, the issue is clouded by the existence of certain non-standard
examples dating back at least to Seshadri and Patil (1964). We will be-
gin by surveying marginal and conditional specification in the bivariate
case and then enumerate carefully the available results in higher dimen-
sions. Throughout we will assume absolute continuity with respect to some
convenient dominating measure.

10.2 Specifying Bivariate Densities

For a two-dimensional random variable (X, Y ) it is common to use some
combinations of marginal and/or conditional densities to describe the joint
density of (X, Y ). Thus, we might specify the marginal density of X, fX(x),
and for each possible value x of X, specify the conditional density of Y given
X = x, i.e., fY |X(y|x). Clearly, this yields enough information to character-
ize the joint density fX,Y (x, y) uniquely. This is a trivial characterization
result. But others are of course possible. If we are given both families of con-
ditional densities, i.e., fX|Y (x|y),∀y ∈ SY , and fY |X(y|x),∀x ∈ SX , then,
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as outlined in Chapter 1, we can identify suitable consistency conditions and
identify situations in which such conditional specifications uniquely deter-
mine the joint density fX,Y (x, y). But, what if we are given one marginal
density, say fX(x) and the “wrong” family of conditional densities, i.e.,
fX|Y (x|y), y ∈ SY ? Can we characterize the joint density in this case? The
perhaps surprising answer is: “Sometimes.”

It is convenient to first consider the finite discrete case and then to extend
to more general settings (just as we did in Chapter 1). Thus we assume
that X and Y are discrete variables with possible values x1, x2, . . . , xI and
y1, y2, . . . , yJ , respectively. Suppose that we are given a matrix A and a
vector τ and we ask whether there exists a compatible joint distribution
for (X, Y ), i.e. one such that

P (X = xi|Y = yj) = aij , ∀i, j, (10.1)

and

P (X = xi) = τi, ∀i. (10.2)

If a compatible distribution exists, it is natural to then ask if it is unique.
The problem is actually quite easy to solve. What we seek is a compatible

marginal distribution for Y say η (where ηj = P (Y = yj)) which can be
combined with A to completely specify the joint distribution of (X, Y ).
Such a vector η must clearly satisfy

τi =

J
∑

j=1

aijηj , ∀i. (10.3)

This is equivalent to the statement that τ belongs to the convex hull of
the columns of A. A necessary and sufficient condition for this to be true
is that

τ · c ≤ max
1≤j≤J

{

A(j) · c
}

, ∀c ∈ IRI . (10.4)

An algorithm (due to Vardi and Lee (1993)) for determining τ , given a
compatible pair A and τ , will be described after we introduce the more
general case.

Of course, a member of the convex hull of the columns of A is not usually
a unique convex combination of those columns. Even if all the columns
of A are extreme points of the convex hull they determine, it is possible
that points in the convex hull may not be represented as a unique convex
combination of the columns of A.

Example 10.1 (Uniqueness example). Consider

A =

(

1/4 3/5
3/4 2/5

)



10.2 Specifying Bivariate Densities 231

and
τ = ( 1/3 2/3 ) .

Here A and τ are compatible and τ is a unique convex combination of the
columns of A. The unique compatible joint distribution P = (pij) where
pij = P (X = xi, Y = yj) is given by

P =

(

4/21 3/21
12/21 2/21

)

.

�

Example 10.2 (Multiple solutions). Consider

A =

(

1/4 3/5 1/8
3/4 2/5 7/8

)

and
τ = ( 1/3 2/3 ) .

Here A and τ are compatible but there is not a unique compatible P but
a continuum of compatible P ’s. �

Example 10.3 (Incompatible example). Consider

A =

(

1/4 3/5
3/4 2/5

)

and
τ = ( 1/16 15/16 ) .

These are not compatible since τ is not a convex combination of the columns
of A. �

In a more general setting, suppose that (X, Y ) is absolutely continuous
with respect to µ1 × µ2 on SX × SY . Suppose that we are given two func-
tions u(x) and a(x, y) and we ask whether there exists a compatible joint
distribution for (X, Y ), i.e., one such that

fX(x) = u(x), ∀x ∈ SX , (10.5)

and, for each y ∈ SY ,

fX|Y (x|y) = a(x, y), ∀x ∈ SX . (10.6)

In addition, we may ask when there is a unique such compatible distri-
bution.

It is clear that u and a will be compatible if there exists a suitable density
for Y , say w(y), such that

u(x) =

∫

SY

a(x, y)w(y) dy, ∀x ∈ SX . (10.7)
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Thus u and a are compatible if and only if u can be expressed as a
mixture of the given conditional densities {a(x, y) : y ∈ SY }. Uniqueness of
the compatible distribution fX,Y (x, y) = w(y)a(x, y) will be encountered if
and only if the family of conditional densities is identifiable.

Example 10.4 (Uniqueness). Suppose

a(x, y) = ye−xyI(x > 0)

and
u(x) = (1 + x)−2I(x > 0).

It may be verified that these are compatible. The corresponding density
for Y is

w(y) = e−yI(y > 0).

Identifiability of the family (ye−xyI(x > 0, y > 0)) may be verified using
the uniqueness property of Laplace transforms, consequently there is a
unique joint density corresponding to the given a and u, namely

fX,Y (x, y) = ye−(x+1)yI(x > 0)I(y > 0).

�

Suppose now that we are given u and a. How can we identify the corre-
sponding mixing density w(y)? A clever iterative solution is available from
Vardi and Lee (1993). Let w0(y) be an arbitrary strictly positive density
on SY . Now, for n = 0, 1, . . . , define

wn+1(y) = wn(y)

∫

SX

a(x, y)u(x)
∫

SY
wn(y′)a(x, y′) dy′ dx. (10.8)

Theorem 10.1 (Convergence of the Vardi and Lee scheme). The
iterative scheme (10.8) will always converge. If a and u are compatible it
will converge to an appropriate mixing distribution w(y). �

If a and u are incompatible, (10.8) will converge to a function ŵ(y), where
ŵ minimizes the Kullback-Leibler information distance between u(x) and

∫

SY

a(x, y)w(y) dy

for nonnegative functions w(y).
In the finite discrete case, (10.8) assumes the form

η
0

> 0 is arbitrary

and for each j, for n = 0, 1, 2, . . . ,

η
(n+1)
j = η

(n)
j

I
∑

i=1

⎡

⎣aijτi/

⎛

⎝

J
∑

j′=1

η
(n)
j′ aij′

⎞

⎠

⎤

⎦ . (10.9)
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TABLE 10.1. η marginals obtained after different iterations using the Vardi and
Lee method in Example 10.5.

Iteration (n) η
n

Iteration (n) η
n

1 (0.5328, 0.4672) 20 (0.7394, 0.2606)
2 (0.5616, 0.4384) 30 (0.7543, 0.2457)
3 (0.5867, 0.4133) 40 (0.7593, 0.2407)
4 (0.6085, 0.3915) 50 (0.7610, 0.2390)
5 (0.6274, 0.3726) 60 (0.7616, 0.2384)
6 (0.6437, 0.3563) 70 (0.7618, 0.2382)
7 (0.6579, 0.3421) 80 (0.7619, 0.2381)
8 (0.6702, 0.3298) 90 (0.7619, 0.2381)
9 (0.6809, 0.3191) 100 (0.7619, 0.2381)
10 (0.6902, 0.3098) ∞ (16/21, 5/21)

Example 10.5 (Uniqueness example). Consider again

A =

(

1/4 3/5
3/4 2/5

)

and

τ = ( 1/3 2/3 ) .

Using the Vardi and Lee iterative method in (10.9) we get the results in
Table 10.1. Note that the convergence is quite slow.

Using the asymptotic value of η = (16/21, 5/21) we get a joint probability

P =

(

4/21 12/21
3/21 2/21

)

≃
(

0.190476 0.571429
0.142857 0.0952381

)

.

Since its X-marginal coincides with τ , it follows that A and τ are com-
patible. �

Example 10.6 (Multiple solutions). Consider once more

A =

(

1/4 3/5 1/8
3/4 2/5 7/8

)

and

τ = ( 1/3 2/3 ) .

Using the Vardi and Lee iterative method in (10.9) we get

η = (0.328009, 0.352278, 0.319712)
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and the corresponding P becomes

P =

(

0.0820023 0.211367 0.0399641
0.246007 0.140911 0.279748

)

.

Since the resulting X-marginal

PX = ( 0.333333 0.666667 )

coincides with τ , it follows that A and τ are compatible.
Note that we are not able to detect that there is more than one compat-

ible P matrix, though we do obtain one of them. �

Example 10.7 (Incompatible example). Consider

A =

(

1/4 3/5
3/4 2/5

)

and
τ = ( 1/16 15/16 ) .

Using the Vardi and Lee iterative method in (10.9) we get

η = (1, 0)

and the corresponding P becomes

P =

(

0.25 0
0.75 0

)

.

Since the resulting X-marginal

PX = ( 0.25 0.75 )

does not coincide with τ , then the given A and τ are incompatible. �

Where did (10.8) come from? It can be visualized as follows.
Act as if the density of Y is wn(y). Combine this with a(x, y) to get a

joint density for (X, Y ). Compute the family of conditional densities of Y
given X from this density. Combine this with the marginal u(x) to get a
new joint density for (X, Y ) whose Y marginal will be denoted by wn+1(y).

Algorithm 10.1 (Obtaining a compatible joint distribution of (X, Y )
given the conditional X|Y and the marginal of X).

Input. A conditional probability density function a(x, y) = fX|Y (x|y), an
X-marginal probability density function fX(x), and an Error.

Output. The corresponding compatible Y -marginal density function fY (y)
and the joint probability density function fX,Y (x, y) or a close alter-
native.
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Step 1. Make Error1 = 1 and choose an arbitrary Y -marginal probability
density function f0(y).

Step 2. Make fY (y) = f0(y).

Step 3. Calculate the joint density fX,Y (x, y) using

fX,Y (x, y) = fY (y)a(x, y).

Step 4. Calculate the conditional density fY |X(y|x) using

fY |X(y|x) =
fX,Y (x, y)

∫

S(Y )
fX,Y (x, y) dy

.

Step 5. Calculate the updated Y -marginal probability density function f0(y)
using

f0(y) =

∫

S(X)

fY |X(y, x)fX(x) dx.

Step 6. Calculate the error by

Error1 =

∫

S(Y )

|fY (y) − f0(y)| dy.

Step 7. If Error1 > Error, go to Step 2; otherwise return the marginal
probability density f0(y) and the joint probability density function
fX,Y (x, y) and exit.

�

10.3 To Higher Dimensions with Care

In k-dimensions we can envision a wide variety of combinations of marginal
and/or conditional densities which might be used to characterize, perhaps
uniquely, a k-dimensional density. Gelman and Speed (1993) addressed the
question of identifying all such consistent specifications of multivariate dis-
tributions. We will review and develop their theorem in the following sec-
tion. The theorem was presented in the form of necessary and sufficient
conditions. Reduced to two dimensions, the theorem asserts that only con-
sistent specifications of one of the following forms will uniquely determine
fX,Y (x, y):

(i) fX|Y (x|y) and fY |X(y|x);

(ii) fX|Y (x|y) and fY (y); or
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(iii) fY |X(y|x) and fX(x).

But what about Example 10.4 above? In it, fX(x) and fX|Y (x|y) deter-
mine (uniquely) fX,Y (x, y). A careful review of Gelman and Speed’s proof
suggests an appropriate amendment to make their theorem true. They as-
sumed a positivity condition, i.e., that fX,Y (x, y) > 0, ∀x ∈ SX , y ∈ SY .
Under this assumption, the above list (i)–(iii) includes all situations in
which any consistent specification will uniquely determine fX,Y (x, y).

10.4 Conditional/Marginal Specification
in k Dimensions

We are concerned with k-dimensional random variables (X1, . . . , Xk) with
density f(x1, x2, . . . , xk). For any vector x we define, for i = 1, 2, . . . , k,

x(i) to be the vector x with the ith coordinate deleted;

x(i,j) to be the vector x with the ith and jth coordinates deleted;

ẋi to be the vector including the first i coordinates of x; and
ẍi to be vector x after deleting the first i coordinates.

Thus always x = (ẋi, ẍi). Analogously, we define the associated random vec-
tors X(i), X(i,j), Ẋi, and Ẍi. In k dimensions our standard unambiguous
notation for conditional densities, for example, fX1,X2|X3,X4

(x1, x2|x3, x4),
will prove cumbersome. Throughout the rest of this chapter we will, hope-
fully without loss of clarity and/or specificity, sometimes delete the sub-
scripts. The expressions are cleaner and the missing subscripts could always
be reintroduced by the reader if desired. Thus we will sometimes write
f(x1, x2|x3, x4) instead of fX1,X2|X3,X4

(x1, x2|x3, x4).
We focus on situations in which a finite number of conditional and/or

marginal densities is given and we wish to determine whether the given
set of densities is consistent and whether they uniquely specify the joint
density f(x1, . . . , xk). Following Gelman and Speed (1993), we can envision
that the given densities are represented by functions of the form fA|B(a|b)
where A and B are disjoint subsets of (X1, X2, . . . , Xk) and A is nonempty
while B might be empty (if that particular given density were a marginal
rather than a conditional).

Models specified in this way are known as conditionally specified proba-
bility models.

Definition 10.1 (Conditionally specified probability models). Con-
sider a set of variables X = {X1, . . . , Xk}. A conditionally specified proba-
bility model is a set of conditional and/or marginal probability distributions
of X of the form

P = {fAi|Bi
(ai|bi); i = 1, . . . , m}, (10.10)
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which uniquely defines the joint probability density of X, where Ai and Bi

are disjoint subsets of (X1, . . . , Xk) and Ai �= ∅, for each i = 1, 2, . . . , m. �

Next, we discuss compatibility and other problems associated with condi-
tionally specified probability models. In particular, we address the following
questions:

• Question 10.1. Uniqueness:
Does the given set of conditional probability densities define a unique
joint probability density? In other words, does the set of conditional
densities provide enough constraints for the existence of at most one
joint probability density?

• Question 10.2. Consistency or compatibility:
Is the given set of conditional probability densities compatible with
a joint probability density for X?

• Question 10.3. Parsimony:
If the answer to Question 10.1 is yes, can any of the given con-
ditional probability densities be ignored or deleted without loss of
information?

• Question 10.4. Reduction:
If the answer to Question 10.2 is yes, can any set of conditional prob-
ability densities be reduced to a minimum (e.g., by removing some of
the conditioning variables)?

Of special interest are the conditional probabilities in canonical form.

Definition 10.2 (Conditional densities in canonical form). Any
function of the form fA|B(a|b) = fA|B(xi1 , . . . , xiℓ

|b) can be replaced by ℓ
functions of the form

fXij
|B,X̃(xij |b, {xij : j > m}), m = 1, 2, . . . , ℓ,

and in this way any given collection of densities can be replaced by a list
in canonical form

fXi|Cij
(xi|cij), i = 1, 2, . . . , k, j = 1, 2, . . . , ni, (10.11)

where each Cij is a subvector of X(i). �

An example will help clarify this notation.

Example 10.8 (Conditional densities in canonical form). Suppose
k = 4 and we are given the following set of marginal and conditional
densities:

fX1,X2|X3
(x1, x2|x3), fX3|X4

(x3|x4),
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fX2(x2), fX3|X1,X4
(x3|x1, x4), (10.12)

fX2,X3,X4|X1
(x2, x3, x4|x1),

fX1,X2(x1, x2).

In canonical form this is equivalent to the following list of given univariate
conditionals and marginals:

fX1|X2,X3
(x1|x2, x3), fX2|X3

(x2|x3), fX3|X4
(x3|x4)

fX2(x2), fX3|X1,X4
(x3|x1, x4), fX2|X1,X3,X4

(x2|x1, x3, x4),

fX3|X1,X4
(x3|x1, x4), fX4|X1

(x4|x1), fX1|X2
(x1|x2). (10.13)

This is a canonical form. It is not claimed to be, nor is it, a unique
canonical form. As Gelman and Speed (1993) point out, it is necessary to
check for consistency. For example, in the above list (10.13), the condi-
tional density fX2|X1

(x2|x1) must agree with the form derivable from the
given densities for fX2(x2) and fX1|X2

(x1|x2) (which together determine
fX1,X2(x1, x2) and hence fX2|X1

(x2|x1)). �

10.5 Checking Uniqueness

The uniqueness theorem of Gelman and Speed (1993) may be stated as
follows:

Theorem 10.2 (Uniqueness). Suppose that a collection of given margin-
als and conditionals in canonical form (10.11) is consistent in the sense that
there exists a joint density f(x1, . . . , xk) with the given marginals and con-
ditionals. The density f(x1, x2, . . . , xk) will be essentially unique provided
that, after possibly permuting subscripts, the list in canonical form contains
a set of the form

fXi|Ai,Ẍi
(xi|Ai, ẍi), i = 1, 2, . . . , k, (10.14)

where each Ai is a possibly empty subset of Ẋi−1. If any Aj’s are nonempty
the list (10.14) must be checked for consistency. �

In conditional specification problems, life is simplest when the range of
each Xi is a finite set. In this case we can express the joint density in
the form of a k-dimensional contingency table. Gelman and Speed actually
provide a proof of their theorem in this setting and, in addition, they assume
no empty cells, their positivity condition. With a little care, the theorem
remains valid in more general cases. The set of x’s on which fX(x) > 0, say
D(X), does not have to be a Cartesian product. We do, in our consistency
check, have to make sure that only vectors or subvectors of elements of
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D(X) are referred to (10.14). In the discrete case this corresponds to the
natural requirement that the list (10.14) never involves conditioning on an
event of zero probability. There are two other potential problems to be faced
in the more general setting. First, the assumption of positivity of fX(x) on
a Cartesian product was important in the Gelman and Speed uniqueness
proof. Our experience in Chapter 1 suggests that some limitations on the
support set of fX(x) will be necessary (to avoid examples such as that
provided by Gourieroux and Montfort (1979)).

The resolution provided by Arnold and Press (1989b) in the bivariate case
may also be used in the present situation. We merely envision a Markov
process which generates X’s by cycling through the list of conditional den-
sities (10.14). If this process is indecomposable we have a unique marginal
distribution of Xk which together with the list (10.14) uniquely determines
fX1,...,Xk

(x1, . . . , xk).
The other crucial issue to be faced in more general settings involves in-

tegrability. If the range of the Xi’s is unbounded (above or below or both),
then it is possible that the unique solution fX(x1, x2 . . . , xk) obtained from
(10.14) is not integrable and so does not represent a proper distribution.
Several examples of this kind are catalogued in Chapter 6. It should be re-
marked that the assumption of a positivity condition (i.e., fX(x1, . . . , xk) >
0 on some Cartesian product set) does not obviate the need to check
for integrability of the solution if the set on which fX(x1, . . . , xk) > 0
is unbounded.

Two simple examples will illustrate the need for the integrability check.

Example 10.9 (Uniform conditionals). In the first example we pos-
tulate that our random variables are positive and, for each j, Xj given
X(j) = x(j) is uniform on the interval (0, (

∏

i �=j xi)
−1). Everything is in or-

der except that any putative joint density for this model would have to be
constant on the set {x : x ∈ IRk, xi > 0, i = 1, 2, . . . , k,

∏k
i=1 xi < 1}. Such

a function fails to be integrable and we have an “impossible” model. �

Example 10.10 (Nonintegrable even with positivity condition). In
our second example, the positivity condition will be satisfied on the positive
orthant (a Cartesian product of IR+ with itself k times). We assume that,
for each j, and each x(j) > 0,

fXj |X(j)
(xj |x(j)) =

⎛

⎝

∏

i�=j

xi

⎞

⎠ exp

[

−
(

k
∏

i=1

xi

)]

, xj > 0.

If there were to be a joint density compatible with these conditionals, it
would have to be proportional to exp[−(

∏k
i=1 xi)] over the positive or-

thant and such a function would not be integrable. The earliest reference
to this example is in Besag (1974) in his discussion of auto-exponential
distributions. �
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Note that, as observed at the end of Section 10.3, if we impose a positivity
condition (to avoid Gourieroux and Montfort (1979) examples), then only
collections of marginals and conditionals that include a set of the form
(10.14) will uniquely determine f(x) for any consistent specification.

10.6 Checking Compatibility

In two dimensions, a simple condition for consistency was available. If we
were given f(x1|x2) and f(x2), consistency was automatic. If we were given
f(x1|x2) and f(x2|x1), the necessary condition was the existence of two
functions g1(x2) and g2(x1) at least one of which was integrable such that

f(x1|x2)

f(x2|x1)
=

g2(x1)

g1(x2)
.

When we consider a set of conditionals and marginals in canonical form
(10.14), consistency will be guaranteed iff there exists a function g(x(1))
which is integrable such that for i = 2, . . . , k

f(xi|Ai, ẍi) = g(xi|Ai, ẍi),

where each of the conditional densities g(xi|Ai, ẍi) is computed using the
joint density

f(x1|x(1))g(x(1))/

[∫

g(x(1)) dx(1)

]

.

The compatibility can be checked one step at a time. After we have checked
compatibility of the first m densities in the canonical list, consider Am+1. If
it is empty then the (m+1)st density is automatically compatible. If it is not
empty then compute f(Am+1|ẍm) from the already determined conditional
density f(ẋm|ẍm). Note that f(Am+1|ẍm) = f(Am+1|xm+1, ẍm+1) and we
can check consistency of the (m + 1)st density by considering the ratio

f(xm+1|Am+1, ẍm+1)

f(Am+1|xm+1, ẍm+1)
.

If this equals
g(xm+1, ẍm+1)

h(Am+1, ẍm+1)
,

where the numerator is an integrable function of xm+1, then the (m + 1)st
density in the list of conditionals is compatible. It is, in fact, possible to
identify the form of the most general expression for f(xm+1|Am+1, ẍm+1)
which will be compatible with the already determined density f(ẋm|ẍm).
The expression in question is

f(xm+1|Am+1, ẍm+1) =
f(xm+1|ẍm+1)

∫

f(ẋm|ẍm) dA∗
m+1

∫

f(xm+1|ẍm+1)
∫

f(ẋm|ẍm) dA∗
m+1dxm+1

,

(10.15)
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where A∗
m+1 = ẋm ∩ Ac

m+1. Note that (10.15) depends on the already
determined f(ẋm|ẍm) and the arbitrary compatible f(xm+1|ẍm+1).

There is an alternative way of phrasing the requirement that the ratio

τ(xm+1, Am+1, ẍm+1) =
f(xm+1|Am+1, ẍm+1)

f(Am+1|xm+1, ẍm+1)
(10.16)

factors into a form
g(xm+1, ẍm+1)

h(Am+1, ẍm+1)
,

where the numerator is integrable as a function of xm+1. Instead we merely
ask that the function (10.16) be an integrable function of xm+1 and that

τ(xm+1, Am+1, ẍm+1)
∫

τ(xm+1, Am+1, ẍm+1) dxm+1

be independent of Am+1 for every ẍm+1.
We may summarize this in the form of a theorem:

Theorem 10.3 (Compatibility). Suppose that we are given an array of
conditional densities in canonical form as follows:

{f(xi|Ai, Bi) : i = 1, 2, . . . , k}, (10.17)

where for each i, Ai ⊂ ẋi−1 and Bi ⊂ ẍi.
Then a necessary and sufficient condition for the set (10.17) to be com-

patible with at least one joint density f(x1, x2, . . . , xk) is that for each
i = 1, 2, . . . , k either Ai = ∅ or

Ri =
f(xi|Ai, ẍi)/f(Ai|xi, ẍi)

∫

xi
f(xi|Ai, ẍi)/f(Ai|xi, ẍi) dµi(xi)

(10.18)

is independent of Ai for any ẍi. �

Theorem 10.3 also suggests an algorithm for checking the consistency of
a given set of conditional probability densities, one conditional probability
density at a time, and for constructing a canonical form with Ai = ∅, i =
1, . . . , n (see Figure 10.1).

Definition 10.3 (Standard canonical form). When Ai = ∅ or Bi = ∅
for all i, we say that the canonical form is a standard canonical form and
we call the term fXi|Ẍi

(xi|ẍi), or fXi|Ẋi−1
(xi|ẋi−1), a standard canonical

component. �

If the nested set of conditonal probabilities in Theorem 10.3 are given in
standard canonical form, the consistency is guaranteed. Otherwise, the set
of conditional probability densities must be checked for consistency.
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FIGURE 10.1. A flow chart for checking consistency of a canonical set of
conditional probability densities that satisfies the uniqueness conditions

Algorithm 10.2 (Checking compatibility of a set of conditional
probability densities).

• Input. A set

P = {f(xi|ai, ẍi); i = 1, 2, . . . , n}

of conditional probability densities in canonical form that satisfies the
uniqueness condition.

• Output. True or False, depending on whether or not the set of
conditional probability densities in P is consistent.

1. The first conditional probability f(x1|ẍ1) must be given in any case.
Otherwise, the given set of conditional probability densities does not
satisfy the uniqueness condition. Thus, at the initial step, we start
with f(x1|ẍ1).
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2. At the ith step we are given either f(xi|ẍi) or f(xi|ai, ẍi), where the
set Ai ⊂ ẋi−1. If Ai = ∅ proceed to Step 5; otherwise, we calculate

f(ai|xi, ẍi) by marginalizing f(ẋi−1|xi, ẍi) over all variables in Ẋi−1

other than those in Ai, that is, using

f(ai|xi, ẍi) =

∫

Ẋ
i−1\Ai

f(ẋi−1|xi, ẍi) dẋi−1 \ ai. (10.19)

3. Calculate the standard canonical component Ri = f(xi|ẍi) based on
the previous and the new information using (10.18).

4. If Ri is independent of the variables in the set Ai, then go to Step
5; otherwise the given f(xi|ai, ẍi) is not compatible with the previous
conditional probabilities.

5. Calculate f(ẋi−1, xi|ẍi) = f(ẋi−1|xi, ẍi)f(xi|ẍi).

6. Repeat Steps 2 to 5 until all conditional probability densities have been
analyzed.

�

Therefore, given the set P of conditional probability densities we can
determine whether or not it is consistent using Algorithm 10.2 or Theorem
10.3. This provides the answer to Question 6.6.

Example 10.11 (Possibly inconsistent set of conditional proba-
bility densities). Consider the following set P of conditional probabil-
ity densities, which was given by a human expert to describe the joint
probability density of five variables in X:

{f(x1|x2, x3, x4, x5), f(x2|x3, x4, x5), f(x3|x1, x4, x5), f(x4|x2, x5), f(x5)}.

The set P can be shown to satisfy the uniqueness conditions. Thus, we
can use Algorithm 10.2 to determine whether this set is compatible with a
joint probability density:

For i = 1, the first conditional density, f(x1|x2, x3, x4, x5), is always
compatible because Ẍ1 = {X2, X3, X4, X5} and A1 = ∅.

For i = 2, the second conditional density, f(x2|x3, x4, x5), is compatible
because Ẍ2 = {X3, X4, X5} and A2 = ∅. Here, we have Ẋ1 = {X1};
hence

f(ẋ1, x2|ẍ2)=f(x1, x2|x3, x4, x5)=f(x1|x2, x3, x4, x5)f(x2|x3, x4, x5).
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For i = 3, the third conditional density, f(x3|x1, x4, x5), must be checked
for compatibility because we have Ẍ3 = {X4, X5} and A3 = {X1} �=
∅. Here, we have Ẋ2 = {X1, X2}, and we need to compute f(a3|x3, ẍ3)
= f(x1|x3, x4, x5) using (10.19). We obtain

f(x1|x3, x4, x5) =

∫

S(X2)

f(x1, x2|x3, x4, x5) dx2.

We also need to compute R3 using (10.18). We obtain

R3 = f(x3|x4, x5) =
f(x3|x1, x4, x5)/f(x1|x3, x4, x5)

∫

S(X3)
(f(x3|x1, x4, x5)/f(x1|x3, x4, x5)) dx3

.

Then, if R3 does not depend on X1, f(x3|x1, x4, x5) is compatible
with the previous two conditional probability densities. Otherwise
the set is incompatible. For the sake of illustration, suppose that it is
compatible. In this case, we replace f(x3|x1, x4, x5) by R3. We also
calculate

f(ẋ2, x3|ẍ3) = f(x1, x2, x3|x4, x5) = f(x1, x2|x3, x4, x5)f(x3|x4, x5).

For i = 4, the fourth conditional density, f(x4|x2, x5), must be checked for
compatibility because we have Ẍ4 = {X5} and A4 = {X2} �= ∅. Here,
we have Ẋ3 = {X1, X2, X3}, and we need to compute f(a4|x4, ẍ4) =
f(x2|x4, x5) using (10.19). We obtain

f(x2|x4, x5) =

∫

S(X3)×S(X1)

f(x1, x2, x3|x4, x5) dx3 dx1.

We also need to compute R4 using (10.18). We obtain

R4 = f(x4|x5) =
f(x4|x2, x5)/f(x2|x4, x5)

∫

S(X4)
(f(x4|x2, x5)/f(x2|x4, x5) dx4

.

Then, if R4 does not depend on X2, f(x4|x2, x5) is compatible with
the previous three conditional probability densities. Otherwise the
set is incompatible. Again, for the sake of illustration, suppose that
it is compatible. In this case, we replace f(x4|x2, x5) by R4. We also
calculate

f(ẋ3, x4|ẍ4) = f(x1, x2, x3, x4|x5) = f(x1, x2, x3|x4, x5)f(x4|x5).

For i = 5, the fifth conditional density f(x5) is compatible because Ẍ5 = ∅
and A5 = ∅.

Therefore, if R3 does not depend on X1 and R4 does not depend on X2,
then P is consistent; otherwise P is inconsistent. �
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From the above example, we can see that Theorem 10.3 has the following
important practical implications:

1. Every well-behaved joint probability density for the set of variables
(X1, X2, . . . , Xk) can be represented by a conditionally specified prob-
abilistic model.

2. Increasing the standard canonical form by superfluous information
(extra conditional probability density) leads to the need for checking
its compatibility.

3. If the set of conditional probability densities is given in standard
canonical form, the conditional probability densities can be com-
pletely arbitrary, that is, they are not restricted by conditions other
than those implied by the probability axioms.

4. Any conditional probability density of the form f(xi|ai, ẍi), with
Ai �= ∅, can be replaced by the conditional probability in standard
canonical form f(xi|ẍi) without affecting the joint probability density
of the variables. The standard canonical form can be obtained using
(10.18).

Theorems 10.2 and 10.3 answer Questions 10.1 and 10.2, posed in Section
10.4. Thus, when defining a conditionally specified probabilistic model, it
is preferable to specify only the minimal set of conditional probabilities
needed to define the joint probability density uniquely. Any extra informa-
tion will require unnecessary additional computational effort, not only for
its assessment but also for checking that the extra information is indeed
consistent with the previously given conditional probability densities. This
answers Question 10.3.

Furthermore, given a set P of conditional probability densities that is
consistent and leads to a unique joint probability density of X, we can re-
place P by another P ′ in standard canonical form leading to the same joint
probability density. Further reduction of P ′ violates the uniqueness con-
ditions. Also, redundant information hurts because it requires consistency
checking. This answers Question 10.4.

10.6.1 Assessment of Conditionally Specified Probabilistic

Models

Note that Theorem 10.3 assumes a set of conditional probability densities
that already satisfies uniqueness. Therefore, uniqueness has to be checked
first before compatibility. Thus, initially, we convert the specified set of con-
ditional probability density to a canonical form, then we check uniqueness
using Theorem 10.2, and then we check compatibility by means of Theorem
10.3. This topic in the context of Bayesian networks has been studied by
Castillo, Gutiérrez, and Hadi (1997).
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10.7 Overspecification

In the two-dimensional case, instead of being given f(x|y) and f(y|x) for
every x, y, it is clearly adequate to be given f(x|y) for every y and f(y|x0)
for one fixed value of x0 provided that f(y|x0) > 0, ∀y. We can obtain the
marginal density of y by normalizing the ratio

f(y|x0)

f(x0|y)

provided it is integrable. Compatibility is guaranteed. This observation can
be carried to higher dimensions. In any one of a canonical list of conditional
and/or marginal densities, if we are given

f(xm+1|A(0)
m+1, ẍm+1) (10.20)

for particular values of A
(0)
m+1 of the conditioning variables Am+1, our job

is actually simplified (provided (10.20) is positive for every xm+1). We
need only obtain f(Am+1|xm+1, ẍm+1) from previously derived densities
and normalize the assumed integrable ratio

f(xm+1|A(0)
m+1, ẍm+1)

f(A
(0)
m+1|xm+1, ẍm+1)

to obtain

f(xm+1|ẍm+1).

10.8 Marginals and Conditionals in Specified
Families

Recall the bivariate conditional specification scenario discussed in detail in
Section 1.7. Let f1(x; θ), θ ∈ Θ, denote a k-parameter family of densities
and f2(y; τ), τ ∈ T , a possibly different ℓ-parameter family of densities.
We seek to identify all possible bivariate densities f(x, y) for which both
sets of conditional densities are in the specified families. Thus we require
that

f(x|y) = f1(x; θ(y)), ∀y,

and

f(y|x) = f2(y; τ(x)), ∀x, (10.21)

for some functions θ(y) and τ(x). The problem was resolved by assum-
ing that a density with the required properties did exist with marginals
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g(x), h(y), and then setting up and hopefully solving the resulting func-
tional equation of the following form:

h(y)f1(x; θ(y)) = g(x)f2(y; τ(x)). (10.22)

A multivariate extension of this program was also described in Chapter
8. In such a setting we envision a k-dimensional density f(x1, . . . , xk) and

k parametric families of densities fi(x; θ(i)), θ(i) ∈ Θi, i = 1, 2, . . . , k.
We then ask that the conditional densities belong to the given parametric
families, i.e., that for i = 1, 2, . . . , k,

f(xi|x(i)) = fi(xi; θ
(i)(x(i))), ∀x(i) . (10.23)

If a density satisfying (10.23) is to exist it must have marginals which
can be denoted by hi(x(i)), i = 1, 2, . . . , k. The joint density can then be
written as a product of a marginal and a conditional in k different ways
and we need to solve the following system of functional equations:

h1(x(1))f1(x1; θ
(1)(x(1))) = h2(x(2))f2(x2; θ

(2)(x(2)))

. . . = hk(x(k))fk(xk; θ(k)(x(k))). (10.24)

Examples in which this program can be carried out successfully are docu-
mented in Chapter 8.

In principle, there is nothing to prevent us from formulating an analo-
gous problem in which arbitrary marginal and/or conditional densities are
posited to belong to specified parametric families of densities. The nota-
tional bookkeeping is somewhat troubling but the concept is clear. An ab-
breviated form of the general problem may be stated as follows using the no-
tation used in Definition 10.1. Let f1(·; θ(1)), f2(·; θ(2)), . . . , fm(·; θ(m)) de-
note m parametric families of distributions. We seek to identify all possible
densities f(x1, . . . , xk) for which for each j = 1, 2, . . . , m,

f(Aj |Bj) = fj(Aj ; θ
(j)(Bj)), ∀Bj . (10.25)

If a solution exists, it will have marginals including hj(Bj), j = 1, 2, . . . , m,
and we will seek to solve the following system of functional equations:

h1(B1)f1(A1; θ
(1)(B1)) = h2(B2)f2(A2; θ

(2)(B2))

. . . = hm(Bm)fm(Am; θ(m)(Bm)). (10.26)

Note that m could be less than, equal to, or greater than k, the dimension of
X. Generally speaking, increasing m will reduce the solution set. In extreme
cases, the solution class might be very broad or, at the other extreme,
empty. The case in which Ai = xi and Bi = x(i), i = 1, 2, . . . , k (with m =
k), has already been mentioned in Chapter 8. The case in which Ai = xi and
Bi = ∅, i = 1, 2, . . . , k, is a case of marginal specification. An enormous
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number of possible solutions exist. For example, we might try to identify
the class of all possible distributions with univariate normal marginals.
Random vectors with such distributions admit the representation

(X1, . . . , Xk) = (µ1 + σ1Φ
−1(U1), . . . , µk + σkΦ−1(Uk)),

where µ ∈ IRk, σ ∈ IRk
+, Φ−1 is the standard normal quantile function and

U is a completely arbitrary random vector with uniform (0, 1) marginals.
We will focus attention only on examples in which the Bj ’s are non-

empty, that is to say, on cases which really do involve conditional speci-
fication. No complete catalog can possibly be given but the examples in
the following sections should give the flavor of the kinds of models and
characterizations that such specifications can lead to.

