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Foreword

The meeting “Visions in Mathematics — Towards 2000” took place
mainly at Tel Aviv University in August 25-September 3, 1999, with
a few days at the Sheraton-Moriah Hotel at the Dead Sea Health
Resort. The meeting included about 45 lectures by some of the leading
researchers in the world, in most areas of mathematics and a number
of discussions in different directions, organized in various forms.

The goals of the conference, as defined by the scientific commit-
tee, consisting of N. Alon, J. Bourgain, A. Connes, M. Gromov and
V. Milman, were to discuss the importance, methods, future and
unity /diversity of mathematics as we enter the 21st Century, to con-
sider the relation between mathematics and related areas and to dis-
cuss the past and future of mathematics as well as its interaction with
Science.

A new format of mathematical discussions developed by the end
of the Conference into an interesting addition to the more standard
form of lectures and questions. The “Addendum” to this part of the
Proceedings contains the transcript of some of the discussions which
took place at the Dead Sea.

We believe that the meeting succeeded in giving a wide panorama
of mathematics and mathematical physics, but we did not touch upon
the interaction of mathematics with the experimental sciences.

This is the second (and final) part of the proceedings of the meet-
ing.

It is a pleasure to thank Mrs. Miriam Hercberg and Mrs. Di-
ana Yellin for their great technical help in the preparation of this
manuscript.

N. Alon J. Bourgain
A. Connes M. Gromov

V. Milman
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ALGEBRAIC AND PROBABILISTIC METHODS IN
DISCRETE MATHEMATICS

NoGcA ALON

Abstract

Combinatorics is an essential component of many mathematical areas,
and its study has experienced an impressive growth in recent years.
This survey contains a discussion of two of the main general techniques
that played a crucial role in the development of modern combinatorics:
algebraic methods and probabilistic methods. Both techniques are
illustrated by examples, where the emphasis is on the basic ideas and
the connection to other areas.

1 Introduction

Mathematical Research deals with ideas that can be meaningful to every-
body and there is no doubt that it also lies behind most of the major
advances in Science and Technology. Yet, mathematicians often tend to
formulate their questions, results and thoughts in a way that is comprehen-
sible only to their colleagues who work in a closely related area. One of the
goals of the conference “Visions in Mathematics” was to try and present
the main areas in mathematics in a way that can be interesting to a general
mathematical audience, and possibly even to a general scientific audience.
Although this is a difficult task, it is not impossible, and I believe that
many of the lectures achieved this goal.

Following the spirit of the conference, this survey is also aimed at a gen-
eral mathematical audience. I try to explain two of the main techniques
that played a crucial role in the development of modern combinatorics: al-
gebraic techniques and probabilistic methods. The focus is on basic ideas,
rather than on technical details, and the techniques are illustrated by ex-
amples that demonstrate the connection between combinatorics and related
mathematical areas.

Research supported in part by a US-Israel BSF grant, by a grant from the Israel
Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel
Aviv University.
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My choice of topics and examples is inevitably influenced by my own
personal taste, and hence it is somewhat arbitrary. Still, I believe that
it provides some of the flavour of the techniques, problems and results in
the area, which may hopefully be appealing to researchers in mathematics,
even if their main interest is not Discrete Mathematics.

2 Algebraic Techniques

Various algebraic techniques have been used successfully in tackling prob-
lems in Discrete Mathematics over the years. These include several tools
that I will not discuss here, like tools from Representation Theory applied
extensively in enumeration problems, or spectral techniques used in the
study of highly regular structures. In this section I describe mainly two
representative algebraic tools. The first one may be called Combinatorial
Nullstellensatz, is based on some basic properties of polynomials, and has
applications in Combinatorial Number Theory, Graph Theory and Com-
binatorics. The second one may be called the dimension argument, and
has had numerous applications over the years. The examples given here
illustrate the basic ideas. More examples can be found in various survey
articles and books including [G], [Al2], [BF], [BI].

2.1 Combinatorial Nullstellensatz. The classical Hilbert’s Nullstel-
lensatz (see, e.g., [vdW]) asserts that if F' is an algebraically closed field,

f.91,... ,gm are polynomials in the ring of polynomials F[z1,... ,x,], and
f vanishes over all common zeros of g1, ... ,gm, then there is an integer k
and polynomials hq,... , hy, in Flz1,... ,2,] so that

m
= hige
i=1

In the special case m = n, where each g; is a univariate polynomial of the
form [[,cs. (zi — s), a stronger conclusion holds, as follows.

Theorem 2.1. Let F be an arbitrary field, and let f = f(x1,... ,2,)
be a polynomial in Flxi,...,x,]. Let Si,...,S, be nonempty subsets of
F and define g;(v;) = [l,cq,(¥i — s). If f vanishes over all the common
zeros of g1, ... ,gn (that is; if f(s1,...,8,) =0 for all s; € S;), then there
are polynomials hy,... ,hy, € Flxi,... ,x,| satisfying deg(h;) < deg(f) —

deg(g;) so that
n
F=> hig
i=1



Visions in Math. METHODS IN DISCRETE MATHEMATICS 457

As a consequence of the above one can prove the following,
Theorem 2.2. Let F be an arbitrary field, and let f = f(x1,... ,xy)
be a polynomial in F|xi,...,x,|. Suppose the degree deg(f) of f is
>, t;, where each t; is a nonnegative integer, and suppose the coeffi-

cient of T}, xf’ in f is nonzero. Then, if S1,...,S, are subsets of F' with
|S;| > t;, there are s; € S1,82 € Sa,...,8, €S, so that
f(s1,...,8n) #0.

These two results are proved in [Al4], where it is proposed to call them
Combinatorial Nullstellensatz. The proofs are based on some simple prop-
erties of polynomials. It turns out that these results are related to some
classical ones, and have many combinatorial applications.

One of the classical results that follow easily from Theorem 2.2 is the
following theorem, conjectured by Artin in 1934, proved by Chevalley in
1935 and extended by Warning in 1935.

Theorem 2.3 (cf., e.g., [S]). Let p be a prime, and let
P1 = P1($1,... ,:L’n),PQ = Pg(xl,... ,.Z'n),... ,Pm = Pm(ftl,... ,:L’n)

be m polynomials in the ring Zp[x1,... ,z,). If n > > deg(P;) and the
polynomials P; have a common zero (ci,... ,¢,), then they have another
common Zzero.

The proof follows in a few lines by applying Theorem 2.2 to the poly-
nomial

f=fr.. o) =[O0 -Pn.. 2 =[] T[] @i-o.
=1 j=1ceZy,c#c;
where ¢ is chosen so that f(c,...,c,) =0.

Another classical result that follows from a similar reasoning is the
Cauchy-Davenport Theorem, which is one of the fundamental results in
Additive Number Theory, see, e.g., [N]. This theorem asserts that if p is a
prime, and A, B are two nonempty subsets of Z,, then

|A+ B| > min {p, |A| + |B| — 1}.

Cauchy proved this theorem in 1813, and applied it to give a new proof
to a lemma of Lagrange in his well known 1770 paper that shows that any
integer is a sum of four squares. Davenport formulated the theorem as a
discrete analogue of a conjecture of Khintchine (proved a few years later)
about the Schnirelman density of the sum of two sequences of integers. The
original proofs of the theorem given by Cauchy and Davenport are purely
combinatorial. As observed in [AINR], there is a different, algebraic proof,
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which extends easily and gives several related results. This proof is, again,
a simple application of Theorem 2.2. It readily extends to provide bounds
for restricted sums in finite fields. If h = h(zg, z1,... ,zx) is a polynomial
over Z, and Ag, Ay, ..., Ay are subsets of Z,, then the method provides a
lower bound (which is often tight) for the cardinality of the set

{a0+a1 +...4ap:a; € A;, h(ag,al,... ,ak) 7&0}

When h is the polynomial [, ;. ;so(zi — ;) the above set corresponds
to sums of distinct elements. By applying Theorem 2.2 to an appropriate
polynomial, and by observing that the relevant coefficient in this case can
be computed from the known results about the Ballot problem (see, e.g.,
[M]), as well as from the known connection between this problem and the
hook formula for the number of Young tableaux of a given shape, one can
obtain a tight lower bound for the number of such sums. The very special
case of this result in which k =1, Ag = A and Ay = A—{a} for an arbitrary
element a € A, implies the following theorem, conjectured by Erdds and
Heilbronn in 1964 (cf., e.g., [ErG]) and proved, after various partial results
by several researchers, by Dias Da Silva and Hamidoune [DH], using some
tools from linear algebra and the representation theory of the symmetric
group.

Theorem 2.4 [DH]. Ifp is a prime, and A is a nonempty subset of Z,,
then
{a+d :a,d € Aja# d'}| > min{p,2|A| — 3}.

This special case can be proved directly by assuming it is false, taking
C' to be a set of cardinality 2| A| — 4 containing all sums of distinct elements
ai,a2 € A, with ag # a for some fixed a € A, and then by applying
Theorem 2.2 to the polynomial f(z,y) = (z —y) [[.cc(z +y —¢) to get a
contradiction.

Erdés, Ginzburg and Ziv [ErGZ] proved that every sequence of 2n — 1
elements of the cyclic group Z,, contains a subsequence of exactly n terms
whose sum (in Z,) is 0. This is tight, as shown, for example, by the
sequence consisting of n — 1 zeros and n — 1 ones. The main part of the
proof of this statement is its proof for prime values of n = p, as the general
case can then be easily obtained by induction. Kemnitz [Ke] conjectured
that for every prime p, every sequence of 4p — 3 elements of Zg contains
a subsequence of exactly p terms whose sum (in Zg) is zero. Ronyai [Ro]
has proved, very recently, that 4p — 2 elements suffice. His proof can be
described as an application of Theorem 2.2. This is done by first proving
the following lemma.



Visions in Math. METHODS IN DISCRETE MATHEMATICS 459

LEMMA 2.5 [AID]. If (a1,b1),. .. , (asp, bsy) € Z and S (ai,bi) = 0 (in
Zg), then thereis an I C {1,2,... ,3p}, |I| = p, such that ), ;(as,b;) = 0.

To prove the lemma, consider the polynomial

s = (- (San)™) (- (S )

(- (Ea)7) o

i=1 =1

Then the coefficient of Hfﬁ Il x; is nonzero, and hence, by Theorem 2.2 with

S1=S5...=S3,_1 = {0,1} there are z; € {0, 1} such that f(z1,... ,z3p-1)
is not zero. As f(0,0,...,0) =0, not all z; are 0. If Zfﬁ;l x; 1S not zero
modulo p then f(x1,...,23,-1) = 0, hence this sum is either p or 2p. In

both cases we get the desired result, where in the second case we apply the
fact that the sum of all 3p vectors is 0.

To prove, next, that any sequence (a1, b1), (ag,b2),. .. , (@ap—2,bap_2) of
elements of Zg contains a subsequence of precisely p terms whose sum is 0,
apply Theorem 2.2 to the polynomial

flz1,29,. .. ,24p_2) = (1 - <4jz_;2a¢ari>pl> (1 - (4§;2bixi>p1>

4p—2 p—1 4p—2
(1—(in> ) 2 — Z Hx] —2H 1— ),
=1 Jc{1,2,... 4p—2},|J|=pjE€J

with §1 = Sy = ... = Sy—2 = {0,1}. As the coefficient of [[; z; is nonzero
there are z; € {0,1} such that f(z1,...,24—2) # 0. It is easy to check
that not all z; are zero. It also follows that ) . x; must be divisible by p;
if it is p we are done, if it is 3p the desired result follows from the lemma,
and the last ingredient is the fact that if it is 2p then the term

2 — Z H xj

Jc{1,2,... 4p—2},|J|=pj€J]

is zero and hence so is f. This completes the proof.

Theorem 2.2 has various applications in Graph Theory, including ones
in Graph Coloring, which is the most popular area of the subject. We
sketch below the basic approach, following [AIT]. See also [Ma] for a related
method.

A wvertex coloring of a graph G is an assignment of a color to each
vertex of G. The coloring is proper if adjacent vertices receive distinct
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colors. The chromatic number x(G) of G is the minimum number of colors
used in a proper vertex coloring of G. An edge coloring of G is, similarly, an
assignment of a color to each edge of G. It is proper if adjacent edges receive
distinct colors. The minimum number of colors in a proper edge-coloring
of G is the chromatic index x'(G) of G. This is equal to the chromatic
number of the line graph of G.

A graph G = (V, E) is k-choosable if for every assignment of sets of
integers S(v) C Z, each of size k, to the vertices v € V| there is a proper
vertex coloring ¢ : V +— Z so that ¢(v) € S(v) for all v € V. The choice
number of G, denoted ch(G), is the minimum integer k so that G is k-
choosable. Obviously, this number is at least the chromatic number x(G)
of G. The choice number of the line graph of G, denoted here by ch/(G),
is usually called the list chromatic index of G, and it is clearly at least the
chromatic index x'(G) of G.

The study of choice numbers was introduced, independently, by Vizing
[Viz] and by Erdés, Rubin and Taylor [ErRT]. There are many graphs
G for which the choice number ch(G) is strictly larger than the chromatic
number x(G) (a complete bipartite graph with 3 vertices in each color class
is one such example). In view of this, the following conjecture, suggested
independently by various researchers including Vizing, Albertson, Collins,
Tucker and Gupta, which apparently appeared first in print in the paper
of Bollobas and Harris ([BoH]), is somewhat surprising.

CONJECTURE 2.6 (The list coloring conjecture). For every graph G,
ch'(G) = X'(G).

This conjecture asserts that for line graphs there is no gap at all between
the choice number and the chromatic number. Many of the most interesting
results in the area are proofs of special cases of this conjecture, which is
still wide open.

The graph polynomial fo = fa(x1,xe,... ,x,) of a graph G = (V, E)
on a set V = {1,... ,n} of n vertices is defined by fg(z1,x2,...,2,) =
H{(xl —xy) i <j, i€ E} This polynomial has been studied by var-
ious researchers, starting already with Petersen [P] in 1891. Note that if
S1,...,S, are sets of integers, then there is a proper coloring assigning to
each vertex ¢ a color from its list .5;, if and only if there are s; € S; such
that fg(s1,...,8n) # 0. This condition is precisely the one appearing in
the conclusion of Theorem 2.2, and it is therefore natural to expect that
this theorem can be useful in tackling coloring problems. By applying it to
line graphs of planar, cubic graphs, and by interpreting the appropriate co-
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efficient of the corresponding polynomial combinatorially, it can be shown,
using a known result of Vigneron [Vi] and the Four Color Theorem, that
the list chromatic index of every 2-connected cubic planar graph is 3. This
is a strengthening of the Four Color Theorem, which is well known to be
equivalent to the fact that the chromatic index of any such graph is 3. An
extension of this result appears in [EIG].

Additional results on graph coloring and choice numbers using the algebraic
approach are described in the survey [All].

2.2 The dimension argument. In order to prove an upper bound for
the cardinality of a set, it is sometimes possible to associate each mem-
ber of the set with a vector in an appropriately defined vector space, and
show that the set of vectors obtained in this manner is linearly indepen-
dent. Thus, the cardinality of the set is at most the dimension of the
vector space. This simple linear-algebra technique, which may be called
the dimension argument, has many impressive combinatorial applications.
In this subsection we describe a few representative examples.

Borsuk [Bors] asked if any set of points in R? can be partitioned into
at most d + 1 subsets of smaller diameter. Kahn and Kalai [KK]| gave an
example showing that this is not the case, by applying a theorem of Frankl
and Wilson [FW]. Here is a sketch of a slightly modified version of this
counterexample, following Nilli [Ni]. The main part of the proof uses the
the dimension argument. Let n = 4p, where p is an odd prime, and let F
be the set of all vectors x = (x1,... ,x,) € {—1,1}", where z; = 1 and the
number of negative coordinates of x is even.

LEMMA 2.7. If G C F contains no two orthogonal vectors then |G| <
p—1 m—1
im0 ( i )

To prove the lemma note, first, that the scalar product a- b of any two
members of F is divisible by 4, and since there is no a € F for which —a is
also in F the assumption implies that there are no distinct a and b in G so
that a-b =0 (mod p). For each a € G define a polynomial over the finite
field GF(p) as follows: Pa(x) = [['—, (a-x—1i), where here x = (z1,... ,2,)
is a vector of variables. Note that by the assumption

(i) Pa(b) =0 (in GF(p)) for every two distinct members a and b of G,
and
(ii) Pa(a)#0forallacg.

Let P, be the multilinear polynomial obtained from the standard rep-
resentation of P, as a sum of monomials by using, repeatedly, the relations
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27 = 1. Since Pa(x) = Pa(x) for every vector x with {—1,1} coordinates,
the relations (i) and (ii) above hold with every P replaced by P.

It is easy to see that this implies that the polynomials P, for a € G are

linearly independent. Therefore, |G| is bounded by the dimension of the
space of multilinear polynomials of degree at most p — 1 in n — 1 variables
(since z; = 1) over GF(p), which is 37} ("7"), completing the proof of
the lemma.
For any n-vector x = (x1,...,%p), let x * x denote the tensor product
of x with itself, i.e., the vector of length n?, (z;; : 1 < i,j < n), where
xij = x;x;. Define S = {x*xx : x € F}, where F is as above. The norm
of each vector in S is n and the scalar product between any two members
of S is easily seen to be non-negative. Moreover, by Lemma 2.7 any set of
more than Zf:_ol (";1) members of S contains an orthogonal pair, i.e., two
points the distance between which is the diameter of S. It follows that S
cannot be partitioned into less than 272/ Zf:—ol (”;1) subsets of smaller
diameter.

The vectors in S lie in an affine subspace of dimension (;L), and hence

if
p] n—1 n
n—2
(") ()

the set S is a subset of R for d = (g‘) that cannot be partitioned into at
most d+ 1 subsets of smaller diameter. The smallest d for which this holds
(with n = 4p, p an odd prime) is d = 946 = (424) obtained by taking p = 11.