10.9 Xi Given X(i)

Reference should be made to the material in Chapter 8 where a spectrum
of such conditionally specified models is described.

10.10 X(i) Given Xi

Suppose that we require that, for every i, the conditional density of X(i)

given Xi = xi should belong to some ℓi parameter family of densities

{fi(·; θ(i)); θ(i) ∈ Θ(i)}.

The resulting system of functional equations to solve, involving the margin-
als of Xi’s, is given by

h1(x1)f1(x(1); θ
(1)(x1)) = h2(x2)f2(x(2); θ

(2)(x2))

. . . = hk(xk)fk(x(k); θ
(k)(xk)). (10.27)

The exponential family case is relatively easy to resolve. In this setting we
assume that

fi(x(i); θ
(i)(xi)) = hi(xi) exp

⎧

⎨

⎩

ℓi
∑

j=0

θ
(i)
j (xi)T

(i)
j (x(i))

⎫

⎬

⎭

, x(i) ∈ X(i),

(10.28)

i = 1, 2, . . . , k, where by convention θ
(i)
0 (xi) ≡ 1, for each i. If we assume

that (10.27) holds with conditionals of the form (10.28) then we will have a
large number of consistency checks to perform. Actually just two of the con-
ditional densities, e.g., X(1)|X1 = x1 and X(2)|X2 = x2, will be enough to
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specify the joint distribution and the remaining conditions must be checked
for consistency.

To begin with, let us assume that we are given that (10.27) and (10.28)
hold for i = 1, 2, . . . , k. If we introduce the notation

θ
(i)
ℓi+1(xi) = log hi(xi), (10.29)

we can write the joint density of (X1, . . . , Xk) in k apparently different but
equal ways:

exp

⎧

⎨

⎩

ℓi+1
∑

j=0

θ
(1)
j (x1)T

(1)
j (x(1))

⎫

⎬

⎭

= exp

⎧

⎨

⎩

ℓ2+1
∑

j=0

θ
(2)
j (x2)T

(2)
j (x(2))

⎫

⎬

⎭

= . . .

= exp

⎧

⎨

⎩

ℓk+1
∑

j=0

θ
(k)
j (xk)T

(k)
j (x(k))

⎫

⎬

⎭

,

(10.30)

where

T
(i)
ℓi+1(x(i)) ≡ 1, ∀i.

Taking logarithms in (10.30) we arrive at a system of functional equations
amenable to solution using the Stephanos (1904) theorem (Theorem 1.3).
For example, holding x(1,2) fixed in the first equation of (10.30), we may
conclude that

T
(1)
j (x(1)) =

ℓ2+1
∑

j′=0

Cj,j′(x(1,2))θ
(2)
j′ (x2).

Continued application of the Stephanos result leads to the conclusion that
the joint density is necessarily of the form

f(x) =

ℓ1+1
∑

j1=0

ℓ2+1
∑

j2=0

· · ·
ℓk+1
∑

jk=0

cj1j2...jk

[

k
∏

i=1

θ
(i)
ji

(xi)

]

. (10.31)

Comparing (10.30) and (10.31) we realize that compatibility will be en-

countered only if the given functions T
(i)
j (x(i)) have representations of the

form

T
(i)
j (x(i)) =

∑

· · ·
∑

{j′

ℓ
s with ℓ �=i}

cj1···j···jk

⎡

⎣

∏

i′ �=i

θ
(i′)
ji′

(xi′)

⎤

⎦ . (10.32)

If a representation such as (10.32) does not hold then no density exists with
the given conditionals. If the representation does exist, we can read off the

forms of the functions {θ(i)
j (xi)}.
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Suppose now that we are given all but the last one of the conditional
densities (10.30). What must the joint density look like? Repeated appli-
cation of the Stephanos theorem leads to the following expression for the
joint density:

f(x) =

ℓ1+1
∑

j1=0

ℓ2+1
∑

j2=0

· · ·
ℓk−1+1
∑

jk−1=0

Cj1,...,jk−1
(xk)

k−1
∏

i=1

θ
(i)
ji

(xi) (10.33)

for appropriate functions Cj1,...,jk−1
(xk). Referring back to the conditional

densities, we have

T
(i)
j (x(i)) =

∑

· · ·
∑

{

j′

ℓs with ℓ≤k−1

and ℓ �=i

}

Cj1,...,j,...,jk−1
(xk)

∏

i�=i′

i≤k−1

θ
(i)
ji

(xi). (10.34)

The given T
(i)
j ’s must admit a representation (10.34) in order to be con-

sistent and, when they do have such a representation, we can read off the

corresponding Cj1,...,jk−1
(xk)’s and θ

(i)
j (xi)’s. Naturally, the family (10.33)

is more general than (10.31). The model (10.31) arises only when

Cj1,...,jk−1
(xk) =

ℓk+1
∑

jk−1

cj1,...,jk
θk

jk
(xk) (10.35)

for some functions {θk
j (xk)}.

Next notice that nothing in the above development precludes the xi’s
from being vectors rather than scalars. This allows us to immediately dis-
cern the consequences of only assuming that the first m of the equations in
(10.28) hold. We merely write a new x vector as (x1, x2, . . . , xm, ẍm) and
arrive at a joint density of the form (cf. (10.33))

f(x) =

ℓ1+1
∑

j1=0

· · ·
ℓm+1
∑

jm=0

Cj1,...,jm
(ẍm)

m
∏

i=1

θ
(i)
ji

(xi). (10.36)

It may be observed that models obtained by assuming all conditionals
of X(i) given Xi = xi (i = 1, 2, . . . , k) are in exponential families as in
(10.28), are identical to the class of all densities for which Xi given X(i) =
x(i) (i = 1, 2, . . . , k) are in appropriate exponential families. We get more
general models only when we assume that (10.28) holds only for some but
not all i.

Finally, we remark that analogous arguments work in certain nonexpon-
ential family situations (the multivariate Pareto is a prize example). The
key issue is that equality among the available versions of the joint density
(the expressions analogous to (10.27)) should lead to solvable systems of
functional equations.
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10.11 The Case of X Given Y , Y Given Z, and Z
Given X

Suppose that we assume that, for every y, the conditional distribution of
X given Y = y is a member of a given k1-parameter family, i.e., f(x|y) =

f1(x; θ(1)(y)). In addition, we make analogous assumptions regarding Y

given Z and Z given X; i.e., f(y|z)=f2(y; θ(2)(z)) and f(z|x)=f3(z; θ(3)(x))
for specified k2- and k3-parameter families f2 and f3. What can be said of
the joint distribution of (X, Y, Z)? The disappointing answer to this ques-
tion is: Not very much. The problem is that f(x|y), f(y|z), and f(z|x) do
not uniquely determine f(x, y, z) since they are completely determined by
the bivariate marginals. Alternatively, it is clear that the list f(x|y), f(y|z),
and f(z|x) does not contain, nor is it equivalent to, a set of densities of the
form (10.14), needed in the Gelman and Speed theorem.

For example, if we assume that

X|Y = y ∼ N(α1 + β1y, σ2
1),

Y |Z = z ∼ N(α2 + β2z, σ2
2),

and

Z|X = x ∼ N(α3 + β3x, σ2
3),

then there is a unique classical trivariate normal distribution with these
conditionals. However, there are many other trivariate distributions with
the same bivariate marginals which necessarily have the same conditionals
for X|Y, Y |Z, and Z|X.

It is appropriate at this point to emphasize that the negative features of
this example are not in conflict with the many “nearest neighbor” speci-
fications of Markovian spatial processes. For simplicity, consider a spatial
process with only four locations which for convenience can be visualized as
corners of a square. Let X, Y, Z, W denote the values of the process at the
four locations. The process will often be defined in terms of the conditional
distribution of the value at a point given the values at its (two) neighbor-
ing points. So we are given the distribution of X given W and Y , of Y
given X and Z, of Z given Y and W , and of W given Z and X. Stated
in that fashion, our discussion, in the last paragraphs, clearly indicates
that a broad spectrum of possible models exist, since in the given condi-
tional specification only trivariate marginals of (X, Y, Z, W ) are involved.
The nearest neighbor specification (if consistent) does yield a unique dis-
tribution if explicitly, or (often) implicitly, what we assume is that the
conditional distribution of X given Y, Z, and W depends only on W and
Y , the conditional distribution of Y given the rest depends only on X and
Z, etc. Some authors are regretably not precise in their formulations of
such processes.



252 10. Marginal and Conditional Specification in General

10.12 Logistic Regression Models

Let Y be a binary random variable such that

P (Y = y) =
eσy

1 + eσ
, y = 0, 1, (10.37)

where σ > 0 is a scale parameter. Note that (10.37) represents a one-
parameter exponential family.

Definition 10.4 (Logit transformation of a binary random vari-
able). Let Y be a random variable with pdf given by (10.37). The logit
transformation of P (Y = y) is defined as

logit[P (Y = y)] = log

[

P (Y = 1)

P (Y = 0)

]

= σ. (10.38)

�

First we consider the case of two binary random variables Y1 and Y2. We
are interested in the most general bivariate random variable (Y1, Y2) such
that its conditional logit transformations satisfy

logit[P (Y1 = y1|Y2 = y2)] = σ1(y2) (10.39)

and
logit[P (Y2 = y2|Y1 = y1)] = σ2(y1). (10.40)

Since (10.37) is an exponential family, the most general distribution with
conditionals of the form (10.39) and (10.40) is given by (4.5). Thus the joint
pdf of the bivariate random variable (Y1, Y2) becomes

P (Y1 = y1, Y2 = y2) =
em10y1+m01y2+m11y1y2

1 + em10 + em01 + em10+m01+m11
. (10.41)

Note that, in this case, the normalizing constant has been explicitly ob-
tained. From (10.41) it can be easily shown that

logit[P (Y1 = y1|Y2 = y2)] = σ1(y2) = m10 + m11y2, (10.42)

and

logit[P (Y2 = y2|Y1 = y1)] = σ2(y1) = m01 + m11y1. (10.43)

If we assume that the constants m10 and m01 depend on a covariate
vector x, such that

m10 = α1 + β′
1
x

and
m01 = α2 + β′

2
x,
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an extension of (10.41) is possible.
In this case, model (10.41) becomes

P (Y1 = y1, Y2 = y2|x) ∝ exp[(α1 + β′
1
x)y1 + (α2 + β′

2
x)y2 + m11y1y2],

(10.44)
which has been considered by Joe (1997).

The bivariate model (10.41) can also be generalized to the k-dimensional
case, as has been done with other models in Chapter 8. Joe (1997) considers
a particular multivariate extension of (10.44) of the following form. Assume
that we are interested in the k-dimensional variable (Y1, . . . , Yk) such that,
for each i = 1, 2, . . . , k, the following holds:

logit[P (Yi = yi|Yj = yj , j �= i, x)] = αi + β′
i
x +

∑

j �=i

mijyj . (10.45)

Then the necessary and sufficient conditions for compatibility of these con-
ditional distributions are that mij = mji, i �= j (compare with (10.42) and
(10.43)). The corresponding joint pdf is

P (Y1 = y1, . . . , Yk = yk|x)] = k exp

⎡

⎣

k
∑

i=1

(αi + β′
i
x)yi +

∑

i<j

mijyiyj

⎤

⎦ ,

(10.46)
where the normalizing constant is given by

k−1 =

1
∑

y1=0

. . .

1
∑

yk=0

exp

⎡

⎣

k
∑

i=1

(αi + β′
i
x)yi +

∑

1≤i<j≤k

mijyiyj

⎤

⎦. (10.47)

The parameters mij in (10.46) can be interpreted as conditional log-odds
ratios.

10.13 Bibliographic Notes

Some of the ideas in Section 10.2 were discussed in Arnold, Athreya, and
Sethuraman (1998). Gelman and Speed (1993) is a key reference for gen-
eral discussion of consistent conditional and marginal specification of mul-
tivariate distributions. Further elaboration of the problems involved may
be found in Arnold, Castillo, and Sarabia (1992, 1993a, 1993b, 1995, 1996b)
and Castillo (1988, 1992).

Exercises

10.1 Let (X1, X2, X3) be a trivariate random variable.
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(a) Assuming compatibility, are f(x1, x2|x3) and f(x2, x3|x1) enough
to determine f(x1, x2, x3)?

(b) If (a) is true, obtain the most general trivariate distributions
such that f(x1, x2|x3) and f(x2, x3|x1) are in exponential fami-
lies.

10.2 Generalize the model (10.46) in the sense of including terms with
higher interactions, i.e., including terms of the form yiyjyk, yiyjykyr,
etc.

10.3 Check the compatibility and uniqueness of the set of conditional
distributions

f(x1|x2, x3) =

√

3

22π
exp[−(3x1 − x2 + x3)

2
/66],

f(x2|x1, x3) =

√

2

11π
exp[−(x1 − 4x2 + 4x3)

2
/88],

f(x3|x1, x1) =

√

15

22π
exp[−(x1 − 4x2 + 15x3)

2
/330].

10.4 Given fX(x) and fX|Y (x|y), show that a sufficient condition for fY (y),
and hence for fX,Y (x, y), to be unique is that the conditional density
of X given Y is of the exponential form

fX|Y (x|y) = exp[yA(x) + B(x) + C(y)] ,

where an interval is contained in the range of A(x).
(Seshadri and Patil (1964).)

10.5 Let (X, Y ) be a bivariate distribution, and assume that the marginal
distribution of X is exponential.

(a) If the conditional density of X given Y is

f(x|y) = e−x(1+δy)[(1 + δx)(1 + δy) − δ] ,

with 0 ≤ δ ≤ 1, x, y ≥ 0, then show that the marginal distribu-
tion of Y is unique and is the exponential distribution.

(b) If the conditional density of X given Y is,

f(x|y) = e−x
(

1 + α − 2αe−y
)

− 2αe−2x
(

1 − 2e−y
)

,

with −1 ≤ α ≤ 1, x, y ≥ 0, show that the marginal density of Y
is not unique.

(Seshadri and Patil (1964).)
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Conditional Survival Models

11.1 Introduction

In this chapter we will deal with k-dimensional random variables usually
with positive coordinates, which can be visualized as representing times to
failures of k distinct types. It is envisioned however that an individual will
inevitably eventually suffer all k types of failures so that the coordinates
of the random vectors are finite with probability 1. In actual practice,
multivariate data sets of this type are relatively rare. What this means
is that many multivariate survival models may well find their domain of
application in the study of data sets involving k-dimensional data which re-
alistically have little to do with survival or times to failure. In a sense they
may be best considered to be k-variate distributions motivated by math-
ematically natural multivariate extensions of univariate survival models.
In this sense they deserve the name “multivariate survival distributions,”
though the same should not be construed as implying limitations in their
potential fields of applications.

The most commonly used univariate survival models are exponential,
Weibull, Pareto, gamma, log-normal, and generalizations of these (often
including powers). It is to be expected then that many popular multivariate
survival models will have marginals and/or conditionals in these families.

We have already encountered multivariate conditionally specified distri-
butions related to many of these basic survival models. The emphasis in
this chapter is on models derived via alternative conditional specification
methods perhaps better suited to the survival context. Most of our pre-
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sentation will be for the bivariate case. Multivariate extensions are often
readily envisioned and will be briefly noted.

Up until now, when we have spoken of conditionally specified bivariate
distributions, we have referred to joint densities fX,Y (x, y) with all con-
ditionals of X given Y = y belonging to a particular parametric family
and all conditionals of Y given X = x belonging to a second, possibly dif-
ferent, parametric family. In the context of bivariate survival models, it is
more natural to condition on component survivals, i.e., on events such as
{X > x} and {Y > y} rather than conditioning on particular values of X
and Y .

Most of the questions discussed in Chapter 1 can be asked anew in this
new context; i.e., conditioning on {X > x} and {Y > y} instead of X = x
and Y = y. The answers will lead to distinct models from those discussed
in the earlier chapters of this book.

Several related conditional specification paradigms (motivated by sur-
vival considerations) will also be discussed in this chapter.

11.2 Conditional Survival in the Bivariate Case

Consider bivariate random variables (X, Y ) (discrete or absolutely contin-
uous) with the set of possible values for X (respectively Y ) denoted by
S(X) (respectively S(Y )). Suppose that for each (x, y) ∈ S(X) × S(Y )
we are given fX(x|Y > y) and fY (y|X > x). Reasonable questions to ask
at this juncture include:

(i) Are the given families of conditional densities compatible?

(ii) If they are, do they determine a unique joint density for (X, Y )?

Since conditional survival functions are uniquely determined by condi-
tional densities, an equivalent more convenient formulation of the prob-
lem is available. Thus we ask about compatibility of putative families of
conditional survival functions of the forms

P (X > x|Y > y), (x, y) ∈ S(X) × S(Y ),

and
P (Y > y|X > x), (x, y) ∈ S(X) × S(Y ).

The compatibility issue is readily resolved as follows:

Theorem 11.1 (Compatibility of conditional survival functions).
Two families of conditional survival functions

P (X > x|Y > y) = a(x, y), (x, y) ∈ S(X) × S(Y ),

and P (Y > y|X > x) = b(x, y), (x, y) ∈ S(X) × S(Y ), (11.1)
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are compatible if and only if their ratio factors, i.e., if and only if there
exist functions u(x), x ∈ S(X) and v(y), y ∈ S(Y ) such that

a(x, y)

b(x, y)
=

u(x)

v(y)
, (x, y) ∈ S(X) × S(Y ), (11.2)

where u(x) is a one-dimensional survival function (nonincreasing, right
continuous, and of total variation 1). �

Proof. If a(x, y) and b(x, y) are to be compatible there must exist cor-
responding marginal survival functions P (X > x) = u(x) and P (Y > y) =
v(y). Writing the event P (X > x, Y > y) = a(x, y)v(y) = b(x, y)u(x) yields
(11.2). �

In Theorem 1.1 an analogous result was presented involving fX|Y (x|y)
and fY |X(y|x). However after proving existence of a solution, using Theo-
rem 1.1, additional assumptions were required to guarantee uniqueness. In
the present setting, life is simpler. If there is any pair u(x), v(y) for which
(11.2) holds, it is readily verified that they are unique. Thus two families of
survival functions (11.1) will uniquely determine a joint distribution (via a
joint survival function) if their ratio factors are as in (11.2).

Remark 11.1 In many reliability contexts, it is not practical to consider
the event {X > x} conditioned on the event {Y > y}. In those cases, it
might be easier to envision conditioning on the event {min(X, Y ) > y} (cf.
the “dynamic construction” discussed in Section 1.2).

11.3 Conditional Survival Functions in
Parametric Families

Rather than specify the precise form of P (X > x|Y > y) we might only
require that for, each y ∈ S(Y ), it be a member of a specified paramet-
ric family of survival functions. An analogous requirement, that for each
x ∈ S(X), P (Y > y|X > x) should be a member of a possibly different
parametric family of survival functions, would also be imposed. What kind
of joint survival functions will be determined by such constraints?

Consider a k-parameter family of survival functions denoted by

{F 1(x; θ) : θ ∈ Θ1},

where Θ1 ⊂ IRk1 , and a possibly different k2-parameter family of survival
functions denoted by

{F 2(x; τ) : τ ∈ T},
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where T ⊂ IRk2 . We are interested in all possible joint distributions for
(X, Y ) such that for each y ∈ S(Y )

P (X > x|Y > y) = F 1(x; θ(y)), ∀x ∈ S(X), (11.3)

and for each x ∈ S(X)

P (Y > y|X > x) = F 2(y; τ(x)), ∀y ∈ S(Y ), (11.4)

for some functions θ(y) and τ(x).
If (11.3) and (11.4) are both to hold, there must exist marginal survival

functions for X and Y denoted by FX(x) and FY (y) such that

FY (y)F 1(x; θ(y)) = FX(x)F 2(y; τ(x)), ∀x, y. (11.5)

This is true since both the left- and right-hand sides of (11.5) must equal
P (X > x, Y > y). Whether we can solve this functional equation depends,
of course, on the structure of the functions F 1 and F 2. If we can solve
the functional equation (in θ(y), τ(x), FX(x), and FY (y)) we do need
to check that the expressions obtained for FX(x) and FY (y) are valid
survival functions. In Chapter 1, exponential families provided particularly
convenient examples in which the functional equation analogous to (11.5)
(i.e., (1.26)) could be solved. In the survival context, exponential families
do not typically play such a prominent role. Nevertheless, it is sometimes
possible to solve (11.5). Let us begin with an example which will itself
suggest possible generalizations.

Suppose that for each y > 0, the conditional survival function for X given
Y > y is exponential with intensity parameter θ(y). Analogously, suppose
that Y given X > x is also always exponential. Thus for some functions
θ(y) and τ(x) we have

P (X > x|Y > y) = exp[−θ(y)x] (11.6)

and
P (Y > y|X > x) = exp[−τ(x)y]. (11.7)

Equations (11.6) and (11.7) are to hold for every x > 0, y > 0. If there is
to be a joint survival function for (X, Y ) consistent with (11.6) and (11.7),
it must have associated marginal survival functions FX(x) = P (X > x)
and FY (y) = P (Y > y) and we must have

FY (y) exp[−θ(y)x] = P (X > x, Y > y) = FX(x) exp[−τ(x)y], (11.8)

where FX(·), FY (·), θ(·) and τ(·) are unknown functions. This, of course, is
just a special case of (11.5). If we take logarithms of both sides in (11.8) and
define φ̃2(y) = log FY (y) and φ̃1(x) = log FX(x) our functional equation
becomes

φ̃2(y) − θ(y)x = φ̃1(x) − τ(x)y. (11.9)
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This is a special case of the Stephanos–Levi Civita–Suto functional equation
(refer to Theorem 1.3). In order for (11.9) to hold we must have

θ(y) = α + γy (11.10)

and
τ(x) = β + γx (11.11)

for some constants α, β, γ. Substituting this back in (11.8) we obtain the
following expression for the joint survival function of (X, Y ):

F̄X,Y (x, y) = P (X > x, Y > x) = exp(δ + αx + βy + γxy) , x > 0, y > 0.
(11.12)

Clearly δ must be 0. In order for (11.12) to represent a valid joint survival

function we must have ∂2F̄ (x,y)
∂x ≥ 0, ∀x, y > 0. This means we must take

αβ ≥ −γ. In addition we need α, β < 0, and γ ≤ 0. Reparametrizing in
terms of marginal scale parameters and an interaction parameter we have

F̄X,Y (x, y) = exp

[

−
(

x

σ1
+

y

σ2
+ θ

xy

σ1σ2

)]

, x > 0, y > 0, (11.13)

where σ1, σ2 > 0 and 0 ≤ θ ≤ 1. This is recognizable as Gumbel’s type
I bivariate exponential distribution (Gumbel (1960)). If we set x = 0 or
y = 0 in (11.13) we find that the distribution has exponential marginals. As
Gumbel noted the correlation is always nonpositive (analogous nonpositive
correlation was encountered in the exponential conditionals distribution
discussed in Section 4.4). In the present case we find

ρ(X, Y ) = −1 +

∫ ∞

0

e−y

1 + θy
dy (11.14)

and
−0.404 ≤ ρ(X, Y ) ≤ 0. (11.15)

Gumbel provided the following expressions for conditional densities, means
and variances. For y > 0,

fX|Y (x|y) =
1

σ1

[(

1 + θ
x

σ1

)(

1 + θ
y

σ2

)

− θ

]

e−(1+θy/σ2)x/σ1 , x > 0,

(11.16)

E(X|Y = y) = σ1

1 + θ + θy
σ2

(

1 + θy
σ2

)2 , (11.17)

and

var(X|Y = y) = σ2
1

(1 + θ + θ y
σ2

)2 − 2θ2

(

1 + θ y
σ2

)4 . (11.18)
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Nair and Nair (1988) characterized this Gumbel bivariate exponential dis-
tribution as the only one with the property that

E(X − x|X > x, Y > y) = E(X|Y > y), ∀x, y > 0, (11.19)

and

E(Y − y|X > x, Y > y) = E(Y |X > x), ∀x, y > 0. (11.20)

From our discussion, we may add to Nair and Nair’s observation the
fact that Gumbel’s bivariate exponential distribution has exponential con-
ditional survival functions (i.e. that (11.6) and (11.7) hold).

The above example was resolvable in part because the assumed condi-
tional survival functions were available in closed form. Motivated by the
discussion in the literature of generalized gamma functions we can intro-
duce what we call generalized(Φ̄) survival functions. For them we can often
successively implement a conditional characterization program analogous
to that which led to Gumbel’s distribution.

Definition 11.1 (Generalized survival function). Let Φ̄ denote a spe-
cific survival function. The corresponding family of generalized (Φ̄) survival
functions is of the form

F̄ (x;µ, σ, γ, δ) =

[

Φ̄

(

(

x − µ

σ

)δ
)]γ

, (11.21)

where µ ∈ IR , σ > 0, δ > 0, γ > 0. �

Now let Φ̄1 and Φ̄2 be two survival functions. We seek to identify all
bivariate distributions for (X, Y ) such that for every y, the conditional
survival function of X given {Y > y} is a generalized (Φ̄1) survival function
and for every x, the conditional survival function of Y given {X > x} is a

generalized ( ¯̄Φ2) survival function. Thus we ask that, for each y ∈ S(Y ),

P (X > x|Y > y) =

[

Φ̄1

(

(

x − µ1(y)

σ1(y)

)δ1(y)
)]γ1(y)

(11.22)

and, for each x ∈ S(X),

P (Y > y|X > x) =

[

Φ̄2

(

(

y − µ2(x)

σ2(x)

)δ2(x)
)]γ2(x)

(11.23)

for some unknown functions µ1(y), σ1(y), δ1(y), γ1(y), µ2(x), σ2(x), δ2(x),
and γ2(x).

The functional equation to be solved to determine models satisfying
(11.22) and (11.23) is obtained by multiplying the right-hand sides of



11.4 Examples of Distributions Characterized by Conditional Survival 261

(11.22) and (11.23) by the corresponding unknown marginal survival func-
tions so that they may be equated (as was done in (11.5)). The tractability
of the resulting functional equation depends on the nature of the survival
functions Φ̄1 and Φ̄2, and depends on how many and which ones of the
unknown functions µ1(y), . . . , γ2(x) are assumed to be constants. There
appears to be no general theory available but an interesting list of cases in
which the program can be successfully carried out is provided in the next
section.

Our exponential example corresponded to the choice Φ̄1(x) = Φ̄2(x) =
e−x, x > 0 and µ1(y) = 0, µ2(x) = 0, δ1(y) = δ2(x) = γ1(y) = γ2(x) = 1.

11.4 Examples of Distributions Characterized by
Conditional Survival

11.4.1 Weibull Conditional Survival Functions

Suppose that (X, Y ) has support IR+ × IR+ and, for each y > 0,

P (X > x|Y > y) = exp{−[x/σ1(y)]γ1(y)}, x > 0, (11.24)

and, for each x > 0,

P (Y > y|X > x) = exp{−[y/σ2(x)]γ2(x)}, y > 0. (11.25)

If we multiply (11.24) by F̄2(y) and equate it to (11.25) multiplied by
F̄1(x) and take logarithms we encounter the following functional equation:

log F̄2(y) −
[

x

σ1(y)

]γ1(y)

= log F̄1(x) −
[

y

σ2(x)

]γ2(x)

. (11.26)

It is conjectured that no solution to (11.26) exists unless γ1(y) and γ2(x)
are constant functions. If γ1(y) = γ1, ∀y and γ2(x) = γ2 ∀x, then (11.26) is
a special case of the Stephanos–Levi Civita–Suto equation (Theorem 1.3).
It follows that

σ1(y)γ1 = (α + γ yγ2)−1,

σ2(x)γ2 = (β + γ xγ1)−1,

and, eventually, that the joint survival function is of the form

F̄ (x, y) = exp

{

−
[(

x

σ1

)γ1

+

(

y

σ2

)γ2

+θ

(

x

σ1

)γ1
(

y

σ2

)γ2
]}

, x > 0, y > 0.

(11.27)
where σ1, σ2 > 0 and 0 ≤ θ ≤ 1. The Gumbel bivariate exponential (11.23)
corresponds to the choice γ1 = γ2 = 1 in (11.27).
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It may be observed that these models exhibit negative dependence (and
hence negative correlation). Negative correlation was also shown to be a
feature of the exponential conditionals distribution discussed earlier and
displayed in (4.3). In terms of survival modeling this can be viewed, in a
sense, as the opposite of load sharing. After one component fails, the other
appears to be invigorated rather than debilitated. Clearly this limitation on
the achievable sign of the correlation coefficient must be taken into account
in modeling efforts. Data sets with positive correlation will clearly not be
appropriately fitted by Weibull conditionals models such as (11.27).

11.4.2 Logistic Conditional Survival Functions

Although survival models are usually associated with nonnegative random
variables, there is nothing, in principle, in our development to stop us
from considering random variables which can assume negative values. For
example, we might postulate logistic conditional survival functions. Thus,
for each y ∈ IR, we might assume

P (X > x|Y > y) = [1 + e(x−µ1(y))/σ1(y)]−1, x ∈ IR , (11.28)

and, for each x ∈ IR,

P (Y > y|X > x) = [1 + e(y−µ2(x))/σ2(x)]−1, y ∈ IR . (11.29)

If we seek a general solution we are led to an equation analogous to (11.26).
Only the case σ1(y) = σ1 in (11.28) and σ2(x) = σ2 in (11.29) appears to
be tractable. If we make this simplifying assumption we are led to the class
of bivariate survival functions with logistic conditional survival functions
given by

F̄ (x, y) = [1+e(x−µ1)/σ1 +e(y−µ2)/σ2 +θe[(x−µ1)/σ1+(y−µ2)/σ2]]−1, (11.30)

where µ1, µ2 ∈ IR+ and θ ∈ [0, 2]. The constraint θ ∈ [0, 2] is needed to

guarantee that
∂2F̄ (x, y)

∂x∂y
≥ 0, ∀x, y.

11.4.3 Generalized Pareto Conditional Survival Functions

In this case we ask, that for each y > 0,

P (X > x|Y > y) =

[

1 +

(

x

σ1(y)

)c1(y)
]−k1(y)

, x > 0, (11.31)

and, for each x > 0,

P (Y > y|X > x) =

[

1 +

(

y

σ2(x)

)c2(x)
]−k2(x)

, y > 0, (11.32)
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for positive functions c1(y), k1(y), σ1(y), c2(x), k2(x), and σ2(x). If (11.31)
and (11.32) are both to hold, we must have

F̄2(y)

[

1 +

(

x

σ1(y)

)c1(y)
]−k1(y)

= F̄1(x)

[

1 +

(

y

σ2(x)

)c2(x)
]−k2(x)

.

(11.33)
If we introduce new functions

b1(y) = σ1(y)−c1(y)

and
b2(x) = σ2(x)−c2(x)

then (11.33) can be written as

F̄2(y)[1 + b1(y)xc1(y)]−k1(y) = F̄1(x)[1 + b2(x)yc2(x)]−k2(x). (11.34)

The general class of solutions to (11.34) appears to be difficult to describe.
There are, however, two special cases which are quite tractable:

(i) when c1(y) = c1 and c2(x) = c2 and ;

(ii) when k1(y) = k1 and k2(x) = k2.

In case (i), equation (11.34) reduces to one which is analogous to equa-
tion (4.1) of Arnold, Castillo, and Sarabia (1993d). It can be transformed to
a form equivalent to an equation solved by Castillo and Galambos (1987b)
(their equation (3.1)). Two families of solutions consequently exist. Substi-
tuting the solutions back into the expressions for the joint survival function
(11.34) we obtain the following. In Family I,

F̄ (x, y) =

[

1 +

(

x

σ1

)c1

+

(

y

σ2

)c2

+ θ

(

x

σ1

)c1
(

y

σ2

)c2
]−k

, x, y > 0,

(11.35)
for positive constants c1, σ1, c2, σ2, k, and θ ∈ [0, 2]. Again the condition
θ ∈ [0, 2] is needed to ensure a positive density. This family of bivariate
generalized Pareto distributions was first described in Durling (1970) (see
also Arnold (1990) for a multivariate version).

The other family of solutions to (11.34) with c1(y) = c1 and c2(x) = c2

lead to joint survival functions of the form

F̄ (x, y) = exp

{

−θ1 log

[

1 +

(

x

σ1

)c1
]

− θ2 log

[

1 +

(

y

σ2

)c2
]

−θ3 log

[

1 +

(

x

σ1

)c1
]

log

[

1 +

(

y

σ2

)c2
]}

, x, y > 0, (11.36)

for θ1 > 0, θ2 > 0, θ3 ≥ 0, σ1 > 0, σ2 > 0, c1 > 0, c2 > 0.
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Turning to case (ii), in which k1(y) = k1 and k2(x) = k2, it is not
hard to verify that we must have k1 = k2 = k, and then the result-
ing functional equation to be solved may be transformed to one that is
equivalent to (11.26). The only readily obtainable solutions will then have
c1(y) = c1 and c2(x) = c2 and we will be led to solutions which are already
included in the family (11.35). Thus the two parametric families (11.35)
and (11.36) represent all the known bivariate distributions with generalized
Pareto conditional survival functions.

11.4.4 Extreme Conditional Survival Functions

A smallest extreme value distribution has a survival function of the form

F̄ (x) = exp[−e(x−µ)/σ], −∞ < x < ∞, (11.37)

where µ ∈ IR and σ > 0. In this context, we seek to identify bivariate
distributions for (X, Y ) for which all conditionals, of X given Y ≥ y and of
Y given X ≥ x, are members of the family (11.37). The reader is referred
to Chapter 12 for a detailed discussion of distributions of this type.

11.5 Multivariate Extensions

A natural analog to Theorem 11.1 would involve the question of compati-
bility of the following k conditional survival functions:

P (Xi > xi|X(i) > x(i)) = ai(xi, x(i)), i = 1, 2, . . . , k, (11.38)

(recall X(i) is X with Xi deleted, etc.). As usual when we write a > b for
two vectors it is to be interpreted as holding coordinatewise, i.e., ai > bi

for each coordinate i. The condition for compatibility is that for each i �= j
the ratio ai(xi; x(i))/aj(xj ; x(j)) should factor in the following manner:

ai(xi; x(i))

aj(xj ; x(j))
=

uj(x(j))

ui(x(i))
, (11.39)

where the uj(x(j))’s are (k − 1)-dimensional survival functions.
As in Sections 11.3 and 11.4, the next step is to consider joint survival

functions specified by the requirement that for each i, P (Xi > xi|X(i) >
x(i)) should belong to some particular parametric family of one-dimensional
survival functions with parameters which might depend on x(i).

For example, we might seek the most general class of k-dimensional sur-
vival functions with support (0,∞)k such that for each i and for each
x(i) ∈ IRk−1

+ ,

P (Xi > xi|X(i) > x(i)) = exp[−λi(x(i))xi], xi > 0, (11.40)



11.6 Conditional Distributions 265

for some positive functions λi(x(i)), i = 1, 2, . . . , k. Multiply the expressions

in (11.40) by F̄X(i)
(x(i)), the (k − 1)-dimensional survival functions which

must exist for compatibility, and take logarithms, to obtain a system of
Stephanos–Levi Civita–Suto functional equations whose only solutions lead
to k-dimensional versions of (11.13) of the following form:

F̄ (x1, . . . , xk) = exp

⎡

⎣−
∑

s∈ξk

θs

⎛

⎝

k
∏

j=1

x
sj

j

⎞

⎠

⎤

⎦ , x > 0, (11.41)

where ξk is the set of vectors of 0’s and 1’s of dimension k with at least
one coordinate being a 1. Constraints must be imposed in the θs’s which
appear in (11.41) to guarantee that it represents a genuine survival function.
Thus we must have θs ≥ 0, ∀s, and θs > 0, ∀s, which include only one
coordinate equal to 1. In addition, θ(1,1,00...0) ≤ θ(1,0...0)θ(0,1,0...0), etc.,
since the bivariate marginals will necessarily be of the form (11.13) whose
interaction parameter θ was constrained to be ≤ 1.

Gumbel (1960) discussed the model (11.41). He obtained it by marginal
rather than conditional specification. It is known in the literature as a
Gumbel type I multivariate exponential distribution.

Using analogous arguments we can identify the form of the k-dimensional
analogs of the bivariate survival functions displayed in (11.27), (11.30),
(11.35), and (11.36). For example, the analog to (11.35) is

F̄ (x) =

⎡

⎣1 +
∑

s∈ξk

θs

⎛

⎝

k
∏

j=1

x
cjsj

j

⎞

⎠

⎤

⎦

−k

, x > 0, (11.42)

where the θs’s are suitably constrained to guarantee that (11.42) is a valid
k-dimensional survival function.