For an undirected graph G = (V, E), let G™ denote the graph whose ver-
tex set is V™ in which two distinct vertices (ug,ug,... ,uy) and (v1,va,... ,
vp,) are adjacent iff for all i between 1 and n either u; = v; or u;v; € E. The
Shannon capacity ¢(G) of G is the limit lim, o (a(G™))"/", where a(G™)
is the maximum size of an independent set of vertices in G™. This limit
exists, by super-multiplicativity, and it is always at least a(G).

The study of this parameter was introduced by Shannon in [Sh], mo-
tivated by a question in Information Theory. Indeed, if V is the set of
all possible letters a channel can transmit in one use, and two letters are
adjacent if they may be confused, then a(G") is the maximum number of
messages that can be transmitted in n uses of the channel with no danger
of confusion. Thus ¢(G) represents the number of distinct messages per use
the channel can communicate with no error while used many times.

The (disjoint) union of two graphs G and H, denoted G + H, is the
graph whose vertex set is the disjoint union of the vertex sets of G and
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of H and whose edge set is the (disjoint) union of the edge sets of G and
H. If G and H are graphs of two channels, then their union represents the
sum of the channels corresponding to the situation where either one of the
two channels may be used, a new choice being made for each transmitted
letter.

Shannon [Sh] proved that for every G and H, ¢(G+ H) > ¢(G) + ¢(H)
and that equality holds if the vertex set of one of the graphs, say G, can
be covered by a(G) cliques. He conjectured that in fact equality always
holds. Counter examples are given in [Al3], where it is shown that there
are graphs G and H satisfying ¢(G) < k and ¢(H) < k, whereas ¢(G+ H) >

log k
|10 sTosTos® and the o(1)-term tends to zero as k tends to infinity.

The construction is based on some of the ideas of Frankl and Wilson
[FW], together with a method for bounding the Shannon capacity of a graph
using the dimension argument. This bound, described below, is strongly
related to a bound of Haemers [HJ.

Let G = (V,E) be a graph and let F be a subspace of the space of
polynomials in r variables over a field F'. A representation of G over F
is an assignment of a polynomial f, in F to each vertex v € V and an
assignment of a point ¢, € F" to each v € V such that the following two
conditions hold:

1. For each v € V, f,(c,) # 0.
2. If w and v are distinct nonadjacent vertices of G' then f,(c,) = 0.

In these notations, the following holds.

PROPOSITION 2.8. Let G = (V, E) be a graph and let F be a subspace of
the space of polynomials in r variables over a field F'. If G has a represen-
tation over F then o(G) < dim(F).

This is proved by associating each vertex of an independent set of max-
imum cardinality in a given power of G, an appropriate polynomial in the
corresponding tensor power of F, and by showing that these polynomials
are linearly independent. The details can be found in [Al3].

Many additional applications of the dimension argument appear in [Bl],

[BF], [G].

3 Probabilistic Methods

The discovery, demonstrated in the early work of various researchers, that
deterministic statements can be proved by probabilistic reasoning, led al-
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ready more than fifty years ago to several striking results in Analysis,
Number Theory, Combinatorics and Information Theory. These are demon-
strated in early papers of Paley, Zygmund, Kac, Shannon, Turan and Szele,
and even more so in the work of Paul Erdds. It soon became clear that the
method, which is now called the probabilistic method, is a very powerful tool
for proving results in Discrete Mathematics. The early results combined
combinatorial arguments with fairly elementary probabilistic techniques,
whereas the development of the method in recent years required the ap-
plication of more sophisticated tools from probability theory. There is, by
now, a huge amount of material on the topic, and it is hopeless to try and
survey it in a comprehensive manner here. My intention in this section
is therefore merely to illustrate the basic ideas with a few representative
examples. More material can be found in the books [AlS], [Sp] and [JLR].

The Ramsey number R(k,t) is the minimum number n such that every
graph on n vertices contains either a clique of size k or an independent
set of size t. By a special case of the celebrated theorem of Ramsey (cf.,
e.g., [GrRS]), R(k,t) is finite for every positive integers k and ¢, and in fact
R(k,t) < (k;izg) In particular, R(k,k) < 4*. The problem of determin-
ing or estimating the numbers R(k,t) received a considerable amount of

attention, and seems to be very difficult in general.

In one of the first applications of the probabilistic method in Combina-
torics, Erd6s [Er| proved that if (2)21_(5) < 1 then R(k,k) > n. Therefore,
R(k,k) > |2¥/2| for all k > 2. The proof is (by now) extremely simple; Let
G = G(n,1/2) be a random graph on the n vertices {1,2,... ,n}, obtained
by picking each pair of distinct vertices, randomly and independently, to be
connected with probability 1/2. Every fixed set of k vertices of G forms a

clique or an independent set with probability 217(15). Thus (2)217(5) (<1)
is an upper bound for the probability that G contains a clique or an inde-
pendent set of size k. It follows that with positive probability G is a graph
without such cliques or independent sets, and hence such a graph exists!

A proper coloring of a graph is acyclic if there is no two-colored cycle.
The acyclic chromatic number of a graph is the minimum number of colors
in an acyclic coloring of it. The Four Color Theorem, which is the best
known result in Discrete Mathematics, asserts that the chromatic number
of every planar graph is at most 4. Answering a problem of Griinbaum
and improving results of various authors, Borodin [Bor| showed that every
planar graph has an acyclic 5-coloring. He conjectured that for any surface
but the plane, the maximum possible chromatic number of a graph embed-
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dable on the surface, is equal to the maximum possible acyclic chromatic
number of a graph embeddable on it. The Map Color Theorem proved in
[RY] determines precisely the maximum possible chromatic number of any
graph embeddable on a surface of genus g. This maximum is the maximum
number of vertices of a complete graph embeddable on such a surface, which
turns out to be 7+ VIT 185 B i
VI8 g(g1r2),

The following result shows that the maximum possible acyclic chromatic
number of a graph on such a surface is asymptotically different, thus dis-
proving Borodin’s conjecture.

Theorem 3.1 [AIMS]. The acyclic chromatic number of any graph em-
beddable on a surface of genus g is at most O(g*7). Moreover, for every
g > 0 there is a graph embeddable on a surface of genus g whose acyclic
chromatic number is at least Q(g*7/(log g)"/7).

The proof of the O(g4/ ™) upper bound is probabilistic, and combines
some combinatorial arguments with the Lovasz Local Lemma. This Lemma,
proved in [ErL], is a tool for proving that under suitable conditions, with
positive probability, none of a large finite collection of nearly independent,
low probability events in a probability space holds. This positive proba-
bility is often extremely small, and yet the Local Lemma can be used to
show it is positive. The proof of the Q(g*7/(log g)'/7) lower bound is also
probabilistic, and is based on an appropriate random construction. Note
that the statement of the above theorem is purely deterministic, and yet
its proof relies heavily on probabilistic arguments.

The final example in this section is a recent gem; it is based on a simple
result in graph theory, whose proof is probabilistic. This result has several
fascinating consequences in Combinatorial Geometry and Combinatorial
Number Theory. Some weaker versions of these seemingly unrelated con-
sequences have been proved before, in a far more complicated manner

An embedding of a graph G = (V| F) in the plane is a a planar represen-
tation of it, where each vertex is represented by a point in the plane, and
each edge uv is represented by a curve connecting the points corresponding
to the vertices u and v. The crossing number of such an embedding is the
number of pairs of intersecting curves that correspond to pairs of edges with
no common endpoints. The crossing number cr(G) of G is the minimum
possible crossing number in an embedding of it in the plane. The following
theorem was proved by Ajtai, Chvatal, Newborn and Szemerédi [ACNS]
and, independently, by Leighton [L].
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Theorem 3.2. The crossing number of any simple graph G = (V, E) with

. E3
|E| > 4|V| is at least ﬁ.

The proof is by a simple probabilistic argument. By Euler’s formula any
simple planar graph with n vertices has at most 3n —6 edges, implying that
the crossing number of any simple graph with n vertices and m edges is at
least m — (3n —6) > m — 3n. Let G = (V, E) be a graph with |E| > 4|V/|
embedded in the plane with ¢ = ¢r(G) crossings. Let H be the random
induced subgraph of G obtained by picking each vertex of G, randomly
and independently, to be a vertex of H with probability p (where p will be
chosen later). The expected number of vertices of H is p|V|, the expected
number of its edges is p?|E|, and the expected number of crossings in its
given embedding is p*t, implying that the expected value of its crossing
number is at most p*t. Therefore, p*t > p?|E| — 3p|V|, implying that

cr(G)=t> ’—E2| - 3|—‘2|.
p p
Without trying to optimize the constant factor, take p = 4|V |/|E| ( < 1),
to get the desired result.

L. Székely [Sz] noticed that this result can be applied to obtain a sur-
prisingly simple proof of a result of Szemerédi and Trotter in Combinatorial
Geometry [SzeT]. The original proof is far more complicated.

Theorem 3.3. Let P be a set of n distinct points in the plane, and let
L be a set of m distinct lines. Then, the number of incidences between
the members of P and those of L (that is, the number of pairs (p,l) with
pE€ P, 1€ Landpcl)isat most c(m?3n3 +m 4 n), for some absolute
constant c.

Székely’s proof is short and elegant: denote the number of incidences
by I. Let G = (V, E) be the graph whose vertices are all members of P,
where two are adjacent if and only if they are consecutive points of P on
some line in L. Clearly, |V| = n and |E| = I — m. Note that G is already
given embedded in the plane, where the edges are represented by segments
of the corresponding lines in L. In this embedding, every crossing is an
intersection point of two members of L, implying that cr(G) < (%y) < m?/2.
By Theorem 3.2, either I —m = |E| < 4]V| = 4n, that is, I < m + 4n, or
m? (I —m)?
7 2@z g
showing that I < (32)Y/3m?/3n2/3 + m. In both cases I < 4(m?/3n?/3 4
m + n), completing the proof.
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G. Elekes found several applications of the last theorem to Additive
Number Theory. Here, too, the proofs are amazingly simple. Here is a
representative result. A related one appears in [E].

Theorem 3.4. For any three sets A,B and C' of s real numbers each,
|A-B+C|={ab+c: a€ Abe B,ce C}| > Q(s*?).
To prove this result, define R = A- B+ C, |R| = r and put
P={(a,t):a€ Ate R}, L={y=br+c:beB,ceC}.
Thus P is a set of n = sr points in the plane, L is a set of m = s lines
in the plane, and each line y = bz + ¢ in L is incident with s points of P,
that is, with all the points {(a,ab + ¢) : a € A}. Therefore, by Theorem
3.3, 5% < 4(sY3(s1)?/3 4 sr + s2), implying that r > Q(s%/2), as needed.

4 The Algorithmic Aspects

The rapid development of theoretical Computer Science and its tight con-
nection to Discrete Mathematics motivated the study of the algorithmic as-
pects of algebraic and probabilistic techniques. Can a combinatorial struc-
ture, or a substructure of a given one, whose existence is proved by algebraic
or probabilistic means, be constructed explicitly (that is, by an efficient de-
terministic algorithm)? Can the algorithmic problems corresponding to
existence proofs be solved by efficient procedures? The investigation of
these questions are often related to other branches of mathematics. Here
we merely mention a few open problems motivated by these questions.

As mentioned in the last paragraph of subsection 2.1, the list chromatic
index of any planar cubic 2-connected graph is 3. Can the corresponding
algorithmic problem be solved efficiently? That is, can we color properly
the edges of any given planar cubic 2-connected graph using given lists of
three colors per edge, in polynomial time?

This problem, as well as several similar applications of Theorem 2.2,
are widely open. Note that any efficient procedure that finds, for a given
input polynomial that satisfies the assumptions of Theorem 2.2, a point
(s1,82,... ,8y) satisfying its conclusion, would provide efficient algorithms
for all these algorithmic problems. It would thus be interesting to find such
an efficient procedure.

Probabilistic proofs also suggest the study of the corresponding algo-
rithmic problems. This is related to the study of randomized algorithms,
a topic which has been developed tremendously during the last decade.
See, e.g., [MoR] and its many references. Even the simple proof of Erdés,
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described in section 3, that there are graphs on more than LQk/ 2| vertices
containing neither a clique nor an independent set of size k leads to an open
problem which seems very difficult. Can we construct, explicitly, a graph
on n > (1+¢)¥ vertices with neither a clique nor an independent set of size
k, in time which is polynomial in n, where ¢ > 0 is any positive absolute
constant?

The above problems, as well as many related ones, could be viewed as
a victory of algebraic and probabilistic techniques. They illustrate the fact
that these methods often supply solutions to problems that we cannot solve
constructively. I am convinced that the study of algebraic and probabilistic
methods, as well as the related search for more constructive proofs, will keep
playing a major role in the future development of Discrete Mathematics.
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CHALLENGES IN ANALYSIS
R. CoirmMAN

Mathematical analysis, and in particular Harmonic Analysis, has tradi-
tionally been tied to physical modeling — providing the language to describe
the infinitesimal laws of nature through calculus and partial differential ex-
pressions as well as descriptions of field effects through integral operators,
spectral and functional analysis.

A variety of deep analytical methods and tools were developed enabling
detailed understanding and descriptions of natural transforms of analy-
sis. The Fourier transform, the Hilbert transform and their generalizations
as Singular Integrals, pseudodifferential and Fourier Integral calculi, have
played a central role in 20 century analysis.

Over the last few years, while attempting to deal computationally with
the problems that existing theory was supposed to elucidate, it became
clear that a large number of fundamental issues both theoretical and com-
putational need to be addressed; and that new mathematical/algorithmic
tools and languages need to be developed.

It has become obvious that major obstructions exist to the develop-
ment of an effective computational harmonic analysis. Moreover, success
in overcoming these difficulties will provide the scientist dealing with com-
plex scientific structure with a language to formulate and model his science.
Our goal is to describe some of these challenges, both algorithmic and the-
oretical, by providing a few examples, hinting at the existence of a rich field
of research.

The main theme governing these examples is our lack of understanding
of analysis and geometry in high dimension (> 10).

The main issue involves our ability to evaluate effectively an analytical
expression. We will see that this question provides a natural mechanism to
test our analytical/synthetic understanding, and leads to deep structural
and organizational insights.!

'Such insights have recently led to the solution by Lacey and Thiele of Calderon’s
conjecture and provided a conversion of Carleson’s proof of the convergence of Fourier
Series into a powerful analytic method, as well as deep insights in complex function
theory.
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1 Digital Transcriptions of Functions, Libraries of
Waveforms

For this exposition it is convenient to think of a function f as a Fourier
transzorm of a compactly supported square integrable function f , (with
supp f C [—No, No|.

Such a function is determined by its “samples” f(k/Ny). We can identify
the function with the vector f = {f(k/No)}k =0,£1,..., f = (fk)-

We should think of f(t) as a recorded sound and of fj, as digital samples
of f. Unfortunately this simple-minded digitization of f is neither efficient
nor very useful. Our goal is to transcribe the function to a given precision
€ using a minimal or close to minimal number of parameters. Moreover, we
would like to automate the transcription mode and to develop a calculus
with these transcriptions. (In much the same way as the standard binary
or digital notation enables the automation of a numerical computation).

The standard procedure in signal processing is to window f(¢) by mul-
tiplication by w(t — j) where w is compactly supported on [—1,1] and
S w?(t —j) = 1 and then expand f(t)w(t — j) as a Fourier series in t.
The Fourier coefficients are kept (to some precision ¢) and used to rep-
resent the function. This kind of representation is convenient for storing
sound or other one dimensional signals providing a local frequency content
of the function.

The following figures show the effect of various window functions. The
function being digitized is digitized for various choices of window size. The
third choice is more effective, revealing the full structure of the function as
a sum of three sounds with linearly increasing frequency.

We now describe briefly a mode for automatic transcription of functions
resembling an “orchestration” of the function as a superposition of “musical
scores” for different instruments. A “score” is a superposition of notes,

where each note has a location, duration, pitch and amplitude.

More precisely we consider a small basic window w(t) which is supported
on an interval [ — %, %]EwQ(t —j) =1 and w(t)w(t + 1) is even. Then the
functions w(t — j) sin [ (k+ 3)m (¢t — j)] form an orthonormal basis of L?(R)

(see [CM]). Similarly, if we let w (t) = [w?(t) + w?(t — 1)]/2 the functions
wi(t —27)sin [(k+ 3) (¢t — 24)3]

form a basis.
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Continuing, we can associate to each dyadic interval I = [j2¢, (j+1)2¢] =

I f an orthogonal set of functions

wi(t — j2°) sin [(k + 3]m(27% — )]
such that whenever a collection of dyadic intervals covers R. The corre-
sponding collection of functions is orthonormal. (The set of bases is indexed
by dyadic covers of R with intervals of length > d).

An optimal transcription relative to this collection of bases is obtained
by selecting the best basis for a given task. For example we could look for
the basis providing the shortest expansion for a given error.

Another library of bases can be obtained by doing this construction (or
variants) in the Fourier domain. This corresponds to the wavelet-packet
libraries and is much closer to the musical score concept since in original
space a function at a given location is a superposition of notes of different
length scales.

An orchestration is obtained by picking a best basis in a collection
of libraries (mathematical musical instruments) selecting a most efficient
transcription, keeping only that portion of the function which is extracted
at low entropy, and repeating the procedure on the residual, until we reach
a residual whose entropy is similar to that of a random function, at which
point we give up and stop.

The following two-dimensional version (developed by F. Meyer) reveals
the various structures needed to synthesize the Mandrill image efficiently.

This mode of transcribing natural “mechanically” generated data sets
has many practical uses such as data compression, efficient approximation,
feature extraction, etc. We are mostly concerned here with analytic aspects:
we want to transcribe the data so as to extract structures and attributes
automatically, moreover any processing on the data should be simple and
efficient in the chosen transcription parameters. We will apply this signal
processing paradigm as a tool to analyze and organize complex physical
transformations such as acoustic scattering, by processing the transforma-
tion as complex images that need to be orchestrated.