11.6 Conditional Distributions

The role played by survival functions in Sections 11.2–11.5 could instead be
played by distribution functions. Thus we might ask whether two families
of conditional distributions of the form

P (X ≤ x|Y ≤ y) = a(x, y) (11.43)

and
P (Y ≤ y|X ≤ x) = b(x, y) (11.44)

are compatible. As in Theorem 11.1 the answer is yes, provided that the
ratio a(x, y)/b(x, y) factors appropriately. Next we could ask about the
nature of bivariate distributions that are constrained to have P (X ≤ x|Y ≤
y) for each y and P (Y ≤ y|X ≤ x) for each x belonging to specified
parametric families of distributions.
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Example 11.1 (Conditional power function distributions). Con-
sider a random vector (X, Y ) with 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1 and, for each
y ∈ (0, 1),

P (X ≤ x|Y ≤ y) = xα1(y), 0 < x < 1, (11.45)

while, for each x ∈ (0, 1),

P (Y ≤ y|X ≤ x) = yα2(x), 0 < y < 1. (11.46)

Following a by now familiar program, we multiply (11.45) and (11.46)
by the corresponding marginal distribution function (which must exist if
(11.45) and (11.46) are to be compatible), equate them, and take logarithms
to obtain

log FY (y) + α1(y) log x = log FX(x) + α2(x) log y. (11.47)

Solving this familiar functional equation (using Theorem 1.3) we find that

α1(y) = α + γ log y (11.48)

and
α2(x) = β + γ log x. (11.49)

Substituting (11.48) and (11.49) in (11.47) we can identify FX(x) and
FY (y) and eventually obtain the following general expression for the joint
distribution function of a random variable (X, Y ), satisfying (11.45) and
(11.46):

FX,Y (x, y) = xαyβeγ(log x)(log y), 0 < x < 1, 0 < y < 1. (11.50)

In order for (11.50) to represent a genuine joint distribution function we
must require that α > 0, β > 0 and that γ be negative and satisfy

−γ ≤ αβ. (11.51)

�

There is an alternative way to view the distribution (11.50) derived in
Example 11.1. If (X, Y ) has the distribution (11.50), then defining U =
−log X, V = −log Y we may recognize that (X, Y ) has a Gumbel type I
distribution with joint survival function displayed in (11.13). So one way
to justify the constraint (11.51) is to recognize that it is equivalent to the
constraint θ ≤ 1 which was needed in (11.13).

The close relation between (11.13) and (11.50), in which a distribution
obtained via conditional survival specification (11.13) is intimately related
to a distribution obtained via conditional distribution specification (11.50),
suggests the possible existence of a “duality” between these conditional
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specification paradigms. And such is indeed the case. If a random vector
(X, Y ) satisfies (11.1) (conditional survival specification), then the ran-
dom vector (−X,−Y ) satisfies (11.43) and (11.44) (conditional distribution
specification). The advantage of considering (11.43) and (11.44) is that it
allows us to readily focus on conditional distributions normally described
via their distribution functions instead of their survival functions (such as
the power function distribution as distinct from the exponential, Weibull,
or Pareto distributions). In this case, of course, any distribution obtained
using (11.43) and (11.44) could have been obtained using (11.1).

Multivariate extensions of the conditional distribution paradigm (11.43)–
(11.44) can, of course, be formulated in a straightforward fashion or, alter-
natively, can be obtained via the transformation X̃ = −X from multivari-
ate distributions obtained via conditional survival specification. Some of
the bivariate distributions discussed in Chapter 12 are amenable to such
extension to higher dimensions.

11.7 Conditional Proportional Hazards

In order to model the effects of covariates on survival, a popular model
is the proportional hazards model. In it the survival function FX(x) is
assumed to have the form

F̄X(x) =
[

F̄0(x)
]δ

, (11.52)

where δ depends on the values of the covariates and where F̄0 is the
“baseline” survival function.

It seems reasonable to investigate the kinds of bivariate models obtain-
able by postulating that the conditional survival functions exhibit propor-
tional hazards structure.

Thus we will consider a bivariate random variable (X, Y ) and two specific
survival functions F̄1 and F̄2. We seek to identify all possible joint survival
functions for (X, Y ) with the following properties:

(a) for each y ∈ S(Y ),

P (X > x|Y > y) = [F̄1(x)]γ1(y), ∀x ∈ S(X), (11.53)

for some function γ1 : IR → IR+; and

(b) for each x ∈ S(X),

P (Y > y|X > x) = [F̄2(y)]γ2(x), ∀y ∈ S(Y ), (11.54)

for some function γ2 : IR → IR+.
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A model satisfying (11.53) and (11.54) will be called a conditional pro-
portional hazards survival model. Note that, in the absolutely continuous
case, we can introduce the corresponding conditional hazard functions:

h(x|Y > y) =
d

dx
log P (X > x|Y > y) (11.55)

and

h(y|X > x) =
d

dy
log P (Y > y|X > x). (11.56)

With this definition assuming the conditional formulation as in (11.53),
(11.54), for two distinct values y1 and y2, the conditional hazard functions
h(x|Y > y1) and h(x|Y > y2) differ only by a factor γ(y2)/γ(y1), hence
justifying the use of the term “proportional hazards.” Note that

h(x|Y > y) = γ1(y)h1(x),

where h1(x) is the hazard function corresponding to the survival function
F̄1. Analogously, we have

h(y|X > x) = γ2(x)h2(y),

where h2(y) is the hazard function corresponding to the survival function
F̄2.

If (11.53) and (11.54) are to be compatible there must exist marginal
survival functions F̄X(x) and F̄Y (y) and since we must have

P (X > x, Y > y)=P (Y > y)P (X > x|Y > y)=P (X > x)P (Y > y|X > x),

we are led to the following functional equation:

F̄Y (y)[F̄1(x)]γ1(y) = F̄X(x)[F̄2(y)]γ2(x). (11.57)

Here F̄1 and F̄2 are known and the other functions are unknown. Taking
logarithms in (11.57) yields a Stephanos–Levi Civita–Suto functional equa-
tion. Eventually we conclude that, in order to satisfy (11.53) and (11.54),
our joint survival function must be of the form

P (X > x, Y > x) = exp{α log F̄1(x) + β log F̄2(y) + γ log F̄1(x) log F̄2(y)}.
(11.58)

It is clear that (11.58) can be viewed as a marginal transformation
of Gumbel’s type I bivariate exponential distribution (Gumbel (1960)).
Thus if (X, Y ) satisfy (11.53) and (11.54), it must be the case that the
transformed random vector

(U, V ) = (−log F̄1(X),−log F̄2(Y )) (11.59)
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has a Gumbel bivariate survival function of the form (11.13).
Note that, since the Gumbel distribution has nonpositive correlation

and since the marginal transformations in (11.59) are both monotone, the
correlations in the model (11.58) are also nonpositive when they exist.

Remark 11.2 A parallel development is possible if we replace assumptions
(11.53) and (11.54) by requirements of the form

P (X > x|Y = y) = [F̄1(x)]γ1(y), y ∈ S(Y ), (11.60)

and

P (Y > y|X = x) = [F̄2(y)]γ2(y), x ∈ S(X). (11.61)

This will lead to a model which represents a marginal transformation
of the negatively correlated exponential conditionals distribution (4.4) (see
Arnold and Kim (1996) for details; see also Exercise 10.4 in Cox and Oates
(1984)).

11.8 Conditional Accelerated Failure

A direct competitor of the proportional hazards paradigm as a model for
survival mechanisms is the accelerated failure scheme. Covariates affect
survival in the accelerated failure model via a time change or, equivalently,
via a change of scale only, leaving the shape of the survival function un-
changed. It is natural to try and develop conditional accelerated failure
models parallel to the conditional proportional hazards models introduced
in the previous section.

As usual let F̄1 and F̄2 be specific (baseline) survival functions. We now
seek all joint distributions for (X, Y ) where X ≥ 0, Y ≥ 0 such that:

(a) for each y ∈ S(Y ),

P (X > x|Y > y) = F̄1(δ1(y)x); (11.62)

and

(b) for each x ∈ S(X),

P (Y > y|X > x) = F̄2(δ2(x)y), (11.63)

where δ1 : S(Y ) → IR+ and δ2 : S(X) → IR+.

Assuming that corresponding marginal survival functions F̄X(x), F̄Y (y)
exist we are led to the following functional equation:

F̄Y (y)F̄1(δ1(y)x) = F̄X(x)F̄2(δ2(x)y), (11.64)
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where F̄1, F̄2 are known functions and the others are unknown. For certain
very specific choices of F̄1 and F̄2 this can be solved easily. For example, it
can be solved if F̄1(x) = exp[−(x/σ1)

δ1 ] and F̄2(y) = exp[−(y/σ2)
δ2 ] (the

Weibull case). This doesn’t provide us with any new models however since,
as is well known, the Weibull model can be viewed as either an accelerated
failure model or a proportional hazards model. Thus, the solution to (11.64)
when F̄1 and F̄2 are Weibull is already subsumed in the family of models
developed in Section 11.4.

Can we find other solutions to (11.64)?
To illustrate the difficulties inherent in such a quest, let us make the

assumption that the functions appearing in (11.64) are suitably differen-
tiable. Introduce new variables u = log x, v = log y and new functions
φ1(u) = log F̄X(u), φ2(v) = log F̄Y (v), δ̃1(v) = log δ1(y), δ̃2(u) = log δ2(x),
g1(u) = F̄1(e

u), and g2(v) = F̄2(e
v).

Equation (11.64) now assumes the form

φ̃2(v) + g1(u + δ̃1(v)) = φ̃1(u) + g2(v + δ̃2(u)). (11.65)

Differentiating with respect to u and v yields

g′′1 (u + δ̃1(v))δ̃′1(v) = g′′2 (v + δ̃2(u))δ̃′2(u). (11.66)

This functional equation was studied by Narumi (1923) and discussed in
Chapter 7 (see (7.14)). Only a very limited class of solutions can be found. It
does include solutions that lead to a Weibull survival model (as we already
know) but, apparently, no other solutions with simply described structure.

Remark 11.3 A parallel development can be pursued beginning with a
conditional accelerated failure model of the form:

(a) for each y ∈ S(Y )

P (X > x|Y = y) = F̄1(δ1(y)x) (11.67)

for some function δ1 : S(Y ) → IR+; and

(b) for each x ∈ S(X),

P (Y > y|X = x) = F̄2(δ2(x)y) (11.68)

for some function δ2 : S(X) → IR+.

Unfortunately, in this formulation too, we are led to the same functional
equation (11.64) which again we could solve in the Weibull case (rederiving
material already discussed in Section 11.4) and for which we can only ob-
tain complicated, difficult to interpret, non-Weibull solutions (arising from
Narumi’s general solution to (11.66)).
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11.9 An Alternative Specification Paradigm

Specification of both families of conditional survival functions involves re-
dundant information (that is why we had to check for consistency). Clearly,
instead of specifying P (X > x|Y > y) for every x, y and P (Y > y|X > x)
for every x, y, it is enough to specify every function P (X > x|Y > y) and
P (Y > y|X > x) for just one value of x. Alternatively, some functional
of the family of survival functions P (Y < y|X > x), x ∈ S(X), might be
adequate, in conjunction with knowledge of P (X > x|Y > y) for every x, y,
to completely specify the joint distribution of (X, Y ).

Based on our experience in Chapter 7, we may hope that one family
of conditional survival functions together with a conditional regression
specification might suffice.

Thus we seek all bivariate distributions such that for given functions
a(x, y) and ψ(x) we have

P (X > x|Y > y) = a(x, y), (x, y) ∈ S(X) × S(Y ), (11.69)

and
E(Y |X > x) = ψ(x), x ∈ S(X). (11.70)

We will say that a(x, y) and ψ(x) are compatible if there exists a joint
survival function P (X > x, Y > y) satisfying (11.69) and (11.70).

Questions that arise in this context are:

(i) Under what conditions are functions a(x, y) and ψ(x) compatible?

(ii) If they are compatible, when do they determine a unique distribution?

(iii) For a given a(x, y) can we identify the class of all compatible choices
for ψ(x)?

We will illustrate how these questions might be resolved in the case
in which (X, Y ) is absolutely continuous and has as support the positive
quadrant (i.e., x > 0, y > 0). These are not unnatural restrictions for
survival models.

If a(x, y) and ψ(x) are to be compatible then there must exist a cor-
responding marginal survival function for Y which can be denoted by
h(y) [= P (Y > y)]. For each x > 0, ψ(x) may be obtained by integrat-
ing the conditional survival function P (Y > y|X > x) with respect to y
over [0,∞). Thus for each x > 0,

ψ(x) =

∫ ∞

0

P (Y > y|X > x) dy

=

∫ ∞

0

P (X > x, Y > y)/P (X > x) dy

=

∫ ∞

0

a(x, y)h(y)

a(x, 0)h(0)
dy
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=

∫ ∞

0

a(x, y)

a(x, 0)
h(y) dy (11.71)

since h(0) = P (X > 0) = 1. Thus h(y) can be obtained by solving an
integral equation with known kernel a(x, y), i.e.,

ψ(x)a(x, 0) =

∫ ∞

0

a(x, y)h(y) dy. (11.72)

For certain choices of the kernel a(x, y) (which is the specified conditional
survival function) this equation can be solved.

The exponential case is perhaps the easiest to solve. For it we can answer
all three questions (i), (ii), (iii) above.

Suppose that we assume an exponential conditional survival function
described by

a(x, y) = P (X > x|Y > y)

= exp[−(α + βy)x], x > 0, y > 0, (11.73)

where α > 0 and β > 0. Taking the limit as y → 0, we find

a(x, 0) = e−αx. (11.74)

For any given conditional survival function ψ(x) we need to determine
the corresponding marginal survival function h(y) = P (Y > y) by solving
(11.72). Substituting (11.73) and (11.74), the equation to be solved assumes
the form

ψ(x)e−αx =

∫ ∞

0

e−αx−βxyh(y) dy (11.75)

or, equivalently,

ψ(x) =

∫ ∞

0

e−βxyh(y) dy. (11.76)

Immediately, we can see a role for Laplace transforms in solving our
problem! Note that

ψ(0) = E(Y |X > 0) = E(Y ) =

∫ ∞

0

h(y) dy.

Let us define a new density h̃ on (0,∞) by

h̃(y) = h(y)/ψ(0). (11.77)

It follows from (11.75) and (11.76) that the Laplace transform of h̃, i.e.,

Mh̃(t) =

∫ ∞

0

e−tyh̃(y) dy (11.78)
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satisfies

Mh̃(t) = ψ

(

t

β

)

/ψ(0). (11.79)

Thus, provided that ψ is a completely monotone function (specifically a
Laplace transform of a finite measure on (0,∞) with a decreasing density),
then it uniquely determines h̃ by (11.79) which by normalization yields
h(y) [= P (Y > y)]. In this case we are able to identify the form of every
function ψ that is compatible with the family of conditional survival func-
tions given by (11.73). We do need to check that the product h(y)a(x, y)
is a valid survival function.

Example 11.2 (Exponential conditional survival with 1/ψ(x) lin-
ear). Suppose that, in conjunction with exponential conditional survival
(i.e., a(x, y) given by (11.73)), we assume that

ψ(x) = (γ + δx)−1. (11.80)

Observe that this is a completely monotone function so we know that it
will be compatible with (11.73). From (11.79) we will have, in this case,

Mh̃(t) =

(

γ + δ
t

β

)−1

γ−1

=

(

1 +
δ

βγ
t

)−1

. (11.81)

We recognize this as the Laplace transform of an exponential density. So
we can conclude that

h̃(y) =
βγ

δ
exp

(

−βγ

δ
y

)

, y > 0. (11.82)

The survival function for Y , i.e., h(y), is obtained by normalizing (11.82)
to have the value 1 at y = 0. Thus

h(y) = P (Y > y) = exp

(

−βγ

δ
y

)

. (11.83)

Consequently, the unique joint survival function with P (X > x|Y > y)
given by a(x, y) in (11.73) and E(Y |X > x) given by ψ(x) in (11.80) is of
the form

P (X > x, Y > y) = exp[−αx − βγ

δ
y − βxy], x > 0, y > 0. (11.84)

In order that (11.84) represents a valid joint survival function we need to im-
pose the condition 0 < δ/γ < α. We thus arrive at the Gumbel (I) bivariate
exponential distribution (displayed earlier with a different parametrization
in (11.13). �
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11.10 Bibliographic Notes

The key references for conditional survival models are Arnold (1995, 1996)
and Arnold and Kim (1996).

Exercises

11.1 Consider the model with logistic conditional survival distributions
given by (11.30). Obtain its correlation coefficient.

11.2 For any distribution F on (0,∞), define the odds-ratio function ϕ(x) =
F (x)/[1 − F (x)]. Investigate the class of bivariate proportional con-
ditional odds-ratio models. These are joint distributions F (x, y) for
which

ϕ(x|Y > y) = g1(y)ϕ1(x), x > 0, ∀y > 0,

and
ϕ(y|X > x) = g2(x)ϕ2(y), y > 0, ∀x > 0,

for some functions g1 and g2, where ϕ1 and ϕ2 are the marginal
odds-ratio functions of F (x, y).

11.3 Verify the assertions in Remark 11.2 assuming that the conditional
survival functions satisfy (11.60) and (11.61).

11.4 Verify the assertions in Remark 11.3 assuming that the conditional
survival functions satisfy (11.67) and (11.68).

11.5 Discuss the problem of identifying all bivariate distributions satisfying
(11.69) and (11.70) in the case in which S(X) and S(Y ) are finite sets.
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Applications to Modeling
Bivariate Extremes

12.1 Introduction

The Fisher–Tippet–Gnedenko models for univariate extremes are well un-
derstood, as are the corresponding multivariate extensions (see, for exam-
ple, Galambos (1978, 1987) or Resnick (1987)). It should be remembered,
however, that the multivariate extreme distributions discussed by these
authors correspond to limiting distributions of normalized coordinatewise
maxima of sequences of i.i.d. random vectors. Not many multivariate ex-
treme data sets can be reasonably viewed as fitting into this paradigm.
For example, if we observe maximum temperatures in the month at sev-
eral different locations we have a multivariate extreme data set which does
not seem to be necessarily explainable in terms of maxima of i.i.d. vectors.
For such data sets, some role for univariate extreme distributions seems
appropriate but it is not apparent whether it should be a marginal or a
conditional role. And of course, even if the data were not generated by a
process involving i.i.d. vectors, it might still be well fitted by a multivariate
extreme distribution. In many cases, it seems appropriate to approach the
problem of modeling multivariate extreme data sets using an augmented
toolbox, not just the multivariate extreme models based on maxima of
i.i.d. samples. In this chapter we will review some of the popular bivari-
ate extreme models and compare them with certain conditionally specified
bivariate extreme models (developed in the spirit of Chapters 4 and 11).

Attention is restricted to the bivariate case for ease of book-keeping.
Multivariate extensions are of course appropriate and feasible.
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A key difference between the classical models and the conditional spec-
ification models is to be found in the sign of the correlation between the
variables in the models: nonnegative for classical models, non-positive for
conditionally specified models.

In the Fisher–Tippet–Gnedenko classification, there are three types of
univariate extreme distributions; the Gumbel, Weibull, and Frechet. Mul-
tivariate extensions of the three types could be considered. In this chapter,
we limit discussion to bivariate versions of the Gumbel extreme value dis-
tribution ((12.1) below). Parallel developments could be pursued for the
other two types.

12.2 Univariate and Bivariate Gumbel
Distributions

Definition 12.1 (Univariate Gumbel distribution). The univariate
Gumbel extreme value distribution (for maxima) has density of the form

f(x) =
1

σ
e−(x−µ)/σ exp

(

−e−(x−µ)/σ
)

, −∞ < x < ∞, (12.1)

where µ and σ are, respectively, location and scale parameters. �

Certain bivariate extensions of (12.1) were introduced by Gumbel and
Mustafi (1967). The models they introduced did have Gumbel marginals
and indeed were legitimate bivariate extreme distributions in the sense of
being possible limit laws for coordinatewise maxima of i.i.d. sequences of
bivariate random variables. When these classic bivariate Gumbel distribu-
tions were introduced there was, however, no suggestion that they were
selected in any optimal fashion from the vast array of possible bivariate
extreme distributions with Gumbel marginals. A general form for such
bivariate extreme distributions with Gumbel marginals is

FX,Y (x, y) = exp

{

−
∫ 1

0

min
[

f1(s)e
−x, f2(s)e

−y
]

ds

}

, (12.2)

where f1(t) and f2(t) are non-negative Lebesgue integrable functions such

that
∫ 1

0
fi(t) dt = 1, i = 1, 2 (see, e.g., Resnick (1987), pp. 272).

The type I bivariate Gumbel distribution, as introduced in Gumbel and
Mustafi (1967), has a joint distribution function of the form

FX,Y (x, y) =exp
{

−e−(x−µ1)/σ1−e−(y−µ2)/σ2 +θ[e(x−µ1/σ1 +e(y−µ2/σ2 ]−1
}

,

(12.3)
where θ ≥ 0. The joint density is of the form

fX,Y (x, y) =
1

σ1σ2
g1

(

x − µ1

σ1
,
y − µ2

σ2

)

,
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where

g1(u, v) =
[

exp(−e−u − e−v − u − v + θ(eu + ev)−1)]

× [1 − θ(e2u + e2v)(eu + ev)−2

+ 2θe2u+2v(eu + ev)−3 (12.4)

+ θ2e2u+2v(eu + ev)−4
]

.

The Gumbel type II bivariate distribution (Gumbel and Mustafi, 1967)
has the form

FX,Y (x, y) = exp[−(e−(x−µ1)/(bσ1) + e−(y−µ2)/(bσ2))b], (12.5)

where 0 < b ≤ 1. In this case, the joint density is of the form

fX,Y (x, y) =
1

σ1σ2
g2

(

x − µ1

σ1
,
y − µ2

σ2

)

,

where

g2(u, v) = exp[−(e−u/b + e−v/b)b]

×[(e−u/b + e−v/b)2b−2e−u/b−v/b

+(b−1 − 1)(e−u/b + e−v/b)b−2e−u/b−v/b]. (12.6)

Both of these bivariate Gumbel distributions qualify as legitimate bivari-
ate extreme distributions (i.e., they can be written in the form (12.2)). For
example, it is not difficult to verify the conditions of Galambos’ (1987),
Theorem 5.2.1).

For any bivariate extreme distibution (of the general form (12.2)), it can
be shown that the coordinate random variables are associated. It then fol-
lows that all such distributions (including the two Gumbel–Mustafi mod-
els (12.3) and (12.5)) have non-negative correlations (see, e.g., Tiago de
Oliveira (1962)).

Of course, in the real world, not all bivariate maxima data sets exhibit
nonnegative correlation. In contrast to the classical modeling approach, the
conditional specification route (to be illustrated in the next section) leads
to models exhibiting correlations of the opposite sign.

12.3 Conditionally Specified Bivariate
Gumbel Distributions

If we require that certain conditional distributions rather than marginals
are of the Gumbel form, we encounter different distributions.
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First suppose that we assume that for every y the conditional distribu-
tion of X given Y = y is Gumbel(µ1(y), σ1(y)) and that for every x, the
conditional distribution of Y given X = x is Gumbel(µ2(x), σ2(x)).

To identify the most general class of distributions with such Gumbel
conditionals we will need to solve the following functional equation:

h2(y)
1

σ1(y)
exp

[

−x − µ1(y)

σ1(y)
− e−(x−µ1(y))/σ1(y)

]

= h1(x)
1

σ2(x)
exp

[

−y − µ2(x)

σ2(x)
− e−(y−µ2(x))/σ2(x)

]

,
(12.7)

where h1 and h2 are the unknown marginal densities of X and Y , respec-
tively. If we take logarithms in (12.7) and define new functions g2(y) =
log h2(y) − log σ1(y) and g1(x) = log h1(x) − log σ2(x), our functional
equation takes the simpler form

g2(y)−x − µ1(y)

σ1(y)
−e−(x−µ1(y))/σ1(y) = g1(x)−y − µ2(x)

σ2(x)
−e−(y−µ2(x))/σ2(x).

(12.8)
This functional equation appears to be difficult to solve. However, if we

assume σ1(y) ≡ σ1 and σ2(x) ≡ σ2, it is readily solved. Other solutions
would of course be of potential interest but, until they are found, the as-
sumption of constant scale functions (σ1(y) ≡ σ1, σ2(x) ≡ σ2) will still
yield a flexible collection of models. With this assumption, (12.8) becomes

g2(y) − x
σ1

+ µ1(y)
σ1

− exp
(

− x
σ1

+ µ1(y)
σ1

)

= g1(x) − y
σ2

+ µ2(x)
σ2

− exp
(

− y
σ2

+ µ2(x)
σ2

)

.

(12.9)
If we introduce the notation

g̃1(x) = g1(x) +
µ2(x)

σ2
+

x

σ1
,

g̃2(y) = g2(y) +
µ1(y)

σ1
+

y

σ2
,

ψ1(y) = eµ1(y)/σ1 ,

ψ2(x) = eµ2(x)/σ2 ,

then our equation can be written in the form

g̃2(y) − ψ1(y)e−x/σ1 = g̃1(x) − ψ2(x)e−y/σ2 . (12.10)

This is a Stephanos–Levi Civita–Suto functional equation and can readily
be solved. Using Theorem 1.3 we conclude that for some constants δ1, δ2, δ3

we must have
ψ1(y) = δ1 + δ3e

−y/σ2 (12.11)
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and
ψ2(x) = δ2 + δ3e

−x/σ1 . (12.12)

Consequently,
µ1(y) = σ1 log(δ1 + δ3e

−y/σ2) (12.13)

and
µ2(x) = σ2 log(δ2 + δ3e

−x/σ1). (12.14)

Thus X given Y = y belongs to the Gumbel(µ1(y), σ1) family, and Y given
X = x belongs to the Gumbel(µ2(x), σ2) family with µ1(y) and µ2(x)
as given in (12.13) and (12.14). If we write the corresponding conditional
distribution functions we see that

FX|Y (x|y) = exp
[

−e−(x−µ1(y))/σ1

]

= exp
[

−δ1e
−x/σ1 − δ3e

−x/σ1e−y/σ2

]

. (12.15)

Analogously

FY |X(y|x) = exp
[

−δ2e
−y/σ2 − δ3e

−x/σ1e−y/σ2

]

. (12.16)

From these expressions it is evident that the random variables

U = e−X/σ1 (12.17)

and
V = e−Y/σ2 (12.18)

have a joint distribution with exponential conditionals. From (4.14) the
joint density of (U, V ) will be of the form

fU,V (u, v) = exp(m00 − m10u − m01v − m11uv)I(u > 0, v > 0). (12.19)

From this, using (12.17) and (12.18), we can write the joint density of
(X, Y ) in the form

fX,Y (x, y)

=
exp

[

− x
σ1

− y
σ2

+ m00 − m10e
−x/σ1 − m01e

−y/σ2 − m11e
−x/σ1−y/σ2

]

σ1σ2
,

−∞ < x < ∞, −∞ < y < ∞.
(12.20)

An alternative more easily interpretable parametrization is available. In
(12.20) set µ1 = σ1 log m10, µ2 = σ2 log m01, and θ = m11/(m10m01). Also
let m̃00 denote a new normalizing constant. Our density then assumes the
form

fX,Y (x, y) =
1

σ1σ2
exp

[

−x − µ1

σ1
− y − µ2

σ2
+ m̃00

−e−(x−µ1)/σ1 − e−(y−µ2)/σ2 − θe−(x−µ1)/σ1−(y−µ2)/σ2
]

,
(12.21)
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where µ1, µ2 ∈ IR are location parameters, σ1, σ2 > 0 are scale parameters,
and θ ≥ 0 is a dependency parameter.

For completeness we also write the corresponding conditional densities
in this new parametrization:

fX|Y (x|y) =
1 + θe−(y−µ2)/σ2

σ1
e−(x−µ1)/σ1e−(1+θe−(y−µ2)/σ2 )e−(x−µ1)/σ1 ,

(12.22)

fY |X(y|x) =
1 + θe−(x−µ1)/σ1

σ2
e−(y−µ2)/σ2e−(1+θe−(x−µ1)/σ1 )e−(xy−µ2)/σ2 .

(12.23)
It is not difficult to verify that model (12.21) is always totally negative

of order 2 and consequently will exhibit nonpositive correlations. It is thus
evident that model (12.21) is not a valid bivariate extreme distribution.
Indeed, it does not even have Gumbel marginals.

The standarized form of (12.21) is

f(x, y) = k(θ) exp
[

−x − y − e−x − e−y − θe−x−y
]

, (12.24)

where the normalizing constant is given by

k(θ) = θe−1/θ/ [−Ei(1/θ)] , (12.25)

in which

− Ei(t) =

∫ ∞

t

e−u

u
du. (12.26)

The marginal density of the standarized distribution is

f(x) = k(θ)
exp[−x − e−x]

1 + θe−x
. (12.27)

A second conditional specification paradigm can be fruitfully employed in
this Gumbel context. It will turn out to yield a bivariate distribution with
nonpositive correlation also; but this time with Gumbel marginals. For it,
we focus on conditional distributions rather than conditional densities (as
in Section 11.6). Thus we seek to identify all joint distributions for (X, Y )
such that for every real y, the conditional distribution of X given (Y ≤ y)
is Gumbel(µ1(y), σ1(y)) and for each x, the conditional distribution of Y
given (X ≤ x) is Gumbel(µ2(x), σ2(x)). Thus we will have

P (X ≤ x|Y ≤ y) = exp[−e−(x−µ1(y))/σ1(y)] (12.28)

and
P (Y ≤ y|X ≤ x) = exp[−e−(y−µ2(x))/σ2(x)]. (12.29)

Since
P (X ≤ x, Y ≤ y) = P (X ≤ x|Y ≤ y)P (Y ≤ y)

= P (Y ≤ y|X ≤ x)P (X ≤ x),
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the following functional equation holds:

ϕ1(y) − e−(x−µ1(y))/σ1(y) = ϕ2(x) − e−(y−µ2(x))/σ2(x), (12.30)

where φ1(y) = log P (Y ≤ y) and φ2(x) = log P (X ≤ x).
Even though (12.30) appears to be simpler than (12.8) it too has not

been solved in general. As in the case of (12.8), considerable simplification
occurs if we assume that σ1(y) ≡ σ1 and σ2(x) ≡ σ2.

Our equation simplifies to

ϕ1(y) − e−x/σ1eµ1(y)/σ1 = ϕ2(x) − e−y/σ2eµ2(x)/σ2 , (12.31)

which is a functional equation of the SLCS form and is thus readily solvable
(just as (12.9) was solvable). It follows that for some constants γ1, γ2, γ3

we must have

eµ1(y)/σ1 = γ1 + γ3e
−y/σ2 (12.32)

and

eµ2(x)/σ2 = γ2 + γ3e
−x/σ1 . (12.33)

Substituting these back into (12.28) and (12.29) we find

P (X ≤ x|Y ≤ y) = exp(−γ1e
−x/σ1 − γ3e

−x/σ1e−y/σ2) (12.34)

and

P (Y ≤ y|X ≤ x) = exp(−γ2e
−y/σ2 − γ3e

−x/σ1e−y/σ2). (12.35)

Next let y → ∞ in (12.34) to obtain the marginal distribution of X.
This, combined with (12.35), yields the joint distribution of (X, Y ):

FX,Y (x, y) = exp(−γ1e
−x/σ1 − γ2e

−y/σ2 − γ3e
−x/σ1e−y/σ2). (12.36)

If we make the transformation

U = γ1e
−X/σ1 , (12.37)

V = γ2e
−Y/σ2 (12.38)

in (12.36), we find that (U, V ) has the bivariate exponential distribution of
the first kind introduced by Gumbel (1960) (as discussed in Section 11.3).

Consequently, in order for (12.36) to be a proper bivariate distribution
function, we must require that

γ1 > 0; γ2 > 0,

and

0 ≤ γ3 ≤ γ1γ2.
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If we define µ1 = σ1 log γ1, µ2 = σ2 log γ2, and θ = γ3/(γ1γ2) we may
rewrite (12.36) in a more convenient form, viz.

FX,Y (x, y) = exp[−e−(x−µ1)/σ1 − e−(y−µ2)/σ2 − θe−(x−µ1)/σ1−(y−µ2)/σ2 ],
(12.39)

where µ1, µ2 ∈ IR , σ1, σ2 > 0, and θ ∈ [0, 1]. The density of (X, Y ) is then
given by

fX,Y (x, y) =
1

σ1σ2
g

(

x − µ1

σ1
,
y − µ2

σ2

)

, (12.40)

where

g(u, v) = exp(−e−u − e−v − θe−u−v − u − v)

= ×[(1 + θe−u)(1 + θe−v) − θ].

It is not difficult to verify that model (12.39) exhibits negative quadrant
dependence and, as a consequence, has nonpositive correlation. It does have
Gumbel marginals but it is not a valid bivariate extreme distribution since
it fails to satisfy the condition of Theorem 5.2.1 of Galambos (1987) (or we
could just argue that it has correlation of the wrong sign).

12.4 Positive or Negative Correlation

The two Gumbel–Mustafi models (12.3) and (12.5) exhibit nonnegative cor-
relation as does any bivariate extreme model (of the general form (12.2)).
However, many bivariate data sets are not associated with maxima of se-
quences of i.i.d. random vectors even though marginally and/or condition-
ally a Gumbel model may fit quite well.

Quite often empirical extreme data are associated with dependent bi-
variate sequences. Unless the dependence is relatively weak, there is no
reason to expect that classical bivariate extreme theory will apply in such
settings and, consequently, no a priori argument in favor of nonnegative or
nonpositive correlation.

The conditionally specified Gumbel models introduced in this chapter
exhibit nonpositive correlation. Thus the Gumbel–Mustafi models and the
conditionally specified models do not compete but, in fact, complement
each other. Together they provide us with the ability to fit data sets
exhibiting a broad spectrum of correlation structure, both negative and
positive.

12.5 Density Contours

It is not easy to visualize densities from their algebraic formulations. Repre-
sentative density contours and density plots are provided here (see Figures
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FIGURE 12.1. Density plot for the Gumbel type I model with θ = 0.9.

FIGURE 12.2. Density contour plot for the Gumbel type I model with θ = 0.9.
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FIGURE 12.3. Density plot for the Gumbel type II model with b = 0.3.

FIGURE 12.4. Density contour plot for the Gumbel type II model with b = 0.3.

12.1–12.8) for each of the four models introduced in this chapter, to help
the reader visualize the nature of the dependency exhibited in each model.
In all cases we have centered and standardized the density, i.e., we have
set µ1 = µ2 = 0 and σ1 = σ2 = 1. These figures have been selected from
a more extensive collection which may be found in Arnold, Castillo, and
Sarabia (1998c).
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FIGURE 12.5. Density plot for model (12.21) with θ = 10.

FIGURE 12.6. Density contour plot for model (12.21) with θ = 10.
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FIGURE 12.7. Density plot for model (12.39) with θ = 0.9.

FIGURE 12.8. Density contour plot for model (12.39) with θ = 0.9.
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TABLE 12.1. Maximum wind speeds (mph) in Eastport and North Head for the
period 1912–1948, from Simiu and Filliben (1975).

Year Eastport North Head Year Eastport North Head

1912 53 69 1931 52 66
1913 41 65 1932 42 79
1914 54 70 1933 46 70
1915 49 63 1934 51 87
1916 60 73 1935 48 69
1917 54 65 1936 46 73
1918 52 68 1937 46 72
1919 56 65 1938 45 67
1920 48 57 1939 47 70
1921 39 95 1940 46 84
1922 57 60 1941 49 67
1923 46 68 1942 46 65
1924 46 64 1943 42 77
1925 51 70 1944 51 65
1926 38 73 1945 55 64
1927 50 65 1946 44 67
1928 45 66 1947 52 66
1929 50 63 1948 48 69
1930 48 66

12.6 Maximal Wind Speeds

Simiu and Filliben (1975) presented data on annual maximal wind speeds
at 21 locations in the United States of America. A convenient source for the
data is Table 10.1 in Rice (1975). Approximately 40% of the 210 pairs of
stations in this data set exhibit negative correlation so that the phenomenon
is not an isolated one. As a representative example consider data from two
stations, Eastport and North Head; see Table 12.1.