Before proceeding, we observe that the libraries of waveforms described
above are totally inadequate to transcribe “seemingly unstructured data”
having a random appearance such as the data arising in a quantized elas-
tic mechanical system for which the eigenfunctions are uniformly spread in
time frequency. The challenge for such systems is to invent analysis tools
for structural detection. (Alain Connes’ noncommutative geometry might
be a step in the right direction.) There exist various mathematical struc-
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tures “parallel universes” equipped with their own notion of time frequency
libraries which, when analyzed in conventional terms, seem like pure noise.

2 Transcribing Dense Matrices for Efficient Computations

Consider the Green function for the Helmholtz operator in R3,

ei27rM|a:fy|

k(x,y) = R

where x,y € S with S a two-dimensional surface. The computation of
T(/)@) = [ Ka0)f @)y

requires C'N* operations when S is discretized at N? points (for obvious
reasons N > 4M), which renders this computation prohibitively expensive
even for M = 100.

We can easily discretize the integral operator to obtain a matrix rep-
resentation. For simplicity we consider the case of R where S is a one-
dimensional curve in R?, k(z,y) can be viewed as an image and “orches-
trated” as the Mandrill (see [R]). Clearly, the non oscillatory part corre-
sponding to 2w|z — y|M < 1 would be compressed by wavelets (like the
description of the Mandrill’s nose in watercolor) while the oscillatory part
should be treated as brushlets using local Fourier or trig. expansions. This
mode of description of k(x,y) provides an unraveling of the operator by
lifting 7 as a sparse operator 7 on RNsN (i.e. having only CN log N
entries, as opposed to N 2)

T . RNlogN RNlogN

| |

T:RV —— R"
where the vector in RY is expanded in log N local trig. bases corresponding
to windows of size 2¢ < N and where T operates on this redundant vector
as in the figure.

This unwinding of T is a powerful analytic tool (usually viewed as micro-
localization) enabling a fast computation of both linear and nonlinear trans-
forms. In the example given above, it automatically selects pairs of intervals
on the curve S and allocates to each pair a sparse coupling matrix corre-
sponding to the fact that the oscillatory layer of the operator “beams” each
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localized cosine in a frequency dependent direction, and that beam inter-
acts on each interval with a basis function having a frequency depending on
the arrival direction. This geometric optic approach is automatically ob-
tained from the transcription mode and provides a precise numerical way
of describing complex physical phenomena, in this case acoustic scattering.

Observe that the number of parameters needed to describe the surface
(or curve) could be quite large. The scattered field depends in a com-
plex way on all of these parameters. The efficient description of the effect
of the Green kernel in an incoming plane wave is quite complex, and re-
quires much more than the simple transcription described here. The break-
through in electromagnetic and acoustic scattering computations was done
by V. Rokhlin who introduced special efficient representations for acoustic
fields [R].

The point here is that we have a rudimentary mathematical algorithmic
method for describing precisely relatively complex objects.

This is clearly a major difficulty faced daily by the natural scientist.
While fundamental infinitesimal laws are well understood, more global ef-
fects and complex interactions are difficult to describe efficiently, this re-
quires a detailed understanding of the organization of the Green operator,
and its decompositions.

Another aspect of this higher dimensional lifting map involves our abil-
ity to provide numerically computable moving frames. This capability
might simplify the description of complex phenomena such as turbulence,
by viewing say a vorticity field as having a simple description in a moving
frame whose description is also less complex.

Approximation in high dimensions. We have discussed briefly the
challenge of computing effectively a linear transformation in R™. Non-
linear maps are much more baffling. The general problem that confronts
us is understanding which nonlinear functions can be approximated to er-
ror € > 0 using no more than N (log N)*[log(1/¢)]? terms. We call such
approximations “computationally effective”. We start with a simple obser-
vation that the usual classical methods for approximating a function by a
trigonometric polynomial require (1/¢)"V terms for precision ¢ > 0. Even
in dimension 10 this is excessive for modest precision. The challenge to
provide descriptions for empirical functions depending on say more than
10 parameters has led to an “industry of adhoc” methods, such as neu-
ral nets or other algorithms, for which no rate of approximation can be
proved. There are however, indications that a powerful theory exists, but
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will require better understanding of geometry in high dimensions.

We illustrate these ideas quoting from J.O. Stromberg, who observed
that under relatively simple conditions and for moderate IV, useful results
exist.

Theorem. Let P(x1,...,zy) be of bounded mixed variation
o P/ <M on zel0,1]V

— n x

0xy...0xN B ’

then
P(zy,...,xN) = Z arhgr(z) + O(e)
|R|>e
where R is a dyadic rectangle R =11 X I ... x I, Ix are dyadic intervals
n [0,1], |R| = volume of R, and hr = hy, (x)hi(z2) ... hry(zN), hr is the
Haar function based on I:

hi(z) = 1) 1/2 on left half of I
—1 on right half of I .

Moreover, the number of rectangles of volume exceeding ¢ is = [log ( )] N
(as opposed to 1/e™).

Observe first that any function of the form

TN
/ / dtl dtN:P(xl....%‘N)

where p is bounded satisfies the hypothesis, or any product [], fi(z;) with
the f! bounded. (If p(t) is interpreted as a probability density on [0,1]",
then P(z) is the probability of finding a point in the rectangle [0,z] =
[0,1’1] X [O,LEQ] X .. [O,I‘N].)

Observe that since |R| = |I1||[2]...|Ixn|, for precision ¢ = 1073 we
cannot have more than ten I; whose length is smaller than 1/2, therefore
for this precision the function of N variables is a superposition of functions
of at most 10 variables, moreover the finer the resolution in R the fewer
the number of variables needed to achieve the precision. The example of
Stromberg shows that even in two dimensions it suffices to compute the
probability P(R) of a small set of well chosen rectangles to obtain precision
1/64 as opposed to the evaluation of P at the 642 rectangles ending at the
regular good points.

Unfortunately, this theorem is of limited use since (log1/e)" grows
exponentially with N. Moreover, even for moderate dimension N < 10 the
assumption on the mixed derivative is not rotationally invariant. Given
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a function it is necessary to find a local coordinate system on which a
representation like this might work. More generally, criteria for efficient
description are needed as well as methods for geometric descriptions of
effective domains for f.

In general, we are confronted with the problem of approximating a func-
tion of N parameters which is given empirically, usually the input para-
meters are not really in a box but on some lower dimensional subset of R
and the question then is to parametrize this set.

More specifically, we assume that f(z) is measured for a large number of
points in RY but that the points x are drawn from a low dimensional subset,
that we can write x = p(\), A € R™ with ¢ bilipschitz, (i.e. [p(A)—p(N)] ~
A — X']). This enables us to reduce the modeling of f to R™.

The remarkable theorems of Jones, David and Semmes permit the ver-
ification on the empirical domain of f whether it can be parametrized as
above. This verification is obtained by performing a multiscale variance
statistic on the points (see [J], [DS]).

For example, we might want to model the melting temperature of an
alloy as a function of the various concentrations of constituents and their
material attributes. This could involve a complex simulation using a range
of feasible parameters, or could be collected from a large data base and a
regression for the temperature has to be built.

Even if a simulation to compute the melting point could be performed,
it would involve a large number of particles and would be a costly calcu-
lation for each value of input parameters. Assume for example that we
have only the input parameters and end up with a melting point. We
would like to predict directly that value without performing a simulation
involving thousands of particles. The issue then is to efficiently describe
dependencies.

The main area of analysis that needs attention is the development of
effective approximation algorithms with weak dimensional dependence, it is
clear that randomized methods generalizing Monte Carlo will play a consid-
erable role in the actual computations and search for approximants, more-
over, most quantitative results will have to be quantified modulo small sets
of exceptions. Unfortunately, standard-harmonic analysis in R”Y ignores
the effectiveness issue; every single theorem say in Stein—Weiss and Stein
books is not effective and could be recast in this light.

Similarly, practically all results in complex analysis related to analytic
continuation and vanishing of holomorphic functions are meaningless as
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computational guides.

We should conclude here by observing that the question of computa-
tional effectiveness for transformations is a remarkably good test of analytic
understanding. Generations of harmonic analysts have asked the question
of existence of LP estimates for various operators as a way of forcing this
understanding, leading to fundamental analytic tools such as Calderon—
Zygmund theory.

The kind of decomposition of operators obtained while trying to achieve
computational effectiveness, provide very natural powerful generalizations
of Calderon-Zygmund decompositions, providing organization for interac-
tions and simple guidance for analytic insight.
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Abstract

Our geometric concepts evolved first through the discovery of Non-
Euclidean geometry. The discovery of quantum mechanics in the form
of the noncommuting coordinates on the phase space of atomic sys-
tems entails an equally drastic evolution. We describe a basic con-
struction which extends the familiar duality between ordinary spaces
and commutative algebras to a duality between Quotient spaces and
Noncommutative algebras. The basic tools of the theory, K-theory,
Cyclic cohomology, Morita equivalence, Operator theoretic index the-
orems, Hopf algebra symmetry are reviewed. They cover the global as-
pects of noncommutative spaces, such as the transformation § — 1/6
for the noncommutative torus T3 which are unseen in perturbative
expansions in 6 such as star or Moyal products. We discuss the foun-
dational problem of “what is a manifold in NCG” and explain the
fundamental role of Poincare duality in K-homology which is the ba-
sic reason for the spectral point of view. This leads us, when spe-
cializing to 4-geometries to a universal algebra called the “Instanton
algebra”. We describe our joint work with G. Landi which gives non-
commutative spheres Sj from representations of the Instanton alge-
bra. We show that any compact Riemannian spin manifold whose
isometry group has rank r > 2 admits isospectral deformations to
noncommutative geometries. We give a survey of several recent de-
velopments. First our joint work with H. Moscovici on the transverse
geometry of foliations which yields a diffeomorphism invariant (rather
than the usual covariant one) geometry on the bundle of metrics on
a manifold and a natural extension of cyclic cohomology to Hopf al-
gebras. Second, our joint work with D. Kreimer on renormalization
and the Riemann-Hilbert problem. Finally we describe the spectral
realization of zeros of zeta and L-functions from the noncommuta-
tive space of Adele classes on a global field and its relation with the
Arthur—Selberg trace formula in the Langlands program. We end with
a tantalizing connection between the renormalization group and the
missing Galois theory at Archimedean places.
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1 Introduction

There are two fundamental sources of ‘bare’ facts for the mathematician.
These are, on the one hand the physical world which is the source of geom-
etry, and on the other hand the arithmetic of numbers which is the source
of number theory. Any theory concerning either of these subjects can be
tested by performing experiments either in the physical world or with num-
bers. That is, there are some real things out there to which we can confront
our understanding.

If one looks back at the 23 problems of Hilbert then one finds that,
fortunately, the twentieth century saw very important discoveries which
nobody could have foreseen by 1900. Two of them (of course by no means
the only discoveries) involve Hilbert space in a crucial way and will be of
particular importance for this talk: The first one is quantum mechanics,
and the second, equally important in a sense, is the extension of class field
theory to the non-abelian case, thanks to the Langlands program.

In this lecture I'll take both of these discoveries as a pretext and point
towards the extension of our familiar geometrical concepts beyond the clas-
sical, commutative case. My aim is to discuss the foundation of noncom-
mutative geometry.

2 Geometry

Before I do that, let me remind you, using a simple example, of the power
of abstraction in mathematics. Around 1800, mathematicians wondered
whether it is true that Euclid’s fifth axiom is actually superfluous. For in-
stance Legendre proved that if you have one triangle whose internal angles
sum to 7 then that is enough to guarantee ordinary Euclidean geome-
try. However, as we all know Euclid’s fifth axiom is not superfluous and
Non-Euclidean Geometry gives a counter-example. The simplest model of
Non-Euclidean Geometry is probably the Klein model. The points of the
geometric space X are the points inside an ellipse,
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The lines are the intersections of the ordinary Euclidean lines with X. If
you take a point p, outside the line A then there are distinct lines which
don’t meet A (i.e. are parallel to A) but meet each other at p.

At first this was considered as an esoteric example and Gauss didn’t
publish his discovery, but after some time it became clear that rather than
just being a strange counter-example, it was something with remarkable
beauty and power. The question then became “what is the source of this
beauty and power?” Often in mathematics, understanding comes from
generalisation, instead of considering the object per se what one tries to
find are the concepts which embody the power of the object.

A first generalisation is the Frlangen program of Klein and the theory
of Lie groups which attributes the beauty of this example to its symmetries,
namely the group of projective transformations of the plane which preserve
the ellipse.

The second conceptual generalisation is Riemannian geometry as ex-
plained in Riemann’s inaugural lecture ([26]) in which he reflected on the
hypotheses of geometry and introduced two key notions: the concepts of
manifold and line element.

By a manifold Riemann meant ‘any space you can think of whose points
can vary continuously’. For example, a manifold could be a continuous col-
lection of colours, the parameter space for some mechanical system or, of
course, space. In his lecture Riemann explained that it is possible, essen-
tially proceeding by induction, to label the points of such a space by a finite
collection of real numbers.

In Riemannian geometry the distance between two points = and y is
given by the following ansatz:

d(z,y) = Inf{ / ds |y is a path between z and y} . (2.1)
2l

Expanding d(z,y) near the diagonal, after raising it to an even power to
ensure smoothness gives a local formula for ds. The first case he considered
was the quadratic case (although he explicitly mentioned the quartic case).
From the Taylor expansion he obtained, in the quadratic case, the well-
known formula for the metric,

ds? = g, dat da” . (2.2)
Riemann’s concept of geometry differs greatly from that of Klein because
Klein’s formulation is based on the idea of rigid motions whereas in Rie-

mannian geometry rigid motions are no longer possible because of the vari-
ability of the curvature and the extraordinary freedom in the choice of the
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components g,
The basic notions of ordinary geometry do make sense, for example a
straight line is given by the geodesic equation,

d?zt 1 dz” daz’
% = 73 gua (gow,p + Jap,y — gup,oz) % % (23)

but what really vindicated the point of view of Riemann, with respect to
that of Klein, was another major discovery of the twentieth century, General
Relativity.

One can get a glimpse of this from the following simple fact. If we take
the Minkowski metric and perturb it to dz? +dy? +dz? — (14+2V (z, y, 2))dt>
using the Newtonian potential V(x,y, z), then the geodesic equation can be
re-written in the obvious approximation to obtain Newton’s law of motion.
This makes clear that the variability of the g, is precisely necessary in
order to get a good geometric model of the physical universe.

It is interesting to note that Riemann was well aware of the limits of his
own point of view as is clearly expressed in the last page of his inaugural
lecture; ([26])

“Questions about the immeasurably large are idle questions for the ex-
planation of Nature. But the situation is quite different with questions
about the immeasurably small. Upon the exactness with which we pursue
phenomenon into the infinitely small, does our knowledge of their causal
connections essentially depend. The progress of recent centuries in under-
standing the mechanisms of Nature depends almost entirely on the exact-
ness of construction which has become possible through the invention of
the analysis of the infinite and through the simple principles discovered
by Archimedes, Galileo and Newton, which modern physics makes use of.
By contrast, in the natural sciences where the simple principles for such
constructions are still lacking, to discover causal connections one pursues
phenomenon into the spatially small, just so far as the microscope permits.
Questions about the metric relations of Space in the immeasurably small
are thus not idle ones.

If one assumes that bodies exist independently of position, then the
curvature is everywhere constant, and it then follows from astronomical
measurements that it cannot be different from zero; or at any rate its
reciprocal must be an area in comparison with which the range of our
telescopes can be neglected. But if such an independence of bodies from
position does not exist, then one cannot draw conclusions about metric
relations in the infinitely small from those in the large; at every point the
curvature can have arbitrary values in three directions, provided only that
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the total curvature of every measurable portion of Space is not perceptibly
different from zero. Still more complicated relations can occur if the line
element cannot be represented, as was presupposed, by the square root
of a differential expression of the second degree. Now it seems that the
empirical notions on which the metric determinations of Space are based,
the concept of a solid body and that of a light ray, lose their validity in the
infinitely small; it is therefore quite definitely conceivable that the metric
relations of Space in the infinitely small do not conform to the hypotheses
of geometry; and in fact one ought to assume this as soon as it permits a
simpler way of explaining phenomena.

The question of the validity of the hypotheses of geometry in the in-
finitely small is connected with the question of the basis for the metric
relations of space. In connection with this question, which may indeed still
be ranked as part of the study of Space, the above remark is applicable, that
in a discrete manifold the principle of metric relations is already contained
in the concept of the manifold, but in a continuous one it must come from
something else. Therefore, either the reality underlying Space must form
a discrete manifold, or the basis for the metric relations must be sought
outside it, in binding forces acting upon it.

An answer to these questions can be found only by starting from that
conception of phenomena which has hitherto been approved by experience,
for which Newton laid the foundation, and gradually modifying it under
the compulsion of facts which cannot be explained by it. Investigations like
the one just made, which begin from general concepts, can serve only to
insure that this work is not hindered by too restricted concepts, and that
progress in comprehending the connection of things is not obstructed by
traditional prejudices.

This leads us away into the domain of another science, the realm of
physics, into which the nature of the present occasion does not allow us to
enter”.

3 Quantum Mechanics

In fact quantum mechanics showed that indeed the parameter space, or
phase space of the mechanical system given by a single atom fails to be a
manifold. It is important to convince oneself of this fact and to understand
that this conclusion is indeed dictated by the experimental findings of spec-
troscopy. The information we get from the light coming from distant stars
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is of spectral nature, the spectral lines are absorption or emission lines
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One can infer from this spectral information the chemical composition
of the star since the simple elements have recognisable spectra. These
spectra obey experimentally discovered laws, the most notable being the
Ritz-Rydberg combination principle. The principle can be stated as fol-
lows; spectral lines are indexed by pairs of objects. These objects could be
numbers, Greek letters, or any kind of labels. The statement of the prin-
ciple then is that certain pairs of spectral lines, when expressed in terms
of frequencies, do add up to give another line in the spectrum. Moreover,
this happens precisely when the labels are of the form ¢, 7 and 7, k.

What Heisenberg understood, by analogy with the classical treatment
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of the interaction of a mechanical system with the electromagnetic field, is
that this Ritz-Rydberg combination principle actually dictates an algebraic
formula for the product of any two observable physical quantities attached
to the atomic system
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Heisenberg wrote down the formula for the product of two observables;

(AB)aw = Aag) By (3.1)

and he noticed of course that this algebra he had found is no longer com-

mutative,

AB#BA. (3.2)

Now Heisenberg didn’t know about matrices, he just worked it out, but he

was told later by Born, Jordan and Dirac that the algebra he had worked
out was known to mathematicians as the algebra of matrices.
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Physicists often tell jokes such as: A physicist walks down the main
street of a strange town looking for a laundrette. He sees a shop with signs
in the window saying ‘bakery’ ‘grocers’ ‘laundrette’, so he enters. However,
the shop is owned by a mathematician and when the physicist asks “when
will the washing be ready?” the mathematician replies “we don’t clean
clothes, we just sell signs!”.

In the case of Heisenberg and also that of Einstein who was helped out
by Riemann, this was no joke.

However, soon after Heisenberg’s discovery, Schrédinger came up with
his equation so physicists happily returned to the study of partial differen-
tial equations, and the message of Heisenberg was buried to a great extent.
Most of my work has been an attempt to take this discovery of Heisen-
berg seriously. On reflection, this discovery actually clearly displays the
limitation of Riemann’s formulation of geometry. If we look at the phase
space of an atomic system and follow Riemann’s procedure to parametrize
its points by finitely many real numbers, we first split the manifold into
the levels on which some particular function is constant, but we then need
to iterate this process and apply it to the level hypersurfaces. However,
according to Heisenberg this doesn’t work because as soon as we make the
first measurement, we alter the situation drastically. The right way to think
about this new phenomenon is to think in terms of a new kind of space in
which the coordinates do not commute.

The starting point of noncommutative geometry is to take this new
notion of space seriously.

4 Noncommutative Geometry

The basis of noncommutative geometry is twofold. On the one hand there
is a wealth of examples of spaces whose coordinate algebra is no longer
commutative but which have obvious relevance in physics or mathematics.
The first examples came, as we saw above, from phase space in quantum
mechanics but there are many others, such as the leaf spaces of foliations,
the duals of nonabelian groups, the space of Penrose tilings, the Brillouin
zone in solid state physics, the noncommutative tori which appear naturally
in string theory and in M-theory compactification, and the Adele class space
which as we shall see below provides a natural spectral realisation of zeros
of zeta functions. Finally various recent models of space-time itself are
interesting examples of noncommutative spaces.
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On the other hand the stretching of geometric thinking imposed by
passing to noncommutative spaces forces one to rethink about most of
our familiar notions. The difficulty is not to add arbitrarily the adjective
quantum to our geometric words but to develop far reaching extensions of
classical concepts, ranging from the simplest which is measure theory, to
the most sophisticated which is geometry itself.

Let us first discuss in greater detail the general principles that allow to
construct huge classes of such spaces, it is a vital ingredient indeed since
there is no way to build a satisfactory theory without being able to test it
on a large variety of examples. We have two principles which allow us to
construct examples.

The first is deformation theory which allows us to explore the neighbor-
hood of the commutative world, the second is a new and very important
mathematical principle; the quotient operation. Most of the spaces we are
concerned with are not defined by naming every one of their points, but by
giving a much bigger set and dividing it by an equivalence relation.

It turns out that there are two ways of extending the geometric-algebraic
duality

Space < Commutative algebra (4.1)
between a space X and the algebra of functions on that space, when you
want to identify two points a and b. The first way which gives the usual
algebra of functions associated to the quotient is to restrict oneself to func-
tions which have the same value at the two points.

A={fif(a)=f(0)}. (4.2)
The second way is to keep the two points a and b, but to allow them
to ‘speak’ to each other by using matrices with off-diagonal elements. It
consists, instead of taking the subalgebra given by 4-4.2, to adjoin to the
algebra of functions on {a, b} the identification of a with b. The obtained
algebra is the algebra of two by two matrices

o=t B} 2

When one computes the spectrum of this algebra it turns out that it is
composed of only one point, so the two points a and b have been identified.
As we shall see this second method is very powerful and allows one to
construct thousands of very interesting examples. It allows us to refine the
above duality of algebraic geometry to,

Quotient-Space < Noncommutative algebra (4.4)



490 ALAIN CONNES GAFA2000

in the situation where the space one is contemplating is obtained by the
operation of quotient.

At first sight it might seem that, as far as the general theory is con-
cerned, passing from the commutative to the noncommutative situation
would just be a matter of cleverly rewriting in algebraic terms our familiar
geometric notions without using commutativity anywhere. If noncommuta-
tive geometry was just that it would be boring indeed. Fortunately, even at
the coarsest level which is measure theory, it became clear at the beginning
of the seventies that the noncommutative world is full of beautiful totally
unexpected facts which have no commutative counterpart whatsoever. The
prototype of such facts is the following

Noncommutative measure spaces evolve with time! (4.5)

In other words there is a ‘god-given’ one parameter group of automor-
phisms of the algebra M of measurable coordinates. It is given by the group
homomorphism, ([1])

§: R — Out(M) = Aut(M)/Int(M) (4.6)

from the additive group R to the group of automorphism classes of M
modulo inner automorphisms.

I discovered this fact in 1972 when working on the Tomita—Takesaki
theory ([2]) and it convinced me that there are amazing features of non-
commutative spaces which have no counterpart in the static commutative
case.

5 A Basic Example

Let us start with a prototype example of quotient space in which the dis-
tinction between the quotient operations (4.2) and (4.3) appears clearly,
and which played a key role in 1980 at the early stage of the theory ([40]).
This example is the following: consider the 2-torus

M =R?/72. (5.1)

The space X which we contemplate is the space of solutions of the differ-
ential equation,
dx = 0dy z,y €R/Z (5.2)



Visions in Math. NONCOMMUTATIVE GEOMETRY - YEAR 2000 491

where 0 €]0,1[ is a fixed irrational number.

0

|l ———

yn/ dx=0dy x,ye R/Z

0 £

Thus the space we are interested in here is just the space of leaves of the
foliation defined by the differential equation (5.2). We can label such a leaf
by a point of the transversal given by y = 0 which is a circle S! = R/Z,
but clearly two points of the transversal which differ by an integer multiple
of 6 give rise to the same leaf. Thus

X =507 (5.3)

i.e. X is the quotient of S' by the equivalence relation which identifies any
two points on the orbits of the irrational rotation

Rpxr=x+6 modl. (5.4)

When we deal with S' as a space in the various categories (smooth, topo-
logical, measurable) it is perfectly described by the corresponding algebra
of functions,

Cc>®(8Y c O(8h) ¢ L*(SY). (5.5)
When one applies the naive operation (4-4.2) to pass to the quotient, one
finds, irrespective of which category one works with, the trivial answer

A=C. (5.6)

The operation (4.3) however gives very interesting algebras, by no means
reduced to C. Elements of the algebra B associated to the transversal
S1 by the operation (4.3) are just matrices a(i,j) where the indices (i, j)
are arbitrary pairs of elements i,j of S' which belong to the same leaf,
i.e. give the same element of X. The algebraic rules are the same as for
ordinary matrices. In the above situation since the equivalence is given by
a group action, the construction coincides with the crossed product familiar
to algebraist from the theory of central simple algebras.
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An element of B is given by a power series
b= bU" (5.7)
nez
where each b,, is an element of the algebra (5.5), while the multiplication
rule is given by

UhU ' =hoR,". (5.8)
Now the algebra (5.5) is generated by the function V on S?,
V(o) = exp(2micy) ac St (5.9)

and it follows that B admits the generating system (U, V') with presentation
given by the relation

VU =AUV A = exp2mif . (5.10)

Thus, if for instance we work in the smooth category a generic element b
of B is given by a power series

b= bunU"V™, beS(Z? (5.11)
72
where S(Z?) is the Schwartz space of sequences of rapid decay on Z2.
This algebra is by no means trivial and has a very rich and interesting
algebraic structure. It is (canonically up to Morita equivalence) associated
to the foliation 5-5.2 and the interplay between the geometry of the foli-
ation and the algebraic structure of B begins by noticing that to a closed
transversal T of the foliation corresponds canonically a finite projective
module over B. Elements of the module associated to the transversal T  are
rectangular matrices, £(i, j) where (i,7) € T'x S while i and j belong to the
same leaf, i.e. give the same element of X. The right action of a(i,j) € B
is by matrix multiplication.
From the transversal x = 0, one obtains the following right module
over B. The underlying linear space is the usual Schwartz space,

S(R) = {¢,&(s) e C Vs eR} (5.12)
of smooth functions on the real line all of whose derivatives are of rapid

decay.
The right module structure is given by the action of the generators U, V'

(EU)(s) = &E(s+0), (EV)(s) = 2™5€(s) Vs eR. (5.13)
One of course checks the relation (5.10), and it is a beautiful fact that as
a right module over B the space S(R) is finitely generated and projective

(i.e. complements to a free module). It follows that it has the correct alge-
braic attributes to deserve the name of “noncommutative vector bundle”
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according to the dictionary,

Space Algebra
Vector bundle Finite projective module.

The concrete description of the general finite projective modules over Ay
is obtained by combining the results of [62], [40], [63]. They are classified
up to isomorphism by a pair of integers (p, ¢) such that p+ ¢f > 0 and the
corresponding modules He p.q are obtained by the above construction from
the transversals given by closed geodesics of the torus M.

The algebraic counterpart of a vector bundle is its space of smooth
sections C*°(X, E) and one can in particular compute its dimension by
computing the trace of the identity endomorphism of E. If one applies this
method in the above noncommutative example, one finds

dimp(S) = 6. (5.14)
The appearance of non-integral dimension is very exciting and displays a
basic feature of von Neumann algebras of type I1. The dimension of a vector
bundle is the only invariant that remains when one looks from the measure
theoretic point of view (i.e. when one takes the third algebra in (5.5)).
The von Neumann algebra which describes the quotient space X from the
measure theoretic point of view is the crossed product,

R = L>®(S")><g,Z (5.15)
and is the well-known hyperfinite factor of type II;. In particular the

classification of finite projective modules £ over R is given by a positive
real number, the Murray and von Neumann dimension,

dimg(€) € Ry . (5.16)
The next surprise is that even though the dimension of the above module
is irrational, when we compute the analogue of the first Chern class, i.e.
of the integral of the curvature of the vector bundle, we obtain an integer.
Indeed the two commuting vector fields which span the tangent space for an
ordinary (commutative) 2-torus correspond algebraically to two commuting
derivations of the algebra of smooth functions. These derivations continue
to make sense when the generators U and V' of C°°(T?) no longer commute
but satisfy (5.10) so that they generate B = C°°(T%). They are given by
the same formulas as in the commutative case,

6 =2miU &, 6y =2miV 2 (5.17)
so that d1 (O b UPV™) = 27> nby,, U™V™ and similarly for d2. One
still has of course

5105 = 620, (5.18)



494 ALAIN CONNES GAFA2000
and the d; are still derivations of the algebra B = C°°(T3),
§;(bb') = 8;(b)b + b5, (V') Vbb € B. (5.19)

The analogues of the notions of connection and curvature of vector bundles
are straightforward to obtain ([40]) since a connection is just given by the
associated covariant differentiation V on the space of smooth sections. Thus
here it is given by a pair of linear operators,

v, S(R) — S(R) (5.20)

such that
V;(€b) = (V)b +£0;(b) VE€S beB. (5.21)

One checks that, as in the usual case, the trace of the curvature Q =
V1Vy — V5V, is independent of the choice of the connection. Now the
remarkable fact here is that (up to the correct powers of 2mi) the total
curvature of § is an integer. In fact for the following choice of connection
the curvature € is constant, equal to 1/6 so that the irrational number 6
disappears in the total curvature, 8 x %

(V1€)(s) = =252 &(s) (V28)(s) = (). (5.22)

With this integrality, one could get the wrong impression that the algebra
B = C*(T2) looks very similar to the algebra C°°(T?) of smooth functions
on the 2-torus. A striking difference is obtained by looking at the range
of Morse functions. The range of a Morse function on T? is of course a
connected interval. For the above noncommutative torus TZ the range of a
Morse function is the spectrum of a real valued function such as

h=U~+U"+u(V 4V (5.23)

and it can be a Cantor set, i.e. have infinitely many disconnected pieces.
This shows that the one dimensional pictures of our space ']I‘g are truly
different from what they are in the commutative case. The above noncom-
mutative torus Tz is the simplest example of noncommutative manifold, it
arises naturally not only from foliations but also from the Brillouin zone in
the Quantum Hall effect as understood by J. Bellissard, and in M-theory
as we shall see next. In the Quantum Hall effect, the above integrality
of the total curvature corresponds to the observed integrality of the Hall
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The analogue of the Yang—Mills action functional and the classification of
Yang-Mills connections on the noncommutative tori was developed in [64],
with the primary goal of finding a “manifold shadow” for these noncom-
mutative spaces. These moduli spaces turned out indeed to fit this purpose
perfectly, allowing for instance to find the usual Riemannian space of gauge
equivalence classes of Yang—Mills connections as an invariant of the non-
commutative metric.

The next surprise came from the natural occurrence (as an unexpected
guest) of both the noncommutative tori and the components of the Yang—
Mills connections in the classification of the BPS states in M-theory [67].

In the matrix formulation of M-theory the basic equations to obtain
periodicity of two of the basic coordinates X; turn out to be the following,

UX;U7 = Xj+ad,i=1,2 (5.24)

where the U; are unitary gauge transformations.

The multiplicative commutator Uy UsU; *Uy ' is then central and in the
irreducible case its scalar value A = exp 2mif brings in the algebra of coor-
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dinates on the noncommutative torus. The X; are then the components of
the Yang—Mills connections. It is quite remarkable that the same picture
emerged from the other information one has about M-theory concerning its
relation with 11 dimensional supergravity and that string theory dualities
could be interpreted using Morita equivalence. The latter relates the values
of 6 on an orbit of SL(2,Z) and simply illustrates that the leaf-space of the
original foliation is independent of which transversal is used to parametrize
it. This type of relation between for instance 6 and 1/6 would be invisible
in a purely deformation theoretic perturbative expansion like the one given
by the Moyal product.

Nekrasov and Schwarz [74] showed that Yang—Mills gauge theory on
noncommutative R* gives a conceptual understanding of the non-zero B-
field desingularization of the moduli space of instantons obtained by per-
turbing the ADHM equations.

In [75], Seiberg and Witten exhibited the unexpected relation between
the standard gauge theory and the noncommutative one, and clarified the
limit in which the entire string dynamics is described by a gauge theory on
a noncommutative space.

One should understand from the very start that foliations provide an
inexhaustible source of interesting examples of noncommutative spaces. In
the above example of Tg we could make use of the special vector fields on the
torus in order to obtain the analogues of elementary notions of differential
geometry. It is quite important to develop the general theory independently
of these special features and this is what we shall do in section 7. We shall
start by the noncommutative analogues of topology and vector bundles
which are necessary preliminary steps.

6 Topology

The development of the topological ideas was prompted by the work of
Israel Gel'fand, whose C* algebras give the required framework for non-
commutative topology. The two main driving forces were the Novikov con-
jecture on homotopy invariance of higher signatures of ordinary manifolds
as well as the Atiyah—Singer Index theorem. It has led, through the work
of Atiyah, Singer, Brown, Douglas, Fillmore, Miscenko and Kasparov [4],
[5], 6], [7], [8], to the recognition that not only the Atiyah—Hirzebruch
K-theory but more importantly the dual K-homology admit Hilbert space
techniques and functional analysis as their natural framework. The cycles
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in the K-homology group K, (X) of a compact space X are indeed given by
Fredholm representations of the C* algebra A of continuous functions on X.
The central tool is the Kasparov bivariant K-theory. A basic example of
C* algebra to which the theory applies is the group ring of a discrete group
and this makes it clear that restricting oneself to commutative algebras is
an undesirable assumption.

For a C* algebra A, let Ko(A), K1(A) be its K theory groups. Thus
K((A) is the algebraic Ky theory of the ring A and K;(A) is the algebraic
Ky theory of the ring A ® Cyh(R) = Cp(R,A). If A — B is a morphism
of C'* algebras, then there are induced homomorphisms of abelian groups
K;(A) — K;(B). Bott periodicity provides a six term K theory exact
sequence for each exact sequence 0 — J — A — B — 0 of C* algebras
and excision shows that the K groups involved in the exact sequence only
depend on the respective C* algebras. As an exercise to appreciate the
power of this abstract tool one should for instance use the six term K
theory exact sequence to give a short proof of the Jordan curve theorem.

Discrete groups, Lie groups, group actions and foliations give rise
through their convolution algebra to a canonical C* algebra, and hence
to K theory groups. The analytical meaning of these K theory groups is
clear as a receptacle for indices of elliptic operators. However, these groups
are difficult to compute. For instance, in the case of semi-simple Lie groups
the free abelian group with one generator for each irreducible discrete se-
ries representation is contained in Ko C;G where CG is the reduced C*
algebra of G. Thus an explicit determination of the K theory in this case
in particular involves an enumeration of the discrete series.