For each of the stations, Gumbel probability plots of the data are pro-
vided (Figures 12.9 and 12.10). Since the upper tails of theses plots exhibit
little curvature we can reasonably assume, marginally, a Gumbel domain
of attraction (see Castillo (1988) p. 173).

Since the data exhibit negative correlation it is reasonable to fit models
(12.21) and (12.39) (rather than (12.3) and (12.5) which exhibit positive
correlation). In addition a model with independent Gumbel marginals will
be fitted. In the analysis, the data have been rescaled by dividing by 100
for computational convenience.

The parameters of model (12.39) are estimated using maximum likeli-
hood while those of model (12.21) are estimated by maximizing the pseudo-
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TABLE 12.2. Fitted Gumbel Models estimated (standard errors are shown in
parentheses)

Parameters Independent Model (12.39) Model (12.21)

µ1 0.4604 0.4589 0.4333
(0.0082) (0.0083) (0.0141)

σ1 0.0470 0.0466 0.0415
(0.0056) (0.0055) (0.0048)

µ2 0.6622 0.6639 0.6372
(0.0088) (0.0091) (0.0146)

σ2 0.0513 0.0535 0.0501
(0.0065) (0.0067) (0.0058)

θ – 0.6864 1.8993
– (0.3509) (1.4751)

log(L) 108.103 110.992 114.025

FIGURE 12.9. Eastport maximum wind speeds (mph) on Gumbel probability
paper.
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FIGURE 12.10. North Head maximum wind speeds (mph) on Gumbel probability
paper.

FIGURE 12.11. Density contour plot for model (12.21) for the maximum wind
speed data.



0.4 0.45 0.5 0.55 0.6 0.65

0.6

0.7

0.8

0.9

290 12. Applications to Modeling Bivariate Extremes

FIGURE 12.12. Density contour plot for model (12.39) for the maximum wind
speed data.

likelihood:
n
∏

i=1

fX|Y (xi|yi)fY |X(yi|xi). (12.41)

Finally the simple independent marginal models are also estimated using
maximum likelihood.

The corresponding parameter estimates together with estimated stan-
dard errors and corresponding values of the log-likelihoods are displayed
in Table 12.2. For this data set it appears that model (12.21) provided a
significantly improved fit when compared with model (12.39) or with the
independence model. Density contour plots for the fitted versions of models
(12.21) and (12.39) are provided in Figures 12.11 and 12.12.

12.7 More Flexibility Needed

Since both negative and positive dependence are routinely encountered in
the real world, it seems desirable to have a flexible model capable of ex-
hibiting correlations of both signs. It may be observed that all of the models
discussed in this chapter involve a single dependency parameter. Models
involving multiple dependency parameters might provide the flexibility de-
sired. It must be remarked that it seems unlikely that we will be able to
develop models exhibiting possible correlations of both signs via bivariate
extreme or conditional specification arguments. The former are guaranteed
to give nonnegative correlations while the latter seem to favor negative
correlations in those cases where the corresponding functional equations
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are solvable. That is, unless we are satisfied with a cut-and-paste model,
combining say (12.3) and (12.21), of the form

f(x, y; θ) =
[

exp(−e−u − e−v − u − v + θ(eu + ev)−1)]
×[1 − θ(e2u + e2v)(eu + ev)−2

+ 2θe2u+2v(eu + ev)−3

+ θ2e2u+2v(eu + ev)−4
]

, if θ ≥ 0,
= exp[−x − y + m̃00 − e−x − e−y + θe−x−y] , if θ < 0.

(12.42)

12.8 Bibliographic Note

Bivariate extreme models are discussed in Arnold, Castillo, and Sarabia
(1998c).

Exercises

12.1 Seek examples of bivariate extreme data, with negative correlation.

12.2 Confirm the assertions that models (12.21) and (12.39) are always
negatively correlated?

12.3 Describe suitable k-variate extensions of the models (12.21) and (12.39).
Discuss the corresponding correlation structures.

12.4 Derive models analogous to (12.21) and (12.39) for the Weibull and
Frechet extreme value distributions (for definitions in the context of
extreme value theory see, either Resnick (1987) or Arnold, Balakrish-
nan, and Nagaraja (1992)).

12.5 Are models (12.21) and (12.39) always unimodal?

12.6 We can construct families of bivariate distributions with Gumbel
marginals with correlations of both positive and negative sign by
applying marginal transformations to suitable families of bivariate
uniform distributions (copulas). For example, we could begin with
(U1, U2) having a Farlie–Gumbel–Morgenstern distribution

FU1U2
(u1, u2) = u1u2[1+θ(1−u1)(1−u2)], 0 < u1 < 1, 0 < u2 < 1,

where θ ∈ [−1, 1]. Now define

X = −log(−log U1)

and
Y = −log(−log U2).
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Confirm that (X, Y ) has a bivariate Gumbel distribution with the
sign of its correlation determined by the sign of θ.



13

Bayesian Analysis Using
Conditionally Specified Models

13.1 Introduction

The standard Bayesian inference scenario involves data X whose distribu-
tion is governed by a family of densities {f(x; θ) : θ ∈ Θ} where frequently
Θ is of dimension, say k, greater than 2. A Bayesian analysis of such a
problem will involve identification of a prior density for θ which will be
combined with the likelihood of the data to yield a posterior distribution
suitable for inferences about θ. The use of informative priors (obtained from
knowledgable expert(s)) is usually envisioned in such settings. Considerable
modern Bayesian analysis has focussed on the frequently occurring case in
which prior information is sparse or absent. In this context we encounter
priors associated with adjectives such as: diffuse, noninformative, conve-
nience, reference, etc. Much early Bayesian work was focussed on so-called
conjugate priors. Such priors are convenient but lack flexibility for modeling
informed prior belief. The classical scenario, in which most of the issues are
already clearly visible, involves a sample from a normal distribution with
unknown mean and variance.

We will use this normal example to illustrate the potential of condi-
tionally specified models for providing more flexible but still manageable
families of prior distributions for routine use. Subsequently, we discuss in
more generality the role of conditionally specified distributions in Bayes-
ian analysis. Special emphasis is placed on exponential family models. The
normal example is examined in detail and a variety of specific applications
are outlined.
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13.2 Motivation from a Normal Example

Suppose that our data consists of n independent observations X1, X2, . . . , Xn

with a common normal distribution. We will denote the common mean of
the Xi’s by µ and the common precision (the reciprocal of the variance)
of the Xi’s by τ . Throughout this chapter we will use “precisions” rather
than “variances” to describe the scale parameters of normal random vari-
ables purely for book-keeping convenience (they allow us to talk of gamma
distributions instead of “inverse” gamma distributions).

Both parameters are unknown and our parameter space is

IR × IR+ = {(µ, τ) : −∞ < µ < ∞, 0 < τ < ∞}.
The natural conjugate prior for (µ, τ) (see, e.g., deGroot (1970)) consists

of densities of the form

f(µ, τ) ∝ exp
(

a log τ + bτ + cµτ + dµ2τ
)

, (13.1)

where a > 0, b < 0, c ∈ IR , d < 0. Densities such us (13.1) have a gamma
marginal density for τ and a conditional distribution for µ given τ that
is normal with precision depending on τ . Several authors (e.g., Arnold
and Press (1989a)) have remarked on the fact that there seems to be no
compelling reason to expect prior beliefs to necessarily exhibit the specific
dependence structure exhibited by (13.1).

In this setting the natural conjugate prior family for µ, assuming that τ
is known, is the normal family. The natural conjugate prior family for τ ,
assuming µ is known, is the gamma family. Based on these observations,
Arnold and Press (1989a) and others have advocated use of a joint prior
for (µ, τ) with independent normal and gamma marginals, i.e., the family
of densities of the form

f(µ, τ) ∝ exp
(

a log τ + bτ + cµ + dµ2
)

, (13.2)

where a > 0, b < 0, c ∈ IR, and d < 0. This is of course not a conjugate fam-
ily and at first glance the advantage gained in ease of prior assessment can
be expected to be offset by potential difficulties in analyzing the resulting
posterior (but more on this later). Note also that (13.2) like (13.1) involves
specific assumptions about the dependency (or lack thereof) between prior
beliefs about τ and µ.

Moreover we are likely to be reluctant to forego the advantages of conju-
gacy. But which family of conjugate priors should be recommended? The
tradeoff to be resolved here is between simplicity and ease of assessment
versus complexity and an ability to match a diverse spectrum of potential
prior beliefs. The classical “natural conjugate prior” is at the “simplic-
ity” end of the spectrum. We argue that it generally lacks flexibility and
frequently involves curious unjustifiable dependencies in the prior and pos-
terior joint distributions of the model parameters. A more flexible prior
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family should generally be used. The models that form the central theme
of this book, those specified in terms of conditional distributions, are candi-
dates for use in this setting. As a small step in the direction of more flexible
prior modeling, so-called conditionally conjugate priors can be advocated
for use.

They, in a sense, represent a minimal desirable increase in flexibility
over natural conjugate families. There is, as will be seen, a price to pay.
And indeed it is a high price. The resulting conditionally conjugate fam-
ilies involve large number of hyperparameters. But of course, this is the
very feature of conditionally conjugate priors that gives them the flexibil-
ity to model a broad spectrum of prior beliefs. They will not prove to be
a panacea. Certain multimodal prior beliefs will be still poorly fitted even
by conditionally conjugate families of priors. Here will be found scope for
use of finite mixtures of priors to capture the multimodal features of prior
beliefs.

Specific details of the proposed conditionally conjugate analysis of normal
data will be provided in Section 13.6. In the immediately following sections
we will review, to some degree, conjugate and convenience priors in general
contexts and introduce conditionally conjugate families in some generality.

13.3 Priors with Convenient Posteriors

Suppose that we have data X whose distribution is governed by the family
of densities {f(x; θ) : θ ∈ Θ} where Θ is k-dimensional (k > 1).

Typically the informative prior used in this analysis is a member of a
convenient family of priors (often chosen to be a conjugate family).

Definition 13.1 (Conjugate family). A family F of priors for θ is said
to be a conjugate family if any member of F , when combined with the
likelihood of the data, leads to a posterior density which is again a member
of F . �

But there are many conjugate families available in any situation. The
most frequently used method of constructing a family of conjugate priors is
to consider all possible posteriors corresponding to all possible hypothetical
samples of all possible sizes from the given distribution beginning with a
(possibly improper) uniform prior on Θ. For example, for samples from
a normal (µ, τ) population (i.e., one with mean µ and precision τ) this
approach leads to a conjugate prior family for (µ, τ) of the form (13.1).

In this example, the posterior distribution will again be of the “normal–
gamma” form (13.1). As remarked earlier, this “natural” conjugate prior
lacks flexibility for matching prior beliefs because of its paucity of hyper-
parameters and its inherent restrictions on the dependence between µ and
τ . More flexible alternatives can and will be discussed in later sections.
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Before developing such flexible alternatives, it is perhaps worthwhile to
emphasize that the advantage of conjugate prior families resides not really
in their conjugacy. Actually what is important is that the posterior be ana-
lytically tractable. It is not at all crucial that the prior and posterior should
be in the same family. In the normal data example, perhaps other priors
will yield “normal–gamma” posteriors. Instead of focussing on conjugacy,
it is of evident interest to identify, in this setting, all possible priors which
will lead to the chosen “convenient posteriors,” namely the normal–gamma
ones. More generally, for data corresponding to a given exponential family
likelihood we might seek to identify all possible priors which could lead to
posteriors in a given (quite possibly distinct) exponential family.

Consider data sets consisting of n observations (possibly vector valued)

X(1), . . . , X(n) from an m-parameter exponential family of the form

f(x; θ) = exp

⎡

⎣λ(θ) +

m
∑

j=0

θjTj(x)

⎤

⎦ , x ∈ S(X), (13.3)

where by convention θ0 = 1. The joint likelihood for the n observations is
then given by

f(x(1), . . . , x(n); θ) = exp

[

nλ(θ) +
m
∑

j=0

θj

n
∑

i=1

Tj(x
(i))

]

,

x(i) ∈ S(X), i = 1, 2, . . . , n.

(13.4)

It is assumed that the Tj(x)’s are linearly independent and nonconstant
(j = 1, 2, . . . , m).

It may, if desired, be assumed that the θ’s are restricted to belong to the
natural parameter space Θ, defined to include all θ’s for which (13.3) is
integrable. Our goal is to determine the most general class of priors on Θ
which will lead to posterior densities for θ which belong to a prespecified
ℓ-parameter exponential family of the form

f(θ; η) = exp

[

ν(η) +

ℓ
∑

k=0

ηkgk(θ)

]

, x(i) ∈ S(X); θ ∈ Θ1, (13.5)

where by convention η0 = 1 and where Θ1 ⊂ Θ (perhaps a proper sub-
set). Thus we wish to identify the θ marginal of a joint distribution for

(X(1), . . . , X(n), θ) which has conditional densities for X(1), . . . , X(n) given

θ as in (13.4) and conditional densities of θ given X(1) = x(1), . . . , X(n) =

X(n) of the form

f(θ|x(1), . . . , x(n)) = exp

[

g0(θ) +
ℓ
∑

k=1

ηk(x(1), . . . , x(n))gk(θ)

]

× exp
[

ν(η(x(1), . . . , x(n)))
]

, θ ∈ Θ1,

(13.6)
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for some functions ηk(x(1), . . . , x(n)), k = 1, 2, . . . , ℓ.
But clearly we are dealing with a joint distribution with conditionals in

exponential families. Using the material from Chapter 4 we can conclude
that, if (13.4) and (13.6) are to hold for all x(1), . . . , x(n) and θ, we must
have a joint density of the form

f(x(1), . . . , x(n); θ) = exp

[

m
∑

j=0

ℓ
∑

k=0

mjk

(

n
∑

i=1

Tj(x
(i))gk(θ)

)

]

,

θ ∈ Θ1, x(i) ∈ S(X), i = 1, 2, . . . , n,

(13.7)

where by our usual convention T0(x
(i)) ≡ 1 and g0(θ) ≡ 1, for suitable

choices of the real parameters {mij}. The constant m00 is determined so
that the density integrates to 1. Densities of the form (13.7) indeed have
all conditionals in the prescribed exponential families but, in fact, what we
require is more constrained. We require that (13.4) hold exactly. This puts
major constraints on the acceptable choices of the parameters in (13.7) and
on the form of the functions gk(θ).

Specifically, we must have

θj =

ℓ
∑

k=1

mjkgk(θ), j = 1, 2, . . . , m. (13.8)

This has serious implications regarding the attainability of desirable ex-
ponential families of posteriors. If we begin with the likelihood (13.4) and
want to end up with posteriors in an exponential family of the form (13.5)
whose gk(θ)’s do not satisfy (13.8), then we cannot attain this for any choice
of prior. Generally speaking, the gk(θ)’s have to be linear combinations of
the θj ’s, or we have no hope.

After imposing all the implied constraints, the joint density assumes the
form (with new parameters)

f(x(1), . . . , x(n); θ)

= exp

[

c + g0(θ) +
ℓ
∑

k=1

bkgk(θ) +
n
∑

i=1

T0(x
(i)) +

m
∑

j=1

θj

n
∑

i=1

Tj(x
(i))

]

,

θ ∈ Θ1, x(i) ∈ S(X), i = 1, 2, . . . , n.
(13.9)

The corresponding prior is obtained by integrating out the x(i)’s in (13.9).
Recalling that the likelihoods of the form (13.4) must integrate to 1, we
find that the appropriate choice of the prior is of the form

f(θ) = exp

[

c + g0(θ) +

ℓ
∑

k=1

bkgk(θ) − nλ(θ)

]

, θ ∈ Θ1. (13.10)
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Note that the function g0(θ), that appears in (13.10) and in the desired
posterior density (13.5), can be quite arbitrary. In addition, there can be
considerable flexibility in the choice of gk(θ)’s (k ≥ 1), subject only to
the contraint that (13.8) holds (i.e., that all the θj ’s can be expressed as
linear combinations of the gk(θ)’s). If we wish to have a proper prior, we

must impose a further restriction that exp[g0(θ) +
∑ℓ

k=1 bkgk(θ) − nλ(θ)]
be integrable over Θ1.

Example 13.1 (Normal likelihood and normal posterior). For no-
tational simplicity we assume a sample size of 1. So we have X ∼ N(θ, 1)
and we wish to determine the class of priors for which all posteriors for
Θ given X = x are members of the two-parameter (normal) exponential
family:

f(θ; η) = exp
[

ν(η) + η1θ + η2θ
2
]

. (13.11)

Here (using the notation of (13.5)) g0(θ) = 0, g1(θ) = θ, g2(θ) = θ2. Since
our likelihood assumes the form

f(x; θ) = exp

[

− log
√

2π − θ2

2
+ θx − x2

2

]

, (13.12)

we can, using the notation of (13.3), see that

λ(θ) =
−θ2

2
,

T0(x) =−log
√

2π − x2

2
,

T1(x) = x.

(13.13)

Immediately from (13.10), we see that the appropriate family of priors is
of the form

f(θ) = exp

[

c + b1θ + b2θ
2 +

θ2

2

]

= exp[c + b1θ + b̃2θ
2]. (13.14)

Thus, the two-parameter normal family of priors will be appropriate. �

Example 13.2 (Normal likelihood and inverse Gaussian poste-
rior). Again take one observation X ∼ N(θ, 1). We wish to have posterior
distributions which belong to the inverse Gaussian family.

f(θ; η) = exp[ν(η) − 3 log θ/2 + η1θ + η2θ
−1], θ > 0. (13.15)

Here g0(θ) = −3 log θ/2, g1(θ) = θ, g2(θ) = θ−1. Combining this with the
likelihood (13.12) for which λ(θ) = −θ2/2 we obtain using (13.10), the
following family of priors (with inverse Gaussian posteriors):

f(θ) = exp[c − 3 log θ/2 + b1θ + b2θ
−1 +

θ2

2
]. (13.16)

In this case, the family is not a conjugate prior family. �
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13.4 Conjugate Exponential Family Priors for
Exponential Family Likelihoods

We envision data sets consisting of n observations (possibly vector val-
ued) x(1), . . . , x(n) from an m-parameter exponential family. After suitable
reparametrization and introduction of appropriate sufficient statistics the
corresponding likelihood of such a sample has the following representation:

f(x; θ) = rn(x) exp

[

m
∑

i=1

θisi(x) + nλ(θ)

]

, (13.17)

in which x denotes the full data set x(1), . . . , x(n).
It is assumed, without loss of generality, that the si(x)’s are linearly

independent and nonconstant and that the θi’s are restricted to belong to
the natural parameter space Θ, defined to include all θ’s for which (13.17)
is integrable. All priors to be considered will be nonrestrictive, i.e., they
will be positive on Θ. Consequently, since all functions of θ will have the
same domain, repeated mention of that domain will be unnecessary. When
we say for all θ we mean for all θ in Θ.

The first problem to be addressed involves the identification of the most
general t-parameter exponential family of priors for θ which will be conju-
gate with respect to (13.17). There are mathematical advantages to allow-
ing improper priors so we do not insist on integrability. A second question
involves the description of all possible conjugate prior families.

We will use b = (b1, . . . , bt) to denote the hyperparameters of the t-
parameter conjugate exponential family of priors for the likelihood (13.17).

Our main result is:

Theorem 13.1 (Conjugacy in exponential families). The most gen-
eral t-parameter exponential family of prior distributions for θ=(θ1, . . . , θm),
that is conjugate with respect to likelihoods (13.17), is of the form

f(θ|b) = r0(θ) exp

[

m
∑

i=1

biθi + bm+1λ(θ) +

t
∑

i=m+2

bisi(θ) + λ0(b)

]

, t > m,

(13.18)
where sm+2(θ), . . . , st(θ) are arbitrary functions. If t ≤ m, no such conju-
gate prior exists. �

It is obvious that (13.18) does indeed form a conjugate prior family for
likelihoods of the form (13.17). The posterior hyperparameter vector will
be (b1 + s1(x), . . . , bm + sm(x), bm+1 +n, bm+2, . . . , bt) (only the first m+1
hyperparameters are adjusted by the observations).
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To verify that (13.18) gives the most general form of a conjugate expo-
nential family of priors, we consider an arbitrary t-parameter exponential
family of the form

f(θ|b) = r(θ) exp

[

t
∑

i=1

bigi(θ) + λ0(b)

]

. (13.19)

Consider a typical posterior kernel, obtained by combining (13.19) with
(13.17). Since (13.19) is required to be a conjugate family, we must have

rn(x)r(θ) exp

[

t
∑

i=1

bigi(θ) + λ0(b) +
m
∑

i=1

θisi(x) + nλ(θ)

]

∝ r(θ) exp

[

t
∑

i=1

hi(x, b)gi(θ) + λ0(h(x, b))

]

.
(13.20)

But this is required to hold for all x for all θ and for every b. For any fixed
value of b, (13.20) implies that a functional equation of the form

m+t+1
∑

k=1

ψk(θ)φk(x) = 0

must be true. Such functional equations are readily solved (see Theorem
1.3) and we conclude that in the case of t > m,

gi(θ) = θi, i = 1, 2, . . . , m,
hi(x, b) = bi + si(x), i = 1, 2, . . . , m,

gm+1(θ) = λ(θ),
(13.21)

and

gj(θ) are arbitrary functions, j > m + 1.

Equation (13.18) then follows.
If we turn to the question of identifying more general (nonexponential

family) conjugate families we may argue as follows for likelihoods of the
form (13.17).

For any sample size n and data configuration x and any prior f0(θ) the
posterior will be of the form

f(θ|x) ∝ f0(θ) exp

[

m
∑

i=1

θisi(x) + nλ(θ)

]

. (13.22)

The class of all possible posteriors resulting from all possible hypothetical
samples of all possible sizes in conjunction with the prior f0(θ) will neces-
sarily be a conjugate family, since a further sample of size n2 in conjunction
with a hypothetical sample of size n1 must already have been included in
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the list of hypothetical samples of size n1 + n2. Thus we are led to the
conjugate prior family

f(θ|b) = f0(θ) exp

[

m
∑

i=1

biθi + bm+1λ(θ) + λ̃0(b)

]

. (13.23)

Of course, f0(θ) could, in addition, be allowed to range over a (t−m− 1)-
dimensional space yielding a richer still conjugate family. Since f0(θ) was
quite arbitrary, (13.23) does not necessarily represent an exponential family.
Observe that the t−m− 1 hyperparameters associated with the family of
possible f0(θ)’s are unaffected by the data. This is completely analogous to
the hyperparameters bm+2, . . . , bt in the exponential conjugate prior (13.18)
which are also unaffected (though eventually swamped) by the data.

13.5 Conditionally Specified Priors

Suppose that our data X has a likelihood

{f(x; θ) : θ ∈ Θ ⊂ IRk}.
In order to specify our joint prior distribution of θ, we are faced with a
problem of describing a k-dimensional density. Throughout this book we
have argued that conditional specification is often a natural and convenient
mode of visualization of such densities. In the bivariate case, this approach
would involve characterizing the joint density of a random vector (θ1, θ2)
by postulating the precise form, or perhaps the parametric form, of the two
families of conditional densities associated with (θ1, θ2); i.e., the conditional
densities of θ1 given θ2, for all θ2’s, and the conditional densities of θ2 given
θ1, for all θ1’s. Taken into the prior assessment arena associated with our
Bayesian inference problem, we would not question the investigator about
his prior beliefs regarding the joint prior for θ, rather we would ask about
prior beliefs about θ1 given specific values of the other θ’s, then about prior
beliefs about θ2 given specific values of the other θ’s, etc. The advantage
of this system is that we are only eliciting information about univariate
distributions, a manifestly easier task than that of directly eliciting beliefs
about multivariate distributions.

In k dimensions, suppose that for each coordinate θi of θ, if the other co-
ordinates θ(i) (θ with θi deleted) were known, a convenient conjugate prior
family fi(θi|α(i)), α(i) ∈ A(i) is available. Here the α(i)’s are hyperpa-
rameters. Under such circumstances it seems natural to use as a candidate
family of prior distributions for θ, one which has the property that for each
i, the conditional distribution of θi given θ(i) belongs to the family fi. By
construction such a flexible family will be a conjugate family. The simplest
case involves exponential families. In it, each family of priors fi (for θi
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given θ(i)), is an ℓi-parameter exponential family. The resulting condition-
ally conjugate family of densities is again an exponential family. However,
it will have a large number of hyperparameters guaranteeing considerable
flexibility for matching informed prior beliefs.

Specifically suppose that for each i, a natural conjugate prior for θi

(assuming θ(i) were known) is available in the form of an ℓi-parameter
exponential family:

fi(θi) ∝ ri(θi) exp

⎡

⎣

ℓi
∑

j=1

ηijTij(θi)

⎤

⎦ . (13.24)

A convenient family of joint priors for the full parameter vector θ will
consist of all k-dimensional densities with conditionals (of θi given θ(i),
for every i) in the given exponential families (13.24). The resulting joint
density for θ from Theorem 4.1 is of the form

f(θ) =

[

k
∏

i=1

ri(θi)

]

exp

⎧

⎨

⎩

ℓ1
∑

j1=0

ℓ2
∑

j2=0

. . .

ℓk
∑

jk=0

mj1j2...jk

[

k
∏

i=1

Ti,ji(θi)

]

⎫

⎬

⎭

,

(13.25)
where for notational convenience we have introduced the constant functions
Ti0(θi) = 1, i = 1, 2, . . . , k. The parameter space of the family of densities

(13.25) is of dimension [
∏k

i=1(mi + 1)] − 1 since m00...0 is determined as
a function of the others to ensure that the density integrates to 1. It is
readily verified that the family (13.25) will be a conjugate prior family for
θ, and that the resulting posterior distributions will exhibit the same kind
of conditional structure as did the prior distribution. Thus, using (13.25),
both a priori and a posteriori we will have, for each i, the conditional density
of θi given θ(i) being a member of the given ℓi-parameter exponential family
(13.24).

Priors such as those displayed in (13.25) are called conditionally specified
priors or conditionally conjugate priors.

An advantage of conditionally specified priors is that, by their construc-
tion, they are tailor-made for the Gibbs sampler. Simulation of pseudo-
samples from (13.25) will involve only the need to devise appropriate simu-
lation algorithms for the one-dimensional exponential families (13.24). Al-
ternatively, densities such as (13.25) are frequently amenable to strategies
involving rejection algorithms and/or importance sampling.

It should be remarked that the family of conditionally specified priors
(13.25) includes as special cases two of its primary competitors. First, the
natural conjugate prior family, obtained by beginning with a locally uni-
form prior (∝ 1) over the parameter space, and considering the resulting
posteriors corresponding to all possible samples of all possible sizes from
the given likelihood. This, taken as a family of priors, is by construction
a conjugate family. It will be subsumed by (13.25). The second popular
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competitor would involve the assumption of independent priors for the co-
ordinates θi of θ, using the families described in (13.24). Clearly such a
distribution will have conditionals in the given exponential families (13.24)
and so will be subsumed by (13.25). It can be obtained by setting many of
the mj1,...,jk

’s equal to zero to obtain the desired independence.
It also bears remarking that many of the hyperparameters in (13.25) will

be unchanged when we use data to update from the prior to the posterior.
As will be evident either from the preceding paragraph or from perusal of
the examples in the next sections, a decision to only give nonzero values
to those hyperparamters that are affected by the data will in fact bring us
back to the natural conjugate family for θ. The additional hyperparameters,
those unaffected by the data, have a role to play in providing flexibility for
matching a broad spectrum of prior belief, not necessarily well described
by the natural conjugate family.

Densities of any of the families of the form (13.25) are clearly nonnegative
for any choice of the hyperparameters appearing in them. They are how-
ever not guaranteed to be integrable unless the hyperparameters satisfy
constraints which are sometimes quite complicated. It is usually deemed
acceptable to have improper prior distributions but unacceptable to have
improper posteriors. Typically if large amounts of data are available, the
posterior distributions will be proper for most prior selections of the hy-
perparameters. In practice a case by case determination of propriety will
be necessary. Reference to Chapters 3 and 4 will be useful in some cases.
It must be remarked that conditions sufficient for propriety of all posterior
conditional distributions are sometimes readily checked. Here too, however,
we must still check to determine whether the full joint posterior distribu-
tion is proper, since proper conditionals do not, unfortunately, guarantee
a proper joint distribution. This caveat is especially important if we plan
to use the Gibbs sample for posterior simulation (the computer will only
happily notice the propriety of the conditionals and will churn out superfi-
cially acceptable results even when the joint distribution is improper). See
Hobert and Casella (1996) for further discussion of this potential problem
with the Gibbs sampler.

In order to pick a conditionally specified prior that will represent the
informed expert’s beliefs about the parameter θ, say, it will be necessary to
request a considerable amount of information. Such information will, be-
cause of human nature, undoubtedly be inconsistent. So we do not expect to
find a conditionally specified prior that matches the provided information
exactly; instead we seek a conditionally specified prior that is minimally
discrepant from the given information. Typically our knowledge of the con-
ditionally specified distribution (13.25) will be adequate to permit us to
compute a variety of conditional moments and conditional percentiles as
explicit functions of the hyperparameters. It is then possible to use a va-
riety of optimization procedures to choose values of the hyperparameters
that minimize the discrepancy between the elicited values of a spectrum of
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conditional moments and/or percentiles and their theoretical values as func-
tions of the hyperparameters. Of course, the number of elicited conditional
prior features must at least equal the number of hyperparameters in the
prior family and, in practice, should be considerably larger. It will not be a
quick process, but time invested in carefully choosing an approximation to
the informed expert’s true prior is surely well spent. Some examples of this
kind of elicitation procedure are decribed in more detail in the following
sections.

The conditionally specified priors described in this chapter do include
as special cases the usual noninformative and the usual conjugate prior
families. Consequently, any investigator already happy with such priors
will be able to live comfortably with conditionally conjugate priors, he will
just choose to not avail himself of their full flexibility.

It is important to emphasize that in using a family of conditionally spec-
ified priors we are not saying that the informed expert’s true prior is a
member of this family; we only say that the conditionally specified prior
family will hopefully provide a flexible enough family to adequately ap-
proximate the expert’s prior beliefs. As mentioned earlier, multimodal prior
beliefs will perhaps be best modeled using finite mixtures of conditionally
specified priors.

13.6 Normal Data

We will return to study in more detail the normal scenario introduced in
Section 13.2.

The available data are n independent identically distributed random vari-
ables each normally distributed with mean µ and precision τ . The likelihood
is of the form

fX(x; µ, τ) =
τn/2

(2π)n/2
exp

[

−τ

2

n
∑

i=1

(xi − µ)2

]

. (13.26)

If τ were known, a natural conjugate prior family for µ would be the normal
family. If µ were known, a natural conjugate prior family for τ would be the
gamma family. This suggests that an appropriate conjugate prior family for
(µ, τ) (assuming both are unknown) would be one in which µ given τ is
normally distributed for each τ , and τ given µ has a gamma distribution
for each µ. The class of such gamma–normal distributions was discussed
extensively in Section 4.8. They form an eight-parameter exponential family
of distributions with densities of the form

f(µ, τ)∝ exp
[

m10µ + m20µ
2 + m12µ log τ + m22µ

2 log τ
]

× exp
[

m01τ + m02 log τ + m11µτ + m21µ
2τ

]

.
(13.27)
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For such a density we have:

(1) The conditional density of µ given τ is normal with mean

E(µ|τ) =
−(m10 + m11τ + m12 log τ)

2(m20 + m21τ + m22 log τ)
(13.28)

and precision

1/var(µ|τ) = −2(m20 + m21τ + m22 log τ). (13.29)

(2) The conditional density of τ given µ is gamma with shape parameter
α(µ) and intensity parameter λ(µ), i.e.,

f(τ |µ) ∝ τα(µ)−1e−λ(µ)τ , (13.30)

with mean and variance

E(τ |µ) =
1 + m02 + m12µ + m22µ

2

−(m01 + m11µ + m21µ2)
, (13.31)

var(τ |µ) =
1 + m02 + m12µ + m22µ

2

(m01 + m11µ + m21µ2)2
. (13.32)

(3) Since the parameters in (13.29), (13.31) and (13.32) must be posi-
tive to yield proper conditional densities, natural constraints must be
placed on the parameters in (13.27). Thus we must have

m21 < 0, m22 > 0, m01 < 0, m02 > −1, m2
12 < 4m22(m02 + 1),

(13.33)

m20 + m22

[

log

(

−m22

m21

)

− 1

]

< 0, m2
11 < 4m21m01. (13.34)

If we propose to use densities like (13.27) as prior densities and if we
are willing to accept improper priors and posteriors, then we need
to impose no conditions on the parameters (or hyperparameters) in
(13.27).

(4) The marginal densities for µ and τ associated with the joint density
(13.27) are of the form

f(µ) ∝ exp(m10µ + m20µ
2)

Γ(m02 + m12µ + m22µ
2 + 1)

[−(m01+m11µ+m21µ2)]
(m02+m12µ+m22µ2+1)

,

(13.35)
f(τ) ∝ exp(m01τ + m02 log τ)

× exp

(−(m10 + m11τ + m12 log τ)2

4(m20 + m21τ + m22 log τ)

)√ −π

m20 + m21τ + m22 log τ
I(τ > 0).

(13.36)
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TABLE 13.1. Adjustments in the parameters in the prior family (13.27),
combined with likelihood (13.37).

Parameter Prior value Posterior value

m10 m∗
10 m∗

10

m20 m∗
20 m∗

20

m01 m∗
01 m∗

01 − 1
2

∑n
i=1 x2

i

m02 m∗
02 m∗

02 + n/2

m11 m∗
11 m∗

11 +
∑n

i=1 xi

m12 m∗
12 m∗

12

m21 m∗
21 m∗

21 − n/2

m22 m∗
22 m∗

22

(5) The family (13.27) is indeed a conjugate prior family for normal like-
lihoods of the form (13.26). To verify this we rewrite the likelihood
(13.26) in the more convenient form

fX(x; µ, τ) = (2π)−n/2 exp

[

n

2
log τ −

∑n
i=1 x2

i

2
τ +

n
∑

i=1

xiµτ − n

2
µ2τ

]

.

(13.37)
A prior in the family (13.27) will yield, when combined with the like-
lihood (13.37), a posterior in the same family with prior and posterior
parameters related as in Table 13.1.

Table 13.1 merits scrutiny to understand the nature of the proposed prior
family (13.27) and its relation to families of priors used in more traditional
analyses. First it is evident in Table 13.1 that four of the parameters,
m10, m20, m12, and m22, those corresponding to the first factor in (13.27),
once fixed in the prior, are unchanged by the data. They do not change,
but their contribution to the posterior would eventually be swamped by
large data sets. Their presence is needed to allow us the full flexibility of
the gamma–normal prior family. Traditionally such flexibility has not been
available.

Our model (13.27) subsumes two important cases:
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1. The classical prior distribution for (µ, τ). This distribution has τ with
a marginal gamma distribution and µ given τ distributed normally
with its precision a scalar multiple of τ (see, e.g., DeGroot ((1970), p.
169). The deGroot priors correspond to the second factor in (13.27),
that is, to

m10 = m20 = m12 = m22 = 0. (13.38)

It is not at all evident that the dependence structure (between µ and
τ), inherent in such a joint distribution, will necessarily adjust well
with prior beliefs.

2. The independence case. A second approach, advocated by those who
view marginal assessment of prior beliefs to be the most viable (see,
e.g., Press (1982)), assumes independent gamma and normal marginals
in (13.27). This corresponds to initially setting

m11 = m12 = m21 = m22 = 0. (13.39)

It has been said that in such a case we do not have a conjugate prior
since the resulting posterior will not have independent marginals.
This is because the posterior values of m11 and m21 will no longer be
zero (m12 and m22 remain zero since they are always unaffected by
the data).

From our viewpoint both the classical priors with their unusual implied
dependence structure and the independent marginal priors are within our
conjugate prior family as are their corresponding posteriors. Consequently,
any experimenter whose prior beliefs were adequately described by one or
other of these restricted families will have no problem using the expanded
family (13.27); his prior will be approximated by one of its members.

We must pay for the flexibility exhibited by our conditionally specified
prior. In the normal case we have eight (hyper) parameters to assess. The
earlier analyses rather arbitrarily set four of them equal to zero and just
assessed the remaining four. It turns out that assessment of the eight hy-
perparameters is not as formidable a problem as we might fear, as we see
in the next section.