We introduced with P. Baum [9] a geometrically defined K theory which
specializes to discrete groups, Lie groups, group actions, and foliations. Its
main features are its computability and the simplicity of its definition. In
the case of semi-simple Lie groups it elucidates the role of the homogeneous
space G/K (K the maximal compact subgroup of () in the Atiyah—Schmid
geometric construction of the discrete series [10]. Using elliptic operators
we constructed a natural map p from our geometrically defined K theory
groups to the above analytic (i.e. C* algebra) K theory groups. Much
progress has been made in the past years to determine the range of valid-
ity of the isomorphism between the geometrically defined K theory groups
and the above analytic (i.e. C* algebra) K theory groups. We refer to the
three Bourbaki seminars [11], [12], [13], for an update on this topic and
for a precise account of the various contributions. Among the most impor-
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tant contributions are those of Kasparov and Higson who showed that the
conjectured isomorphism holds for all amenable groups, thus proving the
Novikov conjecture for all amenable groups and the Kadison conjecture (i.e.
the absence of non-trivial idempotents in the reduced C*-algebra) for all
torsion free amenable groups. The conjectured isomorphism also holds for
real semi-simple Lie groups thanks in particular to the work of A. Wasser-
mann. Moreover the recent work of V. Lafforgue crossed the barrier of
property T, showing that it holds for cocompact subgroups of rank one Lie
groups and also of SL(3,R) or of p-adic Lie groups. He also gave the first
general conceptual proof of the isomorphism for real or p-adic semi-simple
Lie groups (and as a corollary a direct K-theoretic proof of the construction
of all discrete series representations by Dirac-induction). The proof of the
isomorphism is certainly accessible for all connected locally compact groups.
The proof by G. Yu of the analogue (due to J. Roe) of the conjecture in the
context of coarse geometry for metric spaces which are uniformly embed-
dable in hilbert space, and the work of G. Skandalis, J.L.. Tu, J. Roe and
N. Higson on the groupoid case got very striking consequences such as the
injectivity of the map p for exact C}(I') due to Kaminker, Guentner and
Ozawa, but recent progress due to Gromov, Higson, Lafforgue and Skan-
dalis gives counterexamples to the general conjecture for locally compact
groupoids for the simple reason that the functor G — Ky(C;(G)) is not
half exact, unlike the functor given by the geometric group. This makes the
general problem of computing K (C;(G)) really interesting. It shows that
besides determining the large class of locally compact groups for which the
original conjecture is valid, one should understand how to take homological
algebra into account to deal with the correct general formulation.

7 Differential Topology

The development of differential geometric ideas, including de Rham homol-
ogy, connections and curvature of vector bundles, etc... took place during
the eighties thanks to cyclic cohomology which came from two different
horizons ([14], [15], [16], [17], [18]).

In the commutative case, for a compact space X, we have at our disposal
in K-theory a tool of great relevance, the Chern character

ch: K*(X) — H*(X,Q) (7.1)

which relates the K-theory of X to the cohomology of X. When X is a
smooth manifold the Chern character may be calculated explicitly by the
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differential calculus of forms, currents, connections and curvature. More
precisely, given a smooth vector bundle E over X, or equivalently the finite
projective module, & = C*(X, E) over A = C*°(X) of smooth sections
of E, the Chern character of E

ch(F) € H (X,R) (7.2)
is represented by the closed differential form:
ch(E) = trace( exp(V?/2mi)) (7.3)

for any connection V on the vector bundle £. Any closed de Rham current
C on the manifold X determines a map ¢¢ from K*(X) to C by the equality
pc(E) = (C,ch(E)) (7.4)
where the pairing between currents and differential forms is the usual one.
One obtains in this way numerical invariants of K-theory classes whose
knowledge for arbitrary closed currents C' is equivalent to that of ch(E).
The noncommutative torus gave a striking example where it was obvi-
ously worthwhile to adapt the above construction of differential geometry
to the noncommutative framework ([40]). As an easy preliminary step to-
wards cyclic cohomology one can reformulate the essential ingredient of the
construction without direct reference to derivations in the following way

([171).

By a cycle of dimension n we mean a triple (2, d, [) where (©,d) is a
graded differential algebra, and [ : Q" — C is a closed graded trace on €.

Let A be an algebra over C. Then a cycle over A is given by a cycle
(Q,d, [) and a homomorphism p : A — Q°.

Thus a cycle over an algebra A is a way to embed A as a subalgebra of
a differential graded algebra (DGA). We shall see in (f) below the role of
the graded trace.

The usual notions of connection and curvature extend in a straightfor-
ward manner to this context ([17]).

Let A 25 Q be a cycle over A, and € a finite projective module over

A. Then a connection V on & is a linear map V : £ — & ® 4 Q! such that
V(zx)=(V)r+£@dp(x), VEE€, zeA. (7.5)

Here € is a right module over A and Q' is considered as a bimodule over

A using the homomorphism p : A — Q0 and the ring structure of Q*. Let
us list a number of easy properties ([17]):

(a) Let e € End4(€) be an idempotent and V a connection on &; then
¢ — (e ®1)V¢ is a connection on e.
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(b) Any finite projective module £ admits a connection.
(c) The space of connections is an affine space over the vector space

Homu (£, @4 Q). (7.6)

(d) Any connection V extends uniquely to a linear map of E=E@4Q
into itself such that
VEw)=(Vw+E{Rdw, YE€&, we. (7.7)
(¢) The map 6 = V2 of € to € is an endomorphism: 6 € Endg(£) and
with §(T) = VT — (=1)%9TTV, one has 6*(T) = 6T — T4 for all
T € Endg (5)
(f) For n even, n = 2m, the equality
1
() = o [0, (7.8)
m!
defines an additive map from the K-group Ky(.A) to the scalars.

Of course one can reformulate (f) by dualizing the closed graded trace [,
i.e. by considering the homology of the quotient Q/[2, Q] ([60]) and one
might be tempted at first sight to assert that a noncommutative algebra
often comes naturally equipped with a natural embedding in a DGA which
should suffice for the Chern character. This however would be rather naive
and would overlook for instance the role of integral cycles for which the
above additive map only affects integer values.

The starting point of cyclic cohomology is the ability to compare differ-
ent cycles on the same algebra. In fact the invariant of K-theory defined
in (f) by a given cycle only depends on the multilinear form

... a") —/P(ao)d(ﬂ(al))d(P(az))~-d(p(a”)) Val € A (7.9)
(called the character of the cycle) and the functionals thus obtained are
exactly those multilinear forms on A such that

@ is cyclic i.e.

0 1 ny __ n 1 2 0
ela’,a,...,a") = (=1)"p(a",a%,...,a") Vaje A, (7.10)
by = 0 where

n

(bp)(a®,...,a") = Z(—l)jgp(ao, codld T et
0

+ (=1)" (@, at, ... a") . (7.11)
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This second condition means that ¢ is a Hochschild cocycle. In particular
such a ¢ admits a Hochschild class

I() € H™(A, A%) (7.12)

for the Hochschild cohomology of A with coefficients in the bimodule A*
of linear forms on A.

The n-dimensional cyclic cohomology of A is simply the cohomology
HC™(A) of the subcomplex of the Hochschild complex given by cochains
which are cyclic i.e. fulfil (7.10). One has an obvious “forgetful” map

HC™A) - H"(A, A% (7.13)

but the real story starts with the following long exact sequence which allows
in many cases to compute cyclic cohomology from the B operator acting
on Hochschild cohomology:

Theorem 1. The following triangle is exact:
H*(A, A%)
B / \I
HC*(A) 2 HC*(A)

The operator S is obtained by tensoring cycles by the canonical 2-
dimensional generator of the cyclic cohomology of C.

The operator B is explicitly defined at the cochain level by the equality
B = ABy, Bop(a®,...,a" ) = p(1,d°,...,a" )= (=1)"p(d,...,a" 1, 1)

n—1
(AP)(@,...,a" 1) = ST (1) Vigp(ad 0, 0l ).
0

Its conceptual origin lies in the notion of cobordism of cycles which allows
us to compare different inclusion of A in DGA as follows. By a chain of
dimension n + 1 we shall mean a quadruple (2,99, d, [) where  and 99
are differential graded algebras of dimensions n + 1 and n with a given
surjective morphism r : Q@ — 9Q of degree 0, and where [ : Ottt - Cisa
graded trace such that

/dw =0, VYweQ"such that r(w) =0. (7.14)

By the boundary of such a chain we mean the cycle (99, d, f /) where for
W' € (0Q)" one takes ['w' = [dw for any w € Q" with r(w) = . One
easily checks, using the surjectivity of r, that [ " is a graded trace on O
and is closed by construction.
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We shall say that two cycles A -, Qand A Lo over A are cobordant
if there exists a chain Q” with boundary Q & Qo (Where (V' is obtained from
QY by changing the sign of [) and a homomorphism p” : 4 — Q" such that

rop”=(p,p').
The conceptual role of the operator B is clarified by the following result,

Theorem 2. Two cycles over A are cobordant if and only if their characters
11,79 € HC™(A) differ by an element of the image of B, where

B: H" (A, A*) — HC™(A).
The operators b, B given as above by

(bgp)(ao, ... ,a”“) =

S, et L a ) £ (<) (el a”)

0
B = ABy, Bop(d®,..,a" ") =¢(1,d", ...,a" 1) — (=1)"¢(d,...,a" "1 1)
n—1
(A6) (a0, @™ 1) = S(=1) (ol a1, . 00 )
0

satisfy b = B? = 0 and bB = —Bb and periodic cyclic cohomology which
is the inductive limit of the HC™(A) under the periodicity map S admits
an equivalent description as the cohomology of the (b, B) bicomplex.

With these notation one has the following formula for the Chern char-
acter of the class of an idempotent e, up to normalization one has

Chple) = (e—1/2)QRee® ... Qe, (7.15)

where ® appears 2n times in the right-hand side of the equation.

Both the Hochschild and Cyclic cohomologies of the algebra 4 = C*°(V)
of smooth functions on a manifold V' were computed in [16] and [17].

Let V be a smooth compact manifold and A the locally convex topo-
logical algebra C°°(V'). Then the following map ¢ — C, is a canonical

isomorphism of the continuous Hochschild cohomology group H¥(A, A*)
with the space of k-dimensional de Rham currents on V:

(Cor fOdf Ao nd Ry =8 > e(@)p(f0, 7M. f7)
€Sk
VIO fRe (V).
Under the isomorphism C the operator IoB : H¥(A, A*) — HF"1(A, A*)
is (k times) the de Rham boundary b for currents.
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Theorem 3. Let A be the locally convex topological algebra C°°(V'). Then
1) For each k, HC*(A) is canonically isomorphic to the direct sum
Kerb® Hy—2(V,C) ® Hy—a(V,C) & - --
where H,(V,C) is the usual de Rham homology of V' and b the de
Rham boundary.

2) The periodic cyclic cohomology of C*°(V') is canonically isomorphic
to the de Rham homology H,.(V,C), with filtration by dimension.

As soon as we pass to the noncommutative case, more subtle phenomena
arise. Thus for instance the filtration of the periodic cyclic homology (dual
to periodic cyclic cohomology) together with the lattice Ko(A) C HCey(A),
for A = Coo('JI%), gives an even analogue of the Jacobian of an elliptic curve.
More precisely the filtration of HC,, yields a canonical foliation of the torus
HC, /Kj and one can show that the foliation algebra associated as above
to the canonical transversal segment [0, 1] is isomorphic to C*°(T3).

A simple example of cyclic cocycle on a nonabelian group ring is pro-
vided by the following formula. Any group cocycle ¢ € H*(BT') = H*(T")
gives rise to a cyclic cocycle . on the algebra A = CI’

0 if go-.-9n 55 1
c(g1y-voyn) i go.oogn=1

where ¢ € Z™(T', C) is suitably normalized, and the formula is extended by
linearity to CI'. The cyclic cohomology of group rings is given by,

@6(907917 ce 7gn) = {

Theorem 4 [22]. Let T be a discrete group, A = CT its group ring.

a) The Hochschild cohomology H*(A, A*) is canonically isomorphic to
the cohomology H*((BT)S",C) of the free loop space of the classifying
space of I

b) The cyclic cohomology HC*(A) is canonically isomorphic to the S'-
equivariant cohomology H, ((BF)Sl ,C).

The role of the free loop space in this theorem is not accidental and is
clarified in general by the equality

BA = BS!

of the classifying space BA of the cyclic category with the classifying space
of the compact group S'. We refer to appendix XVIII for this point.

As we saw in section 5 the integral curvature of vector bundles on Tg
was surprisingly giving an integer, in spite of the irrationality of §. The con-
ceptual understanding of this type of integrality result lies in the existence
of a natural lattice of integral cycles which we now describe.
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DEFINITION. Let A be an algebra, a Fredholm module over A is given by:

1) a representation of A in a Hilbert space H;
2) an operator F' = F*, > = 1, on 'H such that

[F,a] is a compact operator for any a € A.

Such a Fredholm module will be called odd. An even Fredholm module
is given by an odd Fredholm module (H, F') as above together with a Z/2
grading v, v = 7*, v2 = 1 of the Hilbert space H such that:

a) ya=ayVae A

b) vF = —F~.
The above definition is, up to trivial changes, the same as Atiyah’s definition
[4] of abstract elliptic operators, and the same as Kasparov’s definition [8]
for the cycles in K-homology, KK (A,C), when A is a C*-algebra.

The main point is that a Fredholm module over an algebra A gives rise
in a very simple manner to a DGA containing .A. One simply defines QF
as the linear span of operators of the form,

w=2a"[F,a']...[F,a"] al € A
and the differential is given by

dw=Fw— (-1)*wF VweQF.
One easily checks that the ordinary product of operators gives an algebra
structure, QF Q¢ ¢ QF+¢ and that d? = 0 owing to F? = 1.

Moreover if one assumes that the size of the differential da = [F,a] is
controlled, i.e. that

|da|"*1  is trace class,

then one obtains a natural closed graded trace of degree n by the formula,

/w = Trace (w)

(with the supertrace Trace (yw) in the even case, see [36] for details).

Hence the original Fredholm module gives rise to a cycle over A. Such
cycles have the remarkable integrality property that when we pair them
with the K theory of A we only get integers as follows from an elementary
index formula ([36]).

We let Ch.(H,F) € HC"(A) be the character of the cycle associated
to a Fredholm module (H,F) over A. This formula defines the Chern
character in K-homology.

Cyclic cohomology got many applications [21], it led for instance to the
proof of the Novikov conjecture for hyperbolic groups [19]. Basically, by
extending the Chern—Weil characteristic classes to the general framework it
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allows for many concrete computations of differential geometric nature on
noncommutative spaces. It also showed the depth of the relation between
the classification of factors and the geometry of foliations.

Von Neumann algebras arise very naturally in geometry from foliated
manifolds (V, F'). The von Neumann algebra L (V, F) of a foliated man-
ifold is easy to describe, its elements are random operators T = (T}), i.e.
bounded measurable families of operators Ty parametrized by the leaves f
of the foliation. For each leaf f the operator T acts in the Hilbert space
L?(f) of square integrable densities on the manifold f. Two random op-
erators are identified if they are equal for almost all leaves f (i.e. a set of
leaves whose union in V' is negligible). The algebraic operations of sum and
product are given by,

(M + Do)y =(T)s+ (T2)r, (MiTa)p=(T1)s(T2)s, (7.16)
i.e. are effected pointwise.

All types of factors occur from this geometric construction and the
continuous dimensions of Murray and von-Neumann play an essential role
in the longitudinal index theorem.

Using cyclic cohomology together with the following simple fact,

“A connected group can only act trivially on a homotopy

invariant cohomology theory”, (7.17)
one proves (cf. [20]) that for any codimension one foliation F' of a compact
manifold V' with non-vanishing Godbillon—Vey class one has,

Mod (M) has finite covolume in R? | (7.18)
where Mod(M) is the flow of weights of M = L*°(V, F).
In the recent years J. Cuntz and D. Quillen ([23], [24], [25]) have devel-
oped a powerful new approach to cyclic cohomology which allowed them to
prove excision in full generality.

8 Calculus and Infinitesimals

The central notion of noncommutative geometry comes from the identifi-
cation of the noncommutative analogue of the two basic concepts in Rie-
mann’s formulation of Geometry, namely those of manifold and of infinites-
imal line element. Both of these noncommutative analogues are of spectral
nature and combine to give rise to the notion of spectral triple and spectral
manifold, which will be described below. We shall first describe an operator
theoretic framework for the calculus of infinitesimals which will provide a
natural home for the line element ds.
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I first have to make a little excursion, and I want it as naive as possi-
ble. I want to turn back to an extremely naive question about what is an
infinitesimal. Let me first explain one answer that was proposed for this
intuitive idea of infinitesimal and let me explain why this answer is not
satisfactory and then give another answer which hopefully is satisfactory.
So, I remember quite a long time ago to have seen an answer which was
proposed by non-standard analysis. The book I was reading [78] began
with the following problem:

You play a game of throwing darts at some target called €2

!

and the question which is asked is: what is the probability dp(x) that
actually when you throw the dart it lands exactly at a given point = € Q7
Then the following argument was given: certainly this probability dp(z)
is smaller than 1/2 because you can cut the target into two equal halves,
only one of which contains x. For the same reason dp(x) is smaller than
1/4, and so on and so forth. So what you find out is that dp(z) is smaller
than any positive real number €. On the other hand, if you give the answer
that dp(x) is 0, this is not really satisfactory, because whenever you send
the dart it will land somewhere. So now, if you ask a mathematician about
this naive question, he might very well answer: well, dp(z) is a 2-form, or
it’s a measure, or something like that. But then you can try to ask him
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more precise questions, for instance “what is the exponential of —1/dp(x)”.
And then it will be hard for him to give a satisfactory answer, because
you know that the Taylor expansion of the function f(y) = e~ /¥ is zero
at y = 0. Now the book I was reading claimed to give an answer, and
it was what is called a non-standard number. So I worked on this theory
for some time, learning some logics, until eventually I realized there was
a very bad obstruction preventing one to get concrete answers. It is the
following: it’s a little lemma that one can easily prove, that if you are given
a non-standard number you can canonically produce a subset of the interval
which is not Lebesgue measurable. Now we know from logic (from results
of Paul Cohen and Solovay) that it will forever be impossible to produce
explicitly a subset of the real numbers, of the interval [0, 1], say, that is
not Lebesgue measurable. So, what this says is that for instance in this
example, nobody will actually be able to name a non-standard number. A
non-standard number is some sort of chimera which is impossible to grasp
and certainly not a concrete object. In fact when you look at non-standard
analysis you find out that except for the use of ultraproducts, which is very
efficient, it just shifts the order in logic by one step; it’s not doing much
more. Now, what I want to explain is that to the above naive question
there is a very beautiful and simple answer which is provided by quantum
mechanics. This answer will be obtained just by going through the usual
dictionary of quantum mechanics, but looking at it more closely. So, let us
thus look at the first two lines of the following dictionary which translates
classical notions into the language of operators in the Hilbert space H:

Complex variable Operator in H
Real variable Selfadjoint operator
Infinitesimal Compact operator

Infinitesimal of order « Compact operator with characteristic values
Un satisfying p, = O(n™%) , n — o0
Integral of an infinitesimal fT = Coefficient of logarithmic
of order 1 divergence in the trace of T'.

The first two lines of the dictionary are familiar from quantum mechan-
ics. The range of a complex variable corresponds to the spectrum of an
operator. The holomorphic functional calculus gives a meaning to f(7') for
all holomorphic functions f on the spectrum of T'. It is only holomorphic
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functions which operate in this generality which reflects the difference be-
tween complex and real analysis. When T = T* is selfadjoint then f(T)
has a meaning for all Borel functions f.

The size of the infinitesimal T € K is governed by the order of decay
of the sequence of characteristic values p, = pn (1) as n — oco. In partic-
ular, for all real positive a the following condition defines infinitesimals of
order a:

un(T) =0Mm™%) when n — oo (8.1)
(i.e. there exists C' > 0 such that u,(T) < Cn~® Vn > 1). Infinitesimals
of order « also form a two—sided ideal and moreover,

T; of order a;; = T1T5 of order ay + . (8.2)

Hence, apart from commutativity, intuitive properties of the infinitesi-
mal calculus are fulfilled.

Since the size of an infinitesimal is measured by the sequence pu,, | 0 it
might seem that one does not need the operator formalism at all, and that
it would be enough to replace the ideal K in L(H) by the ideal ¢o(N) of
sequences converging to zero in the algebra ¢*°(N) of bounded sequences. A
variable would just be a bounded sequence, and an infinitesimal a sequence
L, tbn — 0. However, this commutative version does not allow for the exis-
tence of variables with range a continuum since all elements of £°°(N) have
a point spectrum and a discrete spectral measure. Only noncommutativity
of L(H) allows for the coexistence of variables with Lebesgue spectrum to-
gether with infinitesimal variables. As we shall see shortly, it is precisely
this lack of commutativity between the line element and the coordinates on
a space that will provide the measurement of distances.

The integral is obtained by the following analysis, mainly due to Dixmier
([28]), of the logarithmic divergence of the partial traces

N-1
Tracen(T) = Y un(T), T >0. (8.3)
0

In fact, it is useful to define Tracep(T) for any positive real A > 0 by
piecewise affine interpolation for noninteger A.
Define for all order 1 operators T > 0

1 A Trace, (T) d
™w(T) = / L) du
logA Je logp
which is the Cesaro mean of the function Trace,(T")/log p over the scaling
group RY .

(8.4)
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For T' > 0, an infinitesimal of order 1, one has
Tracep(T) < C log A (8.5)

so that 74 (T') is bounded. The essential property is the following asymptotic
additivity of the coefficient 74 (T") of the logarithmic divergence (8.5):
log(log A)

|TA(T1 +T2)—TA(T1)—TA(T2)‘ SSC logA

(8.6)

for T3 > 0.

An easy consequence of (8.6) is that any limit point 7 of the nonlinear
functionals 75 for A — oo defines a positive and linear trace on the two—
sided ideal of infinitesimals of order 1,

In practice the choice of the limit point 7 is irrelevant because in all
important examples T' is a measurable operator, i.e.:

TA(T) converges when A — oo. (8.7)

Thus the value 7(T') is independent of the choice of the limit point 7 and

is denoted
][ T (8.8)

The first interesting example is provided by pseudodifferential operators T
on a differentiable manifold M. When T is of order 1 in the above sense,
it is measurable and 7 is the noncommutative residue of T' ([29]). It has
a local expression in terms of the distribution kernel k(z,y), z,y € M. For
T of order 1 the kernel k(z,y) diverges logarithmically near the diagonal,

k(xz,y) = —a(z)log |z —y|+ 0(1) (for y — z) (8.9)

where a(z) is a 1-density independent of the choice of Riemannian distance
|z — y|. Then one has (up to normalization),

fr=f o

The right-hand side of this formula makes sense for all pseudodifferential
operators (cf. [29]) since one can see that the kernel of such an operator is
asymptotically of the form

= Zak(:v,x—y) —a(z)log |z —y| 4+ 0(1) (8.11)
where ay(z, £) is homogeneous of degree —k in £, and the 1-density a(z) is
defined intrinsically.

The same principle of extension of f to infinitesimals of order < 1
works for hypoelliptic operators and more generally as we shall see below,
for spectral triples whose dimension spectrum is simple.
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We can now go back to our initial naive question about the target and
the darts, we find that quantum mechanics gives us an obvious infinitesimal
which answers the question: it is the inverse of the Dirichlet Laplacian for
the domain 2. Thus there is now a clear meaning for the exponential
of —1/dp, that’s the well-known heat kernel which is an infinitesimal of
arbitrarily large order as we expected from the Taylor expansion.

From the H. Weyl theorem on the asymptotic behavior of eigenvalues
of A it follows that dp is of order 1, and that given a function f on §2 the
product f dp is measurable, while

][fdp: /Qf(xl,xg) dxi N dxo (8.12)

gives the ordinary integral of f with respect to the measure given by the
area of the target.

9 Spectral Triples

In this section we shall come back to the two basic notions introduced
by Riemann in the classical framework, those of manifold and of line ele-
ment. We shall see that both of these notions adapt remarkably well to the
noncommutative framework and this will lead us to the notion of spectral
manifold which noncommutative geometry is based on.

In ordinary geometry of course you can give a manifold by a cooking
recipe, by charts and local diffeomorphisms, and one could be tempted to
propose an analogous cooking recipe in the noncommutative case. This is
pretty much what is achieved by the general construction of the algebras
of foliations and it is a good test of any general idea that it should at least
cover that large class of examples.

But at a more conceptual level, it was recognized long ago by geome-
ters that the main quality of the homotopy type of an oriented manifold
is to satisfy Poincaré duality not only in ordinary homology but also in
K-homology. Poincaré duality in ordinary homology is not sufficient to
describe homotopy type of manifolds [30] but D. Sullivan [31] showed (in
the simply connected PL case of dimension > 5 ignoring 2-torsion) that it
is sufficient to replace ordinary homology by K O-homology. Moreover the
Chern character of the K O-homology fundamental class contains all the
rational information on the Pontrjagin classes.

The characteristic property of differentiable manifolds which is carried
over to the noncommutative case is Poincaré duality in K O-homology [31].
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Moreover, as we saw above in the discussion of Fredholm modules, K-
homology admits a fairly simple definition in terms of Hilbert space and
Fredholm representations of algebras.

For an ordinary manifold the choice of the fundamental cycle in K-
homology is a refinement of the choice of orientation of the manifold and in
its simplest form is a choice of Spin-structure. Of course the role of a spin
structure is to allow for the construction of the corresponding Dirac opera-
tor which gives a corresponding Fredholm representation of the algebra of
smooth functions.

What is rewarding is that this will not only guide us towards the notion
of noncommutative manifold but also to a formula, of operator theoretic
nature, for the line element ds.

The infinitesimal unit of length“ds” should be an infinitesimal in the
sense of section 8 and one way to get an intuitive understanding of the
formula for ds is to consider Feynman diagrams which physicist use cur-
rently in the computations of quantum field theory. Let us contemplate the
diagram

which is involved in the computation of the self-energy of an electron in
QED. The two points x and y of space-time at which the photon (the
wiggly line) is emitted and reabsorbed are very close by and our ansatz for
ds will be at the intuitive level,

ds = x—x . (9.1)

The right-hand side has good meaning in physics, it is called the Fermion
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propagator and is given by
x—x =D~ (9.2)
where D is the Dirac operator.

We thus arrive at the following basic ansatz,

ds=D". (9.3)
In some sense it is simpler than the ansatz giving ds? as g,, dz* dz”, the
point being that the spin structure allows really to extract the square root
of ds? (as is well known Dirac found the corresponding operator as a dif-
ferential square root of a Laplacian).

The first thing we need to do is to check that we are still able to measure
distances with our “unit of length” ds. In fact we saw in the discussion of
the quantized calculus that variables with continuous range cannot com-
mute with “infinitesimals” such as ds and it is thus not very surprising that
this lack of commutativity allows us to compute, in the classical Rieman-
nian case, the geodesic distance d(z,y) between two points. The precise
formula is

d(z,y) = Sup{|f(z) — f()l; f €A, [[D, fll <1} (9.4)
where D = ds~! as above and A is the algebra of smooth functions. Note
that if ds has the dimension of a length L, then D has dimension L~' and
the above expression for d(x,y) also has the dimension of a length.

Thus we see in the classical geometric case that both the fundamen-
tal cycle in K-homology and the metric are encoded in the spectral triple
(A, H, D) where A is the algebra of functions acting in the Hilbert space
‘H of spinors, while D is the Dirac operator.

To get familiar with this notion one should check that we recover the
volume form of the Riemannian metric by the equality (valid up to a nor-
malization constant [36

)
][f |ds|" = /Mn fvg dx (9.5)

but the first interesting point is that besides this coherence with the usual
computations there are new simple questions we can ask now such as “what
is the two-dimensional measure of a four manifold” in other words “what
is its area ?”. Thus one should compute

][ ds® (9.6)

It is obvious from invariant theory that this should be proportional to the
Hilbert—Einstein action but doing the direct computation is a worthwhile
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exercise (cf. [52], [51]), the exact result being

-1
ds? = / r\/g dx (9.7)
][ 48772 My \/_

where as above dv = /g d*z is the volume form, ds = D! the length
element, i.e. the inverse of the Dirac operator and r is the scalar curvature.

In the general framework of Noncommutative Geometry the confluence
of the Hilbert space incarnation of the two notions of metric and funda-
mental class for a manifold led very naturally to define a geometric space
as given by a spectral triple:

(A, H,D) (9.8)
where A is a concrete algebra of coordinates represented on a Hilbert space
‘H and the operator D is the inverse of the line element

ds=1/D. (9.9)
This definition is entirely spectral; the elements of the algebra are operators,
the points, if they exist, come from the joint spectrum of operators and the
line element is an operator.

The basic properties of such spectral triples are easy to formulate and
do not make any reference to the commutativity of the algebra A. They

are
[D, a] is bounded for any a € A, (9.10)

D = D* and (D + \)~! is a compact operator YA & C. (9.11)
(Of course D is an unbounded operator).

There is no difficulty to adapt the above formula for the distance in the
general noncommutative case, one uses the same, the points x and y being
replaced by arbitrary states ¢ and v on the algebra A. Recall that a state
is a normalized positive linear form on A such that ¢(1) =1,

0: A—=C, p(a*a) >0, Vac A, p(1)=1. (9.12)

The distance between two states is given by

d(p,v) = Sup {|¢(a) —d(a)l s a€ A, [[D,a]]| <1}. (9.13)

The significance of D is two-fold. On the one hand it defines the metric
by the above equation, on the other hand its homotopy class represents the
K-homology fundamental class of the space under consideration.

It is crucial to understand from the start the tension between the con-
ditions (9.10) and (9.11). The first condition would be trivially fulfilled
if D were bounded but condition (9.11) shows that it is unbounded. To
understand this tension let us work out a very simple case. We let the
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algebra A be generated by a single unitary operator U. Let us show that
if the index pairing between U and D, i.e. the index of PUP where P is
the orthogonal projection on the positive eigenspace of D, does not vanish
then the number N(E) of eigenvalues of D whose absolute value is less
than F grows at least like £ when F — oo. This means that in the above
circumstance ds = D! is of order one or less.

To prove this we choose a smooth function f € C°(R) identically one
near 0, even and with Support (f) C [—1,1]. We then let R(e) = f(eD).
One first shows ([36]) that the operator norm of the commutator [R(¢), U]
tends to 0 like e. It then follows that the trace norm satisfies

|[R(e),U]||, < CeN(1/e) (9.14)
as one sees using the control of the rank of R(e) from N(1/¢). The index
pairing is given by —% Trace (U*[F,U]) where F is the sign of D and one
has,

Trace(U*[F,U]) = lim Trace(U*[F, U]R(¢)) = lim Trace(U* F[U, R(¢)]) .
e—0 e—0
(9.15)
Thus the limit being non-zero we get a lower bound on the trace norm of
[U, R(¢)] and hence on £ N(1/¢) which shows that N(E) grows at least like
E when E — oo.

This shows that ds cannot be too small (it cannot be of order o > 1).

In fact when ds is of order 1 one has the following index formula,
Index (PUP) = —% ][U_I[D,U] |ds| . (9.16)
The simplest case in which the index pairing between D and U does not
vanish, with ds of order 1, is obtained by requiring the further condition,
U YD,U]=1. (9.17)
It is a simple exercise to compute the geometry on S' = Spectrum (U)
given by an irreducible representation of condition (9.17). One obtains the
standard circle with length 27.

The above index formula is a special case of a general result ([36]) which
computes the n-dimensional Hochschild class of the Chern character of a
spectral triple of dimension n.

Theorem 5. Let (H,F) be a Fredholm module over an involutive alge-
bra A. Let D be an unbounded selfadjoint operator in H such that D!
is of order 1/n , Sign D = F, and such that for any a € A the operators
a and [D,a] are in the domain of all powers of the derivations ¢, given by
d(x) =[|D|,x]. Let 7, € HC™(A) be the Chern character of (H, F).
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For every n-dimensional Hochschild cycle ¢ € Z,(A, A), c = > a° ®
al...®a", one has (t,,c) = > a’[D,al]...[D,a"] |D|7™.

We refer to [36] for precise normalization and to [66] for the detailed
proof. By construction, this formula is scale invariant, i.e. it remains un-
changed if we replace D by AD for A € R% . The operators T, of the form

T.=Y_da°[D,a']...[D,a"]|D|™" (9.18)
are measurable in the sense of section 8.

The long exact sequence of cyclic cohomology (section 7) shows that the
Hochschild class of 7, is the obstruction to a better summability of (H, F),
indeed 7, belongs to the image S(HC" 2(A)) (which is the case if the
degree of summability can be improved by 2) if and only if the Hochschild
cohomology class I(1,) € H"(A, A*) is equal to 0.

In particular, the above theorem implies nonvanishing of residues when
the cohomological dimension of ch,(H, F') is not lower than n:

COROLLARY. With the hypothesis of Theorem 5 and if the Hochschild class
of ch,(H, F) pairs non-trivially with H, (A, A) one has

][|D|_" £0. (9.19)

In other words the residue of the function ((s) = Trace (|D|~%) at s =n
cannot vanish.

In higher dimension, the Hochschild class of the character suffices to
determine the index pairing with the K-theory class of an idempotent e
provided the lower dimensional components of ch(e) vanish. As we saw
above these components are given, up to normalization by,

chy(e) = (e—3)®e® - ®e (9.20)
(with 2n tensor signs) and as such cannot vanish. But both Hochschild
and cyclic cohomology are Morita invariant, which implies that the class
of ch(e) in the normalized (b, B) bicomplex (in homology) does not change
when we project each of its components ch,(e) on the commutant of a
matrix algebra M,(C) C A. The formula for this projection (ch,(e)) in
terms of the matrix components e;;,
e = [eif] , eij € My(C)Y'n A (9.21)
is the following,
<Chn(e>> = Z (6ioi1 - %5i0i1) ® €irip @ €igig ®--® Ciznio (9'22)
and there are very interesting situations in which all the lower components
(chj(e)) actually vanish,
(chj(e)) =0 j<m. (9.23)
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For m = 1 for instance we can take ¢ = 2 and the condition {chy(e)) = 0
means that e is of the form,

e= Lt (115)} . (9.24)

(The equation €? = e then means that t2 + z* 2 = ¢, tz + 2(1 — t) = z,
Zt+(1—t)2* =2, 2 2+ (1 —t)? = (1 — t) which shows that the algebra
generated by the components z, z*, ¢ of e is abelian).

It then follows automatically that (chj(e)) is a Hochschild cycle and
hence by Theorem 5, that if ds = D! is of order 1/2 the index pairing is
given by,

Index D} = — ][ v(e—1) [D,e]?ds*. (9.25)

Exactly as above this shows that ds cannot be of order o > 1/2 if the index
pairing is non-zero, and we also get the analogue of equation (9.17) in the

form,
((e—3) [D,e]*y =~ (9.26)

where ( ) is simply the projection on the commutant of My(C) in L(H).

This equation together with (9.25) implies that the area  ds® is an
integer since it is given by a Fredholm index. One can show that the algebra
A generated by the components of e is C(S?) the algebra of continuous
functions on S? and that any Riemannian metric g on S? with fixed volume
form gives a solution to the above equations.

There is a converse to that result ([50]) but it requires the further hy-
pothesis that D is of order one:

[[D. eij), exe] =0 (9.27)

where the e;; are the components of the idempotent e, i.e. are the generators
of the algebra.