13.6.1 Assessment of Appropriate Values for the

Hyperparameters in the Normal Case

In this section we discuss the assessment of the prior hyperparameters. We
consider the following methods:

1. Matching conditional moments. For a conditionally specified prior such
as (13.27), it is natural to try to match conditional moments whose approx-
imate values will be supplied by the knowledgable scientist who collected
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the data. In our example, eight such conditional moments will suffice to
determine all the hyperparameters. We propose, more generally, to ask
the experimenter to provide prior values for more than eight conditional
moments. We recognize that it is unlikely that such prior values will be
consistent and what we propose is to select a prior of the form (13.27) that
will have conditional moments that are minimally disparate from those
provided a priori by the scientist.

Suppose that prior assessed values for the conditional means and vari-
ances are obtained for several different given choices of the precision τ and
for several different given choices of the mean µ. Thus the experimenter pro-
vides his best guesses for the quantities (the subscript, A, denotes assessed
value):

EA(µ|τi) = ξi, i = 1, 2, . . . , m, (13.40)

varA(µ|τi) = ηi, i = 1, 2, . . . , m, (13.41)

EA(τ |µj) = ψj , j = 1, 2, . . . , ℓ, (13.42)

varA(τ |µj) = χj , j = 1, 2, . . . , ℓ, (13.43)

where 2m + 2ℓ ≥ 8.
Note that the values {τi}m

i=1 and {µj}ℓ
j=1 are known quantities. If indeed

a density of the form (13.27) approximates the joint distribution of (µ, τ),
then the values of the conditional moments in (13.40)–(13.43) will be well
approximated by expressions derived from (13.28), (13.29), (13.31), and
(13.32).

One possible approach, since exact equality is unlikely to be possible
for any choice of the parameters m10, m20, m01, m02, m11, m12, m21, and
m22, is to set up as an (admittedly somewhat arbitrary) objective function
the sum of squared differences between the left- and right-hand sides of
(13.28), (13.29), (13.31), and (13.32) [2m + 2ℓ terms in all] and, using
a convenient optimization program, choose values of the parameters to
minimize this objective function subject to constraints (13.33) and (13.34).
The “assessed” prior would then be (13.27) with this choice of parameters.

An alternative simpler procedure is possible. If approximate equality is
to hold in (13.28) and (13.29) then ξi/ηi will be approximately equal to the
product of the right-hand sides of (13.28) and (13.29), a linear function of
the parameters. Also η−1

i will be approximately equal to the right-hand side
of (13.29), again a linear function of the parameters. Turning to (13.31) and
(13.32) we find that ψj/χj and ψ2

j /χj will be well approximated by linear
combinations of the parameters. Thus the following array of approximate
linear relations should hold:

ξi/ηi ≈ m10 + m11τi + m12 log τi, (13.44)

−η−1
i /2 ≈ m20 + m21τi + m22 log τi, (13.45)

−ψj/χj ≈ m01 + m11µj + m21µ
2
j , (13.46)

(ψ2
j /χj) − 1 ≈ m02 + m12µj + m22µ

2
j . (13.47)
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Least squares estimates of the eight parameters subject to constraints
(13.33) and (13.34) are then obtainable by standard regression techniques.
If the researcher is more certain about the prior conditional moments for
some values of τ or µ, then weighted least squares could be used. It is these
readily obtained values for the (hyper) parameters that we propose to use
to determine the “assessed” prior. The density (13.27) with these assessed
values of the parameters will have conditional moments not too disparate
from those provided by the scientist.

An alternative approach would involve matching conditional percentiles.
Since, for example, gamma percentiles are not describable in closed form,
implementation of such an approach will be more challenging.

2. Using diffuse or partially diffuse priors. Utilization of conditionally
specified priors such as those introduced in Section 13.5 involves assessment
of many hyperparameters. It would not be uncommon to encounter an
informed expert who honestly is unable to provide plausible values for the
conditional means, variances, or percentiles utilized in the suggested prior
assessment approach. In such situations it is quite reasonable to select and
use values of the hyperparameters which reflect ignorance or diffuseness of
prior information about the parameters.

If our informed expert expresses inability to provide any conditional mo-
ments of his prior, it would be appropriate to use a locally uniform joint
prior for (µ, τ) which would correspond to the case in which all hyper-
parameters in (13.27) are set equal to 0 (with the possible exception of
m02 which might be set equal to −1).

Accommodation of diffuse prior information in the family (13.27) does
not thus appear to present any major problems.

3. Using a fictitious sample. The expert could begin with a diffuse prior.
He then may “guess” a representative (fictitious) sample to be combined
with the prior using Table 13.1. The resulting posterior hyperparameters
then become the prior hyperparameters for subsequent analysis of the real
data set.

13.6.2 Parameter Estimation in the Normal Case

Having assessed our prior values of the parameters, we may read off the
corresponding posterior values of the parameters from Table 13.1. The pos-
terior density will be of the gamma–normal form (i.e., (13.27)). If point
estimates are desired they will be provided by E(µ|x), an estimate of the
mean, by E(τ |x), an estimate of the precision τ , and by E(τ−1|x), an
estimate of the variance σ2 = 1/τ . The posterior distribution is a mem-
ber of an exponential family, so numerical determination of these posterior
expectations is not too difficult.

Two convenient alternatives are possible:
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TABLE 13.2. Iris versicolor data: Sepal length in centimeters.

7.0 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0
6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1 6.3 6.1 6.4 6.6
6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6
5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7

• Mode estimates. We can use the mode of the posterior, i.e., solve the
system of equations,

0 = m10+2(m20+m21τ)µ+m11τ +m12 log τ +2m22µ log τ, (13.48)

τ = − m02 + µm12 + µ2m22

(m01 + µm11 + µ2m21)
. (13.49)

Note that replacing τ from (13.49) in (13.48) we get an equation which
depends only on µ.
• Gibbs sampler estimates. Since the density (13.27) has simple condi-

tionals, a Gibbs sampler approach may be used to approximate the pos-
terior moments. Thus to approximate E(τ−1|x) we successively generate
µ1, τ1, µ2, τ2, . . . , µN , τN using the posterior conditional distributions (with
parameters given in (13.28)–(13.32)) and our approximation to E(τ−1|x)

will be
∑N

k=1 1/(Nτk) or perhaps
∑N ′+N

k=N ′+1 1/(Nτk) (if we allow time for
the sampler to stabilize).

The Iris Data

To illustrate the above considerations we will reanalyze Fisher’s (1936)
famous Iris data.

The sepal lengths in the Iris versicolor data shown in Table 13.2 are
plausibly approximately normally distributed.

Our model is normal with unknown mean µ and precision τ . The corre-
sponding sufficient statistics assume the following values (n = 50):

50
∑

i=1

xi = 296.8,

50
∑

i=1

x2
i = 1774.86.

For illustrative purposes we discuss three cases, that is, we assume that
our knowledgable expert has supplied us with:

• Case 1: A fictitious (guessed) sample {6.5, 6.0, 5.8, 5.9, 6.1, 6.3, 6.2} which
will be combined with a diffuse prior using Table 13.1 to determine the
prior hyperparameters. We obtain the posterior hyperparameter values by
using Table 13.1 once more.
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TABLE 13.3. Prior (Pr) and posterior (Pt) values for different expert assessments
(Iris versicolor data).

m10 m20 m01 m02 m11 m12 m21 m22

Case 1
Pr 0 -0.001 –131.02 3.5 42.8 0 –3.5 0.001
Pt 0 -0.001 –1018.5 28.5 339.6 0 –28.5 0.001

Case 2
Pr –0.74 –8.93 –1020.3 28.13 332.7 –0.36 –29 8.76
Pt –0.74 –8.93 –1907.7 53.13 629.5 –0.36 –54 8.76

Case 3

Pr 0 –0.001 –0.001 0 0 0 –0.001 0.001
Pt 0 –0.001 –887.4 25. 296.8 0 –25.001 0.001

TABLE 13.4. Bayesian estimates for different assessments (Iris versicolor data).

Max. likelihood Mode Gibbs Numerical
estimates estimates estimates integration

µ̂ τ̂ µ̂ τ̂ µ̂ τ̂ µ̂ τ̂

Case 1 5.94 3.83 5.96 4.17 5.96 4.23 5.96 4.27

Case 2 5.94 3.83 5.94 4.84 5.94 4.86 5.94 4.87

Case 3 5.94 3.83 5.94 3.81 5.94 3.93 5.94 3.91

• Case 2: The following a priori conditional moments:

E[µ|τ = 3] = 5, E[µ|τ = 4] = 6, E[µ|τ = 5] = 6.1,
var[µ|τ = 3] = 0.006, var[µ|τ = 4] = 0.004, var[µ|τ = 5] = 0.003,
E[τ |µ = 5] = 3, E[τ |µ = 6] = 5, E[τ |µ = 7] = 4,

var[τ |µ = 5] = 0.02, var[τ |µ = 6] = 0.03, var[τ |µ = 7] = 0.04.

• Case 3: If we did not have an informed expert to aid us in the analysis
we would undoubtedly begin with a diffuse prior. The simple use of Table
13.1 leads to the posterior.

In Table 13.3, the corresponding prior and posterior values of the hy-
perparameters are displayed (the fractional part 0.001 is used to avoid
numerical problems with m20 = 0).

Estimates of µ and τ are then obtained by using maximum likelihood,
the posterior mode, a Gibbs sampler simulation of the posterior density
of the form (13.27), and by numerical integration of the posterior, with
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parameters as given in Table 13.3. The Gibbs sampler was iterated 10,300
times and the last 10,000 iterations were averaged to give the estimated
marginal posterior means of µ and τ . The estimates obtained are given in
Table 13.4.

13.7 Pareto Data

Suppose that the available data are n i.i.d. random variables each having
a classical Pareto distribution with shape or inequality parameter α and
precision parameter (the reciprocal of the scale parameter) τ . Thus the
likelihood is of the form

fX(x; α, τ) =
n
∏

i=1

τα(τxi)
−(α+1)I(τxi > 1)

= αnτ−nα

(

n
∏

i=1

xi

)−(α+1)

I(τx1:n > 1).

(13.50)

This can be conveniently rewritten in the form

fX(x; α, τ) = exp

[

n log α − nα log τ−
(

n
∑

i=1

log xi

)

(α + 1)

]

I(τx1:n > 1),

(13.51)
from which we obtain the maximum likelihood estimates

τ̂ = 1/ min(x1, . . . , xn), α̂ =
n

n log τ̂ +
∑n

i=1 log xi
, (13.52)

which, for the sake of comparison, will be used later.
If τ were known, then a natural conjugate prior family of densities for

α would be the gamma family. If α were known then a natural conjugate
family of priors for τ would be the Pareto family. We are then led to consider
as a conjugate prior family for (α, τ) (assuming both are unknown), one in
which α given τ is gamma distributed for each τ and in which τ given α is
Pareto distributed for each α. The corresponding six-parameter family of
priors is then of the form

f(α, τ)∝ exp[m01 log τ + m21 log α log τ ]

× exp[m10α+m20 log α+m11α log τ ] I(τc > 1),
(13.53)

where the two factors in the right-hand side refer to the hyperparameters
which are unaffected by the data and those which are affected, respectively
(see below). It is not difficult to verify that such densities do have Pareto
and gamma conditionals.

For this density we have:



13.7 Pareto Data 313

TABLE 13.5. Adjustments in the parameters in the prior (13.53) when combined
with the likelihood (13.51).

Parameter Prior value Posterior value

m10 m∗
10 m∗

10 −
∑n

i=1 log xi

m20 m∗
20 m∗

20 + n

m01 m∗
01 m∗

01

m11 m∗
11 m∗

11 − n

m21 m∗
21 m∗

21

c c∗ min(x1:n, c∗)

1. The conditional density of α given τ is gamma with shape parameter
γ(τ) and intensity parameter λ(τ), i.e.,

f(α|τ) ∝ αγ(τ)−1e−λ(τ)α, (13.54)

where the mean and variance are

E(α|τ) = −(1 + m20 + m21 log τ)/(m10 + m11 log τ), (13.55)

var(α|τ) = (1 + m20 + m21 log τ)/(m10 + m11 log τ)2, (13.56)

2. The conditional density of τ given α is Pareto with shape or inequality
parameter δ(α) and precision parameter ν(α), i.e.,

f(τ |α) ∝ ν(α)δ(α) [ν(α)τ ]
−(δ(α)+1)

I(ν(α)τ > 1), (13.57)

where

δ(α) = −(1 + m01 + m11α + m21 log α), (13.58)

ν(α) = c. (13.59)

3. If we insist on proper prior densities, then there are constraints which
must be imposed on the parameters in (13.53) to ensure that certain
parameters appearing in the conditional densities, namely γ(τ), λ(τ),
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ν(τ), are always positive and δ(τ) > −1, to yield proper conditional
densities. This implies

m21 > 0, m11 < 0, m10 < m11 log c, m20 > m21 log c − 1,
c > 0, −m01 + m21 [1 − log(−m21/m11)] > 0.

(13.60)
If we are willing to accept improper priors then no constraints are
needed. It should be noted that (13.53) is not an exponential fam-
ily of priors since the support of the density depends on one of the
parameters (c).

4. The marginal densities for α and τ corresponding to the joint density
(13.53) are of the following forms:

f(α)∝exp(m10α+m20 log α)
c−(m01+m11α+m21 log α+1)

− (m01+m11α+m21 log α+1)
I(α > 0),

(13.61)

f(τ) ∝ τm01
Γ (m20 + m21 log τ + 1)

(−m10 − m11 log τ)
m20+m21 log τ+1

I(τc > 1). (13.62)

5. The family (13.53) is readily verified to be a conjugate prior family for
likelihoods of the form (13.50) (equivalently (13.51)). A prior from the
family (13.53) will yield, when combined with the likelihood (13.51), a
posterior again in the family (13.53) with prior and posterior (hyper)
parameters related as in Table 13.5. It will be noted that two hyper-
parameters (m01 and m21) are unaffected by the data. They appear
in the first factor in (13.53).

Our model (13.53) includes:

1. The “classical” conjugate prior family. It was introduced by Lwin
(1972). It corresponded to the case in which m01 and m21 were both
arbitrarily set equal to 0.

2. The independent gamma and Pareto priors. These were suggested by
Arnold and Press (1989a) and correspond to the choice m11 = m21 =
0 in (13.53).

Thus, the proposed flexible family includes the two most frequently
proposed classes of priors.

13.7.1 Asessment of Appropriate Values for the

Hyperparameters in the Pareto Case

The assessment of hyperparameters for the classical Pareto model will be
achieved in a manner similar to that used in the normal case. We can use
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the following methods:

1. Matching conditional moments and percentiles. Conditional moments
corresponding to the density (13.53) useful for this assessment are given
in (13.55) and (13.56). When dealing with the conditional distribution of
τ given α, a Pareto distribution, we are not guaranteed the existence of a
mean for every choice of α. Instead we may try to find a prior by matching,
as well as possible, conditional percentiles. We have, for densities of the
form (13.53), the conditional p-percentiles given by

xp[τ |α] = c−1(1 − p)1/(1+m01+m11α+m21 log α). (13.63)

The elicitation procedure would then involve asking the informed experi-
menter for his best guesses for quantitites of the form

E(α|τi) = ξi, i = 1, 2, . . . , m, (13.64)

var(α|τi) = ηi, i = 1, 2, . . . , m, (13.65)

xpj [τ |αj ] = χj(pj), j = 1, 2, . . . , ℓ, (13.66)

xqj
[τ |αj ] = χj(qj), j = 1, 2, . . . , ℓ. (13.67)

Using arguments analogous to those used in Section 13.2 we will seek
(hyper) parameters in (13.53) (i.e., m10, m20, . . .) so that

−ξi/ηi ≈ m10 + m11 log τi, (13.68)

ξ2
i /ηi ≈ 1 + m20 + m21 log τi, (13.69)

log
1 − pj

1 − qj

log(χj(pj)/χj(qj))
≈ 1 + m01 + m11αj + m21 log αj . (13.70)

Least-squares values of m01, m10, m20, m11, and m21 can be obtained
using (13.68)–(13.70). Finally, we need to elicit the best guess for the min-
imum possible value of τ , this gives the elicited value of the reciprocal of
c in (13.53). Note that a noninformed choice of c would correspond to a
large value so that the posterior value of c would almost certainly be x1:n.

2. Using diffuse or partially diffuse priors. The process is similar to the
normal case.

3. Using a fictitious sample. The expert can also begin with a diffuse
prior, guess a typical sample, and use expressions in Table 13.5 to calculate
the prior hyperparameters (i.e., posterior hyperparameters corresponding
to the fictitious sample).

13.7.2 Parameter Estimation in the Pareto Case

As in the classical normal case, we will be able to exploit the Gibbs sampler
in studying the posterior distributions which, since they belong again to
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the family (13.53), have gamma and Pareto conditionals. Alternatively,
posterior moments can be obtained by numerical integration.

The Annual Wage Data

To illustrate estimation procedures for Pareto data we will reanalyze the
annual wage data discussed in Dyer (1981). The data set lists the annual
wage in multiples of 100 U.S. dollars for 30 individuals.

Plausibly such a data set will be well described by a classical Pareto
model (of the form (13.50)). The actual values of the data points are
displayed in Table 13.6.

TABLE 13.6. Annual wage data (in multiples of 100 U.S. dollars).

112 154 119 108 112 156 123 103 115 107
125 119 128 132 107 151 103 104 116 140
108 105 158 104 119 111 101 157 112 115

The corresponding sufficient statistics are

x1:30 = 101,

30
∑

i=1

log xi = 143.523.

For illustrative purposes we discuss three cases. That is, we assume that
our knowledgeable expert has supplied us with:

Case 1: A fictitious sample

{110, 108, 112, 105, 122, 134, 117, 152, 131, 159, 121, 160, 143},

which will be combined with a diffuse prior using Table 13.5 to yield
the prior hyperparameter values in Table 13.7. Finally, Table 13.5
and the real data lead to the posterior values, which are also shown
in Table 13.7.

Case 2: His best guess of the minimal possible value for τ , say 100 (this
means that the prior choice of the hyperparameter c in (13.53) is
100), and the following a priori conditional moments and percentiles:

E[α|τ = 0.01] = 4.5, E[α|τ = 0.02] = 1,
var[α|τ = 0.01] = 0.6, var[α|τ = 0.02] = 0.03,

x0.1[τ |α = 5] = 0.010003, x0.2[τ |α = 5] = 0.010006,
x0.9[τ |α = 5] = 0.01006,
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TABLE 13.7. Prior and posterior values for different expert assessments (wage
data).

m10 m20 m01 m11 m21 c

Case 1 Prior –63.02 12.1 0 –13.0 0.0 100
Posterior –206.55 42.1 0 –43.0 0.0 100

Case 2 Prior –206.52 41.7 0 –43.12 1.52 100
Posterior –350.04 71.7 0 –73.12 1.52 100

Case 3 Prior -0.005 -0.9 0 –0.0 0.0 100
Posterior –143.5 29.1 0 –30.0 0.0 100

TABLE 13.8. Bayesian estimates for different expert assessments (wage data).

Max. likelihood Gibbs Numerical
estimates estimates integration

α̂ τ̂ α̂ τ̂ α̂ τ̂
Case 1 5.918 0.00990 5.01 0.01 4.94 0.01

Case 2 5.918 0.00990 4.85 0.01 4.88 0.01

Case 3 5.918 0.00990 5.53 0.01 5.45 0.01

Case 3: Diffuse priors.

The assumed prior parameter values and the corresponding posterior
values are shown in Table 13.7. The mij parameters in Case 2 were obtained
by least squares.

Estimates of α and τ were then obtained by numerical integration and by
using a Gibbs sampler simulation (using the last 10,000 of 10,300 iterations)
from the posterior densities indicated in Table 13.7. The corresponding
estimates are shown in Table 13.8.

13.8 Inverse Gaussian Data

A variety of parametrizations exist for the inverse Gaussian distribution.
A convenient one for our purposes is provided by

f(x; θ1, θ2) =

√

θ2

π
e2

√
θ1θ2x−3/2e−θ1x−θ2x−1

I(x > 0). (13.71)
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If we have a sample of size n from the density (13.71) and if θ2 were given,
then a conjugate prior family for θ1 is an exponential family of the form

f1(θ1) ∝ exp(a
√

θ1 + bθ1)I(θ1 > 0). (13.72)

If θ1 were given, a natural conjugate prior family for θ2 is given by

f2(θ2) ∝ exp(c log θ2 + d
√

θ2 + eθ2)I(θ2 > 0). (13.73)

The natural requirement that our joint prior for (θ1, θ2) have conditionals
in the families (13.72) and (13.73) leads to consideration of the following
rich exponential family of joint priors with 11 hyper-parameters:

f(θ1, θ2) ∝ exp(m10

√

θ1 + m20θ1 + m01 log θ2

+ m02

√

θ2 + m03θ2 + m11

√

θ1 log θ2

+ m12

√

θ1θ2 + m13

√

θ1θ2

+ m21θ1 log θ2 + m22θ1

√

θ2 + m23θ1θ2)

× I(θ1 > 0)I(θ2 > 0). (13.74)

13.9 Ratios of Gamma Scale Parameters

If we are comparing intensities of two independent Poisson processes, vari-
ances of independent normal samples, or comparing exponential distribu-
tions based on complete or censored samples, then we are interested in
gamma random variables with known shape parameters and we wish to
consider the ratio and/or difference of their precision parameters λ1 and
λ2. Here, as in many other examples, it is not unreasonable to expect that
prior beliefs about λ1 and λ2 are not necessarily independent.

Our data consist of two independent random variables (after reduction
to sufficient statistics), X1 and X2 where Xi ∼ Γ(αi, λi), i = 1, 2. It is
assumed that the αi’s are known. The likelihood of the data set (X1, X2)
is thus

L(λ1, λ2) = λα1
1 xα1−1

1 e−λ1x1λα2
2 xα2−1

2 e−λ2x2/Γ(α1)Γ(α2)
∝ exp (α1 log λ1 − x1λ1 + α2 log λ2 − x2λ2) .

(13.75)

We will call (13.75) the likelihood in terms of the original parametrization.
We will also discuss a likelihood in terms of a transformed parametrization
with parameters

θ1 = λ1/λ2,
θ2 = λ2.

(13.76)

Since our focus of interest is on the ratio λ1/λ2, the transformed parametriza-
tion (13.76) might actually be more natural. Using (13.76) our reparametrized
likelihood becomes

L(θ1, θ2) ∝ exp [α1 log θ1 − x1θ1θ2 + (α1 + α2) log θ2 − x2θ2] . (13.77)
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If our model is parametrized as in (13.75), we seek a flexible family of
joint priors for (λ1, λ2) from which we will select a member to approximate
the prior beliefs of the available informed expert(s). Note that if λ2 were
known then the conjugate family of priors for λ1 (with likelihood (13.75))
would be a family of gamma distributions. Analogously, if λ1 were known
then the conjugate family of priors for λ2 would again be the family of
gamma distributions. It is then natural to consider joint prior distributions
for (λ1, λ2) which have gamma conditionals. This conditionally conjugate
prior family is an exponential family of the form

f(λ1, λ2) ∝ (λ1λ2)
−1 exp (−m10λ1 − m01λ2

+ m20 log λ1 + m02 log λ2

+ m11λ1λ2 − m12λ1 log λ2

− m21λ2 log λ1 + m22 log λ1 log λ2) , (13.78)

which has as its support the positive quadrant λ1 > 0, λ2 > 0. The class
(13.78) is the most general class with all conditionals, of λ1 given λ2 and
of λ2 given λ1, being gamma distributions. Specifically, we have

λ1|λ2 = λ
(0)
2 ∼Γ(m20−m21λ

(0)
2 +m22 log λ

(0)
2 , m10−m11λ

(0)
2 +m12 log λ

(0)
2 ),

(13.79)
and

λ2|λ1 = λ
(0)
1 ∼ Γ(m02−m12λ

(0)
1 +m22 log λ

(0)
1 , m01−m11λ

(0)
1 +m21 log λ

(0)
1 ).

(13.80)
In order to guarantee integrability of the density (13.78), certain constraints
must be placed on the hyperparameters (the mij ’s) in (13.78) as discussed
in Chapter 4. We are generally willing to accept improper priors but we typ-
ically insist on proper posteriors. To assure this we need to assure that the
data are of sufficient richness to make the posterior values of m10, m01, m20,
and m02 large enough to satisfy the constraints listed in Chapter 4. Of
course, if the prior itself is proper (i.e., if it initially has sufficiently large
values for m10, m01, m20, and m02) the posterior will necessarily be proper
for any realizations of X.

Since one of the posterior simulation strategies to be used involves use
of the Gibbs sampler, propriety of the posterior distribution is essential
(Hobert and Casella (1996)).

It is clear that when a prior of the form (13.78) is combined with the
likelihood (13.75), the resulting posterior distribution is a member of the
same family of priors. This reconfirms our assertion that such conditionally
specified priors are indeed conjugate priors. In fact only four of the hyper-
parameters in (13.78) are changed by the data, namely m10, m01, m20, and
m02. The usual prior, involving independent gamma distributions for λ1, λ2,
is included in the family (13.78). It corresponds to the case in which only the
data-affected hyperparameters (m10, m01, m20, and m02) are given nonzero
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values. The standard noninformative prior (see, e.g., Berger (1985), p. 85)
is also included in (13.78). It corresponds to the case in which all mij ’s
are zero except m20 and m02 which are set equal to −1. Thus (13.78) is a
sufficiently rich family to include the usual choices but posesses additional
flexibility to match a broader spectrum of prior beliefs than the usual prior
families.

A key feature of the family (13.78), as with all conditionally conjugate
prior families, is that both its prior and posterior distributions are con-
ditionally specified. That is (in both prior and posterior) the conditional
distribution of λ1, given any value of λ2, is a gamma distribution and the
conditional distribution of λ2, given any value of λ1, is again a gamma
distribution.

Simulation of realizations from (13.78) is thus readily achievable using a
Gibbs sampler technique, in a by now familiar manner.

If (λ
(1)
1 , λ

(1)
2 ), (λ

(2)
1 , λ

(2)
2 ), . . . , (λ

(N)
1 , λ

(N)
2 ) is a large simulated realization

of variables with density (13.78) then, for any function g : IR+2 → IR ,

g(λ
(1)
1 , λ

(1)
2 ), g(λ

(2)
1 , λ

(2)
2 ), . . . , g(λ

(N)
1 , λ

(N)
2 )

provides a simulated sample from the density of the variable g(λ1, λ2).
In particular, interest might be focussed on g(λ1, λ2) = λ1/λ2. Instead we
might be interested in g(λ1, λ2) = λ1−λ2. We can analyze both parametric
functions without additional difficulties.

This is in sharp contrast to the situation encountered in a classical non-
Bayesian framework. In that setting, attention is focussed on λ1/λ2 since
λ1 − λ2 is markedly more difficult for them to deal with.

Use of the Gibbs sampler to simulate realizations from (13.78) is not
obligatory. A readily available alternative for computing posterior moments
involves the use of importance sampling (see Appendix A.3). A reasonable
approach would draw samples from independent gamma densities for λ1

and λ2 and weight them by the corresponding ratio of densities.
If attention is definitely to be focussed on λ1/λ2 it is worth considering

the possiblity of transforming parameters using (13.76) before analysis (re-
call that (13.76) introduced new parameters θ1 = λ1/λ2 and θ2 = λ2). A
conditionally conjugate prior for (θ1, θ2) may be readily determined. For
the likelihood (13.77), given θ2 , the gamma family is a conjugate family
for θ1 while, given θ1, the gamma family is conjugate for θ2. Thus the con-
ditionally conjugate joint prior for (θ1, θ2), with the likelihood (13.77), is
also a gamma conditionals distribution, i.e.,

f(θ1, θ2) ∝ (θ1θ2)
−1 exp(−m10θ1 − m01θ2

+ m20 log θ1 + m02 log θ2

+ m11θ1θ2 − m12θ1 log θ2

− m21θ2 log θ1 + m22 log θ1 log θ2) . (13.81)
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The corresponding gamma conditionals for θ1 and θ2 have parameters as
indicated in (13.79) and (13.80) (with θ’s replacing the λ’s). The family
(13.81) provides a flexible family of priors for (θ1, θ2) paralleling the flexi-
ble family of priors for (λ1, λ2) provided by (13.78). They are not equiva-
lent. If (λ1, λ2) has a gamma conditionals distribution then (θ1, θ2) (defined
by (13.76)) has a distribution that is readily evaluated via Jacobians and
will not have a gamma conditionals distribution. Similarly if (θ1, θ2) has a
gamma conditionals distribution, then (λ1, λ2) will not have such a distribu-
tion. The choice between the flexible families of priors (13.78) and (13.81)
will probably depend on which parametrization is most easily visualized
by the informed expert, i.e., the one for which hyperparameter elicitation
will be most straightforward. Neither parametrization will possess compu-
tational advantages, so the choice will be either based on prior eliciation
advantages or on some feeling that one parametrization is “more natural”
than the other. Observe that if we use the gamma conditionals prior for
(θ1, θ2) and combine it with the likelihood (13.77), only 4 hyperparameters
will be affected by the data. In this case the data-affected hyperparameters
are m01, m20, m02 and m11 (a slightly different list from that associated
with a gamma conditionals prior for (λ1, λ2)). Independent marginal priors
for θ1 and θ2 and vague priors for them can be accommodated by suitable
choices of the mij ’s.

It must be emphasized, once more, that in using either of the families
(13.78) or (13.81) we are not implying that the informed expert’s true prior
is a member of either of the families. We are only agreeing to approximate
his true prior distribution with a member of one or the other flexible families
of priors.

To accomplish this, we elicit values for the conditional means and vari-
ances of the parameters λ1 and λ2. If the elicited values are

ξ
(1)
i = E(λ1|λ2 = λ

(i)
2 ), i = 1, 2, . . . , ℓ1,

ξ
(2)
i = var(λ1|λ2 = λ

(i)
2 ), i = 1, 2, . . . , ℓ1,

η
(1)
i = E(λ2|λ1 = λ

(i)
1 ), i = 1, 2, . . . , ℓ2,

and

η
(2)
i = var(λ2|λ1 = λ

(i)
1 ), i = 1, 2, . . . , ℓ2,

then, paralleling the technique used in Section 13.6.1 for normal data, we
will set up the following system of linear equations in the mij ’s:

ξ
(1)
i /ξ

(2)
i = c10 − c11λ

(i)
2 + c12 log λ

(i)
2 , i = 1, 2, . . . , ℓ1,

(ξ
(1)
i )2/ξ

(2)
i = c20 − c21λ

(i)
2 + c22 log λ

(i)
2 , i = 1, 2, . . . , ℓ1,

η
(1)
i /η

(2)
i = c01 − c11λ

(i)
1 + c21 log λ

(i)
1 , i = 1, 2, . . . , ℓ2,
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and

(η
(1)
i )2/η

(2)
i = c02 − c12λ

(i)
1 + c22 log λ

(i)
1 , i = 1, 2, . . . , ℓ2.

Appropriate values of the mij ’s will then be found using a standard least-
squares or regression program. These are viewed as the elicited values of
the hyperparameters and determine the conditionally conjugate prior to be
used in subsequent analysis.

13.10 Comparison of Normal Means

It is not uncommon to be faced with a problem of comparing means from
independent normal samples. Indeed, the problem is almost the canonical
introductory problem in statistical methods textbooks. Under the name
analysis of variance, we ask whether or not all the means are equal. We
perform multiple comparisons, estimate contrasts, etc. And we routinely
assume variance homogeneity, to avoid Behrens–Fisher-type “problems.”
Fiducial probabilists were less concerned about variance homogeneity but
their viewpoint (despite the weight and influence of R. A. Fisher) never
really was accepted by mainstream applied statisticians. Bayesian analysts
were undaunted by variance heterogeneity. It just meant more parameters
in the model, more complicated priors and posteriors, and a larger computer
account in order to process, at least approximately, the data. The current
analysis accepts this Bayesian thesis.

Suppose we have independent samples from k normal populations, i.e.,

Xij ∼ N(µi, τi), i = 1, 2, . . . , k, j = 1, 2, . . . , ni, (13.82)

(here τi = 1/σ2
i denotes the precision of the ith distribution). In this setting

we focus interest, as is often done, on the µi’s, regarding the unknown τi’s
as nuisance parameters. The likelihood of our data set (13.82) will involve
2k parameters. If all parameters but, say, µj were known, then a natural
conjugate prior for µj would be normal. If all parameters but, say, τℓ were
known, then a natural conjugate prior for τℓ would be a gamma distribution.
A fully flexible conditionally specified joint prior for (µ1, . . . , µk, τ1, . . . , τk)
would be one in which the conditional distributions of each µi, given all the
remaining 2k− 1 parameters, is normal and the conditional distribution of
each τj , given all the remaining 2k−1 parameters, is gamma. The resulting
family of joint priors is (cf. Section 8.6):

f(µ, τ) = (τ1τ2 . . . τk)−1 exp

{

2
∑

j1=0

2
∑

j2=0

· · ·
2
∑

jk=0

2
∑

j′

1=0

2
∑

j′

2=0

· · ·

· · ·
2
∑

j′

k
=0

[

mj,j′

k
∏

i=1

qiji(µi)
k
∏

i′=1

q′i′j′

i′
(τi′)

]

}

,

(13.83)
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where
qi0(µi) = 1,
qi1(µi) = µi,
qi2(µi) = µ2

i ,
q′i′0(τi′) = 1,
q′i′1(τi′) =−τi′ ,
q′i′2(τi′) = log τi′ .

There are thus 32k − 1 hyperparameters (the mj,j′ ’s) in this prior (the
constant m0,0 is determined by the other m’s to ensure that the density in-
tegrates to 1). The traditional informative prior for this problem has most
of these 32k − 1 hyperparameters set equal to zero. The only hyperparame-
ters given nonzero values are those 4k hyperparameters which are affected
by the data. The traditional prior is thus conjugate but severely restricted
in its ability to match prior beliefs. To elicit appropriate values for the ar-
ray of 32k − 1 hyperparameters, we propose to request the informed expert
to provide values for prior conditional means and precisions of each µi,
given a spectrum of specific values of µ

(i)
(µ with µi deleted), and τ and

of each τi′ given a spectrum of specific values of τ (i′) and µ. These, in a
manner parallel to that described in Section 13.6 for the case k = 1, yield a
collection of linear relations that should hold among the hyperparameters.
Typically no solution exists, since our expert is not infallible and will usu-
ally give inconsistent a priori values for conditional moments. We choose
hyperparameters to be minimally discrepant from the given information in
the sense of being a least-squares solution. As mentioned earlier, only 4k
of these parameters will have different values in the posterior distribution
from those values held in the prior distribution.

Assuming that appropriate prior hyperparameters can be obtained and
that 4k of them can be updated using the data to obtain posterior hyper-
parameters, we would then use the Gibbs sampler to generate realizations
(µ(k), τ (k)), k = 1, 2, . . . , N , from the posterior distribution, after discarding
the initial iterations. We can then study the approximate posterior distri-
bution of

∑k
i=1(µi − µ̄)2 in order to decide whether there is evidence for

differences among the µi’s, etc.
We can illustrate this kind of analysis using an example in which k = 2.

Note that, since we are not, assuming τ1 = τ2 (= variance homogeneity), we
are dealing with a Behrens–Fisher problem, well known to be troublesome
from a classical view point.

Example 13.3 (Basal metabolism data). Our data set is a much an-
alyzed one described in Snedecor and Cochran (1967, p. 118), based on a
1940 Ph.D. Thesis of Charlotte Young, and reproduced in Table 13.9. The
goal is to compare basal metabolism of college women under two different
sleep regimes.

We wish to specify a conditionally conjugate joint prior for (µ1, µ2, τ1, τ2),
utilize the data in Table 13.9 to obtain the corresponding (still conditionally
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TABLE 13.9. Basal Metabolism of 26 College Women (Calories per square meter
per hour)

7 or more hours of sleep 6 or less hours of sleep

1. 35.3 9. 33.3 1. 32.5 7. 34.6
2. 35.9 10. 33.6 2. 34.0 8. 33.5
3. 37.2 11. 37.9 3. 34.4 9. 33.6
4. 33.0 12. 35.6 4. 31.8 10. 31.5
5. 31.9 13. 29.0 5. 35.0 11. 33.8
6. 33.7 14. 33.7 6. 34.6
7. 36.0 15. 35.7 ΣX2j = 369.3
8. 35.0 ΣX1j = 516.8

n1 = 15, X̄1 = 34.45 cal./sq. m./hr. n2 = 11, X̄2 = 33.57 cal./sq. m./hr.

conjugate) posterior for (µ1, µ2, τ1, τ2), and then we wish to consider the

approximate posterior distribution of the difference between means ν
∆
=

µ1−µ2. In addition, we will look at the approximate posterior distribution

of ξ
∆
= τ1/τ2 to verify whether we are indeed in a Behrens–Fisher setting,

i.e., a setting in which ξ �= 1. Our conditionally conjugate prior family of
joint densities for (µ1, µ2, τ1, τ2) is of the following form (cf. (13.83)):

f(µ1, µ2, τ1, τ2)∝ (τ1τ2)
−1 exp[m1000µ1 + m0100µ2 − m0010τ1

− m0001 τ2 + . . . + m2222µ
2
1µ

2
2 log τ1 log τ2],

(13.84)

involving 34 − 1 = 80 hyperparameters. Only the eight hyperparameters

m0010, m0001, m0020, m0002, m1010, m0101, m2010, and m0201

will be changed from prior to posterior by the likelihood of the data set
in Table 13.9. The classical Bayesian analysis of this data set would give
nonzero values to some or all of these eight hyperparameters and set the
remaining 72 equal to 0. We have the (awesome!) additional flexibility
provided by the 80 hyperparameter family.

We will illustrate with an application to the metabolism data assum-
ing diffuse prior information, i.e., all m’s set equal to zero in (13.84). For
comparison, reference can be made to Arnold, Castillo, and Sarabia (1997)
where two alternatives are considered (using slightly different notation),
namely:

(i) Independent conjugate priors for each parameter (the only nonzero
m’s in (13.84) are m1000, m0100, m0010, m0001, m2000, m0200, m0020,
and m0002); and
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(ii) A classical analysis that assumes that only the hyperparameters that
will be affected by the data are nonzero (i.e., m0010, m0001, m0020,
m0002, m1010, m0101, m2010, and m0201).

In the diffuse prior case, our prior is of the form

f(µ, τ) ∝ (τ1τ2)
−1 if τ1, τ2 > 0 and −∞ < µ1, µ2 < ∞. (13.85)

The posterior distribution becomes

f(µ, τ |Data)∝ (τ1τ2)
−1 exp

(n1

2
log τ1 +

n2

2
log τ2

−τ1
1

2

n1
∑

j=1

x2
1j − τ2

1

2

n2
∑

j=1

x2
2j + µ1τ1

n1
∑

j=1

x1j

+ µ2τ2

n2
∑

j=1

x2j − n1

2 µ2
1τ1 − n2

2 µ2
2τ2

)

,

(13.86)

and the posterior conditional distributions to be used in the Gibbs sampler
are:

µ1|τ1 ∼ N

⎛

⎝µ =
1

n1

n1
∑

j=1

x1j ; σ
2 =

1

n1τ1

⎞

⎠ ,

µ2|τ2 ∼ N

⎛

⎝µ =
1

n2

n2
∑

j=1

x2j ; σ
2 =

1

n2τ2

⎞

⎠ ,

τ1|µ1 ∼ Γ

⎛

⎝

n1

2
;
1

2

n1
∑

j=1

x2
1j − µ1

n1
∑

j=1

x1j + µ2
1

n1

2

⎞

⎠ ,

τ2|µ2 ∼ Γ

⎛

⎝

n2

2
;
1

2

n2
∑

j=1

x2
2j − µ2

n2
∑

j=1

x2j + µ2
2

n2

2

⎞

⎠ .

Using the data from Table 13.9, the nonzero posterior hyperparameters are

m0020 = 15/2,
m0002 = 11/2,
m0010 =−8937.4,
m0001 =−6206,
m1010 = 516.8,
m0101 = 369.3,
m2010 =−15/2,
m0201 =−11/2.

Using these posterior hyperparameters, simulated approximate posterior
distributions of ν = µ1 − µ2 and of ξ = τ1/τ2 were obtained using the
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FIGURE 13.1. Diffuse priors: Simulated density of µ1 − µ2 using the Gibbs
sampler with 500 replications and 300 starting runs.

Gibbs sampler with 800 iterations discarding the first 300. To display the
results of this simulation we have used kernel density estimates to obtain
smooth curves.

We have used the kernel estimation expression

f̂(x) =
1

hn

n
∑

i=1

1√
2π

exp(−(x − xi)
2/(2h2)),

where

h = 1.06
σ

n1/5

in the symmetric case and

h = 0.9
σ

n1/5

in the nonsymmetric case, as suggested in Silverman (1986). The resulting
approximate posterior densities for ν = µ1 − µ2 and ξ = τ1/τ2 are shown
in Figures 13.1 and 13.2.

The corresponding approximate posterior means and variances are

E(ν) = 0.910,
var(ν) = 0.591,
E(ξ) = 0.372,
var(ξ) = 0.096.

It is clear from Figure 13.1 that, for this data set, µ1−µ2 is slightly posi-
tive (more sleep associated with higher metabolism) although the treatment
difference might well be considered not to be significant (a 95% interval for
ν would include ν = 0). It is also clear, since τ1/τ2 appears to be clearly
less than 1, that indeed we were right in not assuming equal variances. We
were indeed confronted by a Behrens–Fisher situation. �
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FIGURE 13.2. Diffuse priors: Simulated density of δ1/δ2 using the Gibbs sampler
with 500 replications and 300 starting runs.

13.11 Regression

In principle there is no reason not to utilize the conditional specification
approach in more complicated, yet still classical, modeling situations such
as simple linear regression.

Suppose that n independent observations X1, X2, . . . , Xn are available
and that their distribution is well described by a simple linear regression
model, i.e., for each i

Xi ∼ N(α + βti, σ
2), (13.87)

where the ti’s are known quantities (values of the “independent” variable)
and the parameters α, β, and σ2 are unknown. The natural parameter space
is IR×IR×IR+; corresponding to α ∈ IR , β ∈ IR , and σ2 ∈ IR+. As usual
we will reparametrize in terms of the precision τ (= 1/σ2) > 0. If α and β
were known, a natural conjugate prior for τ would be a gamma distribution.
If β and τ were known, a natural conjugate prior for α would be normal,
and if α and τ were known, a normal prior for β would be natural. Thus
we are led to consider the family of joint distributions for (α, β, τ) with
normal–normal–gamma conditionals; in the sense that α given β and τ is
normal, β given α and τ is normal, and τ given α and β has a gamma
distribution. It is not difficult to write the general form of such densities
as follows:
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f(α, β, τ)∝ exp
{

m100α + m200α
2 + m010β + m020β

2 + m110αβ
+ m120αβ2 + m210α

2β + m102α log τ + m012β log τ
+ m220α

2β2 + m202α
2 log τ + m022β

2 log τ + m112αβ log τ
− m121αβ2τ + m122αβ2 log τ − m211α

2βτ
+ m212α

2β log τ + m222α
2β2 log τ

}

× exp
{

−m001τ + m002 log τ−m101ατ−m011βτ−m201α
2τ

− m021β
2τ − m111αβτ

}

,
(13.88)

where the two factors in the right-hand side refer to the hyperparameters
which are unaffected by the data and those which are affected, respectively.

For this density we have:

1. The conditional distributions of α given β, τ is N(µ1(β, τ), σ2
1(β, τ)),

where

−2µ1(β, τ)r(β, τ) = (m100 + m110β + m120β
2)

− (m101 + m111β + m121β
2)τ (13.89)

+ (m102 + m112β + m122β
2) log τ,

r(β, τ) = m200 + m210β + m220β
2

− (m201 + m211β + m221β
2)τ (13.90)

+ (m202 + m212β + m222β
2) log τ,

−1

2σ2
1(β, τ)

= r(β, τ). (13.91)

2. The conditional distributions of β given α, τ is N(µ2(α, τ), σ2
2(α, τ)),

where

−2µ2(α, τ)s(β, τ) = (m010 + m110α + m210α
2 − m111α

2τ)

+ (m112α + m012 + m212α
2) log τ, (13.92)

s(β, τ) = m020 + m120α + m220α
2

− (m021 + m121α + m221α
2)τ (13.93)

+ (m122α + m022 + m222α
2) log τ,

−1

2σ2
2(α, τ)

= s(β, τ). (13.94)

3. The conditional distributions of τ given α, β is Γ(a(α, β), λ(α, β)),
where

a(α, β) = m002 + (m102 + m112β + m122β
2)α + m012β

+ (m202 + m212β + m222β
2)α2 + m022β

2 + 1,(13.95)
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TABLE 13.10. Adjustments in the parameters in the prior family (13.88),
combined with likelihood (13.97).

Parameter Prior value Posterior value

m002 m∗
001 m∗

001 + n/2

m001 m∗
002 m∗

002 +

∑n
i=1 x2

i

2

m011 m∗
011 m∗

011 −
∑n

i=1 xiti

m021 m∗
021 m∗

021 +

∑n
i=1 t2i
2

m101 m∗
101 m∗

101 −
∑n

i=1 xi

m111 m∗
111 m∗

111 +
∑n

i=1 ti

m201 m∗
201 m∗

201 + n/2

λ(α, β) = − (m001 + (m101 + m111β + m121β
2)α − m011β

− (m201 + m211β + m221β
2)α2 − m021β

2). (13.96)

The likelihood function can be written as

L(α, β, τ)∝ exp
[

n log τ − τ/2
∑

x2
i /2 − α2nτ/2 − β2τ

∑

t2i /2
+ατ

∑

xi + βτ (
∑

xiti − α
∑

ti)] .
(13.97)

This combined with the family of priors (13.88), leads to a posterior of the
same form, whose hyperparameters are given in Table 13.10.

Our model includes:

1. The classical approach. In this approach all hyperparameters in (13.88)
that are not affected by the data are set (rather arbitrarily) equal to
zero. The resulting seven-parameter conjugate prior family can be
identified with the second factor in (13.88) and might be judged to
be adequate in some circumstances.

2. The independent approach. A second approach would be to insist that
the usual conjugate prior family and the independent marginals prior
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family be included. This results in an eleven-parameter family. The
hyperparameters included in this situation are: m100, m200, m010,
m020, m001, m002, m101, m011, m201, m021, m111.

3. A simple flexible family. One approach would assume that (α, β) given
τ has a classical bivariate normal conditional density and that τ given
(α, β) has a gamma distribution. This can be accomplished by set-
ting the following list of nine mijk’s equal to zero in (13.88): m120,
m210, m220, m121, m211, m221, m122, m212, m222. The resulting 17
parameters conjugate prior family may be judged to be adequate in
some circumstances.

13.11.1 Assessment of Appropriate Values for the

Hyperparameters

The somewhat daunting formula (13.88) involves 26 hyperparameters! Only
seven of these are affected by the data (they are m001, m002, m101, m011,
m201, m021, and m111). In a manner parallel to that described in Section
13.6.1, only simple least-squares programs are needed to determine val-
ues of the hyperparameters essentially concordant with the values of the
conditional first and second moments supplied by the informed expert.

It is of course possible to restrict certain of the hyperparameters in
(13.88) to be zero to yield a simpler but still conjugate prior family.

More general linear models involving even more hyperparameters will
almost inevitably result in the informed expert’s judgments being diffuse,
to be reflected by setting all or many of the prior hyperparameters equal
to zero.

13.12 The 2 × 2 Contingency Table

When comparing two drugs, a common scenario involves ni subjects re-
ceiving treatment i of whom xi experience relief from symptoms, where
i = 1, 2. The basic data, realizations of two independent binomial (ni, pi)
random variables, are often displayed in a 2× 2 contingency table. Interest
frequently is directed to the ratio of the corresponding odds ratios, i.e., the
cross-product ratio

ψ(p) =
p1(1 − p2)

p2(1 − p1)
. (13.98)

A natural conjugate prior for p1, assuming p2 is known, is a beta prior.
The same is, of course, true for p2 assuming p1 is known. The corresponding
conditionally conjugate joint prior for (p1, p2) will have beta conditionals
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and will be of the form

f(p1, p2) = [p1(1 − p1)p2(1 − p2)]
−1

× exp [m11 log p1 log p2 + m12 log p1 log(1 − p2)

+ m21 log(1 − p1) log p2 + m22 log(1 − p1) log(1 − p2)

+ m10 log p1 + m20 log(1 − p1)

+ m01 log p2 + m02 log(1 − p2) + m00]

× I(0 < p1 < 1)I(0 < p2 < 1). (13.99)

Since our likelihood is

ℓ(p1, p2) ∝ px1
1 (1 − p1)

n1−x1p2(1 − p2)
n2−x2 (13.100)

it is evident that the posterior density (combining (13.99) and (13.100))
will again be in the family (13.99) with only four of the hyperparameters
(namely m10, m20, m01, m02) being affected by the data. Note that the nat-
ural conjugate joint prior would have independent marginals. It may be
argued, however, that when we are comparing drugs in an experiment such
as this, our prior beliefs about the efficacies of the drugs are unlikely to be
independent. The conditionally conjugate prior allows us to accommodate
dependent as well as independent prior beliefs. Using the prior (13.99),
the resulting posterior will also have beta conditionals and, consequently,
simulated realizations from the posterior distribution of the cross-product
ratio (13.98) are readily obtained using the Gibbs sampler. For details, see
Arnold and Thoni (1997).

13.13 Multinomial Data

Suppose that our data consists of the results of n independent trials each
with k+1 possible outcomes 1, 2, . . . , k+1. For i = 1, 2, . . . , k, let Xi denote
the number of outcomes of type i observed in the n trials. Then X has a
multinomial distribution with parameters n and p = (p1, p2, . . . , pk). Based

on X, we wish to make inferences about p (note that
∑k

i=1 pi < 1 and for

convenience we define pk+1 = 1 −∑k
i=1 pi). If p

(1)
(i.e., (p2, . . . , pk)) were

known, the natural conjugate prior for p1 would be a scaled beta density.
Considerations such as this will lead us to a joint prior for p which has

scaled Beta conditionals, i.e. such that for i = 1, 2, . . . , k,

pi|p(i)
∼

(

1 −
k
∑

j=1;j �=i

pj

)

× beta
(

ai(pi), bi(p(i))
)

, i = 1, 2, . . . , k,

where pi > 0; i = 1, 2, . . . , k, and p1 + . . . + pk < 1.
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Such distributions were discussed by James (1975) and were described
in two dimensions in Section 5.9.

A general form for such densities may be written as

f(p1, . . . , pk) ∝
k
∏

i=1

pαi−1
i [1 − (p1 + . . . + pk)]

αk+1−1
eφ(p1,...,pk), (13.101)

where

φ(p1, . . . , pk) =
∑

i<j

aij log pi log pj +
∑

i<j<k

aijk log pi log pj log pk

+ . . . + a12...k log p1 . . . log pk.
(13.102)

If p has a scaled beta conditionals distribution, i.e., has (13.101) as its
joint density, we write

p ∼ SBC(α, A) (13.103)

(here α is of dimension k + 1).
Note that if A ≡ 0 this reduces to the standard Dirichlet density, often

used as a prior in multinomial settings. Since our likelihood is of the form

L(p) ∝
k
∏

i=1

pxi
i

(

1 −
k

∑

i=1

pi

)n−
k
∑

i=1

xi

I

(

pi > 0,∀i,

k
∑

i=1

pi < 1

)

,

it follows immediately that the family (13.103) is a conjugate family and
that the posterior distribution of p given X = x will be in the same family.

Specifically we will have, introducing the notation xk+1 = n−∑k
i=1 xi and

x̃ = (x, xk+1),
p|X = x ∼ SBC(α + x̃, A). (13.104)

Gibbs sampler simulations using the posterior density will be readily
acomplished since simulation of univariate scaled beta variables is a straight-
forward exercise.

13.14 Change Point Problems

In a variety of situations, abrupt change can occur in stochastic mechanisms
generating data. In such settings, we are often interested in determining
whether a change has occurred in a series of observations and, if we decide
that there has been a change, we would like to determine when it occurred.

Such change point problems are routinely encountered in quality control,
economic analysis, etc. Indeed it is difficult to envision situations in which
such problems will not occur and be of interest. Any effort to generate a
sequence of i.i.d. observations would surely be a potential candidate for a
change point analysis!
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Putting on our Bayesian hats and picking up our conditionally specified
tool box, we can approach such problems quite confidently. We will illus-
trate with a very simple example: More realistic examples will require more
book-keeping, more prior elicitation, and more complicated algorithms but,
in general, no new insights.

Suppose that we have a sequence of n independent observations for which

Xi ∼ Poisson(λti), i = 1, 2, . . . , k,

and
Xi ∼ Poisson(αλti), i = k + 1, k + 2, . . . , n,

where λ > 0, α > 0, and k ∈ {1, . . . , n} are unknown parameters. Note that
if n = k, then by convention α = 1; and, of course, in such a situation, no
“change” occurred. The likelihood function is of the form

L(α, λ, k) ∝ λ
∑n

i=1
xiα

∑n

i=k+1
xie

−λ
∑k

i=1
ti−αλ

∑n

i=k+1
ti . (13.105)

If λ and k were known, a conjugate prior for α would be a gamma
distribution. Similarly, if α and k were known, a conjugate prior for λ would
be a gamma distribution. If α and λ were both known then a conjugate
prior family of densities for k is of the form

f(k; c) ∝
n
∏

j=k+1

cj , k = 1, 2, . . . , n, (13.106)

where c = (c2, . . . , cn) is a vector of nonnegative hyperparameters. Just
to have a name for it, we will call (13.106) a change point distribution.
We then will use as our general prior for (α, λ, k) one which has gamma
and “change point” distributions as conditionals. The posterior will be
in the same family and simulations from the posterior will only require
ability to simulate gamma, and “change point” variables. Note that it is
not uncommon, in face of the lack of prior information, to choose k to be a
priori a uniform random variable. This can be accommodated in our model
since the “change point” distribution reduces to the uniform distribution
when c ≡ 1.

13.15 Bivariate Normal

A final example of a potentially useful conditionally conjugate prior will
take us right back to Bhattacharyya’s normal conditionals density. Sup-
pose (X1, Y1), . . . , (Xn, Yn) are i.i.d. bivariate normal random variables
with mean vector (µX , µY ) and known covariance Σ. An appropriate con-
ditionally conjugate prior for (µX , µY ) would of course be the normal con-
ditionals density (4.31). It will give us more flexibility for matching prior
beliefs about (µX , µY ) than does the usual classical bivariate normal prior.
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13.16 No Free Lunch

The enormous number of parameters present in high-dimensional condi-
tionally specified priors is the source of their flexibility but, in practice, will
pose insurmountable elicitation problems unless some simplifying structure
is imposed. Some acceptable hierarchy of nested submodels must be devel-
oped to facilitate elicitation of appropriate prior values of parameters to
match the informed experts’ beliefs. Almost inevitably, many of the avail-
able parameters will be set to zero in applications (without going all the
way back to the natural conjugate priors). Even without such a hierarchical
structuring, the conditionally specified approach retains its utility since it
does include the “usual” vague and conjugate priors and the “independent
marginals” priors as special cases and it provides simple algorithms for
dealing with them.

13.17 Bibliographic Notes

Section 13.3 is based on Arnold, Castillo, and Sarabia (1996a). Section 13.4
covers material from Arnold, Castillo, and Sarabia (1993c).

Conditionally specified priors are discussed in a series of papers by Arnold,
Castillo, and Sarabia (1997, 1998a, 1998b).

The material on multinomial data and change point problems has not
appeared elsewhere.

Exercises

13.1 Suppose a series z = {z1, z2, . . . , zn} is generated by a stationary
autoregressive model AR(1),

zt = φzt−1 + at, t = 2, 3, . . . ,

where |φ| < 1 and the error terms at are i.i.d. N(0, σ2) observations.
Our aim is to use Bayesian techniques for inference regarding the
parameters (φ, τ), where τ = σ−2 is the precision.

(a) Prove that the likelihood function of the process is given by

f(z|φ, τ) = (2π)−n/2τn/2(1 − φ2)1/2

× exp

{

− τ
2

[

(1 − φ2)z2
1 +

n
∑

t=2
(zt − φzt−1)

2

]}

.

(b) If φ is a known parameter, prove that the gamma distribution
is conjugate for τ . Prove that if τ is known then

f(φ;α, β, γ) = k(α, β, γ)(1−φ2)α exp(−βφ−γφ2)I(−1 < φ < 1)
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is a conjugate density for φ.

(c) Find the most general density for (φ, τ) such that τ |φ is gamma,
and φ|τ is f(φ;α, β, γ). Prove that the obtained distribution is
conjugate for the AR(1) process.

(d) Show how the density f(φ;α, β, γ), given in (d), can be simulated
in order to implement the Gibbs sampling method.

13.2 Assume a random sample X1, . . . , Xn from a location and shift expo-
nential distribution with pdf,

f(x;λ, µ) = λe−λ(x−µ), if x > µ.

We are interested in Bayesian inference for the parameters (λ, µ) using
conjugate conditionally specified priors.

(a) If µ is a known parameter, show that the gamma distribution is
a conjugate distribution for λ. If now λ is known, show that the
truncated exponential distribution with pdf,

f(µ; a, b, c) = k(a, b, c)ecµ, if a < µ < b,

where a, b, c are parameters and k(a, b, c) is the normalizing
constant, is a conjugate prior distribution for µ.

(b) Obtain the most general bivariate distribution with gamma and
truncated exponential conditionals. Calculate the marginals, and
the conditional means and variances.

(c) Propose a method for elicitation of hyperparameters in the gamma-
truncated exponential conditionals distribution.

13.3 In the problem of Bayesian inference of ratios of gamma scale pa-
rameters, study the elicitation of hyperparameters, using conditional
moments.
(Arnold, Castillo, and Sarabia (1998a).)

13.4 Consider a normal distribution where the standard deviation is pro-
portional to the mean,

X ∼ N(µ, σ2 = µ2/λ), λ > 0.

This multiplicative model appears in processes where the measure-
ment error increases with the mean value. The likelihood function
is

f(x; µ, λ) =
λn/2

|µ|n(2π)n/2
exp

[

− λ

2µ2

n
∑

i=1

(xi − µ)2

]

.

(a) If µ is known, prove that the gamma distribution is a conjugate
distribution for λ.
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(b) If λ is known, prove that the generalized inverse normal distri-
bution (Robert (1991)) with pdf,

f(x; α, η, τ) =
k(α, η, τ)

|x|α exp

[

− 1

2τ2

(

1

x
− η

)2
]

,

where α > 1, τ > 0, and k(α, η, τ) norming constant, is a
conjugate prior distribution for µ.

(c) Obtain the most general distribution with gamma and general-
ized inverse normal conditionals. Prove that this distribution is
conjugate for the likelihood f(x; µ, λ). Discuss the problem of
assessment of hyperparameters.

13.5 Consider the conjugate prior distribution (13.98) for a 2 × 2 contin-
gency table. Suggest a method for the assessment of the hyperparam-
eters.

13.6 Let (X, Y ) a bivariate normal distribution with E(X) = µ1, E(Y ) =
µ2 known, V (X) = V (Y ) = σ2, and ρ(X, Y ) = ρ. Obtain a bi-
variate conjugate prior distribution for the parameters (τ, ρ), where
τ = 1/σ2, based on conditional specification.

13.7 Suppose that data are available from a Γ(α, λ) distribution. Identify
the family of conditionally conjugate prior densities for this problem.
Which hyperparameters are affected by the data?

13.8 Consider the improper joint density

f(x, y) = e−xyI(x > 0, y > 0).

Since this density has proper conditional densities it may be used to
generate a sequence X, Y, X, Y, . . . using a Gibbs sampler algorithm.
Try this to see what happens. Discuss the behavior of the related
Markov chain(s). (Cf. Hobert and Casella (1996).)

13.9 Consider a “random effects” one-way classification. Here our data are
of the form

Yij = µ + Ai + ǫij , i = 1, 2, . . . , k, j = 1, 2, . . . , ni,

where the Ai’s are i.i.d. N(0, σ2
τ ) variables and the ǫij ’s are i.i.d.

N(0, σ2) variables independent of the Ai’s. Assume, for simplicity,
that µ = 0. Discuss an appropriate conditionally conjugate analysis
of this problem.

13.10 Suppose that X1, X2, . . . , Xn are i.i.d. N (k)(θ, Σ0) random vectors
where, for simplicity, Σ0 is known. What kinds of prior densities for
θ will always yield normal posterior densities for θ?

(Bischoff (1993).)
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Conditional Specification Versus
Simultaneous Equation Models

14.1 Introduction

Conditional specification (CS) has been the focus of discussion throughout
this book. In two dimensions, we model the joint distribution of (X1, X2)
by discussing the distributions of X1 associated with different values of X2

and the distribution of X2 associated with different values of X1.
In the economics literature, it is more common to address such modeling

issues using what is known as the simultaneous equation (SE) formula-
tion. An enormous corpus of literature (beginning with Haavelmo (1943))
is available on this topic. In the SE formulation, X1 is viewed as a func-
tion of X2 with some associated error and X2 is viewed as a function of
X1 with some associated error. From the beginning, Haavelmo recognized
that the SE formulation was not amenable to direct interpretation in con-
ditional terms. Much of the literature in fact involves models derived from
the SE formulation that do have some parameters that are interpretable
in conditional terms. Conditional specification models may be considered
to be viable alternatives to SE models. Their advantage is that they admit
ready interpretation of the parameters in the model. The issues involved in
any CS versus SE comparison are well illustrated in the linear normal case,
which undoubtedly is the most commonly studied case in the economics
literature. Our discussion will, for simplicity, be concerned with the bivari-
ate case. In applications, higher-dimensional examples are most commonly
encountered.
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14.2 Two Superficially Similar Models

Suppose that we wish to describe the joint distribution of a random vector
(X1, X2).

Definition 14.1 (CS linear normal model in two dimensions). A
conditionally specified model for (X1, X2) with normal linear dependence
is a model such that for some constants µ1, µ2, β12, β21, σ2

1 , and σ2
2 , the

conditional distributions of (X1, X2) are given by

X1|X2 = x2 ∼ N(µ1 + β12x2, σ
2
1), (14.1)

X2|X1 = x1 ∼ N(µ2 + β21x1, σ
2
2). (14.2)

�

A closely related linear SE model can be defined as follows:

Definition 14.2 (SE linear normal model in two dimensions). A
linear SE model in two dimensions with normal errors is a model such
that, for certain constants µ1, µ2, β12, β21, σ2

1 , and σ2
2 the random vector

(X1, X2) is related to a normal random vector (ε1, ε2) by the relations

X1 = µ1 + β12X2 + ε1, (14.3)

X2 = µ2 + β21X1 + ε2, (14.4)

in which ε1 ∼ N(0, σ2
1) and ε2 ∼ N(0, σ2

2). �

Note that in these models exogenous variables have not been considered.
We have deliberately chosen our notation to make the models as super-

ficially similar as possible.
From (14.1) we know that if we are given X2 = x2, then conditionally

X1 is normal with mean µ1+β12x2 and variance σ2
1 . From (14.3) it appears

that if we know X2 to be x2, say, then X1 would be normal with mean µ1 +
β12x2 and variance σ2

1 . Analogous, precise, or vague statements about the
distribution of X2 given (or “knowing”) X2 = x2 can be made. But there is
clearly something wrong with our interpretation of the CS model here. We
have not even prescribed the joint distribution of the εi’s in (14.3)–(14.4).
We have only specified its marginals. Undoubtedly, the joint distribution
of (X1, X2) will depend on the full joint distribution of (ε1, ε2), not just its
marginals.

And, of course, we need to know the joint distribution of (X1, X2) in order
to determine the nature of the corresponding conditional distributions (of
X1 given X2 = x2 and of X2 given X1 = x1). For many choices of the joint
distribution of (ε1, ε2), even though the marginals of ε1 and ε2 are normal,
the derived conditional distributions of X1 given X2 and X2 given X1 will
not be normal. So the CS and SE models are generally different breeds of
cats.
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But potential confusion definitely does exist if we make the assumption
that is usually made about the joint distribution of (ε1, ε2). Typically, it is
assumed that (ε1, ε2) has a classical bivariate normal distribution. Such an
assumption will indeed imply that (X1, X2) itself has a classical bivariate
normal distribution.

But, even if (ε1, ε2) are chosen to be independent (a not uncommon
choice), the derived conditional distributions do not coincide with those
in the conditional specification model (14.1)–(14.2) (except in the triv-
ial case in which β12 = β21 = 0). Thus, although models (14.1)–(14.2)
and (14.3)–(14.4) are superficially similar, they are very different and must
consequently be visualized differently when introspecting about their ap-
propriateness to model any real-world configuration of variables.

Thus it is not appropriate to try to justify the SE model (14.3)–(14.4)
using simple arguments about conditional distributions of each variable
given the other. Such justification is appropriate for the CS model (14.1)–
(14.2). Any argument for the SE model must be based on some statements
about an existing functional relationship between observable random vari-
ables (X1, X2) and unobservable random variables (ε1, ε2) with classical
bivariate normal structure. Haavelmo (1943) knew this and so, of course,
the mistaken conditional interpretation is avoided in the literature. The
price that inevitably must be paid is that it becomes exceedingly difficult
to interpret the parameters µ1, µ2, β12, β21, σ

2
1 , and σ2

2 that appear in the
SE formulation. It is much easier to just come up front and assume from
the beginning that (X1, X2) has a bivariate normal distribution. If we in-
sist on choosing our model based on our perception of likely forms for cross
sections of the joint density of (X1, X2) (i.e., conditional densities), then
only the conditional specification route seems justified.

And, of course, with an assumption of normal conditionals, without in-
sisting on linear regressions and constant conditional variances, we would
be led to Bhattacharyya’s normal conditionals distribution (3.26) or its
multivariate extension (8.16) as suitable models for our data.

14.3 General CS and SE Models

Definition 14.3 (General CS model). A general CS model for a bi-
variate random variable (X1, X2) is a model of the form

X1|X2 = x2 ∼ Fx2(x1; θ) (14.5)

and

X2|X1 = x1 ∼ Fx1(x2; θ), (14.6)

where {Fx1} and {Fx2} are known indexed families of distributions depend-
ing on some or all of the parameters θ. �



340 14. Conditional Versus Simultaneous Equation Models

As we have seen in earlier chapters, the indexed families of distributions
referred to in (14.5)–(14.6) must be carefully selected to guarantee the
existence of a well-defined model.

Definition 14.4 (General SE model). A general SE model for a bi-
variate random variable (X1, X2) is a model that assumes the existence of
functions g1 and g2 such that

g1(X1, X2, θ) = ε1 (14.7)

and

g2(X1, X2, θ) = ε2, (14.8)

where (ε1, ε2) have a known joint distribution. An invertibility assumption
is desirable in (14.7)–(14.8). We usually assume that it is possible from
(14.7)–(14.8) to solve for (X1, X2) as functions of ε1, ε2, and θ. Except for
this requirement g1 and g2 can be relatively arbitrary. In practice, g1 and
g2 are chosen to be of a relatively simple form (often linear), and it is not
unusual to assume that ε1 and ε2 are independent. �

Several examples of such CS and SE specifications will be sketched in
the following sections.

14.4 Linear Normal Models

We will now carefully analyze the two models (14.1)–(14.2) (the CS model)
and (14.3)–(14.4) (the SE model). They are reasonably both called linear
normal models since both are built using linear functional relationships
and normal distributions. As has been remarked, the models are super-
ficially very similar. It turns out that both formulations lead to classical
bivariate normal distributions for (X1, X2) with parameters that involve
µ1, µ2, β12, β21, σ

2
1 , and σ2

2 .
The potential for confusion in the two models lies in the fact that the

same parameters µ1, µ2, β12, β21, σ
2
1 , and σ2

2 appear in both models. But
the roles played by the symbols in the two distributions are different. For
example, σ2

1 in CS is a conditional variance (the conditional variance of X1

given X2 = x2). In SE, σ2
1 is the variance of ε1, the conditional variance of

X1 given X2 = x2 in SE is not σ2
1 .

First consider the CS model (14.1)–(14.2). According to Theorem 1.2,
for compatibility we need to check whether we can factor the ratio of
conditional densities in the form

fX1|X2
(x1|x2)

fX2|X1
(x2|x1)

= u(x1)v(x2),
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where u(x1) is integrable. For this to be true we must have

β12

σ2
1

=
β21

σ2
2

(to be able to factor) (14.9)

and
|β12β21| < 1 (for integrability) . (14.10)

The function u(x1), suitably normalized yields the marginal fX1(x1) den-
sity which in this case is normal. Thus the joint distribution of (X1, X2)
determined by (14.1)–(14.2) will be the classical bivariate normal. Specifi-
cally,

(X1, X2) ∼ N

(

(ν1, ν2),

(

τ2
1 δτ1τ2

δτ1τ2 τ2
2

))

, (14.11)

where

ν1 =
µ1 + β12µ2

1 − β12β21
, (14.12)

ν2 =
µ2 + β21µ1

1 − β12β21
, (14.13)

τ2
1 = σ2

1/(1 − β12β21), (14.14)

τ2
2 = σ2

2/(1 − β12β21), (14.15)

and
δ = sgn(β12)

√

β12β21. (14.16)

Perhaps the easiest way to get (14.11)–(14.16) is to use the well-known
formula for conditional means and variances and covariances of a bivariate
normal (14.11), and equate them to the conditional means and variances
given in (14.1)–(14.2).

The reader will recall, from Chapter 3, Bhattacharyya’s assertion that
normal conditionals and linear regressions will inevitably lead to such a
classical bivariate normal model.

However, it must be recalled that we must insist that (14.9) and (14.10)
hold in our specification of the joint density of (X1, X2) (i.e., in (14.12)–
(14.16)). There are consequently really only five parameters, say, µ1, µ2, σ

2
1 ,

σ2
2 , and β12 (since β21 is a function of the others). Consequently, model

(14.1)–(14.2) would be better written as

X1|X2 = x2 ∼ N(µ1 + β12x2, σ
2
1), (14.17)

X2|X1 = x1 ∼ N(µ2 + β12σ
2
2x1/σ2

1 , σ2
2), (14.18)

where
|β12| <

σ1

σ2
. (14.19)

It is of course well known that the parameter space of the classical bivariate
normal distribution is of dimension 5. Thus our conditional specification
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model coincides with the usual bivariate normal model. The interrelation-
ship is made clear by the fact that we can solve for µ1, µ2, σ

2
1 , σ2

2 , and β12

in terms of the means, variances, and covariances of (X1, X2) as follows:

µ1 =
E(X2)Var(X1) − E(X2)Cov(X1, X2)

Var(X2)
, (14.20)

µ2 =
E(X1)Var(X2) − E(X1)Cov(X1, X2)

Var(X1)
, (14.21)

σ2
1 = Var(X1) −

Cov(X1, X2)
2

Var(X2)
, (14.22)

σ2
2 = Var(X2) −

Cov(X1, X2)
2

Var(X1)
, (14.23)

β12 =
Cov(X1, X2)

Var(X1)
. (14.24)

Using these relationships, method of moments, or equivalently maximum
likelihood estimates of the parameters are thus readily available.

In summary, assumptions (14.1) and (14.2) lead to a well-defined classical
bivariate normal model (14.11)–(14.16) provided that: (i) β12 = β21σ

2
1/σ2

2

and (ii) |β12β21| < 1; or provided we rewrite the model in the form (14.17)–
(14.18) with constraint (14.19).

Now let us consider the SE model (14.3)–(14.4).
As remarked in Section 14.2, we must completely specify the joint dis-

tribution of (ε1, ε2) in order to have a well-defined model; specification
of only the marginal distributions of ε1 and ε2 is not adequate. We will
assume that (ε1, ε2) has a classical bivariate normal distribution. Thus
(ε1, ε2) ∼ N(0, Σ), where

Σ =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

, (14.25)

and we assume that

X1 = µ1 + β12X2 + ε1 (14.26)

and

X2 = µ2 + β21X1 + ε2. (14.27)

In matrix notation, we have

A

(

X1

X2

)

=

(

µ1

µ2

)

+

(

ε1

ε2

)

, (14.28)

where

A =

(

1 −β12

−β21 1

)

. (14.29)
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To be able to solve (14.28) to get X as a function of ε, we must assume
that A is nonsingular, i.e., that

β12β21 �= 1. (14.30)

No other assumptions are necessary. It then follows that

(

X1

X2

)

= A−1

(

µ1

µ2

)

+ A−1

(

ε1

ε2

)

(14.31)

and, consequently, that X is classical bivariate normal, i.e., that

X ∼ N

(

A−1

(

µ1

µ2

)

, A−1Σ(A−1)′
)

. (14.32)

If we denote the means, variances, and correlation of X by ν̃1, ν̃2, τ̃
2
1 , τ̃2

2 , and
δ̃, respectively, to parallel the notation used in (14.11) for the CS model,
we find from (14.32) that

ν̃1 =
µ1 + β12µ2

1 − β12β21
, (14.33)

ν̃2 =
µ2 + β21µ1

1 − β12β21
, (14.34)

τ̃2
1 =

2ρσ1σ2β12 + σ2
1 + β2

12σ
2
2

(1 − β12β21)2
, (14.35)

τ̃2
2 =

2ρσ1σ2β21 + σ2
2 + β2

21σ
2
1

(1 − β12β21)2
, (14.36)

and

δ̃ =
(1 + β12β21)ρσ1σ2 + β21σ

2
1 + β12σ

2
2

√

[2ρσ1σ2β12 + σ2
1 + β2

12σ
2
2 ][2ρσ1σ2β21 + σ2

2 + β2
21σ

2
1 ]

. (14.37)

Again we remark that, distinct from the CS case, β12 and β21 can differ
in sign and are only constrained by the requirement that their product
should not equal 1.