This order one condition is the counterpart in our operator theoretic
setting of the “quadratic” nature of Riemann’s equation ds? = g,,, dz* dz".
It is easier to formulate in terms of the square root which we extracted
using the spin structure. We shall come later to the correct formulation of
the order one condition when the algebra A is noncommutative.

To end this section let us move on to the four dimensional case, i.e.
n = 2. We take ¢ =4, i.e. we deal with My(C).

We first determine the C* algebra generated by My (C) and a projection
e = €* such that <e - %> = 0 as above and whose two by two matrix
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expression is of the form,

el — q11 %2} 9.98
€] {qm q22 ( )
where each g¢;; is a 2 x 2 matrix of the form,
a
q= {—ﬁ* o?*] . (9.29)

Since e = e*, both g1 and g9y are selfadjoint, moreover since <e — %) =0,
we can find ¢ = t* such that,

o T
qn——k t]’ @2—[ 0 (1—0}' (9.30)
We let g0 = [7% aﬁ }, we then get from e = e*,
q21 = [Z;* _Oﬂ . (9.31)

We thus see that the commutant A of M4(C) is generated by ¢, a, 3 and we
first need to find the relations imposed by the equality e? = e.

In terms of e = [qt 1- t] the equation e? = e means that t? —t+qq* = 0,
t2 —t+q*¢ =0 and [t,q] = 0. This shows that t commutes with a, 3, o*
and §* and since gq* = ¢*q is a diagonal matrix
ad =o', af=pa, of=pa", BB =056 (9.32)
so that the C* algebra A is abelian, with the only further relation (besides
t=1t%),

aa* 4+ BB+t —t=0. (9.33)
This is enough to check that,
A=C(SY (9.34)
where S* appears naturally as quaternionic projective space,
=P (H). (9.35)

The original C* algebra is thus,

B = C(S%) ® My(C). (9.36)
We shall now check that the two dimensional component (Chi(e)) auto-
matically vanishes as an element of the (normalized) (b,B)-bicomplex.

(Cho(e)) =0, n=0,1. (9.37)

With ¢ = [_olé f} we get,

(Chi(e)) = ((t—3) (dgdg* — dq* dg)
+ q(dg* dt — dtdg*) + q* (dt dg — dgdt)) (9.38)
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where the expectation in the right-hand side is relative to M(C) and we
use the notation dx instead of the tensor notation.
The diagonal elements of w = dq dq* are

w11 = dada” +dBdB", we =dB*dS + da* da
while for ' = dq* dg we get,
Wi =da*da+dpda*, why, =dB*dB + dada*.
It follows that, since t is diagonal,
{(t—3) (dgdq* —dq*dq)) =0. (9.39)
The diagonal elements of ¢ dg* dt = p are
p11 = ada™dt + BdB*dt, poo = B*dEdt + o dadt
while for p' = ¢* dq dt they are
Py = dadt+ Bdp*dt, phy = *dBdt +ada*dt.

Similarly for o = ¢dt dg* and ¢’ = ¢* dt dg one gets the required cancella-
tions so that

(Chi(e)) =0. (9.40)
It follows thus that (Cha(e)) is a Hochschild cycle and that for any ds =
D=1 of order 1/4 commuting with My(C), the index pairing of D with e is

IndexD} = ][ v(e—1) [D,e]*ds*. (9.41)

Exactly as above this shows that ds cannot be of order o > 1/4 if the index
pairing is non-zero, and we also get the analogue of equation 9-9.17 in the
form,
<(e - %) D, e]4> =7 (9.42)
where () is simply the projection on the commutant of My(C) in L(H).
This equation together with (9.41) implies the integrality of the 4-
dimensional volume,

j£ ds* €N, (9.43)

since it is given by a Fredholm index.

One can show that the algebra A generated by the components of e is
C(S*) the algebra of continuous functions on S* and that any Riemannian
metric g on S* gives a solution to the above equations, provided its volume
form is,

1 _
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As in the two dimensional case there is a converse, assuming the order one
condition on D.

The next question is how is D to be chosen from within the homotopy
class which characterizes its K-homology class? There are two answers to

this question. The first uses the naive idea of a formal metric,
d

G= Y datg,(de”)* € Q% (A), (9.45)
pv=1
and the choice of D is performed by minimizing the action functional,

d
A=) /[[D,x“]gw,([D,x”])*D4| , (9.46)
p,rv=1
among the D’s which fulfil equation (9.42) holding G fixed.

The minimum is then given by the Dirac operator associated to the
unique Riemannian metric with volume form v in the conformal class of
G drtdz”.

The second way to select D from within its K-homology class is to use
an action functional with the largest possible invariance group which is the
unitary group of Hilbert space. The corresponding action is then spectral
and only depends upon the eigenvalues of D. The simplest such action is
of the form, [58]

S(D) = Trace(f(D)). (9.47)
where f is an even function vanishing at co. If we take for f a step function
equal to 1 in [—A, A], the value of S(D) is,

N(A) = # eigenvalues of D in [—A, A]. (9.48)
This step function N(A) is the superposition of two terms,
N(A) = (N(A)) + Nose(A) .
The oscillatory part Nesc(A) is the same as for a random matrix, governed
by the statistic dictated by the symmetries of the system and does not
concern us here. The average part (N(A)) is computed by a semiclassical
approximation and the leading term in the asymptotic expansion is,

A4

5 ds* (9.49)

which by (43) is independent of the choice of D in its K-homology class.
If we restrict ourselves to solutions given by ordinary Riemannian met-

rics the next term in the asymptotic expansion is the Hilbert—Einstein ac-

tion functional for the Riemannian metric,

- r d x. 9.50
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Other non-zero terms in the asymptotic expansion are cosmological, Weyl
gravity and topological terms.

10 Noncommutative 4-manifolds and the Instanton
Algebra

In this section, based on our collaboration with G. Landi ([65]), we shall
show that the basic equation for an instanton in dimension 4, namely

e=e¢=¢" (10.1)
and
(cho(e)) =0, (chi(e)) =0 (10.2)
(where ch,, are the components of the Chern character,
chp(e) = (e—3)®e®...®e€ (10.3)

and () is the projection onto the commutant of a 4 x 4 matrix algebra) do
admit noncommutative solutions. In other words the algebra generated by
the 16 components of the 4 x 4 matrix,

e = [ei;] (10.4)
will be noncommutative.
In fact this prompts us to introduce, a priori, the algebra A with 16

generators e;; and whose presentation is given by the relations (10.1) and
(10.2). The relation (chgy(e)) = 0 just means that

e11 +exn +eztey =2 (10.5)

2—¢is

and the equation e = e* defines the involution in 4. The relation e
easy to comprehend as a quadratic relation between the generators.

The relation (chj(e)) = 0 is more delicate to understand since it involves
tensors and the simplest way to think about it is to represent the e;; as

operators in Hilbert space H. What we ask then is that,
Z (6ij - % (SZ]) X gjk Rer; =0 (106)
where the ~ means that we take the class modulo the scalar multiples of 1.
This allows us to define what is a unitary representation m of the algebra

A and we can endow its elements, i.e polynomials in the noncommuting
generators e;;, with the C*-norm,

|zl = sup fj(2)] (10.7)

where 7w ranges through all unitary representations. It is easy to show that
for z € A the supremum is finite since in any unitary representation, the



Visions in Math. NONCOMMUTATIVE GEOMETRY - YEAR 2000 521

e;; satisfy,
[ (eij) | <1 (10.8)

as matrix elements of a selfadjoint idempotent.

DEFINITION. We let C(Gr) be the C* completion of A and C*°(Gr) the
smooth closure of A in C(Gr).

The letters Gr stand for the Grassmanian but our construction has
little to do with the known “noncommutative Grassmanians”. The re-
ally non-trivial condition is the cubic condition 10.6. In fact as we saw
above the same construction in dimension 2 does give a commutative an-
swer namely P;(C).

One should observe from the outset that the compact Lie group SU(4)
acts by automorphisms,

PSU(4) C Aut (C*(Gr)) (10.9)
by the following operation,
e—UeU" (10.10)
where U € SU(4) is viewed as a 4 x 4 matrix and e = [e;;] is as above.
What we saw in section 9 is that there is a surjection,

C(Gr) — C(8Y (10.11)

while the corresponding symmetry group breaks down to SO(4), the isom-
etry group of the 3-sphere from which S* is obtained by suspension. We
shall now show that the algebra C'(Gr) is noncommutative by constructing
explicit surjections,

C(Gr) — C(S3) (10.12)
whose form is dictated by natural deformations of the 4-sphere similar in
spirit to the above deformation of T? to T2.

We first determine the C* algebra generated by M4(C) and a projection
e = ¢* such that <e — %> = 0 as above and whose two by two matrix
expression is of the form,

€] = |:Q11 Q12} (10.13)
q21 422
where each ¢;; is a 2 x 2 matrix of the form,
_| e b

where A = exp2mif is a complex number of modulus one, different from -1
for convenience. Since e = e*, both g1 and ¢99 are selfadjoint, moreover
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since <e — %> = 0, we can find t = t* such that,

o D
We let gip = [_fﬂ* f*}, we then get from e = e*,
Y
q21 = [g* aﬂ] : (10.16)

We thus see that the commutant By of My(C) is generated by t,«, 3 and
we first need to find the relations imposed by the equality e? = e.

In terms of e = [qt; 12] , the equation e? = e means that t>—t+gq* = 0,

t? —t+q¢*q¢ = 0 and [t,q] = 0. This shows that ¢ commutes with «, 3, o*
and (* and since q¢* = ¢*q is a diagonal matrix

acd® =ao*a, af=Na, o'B=Ipa*, BB =pB (10.17)
so that the C* algebra By is not abelian for A different from 1. The only
further relation is (besides ¢t = t*)

ao + B3 +t2—t=0. (10.18)
We denote by Sg the corresponding noncommutative space, so that
C(S4) = By. It is by construction the suspension of the noncommutative
3-sphere Sg whose coordinate algebra is generated by « and [ as above
for the special value ¢ = 1/2. This noncommutative 3-sphere is related by
analytic continuation of the parameter ¢ to the quantum group SU(2), but
the usual theory requires ¢ to be real whereas we need a complex number
of modulus one which spoils the unitarity of the coproduct.
We shall now check that the two dimensional component (Ch;(e)) au-
tomatically vanishes as an element of the (normalized) (b,B)-bicomplex.

(Chn(e)) =0, n=0,1. (10.19)
With ¢ = [7;‘5* f }, we get,

(Chi(e)) = ((t — 3) (dg dg* — dg” dg)

+ q(dg* dt — dtdq*) + ¢*(dt dg — dgdt)) (10.20)
where the expectation in the right-hand side is relative to M(C) and we
use the notation dx instead of the tensor notation.

The diagonal elements of w = dq dq* are computed as above,

w11 = dada” +dBdB", we =dB*dS + da* da
while for o' = dq* dg we get,
Wiy = da*da+dBds*, why =dB*dS + dada*.
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It follows that, since ¢ is diagonal,
<(t — %) (dqdq* — dq* dq)> =0. (10.21)
The diagonal elements of q dg* dt = p are
p11 = ada™dt + BdB*dt, poo = " dBdt+ o dadt
while for p' = ¢* dgq dt they are
Pl = dadt+ BdB*dt, phy =B dBdt + ada*dt.

Similarly for o = ¢dt dq* and ¢’ = ¢* dt dq one gets the required cancella-
tions so that,

(Chi(e)) =0, (10.22)
It follows thus that (Cha(e)) is a Hochschild cycle and that for any ds =
D! of order 1/4 commuting with My(C), the index pairing of D with e is

IndexD} = ][ v(e—1) [D,e*ds*. (10.23)

Exactly as above this shows that ds cannot be of order a > 1/4 if the index
pairing is non-zero, and we also get the analogue of equation (9.17) in the

form, ) A
{((e—3) [D,e]*)y =~ (10.24)
where () is simply the projection on the commutant of My(C) in L(H).

This equation together with (10.23) implies the integrality of the 4-
dimensional volume,

j[ ds* €N, (10.25)

since it is given by a Fredholm index. We shall refer to [65] for the ex-
plicit construction of solutions of (10.24). It should be clear to the reader
that this amply justifies the clarification of the notion of a manifold in
Noncommutative Geometry, to which we turn next.

11 Noncommutative Spectral Manifolds

In our discussion in section 9 of the K-homology fundamental class of a man-
ifold we skipped over the nuance between K-homology and KO-homology.
This nuance turns out to be essential in the noncommutative case. Thus
to describe the fundamental class of a noncommuative space by a spectral
triple (A, H, D), will require an additional “real structure” on the Hilbert
space ‘H given by an antilinear isometry J. The anti-linear isometry J is
given in Riemannian geometry by the charge conjugation operator and in
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the noncommutative case by the Tomita—Takesaki antilinear conjugation
operator [2].
The action of A satisfies the commutation rule, [a,b°] = 0, Va,b € A
where
W=JvJt  VWhed (11.1)
so H becomes an A-bimodule using the representation of A ® A°, where
A is the opposite algebra, given by,
a®b’ —aJb*J Vabe A (11.2)
This allows us to overcome the main difficulty of the noncommutative case
which is that the diagonal in the square of the space no longer corresponds
to an algebra homomorphism (the map x ® y — xy is no longer an algebra
homomorphism),
The fundamental class of a noncommutative space is a class p in the
K R-homology of the algebra A ® A° equipped with the involution
r(z®y°) =y* @ (*)° Ve,ye A (11.3)
where A° denotes the algebra opposite to A. The K R-homology cycle
representing p is given by a spectral triple, as above, equipped with an
anti-linear isometry J on H which implements the involution 7,
JwJ ™t = 7(w) Vwe Ao A°, (11.4)
K R-homology ([8] [55]) is periodic with period 8 and the dimension
modulo 8 is specified by the following commutation rules. One has J? = &,
JD =¢'DJ, Jy =&"yJ where ¢,¢',¢” € {—1,1} and with n the dimension
modulo 8§,

'n|0 1 2 3 4 5 6 7|
el1 1 -1 -1 -1 -1 1 1
i1 -1 1 1 1 -1 11
e’ |1 -1 1 -1

The class p specifies only the stable homotopy class of the spectral triple
(A, H, D) equipped with the isometry J (and Z/2-grading v if n is even).
The non-triviality of this homotopy class shows up in the intersection form

K.(A) x K,(A) = Z (11.5)
which is obtained from the Fredholm index of D with coefficients in
K.(A ® A"). Note that it is defined without using the diagonal map
m: A® A — A, which is not a homomorphism in the noncommuta-
tive case. This form is quadratic or symplectic according to the value of n
modulo 8.
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The Kasparov intersection product [8] allows us to formulate the Poin-
caré duality in terms of the invertibility of u,

IBEKR,(A"®A), BRap=idgp, pu®pf=idyg. (11.6)

It implies the isomorphism K, (A) D, Ko (A).
The condition that D is an operator of order one becomes
[D,a],t"] =0  Va,be A. (11.7)
(Notice that since a and b° commute this condition is equivalent to
[[D,a’],b] =0, Va,be A)

One can show that the von Neumann algebra A” generated by A in H is
automatically finite and hyperfinite and there is a complete list of such alge-
bras up to isomorphism. The algebra A is stable under smooth functional
calculus in its norm closure A = A so that K;(A) ~ K;(A), ie. K;(A)
depends only on the underlying topology (defined by the C* algebra A).
The integer x = (u, 3) € Z gives the Euler characteristic in the form

x = Rang Ky(A) — Rang K;(A) (11.8)
and the general operator theoretic index formula of section 13 below, gives
a local formula for y.

We gave in [50] the necessary and sufficient conditions that a spectral
triple (with real structure J) should fulfil in order to come from an or-
dinary compact Riemannian spin manifold. These conditions extend in a
straightforward manner to the noncommutative case ([50]). To appreciate

the richness of examples which fulfil them we shall just quote the following
result ([65]),

Theorem 6. Let M be a compact Riemannian spin manifold. Then if the
isometry group of M has rank r > 2, M admits a non-trivial one parameter
isospectral deformation to noncommutative geometries My.

The group Aut™(A) of automorphisms « of the involutive algebra A,
which are implemented by a unitary operator U in ‘H commuting with J,
alr) =UzU! Vee A, (11.9)
plays the role of the group Diff*(M) of diffeomorphisms preserving the
K-homology fundamental class for a manifold M.
In the general noncommutative case, parallel to the normal subgroup
Int A C Aut A of inner automorphisms of A,

a(f) =ufu* VieA (11.10)
where v is a unitary element of A (i.e. uu* = u*u = 1), there exists a
natural foliation of the space of spectral geometries on A by equivalence
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classes of inner deformations of a given geometry. To understand how they
arise we need to understand how to transfer a given spectral geometry to a
Morita equivalent algebra. Given a spectral triple (A, H, D) and the Morita
equivalence [56] between A4 and an algebra B where

B = End4(€) (11.11)

where £ is a finite, projective, hermitian right .A-module, one gets a spectral
triple on B by the choice of a hermitian connection on £. Such a connection
V is a linear map V : £ — £ ® 4 O}, satisfying the rules ([36])

V(éa) = (V€a+ @ da VeEel,ae A (11.12)
where da = [D,a] and where QL C L(H) is the A-bimodule of operators
of the form

A= Eai[D,bi], a;,b; € A. (1114)
Any algebra A is Morita equivalent to itself (with &€ = A) and when
one applies the above construction in the above context one gets the inner
deformations of the spectral geometry.
Such a deformation is obtained by the following formula (with suitable
signs depending on the dimension mod 8) without modifying either the
representation of A in H or the anti-linear isometry J

D—D+A+JAJ! (11.15)

where A = A* is an arbitrary selfadjoint operator of the form (11.14). The
action of the group Int(.A) on the spectral geometries is simply the following
gauge transformation of A

Yu(A) = u[D,u"] + uAu® . (11.16)

The required unitary equivalence is implemented by the following represen-
tation of the unitary group of A in H,

u— uJuJ = u(u)’. (11.17)

The transformation (11.15) is the identity in the usual Riemannian case. To
get a non-trivial example it suffices to consider the product of a Riemannian
triple by the unique spectral geometry on the finite-dimensional algebra
Ap = Mn(C) of N x N matrices on C, N > 2. One then has A =
C®(M) ® Ap, Int(A) = C*°(M,PSU(N)) and inner deformations of the
geometry are parameterized by the gauge potentials for the gauge theory
of the group SU(N). The space of pure states of the algebra A, P(A), is
the product P = M x Py_;(C) and the metric on P(A) determined by
the formula (9.13) depends on the gauge potential A. It coincides with the
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Carnot metric [57] on P defined by the horizontal distribution given by the
connection associated to A. The group Aut(A) of automorphisms of A is
the following semi-direct product

Aut(A) = U>< Diff (M) (11.18)

of the local gauge transformation group Int(.4) by the group of diffeomor-
phisms.