If we compare (14.11)–(14.16) with (14.33)–(14.37), it is clear that the
models differ. The means coincide but the variances and covariances are
different and the constraints on the β’s are different. Indeed, as is well
known, in the SE model the parameters µ1, µ2, β12, β21, σ

2
1 , σ2

2 , and ρ are not
identifiable. The natural bivariate normal parameter space is of dimension
5 not 7. If we give arbitrary fixed values to β12 and β21 in the SE model,
it is possible to set up a 1 to 1 correspondence between the parameters in
(14.11)–(14.16) and the remaining five parameters in (14.33)–(14.34).
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Some simplification is encountered if we assume that ε1 and ε2 are inde-
pendent, i.e., that ρ = 0 in (14.25). The simplified means, variances, and
correlation are

≈
ν1=

µ1 + β12µ2

(1 − β12β21)
, (14.38)

≈
ν2=

µ2 + β21µ1

(1 − β12β21)
, (14.39)

≈
τ

2

1=
σ2

1 + β2
12σ

2
2

(1 − β12β21)2
, (14.40)

≈
τ

2

2=
σ2

2 + β2
21σ

2
1

(1 − β12β21)2
, (14.41)

and
≈
δ=

β21σ
2
1 + β12σ

2
2

√

(σ2
1 + β2

12σ
2
2)(σ2

2 + β2
21σ

2
1)

. (14.42)

Indeed since the moments given in (14.38)–(14.42) span the entire five-
dimensional parameter space of the classical bivariate normal distribution
there is no mathematical reason to introduce the parameter ρ in the model,
it does not enrich the model. There, of course, might be a valid theoretical
reason for having a structural model involving dependent ε’s. Even the
simplified SE model (with ρ = 0) is however not identifiable since it involves
six, not five, parameters.

In summary, though they seem to involve the same parameters the CS
and SE linear normal models are clearly distinct. The key point is that
µ1, µ2, β12, β21, σ

2
1 , and σ2

2 play different roles in the two models. In CS,
µ1 + β12x2 is the conditional mean of X1 given X2 = x2. In SE it is not.
In CS, σ2

1 is the conditional variance of X1 given X2 = x2. In SE, it is not.
In addition the β’s have different constraints in the two set-ups.

14.5 Nonlinear Normal Models

In this section we discuss what happens if we replace the linear regression
and constant conditional variance assumptions of (14.1)–(14.2) and the
parallel linear assumptions in (14.3)–(14.4) by nonlinear conditions. In this
arena the CS and SE specification lead us in completely different directions,
as we shall see.

In a general CS configuration, we would seek models exhibiting condi-
tional nonlinear normal structure.

Definition 14.5 (Nonlinear normal CS models). A CS nonlinear nor-
mal model is a model such that there exist possibly quite general functions
µ1(x2), σ1(x2), µ2(x1), and σ2(x1) such that for each x2,

X1|X2 = x2 ∼ N(µ1(x2), σ
2
1(x2)) (14.43)



14.5 Nonlinear Normal Models 345

and for each x1

X2|X1 = x1 ∼ N(µ2(x1), σ
2
2(x1)). (14.44)

�

But from our discussion in Chapter 3 we know how to characterize dis-
tributions satisfying (14.43)–(14.44). The classical bivariate normal model
is included but so are other interesting models as detailed in Chapter 3.

In order for the CS model to be valid the functions µ1(·), µ2(·), σ1(·)
and σ2(·) must have very specific forms as displayed in (3.28)–(3.31). No
other forms for the functions µ1(·), µ2(·), σ1(·) and σ2(·) are acceptable. If
we turn to the parallel SE model we find that a wider variety of forms for
µ1(·), µ2(·), σ1(·), and σ2(·) are acceptable.

The SE model that most closely parallels the CS model (14.43)–(14.44)
(and is most likely to be confused with it) is the nonlinear normal SE
model.

Definition 14.6 (Nonlinear normal SE models). A nonlinear normal
SE model is a model involving functions µ1(·), µ2(·), σ1(·) and σ2(·) such
that

X1 − µ1(X2)

σ1(X2)

d
= ε1 (14.45)

and
X2 − µ2(X1)

σ2(X1)

d
= ε2, (14.46)

where (ε1, ε2) has a bivariate normal distribution (perhaps assuming that
ε1, ε2 are independent standard normal variables). This is the general nor-
mal SE model. �

In order for (14.45) and (14.46) to represent a valid model, all that is
required is that the transformation

ε1 =
x1 − µ1(x2)

σ1(x2)
,

ε2 =
x2 − µ2(x1)

σ2(x1)
, (14.47)

be invertible. This will be true (although it may not be easy to check) for a
broad spectrum of choices for the mean and standard deviation functions
(µ1(·), µ2(·), σ1(·) and σ2(·)). If we assume differentiability and define

J(x1, x2) =

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂x1

x1 − µ1(x2)

σ1(x2)

∂

∂x2

x1 − µ1(x2)

σ1(x2)
∂

∂x1

x2 − µ2(x1)

σ2(x1)

∂

∂x2

x2 − µ2(x1)

σ2(x1)

∣

∣

∣

∣

∣

∣

∣

∣

, (14.48)
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then the resulting joint density for (Y1, Y2) is of the form

fX1,X2(x1, x2) = |J(x1, x2)|fε

(

x1 − µ1(x2)

σ1(x2)
,

x2 − µ2(x1)

σ2(x1)

)

. (14.49)

Even though ε was chosen to have a classical bivariate normal distribu-
tion, the density of (X1, X2) in (14.49) does not generally have normal
marginals or conditionals. (X1, X2) are only structurally related to the
normal variables (ε1, ε2).

However the general structural equation model (14.45), (14.46) can be
made extremely general by permiting nonnormal choices for the joint dis-
tribution of (ε1, ε2). In fact, since the transformation (14.47) is assumed to
be invertible, we can choose the joint distribution of ε to guarantee that X
has any absolutely continuous joint density!

We can pick the joint distribution of ε to guarantee that Y will be clas-
sical bivariate normal or indeed, if we wish, of the normal conditionals
form with parameters as in (3.26). In this somewhat awkward sense the
SE model subsumes and extends the CS model, provided we allow (ε1, ε2)
to have “contrived” distributions. Usually, as remarked earlier, (ε1, ε2) are
assumed to have a classical bivariate normal distribution and the mean
and standard deviation functions in (14.45), (14.46) are assumed to have
relatively simple forms (e.g., linear, bilinear, quadratic, biquadratic, etc.).
Such models, unless they reduce to (14.1)–(14.2), will typically fail to have
normal marginals or conditionals.

In summary, the CS and SE models in the nonlinear, just as in the linear
case, are markedly different. The functions µ1(·), µ2(·), σ1(·), and σ2(·) play
different roles in the two models and are subject to different constraints.

14.6 Pareto CS and SE Models

Recall that we say that X has a Pareto distribution with inequality pa-
rameter α and scale parameter σ, and write X ∼ P (α, σ) if

fX(x) =
α

σ

(

1 +
x

σ

)−(α+1)

I(x > 0). (14.50)

Definition 14.7 (Conditionally specified Pareto model). A condi-
tionally specified Pareto(α) model for (X1, X2) is a model such that for
each x2 > 0,

X1|X2 = x2 ∼ P (α, σ1(x2)) (14.51)

and for each x1 > 0

X2|X1 = x1 ∼ P (α, σ2(x1)). (14.52)

�
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From the discussion of Chapter 5, we know that such distributions must
have corresponding joint density of the form

fX1,X2(x1, x2) = (m00+m10x1+m01x2+m11x1x2)
−(α+1)I(x1 > 0, x2 > 0).

(14.53)
Thus the class of conditionally specified Pareto(α) distributions is severely
restricted in scope. It does include some densities with Pareto marginals
and conditionals.

The class of SE Pareto(α) models is much richer.

Definition 14.8 (SE Pareto model). A SE Pareto model is defined by
equations of the form

X1/σ1(X2) = ε1 (14.54)

and

X2/σ2(X1) = ε2, (14.55)

where (ε1, ε2) have a joint distribution with Pareto(α, 1) marginals. The
εi’s might be assumed i.i.d. To ensure that (14.54)–(14.55) will lead to a
well-defined model we only need to insist that the transformation defined
by (14.54)–(14.55) be invertible. �

A broad spectrum of choices for the functions σ1(·) and σ2(·) is thus
available. The associated joint distributions for (X1, X2) will generally not
be of the CS form (14.53), though it is possible to contrive a tailor-made
dependent joint distribution for (ε1, ε2) which will lead to the CS model.

For the CS Pareto(α) model (14.53) it is true that

X1

(

m10 + m11X2

m00 + m01X2

)

∼ P (α, 1) (14.56)

and

X2

(

m01 + m11X1

m00 + m10X1

)

∼ P (α, 1). (14.57)

Of course the P (α, 1) random variables appearing in (14.56) and (14.57)
are not independent. It may be of interest to see what kind of distribu-
tion we will encounter for (X1, X2) when (14.56)–(14.57) are regarded as
a SE specification of (X1, X2) involving independent Pareto(α, 1) random
variables, say ε1 and ε2.

Since the transformation from (ε1, ε2) to (X1, X2) associated with (14.56)
and (14.57) is invertible (recall ε1 > 0, ε2 > 0, X1 > 0, X2 > 0) we can
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determine its Jacobian, i.e.,

J(x1, x2) =

∣

∣

∣

∣

∣

∣

∣

m10 + m11x2

m00 + m01x2

(m00m11 − m01m10)x1

(m00 + m01x2)2

(m00m11 − m01m10)x2

(m00 + m10x1)2
m01 + m11x1

m00 + m10x1

∣

∣

∣

∣

∣

∣

∣

=
(m00 + m10x1 + m01x2 + m11x1x2)(m̃00 + m̃10x1 + m̃01x2 + m̃11x1x2)

(m00 + m10x1)2(m00 + m01x2)2
,

(14.58)
where

m̃00 = m00m01m10,
m̃10 = m00m10m11,
m̃01 = m00m01m11,
m̃11 = m01m10m11.

(14.59)

Thus the joint density of (X1, X2) is given by

fX1,X2(x1, x2) = α2J(x1, x2)

[

1 +
x1(m10 + m11x2)

m00 + m01x2

]−(α+1)

×
[

1 +
x2(m01 + m11x1)

m00 + m10x1

]−(α+1)

.

(14.60)

It may be observed that this density does not have Pareto marginals nor
does it have Pareto conditionals.

As in the normal case, for Pareto models CS and SE lead in general to
different distributions: highly restricted in nature, in the case of CS, quite
general in the case of SE.

We finish this section by illustrating an SE Pareto(α) model with scale
functions that are not bilinear. Suppose that

(

X2
2X1

X2
1X2

)

d
=

(

ε1

ε2

)

, (14.61)

where ε1, ε2 are i.i.d. Pareto(α, 1) random variables. In this case, we can
explicitly solve for X1, X2:

X1 =
3

√

ε2
1

ε2
,

X2 =
3

√

ε2
2

ε1
.

The Jacobian of the transformation in (14.61) is

J(x1, x2) =

∣

∣

∣

∣

x2
2 2x1x2

2x1x2 x2
1

∣

∣

∣

∣

= −3x2
1x

2
2
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and thus the joint density of (X1, X2) is

fX1,X2(x1, x2) = 3α2x2
1x

2
2

[

(1 + x1x
2
2)(1 + x2

1x2)
]−(α+1)

I(x1 > 0, x2 > 0).
(14.62)

Of course, in this case, there is no analogous CS model to compare with
(since we cannot have X1|X2 = x2 ∼ P (α, x−2

2 ) and X2|X1 = x1 ∼
P (α, x−2

1 )).

14.7 Discrete Models

There is, in principle, no reason to restrict discussion to absolutely continu-
ous distributions. We have seen in earlier chapters, a variety of conditionally
specified discrete distributions. Analogous SE models can be formulated but
as we will show with an example, they are often of limited utility since the
resulting set of possible values for (X1, X2) is often unusual in structure.
Our example involves geometric distributions. From the discussion in Sec-
tion 4.12 we know that the general form of a geometric conditionals density
is

fX1,X2(x1, x2) ∝ qx1
1 qx2

2 qx1x2
3 , x1, x2 = 0, 1, 2, . . . , (14.63)

where q1, q2 ∈ (0, 1) and q3 ∈ (0, 1].
A geometric SE model could be of the form

g1(X1, X2) = ε1 (14.64)

and
g2(X1, X2) = ε2, (14.65)

where the εi’s are independent geometric random variables and the trans-
formation defining the ε’s in terms of the X’s is invertible. As a specific
example we may consider

X2
2X1 − 1 = ε1, (14.66)

X2
1X2 − 1 = ε2, (14.67)

where ε1 ∼ G(p1) and ε2 ∼ G(p2) and the ε’s are independent.
The transformation (14.66)–(14.67) is indeed invertible. Using the nota-

tion qi = 1 − pi, it is not difficult to verify that the joint density (X1, X2)
defined by (14.66)–(14.67), is given by

fX1,X2(x1, x2) =

(

p1p2

q1q2

)

q
x2
2x1

1 q
x2
1x2

2 I(x2
1x2 ∈ IN , x2

2x1 ∈ IN), (14.68)

where IN denotes the natural numbers.
Equation (14.68) describes a well-defined joint discrete density function.

But it differs markedly from the CS geometric model (14.63). A major
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difference is to be found in the support sets of the models, i.e., the sets of
possible values for (X1, X2) prescribed by the models. In the CS model the
possible values of (X1, X2) are all pairs of nonnegative integers. In the SE
model (14.68), possible values of (X1, X2) are of the form

(

3

√

m2

n
,

3

√

n2

m

)

,

where m and n are natural numbers. It is hard to imagine situations in
which a model with such an unusual support set would be plausible. Simi-
lar anomalous support sets will be encountered for many discrete SE mod-
els and, consequently, the usefulness of discrete SE models is likely to be
severely curtailed.

14.8 Higher-Dimensional Models

It is necessary and natural to consider extensions to higher dimensions.
The extension of CS models to higher dimensions has been documented
extensively in Chapters 8 and 10.

There is no difficulty in extending our SE models to k dimensions.

Definition 14.9 (Multidimensional SE models). The model X =
(X1, . . . , Xk) is a k-dimensional SE model if it is related to ε = (ε1, . . . , εk)
by the set of equations

gi(X1, X2, . . . , Xk, θ) = εi; i = 1, 2 . . . , k, (14.69)

where ε is assumed to have a known distribution (not infrequently with
the εi’s i.i.d.). In order for (14.69) to lead to a well-defined model it is only
necessary that the transformation (14.69), which defines ε in terms of X,
be invertible. �

The case in which the gi’s are linear functions and the ε’s are normal has
received considerable attention and has proved to be a useful flexible model
in many economic applications. However, the caveats raised in earlier sec-
tions, about the difficulty in interpreting the parameters of such structural
models, remain cause for concern in k dimensions just as in two-dimensions.

14.9 Bibliographic Note

This chapter is based on Arnold, Castillo, and Sarabia (1998b).
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Exercises

14.1 Verify the expressions given for the parameters in the joint density
(14.11).

14.2 Verify the expressions given for the parameters in the SE model
(14.32).

14.3 Compare exponential CS and SE models. For the CS model X1|X2 =
x2 ∼ exp(µ(x2)) and X2|X1 = x1 ∼ exp(ν(x1)). For the SE model
µ(X2)X1 = ǫ1 and ν(X1)X2 = ǫ2, where (ǫ1, ǫ2) has a joint distribu-
tion with standard exponential marginals.

14.4 Determine the form of joint density for (ǫ1, ǫ2) to ensure that the SE
Pareto model (14.54)–(14.55) is of the CS form (14.53).

14.5 Consider the following nonlinear normal SE model

√

1 + aX2
2X1 = ǫ1,

√

1 + bX2
1X2 = ǫ2,

where ǫ1, ǫ2 are i.i.d. N(0, 1). How is this model related to the centered
normal conditionals model (3.51)?





15

Paella

15.1 Introduction

In this chapter we will gather together a selection of topics related to con-
ditional specification (CS). Either because of their tangential relation to
our main theme or because of their sometimes preliminary state of devel-
opment, they have been collected in this chapter. Some of them promise
considerable future development. They are presented in no particular order;
tasty ingredients, thoroughly mixed, as a paella should be.

15.2 Diatomic Conditionals and Stop-Loss
Transforms

Diatomic distributions sound more exotic than Bernoulli distributions but
of course they really aren’t. Instead of being random variables with possible
values 0, 1, they have two possible values. Naturally a location and scale
transform will reduce any diatomic random variable to a Bernoulli variable.
So, for example, questions about the correlation between diatomic variables
will reduce to questions about correlated Bernoulli variables.

Our concern is with diatomic random variables X, Y with possible values
{x1, x2} and {y1, y2}, respectively, with the convention that x1 < x2 and
y1 < y2. As in Chapter 1 we denote the corresponding conditional proba-
bility distribution matrices, now 2 × 2, by A and B, where aij = P (X =
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xi|Y = yj) and bij = P (Y = yj |X = xi). In the present case we can write,
using notation suggested by Hurlimann (1993),

A =

(

a 1 − α
1 − a α

)

(15.1)

and

B =

(

b 1 − b
1 − β β

)

, (15.2)

where a, b, α, β ∈ [0, 1] (usually in (0, 1)). We must have at least one non-
zero entry in each row and column of A and B.

Four parameters apparently are involved. There are really only three
since we know that, for compatibility, we must have equal cross-product
ratios for A and B. This follows from Theorem 2.1, if a, b, α, β ∈ (0, 1). If
any of the numbers a, b, α, β is zero we have to interpret the cross-product
ratio as taking values in [0,∞)∪{∞}. Since we never have two zeros in the
same row or column, we do not ever encounter an undefined cross-product
ratio (i.e., we never see 0/0). Thus we always will have, for compatibility,

aα

bβ
=

(1 − a)(1 − α)

(1 − b)(1 − β)
. (15.3)

For future reference we note the values of the determinants of A and B:

|A| = a + α − 1, (15.4)

|B| = b + β − 1. (15.5)

When A, B are compatible, we will denote the corresponding marginal
densities by

π = (π, 1 − π) (15.6)

and

η = (η, 1 − η), (15.7)

where π, η ∈ (0, 1). If A and B are compatible, they must have the same
incidence sets and then the corresponding marginal density for X, i.e., π,
is readily determined. We have

π =

a

1 − a
(1 − β)

b +
a

1 − a
(1 − β)

, (15.8)

assuming b �= 0 and a �= 0, 1. If b = 0 and β �= 0 then, necessarily, α �= 0, 1
and β �= 1 and we find

π =
β(1 − α)

α + β − αβ
. (15.9)
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Analogous expressions are available in other cases in which there is a single
zero in A and B. If there are two zeros in A and B then we must have one
of the following two trivial cases:

A = B =

(

1 0
0 1

)

(15.10)

or

A = B =

(

0 1
1 0

)

. (15.11)

Compatibility in such cases is obvious, however there is not a unique com-
patible distribution. The marginal π in cases (15.10) and (15.11) is com-
pletely arbitrary. If (X, Y ) have compatible conditionals given by A, B in
(15.1) and (15.2), then direct computation yields

var(X) = (x2 − x1)
2π(1 − π), (15.12)

var(Y ) = (y2 − y1)
2η(1 − η), (15.13)

cov(X, Y ) = (x2 − x1)(y2 − y1)π(1 − π)|B|
= (x2 − x1)(y2 − y1)η(1 − η)|A|. (15.14)

(Our earlier observation relating diatomic variables to Bernoulli variables
will simplify the derivation of (15.12)–(15.14).)

From (15.14) we may observe that

π(1 − π)|B| = η(1 − η)|A|. (15.15)

From (15.12)–(15.14), the correlation between X and Y is found to be

ρ(X, Y ) = |A|
√

η(1 − η)

π(1 − π)
(15.16)

= |B|
√

π(1 − π)

η(1 − η)
. (15.17)

Since π, η ∈ (0, 1), the expressions inside the radicals in (15.16) and
(15.17) are positive real numbers. Thus the sign of the correlation between
X and Y is determined by the common sign of |A| and |B|. If there are
no zeros in A and B, we can give a simple expression for the correlation in
terms of the elements of A and B, namely,

ρ(X, Y ) = |A|
√

bβ

aα
(15.18)

= |B|
√

aα

bβ
. (15.19)
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Formulas (15.18)–(15.19) continue to be valid when |A| = 1, i.e. when A is
given by (15.10). In this case ρ = 1. If |A| = −1, i.e. A as in (15.11), then
ρ = −1, but formulas (15.18)–(15.19) cannot be used.

From the above discussion it is evident that a joint distribution with
diatomic conditionals will be completely determined by π, η, and ρ.

Thus if we are given two arbitrary values π ∈ (0, 1), η ∈ (0, 1) the possible
values for ρ are

{

ρ =
θ − ηπ

√

π(1 − π)η(1 − η)
: 0 < θ < min(π, η)

}

. (15.20)

The value ρ = 1 can be obtained from an arbitrary π = η and the value
ρ = −1 can be obtained for an arbitrary π = 1 − η (cases corresponding
to matrices (15.10) and (15.11), respectively). The reader is referred to
Hurlimann (1993) for a variety of other expressions relating A, B, π, η, and
ρ. Note that since the family of Bernoulli distributions can be viewed as
an exponential family we can use Theorem 4.1 to characterize the class of
all bivariate distributions with conditionals in the given diatomic families
with support {x1, x2} and {y1, y2}, respectively. From that theorem we get

pij = P (X = xi, Y = yj)

= exp[m00 + m10i + m01j + m11ij], (15.21)

where m00 is chosen so that
∑2

i=1

∑2
j=1 pij = 1. Of course (15.21) repro-

duces the standard log-linear representation of the full family of multi-
nomial distributions with n = 1 and outcomes (1, 1), (1, 2), (2, 1), and
(2, 2).

Hurlimann (1993) observes that certain diatomic random variables can
play an extremal role in efforts to bound the stop-loss transform of a
random sum X + Y , i.e. of E((X + Y − T )+). Thus:

Theorem 15.1 If X, Y have a joint distribution with E(X) = µX , E(Y ) =
µY , var(X) = σ2

X , and var(Y ) = σ2
Y , it follows that, for any T ∈ IR ,

E((X + Y − T )+) ≤ (
√

σ2 + (T − µ)2 − (T − µ))/2, (15.22)

in which µ
∆
= µX +µY and σ

∆
= σX +σY . Equality in (15.22) is attained by

a bivariate diatomic distribution with correlation 1 (i.e., A as in (15.10))
with

x1 = µX − σXz0, x2 = µX + σX/z0,

y1 = µY − σY z0, y2 = µY + σY /z0,

and
π = 1/(1 + z2

0),

where
z0 = [

√

σ2 + (T − µ)2 − (T − µ)]/σ.

�
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15.3 Failure Rates and Mean Residual
Life Functions

In the context of reliability and survival modeling, failure rate functions
and mean residual life functions play a prominent role. Gupta (1998) has
investigated these and related functions in the case of the bivariate Pareto
conditionals distributions (as described in Section 5.2).

Definition 15.1 (Failure rate). For a positive random variable X with
density fX(x) and distribution function FX(x) we define its failure rate
function by

rX(x) = fX(x)/(1 − FX(x)), x > 0. (15.23)

Definition 15.2 (Mean residual life function). The mean residual life
function of a positive random variable X is defined by

µX(x) = E(X − x|X > x), x > 0. (15.24)

These two functions are related by

rX(x) = [1 + µ′
X(x)]/µX(x). (15.25)

If (X, Y ) has the Pareto conditionals distribution with density (5.7), Gupta
provides the following expression for the marginal mean remaining life
function of X:

µX(x) =

[

1

λ10(α − 1)(λ00 + λ10x)α−1(1 − FX(x))
− λ01

]

λ−1
11 . (15.26)

From which by letting x → ∞, he obtains

E(X) = λ−1
11

(

1

λ10(α − 1)λα−1
00

− λ01

)

. (15.27)

He also verifies indirectly that X has a decreasing failure rate function.
The hazard gradient of the Pareto conditionals distribution can also be

studied. This is a vector (h1(x, y), h2(x, y)) where h1(x, y) is the failure rate
function of X given Y > y and where h2(x, y) is the failure rate function
of Y given X > x. Without evaluating these functions analytically, Gupta
verifies that for each y, h1(x, y) is a decreasing function of x and for each
x, h2(x, y) is a decreasing function of y.

Conditional failure rates of the Pareto conditionals distribution are well
behaved, since the conditionals are Pareto densities. If we define

rX|Y (x|y) =
fX|Y (x|y)

1 − FX|Y (x|y)
, (15.28)
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we find that for the density (5.2),

rX|Y (x|y) = α

(

x +
λ00 + λ01y

λ10 + λ11y

)−1

. (15.29)

Clearly rX|Y (x|y)↓ as x↑. As a function of y, rather than of x, rX|Y (x|y) will
decrease or increase depending on the sign of the correlation between X and
Y (cf. (5.15)). It decreases if ρ > 0. The general prevalence of decreasing
failure rates associated with the Pareto conditionals distribution continues
with the revelation that the random variable Z = min(X, Y ) also has a
decreasing failure rate.

Another example of a conditionally specified distribution with computable
failure rate functions is the bivariate exponential conditionals distribution
with joint pdf,

fX,Y (x, y) =
k(c)

σ1σ2
exp[−x/σ1 − y/σ2 − cxy/(σ1σ2)] I(x ≥ 0)I(y ≥ 0),

(15.30)
where k(c) is defined in (5.22) and (5.23) (Arnold and Strauss (1988a)).
The joint survival function is available in closed form. We have

FX,Y (x, y) = P (X > x, Y > y) =

∫ ∞

x

∫ ∞

y

fX,Y (u, v) du dv

=
k(c)e−(x/σ1+y/σ2+cxy/(σ1σ2))

(1 + cx/σ1) (1 + cy/σ2) k

[

c

(1 + cx/σ1) (1 + cy/σ2)

] .(15.31)

Another formulation in terms of the exponential integral function is,

FX,Y (x, y) =
−Ei (1/c + x/σ1 + y/σ2 + cxy/(σ1σ2))

−Ei (1/c)
. (15.32)

The bivariate failure rate function is given by

rX,Y (x, y) =
fX,Y (x, y)

FX,Y (x, y)

=
(1 + cx/σ1) (1 + cy/σ2)

σ1σ2
k

[

c

(1 + cx/σ1) (1 + cy/σ2)

]

.

Using this last expression, it can be shown that the failure rate is increasing
in both x and y. This fact is consistent with the observation that X and
Y are negatively correlated.

15.4 Hypothesis Testing

Nested within most of our conditionally specified models are usually to be
found submodels involving more extensive symmetry, submodels that have
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simpler distributions and submodels with independent marginals. The bi-
variate normal conditionals density (3.26) is a case in point. Nested within
it are to be found the classical bivariate normal model (when m22 = 0)
and the model with independent marginals (when M̃ = 0). For large sam-
ples, generalized likelihood ratio tests may be used to determine the ap-
propriateness of such submodels. Indeed, for example, such an approach
was illustrated in Arnold and Strauss (1991) within the centered normal
conditionals family.

For the case of the bivariate exponential conditionals distribution (Sec-
tion 4.4), SenGupta (1995) has provided some alternative tests for inde-
pendence. If, referring to the density in the form (4.14), m10 and m01 are
known, then a UMP test for independence (i.e., m11 = 0) is available. The
rejection region is of the form

∑n
i=1 XiYi > c. When m10 and m01 are

unknown, SenGupta outlines the development of a UMPU test for inde-
pendence. He also discusses the problems associated with implementing a
UMPU test for symmetry (i.e., m10 = m01). It should be possible to de-
velop analogous results in other conditionally specified bivariate families
(e.g., the centered normal conditionals distribution).

15.5 Related Stochastic Processes

We begin by reviewing a conditional characterization problem mentioned in
Section 1.2 that turns out to be easy to resolve. Suppose that we are given
the family of conditional densities of X given Y and we are given that

X
d
= Y (i.e., FX(x) = FY (x),∀x ∈ IR), can we determine from this the

joint distribution of (X, Y )? The answer is, in many cases, yes. Consider a
Markov chain X1, X2, . . . whose transitions are governed by the given family
of conditional densities of X given Y . If this chain is irreducible (which
would happen, for example, if fX|Y (x|y) > 0, ∀x ∈ S(X), y ∈ S(Y )), then
a unique long-run distribution exists, say, F0(x). This must be the common
distribution of X and Y and then, armed with a marginal for Y (F0) and
the given conditional distribution of X given Y , the determination of the
joint distribution of (X, Y ) is straightforward.

Example 15.1 (Bivariate normal distribution). Suppose S(X) =
S(Y ) = IR and for each y ∈ IR, for some α ∈ (−1, 1),

X|Y = y ∼ N(αy + β, σ2). (15.33)

In addition, assume X
d
= Y . It follows that (X, Y ) has a classical bivariate

normal distribution, i.e., that

(

X
Y

)

∼ N (2)

⎛

⎜

⎝

⎛

⎜

⎝

β

1 − α
β

1 − α

⎞

⎟

⎠
, σ2

⎛

⎜

⎝

1

1 − α2

α

1 − α2

α

1 − α2

1

1 − α2

⎞

⎟

⎠

⎞

⎟

⎠
. (15.34)
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How was (15.34) obtained? The preamble to the example suggested that
we search for a distribution for X, say F0(x), with density f0(x) that
satisfies

f0(x) =

∫ ∞

−∞

1√
2πσ

e−(x−αy−β)2/2σ2

f0(y) dy. (15.35)

However, a more constructive approach is possible because of the special
properties of the normal distribution. Begin with X0 = 0 and successively
generate X1, X2, . . . using the conditional distribution (15.33). For any n
we will have

Xn
d
=

n−1
∑

j=0

αjZj + β

n−1
∑

j=0

αj , (15.36)

where Z0, Z1, . . . are i.i.d. N(0, σ2) random variables.
Evidently for each n, Xn is normally distributed with readily computed

mean and variance.

Finally, Xn
d→ N

(

β

1 − α
,

σ2

1 − α2

)

and this is the sought-for distribution

F0.
An exactly parallel development is possible if X|Y = y ∼ Cauchy(αy +

β, σ) and X
d
= Y .

In both the normal and Cauchy case we have the representation

Xn = αXn−1 + β + Zn−1, (15.37)

where Zn−1’s are i.i.d. stable random variables.
Except in these cases, solution of (15.35) seems the only possible ap-

proach. There is a possibility of generating some other tractable examples
if we use some of our available conditionally specified distributions.

Example 15.2 (Normal conditionals distribution). Suppose that

S(X) = S(Y ) = IR

and that for each y ∈ IR and some c > 0

X|Y = y ∼ N(0, σ4/(σ2 + cy2)). (15.38)

Suppose in addition that X
d
= Y . We claim that, necessarily, (X, Y ) has

a centered normal conditionals distribution (as in (3.51)) with σ2
1 = σ2

2 =
σ2. �

Example 15.2 was easily resolved since we knew that there was a unique

bivariate distribution with X|Y = y as in (15.38) and with X
d
= Y . Rec-

ognizing (15.38) from our experience in Chapter 3, we only needed to look
for a distribution with all of its conditionals of the centered normal form
that had its parameters selected to make X

d
= Y .
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We can embed (15.38) in a stochastic process as follows: for n = 0, ±1,
±2, . . .,

Xn =
√

σ4/[σ2 + c(Xn−1)2]Zn−1, (15.39)

where the Zis are i.i.d. N(0, 1) random variables. It may be noted that this
process will be time-reversible.

Analogous considerations lead to a time-reversible process with exponen-
tial transition distributions defined by

Xn =

(

σ2

σ + cXn−1

)

En−1, (15.40)

where c ≥ 0 and the Ei’s are i.i.d. standard exponential variables. Processes
of this kind have been studied by Anderson (1990). He also considered
processes with exponential transition probabilities involving higher-order
dependence.

15.6 Given E(X|Y = y) and FX(x)

Korwar (1974) discussed the possibility of characterizing a joint distribution
given one regression function and one marginal. Clearly we would generally
be unable to characterize the joint distribution of (X, Y ) if we were only
given E(X|Y = y) and FY (y). Any family of conditional distributions
FX|Y (x|y) with means given by E(X|Y = y) could be paired with FY (y)
and a wide variety of joint distributions could thus be obtained. The only
exception occurring when X, Y are both diatomic, in which case E(X|Y =
y) and FY (y) will determine the distribution of (X, Y ). Do the chances
look better if we are given E(X|Y = y) and FX(x)? Again, the diatomic
case must be dealt with separately.

For, if both X and Y are diatomic then E(X|Y = y) and FX(x) do
determine the joint distribution of (X, Y ). The three numbers they furnish
are adequate to pin down the three parameters in the joint distribution.
Aside from that special case there is no hope of characterizing the joint dis-
tribution based on E(X|Y = y) and FX(x) alone. More must be assumed.

If we state our characterization problem in a parametric setting we can
obtain characterization results involving one regression function and one
marginal. The following result is due to Kyriakoussis and Papageorgiou
(1989) using notation suggested by Wesolowski (1995a):

Theorem 15.2 For each θ ∈ Θ, a possibly infinite interval in IR , assume
that (Xθ, Y ) is a discrete random vector with the property that Xθ has a
power series distribution of the form

fXθ
(x) ∝ a(x)θx, x = 0, 1, 2, . . . ,
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and that for each y ∈ {0, 1, 2, . . .},

E(Xθ|Y = y) = y +

∞
∑

j=1

bj(y)θj .

If we assume that the conditional distribution of Y given Xθ does not de-
pend on θ, then the conditional distribution of Y |Xθ = x can be determined
uniquely for each x. �

For example, if Xθ is Poisson(θ) and if E(Xθ|Y = y) = y + qθ for some
q ∈ (0, 1) then Y |Xθ = x ∼ binomial(x, q).

15.7 Near Compatibility with Given Parametric
Families of Distributions

Suppose that we are given the conditional densities a(x, y) and b(x, y),
x ∈ S(X), y ∈ S(Y ), perhaps compatible but not necessarily so. Now
consider a given parametric family E of bivariate joint densities. Arnold
and Gokhale (1998c) address the problem of determining that member
of E that is most nearly compatible with the given a and b. They use
Kulback-Leibler distance between the conditionals of each member of E
and the conditionals given in a and b as a measure of discrepancy. Thus
for example in a Bayesian context, we might seek the bivariate distribution
with gamma–normal conditionals that is most nearly compatible with a
and b supplied by our informed expert, representing his conditional a priori
beliefs about a normal mean and precision. We thus would find the “best”
conditionally conjugate prior in this manner. The following toy example
illustrates the general ideas involved:

Example 15.3 (Near compatibility). Suppose S(X) = S(Y ) = {0, 1, 2}
and we are given the conditional probability matrices

A =

⎛

⎝

1/4 1/5 1/3
1/2 2/5 1/3
1/4 2/5 1/3

⎞

⎠ (15.41)

and

B =

⎛

⎝

1/3 1/3 1/3
1/2 1/4 1/4
1/5 2/5 2/5

⎞

⎠ (15.42)

(these are not compatible, but that does not matter).
Consider the one-parameter family of joint distributions on {0, 1, 2} ×

{0, 1, 2} defined by

Pθ =

⎛

⎝

(1 − θ)4 2θ(1 − θ)3 2θ2(1 − θ)2

2θ(1 − θ)3 2θ2(1 − θ)2 2θ3(1 − θ)
2θ2(1 − θ)2 2θ3(1 − θ) θ4

⎞

⎠ , (15.43)
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where θ ∈ [0, 1]. We wish to determine the member of {Pθ : θ ∈ [0, 1]} (i.e.,
we wish to choose θ) that is most nearly compatible with A and B. The
conditional distributions corresponding to Pθ, obtained by column and row
normalization, respectively, are

Aθ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(1 − θ)2

1 + θ2

(1 − θ)2

1 − θ + θ2

2(1 − θ)2

1 + (1 − θ)2

2θ(1 − θ)

1 + θ2

θ(1 − θ)

1 − θ + θ2

2θ(1 − θ)

1 + (1 − θ)2

2θ2

1 + θ2

θ2

1 − θ + θ2

θ2

1 + (1 − θ)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15.44)

and by symmetry
Bθ = AT

θ .