12 Test with Space-time

What we have done so far is to stretch the usual framework of ordinary
geometry beyond its commutative restrictions (set theoretic restrictions)
and of course now it’s not perhaps a bad idea to test it with what we know
about physics and to try to find a better model of space-time within this
new framework. The best way is to start with the hard core information
one has from physics and that can be summarized by a Lagrangian. This
Lagrangian is the Einstein Lagrangian plus the standard model Lagrangian.
I am not going to write it down, it’s a very complicated expression since
just the standard model Lagrangian comprises five types of terms. But one
can start understanding something by looking at the symmetry group of
this Lagrangian. Now, if it were just the Einstein theory, the symmetry
group of the Lagrangian would just be, by the equivalence principle, the
diffeomorphism group of the space-time manifold. But because of the stan-
dard model piece the symmetry group of this Lagrangian is not just the
diffeomorphism group, because the gauge theory has another huge symme-
try group which is the group of maps from the manifold to the small gauge
group, namely Uy x SUy x SUs as far as we know. Thus, the symmetry
group G of the full Lagrangian is neither the diffeomorphism group nor the
group of gauge transformations of the second kind nor their product, but
it is their semi-direct product. It is exactly like what happens with the
Poincaré group where you have translations and Lorentz transformations,
o it is the semi-direct product of these two subgroups. Now we can ask
a very simple question: would there be some space X so that this group
G would be equal to Diff (X)? If such a space would exist, then we would
have some chance to actually geometrize the theory completely, namely to
be able to say that it’s pure gravity on the space X. Now, if you look for the
space X among ordinary manifolds, you have no chance since by a result
of John Mather the diffeomorphism group of a (connected) manifold is a
simple group. A simple group cannot have a non-trivial normal subgroup,
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so you cannot have this structure of semi-direct product.

However, we can use our dictionary, and in this dictionary, if we browse
through it, we find that what corresponds to diffeomorphisms for a noncom-
mutative space is just the group Aut™(A) of automorphisms of the algebra
of coordinates A, which preserve the fundamental class in K-homology, as
described above in section 11.

Now there is a beautiful fact which is that when an algebra is not com-
mutative, then among its automorphisms there are very trivial ones, there
are automorphisms which are there for free, I mean the inner ones, which
associate to an element x of the algebra the element uzu~'. Of course
uzu~! is not, in general equal to 2 because the algebra is not commutative,
and these automorphisms form a normal subgroup of the group of auto-
morphisms. Thus you see that the group Aut*(A) has the same type of
structure, namely it has a normal subgroup of internal automorphisms and
it has a quotient. Now it turns out that there is one very natural noncom-
mutative algebra A whose group of internal automorphisms corresponds
to the group of gauge transformations and the quotient Aut™(A)/Int(A)
corresponds exactly to diffeomorphisms [54]. It is amusing that the physics
vocabulary is actually the same as the mathematical vocabulary. Namely,
in physics you talk about internal symmetries and in mathematics you talk
about inner automorphisms, you could call them internal automorphisms.
Now the corresponding space is a product M x F' of an ordinary manifold
M by a finite noncommutative space F'. The corresponding algebra Ap is
the direct sum of the algebras C,H (the quaternions), and M3(C) of 3 x 3
complex matrices.

The algebra Ap corresponds to a finite space where the standard model
fermions and the Yukawa parameters (masses of fermions and mixing ma-
trix of Kobayashi Maskawa) determine the spectral geometry in the fol-
lowing manner. The Hilbert space is finite-dimensional and admits the set
of elementary fermions as a basis. For example, for the first generation of
quarks, this set is o

ur,uRr,dr,dr,ur,,uR,dr,,dg . (12.1)
The algebra Ap admits a natural representation in Hg (see [53]) and the
Yukawa coupling matrix Y determines the operator D.

The detailed structure of Y (and in particular the fact that color is not
broken) allows us to check the axioms of noncommutative geometry.

The next step consists of the computation of internal deformations

D—D+A+JAT? (12.2)
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(cf. section 11), of the product geometry M x F' where M is a 4—dimensional
Riemannian spin manifold. The computation gives the standard model
gauge bosons v, W*, Z, the eight gluons and the Higgs fields ¢ with accu-
rate quantum numbers.

Now the next question that arises is how do we recover the original
action functional which contained both the Einstein—Hilbert term as well as
the standard model? The answer is very simple: the Fermionic part of this
action is there from the start and one recovers the bosonic part as follows.
Both the Hilbert—Einstein action functional for the Riemannian metric,
the Yang—Mills action for the vector potentials, the self interaction and the
minimal coupling for the Higgs fields all appear with the correct signs in

the asymptotic expansion for large A of the number N(A) of eigenvalues of
D which are < A (cf. [58]),

N(A) = # eigenvalues of D in [—A, A]. (12.3)
Exactly as above, this step function N(A) is the superposition of two terms,
N(A) = (N(A)) 4 Nosc(A) -

The oscillatory part Nosc(A) is the same as for a random matrix, governed
by the statistic dictated by the symmetries of the system and does not
concern us here. The average part (IN(A)) is computed by a semiclassical
approximation from local expressions involving the familiar heat equation
expansion and delivers the correct terms. We showed above in section 9,
that if one studies natural presentations of the algebra generated by A and
D one naturally gets only metrics with a fixed volume form so that the
bothering cosmological term does not enter in the variational equations as-
sociated to the spectral action (N(A)). It is tempting to speculate that the
phenomenological Lagrangian of physics, combining matter and gravity ap-
pears from the solution of an extremely simple operator theoretic equation
along the lines described above in sections 9 and 10.

13 Operator Theoretic Index Formula

The power of the general theory comes from deeper general theorems such
as the local computation of the analogue of Pontrjagin classes: i.e. of the
components of the cyclic cocycle which is the Chern character of the K-
homology class of D and which make sense in general. This result allows,
using the infinitesimal calculus, to go from local to global in the general
framework of spectral triples (A, H, D).
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The Fredholm index of the operator D determines (in the odd case) an

additive map Ki(.A) %, 7 given by the equality
¢([u]) = Index(PuP), ue€ GLi(A) (13.1)
where P is the projector P = #, F = Sign (D).

This map is computed by the pairing of K;(A) with the following cyclic

cocycle

7(a%...,a") = Trace (a"[F,a']...[F,a"]) Vda’ € A (13.2)
where ' = Sign D and we assume that the dimension p of our space is
finite, which means that (D + i)~! is of order 1/p, also n > p is an odd
integer. There are similar formulas involving the grading ~ in the even
case, and it is quite satisfactory ([33], [34]) that both cyclic cohomology
and the Chern character formula adapt to the infinite dimensional case in
which the only hypothesis is that exp(—D?) is a trace class operator.

It is difficult to compute the cocycle 7 in general because the formula
(13.2) involves the ordinary trace instead of the local trace f and it is
crucial to obtain a local form of the above cocycle.

This problem is solved by a general formula [35] which we now describe.

Let us make the following regularity hypothesis on (A, H, D)

aand [D,al € NDomd*, Vaec A (13.3)

where § is the derivation §(T') = [|D|, T] for any operator T

We let B denote the algebra generated by 6*(a), §¥([D,a]). The usual
notion of dimension of a space is replaced by the dimension spectrum which
is a subset of C. The precise definition of the dimension spectrum is the
subset 3 C C of singularities of the analytic functions

(p(2) = Trace (b|D|™%) Rez>p, beB. (13.4)

The dimension spectrum of a manifold M is the set {0,1,...,n}, n =
dim M; it is simple. Multiplicities appear for singular manifolds. Cantor
sets provide examples of complex points z ¢ R in the dimension spectrum.

We assume that ¥ is discrete and simple, i.e. that {, can be extended
to C/X with simple poles in X.

We refer to [35] for the case of a spectrum with multiplicities. Let
(A,H, D) be a spectral triple satisfying the hypothesis (13.3) and (13.4).
The local index theorem is the following, [35]:

Theorem 7. 1. The equality
][P = Res,—g Trace (P|D|%)
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defines a trace on the algebra generated by A, [D, A] and |D|?, where z € C.
2. There is only a finite number of non-zero terms in the following

formula which defines the odd components (py)n=13,.. of a cocycle in the
bicomplex (b, B) of A,

@n(a(), a") = Zcmk][aO[D,al](kl) o [D’an](k?n) |D‘7nf2lk\ Val € A
k

where the following notation are used: T"¥)=V*(T) and V(T)=D*T—TD?,
k is a multi-index, |k| = k1 + ... + ky,

g = (=1)PV2i(ky o) 7 (Ra 1) (Ba oot A k) T (K| 4+2) -

3. The pairing of the cyclic cohomology class (¢,) € HC*(A) with
K1(A) gives the Fredholm index of D with coefficients in K;(A).

For the normalization of the pairing between HC* and K (A) see [36].
In the even case, i.e. when H is Z/2 graded by =,

7:7*, ,72:17 ya = ay V(IGA, ’}/l):—l)'}/7
there is an analogous formula for a cocycle (¢,,), n even, which gives the

Fredholm index of D with coefficients in K. However, ¢ is not expressed
in terms of the residue JC because it is not local for a finite dimensional H.

14 Diffeomorphism Invariant Geometry

The power of the above operator theoretic local trace formula lies in its
generality and in the existence of really new geometric examples to which
it applies.

In this section we shall explain how the transverse structure of foliations
is described by a spectral triple (A, H, D) with simple dimension spectrum.
This allows moreover to give a precise meaning to diffeomorphism invari-
ant geometry on a manifold M, by the construction of a spectral triple
(A, H, D) where the algebra A is the crossed product of the algebra of
smooth functions on the finite dimensional bundle P of metrics on M by
the natural action of the diffeomorphism group of M. While ordinary geo-
metric constructions are “covariant” with respect to diffeomorphisms, our
construction ([37]) is “invariant” inasmuch as the algebra now incorporates
the full group of diffeomorphisms and the metrics involved are canonical.

The operator D is an hypoelliptic operator ([38]) which is directly asso-
ciated to the reduction of the structure group of the manifold P to a group
of triangular matrices whose diagonal blocks are orthogonal. By construc-
tion the fiber of P > M is the quotient F'+/SO(n) of the GL* (n)-principal
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bundle F'T of oriented frames on M by the action of the orthogonal group
SO(n) € GL*(n). The space P admits a canonical foliation: the vertical
foliation V-C TP, V = Ker 7, and on the fibers V and on N = (T'P)/V the
following Euclidean structures. A choice of GLT (n)-invariant Riemannian
metric on GLT(n)/SO(n) determines a metric on V. The metric on N is
defined tautologically: for every p € P one has a metric on Ty, (M) which
is isomorphic to N, by .

We first consider the hypoelliptic signature operator Q on F*. It is not
a scalar operator but it acts in the tensor product

Ho=L*(FT,v)® E (14.1)
where F is a finite dimensional representation of SO(n) specifically given
by

E=AP, @ AR", P,=S°R". (14.2)
The operator @ is the graded sum,
Q= (dy dv —dv dy) ® (du + dj) (14.3)

where the horizontal (resp. vertical) differentiation dg (resp. dy ) is a matrix
in the horizontal and vertical vector fields X; and Yéﬁ as well as their
adjoints (which also involve scalars). When n is equal to 1 or 2 modulo 4 one
has to replace F'* by its product by S! so that the dimension of the vertical
fiber is even (it is then 1+ % ) and the vertical signature operator makes
sense. The longitudinal part is not elliptic but only transversally elliptic
with respect to the action of SO(n). Thus to get an hypoelliptic operator

one restricts ) to the Hilbert space,
H=(L*(F*,v)®E)

and one takes the following algebra A,

A= CX(P)>«Difft, P=F"/SO(n). (14.5)
Let us note that the operator @) is in fact the image under the right regular
representation of the affine group Ggfine of a (matrix valued) hypoellip-
tic symmetric element in the enveloping algebra U(Ggffine). By an easy
adaptation of a theorem of Nelson and Stinespring, it then follows that @
is essentially selfadjoint (with core any dense G ffine-invariant subspace of
the space of C* vectors of the right regular representation of G ffine)-

Theorem 8 [[37]]. Let A be the crossed product C°(P)><Difft acting
in 'H as above.

1. The equality D|D| = Q defines a spectral triple (A, H, D) which sat-
isfies the hypotheses of Theorem 7; its dimension spectrum is simple
and given by ¥ = {O, 1,...,2n + W}

§0(m) (14.4)
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2. The cocycle ¢; given by the local index formula (Theorem 7) is the
image by the characteristic map of a universal Gelfand-Fuchs coho-
mology class.

The equality D|D| = @ defining D while @ is a differential operator of
second order, is characteristic of “quartic” geometries.

The computation of the local index formula for diffeomorphism invariant
geometry [37] was quite complicated even in the case of codimension 1
foliations: there were innumerable terms to be computed; this could be
done by hand, by 3 weeks of eight hours per day tedious computations, but
it was of course hopeless to proceed by direct computations in the general
case. Henri and I finally found how to get the answer for the general
case after discovering that the computation generated a Hopf algebra H(n)
which only depends on n= codimension of the foliation, and which allows us
to organize the computation provided cyclic cohomology is suitably adapted
to Hopf algebras as in the next section.

The Hopf algebra H(n) only depends upon the integer n and is neither
commutative nor cocommutative. We proved in [37] that it is isomorphic
to the bicrossed product Hopf algebra ([70], [69], [71]) associated to the
following pair of subgroups of G = Diff(R").

We let G; C G be the subgroup of affine diffeomorphisms,

k(z) = Az +b VzeR" (14.6)
and we let Go C G be the subgroup,
peG, ¢0)=0, ¢(0)=1. (14.7)

Given ¢ € G it has a unique decomposition ¢ = k1 where k € G1, ¥ € Go
which allows us to perform the bicrossed product construction.

15 Characteristic Classes for Actions of Hopf Algebras

Hopf algebras arise very naturally from their actions on noncommutative
algebras [39]. Given an algebra A, an action of the Hopf algebra H on A is
given by a linear map,

H®A— A, h®a— h(a) (15.1)
satisfying hq (hga) = (h1h2)(a), Yh; € H, a € A and
=> hay(a)hp () VabeA, heH. (15.2)
where the coproduct of h is,
h) =Y ha) ®@h (15.3)

In concrete examples, the algebra A appears first, together with linear maps
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A — A satisfying a relation of the form (15.2) which dictates the Hopf
algebra structure. This is exactly what occurred in the above example (see
[37] for the description of H(n) and its relation with Diff(R™)).

The theory of characteristic classes for actions of H extends the con-
struction [40] of cyclic cocycles from a Lie algebra of derivations of a C*
algebra A, together with an invariant trace T on A.

This theory was developed in [37] in order to solve the above compu-
tational problem for diffeomorphism invariant geometry but it was shown
in [41] that the correct framework for the cyclic cohomology of Hopf al-
gebras is that of modular pairs in involution. It is quite satisfactory that
exactly the same structure emerged from the analysis of locally compact
quantum groups. The resulting cyclic cohomology appears to be the natu-
ral candidate for the analogue of Lie algebra cohomology in the context of
Hopf algebras. We fix a group-like element o and a character ¢ of H with
d(0) = 1. They will play the role of the module of locally compact groups.

We then introduce the twisted antipode,

S) = 0wa)Swe), veH, Ay= yu @y (154)

We shall say that the modular pair (o, ¢) is in involution if the (o, §)-twisted

antipode is an involution, ~
(0719 =1. (15.5)

We associate a cyclic complex (in fact a A-module, where A is the cyclic
category), to any Hopf algebra together with a modular pair in involu-
tion. More precisely the following graded vector space H? b0) = {H®"} >4
equipped with the operators given by the following formulas (15.6)—(15.8)
defines a module over the cyclic category A. First, by transposing the stan-
dard simplicial operators underlying the Hochschild homology complex of
an algebra, one associates to H, viewed only as a coalgebra, the natural
cosimplicial module {H®"},,>1, with face operators §; : HEn—L s o
oMo, .o HY=12hrte...0h 1
i@ e ) =hMe.. AW ®...@h", V1<j<n—1, (15.6)
w(hte... o ) =hle.. 0" leo
and degeneracy operators o; : HE" 1 — H®n,
oM@ .o =e. . 0ch™e. . . or" 0<i<n. (15.7)
The remaining two essential features of a Hopf algebra — product and an-
tipode — are brought into play, to define the cyclic operators 7, : HE"—H®™,

.. @h") = (A"IS(Y)) R ... ok ®a. (15.8)
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The theory of characteristic classes applies to actions of the Hopf algebra
on an algebra endowed with a J-invariant o-trace. A linear form 7 on A is
a o-trace under the action of H iff one has,

7(ab) = 7(bo(a)) Va,be A. (15.9)
A o-trace T on A is é-invariant under the action of H iff
7(h(a)b) = 7(aS(h)(D))