Using Kulback-Leibler distance as our measure of discrepancy we can
write (recalling (2.5))

d((A, B), Pθ) = I(A, Aθ) + I(B, Bθ)

=
2
∑

i=0

2
∑

j=0

aij log
aij

aij(θ)
+

2
∑

i=0

2
∑

j=0

bij log
bij

bij(θ)
.

(15.45)

To minimize this objective function we need to solve the following equa-
tion:

2
∑

i=0

2
∑

j=0

aij

a′
ij(θ)

aij(θ)
+

2
∑

i=0

2
∑

j=0

bij

b′ij(θ)

bij(θ)
= 0, (15.46)

where aij(θ) and bij(θ) denote the elements of Aθ and Bθ. For the particular
matrices A and B given in (15.41) and (15.42), the optimal choice of θ is

θ̃ = 0.510495 (15.47)

and the corresponding matrix in {Pθ : θ ∈ [0, 1]} most nearly compatible
with this A and B is

Pθ̃ =

⎛

⎝

0.05742 0.1198 0.1249
0.1198 0.1249 0.1302
0.1249 0.1302 0.06792

⎞

⎠ , (15.48)

which has as conditionals

Aθ̃ =

⎛

⎝

0.1901 0.3194 0.3866
0.3965 0.3331 0.4032
0.4135 0.3474 0.2102

⎞

⎠ (15.49)

and

Bθ̃ =

⎛

⎝

0.1901 0.3965 0.4135
0.3194 0.3331 0.3474
0.3866 0.4032 0.2102

⎞

⎠ . (15.50)
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The maximum absolute error deviations between the entries in these
most nearly compatible conditional matrices and the given conditional
matrices (15.41) and (15.42) are 0.1635 and 0.1898, respectively. �

15.8 Marginal Maps

To reinforce the idea that conditional densities must play a crucial role
in visualizing multivariate densities, we present the following pedagogical
exercise. A topographical map of a country showing height above sea level
can be, suitably normalized, viewed as the description of a bivariate density.

The marginals of such densities are essentially uninformative. Observe
Figures 15.1 and 15.2 in which Y -marginals (from north to south coast)
and X-marginals (from west to east coast) are provided for Mexico, Spain,
and the United States of America. They are in random order. Can you sort
them out?

The conditional densities, even only a few of them, are effectively evoca-
tive in describing the terrain and allowing us to recognize the country.
Three conditionals (normalized cross sections from west to east coast) are
provided, one for each country, in random order in Figure 15.3. Now can
you sort them out?

Finally, Figure 15.4 exhibits the corresponding joint densities (i.e., nor-
malized topographical maps) of the three countries, again in the same order
as in Figures 15.1–15.3. We can now grade our ability to identify the maps
on the basis of marginal or conditional information.

15.9 A Cautionary Tale

It would be remiss in a book, such as this, which has its focus on conditional
densities to not admit that there is a famous skeleton in the conditional
density closet. Conditional densities are a bit tricky and our intuitions
about interpreting them can be wide of the mark. The famous Kolmogorov–
Borel example, in which we consider the location of a person at a point
uniformly distributed in the surface of the globe, provides an eloquent case
in point. If we are told that such a person is in fact located on the prime
meridian, what is the distribution of his location on that meridian? Uniform
surely! But in fact the answer is: “it depends.” It depends on how we define
location on the sphere. If, as is customarily done, we locate by latitude and
longitude, we find that given our person is on the prime meridian, he is
more likely to be near the equator than near the pole. There are ways to
measure location on the sphere, that will make his location given he is on
the prime meridian, uniform. But as Arnold and Robertson (1998) point
out, there are also ways to measure location on the sphere, that will make
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FIGURE 15.1. Y -marginals (from north to south coast) for Mexico, Spain, and
the United States of America in random order.
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FIGURE 15.2. X-marginals (from west to east coast) for Mexico, Spain, and the
United States of America in random order.
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FIGURE 15.3. Conditionals (from west to east coast) for Mexico, Spain, and the
United States of America in random order.
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FIGURE 15.4. Joint densities (i.e., normalized topographical maps) of Spain, the
United States of America, and Mexico.
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his location on the prime meridian be governed by almost any distribution
that pleases you! Kolmogorov’s message that, for absolutely continuous
(X, Y ), it doesn’t really make sense to talk about the distribution of X
given Y equals a particular value y0, must be remembered, since the event
{Y = y0} is the same as the event {g(Y ) = g(y0)} for any invertible
function g. It does make sense to speak of the family of conditional densities
of X given Y = y as y ranges over S(Y ).

15.10 Bibliographic Notes

Hurlimann (1993) discussed diatomic conditionals (Section 15.2). Key ref-
erences for Section 15.3 are Gupta (1998) and Arnold and Strauss (1988a).
SenGupta (1995) discusses hypothesis testing in certain conditionally spec-
ified models (Section 15.4).

Arnold and Pourahmadi (1988) is useful reference for Section 15.5. Key
references for Section 15.6 are Korwar (1974) and Wesolowski (1995a, 1995b).
Section 15.7 is based on Arnold and Gokhale (1998c). The maps discussed
in Section 15.8 were prepared with the assistance of Carmen Sánchez.
Warnings about the dangers of facile interpretations of conditional den-
sities (Section 15.9) date back to Borel. More recent references are Arnold
and Robertson (1998), Rao (1993), and Proschan and Presnell (1998).

Exercises

15.1 Suppose X, Y are i.i.d. standard exponential random variables. Verify
that X|X−Y = 0 ∼ Γ(1, 2) while X| log X−log Y = 0 ∼ Γ(2, 2). Can
you identify a function g such that X|g(X) − g(Y ) = 0 ∼ Γ(3, 2)?

15.2 Suppose that (X1, X2, . . . , Xk) is a k-dimensional random vector such
that

(X1, X2, . . . , Xk−1)
d
= (X2, X3, . . . , Xk)

and that

Xn|X1 = x1, X2 = x2, . . . , Xk−1 = xk−1 ∼ N

⎛

⎝α +

k−1
∑

j=1

βjxj , σ
2

⎞

⎠ .

Verify that (X1, X2, . . . , Xk) must have a k-variate normal distribu-
tion.

15.3 Consider the following general normal process. Let µ : IR → IR and
σ : IR → IR+. For each n define Xn = µ(Xn−1) + σ(Xn−1)Zn where
the Zn’s are i.i.d. N(0, 1) random variables. For what choices of µ(·)
and σ(·) does this process have a proper long-run distribution?
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15.4 Consider again the incompatible conditional matrices A and B given
in (15.40) and (15.41). Find the most nearly compatible joint distri-
bution Pθ1,θ2 which has independent binomial (2, θ1) and binomial
(2, θ2) marginals.

15.5 Suppose that X has a power series distribution i.e., P (X = x) ∝
a(x)θx, x = 0, 1, 2 . . .. Suppose also that E(X|Y = y) =

∑∞
j=0 bj(y)θj

with b0(y) = y for every y = 0, 1, 2 . . .. Show that the distribution of
(X, Y ) can be uniquely determined.

(Kyriakoussis and Papageorgiou (1989).)



Appendix A
Simulation

A.1 Introduction

One of the most important tools for deriving the distributional properties
of complicated functions of random variables arising in practice, is the
Monte Carlo method. In fact, on many occasions the analytical treatment
of statistical problems is impossible and we are forced to use simulations
in order to get the desired result.

In this book a broad spectrum of conditionally specified models has been
introduced. The usefulness of these models would be severely limited if sim-
ulation of random variables with these distributions were to prove difficult
or impossible. The presence of complicated normalizing constants in most
conditionally specified models might suggest that simulation would be dif-
ficult. Despite the fact that we often lack analytic expressions for the den-
sities, it turns out to be quite easy to devise relatively efficient simulation
schemes. As observed by Arnold and Strauss (1988a), a straightforward
rejection scheme will often accomplish this goal. Alternatively, importance
sampling simulation techniques also allow us to forget about the normal-
izing constant problem. In Sections A.2 and A.3 we will review the funda-
mental ideas of the rejection and importance sampling methods. In subse-
quent sections we give more detailed descriptions of simulation strategies
appropriate for some specific conditionally specified models.

For conditionally specified distributions, the simulation strategies out-
lined in this appendix provide attractive alternatives to the always available
Gibbs sampler simulation method.
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A.2 The Rejection Method

The rejection method is based upon the following theorem (see Rubinstein
(1981) or Devroye (1986)):

Theorem A.1 Let X be a k-dimensional random vector with density

fX(x). Suppose that fX(x) can be represented in the form

fX(x) = Cg(x)h(x), (A.1)

where C > 1, 0 < g(x) < 1, and h(x) is also a probability density function.

Let U be a standard uniform (U [0, 1]) random variable and let Y be an

independent random variable with pdf h(y). It follows that the conditional

distribution of Y , given that U ≤ g(Y ), coincides with the distribution of

X.

In the light of this theorem we may use the following algorithm to
simulate pseudorandom variables corresponding to the density fX(x):

Algorithm A.1 (Simulating by the rejection method (Theorem
A.1)).

Input. The density being simulated fX(x) and the density h(x) used for

simulation.

Output. A random realization from fX(x).

Step 1. Generate one candidate random variate X with density h(x).

Step 2. Generate one random variate U uniformly distributed on [0, 1]
independent of X.

Step 3. Repeat Steps 1 and 2 until U ≤ g(X).

Step 4. Output X.

Clearly a random number, say N , of iterations is required to generate
one pseudovariate X. This random variable N , the waiting time until the
condition in Step 3 is satisfied, has a geometric distribution with parameter
p that satisfies

p = P (U ≤ g(X)) =

∫

IRk

g(x)h(x) dx = 1/C. (A.2)

It follows that
E(N) = C (A.3)

and
var(N) = C(C − 1). (A.4)
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When C is large, the efficiency of the above algorithm is low and the
rejection rate is high. Consequently, we may have to generate a huge number
of random variables from h(x) to obtain a small sample from fX(x).

To have an efficient algorithm we should endeavor to choose C as small
as possible.

In order to implement the rejection method we need:

(i) A convenient representation of the density fX(x) in the form (A.1)
with a C close to 1.

(ii) A convenient and efficient method to generate pseudorandom vari-
ables with the density h(x) appearing in (A.1).

Note that the precise value of C is not needed to implement the rejection
scheme, an important feature when we apply the technique to condition-
ally specified densities with undetermined normalizing constants. As we
shall see, we are often able to choose a density h(x), to be used in our re-
jection scheme, which has independent coordinates. This frequently allows
relatively simple generation of pseudovariates corresponding to h(x), since
we then only need to simulate one-dimensional random variables with well
known and understood distributions. A convenient source of algorithms
for generating univariate pseudorandom variables with any of the “usual”
distributions is Devroye (1986).

It is in fact often possible to implement the rejection scheme alluded
to in Theorem A.1, when both fX(x) (the hard to simulate density) and
h(x) (the easy to simulate density) are both only known up to a constant.
Suppose that

fX(x) ∝ g1(x)

and
h(x) ∝ g2(x).

Now, provided we can find a constant k such that

g2(x) ≥ kg1(x), ∀x, (A.5)

then we can generate pseudovariates corresponding to the hard density
fX(x) by generating a value X = x from the easy density h(x) and keeping
it with probability kg1(x)/g2(x). The retained X’s will have density fX(x).
For efficiency k should be as small as possible.

However, obtaining the value of k is not an easy task. We can avoid this
problem for large enough samples. To this end, we modify the rejection
method as follows:

Algorithm A.2 (Modified rejection method for use when C in
(A.1) or k in (A.5) is not known).

Input. The density being simulated fX(x), the density h(x) used for

simulation, and the sample size n.
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Output. An approximate random sample of a random size N such that

E(N) = n from fX(x).

Step 1. Make i = 1, ssum = 0 and smax = 0.

Step 2. Generate one random variate Xi with density h(x).

Step 3. Calculate si = fX(Xi)/h(Xi), smax = max(smax, si) and ssum =
ssum + si.

Step 4. If ssum/smax ≥ n go to Step 5; otherwise make i = i + 1 and go

to Step 2.

Step 5. For j = 1 to i do:

1. sj = sj/smax.

2. Generate a uniform U(0, 1) random number Uj.

3. If Uj < sj accept Xj as one item in the generated sample;

otherwise reject it.

Step 6. Return the generated sample.

The main shortcoming of this method is that we get a sample of unknown
size, but close to n. Note that the algorithm is designed to provide E(N) =
n.

A.3 The Importance Sampling Method

The acceptance-rejection algorithm, however, can be made more efficient
by the following modification. Write fX(x) as

fX(x) =
fX(x)

h(x)
h(x) = s(x)h(x), (A.6)

where

s(x) =
fX(x)

h(x)
(A.7)

is a score function. Thus, the score of the event x is the ratio of the
population distribution, fX(x), to the simulation distribution, h(x).

From (A.1) and (A.7), we see that s(x) = c g(x), that is, the score is
proportional to g(x). Therefore, instead of rejecting a number x generated
from h(x), we assign it a probability proportional to s(x) or g(x). Then at
the end we normalize the scores (by dividing each score by the sum of all
scores) and use the normalized scores to estimate the probability of any
event of interest. This leads to a much higher efficiency of the simulation
process.
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Note however that in this approach we, in fact, approximate the distri-
bution of the random variable instead of obtaining a simulated sample from
its distribution.

The above discussion suggests a general framework for simulation meth-
ods. Let X = {X1, . . . , Xn} be a set of variables with joint probability
density function fX(x).

After a simulated sample of n realizations from h(x), xj = {xj
1, . . . , x

j
n},

j = 1, . . . , n, is obtained, the distribution of the random variable X is
approximated by that of the discrete random variable whose support is
the set associated with the sample and whose probability mass function is
given by the set of normalized scores {si/

∑n
j=1 sj : i = 1, 2, . . . , n}.

The above procedure is described in the following general algorithm:

Algorithm A.3 (General simulation framework).

• Input. The population distribution fX(x), the simulation probability

density h(x), and the sample size n.

• Output. An approximation of the population distribution by that of

a discrete random variable with its probability mass function.

1. For j = 1 to n:

• Generate xj using h(x).

• Calculate s(xj) =
fX(xj)

h(xj)
.

2. Return the support S(X∗) = {xj : j = 1, 2, . . . , n} and the probability

mass function P (X∗ = xj) = s(xj)/
∑n

j=1 s(xj).

The selection of the simulation distribution influences the quality of the
approximation considerably. Sampling schemes leading to similar scores
for all realizations are associated with high quality and those leading to
substantially unequal scores have low quality.

The accuracy of the approximation obtained using Algorithm A.3 de-
pends on the following factors:

• The population distribution fX(x).

• The simulation distribution h(x) chosen to obtain the sample.

• The method used to generate realizations from h(x).

• The sample size n.

To facilitate the simulation process, selection of a Bayesian network
model for h(x) is a good choice. Careful selection of the method to generate
realizations from h(x) is also very important. Many of the existing methods
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are variants of the above method; they usually differ only in one or both
of the last two components.

Given a population distribution fX(x), each of the above three algo-
rithms generates a sample of size n (exact or approximate) from fX(x) or
an approximation of the population distribution. They differ only in how
the sample is generated (simulation distribution) and in the choice of the
scoring function. As an illustration we give below one simple example.

Example A.1 (Uniform sampling method). Suppose we are interested
in approximating the distribution of an n-dimensional random variable
(X1, X2, . . . , Xk). In this method the simulation distribution of the variable
Xi, is uniform, that is,

h(xi) =
1

S
, (A.8)

where S =
∫

S(Xi)
dxi.

Once a realization x is generated, the associated score becomes

s(x) = fX(x), (A.9)

where we have ignored the factor 1/S since it is identical for all realizations.
This method can be applied to the set of variables {X1, X2, . . . , Xk} in

any order because for each i, h(xi) does not depend on the value of any
other variable.

More details and examples of the importance sampling method can be
seen in Castillo, Gutiérrez, and Hadi (1997), Salmerón (1998a, 1998b), or
Hernández, Moral, and Salmerón (1998).

A.3.1 Systematic Sampling Method

In this subsection we mention the systematic sampling techniques that have
been shown to be much more efficient than the stochastic ones. Recently,
Bouckaert (1994) and Bouckaert, Castillo, and Gutiérrez (1996) introduced
a new method for generating the realizations forming a sample in a system-
atic way. Unlike the algorithms introduced in the previous sections, which
are stochastic in nature, this method proceeds in a deterministic way.

The original idea comes from stratified sampling. It is well known that
if we divide the sample space in several regions and allocate the sample
in an optimal number of subsamples, each taken from the corresponding
region, the resulting sample leads to estimates with smaller variance. The
limiting case consists of dividing the sample space in n regions such that
only one sample is taken from each region, and even the sample values can
be deterministically selected. For a detailed description of this method and
some examples see Castillo, Gutiérrez, and Hadi (1997), Salmerón (1998a,
1998b), or Hernández, Moral, and Salmerón (1998).
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A.4 Application to Models with Conditionals in
Exponential Families

Simulation of two-dimensional random variables corresponding to condi-
tionally specified models can be approached in three ways:

(a) by direct simulation of the bivariate random variables using the joint
density;

(b) by simulating one marginal and then simulating a corresponding
covariate using the appropriate conditional density; and

(c) by using the importance sampling method. This is useful only when
we aim to approximate the expectation of a sample statistic and not
to actually simulate a sample.

Consider the general class of conditionals in exponential families (CEF)
distributions, with joint density given by (4.5), i.e.,

fX,Y (x, y) = r1(x)r2(y) exp{q(1)(x)′Mq(2)(y)}. (A.10)

In order to utilize the rejection scheme based on Theorem A.1, it will
be sufficient to determine an upper bound for the factor responsible for
dependence in fX,Y (x, y). Thus we define

∆ = sup
x,y

[

exp[q̃(1)(x)′M̃ q̃(2)(y)]
]

, (A.11)

where M̃ is as defined in (4.6) and q̃(1)(x) (respectively q̃(2)(y)) is q(1)(x)

(respectively q(2)(y)) with its first coordinate deleted. We may then define

g(x, y) = ∆−1 exp[q̃(1)(x)′M̃ q̃(2)(y)] (A.12)

and

h(x, y) ∝ r1(x)r2(y) exp

⎡

⎣

ℓ1
∑

i=1

mi0q1i(x) +

ℓ2
∑

j=1

m0jq2j(y)

⎤

⎦ (A.13)

(which corresponds to the easily simulated independent marginals model)
and use our rejection scheme to generate pseudo-observations from (A.10).

The second approach available to us involves simulation of observations
from the marginal fX(x) of (A.10) and then simulating the corresponing
values of the Y variable using the known (exponential family) conditional
distribution of Y given X. We may illustrate this approach in the expo-
nential conditionals case, i.e., when fX,Y (x, y) is given by equation (4.14).
In this case, the marginal density of X is given by

fX(x; m10, m01, m11) = θ

(

−
m11

m10m01

)

m01

m01 − m11x
m10e

−m10x, x > 0.

(A.14)
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To simulate observations from (A.14) we may use our rejection scheme
(Theorem A.1) with the following choices for h(x) and g(x):

h(x) = m10e
−m10x, ; x > 0, (A.15)

and

g(x) = m01/(m01 − m11x) (A.16)

(recall m11 < 0 so that g(x) ≤ 1). Note that (A.15) corresponds to an expo-
nential distribution which is particularly easy to simulate. Having generated
a pseudovalue X∗ for X using this scheme, we may generate an appropriate
value Y ∗ to pair with it, by recalling that the conditional distribution of Y
given X = X∗ is exponential with mean (m01 − m11X

∗)−1. So we need to
generate independent exponential variates until we accept one for X∗ and
then need to generate just one more exponential variate to get the corre-
sponding value of Y ∗. In this fashion we obtain (X∗, Y ∗), a pseudorandom
variable corresponding to the density (4.14).

The third approach is to use the importance sampling technique. In this
case we can proceed as above but forgetting about the problem of the
normalizing constant, i.e., we do not need to calculate the ∆ bound in
(A.11). We use

s(x, y) = exp[q̃(1)(x)′M̃ q̃(2)(y)/h(x, y)]. (A.17)

However, at the end we must normalize the weights (or scores) s(x, y),
replacing them by

s∗(x, y) =
s(x, y)

∑

(x,y)

s(x, y)
.

The end product of this exercise is an approximation to the distribution
of (X, Y ), rather than a simulated sample.

A.5 Other Conditionally Specified Models

The same approach, involving rejection, can usually be used to generate
pseudorandom variables corresponding to the distributions catalogued in
Chapter 5. We will illustrate by considering the Pareto conditionals density
(5.7). In this case our joint density is of the form

fX,Y (x, y) = k(λ00, λ10, λ01, λ11)(λ00+λ10x+λ01y+λ11xy)−(α+1), x, y > 0.
(A.18)

In this case we may use the rejection scheme of Theorem A.1 or the im-
portance sampling technique with the following choices for h(x, y) and
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g(x, y):

h(x, y) ∝ (λ00 + λ10x + λ01y)−(α+1) (A.19)

g(x, y) =

(

λ00 + λ10x + λ01y

λ11 + λ10x + λ01y + λ11xy

)(α+1)

. (A.20)

Note that h(x, y) corresponds to the Mardia bivariate Pareto distribution
which is easily simulated (see, e.g., Devroye ((1986), p. 602)).

Alternatively we can first generate a variate corresponding to the X
marginal of (A.18) and then generate the corresponding Y value using the
Pareto conditional density of Y given X. In this case the X marginal takes
the form

fX(x; λ00, λ10, λ01, λ11) ∝ [(λ01 + λ11x)(λ00 + λ10x)α]−1, x > 0. (A.21)

We may simulate variates with the density (A.21), using our rejection
scheme by setting

h(x) ∝ (λ00 + λ10x)−α (A.22)

and

g(x) =
λ01(λ00 + λ10x)α

(λ01 + λ11x)(λ00 + λ10x)α
. (A.23)

The density (A.22) is an easily simulated Pareto density. Thus we simulate
independent Pareto’s until one is accepted as X∗, and then simulate one
more Pareto variate to get a corresponding value of Y ∗.

A.6 A Direct Approach Not Involving Rejection

For our conditionally specified models, we typically have no trouble gener-
ating a value of Y to pair with a value of X corresponding to the marginal
density fX(x). So, effectively, the only challenging problem is generating
pseudovariates corresponding to a marginal density

fX(x; θ) ∝ g(x, θ), (A.24)

where g is known and relatively simple in form. For given values of the
parameters θ, we can determine the normalizing constant in (A.24) by
numerical integration. We may then apply the inversion method. That
is we simulate a uniform U(0, 1) variate, say U , and then, by numerical
integration, determine a value X∗ such that

∫ X∗

−∞

fX(t, θ) dt = U. (A.25)

Due to the monotone character of the integral, this can be efficiently done
by the bisection method. With this generated value of X∗ in hand, we then
generate the corresponding value Y ∗ using the conditional density of Y
given X.
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A.7 Bibliographic Notes

Rubinstein (1981) and Devroye (1986) are excellent references for simu-
lation techniques including rejection techniques. The observation that we
only need to know kernels of densities to implement a rejection scheme
does not seem to be explicitly mentioned in most simulation texts but it
is undoubtedly not new to simulation experts. A convenient reference for
discussion of importance sampling is Tanner (1996) or Castillo, Gutiérrez
and Hadi (1997).

Exercises

A.1 In Bayesian analyses it is common to use posterior means as the
working parameters. If the posterior distribution cannot be easily
integrated, two alternative approaches are:

(a) Simulate a sample from the posterior and calculate the sample
mean.

(b) Replace the posterior distribution by an approximation.

Design a simulation method and an importance sampling method to
solve this problem in the case of the posterior density of the form
(13.27).

A.2 Adapt Algorithms A.1, A.2, and A.3 to simulate a normal random
variable using the Gumbel distribution with cdf,

F (x) = exp

[

− exp

(

−
x − a

b

)]

, −∞ < x < ∞,

as the simulation distribution.

A.3 Suggest a simulation method for:

(a) The Student-t distribution in (5.84).

(b) The Pearson type VI conditionals distribution in (5.17).

(c) The generalized Pareto conditionals distribution in (5.31).

(d) The Cauchy conditionals distribution in (5.47).

A.4 Obtain, by simulation, 1000 replications of a Γ(2, 0.3) variable using,
as the simulation distribution:

(a) A Γ(1, 0.3) distribution.

(b) A Γ(1, 1) distribution.
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(c) The distribution with cdf,

F (x) = 1 − e−x2

, x ≥ 0.

Graph the exact and the three simulated distributions above.

Compare the empirical cdf of the samples with the true distribution,
and discuss the results.

A.5 Use the importance sampling method described in Section A.4 for
the normal conditionals distribution in (3.26) (1000 replications).

Draw the true density and the histogram of the simulated sample,
and compare them.

Repeat the process for 10000 and 100000 replications.
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Notation Used in This Book

In this appendix we list the main notations used in this book. We have
attempted to keep the notations consistent throughout the book as much
as possible.

Notations

aij , p1|2 . . . . . . . . . . Conditional probability of X = xi given Y = yj

aijk . . . . . . . . . . . . . Conditional probability of X = xi given
Y = yj , Z = zk

a(x, y) . . . . . . . . . . . Conditional density of X given Y
A . . . . . . . . . . . . . . . Matrix whose (i, j)th element is the conditional

probability of X = xi given Y = yj

bijk . . . . . . . . . . . . . Conditional probability of Y = yi given
X = xj , Z = zk

b(x, y) . . . . . . . . . . . Conditional density of Y given X
ba(x|z) . . . . . . . . . .

∫

S(Y )
a(x, y)b(z, y) dµ2(y)

binomial(n, p) . . . Binomial random variable with parameters
n and p

B . . . . . . . . . . . . . . . Matrix whose (i, j)th element is the conditional
probability of Y = yj given X = xi

B(p, q) . . . . . . . . . . The beta function
B2(p, q, σ) . . . . . . . The beta distribution of the second kind
cijk . . . . . . . . . . . . . Conditional probability of Z = zi given

X = xj , Y = yz
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cdf . . . . . . . . . . . . . . Cumulative distribution function
cosh . . . . . . . . . . . . . Hyperbolic cosine
coth . . . . . . . . . . . . . Hyperbolic cotangent
cov(X, Y ) . . . . . . . Covariance between X and Y
CEF . . . . . . . . . . . . Conditionals in exponential families
CS . . . . . . . . . . . . . . Conditional specification models
Cij . . . . . . . . . . . . . . Subvector of X(i)

C(µ, σ) . . . . . . . . . . Cauchy distribution with location and
scale parameters

π(C) . . . . . . . . . . . . Cone generated by the columns of C
dij . . . . . . . . . . . . . . The (i, j) element in the D matrix
D . . . . . . . . . . . . . . . Cross-product ratio matrix of a 2 × 2 matrix
exp . . . . . . . . . . . . . . Exponential function
E(X) . . . . . . . . . . . Expectation of the random variable X
E(X|Y = y), ψ(y) Conditional expectation of X given Y = y
−Ei(x) . . . . . . . . . . Classical exponential integral fucntion
Exp(λ) . . . . . . . . . . Exponential random variable with mean 1/λ
Exp(α, λ) . . . . . . . Exponential distribution with location

parameter α and scale parameter 1/λ
fij . . . . . . . . . . . . . . Element (i, j) of the cross-product ratio matrix
fX(x) . . . . . . . . . . . Marginal pdf of X
fX|Y (x|y) . . . . . . . Conditional density of X given Y
fY |X(y|x) . . . . . . . Conditional density of Y given X
f(x|Y > y) . . . . . . pdf of the random variable X given Y > y
F (a, b) . . . . . . . . . . Complete elliptic integral of the first kind
F (a, b; c, d) . . . . . . Hypergeometric function
F . . . . . . . . . . . . . . . The cross-product ratio matrix
F̄ (x; θ) . . . . . . . . . . Parametric family of survival functions
FX,Y (x, y) . . . . . . . Bivariate cumulative distribution function
FX|Y (x|y) . . . . . . . Conditional cdf of X given Y
F̄ (x, y) . . . . . . . . . . Bivariate survival function
F̄ (x1, . . . , xk) . . . . Multivariate survival function
G(p) . . . . . . . . . . . . . Geometric distribution
GP(σ, δ, α) . . . . . . Generalized Pareto random variable
GP∗(µ, σ, δ, α) . . . Generalized Pareto random variable

with location parameter µ
h(x|Y > y) . . . . . . Conditional hazard function
I(a, x) . . . . . . . . . . . Incomplete gamma function
I(A) . . . . . . . . . . . . Indicator function, which is equal to 1 if A holds,

and 0 otherwise
IG . . . . . . . . . . . . . . Inverse Gaussian distribution
I(Q, P ) . . . . . . . . . . Kullback-Leibler information distance between

two matrices Q and P
iθiθj

. . . . . . . . . . . . . The (i, j)th element of the Fisher
information matrix
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J . . . . . . . . . . . . . . . . Jacobian
k(c) . . . . . . . . . . . . . Normalizing constant
kr,s(c) . . . . . . . . . . . Normalizing constant in gamma conditionals

Model II
ℓ(θ) . . . . . . . . . . . . . The log-likelihood function
log . . . . . . . . . . . . . . Logarithm function
L(θ) . . . . . . . . . . . . . The likelihood function
L(V ) . . . . . . . . . . . . Linear space generated by the columns of V
Mf (t) . . . . . . . . . . . The Laplace transform of f
ML(θ) . . . . . . . . . . . The marginal likelihood function
MX,Y (s, t) . . . . . . . The joint moment generating function
normal(µ, σ2) . . . . Normal distribution with mean

µ and variance σ2

IN . . . . . . . . . . . . . . . Set of natural numbers
N(µ, σ2) . . . . . . . . Normal distribution with mean µ

and variance σ2

Nk(µ, Σ) . . . . . . . . k-dimensional normal distribution with
mean vector µ and covariance matrix Σ

NA, N . . . . . . . . . . Incidence set of A
pdf . . . . . . . . . . . . . . Probability density function
pi. . . . . . . . . . . . . . . . Marginal probability of X
p.j . . . . . . . . . . . . . . Marginal probability of Y
pij . . . . . . . . . . . . . . Joint probability of (X, Y )

p
(n)
ij . . . . . . . . . . . . . nth iteration of an iterative scheme

PdH(k, α) . . . . . . . Pickands–de Haan random variable
PL(θ) . . . . . . . . . . . The pseudolikelihood function
P (σ, α) . . . . . . . . . . Pareto random variable with pdf proportional

to (1 + x/σ)−(α+1)

PS(θ) . . . . . . . . . . . Power series distribution
Poisson(λ) . . . . . . . Poisson random variable with mean λ
P (X = xi) . . . . . . Probability of X = xi

P (X > x), F̄ (x) . The survival function
P (X > x, Y > y) Bivariate survival function
P (X > x|Y > y) . Conditional survival function
P (X = xi|Y = yj) Conditional probability

of X = xi given Y = yj

P (Y = yj) . . . . . . . Probability of Y = yj

P (Y = yj |X = xi) Conditional probability of Y = yj given X = xi

Q . . . . . . . . . . . . . . . Quadratic measure of discrepancy
rX(x) . . . . . . . . . . . Failure rate of X
rX|Y (x|y) . . . . . . . Conditional failure rate of X given Y
IR . . . . . . . . . . . . . . . Set of real numbers
RXY . . . . . . . . . . . . The sample correlation of (X, Y )
RR2 . . . . . . . . . . . . . Reversed rule of order 2
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sign(a) . . . . . . . . . . Sign of a
sinh . . . . . . . . . . . . . Hyperbolic sine
SE . . . . . . . . . . . . . . Simultaneous equations models
S(X) . . . . . . . . . . . . Support of the random variable X
S2

X . . . . . . . . . . . . . . The sample variance of X
SXY . . . . . . . . . . . . The sample covariance of (X, Y )
Sψ . . . . . . . . . . . . . . Contraction Mapping
SBC(α, A) . . . . . . . Scaled beta conditionals distributions
TP2 . . . . . . . . . . . . . Total positivity of order 2
U . . . . . . . . . . . . . . . Standard uniform random variable
U(a, b, z) . . . . . . . . Confluent hypergeometric function
var(X|Y = y). . . . Conditional variance of X given Y = y
V (X) . . . . . . . . . . . Variance of the random variable X
W (c) . . . . . . . . . . . . Weibull random variable such that W 1/c

is unit exponential
wi . . . . . . . . . . . . . . . One of the generator vectors of a cone
wij . . . . . . . . . . . . . . Slack variable
x. . . . . . . . . . . . . . . . k-dimensional vector
x(i) . . . . . . . . . . . . . . (k − 1)-dimensional vector obtained

from x by deleting xi

x(i,j) . . . . . . . . . . . . The vector x with its ith and jth
coordinates deleted

X, Y . . . . . . . . . . . . Univariate random variables
X(i)ℓ . . . . . . . . . . . . Subvector of X(i) with ℓ coordinates
(X, Y ) . . . . . . . . . . . Two-dimensional random variable
X|Y . . . . . . . . . . . . . Conditional random variable X given Y
X . . . . . . . . . . . . . . . k-dimensional random vector
X(i) . . . . . . . . . . . . . (k − 1)-dimensional random vector

obtained from X by deleting Xi

X(i,j) . . . . . . . . . . . The random vector X with its ith
and jth coordinates deleted

X = (Ẋ, Ẍ) . . . . . A partitioning of X into two subsets with k1

and k − k1 coordinates
X . . . . . . . . . . . . . . . The sample mean of X
Z . . . . . . . . . . . . . . . Normal random variable with mean 0 and

variance 1
(ε1, ε2) . . . . . . . . . . Error terms in bivariate SE models
ηj . . . . . . . . . . . . . . . Probability of Y = yj

Γ(a) . . . . . . . . . . . . . Gamma function
Γ(α, σ) . . . . . . . . . . Gamma random variable with pdf

proportional to xα−1e−σx

Λ . . . . . . . . . . . . . . . Positive definite matrix
µ. . . . . . . . . . . . . . . . Location parameter
µX(x) . . . . . . . . . . . Mean residual life of X
µ(y) . . . . . . . . . . . . . Conditional expectation of X given Y = y
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Ω(π(C)) . . . . . . . . . The dual or polar cone of π(C)
∏n

i=1 xi . . . . . . . . . x1 × . . . × xn

φz(x) . . . . . . . . . . . . The Wöhler field
Φ(x) . . . . . . . . . . . . Standard normal distribution function
φX,Y (t1, t2) . . . . . . Bivariate characteristic function
Ψ(x) . . . . . . . . . . . . The digamma function
ΨX,Y (t1, t2) . . . . . Bivariate Laplace transform
π(W ) . . . . . . . . . . . Cone generated by W
ρ(X, Y ) . . . . . . . . . Coefficient of linear correlation between

X and Y
σ . . . . . . . . . . . . . . . . Scale parameter
σ2(y) . . . . . . . . . . . . Conditional variance of X given Y = y
Σ . . . . . . . . . . . . . . . A nonnegative definite matrix
∑n

i=1 xi . . . . . . . . x1 + . . . + xn

τi . . . . . . . . . . . . . . . Probability of X = xi
a.s.
→ . . . . . . . . . . . . . Almost sure convergence
≈ . . . . . . . . . . . . . . . Approximately equal to
∆
= . . . . . . . . . . . . . . . Equal by definition
∼ . . . . . . . . . . . . . . . Distributed as
∅ . . . . . . . . . . . . . . . Empty set
∃ . . . . . . . . . . . . . . . Exists at least one
∝ . . . . . . . . . . . . . . Proportional to
∩ . . . . . . . . . . . . . . . Set intersection
∪ . . . . . . . . . . . . . . . Set union
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